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Abstract. This paper deals with the problem of repairing inconsis-
tent relational database instances in which facts are associated with
nonnegative weights, representing their quality or trustfulness. Given
a numeric aggregation function G, weighted repairs (or G-repairs) are
defined as inclusion-maximal consistent subinstances with maximum
aggregated value. The weighted repair notion extends existing repair
notions, like subset- and cardinality-repairs. We study the complexity of
repair-checking and some related problems, in a setting where database
integrity constraints are represented by a hypergraph whose hyperedges
correspond to constraint violations. In this setting, G-repairs can be
viewed as maximum-weight independent sets relative to the aggregation
function G.

Keywords: Conflict hypergraph · Consistent query answering ·
Database repairing · Maximum-weight independent set

1 Motivation

In today’s era of “big data,” database management systems have to cope more
and more with dirty information that is inconsistent with respect to some
integrity constraints. Such integrity constraints are commonly expressed in decid-
able fragments of some logic, for example, as dependencies [1] or ontologies in
some Description Logic [4]. The term repair is commonly used to refer to a
consistent database that is obtained from the inconsistent database by some
minimal modifications. This notion was introduced twenty years ago in a sem-
inal paper by Arenas et al. [3], and has been an active area of research ever
since. In particular, the field of Consistent Query Answering (CQA) studies the
question of how to answer database queries if multiple repairs are possible. Two
surveys of this research are [6,18].

This paper’s aim is to contribute to the research in preferred repair semantics,
whose goal is to capture more of the meaning of the data into the repairing pro-
cess. To this end, we introduce and study weighted repairs. We will assume that
database tuples are associated with numerical weights such that tuples with
higher weights are preferred over tuples with lower weights. Then, among all
possible repairs, weighted repairs are those with a maximum aggregated value,
according to some aggregation function. We will study the relationship between
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the complexity of computing weighted repairs and certain properties of the aggre-
gation function used.

The remainder of this section is an informal guided tour that introduces and
motivates our research questions by means of a simple example. We start with
a graph-theoretical view on database repairing.

A Graph-Theoretical Perspective on Database Repairing. Consider the
following relational table TEACHES , in which a fact TEACHES (p, c, s) means
that professor p teaches the course c during semester s.

TEACHES Prof Course Sem

Jeff A fall (f1)

Jeff B fall (f2)

Ed C spring (s1)

Rob C spring (s2)

Rob D spring (s3)

The integrity constraints are as follows: no professor teaches more than one
course in a given semester, and no course is taught by more than one profes-
sor. In terms of functional dependencies, we have: {Prof ,Sem} → {Course}
and {Course} → {Prof }. The relation TEACHES violates these integrity con-
straints; its conflict graph is shown in Fig. 1. The vertices of the conflict graph
are the facts in the relation TEACHES ; two vertices are adjacent if together
they violate some functional dependency.

f1 = TEACHES (Jeff,A, fall)

f2 = TEACHES (Jeff,B, fall)

s1 = TEACHES (Ed,C, spring)

s2 = TEACHES (Rob,C, spring)

s3 = TEACHES (Rob,D, spring)

Fig. 1. Conflict graph for the running example.

Given a database instance, it is common to define a subset-repair as an
inclusion-maximal subinstance that satisfies all integrity constraints. In terms of
the conflict graph, every subset-repair is an inclusion-maximal independent set
(IMIS), and vice versa. Recall that in graph theory, a set of vertices is indepen-
dent if no two vertices of it are adjacent. It can be verified that the graph of
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Fig. 1 has four IMISs: every IMIS includes either {f1} or {f2}, and includes either
{s1, s3} or {s2}. The term cardinality-repair refers to independent sets of maxi-
mum cardinality. In our running example, the cardinality-repairs are {f1, s1, s3}
and {f2, s1, s3}.

Maximum-Weight Independent Set (MWIS). As in [16], we will assume
from here on that every fact is associated with a nonnegative weight, where
larger weights are better. In practice, such weights may occur in data integra-
tion, where facts coming from more authoritative data sources are tagged with
higher weights. For example, in the next relational table, among the first two
facts—which are conflicting—the second fact has a higher weight and is therefore
considered better.

TEACHES Prof Course Sem w

Jeff A fall 1

Jeff B fall 2

Ed C spring 1

Rob C spring 2

Rob D spring 1

It is now natural to take these weights into account, and define repairs as
maximum-weight independent sets (MWIS) of the conflict graph. In graph the-
ory, an MWIS is an independent set that maximizes the sum of the weights of
its vertices. In our example, there are two MWISs, both having a total summed
weight of 4:

T1 Prof Course Sem w

Jeff B fall 2
Rob C spring 2

and

T2 Prof Course Sem w

Jeff B fall 2
Ed C spring 1
Rob D spring 1

.

Aggregation Functions Other Than SUM. The aggregation function SUM
is cooked into the definition of MWIS: among all independent sets, an MWIS is
one that maximizes the summed weight. From a conceptual perspective, it may
be natural to use aggregation functions other than SUM. For example, among the
two repairs T1 and T2 shown above, we may prefer T1 because it maximizes the
average weight. Indeed, the average weights for T1 and T2 are, respectively, 2+2

2
and 2+1+1

3 . Alternatively, we may prefer T1 because it maximizes the minimum
weight. Therefore, to capture these alternatives, we will allow other functions
than SUM in this paper, including AVG and MIN.
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Computing Repairs. In data cleaning and database repairing, we are often
interested in finding one or more repairs for a given database instance. Now that
we have introduced weights and different aggregation functions, this boils down
to the following task: given a database instance with weighted facts, return an
inclusion-maximal consistent subinstance that maximizes the aggregated weight
according to some fixed aggregation function. Alternatively, in graph-theoretical
terms: given a vertex-weighted graph, return an inclusion-maximal independent
set that maximizes the aggregated weight according to some fixed aggrega-
tion function. Since for aggregation functions other than SUM, maximality with
respect to set inclusion and maximality with respect to aggregated weight may
not go hand in hand, it should be made precise which criterion prevails:

– among all inclusion-maximal independent sets, return one that maximizes the
aggregated weight; or

– among all independent sets that maximize the aggregated weight, return one
that is inclusion-maximal.

To illustrate the difference, let G = (V,E) with V = {a, b} and E = ∅. Let
w(a) = 1 and w(b) = 2, and let MIN be the aggregation function. The first task
would return {a, b}, while the second task would return {b}. In this paper, we
will study the latter task.

It is known that under standard complexity assumptions (in particular, P �=
NP), there is no polynomial-time algorithm that returns an MWIS for a given
vertex-weighted graph. Therefore, when the aggregation function SUM is used,
it is intractable to return a repair with a maximum summed weight. In this
paper, we will ask whether this task can become tractable for other aggregation
functions of practical interest. Contributions of this paper can be summarized
as follows.

– We introduce G-repairs, generalizing existing repair notions.
– By taking a conflict hypergraph perspective on database integrity, we show

that G-repairs are a generalization of maximum-weight independent sets.
– We adapt classical decision problems to our setting, and study their computa-

tional complexity. While these problems are intractable in general, we identify
classes of aggregation functions that allow for polynomial-time algorithms.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 introduces aggregation functions and defines the (conflict) hypergraph
perspective for studying inconsistent databases. Section 4 defines the notion of
G-repair and the computational problems we are interested in. Section 5 shows
computational complexity results for these problems, culminating in our main
tractability theorem, Theorem 3. Section 6 shows that tractability is lost under
a slight relaxation of the hypotheses of that theorem. Finally, Sect. 7 concludes
the paper.

2 Related Work

In their seminal paper [3], Arenas et al. define repairs of an inconsistent database
as those consistent databases that can be obtained by inserting and deleting min-
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imal (with respect to set inclusion) sets of tuples. Since then, many variants of
this earliest repair notion have been introduced, several of which are discussed
in [5,9,18]. For any fixed repair notion, repair checking is the following prob-
lem: given an inconsistent database and a candidate repair, is the candidate
a true repair (i.e., does it satisfy all constraints imposed by the repair notion
under consideration)? Afrati and Kolaitis [2] made important contributions to
our understanding of the complexity of repair checking. For databases contain-
ing numerical attributes, repairs have also been defined as solutions to numerical
constraint problems [7,8,13].

The notion of conflict hypergraph was introduced in [10], and later extended
in [17]. The relationship between repairs and inclusion-maximal independent
sets was observed in [10, Proposition 3.1]. If database tuples are associated with
nonnegative weights, then it is natural to generalize this relationship by viewing
repairs as maximum-weight independent sets (MWIS). We cannot cite here the
vast amount of literature studying the computational complexity and algorithms
related to MWIS. In our approach, however, we do not primarily focus on the
maximum summed weight, but also allow for aggregation functions other than
SUM. The problems we study are specifically motivated by database applica-
tions in which several other aggregation functions are sensible. We will show
that some problems that are NP-hard in general, become tractable for aggrega-
tion functions that have some desirable properties. Inspired by database theory,
weight-based approaches to inconsistency have also been studied for knowledge
bases in Description Logics [12].

3 Preliminaries

Aggregation Functions over Weighted Sets. Informally, aggregation func-
tions take as input a set of elements, each associated with a weight, and return
an aggregated weight for the entire set. Examples are SUM and MIN. In this
work, all weights will be nonnegative rational numbers, which we interpret as
quality scores where higher values are better. These notions are formalized next.

Definition 1 (Weighted set). A weighted set is a pair (I, w) where I is a
finite set and w is a total mapping from I to Q+ (i.e., the set of nonnegative
rational numbers). We will often assume that the weight function w is implicitly
understood. That is, whenever we say that I is a weighted set, we mean that
(I, w) is a weighted set for a mapping w that is implicitly understood.

Two weighted sets (I1, w1) and (I2, w2) are isomorphic if there is a bijec-
tion π : I1 → I2 such that for every x ∈ I1, w1(x) = w2(π(x)). Informally,
two weighted sets are isomorphic if the attained numeric values as well as their
multiplicities coincide.

Definition 2 (Aggregation function). An aggregation function G is a func-
tion that maps every weighted set (I, w) to a nonnegative rational number,
denoted G[w](I), such that:
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– G is closed under isomorphism, meaning that any two weighted sets that are
isomorphic are mapped to the same value; and

– the empty weighted set is mapped to 0.

We write AGGpoly for the class of aggregation functions that are computable
in polynomial time in |I|. Some well-known members of this class are denoted
COUNT, SUM, MAX, MIN, and AVG, with their expected, natural semantics (not
repeated here).

By measuring the complexity of an aggregation function G in terms of |I|, we
do not take into account the size of the numeric values in the image of the
mapping w. This complexity is appropriate for the applications we have in mind.
The requirement that an aggregation function be closed under isomorphism is
tantamount to saying that for a weighted set I, the value G[w](I) depends on,
and only on, the multiset {{w(x) | x ∈ I}}. While it may be more common to
define aggregation functions on multisets of numbers (see, e.g., [15, p. 159]), our
Definition 2 is appropriate for the purposes we have in mind. Indeed, we will
only apply aggregation on weighted sets formed by vertices of a vertex-weighted
graph.

Conflict Hypergraphs. Conflict hypergraphs [10,11] generalize the conflict
graphs introduced previously in Sect. 1. To detect violations of functional depen-
dencies, it suffices to regard two tuples at a time. However, more involved con-
straints may consider three or more tuples at a time. For this reason, conflict
graphs are generalized to conflict hypergraphs. Informally, a conflict hypergraph
is a hypergraph whose vertices are the database facts; hyperedges are formed by
grouping facts that together violate some integrity constraint.

Formally, a fact is an expression R(c1, . . . , cn) where R is a relation name
of arity n, and each ci is a constant. A database is a finite set of facts. Let db
be a database instance, and C be a set of integrity constraints. We will assume
that C is satisfied by the empty database instance. The (conflict) hypergraph is
defined as an hypergraph H = (V,E) whose vertices are the facts of db; there is
an hyperedge e = {R1(�c1), . . . , Rk(�ck)} if (and only if) the following properties
hold:

1. the facts R1(�c1), . . . , Rk(�ck) taken together violate one or more integrity con-
straints of C; and

2. every strict subset of e satisfies C.

In other words, the hyperedges of H are the inclusion-minimal inconsistent sub-
sets of db. Recall from graph theory that an independent set of a hypergraph
H = (V,E) is a set I ⊆ V such that I includes no hyperedge of E. Then, by con-
struction, the following expressions are equivalent for every database instance
db and set C of integrity constraints:

– I is an independent set of the (conflict) hypergraph; and
– I is consistent, i.e., I satisfies C.
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It is this equivalence between independent sets and database consistency that
motivates the hypergraph perspective on database repairing. For most database
integrity constraints, minimal (with respect to ⊆) inconsistent sets are bounded
in size. For example, for functional dependencies or primary keys, this bound
is 2. This will be mimicked in the hypergraph perspective by assuming a bound b
(some positive integer) on the size of the hyperedges.

Finally, we will consider vertex-weighted hypergraphs, i.e., the vertex set will
be a weighted set, as defined by Definition 1.

Definition 3. A hypergraph is called weighted if its vertex set is a weighted set.
Technically, such a hypergraph is a nested pair ((V,w), E) with (V,w) a weighted
set of vertices, and E a set of hyperedges. However, as announced in Definition 1,
we often omit the explicit mention of the weight function w. For simplicity, we
will assume that no hyperedge is a singleton. For every integer b ≥ 2, we define
WH[b] as the set of weighted hypergraphs containing no hyperedge of cardinality
strictly greater than b.

To conclude this section, we argue that for most common database integrity
constraints, the hypergraph perspective is appropriate for our computational
complexity studies, even if constraints are given as expressions in relational cal-
culus. The reason is that P (i.e., polynomial time) is the smallest complexity
class considered in our complexity analysis, while for most database constraints,
conflict hypergraphs can be obtained by a query in relational calculus, which is
strictly contained in P. For example, for a functional dependency R : X → Y ,
the edges of the conflict hypergraph are all pairs of tuples in R that agree on all
attributes of X but disagree on some attribute in Y .

4 Repair Checking and Related Problems

A repair of an inconsistent databases db is often defined as a maximal consis-
tent subinstance of db, where maximality can be with respect to set inclusion or
cardinality, yielding subset- and cardinality-repairs, respectively. These notions
carry over to the hypergraph perspective defined in Sect. 3. For any aggregation
function G and weighted hypergraph, we now define G-repairs as a natural gener-
alization of existing repair notions. Significantly, from a graph-theoretical view-
point, G-repairs generalize maximum-weight independent sets, which are inde-
pendent sets of vertices whose weights sum to the maximum possible value. In
G-repairs, other functions than SUM can be used.

Definition 4 (G-repair). Let G be an aggregation function, and H =
((V,w), E) a weighted hypergraph. A G-repair of H is a subset I ⊆ V with the
following three properties:

Independence: I is an independent set of H;
Maximality: for every other independent set J ⊆ V , it holds that G[w](I) ≥

G[w](J); and
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Saturation: for every other independent set J ⊆ V , if G[w](I) = G[w](J) and
I ⊆ J , then I = J .

Informally, among all independent sets that maximize G[w], a weighted repair
is one that is inclusion-maximal. Subset-repairs and cardinality-repairs are spe-
cial cases of G-repairs. Indeed, if we let G = SUM and w(v) = 1 for every vertex v,
then G-repairs coincide with cardinality-repairs. If we let G = MIN and w(v) = 1
for every vertex v, then G-repairs coincide with subset-repairs.

We now relax G-repairs by replacing the Maximality requirement in Defini-
tion 4 by a lower bound on the aggregated value. This corresponds to real-life
situations where we may already be happy with a guaranteed lower bound.

Definition 5 (q-suitable vertex set). This definition is relative to some fixed
aggregation function G. Let H = ((V,w), E) be a weighted hypergraph, and q ∈
Q+. A set I ⊆ V is said to be a q-suitable set of H if the following three properties
hold true:

Independence: I is an independent set of H;
Suitability: G[w](I) ≥ q; and
Saturation: for every other independent set J ⊆ V such that I ⊆ J , if G[w](I) ≤

G[w](J), then I = J .

Informally, an independent set I is q-suitable if its aggregated value is at
least q and every strict extension of I is either not independent or has a strictly
smaller aggregated value. The decision problems of our interest generalize repair
checking, which is central in consistent query answering [18].

Definition 6. The following problems are relative to an aggregation function G
in AGGpoly and a positive integer b.

PROBLEM REPAIR-CHECKING(G, b)
Input: A weighted hypergraph H in WH[b]; a set I of vertices.
Question: Is I a G-repair of H?
PROBLEM REPAIR-EXISTENCE(G, b)
Input: A weighted hypergraph H in WH[b]; a rational number q.
Question: Does H have a G-repair I such that G[w](I) ≥ q?
PROBLEM SUITABILITY-CHECKING(G, b)
Input: A weighted hypergraph H in WH[b]; a set I of vertices; a rational

number q.
Question: Is I a q-suitable set of H (with respect to G)?

These problems obviously have relationships among them. For example, if
the answer to SUITABILITY-CHECKING(G, b) on input H, I, q is “yes,” then
the answer to REPAIR-EXISTENCE(G, b) on input H, q is also “yes.” Also, for
a weighted hypergraph H, if q := max{G[w](J) | J is an independent set of H},
then every G-repair is a q-suitable set, and vice versa. We now give some compu-
tational complexity results. The proof of the following result is straightforward.
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Theorem 1 (Complexity upper bounds). For every G ∈ AGGpoly and b ≥
2, REPAIR-CHECKING(G, b), and SUITABILITY-CHECKING(G, b) are in coNP,
and REPAIR-EXISTENCE(G, b) is in NP.

The following result means that our problems are already intractable under
the simplest parametrization.

Theorem 2 (Complexity lower bounds). REPAIR-CHECKING(COUNT, 2)
is coNP-hard and REPAIR-EXISTENCE(COUNT, 2) is NP-hard.

Proof. The following is a well-known NP-complete problem [14]:

PROBLEM: INDEPENDENT SET
Input: A simple graph G = (V,E); a positive integer k ≤ |V |.
Question: Does G have an independent set I with cardinality |I| ≥ k?

This problem is also referenced as MAX INDEPENDENT SET in the literature.
There is a straightforward polynomial-time many-one reduction from the prob-
lem INDEPENDENT SET to REPAIR-EXISTENCE(COUNT, 2). We show next a
polynomial-time many-one reduction from INDEPENDENT SET to the comple-
ment of REPAIR-CHECKING(COUNT, 2). Let G = (V,E), k be an input to
INDEPENDENT SET. Let I be a set of fresh vertices such that |I| = k − 1.
Let F be the set of all edges {u, v} such that u ∈ I and v ∈ V . Clearly, I is
an inclusion-maximal independent set of the graph H := (V ∪ I, E ∪ F ), and
the pair H, I is a legal input to REPAIR-CHECKING(COUNT, 2). It is now easily
verified that G has an independent set of cardinality ≥k if and only if I is not
a COUNT-repair of H. This concludes the proof. 
�

On the other hand, SUITABILITY-CHECKING(COUNT, 2) is tractable (i.e.,
in P). Indeed, tractability holds for a larger class of aggregation functions that
contains COUNT and is defined next.

Definition 7 (⊆-monotone). An aggregation function is called ⊆-monotone if
for every weighted set (I, w), for all J1, J2 ⊆ I such that J1 ⊆ J2, it holds that
G[w](J1) ≤ G[w](J2).1

It is easily verified that COUNT and MAX are ⊆-monotone. SUM is also
⊆-monotone, because we do not consider negative numbers. On the other hand,
MIN and AVG are not ⊆-monotone. We give the following claim without proof,
because we will shortly prove a stronger result.

Claim (Complexity upper bound). For every G ∈ AGGpoly and b ≥ 2, if G is
⊆-monotone, then SUITABILITY-CHECKING(G, b) is in P.

1 In the notation G[w](J1), the weight function is understood to be the restriction of w
to J1.
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5 Main Tractability Theorem

Theorem 2 shows that REPAIR-CHECKING(G, b) becomes already intractable for
simple aggregation functions and conflict hypergraphs. The aim of the current
section is to better understand the reason for this intractability, and to iden-
tify aggregation functions for which REPAIR-CHECKING(G, b) is tractable. In
Sects. 5.1 and 5.2, we define two properties of aggregation functions that give
rise to some first tractability results. Then, in Sect. 5.3, we combine these results
in our main tractability theorem for REPAIR-CHECKING(G, b).

5.1 Monotone Under Priority

The converse of the claim at the end of Sect. 4 does not hold. Indeed, MIN is
not ⊆-monotone, but it is easily verified that SUITABILITY-CHECKING(MIN, b)
is in P. We now aim at larger classes of aggregation functions G for which
SUITABILITY-CHECKING(G, b) is in P. The computational complexity of this
problem is mainly incurred by the saturation property in Definition 5, as there
can be exponentially many sets including a given independent set. Therefore,
we are looking for conditions that avoid such an exponential search. Such a
condition is given in Definition 8.

Definition 8 (Monotone under priority). We say that an aggregation func-
tion G is monotone under priority if for every weighted set V , for every I ⊆ V ,
it is possible to compute, in polynomial time in |V |, a set S ⊆ V \ I whose pow-
erset 2S contains all and only those subsets of V \ I that can be unioned with I
without incurring a decrease of the aggregated value (i.e., for every J ⊆ V \ I,
the following holds true: J ⊆ S if and only if G[w](I) ≤ G[w](I ∪ J)).

We write AGGpoly
mon for the set of aggregation functions in AGGpoly that are

monotone under priority.

To illustrate Definition 8, we show that MIN is monotone under priority. To
this end, let V be a weighted set and I ⊆ V . Clearly, MIN[w](I) ≤ MIN[w](I∪J) if
(and only if) J contains no element with weight strictly smaller than MIN[w](I).
Therefore, the set S = {v ∈ V \ I | w(v) ≥ MIN[w](I)} shows that MIN is mono-
tone under priority. It is even easier to show that every ⊆-monotone aggregation
function in AGGpoly is monotone under priority, by letting S = V \I. Therefore,
the following lemma is more general than the claim at the end of Sect. 4.

Lemma 1. For every G ∈ AGGpoly
mon and b ≥ 2, SUITABILITY-CHECKING(G, b)

is in P.

Proof. Let G ∈ AGGpoly be a function that is monotone under priority. Let H,
I, q be an input to SUITABILITY-CHECKING(G, b). If G[w](I) < q or I is not an
independent set, return “no”; otherwise the saturation condition in the definition
of q-suitable sets remains to be verified. To this end, compute in polynomial time
the set S mentioned in Definition 8. Then compute in polynomial time its subset
S′ := {v ∈ S | I∪{v} is an independent set}. By Definition 5, I is saturated (and
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hence q-suitable) if and only if there is no nonempty set J ⊆ V \ I such that
I ∪ J is independent and G[w](I) ≤ G[w](I ∪ J). Consequently, by Definition 8, I
is saturated if and only if S′ = ∅, which can be tested in polynomial time. 
�

Among the five common aggregation functions COUNT, SUM, MAX, MIN,
and AVG, the latter one is the only one that is not in AGGpoly

mon, as illustrated
next.

Example 1. We show that the aggregation function AVG is not monotone under
priority. Let V = {a, b, c, d}. Let w : V → {1, 2} such that w(a) = w(b) = 1
and w(c) = w(d) = 2. Let I = {a, c}. Then, AVG[w](I) = 3

2 . The subsets of
V \ I = {b, d} that can be unioned with I without incurring a decrease of AVG
are {}, {d}, and {b, d}. However, the set of the latter three sets is not the powerset
of some other set.

5.2 k-Combinatorial

Lemma 1 tells us that SUITABILITY-CHECKING(G, b) is in P if G = MIN or
G = MAX. However, an easier explanation is that the aggregated values of MIN
and MAX over a weighted set are determined by a single element in that set.
This observation motivates the following definition.

Definition 9 (k-combinatorial). Let k be a positive integer. We say that an
aggregation function G is k-combinatorial if every weighted set I includes a sub-
set J such that |J | ≤ k and G[w](J) = G[w](I). If G is not k-combinatorial for
any k, we say that G is full-combinatorial.

We write AGGpoly
(k) for the set of aggregation functions in AGGpoly that are

k-combinatorial.

Obviously, the aggregation functions MIN and MAX are 1-combinatorial.
From this, we can easily obtain an aggregation function that is 2-combinatorial.
For example, define SPREAD as the aggregation function such that for every
weighted set I, SPREAD[w](I) := MAX[w](I) − MIN[w](I). The notion of
k-combinatorial also naturally relates to the well-studied notion of top-k queries.
For example, for a fixed k and an aggregation function G, we can define a
new aggregation function that, on input of any weighted set (I, w), returns
max{G[w](J) | J ⊆ I, |J | = k}, i.e., the highest G-value found in any subset
of size exactly k (and returns 0 if |I| < k). This new aggregation function is
k-combinatorial by construction.

Lemma 2. Let k be a positive integer. For every G ∈ AGGpoly
(k) and b ≥ 2,

REPAIR-EXISTENCE(G, b) is in P.

Proof. Let H, q be an input to REPAIR-EXISTENCE(G, b). We can compute in
polynomial time the value m defined as follows:

m := max{G[w](J) | J is an independent set of H with |J | ≤ k}. (1)

Since G is k-combinatorial, every repair I of H satisfies G[w](I) = m. Thus, the
answer to REPAIR-EXISTENCE(G, b) is “yes” if q ≤ m, and “no” otherwise. 
�
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5.3 Main Tractability Theorem

By bringing together the results of the two preceding subsections, we obtain our
main tractability result.

Theorem 3 (Main tractability theorem). Let k be a positive integer. For
every G ∈ AGGpoly

(k) ∩ AGGpoly
mon, for every b ≥ 2, REPAIR-CHECKING(G, b) is

in P.

Proof. Let G ∈ AGGpoly
(k) ∩ AGGpoly

mon. Let H, I be an input to the problem
REPAIR-CHECKING(G, b). We can compute, in polynomial time, the value m
defined by (1) in the proof of Lemma 2. If G[w](I) < m, return “no”; oth-
erwise we solve SUITABILITY-CHECKING(G, b) with input H, I, m, which is
in P by Lemma 1. In particular, if H, I, m is a “no”-instance of the problem
SUITABILITY-CHECKING(G, b), return “no”. If we have not answered “no” so
far, then G[w](I) = m and I is an m-suitable set of H; in this case, return “yes”.
It is clear that this decision procedure is correct and runs in polynomial time. 
�

6 On Full-Combinatorial Aggregation Functions

Lemma 2 stated that the problem REPAIR-EXISTENCE(G, b) is tractable if G is
k-combinatorial for some fixed k. We will now show that dropping this condition
quickly results in intractability. For a technical reason that will become apparent
in the proof of Theorem4, we need the following definition.

Definition 10 (Witnessable). Let G be an aggregation function that is full-
combinatorial. We say that G is witnessable if the following task is in polynomial
time:

Input: A positive integer k in unary. That is, a string 111 · · · 1 of length k.
Output: Return a shortest sequence (q1, q2, . . . , qn) of nonnegative rational num-

bers witnessing that G is not k-combinatorial (n > k). Formally, for the
weight function w that maps each i to qi (1 ≤ i ≤ n), it must hold that for
every N ⊆ {1, 2, . . . , n} with |N | ≤ k, we have G[w](N) �= G[w]({1, 2, . . . , n}).

Clearly, if G is full-combinatorial, the output requested in Definition 10 exists
for every k. Therefore, the crux is that the definition asks to return such an
output in polynomial time, where it is to be noted that the input is encoded in
unary, i.e., has length k (and not log k). Since aggregation functions G are closed
under isomorphism, any permutation of a valid output is still a valid output. An
example of a witnessable aggregation function is SUM: on input k, a valid output
is the sequence (1, 1, . . . , 1) of length k + 1. For full-combinatorial functions in
AGGpoly, the requirement of being witnessable seems very mild, and is expected
to be fulfilled by natural aggregation functions.

The following result generalizes a complexity lower bound previously estab-
lished by Theorem 2, because COUNT obviously satisfies the conditions imposed
on G in the following theorem statement.
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Theorem 4. Let G ∈ AGGpoly be a full-combinatorial aggregation function
that is ⊆-monotone and witnessable. Then REPAIR-EXISTENCE(G, 2) is NP-
complete.

Proof. Membership in NP follows from Theorem 1. The NP-hardness proof is
a polynomial-time many-one reduction from 3SAT. To this end, let ϕ be an
instance of 3SAT with k clauses. Let (q1, q2, . . . , qn) with n > k be the output
of the task defined in Definition 10. Let w be the weight function that maps
each i to qi (1 ≤ i ≤ n), and let Q := G[w]({1, . . . , n}). Assume for the sake of
contradiction that for some strict subset N of {1, . . . , n}, we have G[w](N) = Q.
By Definition 10, |N | ≥ k+1. Then the sequence (qi)i∈N of length < n witnesses
that G is not k-combinatorial, contradicting that Definition 10 requires a shortest
witness. We conclude by contradiction that N � {1, 2, . . . , n} implies G[w](N) �=
Q. Since G is ⊆-monotone, it follows that N � {1, 2, . . . , n} implies G[w](N) < Q.

The reduction constructs, in polynomial time in the length of ϕ, a weighted
graph H = ((V,w′), E) as follows. If the ith clause of ϕ is �1 ∨ �2 ∨ �3, where
�1, �2, �3 are positive or negative literals, then (i, �1), (i, �2), (i, �3) are vertices
of V that form a triangle in E, and these three vertices are mapped to qi by w′.
For every propositional variable p, if (i, p) and (j,¬p) are vertices, then they are
connected by an edge. Finally, we add isolated fresh vertices vk+1, vk+2, . . . , vn,
and let w′(vj) = qj for k+1 ≤ j ≤ n. We claim that the following are equivalent:

1. ϕ has a satisfying truth assignment; and
2. H has a G-repair I such that G[w′](I) ≥ Q.

For the direction 1 =⇒ 2, let τ be a satisfying truth assignment for ϕ. Con-
struct I as follows. First, I includes {vk+1, vk+2, . . . , vn}. Then, for i ranging
from 1 to the number k of clauses, if the ith clause of ϕ is �1 ∨ �2 ∨ �3, we
pick g ∈ {1, 2, 3} such that �g evaluates to true under τ , and add (i, �g) to I.
In this way, I contains exactly one vertex from each triangle. Moreover, since
τ is a truth assignment, we will never insert into I both (i, p) and (j,¬p) for
a same propositional variable p. By construction, I is an independent set of H
containing n elements, and G[w′](I) = G[w]({1, . . . , n}) = Q.

For the direction 2 =⇒ 1, let I be a G-repair such that G[w′](I) ≥ Q. Then,
from our construction of H and our previous result that Q can only be attained
if all qis are aggregated, it follows that for every i ∈ {1, . . . , k}, there is a literal
� in the ith clause such that I contains the vertex (i, �). Moreover, since I is an
independent set, it cannot contain both (i, p) and (j,¬p) for a same propositional
variable p. Then I obviously defines a satisfying truth assignment for ϕ. This
concludes the proof. 
�

7 Conclusion and Future Work

Our work combines and generalizes notions from databases and graph theory.
From a database-theoretical viewpoint, G-repairs extend subset- and cardinality-
repairs by allowing arbitrary aggregation functions. From a graph-theoretical
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viewpoint, G-repairs extend maximum weighted independent sets by allowing
hypergraphs as well as aggregation functions other than SUM. With minor
effort, complexity lower bounds for REPAIR-CHECKING(G, b) were obtained from
known results about maximum (weighted) independent sets. Our main result is
the computational tractability result of Theorem3, which shows a polynomial
upper time bound on this problem under some restrictions that are not unreal-
istic (and are actually met by several common aggregation functions).

Throughout this paper, aggregation functions and their properties were
defined and treated in an abstract, semantic way. In the future, we want to
study logical languages that allow expressing aggregation functions (e.g., first-
order logic with aggregation), and in particular their syntactic restrictions that
guarantee tractability.

Another question for future research is whether the intractability result of
Theorem 4 can be overcome by approximating full-combinatorial aggregation
functions with k-combinatorial ones.
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