
Identifying Anomaly Detection Patterns
from Log Files: A Dynamic Approach

Claudia Cavallaro and Elisabetta Ronchieri(B)

INFN-CNAF, Bologna, Italy
{claudia.cavallaro,elisabetta.ronchieri}@cnaf.infn.it

Abstract. Context: Services that run in a data center can be configured
to store information about their behaviour in specific logs. They con-
tain huge amount of data that makes difficult to manually understand
run-time properties of services. Therefore, to facilitate their analysis it
is important to use dynamic solutions to quickly parse log files, detect
anomaly and diagnose problems in order to react promptly.

Objectives: We want to build a model for determining anomaly detec-
tion in a certain period of time. Furthermore, we wish to identify
machine learning techniques that support us determining problems pat-
terns according to the messages available in logs.

Method: We have selected machine learning techniques, such as Invari-
ant Mining model, natural language process and autoencoder, able to
work with messages and identify anomaly patterns. According to the
data available we have decided to study monthly data and detect sam-
ples with a higher frequency of problems. We have scanned the various
logs to search the services with a wrong behaviour in the same period
of time to recognize past anomalies in the data center and code these
behaviours.

Results: The results are promising. We have obtained an average of
F-measure metric over 86%.

Conclusion: Our model aims at quickly recognizing problems and solv-
ing them. It helps site administrators to better understand the run ser-
vices, code anomalies and crosscheck different messages in the same time
slot.

Keywords: Log analysis · Log mining · Log parsing · Anomaly
detection · Machine learning

1 Introduction

A data center has to gather information about computer systems states. It is a
common practice to have programs logging events that provide insights on the
service activity and report their internal state, allowing to detect anomalies. Logs
are semi-structured texts, usually appended to a file, with the ‘.log’ extension,
that grows in size and becomes very large, therefore the fact that system admin-
istrators analyze systems’ health according to log files does not scale. This leads
c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12950, pp. 517–532, 2021.
https://doi.org/10.1007/978-3-030-86960-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86960-1_36&domain=pdf
http://orcid.org/0000-0003-3938-0947
http://orcid.org/0000-0002-7341-6491
https://doi.org/10.1007/978-3-030-86960-1_36


518 C. Cavallaro and E. Ronchieri

to develop solutions that automate the processing of logs, reducing human inter-
vention. Software components and applications produce heterogeneous log files.
There are services that use extremely flexible logging methods in their syntax,
like syslog [22]. Log files usually do not contain the same type of information:
‘syslog’ event logs a system activity, while ‘crond’ event logs the CRON entries
that show up in ‘syslog’. Each file tends to describe a partial view of the whole
data center. The stored information can contain the time and date of specific
event to log exactly what happened and does use a simple formatting. Further-
more, the services can use different key words to express normal or erroneous
behaviour. Logging analysis involves processing large amount of data that are
not easy to read and understand manually. This can make difficult to perform log
summarizing. Non-automatic processes for trouble shooting [40] are discouraged
in large computing system. Several studies have proposed approaches to scale
up log analysis [20] , moving the error problems from manual operation to auto-
mated operation. However, they still may require log processing and conversion
of log files into a format that can be understood by analysis tools. Some methods
are used to compact the information into more readable formats, such as ‘.csv’
and ‘.json’, and to also automatically extract any suspicious information, like the
cause of an ‘error’ message. Quite often it is not feasible just selecting the file
and retyping the file extension as ‘.csv’ or ‘.json’, because the transformed file
could be wrongly reformatted. Furthermore, the file usually contains daily ser-
vice information, so the number of data can be over 60−120 K rows, penalizing
the usage of some analysis tools, because they will likely become unresponsive
when they perform, e.g., selecting and adding new variables in the data sets.
Before starting any analysis it is essential to decide which variables have to be
included in the resultant data sets. Spreading the data across multiple columns
is another aspect to consider to organise your data set into a manageable format.
The resultant files can be used to identify trends and unusual activity that is ben-
eficial for both short- and long-term data center management. Machine Learning
techniques are a solution to identify anomaly detection patterns automatically,
predicting the failure of the machine.

In this paper, we focus on determining problems patterns by combining the
results obtained by different machine learning (ML) techniques. Log files con-
tain a considerable amount of texts, therefore we have used modern Natural
Language Processing (NLP) methods [1,33] to map the log files’ words to a high
dimensional metric space in order to define site administrators’ actions. The aim
is to cluster and- if possible- classify the various system events. Furthermore,
having to work with unsupervised data, we have used a machine (deep) learn-
ing technique called autoencoder [56]: the decision taken by and information
available to site experts are not stored in any local framework. We have also
used an invariant mining technique [37] that supports, for example, detection of
failures and anomalies. During the log analysis, we have adopted the invariant
mining model, because it is a general approach that does not rely on the nature
of the data and it does not require any meaningful knowledge of the domain
or constant rules. Furthermore, it does not require training labels and messages
are not grouped with respect to distance only. The proposed approach is repeat-



Identifying Anomaly Detection Patterns from Log Files 519

able in other contexts and domains. With minimum setup effort and the usage
of machine learning tools, it is possible to automatically extract relevant infor-
mation about system state. Through experiments, we illustrate the potential
benefits of our approach by answering our research questions.

The reminder of this paper is as follows. Section 2 introduces the background
of log analysis and provides related works. Section 3 introduces the rational of
our approach. Section 4 provides some promising experimental results. Section 5
concludes the paper with future work.

2 Log Mining and Related Works

Existing commercial tools, such as Elk [18], Splunk [45], Loggly [36] or Over
Ops [41], are mainly used for Big Data visualization, but are not appropriate for
anomaly detection. Moreover, utilities such as Salsa [30] or Log Enhancer [55]
for diagnosability are not good on large volume data, because they are heavy.
Log mining is an approach that uses statistical and ML algorithms in structured
event list to extract knowledge from logs, discovering a model inference and
detecting outliers in a system.

Log Compression. Preliminary phases to log mining are log compression,
which uses, for example, dictionary-based and statistic-based techniques or Jac-
card similarity [28], and log parsing, which collects clustering, heuristics, frequent
pattern mining and evolutionary algorithms. Frequent pattern mining identifies
frequencies, correlations and causalities between sets of items in transactional
databases: among the most used algorithms, Apriori [46] and FP-growth [23]
can be mentioned. The Apriori algorithm is based on a level structure and it is
useful to search for the most frequent schemes [5] from a large dataset, to quickly
exclude non-recurring patterns. FP-growth bases its operation on the construc-
tion of a tree structure that models the considered dataset. In particular, the
frequent item sets are extracted by going through the tree, without therefore
having to read the database several times.

Log Parsing. In the preprocessing techniques category, also called log abstrac-
tion, there is the log parsing activity used to abstract and simplify the initial
data. Among the clustering methods for log parsing, we can mention Simple
Logfile Clustering Tool (SLCT) [49], Hierarchical Event Log Organized (HELO)
[21] and Iterative Partitioning Log Mining (IPLoM) [38]. In addition, POP [25],
a parallel log analyzer, is suitable for large-scale data processing. During the log
parsing process, metrics are sometimes used, for example LevenShtein distance
[34] or Longest Common Subsequence [48] in Spell [14].

Data Transformation. In the preprocessing phase, there is also data trans-
formation. Through this process the log set is transformed into an appropriate
form, such as an histogram matrix of events or a binary transformation, which
becomes the input in the next data mining step. El-Masri et al. [17] compare
some aspects, such as scalability and efficiency, of the main log abstraction tech-
niques.



520 C. Cavallaro and E. Ronchieri

Log Analysis. Logs can be analyzed in a static way (off-line method) or dynam-
ically (on-line method), but the latter method is time consuming. The former
is less precise but also faster. Hybrid analysis is a mixture of the two. The
most popular on-line log parsing approaches are SHISO [39], LenMa (which are
based on clustering), Drain [26] (based on heuristics) and Logram [9] (based
on frequent pattern mining). A more detailed description of clustering and log
parsing methods can be found in the survey [27]. Log analysis techniques can
be divided into the following branches: failure detection techniques that include,
for instance, decision tree and associative rule learning; anomaly detection tech-
niques that comprises agglomerative or divisive hierarchical clustering, nearest
neighbor approach, chi-squared test and Naive Bayes (NB) classifier [13], and
failure diagnosis that includes the SherLog [54] tool and Decision Tree (DT) [42]
approaches.

Machine Learning Techniques. Some traditional ML algorithms are applied
in literature, including Principal Component Analysis (PCA) [53], LogCluster
[50], Support Vector Machine (SVM) [51] and mixtures of Hidden Markov mod-
els. Some Deep Learning approaches for this scope are DeepLog (LSTM-RNN)
[15], LogGAN (CNN) [52], Aarohi (a failure prediction method) [10], AirAlert (a
framework based on Bayesian network) [7] and TCFG (Time Weighted Control
Flow Graphs) [29]. Machine Learning techniques are divided into classification
techniques (such as SVM and Bayesian networks), clustering techniques (includ-
ing K-means [35], Self-Organizing Feature Map, SOFM [32] and DBSCAN [44])
and statistical techniques (for example PCA). A clustering algorithm divides
data into groups, according to the criterion that the elements belonging to the
same cluster are very similar. Outliers, which are those that do not belong to
any cluster, often contain useful information on the anomalous characteristics
of the system as they are generally different from other data. To estimate how
much the results of the algorithms implemented in the log mining process corre-
spond to reality, one can proceed in several ways. A first strategy is to measure
true and false positives, true and false negatives and plotting the curve receiver
operating characteristic (ROC). Other procedures, used to evaluate clustering
methods, include internal evaluation (given by the Davies-Bouldin index [11] or
Dunn index [16]), and external evaluation (with Rand measure [43], F-measure
or Jaccard index).

Related Works. Breier and Branisova [3], employing Apache Hadoop frame-
work, process log files in parallel. Their method, based on the generation on
dynamic rules, spots anomalies through MapReduce. The parallel implementa-
tion, compared with A-priori and FP-Growth algorithms, has accelerated the
process of detecting security breaches in log records.

Borghesi et al. [2], through a deep learning technique, perform anomaly detec-
tion in high performance computing systems. The Examon infrastructure (the
code is available on Github [19]) dataset is explored through a neural network
called autoencoder. It is trained with the Adam optimizer [31], by using an off-
line approach. Finally, the metric used to evaluate the accuracy of the obtained
results is F-measure. Layer et al. [33] use NLP to predict the operator’s action



Identifying Anomaly Detection Patterns from Log Files 521

for the CMS experiment [8] workflow handling. They employ the information
of the computing operators for taking the decision in case of failures, stored in
the experiment framework, during the ML training phase. Bertero et al. [1] also
use NLP to identity anomaly detection. They emulate different types of errors
that refer to CPU consumption, misuse of memory, abnormal number of disk
accesses, network packet loss and network latency.

The results presented in previous papers show that the optimal procedure
for analyzing logs is the combination of, first, heuristics or filtering and, next,
machine learning steps. In this article, we have chosen to use invariant mining and
autoencoder techniques, because we are interested in the relationships between
different messages and source hostnames. We have also applied NLP to identify
anomaly categories that can be used to label the log entries and contribute to
defining administrators’ operations. Tools, like SLCT, have the disadvantage of
being based on searching only for the most frequent types of messages in the
log file, neglecting the less frequent ones. For anomaly detection, however, it
may be necessary to find rare types of messages, so this option has been omit-
ted. Furthermore, the application of clustering methods in the log core analysis
phase would lead to the risk of losing significant results on the anomalies to be
considered individually, if they have been aggregated with others.

3 Approach

The approach proposed as the contribution of this paper is presented in Fig. 1.
Once data has been collected and the log files characteristics have been identified,
we have dedicated to the following phases: data preprocessing and transformation
that have allowed us to build a set of datasets to train and build our anomaly
detection models.

Fig. 1. General approach overview.



522 C. Cavallaro and E. Ronchieri

Source Data. The log files examined in this study are related to a set of ser-
vices running at INFN Tier-1 data center [12], used by the large hadron collider
experiments [4]. Low level services are shared among the highlighted groups,
such as crond and sudo. The log files mainly belong to Linux system services,
such as the software utility crond, the free and open-source main transfer agent
postfix and the standard for message logging syslog. Table 1 summarizes the first
30 filenames according to their frequency, that is the number of times a value of
an unique filename occurs. The suffix-type frequencies of the various available
files are summarized as follows: .gz 10869, .log 3562759, .manifest 5, .meta 6,
.pending 1, .txt 2.

Table 1. The top 30 log files per frequency.

Filename Frequency Filename Frequency Filename Frequency

sudo.log 378781 systemd.log 107700 userhelper.log 21380

puppet-agent.log 368530 mmfs.log 72620 nslcd.log 20544

run-parts.log 365734 rsyslogd.log 70210 neutron linuxbridge.log 8572

crontab.log 348896 kernel.log 65938 runuser.log 6859

crond.log 347708 logrotate.log 62531 cvmfs x509 validator.log 6031

sshd.log 303919 syslog.log 47330 cvmfs x509 helper.log 5399

anacron.log 287419 yum.log 43301 srp daemon.log 4938

postfix.log 175558 fusinv-agent.log 42125 edg-mkgridmap.log 4083

auditd.log 120473 root.log 37345 libvirtd.log 3328

smartd.log 109441 gpfs.log 31000 dbus.log 3301

Log files. Each of these log files contains a different amount of lines. They contain
numerical and textual data that describe system states and run time information.
Each log entry includes a message that contains a natural-language text (i.e. a list
of words) describing some events. Logs are generally generated by logging state-
ments inserted, either by software developers in source code or by system admin-
istrators in configuration files, to record particular events and software behaviour.
Each log entry in the log file represents a specific event. Figures 2 and 3 show two
different log entry samples composed of a log header and a log message: the former
is generally composed of a timestamp, a custom-configuration information (such
as the hostname in Fig. 2 where the service runs and a log level verbosity in Fig. 3)
and the name of the service the message is associated to; the latter is just the mes-
sage that contains information of the logged event.

Fig. 2. A log entry sample from the puppet-agent service.



Identifying Anomaly Detection Patterns from Log Files 523

Fig. 3. A log entry sample from the puppet-agent service.

Figures 4 and 5 show two examples of the log message of a log entry, charac-
terized by a natural-language text which interpretation is difficult because there
is not an official standard defining the message format. The text is usually com-
posed of different fields called dynamic and static: a dynamic field (DF) is a
string or a set of strings that are assigned at run time; a static field (SF) does
not change during events. Such fields can be delimited by different separators,
such as a comma, a white space, a parenthesis. Logging practice is scarcely well
documented. This activity mainly depends on human expertise [24]. They often
have to analyze a large volume of information that may be unrelated to the
problematic scenarios and lead to overwhelming messages [6].

Fig. 4. A log message fields with just one dynamic field and static field.

Data Preprocessing. During this phase the log files change format and turn
into ‘.csv’ files. In addition the following variables are added to each file: date,
time, timestamp, hostname, internet protocol (ip) address, service name, process
identifier (id), component name, message (msg). The hostname and ip couple are
not always both available, especially when the service runs on a virtual machine.
Each file is related to a particular service that runs on a well-known machine
in the data center. Its location is got by a local database and included into the
resulting file. During this phase we have tackled some site administration pecu-
liarities: the same service called in lower or capital letters; the process identifier
included in the service logging file; the service name included (or not) in the log
message; the process identifier included (or not) in the log message; the logging
filename included typo error. Before performing any cleaning operations, we have
excluded meaningless services’ log files, especially those with a small number of
events. In the remaining logs, the following changes have been applied in the mes-
sage field: the removal of unwanted texts, such as punctuation, non-alphabets,



524 C. Cavallaro and E. Ronchieri

Fig. 5. A log message fields with a sequence of dynamic and static fields.

and any other kind of characters that are not part of the language by involving
regular expressions; the exclusion of non-English characters; the cancellation of
stopwords, that is frequent general words, like ‘of, are, the, it, is’, with a low
meaning. According to the amount and types of services, in this phase we have
started to trace the types of log events, such as assert, fail, error and debug,
and to identify anomaly key terms that can be used to classify the reason of the
problems in the service. This part of the study is still ongoing requiring experts’
check. However, Table 2 summarizes few examples of message lines that describe
a wrong service behaviour.

Table 2. Examples of message lines for the crond log file.

log event msg log event type anomaly key term

.. reset error counters error reset

.. failed create session connection time out fail connection

Features Transformation. Data transformation includes the creation of a new
dataset that includes a matrix, whose dimension and values change according
to the machine learning technique used to build the anomaly detection model.
The resulting dataset can contain either binary data or numerical data. In case
of binary data there is a numerical value of 1 for features that are present in
the log event and a numerical value of 0 otherwise. In case of NLP usage, the
tokenization phase (see Fig. 3) determines the element of the matrix: the message
string is split up in single words. Once transformed the message events into a
matrix of features, in case of problem with large dimension, it is possible to
apply rules to reduce data, e.g., according to the uniqueness of the messages.
For NLP, low frequency words or words that are not important for the meaning
of the anomalies are filtered out. For a matter of time computation, the event
count matrix has been created for each month, in which its elements indicate the
occurrences of all messages given in input and relating to the hostnames from
which they come in that time window.



Identifying Anomaly Detection Patterns from Log Files 525

Table 3. Examples of message strings split up in single words for the crond log file.

log event msg .. connection .. error .. fail .. time ..

.. reset error counters .. 0 .. 1 .. 0 .. 0 ..

.. failed create session connection time
out

.. 1 .. 0 .. 1 .. 1 ..

Machine Learning. Starting from the event count matrix, NLP, autoen-
coder and invariant mining techniques have been considered. NLP includes the
word2vec [47] unsupervised algorithm, a popular embedding approach by Google
to process natural language. word2vec takes a text corpus as input and produces
a high-dimensional euclidean space with each unique word in the corpus. Each
word of an event is mapped to nearby points in the vector space. This technique
is able to produce meaningful word embeddings: similar words end up close,
words that are not related to each other end up far away in the embedding
space. Following the same approach to all log files, it is possible to form clus-
ters of similar anomaly events and use traditional supervised classifiers to e.g.
determine anomalous and normal behaviour of the services.

Autoencoder is a type of neural network that can be used to detect anomalies
at the service level. With respect to Borghesi et al. [2], in this study we have
created a set of separate autoencoder models, one for each service in the system.
Each model is trained by using a loss function to ensure that the output is close
to the input.

Invariant mining model is based on the fact that a number of initial opera-
tions on the files corresponds to the same number of final operations on the same
or a similar type, for example the number of jobs arrived with the number of
jobs started, or the number of jobs arrived and number of jobs completed. Linear
program invariant is then a predicate that always contains the same values in
different normal operations, such as opening and closing files. Invariants reflect
the underlying correlation between variables and the properties of the execution
path. Whenever an invariant is broken during a system operation, the anomaly
in the log corresponding to these variables is detected because it is considered
a sign of a probable malfunction. The final result is a vector of length equal to
the number of unique messages given in input, and composed of values “0” and
“1”. Each element corresponds to a log message, in which “1” indicates that it
is labeled as anomalous, “0” instead as non-anomalous.

Some messages, erroneously labeled as anomaly, could be log patterns that
at the beginning of a month correctly close the operations of the end of the
previous month, but are not linked to the messages that precede them if we
have separated the dataset by month. These boundary cases can be assessed
individually, considering a limited time window e.g. 24 h before and after, or
taking into account the average closing time of execution flows. Once the logs
with anomalies have been identified automatically, through this strategy we can
trace the causes and files that potentially triggered the errors. This could be



526 C. Cavallaro and E. Ronchieri

useful for us to know in advance what the alarm messages are in real time and
to act in time to prevent problems from occurring, that is, to do predictive
maintenance.

Performance Metrics. To access the performance metrics of the ML tech-
niques we have considered the following metrics. Precision is the measure of the
model’s performance with respect to false positives (FP), which are the messages
identified as anomalies, when no anomalies occurred. False negatives (FN), on
the other hand, are messages mislabeled with non-anomaly, which should instead
be indicated as anomalous. From the expression: precision = TP

TP+FP , where
true positives (TP) are messages that correctly report an occurred anomaly, it
is evident that high precision values indicate a low rate of FP. Recall measures
model’s performance with respect to false negatives, according to this formula:
recall = TP

TP+FN . f -measure, expressed by: f1 = 2 × precision×recall
precision+recall , is the har-

monic mean of precision and recall. It is less affected by extreme values; the
closer is its value to 1, the better the model performs.

4 Results

For this study, we have created a set of GitLab projects to store code we have
implemented so far to perform the various phases of the presented approach. The
collected and preprocessed data contains reserved information, therefore at the
moment of the conference we have preferred to keep private our GitLab projects.
We have developed our analysis on jupyter notebooks for python3 programming
language by leveraging data analysis python libraries, such as pandas, nltk, and
scikit-learn.

In the following we are going to show the effectiveness of the presented app-
roach by showing the results obtained for a subset of services (see Table 1). The
logs analyzed, after their preparation with the preprocessing phase, relate to the
period June–October 2020. The causes of the anomalies detected are various: we
can mention, for example, bugs related to the memory or silent corruptions of
the data, jobs aborted due to field validation file, software downs or errors due
to some users who use the data center services. We have grouped the extracted
anomalies into specific message templates, so that they can be used as warn-
ings in future system states without waiting further data acquisition time. Our
approach is off-line: however, an on-line method is simulated by comparing the
anomalous results of one month logging files with both the previous and the con-
secutive periods, and specific ML evaluation metrics are used. Next, the success
is assessed through a manual check of the most frequent messages, in order to
assign labels to certain messages and compare the experimental results with the
real and expected ones. The precision, recall and F-measure performance met-
rics of ML techniques have been calculated through the data of two consecutive
months. Table 4 shows the mean values of the ML performance metrics. We can
assert that these models are effectively able to describe the anomalies.



Identifying Anomaly Detection Patterns from Log Files 527

Table 4. Mean values of the ML performance metrics.

Method Precision Recall F-measure

Invariant mining 0.827 0.904 0.864

NLP word2vec 0.899 0.932 0.912

Autoencoder 0.819 0.925 0.895

All the methods highlight the same period of time for the anomalies due
to the presence of problem key terms in the files. Messages, quite explanatory,
labeled as anomalous by the methods are for example: “failing disk”, “left power
supply failure”, recovered: “medium error disk”, “internal queue full”, “Total
Queue full”, “process abort” and “Disk Failed: Abort”.

In the following we present details of the different methods.

Invariant Mining Model. The invariant mining technique is able to detect the
intrinsic linear characteristics of workflows linked to a machine, in particular used
to automatically collect the frequent patterns of error messages that generate a
problem in the Tier-1 data center. The message-hostname pair has been chosen,
because it is the most significant in the search for anomalies, and because other
variables such as the ip address could be obtained from the hostname source.
The percentage of anomalous messages, calculated between the number of unique
suspicious messages of each month and the total number of monthly log messages,
varies from a minimum of 0.06% to a maximum of 10.3%.

Figure 6 shows some examples of anomaly messages detected from logs of
Tier-1, where the histograms report the number of occurrences per day. Their
frequency is high at particular dates, and therefore can be associated with
some problems. These patterns come from two specific hostnames and ips,
which we indicate for privacy “host a, ip XXX.XXX.XXX.XY” and “host b,
ip XXX.XXX.XXX.XZ”, and therefore, this information is useful for monitor-
ing the future operations of the specific associated machines.

Natural Language Processing Method. To establish the word2vec training
set, we use the concatenation of 300 log files that constitute the basis of our
model training. Therefore, the message corpus is relatively small. We have use the
NLP method avoiding any optimization of the computation in order to get the
maximum number of information. The output of the word2vec is a file containing
the coordinates of distinct words of our training corpus.

Autoencoder Method. An autoencoder is a feed-forward multi-layer neural
network with the same number of input and output neurons. We have used it to
learn a more efficient representation of data while minimizing the corresponding
error.



528 C. Cavallaro and E. Ronchieri

Fig. 6. Some anomaly messages detected with invariant mining.

5 Conclusions

The anomalies in logs can be related to permanent or transient errors. Performing
manual diagnostics in a data center is not feasible, given the large-scale increase
in unstructured information produced by machines in operation. For a human
operator, even by dividing the data analysis for small time intervals, it would be
very time-consuming. Most of the traditional tools on error analysis are based on
verifying the standard behavior of the system by knowing a priori the behavior



Identifying Anomaly Detection Patterns from Log Files 529

of specific software, but it is therefore linked to the specificity of the system
and to the knowledge of the operators. If new software is used, manual analysis
cannot be accurate after a short period of use, because in that case it is not
possible to outline all the different normal system behaviors and tag the other
unknowns as errors. If it were done for all the prototypes of unknown messages
this could lead to a categorization of false positives.

In this work, the log mining is performed on monthly time slots and on
the frequencies of each anomalous message, which are automatically extracted
together with the hostnames registered to them. The results are promising. We
have obtained an average of F-measure metric over 86%. A subset of services
has been used during the study, therefore we aim at improving our study by
considering all the available datasets.

Acknowledgements. This work has been supported by the IoTwins project N.
857191.

References

1. Bertero, C., Roy, M., Sauvanaud, C., Trédan, G.: Experience report: log mining
using natural language processing and application to anomaly detection. In: 28th
International Symposium on Software Reliability Engineering (ISSRE 2017). p.
10p. Toulouse, France (October 2017). https://hal.laas.fr/hal-01576291

2. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detec-
tion using autoencoders in high performance computing systems. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428–9433 (July
2019). https://doi.org/10.1609/aaai.v33i01.33019428

3. Kim, K.J. (ed.): Information Science and Applications. LNEE, vol. 339. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46578-3

4. Breskin, R.V.A.: The CERN Large Hadron Collider: Accelerator And Experiments,
vol. 2, CMS, LHCb, LHCf, And Totem. CERN (2009)

5. Cavallaro, C., Vitrià, J.: Corridor detection from large GPS trajectories datasets.
Appl. Sci. 10(14), 5003 (July 2020) https://doi.org/10.3390/app10145003

6. Chen, B., Jiang, Z.M.J.: Characterizing and detecting anti-patterns in the logging
code. In: Proceedings of the IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp. 71–81. IEEE Press (2017). https://doi.org/10.1109/ICSE.
2017.15

7. Chen, Y., et al.: Outage prediction and diagnosis for cloud service systems. In: The
World Wide Web Conference on - WWW 2019, ACM Press (2019). https://doi.
org/10.1145/3308558.3313501

8. Collaboration, T.C., Chatrchyan, S., Hmayakyan, G., Khachatryan, V., Sirunyan,
A.M., et al.: The CMS experiment at the CERN LHC. J. Instrum. 3(08), S08004–
S08004 (2008) https://doi.org/10.1088/1748-0221/3/08/s08004

9. Dai, H., Li, H., Chen, C.S., Shang, W., Chen, T.H.: Logram: efficient log parsing
using n-gram dictionaries. IEEE Trans. Softw. Eng. 1 (2020). https://doi.org/10.
1109/tse.2020.3007554

10. Das, A., Mueller, F., Rountree, B.: Aarohi: making real-time node failure pre-
diction feasible. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE (May 2020) https://doi.org/10.1109/ipdps47924.2020.
00115

https://hal.laas.fr/hal-01576291
https://doi.org/10.1609/aaai.v33i01.33019428
https://doi.org/10.1007/978-3-662-46578-3
https://doi.org/10.3390/app10145003
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1145/3308558.3313501
https://doi.org/10.1145/3308558.3313501
https://doi.org/10.1088/1748-0221/3/08/s08004
https://doi.org/10.1109/tse.2020.3007554
https://doi.org/10.1109/tse.2020.3007554
https://doi.org/10.1109/ipdps47924.2020.00115
https://doi.org/10.1109/ipdps47924.2020.00115


530 C. Cavallaro and E. Ronchieri

11. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-1(2), 224–227 (1979). https://doi.org/10.1109/tpami.
1979.4766909

12. dell’Agnello, L., et al.: Infn tier–1: a distributed site. EPJ Web Conf. 214(08002),
01 (2019). https://doi.org/10.1051/epjconf/201921408002

13. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier
under zero-one loss. Mach. Learn. 29(2/3), 103–130 (1997). https://doi.org/10.
1023/a:1007413511361

14. Du, M., Li, F.: Spell: Streaming parsing of system event logs. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), IEEE (December 2016) https://
doi.org/10.1109/icdm.2016.0103

15. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog : anomaly detection and diag-
nosis from system logs through deep learning. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ACM (October
2017) https://doi.org/10.1145/3133956.3134015

16. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1),
95–104 (1974). https://doi.org/10.1080/01969727408546059

17. El-Masri, D., Petrillo, F., Guéhéneuc, Y.G., Hamou-Lhadj, A., Bouziane, A.: A
systematic literature review on automated log abstraction techniques. Inf. Softw.
Technol. 122, 106276 (2020) https://doi.org/10.1016/j.infsof.2020.106276

18. ELK: Elasticsearch. https://www.elastic.co/elk-stack (2021). Accessed 11 Jun 2021
19. Examon: Examon HPC Monitoring. https://github.com/EEESlab/examon (2021).

Accessed 11 Jun 2021
20. Farshchi, M., Schneider, J.G., Weber, I., Grundy, J.: Experience report: anomaly

detection of cloud application operations using log and cloud metric correlation
analysis. IEEE Trans. Softw. Eng. (2015). https://doi.org/10.1109/ISSRE.2015.
7381796

21. Gainaru, A., Cappello, F., Trausan-Matu, S., Kramer, B.: event log mining tool for
large scale HPC systems. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par
2011. LNCS, vol. 6852, pp. 52–64. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23400-2 6

22. Gerhards, R.: The syslog protocol. In: RFC. RFC Editor (2009)
23. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate genera-

tion. ACM SIGMOD Record 29(2), 1–12 (2000). https://doi.org/10.1145/335191.
335372

24. He, P., Chen, Z., He, S., Lyu, M.R.: Characterizing the natural language descrip-
tions in software logging statements. In: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering ASE, pp. 178–189 (2018).
https://doi.org/10.1145/3238147.3238193

25. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-
scale log data analysis. IEEE Trans. Dependable Secure Comput. 15(6), 931–944
(2018). https://doi.org/10.1109/tdsc.2017.2762673

26. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS),
IEEE (2017) https://doi.org/10.1109/icws.2017.13

27. He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M.R.: A survey on automated log
analysis for reliability engineering. ArXiv (September 2020)

28. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2),
37–50 (1912). https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1109/tpami.1979.4766909
https://doi.org/10.1051/epjconf/201921408002
https://doi.org/10.1023/a:1007413511361
https://doi.org/10.1023/a:1007413511361
https://doi.org/10.1109/icdm.2016.0103
https://doi.org/10.1109/icdm.2016.0103
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1080/01969727408546059
https://doi.org/10.1016/j.infsof.2020.106276
https://www.elastic.co/elk-stack
https://github.com/EEESlab/examon
https://doi.org/10.1109/ISSRE.2015.7381796
https://doi.org/10.1109/ISSRE.2015.7381796
https://doi.org/10.1007/978-3-642-23400-2_6
https://doi.org/10.1007/978-3-642-23400-2_6
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/335191.335372
https://doi.org/10.1145/3238147.3238193
https://doi.org/10.1109/tdsc.2017.2762673
https://doi.org/10.1109/icws.2017.13
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x


Identifying Anomaly Detection Patterns from Log Files 531

29. Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: LogSed: anomaly diagno-
sis through mining time-weighted control flow graph in logs. In: 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD), IEEE (2017). https://
doi.org/10.1109/cloud.2017.64

30. Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: Salsa: analyzing logs
as state machines (cmu-pdl-08-111). In: First USENIX Workshop on the Analysis
of System Logs, WASL 2008, San Diego, CA, USA, Proceedings. Carnegie Mellon
University (2008). https://doi.org/10.1184/R1/6619766

31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representation (ICLR) (2015)

32. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/bf00337288

33. Layer, L., et al.: Automatic log analysis with NLP for the CMS workflow han-
dling. In: 24th International Conference on Computing in High Energy and Nuclear
Physics (CHEP 2019), p. 7 (November 2020) https://doi.org/10.1051/epjconf/
202024503006

34. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

35. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2),
129–137 (1982). https://doi.org/10.1109/tit.1982.1056489

36. Loggly: Loggly - log management by loggly. https://www.loggly.com (2021).
Accessed 11 Jun 2021

37. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs
for system problem detection. In: Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC 2010, p. 24, USENIX
Association, USA (2010)

38. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: A lightweight algorithm for mes-
sage type extraction in system application logs. IEEE Trans. Knowl. Data Eng.
24(11), 1921–1936 (2012). https://doi.org/10.1109/tkde.2011.138

39. Mizutani, M.: Incremental mining of system log format. In: 2013 IEEE Interna-
tional Conference on Services Computing, IEEE (June 2013) https://doi.org/10.
1109/scc.2013.73

40. Oliver, R.: What supercomputers say: a study of 5 system logs. In: Proceedings of
the 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2007), IEEE Press (2007). https://doi.org/10.1109/DSN.2007.103

41. OverOps: OverOps Continuous Reliability Solution. https://www.overops.com/
(2021). Accessed 11 Jun 2021

42. Quinlan, J.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234
(1987). https://doi.org/10.1016/s0020-7373(87)80053-6

43. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.
10482356

44. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial
databases: The algorithm dbscan and its applications. Data Min. Knowl. Discov.
2(2), 169–194 (1998). https://doi.org/10.1023/a:1009745219419

45. Splunk: Splunk platform. http://www.splunk.com (2005-2021). Accessed 11 Jun
2021

46. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Gener.
Comput. Syst. 13(2–3), 161–180 (1997). https://doi.org/10.1016/s0167-
739x(97)00019-8

https://doi.org/10.1109/cloud.2017.64
https://doi.org/10.1109/cloud.2017.64
https://doi.org/10.1184/R1/6619766
https://doi.org/10.1007/bf00337288
https://doi.org/10.1051/epjconf/202024503006
https://doi.org/10.1051/epjconf/202024503006
https://doi.org/10.1109/tit.1982.1056489
https://www.loggly.com
https://doi.org/10.1109/tkde.2011.138
https://doi.org/10.1109/scc.2013.73
https://doi.org/10.1109/scc.2013.73
https://doi.org/10.1109/DSN.2007.103
https://www.overops.com/
https://doi.org/10.1016/s0020-7373(87)80053-6
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1023/a:1009745219419
http://www.splunk.com
https://doi.org/10.1016/s0167-739x(97)00019-8
https://doi.org/10.1016/s0167-739x(97)00019-8


532 C. Cavallaro and E. Ronchieri

47. Tomas, M., Ilya, S., Kai, C., Greg, C., Jeffrey, D.: Distributed representations of
words and phrases and their compositionality. In: Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems (NIPS 2013), NIPS
2013, pp. 3111–3119. Curran Associates Inc., Red Hook, NY, USA (2013)

48. Ullman, J.D., Aho, A.V., Hirschberg, D.S.: Bounds on the complexity of the longest
common subsequence problem. J. ACM 23(1), 1–12 (1976). https://doi.org/10.
1145/321921.321922

49. Vaarandi, R.: Mining event logs with SLCT and LogHound. In: NOMS 2008–2008
IEEE Network Operations and Management Symposium, IEEE (2008). https://
doi.org/10.1109/noms.2008.4575281

50. Vaarandi, R., Pihelgas, M.: LogCluster - a data clustering and pattern mining
algorithm for event logs. In: 2015 11th International Conference on Network and
Service Management (CNSM), IEEE (November 2015) https://doi.org/10.1109/
cnsm.2015.7367331

51. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995).
https://doi.org/10.1007/978-1-4757-3264-1

52. Xia, B., Bai, Y., Yin, J., Li, Y., Xu, J.: LogGAN: a log-level generative adversarial
network for anomaly detection using permutation event modeling. Inf. Syst. Front.
23(2), 285–298 (2020). https://doi.org/10.1007/s10796-020-10026-3

53. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles - SOSP 2009. ACM Press (2009).
https://doi.org/10.1145/1629575.1629587

54. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupathy, S.: SherLog: error
diagnosis by connecting clues from run-time logs. ACM SIGARCH Comput. Archi-
tect. News 38(1), 143–154 (2010). https://doi.org/10.1145/1735970.1736038

55. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosabil-
ity via log enhancement. In: Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating Systems -
ASPLOS 2011. ACM Press (2011). https://doi.org/10.1145/1950365.1950369

56. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and
diagnosis in multivariate time series data. ArXiv arXiv:1811.08055 (2019)

https://doi.org/10.1145/321921.321922
https://doi.org/10.1145/321921.321922
https://doi.org/10.1109/noms.2008.4575281
https://doi.org/10.1109/noms.2008.4575281
https://doi.org/10.1109/cnsm.2015.7367331
https://doi.org/10.1109/cnsm.2015.7367331
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1007/s10796-020-10026-3
https://doi.org/10.1145/1629575.1629587
https://doi.org/10.1145/1735970.1736038
https://doi.org/10.1145/1950365.1950369
http://arxiv.org/abs/1811.08055

	Identifying Anomaly Detection Patterns from Log Files: A Dynamic Approach
	1 Introduction
	2 Log Mining and Related Works
	3 Approach
	4 Results
	5 Conclusions
	References




