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Abstract. Breast Cancer (BC) is one of the most common forms of cancer among
women. Detecting and accurately diagnosing breast cancer at an early phase
increase the chances of women’s survival. For this purpose, various single classi-
fication techniques have been investigated to diagnosis BC. Nevertheless, none of
them proved to be accurate in all circumstances. Recently, a promising approach
called ensemble classifiers have been widely used to assist physicians accurately
diagnose BC. Ensemble classifiers consist on combining a set of single classifiers
by means of an aggregation layer. The literature in general shows that ensem-
ble techniques outperformed single ones when ensemble members are accurate
(i.e. have the lowest percentage error) and diverse (i.e. the single classifiers make
uncorrelated errors on new instances). Hence, selecting ensemble members is
often a crucial task since it can lead to the opposite: single techniques outper-
formed their ensemble. This paper evaluates and compares ensemble members’
selection based on accuracy and diversitywith ensemblemembers’ selection based
on accuracy only. A comparison with ensembles without member selection was
also performed. Ensemble performance was assessed in terms of accuracy, F1-
score. Q statistics diversity measure was used to calculate the classifiers diversity.
The experiments were carried out on three well-known BC datasets available from
online repositories. Seven single classifiers were used in our experiments. Skott
Knott test and Borda Count voting system were used to assess the significance
of the performance differences and rank ensembles according to theirs perfor-
mances. The findings of this study suggest that: (1) Investigating both accuracy
and diversity to select ensemble members often led to better performance, and
(2) In general, selecting ensemble members using accuracy and/or diversity led
to better ensemble performance than constructing ensembles without members’
selection.
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1 Introduction

Breast Cancer is one of the most prominent diseases prevalent in females. It is the most
common invasive cancer. In 2020, 2.3 million cases of BC were reported, which makes
this cancer themost common cancer [1]. BC tumors occur when certain breast cells grow
out of control, leading to the liningof thebreast ducts. In addition, tumors canbe classified
into benign and malignant [2]. When cells are not cancerous, the tumor is benign. It
would not invade nearby tissues or spread to other areas of the body (metastasize).
When removed, benign tumors usually do not grow back. Malignant tumors, however,
can grow and spread to other parts of the body.

Early detection of BC is the key to increase the survival rate, and the cancer is
more likely to respond to effective treatment and can result in a greater probability
of surviving, less morbidity, and less expensive treatment Different techniques were
investigated to diagnosis BC such as ultrasound, thermography, mammography and
biopsy [3]. Mammography is possibly the most intensely used medical procedure by the
physicians. However, if a mammogram looks suspicious, then a biopsy is required to
decide whether an abnormality is in fact a breast cancer [4]. Furthermore, if the detection
accuracy of the tumor is at a low level (lower than 70%), this prevents the doctor from
reporting the final result of the diagnosis. Thus, this results in a waste of time and can
cause mental discomfort for the patient [5]. Accordingly, the patient faces additional
tests which can be costly and demanding.

In order to provide a quick and accurate diagnosis for BC [6], various classification
techniques have been investigated in the literature such as Neural Networks (ANNs),
Support Vector Machines (SVMs) and K Nearest Neighbor (KNN) [7, 8]. Nevertheless,
single techniques are not always the most appropriate techniques to use, since they does
not achieve better performance under all situations. Actually, the performance of single
techniques relies on the characteristics of the dataset [5, 8, 9]. Furthermore, each single
classification technique has advantages and limitations regarding the classification tasks.
In order to address this challenge, a powerful approach called ensemble classifiers has
been widely investigated. They consist of combining a set of individual classifiers by
means of an aggregation layer [8, 10].

One of the most important task in optimizing an ensemble learning system is to
select a subset of the “best” classifiers (ensemble members) from the whole pool of
classifiers, which can drive an ensemble to outperforming its members [8, 11, 12]. Oth-
erwise, the performance of an ensemble can be worse than all or most of its members
[13]. In the literature, several previous studies were carried out to identifying optimal
ways to combine classifiers [14–17]. However, the selection of the ensemble members
is also a crucial challenge to deal with in order to improve the ensemble performance
[18]. For instance, in [15] Aytu et al., proposed a hybrid ensemble approach that employs
randomized search and clustering scheme to produce an ensemble. They trained a mul-
titude of single classifiers with different parameters, then a group of diverse classifiers is
created. Classifier clusters are then created using the classification performance of single
classifiers. Thereafter, two single classifiers from each cluster are selected as candidate
members based on their pairwise diversity to generate the ensemble. Caruana et al. [16]
proposed an ensemble selection scheme from a library of thousands of classification
algorithms. In this scheme, many machine learning algorithms and parameter settings
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are used to build a model library. Then, a selection strategy, such as the forward step-
wise selection, was used to select members that maximize the ensemble performance. In
[17], Aksela proposed a method to select ensemble members based on several selection
criteria such as correlation between errors, Q statistics and weighted count of errors. A
measure focused on penalizing classifiers making the same error, the exponential error
count approach, was identified to generate the best selections.

Performance of an ensemble learning can be influenced by many criteria including
accuracy of single classifiers, number of base classifiers, combination rule, data sampling
technique, and diversity of members [19]. While diversity was in general considered as
the relevant criterion impacting the performance of an ensemble [20–23], other studies
confirmed the opposite [24–27]. Diversity alone is a poor predictor of the ensemble
accuracy” [28]. In [29], Krogh and Vedelsby underlined that members could improve
the performance when they are accurate and diverse.

In the literature, several existing selection methods of ensemble members are essen-
tially investigating one criterion: accuracy or diversity [18, 30–33]. This paper proposes
a method for selecting heterogenous ensemble members for breast cancer classification,
which uses both accuracy and diversity as selection criteria. Accuracy is measured in
terms of recall precision, and accuracy metrics, while diversity is evaluated by means of
the Q statistic diversity measure, which is one of the most popular due to its simplicity
and understandability compared to other diversity measures [34].

Furthermore, we compare our proposed selection method with two existing strate-
gies: (1) the selection of ensemble members based only on the criterion accuracy (i.e.
we investigated the effect of the selection of the most accurate models from a group
of seven classifiers); and (2) the selection of all the single classifiers without using any
criterion. The empirical evaluations were carried out using: (1) seven single classifiers:
K nearest neighbor (KNN),Multilayer Perceptron (MLP), Decision trees (DTs) and four
variants of Support vector machines (SVMs) with four different kernels: Linear Kernel
(LK), Normalized Polynomial Kernel (NP), Radial Basis Function Kernel (RBF), and
Pearson VII function based Universal Kernel (PUK); (2) a majority voting combination
rule to combine the outputs of the ensemble members. (3) three well-known available
BC datasets from online repositories; (4) three performance metrics, namely accuracy,
recall and precision to evaluate the constructed ensembles; and (5) the statistical test
Scott-Knott and the Borda Count voting system to perform the significance tests and
rank the best classifiers respectively.

The contributions of this paper are: (1) analyzing the impact of investigating both
accuracy and diversity for ensemble members’ selection in breast cancer classification;
and (2) comparing the proposed members’ selection method with two existing selection
strategies.

The rest of this paper is structured as follows: Sect. 2 briefly presents the single
techniques used, the ensemble concept and the existing measures of diversity. Section 3
presents an overview of related work investigating diversity in members’ selection.
Section 4 describes the ex.perimental design pursued in this study. The empirical findings
are presented and discussed in Sect. 5. The threats to validity are given in Sect. 6.
Conclusions and future works are summarized in Sect. 7.
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2 Background

This section gives a summary of the single classification techniques used, the concepts
of ensemble, and the measures of diversity to select ensemble members in classification.

2.1 Single Techniques

KNN: is a popular machine learning algorithm known for its simple implementation
and robustness [35]. It is a non-parametricmethod first created in 1951 by Evelyn Fix and
Joseph Hodges, and later updated by Thomas Cover. It used to solve both classification
and regression problems. KNN stores all available instances and classifies new instances
based on a similarity measure. To measure the similarity between its nearest neighbors,
KNN uses in general the Euclidian distance.

SVMs: are powerful classification algorithms, used to solve problems of classification
aswell as regression. SVMwasdeveloped in the 1990s byVladimirVapnik [36]. It is used
to classify a newunknown instance into one of the predefined classes. SVMhas the ability
to model complex nonlinear relationships by choosing an appropriate kernel function
[37]. In fact, the Kernel function transforms the training samples so that a non-linear
decision boundary is transformed to a linear equation in a higher number of dimensions
[12, 38]. In this study, four variants of the SVM classifier were used. The four SVMs
variants used four different kernels: Linear Kernel (LK), Radial Basis Function Kernel
(RBF, Pearson VII function based Universal Kernel (PUK) and Normalized Polynomial
Kernel (NP).

MLP Neural Networks: are themost frequently used feedforward neural networks due
to their fast operation, ease of implementation, and smaller training set requirements,
[39, 40]. They are used for both classification and regression problems [41, 42]. Their
architecture consists of three types of layers: the input layer, output layer and hidden
layer. The nodes present in each layer are connected to the next layer. That is the principle
of feed-forward neural network; the movement information is allowed only in a forward
direction. The neurons of each layer are connected to the neurons of the subsequent layer
by means of weights and output signals which are a function of the sum of the inputs to
neurons modified by an activation function. Generally, the neurons of the hidden layer
use a nonlinear activation function, while a linear activation function is usually used for
the output neurons.

DTs: are the most frequently used classification techniques, easy to use and to inter-
pret. They can be used for both classification and regression problems [43]. DT is a
tree-structured model in which internal nodes represent dataset attributes, branches rep-
resent decision rules, and each leaf node represents a class label. Depending on the task
addressed, the class label could be categorical or continuous. The classification rules are
described by the paths from root to leaf. In this study, the C4.5 algorithmwas investigated
[44].
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2.2 Ensemble Classifiers

An ensemble classifiers are a powerful machine learning technique that create multiple
models and then combine them by means of an aggregation rule in order to produce one
optimal predictive model [8, 12]. They can be grouped into two types: Homogeneous
or Heterogeneous [8, 10, 12, 45]. The Homogeneous method refers to an ensemble that
combines one based learning algorithm with at least two different variants, or an ensem-
ble that combines one base learning algorithmwith one meta ensemble such as Boosting
[46]. While the Heterogeneous method refers to an ensemble that combines members
having different base learning algorithms. The current research is based on heteroge-
neous ensembles, and it adopts the majority voting combination rule to combine the
decision of the individual classifiers that comprise the ensemble. Note that, the majority
vote rule is the most popular and frequently used method in the literature of ensembles
[47].

2.3 Measures of Diversity in Ensemble Based Classification

It is well known that the performance of an ensemble learning is impacted by diversity
of its members, i.e., the degree of disagreement within the members of an ensemble
[18, 25]. Diversity is loosely described as “making errors on different examples” [48,
49]. Thus, diversity has been acknowledged as a very relevant characteristic in classi-
fiers combination. Kuncheva [28, 50] provided an analysis of ten diversity measures and
classified them into two groups: Pairwise and Non-pairwise measures. Pairwise mea-
sures calculate diversity values between two base classifiers of an ensemble. The overall
diversity of an ensemble can be estimated by averaging the pairwise diversity values
of pairs using Q-statistic [51], double-default measure [52], and disagreement measure
[50]. Non-pairwise measures, on the other hand, are used to estimate diversity among
all base classifiers by accounting for all potential disagreements between them using
entropy [53], generalized diversity [54], and measure of difficulty [50]. In this study,
the Q statistic diversity measure was used, it is preferred over other diversity measures
because of its simplicity and understandability [34].

Q statistic measure is based on Yule’s Q statistic used to assess the similarity of two
classifiers’ outputs [50]. For two classifiers Li and Lk, Q-statistic value is defined by
Eq. 1.

Qi,k = N11N00 − N01N10

N11N00 + N01N10 (1)

where Nab is the number of training instances for which Li gives result ‘a’ and
Lk gives result ‘b’ (It is supposed that the result here is equal to 1 if an instance is
classified correctly and 0 if it is misclassified). The expected value of Q for statistically
independent classifiers is 0. The value of Q ranges between –1 and 1. Classifiers that
appear to correctly classify the same instances will have positive Q values, while those
that make errors on different instances will have negative Q values [21, 50].
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3 Related Work

This section presents an overview of some related work investigating diversity in
ensemble techniques.

Banfield et al. [55] proposed an algorithm termed the percentage correct diversity
measure (PCDM) to construct decision trees ensemble. The proposed algorithm seeks to
find the test samples for which the percentage between 10 and 90 of the single classifiers
are correct. These test samples are removed from determining the ensemble diversity.
The proposed technique was evaluated in twelve datasets from UCI repository using
teen fold cross validation method. The empirical results suggest the effectiveness of the
proposed technique.

Kadkhodaei et al. [56] proposed an entropy based approach to determine the best
combination of classifiers from a pool of ten different single techniques. The evaluation
of the proposed heterogeneous ensemble was evaluated on three datasets from the UCI
repository. The empirical results stated that the proposed technique generates an accurate
ensemble and that the time required to build it is less than the one required bagging and
boosting ensemble techniques.

Nascimento et al. [57] presented a new approach for automatic selection of both
base classifiers and features. The proposed approach was based on evolutionary app-
roach composed of two genetic algorithm instances. Two proposed diversity measures
were investigated in order to analyze the performance of the proposed framework. The
empirical evaluations were performed using ten different classification algorithms using
the bagging architecture. Five datasets from UCI repository were selected for the eval-
uations. The results suggested that the proposed technique was effective to generate
accurate ensemble. The authors recommended to take into account other factors than
diversity such as accuracy and complexity when constructing ensembles.

Lysiak et al. [58] proposed a novel approach for dynamic ensemble selection (DES)
based on probabilistic measures of competence and diversity between member classi-
fiers. The two types of ensembles were constructed: the homogeneous ensemble con-
sisted of 20 pruned decision tree classifiers and the heterogeneous ensemble consisted
of nine different classifiers. Seven public datasets were used to assess the effectiveness
of the proposed approach. The Results indicated that the proposed method can eliminate
weak classifiers and keep the ensemble maximally diverse. Further, the proposed DES
led to better classification accuracy of the constructed ensembles compared to those
generated by the DES system using only the competence measure.

4 Experimental Design

This section explains the experimental design investigated to conduct all of the empirical
evaluations, including the performancemetrics used, Scott–Knott (SK) test, BordaCount
voting system, datasets descriptions, ensemble selection process and the abbreviations
used.

4.1 Performance Metrics

The following performance metrics are used to assess the performance of single and
ensemble techniques:
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Accuracy, Recall and Precision defined by Eqs. 2, 3 and 4 respectively [10].

Accuracy = TN + TP

TP + FP + TN + FN
(2)

Recall = TP

TP + FN
(3)

Precision(Prec) = TP

TP + FP
(4)

where FP stands to False Positive, FN stands to False Negative TP to True Positive
and TN to True Negative.

4.2 Scott-Knott Test

The Scott-Knott (SK) test is a hierarchical clustering algorithm developed by Scott and
Knott (1974), is an efficient method to conduct procedures of multiple comparisons
without ambiguity [59]. Compared to other statistical tests such as the Tukey test, Stu-
dent– Newman–Keuls (SNK) test and t-test, the SK test is a commonly used method
[60–63], it has the ability to group techniques into non-ambiguous groups [64, 65]. In
this study, the SK test was used to cluster the single and ensemble techniques based
on their error rates (Error rate = 1-Accuracy) and to check the significant difference
between them. The ten folds cross-validation approach was used in all the experiments
presented in this study.

4.3 Borda Count Voting System

The Borda count [66] is a form of single-winner election in which voters rate candidates
in order of choice. The Borda count determines the winner of an election by allocating
points to each candidate based on the voter’s rating. After that, the system aggregates
the score of each candidate based on the received points. The candidate who receives
the highest score is the winner. To illustrate this process, the example in Table 1 shows
the steps of Borda count to choose the winner among four candidates (Cd1, Cd2, Cd3
and Cd4) who were voted on by four voters (Vot1, Vot2, Vot3 and Vot4). Each voter Voti
assigns a candidate to one of the positions i (1, 2, 3 or 4). As a result, we compute the

Table 1. Borda count voting system for four voters which rank four candidates according to their
preferences.

Voters VOT1 VOT2 VOT3 VOT4 POS I Score

Cd1 1 1 2 4 2, 1,0,1 4 × 2 + 3 × 1 + 2 × 0 + 1 × 1 = 12

Cd2 3 2 3 2 0,2,2,0 4 × 0 + 3 × 1 + 2 × 2 + 1 × 0 = 7

Cd3 1 2 1 4 2,1,0,1 4 × 2 + 3 × 1 + 1 × 2 + 1 × 1 = 14

Cd4 4 2 3 1 1,1,1,1 4 × 1 + 3 × 1 + 1 × 2 + 1 × 1 = 10
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vector position PI (n1, n2, n3,n4) of each candidate, where ni is the number of times the
candidate has been ranked in position i. Mi points are assigned to each position i (Mi =
# ofcandidates − i + 1). Finally, the score of each candidate is equal to ni * Mi.

4.4 Datasets Fescription

In order to evaluate the performance of the proposed techniques, three datasets obtained
from the online UCI repository were investigated in this study. These datasets were the
most widely used by researchers in the literature [7]. A short description of each of these
datasets is reported in Table 2. Note that two of the datasets contain missing values. We
simply removed them since their number was very small. Furthermore, the WPBC and
Wisconsin datasets are unbalanced. The Synthetic Minority Over-sampling Technique
(SMOTE) [67] was used to address this problem.

Table 2. Datasets description

Dataset #.Attributes Missing values? Examples

WDBC 32 NO 569

Wisconsin 11 Yes(16) 699

WPBC 34 Yes (4) 198

4.5 Ensemble Selection Process

The first concern of constructing an effective ensemble classifier is to ensure that all
individual classifiers are accurate [68]. Then we can improve the ensemble performance
by rejecting weak classifiers and combining accurate members only. Toward this aim,
we select ensemble members based on accuracy, referred to us Selection by Accuracy
(SbA). The process of SbA is as follow:

1. Assess the performances of the N (7 in this study) single classifiers based on the
three metrics: Accuracy, Precision and Recall.

2. Performing the statistical test SK based on the accuracy in order to cluster the clas-
sifiers evaluated in Step 1 into non-overlapping clusters. Each cluster includes one
or more classifiers with comparable predictive abilities. The best cluster is the one
with the lowest error rate value. (Error rate= 1-Accuracy); therefore, the classifiers
belonging to this cluster are chosen for the next step.

3. Building an heterogeneous ensemble by combing the base classifiers belonging to
the best cluster (In case of the best cluster only contains one classifier, we combine
the classifiers of the two first best clusters)

4 Evaluate the performance of the heterogeneous ensemble constructed in Step 3
according to the three criteria: accuracy, recall and precision.
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Since diversity of the ensemble members is relevant to improve the accuracy of an
ensemble, we construct ensembles based on both accuracy and diversity, referred to us
Selection by Accuracy and Diversity (SbAD). The process of SbAD is as follows.

1. Carry out the Step 1, 2 and 3 of the SbA selection process.
2. Calculate the diversity between the heterogeneous ensemble classifier constructed

in Step 1 (i.e. based on accuracy criterion) and each of the remaining classifiers (i.e.
classifiers that were out of the best cluster)

3. Select the single classifier with the highest diversity and include it into the SbA
heterogeneous ensemble.

4. Assess the performance of the heterogeneous ensemble constructed in Step 3.
5. Repeat Steps 3 and 4 until the heterogeneous ensemble size reaches the number N-1

members.

We also combine all the seven single classifiers (DT, MLP, KNN, S-PUK, SVM-NP,
SVM-RBF and SVM-LK) in one ensemble in order to compare its performance with
the other constructed ensembles using SbA and SbAD. We referred to this ensemble:
No Selection classifier (NSc). Figure 1 presents the experimental process we followed.

4.6 Abbreviations Used

The following abbreviation rules were used to simplify the names of ensembles

E-SingleTechnique1 SingleTechnique2

E- SingleTechnique1 SingleTechnique2SingleTechnique3.

.

.

E- SingleTechnique1 SingleTechnique2… SingleTechniqueN

It is worth noting that for ensemble techniques, we shorten the names of single
classifiers as well:

KNN for K, D for DTs, M for MLP, S for SVM, SVM-PUK for P, SVM-RBF for R,
S-LK for L and SVM-NP for NP.

For example, EDKLM refers to the ensemble constructed by the fusion of the four
single techniques, DT, KNN, SVM-LK and MLP.

5 Empirical Results

This section discusses the empirical evaluation results of the 7 individual classifiers, the
SbA and SbAD ensembles as well as the Nsc ensemble. The R software was used for
statistical tests and the Waikato Environment for Knowledge Analysis (WEKA 3.9) was
investigated to conduct the empirical evaluations [69].
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Fig. 1. Experimental process.

5.1 Individual Classifiers Evaluation

This section presents the evaluation results of the 7 classification techniques over the
three datasets based on three criteria (Accuracy, Recall, and Precision). Table 3 depicts
the performance values of the 7 single techniques. As shown in Table 3, we can note
that in the WDBC dataset, S-LK displayed the best performance. S-PUK exhibited the
best performance in the WPBC dataset. As for Wisconsin, DT was the best.

Based on the results of Table 3, we notice that there is no individual best classifier in
overall datasets, and that the rankings of the same individual classifier vary depending
on the dataset. This is due to the fact that the performance of single techniques depends
on the characteristics of datasets (number of instances, dataset dimensionality, number
of classes, etc.) [8].

Table 3. Performance results.

Classifier WDBC Wisconsin WPBC

Acc Prec Recall Acc Prec Recall Acc Prec Recall

S-LK 97.89 97.9 97.9 74.66 74.8 74.7 74.66 74.8 74.7

S-NP 93.4 93.5 93.5 77.03 77 77.2 77.03 77 77.2

(continued)
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Table 3. (continued)

Classifier WDBC Wisconsin WPBC

Acc Prec Recall Acc Prec Recall Acc Prec Recall

S-RBF 92.09 92.1 92.8 65.88 65.9 66.5 65.88 65.9 66.5

S-PUK 97.54 97.5 97.5 90.88 90.9 90.9 90.88 90.9 90.9

DT 93.15 93.2 93.1 96.05 96.1 96 84.12 84.1 84.1

MLP 95.78 95.8 95.8 95.75 95.8 95.8 86.82 88.1 86.8

KNN 95.78 96.1 96.1 95.75 95.8 95.8 82.43 85 82.4

5.2 Ensembles Evaluation

Figure 2 depicts the results of the SK test carried out based on error rate overall datasets.
We observed that the SK test identified 2, 4, and 2 clusters in the WDBC, WPBC and
Wisconsin datasets respectively. Therefore, we constructed: (1) one SbA heterogeneous
ensemble in WDBC dataset whose members were S-PUK, S-LK, KNN and DT; (2) one
SbA heterogeneous ensemble in Wisconsin dataset whose members were DT, MLP and
KNN; and (3) one SbA heterogeneous ensemble inWPBC dataset whose members were
S-PUK, MLP, DT and KNN (since the best cluster of WPBC dataset contains only one
technique we include also the techniques of the second best cluster).

For the SbAD ensembles, for each dataset we constructed ensembles based on the
SbAD selection process described above (see Sect. 4.5):

• For Wisconson, we constructed 3 SbAD ensembles: EDKNM, EDKLNM and
EDKLNMP

Fig. 2. SK test of single techniques over the all datasets
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• For WDBC, we constructed 2 SbAD ensembles: EDLKMP and EDLKMNP
• For WPBC, we constructed 2 SbAD ensembles: EDKMPR and EDKMPRN

WDBC Dataset: Table 4 shows the performance metric values of the SbA and SbAD
ensembles aswell as theNSc ensemble for theWDBCdataset.We observe that the SbAD
ensemble EDLKMP and the SbA ensemble come first with 97.72%, 97% and 97% for
accuracy, recall and precision respectively; and the SbAD ensemble EDLKMNP comes
second with 97.54%, 97.5% and 97.6% for accuracy, recall and precision respectively.
Note that the the SbA and SbAD ensembles outperformed the NSc ensemble.

Table 4. Performance results: WDBC dataset.

Method Ensemble Acc Prec Recall

SbDA EDLKMP 97.72 97 97

EDLKMNP 97.54 97.5 97.6

SbA ELKMP 97.72 97 97

NSc 97.12 97.2 97.2

Wisconsin Dataset: Table 5 reports the performance metric values of the SbA and
SbAD ensembles as well as the NSc ensemble for the Wisconsin dataset. In terms of the
three performance metrics, accuracy, precision, and recall, we notice that the SbAD
ensemble EDKLNMP marginally outperformed the others. It provides an accuracy,
precision and recall values of 97.07%, 97.1% and 97.1% respectively.

Table 5. Performance results: Wisconsin dataset.

Method Ensemble Acc Prec Recall

SBAD EDKNM 96.49 96.5 96.5

EDKLNM 96.92 97 96.9

EDKLNMP 97.07 97.1 97.1

SBA EDKM 96.63 96.7 96.6

NSc 96.78 96.8 96.8

WPBC dataset: Table 6 depicts the performance metrics values of the SbA and SbAD
ensembles as well as the NSc ensemble for the WPBC dataset. We observe that the
ensemble SbA ensemble EDKMP outperformed all the other ensembles; it achieved
an accuracy, precision and recall of 91.22%, 91.5% and 91.2% respectively. As it can
be seen from Table 6, the SbA and SbAD ensembles in general outperformed the NSc
ensemble.
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Table 6. Performance results: WPBC dataset.

Method Ensemble Acc Prec Recall

SBAD EDKMPR 90.54 90.8 90.5

EDKMPRN 87.5 87.6 87.5

SBA EDKMP 91.22 91.5 91.2

NSc 86.82 87.1 86.8

5.3 Comparing SbA, SbAD and Nsc Ensembles

To check the significant difference between the performances of SbA, SbAD and Nsc
ensembles, the SK test was carried out based on error rate values to check whether
there was a notable difference between the ensemble performances. Figure 3 displays
the results of the SK test on the built ensembles for each dataset. As it can be observed
in Fig. 3, in all datasets, only one cluster was identified by the SK test. This means
that SbA, SbAD and Nsc ensembles show the same predictive capabilities in terms of
accuracy in all datasets.

Fig. 3. Accuracy based SK test results of SbA, SBA and Nsc ensembles.

To deeply compare the predictive capabilities of SbA, SbAD and Nsc ensembles,
we used the Borda Count voting system to rank them based on the three performance
metrics: accuracy, precision, and recall. Table 7 displays the ranking supplied by the
Borda count voting system for each dataset. We note the following:

• Except in the WPBC dataset, where the SbA ensemble EDKMP was ranked first,
SbAD ensemble techniques were in general ranked at the first position in two datasets
(EDLKMP in WDBC and EDKLNMP in Wisconsin).
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Table 7. Borda Count ranks of the best SK cluster techniques

Rank WDBC dataset Wisconsin dataset WPBC dataset

1 SbAD:EDLKMPa SbAD:EDKLNMP SbA:EDKMP

2 SbA:ELKMPa SbAD:EDKLNM SbAD:EDKMPR

3 SbAD:EDLKMNP NSc SbAD:EDKMPRN

4 NSc SbA:EDKM NSc

5 SbAD:EDKNM
aThe letter denotes the same rank

• In general, the SbAD and SbA ensembles outperformed the NSc ensemble overall
datasets.

• The best SbAD ensemble in each dataset includes 5 to 6 single techniques (EDLKMP
in WDBC, EDKLNMP in Wisconsin and EDKMPR in WPBC).

• The members DT, KNN, MLP, and S-PUK were present in all the best SbAD/SbA
ensembles (EDLKMP in WDBC, EDKLNMP inWisconsin and EDKMP inWPBC).

6 Threats to Validity

This section discusses threats to this study’s validity, with regard to internal, external
and construct validity.

Internal Validity: This study used a 10-fold cross validation evaluation method, which
is commonly used in machine learning [10]. Another internal threat is the presence
of missing values in two datasets used, which may affect the performance of a model
constructed using these datasets and increase the likelihood of drawing incorrect conclu-
sions. In this research, instead of using imputation techniques like mean imputation or
expectation-maximization [70] to impute missing values, we deleted the existing miss-
ing values because their number was small, but if there are a lot of missing values, we
recommend the use of imputation methods [71].

Furthermore, the majority voting was used in this study to produce the final output of
the proposed ensembles. Note that, the majority voting rule is the most popular and fre-
quently used method in the literature of ensembles [72, 73]. However, we are aware that
other combination schemes such asweightedmajority voting, probabilistic andweighted
sum can yield different outcomes. Thus, future experiments might look into the effect
of other combiners on the predictive capability of the ensembles.

External Validity: The aim of the external threat is to know whether the results of this
research work can be generalized to other contexts [74]. Thus, it is crucial to figure
out how broadly the findings of this study can be applied. To counteract this threat,
we selected three datasets that differ in size and number of features. Moreover, this
study investigated only one diversity measure, Q statistic, to calculate the classifiers’
diversity. Investigating other diversity measures such as double-default measure [52],
disagreement measure [50] and measure of difficulty [50] is recommended so as to
generalize the findings of this study.
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Construct Validity: The construct validity aims at answering the question about the
measurement validity [11], ormore specifically, the reliability/credibility of themeasures
selected to assess the performance of the techniques. We overcome this constraint by
using three performance metrics (Accuracy, Precision and Recall) in order to obtain
results from various perspectives. As a result, all three criteria yielded the same results.
To affirm or refute the reported results, it is required to invesigate other performance
metrics.

7 Conclusion and Future Work

This study assessed and compared the impacts of using accuracy and diversity instead
of accuracy alone for selecting ensemble members on the performance of ensembles in
BC classification. Moreover, it evaluated and compared the performances of ensembles
with/out selection. We used the Q statistic measure to evaluate the diversity of ensemble
members. The majority voting combination rule was used to combine the members of an
ensemble. The experiments were carried out on three well-known available BC datasets
from online repositories. The SK test and Borda Count were investigated to assess the
significance of performance differences and to rank the ensembles respectively.

The findings were:

(1) Investigating both accuracy and diversity to select ensemble members can improve
the performance of an ensemble. This confirms the findings of [75].

(2) Selecting ensemblemembers using accuracy and/or diversity in general led to better
ensemble performance than constructing ensembles without members’ selection.
This confirms the results of Zhou et al. [76].

(3) Individual classifiers’ performance is influenced by the characteristics of the dataset
as the ranks of the same technique depended on the dataset.

Ongoing work focuses on investigating other diversity measures and other combi-
nation rules to construct better heterogeneous ensembles in BC diagnosis.
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