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Preface

This volume contains the papers presented at the 29th International Conference on
Case-Based Reasoning (ICCBR 2021), which was held virtually during September 13–
16, 2021. ICCBR is the premiere annual meeting of the Case-Based Reasoning
(CBR) research community and serves an important role in disseminating the newest
findings and developments in the field. The previous ICCBR, ICCBR 2020, had
originally been planned to be held in Salamanca, Spain, but was instead held virtually
due to the COVID-19 pandemic. We had hoped that Salamanca could instead serve as
the venue for ICCBR 2021 but, unfortunately, the difficult decision was made to again
hold it virtually due to ongoing health, safety, and travel concerns.

Previous ICCBR editions, including the merged European Workshops and Con-
ferences on CBR, were held in the following locations: Otzenhausen, Germany (1993);
Chantilly, France (1994); Sesimbra, Portugal (1995); Lausanne, Switzerland (1996);
Providence, USA (1997); Dublin, Ireland (1998); Seeon Monastery, Germany (1999);
Trento, Italy (2000); Vancouver, Canada (2001); Aberdeen, UK (2002); Trondheim,
Norway (2003); Madrid, Spain (2004); Chicago, USA (2005); Fethiye, Turkey (2006);
Belfast, UK (2007); Trier, Germany (2008); Seattle, USA (2009); Alessandria, Italy
(2010); Greenwich, UK (2011); Lyon, France (2012); Saratoga Springs, USA (2013);
Cork, Ireland (2014); Frankfurt, Germany (2015); Atlanta, USA (2016); Trondheim,
Norway (2017); Stockholm, Sweden (2018); Otzenhausen, Germany (2019); and
Salamanca, Spain, with virtual attendance (2020).

ICCBR 2021 received 85 submissions from 18 countries, spanning Europe, North
America, and Asia. Each paper was initially reviewed by the conference co-chairs to
determine whether it met the submission criteria and conference topics. Submissions
that passed the initial review were then reviewed by at least three Program Committee
(PC) members. If a consensus was not reached among the Program Committee
reviewers, additional meta-reviews were provided by members of the Advisory Board.
Of the 85 submissions, 21 were accepted for oral presentation. Although poster pre-
sentations have often been included in previous ICCBR editions, none were included in
the ICCBR 2021 program as the presentation is more difficult in a virtual setting.

ICCBR 2021 took place over four days, from September 13 to 16, 2021. On the first
day of the conference, the workshop program was held with meetings dedicated to
specific sub-areas of CBR. Following the workshops, the first technical session of the
main conference was held, with a virtual social event afterwards in the evening. The
second day of the conference started with a keynote invited talk by Professor Santiago
Ontañón Villar of Google Research and Drexel University, USA. The majority of the
day was comprised of oral presentations, concluding with another virtual social event
in the evening. The third day started with oral presentations and concluded with a
virtual cooking class, serving as a gala dinner, where attendees were able to create
Spanish dishes in their homes. This event brought a taste of Spain to the attendees, even
though we were unable to physically meet in Salamanca. The final day of the



conference began with an invited keynote talk by Professor Kerstin Bach of the
Norwegian University of Science and Technology. Following the keynote talk, a panel
was held to remember the life and career of Professor Dr. Michael M. Richter. Michael
had a significant and lasting impact on the CBR community, including his research, his
involvement with ICCBR, and the numerous CBR researchers who studied under him.
A final technical session consisting of oral presentations followed. The day, and the
conference, concluded with a private Program Committee meeting followed by a
general community meeting to discuss future plans for ICCBR.

The task of organizing ICCBR 2021 was supported by the tireless efforts of many
people. Juan Manuel Corchado and Fernando de la Prieta, along with their team,
handled all aspects of the local organization – both the in-person planning for a
physical conference in Salamanca as well as the online organization when the con-
ference transitioned to a virtual event. Hayley Borck and Viktor Eisenstadt organized
an excellent workshop program for the conference and coordinated with the various
workshop chairs to plan those meetings. Stewart Massie and Stelios Kapetanakis
chaired the Doctoral Consortium, an invaluable annual event that helps nurture the next
generation of CBR researchers. We are extremely grateful for the guidance, advice, and
support of the ICCBR Advisory Board members: Belen Díaz-Agudo, David W. Aha,
David Leake, Barry Smyth, Rosina O. Weber, and Nirmalie Wiratunga. Additionally,
the thoughtful, thorough, and constructive reviews provided by the PC and additional
reviewers assisted us greatly in making decisions for the ICCBR 2021 program. We
thank all those mentioned for their effort and assistance in making ICCBR 2021 a
success.

July 2021 Antonio A. Sánchez-Ruiz
Michael W. Floyd

vi Preface
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The Bites Eclectic: Critique-Based
Conversational Recommendation

for Diversity-Focused Meal Planning

Fakhri Abbas(B), Nadia Najjar, and David Wilson

University of North Carolina at Charlotte, Charlotte, NC 28223, USA
{fabbas1,nanajjar,davils}@uncc.edu

Abstract. Diet diversification has been shown both to improve nutri-
tional health outcomes and to promote greater enjoyment in food con-
sumption. CBR has a rich history in direct recommendation of recipes
and meal planning, as well as conversational exploration of the possibil-
ities for new food items. But more limited attention has been given to
incorporating diversity outcomes as a primary factor in conversational
critique for exploration. Critiquing as a method of feedback has proven
effective for conversational interactions, and diversifying recommended
items during exploration can help users broaden their food options, which
critiquing alone may not achieve. And all of these aspects together are
important elements for recommender applications in the food domain.
In this paper, we introduce DiversityBite, a novel CBR approach that
brings together critique and diversity to support conversational recom-
mendation in the recipe domain. Our initial user study evaluation shows
that DiversityBite is effective in promoting meal plan diversity.

Keywords: Diversity · Recipe recommendation · Critique-based ·
Case-based Reasoning

1 Introduction

Diet diversification has been linked to positive health outcomes such as reducing
incidence of cancer or mortality [7]. Moreover, by promoting a variety of health-
ful food choices, diet diversification can make food consumption more enjoyable
[15]. Our research is investigating how recommender systems can help to promote
dietary diversity through the use of exploration. We have designed Diversity-
Bite, a Case-based Reasoning (CBR) approach that incorporates diverse recipe
recommendation during the exploration process. DiversityBite employs a con-
versational CBR recommendation approach with diversity-focused dynamic cri-
tiquing, in order to support users in exploration of recipes and creation of diverse
meal plans.

From a recommender system perspective, incorporating diversity provides a
number of advantages. First, it reduces the problem of “filter bubble” effects [17].

c© Springer Nature Switzerland AG 2021
A. A. Sánchez-Ruiz and M. W. Floyd (Eds.): ICCBR 2021, LNAI 12877, pp. 1–16, 2021.
https://doi.org/10.1007/978-3-030-86957-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86957-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-86957-1_1


2 F. Abbas et al.

Second, diversity enables the user to explore alternative options that could be
healthier which can increase the dietary diversity for individuals [7]. And finally,
it increases user awareness and knowledge of existing recipes by providing more
recipes that could be explored in different cultures, cuisines, or communities [10].
The problem of incorporating diversity mechanisms in recipe recommendation
in order to generate diverse sets that also meet user requirements remains an
important open research challenge [10].

Primary aspects of the challenge stem from the differences and similarities
between recipes (e.g., cuisine, ingredients, nutrition, meal type, preparation), as
well as users’ perceptions of those differences and similarities. For example, a
person may like fried chicken but not grilled chicken, or may prefer chicken for
lunch but not for dinner. Due to this complexity in food selection, recommender
systems should enable the user to shape the direction of the recommendations.
This in turn, helps to reduce the effect of contextual factors that are hard to cap-
ture such as time, cultural background, food knowledge, and current user’s needs.
Therefore, we focused on a conversational recommender approach, in which the
user can provide iterative critique feedback on recommendations.

This research extends our previous work [1,2] and investigates incorporating
diversity in a critique based conversational recommender system for recipes. In
this paper we introduce DiversityBite, a novel way of dynamically generating
critiques, in which the generated critique leads the user to a more diverse set
of recipe recommendations - and outcomes. In essence, this can be thought of
as a “like this, but more diverse” approach. This paper reports on our initial
investigation for the approach, and the main research question we address is:

– RQ 1 In critique-based conversational recommendation, how does diversity-
focused critique impact diversity in terms of user outcomes?

To address this overall research question, we have developed an implemen-
tation of the DiversityBite approach and conducted a lab-based user study, in
which users were asked to prepare a weekly meal plan by exploring recipes. To
help understand our general research question, the study investigates the follow-
ing specific research questions:

– RQ 1.1 Can a critique-based recommender result in finding more diverse
recipes compared to a non critique-based recommender?

– RQ 1.2 Can users compile a more diverse meal plan in a critique-based
recommender compared to non critique-based recommender?

– RQ 1.3 Can users perceive the modeled diversity of the recommended
recipes?

This paper first discusses related work in Sect. 2. Section 3 presents the Diver-
sityBite approach, and Sect. 4 describes our user study evaluation. The paper
concludes in Sect. 5 with discussion and future directions.
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2 Background

This research draws upon previous work in the areas of diversity, conversational
recommendation - more specifically critiquing, and the domain of recipe recom-
mendation.

2.1 Diversity

Bradley and Smyth [4] described diversity as the complement of similarity. Smyth
and McClave [26] argue that diversity is as important as similarity in case-based
recommender systems. They have suggested measuring the diversity of the list
as the average pairwise distance [26] as shown in Eq. 1:

Diversity(R) =

∑

iεR

∑

jεR/{i}
dist(i, j)

|R|(|R| − 1)
(1)

where R is the recommended list of items, and dist(i, j) is the distance between
item i and item j. Using this definition, Fleder and Hosanagar conducted a follow
up study, showing that recommender systems reduce diversity by focusing pri-
marily on accuracy [9]. In [26], Smyth and McClave applied a linear combination
of relevance and diversity as an objective function to retrieve items. In contrast,
Mcsherry [22] argues that increasing diversity with small sacrifice on similarity
may not be applicable in every scenario. Example of such scenarios are items
that are available for a short period of time such as jobs, and apartments. In
such cases, similarity should be given priority such that any increase in diversity
should not affect similarity. To address this problem, they presented a retrieval
approach that increases diversity while preserving similarity.

Kelly and Bridge [16] applied a greedy reranking strategy in a conversational
recommender system, diversifying results in each iteration cycle after feedback
from the user. Item relevance was generated from a collaborative filtering recom-
mender, and distance computed as the hamming distance between item rating
vectors. McGinty and Smyth [21] incorporated diversity in the conversational
recommender system (CRS) while balancing the tradeoff between diversity and
relevance. The authors described a system where at each cycle, the user selects
a critique which is used for the next iteration cycle. The selected item carried
over the next recommendation cycle and displayed along other recommended
items. If the user selects the carried over item again the system assumes that
no progress has been made and a more diversified list is recommended on the
next cycle. However, if the user selects a different item, then the system assumes
positive progress has been made and generates results with less diversity and
more relevance for the next cycle.

2.2 Critiquing

Recommender systems are most often considered as a type of one shot inter-
action, in which the system recommends a set of items and the user navigates
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through that set to find an item of interest. Typically, the system monitors dis-
crete user interactions over time and tailors recommendations to consolidated
user interests [5]. Conversational recommenders take a different approach, pro-
viding a richer interaction with the user through iterative feedback and refine-
ment of results. During such iterations the system can elicit current user’s pref-
erence, and context. This in return has a positive impact on enabling users to
better understand the search space, and reduce the effect of the cold start prob-
lem [14]. Conversational recommenders use two different strategies to help the
user in navigation, navigation by asking, and navigation by proposing each relies
on different form of feedback. In navigation by asking, the user is asked to pro-
vide feedback on a feature. Conversely, in navigation by proposing the system
proposes a set of items and asks the user to provide feedback on the recom-
mended items. For example, the user may critique a feature, or may provide a
preference, or may provide a rating for a set of the recommended items [27].

Smyth and McGinty noted four primary forms of feedback used in CRS,
mainly, Value Elicitation, Critiquing, Ratings-Based, and Preference-Based feed-
back [27]. In this paper, we focus on the critiquing form of feedback. In critiquing
feedback, the user provides a directional preference over a feature of recommen-
dation [19]. For example, in a conversational car recommender, the user might
ask for a smaller engine than the currently recommended car. Burke et al. [6]
pioneered conversational recommenders with the FindMe approach of system-
suggested critique. The critiquing in FindMe posed two challenges. First, there
was a pre-designed set of critiques within the user interaction session, so called
static critique. Second, each critique addressed constraints on one feature, so
called unit critique. To address the first challenge, Reilly et al. [24] showed that
standard critique can be extended to cover multiple features for compound cri-
tique. To address the second challenge, McCarthy et al. [18] developed a dynamic
critique approach, in which the system combines the feature depending on the
available items in the search space. McCarthy et al. [20] did address diversity in
critiquing, but the focus was on creating diversity in the repoitoire of critiques
rather than diversity in conversational outcomes. In this paper, we propose a
novel approach to generate dynamic unit critiques in which each recommended
item has an individually tailored set of possible critiques toward diversity in
outcomes.

2.3 Recipe Recommendation and Diversity

The importance of diversity in recipe recommenders has several advantages such
as: providing meals with varied sources of nutrition for a balanced meal diet [8],
increasing user awareness of existing recipes [23], and covering a wide variety
of options that could reduce the cold start problem [3]. Grace et al. [11] pro-
posed the Q-Chef system that encourages dietary diversity by generating and
recommending recipes based on models of surprise and novelty of the ingredi-
ents. While Q-Chef focused on helping the user find new, surprising recipes, the
set of recommended recipes itself is not necessarily diverse. In a series of studies,
Zeyen et al. [29,30] proposed a new approach to explore a collection of cooking
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recipes as cooking workflows. They have built a conversational retrieval method
CookingCAKE in which users are guided through the search space by answer-
ing posed questions. While diversity has not been introduced in the adaptation
process the authors indicated the importance to provide a more diverse and
customized workflows. In [8], Elsweiler et al. acknowledged the importance of
diversity in meal plans as a way to provide health, though their proposed meal
planner did not specifically engineer diversity into the recommendations.

3 DiversityBite: A Conversational Dynamic
Critique-Based Recommender

The DiversityBite approach adopts an initial zooming stage [6] based on cuisine
type followed by a series of conversational interactions in the form of critique-
based recommend-review-revise cycles [24]. This is enabled by two primary com-
ponents: retrieval and critique which complement each other to address the sim-
ilarity vs. diversity balance [26] in meal planning. The DiversityBite framework
is modular and can support a variety of representations for user profiles or cases,
as well as different metrics for similarity, retrieval, and critique. In this paper,
we focus on analysis of an initial approach across these aspects, described in the
following sections.

3.1 Recipe Case Representation and Similarity

Recipes can be represented using a variety of different features such as ingre-
dients, preparation steps, nutrition details, or user ratings. In this research, we
focus on a content-based case representation. Recipe cases are represented with
three distinct sets of features: ingredients, nutritional information, and flavor
characterization. More specifically, recipes are represented as a vector of 3807
potential ingredients (binary - presence or absence). Nutritional features (10)
include: saturated fat, trans fat, fat, carbohydrate, sugar, calories, fiber, choles-
terol, sodium, and protein (% recommended daily per serving). Flavour features
(6) include: saltiness, sourness, sweetness, bitterness, spiciness, and savoriness
(numerical 0–1 for intensity). Section 4.1 provides more details on the case data.

In this study, the similarity measure considers cuisine type, ingredient match,
and meal course. Initial user preference for cuisine type is a hard constraint, and
degree of similarity is based on ingredient match and meal course match. For a
current reference case (cr) and candidate case for retrieval (cc):

sim(cr, cc) =

{
0 if cc not selected cuisine
simingr(cr, cc) + simcrse(cr, cc) otherwise

The simingr(cr, cc) metric is straightforward cosine similarity across ingredients.
The simcrse metric is the proportion of user-specified course types matched by
the candidate case.
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Fig. 1. DiversityBite model, starts with user initial preference and ends with user
acceptance. The shaded area represents retrieval and diversity adaptation cycle through
critique.

3.2 Diversity-Focused Conversational Critique

The DiversityBite approach, illustrated in Fig. 1, consists of three main compo-
nents: Zooming Stage, Diversity-Goal Footprint, and Critique Generation.

Zooming Stage. The conversation starts by capturing the user’s initial interest.
In this study, this is represented by selecting one or more cuisine type(s) and
meal course(s) of interest. Cuisine type is a hard constraint on case retrieval,
constraining the search space throughout the conversation. Initial retrieval starts
by recommending the closest N cases to the centroid of the cuisine-constrained
case-base, where the centroid represents the average across ingredient features.

Diversity-Goal Footprint. Once the user’s initial preference has been entered,
DiversityBite establishes a diversity-goal footprint (DGF). This is a set of S
cases that (1) meet the user’s baseline preference and (2) are selected for high
diversity within the set. The DGF approximates the maximal potential diversity
among cases within the current case-base for the user’s query. So, when a user
selects a critique of a current case (essentially, “like this, but more diverse”), the
DGF provides a reference for selecting directions to move toward in the case-
base that are expected to increase diversity in recommendations. Our initial
DGF approach follows Vergas et al. [28], who note that maximum diversity
can be approximated through random case selection. To establish the DGF, we
randomly select S number of cases and measure average pairwise distances. This
is repeated R number of times, selecting the list with the highest diversity score.

Critique Generation. Given a list of recommended cases (either from initial
zooming or previous conversation step), a set of potential critiques is dynamically
generated for each case. These are selected as possible pathways for the user
toward greater case diversity in the next step of the conversation. Only critiques
toward greater diversity are presented as actionable options for the user.
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In this study, potential critique dimensions correspond to flavor and nutrition
features (e.g., more spicy or fewer calories). The DGF set is used as a reference
point for critique direction (more/less) across the critique dimensions. First, the
average value of each critique dimension across all cases in the search space is
taken as a baseline threshold. Second, for each critique dimension the percentage
of cases in the DGF that are above or below the baseline threshold are recorded.
The M highest-percentage critique dimensions above and below the threshold
are considered to be ‘strongly’ above and below the threshold for purposes of
critique activation. This represents a directional vector used to guide critique
toward greater diversity in results.

Third, the current case’s value on each critique dimension is checked in rela-
tion to the overall threshold and the DGF profile for that dimension. If the
case value is below the threshold and the DGF percentage for that dimension is
strongly above the threshold, then a ‘more’ critique for that dimension is acti-
vated. Conversely, if the value is above the threshold and the DGF percentage
for that dimension is strongly below the threshold, then a ‘less’ critique for that
dimension is activated.

Finally, DiversityBite displays a list of cases along with its critique set. The
user has the options to: (1) make selections from the list to add to the meal
plan, and (2) select a case + critique that will be used as feedback for the next
round of conversation. An applied critique serves as a filter that is applied to
similarity-based retrieval - filtering cases from the top N that do not satisfy the
critique with respect to the reference case.

4 Evaluation for DiversityBite

In this section we first describe the recipe dataset used in this study followed by
a description of the evaluation study, and then a discussion of the main findings.

4.1 Recipe Dataset

In this work, we chose a recipe dataset that has a potential of diversity. In
[25], Sajadmanesh et al. prepared a dataset with 120K recipes crawled from
yummly.com, a personalized recipe recommender platform. The dataset consists
of recipes from 204 countries. Each recipe has average review rating, ingredients,
preparation time, course type, nutritional values, and flavor features. The raw
data contains 11,113 ingredients. The course type feature has values related to
the recipe type such as afternoon tea, bread, breakfast etc. The nutritional values
features are saturated fat, trans fat, fat, carbohydrate, sugar, calories, fiber,
cholesterol, sodium, and protein of a recipe per serving. Recipes are identified
by six flavors, namely, saltiness, sourness, sweetness, bitterness, spiciness, and
savoriness. The flavour features are represented on a scale from 0 to 1.

Given the close coupling between ingredients, flavor, and nutritional values,
for this study we use the ingredients to represent the recipes directly to calculate
the diversity scores, while the flavor and nutritional features are used as critique

https://www.yummly.com/
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Fig. 2. The distribution of recipes over the region in the dataset used for the experiment

features between recipes. To reduce overall sparsity in ingredients we have used
FOODON [12] ontology to map each ingredient to a food concept. The map-
ping reduced the number of unique ingredients from 11,113 ingredients to 3,807
ingredients. To facilitate user interaction and capturing the user initial interest
we have grouped recipes by region into 9 regions: Caribbean, North America,
South America, Europe, Africa, Middle East, Mediterranean, Asia, and Oceanic.
Figure 2 shows the distribution of recipes over these regions.

4.2 Evaluation Study

To evaluate DiversityBite we implemented a web-based recommender application
for users to interact with. We conducted a user study to evaluate the effectiveness
of using dynamic critique to recommend more diverse recipes. Figure 3, shows
a screenshot from DiversityBite displaying a list of recipes recommended to the
user, as well as an example of the expanded view where the user can display
more information for a particular recipe. The user can explore more recipes by
selecting one of the displayed critiques, they can also dislike a recipe so it will not
appear in any upcoming iterations while exploring. For the recommendation we
chose N = 10, while the parameters for the proposed algorithm was set to: S =
10, R = 50, M = 8. The parameters were set through empirical lab experiment
to ensure reasonable computation time during user interaction with the website.

We have implemented two variations of DiversityBite: dynamic critique rec-
ommender (Dynamic-Rec), and static critique recommender (Static-Rec). A
similarity-based recommender (Sim-Rec) was used as a baseline. Dynamic-Rec
generates dynamic critique as discussed in Sect. 3. Static-Rec displays same set of
critique for each recipe, and finally Sim-Rec is a similarity-based recommender.
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Fig. 3. A screenshot of Dynamic-Rec variation of DiversityBite. It shows four recipes,
the enlarged image shows the recipes details i.e. flavour features, nutritional features,
and critiques. The critique part shows only critique that can lead to more diverse cases.

In Dynamic-Rec and Static-Rec the user explores more recipes by using the cri-
tique, while in Sim-Rec the user explores more recipes by navigating through
several pages of recommended recipes.

The study utilized a within-subject design where each participant experi-
enced recommendations from each variation. The study was conducted in a lab
setting, and underwent IRB approval. The participants interacted with the appli-
cation that collected information about their preferences and displayed recom-
mendations. The total duration of the study was on average 40 min.

Participants were asked to fill out a pre-survey about their demographic infor-
mation (age, gender, and education), and their online behaviour while looking for
recipes. After the initial survey, participants were asked to use the recommender
system to prepare a week long meal plan. The task prompt was: “For the next
three system variations, prepare a meal plan for a week”. During the task, the
application interface displays two progress bars. The first progress bar indicates
exploration progress and its maximum value achieved after 7 exploration, while
the second progress bar indicates the meal plan completion and its maximum
value achieved after adding 7 recipes to the meal plan. However, participants
can explore and add more recipes to the meal plan but the progress bars ensures
a minimum of 7 cycles and 7 meals are added to the plan before ending the
session and moving to the next variation. Since the study is a within-subject
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design, each participant had to do the same task three times. The view order
of the recommender variations were counter-balanced to eliminate participants’
fatigue and learning effects. To indicate their preference, participants were asked
to select one or more regions they would like to see recipes from, and indicate
their meal course preference. The same preference selection was used in all three
recommendation variations. After each recommendation variation, participants
were asked to fill out a post-survey based on their experience.

The questions for both pre and post survey questions are shown in Table 1.

Table 1. Pre-survey and post-survey questions along with available answers

Pre-survey questions

# Question Options

1 For a dish you know, how often do you
look for recipes?

Rarely/Sometimes/Often

2
When you prepare for a dish you know,

how do you look for recipes?
Online/Asking Relatives/Others

3 How often do you look for new recipes? Rarely/Sometimes/Often

4 How do you look for new recipes? Online/Asking Relatives/Others

5 list some websites do you use? Free text

6

What are the most important criteria

do you look for when deciding

on a recipes?

Free text

Post-survey questions

# Question Options

1 Did you find the recipe you were
looking for?

Yes/No

2 Did you find new recipes ? Yes/No

3
Among the recipes you liked, are you

willing to try one of them?
Yes/Some of them/None

4 Do you think recipes were similar to
each other in each displayed list?

Yes, recipes were similar
with small variations in
ingredients

No, recipes were different from
each other

5 What was your main decision when you
selected to see similar recipes?

Flavor

Nutritional facts

Preparation time & number of
ingredients
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4.3 Evaluation Results

Twenty-six participants were recruited from students, staff and faculty at a U.S.
public university. Gender distribution were 19 female, and 7 males. Most of par-
ticipants age range was between 18 and 29 years and the majority of participants
had at least a bachelor degree. All participants use online resources to look for
new recipes or to refresh their memory regarding a recipe they know. Addition-
ally, all participants indicated that they frequently look for new recipes. Regard-
ing the online resources they use, the most frequent resources are: Google search,
YouTube videos, and social network. Recipe ingredients, preparation time, and
balanced dish were the main criteria participants look for when deciding on
a recipe. This suggests that our participants had a good exposure to online
resources when looking for recipes. Among the chosen regions, Asia, Mediter-
ranean, Middle Eastern, and North America were the most frequently chosen
regions while the least chosen regions were Caribbean, and Caucasus. The most
frequently chosen meal course were main dish, appetizers, and lunch while the
least frequently chosen ones are beverages such as tea, and cocktail. On average
participant spent around 8 min using each variation, and viewed on average 8
different recipe lists in each variation; 80 different recipes in each variation.

Meal Plan Size and Number of Disliked Recipes. To understand the
usefulness of our approach we looked at the meal plan size and number of disliked
recipes. Our intuition is that, given the same number of recommended recipes,
the recommmender is more useful if the user is able to compile a larger meal
plan while disliking less recipes. The rationale is that the more recipes the user
disliked the more likely the recommender system was not able to satisfy the user’s
need. Figure 4, shows the average percentage of meal plan size to the number
of recommended recipes (left), and the average percentage of disliked recipes to
the total number of recommended recipes (right). The results in Fig. 4 indicates
that, participants added 20% of recommended recipes to their meal plan in
Sim-Rec while only around 13% being added in the case of Dynamic-Rec and
Static-Rec. For the number of disliked recipes, participants disliked 3% of recipes
recommended by Sim-Rec and 2% in the case of Dynamic-Rec and Static-Rec.
We note here that users completed roughly the same number of iterations (∼7.5)
and spent the same amount of time (∼7 min) in each recommender variation.
A one-way repeated measure ANOVA test shows no statistical significance for
the number of disliked recipes (F(2,50) = 0.68, p-value = 0.51), suggesting that
all variations seemed to be equally similar in meeting participants expectation.
However, for the meal plan size there’s a significant difference among the different
variations (F(2,50) = 3.79, p-value < 0.05). Tukey’s post hoc test shows that Sim-
Rec had significantly higher meal plan size than other variations. We attribute
this to fact that the Sim-Rec recommender is driven by user preference and is
more likely to generate recommendations that are compelling to the user and
added to the meal plan. The similarity in the number of disliked items suggest
that the ability to generate useful recommendations was not affected by the
recommender variation.
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Fig. 4. The average percentage of meal plan size to the number of recommended recipes
(left), and the average percentage of disliked recipes to the total number of recom-
mended recipes (right)

Fig. 5. Meal plan diversity score for each variation (left), the relation between meal
plan diversity and diversity of recommended recipes (right)

Diversity in Meal Plan vs Diversity in Recommended Recipes. To
address RQ 1.1 and R1.2 we first examined the relationship between the diver-
sity of the meal plan and the diversity of the recommended recipes. The Meal
plan diversity for each variation is summarized in Fig. 5 (left). These result indi-
cate that Dynamic-Rec has a higher diversity score compared to Static-Rec and
Sim-Rec. A one-way repeated measure ANOVA test shows there’s a significant
difference in the meal plan diversity (F(2,50) = 3.8, p < 0.05). Tukey’s post hoc
test shows that diversity in Dynamic-Rec is significantly higher than Sim-Rec.
Suggesting that, the dynamic critique approach was able to allow participants
create a more diverse list of meal plan. While the previous finding shows that
participants created a larger meal plan in Sim-Rec compared to Dynamic-Rec,
this findings shows that participants were able to create a more diverse meal
plan in Dynamic-Rec.
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Figure 5 (right) shows a scatter plot between the diversity of the meal plan
on the horizontal axis and the average diversity score of recommended recipes.
In all three variations, there’s a direct relation between the recommended recipes
and the meal plan. There’s a strong correlation between meal plan diversity and
diversity of the recommended recipes. The Pearson correlation for each variation
is: Sim-Rec r = 0.7, p < 0.05, Static-Rec r = 0.6, p < 0.05, Dynamic-Rec r =
0.4, p = 0.06. The results suggest that for Sim-Rec and Static-Rec the diversity
of recommended recipes effect the diversity of the meal plan diversity. While in
the Dynamic-Rec the exploration process led the participant to a more diverse
meal plan rather than the diversity in the recommended recipes.

Reflection Survey. To address RQ 1.3 we analyzed the results from the reflec-
tion survey. Each participant had to answer a set of questions after using each
recommender variation as shown in Table 1 in post-survey part. For Q1 and Q2,
all participants indicated that they found new recipes or found recipes they were
looking for. In all variations, Q1 received on average less positive responses com-
pared to Q2, Q1 received 19 positive responses compared to 25 for Q2. For Q3,
none of participants indicated in any variation that they will not try any of the
recommended recipes. A statistical test for Q1, Q2, and Q3 shows no significant
difference between all variations in recommending useful, novel, and valuable
recipes. While the aim of this study is not to focus on novelty, usefulness, and
valuable finding but the results of Q1, Q2, and Q3 provide an indication about
the quality of the recommendation.

To capture participants perception of diversity, we asked participants in Q4
if they thought recipes were similar to each other. According to [13], there
are two types of diversity categorical diversity and item-to-item diversity. Q4
addresses the item-to-item diversity which aligns with the diversity style we are
introducing. A chi-square test of independence showed that there was no sig-
nificant association between recommender type and user perception of diversity
χ2(2, N = 26) = 5.2, p = 0.07. This result aligns with the finding of [13] in
which participants were not able to perceive item-to-item diversity. Therefore,
we conclude that introducing diversity in the recommendation while exploring
will not make a noticeable difference to participants but can result in a diverse
selection.

The last question (Q5) in the post-survey asks participants about the main
criteria they have used to on selecting to see similar recipes. We have received
mixed answers of Flavor, Nutritional facts, preparation time, and number of
ingredients. This aligns with participants’ response at the post survey question
Q6. A chi-square test of independence showed that there was no significant
association between recommender type and the criteria applied to see similar
recipes χ2(4, N = 26) = 2.75, p = 0.60. We have confirmed these results by
looking at the user critique selection in Dynamic-Rec and Static-Rec by analysing
user logs. The logs show no clear distinction in the frequency of using flavor and
nutrition critique. This finding suggests that participants were trying to utilize
the available exploration option with no bias toward one type of critique.
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5 Discussion and Future Work

We have presented DiversityBite, a CBR framework that generates critique
dynamically to enable diet diversification through exploration. The generated
critique guides the user through the search space to explore more diverse cases.
We have implemented DiversityBite in the domain of recipes and conducted a
user study to evaluate the effect of DiversityBite on diversity.

Our user study compared between two variations of DiversityBite (Dynamic-
Rec, and Static-Rec) and a baseline (Sim-Rec). Participants were able to create a
larger meal plan size in Sim-Rec compared to the other two variations. However,
the diversity of meal plan were statistically significant higher in Dynamic-Rec
compared to the other two variations. Our interpretation to this is that par-
ticipants were looking for a more diverse meal plan in each variation and they
were able to satisfy their needs using Dynamic-Rec by compiling a shorter meal
plan. We have also noted there is no strong correlation between the diversity in
the meal plan and the displayed recipes in Dynamic-Rec which is not the case
in Static-Rec, and Sim-Rec. This indicates that in Dynamic-Rec the exploration
process led participants to a more diverse meal plan rather than the diversity
in the recommended recipes only. We have also explored the relation between
participants perception of item-to-item diversity and the exploration type. In all
three variations there was no correlation between both variables, this findings
aligns with the finding of [13] in which participants were not able to perceive
item-to-item diversity.

Despite that DiversityBite enables users to explore diverse recipes, an actual
system should allow users to drill into more similar recipes for example having
a critique of ‘show me recipes similar to this recipe’. However, the focus of this
study is to evaluate the diversity aspect of DiversityBite. Another limitation
is the evaluation of DGF, DGF evaluated using a random function for compu-
tational reasons. A more efficient evaluation can be applied by using another
optimization algorithm such as greedy algorithm.
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Abstract. Flight simulator training is fundamental for the acquisition
and maintenance of professional pilot skills. One of the key factors for
the effectiveness of this type of training is the design of the scripts of the
sessions, usually called “scenarios”. Currently, civil aviation authorities
are advocating a customization of the flight training scenarios based
on the specific needs of each pilot, which makes their creation a very
demanding task in time and resources. Automatic generation systems
for these scenarios have been proposed in the scientific literature, but
they have not been fully applied to commercial flight simulators yet.

In this paper, we review the most important advances in this field to
date and introduce a first proposal of a case-based reasoning system for
the generation of training scenarios for non-technical skills. Particularly,
our goal is to evaluate a set of four different similarity measures for
case retrieval of event sets found in these training scenarios, using the
judgement of real experts in the field as validation method.

Keywords: Case retrieval · Scenario generation · Expert judgement ·
Simulation-based training · Flight simulation · Aerospace industry

1 Introduction

The use of simulators for flight crew training is a fundamental part of the
aerospace sector today, because, among other advantages, it increases safety
and reduces costs considerably [1]. Since flight skills, both cognitive and motor,
that are not practiced on routine flights decay over time, for simulator training
to be effective the sessions must be recurrent, varied, relevant and adapted to
the pilots [2,4]. Scenario-Based Training (SBT) is a methodology that seeks to
optimize such instruction that has been widely used not only in the aviation
domain, but also in others where decision making is critical, including military
[27] and medical applications [29]. The foundation of SBT is to expose trainees to
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realistic simulations of a context based on real-world tasks, specifically designed
to elicit, practice and evaluate certain behaviors. These expected behaviors can
be associated to the desired level of technical and non-technical performance in
the real domain [11].

Flight simulator training sessions based on SBT mainly consist of the repre-
sentation of a scenario, which basically consists of an operational context and a
series of events distributed throughout the session. This scenario design approach
is called event-based approach to training (EBAT). These events are unexpected
occurrences like a system malfunction, a human error, a not predictable change in
weather conditions or any other circumstances that set problems to be solved by
the crew that demand the demonstration of relevant competencies. Some of these
competencies are non-technical, like the ability to assess the situations correctly,
make decisions, manage workload and communicate efficiently. The acquisition
and maintenance of these non-technical skills has demonstrated being critical
for flight safety [7].

In order to be efficient, EBAT application requires that the choice and distri-
bution of scenario events be connected to the training objectives and performance
evaluation criteria [8]. In recent years, the International Civil Aviation Organiza-
tion1 (ICAO) has fostered the implementation of evidence-based training (EBT)
approach for recurring assessment and training sessions in flight simulators. EBT
involves migration to an increasingly more dynamic system in the production of
training scenarios, that requires their constant adaptation to the specific needs
of the trainees taking into account their concrete competence profile and opera-
tional reality [9,10]. For all these reasons, the design of flight training scenarios
is currently a complex process that must be carried out by experts, which makes
it a considerable time and resource-consuming task.

Automated scenario generation is a possible solution to reduce costs. Many
attempts to develop computer systems for generating scenarios for virtual train-
ing environments in several domains have been documented in the past. Some
of the recent lines of research in this direction have included procedural meth-
ods [23], artificial neural networks [19–21] and reinforcement learning [26,31].
Although these lines of research are interesting, all of them have in common their
heavy dependency on statistical correlations, which may be particularly prob-
lematic in flight training environments. The instructor who guides the training
session in the simulator does not usually design that session, but he/she should
be able to understand the relationship between the set of events chosen in the
scenario and the skills to be trained. This connection between competences to
develop and events that help to train them is essential to assess the behavior
of the trainees and be able to give them appropriate feedback. In this sense,
technologies that preserve traceability between problem features (pilot training
needs) and their solutions (training scenarios) seem better approaches to cus-
tomized aeronautical training than other methods.

In this work we present the general architecture for a case-based reasoning
(CBR) system for scenario generation in the flight training domain and propose

1 https://www.icao.int/.

https://www.icao.int/
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a model to represent pilot training needs profiles based on the competence frame-
work recommended by the aviation authorities. That model would constitute the
base for storing, retrieving and adapting existing customized training scenario
cases in the system’s knowledge base. Once the model was defined, we tested four
well known similarity operators to be used in the CBR retrieval stage. Flight sim-
ulation instructors were provided with a set of scenario chunks and asked to rate
their usefulness one by one against randomly generated competency profiles. The
questioned subjects were not aware that each of the pieces of scenario presented
had been previously assessed (independently, by other experts) as suitable for
a specific set of competencies that differed from those randomly assigned. The
results showed that the values obtained by at least 3 of the considered similarity
operators are consistent with the utility evaluations given by the experts.

The rest of the paper is structured as follows. Section 2 reviews relevant pre-
vious work in the field of flight simulator training. Section 3 defines the problem
to be solved, analysing relationships between pilot competencies and scenario
events. Section 4 proposes a model to represent these training cases and describes
the architecture of the CBR system proposed as solution. Section 5 explains the
evaluation method to validate the proposed similarity functions for case retrieval.
Section 6 presents the data of the study conducted to test the proposed functions
and elaborates a discussion on the obtained results. Finally, some conclusions
based on the previous analysis are stated in Sect. 7, as well as the scope and
limitations of the positive correlation found and future lines of work based on
this result.

2 Related Work

Flight simulators based on high-fidelity and full-movement technologies devel-
oped between the late 40s and mid-60s allowed pilot training, previously con-
ducted on real aircraft, to be transferred to a more efficient and safe environ-
ment [24]. These devices allowed first to develop important technical skills, such
as executing emergency maneuvers that would be very dangerous or unfeasible
in a real airplane, and later to incorporate non-technical skills, fundamental for
solving real problems on board [14]. This integration of skills seeks to maximize
realism and therefore transfer the complexity of the real world to the simulator.
This methodology requires not only that the simulators have a high technical
fidelity, but that the proposed scenarios also contain a high cognitive fidelity.
This requirement forces the challenging task of constantly designing high-quality
and varied simulator training scenarios, which is a challenging task. Hence the
interest in the use of computer programs for their generation [6].

The first training scenario generator was designed in the 1980s for NASA
space shuttle flight controller simulator [16–18]. But it was not until the 1990s,
when the first attempt to solve the problem of the SBT in the field of commercial
aviation was carried out. A tool called Rapidly Reconfigurable Line Operations
Simulation (RRLOS) was launched in the framework of Advanced Qualification
Programs of the Federal Aviation Administration [3,12]. RRLOS generated sce-
narios semi-automatically from event sets of other scenarios previously designed
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by experts. These event sets were stored in a database and they were recombined
-randomly at first- in a new scenario. In order to provide realistic and useful sce-
narios, each event set was checked against a series of heuristics for each flight
phase of the session. After an iterative process, when the heuristics constraints
were satisfied in all the phases, the scenario was completed [23,25].

RRLOS intended to be a complete tool to reduce the cost of scenario devel-
opment time, generating not only the scenario script (the event set distribution
along the session) but all the related materials for the pilots and instructor
(meteorological reports, navigation charts, evaluation sheets, etc.). However, it
was a system difficult to update to the new training requirements that were aris-
ing, what caused many instructional organizations to gradually abandon their
use [6]. This fact, together with the new EBT framework under implementation,
highlights how important is for a flight training scenario generation tool being
easy to update and maintain. In other words, the complexity of the system must
be such that the time saved in the scenario development compensates for the
time spent in updating the tool.

In the last few years, there have been several attempts to apply artificial
intelligence techniques to the process of automated generation of training sce-
narios, especially for tactical domains. Procedural methods like L-systems were
used by Martin [23]. Zook et al. [32] approached the problem by modeling it as a
combinatorial optimization of events by means of genetic algorithms and applied
it to decision-making training in the domain of first aid in combat situations.
Luo et al. [19–21] used the same approach applied to a food distribution game,
using artificial neural networks and an intelligent agent to evaluate the gener-
ated scenarios. Recent attempts in this line of research are also incorporating
reinforcement learning [26].

Although previous approaches to combinatorial optimization may lead to use-
ful and believable training scenarios, the process by which different solutions are
reached is not easily explainable to users. In the context of aeronautical training,
it is important that the instructor knows why some events are included in the
scenario and not others, as well as what relationships these sets of events have
with the training objectives. This knowledge is essential to be able to provide a
comprehensible feedback to trainees at the end of the training session.

In contrast with previous efforts, our CBR approach would take advantage
of expert knowledge, retrieving tailored scenarios that have previously shown
their utility in real operation and training, keeping traceability between event
sets in training scenarios and training needs and allowing continuous updating
by adding new validated instances in the case base.

3 Problem Definition: Pilot Competencies and Event Sets

The goal of our research is to support the generation of flight simulator training
scenarios adapted to pilot specific training needs. Concretely, for each specific
set of competencies to be trained in a session, the system must be able to retrieve
event sets that are useful to train those competencies, helping to build a useful
and customized training scenario.
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The proposed architecture is represented in Fig. 1. First of all, the input of
the system is represented as a combination of the pilot’s profile (obtained after
an official assessment) and other training parameters such as the type of the
aircraft involved. This information is considered the problem of the new case
presented to the system, so the CBR cycle begins. In the case retrieval phase the
system search for a similar problem in the case base, obtaining several cases with
partial solutions (some event sets) to the global problem of generating a training
scenario. The actual combination of these pieces in a complete scenario script is
performed during the case reuse phase. After that, human trainers should use
the proposed solution and validate its utility. After those empirical tests, it is
possible to activate a partial retention case, breaking down the most relevant
pieces of knowledge about use of event sets in one or more cases that should be
added to the case base.

 Assessment

Profile
Pilot

Aircraft Type

Problem Solution?

New Case

Problem
Proposed
Solution

New Case

Similar
Problem

Partial
Solution

Retrieved Case

REUSE

RETRIEVAL

Knowledge Base

Case
Base

Partial
RETENTIONProblem

Tested Case

REVISION

Validated
Solution

Event
Set

Training Scenario

Fig. 1. General architecture of the proposed CBR Scenario Generator.

EBT framework established by ICAO defines eight basic competencies to
be assessed and trained in recurrent flight simulator sessions [9,10], shown in
Table 1. The problem of creating flight training scenarios can be modeled as
follows. Given a pilot pi with a competency profile pi = {c1, c2, ..., cn}, being
ci the measure of her a specific training scenario Si must be generated for that
pilot. Assuming the ICAO pilot competency framework, vector pi will have eight
dimensions (n = 8), according to the same table: c1 = APK, c2 = COM ,
c3 = FPA, c4 = FPM , c5 = LTW , c6 = PSD, c7 = SAW and c8 = WLM .
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Table 1. Summary of pilot competencies

Competencies Description

Application of
Procedures (APK)

Identifies and applies procedures in accordance with
published operating instructions and applicable
regulations using the appropriate knowledge

Communication
(COM)

Demonstrates effective oral, non-verbal and written
communications in normal and non-normal situations

Aircraft Flight
Management,
automation (FPA)

Controls the aircraft flight path through automation,
including appropriate use of flight management
system(s) and guidance

Aircraft Flight
Management, manual
control (FPM)

Controls the aircraft flight path through manual
flight, including appropriate use of flight
management system(s) and flight guidance systems

Leadership and
Teamwork (LTW)

Demonstrates effective leadership and team working

Problem Solving and
Decision Making (PSD)

Accurately identifies risks and resolves problems.
Uses the appropriate decision-making processes

Situational Awareness
(SAW)

Perceives and comprehends all of the relevant
information available and anticipates what could
happen that may affect the operation

Workload Management
(WLM)

Manages available resources efficiently to prioritize
and perform tasks in a timely manner under all
circumstances

For the purposes of this paper, we are going to reduce the complexity
of a flight scenario to an discrete array of m (variable) events sets: Si =
{e1, e2, ..., em}. Each event set ej is a description of a situation that threats
the safety of the flight and constitutes a problem to be solved by the trainees.
An example of an event set description is shown below:

Auto flight failure at decision altitude (DA) during a low visibility approach
requiring a go-around flown manually.

Indeed, these event sets could be decomposed in several elements, events
with possible occurrences in a real flight, as in the case of this description: an
aircraft equipment failure (the auto flight system), a specific aircraft location
(the approach DA, where the pilots must decide if continue to the runway or
abort landing), and a specific weather condition (low visibility under the limits of
the approach procedure). On account of the fact that the current flight transport
system is very complex, the diversity of events that can be part of an event set
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is very high. Some examples of event set elements are system failures, air traffic
control errors, unexpected weather changes, critical aircraft positions, traffic
conflicts, etc.

In our current model, an scenario is composed by one or more event sets
assigned to each of the flight phases of a simulator session. The key to design a
good training scenario is to choose a correct combination of event sets taking into
account the pilot’s competencies to train. Hence, the utility of a training scenario
and therefore the efficiency of a simulator training session depends directly on
the suitability of the selected event sets.

4 Case Retrieval of Scenario Event Sets

Generating a high quality event set is not a trivial task. Apart from the compe-
tency profile of the trainees, several variables must be taken into account, like
the difficulty that emerge from the event set, the time needed to complete the
associated tasks or the level of realism of the generated situation, among others.
Due to this complexity, adding event sets to a training scenario is still an expert
matter. Precisely, one of the key points of using a CBR approach in our system
is taking advantage of that expertise to assist scenario designers and reduce time
spent in building customized flight training scenarios. The main assumption of
this work is that if some event sets succeeded training a specific set of pilot
competencies, they must be useful for training new pilots with similar needs.

To reach our goals, in this first attempt we will rely on a case base of simple
event sets, not complete scenarios, each one validated by experts for a specific
pilot competence profile. Therefore, every case Ci,j contains a single competence
profile pi and a single event set ej , as it is represented in Eq. 1.

Ci,j = (pi, ej) (1)

The source for populating the case base in this fist attempt, when the system
has not been implemented yet, is the recurrent assessment and training matrix
for turbo-jet aeroplanes of the fourth generation provided by the International
Air Transport Association (IATA) in its EBT Implementation Guide [9]. This
matrix contains 150 validated event sets, each one designed to train a specific
combination of pilot competencies. For instance, the event set example shown
in Sect. 3 has been taken from that matrix, and could be called ex. According
to that matrix, that specific event set is useful to train APK, FPA, FPM and
SAW competencies. In our model, we use a vector for representing the ideal pilot
competence profile for that event set, with a value of 1 (or true) in the trainable
competencies, and 0 (or false) in the rest. So the case will be represented in our
case base as Cx = (px, ex) being px = [1, 0, 1, 1, 0, 0, 1, 0], and ex the description
of the event set.

According to previous studies, the stated flight competences are not indepen-
dent, and they can be grouped in terms of their interrelationships [22]. In this
work we are going to focus just on a subset of the flight competencies, specif-
ically the non-technical ones (COM, LTW, PSD, SAW and WLM). The main
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reason to narrow down the study is that while non-technical skills are extensible
to virtually all environments, technical skills are very dependent on the model
of aircraft as well as the procedures of the specific flight company. Thus, in this
study the vectors corresponding to the competence profiles have only five (n = 5)
dimensions.

For the retrieval phase, we propose a k-nearest neighbors algorithm [13] using
different similarity operators that compare stored scenario and trainee compe-
tency vectors. Given a pilot with a competence profile, her competence query
vector q is defined. The algorithm will compare q with all the p vectors in the
case base, measuring similarity (sim) according to the chosen operator.

Once a minimum similarity threshold (min) is established, the system will
retrieve the k cases that meet sim(q, p) ≥ min. The utility of the retrieved event
cases for generating the training scenario is therefore dependant on the quality of
the similarity function. In other words, the retrieved event sets will be useful to
the extent that the similarity function captures the relevant connection between
competence profiles. These similarity measures should therefore be exposed to
the judgement of real experts in order to determine if they are capable of match-
ing cases with similar characteristics in terms of perceived opportunities for the
development of flight competencies.

5 Evaluation of Similarity Measures

From the abundant number of similarity measures available, four functions
widely accepted for use in binary vectors were chosen [15]. The functions and
their corresponding definitions are shown below. The first one, Cosine similarity
or simcos (Eq. 2), has proved being very successful in other CBR applications
like item-based collaborative filtering recommendation [30].

simcos =
∑n

i=1 qi · pi
√∑n

i=1 q2i +
√∑n

i=1 p2i
(2)

simT =
∑n

i=1 qi · pi∑n
i=1 q2i +

∑n
i=1 p2i − ∑n

i=1 qi · pi
(3)

simS−D =
2 · ∑n

i=1 qi · pi∑n
i=1 q2i +

∑n
i=1 p2i

(4)

simSM =
M00 + M11

M00 + M01 + M10 + M11
(5)

One of the reasons for choosing this similarity measure is that its result only
depends on the elements present in both vectors, and not on the absent ones. The
hypothesis maintained in this paper is that the similarity of two flight training
scenarios in terms of their competence profile must be sought at the intersection
of competencies that both train, rather than in their similarity in what they do
not train.
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The validity of the cosine function in this context will be contrasted, via
the experts’ judgment, with the values given by three other similarity mea-
sures. The Tanimoto operator, simT (Eq. 3) is a version for binary vectors of the
widely known Jaccard similarity measure. The Sorensen-Dice similarity function,
simS−D (Eq. 4) is a variation of simcos by means of a multiplicative coefficient.
Any of these three functions are linear combinations of the other two, that is,
they differ in the relative importance of the common and distinct elements of the
two vectors [15]. These three operators were contrasted with a fourth measure,
the Simple Matching similarity, simSM (Eq. 5), in which the common absent
elements in both vectors also increase similarity. In this last similarity operator,
the number M of positive matching in each coordinate of the vectors is added,
both by presence and absence of the characteristic (competency), and divided by
the total number of coincidences and non-coincidences. This measure is different
from the other three, including negative matching as a value for similarity [5].
This measure is different from the other three in that it gives weight to the neg-
ative matching in the similarity value. This contrast allows us to verify whether
measures focus on positive matching are more appropriate in this context, as
predicted by our hypothesis.

The procedure followed to contrast similarity functions with the experts’
criteria is detailed in the next section.

5.1 Experimental Setup

We now set the procedure to evaluate the chosen similarity functions with the
help of expert judgement. The objective was to determine whether there is a
correlation between the value of the proposed similarity functions and a measure
of the perceived utility of the retrieved cases given by experts. Provided with
random pairs of competence profiles and event sets, the task of the experts was
to fill an online survey assessing the utility of each event set for training the
specific competencies required by each corresponding profile. Finally the central
tendency measures of the assessed utility for all the pairs was compared with
the corresponding similarity values given by the equations for that competency
profile and the original competency profile attributed in the knowledge base (the
EBT Implementation Guide Matrix, see Sect. 4) for that event set.

We recruited 11 active flight instructors approved by the European Union
Aviation Safety Agency for this study. The experts were provided with a ques-
tionnaire in which they had to specify their credentials as a flight instructor as
well as the number of years of experience in that activity. They were asked 10
questions, in each of which they were shown an event set (from the knowledge
base) and a competence profile, both chosen randomly, and were asked to eval-
uate the suitability of said event set for the profile provided. Each question was
then formed by a query profile and an event set (qi, ei).

The way to generate those pairs was as follows. The first array was cre-
ated with a 5-digit binary random number generator, discarding the zero-vector
([0, 0, 0, 0, 0]). The second item, the event set, was randomly selected from the
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case base with a random number generator, dismissing repetitions. In each ques-
tion, experts had to answer, according to his free judgment, on a 5-point Likert
scale to the question: “What level of adequacy do you think exists between the
profile of this pilot and the corresponding training scenario element?”. Possible
answers were “Very good” (VG), “Good” (G), “Acceptable” (A), “Poor” (P) and
“Very poor” (VP).

In the last part of the questionnaire, experts were asked to make any sug-
gestions regarding the experiment, as well as providing contact information to
inform them of the result of this research.

5.2 Analysis

After the surveys were answered and before collecting the data, the similarity
operators were applied to all the pairs (qi, pj), being pj the competency vector
associated to the event set ej in the knowledge base. The pairs of profiles were
then ordered from least to greatest similarity according to simcos, naming them
P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10. Each of these pairs were then
evaluated by the rest of similarity operators. In the end, each pair had 4 similarity
values and 11 utility values given by the human experts. The median of the expert
evaluations for each pair was calculated and then the Spearman and Kruskall
correlation tests were conducted to compare it with the computed similarities.

6 Results and Discussion

The data is summarized in Table 2. Each line in the table corresponds to the 10
pairs of competency profiles ordered from least to greatest, and named in the
first column from P1 to P10. The second column details the competency profiles
to be compared with the event sets supplied to the experts. The third column
shows the competence profiles associated with these events. This information was
not available to the experts when they were evaluating. In the fourth column
the values of the similarity function for each pair of profiles are shown. Finally,
in the fifth column the medians of the answers given by the judges for each pair
are calculated.

The distributions of utility values per pair are shown in form of box plots
in Fig. 2. As can be easily seen from both data and distributions, there is an
increasing trend in evaluations as the value of similarity increases.

When conducting the Kruskal-Wallis test to check differences in the eval-
uations between experts, the result obtained is statistically significant (H =
24.951; p−value < 0.01). From this result it follows that between two experts in
the sample there may be considerable differences in criteria in the evaluation of
an event set based on their suitability to train a specific competency profile. How-
ever, these differences tend to disappear when the number of experts increases,
as occurs when seen in the measure of central tendency of the total sample. This
is so even though the sample of experts has been taken among instructors of
the same approved training organization. This indicates that the diversity in the
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scenario evaluation criteria can be considerable even among experts with similar
training and professional environment. In view of this result, broad consensus
seems necessary for the evaluation of specific scenarios.

Table 2. Comparison of similarity operators and utility values assigned by the experts.
The pairs were initially set randomly and then named in order according to the value
of the cosine similarity operator.

Pair q p simcos simT simS−D simSM Median of utility values

P1 [1, 1, 0, 0, 0] [0, 0, 0, 1, 0] 0 0 0 0.4 Acceptable

P2 [0, 1, 1, 0, 1] [0, 0, 0, 1, 0] 0 0 0 0.2 Good

P3 [0, 0, 0, 1, 1] [1, 0, 1, 0, 0] 0 0 0 0.2 Acceptable

P4 [1, 1, 0, 1, 0] [0, 0, 1, 1, 1] 0.3333 0.2 0.3333 0.2 Good

P5 [0, 1, 1, 1, 0] [1, 0, 0, 1, 0] 0.4082 0.25 0.4 0.4 Good

P6 [0, 1, 1, 0, 0] [1, 0, 1, 0, 0] 0.5000 0.3333 0.5 0.6 Good

P7 [1, 1, 1, 0, 1] [0, 0, 1, 1, 1] 0.5774 0.4 0.5714 0.4 Good

P8 [0, 0, 0, 1, 0] [1, 0, 0, 1, 0] 0.7071 0.5 0.6667 0.8 Good

P9 [0, 1, 1, 1, 1] [0, 0, 0, 1, 1] 0.7071 0.5 0.6667 0.6 Very Good

P10 [1, 1, 1, 0, 0] [1, 1, 1, 1, 0] 0.8660 0.75 0.8571 0.8 Very Good

Nevertheless, the data obtained showed a strong correlation between the
expert evaluation median and three of the similarity functions. The Spearman’s
correlation test for Cosine, Tanimoto and Sorensen-Dice similarity measures with
the median of expert evaluation gave a value of r = 0.8106 (p < 0.01), but
could not find an acceptable value of correlation in the case of Simple Matching
similarity function (r = 0.5680; p < 0.08).

The Kendall’s τb test was also conducted for all the similarity functions, in
order to check bias due to the small size of the Likert scale ordinal variable. The
correlation was confirmed in the four measures, being stronger in Sorensen-Dice
(τ = 0.7664; p < 0.01), Cosine, and Tanimoto measures (τ = 0.7378; p < 0.01)
than in Simple Matching (τ = 0.5281; p < 0.01).

In Fig. 3 it can be seen that the cosine and Sorensen-Dice similarity functions
give very similar results, the values given by Tanimoto being approximately 20%
lower when pairs of scenario-profile competence vectors of medium to high utility
are evaluated, according to the experts (pairs 4 to 10 on the graph). This result
suggests that both Cosine and Sorensen-Dice better capture the concept of utility
as perceived by experts in this context, given that the median assessment in these
pairs were between “Good” and “Very good”.

Although there is a clear correlation between considered similarity operators
and the expert assessment, it is not perfect, especially when small utility values
are considered. If the utility values given by the experts in pairs 1 to 3 are com-
pared with the similarity values given by the three most reliable similarity oper-
ators (Cosine, Tanimoto and Sorensen-Dice) a considerable difference emerge.
For example, in cases P1, P2 and P3, whose similarity is 0 in all three cases,
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Fig. 2. Results of the judges evaluation for each pair of profile-scenario competency
vectors.

Fig. 3. Comparison between 4 well known similarity measures for binary data in the
evaluation of a set of 10 pairs profile-scenario competency vectors.

the medians of the expert evaluation are “Acceptable”, “Good”, and “Accept-
able”, respectively. The possible reason for this is that the zeros in the profile
vectors are not “nonexistent” training necessities. Although the competency pro-
files associated with the event sets in the case base were also assigned by experts,
in that matrix there are no gradations of the more realistic involvement of all the
competencies in each of them. All the information that they could register -and
is therefore available- is only the set of competencies that are most developed.
This does not mean that there is no presence of the others. As mentioned above,
strong relationships have been identified between competencies that prevent a
small set of them from being completely isolated in a flight situation [22].

Take P1 as an example. The pair in this case is shown in Eq. 6

P1 = (q1, p1) = ([1, 1, 0, 0, 0], [0, 0, 0, 1, 0])) (6)

The vector q1 defines the skills to be trained by the pilot and the vector
p1 the competency profile associated to the event set randomly recovered from
the case base. Although the pilot must train COM and LTW competencies,
the recovered event was evaluated as optimal only for developing Situational
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Awareness competence, but that does not mean that the event truly does not
need some Communication and Teamwork skills to be overcome successfully. In
fact, Situational Awareness is strongly linked to communication and cooperation
with the rest of the team in order to check whether pilot’s own interpretation of
the situation is correct [28]. Therefore, although the cosine similarity function
may give a value of 0 for a pair, as it is the case of P1, it is difficult to find flight
training situations with absolute no necessities in any non-technical competences.

Another problem of taking measures of central tendency in the evaluation is
the ambiguity that is appreciated at medium-high values of similarity. As can
be seen in Table 2, the median of the good evaluation ranges from 0 to 0.7071. A
possible solution to partially reduce this may be the refinement of the evaluation
system, for example by means of a 7-point Likert scale. Such a system would
increase the distance on the evaluation scale of some cases of medium-high utility
with respect to the optimal cases. For example, if an event set is evaluated as
position 4 on a 5-point scale, on the 7-point scale it could correspond to position 5
or 6. In this way, the evaluation system would be more sensitive to possible small
differences between experts in the evaluation of certain event sets, discriminating
them more clearly from those of higher quality.

7 Conclusions

In our research, we are dealing with the problem of generating training scenarios
for adapted flight simulator sessions using a CBR approach based on the cur-
rent standard pilot competence framework. In this paper, we have managed to
support its viability by evaluating four similarity functions for the retrieval of
event sets for these scenarios through expert judgment.

Specifically, the study was successful in providing a high correlation between
the Cosine, Tanimoto and Sorensen-Dice similarity functions and the human
expert assessment of flight training scenario event sets, with a better fitting in
the first two measures. Some limitations of this study include, on the one hand,
the number of expert evaluations, and on the other hand, the consideration
only of non-technical competencies. In addition, the nature of simulator train-
ing scenarios, which constitute natural decision-making environments, makes it
impossible to perfectly isolate competencies within each event set. The use of a
more refined assessment of the event sets, could minimize this problem.

Assuming the postulates of CBR, and that the scenarios constituted by event
sets adjusted to specific competence profiles are themselves adjusted to said
profile, the solution for generating training scenarios through a CBR tool using
the proposed similarity function seems to be a promising option.

As future lines of work we propose the extension of the study of the similarity
functions to the rest of the flight competences, the use of more refined evaluation
scales in order to better define utility, and the design and testing of an algorithm
that allows choosing between different scenarios with identical similarities based
on other factors such as aircraft systems that must be trained in the session,
historical record of the pilot and the diversity of the event sets of the generated
scenarios.
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Abstract. In recent years, there has been a rapidly expanding focus on
explaining the predictions made by black-box AI systems that handle
image and tabular data. However, considerably less attention has been
paid to explaining the predictions of opaque AI systems handling time
series data. In this paper, we advance a novel model-agnostic, case-based
technique – Native Guide – that generates counterfactual explanations
for time series classifiers. Given a query time series, Tq, for which a
black-box classification system predicts class, c, a counterfactual time
series explanation shows how Tq could change, such that the system
predicts an alternative class, c′. The proposed instance-based technique
adapts existing counterfactual instances in the case-base by highlighting
and modifying discriminative areas of the time series that underlie the
classification. Quantitative and qualitative results from two comparative
experiments indicate that Native Guide generates plausible, proximal,
sparse and diverse explanations that are better than those produced by
key benchmark counterfactual methods.

Keywords: Counterfactual explanation · XCBR · Time series

1 Introduction

In recent years, the predictive success of machine learning systems has been
undermined by their lack of interpretability and beset by growing public disquiet
about the fairness, accountability, and transparency of intelligent systems [1,19].
These challenges have led to major efforts in Explainable AI (XAI), where a raft
of techniques has been developed to shed light on opaque predictions. Most of this
research focuses on image and tabular data, with less attention being given to the
explanation of time series data [39]. Explaining time series predictions, arguably,
presents a whole new set of issues for XAI, due to the multi-dimensional nature
of the data, strong feature dependencies, and the need to define the contexts
where explanations could be used. In this paper, we advance an explainable
case-based reasoning (XCBR) solution to this XAI problem.
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Fig. 1. A counterfactual instance explains the classification of an ECG signal. Here,
a black-box’s classification of a normal heartbeat is explained with a counterfactual,
from Native Guide, showing an abnormal, heart-attack signal.

Recently, a variety of CBR methods for XAI has been proposed (see [51]
for a review). For image and tabular data, these XCBR techniques provide fac-
tual, example-based explanations (e.g., [23,53]), feature-importance explanations
(CBR-LIME; [45]), and counterfactual explanations [25]. In particular, counter-
factual explanations have become popular as a post-hoc explanation technique,
with over 100 distinct methods being proposed [24]. However, few of these meth-
ods consider the explanation of time series [3,8,18,22]. Hence, we advance Native
Guide, a novel model-agnostic explanation technique for time series classification
(TSC) systems that provides counterfactual explanations for their predictions.

XAI’s Promise for time Series Classification (TSC). TSC has demon-
strated significant promise in a variety of domains, including healthcare and food
spectroscopy. However, there is a requirement to explain these decisions to end
users. In healthcare, one practical application involves the classification of elec-
trocardiogram signals, where explainable insights can aid medical practitioners
in determining what portions of the time series are most informative for detecting
abnormalities [42] (e.g. myocardial infarction). Figure 1 shows one such example,
where a cardiologist might be shown the normal heartbeat of a patient along with
a counterfactual signal as an explanation, basically saying “for this patient, their
normal profile looks like this (purple-blue line), but if it changes to this coun-
terfactual profile (purple-pink line), then they are experiencing an infarction”
(see also Fig. 2). Similar examples can be found in spectroscopy analyses when
determining the provenance of different foods. For example, near-infrared spec-
trographs can distinguish between Arabica and Robusta coffee beans or honey
from different regions [5] (see also Fig. 7). By identifying portions of the time
series that are discriminative for classification, cheaper sensors can be designed
that only consider a small portion of the wider spectra. Similarly, in deep learn-
ing systems, explainable insights can uncover the portions of a time series that
may be most prone to adversarial attacks and show them to model developers
[11].
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Fig. 2. Class Activation Maps (CAM) generated for the ECG200 dataset highlighting
(in red) those areas of the time series which are most discriminative for a CNN Classi-
fier. Here, the initial portion of the time series is most discriminative for both classes.
(Color figure online)

Outline of Paper. In the remainder of this paper we first review the related
work on time series XAI (Sect. 2). We then discuss the untapped promise of
counterfactual explanations in TSC and the potential properties of good coun-
terfactual explanations in this context (see Sect. 3). Next we describe the pro-
posed technique (Sect. 4) and conduct comparative experiments to evaluate the
quality of the explanations produced before discussing our results and suggesting
promising avenues for future work (see Sects. 5 and 6).

2 Related Work

The XAI literature on explaining time series classification has progressed along
similar lines to XAI, in general; initial techniques focused on explanation through
visualization and feature-importance, rather than on instance-based methods,
such as factual or counterfactual explanations [26,33].

Saliency methods typically visualize an extracted explanation weight vec-
tor ω that captures discriminative areas of a time series for classification [39].
For example, Class Activation Maps (CAMs) [60] utilize these weight vectors to
highlight areas of a time series that are most informative for classification deci-
sions of deep neural networks (DNNs) [12,57] (see Fig. 2). Similarly, shapelets
can also find discriminative subsequences of a time series that can either be
directly extracted from a set of time series [58] or learned by minimizing an
objective function [16]. Shapelets can capture relationships between features and
are closely related to saliency maps as both techniques offer visual explanations
for classification tasks. Some have considered using shapelets for contrastive
explanation [18]. However, concerns have been raised about the interpretability
of shapelets produced by the deployed learning-shapelets algorithm [56].

Feature-importance analyses are another method used to find relevant por-
tions of a time series for use in explanation. Many state-of-the-art time series
classifiers (e.g. Mr-SEQL [30]) transform the input data and deploy a linear
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model for classification, where ω can be directly extracted from the regression
coefficients of the classifier. Indeed, model-agnostic techniques such as LIME [46]
and SHAP [35], can be used to compute ω if it is not readily provided by the
base classifier [39]. However, concerns about the stability of these methods have
been raised through examining how small perturbations can change the expla-
nation [2,39]. Schlegel et al. [50] tested the informativeness and robustness of
different feature-importance techniques in time series classification. LIME was
found to produce poor results across all evaluated datasets (a problem attributed
to the high dimensionality of the data); in contrast, saliency-based approaches
and SHAP were found to be more robust across different architectures.

More recently, a handful of instance-based techniques have been proposed to
explain time series classification. Prototypes are instances that are maximally
representative of a class and have demonstrated promise in producing global
insights for time series classification in the healthcare domain [14] but they do
not provide insights into the most discriminative areas of the time series. Case-
based approaches using twin systems [23,27,49] have also been extended to time
series data; Leonardi et al. [32] suggested mapping features from a DNN to a
CBR system for interpretable haemodialysis classification. However, these tech-
niques do not consider very popular counterfactual explanations. In an earlier
unpublished version of the present paper [8], we considered how instances from
the case-base could be retrieved for counterfactual explanation. However, we
did not retrieve and integrate discriminative feature information in counterfac-
tual generation, a significant novelty in the current method. Here, we advance
a new XCBR method for generating good explanatory counterfactuals for any
black-box time series classifier.

3 Good Counterfactuals for Time Series: Key Properties

There is a growing consensus that counterfactual explanations are causally infor-
mative [33,43], psychologically effective [6,9,25,36,37], and legally compliant
with respect to GDPR [55]. Arguably, counterfactuals provide more robust and
informative explanations than feature-importance methods, such as LIME or
SHAP [17]. Although it can be difficult to visualize counterfactual explana-
tions for tabular data [38], in the time series domain their visualization is more
straight-forward (see Fig. 1). However, counterfactual XAI solutions for time
series classification are rare (see e.g. [3,18,22] for closest works) and we know of
no existing XCBR solutions. Indeed, it is unclear if (i) existing counterfactual
techniques for tabular/image data can be applied to time series data, (ii) the
properties of good counterfactuals from tabular and image data transfer to the
time series domain. In Sect. 4, we present the details of our novel XCBR method,
but before that we first consider four potential properties of good counterfac-
tual explanations for time series: namely, proximity, sparsity, plausibility, and
diversity.

Proximity. Proximity refers to how close the to-be-explained query is to the
generated counterfactual instance. Typically, closeness is measured using prede-
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fined distance metrics; close counterfactuals measured using Manhattan distance
have been found to be informative [25,38]. Following recent recommendations
on evaluation [10,21,24], we use several different distance metrics and a rela-
tive counterfactual distance measure, to monitor the proximity of the generated
counterfactual with respect to existing in-sample counterfactual solutions [25].

Sparsity. As noted by [38], counterfactual instances that change fewer features
are preferred for informative explanations. Keane and Smyth [25] suggested that
a sparsity of ≤2 feature differences was preferable for tabular data, on psycho-
logical grounds (that have been confirmed in recent user studies). However, the
multi-dimensional nature of time series data means that a simple application of
this idea is untenable. For image data, it has been argued that counterfactuals
need to modify “semantically-meaningful” features instead of small, pixel-level
features that may not be humanly-perceptible [28,48]. For time series data, it has
been proposed that semantically-meaningful/discriminative information is con-
tained in contiguous subsequences of the series [30,58]. So, by analogy, we argue
that “good”, sparse counterfactuals need to modify a single discriminative por-
tion of the time series (i.e., a contiguous subsequence), rather than distributed,
discrete time-points in series (e.g., see Figs. 1 and 7).

Plausibility. Informative counterfactual explanations also need to be plausi-
ble [36]. Many suggest that proximity is a good proxy for plausibility [37],
though others argue that falling within the data distribution is a better proxy
[28,29,44,54]. Poyiadzi et al. [44] argue that plausible counterfactuals are repre-
sentative of the underlying data distribution. Figure 6 shows some examples of
implausible counterfactuals that are out-of-distribution, even though they have
high proximity. Hence, in our evaluations we explore several novelty-detection
algorithms to find better measures of plausibility/implausibility (see e.g. [20]).

Diversity. Mothal et al. [38] advanced the idea that a system should be able
to produce multiple diverse explanations for a single query case. One advantage
of this is that different users may find different explanations helpful [51]. So,
our proposed method generates multiple explanations for a single test instance.
However, we explicitly ensure that diversity should not come at the cost of either
(i) plausibility or (ii) the loss of semantically meaningful information.

In the next section, we describe the proposed Native Guide method, before
we consider a series of tests of it on several different datasets.

4 Native Guide: Counterfactual XAI for Time Series

Like other case-based XAI methods [25,27,31,41], at its core Native Guide relies
upon existing instances in the training data, so-called native guides or nearest
unlike neighbors (NUNs), that it retrieves and adapts to generate counterfactual
explanations (see Fig. 3). In this section, we outline the two main steps in the
algorithm, after first describing the notation adopted.

Notation. Staying consistent with the notation of [15,18], a time series T =
{< t1, t2, ..., tm >} is an ordered set of real values, where m is the length. A
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Fig. 3. A query time series Tq (X with solid arrow) and a nearest-unlike neighbor,
T ′
NUN (red circle with solid arrow) are used to guide the generation of counterfactual

T ′ (see yellow circle) in a binary classification task. Another in-sample counterfactual
(i.e., the next NUN; other red circle with dashed arrow) could also be used to generate
another counterfactual for diverse explanations. (Color figure online)

time series data set T = {T1, T2..., Tn} ∈ R
n×m is a collection of such time

series where each time series has a class label c forming a vector of class labels
Y ∈ Z. Consider a black-box classifier b(T ) that takes a time series T as an input
and predicts a probability output P (Y|T ) over the label output space. Given a
to-be-explained query time series Tq, with predicted label c from the black-box
classifier (formally b(Tq) = c), a counterfactual explanation aims to find how Tq

needs to change for the system to classify it alternatively, as c′. We refer to T ′

as a counterfactual explanation for Tq such that b(T ′) = c′. Although there are
many candidate solutions for T ′, the method prioritizes those that meet the four
key properties of proximity, sparsity, plausibility and diversity.

Step 1: Retrieve Native Guide. Given a query time series, Tq, find a coun-
terfactual instance, T ′

Native, that exists in the case-base. An example of one such
instance is the query’s nearest unlike neighbor (T ′

NUN ). In using these “native
counterfactual” cases the method guarantees the explanation’s plausibility as it
is, by definition, within the distribution. However, such instances are not guaran-
teed to be sufficiently proximate to the query or, indeed, sparse, so an adaption
step is necessary to generate the “explanatory counterfactual”, T ′ (see Fig. 3).

Step 2: Adapt Native Guide to generate Counterfactual. To produce a
more proximate explanatory counterfactual, T ′, the native guide, T ′

Native is per-
turbed towards the to-be-explained query-case, Tq (see Fig. 3). Typically, coun-
terfactual methods use some Lp distance metric to guide this perturbation (such
as Manhattan distance, [55]) and in time series where dynamic time warping
(DTW) distance is often more appropriate an analogous averaging technique
known as weighted dynamic barycentre averaging can be used [13]. In cases
where we are explaining a deep-learner’s predictions, the feature-weight vectors
of the classifier, ω, can be used to perturb “semantically-meaningful” features of
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the time series, rather than the “raw” time series data, to guarantee sparsity1.
Accordingly, using the feature-weights, the method seeks to modify contiguous,
subsequences, rather than the whole time series, as follows:

Tq = {< t1, t2, t3, t4, t5..., tn >} s.t. b(Tq) = c

T ′ = {< t1, t
′
2, t

′
3, t

′
4, t5..., tn >} s.t. b(T ′) = c′

Specifically, the feature-weight vector, ω, can be extracted using techniques such
as Class Activation Mapping in the case of DNNs (see e.g. Fig. 2). Given T ′

Native

and ω, the most influential contiguous subsequence (measured by the magnitude
of weights in ω) is identified and the corresponding region in Tq is replaced with
these values. This process can be initialized using a small subsequence and the
length of this subsequence can be iteratively incremented until b(T ′) = c′. In the
very worst case scenario, the size of the subsequence will be equal to the length
of Tq and the native counterfactual T ′

Native is returned. This adaptation step
improves the proximity and plausibility of the generated counterfactuals. Finally,
diversity can also be met, as other in-sample instances can be used as guides
(e.g., the next nearest unlike neighbor), to produce alternative counterfactual
explanations for the original query (see Fig. 3).
Table 1. Summary of TSC datasets used to evaluate counterfactual explanations

Dataset Train size Test size Length Type No. classes

CBF 30 900 128 Simulated 3

Chinatown 20 343 24 Traffic 2

Coffee 28 28 286 Spectro 2

ECG200 100 100 96 ECG 2

GunPoint 50 150 150 Motion 2

5 Testing Native Guide: Two Comparative Experiments

We test the Native Guide counterfactual method in two experiments evaluating
how it meets the properties of good explanatory counterfactuals relative to two
benchmark methods on 5 representative datasets. Our focus is on explaining
a black-box fully convolutional neural network classifier (FCN). Experiment 1
assesses the proximity and sparseness of the counterfactuals generated. Experi-
ment 2 examines the plausibility and diversity of the counterfactuals generated.
Here, we describe the setup for these experiments in terms of the datasets, com-
parative benchmark methods and black-box classification system.

(I) Datasets. Five diverse datasets (binary and multiclass) from the UCR
archive [7] (see Table 1) were used for the classification task. To encourage repro-
ducibility we use the default train-test splits provided by the archive and provide
all experimental code, fully detailing hyper-parameters2.
1 Note, SHAP can also be used to generate such vectors, if we are directly explaining

any given model, rather than twinning.
2 https://github.com/e-delaney/Instance-Based CFE TSC.

https://github.com/e-delaney/Instance-Based_CFE_TSC


Instance-Based Counterfactual Explanations for Time Series Classification 39

(II) Baseline Models. The performance of Native Guide was compared
to two baseline models: the w-counterfactual and NUN-CF methods. The w-
counterfactual method (w -CF) proposed by Wachter et al., [55] is a key bench-
mark method; it is the most cited counterfactual XAI method in the literature
and many other methods are variants of it3 [24]. It proposes that that counter-
factuals can be generated by minimizing a loss function;

L(x, x′, y′, λ) = λ(b(x′) − c′)2 + d(x, x′) (1)

argmin
x′

max
λ

L(x, x′, c′, λ) (2)

The first collection of terms in this loss function encourage the output of the
classifier b, to be close to the desired class c′. The λ parameter acts as a balanc-
ing term. The distance metric d(x, x′) measures the amount of change between
the to-be explained instance x and the counterfactual candidate x′. A Manhat-
tan distance weighted feature-wise with the inverse median absolute deviation
(MAD) is typically used here in order to ensure the generation of sparse solutions
that are robust to outliers [55]. One noted weakness of the λ parameter is that
it tends to infinity raising stability issues in counterfactual generation [47]. The
second method used, the NUN-CF method, can be viewed as a simplified variant
of Native Guide; it simply uses the NUN for the query case directly, without
any adaptation of deep or discriminative features (e.g., see [41]). This model
represents a good comparison point as it allows us to see the contributions of
the adaptation steps in Native Guide.

(III) Time Series Classifier. The black-box classifier used was a fully convo-
lutional neural network (FCN)4, by [57], a state of the art DNN architecture for
time series classification (Fig. 4). Notably, the Global Average Pooling (GAP)
layer reduces the number of parameters in a neural network while enabling the
use of the Class Activation Map (CAM) [60]; the latter highlights parts of the
input time series that contribute the most to a given classification, enabling the
extraction of ω. For each test/query instance, counterfactuals were generated
using (i) NUN-CF, where the NUN, using a Euclidean distance measure, was
selected [40], (ii) w-Counterfactual method (w -CF), as proposed by Wachter et
al. [55], initializing it with λ = 0.1 and termination condition P (c′|T ) ≥ 0.5,
minimizing the loss function in (see EQ.1) with adaptive Nelder-Mead opti-
mization (iii) Native Guide, using the closest in-sample counterfactual and the
feature-importance vector, ω, given by the Class Activation Map (CAM) [39].

3 We tried and failed in these tests, to use DiCE [38], a variant of w -CF with added
constraints for diversity. We found that DiCE did not generate diverse counterfac-
tuals within reasonable time-limits, suggesting that it is not well suited to high-
dimensional time series data (even for shallower ANNs).

4 Counterfactuals for other classifiers, such as MR-SEQL, were found but not reported.
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Fig. 4. A fully convolutional neural network (FCN) with three convolutional layers,
batch normalization, ReLu activations and global average pooling preceding the final
softmax layer enabling the use of a Class Activation Map (CAM) [57].

5.1 Experiment 1: Probing Proximity and Sparsity

This experiment compares the three counterfactual techniques on the five
datasets, evaluating the counterfactuals produced in terms of proximity and spar-
sity. Proximity was evaluated using the relative counterfactual distance (RCF =

d(Tq,T ′)
d(Tq,T ′

NUN ) ) enabling explicit comparisons to in-sample counterfactual instances
(as suggested by [24,25]). Basically, this measure determines whether the dis-
tance between the query and the generated counterfactual is closer than that
between the query and its “naturally-occurring” NUN. As in some other studies
[21], three distance metrics were used; (i) Manhattan Distance (�1 norm), (ii)
Euclidean Distance (�2 norm), and (iii) Chebyshev Distance (�∞ norm) (Fig. 5).

(a) L1 (b) L∞

Fig. 5. A comparison of the proximity of query-counterfactual pairs relative to query-
NUN pairs for five datasets. In (a) the generated counterfactual explanations are closer
to the query compared to the in-sample NUNs, in terms of �1 distance. Perhaps more
interesting is the fact that the w -counterfactuals are consistently less close than the
NUNs, in terms of �∞ norm. This effect may be due to erroneous spikes in the coun-
terfactual explanations generated by this method.
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Fig. 6. Comparing counterfactuals (red line) for an ECG200 classification (blue line)
generated by (a) NUN-CF and (b) w -CF. Here, NUN-CF fails to generate a proxi-
mate/sparse solution and w -CF’s erratic spikes raise concerns about whether the coun-
terfactual is out-of-distribution (see Fig. 1 for comparison). (Color figure online)

Fig. 7. A Native Guide counterfactual explanation for the coffee dataset. The method
perturbs a contiguous subsequence corresponding to a semantically-meaningful and dis-
criminative area of the spectrograph; this area provides information about the caffeine
content of the coffee beans. Arabica coffee beans have a lower caffeine and chlorogenic
acid content contributing to their finer taste and higher market value [5].

Results and Discussion. Both Native Guide and the w -CF counterfactual
explanations produce proximate explanations that are significantly closer to
the query instance compared to the existing NUNS, on both �1 and �2 norms
(Wilcoxon, p < 0.01). In the case of w -CF this is somewhat unsurprising as
it minimizes an �1-based distance-metric optimizing to generate close, sparse
counterfactuals. w -CF is known to sometimes produce implausible counterfac-
tual explanations [25,28]. It is interesting to find that many of the perturbed
features in its counterfactuals can be erratic spikes in the time series, reflecting
out-of-distribution occurrences (see Fig. 6b). Moreover, the explanations pro-
duced by w -CF often perturb several different features in non-contiguous loca-
tions of the time series, considering these values to be independent. Conversely,
Native Guide constrains its perturbations to selected, contiguous subsequences
producing counterfactual explanations that are more plausible and more mean-
ingful (see e.g. Figs. 1 and 7). These results indicate that good counterfactual
explanations in the time series domain are not necessarily instances that are
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closest to the query, reflecting previous findings by Downs et al. for tabular
data [10]. Notably, the �∞ norm seems to be able to diagnose counterfactual
instances with erratic feature values. Counterfactual explanations produced by
Native Guide are more proximate in terms of �∞ norm, further suggesting that
the w -counterfactuals may not be realistic. Admittedly, a more robust evaluation
of plausibility should be considered when evaluating these methods. We turn to
this issue in Expt. 2.

5.2 Experiment 2: Exploring Plausibility and Diversity

In this experiment, we aim to evaluate the plausibility of generated counter-
factual explanations in time series using novelty detection algorithms to detect
out-of-distribution (OOD) explanations. We implement the Local Outlier Fac-
tor Method [4,20], Isolation Forest (IF) [34] and OC-SVM [52] (on both raw
time and matrix profile [59] representations of the time series). We test if Native
Guide can generate diverse explanations, when it uses alternative counterfactual
instances as guides (see the other red instances shown in Fig. 3). The datasets,
classifier, and methods tested are identical to those in Experiment 1.

Results and Discussion. The counterfactuals produced by the Native Guide
are consistently more plausible than those generated by the benchmark, w-
counterfactual method (w -CF; see Table 2). Results also confirm the hypothesis
that proximity to the query is a poor heuristic for plausibility. One possible
reason why case-based solutions produce more plausible counterfactual explana-
tions is that they are grounded in the training data echoing previous findings
by Laugel et al. [29]. Unlike Native Guide, w -CF fails to perturb discrimina-
tive, meaningful subsequences [30,58]. It is also interesting to note that different
novelty detection algorithms produce very different results. For example the
local outlier factor method was considerably less sensitive than the kernel-based

Table 2. Comparing the Native Guide (NG-CF) and w -Counterfactual (w -CF) models
on plausibility using four OOD metrics (IF, LOF, OC-SVM, OC-SVM MP). Results
indicate the percentage of generated counterfactuals that are out-of-distribution (n.b.,
lower scores are better and the best are highlighted in bold).

Fully convolutional neural network

IF LOF OC-SVM OC-SVM MP

Dataset w-CF NG-CF w-CF NG-CF w-CF NG-CF w-CF NG-CF

CBF 0.15 0.09 0.09 0.00 0.69 0.50 0.61 0.34

Chinatown 0.48 0.37 0.11 0.00 0.44 0.07 0.87 0.22

Coffee 0.41 0.37 0.04 0.04 0.25 0.14 0.43 0.21

ECG200 0.28 0.26 0.22 0.02 0.50 0.16 0.44 0.13

Gunpoint 0.23 0.20 0.19 0.23 0.18 0.11 0.57 0.3
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(a) Counterfactual A (b) Counterfactual B

Fig. 8. Two diverse counterfactual explanations, generated by Native Guide, for the
same query case based on perturbing different in-sample counterfactual cases.

techniques in detecting OOD explanations (see Table 2). Unlike many blind per-
turbation techniques, Native Guide has the ability to generate diverse counter-
factual explanations (see Fig. 8). This is particularly useful because (i) different
users may prefer different explanations [51] and (ii) counterfactual explanations
can also help humans to identify meaningful regions for classification (of which
there may be many) [15]. For example, in the electrocardiogram domain we
hypothesize that retaining counterfactual cases could help cardiologists to iden-
tify abnormalities that are useful for future problem scenarios. While one can
evaluate diversity by monitoring feature wise distances between counterfactuals
[38], the generated explanations may fail to satisfy domain constraints. Indeed,
extensive user testing with experts will be an important avenue for future eval-
uation as novelty detection can be an imperfect proxy for plausibility.

6 Conclusion and Future Directions

In this paper a novel case-based technique, Native Guide, was proposed to pro-
vide proximate, sparse, plausible, and diverse counterfactual explanations for
time series classification tasks. The method uses existing instances in the case-
base to generate better counterfactual candidates. The technique is grounded
in relevant evidence from the psychological and social sciences [6,36] and can
integrate explanation weight-vectors extracted from techniques such as Class
Activation Mapping [60]. Comparative tests on diverse datasets from the UCR
archive using a fully convolutional neural network, demonstrate that the explana-
tory counterfactuals produced by Native Guide are significantly better than (i)
explanations that already existed in the case-base (from NUN-CF) and (ii) expla-
nations produced by constraint-based optimisation techniques (from w -CF). The
experiments also indicated that techniques designed for tabular data often failed
to produce meaningful explanations in the time series domain. Native Guide
generates new time series data which holds promise for data augmentation pur-
poses [13]. Given the ubiquitous nature of time series data and the frequent
requirement for explanation, it is clear that experiments with human users and
CBR solutions have much to offer in future work.
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Abstract. Similarity measures do not typically capture subjective ele-
ments of perception of similarity. Our research contributes an experi-
mental methodology for validating and learning similarity computation
algorithms against human perceptions of similarity in subjective domains
like Art and emotions. In this paper, we explain the first experiment to
check our hypotheses and methodology. We have obtained promising
results that explain the differences between users profiles and their per-
ception of similarity between artworks and how to combine local similar-
ity functions to be able to compute similarity measures reflecting users’
perception.

Keywords: Similarity measures · Arts · Similarity perception

1 Introduction

The well-known main assumption in case-based reasoning (CBR) relies on the
hypothesis that similar problems should have similar solutions. No need to say
that similarity is a core concept for different processes of the CBR cycle. Similar-
ity between the query and the cases is typically computed using the description
features represented using attribute-value pairs. These features can be simple,
textual or, in some applications, it may be necessary to use derived features
obtained by inference based on domain knowledge. In yet other applications,
cases are represented by complex structures (such as graphs or first-order terms)
and retrieval requires an assessment of their structural similarity. As might be
expected, the use of deep features or structural similarity is computationally
expensive; however, the advantage is that relevant cases are more likely to be
retrieved [14]. Our research group has previous works on semantic and structured
semantic similarity with ontological an taxonomic knowledge [9,20,21].

In this paper we highlight that similarity measures on the structures that
represent the cases (either attribute-value or graphs) does not typically capture
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subjective elements of perception of similarity. For example, when comparing two
menus that are similar for me, the similarity can be due to the fact that both
include my favourite meals and not because of the similarity between their ingre-
dients. There are other examples, like recommender systems for songs or movies,
where retrieval performance is affected when similarity between items depends
on subjective criteria for different users. There are many different application
domains where human subjectivity is an issue. However, perception of similarity
is difficult to measure, even if the item’s descriptions is structured and includes
semantic domain knowledge. In this paper we present a case study in the Art
domain where similarity perception is clearly a subjective criteria.

The context of the research conducted in this paper is the SPICE project1.
The overall aim of SPICE is to develop tools and methods to support Citizen
Curation [7], in which citizens actively engage in curatorial activities in order
to learn more about themselves and develop a better understanding of, and
empathy for, other communities.

One challenge is to be able to identify communities of citizens that allow the
reflection processes inside and between communities. This is a two way process.
On one side, community detection relies heavily on the definition and use of
semantic similarity measures over complex graph structures representing citi-
zens, opinions, artworks, contributions, reflections and emotions2. On the other
side, communities of users can be seen as useful resources to identify common
profiles from the similarity perception point of view.

Our research contributes an experimental method for validating similarity
computation algorithms against human perceptions of similarity. Such validation
enables researchers to ground their similarity methods in context of intended use
instead of relying on assumptions of fit. In addition to the methodology, this paper
presents the results of experimentation using real data with artworks from the
Prado Museum. We also present some analysis of potential causes of differences
between the compared cases in which this model matches human perceptions of
similarity. This method will allow to personalise a similarity measure to compare
items using subjective perception criteria adapted to the user who compares the
items. She is the user that retrieves the case in CBR systems, or the user that
get the recommendation in a recommender system or for any other applications
relying on similarity computation where similarity perception is an issue.

The paper runs as follows. Section 2 reviews some related work about sim-
ilarity. Section 3 describes out methodology for capturing and learning knowl-
edge reflecting human perceptions of similarity. Section 4 describes an experi-
ment associated to the step 1 of our methodology. In the experiment with Art
data from the Prado Museum we define local similarity measures for comparing
attributes of artworks and validate them regarding user perception of similarity.
Section 5 concludes the paper and review some lines of future work.

1 Social cohesion, Participation, and Inclusion through Cultural Engagement - Horizon
2020 programme https://spice-h2020.eu/.

2 SPICE relies in Linked Data technologies that include a huge mass of interlinked
knowledge.

https://spice-h2020.eu/
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2 Related Work About Similarity

CBR relies strongly in similarity computation. However, Similarity measures are
considered also essential tools to solve problems in a broad range of AI domains
and applications, specially when semantic matters. For example semantic web
and linked data [29], recommender systems [11], Natural Language Processing
[22], Information Retrieval, Knowledge Engineering [3], and many others. There
are several similarity measures that have been used in CBR systems, and some
comparison studies and frameworks exist [14,18]. The results obtained in these
studies show that the different similarity measures have a performance strongly
related to the type of attributes representing the case and to the importance of
each attribute. Thus, it is very different to deal with only continuous data, with
ordered discrete data or non-ordered discrete data. In [15] authors distinguish
between case similarity measures that are learnt from data and those that are
typically modelled by experts with the relevant domain knowledge together with
CBR experts, who know how to encode this domain knowledge into the similar-
ity measures by selecting what are the properties of the case descriptions have
more impact in the similarity of the solutions. For example, in a cars for sale
application the amount of miles driven has a greater importance than the color
of the car [6].

When dealing with conceptual background domain models, like graphs, net-
works or taxonomies, another possibility is the representational approach that
assigns similarity meaning to the path joining two individuals. In general, a
graph-based semantic similarity measure is a mathematical tool used to estimate
the strength of the semantic interaction between entities (concepts or instances)
based on the analysis of ontologies [12]. Similarity is computed for a given pair
of individuals. An individual is defined in terms of the concepts of which is an
instance and the properties asserted for it, which are represented as relations
connecting the individual to other individuals or primitive values (fillers). In
[9] we have described a similarity framework where we distinguished between
the structural similarity that will be computed based on the composition rela-
tions (part-of, has-part), the semantics similarity is due to all the concepts and
relations describing the meaning of the case, and the contextual similarity that
depends on the case context relations and the adaptation similarity that will use
the adaptation related knowledge (also used in previous approaches like [23]).
Note that the application of this measure is strongly dependent on the availabil-
ity of an ontology or conceptual model that represents the application domain.
The work in [17] classifies the distance and similarity functions on graph-based
representations in four types: (1) graph matching, (2) based on edit distances,
(3) based on the types of relationships and refinement operators and (4) based
on kernels.

Regarding perception of similarity related work exists in the field of human
psychology, where similarity is defined a relationship that holds between two
perceptual or conceptual objects and serves to classify objects, form concepts
and make generalizations [26]. As it is noted in [5], similarity between objects is
not solely dependent on the characteristics of those objects. It is also affected by
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the context, and by other present and immediately past stimuli, as well as long-
term experience with related objects. A well-known example is that humans have
the effect of experience on similarity among phonemes. Native English speakers
find spoken “L” and “R” quite distinct, whereas to native speakers of Japanese
they sound extremely similar.

Perception of similarity is also relevant when dealing with textual represen-
tations. For example, in [25] authors deal with the problem of navigation in
large text collections (blogs, forums, idea management systems, online deliber-
ation platforms...), and analyse how the algorithmic similarity measures being
used match up with human perceptions. They found out that in favourable con-
ditions human similarity judgements and algorithmic similarity measurement
often (75%) agree. However, that agreement is not so good (66%) when docu-
ments are selected more generally. Other previous studies have also examined
the match between typical algorithmic similarity based approaches (such LDA,
or cosine similarity) and human perceptions of text document similarity. For
example, in [27] authors compare the relevance (according to human judges) of
the results of the retrieval task on an abstracted document collection given an
information-need query. Also related is the work of [10] that refers to the individ-
ual word level. They compared the computed cosine similarity between feature
vectors that incorporated information from lexicons and large corpora, against
benchmark datasets containing pairs of English words that had been assigned
similarity ratings by humans, finding out discrepancies between the perceived
and the computed similarity.

In [4] authors describe a CBR system that helps the users make online privacy
decisions by identifying similar situations from the past. They calculate the
similarity between privacy policies and provide results from a focus group study
on the perceived similarity of data items and data handling purposes from a
privacy point of view. Particular attention has been also placed by the similarity
perceived by experts on the use of analogical reasoning [13,28].

3 Methodology for Learning Similarity Measures
Reflecting Human Perceptions

In this section, we propose a methodology for the construction of similarity
measures that reflect the perception of similarity. The challenge is that similarity
perception is different for different people, so it can not be computed with a
common similarity measure that is shared for all the users.

Our proposal aims at configuring different similarity measures for different
users and being able to generalise these measures for users of the same profile,
supposing that users who belong to the same profile have similar perception of
similarity. Our methodology relies on the following hypothesis:

1. Hypothesis 1. Different users have different perceptions of similarity and
consider differently the attributes describing the items. In this paper, we
study how local similarity measures on the individual attributes relate with
the perceived similarity in each one of these attributes.
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2. Hypothesis 2. Users can be grouped together using profiles and users from
the same profile have similar perceptions of similarity. That means that a
similarity measure can be learnt for each profile group.

3. Hypothesis 3. Profiles can be learnt from the common properties of users of
the same community. Our proposal consist on applying community detection
algorithms and use the communities as the profiles to construct a similarity
measure between items.

These hypothesis needs to be proven by cross-validation and it is very depen-
dent on how the profiles are defined.

3.1 Methodology for Learning Perception Aware Similarity
Measures

Our methodology aims to build improved measures to compare both similarity
between items and between users reflecting perception:

1. SIM ′
xItem: similarity measure between items that is a computable model

that is adjusted either to a particular user u (SIM ′
uItem) or to the users of

the same profile p (SIM ′
pItem).

2. SIM ′User: similarity measure between users that reflects shared percep-
tions regarding items. Similar users will be those that have similar emotions
regarding similar items.

The process starts with the following input requirements:

– Set of Items defined by the set of descriptive attributes (atrj)
– Set of Users defined by the set of descriptive attributes (UserAtrj)
– Basic similarity measure between users (SimUsers) defined as a linear com-

bination of the user descriptive attributes UserAtrj .
– Set of Profiles to classify users. To simplify we assume from now that each

user belong to exactly one profile (see Sect. 3.2).

We propose a methodology organised in three steps:

1. Step 1. Definition and validation of the Local Similarity measures for each
individual attribute atrj . We define local similarity measures associated to
each attribute describing the items, so SimAtrk(Iik, Ijk) is the local simi-
larity between the value of attribute k in items i and j. We assume that,
in this way, we can define weighted similarity measures SIM(Ii, Ij) =∑

k wk · SimAtrk(Iik, Ijk), where Ii and Ij are two items; wk is the weight or
importance assigned to attribute k. Local similarity measures can be complex
(graph based) or simple depending on the domain background knowledge. It
is necessary to study how each local measure affect the perception of global
similarity and study the correlation within the different user profiles.

2. Step 2. Construction of SIM ′
xItem as a computable model to calculate the

similarity between items. As this measure should reflect perception it will
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reflect either perception of one specific user u, or more interestingly percep-
tion of a group of users p sharing a common profile. Because this measure
is a weighted similarity measures SIM(Ii, Ij), we address the fundamental
problem of learning a weight model for features. i.e., it is necessary to give
a greater similarity contribution to an important attribute than to other less
important ones regarding perception of similarity:

– SIM ′
uItem with u ∈ Users. The weight for each attribute is adjusted

to reflect the perception of the specific user u using the results of the
experiment for user u.

– SIM ′
pItem The weight for each attribute is adjusted to reflect the per-

ception of the users of the profile p. p ∈ Profiles.
We plan to use an approach similar to the one described in [24] to learn
weights of the local similarity measures through a genetic algorithm.

3. Step 3. Construct a similarity measure Sim′User that combines SimUser
with the polarity of the compared users with items. The similarity measure
Sim′User should reflect that users with similar emotions on similar items are
similar (using the perceived measure SIM ′

pItems).

One advantage of this approach is that it is scalable. New users and new
items can be included in the system. New users benefit of personalised similarity
measures reflecting perceptions of similar users. A key aspect of this methodology
is the definition of user profiles that is described next.

3.2 Profile Definition

As our methodology depends on the existence of profiles we consider two options:

– Manual definition of simple profiles at-hand reflecting the knowledge about
the domain. This option is used in this paper using the knowledge in the Art
domain, where there is a dependency between the level of expertise with the
perception of similarity between artworks (see Sect. 4).

– Use community detection algorithms [1] and define the profile as the com-
mon features for the users in this community. Again, community detection
algorithms rely on similarity measures between users. As future work we will
explore an iterative process to improve Community Detection processes by
improving the similarity measure between users, as follows:
1. Initial Community detection using basic SimUser
2. Use each community in the communities set c ∈ C as profiles for steps

1,2 and 3 of the methodology to learn Sim′Users and Sim′
cItems.

3. Recalculate Communities using the improved similarity measure
Sim′Users and study community model adequacy.

4 Experiment on the Perception of Similarity
for Artworks

In this paper we propose to validate similarity computation algorithms against
human perceptions of similarity. This section describes an experiment associated
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to the Step 1 of our methodology (described in Sect. 3): defining local similarity
measures for comparing attributes of items and validating them regarding user
perception of similarity.

Our experiment uses an artwork dataset. The set of Items is a set of Artworks
from the Prado Museum described by four attributes atrj : the dominant colour,
the motion evoked to the users, the content depicted in the artwork and the
domain knowledge that the user has about the artwork (like the painter or its
art movement). Our first experimental goal is to validate the general acceptance
of these aspects by real users and the difference of criteria in the perception of
similarity between artworks in different user profiles.

The set of Items (artworks) employed in the experiments come from a dataset
created as an excerpt from Wikiart Emotion Dataset [16]. We use this dataset
because it includes data about the emotions that the artworks evoked to differ-
ent users, so they will be employed to compute the local similarity concerning
to evoked emotions. This dataset contains 30 artworks from Prado Museum and
1760 annotations of emotions from 171 different users. We limited the num-
ber of emotions to the set of emotions described by Plutchik Emotion The-
ory [19] (anger, anticipation, joy, trust, fear, surprise, sadness, and disgust), so
the dataset is reduced to 1040 annotations from 168 unique users. The original
artwork dataset has also been enriched with the Wikidata URLs of the paintings
and artists, as long as the entity identifier in Wikidata3 in order to compute the
local similarity measure concerning the content depicted in the artwork.

According to our methodology, we first define local similarity measures asso-
ciated to each attribute describing the items. This will be employed to exemplify
the validation of our similarity measures against the user perceptions. Addition-
ally, we will check if the combination of these local similarities can enhance the
precision of a similarity measure according to the perceived similarity by users.

The experiment is divided into two steps: the implementation of local simi-
larity measures and the gathering of user data about perceived similarity. These
steps will be described in following subsections.

4.1 Definition of Local Similarity Measures

The four attributes selected as the ones that support the similarity between
two artworks Ii and Ij has been converted into four local similarity measures
(SimAtrk(Iik, Ijk)):

1. Colour similarity: This measure uses the weighted euclidean distance
between the dominant colour of each painting in HSV space [8]. The domi-
nant colour is the center of the biggest cluster when applying k-means on the
artwork image pixels in RGB space.

SimAttrcol(Ii, Ij) = 1 − dist(hsvi, hsvj)

3 Wikidata: https://www.wikidata.org.

https://www.wikidata.org
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dist(hsvi, hsvj) =
√

(vi − vj)2 + si2 + sj2 + 2sisj(hi − hj)

where hsvi is the dominant colour or artwork Ii in HSV space.
2. Content similarity: This measure employs the knowledge about the ele-

ments depicted in an artwork stored in Wikidata. For each artwork, we created
a list of contents collecting the values for the “depict” property in Wikidata.
A first test over these lists highlighted that common contents were not fre-
quent so we enlarge the list of contents using the concept hierarchy defined
in Wikidata with the properties “instance of” and “subclass”. The final list
is computed traversing these hierarchy up to 2 levels. Finally, the similarity
measure is computed using Jaccard over the list of contents.

SimAttrcon(Ii, Ij) = Jaccard(Ci, Cj) =
Ci ∩ Cj

Ci ∪ Cj

where Ci is the list of contents in artwork ai.
3. Emotion similarity: This similarity uses the annotations in Wikiart Emo-

tion Dataset about the emotions evoked by the artworks in different users. It
is computed using the 3 most popular emotions and calculating the distance
between emotions according to the Plutchik wheel of emotions –that places
similar emotions close together and opposites 180◦ apart, like complementary
colours (see Fig. 1).

SimAttremo(Ii, Ij) = 1 − 1
3

3∑

k=1

dist(eik, ejk)

dist(ei, ej) = mindist(ei, ej)/4

where eik is the k-th most popular emotion in artwork ai.
4. Knowledge similarity: This similarity uses the information about the artist

and the art movement that the artworks belong to. These information is
extracted from the WikiArt Emotion Dataset.

SimAttrkno(Ii, Ij) =

⎧
⎪⎨

⎪⎩

α if author(ai) = author(aj)
β if artMov(ai) = artMov(aj)
0 otherwise

where author(ai) is the artist who painted ai; artMov(ai) is the art movement
that ai belongs to and α and β are constants in [0, 1] and α > β.
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Fig. 1. Emotion wheel conceptualised by Plutchik [19]

4.2 Data Gathering of Perceived Similarity

We have collected user perceptions of similarity between different artworks
through an online questionnaire4. This questionnaire also collects user infor-
mation in order to sketch some initial profiles that will be employed to study
how the perception relates with the different user profiles and learn similarity
measures that reflect the common perceptions (see Step 2 in Sect. 3).

Figure 2 (left) shows the first part of the questionnaire. In this part, we
collect the information used to create user profiles. A tentative profile for this
experiment is based on demographic aspects (age and gender), the user expertise
or knowledge about art (professional, amateur, a fan of an artist or not interested
in art), and the user habits on how often they visit museums (rarely, sporadic
or often). This information allowed us to manually define different user profiles
and evaluate the perception of similarity among them.

The next step of the questionnaire aims to gather the perception of similar-
ity between different artworks. In this step, the application shows two different
artworks (Fig. 2, right) and users should select a value of similarity between 1
–artworks are very different– and 5 –artworks are very similar. The artworks are
extracted from the Wikiart Emotion Dataset, described above. Although the
pair of artworks is randomly chosen, the experiment is designed in a way that
the randomisation process tries to balance the number of times that every pair
is presented in the questionnaire.

To understand the reasons behind similarity perception, we include another
question where users choose which criteria they applied to rate this similarity
between both artworks. The criteria categories are the colour, the content rep-
resented, the user knowledge about these artworks (like the author, style, etc.)
4 The questionnaire is available at https://tinyurl.com/2dn7wey4.

https://tinyurl.com/2dn7wey4
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Fig. 2. Web application for collecting perceived similarity. On the left, questions about
user profile information. On the right, the interface for assessing the perceived simi-
larity between two artworks for choosing the criteria applied to explain the similarity
perceived

and evoked emotions by these artworks. Users can select more than one criteria
category and they can add any other criteria not included in the questionnaire.

4.3 Experimental Results

Fig. 3. Distribution of users by age, gender, their knowledge about art and how often
they visit a museum.

During the experiment, 92 unique users filled the questionnaire for assessing the
perceived similarity. Figure 3 shows the users distribution based on each profile
variable described in Sect. 4.
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Fig. 4. Distribution of perceived similarity by users (left) and criteria frequency (right)
to explain the perceived similarity

These users generated a total of 1792 answers about the similarity perceived
for a pair of artworks. All artworks received at least 2 answers, and most of them
received 3 or 4 answers. The left graph included in Fig. 4 shows the distribution
of the perceived similarity values provided by users. It is worth noting that most
of the answers correspond to perceiving dissimilarity (value equal to 1) between
the artworks shown.

Next, we analysed the criteria employed by users to explain the similarity
value provided. The right graph in Fig. 4 shows the frequency of each criterion
employed by users. It is important to remember that users can choose several
criteria to explain the perceived similarity value. This graph shows that content
is the most criteria employed, followed by the colour and the emotion evoked
by artworks. In addition, we obtained 95 answers that considered other criteria
out of the initial categories provided (i.e. colour, content, knowledge and evoked
emotion). After a revision of these answers, we added 3 additional criteria to the
previous categories: composition (it refers to the artwork layout, perspective,
point of view, etc.), light (how the light is used in the artwork, contrast between
foreground and background) and preference (user likes or dislike both artworks).
Although these new criteria are not included in the rest of the analysis, they
represent an important conclusion of our experiment and our future work.

Table 1. Distribution of criteria used for explaining perceived similarity according to
user knowledge

Colour Content Knowledge Emotion Other

Professional 28,03% 31,68% 18,83% 20,00% 1,46%

Amateur 24,54% 36,53% 14,72% 22,20% 2,01%

Fan artist 9,09% 59,09% 22,08% 6,49% 3,25%

No interest 16,37% 50,44% 15,49% 16,81% 0,88%

No answer 33,49% 33,97% 4,31% 27,27% 0,96%

When we correlate these criteria with the different user profiles, we can see
some dependencies. In Table 1, we see that content criterion is more employed by
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users categorised in a lower knowledge level profile (fan of an artist/no interest)
than amateur and professional profiles. Professional and amateur profiles use
more Colour and Emotion criteria, as long as the composition and light criteria
(other criteria) discovered during the questionnaire data analysis. This fact sup-
ports our Hypothesis 2 that different profiles are affected by different aspects in
the perception of similarity between artworks.

Table 2. Most frequent criteria combinations to explain the perceived similarity

Criteria combination Frequency

content 439

colour-content-knowledge-emotion 177

colour-content 172

colour 162

colour-content-emotion 136

content-emotion 115

knowledge 81

emotion 81

Although a single criterion is, in general, widely used to explain the perceived
similarity, users also have employed combinations of these criteria. Table 2 sum-
marises the top selected combinations of criteria. The combinations of colour,
content and emotion are the most popular criteria to explain the perceived sim-
ilarity.

Table 3. Results of Mean Absolute Error (MAE) and Mean Squared Error (MSE)
between similarity measures and user similarity perception

Colour Content Knowledge Emotion

N 366 401 314 336

MAE 0.271 0.246 0.236 0.337

MSE 0.105 0.087 0.091 0.153

The next step in our analysis is to determine if the two first steps of our
methodology can be applied to this problem. In Step-1, we define and validate
local similarity measure for each attribute. To do that, we calculated the Mean
Absolute Error (MAE) and the Main Squared Error (MSE) between the local
similarity measures explained in Sect. 3 and each corresponding values of humans
perceptions of similarity. Table 3 shows the results, and we can observe that
the emotion similarity measure is the least accurate comparing with the users’



60 B. Dı́az-Agudo et al.

Table 4. Results of Mean Absolute Error (MAE) and Mean Squared Error (MSE)
between combination of local similarity measures and user similarity perceptions

Col-Con-K-E Col-Con Col-Con-E Con-E

N 247 362 305 333

MAE 0.140 0.148 0.166 0.155

MSE 0.031 0.037 0.040 0.037

perceptions. On the other hand, the knowledge similarity function has the most
accurate results regarding similarity perceptions.

We have additionally calculated the corresponding error values combining
the top selected criteria. To do that, we compare the perception of users that
combines these criteria with a simple weighted similarity function that uses the
average of the local similarity measure based on these criteria. Table 4 presents
the result of this analysis. Although, in the current state of this work, we have
applied the same weight for each local similarity value, results show that the
combination of similarity functions increases the accuracy. These are preliminary
promising results and, in the next step (Step-2) of our methodology, we will
apply learning algorithms to better adjust these weights to users’ perceptions.
In summary, in the experiment conducted in this paper we have validated Step
1 (correlation between local similarity measures and perception of similarity),
we have observed that our Hypotheses 1 and 2 work on this experiment, and
we have obtained promising informal results for Step 2 (learning and validating
similarity measure SIM ′Item reflecting perception).

5 Conclusions and Future Work

Defining similarity measures is a requirement for some AI methods including
CBR. Typically most of the approaches capture and define similarity measures
analytically. However, research about automatically learning similarity measures
has also been an active area of research in CBR. In this paper we have considered
the problem of similarity measures definition for tasks where subjectivity in the
perception of similarity is an issue. We have proposed a methodology for the
definition of similarity measures that reflects the perception of similarity and
applied it to the domain of Art.

In the experiment described in this paper we have captured datasets from the
similarity perception between artworks. This dataset contains the knowledge to
construct or learn such a similarity measure. We have proposed a methodology,
acquired the dataset, and validated Hypothesis 1 –different users have different
perceptions of similarity and consider differently the attributes describing the
items; and Hypothesis 2 –users can be grouped together using profiles and users
from the same profile have similar perceptions of similarity. This means that
a similarity measure can be learnt for each profile group. This will be done as
future work in the Step 2 of the methodology that aims at the construction
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of a computable model to calculate the similarity between items reflecting the
perception data acquired during step 1. We will automate the construction of
similarity measures using machine learning from the acquired data. We address
the fundamental problem of weight model for features. i.e., it is necessary to
give a greater similarity contribution to an important attribute than to other
less important ones regarding perception of similarity. We will explore differ-
ent approaches [15] to automate the construction of similarity measures using
machine learning algorithms. We also need to deal with the heterogeneity prob-
lem that arises when different attributes are used to describe different cases. We
plan to use an approach similar to the one described in [24] to learn weights of
the local similarity measures through an evolutionary algorithm (EA) and apply
different solutions in the metric learning research area [2].

Also as future work in Step 3 we will construct a similarity measure to com-
pare users (Sim′User) by combining a simple measure SimUser with the polar-
ity and emotions of the compared users regarding the domain items. The similar-
ity measure Sim′User should reflect that users with similar emotions on similar
items are similar regarding the measure SIM ′

pItems. This methodology will be
validated and applied in the SPICE project. Our proposal is applying community
detection algorithms and use the communities as the profiles to learn improved
similarity measures.

Acknowledgments. The research leading to this publication has received funding
from the European Union’s Horizon 2020 research and innovation programme under
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Abstract. Forecasting stock returns is a challenging problem due to the
highly stochastic nature of the market and the vast array of factors and
events that can influence trading volume and prices. Nevertheless it has
proven to be an attractive target for machine learning research because
of the potential for even modest levels of prediction accuracy to deliver
significant benefits. In this paper, we describe a case-based reasoning
approach to predicting stock market returns using only historical pricing
data. We argue that one of the impediments for case-based stock predic-
tion has been the lack of a suitable similarity metric when it comes to
identifying similar pricing histories as the basis for a future prediction—
traditional Euclidean and correlation based approaches are not effective
for a variety of reasons—and in this regard, a key contribution of this
work is the development of a novel similarity metric for comparing his-
torical pricing data. We demonstrate the benefits of this metric and the
case-based approach in a real-world application in comparison to a vari-
ety of conventional benchmarks.

Keywords: Case-based reasoning · Financial time series · Stock
market · Similarity metric

1 Introduction

The stock market represents a challenging target when it comes to analysis and
prediction [6,16,30]. The stochastic nature of stock prices reflects a complex
network of interactions involving a web of hidden factors and unpredictable
events. At the same time, the potential to identify even fleeting patterns in
market data promises tremendous rewards and in a world where nanoseconds
count even a modest degree of prediction accuracy can provide traders with a
valuable edge over the competition.

It is not surprising therefore that many researchers have attempted to use a
variety of data analysis and machine learning techniques [19] to extract mean-
ingful patterns from market data whether attempting to determine the fair value
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of a stock (so-called fundamental analysis [18]) or predicting its future trajec-
tory (so-called technical analysis [25]). For example, traditionally, stock returns
prediction has been tackled using statistical techniques such as autoregressive
integrated moving average models [5], but with recent advances in machine learn-
ing and deep learning, research applying advanced computational techniques to
the problem of stock market prediction has become increasingly popular [32].

Indeed, the potential role for case-based reasoning (CBR) in financial
domains was discussed early on in the CBR literature [36] and there have been
numerous attempts to apply case-based ideas to a variety of financial decision
making and prediction tasks over the years [10,13,24,27,31,37] with varying
degrees of success. However, one of the problems facing similarity-based meth-
ods concerns the challenge of developing a suitable similarity metric with which
to assess the similarity of price-based time series. For example, conventional
Euclidean distance and correlation based metrics have typically fallen short,
leading some researchers to explore alternatives; see for example, Chun and Ko’s
[13] shape-based distance metric.

In this paper we apply case-based reasoning techniques to stock selection
based on the prediction of future returns, using only historical pricing data; in
Sect. 3 we describe the basic case representation. The main contribution is the
development of a novel hybrid similarity metric combining information about
price deviations and trends into a single metric; see Sect. 4. Then, in Sect. 5 we
present the results of a comprehensive offline evaluation of this approach by
evaluating the returns produced by trading strategies using this approach, and
in comparison to a variety of alternative benchmarks, to demonstrate significant
benefits due to our approach across a range of suitable evaluation metrics.

2 Related Work

As a reuse-based problem solving method, guided by similarity [1], case-based
reasoning is an appealing paradigm when it comes to a variety of decision prob-
lems in financial domains. Intuitively, the idea of basing current decisions on
the outcomes of similar decisions that have been made in the past—the core of
CBR—seems like an excellent fit in many financial settings. Even though histor-
ical patterns will not always prove to be a reliable guide to the future, markets
are often driven by cyclical patterns and seasonal trends, which can be exploited
to good effect. Indeed case-based reasoning has had a long history when it comes
to tackling a range of important problems in financial domains, with applica-
tions spanning several distinct topics such as bond rating prediction [34,35],
bankruptcy [2,3,21], financial risk assessment [22], real estate valuation [39] and
stock market prediction [8,10–15,17,20].

While recent work on the application of case-based reasoning to stock market
prediction have been somewhat scarce [13], previous efforts have explored a vari-
ety of approaches in terms of their case representations and similarity metrics.
Often cases are represented as (multivariate) time series [12,14,15] but some-
times more conventional feature-based approaches are used; [20] selects twelve
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fundamental and technical indicators as predictor variables. In this paper, cases
are represented by a simplified univariate time series using historical monthly
returns.

When it comes to case similarity, the literature discusses a variety of options
including conventional approaches such as Euclidean, Manhattan and Gaussian
distance metrics [12,14,15]; [20] proposes the use of genetic algorithms to deter-
mine the feature weights in a Euclidean distance metric. One of the problems
with such metrics is that they fail to adequately account for the temporal nature
of time-series data such as pricing data [13]. This has motivated recent work by
Chun and Ko [13]to develop a more geometrically inspired approach to time-
series similarity. Their shape-based similarity metric focuses on the patterns of
rising and falling price-data, between two time series, rather than on the dif-
ferences between prices at a given point in time. The work presented in this
paper is similarly motivated and we too propose a new similarity metric as the
centrepiece of our CBR approach to stock selection and returns prediction.

3 From Prices to Cases

The dataset used in this work spans the fifteen-year period from 01/01/2005 to
01/01/2021. Assets were selected from a range of international markets with the
inclusion criterion being: (i) the availability pricing data spanning the period in
question and (ii) their inclusion in the Nasdaq 100, EURO STOXX 50 or FTSE
100 indices. The resulting dataset was downloaded from Yahoo! Finance and
contained 160 unique stock/asset tickers from six stock exchanges.

The resulting raw data consisted of daily adjusted closing prices for each
stock. When considering the problem of stock price prediction, a common app-
roach in the literature has been next-day price prediction [29,38], with some
considering even shorter time spans [4,33]. However, stock market returns are
notoriously hard to predict, especially for shorter time spans due to the increased
influence of market noise on price movements [23]. Thus we first convert the raw
daily data into monthly price data with each p indicating the price of a stock
at the end of a given month. Then we transform the monthly pricing data into
monthly returns data in order to extract a more reliable signal (see Eq. 2).

prices(ai) = {pai
1 , ..., pai

n } (1)

rai
t =

pai
t − pai

t−1

pai
t−1

(2)

Accordingly, each case, for asset ai at time t (c(ai, t)) consists of a sequence of
monthly returns for the previous twelve months (the problem description part
of the case) and a corresponding return for the single next month (the solution
part of the case); see Eq. 3.

c(ai, t) = {rai
t−12, r

ai
t−11, ..., r

ai
t−1 | rai

t } (3)
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Obviously, this case structure is a very simple one, purposely so. It has been
chosen for two main reasons. First, it is a good fit for the type of similarity
metric that we develop in the following section. Second, by simplifying our case
structure in this way we can avoid the many additional factors that may com-
plicate performance analysis and obscure the reason for a particular evaluation
outcome, not to mention limiting the explainability of this approach. Indeed, we
suggest that if we can generate good predictions using this simple case struc-
ture then it suggests an effective performance baseline and a platform for future
enhancements.

This case structure was used to build a case base as follows. First, for reasons
of computational efficiency, we limited our data to the period between January
2005 and December 2020 (180 months in total). Then, for each of the 160 com-
panies/stocks in our dataset, we constructed cases during this period, with each
case containing the past returns for the preceding 12 months and the return for
the current (13th) month leading to 28,880 (180 × 160) unique cases. Later we
will discuss how this case base was used during our evaluation.

4 Similarity in Financial Time Series

Similarity is obviously central to case-based reasoning but conventional similar-
ity metrics such as Euclidean distance or cosine similarity tend not to fare well
when it comes to assessing time-series similarity because they ignore the tem-
poral relationship that exists between the different feature values, or monthly
returns in this case. In this section, we propose a new similarity metric that
emphasises two aspects of similarity that are important in a financial setting: (i)
the correlation between time-series returns; and (ii) similar cumulative returns
at the end of an investment period. In other words, given a target query case
q, we wish to identify a set of similar cases whose monthly returns behave in a
manner that is similar to the monthly returns of q and whose cumulative return
is similar to q’s cumulative return.

As an aside, at this stage it is worth highlighting a somewhat unusual
and counter-intuitive feature of similarity assessment in a stock-trading setting.
Namely, it is not only important to be able to identify a set of similar stocks,
but also a set of dissimilar stocks that are expected to behave in opposition to
the similar stocks. This is because, in a trading context, traders will often need
to offset or hedge their positions in selected stocks by also trading in maximally
dissimilar stocks; the idea being that under-performance in a selected (similar)
stock can be offset by gains in a dissimilar stock, thereby allowing a trader to
limit their overall risk. While we do not consider this aspect in more detail in
this paper it is nevertheless an important consideration when selecting a suitable
similarity metric and we will comment on this further below.

4.1 The Problem with Correlation

It is a commonly held belief, by investors, and even some academics, that a
positive correlation between two stock-price time-series indicates that the stocks
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move in the same direction at the same time, while a large negative correlation
indicates that the asset tends to move in opposite directions [26]. In fact, a
correlation-based metric, such as Pearson’s, actually tends to measure the degree
to which the returns deviate above or below their mean at the same time. This
distinction is significant in the financial domain and will be highlighted below
through an example.

Fig. 1. Correlation example

Consider the price evolution of two hypothetical assets A and B in Fig. 1(a),
but note that correlation is calculated based on returns (differences in prices)
rather than prices, in order to discount the underlying trends that would oth-
erwise overly influence the correlation. In other words, the correlation between
A and B is based on the sequence and magnitude of their price changes rather
than the actual prices themselves. The point is that an investment in asset A
performed well over the period, with a consistent positive return, while an invest-
ment in asset B lost money. Despite this, a traditional correlation metric such
as Pearson’s correlation coefficient (see Eq. 4) determines that they are perfectly
positively correlated; Pearson’s returns a near perfect correlation value of 0.99
in this case. This is illustrated in Fig. 1(b) which shows each pair of monthly
returns from Fig. 1(a) as a set of points with a clear linear correlation.

ρ(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(4)

4.2 An Adjusted Correlation Metric

This correlation phenomenon is particularly problematic in a financial setting
and it is a known problem with conventional correlation, such as Pearson’s cor-
relation coefficient [26] but few practical solutions have been proposed. One
actionable diagnosis of the problem is that it occurs because individual monthly
returns are assessed relative to mean returns (x̄ and ȳ in Eq. 4) [28]. Asset A has
an overall positive mean return, compared with an overall negative mean return
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for Asset B, leading to the positive correlation. Thus, a straightforward solution
is to derive a modified correlation by simply eliminating the dependency on the
means and instead shifting the point of reference to zero. This modification is
shown in Eq. 5

τ(x, y) =
∑n

i=1 xi · yi
√∑n

i=1 x2
i · ∑n

i=1 y2
i

(5)

In what follows, we will refer to this as the adjusted correlation metric. Similar
to Pearson’s correlation metric, this adjusted metric returns values in the interval
[−1, +1] and in the case of the data shown in Fig. 1(a), this adjusted metric
returns a value of 0.425.

4.3 A Novel Similarity Metric for Returns-Based Time-Series

We mentioned earlier that it is desirable for our metric to measure similarity
in terms of the tendency for a pair of stock cases to deliver similar returns at
similar times – the adjusted correlation metric provides for this – but also to
ensure that their cumulative returns are similar. To address the latter require-
ment we propose using Eq. 6 which calculates the relative difference between two
cases, c(ai, t) and c(aj , s), based on the product of their monthly returns; this
product of monthly returns is mathematically equivalent to the relative differ-
ence between the start and end price of each stock over their 12 month periods,
but since cases are represented using returns data, rather than price data, we
calculate the cumulative return in this way.

e(cai,t, caj ,s) =

√
√
√
√
√

⎛

⎝
t−12∏

t̂=t−1

(1 + rai

t̂
) −

s−12∏

ŝ=s−1

(1 + r
aj

ŝ )

⎞

⎠

2

(6)

Then, we present our overall similarity metric as Eq. 7, which calculates the
cumulative returns and adjusted correlation metric; note that the cumulative
returns metric has been incorporated in Eq. 7 in such a way that it serves as a
true similarity metric, rather than a distance metric.

sim(cai,t, caj ,s) =
w

1 + e(cai,t, caj ,s)
+ (1 − w) · τ(cai,t, caj ,s) (7)

Obviously, the relative importance of the cumulative returns and correlation
components can be adjusted by varying w; when w = 0 the similarity equation
is based solely on the adjusted correlation metric and when w = 1 it resorts
to euclidean distance between cumulative returns only. In order to evaluate the
impact of w on similarity, using each case in our case base as a query we calculate
the top-20 most similar cases using the above metric with different values of w
(0 ≤ w ≤ 1) and then compare the next-month returns for the similar cases to
the actual next-month return for the corresponding query cases. The absolute
relative difference between the return of the similar cases and the query case
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serves as an error score and the mean error score by w is shown in Fig. 2(a). We
can see that the optimal error occurs for values of w between 0.4 and 0.5 and
for the remainder of this study we use w = 0.5; obviously, this optimal weight
may be sensitive to different case bases and case structures. Figure 2(b) shows
a histogram of the similarity values obtained during this analysis; the results
suggest that the metric behaves as expected as a similarity metric.

Fig. 2. Analysis of proposed metric

4.4 Most and Least Similar Cases

Visualising the most and least similar cases for a randomly selected query case
is a simple way of verifying the efficacy of the proposed similarity metric and
we do this for three separate examples in Fig. 3. Taking Fig. 3(a) as an example,
it illustrates the two most and least similar cases for the target query defined
by asset Engie SA over the time period 11/2018 to 11/2019. It is seen that the
price evolution of the two most similar cases track that of the query case very
closely. Not only do the high similarity cases exhibit similar cumulative returns
(end up very close), but they also tend to rise and fall at the same points in
time. Conversely, the two least similar cases almost mirror the query case over
the x-axis. Firstly, their cumulative returns are highly negative in contrast with
the strong positive cumulative return of the query case. Secondly, the deviations
at each point in time tend to be opposite in sign but similar in magnitude to that
of the query case, as we would hope. This is particularly evident at time 3, for
example, where the query has a strong positive return while both low similarity
cases have very large negative returns for that month.

In conventional approaches, the tendency is to focus on either the deviations
at each individual point in time or the overall trend. For example, both Pearson’s
correlation and Chun’s [13] recent geometrical similarity metric focus solely on
the rises and falls at each individual time period but disregard the overall trend.
The novel formulation proposed in Eq. 7 allows us to capture both of these
components simultaneously as the examples in Fig. 3 illustrate.
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(a) The query case represents the 12 month price evolution of Engie SA.

(b) The query case represents the 12 month price evolution of Intel Corporation.

(c) The query case represents the 12 month price evolution of Verisign.

Fig. 3. Example of the two most and least similar cases for randomly chosen query
cases in the time period 11/2018–11/2019. The two most similar cases are plotted in
light blue with circle symbols while the two least similar cases are plotted in red with
square symbols. The asset ticker, similarity and time period for each similar case is
given in the legend.



72 R. Dolphin et al.

Interestingly, the most and least similar cases in Fig. 3(a), for example, are
all from different markets to the target. The target, Engie SA (ENGI.PA) is a
French company listed on the Euronext stock exchange in Paris while its most
similar case ASML Holdings (ASML) is traded on the NASDAQ exchange in
the USA. The second most similar case and the two least similar cases are all
listed on the London Stock Exchange. Additionally, we note that the most and
least similar cases occur up to eight years prior to the target case with both low
similarity cases coming from the same 12-month period.

5 Evaluation

So far we have described a case representation for encoding the relationship
between the previous 12 months of returns for a given stock and the next month
of returns, and we have presented a novel similarity metric, which we believe
can provide a better sense of similarity in this task domain. In this section, we
will describe the results of an evaluation to compare the performance of this
new metric to a variety of alternatives in an investment setting1. In fact, we will
conduct two related evaluations: (1) predicting next-month returns; and (2) using
predicted next-month return to inform stock selection as part of an extended
investment strategy. In the former we will compare our proposed metric to a
variety of alternatives in terms of their ability to accurately predict next-month
returns. In the latter we will use these predictions to select the top-5 stocks with
the highest predicted returns each month, over a 172 month period, to compare
different strategies in terms of the compounded, cumulative investment gains.

In both evaluations we compare the results obtained using the following dif-
ferent similarity variations:

1. ProposedAdjusted, the main similarity metric proposed in this paper which
combines adjusted correlation and the Euclidean distance between cumulative
returns.

2. ProposedPearson, the similarity metric proposed in this paper but using
Pearson correlation instead of adjusted correlation.

3. PearsonOnly, a conventional time-series similarity measure using Pearson’s
correlation metric.

4. Shape, the authors’ version of the geometric similarity metric described by
[13].

5. AdjustedOnly, the adjusted form of Pearson’s correlation from Eq. 5 and used
in Proposed.

6. CumulativeOnly, the Euclidean distance between cumulative returns metric
from Eq. 6.

1 The relevant code can be found at https://github.com/rian-dolphin/ICCBR2021-Fin
ancial-TS-Similarity.

https://github.com/rian-dolphin/ICCBR2021-Financial-TS-Similarity
https://github.com/rian-dolphin/ICCBR2021-Financial-TS-Similarity
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Fig. 4. Rolling window layout

5.1 Predicting Monthly Returns

In this part of the evaluation, the goal is to predict the next-month returns for a
stock based on its previous 12 months of returns. Due to the temporal nature of
the data, care must be taken to ensure that only cases that refer to periods prior
to the query case period are considered during retrieval; thus if we wish to predict
the next-month return for March 2019 then we can only draw on cases whose
next-month returns occur prior to March 2019. As a result, a simple leave-one-
out strategy cannot be directly implemented, and so, we employ a rolling window
approach inspired by [7,9], but tailored to a CBR framework. This approach,
illustrated in Fig. 4, allows us to utilise as many query cases as possible in our
evaluation but has the effect that the case base depends on the query case.
In particular, the case base is defined to contain all cases from the previous six
time periods, with six being chosen due to computational limitations. Equation 8
formalises the case base, C(c(ai, t)), for a general query case c(ai, t).

C
(
c(ai, t)

)
=

{

c(ai, t − j)
∣
∣
∣
∣
i ∈ {1, 2, ..., 160}
j ∈ {1, 2, ..., 6}

}

(8)

For each query case q, the task is to predict q’s next-month returns based
on a similarity-weighted mean of the next-month returns for the k most similar
cases to q. Each prediction is compared to the actual next-month returns for q
via an absolute difference, giving us an error measurement. We repeat this for
different values of k from 1 to 50.

The mean error results presented in Table 1 show how the proposed metric
tends to produce predictions with lower error rates than all of the other variations
considered. Although the differences are small, it must be remembered that this
reflects the errors associated with a single monthly prediction and obviously these
error have the potential to compound and accumulate if their corresponding
metrics are used to inform an extended trading strategy over time. We will
return to this in the section that follows.

Post-hoc Tukey HSD tests confirm that there are significant differ-
ences between the pairs of techniques shown in Table 1. Although the
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Table 1. Mean errors in next-month returns for varied k and similarity metrics. H0

refers to the result of a Tukey HSD test with null hypothesis that the mean of the
ProposedAdjusted metric is not significantly different from the given baseline metric
with k = 10. Rejection of the null hypothesis at α = 0.01 is indicated by ✓.

1 5 10 25 50 H0

ProposedAdjusted 0.0887 0.0882 0.0883 0.0882 0.0883 –

ProposedPearson 0.0893 0.0885 0.0884 0.0883 0.0884 ✗

Shape 0.0888 0.0889 0.0889 0.0891 0.0893 ✓

PearsonOnly 0.0910 0.0909 0.0909 0.0909 0.0908 ✓

CumulativeOnly 0.0911 0.0908 0.0907 0.0904 0.0903 ✓

AdjustedOnly 0.0911 0.0908 0.0908 0.0907 0.0905 ✓

ProposedAdjusted technique shows significant improvement with respect to the
PearsonOnly, AdjustedOnly, Shape, and CumulativeOnly metrics at k = 10
it is not significantly better than ProposedPearson, at least in terms of the
error associated with a single monthly returns prediction. It is worth not-
ing, however, that ProposedPearson is the only other strategy, in addition to
ProposedAdjusted, which uses the novel formulation proposed in Eq. 7.

5.2 Comparing Trading Strategies

As mentioned above, the previous experiment focused on a single next-month
returns prediction, but in practice trading performance is measured over an
extended period of time based on the cumulative returns obtained during many
buy-sell cycles. In order to evaluate this, in this section we consider a simple
trading scenario in which a trader begins with a $1,000 float and invests this
uniformly in the stocks with the top-5 highest predicted returns each month,
selling these stocks at the end of the month, and rolling-up any profits/losses
into their next month investment. This continues for a period of 172 months,
as outlined in Fig. 4, and the cumulative gains are calculated at the end of this
period. We use the six different similarity metrics, as before, to generate the
monthly returns predictions, and various values of k are used, also as before.

Since we are simulating buying the top-5 assets in terms of the highest pre-
dicted return each month, the strategies will execute 860 (5 trades × 172 months)
buy orders in total over the course of the experiment. Though a sizable number
of trades, running the simulation only once would mean the evaluation has the
potential to be influenced by a small number of ‘lucky’ trades. To prevent this,
we ran the simulation one hundred times, each time randomly removing 20% of
the assets from the dataset.

The results are presented in Table 2 for each strategy with k = 10. Under the
ProposedAdjusted strategy the initial float of $1000 accumulates to $8305.23,
corresponding to an annualised return of 15.9%, the highest of all the strategies.
A Tukey test indicates the mean return for ProposedAdjusted is significantly
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Table 2. Results of a trading simulation spanning mid 2006–end 2020 with k = 10 and
initial capital of $1000. H0 refers to the result of a Tukey HSD test with null hypothesis
that the mean annualised return of the ProposedAdjusted metric is not significantly
different from the given baseline metric with k = 10. Rejection of the null hypothesis
at α = 0.01 is indicated by ✓.

Accumulated
Value

Annualised
Return

Annualised
Volatility

H0

ProposedAdjusted $8,305.23 15.9% 22.3% –

ProposedPearson $6,551.87 14.0% 22.2% ✓

Shape $7,797.25 15.4% 19.7% ✗

PearsonOnly $6,233.49 13.6% 21.3% ✓

CumulativeOnly $6,527.48 14.0% 21.6% ✓

AdjustedOnly $7,883.33 15.5% 21.1% ✗

higher than that of ProposedPearson, PearsonOnly and CumulativeOnly.
Though a higher mean return is seen, the Tukey test does not confirm statistical
significance over Shape and AdjustedOnly at α = 0.01.

It is notable too that the AdjustedOnly strategy beats the PearsonOnly
strategy (significantly at α = 0.01) indicating that the modified correlation
metric described in Sect. 4.2 is outperforming the more conventional Pearson
correlation metric when applied in a trading simulation. In fact, Pearson corre-
lation alone performs worse than all other strategies. Chun’s [13] more recent
geometrical similarity metric (Shape) performs well in this trading evaluation,
producing annualised returns that are better than most of the other strategies,
although not the proposed strategy. Its performance is very similar to that of the
AdjustedOnly similarity metric which is unsurprising since the adjusted corre-
lation can, in some sense, be thought of as a continuous version of the geometric
metric as both use 0 as a reference point.

As predicted, although the individual monthly gains in prediction accuracy
are small, when compounded as part of a selective investment strategy, then even
modest gains can accumulate to offer significant differences in annualised returns.
Obviously, this experiment represents a very simplified trading scenario that is
limited by factors such as the number of stocks selected for investment each
month and how current funds are shared among the selected stocks. In reality,
one would expect more sophisticated trading strategies to be used, which vary
the number of stocks selected each month and how funds are divided up for the
purpose of investment. It may be prudent to include other indicators to aid the
trade selection process and it may also be appropriate to consider inter-stock
similarity when selecting stocks to provide some level of hedging/diversification
as part of an investment strategy. All of these factors will further influence the
returns obtained and none have been considered in this initial evaluation.
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6 Conclusion and Future Work

This work has focused on the problem of measuring similarity between financial
time series with a particular focus on stock market pricing and returns data. Our
proposed metric combines an adjusted correlation coefficient with a Euclidean
metric to simultaneously identify similarity from two angles which, to the best
of our knowledge, has not been explored before.

In addition, we have applied our novel similarity metric to the problem of
predicting stock market returns and using this to inform a trading strategy.
Although this is no doubt a challenging problem, it is motivated by the knowl-
edge that even modest returns and improvements can prove to be extremely
useful in the high-stakes world of finance.

We have described a straightforward approach to using ideas from case-based
reasoning for this task, including a simple returns-based case representation and
a novel approach to measuring the similarity between stock time-series. The
results of an initial evaluation demonstrate strong results in terms of returns-
based prediction accuracy which in turn lead to significant benefits in terms of
annualised returns when used as part of a stock trading strategy. Moreover, the
results reported for our novel similarity-metric are superior to those for a variety
of alternative including conventional and state-of-the-art baselines.

There is substantial scope for future work with the approach described in
this paper. The trading strategy used during the evaluation is likely too simple
to be useful in practice and can be enhanced in a number of ways to more reli-
ably evaluate the benefits of the new similarity metric. Comparing our results
to state-of-the-art non-CBR baselines such as long short-term memory (LSTM)
networks as well as testing varied case lengths are other planned areas of future
work. Moreover, modern portfolio theory is based heavily on the use of Pearson
correlation to ensure diversification and there is an obvious opportunity to eval-
uate our revised similarity metric and the adjusted correlation coefficient in the
portfolio optimisation domain.
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Abstract. When training for endurance activities, such as the
marathon, the risk of injury is ever-present, especially for first-time or
inexperienced athletes. And because injuries depend on various factors,
there is an opportunity to provide athletes with greater levels of support
and guidance when it comes to the risks associated with their training.
Hence, in this work we propose a case-based reasoning approach to pre-
dict injury risk for marathoners and provide actionable explanations so
that runners can understand this risk and potentially reduce it. We do
this using the type of activity data collected by common training apps,
with extended training breaks used as a proxy for injury (in the absence
of explicit injury data), and we show how future breaks can be pre-
dicted based on the training patterns of similar runners. Furthermore,
we demonstrate how counterfactual explanations can be used to highlight
those features that are unique to injured runners (those suffering from
training breaks) to emphasise training behaviours that may be responsi-
ble for higher levels of injury risk for the target runner. We evaluate our
work with a dataset of real-world training data by more than 5,000 real
marathon runners.

Keywords: CBR for health and exercise · Marathon running · Injury
prediction · Counterfactual explanations

1 Introduction

Running is one of the most popular forms of personal exercise and endurance
events such as the marathon are becoming increasingly popular among recre-
ational runners. But running puts considerable stress on the body—each stride
delivers a force equivalent to 2.5 times our bodyweight [1]—and while experi-
enced runners can often deal with this stress, the risk of impact and overuse
injuries remains ever-present, but especially among novices and less experienced
runners [2]. However, understanding the risk factors associated with running
related injuries (RRIs) has proven to be a complex undertaking, as exemplified
c© Springer Nature Switzerland AG 2021
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by the considerable research into the various factors that are likely to determine
injury risk [3–9]. Yet the scientific jury remains out when it comes to a definitive
determination about how and why some runners become injured while others do
not; in fact, the only reliable risk factor appears to be a history of a previous
injury [10,11]. It is not surprising, therefore, to find that many runners remain
somewhat in the dark when it comes to what they can and should do to lower
their personal risk of injury [12].

Thus, this work is motivated by the desire to provide more targeted feedback
to runners, to highlight aspects of their training that may be associated with
higher rates of RRIs. Using a dataset of more than 5,000 past marathon training
histories (the 16 week training histories of Strava runners who competed in the
Dublin marathon between 2014 and 2017) we build a case-based reasoning (CBR)
system in order to estimate the level of injury risk for a given runner, based on
their recent training and the (injury) experiences of runners with similar training
patterns. In addition to presenting an injury risk score we also use ideas from
counterfactual reasoning to explain the nature of the predicted risk in terms of
those features of training that appear to be linked to similar runners who have
become injured in the past. It is worth noting that our expectations for success
in this research were modest, given the difficulty of predicting RRIs reported in
the scientific literature. That being said, given that runners are not well-served,
if at all, by targeted injury advice currently, there is reason to be optimistic that
even modest success would have the potential to help runners complete their
training more effectively and more safely.

In the next section we summarise some of the related work on understanding
and predicting RRIs and how it connects with recent work on using machine
learning methods to support recreational running. Then, in Sect. 3 we describe
our CBR approach, focusing on: (a) how suitable cases can be extracted from raw
activity/training data; (b) how these cases can be used to predict future injury
or estimate the risk of injury; and (c) how these cases can be used to generate
counterfactual explanations to help runners understand the nature of this risk
and potential actions that they can take to reduce the risk. Before concluding,
in Sect. 4, we present the results of an initial evaluation to demonstrate the
potential benefits of this approach to supporting marathon runners.

2 Related Work

Numerous studies have been conducted to better understand the risk factors for
RRIs. These have considered a variety of variables from physiological features
related to the mechanics of running gait [3,4] to the impact of training load [5,6],
and from a runner’s level of experience [7–9] to their specific personality traits
[13,14]. Often conducted using cohorts of very experienced, even elite runners,
these studies have failed to provide a definitive account of the factors that are
predictive of many common forms of RRI, beyond the tendency of runners who
have been injured in the past to become injured again in the future [10,11].
That being said, it is commonly held that training load—an estimate of an
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athlete’s training volume and intensity—is likely to be an important factor in
several common RRIs such as so-called overuse injuries [15–19]; although even
this assertion is not without a level of controversy [20].

Training activity data provides a rich source of training data for machine
learning, by integrating fitness and physiology data with training volumes, and
even user-provided training assessments, e.g. by logging effort perceptions, doc-
umenting injury and illness; see also related work with GPS sensors and soccer
players [21]. In due course, it may be possible to identify novel patterns linking
fitness, training, recovery and injury and so develop effective early-warning sys-
tems for athletes, to alert them to changes in their performance, which may be
a precursor to the onset of illness of injury [22–24], although as has been high-
lighted already, predicting whether a runner will become injured, or is at greater
risk of injury, is an extremely challenging task [25–27] and will likely remain so
for the foreseeable future. Beyond marathon running, in soccer machine learning
has been utilized to predict the necessary amount of recovery time needed by
soccer players following an injury [28].

This work aims to link training behaviour with injury risk. While previous
efforts have not been successful, we argue that this is likely due to small sample
sizes of homogeneous runners (e.g. 10 s of elite or experienced runners). In con-
trast, this work focuses on a much larger cohort of mostly recreational runners
with a wide variety of experience levels and abilities. It also builds on recent work
in the area of smart approaches to endurance training [29–31] and particularly
work involving case-based reasoning methods [32–35] which has mostly focused
on predicting race-times or recommending training plans. Thus far, there has
been limited work on injury prediction such as the work of [36], which although
it failed to predict the future incidence of injuries, was able to generate an injury
risk score that was correlated with future injury rates. However, the work of
[36] didn’t explain this injury-risk score to runners leaving them unable to take
action to improve their injury prospects. In the present work, we will employ
recent ideas from counterfactual reasoning [37] and explainable AI (XAI) [38] to
explore the potential for using counterfactual cases to distinguish between the
training patterns of injured and non-injured runners.

3 CBR for Injury Prediction and Explanation

During a typical 12–16 week training plan, most marathon runners will grad-
ually increase their weekly distance and improve their pace as they progress
through a variety of carefully coordinated sessions designed to build endurance
and strength. Most runners will train 3–6 times per week and most plans will
punctuate (typically every 4 weeks) an increasing training load with periodic
“down” weeks so that runners can recover from weeks of heavy training load
before starting a new training block. These days, most runners record the details
of these training sessions (distance, time, pace, heart-rate, cadence, etc.) using
smartwatches, sensors, and apps and such activity traces provide a valuable
source of raw data that is used here as the basis of a novel CBR system for
injury risk assessment.
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3.1 Representing Training Load

For the purpose of this work we use anonymous activity data collected by the
Strava1 fitness app and made available to the authors via a data sharing agree-
ment with Strava. This data includes distance, time, and elevation data. Some
activities also include heart-rate and cadence data but these are not used here.
The time and distance data is converted into pacing data (mins/km) for 100 m
intervals and pacing data can be further converted into grade-adjusted pacing
using the elevation data.

More formally for a given runner r, we can represent their entire training
programme as a time-ordered sequence of activities where each activity Ai(r) =
(d, P ) and d is the start date and time of the activity and P is a set of paces for
the activity:

T (r) =
{
A1(r), A2(r), . . . , An(r)

}
(1)

Then, a runner’s training load during a given week w can be characterised
in terms of the following distance and pace features; the runner’s sex is also
included in F (r, w).

1. Total Weekly Distance (m): the total distance during a given week.
2. Longest Run Distance (m): the distance of the single longest run in a given

week.
3. Number of Active Days: the number of days with training sessions in a given

week.
4. Mean Grade Adjusted Pace (mins/km): the average grade-adjusted pace for

the week.
5. Fastest 10 km pace (mins/km): the fastest grade-adjusted pace over a 10 km

segment during the week.

3.2 Representing Injury Cases

So far we have been talking about injuries and yet the activity data we have
access to does not contain explicit injury data. However, we can detect likely
injuries among these data by identifying extended periods without activities.
Specifically, in this work a training break of 14 days or more is considered a
likely injury candidate. This is an imperfect heuristic because there may be
other reasons for a ≥14-day training break (illness, travel, etc.), but we believe
that such long breaks are likely to reasonable proxies for injury. Thus for the
purpose of this work, predicting whether a runner will become injured amounts
to predicting whether they will have a ≥14-day training break at some point
beyond the current week and before race-day.

We convert the above training load into injury cases. Each case is made up
of a set of features, derived from the training load features from the previous 4
weeks of training, including:

1 www.strava.com.

http://www.strava.com/
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1. Average: the average training load (total weekly distance, longest run dis-
tance, number of active days etc.) over the previous 4 weeks, F (r, w + 3), ...,
F (r, w).

2. Standard Deviation: the standard deviation of the training load features over
the past 4 weeks.

3. Relative Change: The average week-on-week relative change for each training
load feature over the past 4 weeks.

In what follows, we will sometimes refer to total weekly distance as the fea-
ture type and the average, standard deviation, and relative change forms of this
feature type as the actual features.

Then, a positive injury case C+(r, w) denotes a runner r who experiences
a ≥14-day training break after week w and it is associated with two further
features, BD(r, w), the date of this training break and BL(r, w) the length of
this training break in days; see Eq. 2. Alternatively, a negative case, C−(r, w),
denotes a runner who does not experience such a break before race-day; its BD
and BL features are both null. Note, for convenience we refer to F (r, w) as Fw

without loss of generality.

C+(r, w) =
{
Fw−3, Fw−2, Fw−1, Fw

} → injury,BDw, BLw (2)

C−(r, w) =
{
Fw−3, Fw−2, Fw−1, Fw

} → healthy (3)

3.3 Balancing the Case Base

In this way, each runner can be associated with a number of injury cases based
on different training weeks and their future long-break status. However, such a
case base is not balanced as it contains far more negative (non-injury) cases than
positive (injury) cases.

To address this we balance the case base by undersampling from the negative
cases to select the same number of negative cases as there are positive cases. In
this work we consider two sampling strategies:

1. Random Sampling : select a random subset of negative cases to match the
number of positive cases.

2. Nearest Unlike Neighbour Sampling : for each positive case select the most
similar negative case.

However, the random strategy was found to be more effective during evalu-
ation and so in what follows we will focus on the use of this approach.

3.4 Task 1: Predicting Training Breaks

Now that we have a suitable case representation we can turn our attention to
the prediction of future training breaks, as proxies for injury, see Algorithm 1;
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Algorithm 1. Predicting training disruptions as a proxy for injury
Input: q, the query case for runner r in week w; CB the balanced case base; k the
number of similar cases to retrieve during prediction.

1: C ← filter(CB,week = w)
2: C′ ← sort(C, sim(q, c))
3: Ck ← C′.head(k)
4: p ← majority(Ck.class)
5: r ← |Cl[Ck.class == p]|/k
6: return p, r

Algorithm 2. Explaining training disruption predictions
Input: q, the query case for runner r in week w; CB, the balanced case base; p
the predicted training disruption class (positive/injured or negative/healthy; n, the
number of supporting and counterfactual cases to use; m, the number of significant
features to return).

1: C ← filter(CB,week = q.week)
2: C′ ← sort(C, sim(q, c))
3: S ← C′[C′.class == p].head(n)
4: CF ← C′[C′.class! = p].head(n)
5: sig ← []
6: for f in CB.features do
7: sig.append(f) if ttest(S.f, CF.f) < 0.05
8: end for
9: return sig, S, CF

note that for the purpose of similarity assessment all case features are scaled
using a standard minmax scaler.

Given a query case q for a runner r at week w, we first select only those cases
in the (balanced) case base that are also w weeks form race-day (line 1) and
identify the k most similar cases using a standard cosine distance metric based
on their 4-week features F ′(r, w), ..., F ′(r, w + 3) (lines 2–3). Then, the injury
prediction is based on the majority class (positive or negative) and an injury
risk score is based on the number of positive cases as a fraction of k (lines 4–5).

3.5 Task 2: Explaining Training Breaks

In this work we argue that presenting a runner with a risk assessment when it
comes to the injury prospects is not enough because it does not, on its own,
help the runner to understand the reason for this assessment – what it is about
their recent training that is associated with a given risk level – and nor does it
provide them with the means to modulate their risk. This is especially true in
the context of first-time or inexperienced marathoners.

With this in mind we propose an approach to explaining positive (injury) and
negative (non-injury) prediction outcomes by using a combination of factual and
counterfactual cases; see Algorithm 2. Consider a positive recommendation for a
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given query case, that is the runner is deemed to be at risk of injury: using q we
identify the n most-similar supporting cases, S, (positive cases in this example)
and a corresponding set of n counterfactual cases, CF , (negative cases); lines
1–4. Thus, S corresponds to a set of runners with similar training patterns to
the query runner and who have ≥14-day extended breaks in their training just
as the query runner is predicted to experience, while CF corresponds to a set of
runners with similar training patterns but who have not experienced ≥14-day
future training breaks. The assumption is that any significant differences between
the S and CF may usefully explain the reason for their different outcomes. Thus,
for each case feature we determine whether its mean values from S and CF are
significantly different using a t test with p<0.05; lines 5–8.

The end result, for a given query q and prediction, is a short-list of features
(sig) whose values in the supporting cases are different from their corresponding
values in the counterfactual cases. From among these explanatory features we can
select the top k features to use in constructing a final explanation for the runner.
There are a number of options available when it comes to this selection process.
One option is to select those features with the greatest relative difference between
their S+ and CF− means; an alternative could be to use a more statistically
robust effect-size metric, such as Cohen’s d, to select the k features with the
largest effect-size. In what follows we adopt a third approach by scoring each
feature type (e.g. total distance vs active days vs mean pace etc.) based on the
sum of the absolute values of the t statistic for their significant features to provide
a standardized difference score across various features; a larger score means that
a given feature type is more important when it comes to distinguishing between
the two injured and healthy cases.

For example, in the case of a query runner who is predicted to be at risk
of a future ≥14-day break (as a proxy for injury), this approach may identify a
feature such as the average weekly distance or their average weekly pace as the
most discriminating features supporting this prediction. In other words, the fact
that the query runner’s weekly distance is significantly higher among supporting
cases or that the runner’s average weekly pace is lower (faster) among supporting
cases might suggest that the query runner should reduce their average weekly
pace and slow their pace in the coming weeks; the mean weekly distance and
pace from the supporting and counterfactual groups can provide guidance on
how much to change their weekly distance and pace.

4 Evaluation

So far we have described an approach to predicting and explaining the future
injury status of a runner using the type of raw activity data that is commonly
available from fitness apps such as Strava, Runkeeper, MapMyRun, and oth-
ers. In this section we describe the results of a preliminary evaluation of these
approaches using real-world data. The evaluation is preliminary in the sense
that it is retrospective rather than prospective. It speaks to what happened in
the past but does not tell us about what might happen if such approaches were
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deployed for runners, which will require live-user evaluations and is a matter
for future work. Nevertheless we believe that a retrospective evaluation is an
important first-step in understanding the efficacy of the proposed techniques as
well as clarifying a opportunities for improvements that may exist.

4.1 Setup

The dataset used in this work is a subset of data made available under a data
sharing agreement with Strava Inc. and is summarised in Table 1. It consists of
over 5,000 unique runners who completed a marathon in Dublin between 2014–
2017 with finish-times between 2 and 6 h. For the purpose of producing our case
base approximately 20% of these runners experienced a training break ≥14-days
in the 6–16 weeks before race-day.

For each task, prediction and explanation, we use a standard cross-fold val-
idation procedure by splitting the data in to test (20%) and training (80%)
subsets and average across 5 splits.

Table 1. A summary of the dataset used in this study for runners of the Dublin
marathon in the period 2014–2017. The table includes personal characteristics and
mean and standard deviation for marathon finish time (minutes), number of weekly
training activities, and total weekly distance (km).

Year Sex Runners Age Race-Time Active Days/Wk Distance/Wk

2014 F 85 37.2 ± 7.5 262.08 ± 35.07 2.7 ± 0.87 33.4 ± 11.83

M 425 36.8 ± 6.6 233.23 ± 36.68 2.9 ± 1.19 37.9 ± 19.24

2015 F 129 37.3 ± 7.5 260.61 ± 40.97 2.8 ± 1.03 34.3 ± 14.59

M 642 38.2 ± 7.7 229.31 ± 37.82 3.0 ± 1.23 39.4 ± 20.19

2016 F 322 38.4 ± 7.6 266.67 ± 43.77 3.0 ± 1.07 35 ± 14.22

M 1249 39.1 ± 7.5 231 ± 37.85 3.0 ± 1.18 39.4 ± 19.18

2017 F 562 38.4 ± 7.7 267.08 ± 39.54 3.0 ± 0.96 35.8 ± 14.53

M 1865 39.5 ± 7.8 232.15 ± 38.12 3.1 ± 1.19 40.3 ± 19.33

4.2 Evaluating Prediction Accuracy

The prediction task is responsible for (a) predicting whether or not a runner is
expected to suffer a future ≥14-day training break and (b) the risk of suffering a
future ≥14-day training break. To evaluate the former we compare the predicted
class to the actual class of the test runners to calculate a prediction error as
the fraction of incorrect predictions. Separately, to evaluate the risk score we
compute the correlation coefficient between binned the runners based on their
risk score, calculated the proportion of true-positive runners (those that did
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Fig. 1. (a) shows the change in mean absolute error of the predictor for different values
of k for weeks 6, 8, and 10 weeks from race-day. (b) shows the same but looking at the
change in the correlation coefficient of the proportion of runners in the injured class
and the risk-score

experience a ≥14-day break), and calculated the correlation coefficient between
this proportion and the risk-score.

To begin with, Fig. 1 shows the relationship between prediction accuracy and
risk-score correlation and k, the number of similar cases retrieved during predic-
tion at three different points during training (6, 8, and 10 weeks before race-day).
It is noteworthy that prediction accuracy is modest, showing error rates of about
35% in this evaluation, and highlighting the challenging nature of the prediction
task. That being said, the prediction error falls for larger values of k. However,
the risk-score correlation also declines with k meaning that the risk-score is a less
reliable indicator of true-injury risk as we retrieve more cases. It is notable, how
the risk-score correlation is higher closer to race-time (weeks 6 and 8 compared
to week 10) which suggests that it provides a more reliable risk-assessment as
runners progress through their training, which is to be expected. In this case,
the result suggest that 5 ≤ k ≤ 10 offers a good balance between prediction
accuracy and risk-score correlation and for the remainder of this evaluation we
use k = 5.

Figure 2(a) shows a more detailed summary of prediction error and corre-
lation scores (k = 5) as training progresses, from 16 weeks before race-day to
6 weeks before race-day. We can see how, closer than 13 weeks from race-day
tends to produce relatively stable prediction accuracy and correlation scores. In
particular, the correlation score remains about 0.8 throughout this period which
means the risk-assessment score serves as a highly correlated indicator of injury
risk.

Figure 2(b) separates the prediction results based on the predicted class. The
difference between these declines as race-day approaches. Unfortunately, the abil-
ity to accurately predict a future training break (injured) is compromised during
the early stages of training, although it does decline as race-day approaches. In
contrast, the ability to predict healthy runners is more effective during the early
stages of training but the error increases gradually as training proceeds.
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Fig. 2. (a) depicts the mean absolute error of the predictor (blue), and the correlation
coefficient (orange) for different weeks leading up to race-day. (b) depicts the MAE of
the predictor for the healthy (blue) and injured (orange) classes (Color figure online)

At the beginning of this paper we called out the difficulty of this injury-
prediction task, which was made all the more difficult by the lack of reliable
injury data and the need to use training breaks as a proxy for injuries. It is not
surprising therefore to find that the resulting predictions are at best modestly
accurate. However, given that today runners benefit from little or no feedback on
their injury risk it can be argued that even these modestly accurate predictions
can be useful. Moreover, in practice it will likely be more useful to take advantage
of the injury risk score as a way to convey this feedback to a runner. More harm
than good might be done by predicting a runner will become injured if they
do not or vice versa – at the very least it will compromise trust in the system
– but the ability to guide the runner with an injury risk-score that is more
reliably correlated with injury incidence rates among similar runners will be
useful, especially when compared to baseline incident rates. For example, telling
a runner that, “Your injury risk-score is 0.6 meaning that you are twice as likely
as the average runner to experience an injury before race-day” is informative
and, when combined with an explanation, may be actionable too.

4.3 Evaluating Injury Explanations

In the context of this work, the primary purpose of providing the runner with
a prediction explanation is less about justifying the prediction and more about
suggesting ways in which the runner might improve their training prospects, by
highlighting features that discriminate between supporting and counterfactual
cases. In this evaluation we focus on outcomes where the runner is predicted to
be at risk of becoming injured, on the grounds that these are outcomes where a
runner will be more likely to expect support. The key questions are then:

1. How often can we identify significant feature differences to distinguish
between positive and negative cases?

2. What types of features are more likely to be significant when we compare
similar injured runners to similar healthy runners?
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3. What types of features are more likely to be in the top-3 features recom-
mended to be part of the explanation?

To answer these questions, we use Algorithm 2 to identify the significant
features for runners predicted to be at risk of injury and in each case select the
top-3 features based on their combined t-value as described previously. Figure 3
shows the distribution of the number of significant features for each injury pre-
diction. We can see how on average there are 2.38 significant differences and how
80% of predictions can be linked to at least 1 significant feature difference. This
is a positive result as it highlights that significant differences are commonplace
and offers a starting point to provide a runner with an actionable explanation.

Fig. 3. The distribution of the number of features differing significantly among the
nearest positive and negative cases

Regarding the types of features that are significant, Fig. 4(a) shows the frac-
tion of injury predictions associated with significant feature differences by feature
type. Each bar represents a type of feature and the height of the bar reflects the
fraction of times that at least one feature from a given type is significant. In gen-
eral, the volume features (active days and total distance) are significant more
often than their intensity counterparts (fastest 10 km pace and mean pace).
This is an interesting result as it suggests that training volume may be more
important than training intensity when it comes to injury, indicating that some
runners may protect against injury by reducing volume ahead of intensity.

Similarly, Fig. 4(b) shows the proportions of feature types that occur in the
top-3 features, based on the sum of the absolute t statistic values for significant
features (see Sect. 3.5). The same ordering of feature types occurs as in Fig. 4(a),
with the number of active days and total weekly distance in over 40% of the top-3
recommendations, compared with 20–30% for the intensity features.

Obviously more work on generating explanations is required, and this eval-
uation represents only the beginning. For example, we have not yet described
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Fig. 4. Fraction of test cases (injury predictions) where a given feature was found (a)
to be significant when comparing injured and healthy cases and (b) to be recommended
as a top-3 feature based on the sum of the t scores for that feature type.

how to translate a set of k significant features into an explanation that the run-
ner can understand and act on. Most likely this will involve communicating to
the runner how they might change their training to lower the risk of injury, for
example:

Your risk of injury is 2x that of similar runners at this training stage.
Runners like you who become injured have a weekly distance that is 10%
greater than runners like you who avoid injury. Consider reducing your
weekly distance from your current level of 60km to 54 km per week.

The benefit of this type of explanation is that while helping the runner under-
stand their risk level (2×), relative to similar runners, it also provides information
about a possible reason for the higher risk level (total weekly distance) and sug-
gests a course of action (reducing total weekly distance by 10%) to reduce this
risk. Evaluating different forms of explanation is planned as future work.

5 Conclusions

We attempted to tackle an important problem facing recreational marathoners
by (a) trying to predict whether their recent training behaviour is likely to lead
to injury and (b) if it is, by explaining the reasons for this in terms of features
of their training that they may wish to adjust. We have described and evaluated
a case-based reasoning approach using real-world training data. The results are
modest but encouraging. Despite a lack of precise injury data, and even with
a simple case representation and straightforward similarity assessment, it was
nevertheless possible to generate an injury risk-score that reliably correlated
with injury incidence rates even if actual injury predictions were less reliable.

Obviously there are some shortcomings in this work. The lack of true injury
data is an obvious weakness and area for improvement, although such data is
not routinely collected by the current generation of fitness apps. It is also worth
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highlighting that the nature of the dataset used was such that runners who
became injured close to race-day, causing them to drop out, were missing from
the dataset, because they never completed the marathon. This means that our
existing dataset provides an incomplete account of runners with injury-related
training breaks. The features available were also limited to distance and pacing
information. In the future, it may become feasible to incorporate more reliable
indicators of injury and to harness additional features such as heart-rate to offer
greater insights into training and recovery. Finally, it will also be important to
evaluate future versions of this work in live user-trials in order to better under-
stand how runners respond to injury feedback such as predictions and explana-
tions. Do they trust in these predictions? Do they change their behaviour? Is
their risk of injury reduced as a result? How is overall performance impacted
on race-day? We believe that this work has great potential because even mod-
est improvements in managing the injury-risk of runners can have a significant
impact on their training and race outcome.
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Abstract. Checklists are used to aid the fulfillment of safety critical
activities in a variety of different applications, such as aviation, health
care or labour inspections. However, optimizing a checklist for a specific
purpose can be challenging. Checklists also need to be trustworthy and
user friendly to promote user compliance. With labour inspections as
a starting point, we introduce the Checklist Construction Problem. To
address the problem, we seek to optimize the content of labour inspection
checklists in order to improve the working conditions in every organisa-
tion targeted for inspections. To do so, we introduce a hybrid framework
called BCBR to construct trustworthy checklists. BCBR is based on case-
based reasoning (CBR) and Bayesian inference (BI) and constructs new
checklists based on past cases. A key novelty of BCBR is the use of BI
for constructing new features in past cases. The augmented past cases
are retrieved via CBR to construct new checklists, which ensures justifi-
cation for the content of the checklists and promotes trust. Experiments
suggest that BCBR is more effective than any other baseline we tested,
in terms of constructing trustworthy checklists.

Keywords: Bayesian CBR · Feature construction · Checklist

1 Introduction

Context. Every year more than

Fig. 1. Conceptual view of NLIA’s procedure

three million workers are victims
of serious accidents causing more
then 4000 deaths due to poor
working conditions in EU alone.1

World-wide, it has been estimated
that there are at least 9.8 million

1 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC
0332.

c© Springer Nature Switzerland AG 2021
A. A. Sánchez-Ruiz and M. W. Floyd (Eds.): ICCBR 2021, LNAI 12877, pp. 94–109, 2021.
https://doi.org/10.1007/978-3-030-86957-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86957-1_7&domain=pdf
http://orcid.org/0000-0001-9146-0085
http://orcid.org/0000-0003-2666-5310
http://orcid.org/0000-0002-4256-7676
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0332
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0332
https://doi.org/10.1007/978-3-030-86957-1_7


Bayesian Feature Construction for Case-Based Reasoning 95

people in forced labour (2005) [2]. The most important measure to prevent
poor working conditions is regulations. Regulations are usually enforced through
labour inspections, which make them a vital part of the strategy employed by
many countries to ensure good health, safety, decent work conditions and well-
being for workers (see UN’s SDGs 3, 8 and 162). Hence it is important to carry
out labour inspections efficiently at large scale.

To identify poor working conditions, labour inspection agencies use surveys
to check individual organisations for non-compliance [24]. Such procedures vary
between different countries and we will use the Norwegian Labour Inspection
Authority (NLIA) as an example. NLIA’s inspection procedure is shown in Fig. 1.
It consists of a checklist which is a set of control points that are answered during
the inspection. Every control point is a question that corresponds to a spe-
cific regulation. The answer to each question indicates whether the inspected
organisation is compliant or not. These answers provide a basis for reactions if
non-compliance is found. Checklists for ensuring health and safety are also used
in other domains such a surgery or flight procedures to ensure high accuracy of
due diligence, and success often relies on correctly applying checklists [5].

Challenges with Checklists. Currently, labour inspection agencies operate
with a limited, fixed number of static procedures or checklists targeting spe-
cific industries that organisations belong to. The inspectors select the checklist
they subjectively believe is most relevant to the organisation they are visiting.
A drawback with this approach is that the selected checklist can be poorly opti-
mized for its target, while also being limited in terms of scope. This may prevent
the inspections from fulfilling their purpose of addressing high risks to the work-
ers’ health, environment and safety. Checklists used for other applications such
as aviation and health care may have similar problems where poorly optimized
checklists can suffer from compatibility issues with users or contexts [5,7]. This
can have a negative effect on the users’ motivation to use the checklists.

Contributions. We introduce the Checklist Construction Problem (CCP): Sup-
pose that we have N unique questions with yes/no answers, where the answer
to each question has an unknown probability distribution. Given the questions,
construct a checklist for a target entity by selecting K unique questions that
maximize the likelihood for obtaining no-answers to every selected question.

This problem could be applied to any domain where checklist optimization
is an issue, such as healthcare or aviation. In these domains, the N unique
questions may be designed to accomplish a specific task such as surgery or flight
check and the target entity may be a patient or an aircraft. Any question with
a likely no-answer should then be on the surgery or flight checklist so that yes-
answers are obtained instead. However, this work focuses on solving CCP for
labour inspections and introduces a new data set as a starting point to do so.

To solve CCP, we introduce BCBR, which is a framework based on Bayesian
inference (BI) and case-based reasoning (CBR) for constructing new checklists
optimized for a target organisation (entity). BCBR uses CBR to retrieve ques-

2 https://sdgs.un.org/.

https://sdgs.un.org/
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tions from checklists which have been used in past cases to survey organisa-
tions similar to the target organisation. BI is used to construct features in past
cases which ensures that the retrieved questions have high probabilities for non-
compliance. The approach starts with a data set of cases containing organisations
and questions from previously used checklists. New features are then constructed
by means of BI and added to each row in the data set to create augmented cases.
The augmented cases are added to a case base which is queried using similarity
based retrieval. The query contains a target probability and organisation, which
is used to retrieve cases containing the questions for a new checklist (solution).

From a technical perspective, the use of augmented cases is a key novelty of
BCBR that can be viewed as a data-driven approach that uses feature construc-
tion to embed solution knowledge in cases for case retrieval in CBR [8,15,18].
The use of BI to estimate probability ensures transparency because the esti-
mates are made by counting cases in the data set. The use of similarity based
retrieval also promotes trustworthiness and ensures justification of the BI esti-
mates because they are related to past cases. Trustworthiness is important to
ensure user compliance with the checklists. The core contributions of this paper
are:

– We introduce a formal definition of the Checklist Construction Problem and
a new data set of previously used questions (control points) collected from
NLIA’s labour inspections between 2012 and 2019.

– We present the details for BCBR, which is designed for constructing checklists
based on CBR and Bayesian inference.

– We establish an approach for evaluating the checklists constructed by BCBR.
The framework is then empirically compared to baselines. The results show
that BCBR constructs more efficient checklists than the baselines.

2 Related Work

Hybrid Frameworks Based on CBR and BI. There are multiple examples
of frameworks with combinations of CBR and BI to address uncertainty for
applications where some prior belief or information is available. Such frameworks
also provide explanations, where CBR has been used to achieve explanation
goals [22] (such as transparency and justification) or generate explanations [19].
Nikpour et al.[18] use Bayesian posterior distributions to modify or add features
to input case descriptions to increase accuracy of similarity assessments in case
retrieval. They also use the same approach to provide explanations for case
failures in different domains [17]. This approach is similar to BCBR, but BCBR
constructs new features which are also added to the case base-cases rather than
modifying input cases. Kenny et al. [12] also use a combination of BI and CBR to
exclude outlier cases from case retrieval and to provide explanations by examples.
The purpose of the framework is to predict grass growth for sustainable dairy
farming. Gogineni et al. [9] combines CBR and BI to retrieve and down-select
explanatory cases for underwater mine clearance.
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Similarity Based Retrieval for Trustworthiness. Lee et al. [13] replaced
the output layer of a neural network with k-nearest neighbour (kNN) to generate
voted predictions and find the nearest neighbour cases to explain the predictions.
This also guarantees that every prediction can be justified by a relevant past
explanatory case. The justification via explanatory cases increases the reliability
of the neural network predictions and promotes trustworthiness. BCBR is also
based on the same principle where BI predictions are justified by being embedded
in past cases as features.

Trustworthy Case-Based Recommender Systems. BCBR aims to select a
subset of all possible questions for a new checklist. Similarily, in recommender
systems, a user is recommended a subset of items from the space of all pos-
sible items. Such systems can be divided into two classes: collaborative and
case-based (content or user-based) recommender systems [3], where the latter
approach could relate to our work. The case-based approach has been used to
predict running-paces for different stages in ultra races, based on cases from sim-
ilar runners in past cases [16]. CBR has also been used to provide explanatory
cases for black-box recommender systems to achieve justification [4,10]. Expla-
nations for such systems can also be created through relations between features
(concepts) [11]. However, the quality of explanations for black-box systems in
terms of transparency, interpretability and trustworthiness can still be question-
able [20]. Some authors also suggest to avoid explainable black box models in
cases where they are not needed [21] and to use transparent, interpretable models
for high-stakes decision making [20].

3 Case and Problem Definition

In this section we introduce the formal Table 1. Description of a case in the data
set

Name Description Type

xisc Industry subgroup code Ordinal

xigc Industry group code Ordinal

xic Industry code Ordinal

xiac Industry area code Ordinal

ximac Industry main area code Nominal

xmnr Municipality number Ordinal

xfyl Fylke (county) Nominal

e Question Nominal

l Non-compliance Binary

case and problem definition used for
the rest of the paper.

Data Set and Cases. A data set D
for variables Z is a finite length tuple
where a case dj ∈ D is an instantiation
of Z [6]. A case is a tuple d = (e,x, l)
where e denotes a question from a
checklist, x is an entity and l ∈ {0, 1}
denotes the answer of the question. A
case in the data set is a past experience
where a question e has been applied
to x to obtain the answer l. A case
description is shown in Table 1.
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Fig. 2. Industry and location hier-
archies of an organisation

Entity. Every case d in the data set con-
tains an entity description in the form of an
organisation x, defined by its location and
industry. The features are organised accord-
ing to Fig. 2. An organisation can be implic-
itly defined as x = (xmnr, xisc), since the
other features of x are located higher in the
hierarchies.

Question. Each case in the data set contains
a question (control point) e with a yes/no
answer. The question is used to survey the
entity x in the case. A specific question can
appear in multiple checklists.

Checklist. A checklist y is defined as a set of yes/no questions constituted by
cases in the data set, so that y = (e1 ∈ d1, e2 ∈ d2...end ∈ dnd). A question can
only appear once per checklist such that ei �= ej for every ei ∧ ej ∈ y.

Answer. The label l of a case is the observed answer from applying the question
e to the entity x. The answer l = 1 means that non-compliance has been found,
while l = 0 means that x is compliant.

Fig. 3. An overview of CCP.

The Checklist Construction Problem.
The problem is shown on Fig. 3. Let there be
a set of N unique questions and a new tar-
get entity xcnd. Each question has an unob-
served answer l about xcnd that belongs to an
unknown distribution. Given the N questions,
a model M first needs to correctly estimate
the probability for observing l = 1 for each
question. M then needs to select K unique
questions (e1, e2, ..., eK), with the highest esti-
mated probability, for a candidate checklist ycnd. The goal is to observe as many
l = 1 answers as possible when applying ycnd to xcnd.

4 BCBR Framework

An overview of the BCBR framework is shown in Fig. 4. The motivation for the
framework is to solve the CCP problem while also ensuring that every question
ei ∈ ycnd can be justified by a relevant past experience (see Sect. 5.3). The
framework can be described by the following three steps: (1) A naive Bayesian
inference method is used to generate two probability estimates (θbe

xisc
and θbe

xmnr
)

for every case dj ∈ D. The estimates are generated by counting the cases in
the data set with the same question and entity description as dj . This is done
because many of the cases in the data set contains identical questions and/or
identical target entities. Using Bayesian inference also ensures transparency for
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Fig. 4. An overview of the BCBR framework. The creation of augmented cases and
the case base happens offline. The case base is used for the construction of checklists
in the online-part.

the estimates. (2) A case base CB of augmented CBR cases cj is created. Each
case cj ∈ CB is created by adding both estimates as features to each dj ∈ D. (3)
A query q is defined, which contains a target entity xcnd and target values for
the probability estimates. The query is used to retrieve a selection of K cases
from CB. Each case contains a question ei for the candidate checklist ycnd.

4.1 Bayesian Inference

We use empirical distributions of the data set D to estimate the probability for
observing l = 1, to achieve transparency for the BCBR framework. When prior
knowledge or belief about l is available, BI can be used instead of the standard
maximum likelihood method. An advantage with BI is that it (to some extent)
can be used to address inaccurate empirical estimates caused low or zero case
counts (“Zero count problem”) [6]. The problem may have a negative impact
on the quality of the K answers selected by BCBR. To further deal with this
problem we use Naive Bayesian inference (NBI) which generates two probability
estimates instead of just one. A derivation for this follows below.

Estimating the Empirical Probability for Non-compliance (l). By using
the definitions from Sect. 3, the empirical distribution of the data set D can be
defined as:

θD (α) =
D#(α)

N (1)

where D#(α) is the number of cases in the data set D which satisfy the event α
and N is the number of cases in D [6]. We denote the event L = 1 as observing the
outcome l = 1 and L = 0 for l = 0. From the expression above, the probability
for L = 1 can then be calculated given x and e:

θD (L = 1|α) =
θD (L = 1 ∧ α)

θD (α)
=

D#(L = 1 ∧ X = x ∧ E = e)
D#(X = x ∧ E = e)

(2)

where α = (X = x) ∧ (E = e). That is, the event where the entity description is
given as x and the question is given as e.
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Naive Bayesian Inference for Estimating Empirical Probability (l). The
posterior probability for an event L = 1|α can be expressed as the mean of a
Beta distribution [6]:

θbe(L = 1|α) =
D#(L = 1 ∧ α) + ψL=1|a

D#(L = 1 ∧ α) + ψL=1|a + D#(L = 0 ∧ α) + ψL=0|α
(3)

where ψ is a set of prior belief parameters and where (D#(L = 1 ∧ α) + ψL=1|a)
and (D#(L = 0 ∧ α) + ψL=0|a) are the parameters for a Beta distribution.

From the components xisc and xmnr of x, two NBI probability estimates
θbe

xisc
and θbe

xmnr
can be obtained from Eq. 3 by substituting α: θbe

xisc
= θbe(L =

1|(Xisc = xisc ∧ E = e)) and θbe
xmnr

= θbe(L = 1|(Xmnr = xmnr ∧ E = e)).
Using two probability estimates instead of one is an effective measure against
low case counts because D#(Xisc = xisc ∧ E = e) ≥ D#(X = x ∧ E = e) and
D#(Xmnr = xmnr ∧ E = e) ≥ D#(X = x ∧ E = e). The approach is “naive”
since it assumes that xmnr and xisc are independent given l and e.

4.2 Case Base Creation and CBR Engine

This section defines the details for the Algorithm 1 . Creation of a case
base CB with cases cj

Input: D;
Output: CB ← ();
for each dj ∈ D do

//(xisc,j , xmnr,j , ej) ∈ dj

θbe
xisc

← θbe(L = 1|(xisc,j , ej));
θbe
xmnr

← θbe(L = 1|(xmnr,j , ej));
κxmnr ← D#(L = 1 ∧ Xmnr =

xmnr,j ∧ E = ej);
κxisc ← D#(L = 1 ∧ Xisc =

xisc,j ∧ E = ej);
cj ← Join(dj , θ

be
xmnr

,θbe
xisc

,
κxmnr , κxisc);

CB ← Join(CB, cj);
end for
return CB;

augmented CBR cases, case base and
similarity based retrieval from Fig. 4.

Augmented CBR Case and Case
Base. Algorithm 1 shows the creation
of a case base CB with augmented cases
c. The algorithm includes two additional
features: κxmnr

and κxisc
. The features

are included to adjust for the case counts
of the probability estimates when retriev-
ing cases. The values for the θbe and the
κ-features are estimated from D, given
xmnr,j , xisc,j and ej from dj ∈ D. The
features are added to dj to form a case
cj for CB. An example showing the spe-
cific features of the augmented cases can
be found in Sect. 4.3.

Case Retrieval and Similarity Function. To retrieve questions ei for the
candidate checklist ycnd, a query case q and similarity function is used. The
query consists of the target entity xcnd and the desired values for both the
probability estimates and the case count features. A similarity function assigns
a score Sim(·, ·) ∈ [0, 1] to every pair (q, cj ∈ CB). A set of unique ei for ycnd is
then retrieved from the K cases with the highest similarity score. The similarity
function is defined according to the equation below:

Sim(q, cj) =
1

∑
wi

∑

i

wi · simi(q, cj). (4)
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Where wi is a weight, simi is a local similarity function and i denotes a feature
common to the query and the case. Each local similarity function in Eq. (4),
yields a score [0, 1] for each feature (i) according to the similarity simi(q, cj)
between the cases q and cj . The local similarity functions and the weights are
defined by a domain expert for the purpose of this work (see Sect. 5.1).

4.3 Example: NBI Estimates, Case Retrieval and CBR Case

NBI Estimates. Let xisc = 22.230, xmnr = 1507 be features of an entity
description x and e =“Did the employer make sure to equip all employees who
carry out work at the construction site with a HSE card?” be a question of a case
d ∈ D. The prior parameters are ψL=1|α = 1 and ψL=0|α = 5 because l = 1 is
observed in approximately 1 of 6 cases. Given this information, θbe

xisc
is estimated

by counting cases d in data set D which satisfy Xisc = xisc and E = e. Applying
α = (Xisc = xisc ∧ E = e) to Eq. 3 yields: θbe

xisc
= 1+1

1+2+6 ≈ 22%.
This estimate is more accurate than the empirical probability estimate, which

is θxisc
= 1

1+2 ≈ 33% (Eq. 2). The difference can be explained by low case count,
which affect the quality of both the Bayesian and empirical estimates.

Table 2. Description of case features, sim-
ilarity weights, query and retrieved case for
the example.

Feature w Query 1 Case 1 Query 2 Case 2

xisc 1 22.230 22.230 22.230 22.230

xigc 2 22.23 22.23 22.23 22.23

xic 2 22.2 22.2 22.2 22.2

xiac 2 22 22 22 22

ximac 2 C C C C

xmnr 2 1507 1507 1507 1507

xfyl 2 MoM MoM MoM MoM

l 0 – 0 – 0

e 0 – e1 – e2

θbe
xisc

9 100% 22% – 7%

θbe
xmnr

4 100% 32% – 7%

κxisc
1 70 1 – 0

κxmnr 1 70 89 – 30

Sim – 0.546 – 0.448

The same procedure is used to cal-
culate: θbe

xmnr
= 89+1

89+186+6 ≈ 32%.
In this case the Bayesian estimate is
approximately the same as the empiri-
cal probability estimate, since the case
count is high. The estimates are used
to create an augmented CBR case c.

Case Retrieval and Augmented
CBR Case. For this example we
assume that a case base of CBR cases
has been created and that K = 1, for
the sake of brevity. The case retrieval
starts by defining a query case (Query
1), shown in Table 2. θbe

xisc
and θbe

xmnr

are set to 100%, which is the target
value for the retrieved cases. Both κxisc

and κxmnr
are set to 70 so that case

counts of 70 or higher yield full simi-
larity scores, according to Fig. 5.
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Fig. 5. Local similarity functions.

After applying the simi-
larity function to every pair
(q, c ∈ CB), the top K = 1
case with highest similarity
(Case 1) is retrieved for the
candidate checklist ycnd.

For comparison, we also
define Query 2 in Table 2
where θbe

xisc
, θbe

xmnr
, κxisc

and
κxmnr

are undefined. The
K = 1 case returned from
CB is Case 2. Case 2 fully
matches Query 2 in terms of
x, but θbe

xisc
and θbe

xmnr
sug-

gest that it is unlikely to observe l = 1 when e2 is applied to x. This is expected
because we removed the part of the query that maximizes the probability for
observing l = 1.

5 Experiments

In this section three experiments are presented. In the first experiment a sim-
ple label classification problem is introduced to establish a starting point for
comparing ML methods as baselines for the labour inspection CCP. The second
experiment aims to measure the justification of checklists constructed by BCBR
and the two best-performing baselines from the first experiment. The third exper-
iment aims to measure the performance of BCBR against the baselines from the
second experiment.

5.1 Experimental Setup

Measure of Justification. We introduce Eq. 5 to measure the justification
(J ∈ [0, 100%]) of a checklist y for a given entity x, according to the proportion
of questions ei ∈ y which also exist in past cases (ei,x, ·) ∈ D.

J(y,x,D) =
|{ei ∈ y : (ei,x, ·) ∈ D}|

|{ei ∈ y}| (5)

The expression can be seen as an adaptation of Massie alignment score [14] that
measures the percentage of questions ei ∈ y with full alignment to the nearest
neighbour case in D.

BCBR Configuration. For the experiments, BCBR uses the same configura-
tion as in Sect. 4.3. The only difference is that K = 15 is used instead of K = 1,
so that the constructed checklists consist of 15 questions.

The weights and local similarity functions are set based on domain knowledge
and are shown in Table 2 and Fig. 5 respectively. The weights are set according
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to the importance of each feature, while the similarity functions are defined
to model the similarity according to the hierarchical relationship between the
ordinal features of the entity x (see Sect. 3). For the other features not shown in
Fig. 5, the default option in the myCBR tool is used to define the local similarity
functions.

Baselines for the Experiments. The baseline methods used for the experi-
ments are: CBR (CBR-BL), Logistic Regression (LR), Decision tree (DT) and
Naive Bayes classifier (NBC), Conditional probability estimates (CP), Bayesian
inference (BI), Naive conditional probability (NCP) and NBI.

CBR-BL generates predictions from the label of the closest neighbour case
in the training data. CP generates predictions for any pair (e,x) according to
Eq. 2. BI uses Eq. 3 with ψL=1|α = 1, ψL=0|α = 5 and α = (X = x∧E = e). NCP
is based on Eq. 2 and is defined as: θ (L = 1|e,x) = θxisc

+θxmnr

2 . The baseline
NBI estimates are calculated using ψL=1|α = 1 and ψL=0|α = 5 according to:

θ (L = 1|e,x) =
θbe
xisc

+θbe
xmnr

2 .

Environment. A Dell XPS 9570 with Intel i9 8950hk, 32 GB RAM and Win-
dows 10 were used for the experiments. Every experiment is conducted in a
Python environment using Jupyter Notebook. NBI for BCBR, NBI, BI, CP and
NCP are implemented as MSSQL17 queries via PYODBC. The similarity based
retrieval for BCBR and CBR-BL are implemented via MyCBR [1]. The rest of
the methods are implemented via Scikit-learn 0.24.

Data Set. For the experiments we introduce a new data set of questions used in
previous inspections conducted by NLIA.3 The data set is denoted as D for the
rest of this section and consists of 1,111,502 entries from inspections conducted
between 01/01/2012 and 01/06/2019. Embedded in these entries are N = 1, 967
unique questions from checklists used in 59,988 inspections. Each entry (case)
in D is also associated with an id4 which maps to a checklist y (past solution)
used to survey the organisation x in one of the 59,988 inspections within D.

5.2 Experiment 1: Answer Classification Performance (Baselines)

The goal of this experiment is to compare ML methods and select two of the best
as baselines for the labour inspection CCP. Because CCP is a complex problem,
we here study a new, simple classification problem as a stepping stone.

The Answer Classification Problem. Let each dj ∈ D be a case with a
two-class ground truth label lj . A model M is trained on the cases in D. For
any new case d = (e,x, l) where l = 0 (compliance) or l = 1 (non-compliance),
the problem goal is for M to correctly classify the value of l based on (e,x).

Method. Each model is validated on the data set D, using 8-fold cross validation
with the same partitioning of data for every model. Each model M outputs a

3 The data set is available at https://dx.doi.org/10.21227/m1t7-hg51.
4 The id is a “key” for identifying a past checklist/organisation pair (value) in D.

https://dx.doi.org/10.21227/m1t7-hg51
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class prediction score for every (e,x). Thus, the classification threshold is set to
the median of M’s scores for each validation fold. The results are measured in
terms of accuracy, precision and recall which are calculated for per validation
fold: Acc = TP+TN

TP+FP+TN+FN , Prec = TP
TP+FP and Rec = TP

TP+FN .

Table 3. Results from the experiment.
Time is measured in seconds per valida-
tion fold.

Method Acc Prec Rec Avg Time

CBR-BL 0.677 0.178 0.246 0.367 60238

Random 0.500 0.161 0.500 0.387 –

CP 0.680 0.210 0.357 0.416 3.84

BI 0.760 0.270 0.288 0.439 3.89

DT 0.644 0.233 0.529 0.469 122.6

NCP 0.592 0.250 0.761 0.534 9.0

NBC 0.588 0.251 0.778 0.539 67.33

LR 0.591 0.252 0.782 0.542 68.4

NBI 0.605 0.261 0.790 0.552 10.4

Results and Discussion. The results
are shown in Table 3 where the base-
lines are sorted according to Avg,
which is the average score of the pre-
ceding columns. In terms of the Avg-
score NBI performs better then stan-
dard ML methods such as LR, DT and
NBC. NBI also has the best recall and
an average runtime of 10.4 s per vali-
dation fold, which is significantly less
than NBC, DT, LR and CBR-BL. BI
has the best performance in terms of
accuracy and precision, but it also has
poor recall which results in a low aver-
age score. The worst performing method was CBR-BL where the size of the
training data was reduced to 100,000 cases due to long running time.

The results indicate that NBI yields the best average performance, which
motivates us to combine NBI with CBR. LR, NBC and NCP also perform well,
but we select NBI and LR as baselines for the next experiments. A limitation
for this experiment is that it cannot be used to evaluate BCBR, as BCBR is
designed for CCP and not ACP.

5.3 Experiment 2: Trustworthiness of Constructed Checklists

The goal of this experiment is to measure justification of constructed checklists
ycnd for the CCP. This is done by measuring the average proportion of questions
ei ∈ ycnd which are justified by past cases. The experiment is based on Lee et al.’s
use of past cases to justify predictions and promote trust [13]. The experiment
is conducted on checklists constructed by BCBR and two of the baselines from
Sect. 5.2, NBI and LR.

Method. Each model M is trained on the data set D containing 1,111,502
entries. An evaluation data set DV of 59,988 tuples (xcnd,y) of past
entity/checklist pairs is created using every unique id from D. For each xcnd ∈
DV , M constructs a checklist ycnd for xcnd as following depending on the model
in question. For M = NBI or M = LR: M generates a prediction score for
every unique ej ∈ D. The K = 15 questions with the highest prediction scores
are selected as the candidate checklist ycnd for xcnd. For M = BCBR: a query
containing xcnd is defined to retrieve past cases, containing K = 15 unique
questions for ycnd.

Each ycnd constructed by one of the models M then forms an evaluation pair
(ycnd,xcnd) with each corresponding xcnd from DV . Based on Eq. 5, the average
justification (JM) for every pair (ycnd,xcnd) given M is:
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JM(D,DV ) =

∑
(ycnd,xcnd) J(ycnd,xcnd,D)

|DV | (6)

JM measures the average percentage of questions ei ∈ ycnd where at least one
corresponding explanatory case (ei,xcnd, ·) exists in D. The purpose of the JM
score is to enable a fair comparison between the three models. A higher relative
score means higher justification of the checklists constructed by M.

Results and Discussion. The results are: JNBI = 0.6%, JLR = 4.8% and
JBCBR = 64%. This suggests that both LR and NBI perform poorly in terms of
justification of their constructed checklists. Qualitative assessments of some of
the checklists also reveal that many of their questions (ei ∈ ycnd) are unrelated to
and incompatible with the target entities. Because of the incompatibility issues
and that less than 5% of the items on the checklists are justified, LR and NBI are
not trustworthy. BCBR scored 64% which is significantly higher. Incompatible
questions also seam to appear less frequently in BCBR’s checklists.

5.4 Experiment 3: Evaluation of Constructed Checklists

The goal of this experiment is to evaluate the performance of the BCBR frame-
work against LR, NBI and the original past checklists from the data set. Since
BCBR uses similarity based retrieval, NBI and LR serve as non-similarity based
baselines to compare with. Due to the results in Sect. 5.3, a filter is applied to
both LR and NBI to ensure that every checklist can be justified by past cases.
This is necessary for the evaluation procedure, as it assumes that the questions
on the checklists can be justified by past similar cases.

Method. The evaluation approach is done on the data set D which contains
1,111,502 entries. The approach can be summarized as following: The data set
D is partitioned into a training fold (DT ) and validation fold (DCB), where the
training fold is used to calculate probability estimates for the validation cases.
The validation fold is used as the case base and for performance evaluation. A
model M is trained on DT and the evaluation is done on every checklist ycnd

constructed by M.
A problem with the validation is that since every ycnd is a new checklist,

the ground truths l needed to evaluate ycnd can be missing. A common solution
to this problem is to collect the ground truth empirically [23], but this is not
an option for us. To get a meaningful validation result, the performance statis-
tics for the evaluation need to be estimated. To accomplish this, the following
assumption is made: Let dcnd = (−,xcnd,−) be a case without question com-
ponent or observed ground truth answer and d = (e,x, l) be any validation case
with ground truth. If xcnd and x are content-wise equal or similar, we assume
that the unobserved ground truth answer lcnd from applying e to xcnd is cor-
rectly estimated from an empirical distribution of l, conditioned on x, e and the
validation data fold. This is based on the assumption that similar problems have
similar solutions [15].
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Based on the assumption, we introduce the following procedure to estimate
accuracy (Acc), precision (Prec)5 and recall (Rec) for every model M.

1. Let DT be the training fold and DCB be both the validation fold and case
base(for BCBR). Let DV be a set of past entity/checklist pairs (xcnd,y) from
DCB, created using every unique id in DCB. A model M is trained on DT .

2. For every xcnd ∈ DV , M selects K unique questions (ei) for a checklist ycnd

to form a validation pair (xcnd,ycnd). The questions are selected from DCB.
3. For each pair (xcnd,ycnd) the number of true positives (TP ), false positives

(FP ), true negatives (TN) and false negatives (FN) are estimated by evalu-
ating each ei ∈ ycnd(predicted positives) and ej /∈ ycnd(predicted negatives).

4. For every question ei ∈ ycnd, both TPei
and FPei

are estimated using
the following function: f(l,x0, ei) = DCB#(L=l∧X=x0∧E=ei)

DCB#(X=x0∧E=ei)
, so that TPei

=
f(1,x0, ei) and FPei

= f(0,x0, ei). If DCB#(X = xcnd ∧ E = ei) > 0, then
x0 = xcnd is applied to f . If DCB#(X = xcnd ∧ E = ei) = 0, then x0 = xi

from the case (ei,xi, li), retrieved by BCBR6 for ycnd, is used because there
is no data to evaluate (ei,xcnd). Each TPei

and FPei
is assigned a value

v ∈ [0, 1] via f so that TPei
= 1 − FPei

.
5. For every unique question ej /∈ ycnd in DCB, both TNej

and FNej
are esti-

mated using the function: g(l, ej /∈ ycnd) = DCB#(L=l∧X=xcnd∧E=ej)
DCB#(X=xcnd∧E=ej)

. The
function is used to obtain TNej

= g(0, ej) and FNej
= g(1, ej), so that each

TNej
and FNej

receives a value of v ∈ [0, 1] and that TNej
= 1 − FNej

.
6. TP , FP , FN and TN for each candidate checklist ycnd ∈ (xcnd,ycnd) are

calculated as following: TP =
∑

ei
TPei

, FP =
∑

ei
FPei

, TN =
∑

ej
TNej

and FN =
∑

ej
FNej

for every unique ei ∈ ycnd and ej /∈ ycnd from DCB.
7. Statistics are then calculated for each ycnd: Accycnd = TP+TN

TP+FP+TN+FN ,
Precycnd = TP

TP+FP and Recycnd = TP
TP+FN . Repeat from Step 2 until every

pair (xcnd,ycnd) is evaluated.
8. The average Acc, Prec and Rec of every checklist ycnd constructed by M is:

Acc =
∑

ycnd Acc
ycnd

|DV | , Prec =
∑

ycnd Prec
ycnd

|DV | and Rec =
∑

ycnd Rec
ycnd

|DV | .

The procedure is used to evaluate BCBR and the other baselines. To evaluate
the original checklists, the procedure is applied to the past checklists in the
validation fold so that ycnd = y for y ∈ DV in Step 2. Step 2 for NBI and LR
is done by generating predictions for every unique question (see Sect. 5.3). Then
a filter is applied after prediction and before the selection of the questions for
ycnd. The filter excludes any question (e) from selection if (e,xcnd, ·) /∈ DCB.
This means that every ei ∈ ycnd is justified by a past case so that JNBI and
JLR is 100% (Eq. 6). The filter is necessary for the evaluation to ensure that NBI
and LR construct checklists that satisfy the assumption above. The models use
K = 15 and are validated using 4,8 and 16-fold cross validation.

5 An additional statistic Prec(gt) is included, which is precision calculated (step 4–8)
using only ei ∈ {ycnd ∩ y} from cases containing the original ground truth labels.

6 The condition DCB#(X = xcnd ∧ E = ei) = 0 only occurs if BCBR is used.



Bayesian Feature Construction for Case-Based Reasoning 107

Table 4. 8 fold cross validation results of
the constructed vs. the original checklists
(Org. CL).

Method Acc Prec (gt) Prec Rec Avg

Org. CL 0.337 0.170 0.181 0.622 0.328

LR 0.484 0.226 0.267 0.694 0.418

NBI 0.486 0.229 0.270 0.698 0.421

BCBR 0.574 0.259 0.343 0.718 0.474

Results and Discussion. The res-
ults are shown in Table 4. The Avg
column shows the average of the
four preceding columns, where the
results suggest that the checklists con-
structed by NBI, LR and BCBR are
more effective than the original check-
lists. BCBR scores 0.474 which is
significantly higher than the original
checklists and also higher than NBI and LR. Figure 6 shows the results for dif-
ferent numbers of validation folds. The figure suggests that BCBR consistently
outperforms NBI and LR in accuracy and precision. Also, both accuracy and
precision statistics tend to increase with the size of the validation data sets. We
believe this is caused by the fact that TP and TN increases compared to FP and
FN as the quality of the retrieved questions increases when more cases are avail-
able. Recall also decreases with the size of the validation data sets as the number
of predicted positives is fixed (K = 15), which entails that FN increases more
than TP when the size of the validation set increases. The experiment suggests
that BCBR is more effective for constructing checklists than LR or NBI.

Fig. 6. Crossvalidation results for different validation fold sizes

A limitation of this experiment is that the results are based on estimates
of Acc, Prec and Rec. For CBR frameworks, the validity of the evaluation
results partially depends on high similarity between the x-part of the query
and retrieved cases. This could be problematic when evaluating and comparing
multiple CBR-based frameworks and should be investigated in future work.

6 Conclusion

In this paper we studied the problem of constructing checklists for safety criti-
cal applications, in particular labour inspections where constructing good high-
performance checklists manually is difficult. Thus, we proposed the CCP where
we consider the automatic construction of good, justifiable checklists. To address
the CCP we introduced BCBR, which uses naive BI to construct features in CBR
cases for retrieving questions for the checklists. We conducted three experiments
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on a data set of past labour inspections, which we introduced for the paper.
Because CCP is a fairly complex problem, we conducted our first experiment
on a simple answer classification problem. The goal of the experiment was to
select two baselines for CCP, which was NBI and LR. In the second experiment
we measured the justification of the checklist constructed by BCBR, NBI and
LR, where we found that only BCBR constructs checklists which are justified by
past cases. Another conclusion from the experiment is that questions selected
for the constructed checklists should be justified in terms of prior use in similar
entities, because some questions may be closely related to the entities that they
originally were designed for. The results from the last experiment also suggest
that BCBR is the most effective method for constructing checklists to address
poor working conditions in inspected organisations. The checklists constructed
by BCBR also perform significantly better than the original checklists.

One of the things that could be addressed in future work is solution adapta-
tion, such as adapting questions after they have been retrieved for a checklist.
Another option is to explore data-driven approaches to derive the weights and
local functions for BCBR. It could also be interesting to see how BCBR perform
in other CCPs such as surgery or preflight checklists.
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Abstract. A dichotomous Case-Based Reasoning (CBR) model is one in
which two kinds of reasoning mechanisms are employed; these may be for
realizing fast and slow problem-solving as demanded by the nature of the
incoming query. Such dichotomous operation is inspired by Daniel Kah-
neman’s seminal work on the two modes of thinking observed in humans.
In this paper, we present the following three directions of refinement for
a dichotomous CBR model: selection of attributes for a fast thinking
model based on parsimonious CBR, switching from fast to slow thinking
based on constraints derived from domain knowledge and arriving at a
complexity measure for evaluating dichotomous models. For all the three
improvements identified, we discuss the results on real-world data sets
and empirically analyse the effectiveness of the same.

Keywords: Fast and slow thinking · Dichotomous CBR models ·
Cognitive CBR

1 Introduction

Case-Based Reasoning (CBR) is based on the idea of experiential problem solv-
ing, the idea that past problem solving experiences can be reused to solve new
problems. CBR has found interesting applications in several real world tasks in
domains such as diagnostics, planning, design and configuration [13]. However, it
is indeed paradoxical that while CBR was inspired initially by models of human
problem solving, many practical CBR realizations have made design choices
that considerably compromised on CBR’s cognitive appeal. In this paper, we
attempt to explore avenues to realize CBR in ways that can mirror the dichotomy
between slow and fast thinking, as elucidated in Daniel Kahneman’s seminal
work “Thinking, Fast and Slow” [10]. This paper reports follow-up work based
on our earlier recent work [12], which introduced the possibility of realizing Kah-
neman’s ideas within the CBR paradigm.

Kahneman’s central thesis is that human cognition operates in two modes:
(a) fast thinking, which is quick, intuitive and largely involuntary, and (b) slow
thinking, which is deliberate, effortful and often involves complex computations.
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Kahneman identifies two systems corresponding to these two modalities, which
he calls System 1 and System 2, respectively. These two systems are merely con-
ceptual abstractions and do not imply any physiological or biological separation
within the brain. It is tempting to realize these two modalities in the CBR con-
text since we often encounter applications where we would like a CBR system
to effectively trade-off effectiveness for time efficiency or vice versa. This can
be achieved by a CBR system that uses the fast thinking mode to solve a vast
majority of queries (target problems), and switches over to slow thinking, only
if it recognizes the target problem as hard. This raises two central questions:
(a) On what dimensions are slow and fast thinking mechanisms different? (b)
On what basis would we judge a target problem to be solvable by fast think-
ing, and what are the mechanisms of switching from fast to slow thinking? With
respect to the first question, [12] presents two different schemes: the first in which
fast thinking uses a subset of features used by slow thinking, and the second in
which slow thinking makes use of time-consuming adaptation processes, which
fast thinking does away with. With respect to the second question, a couple of
switching strategies are presented in [12], details of which are outlined in the
next section.

Despite making preliminary attempts to realize slow and fast thinking within
CBR, several important questions remained unaddressed in [12]. This paper is
aimed at identifying and addressing three of these gaps. Firstly, in a mechanism
where fast thinking uses a subset of the attributes used in slow thinking, we
need a principled approach to decide on feature selection. This is clearly an
optimization problem, and the objective function is decided by the nature of
trade-offs required in the domain of interest. We formalize the problem and
report empirical findings in a general setting where similarity estimation over
different features have different time requirements, and relative importances to
effectiveness and time efficiency can be flexibly tuned. Our second contribution
is motivated by the observation that a student solving a high school problem
in physics based on reusing his experience in solving similar problems in the
past often realizes that he made a mistake when he observes that his solution
fails to satisfy the constraints as demanded by the laws of physics. Thus domain
constraints play an important role in effecting the switching from fast to slow
thinking. We present novel CBR realizations that are inspired by this idea. The
third contribution of the current work is to present a principled approach to
quantify the tradeoff between effectiveness and efficiency in a CBR realization
of the fast-slow dichotomy. Such a quantification also allows us to have a-priori
insights on how the nature of the domain influences the design choices of a CBR
system that trades off speed for accuracy or vice versa. The structure of the
paper is as follows.

We present a brief background and an overview of related works in this area
in Sect. 2. Sections 3, 4 and 5 present our central contributions, as outlined above,
along with a critical analysis of empirical findings. Section 6 presents potential
extensions of the work and summarizes its key contributions.
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2 Background

Looking at the picture of an angry face, we instinctively and involuntarily seem
to relate to the emotion expressed in the picture. In contrast, the problem of mul-
tiplying two three-digit numbers needs slow and deliberate effort. Kahneman’s
work discriminates between these two approaches of problem solving, calling
them fast and slow thinking, respectively. It often happens that both modes of
operation are at work in the same task. Given a chessboard setting, fast think-
ing may instinctively suggest a move, which in hindsight appears to be a wrong
one, and hence slow thinking based on more elaborate cost-benefit analysis is
called into action. Similarly, while solving a numerical physics problem, one may
be tempted to reuse the steps in a set of problems solved previously, which on-
the-surface appear to be similar, though more careful inspection reveals subtle
differences that require one to revisit first principles and work from scratch. Thus,
one central role of slow thinking is often to correct errors made in fast thinking.
Kahneman demonstrates this tension between two aspects of our cognition: the
availability heuristic, which is a cognitive bias that refers to our propensity to
solve a complex problem by quickly reusing the solution of what appears to be
a simple, more familiar problem, and metacognition, the ability to reason about
our thinking processes and thus correct failures.

To the best of our knowledge, Craw and Aamodt [4] make the first effort
to build a bridge between the dichotomous cognitive mechanisms in Kahne-
man’s work and CBR. The central observation in [4] is that fast thinking can
be realized in settings where the knowledge of similarity is straightforward and
similar problems are likely to have similar solutions. In contrast, slow think-
ing may be necessitated when retrieved neighbours have conflicting solutions,
and hence more complicated retrieval mechanisms or adaptation knowledge may
be involved. Kannengiesser and Gero [11] have used the dual System theory
proposed by Kahneman in case-based design task. Case-based design has the
following phases: problem anticipation, search, match, retrieve, select, modify
and repair, where each phase involves either System 1 or System 2 operations.
Plaza and Aamodt [1] discussed about using Kahneman’s dual system model
in an integrated view of CBR encompassing both data-driven and knowledge-
intensive processes. They have suggested that System 1 which is associative can
involve data-driven approaches like deep learning.

We have seen in the earlier section that realizing the fast-slow dichotomy
within CBR involves identifying the mechanisms that separate the two modali-
ties, as also the criteria for switching from fast to slow, given a target problem.
Our earlier work [12] presents three distinct models, referred to as Models 1, 2
and 3, which differ with respect to each other in terms of the mechanisms to
realize fast and slow thinking. Two distinct approaches for switching from fast
to slow thinking were also presented. We summarize the key ideas below.

Let us consider a classification problem. Model 1 uses a standard model-based
Machine Learner like Support Vector Machine (SVM) to realize the fast thinking
module. Classifiers like SVM output a score corresponding to the confidence of
the classification. If the confidence is low, the system switches to slow think-
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ing where a slower instance-based learner like a CBR system solves the target
problem. Unlike Model 1, Model 2 uses CBR for both slow and fast thinking,
except that in the fast thinking mode, the CBR system uses only a subset of
the entire set of features used in the slow thinking mode, for similarity estima-
tion purposes. Model 3 too uses CBR for realizing both fast and slow thinking,
but here slow thinking makes use of adaptation, while fast thinking publishes
its result without adaptation. Lets us now turn our attention to the switching
mechanisms presented in [12]. The first mechanism, called tag-based switching,
involves examining each case in the case base and tagging it as simple/FT or
complex/ST , based on the nature of its neighbourhood. If the class label (solu-
tion) of a case is largely in agreement with those of its neighbours, it is tagged
simple; otherwise, it is labelled complex. Given a target case, a decision is made
to switch from fast thinking to slow thinking if many of the neighbours of the
target case are tagged as complex. This is justified, since in such cases, the
solutions of the neighbours are likely to be poorly indicative of the true target
case solution, and hence additional evidence is needed to arrive at a confident
prediction. A second switching mechanism called oracle-based switching is also
presented in [12], which is based on partial feedback from an expert on the solu-
tion generated by the fast thinking module. In particular, an expert can declare
whether the solution is correct or not without giving the true solution; if the
solution is incorrect, the system switches to slow thinking.

In the current work, we confine our attention to realizations where both the
fast and slow thinking modules are implemented using CBR. In particular, we
choose Model 2 as the basis of our research. The current work is based on the
observation that several questions needed to be answered in the earlier work
[12], in order to make it more rigorous. For one, the mathematical premise for
choosing a subset of features from the entire pool for fast thinking in Model 2
remained unclear. We show how this can be cast as an optimization problem that
can be solved under diverse criteria pertaining to diverse similarity estimation
time requirements across different features, and also the nature of effectiveness
v/s time efficiency trade-offs required in the domain of interest. Secondly, we
address the need of a principled study based on quantifying the gains achieved
by splitting a CBR system between fast and slow thinking modalities. In some
domains, the gains are expected to be higher than in some others. We gener-
alize the basic idea of footprint-based competence models [16], and empirically
demonstrate the advantages of this conceptual extension in facilitating a system-
atic study in this context. In addition to these contributions, we focus purely
on the tag-based switching mechanism, while also presenting a novel mecha-
nism called constraint-based switching inspired by Kahneman’s original work.
The broad idea is to trigger a shift from fast to slow thinking when the system
realizes that the solution generated by the fast thinking module fails to comply
with certain underlying domain constraints.

Though the work presented in this paper has very little overlap with past
work in terms of its specific goals and contributions, it may be worth highlight-
ing a few other efforts to strike a trade-off between effectiveness of retrieval
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and time efficiency in CBR, and in the wider Machine Learning context. Dileep
and Chakraborti [5] presented an approach where text classification, instead of
treating each test document uniformly, resorted to fast classification in case the
title or some noteworthy features were reckoned to be adequately indicative of
the category label, and fell back to more elaborate slow thinking mechanisms
only on demand. [7] is one of the earliest works in the CBR community, where
retrieval failures trigger introspective reasoning processes, which in turn are used
to refine indices in a CBR planner. Another interesting work is that on anytime
algorithms [17], which are designed with the goal of giving increasingly better
results when allowed more computation time.

3 Feature Selection

We now consider a feature selection problem which is targeted towards improving
the fast response process, within the ‘fast and slow thinking’ dichotomy.

3.1 Feature Selection for Parsimonious Search

Looking back at [12], it may be seen that the two systems (System 1 and System
2) in Model 2 differ based on the sufficiency and insufficiency of a small subset
of attributes in solving the task. In other words, if a small subset of features are
sufficient to solve a problem, it gets assigned the “FT tag”, which indicates that
the problem can be solved using fast thinking. This leads us to a natural question:
how do we choose a small subset of features to instantiate the parsimonious
search in Model 2? Towards addressing this question, we may observe two key
aspects relating to the choice of features:

– Similarity computation over the chosen subset of features should be fast.
– The similarity space over the chosen subset of features should be meaningful

for problem solving.

First, one may observe that different features differ in the computation that
would be incurred for estimating similarities. As an example, numeric attributes
lead to fast similarity computation since numeric comparisons could be real-
ized using swift bit-wise operations. On the other hand, similarities between
text attributes and set-valued attributes call for costly operations such as sub-
sequence finding and set intersection computation. Thus, posed with two features
that are equally relevant for problem solving, we may intuitively choose the fea-
ture whose similarity computation is relatively lighter computationally. Second,
features may differ in the amount of utility towards solving a problem. Consider
the scenario of estimating the chances of an individual’s risk of fatal outcome
if she were to contract COVID-19. Features relating to the past history of res-
piratory diseases would be considered far more relevant than, say, an attribute
such as gender. Thus, even when comparing respiratory disease histories may be
more onerous computationally, we may choose to include it in preference to the
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gender attribute. In simple terms, people who are similar in their respiratory
disease histories may have similar COVID-19 risks as compared to people with
similar gender. To summarize, the set of features to be chosen for the parsimo-
nious search depends on two criteria; that of computational load in estimating
similarities, and problem solving utility.

3.2 Modelling Desirability of Feature Sets

In the feature selection approach we will describe, we will use case base alignment
as a measure of problem solving utility. Given a set of chosen features, case base
alignment measures the extent to which the maxim of similar problems lead to
similar solutions holds within the similarity space defined by the chosen features.
In our model, we use a popular case base alignment measure i.e. alignCorr [14]
which considers the correlation between the problem similarities, and the solution
similarities of cases, as a measure of alignment.

Our desirability objective for a set of features F , is modelled as the following:

D(F ) =

(
Alignment(X,F )

)α

(
k × ∑

f∈F t(f)
)1−α (1)

F ∗ = arg max
F ′⊆F

D(F ′) (2)

where, F is the set containing all the features.
In other words, the task is to choose a subset of features, F ∗ from F , balanc-

ing between the need for higher alignment and the need for fast computation.
Alignment(X,F ) denotes the case base alignment of the case base X as mea-
sures over the feature set F . Each feature, f , also has a computation time, t(f).
The cumulative computation time appears in the denominator of Eq. 1 and is
weighted by a weighting parameter k. The parameter α controls the relative
importance of the alignment and computation time considerations. For higher
values of α, the discovered subsets would be better in terms of alignment, and
vice versa for smaller values of α. To put it another way, for scenarios where
real-time responses are desired, α may be set to a very low value. F ∗, as may
be obvious by now, denotes the ideal choice of features based on our modelling
of the objective.

3.3 Brute Force Approach

The simplest possibility of identifying the optimal desirability feature subset
would be to inspect all possible non-empty feature subsets of F , where F is the
set containing all the features. This very simple but computationally expensive
approach can be summarized in the procedural steps below:

– F = φ, V = 0
– ∀F ′ ∈ PowerSet(F)
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• V al(F ′) = D(F ′)
• if(V al(F ′) > V )

∗ F = F ′

∗ V = V al(F ′)
– return F as F ∗

PowerSet(F) contains all possible non-empty feature subsets of F . The
above procedure leads to an expensive computation since the number of ele-
ments in PowerSet(F) would be in O(2|F|). However, this process, by design,
would be able to always identify the optimal desirability feature subset since all
subsets are being evaluated.

3.4 Greedy Approach

The greedy approach reins in the computational load by channelizing the search
towards certain candidates based on an estimated likelihood of them leading to
desirable feature subsets. The procedural steps are outlined below:

– F = F , V = D(F)
– while (F �= φ)

• F ′ = arg maxf∈F D(F − {f})
• if(D(F ′) > V )

∗ F = F ′

∗ V = D(F ′)
– return F as F ∗

This greedy approach starts with all the features as among the chosen fea-
tures. This is followed by progressively dropping the feature that leads to the
smallest drop in desirability, until all features are exhausted. This search exclud-
ing one feature at a time could miss the optimal F ∗ if it doesn’t fall within
that search path, but the heuristic search ensures that such misses are not very
likely. In return for such approximation, the greedy search is able to achieve a
quadratic response time, i.e., in O(|F|2), a massive improvement from the brute
force method which was in O(2|F|).

3.5 Experimental Analysis

Experimental Setup: In Model 2 mentioned in Sect. 2 we need to select fea-
tures for System 1, such that it has high global alignment and the response
time for a given query is less. We have experimented to solve the optimization
problem given in Eq. 1 using Greedy approach with two datasets i.e. AutoMPG
Dataset (AMPG) [6] and Pima Indians Diabetes Dataset (PID) [15] with 399
and 768 instances respectively and 8 features each. We have observed that the
time taken for similarity computation by each attribute is almost the same for
both datasets. Therefore, we have also experimented by externally modifying the
time vector t to study how the results differ when the most important attributes
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take more time than other attributes. We expect that for smaller α values where
the time factor is given more importance, the time consuming features must be
neglected in the System 1 feature set. Whereas these features can be included
for high values of α since the weightage for alignment will be more.

Experimental Results: Table 1 and Table 2 show the results for the AMPG
and PID datasets respectively where the selected (and not selected) features
are reported in the form of binary vectors. For example, the binary vector
[0, 0, 0, 1, 0, 0, 0] indicates that only the fourth feature was chosen, while all other
features were discarded. The timing for similarity computation is also repre-
sented using a similar vector of length 8; for example, [1, 1, 1, 10, 1, 1, 1, 1] denotes
that t(f) for the fourth feature is 10 whereas for all other features, it is 1. This
suggests that computing similarities for the fourth feature would be ten times
as expensive as computing it over the other features. Tables 1 and 2 show the
results for varying values of α. For lower α (i.e., closer to 0 given that α ∈ [0, 1]),
we would expect that the computation time of feature are given primacy; on
the other hand, for α closer to 1.0, even computationally costly features may be
selected if they help improve case base alignment. In Table 1, moving from left
to right, we are increasing the timing for features progressively; for example, the
second column has t(f4) = 10, whereas for the third and fourth columns, t(f2)
and t(f1) are additionally set to 10 respectively. From the first column, where
the favorite choice seems to be the choice of f4. When t(f4) is set to 10 for the
second column, the choice is seen to shift to f2. For α = 0.93, the choice with
uniform timing vector is {f4}; however, when f4 is made a costly feature in the
second column, observe that the method is forced to choose multiple features
to heed to the high impetus on case alignment (since α = 0.93) in order to
compensate for the inability to choose the best feature. This shows a meaningful
movement of choices based on how the computational expense can be traded off
for problem solving utility as measured using case base alignment. Similar trends
are observed in Table 2 for the PID dataset also, where the choice of desirable
features shift away from computationally expensive features with higher settings
of α. Figure 1 shows the tradeoff between the α and global alignment value [14]
of System 1 with respect to the selected features.

4 Constraint-Based Switching

In our earlier work [12], we proposed various switching techniques to switch
from System 1 to System 2. In the context of Model 2, having parsimonious
CBR as fast thinking, the switching strategies are briefly described as follows:
(a) Oracle-based switching, which involves a partial feedback given by an expert
or an oracle. The partial feedback is such that the reasoner is informed whether
the System 1 solution is correct or incorrect. (b) Tag-based switching is mainly
proposed for the classification setting. It involves tagging all the cases in the
case-base as FT , ST or N . Given a case base, each case C in the case base is
solved using a leave one out simulation. If C can be successfully solved using
fast thinking, it is tagged as FT . Otherwise, it is tagged as ST , indicating that
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Table 1. Results for AutoMPG Dataset for various timing vectors

α value Timing vectors, t

[1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 10, 1, 1, 1, 1] [1, 10, 1, 10, 1, 1, 1, 1] [10, 10, 1, 10, 1, 1, 1, 1]

0.1 [0, 0, 0, 1, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0]

0.5 [0, 0, 0, 1, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0]

0.8 [0, 0, 0, 1, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 1, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0]

0.9 [0, 0, 0, 1, 0, 0, 0, 0] [0, 1, 0, 0, 0, 1, 0, 0] [1, 0, 1, 0, 0, 1, 0, 0] [0, 0, 1, 1, 0, 1, 0, 0]

0.93 [0, 0, 0, 1, 0, 0, 0, 0] [1, 1, 1, 0, 0, 1, 1, 0] [1, 0, 1, 0, 0, 1, 0, 0] [0, 0, 1, 1, 0, 1, 0, 0]

0.94 [0, 0, 0, 1, 0, 0, 0, 0] [1, 1, 1, 0, 0, 1, 1, 0] [1, 0, 1, 0, 0, 1, 1, 0] [0, 0, 1, 1, 0, 1, 0, 0]

0.95 [0, 0, 1, 1, 0, 1, 0, 0] [1, 1, 1, 0, 0, 1, 1, 0] [1, 0, 1, 1, 0, 1, 1, 0] [0, 0, 1, 1, 0, 1, 0, 0]

0.99 [1, 1, 1, 1, 1, 1, 1, 0] [1, 1, 1, 1, 1, 1, 1, 0] [1, 1, 1, 1, 1, 1, 1, 0] [1, 1, 1, 1, 1, 1, 1, 0]

Table 2. Results for Pima Diabetes Dataset for various timing vectors

α value Timing vectors, t

[1, 1, 1, 1, 1, 1, 1, 1] [1, 100, 1, 1, 1, 1, 1, 1] [100, 100, 1, 1, 1, 1, 1, 1] [100, 100, 1, 1, 1, 1, 1, 100]

0.1 [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 1, 0, 0, 0]

0.5 [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 1, 0, 0, 0]

0.7 [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1] [0, 0, 0, 0, 1, 1, 0, 0]

0.85 [0, 1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 1, 1, 1, 1] [0, 1, 0, 0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 0, 0]

0.9 [1, 1, 0, 0, 0, 0, 0, 0] [1, 1, 0, 0, 0, 1, 1, 0] [0, 1, 0, 0, 0, 1, 0, 0] [0, 1, 0, 0, 0, 1, 0, 0]

0.95 [1, 1, 0, 0, 0, 0, 0, 0] [1, 1, 0, 0, 0, 1, 1, 0] [1, 1, 0, 0, 0, 1, 1, 0] [1, 1, 0, 0, 0, 1, 1, 0]

0.99 [1, 1, 0, 0, 0, 1, 1, 0] [1, 1, 0, 0, 0, 1, 1, 0] [1, 1, 0, 0, 0, 1, 1, 0] [1, 1, 0, 0, 0, 1, 1, 0]
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Fig. 1. Alignment represents the global alignment i.e. alignCorr value of the case base
with respect to the feature subset. The left and right graph shows Alignment v/s α
values for AMPG and PID Dataset respectively.

it can be solved using slow thinking. A case C is tagged as N , i.e. none tag
when, it can neither be solved using System 1 nor System 2. When a query q is
encountered, if the majority of the k nearest neighbours to the query are tagged
as FT , then the System 1 solution is predicted for the query, else it is solved
using System 2. (c) Hybrid switching considers both tag-based and oracle-based
switching. When majority of the nearest neighbours to the query are tagged as
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FT the System 1 solution is predicted. Otherwise, the feedback value is checked,
and switching is done accordingly. In our previous work [12] the three switching
strategies for Model 2, i.e. Oracle-based, Tag-based and Hybrid Switching, lead
to Model 2A, 2B and 2C respectively.

In this section, we propose a novel switching technique involving the use
of domain constraints. In continuation with the previous work, we will call the
model involving constraint based-switching as Model 2D. In his book, “Thinking,
Fast and Slow”[9], Kahneman mentions an example where different subjects were
asked, “How many murders occur in the state of Michigan in one year?” Most
people responded with lower values than what they had answered when the
same question was asked for Detroit, a high-crime city in the state of Michigan.
Kahneman explains with this example that the fast, intuitive thinking failed to
recognize that the number of crimes in Michigan will be inclusive of the number
of crimes in Detroit. What if the subjects have verified their intuitive response
against the domain constraints that Detroit is a high crime city in Michigan state,
therefore Michigan will have at least as many crimes as Detroit? We believe they
will be able to understand the fault in their intuitive answer. Similarly, when a
person trying to solve a physics problem observes that his solution fails to satisfy
the constraints of the laws of physics. He switches to a slower form of thinking
to solve that particular problem. This motivated us to use such constraints to
decide whether to invoke System 2 or not. The next subsection will describe
constraint-based switching in detail.

4.1 Model 2D

Constraint: The constraint in the Detroit example mentioned above was that
the no of crimes in any state would be inclusive of the number of crimes in
any city of that state. In the second example, the laws of physics serve as con-
straints while solving a physics problem. While these are examples of constraints
that could be derived from domain-specific knowledge, it is also possible to use
domain-independent constraints. In the CBR paradigm, a structural constraint
is generally imposed on the case base that similar problems have similar solu-
tions. This structural constraint can be exploited in the context of a dichotomous
CBR model where System 1 is realized as a parsimonious CBR system. That
is, System 1 fetches cases by calculating similarity based on only a subset of
attributes. In order to validate if the retrieval is going to be useful or not, we can
apply a constraint that similarity of those features that were neglected by Sys-
tem 1 should be above a minimum threshold. If the above constraint is violated,
then perhaps, a retrieval that uses only the parsimonious features may not be
able to fetch cases that are sufficiently similar to solve the given query. Hence,
the reasoner can switch to slow thinking where the relevant cases are identified
by computing similarity based on all the attributes.

Experimentally, we have verified the utility of such constraints on fast think-
ing by realizing a dichotomous model (Model 2D) where System 1 is Parsi-
monious CBR and System 2 is Full CBR. In this Model, along with the tag-
based switching, we introduce an additional level of constraint checking explained
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above. In other words, it is a hybrid of tag-based switching and constraint-based
switching. Given a query q, System 1 solution is published if either all the kNN
to the query are tagged as FT or, the constraint is satisfied i.e. the similarity
between the query and kNN to the query is more than some threshold. The
similarity for constraint checking is based on the attributes that are not used in
System 1.

4.2 Experimental Analysis

Experimental Setup: We have experimented the Model 2D i.e. the hybrid
model of Tag-based switching and Constraint-based switching with two classi-
fication datasets. Red Wine Quality Dataset (RWQ) [3] and Fetal Health Clas-
sification Dataset (FHC) [2] have 2 and 3 classes respectively. The RWQ has
1599 and FHQ dataset 2126 data instances. This experiment aims to study the
improvement in the performance i.e., accuracy and per query response time, of
the proposed model by adding the constraint checking layer. We compare per-
formance of Model 2D with basic CBR and the Model 2A, which was using only
tag-based switching. The features for System 1 are computed using Greedy Opti-
mization Approach mentioned in Sect. 3. The similarity threshold for constraint
checking is computed empirically.

Experimental Results: The results for both the datasets i.e., RWQ and FHC
are shown in Table 3. It can be observed that more cases are being solved using
System 1 when the switching is done based on the constraints in addition to
the kNN tags. Therefore, in Model 2D, the average per query response time is
reduced as compared to Model 2A where switching was based only on the kNN
tags. The accuracy of Model 2D is also improved as compared to 2A, therefore
we can say that the Model 2D is performing better in terms of both effectiveness
and efficiency.

Table 3. Results for Switching Strategies. “ST%” is % query cases passed on to
System 2 and “Time” represents average per query response time

Model Switching strategy RWQ FHC

Accuracy ST% Time (ms) Accuracy ST% Time (ms)

Model 2A Tag-based 86.56 13.25 430.86 86.59 12.37 732.87

Model 2D Tag or constraint based 87.87 6.68 381.72 86.79 10.32 653.24

Full CBR 84.56 1054.94 85.36 2759.59

5 Complexity Measure for Dichotomous Models

So far, we have analysed the proposed dichotomous models in terms of prediction
time and accuracy. In this section, we attempt to quantitatively assess the benefit
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of a dichotomous model over a singular model. For this, we propose a measure
that is derived from the idea of footprint size reduction discussed in [8,9]. In the
following paragraphs, we introduce the concept of footprint, its application to
quantification of case base knowledge and the proposed measure.

5.1 Footprint Size

The idea of footprint set was proposed by Smyth and McKenna [16]. By def-
inition, a footprint set is a minimal subset of the case base having the same
problem-solving ability as that of the entire case base. To compute the foot-
print set of a given case base we need to first identify the competence group
of every case. A competence group is a set of cases that makes an independent
contribution to the competence of the whole case base and a footprint set con-
tains the representative case(s) from every competence group. Construction of a
competence group involves the use of the following sets of cases: Coverage Set,
Reachability Set and Related Set. The set of all the target problems that can be
solved by a case c is called the coverage set of c. Reachability set for a given
target problem t is the set of the cases in the case base that can be used to
solve the target problem t. A case c1 is said to solve a case c2 if and only if c1
can be retrieved for c2 and the solution of c1 can be adapted to solve c2. The
Related set of case c is the union of its Coverage and Reachability sets. Two
cases c1 and c2 are said to exhibit a shared coverage if their related sets are
overlapping. Any two cases having a non-empty shared coverage set belong to
the same competence group. After calculating the competence groups, cases from
each competence group are added to the footprint set, discarding the cases whose
coverage set is incorporated by the other cases.

Footprint Size to Quantify Knowledge: In [8], the authors have proposed
the use of footprint size to quantify the knowledge contained in a case base. By
definition, a footprint set is constructed by identifying a minimal subset of non-
redundant cases that has the same competence as the entire case base. Due to
interplay among containers, the authors have observed that addition of any useful
domain knowledge to the vocabulary, similarity or adaptation containers leads to
a reduction in the number of non-redundant or footprint cases. Further, footprint
size can be used as a complexity measure to assess the generalization ability of
the reasoner. The lower the footprint size, the greater will the generalization
ability of the reasoner be [9]. In the next section, we discuss how the definition
of solves relation in the footprint construction algorithm can be modified to
accommodate a time-constrained competence measurement that may be needed
in the domains of interest for dichotomous CBR models.
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5.2 Footprint with Time

An unique advantage of a dichotomous CBR model is that a reasoner could resort
to fast thinking to satisfy any constraint imposed on its response time by an end
user. This motivated us to emphasize the need for factoring response time into
measurement of system competence for dichotomous models. For this, we have
modified the definition of solves relation. In the original footprint construction
algorithm, a case c is said to solve some target problem t if and only if c can be
retrieved and adapted to solve t. In the modified definition of the solves relation,
a case c is said to solve some target problem t if and only if c can be retrieved
and adapted to solve t within a prescribed time limit T. The time limit T in the
modified solves definition is to be provided by the CBR end user.

We use the modified solves relation in the following two contexts: firstly,
to compare the reduction in footprint size brought about by a dichotomous
model over a singular model and also by different types of dichotomous models;
secondly, to compare the response time per query when the modified solves
relation is used for the selection of features. The time restrictions included in
the solves relation will favour that dichotomous model in which System 1 is
having computationally less expensive features.

5.3 Experimental Analysis

Experimental Setup: In this experiment we will measure the footprint sizes of
a singular Full CBR model and the dichotomous models 2A, 2B and 2D, which
are briefly explained in Sect. 4. We have experimented with two different binary
classification datasets i.e. Pima Indians Diabetes Dataset (PID) [15] and Red
Wine Quality Dataset (RWQ) [3] with 768 and 1599 instances respectively. For
models 2A, 2B and 2D, we have used the principled Greedy Approach mentioned
in Sect. 3 to select the features for System 1. The footprint size is computed
using the modified solves function where the T value can be provided as per the
users requirements.

Experimental Results: Tables 4 and 5, report the results for RWQ and PID
datasets respectively. We observe that the size of footprint set computed for the
dichotomous model 2B is smaller than that of the other dichotomous models 2A
and 2D as well as the singular Full CBR system. Since model 2B has access to an
external feedback value, the effectiveness of its switching mechanism is high as
indicated by its higher accuracy. Further, when the CBR system is operating in a
time-constrained setting (low T value) where quicker response times are needed,
the Full CBR model has a large footprint size, indicating that such models
may not be a good choice when a low response time is needed. This evaluation
measure quantifies the generalization ability of the reasoner in a time-restricted
setting and gives an idea of the suitability of the model for the given domain.
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Table 4. Results for evaluation using RWQ having 1279 cases in the case base

Model Accuracy (%) Average per
query response
time (ms)

Footprint size for
T = 1500 ms

Footprint size for
T = 500 ms

Full CBR 84.56 1054.94 480.2 1279

Model 2A 86.56 430.86 467 467

Model 2B 92.13 451.34 425.8 425.8

Model 2D 87.87 381.72 448 448

Table 5. Results for evaluation using PID Dataset having 614 cases in the case base

Model Accuracy (%) Average per
query response
time (ms)

Footprint size for
T = 200 ms

Footprint size for
T = 160 ms

Full CBR 73.9 191.49 289.4 614

Model 2A 75.97 156.58 281.2 281.2

Model 2B 84.8 155.82 238.2 238.2

Model 2D 77.6 152.4 255 255

6 Conclusion and Future Work

We have presented three different directions that can contribute towards realizing
the dichotomy of fast and slow thinking within CBR, and in particular, help in
building CBR systems that flexibly trade-off time efficiency and effectiveness
based on specific domain needs. Firstly, we have proposed an approach that
can help in a principled selection of a subset of features to be used for fast
thinking. We have formulated this as an optimization problem with an objective
function that can cater to domain specific requirements, such as prioritizing
effectiveness over time efficiency or vice versa. Empirical results suggest that the
proposed approach successfully exploits the large differences in the similarity
estimations of diverse attributes. Secondly, we have proposed a novel switching
mechanism that exploits domain-specific constraints to decide when to transfer
control over from fast to slow thinking and demonstrated the effectiveness of this
idea empirically. Thirdly, we have proposed a novel extension of the footprint
approach that accounts for time efficiency while estimating the ability of a case
to solve another; this leads to a fresh conceptual basis that allows us to quantify
the gains that slow-fast dichotomy may bring about, in any given domain.

With respect to the first direction, future work can involve investigation
into non-greedy approaches such as genetic algorithms or simulated annealing
that incorporate randomness to explore the solution space more exhaustively. In
the context of the second contribution, more work needs to go into large-scale
real-world experiments that can demonstrate the effectiveness of incorporating
domain constraints in the form of rules or models that encapsulate what experts
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already know from first principles. This can be tried out in diagnostic or planning
tasks, where specific expert knowledge can be encapsulated as constraints. We
envisage that the extended footprint approach presented in Sect. 5 may have
wider applications in the context of CBR maintenance.
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Abstract. Case-based reasoning (CBR) research has developed numer-
ous methods for learning to improve case retrieval and adaptation knowl-
edge. Learning for each type of knowledge is usually pursued indepen-
dently. However, it is well known that the knowledge containers of CBR
are tightly coupled, in that changes in one can affect requirements for
another, which suggests potential benefit for coupling learning across
knowledge containers. This paper proposes applying alternative opti-
mization to learn retrieval and adaptation knowledge together, in order
to harmonize their behaviors. For a testbed system using neural net-
work based similarity and adaptation, this study compares alternative
optimization, independent learning, and learning by prioritizing adap-
tation for adaptation-guided retrieval. Results support that alternative
optimization can help to balance both components and achieve good
performance.

Keywords: Adaptation-guided retrieval · Alternating optimization ·
Case adaptation learning · Case retrieval learning ·
Neural-network-based adaptation · Siamese network · Similarity

1 Introduction

CBR systems solve a new problem by retrieving a similar prior case and apply-
ing its solution to the new situation, potentially adapting the solution to address
differences between the old and new problem situations (e.g., [11]). Much CBR
research has focused on learning to improve case retrieval, often through refine-
ment of case indices and similarity criteria. Another current of research has
focused on learning to improve case adaptation. Recently, considerable interest
has emerged in the use of network models to learn case retrieval and adaptation.

It is natural to expect that strengthening any component of a CBR sys-
tem will strengthen the system as a whole. This assumption implicitly underlies
research that focuses on learning for a single knowledge container such as similar-
ity knowledge or adaptation knowledge. However, it is well known that similar-
ity/retrieval and case adaptation knowledge containers are intimately connected:
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Smyth and Keane [22] showed that an adaptation-guided retrieval (AGR) app-
roach to case-based planning, which bases retrieval on adaptability, can increase
efficiency of plan generation. Richter [20] observed that strengths in one form
of knowledge can compensate for weaknesses in another; a consequence is that
it may be valuable to focus learning in one form of knowledge to address gaps
in another (e.g., responding to gaps in the case base by learning the adapta-
tion knowledge most useful to alleviate the gaps). Uncoordinated learning may
even be harmful: Leake, Kinley, and Wilson [7] present a study in which unco-
ordinated case and adaptation learning degrades system efficiency, but overall
efficiency is improved when case and adaptation knowledge are coordinated by
learning adaptation-based similarity.

Even if equivalent efficiency or solution quality can be achieved by learning
either retrieval or adaptation knowledge, the type of knowledge learned can
affect explainability. A system with very strong adaptation might be capable of
successfully adapting very distant cases. However, if retrieved cases are to be
used to explain system conclusions to a user (e.g., [16]), explanations based on
the distant cases might be less compelling than those based on more intuitively
relevant cases. Therefore it may be preferable to learn to retrieve closer cases
rather than learning stronger adaptation, even if both provide equivalent solution
quality. On the other hand, if the user’s conception of similarity is not important,
it may be appropriate to retrieve the most adaptable cases, no matter how
dissimilar they appear to the user, to increase system efficiency. If retrieval and
adaptation are trained independently, or in a fixed sequence of one before the
other, the balance between the two cannot be optimized for such considerations.

As an alternative to learning retrieval and adaptation knowledge indepen-
dently or successively in a fixed sequence, this paper proposes applying alter-
nating optimization (AO) [1]. Use of AO coordinates learning of retrieval and
adaptation knowledge to harmonize their behaviors according to criteria for a
desired balance. This method is applicable to any CBR system in which gradient
descent is used to train retrieval and adaptation, as for network-based retrieval
and adaptation approaches.

The paper presents an application of the AO approach to a regression task,
using network-based learning methods for both retrieval and adaptation. In the
testbed system, retrieval is based on a Siamese network for similarity measure
and adaptation is based on a neural network based case difference heuristic
(NN-CDH) approach for adaptation learning [9]. Experiments compare predic-
tion error for three training schemes. The first is independent training of the
two stages. The second is training adaptation first and then training retrieval.
As this training gives precedence to adaptation, it provides fully adaptation-
guided retrieval (AGR), and will be referred to as AGR training. The third is
alternating optimization. The schemes are tested for five data sets. Experimen-
tal results show that under independent training, the two components may be
poorly balanced; for example, retrieval may be strong while adaptation may pro-
vide little benefit or sometimes may even worsen the initial solution provided
by retrieval. Results also show that under AGR training, retrieval may learn
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to retrieve cases that are adaptable but that have distant solutions, decreasing
explainability. AO generally decreases the incidence of undesirable behaviors.
Because AO harmonizes the retrieval stage and adaptation stage, the CBR sys-
tem retrieves cases similar to queries and requiring limited adaptation, resulting
in good accuracy.

The paper first presents background on retrieval and adaptation learning and
introduces alternating optimization. It then presents loss functions for retrieval
and adaptation and an algorithm for training them together in the AO frame-
work. It closes with an evaluation of a testbed system, guidelines for application
of AO for CBR components, and future directions.

2 Background

Learning for Retrieval and Adaptation: An extensive body of CBR research
has studied machine learning methods to improve retrieval and case adaptation.
Retrieval learning is generally focused on adjusting feature weights to improve
similarity assessment (see Wettschereck et al. [23] for a survey). Many such
methods can be seen as adjusting parameters to optimize accuracy. Recently,
there has been much interest in network-based similarity learning by optimizing
a loss function. For example, Martin et al. [12] use a Siamese network to learn a
similarity measure for retrieval; Mathisen et al. [13] propose using an extended
Siamese network, which is the basis of the retrieval method in the testbed system
presented in this paper.

Likewise, substantial research has been done on learning to improve case
adaptation (e.g., [2,4–9,14,15,21]). Again, network methods have prompted
strong interest. Policastro, Carvalho, and Delbem [18] use an adaptive resonance
theory neural network for retrieval and multi-layer perceptron for adaptation.
Leake, Ye, and Crandall [9], Liao, Liu, and Chao [10], and Policastro, Carvalho,
and Delbem [19] use neural networks to learn adaptation knowledge from pairs
of cases, using methods based on the case difference heuristic approach [5].

In existing work learning of retrieval and/or adaptation knowledge is coordi-
nated in either of two ways. First, training of retrieval and adaptation may be
independent, where one is trained without using knowledge of the other [18,24].
Second, they may be trained in-order, with one trained (or pre-defined) before
the other and the latter trained with the knowledge of the former [17].

Alternating Optimization: As defined by Bezdek and Hathaway [1], alter-
nating optimization (AO) is an iterative procedure to minimize a scalar field
f : Rs → R, under certain assumptions, in the nonlinearly constrained opti-
mization problem:

min
x∈Rs

{f(x)}, subject to constraint functions

ci(x) = 0, i = 1, ..., k; and

ci(x) ≥ 0, i = k + 1, ...,m.
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AO partitions the parameters x = (x1, ..., xs) into t non-overlapping subsets
(X1, ...,Xt), with Xi ∈ Rpi for i = 1, ..., t and

∑t
i=1 pi = s. pi is an integer that

controls the number of parameters in subset Xi. AO minimizes f(x) iteratively.
Each iteration includes t time steps. At each time step i (i = 1, ..., t), instead of
attempting to optimize all parameters x of a model, AO minimizes f by optimiz-
ing Xi, while keeping all other subsets Xj(j �= i) fixed. After one iteration, all
subsets Xi for i = 1, ..., t are optimized exactly once. AO can carry out multiple
iterations, until x converges and cannot be further optimized, or until a fixed
limit of iterations is reached. Examples of alternating optimization algorithms
are k-means clustering and the expectation-maximization algorithm.

3 Alternating Optimization of Retrieval and Adaptation

Case-based reasoning has four processing stages: retrieval, reuse (adaptation),
revision and retention. If each stage is considered as operating based on a col-
lection of parameters xi, then in principle, all stages could be refined in an AO
process over all parameters x = (x1, x2, x3, x4). This paper focuses on optimizing
the retrieval function R and adaptation function A. Let CB be the case base, q
be a query from a query set Q, xr be the parameters of the retrieval function
R, xa be the parameters for the adaptation function A, and f be a loss func-
tion for the CBR system as a whole (e.g., error of the system solution for q).
The retrieval function R retrieves case(s) r from the case base CB according to
parameterization xr (for example, xr could determine a similarity measure).

r = R(q, CB, xr), r ∈ CB

The adaptation function A produces a final solution a by adapting the solution
of retrieved case r to solve the query q according to xa (for example, for network-
based adaptation, parameters could determine adaptation network weights).

a = A(q, r, xa)

Then the problem of optimizing the CBR system is equivalent to finding xr and
xa to minimize the loss f over Q. This can be formulated as

arg min
xa,xr

∑

q∈Q

{f(A(q, r, xa), q)}, (1)

The proposed AO process trains the parameters for retrieval and adaptation
in a back-and-forth manner. A training iteration involves two steps, first seeking
xr according to:

arg min
xr

∑

q∈Q

{f(A(q,R(q, CB, xr), xa), q)}, while xa is fixed, (2)

and then setting xa according to:

arg min
xa

∑

q∈Q

{f(A(q, r, xa), q)}, while xr is fixed. (3)
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The optimization runs multiple iterations, alternating between steps applying
(2) and (3), until xr and xa both converge (e.g., there is no significant update
within a preset number of iterations) or an iteration limit is reached.

Goals for performance of CBR systems can be finer-grained than overall crite-
ria such as system accuracy. For example, a system designer could be concerned
about the usefulness of cases provided by the retrieval function as explanations,
about efficiency of retrieval, about the efficiency or explainability of adaptation
given a retrieval, or about some combination. To reflect various goals, we refine
(2) for optimizing retrieval as:

arg min
xr

∑

q∈Q

{αg(r, q)+(1−α)f(A(q, r, xa), q)}, r = R(q, CB, xr) while xa is fixed, (4)

where f is the adaptation loss (e.g., measuring the adaptability of the retrieved
case), while g is the retrieval loss (e.g., reflecting whether the case is a convinc-
ing explanation). In our testbed implementation, f calculates the error of the
adapted solution for q, and g calculates the error of the retrieved solution for q.

The metaparameter α controls the emphasis between the two losses during
the training of R. If α = 0, then formula (4) is reduced to formula (2), where
the retrieval loss is ignored and retrieval R is trained to retrieve the case that
minimizes the adaptation loss. If α = 1, then adaptation loss is ignored and
retrieval R is trained to retrieve the case that minimizes the retrieval loss.

As shown in the evaluation, setting α = 0 or α = 1 may be problematic, lead-
ing to a form of codependence of the two stages. If the retrieval step converges
rapidly and can retrieve very similar cases, little learning may be required from
adaptation, potentially resulting in adaptation that struggles to handle novel
cases. If the adaptation step converges rapidly and can adapt a wide range of
differences, little learning may be required from retrieval, because even retrievals
distant from the query result in accurate solutions. In that case, the retrievals
may be less compelling as explanations (in the extreme, a system could retrieve
the same case for all problems, for adaptation to generate the solution from
scratch). To mitigate the codependence effect, we choose an α value so that for-
mula (4) considers both retrieval loss and adaptation loss. Alternation between
training retrieval and training adaptation also helps mitigate codependence.

4 Testbed System Design

To study the impact of alternating optimization on harmonizing retrieval and
adaptation, we designed a testbed system for case-based regression, with opti-
mization based on solution accuracy. We note that other loss functions would be
possible. For example, previous research on adaptation-guided retrieval focused
on adaptation efficiency [22].
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4.1 Loss Function

As loss function f , we use squared error of the final solutions (post-adaptation)
compared to the actual solutions.

f(a, q) = (a − sol(q))2. (5)

Formula (3) becomes

arg min
xa

∑

q∈Q

{(A(q, r, xa) − sol(q))2}, while xr is fixed, (6)

As loss function g, we use squared error between the retrieved solutions and
the actual solutions. This could be considered as a proxy for suitability as an
explanation: If the error is already small, the retrieved case is a good candidate
to explain the solution for the query. We note that in general the suitability as
an explanation also depends on the user’s criteria for problem similarity (which
may differ from that of the system).

Retrieved cases within a set error threshold E are considered correct, with
loss set to zero.

g(r, q) = max(0, (sol(r) − sol(q))2 − E2)

Formula (4) is thus expanded into

arg min
xr

∑

q∈Q

{α · max(0, (sol(r) − sol(q))2 − E2) + (1 − α)(A(q, r, xa) − sol(q))2}.

(7)

4.2 Testbed Retrieval and Adaptation

In the testbed system, the retrieval function R performs 1-nearest neighbor
retrieval. The similarity measure is learned using a Siamese network following
the example of eSNN [13]. This network involves a base network (which extracts
features from input cases) and an element-wise distance layer (which subtracts
the two features), followed by a fully connected layer for final output. It is trained
by backpropagation using formula (7) as the loss function, where the parameter
xr represents the weights and biases of the network.

The adaptation function A is an NN-CDH, as discussed in Sect. 2. It involves
a Siamese base network (not related to the Siamese network used in retrieval)
and an adaptation network. The Siamese base network is trained to extract fea-
ture vectors from the input query q and retrieved case r, and the adaptation
network takes as input both feature vectors and outputs a predicted difference
d of the solutions of the two cases. The predicted difference is added to the
retrieved solution to produce the final solution. The NN-CDH adaptation net-
work is trained through back propagation using formula (6) as the loss function,
where the parameter xa contains the weights and biases of the NN-CDH. The
networks used in retrieval and adaptation are illustrated in Fig. 1.



Harmonizing Case Retrieval and Adaptation with Alternating Optimization 131

Fig. 1. Network Architecture of the Testbed System. Left: Base network used to extract
features. Middle: Extended Siamese network for similarity. Right: Extended Siamese
network for solution difference prediction

The retrieval function and adaptation functions were chosen based on sev-
eral factors: They can be independent of or dependent on each other, allowing
comparison between the paradigms; they can be trained using formula (3) and
formula (4); and they are both powerful enough to solve majority of the queries
in the experiment datasets.

4.3 Testbed Training and Testing Procedures

A general training process for retrieval and adaptation, applied in the testbed
system, is described in Algorithm 1. Given a query q, the retrieval stage collects a
batch of case pairs by retrieving neighboring cases from CB. Retrieval is based
on the similarity measure determined by xr. The batch is then used to train
xa and xr. Afterwards, retrieval collects a new batch based on the updated xr

and the batch is used for the next iteration of training. This process repeats
until either a predefined iteration limit is reached or the parameters xa and xr

converge. The steps to update xa and xr, lines 17 and 18, are only described
at a high level because these steps vary across specific adaptation and retrieval
components. In our testbed system this training is done by backpropagation
to minimize loss functions (6) and (7). The system alternates between training
retrieval and training adaptation across batches, with respective loss functions
enabling consideration beyond overall performance, for example, explainability
or adaptation efficiency.

Parameters in the algorithm enable fine tuning. The parameter
num neighbor controls the number of neighboring cases to retrieve for a query.
The retrieval and adaptation stages train from pairs of a query and its neigh-
bor(s). In principle, pairs of random cases can be used to provide more compre-
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Algorithm 1. Training for Retrieval and Adaptation
1: procedure R(q, CB, num neighbor, xr)
2: r ← {}
3: sort CB by similarity to q, using similarity measure determined by xr

4: r.append(num neighbor top neighbors of q from CB)
5: return r
6: procedure AO Train(xr, xa, batch size, CB, R epochs, A epochs, R loss, A loss)
7: pairs ← {}
8: batch counter ← 0
9: for each qi in CB do

10: remaining cases ← CB not including qi
11: r ← R(qi, remaining cases, num neighbor, xr)
12: for each rj in r do
13: pairs.append(< qi, rj >)

14: batch counter ← batch counter + 1
15: if batch counter = batch size then
16: batch counter ← 0
17: Train xa with pairs using A loss for A epochs
18: Train xr with pairs using R loss for R epochs

hensive training samples [6,8], but this is not used here. Lines 17 and 18 could be
exchanged depending on the choice of whether to train retrieval or adaptation
first.

AO training is a general version of the traditional training scheme used
to learn retrieval or adaptation in a CBR system. If batch size is set to the
size of CB in line 6, then retrieval and adaptation are only trained once. We
tested two training schemes for comparison with AO: First, when α = 1 and
batch size = size(CB), the retrieval and adaptation stages are trained inde-
pendently of each other (independent training). Second, when α = 0 and
batch size = size(CB), adaptation is trained first and then the retrieval is
trained solely based on adaptation loss (adaptation-guided retrieval (AGR)
training).

For independent training or AGR training, xr and xa are trained until conver-
gence in lines 17 and 18. However, AO uses parameter R epochs and A epochs to
respectively train xr and xa only for a set number of epochs before alternating.
Forcing more frequent alternation is intended to prevent one parameter from
converging too fast, reducing risk of a local minimum.

In this study, we do not explicitly implement a scheme for retrieval-guided
adaptation (the counterpart of AGR). In Algorithm1, a query is paired with
a neighboring case found through the Retrieval procedure, and the case pair
is in turn used for training both retrieval and adaptation. However, this is not
strictly retrieval-guided adaptation as pairs are retrieved before xr is trained, so
adaptation is trained with pairs assembled from an untrained retrieval.

Algorithm 2 illustrates the testing mode for the system, which applies trained
retrieval followed by trained adaptation.
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Algorithm 2. Using the CBR System in Testing Mode
1: procedure Solve(q, CB, xr, xa)
2: r ← R(q, CB, 1, xr)
3: Return A(q, r, xa)

5 Evaluation

This section evaluates the performance of AO in comparison to independent
training and AGR training in terms of quality of retrieved solution, quality of
adapted solution, and incremental benefit from adaptation.

5.1 Experimental Settings

This study carries out experiments on five regression data sets. Four of these
data sets, Energy Efficiency (EE), Yacht Hydrodynamics (YH), Student Perfor-
mance in Math (SP), and Airfoil Self-noise (AS) are from UCI machine learning
repository [3]. EE, YH, and AS are datasets of physics phenomena, and SP is
a dataset about predicting students’ math grades with social and economical
attributes. The fifth data set is an artificial data set (Ar). Ar has 4 attributes
{x1, x2, x3, x4}, each in [0, 5], and a target value y set by:

y =
4∑

i=1

3 − |xi − 3|

This is a simple data set for which neighboring cases have similar solutions and
adaptation can be done with two simple adaptation rules:

Δy =

{
Δxi if xi ≤ 3
−Δxi, otherwise

The testbed system is trained by Algorithm 1 and tested by Algorithm 2. For
replicability, the source code and parameter settings are available online.1

For experimental runs, each data set is split into a training set (90%) and
a test set (10%). The testbed system is trained under three different training
schemes, and then tested on the test set. Under independent and AGR training,
10% of the pairs collected are used for validation. Under AO, the training hap-
pens per batch and 10% of the pairs in a batch is often too small for validation.
For this reason, under AO, 10% of the cases in the training set are separated
and used as validation cases. Each validation case val case forms a validation
pair with the case base by using the function Retrieve(val case, CB, 1). Note
that with this experimental design, the three schemes use same number of case

1 https://github.com/Heuzi/AOtrainingCBR.

https://github.com/Heuzi/AOtrainingCBR
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pairs in training and in validation. They are also tested on the same number of
cases during testing.

In all experiments, we used num neighbor = 1 in all the retrievals. We train
the test-bed system using three training schemes: Independent training, AGR,
and AO. Depending on the performance of independent and AGR training, we
fine tune E and α to balance the emphasis between retrieval and adaptation
in AO. These detailed parameter settings are omitted because they vary across
the data sets but can be found in the source code. Instead, Sect. 6 provides
general guidelines on how to set the parameters. We evaluate the testbed system
performance by mean square prediction error.

We note that the training procedures may not be optimal for each individual
training scheme, but this approach ensures fairness between training schemes,
making it suitable for comparing their effects.

5.2 Experimental Results

All experimental results are shown in Table 1. Each row represents the results
over one data set. The histograms provide comparative information about accu-
racy with retrieval alone, with retrieval followed by trained adaptation, and the
accuracy difference between the two, under the three training schemes.

The X axis of each histogram reflects a level of error. Between rows, different
scales are used for different data sets, and outliers are included as the left-
and right-most buckets. In the first two columns, bars in each histogram reflect
the number of trials of a given method for which the error was at a given level.
Consequently, higher bars to the left of the histograms reflect better performance.
In the third column, bars represent the number of times the difference between
error after adaptation and error of the solution of the retrieved case was at a
particular level, i.e., how adaptation changes error. The bars for independent
training are black, for AGR are light gray, and for AO are dark gray.

Ideally, retrieval will retrieve a similar case and adaptation will improve the
solution. This is shown for all runs of AO for EE and AS, for the overwhelming
majority of runs for YH, and for the majority of runs for SP and Ar. However,
independent training and AGR training show less ideal effects as follows:

A Independent training scheme (black bars): Here adaptation does not
necessarily improve the results of retrieval. The retrieval stage may retrieve
a case with a solution close to the real solution that the adaptation stage
changes for the worse. This can be observed for the majority of runs with
EE, YH, Ar, and SP.

B AGR training scheme (light gray bars): Here the retrieval stage gener-
ally provides poor initial solutions while the adaptation stage makes substan-
tial corrections (i.e., results in a large negative change to the error). This can
be observed for all data sets.

Even when adaptation can generate a successful solution, if moderate adaptation
from the retrieved solution is important for explanation, the large adaptations
in this condition are undesirable. There are also extreme scenarios in which
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Table 1. Black: independent training; light gray: AGR training; dark gray: AO

Data Retrieval Only After Adaptation Δ by Adaptation

EE

YH

SP

AS

Ar
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Table 2. Average error by systems under different training schemes

EE YH SP AS Ar

Independent 0.291 0.172 0.123 1.58 0.693

AGR 0.149 0.226 0.306 1.74 0.323

AO 0.106 0.164 0.158 1.61 0.209

retrieval is so poor that even a strong adaptation stage generates bad solutions,
as seen in experiments with YH, SP, AS, and Ar.

In comparison, under AO, the retrieval stage generally provides a good initial
case, and adaptation further modifies the solution to be closer to the correct
solution. In all experiments except with SP, AO shows this reliable behavior
while the other two training schemes suffer codependence effects to some degree.
As shown in Table 2, the average errors under AO are often better than those of
other schemes.

AO decreases the codependence effects between retrieval and adaptation
according to parameter settings in Algorithm 1. To alleviate effect (A), train-
ing is done on batches of training samples, instead of all the samples; Lines 17
and 18 train for a set number of epochs/steps instead of until convergence, so
that neither retrieval nor adaptation fully assumes the accuracy burden before
the other is trained. To alleviate effect (B), formula (2) is expanded into formula
(7), and fine-tuning α and E enables more control over how each stage is trained.

6 Guidelines for Applying AO to Train CBR Components

The experiments illustrate the benefit of AO in the testbed system. This section
provides general questions and guidelines for applying AO to other CBR systems.

– When can AO be applied?
AO is applicable if both retrieval and adaptation have training procedures
which iteratively minimize loss functions. If loss functions can be formulated
for formula (3) and formula (4), then AO can be used to harmonize training.

– When may AO be useful?
AO may be useful in circumstances such as (1) when the effective scope
of adaptations is limited, so that the effectiveness of adaptation depends
strongly on the cases from which adaptation starts (in contrast, if adaptation
can succeed from a wide range of starting points, AO would be expected to
be less useful), (2) when successive training might lead to a local minimum
in overall loss (e.g., error or adaptation cost), but not a global minimum, (3)
when it is desirable to control the balance between contributions of retrieval
and adaptation, e.g., to increase explainability by retrieving cases requiring
only small adaptations.

– How can a CBR system be trained with AO?
Applying Algorithm1 requires three steps:
1. Design the loss functions f and g for formula (3) and formula (4).

The adaptation loss f reflects quality of the adapted solution and/or
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adaptation process (e.g., solution error, adaptation cost, or a combina-
tion), and the retrieval loss g reflects quality of the retrieved case (e.g.,
accuracy of the retrieved case solution without adaptation, or explain-
ability factors such as similarity between the problems of the query and
retrieved case and closeness of the retrieved solution to the system solu-
tion). The loss functions should be compatible with training processes for
the retrieval and adaptation stages, such that gradient descent can guide
training.

2. Choose α and E. This can be done by training retrieval and adaptation
independently and noting losses induced by g and f . The choice of α may
emphasize training the process with more room for improvement or be
based on other criteria.

3. Determine batch size and the training steps (lines 17 and 18). These
design choices influence how fast xr and xa converge. For a goal of bal-
anced training, these should be tuned so that retrieval and adaptation
converge at a similar rate.

– Does AO guarantee an optimal solution?
No. As detailed in Bezdek and Hathaway [1], the convergence of AO relies
on the assumption that each subproblem will converge. In our study, this
means that AO will converge if both training of retrieval and adaptation can
converge. Additionally, AO may converge to a local minimum or saddle points
instead of a global minimum. However, these issues are beyond the scope of
this study.

7 Future Work

AO and Explainability: In this study we used the error of the retrieved solu-
tion as a proxy for the explainability of the system solution. Other factors could
affect explainability, such as problem similarity according to user criteria (which
might differ from system criteria) or the adaptation distance. Such criteria and
the benefit of AO for their optimization would be interesting to investigate.

Alternative Tasks and Loss Functions: It would be interesting to examine
the comparative value of AO for tasks beyond regression and for other loss
functions (e.g., efficiency, solution execution cost). A challenge for a broader class
of tasks is the development of appropriate loss functions and training procedures.

Extending AO to the Full CBR Cycle: The work in this paper explores
AO for retrieval and adaptation. However, whether to retain a new case in the
case base depends strongly on, and also influences, both retrieval and adaptation
capabilities. Consequently, an interesting direction is an extended version of AO
to harmonize retention as well.

For example, retention training could optimize to retain cases for which
changing adaptation capabilities are most accurate (or most efficient), or could
adjust indexing as the similarity criteria for retrieval change. If a suitable loss
function and training process could be defined, this could be done within the AO
framework; if not, adjustments of retention could still be interleaved with AO
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for retrieval and adaptation. This raises questions of processing cost and how to
determine when the additional processing would be worthwhile.

8 Conclusion

Extensive research has examined learning methods for improving particular CBR
knowledge containers such as retrieval and adaptation knowledge. However, it
is well known that the knowledge containers of CBR are closely connected and
overlapping. More knowledge in one sometimes compensates for less in another
[20] and coordination between containers can improve overall performance [7,22].
The interaction between retrieval and adaptation has primarily been addressed
by treating one component as fixed and adjusting the other. In such scenarios,
it is possible that the overall system will reach an undesirable balance between
retrieval and adaptation, or will reach a local performance maximum instead
of a global one. By iteratively harmonizing both, alternating optimization can
achieve a combination of good retrieval and good adaptation. In our experiments,
independent training and AGR training suffer codependence effects in all five
data sets while AO works well in four of the five. This work also suggests the
potential to explore using AO to harmonize other processes of CBR.
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Abstract. Case-based reasoning usually exploits positive source cases,
each of them consisting in a problem and a correct solution to this
problem. Now, the general issue of exploiting also negative cases—
i.e., problem-solution pairs where the solution answers incorrectly the
problem—can be raised. Indeed, such cases are “naturally” generated
by a CBR system as long as it sometimes proposes incorrect solutions.
This paper aims at addressing this issue for adaptation knowledge (AK)
discovery: how positive and negative cases can be used for this purpose.
The idea is that positive cases are used to propose adaptation rules and
that negative cases are used to filter out some of these rules. In a prelim-
inary work, this kind of AK discovery has been applied using frequent
closed itemset (FCI) extraction on variations within the case base and
tested on a toy Boolean use case, with promising first results. This paper
resumes this study and evaluates it on 4 benchmarks, which confirms the
benefit of exploiting negative cases for AK discovery. This involves some
adjustments in the data preparation and in adaptation rule filtering,
in particular because FCI extraction works only with Boolean features,
hence some methodology lessons learned for AK discovery with positive
and negative cases.

Keywords: Adaptation knowledge discovery · Negative cases · Closed
itemset extraction · Case-based reasoning

1 Introduction

Case-based reasoning (CBR) [13] aims at solving a new problem—the target
problem—thanks to a set of cases (the case base), where a case is a pair consist-
ing of a problem and a solution to this problem. A source case is a case from
the case base, consisting of a source problem and one of its solutions. The clas-
sical approach to CBR consists in selecting source cases similar to the target
problem and adapting them to solve it. The adaptation step may use different
approaches, one of them is the use of adaptation knowledge (AK) which can be
acquired automatically using AK discovery processes. For this purpose, CBR
usually exploits positive source cases [1–3,5]. However, CBR systems sometimes
produce also incorrect solutions, generating negative cases, i.e. problem-solution
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pairs where the solution answers incorrectly the problem. These negative cases
may play an important role, especially in the knowledge discovery process, by
improving the quality of the AK being extracted and, so, by improving the
results of the CBR system itself [8].

The objective of this paper is to study how the exploitation of negative
cases (in addition to positive cases), which was only evaluated on a toy use
case, can be used on different applications. Several existing machine learning
datasets have been used for this purpose. The initial process of [8], which requires
the representation of the problem and of the solution with Boolean attributes
requires two major adaptations. First, the cases which are represented by other
types of attributes in particular by nominal values, has to be transformed to
fit the Boolean representation. Second, adaptation rules extracted by the AK
process have to be filtered: this is an application-dependent task. The idea, beside
this filtering, is to use the most efficient adaptation rules to solve a new problem.

The paper is organized as follows. Section 2 introduces the motivations and
the preliminaries for this work. A reminder about frequent closed itemset (FCI)
extraction and CBR are presented. Section 3 presents the specific approach for
exploiting positive and negative cases in an AK discovery process. Section 4
introduces a dataset selection coming from a machine learning test database,
and presents the evaluation of the AK discovery approach based on positive
and negative cases on 4 selected benchmarks. Section 5 concludes and highlights
the methodology lessons learned for AK discovery and then points out lines for
future research.

2 Motivations and Preliminaries

Many types of CBR applications are concerned by the use of AK and especially
adaptation rules to solve new problems. For example, it has been shown that
using AK can benefit to Taaable, a cooking system [5] which adapts cook-
ing recipes. In [8], a preliminary study on automatically generated datasets has
shown that exploiting negative cases in addition to positive ones for AK discov-
ery improves the quality of the adaptation rules being extracted, which, in turn,
improves the result of the CBR system. The approach is based on a Boolean
representation of the cases. The AK discovery process uses variations between
pairs of cases and FCI extraction to compute the adaptation rules.

This Sect. 1 introduces some assumptions and notations about CBR. The
Boolean setting which is at the basis of this work is then explained, and in par-
ticular, it is explained how the cases are represented in this Boolean framework,
how the variations between cases are represented and computed, and, finally,
how FCI extraction can be applied to compute adaptation rules that can be
used to solve a new problem.

2.1 Assumptions and Notations About CBR

Let P and S be two sets. A problem (resp., a solution) is an element of P (resp.,
of S). The existence of a binary relation with the semantics “has for solution” is
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assumed, though it is not completely known to the CBR system. Moreover, it is
assumed that this relation is functional (every problem has exactly one correct
solution). Let f be the function from P to S such that y = f(x) if y is the
solution of x. A case is a pair (x, y) ∈ P × S where y = f(x). The fact that “has
for solution” is functional is useful for making the evaluation process automatic:
y is a correct solution to x iff y = f(x), hence if (x, y) belongs to the test set and
ŷ is a solution returned by the CBR system, this solution is correct iff ŷ = y.

A CBR system on (P,S, f) is built with a knowledge base KB =
(CB, DK, RK, AK) where CB, the case base, is a finite set of cases, DK is the domain
knowledge, RK is the retrieval knowledge (in this work, RK = dist, a distance
function on P), and AK is the adaptation knowledge that takes the form of adap-
tation rules.

A CBR system on (P,S, f) aims at associating to a query problem xtgt a
ytgt ∈ S, denoted by ytgt = fcbr(xtgt). The function fcbr is intended to be an
approximation of f. It is built thanks to the following functions:

– the retrieval function, with the profile retrieval : xtgt �→ (xs, ys) ∈ CB;
– the adaptation function, with the profile adaptation : ((xs, ys), xtgt) �→

ytgt ∈ S; it is usually based on DK and AK. ((xs, ys), xtgt) is an adaptation
problem.

Thus fcbr(xtgt) = adaptation(retrieval(xtgt), xtgt).
With no domain knowledge and no adaptation knowledge (DK = ∅ and AK =

∅), the adaptation consists usually of a mere copy of the solution. This process
is called null adaptation:

null adaptation : ((xs, ys), xtgt) �→ ys

Adaptation principle using adaptation rules. Generally speaking, an adap-
tation rule ar is a function mapping an adaptation problem ((xs, ys), xtgt) ∈
CB×P to ytgt ∈ S ∪{failure}. A cases of failure (ytgt = failure) occurs when
no adaptation rule ar is applicable on this adaptation problem. Else, ytgt is a
proposed solution to xtgt, by adaptation of (xs, ys) according to ar.

A score supp(ar) ≥ 0, called the support of the rule ar, is associated with
ar; the higher is supp(ar), the more ar is preferred.

The adaptation consists in selecting the subset AAR of AK of applicable adap-
tation rules with maximum support: ar ∈ AAR iff ar((xs, ys), xtgt) �= failure
and there exists no ar′ ∈ AAR such that supp(ar′) > supp(ar).

2.2 Boolean Setting Illustrated with a Boolean Function Example

Initially, the Boolean setting has been chosen in [8] to validate the AK discovery
approach by experiments using automatically generated Boolean functions as f.
Let B = {0, 1} be the set of Boolean values. The Boolean operators are denoted
by the connector symbols of propositional logic: for a, b ∈ B, ¬a = 1− a, a∧ b =
min(a, b), a∨b = max(a, b). Let p ≥ 1. In the examples, an element of B

p is noted
without parentheses and commas: (0, 0, 1, 1, 0, 0) is simply noted by 001100. The
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Table 1. An example of 4 problems of B
6 with their solution on B for f(x) = x1 ∨

(x2 ∧ x3) ∨ ¬x4.

x1 x2 x3 x4 x5 x6 f

c1 0 0 1 1 0 0 0

c2 0 1 0 0 1 1 1

c3 0 1 1 0 0 0 1

c4 1 0 1 1 1 0 1

Hamming distance dist on B
p is defined by dist(a, b) =

∑p
i=1 |bi − ai|. For

example, with p = 6, dist(001100, 101110) = 2.
Let m,n ∈ N

∗, P = B
m, S = B

n and f : P → S, be a Boolean function to be
approximated. A CBR system is considered on (P,S, f) with DK = ∅, RK = dist,
the Hamming distance on P, and AK a set of adaptation rules.

Table 1 introduces 4 cases on P = B
6, S = B, with a given f.

Adaptation rule language. The adaptation rule language used in this work is
based on the notion of variations between Booleans, as described hereafter. Given
�, r ∈ B (� stands for left, r for right), the variation from � to r is represented by
variation symbols. Each of the 4 ordered pairs (�, r) is represented by a variation
symbol v:

– (�, r) = (1, 0) is represented by v = −;
– (�, r) = (0, 1) is represented by v = +;
– (�, r) = (0, 0) is represented by v = = 0;
– (�, r) = (1, 1) is represented by v = = 1.

Given two cases c1 = (x1, y1) and c2 = (x2, y2), the variation V 12 from
c1 to c2 is encoded by the set of the expressions xv

i and yw
j such that v

(resp., w) is a variation symbol from x1i to x2i (resp., from y1j to y2j ). For
example, the variations from c2 = ((010011), 1) to c3 = ((011000), 1) are
V 23 = {x=0

1 , x=1
2 , x+3 , x=0

4 , x−
5 , x−

6 , y=1
1 }.

An adaptation rule ar is a set of expressions xv
i and yw

j . It is applicable
on an adaptation problem ((xs, ys), xtgt) if there exists ytgt ∈ B

n such that
V st ⊇ ar (where V st represents the variation from (xs, ys) to (xtgt, ytgt)). If it is
applicable, then its application consists in choosing such a ytgt. If several ytgt’s
exist, the chosen one is the closest to ys according to the Hamming distance on
S = B

n, meaning that if ar gives no constraint on some ytgtj then ytgtj = ys
j . For

example:

if ar = {x=0
1 , x−

2 , x+3 , y+1 }, (xs, ys) = (010, 00) and xtgt = 001

then ar is applicable on ((xs, ys), xtgt) and ar((xs, ys), xtgt) = ytgt = 10

2.3 Itemset Extraction

Itemset extraction is a collection of data-mining methods for extracting regu-
larities into data, by aggregating object items appearing together. Like formal
concept analysis [7], itemset extraction algorithms start from a formal context
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Table 2. An example of formal context representing 12 case variations described by
28 properties: 24 properties describing the variations on the problem and 4 properties
describing the variations on the solution.

x
1
=
1

x
1
=
0

x
1
-

x
1
+

x
2
=
1

x
2
=
0

x
2
-

x
2
+

x
3
=
1

x
3
=
0

x
3
-

x
3
+

x
4
=
1

x
4
=
0

x
4
-

x
4
+

x
5
=
1

x
5
=
0

x
5
-

x
5
+

x
6
=
1

x
6
=
0

x
6
-

x
6
+

y
1
=
1

y
1
=
0

y
1
-

y
1
+

V 12 × × × × × × ×
V 13 × × × × × × ×
V 14 × × × × × × ×
V 21 × × × × × × ×
V 23 × × × × × × ×
V 24 × × × × × × ×
V 31 × × × × × × ×
V 32 × × × × × × ×
V 34 × × × × × × ×
V 41 × × × × × × ×
V 42 × × × × × × ×
V 43

K, defined by K = (G,M, I), where G is a set of objects, M is a set of items,
and I is the relation on G×M stating that an object is described by an item [7].
Table 2 shows an example of context, in which the 4 cases of Table 1 have been
used to generate 12 case variations (variation combinations between all the pos-
sible pairs of distinct cases c1, c2, c3, c4) are described by 28 properties (xv

i and
yw

j for i ∈ [1, 6], j ∈ {1} and v, w ∈ {−,+,= 0,= 1}). G is a set of 12 objects
(V 12, V 13, . . . , V 43), M is a set of 28 variation items.

An itemset I is a set of items, and the support of I, supp(I), is the number of
objects of the formal context having every items of I. I is frequent, with respect
to a threshold τsupp, whenever supp(I) ≥ τsupp. I is closed if it has no proper
superset J (I � J) with the same support. For example, {x=1

2 } is an itemset
and supp({x=1

2 }) = 2 because exactly 2 cases have the property x=1
2 . However,

{x=1
2 } is not a closed itemset, because {x=1

2 , y=1
1 } has the same support. For

τsupp = 6, the frequent closed itemsets (FCIs) of this context are {x=0
1 }, {y=1

1 },
and {x=1

3 , x=0
6 }.

The experiments use Coron, a software platform which implements efficient
algorithms for symbolic data mining and especially FCI computation [14].

3 Exploiting Case Variations for Adaptation Knowledge
Discovery with Positive and Negative Cases

Exploiting case variations is not a new idea. [9] introduces this approach of
AK learning based on pairwise comparisons of cases. This approach, also called
Case Difference Heuristic in [10], has been applied in various domains such as
medicine [3] or cooking [1,5].

So, for ordered pairs of cases (c�, cr) associated to their variations V �r form-
ing a formal context, as the one presented in Table 2, an AK discovery process
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based on FCI can be run. Each extracted FCI produces an adaptation rule ar
with a support supp(ar), i.e. the number of V �r containing ar. For example, for
τsupp = 2, {x=0

1 , x+
2 , x−

4 , y+1 } is an FCI which produces an adaptation rule. For a
source case (00·1··, 0) ∈ B

6 × B, where each · represents 0 or 1, This adaptation
rule can be used for solving any target problem 01·0··. The proposed solution is
1, obtained by applying a + variation on the source solution 0.

The adaptation rule set extracted using this FCI approach depends on
how the formal context is built, and in particular whether it is built only
using positive source cases, or using also negative source cases. For a case
(x, y)s = (xs, ys) ∈ CB, the case (x, y)s is said positive if ys is a correct solution
for xs (ys = f(xs)) and negative otherwise. CB+ (resp. CB−) denotes the set of
positive (resp. negative) cases of CB, with CB = CB+ ∪ CB− and CB+ ∩ CB− = ∅.

Starting from the two sets of cases CB+ and CB−, ordered pairs of cases
(c1, c2) are formed, with c1 = (x1, y1) ∈ CB+, c2 = (x2, y2) ∈ CB and x1 �= x2.
Each such pair is encoded by a set V 12 of the variations from x1i to x2i and from
y1j to y2j , as presented before. When c2 ∈ CB+, the variation from c1 to c2 can
be considered as a positive example of adaptation rule (i.e. the application of
the rule produces a correct answer). When c2 ∈ CB−, the variation from c1 to c2

can be considered as a negative example of adaptation rule (i.e. the application
of the produces an incorrect answer).

The AK learning process based on FCI extraction takes as input a set of
V �r which is used to build the formal context. In [8], two approaches have been
used to build the formal context. The first one consists in using each V �r as an
object with variations between pairs of cases of CB+ as properties. This approach
is denoted by AK+ in the following. A limit of AK+ is that it may produce too
general adaptation rules (this issue has been discussed in [4]). For example, the
formal context presented in Table 2 produces 15 rules containing a variation on
y1 for τsupp = 2, e.g. {x=1

5 , y=1
1 }. This rule expresses the fact that only by knowing

the variation = 1 on x5, the outcome is y1 = 1.
As the application of such a general rule is likely to give an incorrect answer,

a second approach exploiting negative cases to filter too general adaptation rules
is also considered. This idea is inspired from machine learning approaches based
on version spaces [12] or its link with formal concept analysis [6,11]: generating
adaptation rules covering positive examples without covering negative ones. This
approach exploiting both positive and negative cases is denoted by AK± in the
following. Suppose that c5 = (001111, 1) ∈ CB− (i.e. 1 is an incorrect solution
for 001111 w.r.t. f). Using this negative case in the AK process eliminates some
rules, and in particular the rule {x=1

5 , y=1
1 }, because c5 is a counterexample of

the application of the rule. Applying this rule on 001111, the problem part of
c5, produces 1, the solution of c5, which is an incorrect result.

To illustrate the benefit of AK± w.r.t. AK+ but also w.r.t. the classical near-
est neighbor approach, consider the cases of Table 1 and let xtgt = 000111. For
the nearest neighbor approach, according to dist, if considering the closest case
of the case base w.r.t 000111 which is (010011, 1) with dist(000111, 010011) =
2, the result will be 1 (by null adaptation). For the AK+ solving approach,
considering the same closest case than for the nearest neighbor approach and
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the rules computed on variations only between positive cases, the higher support
rule {x=1

5 , y=1
1 } can be applied with c2 = (010011, 1) and its application gives 1

as result. Considering now the same closest case than before but using rules com-
puted on variations between positive cases but taking into account the negative
examples. The previous rule {x=1

5 , y=1
1 } is removed because of c5 = (001111, 0)

which is a negative example for this rule. Another rule {x=0
1 , x−

2 , x+
4 , y−

1 } can
then be applied because of the variations (x=0

1 , x−
2 , x=0

3 , x+
4 , x=1

5 , x=1
6 } between

xs = 010011 and xtgt = 000111. The variation y−
1 can be applied on ys = 1,

producing 0 as (correct) result.

4 Experiments on Benchmarks

To test our approach on real applications, we have chosen to use benchmarks
describing problems with their solutions. For this, the UCI Machine Learning
Repository1 and the Open ML website2 have been used. These resources contain
a great number of benchmarks. However, our Boolean representation formalism
constrains to choose datasets where the problem and its solution are described
by Boolean features or by features which can be transformed easily into Boolean
ones (e.g. if an attribute is nominal, it can be transformed in several Boolean
attributes, the value being encoded by only one true attribute among all these
Boolean attributes).

For the experiments presented in this paper, we focused on datasets:

– where the solution is Boolean or nominal, typically benchmarks addressing a
classification problem;

– containing enough data (i.e. at least 100 cases) because the experiments
require enough data to build a learning dataset to extract adaptation rules
and to have a testing dataset in order to evaluate the different problem solving
approaches (nearest neighbors, AK+ and AK±).

The following sections not only present the execution on different benchmarks
but also the methodological work of data preparation.

4.1 Experiment Setting and Evaluation Methodology

The objective of the evaluation is to study, on various benchmarks, how the
Boolean approach exploiting negative cases in addition to positive ones improves
the results of the CBR system.

For each dataset, the raw data describing the problem and its solution are
transformed into a Boolean encoding. The result of this encoding is the case base
CB. The size of CB, denoted by |CB|, depends on the dataset. For each run, CB is
split in 2 subsets of the same size by a random selection of cases: CB = CBL∪CBT ,
with CBL, a set of cases used for learning AK, and CBT , a set of cases to test
the different approaches. CBL is then split in 2 subsets of the same size, also

1 https://archive.ics.uci.edu/ml/index.php.
2 https://www.openml.org/search?q=&type=data.

https://archive.ics.uci.edu/ml/index.php
https://www.openml.org/search?q=&type=data
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by a random selection of cases: CBL = CB+ ∪ CB−. CB+ is the set of positive
cases. To build CB−, the set of negative cases, each negative source case (x, y−)
is generated from a positive source case (x, y) by a modification of the solution
part. For S = B

n, with n = 1, the modification of the solution part consists
in taking the negation of y: y− = ¬y. This is the case for the applications
described in Sects. 4.2, 4.3 and 4.4. When n ≥ 2, the modification of the solution
part depends on the application. Such modification is detailed further, in the
context of the application described in Sect. 4.5.

Three adaptation approaches are tested: AK+, AK±, and NN , the classical
nearest neighbor approach with null adaptation for adaptation function. For
NN , retrieval consists in selecting the 3 most similar source cases to the target
problem (according to dist) and adaptation consists in making a vote among
their solution parts.

For the two approaches based on AK, all source cases for which adaptation
rules can be applied participate to the problem solving. A vote on the results
computed from the retrieved cases is used to associate a unique answer. More-
over, a vote is also used when using adaptation rules: 3 adaptation rules with
the higher supports are used to adapt each of the source cases and the most
frequent result wins.

The two AK-based approaches depends on two parameters: the number of
rules being extracted by the knowledge discovery process and the specificity of
the rules (i.e. the minimal size of the problem part of the rule). The impact of
these two parameters on the results is illustrated and analyzed.

All the approaches are evaluated according to two measures: the precision
prec and the correct answer rate car. Let ntp be the number of target problems
posed to the system (ntp = |CBT |), na be the number of (correct or incorrect)
answers (ntp−na is the number of target problems for which the system fails to
propose a solution), and nca be the number of correct answers. So, the precision
prec is defined as the average of the ratios

nca

na
, and the correct answer rate

car is defined as the average of the ratios
nca

ntp
. The average is computed on 100

runs for each evaluation, for different number of rules used for adaptation and
for different sizes of rules. The way the rules are filtered is now detailed.

Filtering Rules. As mentioned above, using too general adaptation rules may
produce incorrect results. General rules contain only variations on few variables,
as more specific rules contain variations on more variables. In the Taaable
project, some studies using adaptation rules on cooking recipes have shown that
using more specific rules gives better results than using too general ones [5].
According to the idea that, all other things being equal, more a rule contains
variables, less it is risky to use it, a given number of variables that must appear
in the rules can be set (in particular for the variables xi linked to the problem
description).

4 benchmarks have been chosen, each of them raising different issues. For
each benchmark, a description of the dataset and its purpose are first presented,
followed by the results of the experiments and the analysis of these results.
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Table 3. prec (first 3 lines) and car (last 3 lines) of the three approaches for different
numbers of rules and different minimal problem sizes for the Congressional Voting
benchmark.

nAR 100 200 300 400

minPS 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

prec

NN .87 .88 .88 .88 .87 .88 .88 .87 .87 .88 .87 .88 .88 .88 .87 .88 .87 .87 .87 .88

AK+ .77 .84 .91 .93 .95 .78 .82 .91 .92 .94 .77 .78 .91 .93 .93 .82 .83 .91 .92 .93

AK± .94 .94 .95 .96 .96 .94 .94 .94 .95 .95 .94 .94 .94 .95 .95 .95 .94 .94 .94 .95

car

NN .87 .88 .88 .88 .87 .88 .88 .87 .87 .88 .87 .88 .88 .88 .87 .88 .87 .87 .87 .88

AK+ .77 .84 .91 .88 .82 .78 .82 .91 .90 .86 .77 .78 .91 .92 .87 .82 .83 .91 .91 .89

AK± .91 .91 .91 .86 .80 .94 .93 .93 .91 .87 .93 .93 .94 .93 .86 .94 .94 .94 .93 .90

Table 4. prec and car for AK+ approach on the Congressional Voting Records bench-
mark with the use of the same number of positive cases for AK+ adaptation rule
extraction as for AK±.

nAR 100 200 300 400

minPS 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

prec .76 .83 .91 .92 .94 .82 .87 .92 .91 .92 .80 .87 .93 .91 .91 .79 .87 .93 .91 .92

car .76 .83 .91 .88 .84 .82 .87 .92 .90 .87 .80 .87 .93 .90 .88 .79 .87 .93 .91 .88

4.2 Congressional Voting Records

This dataset3 contains votes for each of the U.S. House of Representatives Con-
gressmen on 16 key votes (e.g. education budget or duty free export). The value,
for each key vote, can be ‘yes’, ‘no’, or ‘no vote’. These 16 attributes, describing
the votes of a given congressman (and which can be considered as the problem
description), are linked to his/her political party, i.e. republican or democrat
(which is the solution). So, the aim, for this benchmark, is to determine the
political party of the voter from his/her votes. In this experiment, P = B

16 and
S = B. The dataset contains 435 records: 232 records with a complete informa-
tion about the problem (‘yes’ or ‘no’ for the 16 votes) and 203 with at least one
‘no vote’ value. For this first experiment, it has been chosen to remove the 203
records which do not have the complete information, and thus to keep only the
232 complete records. These 232 records produce 152 cases as there are identical
records (exactly the same vote on the 16 questions). The distribution for the
solution of these 152 cases is 95 democrats and 57 republicans.

Let nAR be the number of adaptation rules being used in the AK-based
approaches, and minPS, the minimal problem size, i.e. the minimal number of
variables linked to the problem that has to appear in the rules. Table 3 presents
the results, for nAR ∈ {100, 200, 300, 400} and 1 ≤ minPS ≤ 5. The first three
lines give the prec score, the last three lines give the car score for 100 runs.

Some important points can be noticed:
3 https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records.

https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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1. AK± is systematically better in prec than NN and AK+ with also a better
car, independently of the values of the 2 parameters nAR and minPS.

2. For AK+, if too less rules (100 or 200) and too general rules (minPS ≤ 2) are
used, AK+ gives not so good results: the prec and car scores are lower than
for NN . However, with more specific rules, AK+ overcomes NN for prec
and car.

3. The choice of rules of good quality (i.e. specific rules) has an important impact
on the results for AK+: for a given number of rules, the prec increases when
minPS increases. Indeed, this parameter has a real impact in filtering too
general rules. For AK±, the impact of this parameter is lower because bad
adaptation rules are already filtered thanks to the negative cases.

4. The number of rules parameter has a minimal impact on prec compared
to the specificity of the rules. For a given minPS, the prec is quite the same,
independently of the number of rules. However, the number of rules parameter
impacts the car because using more rules improves the car.

To summarize, the experiments on this dataset show that, except for a low
number of rules or with an acceptance of too general rules, AK+ gives better
results than NN . But, the most important fact is that AK± overcomes NN
and AK+ in any situation. Moreover, AK± is very stable for the prec, and
is not really impacted by the number of rules nor the specificity of the rules
parameters. This is because the adaptation rules extracted for AK± are, in all
situations, of better quality than for AK+.

Is Using both Positive and Negative Cases Better than Using only
Positive Cases? In all our experiments (the previous one but also the following
ones), all approaches use the same case base CB+ as source cases. CB+ is also
used to compute the adaptation rules in both AK-based approaches, but AK±

uses in addition other cases: the negative cases of CB−. So, there is a kind of
disparity between AK+ and AK± because AK± uses the double number of
cases to acquire adaptation rules. This is justified by the fact that, for a CBR
application, CB+ is used for both AK approaches, while CB− can only be used
by AK±, knowing that negative cases can be acquired with a little effort during
the use of the system. However, in order to compare AK+ and AK± more
“fairly”, the following question has been raised: what kind of result could AK+

give when using the same number of cases than AK± to build its rule set? To
examine this issue, an experiment has been run focusing on the exploitation of
the same number of cases for AK+ and for AK±. Instead of using only CB+

for AK+, the complete CBL is now used (without modification of cases to build
CB−).

The results, presented in Table 4, show that AK± outperforms AK+ when
using the same number of cases: prec and car of AK+ in Table 4 are always
lower than the prec and car of AK± in Table 3. This strenghens the idea that
using negative cases in addition to positive cases improves the AK process.
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Table 5. prec and car of the three approaches for different numbers of rules and
different minimal problem sizes for the Tic Tac Toe benchmark.

nAR 100 200 300 400

minPS 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

prec

NN .60 .61 .60 .61 .61 .61 .60 .61 .60 .60 .60 .60 .61 .61 .60 .60 .61 .60 .60 .61

AK+ .58 .60 .58 .60 .64 .57 .60 .59 .60 .63 .57 .60 .59 .61 .63 .59 .60 .59 .60 .63

AK± .70 .72 .71 .69 .70 .71 .71 .70 .68 .69 .71 .71 .70 .69 .70 .71 .70 .70 .70 .69

car

NN .60 .61 .60 .61 .61 .61 .60 .61 .60 .60 .60 .60 .61 .61 .60 .60 .61 .60 .60 .61

AK+ .58 .60 .56 .51 .41 .57 .60 .59 .57 .49 .57 .60 .59 .60 .55 .59 .60 .59 .60 .58

AK± .61 .61 .61 .54 .42 .66 .66 .65 .62 .53 .68 .68 .67 .65 .58 .69 .68 .69 .67 .62

4.3 Tic Tac Toe Endgame

This dataset4 contains the possible situations of the Tic Tac Toe5 where the
player with the ‘x’ mark starts. There are 9 attributes describing the problem.
Each attribute represents one position of the board, its value can be ‘x’ (resp,
‘o’) if an ‘x’ mark (resp. an ‘o’ mark) has been played on this position. A third
value ‘b’ indicates that the position is empty (i.e. neither ‘x’, neither ‘o’ appears).
The solution is 1 if the player with the ‘x’ mark wins, and 0 otherwise. So, the
aim of this dataset is, knowing which marks appears on some positions, to infer
whether the player with the ‘x’ mark wins or not.

Data simplification: for this dataset, we have chosen to simplify the initial
representation of 3 possible values for each variable, to a representation in which
a variable has only 2 possible Boolean values: 1 if an ‘x’ mark is on the square
and 0 otherwise (i.e. the square is marked by ‘o’ or ‘b’ in the raw data). In this
experiment, P = B

9 and S = B. With this transformation, the dataset, con-
taining initially 958 records, produces 272 cases, with a rather balanced solution
distribution of 118 ‘x wins’ and 154 ‘x does not win’.

Table 5 presents the results of the three adaptation approaches. This exper-
iment gives similar results than for the first experiment. The hypothesis about
AK± to be the better approach is confirmed, demonstrating once again the
benefit of exploiting negative cases.

4.4 Cardiac Diagnosis

This dataset6 describes diagnosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images. Each patient of the dataset is described by 22
binary features and is classified into two categories: normal (0) and abnormal
(1). In this experiment, P = B

22 and S = B. The dataset, containing initially
4 https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame.
5 Tic Tac Toe is a game where 2 players, one playing with an ‘x’ mark and one playing

with an ‘o’ mark have to align 3 of their marks on a 3 × 3 board.
6 https://archive.ics.uci.edu/ml/datasets/SPECT+Heart.

https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame
https://archive.ics.uci.edu/ml/datasets/SPECT+Heart
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Table 6. prec and car of the three approaches for different numbers of rules and
different minimal problem sizes for the Cardiac diagnosis benchmark.

nAR 100 200 300 400

minPS 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

prec

NN .80 .80 .80 .79 .80 .79 .79 .80 .79 .80 .79 .79 .79 .79 .79 .80 .80 .79 .80 .80

AK+ .85 .85 .85 .84 .83 .85 .85 .85 .84 .83 .85 .86 .85 .84 .83 .85 .85 .84 .84 .83

AK± .88 .87 .88 .88 .86 .87 .87 .87 .86 .86 .86 .87 .88 .86 .86 .86 .86 .86 .86 .86

car

NN .80 .80 .80 .79 .80 .79 .79 .80 .79 .80 .79 .79 .79 .79 .79 .80 .80 .79 .80 .80

AK+ .85 .85 .83 .78 .72 .85 .85 .84 .80 .75 .85 .86 .85 .81 .76 .85 .85 .84 .82 .78

AK± .81 .80 .76 .71 .64 .82 .82 .81 .77 .70 .83 .84 .82 .79 .73 .84 .84 .82 .80 .75

267 records, produces 219 unique cases, with a distribution of 186 abnormal
and 33 normal diagnoses. This biased distribution of the solutions may have
an impact on the results, but as the 3 approaches which are compared are all
concerned by this bias, it has been decided, for this dataset, not to balance
this distribution and to keep all the cases to run the experiments. The results,
presented in Table 6, show again the best behavior of the AK± approach, even
with this bias in the dataset. For prec, the improvement of AK± is, in average,
of +8% comparing to NN .

4.5 Car Evaluation

This section addresses Car evaluation.7 Each model of car is described by 6
features:

– the buying price which values can be vhigh (very high), high, med or low;
– the maintenance price: vhigh, high, med or low;
– the number of doors: 2, 3, 4 or 5more;
– the capacity in persons to carry: 2, 4 or more;
– the luggage boot size: small, med or big;
– the estimated safety: low, med or high.

According to these features, the car models are classified into 4 categories, from
the worst one to the best one: unacc (unacceptable), acc (acceptable), good,
vgood (very good). There are 1728 car descriptions with the following biased
distribution for the solution in the initial dataset: 1210 unacc, 384 acc, 69 good,
and 65 vgood. To test now the approaches on an unbiased distribution of the
solutions, only the maximum possible number of cases with the same number of
cases in each category has been kept, so 65 cases per category, forming a dataset
of 260 cases.

In this dataset, none of the features is Boolean. Each feature has exactly 1
value belonging to a set of more than 2 possible values. Moreover, the solution
takes also its value in a set of more than 2 values. A specific transformation is
7 https://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
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required to encode these non Boolean values into Boolean ones, and a specific
rule filtering must be applied to ensure that the result is one category value.
These two adjustments for applying the Boolean approach are now detailed.

Encoding Non Boolean Attributes into Boolean Ones Using One-Hot
Encoding. Let a be an attribute and let va be a value for a. In addition to
attributes which are already described by Boolean values (va ∈ {0, 1}), nominal
values can also be considered. For an attribute a with nominal values, i.e. va ∈
{a1, a2, . . . , an}, n Boolean attributes can be used to encode each of these n
possible values. The value va = ai is encoded with 1 on the ith attribute, all
the other of the n attributes being set to 0. For example, for the buying price,
the possible values are vhigh, high, med or low. So, 4 Boolean variables are
used to encode the initial value, with only one of these variables set to 1. For
example, a low buying price is encoded by 1000, med by 0100, high by 0010, and
vhigh by 0001. This encoding process is used on the 6 features describing the
problem, as well as for encoding the solution. The illustration below shows an
example of the complete problem/solution encoding for the initial record/case
((vhigh,med, 5more, 4, big, high), vgood).

0 0 0 1
︸ ︷︷ ︸

1

0 0 1 0
︸ ︷︷ ︸

2

0 0 0 1
︸ ︷︷ ︸

3

0 1 0
︸ ︷︷ ︸

4

0 0 1
︸ ︷︷ ︸

5

0 0 1
︸ ︷︷ ︸

6

−→ 0 0 0 1
︸ ︷︷ ︸

7

with 1, 2, 3, 4, 5 and 6 respectively encoding the buying price (vhigh), the
maintenance price (med), the number of doors (5more), the number of persons
to carry (4), the luggage boot size (big), the safety (high), and 7 encodes the
solution category of the car (vgood).

Generating a negative case when n ≥ 2 for S = B
n. For a correct solution

y ∈ B, y is transformed in a incorrect solution y′ simply by y′ = ¬y. However,
when a solution is encoded on more than one variable, (e.g. for this dataset, on
4 variables), it requires a specific approach to transform a positive case into a
negative one. For the experiment with n ≥ 2, but with the assumption that only
1 variable of the solution is set to 1, an incorrect solution is randomly selected
among the solutions encoding syntactically correct solutions, i.e. a solution with
only 1 variable set to 1 and which is not equal to the correct solution. For exam-
ple, if the correct solution is 0001, the possible incorrect solutions are 0010, 0100
and 1000. An incorrect solution is randomly chosen among these 3 possibilities.

Filtering Out Rules that Incompletely Describe the Solution Varia-
tion. When a solution is encoded on more than one variables, (e.g. for this
dataset, on 4 variables), obtaining a result which correspond to 1 of the possible
values as solution requires rules containing information on all the solution vari-
ables. For example, a rule like {x=1

1 , x+
2 , y+1 }, containing only 1 solution variable

(y1), applied to a source case solution 0010 produces 1010 which does not cor-
respond to a possible correct answer. So, for this dataset, only rules containing
the 4 variables of the solution are kept.
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Table 7. prec and car of the three approaches for different numbers of rules and
different minimal problem sizes for the Car benchmark.

nAR 100 200 300 400

minPS 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

prec

NN .67 .67 .68 .68 .67 .67 .67 .67 .67 .68 .67 .66 .67 .67 .68 .67 .67 .67 .67 .67

AK+ .71 .71 .71 .72 .72 .70 .72 .71 .73 .72 .72 .72 .72 .72 .71 .73 .72 .72 .72 .72

AK± .81 .81 .80 .80 .81 .81 .80 .80 .80 .81 .79 .80 .80 .80 .80 .80 .80 .80 .80 .81

car

NN .67 .67 .68 .68 .67 .67 .67 .67 .67 .68 .67 .66 .67 .67 .68 .67 .67 .67 .67 .67

AK+ .66 .66 .67 .67 .59 .68 .69 .68 .69 .69 .68 .69 .70 .69 .68 .70 .70 .69 .70 .69

AK± .73 .73 .73 .73 .64 .77 .75 .75 .74 .77 .75 .76 .77 .76 .77 .77 .78 .76 .76 .77

Table 7 presents the results on the Car benchmark with |CB+| = |CB−| = 26,
i.e. |CB|

10 instead of |CB|
4 for the other experiments. The idea is to examine, in

addition, the behavior of the approach on a smallest learning case base. One
more time, AK± improves the results w.r.t. NN , by an average of +11% in
prec. Moreover, with this benchmark, AK± improves also well the car by an
average of +10%.

4.6 Results and Discussion

The different experiments, on different benchmarks, with various dimensions of
the problem space (from 9 for the Tic Tac Toe benchmark to 22 for the cardiac
diagnosis benchmark) has shown the efficiency of using negative examples for
acquiring adaptation rules. The results are similar for the 4 benchmarks and, in
any situation, AK± is better than AK+ and NN for precision, and most of the
time for the car measure.

So, exploiting negative cases improves the CBR system results. For the prec
measure, approaches based on AK built only on positive examples gives most of
the time better results than the NN baseline approach, when the number and
the length of rules are sufficient to avoid the use of too general rules. However,
when introducing the exploitation of negative cases, the prec measure really
increases, with various improvement: around +7% for the Congressional Voting,
Tic Tac Toe and Cardiac diagnosis benchmarks, to even around +14% for the
Car Evaluation benchmark. But the most important fact is that the results shows
that from the precision point of view, AK± has given always better results than
AK+ and NN . For the car measure, AK+ and AK± give results sometimes
under the ones of the NN approach. However, these car scores have to be
considered in regards to the prec score because increasing the precision has
most of the time a negative impact on the number of answers (i.e. the system
answers better but less often), and so, on the car measure. For the Congressional
Votes, AK± car measure is almost always better than for NN and, in that
case, also with a significant improvement, especially when minPS and nAR are
high. Combining with a significant improvement of the prec measure as well,
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the results can be considered as excellent. For the Cardiac diagnosis, the car
measure of AK± and NN are quite similar and for the Car evaluation, the car
measure overcomes all the time, with an improvement around +11%, the car of
NN . In conclusion, the results of the approach based on negative cases must be
highlighted, because of the increasing of the precision without having an impact
on the decreasing of the car, which is most of the time higher than for NN .

5 Conclusion

This paper shows the benefits of exploiting negative cases in addition to posi-
tive ones to extract, using frequent closed itemsets, adaptation rules of higher
quality which improves the results of a CBR system. A methodology has also
been presented to transform a case description originally not encoded by Boolean
attributes into a Boolean encoding, and to filter adaptation rules. The rule fil-
tering can be based on the support of the rule (i.e. how many times this rule
is found in the learning dataset), on the length of the rule (i.e. the more vari-
ables the rule uses, the best it is). Applying this methodology on 4 benchmarks
with different characteristics shows that similar results are obtained for these
applications, which argue for the interest of exploiting negative cases.

The quality of the results depends on numerous parameters. In this work, the
impact of the number of rules as well as the size of the rules has been examined.
However, it could be interesting to study the impact of other parameters, like,
for example, the size of CBL, CB+ and CB−.

Finally, another interesting future work is to use more finely the negative
cases. In this work, the negative cases are used to filter out adaptation rules,
usually with a great support value but which are sometimes too general. However,
like in the version space model, instead of simply removing a rule which could
be useful in some problem solving situations, we could imagine to specialize
this rule, to avoid its use only in a given context. For example, an approach
based of FCI on variations between positive and negative cases could bring
out elements which could be exploited to refine adaptation rules built only on
variations between positive cases.
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1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
Jean.Lieber@loria.fr
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Abstract. Case-based reasoning, where cases are described in terms of
problem-solution pairs case = (x, y), amounts to propose a solution to a
new problem on the basis of past experience made of stored cases. On the
one hand, the building of the solution to a new problem may be viewed as
a form of belief revision of the solution of a retrieved case (whose problem
part is similar to the new problem) constrained by domain knowledge. On
the other hand, an extrapolation mechanism based on analogical propor-
tions has been proposed. It exploits triplets of cases (casea, caseb, casec)
whose descriptions of problem parts xa, xb, xc form an analogical pro-
portion with the new problem xtgt, in such a way that “xa is to xb as xc

is to xtgt”. Then, the analogical inference amounts to compute a solution
ytgt of xtgt by solving (when possible) an equation expressing that “ya is
to yb as yc is to ytgt” (where ya, yb and yc are respectively the solution
parts of casea, caseb and casec). The paper investigates how the belief
revision view and analogical extrapolation relate. Besides that it consti-
tutes an unexpected bridge between areas which ignore each other, it
casts some light on the adaptation mechanism in case-based reasoning.
The paper is illustrated by a running example.

Keywords: Analogical inference · Analogical proportion · Belief
revision · Case-based reasoning · Extrapolation

1 Introduction

Belief revision [2] and case-based reasoning [1] (CBR) are two areas of artificial
intelligence that are usually thought of as quite distant and unrelated since the
former takes place mainly in the setting of logic, while the latter deals with
data and is similarity-based. Moreover, belief revision aims at reestablishing
consistency after receiving a new piece of information that conflicts with the
current state of belief. CBR has a quite different agenda since it is rather a
matter of coping with missing information by taking advantage of similarity
for completing a new problem with a plausible solution. However, note that
the conclusions derived by belief revision or by CBR are only plausible in both
approaches.
c© Springer Nature Switzerland AG 2021
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In spite of this apparent state of fact, there exists a belief revision-based view
of CBR [4,14]. Indeed, completing the new problem with a plausible solution may
be viewed as adapting the solution of a retrieved case in order to be consistent
with the specificities of the new case, which is a kind of revision. What is revised
is clearly not the case base, but it is a copy of a case dealing with a similar
problem. In other words, what is really revised is the allegation that the retrieved
case can be applied (directly) to solve the target problem.

An extrapolation mechanism based on analogical proportions (which are
statements of the form “a is to b as c is to d”) has been proposed for exploiting
cases [16]. On the basis of 3 cases whose problem description parts are in ana-
logical proportion with the new problem, one infers a solution for it from the
solutions of the 3 cases. This means that an adaptation process takes place inside
the inference. This is made possible by the fact that analogical proportions are
a matter of both similarity and dissimilarity. Indeed when the problem parts of
cases a, b, c, d are described by vectors of features, the analogical proportion
holds between the vectors if a differs from b in the same way c differs from d (and
vice-versa) [17,21]. In that respect, a pair of cases may be viewed as encoding a
kind of rule of adaptation in the sense of CBR [6].

The above points altogether suggest that there is a bridge between the belief
revision-based view of CBR and analogical proportion-based extrapolation. This
investigation is the topic of this paper. It is organized as follows. In Sect. 2, after
offering a short refresher on propositional logic and introducing notations, two
backgrounds are provided respectively on the analogical extrapolation of cases
and on the belief revision view of CBR. This necessary setting of the problem
addressed in this paper makes Sect. 2 rather long all the more as the running
example is also introduced there. In order to bridge extrapolation and revision-
based adaptation, Sect. 3 first reformulates adaptation by extrapolation as a
single case adaptation. Then, a revision operator based on competence of case
pairs is defined, which enables to establish that the adaptation by extrapola-
tion can be equivalently obtained by a revision constrained by competent pairs
expressing adaptation knowledge. Section 4 presents some related work and some
concluding remarks, including a presentation of future work.

2 Setting of the Problem and Running Example

This section sets the notions related to the problem that this paper aims at solv-
ing, i.e., how adaptation by analogical extrapolation and revision-based adapta-
tion can meet. For this purpose, the notions and notations used are presented,
together with the introduction of a running example in the cooking domain.

2.1 A Quick Refresher About Propositional Logic

The formalism for representing cases and domain knowledge in this paper is
propositional logic. Let V be a finite set of symbols, called variables. A formula
is either a variable or an expression of one of the forms �, ⊥, ¬ϕ, ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2, ϕ1 → ϕ2, and ϕ1 ↔ ϕ2 where ϕ, ϕ1 and ϕ2 are formulas.
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An interpretation I is a mapping from V to {0, 1} where 0 and 1 denote the
Boolean values “false” and “true”. The set of all interpretations is denoted by
Ω. An interpretation I ∈ Ω is extended on every formulas as follows: I(�) = 1,
I(⊥) = 0, I(¬ϕ) = not I(ϕ), I(ϕ1 ∧ ϕ2) = I(ϕ1) and I(ϕ2), I(ϕ1 ∨ ϕ2) =
I(ϕ1) or I(ϕ2), I(ϕ1 → ϕ2) = I(¬ϕ1 ∨ ϕ2) and I(ϕ1 ↔ ϕ2) = I((ϕ1 →
ϕ2) ∧ (ϕ2 → ϕ1)) where not, and and or are the classical Boolean operations.
A model of a formula ϕ is an interpretation I such that I(ϕ) = 1 and the set of
models of ϕ is denoted by M (ϕ). A formula ϕ1 entails a formula ϕ2, denoted by
ϕ1 |= ϕ2, if M (ϕ1) ⊆ M (ϕ2). The formulas ϕ1 and ϕ2 are equivalent, denoted
by ϕ1 ≡ ϕ2, if M (ϕ1) = M (ϕ2). A formula ϕ is consistent if M (ϕ) �= ∅.

Let Φ = {ϕ1, ϕ2, . . . , ϕp} be a finite set of formulas.
∨

Φ denotes ϕ1 ∨ ϕ2 ∨
. . . ∨ ϕp.

∧
Φ denotes ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕp.

In the paper, for the sake of simplicity, the Boolean notations and the propo-
sitional notations are sometimes used together (0 and 1 instead of � and ⊥ as
well as use of propositional connectives between Boolean values).

2.2 Notions and Notations Related to CBR

CBR aims at solving problems thanks to a case base, where a case is the repre-
sentation of a problem-solving episode. Let P and S be the space of problems
and solutions: a problem x (resp., a solution y) is, by definition, an element of
P (resp., of S). A relation on P × S is assumed to exist that is read “has for
solution” but is usually not completely known by the CBR system. A case is an
ordered pair case = (x, y) ∈ P × S such that x has for solution y. A source case
cases = (xs, ys) is an element of the case base, which is denoted by CB. The
current problem under solving is called the target problem, denoted by xtgt.

The classical CBR process model is based on the steps of retrieval and adapta-
tion [24], also known as retrieve and reuse [1]. Other steps follow adaptation, but
are not considered in this paper. Retrieval selects one or several source case(s)
for the purpose of solving xtgt. Adaptation aims at using the retrieved case(s)
for proposing a solution ytgt to xtgt. A single case adaptation is an adaptation
of a sole retrieved case, otherwise, it is a multiple case adaptation.

The domain knowledge is a knowledge base DK that can be understood as a
set of integrity constraints: a problem x (resp., a solution y or a case (x, y)) that
is inconsistent with DK is known to be not licit.

It is assumed in this paper that a clear separation of problems and solutions
is made. This is not always true: for some applications of CBR, each case consti-
tutes a whole, and a target problem is considered as an incomplete case, thus the
problem-solution separation can be made at adaptation time. Since this paper
is primarily concerned with adaptation, this assumption is not a big restriction.
Therefore, in the propositional setting, V is partitioned into VP and VS and the
variables occurring in a problem (resp., in a solution) are elements of VP (resp.,
of VS). The next section illustrates this idea.

Furthermore, it is assumed that every source case (xs, ys) and the target
problem are fully described: given the domain knowledge, the truth value of
each variable a ∈ VP is known for xs and xtgt (i.e., DK∧ xs |= a or DK∧ xs |= ¬a
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and the same for xtgt) and a similar constraint holds for ys. A case (xs, ys) is
represented in propositional logic by a single formula xs ∧ ys.

According to the classical knowledge model of CBR (see, e.g., [23]), the CBR
knowledge base consists in four knowledge containers. Two of them have already
been mentioned: the case base CB and the domain knowledge DK. The two oth-
ers are the retrieval knowledge and the adaptation knowledge, used during the
retrieval and adaptation steps.

A final remark can be made here about the notion of similarity in CBR: it
is usually said that retrieval aims at finding cases similar to the target prob-
lem. Now, this notion of similarity should not necessarily be understood as an
approximate equality: it may go beyond this. In fact, (xs, ys) can be considered
similar to xtgt even if xs and xtgt descriptions are very different, considering that
the adaptation of (xs, ys) provides a plausible solution to xtgt. This is related to
the adaptation-guided retrieval principle [25].

2.3 Specification of the Running Example

The example used throughout this paper is in the cooking domain. A recipe
is represented simply by the type of ingredients it contains. Variables are food
names representing recipe classes. For example, fruit represents the class of
recipes having at least one fruit as ingredient. The domain knowledge is:

DK = {pineapple → fruit, cream → sauce, pesto → sauce,

St Pierre → fish, salmon → fish, ¬(fruit ∧ pesto)}
The last formula of DK states that a recipe must not have at the same time pesto
(that contains garlic) and any fruit (fruit taken in the cooking sense of the term).

The source cases considered in this example are:

casea = St Pierre ∧ cream ∧ vanilla ∧ curry ∧ Nothing else (1)

caseb = salmon ∧ cream ∧ vanilla ∧ pesto ∧ Nothing else (2)
cases = St Pierre ∧ cream ∧ pineapple ∧ Nothing else (3)

where, for a formula ϕ, ϕ ∧ Nothing else denotes the formula ϕ ∧ Γ where Γ is
the conjunction of the negative literals ¬a such that a ∈ V and DK ∧ ϕ �|= a. For
example, cases contains the literal ¬salmon.

The target problem is the request of a recipe with fish, pesto but no vanilla:

xtgt = fish ∧ pesto ∧ ¬vanilla (4)

Thus, for the running example, VP = {fish, pesto, vanilla} and VS = V \ VP .

2.4 Analogical Proportions and CBR

Analogical proportions are statements of the form “a is to b as c is d”, denoted
ccabcd. Their origin dates back to Aristotle [3] (at least), and was inspired by
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a parallel with (geometric) numerical proportions, namely a
b = c

d ; see [20]. In
agreement with this parallel, they are supposed to obey the following postu-
lates: Given a set of items X, analogical proportions form a quaternary relation
supposed to obey the 3 following postulates (e.g., [13]): for a, b, c, d ∈ X,

1. a : b :: a : b (reflexivity);
2. if a : b :: c : d then c : d :: a : b (symmetry);
3. if a : b :: c : d then a : c :: b : d (central permutation).

The unique minimal Boolean model [22] obeying these 3 postulates is a quater-
nary propositional logic connective when X is the Boolean set B = {0, 1} [17]:

a : b :: c : d = ((a ∧ ¬b) ↔ (c ∧ ¬d)) ∧ ((¬a ∧ b) ↔ (¬c ∧ d))

It makes explicit that “a differs from b as c differs from d (and vice-versa)”. It
is easy to check that this formula is only valid for the 6 following valuations
0 : 0 :: 0 : 0, 1 : 1 :: 1 : 1, 0 : 1 :: 0 : 1, 1 : 0 :: 1 : 0, 0 : 0 :: 1 : 1, and
1 : 1 :: 0 : 0.

It can be seen that 1 and 0 play a symmetrical role, which makes the defi-
nition code-independent. This is formally expressed with the negation operator
as: if a : b :: c : d then ¬a : ¬b :: ¬c : ¬d. To deal with items, for instance cases,
represented by vectors of Boolean values, the analogical proportion definition is
extended componentwise from X to Xn:

a : b :: c : d iff for all i ∈ {1, . . . , n}, ai : bi :: ci : di

This is the basis of an inference principle, first proposed in [18] for nominal
values, that can be stated as follows:

∀i ∈ {1, ..., n}, ai : bi :: ci : di holds
∀j ∈ {n + 1, ...,m}, aj : bj :: cj : dj holds

As can be seen, knowledge from some components of source vectors is trans-
ferred to their remaining components, implicitly assuming that the values of the
n first components determine the values of the others.

This requires to find ? such that a : b :: c : ? holds. The solution may not exist
(e.g., for 0 : 1 :: 1 : ?). It is solvable if and only if a = b or a = c in the Boolean
case. Then, the unique solution is given by ? = c if a = b and ? = b if a = c.
Thus, we have the following property in the Boolean case

a : a :: b : ? if and only if ? = b (5)

which is sometimes taken as a supplementary postulate and is not a consequence
of the 3 postulates. This is the basis of the analogical extrapolation between cases
proposed in [16].

Given a pair of vectors describing problems (xa, xb), with n components,
their comparison yields a partition of the n features in two subsets: the subset of
features E(xa,xb) for which the values of xa and xb are equal and the subset D(xa,xb)

for which they are different. Let us consider two pairs of vectors describing
problems (xa, xb) and (xc, xd) such that E(xa,xb) = E(xc,xd) and such that ∀i ∈
D(xa,xb), x

ai = xci and xbi = xdi . Then xa : xb :: xc : xd holds true, since
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Fig. 1. Analogical inference in the running example.

(i) for each j ∈ E(xa,xb) = E(xc,xd), (xaj , xbj , xcj , xdj ) is of the form (u, u, v, v) or
(u, u, u, u) for some values u and v with u �= v and u, v ∈ {0, 1},

(ii) for each k ∈ D(xa,xb) = D(xc,xd), (xak , xbk , xck , xdk) is of the form (u, v, u, v).

The idea of looking at pairs of cases can be related to the reading of a pair
((xa, ya), (xb, yb)) as a virtual rule expressing either that the change from xa to
xb induces the change from ya to yb, whatever the problem context (encoded by
the features where xa and xb are equal), or that the change from xa to xb does
not modify the solution (in case ya = yb).

However such virtual rules may have exception in the training set. Indeed
there may exist (xa, xb), (xc, xd) and (xa′

, xb′
) such that

– xa : xb :: xc : xd and xa′
: xb′

:: xc : xd hold true. It means that D(xa,xb) =
D(xc,xd) = D(xa′ ,xb′ ) and the changes from xa to xb, from xc to xd, from
xa′

to xb′
are the same.

– ya : yb :: yc : yd holds true.
– ya′

: yb′
:: yc′

: yd′
does not hold for some feature i.

This may happen for instance when yai �= ybi while ya′
i = yb′

i . In such a case, the
two virtual rules associated to ((xa, yai), ((xb, ybi)) and to ((xa′

, ya′
i), (xb′

, yb′
i))

disagree. Then yai = yci and ybi = ydi , but the solution of the equation
ya′

i : yb′
i :: yci : ?yi is ?yi = yci �= ydi .

Thus the rate of exceptions of the virtual rule associated to a pair ((xa, yai),
(xb, ybi)) is an indication of the interest of the pair for analogical inference. This
is called the competence of the case pair [15]. Note that each rule pertains to a
particular feature used in the description of the solutions. Indeed it is not always
so that there is a unique rule that computes the adaptation of ya into yb from
the same problem context.

Let us apply analogical inference to the running example. It is easy to check
that its propositional expression gives birth to the table on Fig. 1. Consider-
ing the 3 cases (casea, caseb, cases), it appears that xa : xb :: xs : xtgt holds
true for the features fish, pesto and vanilla. Moreover, as an analogical
equation xa : xb :: xs : xtgt can be solved for features sauce, fruit, pineapple,
St Pierre, salmon, and cream. Thus, we obtain
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casetgtextrap = xtgt ∧ ytgtextrap

with ytgtextrap ≡ sauce ∧ fruit ∧ pineapple
∧ ¬St Pierre ∧ salmon ∧ cream

(6)

Some remarks are worth mentioning:

1. The analogical equation cannot be solved for feature curry, so nothing is
inferred regarding its presence or absence from cases (casea, caseb, cases).
In a genuine example (where the case base would be richer), there may exist
a triplet of cases enabling us to conclude on curry.

2. However, even if an exact resolution for curry does not exist, it would be
possible to minimize an analogical dissimilarity measure AD(a, b, c, d) for
computing an “approximate” solution. AD(a, b, c, d) is equal to the mini-
mal number of flips for moving from (a, b, c, d) to a 4-tuple corresponding
to an analogical proportion: AD(a, b, c, d) is maximal (and is equal to 2) if
(1, 0, 0, 1) (or (0, 1, 1, 0)) [17]. So here the approximate solution would be 0
(i.e., no curry) since AD(1, 0, 0, 0) = 1.

3. In general, many triplets of cases can be applied to a given xtgt. Remember
that only the triplets built on the most competent pairs are used (when they
lead to different conclusions a vote should take place).

4. As can be seen in the computation of casetgt, a modification of cases takes
place: namely, in the context fish and ¬vanilla with addition of pesto,
cases is adapted by changing St Pierre into salmon.

5. In this example, some features are linked by implications. It should be noted
that if for two mutually exclusive features i and j xai : xbi :: xci : xdi and
xaj : xbj :: xcj : xdj hold, this entail that it holds as well for a feature k for
which i and j are sub-classes, as can be seen on the example (for salmon,
St Pierre, and fish). Thus, the analogical extrapolation makes no indepen-
dence assumption between attributes.

6. One can observe that the roles of caseb and cases could be exchanged, since
analogical proportions are stable by central permutation.

2.5 Belief Revision and CBR

This section summarizes the approach to adaptation based on belief revision as
introduced in [14] and further developed in [4].

Belief Revision. Let us consider an agent having a set of beliefs ψ and that is
confronted to another set of beliefs μ that are supposed to have priority over
ψ. ψ and μ are assumed in this paper to be represented in propositional logic.
The question raised by belief revision is how the beliefs of the agent evolve
by incorporation of μ. When the new set of beliefs are not in contradiction
with the old ones—i.e., ψ ∧ μ is consistent—then the revision gives simply this
conjunction ψ ∧ μ. Else, according to the minimal change principle of the so-
called AGM theory (named after the authors of the paper [2]), belief revision
consists in making a “minimal change” of ψ into ψ′ so that ψ′ ∧ μ is consistent,
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and then, the result of the revision is denoted by ψ � μ = ψ′ ∧ μ. Now, the
notion of change minimality is not uniquely defined and depends on how change
is assessed, so many revision operators � exist. The AGM theory proposes a set
of postulates that an operator � should respect. They have been formulated in
propositional logic by [12] (for any formulas ϕ, ψ, ϕ1, ϕ2, ψ1, ψ2 and χ):

(�1) If μ is consistent then ψ � μ is consistent.
(�2) If ψ ∧ μ is consistent then ψ � μ ≡ ψ ∧ μ.
(�3) ψ � μ |= μ.
(�4) If ψ1 ≡ ψ2 and μ1 ≡ μ2 then ψ1 � μ1 ≡ ψ2 � μ2.
(�5) If (ψ � μ) ∧ χ are consistent then ψ � (μ ∧ χ) |= (ψ � μ) ∧ χ.
(�6) (ψ � μ) ∧ χ |= ψ � (μ ∧ χ).

(�1) states that the agent aims at having consistent beliefs (unless an inconsis-
tent set of beliefs μ is accepted). (�2) is linked with the minimal change principle:
if ψ is consistent with μ then the minimal change ψ �→ ψ′ is ψ′ = ψ (i.e., no
change). (�3) is related to the fact that μ has priority over ψ, i.e., the only
belief changes are made on ψ: μ is unchanged. (�4) states that revision respects
the principle of independence to syntax (substituting a formula by an equivalent
formula should not affect the result of the inference, up to equivalence). It can
be shown that the conjunction of postulates (�5) and (�6) is equivalence to the
following assertion: if (ψ � μ) ∧ χ is consistent then ψ � (μ ∧ χ) ≡ (ψ � μ) ∧ χ.
In other words, if there is no need to further modify the beliefs after revision
of ψ by μ in order to incorporate χ, then this additional modification is not
performed and the new beliefs χ are simply added to the beliefs ψ � μ. This
expresses the minimal change principle: when no further change is needed to
restore consistency, then no such change is executed.

Despite these postulates, the set of belief revision operators is still wide,
depending on the way change is assessed. In particular, it can be assessed thanks
to a similarity measure between interpretations, giving birth to a family of revi-
sion operators presented below.

Similarity-based Revision Operators. A similarity measure on a set S is defined
in this paper as a function sim : S × S → [0, 1] such that sim(a, b) = 1 iff a = b
(for a, b ∈ S). A belief revision operator �sim satisfying the AGM postulates can
be defined for every similarity measure sim on Ω, the set of interpretations:

with sim∗ = max {sim(I,J ) | I ∈ M (ψ) and J ∈ M (μ)}
M (

ψ �sim μ
)

=
{

J ∈ M (μ)
∣
∣
∣ maxI∈M(ψ) sim(I,J ) = sim∗

} (7)

In other terms, the models of ψ �sim μ are the models of μ that are the most
similar to models of ψ. This defines �sim only up to logical equivalence, which
is not a problem: any formula � such that � ≡ ψ �sim μ constitutes the �sim-
revision of ψ by μ according to the principle of independence to syntax.

Given a distance function dist on Ω, a similarity measure can be defined
by sim(I,J ) = 1/(1 + dist(I,J )) for I,J ∈ Ω. In particular, let H be the
Hamming distance between interpretations: H(I,J ) is the number of variables
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a such that I(a) �= J (a). Let simH be the similarity measure associated with H.
The revision operator �simH is the so-called Dalal revision operator [5], denoted
by �Dalal in the following. The Hamming distance weights every variable equally
and considers variables independently: it can be seen as an edit distance on
interpretations based on the “flip” edit operation that alters one variable at
a time (turning 0 into 1 and conversely). For this reason, when there is no
knowledge about how the change has to be measured, the Hamming distance
being “neutral” is used for measuring this change. That is why, �Dalal is used
as a non informed operator, with an empty knowledge about change.

Revision-based Adaptation is an approach to single case adaptation based on
a revision operator �. The intuition is that the modification of the retrieved
case xs ∧ ys in order to have a proposed solution to the target problem xtgt is
performed by �. Both the retrieved case and the target problem are interpreted
with the domain knowledge, hence the revision to be performed is that of DK ∧
xs ∧ ys by DK ∧ xtgt. The result of this revision is a formula � entailing xtgt

(according to postulate (�3)), thus � is equivalent to a formula xtgt ∧ytgt where
all variables of ytgt belong to VS . ytgt is the proposed solution of xtgt. Formally,
this can be written as follows:

(DK ∧ xs ∧ ys) � (DK ∧ xtgt) ≡ xtgt ∧ ytgt (8)

In order to apply revision-based adaptation, a revision operator has to be
chosen. This choice is linked on how the change is assessed, that is, using the CBR
terminology, the adaptation knowledge AK. So, when no adaptation knowledge
is available (AK = ∅), the Dalal revision operator is used.

It is noteworthy that the solution ytgt provided by revision-based adaptation
is necessarily consistent provided that DK ∧ xtgt is, but is not necessarily fully
described: M (DK ∧ xtgt ∧ ytgt) may contain several interpretations. In such a
situation, this means that the revision-based adaptation asserts that there exists
a plausible solution y to xtgt that verifies y |= ytgt. In the extreme situation,
ytgt ≡ �, meaning that the revision-based adaptation gives no information on a
potential solution of xtgt.

The running example can be solved using revision-based adaptation. The
retrieved case is cases and the target problem is xtgt, defined by (3) and (4).
Let us consider this adaptation using �Dalal. It can be shown that the result ytgt

of this revision is

ytgtDalal ≡ St Pierre ∧ cream ∧ sauce
∧ ¬fruit ∧ ¬pineapple ∧ ¬salmon ∧ ¬curry (9)

So, this adaptation consists in removing from cases = xs ∧ys the fruits because
their presence would be inconsistent with DK ∧ xtgt.

3 Bridging Extrapolation and Revision-Based Adaptation

The two approaches to case adaptation presented above—the one based on ana-
logical extrapolation and the one based on belief revision—appear to be quite
different: the first one is a multiple case adaptation approach whereas the second
one is a single case one (relying respectively on the retrieval of source cases by
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triplets and by singletons). Nevertheless, the goal of this section is to show how
they can meet. First, the approach based on extrapolation is reformulated as a
single case adaptation. Second, a revision operator based on source case pairs is
defined and it is shown how, under some circumstances, the two approaches to
adaptation coincide. This makes it possible to define an approach to adaptation
based on both extrapolation and revision that takes into account, on the one
hand, the case base and the case pair competence, and, on the other hand, the
domain knowledge.

3.1 Reformulating Adaptation by Extrapolation as a Single Case
Adaptation

In the above presentation of analogical extrapolation, it has been considered that
a triplet of cases (casea, caseb, casec) is retrieved and then reused in order to
solve xtgt. Now, this can be reformulated in a new way by considering that only
casec is retrieved, and the other ones, casea and caseb, are selected during the
adaptation process itself. This “symmetry breaking” has two advantages. First,
it can be used for the purpose of an efficient implementation (this issue can be
related to the issue of implementing extrapolation algorithms presented in [16]).
Second, it makes it possible to match the two approaches to adaptation; for this
reason, the retrieved case casec is renamed cases = (xs, ys), to better match
the notations of single case adaptation.

Therefore, the reformulation of analogical extrapolation as a single case adap-
tation is as follows:

Input: the case to be adapted (xs, ys), the target problem xtgt, the case
base CB, the preference relation between pairs of cases

Output: a set of proposed solutions Y to xtgt

1. Let CandidateCasePairs be the set of (casea, caseb) ∈ CB × CB such
that xa : xb :: xs : xtgt holds and the analogical equation ya : yb :: ys : ?y is
solvable.
2. Let BestCandidateCasePairs be the set of most competent case pairs
among CandidateCasePairs.

3. Let Y =
{

y

∣
∣
∣
∣
y is the solution of ya : yb :: ys : ?y
for (casea, caseb) ∈ BestCandidateCasePairs

}

.

4. Y is returned as a set of candidate solutions to xtgt.

3.2 A Revision Operator Based on Competence of Case Pairs

A similarity measure simcomp on Ω that is based on pairs of cases and case pair
competence can be defined under some assumptions, hence the revision operator
�simcomp . It is noteworthy that for the competence preorders presented in [15],
these assumptions hold.

The first assumptions is that the competence preorder between pairs of cases
can be defined thanks to a competence level, i.e., a function compLvl that maps
a pair of source cases to a value in [0, 1] such that (case1, case2) is deemed
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to be strictly more competent than (case3, case4) iff compLvl(case1, case2) >
compLvl(case3, case4).

The second assumption just translates the fact that two pairs of cases being
in analogy have the same competence, hence the same competence level:

if xa : xb :: xc : xd and ya : yb :: yc : yd

then compLvl(casea, caseb) = compLvl(casec, cased) (10)

The third assumption is that the maximum level of competence is 1 and is
reached only by pairs (casea, casea), for casea ∈ CB. This third assumption can
be justified by the fact that if xa : xa :: xs : xtgt then xs = xtgt (according to (5))
and thus that the analogical equation ya : ya :: ys : ?y has exactly one solution
?y = ys that solves xtgt = xs.

The fourth assumption is that the level of competence is minimal for
(casea, caseb) iff this case pair is in analogy with no case pair (casec, cased) ∈
CB2 (which involves that {casea, caseb} �⊆ CB).

A one-to-one correspondence caseOf between Ω and the set of fully described
cases can be defined, for I ∈ Ω, by caseOf(I) = (x, y) is such that M (x ∧ y) =
{I}. A similarity measure simcomp can be defined using this correspondence and
the competence level function:

simcomp(I,J ) = compLvl(caseOf(I), caseOf(J )) (for I,J ∈ Ω)

The meeting between the two approaches of adaptation is expressed by the
following result (given a source case (xs, ys) and a target problem xtgt):

if ytgt is the result of revision-based adaptation with � = �simcomp ,
the domain knowledge is empty (DK = �),
Y is the set of solutions obtained by analogical extrapolation
and Y �= ∅

then ytgt ≡ ∨
Y

(11)

In other terms, in absence of any domain knowledge, revision-based adaptation
using the revision operator �simcomp based on case pair competence gives the
same result as analogical extrapolation, unless this latter gives an empty set of
solution. Furthermore, it can be shown that if this set is empty, then ytgt ≡ �,
i.e., in this case, revision-based adaptation gives no information on the solution.

The proof of (11) mainly consists in applying the definitions: the similarity
measure simcomp has been chosen so that �simcomp -adaptation matches analogical
extrapolation when DK is empty.

3.3 An Approach to Adaptation Based on Extrapolation and
Revision

Now, consider the running example with �simcomp-adaptation and, first, with DK =
∅. Because of the variable curry, analogical extrapolation gives no solution1

1 More precisely, the analogical equation ya : yb :: ys : y has no solution: it is solvable
feature by feature on every feature except curry, so a solution can be proposed for
every other features.
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(Y = ∅) and in this situation, ytgt ≡ � (no information on the solution is
proposed). If the curry variable is discarded from V then, according to (11), the
proposed solution verifies:

ytgt = ytgt�simcomp−adaptation without curry
≡ ytgtextrap (12)

Now, in order to design an approach that considers all the variables, even the ones
such as curry that does not match exactly extrapolation, a similarity measure
simE&D can be defined that combines simcomp and simH (for a given α, 0 < α < 1,
and I,J ∈ Ω):

simE&D(I,J ) = (1 − α)simcomp(I,J ) + αsimH(I,J ) (13)

hence the revision operator �simE&D (E&D for “extrapolation and Dalal”). Then,
for a small enough α, �simE&D-adaptation consists in making a minimal number
of variable flips on cases to make extrapolation possible and then in applying it
(in fact, it is sufficient that α < (2 |V|)−1. ). In particular, if analogical extrapola-
tion applies (on every variables) then no flip is necessary and �simE&D -adaptation
coincides with �simcomp -adaptation (that performs analogical extrapolation).

Applying �simcomp -adaptation on the running example gives:

ytgtE&D ≡ sauce ∧ fruit ∧ pineapple
∧ ¬St Pierre ∧ salmon ∧ cream ∧ ¬curry (14)

The analogical equation 1 : 0 :: 0 : ?ycurry for finding the value of the feature
curry of ytgt by extrapolation of (casea, caseb, cases) has no solution, so a flip
of this feature for cases gives cases′ and the triplet (casea, caseb, cases′) can
be used by extrapolation to solve xtgt in ytgt = ytgtE&D, since 1 : 0 :: 1 : ?ycurry has
a unique solution ?ycurry = 0 (hence ¬curry in the proposed solution of xtgt).

Now, this adaptation has not taken into account the domain knowledge and,
in fact, DK ∧ xtgt ∧ ytgtE&D is inconsistent, with the DK of the running example
(because of the pesto-fruit conflict). Therefore, the proposed approach to adap-
tation consists in doing a �simcomp -adaptation taking into account DK as in (8).
With the running example, this gives:

ytgtE&D w/DK ≡ sauce ∧ ¬fruit ∧ ¬pineapple
∧ ¬St Pierre ∧ salmon ∧ cream ∧ ¬curry (15)

which consists in removing fruits from ytgtE&D.

3.4 Synthesis

Figure 2 describes the cases and the target problem presented above, as well as
the proposed cases cases = xtgt ∧ ytgt after the different adaptation processes.

This example illustrates how the strengths of two approaches to adaptation
can be combined:
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Fig. 2. The running example used throughout the paper: problem setting and outcomes
casetgt = xtgt ∧ ytgt of adaptation processes presented in the paper. The column
#§ indicates the number of the relevant section.

– Analogical extrapolation’s strength is to exploit the variations within the case
base (variations that can be seen as specific adaptation rules): the variation
“Saint-Pierre to salmon” from casea to caseb is applied to cases in a similar
context.

– �Dalal-adaptation’s strength is to take into account the domain knowledge in
order to adjust the retrieved case to propose a solution to the target problem:
the pesto being incompatible with fruits, pineaple is removed from the recipe.2

– �simcomp -adaptation combines the two adaptation approaches: it applies ana-
logical extrapolation on each feature for which it is both possible and consis-
tent with the domain knowledge, and adjust the other features in the �Dalal-
adaptation way.

4 Related Work and Final Remarks

This paper has considered two very different approaches to case adaptation—
analogical extrapolation and revision-based adaptation—and has investigated
the issue of how they can meet. It has been shown that, under some circumstances
(propositional setting, no domain knowledge, etc.), they coincide (cf. (11)) and
that the approach can be extended when domain knowledge is added and/or
when analogical proportions holds only for some solution features. The idea is
that the case pairs and their competences—used in analogical extrapolation—
can be used for “re-shaping the adaptation space” by making more similar the
source case and the target problem, and that this similarity is used by the revision
operator.

Related Work. There is a rich literature on belief revision following the seminal
work of Alchourrón, Gärdenfors and Makinson [2], and its expression in a propo-
sitional logic setting [12]. However, the idea of applying belief revision to CBR,
2 It is noteworthy that �Dalal-adaptation may do more than removing positive facts
as it can substitute a class by a sibling class in the taxonomy (see, e.g., [14]).



When Revision-Based Case Adaptation Meets Analogical Extrapolation 169

as restated in the preliminaries of this paper, can be found only in few works;
see [4] in particular.

The idea of an analogical inference pattern based on analogical proportions
dates back to [18]. Its application to CBR is suggested in [21], and more system-
atically investigated in [16].

There has been no work bridging analogical extrapolation and belief revision
until now. Keeping in mind that belief revision and nonmonotonic logic are two
sides of the same coin in some sense [10], we may however mention a discus-
sion [19] contrasting nonmonotonic reasoning and analogical reasoning, but also
providing pathways between them.

Future Work. This paper has shown how two models of adaptation can meet,
but the question remain of the practical usefulness of this meeting, beyond the
running example. For this purpose, a first line of future work is to conduct an
experiment comparing the different approaches presented there.

The revision operators �simcomp and �simcomp may change with the addition
of a new case in the case base, e.g., the case (xtgt, ytgt) when this new case is
validated. Indeed, the competence level of case pairs is computed on the basis of
CB. The evolution of revision operators over time is an issue related to iterated
revision (see, e.g., [7]), so, it would be interesting to study �simcomp and �simcomp

at the light of the postulates of iterated revision postulates.
Lastly, it is known that belief revision can be encoded in possibilistic logic [9],

since belief revision relies at the semantic level on epistemic entrenchment rela-
tions [11], which are nothing but qualitative necessity relations in the sense of
possibility theory [8]. How to process the different kinds of revision/adaptation
considered in this paper in the possibilistic setting is another topic for future
research.
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Abstract. When interacting with a human user, an artificial intelli-
gence needs to have a clear model of the human’s behaviour to make the
correct decisions, be it recommending items, helping the user in a task or
teaching a language. In this paper, we explore the feasibility of modelling
the human as a case-based reasoning agent through the question of how
to infer the state of a CBR agent from interaction data. We identify the
main parameters to be inferred, and propose a Bayesian belief update as
a possible way to infer both the parameters of the agent and the content
of their case base. We illustrate our ideas with the simple application of
an agent learning grammar rules throughout a sequence of observations.

Keywords: User modelling · Machine learning for CBR · Bayesian
Inference for CBR

1 Introduction

Many applications strongly rely on the interactivity between a human user and
an Artificial Intelligence (AI). In such applications, a human agent performs
actions to complete a specific task in cooperation with an AI agent which guides
them along the way, either by providing advice, corrections or by intervening
directly in the environment [5]. Intelligent Tutoring Systems (ITS) [1] are an
example of such applications, where an AI proposes specific learning materials
to help a human learner acquire a specific concept.

Despite their differences, all these applications share an important feature:
since they involve the collaboration between two agents, the human user and the
AI, they require both agents to have a good understanding of their collabora-
tor [4,18]. From the perspective of the AI, this is done in practice by providing
the AI agent with a model of the human user. In the case of ITS, such a model
could describe what the learner knows [6,19] or how they acquire knowledge [16].
Alternatively, in model-based recommender systems, a user profile is used to rep-
resent their tastes and preferences, based on which items will be recommended
by the AI agent.
c© Springer Nature Switzerland AG 2021
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Case-Based Reasoning (CBR) has been involved in a long tradition of contri-
butions to the field of interactive systems, some of which made in the domain of
education [7], by suggesting how an AI could optimally interact with a user. This
paper takes a rather different position: We propose a novel interactive framework
that models the human user as a CBR agent, having thus principles from CBR
dictate how the user acquires and reuses knowledge from previous observations.
Using such a user model enables taking into account different effects that go
along with the learning experience, such as the memorization, forgetting, and
adaptation of previous observations.

Modeling the user as a CBR agent raises various technical challenges, includ-
ing the question of how to infer the characteristics of the user from their behavior,
in particular when these characteristics are not stationary and evolve through-
out the interaction. When the case base of the user is known, it does not seem
challenging to infer the other characteristics, such as the similarity metric used
for retrieval or the parameters of the adaptation [17]. The main difficulty arises
when the content of the case base is unknown to the AI agent. In this paper, we
propose to alleviate this uncertainty using Bayesian belief update for a joint infer-
ence of the content of the case base and of the CBR characteristics. Although
this methodology shows good performances, we also discuss that it would be
illusory to expect a full inference, since some CBR configurations cannot be
distinguished only based on their outcomes.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
a formalization of the interactive process using Partially Observable Markov
Decision Processes (POMDP). This formalization introduces the user model as
a latent variable and highlights the need for an AI agent to infer the parameters
of this model. Section 3 discusses how a CBR agent can be used to model the
human user. We then identify the parameters of this CBR agent that need to be
inferred during the interaction. The inference itself is described in Sect. 4: after
presenting the general principle, we develop a simplified case where the CBR
is assumed to be deterministic and we discuss the algorithmic implementation
of this procedure. These principles are then applied to specific applications, the
results of which are presented in Sect. 5. We conclude the paper with a discussion
on the perspectives offered by the presented techniques.

2 Problem Statement: Interaction with a CBR Agent

Let P be a problem space and S be a solution space. We call a case a tuple
(x, y) ∈ P × S. The problem of a CBR agent is to infer a plausible solution
ytgt ∈ S to a problem xtgt ∈ P.

We consider an agent, the user, taking some decisions based on the observa-
tion of a sequence of cases. Given a case base CB, the sequential process can be
described as follows: the user observes a problem xt ∈ P and takes a decision ωt

in reaction to this problem. We note that this decision ωt is not necessarily equal
to the estimated solution ŷt to the problem xt, but is related to it. Then, the
user may eventually observe the true solution yt.
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In the context of Intelligent Tutoring Systems, a teacher can aim to teach
the human learner a grammar rule by showing a sequence of examples. At each
step, the teacher suggests a problem (xt) and the user suggests a corresponding
solution (ŷt). In this example, the teacher observes directly the estimated solu-
tion (ωt = yt). However, other more sophisticated applications require a strict
distinction between ωt and yt. For instance, in a medical context [9], a case can
be given by the medical observations of a patient (xt) and the medical diagnosis
(yt). However, based on their diagnosis, a physician will take a decision related
to the suitable prescription (ωt). In an interactive system with an AI assistant,
only the prescription would be visible to the AI which should then be able to
infer the reasoning process of the physician, for their diagnosis and prescription.

A strong hypothesis made by our work is that the mapping xt �→ ŷt is
computed by the agent based on CBR. This hypothesis will be exploited further
in Sect. 4 when estimating the parameters of the decision-making.

Whereas the introduced framework focused only on one agent, the user, its
more general setting includes additionally the AI agent that may be responsible
for selecting the problems. One way to formalize the decision-making of such
an artificial agent in interaction with the human user is offered by the Partially
Observable Markov Decision Processes (POMDPs), which have been used in
various interaction applications such as teaching [12], dialogues [20] or human-
robot interaction [2]. A POMDP is defined as a tuple (S,A,R, T,Ω,O), where
S is the set of possible states, A the set of actions (in our context, the cases
to present), R a reward function (describing what the AI aims to achieve), T :
S × A × S → [0, 1] the state-transition (T (s1, a, s2) measures the probability of
transition from state s1 to state s2 by playing action a), Ω the set of observations
and O : S × A × Ω → [0, 1] the observation probability (O(s, a, ω) measures the
probability of observing ω when action a is played in state s).

In our context, the state s corresponds to the description of the parameters
of the user, which affect their own decision-making. With this POMDP formal-
ization, the user’s decision-making is described by the observation probability
function O, which assesses the probability of the user in a state s to take decision
ωt based on the problem xt selected by the AI.

In the following, we denote by s(t) the user state at time t. This description is
given as a vector containing all the parameters necessary for a representation of
the user. For a given i, we note s

(t)
i to refer to the i-th component of the vector,

and s
(t)
−i to designate the vector of all components sj for j �= i.

An important challenge when solving POMDPs is that the parameters of
the user cannot be directly observed by the AI, and some may evolve during
the interactive process (e.g. the content of the case base). These changes in the
state are described by the transition probability T . To alleviate this issue, it is
important for the system to be able to infer the value of the states in an online
manner, while keeping track of the uncertainty. The remainder of this paper will
propose a description of how to define the relevant states when the user bases
their decision on CBR, and how the parameters can be inferred in practice.
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3 Modeling the User as a Case-Based Reasoner

To guarantee an optimal interaction with the user, it is necessary that the def-
inition of the state yields a forward model of the user: Given s(t), it must be
possible to simulate the user future behavior. In this paper, we assume that the
user makes decisions following a CBR. This requires in particular the description
of how the user memorizes and reuses previous cases to solve new problems.

Table 1. Summary of parameters to infer by the teacher

Knowledge container Parameters to infer

Case base Content of the case base

Parameters of case retention

Parameters of the forgetting model

Domain knowledge Background knowledge of domain constraints

Similarity knowledge Similarity measure

Parameters of the similarity measure

Adaptation container Algorithm used for adaptation

Parameters of the algorithm

Rules (for a rule-based algorithm)

Using the definition of the knowledge containers for CBR [14], we propose to
split the user’s model into four components:

(1) The case base, denoted by CBU is the collection of memorized cases. It is
updated upon time by adding or removing elements from the collection. Dur-
ing an interaction, it is important to consider how new cases are added to the
case base, but also how cases are removed from the case base. In particular,
when considering human users, removing a case can be motivated by a con-
scious desire to update the case base, but also by unconscious phenomena
such as forgetting [11]. The AI agent must be able to have an estimation of
the content of the case base in order to choose the most appropriate actions.
This requires in practice to infer the parameters of the memorization and
forgetting phenomenon.

(2) The domain knowledge provides a set of rules dictated by the domain and
which constrain the search for a solution to the given problems. These rules
can be understood as the background knowledge that the user may or may
not have. When the teacher is able to identify potential domain knowledge,
it needs to infer whether the user does have it. In case the user does not, the
AI can adapt its actions to make such rules understandable, or, in practical
applications, the AI may provide explicit explanations [3].

(3) The similarity knowledge describes the factors used to assess the similarity
between cases, and is used in particular when retrieving cases from CBU to
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solve a new problem xt. For this knowledge container, the inference focuses
mostly on the similarity measure used by the learner. In case a finite number
of similarity measures can be used, the inference consists in finding out which
one is actually preferred by the learner. In more advanced cases, the inference
can also focus on parameters of the similarity measure such as the weight
coefficients [13].

(4) The adaptation container encompasses information that is used for adapting
the solution of a retrieved case (x, y) ∈ CBU to a new problem xt. In
a rule-based system, the adaptation container contains the rules used to
perform the adaptation. The inference of the adaptation container requires
then to infer which of these rules are used by the user. In a more general
case, the rules are replaced by general parameters and/or algorithms for the
adaptation.

A summary of the user model parameters to infer is provided in Table 1. In
the context of this paper, we will ignore the parameters related to case retention
and case forgetting and the inference techniques proposed in the next section
cannot apply directly to them. The inference of these parameters will have to
be studied in future works.

4 Inference of the CBR Parameters

4.1 General Principle

A common way to deal with the fact that the states in POMDPs are unobserved,
is to evaluate the states using a Bayesian belief update. It can be shown that,
in this case, the POMDP is equivalent to a belief-MDP. The idea is to estimate
the parameters in two steps. First, we estimate the posterior of the state s(t−1)

after interaction t − 1, using the information obtained at time t:

p(s(t−1)|xt, ωt) ∝ p(ωt|xt, s
(t−1))p(s(t−1)) (1)

where p(s(t−1)) is the prior over the state. The value taken as a prior for the next
interaction is obtained by applying the transition function T of the POMDP:

p(s(t)) = Ep(s(t−1)|xt,ωt)

[
T (s(t−1), (xt, yt), s(t))

]
(2)

Although this formulation is the soundest, it is difficult to use in practice
when inferring the parameters of a CBR agent, because of the very large dimen-
sion of the state space, which must contain all possible case bases. It is applicable
though when the case-base of the learner is known.

As a solution, we propose in the following to use marginal distributions over
each parameter independently instead of the full joint distribution. This simpli-
fication, which is used for computational reasons, yields a loss in terms of the
richness of potential correlations between parameters of the model. However,
depending on the problem, it is possible to consider some groups of variables
together to keep track of some correlations.
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When considering the marginals, we consider the update of each of the com-
ponents si of the state s. The belief update is then given by:

p(s(t−1)
i |xt, ωt) ∝ E

s
(t−1)
−i

[
p(ωt|xt, s

(t−1)
i , s

(t−1)
−i )

]
p(s(t−1)

i ) (3)

where the expected value over the components s
(t−1)
−i is computed based on

the probabilities p(s(t−1)
−i ). For simplicity purposes, we will write the terms

s
(t−1)
i , s

(t−1)
−i simply as s(t−1), which is technically correct but loses the intu-

ition that the term s
(t−1)
i corresponds to the quantity being updated and s

(t−1)
−i

to the variables of the expected value.
Since the observation is not directly produced by the CBR agent, we decom-

pose the likelihood p(ωt|xt, s
(t−1)) into two terms, accounting for (i) the result

ŷt of the CBR and (ii) how this result is used to yield observation ωt:

p
(
ωt|xt, s

(t−1)
)

=
∑

ŷ

p
(
ωt|xt, s

(t−1), CBR(xt, s
(t−1)) = ŷ

)
︸ ︷︷ ︸

choice of the response given the result of the CBR

p
(
CBR(xt, s

(t−1)) = ŷ
)

︸ ︷︷ ︸
result of the CBR

(4)

where the notation CBR(xt, s
(t−1)) designates the result of the CBR for prob-

lem xt with s(t−1) as parameters (including the content of the case base).

4.2 Inference of the Parameters for a Deterministic CBR

We consider as an illustration the specific case where the learner is a deterministic
CBR, i.e. that the retrieval and adaptation are both deterministic functions. In
addition, we assume that the learner’s output ωt is the result of the adaptation,
which implies that:

p
(
ωt|xt, s

(t−1), CBR(xt, s
(t−1)) = ŷ

)
= I(ωt = ŷ) (5)

where I(x) = 1 if x is true, and I(x) = 0 otherwise. In this context, it can be
shown that p

(
ωt|xt, s

(t−1)
)

= I
(
ωt = CBR(xt, s

(t−1))
)
, and eventually:

p(s(t−1)
i |xt, ωt) ∝ p

s
(t−1)
−i

(
ωt = CBR(xt, (s

(t−1)
i , s

(t−1)
−i )

)
p

(
s
(t−1)
i

)
(6)

The CBR process can be divided here into two main steps: the retrieval,
denoted by Ret(xt), which outputs the closest case(s) to xt, and the adaptation,
denoted by Ad(xt,R), which consists in adapting the retrieved cases R to solve
problem xt. It can then be observed that:

p
s
(t−1)
−i

(
ωt = CBR(xt, (s

(t−1)
i , s

(t−1)
−i )

)

=
∑

R⊂CBU

p
s
(t−1)
−i

(
ωt = Ad(xt,R)

∣∣∣s(t−1)
i

)
p

s
(t−1)
−i

(
Ret(xt) = R

∣∣∣s(t−1)
i

)
(7)
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We note that, in Eq. 7, the sum over all possible results of the retrieval will
be in practice reduced to those yielding a correct result during the adaptation
(otherwise, the probability that ωt = Ad(xt,R) is 0).

4.3 Probability of Retrieval for kNN

In the case where the retrieval is operated by a k Nearest Neighbor algorithm,
the probability p

s
(t−1)
−i

(Ret(xt) = R) can be evaluated as follows.
We first consider that the similarity metric and its parameters are fully

known. For simplicity and without loss of generality, we assume in the following
that the cases are ordered by decreasing similarity to x (in particular, (x1, y1)
is the most similar to x). In practice, this can be obtained using a permutation
σ reordering the cases. Then the probability that kNN(xt) outputs (i1, . . . , ik),
where i1 < . . . < ik, is given by:

p
(
kNN(xt) = (i1, . . . , ik)

)
=

∏
j∈(i1,...,ik)

p(λ(t)
j = 1)

ik∏
j=1

j �∈(i1,...,ik)

p(λ(t)
j = 0) (8)

where λ
(t)
i ∈ B indicate whether case (xi, yi) belongs to the user’s case base.

Note however that the λ
(t)
i are components of the vector s(t).

When there is uncertainty over the similarity metric and/or its parameters,
we can obtain the probability of retrieval by using the law of total probability
over these values. Note that the probability in Eq. 7 is computed over the vari-
ables s

(t−1)
−i only, variable s

(t−1)
i being fixed and corresponding to the variable

being updated. The computational complexity of computing this probability
under uncertainty depends on the number of similarity measures and param-
eters to consider. In particular, this operation requires additional attention in
continuous parameter spaces.

4.4 Discussion on the Inference Process

The Bayesian inference described in this section is very general and applicable
to any situation where the behaviour of the CBR system can be modelled. In
particular, we showed how Eq. 4 can be used to assess situations where the exact
output of the reasoning is not observed. In terms of implementation however, it
is noticeable that the presented techniques can quickly become computationally
very expensive, as soon as the number of parameters of the models increases.
The variable separation suggested in Eq. 3 goes into the direction of lowering the
dimension of the state space, but this dimension is obviously not the only cause of
complexity. For instance, Eq. 7 requires to sum over all possible retrieval results,
the number of which grows exponentially with the number of cases to retrieve.
In the experimental section, we will consider the simple case of 1 neighbor only,
in order to keep reasonable space exploration. For future works however, more
advanced inference and approximation techniques will be needed, in particular
Monte-Carlo techniques or likelihood-free inference.
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5 Application: Teaching Word Inflection

5.1 Presentation of the Application

As an illustrative example, we consider the application of teaching a grammar
rule to a learner. In order to teach a new grammatical concept in a foreign
language, a commonly used method is to present some examples to the learner, as
well as exercises during which the learner aims to solve a series of problems. The
purpose of the application considered here is to mimic this teaching procedure.

We focus on the simple case of word inflection, which is the transformation
of a word, called stem, into an alternative form, called inflection. Such transfor-
mations are typical of conjugation or declension. In the simplest case, a single
rule applies to all stems, but there exist multiple word classes with their specific
transformations, and the learner must be able to memorize all these transforma-
tions and to know when to apply them. As a typical example, the Institute for
the Languages of Finland identifies 51 different declension groups in the Finnish
language, which differ mostly in a change of radical. For instance, although the
genitive case is obtained by suffixing a -n to the radical, the formation of the
radical from the stem varies from one group to the other. We cite here a few
examples following the schema (Stem, Radical, Genitive case): (“kissa”, “kissa-”,
“kissan”), (“korpi”, “korve-”, “korven”), (“rakkaus”, “rakkaude-”, “rakkau-
den”), (“Sibelius”, “Sibeliukse-”, “Sibeliuksen”).

When considering this scenario, a case (x, y) is given by the stem (for instance
“kissa”) and the corresponding genitive form (here “kissan”). The goal of the
teacher, as described in Sect. 2, is then to propose an optimal sequence of cases
to the learner (which can be seen as exercises).

The learner model we propose is a CBR framework based on the notion of
Kolmogorov complexity [8], inspired by the work of Murena et al. (2020) [10] on
morphological analogies. Kolmogorov complexity [8] is a theoretical tool mea-
suring how complex the generation of a string is. Intuitively, the character string
“0000000000” is less complex than “0110111010” because it can be generated
by a simple program. More formally, the complexity of a binary string x ∈ B

∗,
denoted KM (x), is defined as the length of the shortest program, on a reference
Turing machine M , that outputs x.

This definition relies on the choice of a reference Turing machine M ; theo-
retical results show that this is not a real issue because of invariance properties,
and most applications, including the one of interest here, fix a simple machine
to make K(.) computable. For the case of analogies on words, Murena et al.
(2020) [10] introduce a simple description language based mostly on the con-
catenation of character strings. The programs allow the definition of functions
with variables, which can be used for instance to assess repetitions of patterns.
Although the choice of this language is a parameter in se, we consider it as fixed
and optimal. Inferring the optimal description language could be an interesting
and challenging future direction.
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5.2 Implementation of a Case-Based Reasoning Learner

We now propose a full description of the CBR learner we use in the context of
this application.

Case Base. The case base CB is a set of tuples (x, y), where x is the stem
and y the inflected form. We consider only finite case bases. We consider a
probabilistic retention, where a case is retained with a given probability (see
Sect. 5.3, Experiment 3). As stated before, we do not consider the inference of
the parameters of the case retention.

Domain Knowledge. The domain knowledge is given as a set of rules which
determine the validity of a solution and/or affect the adaptation. We consider
here the understanding h ∈ B of the vowel harmony rule in Finnish, which states
that the groups of vowels a/o/u and ä/ö/y cannot coexist in a word; according to
it, the solution of the analogical equation “maa:maalla::pää:x” will be corrected
from “päälla” into “päällä”.

Similarity Knowledge. The retrieval is highly dependent on a distance function
between existing cases and a new problem: d : X × Y × X. We identify three
main candidate functions, all based on complexity. The first candidate exploits
the idea that adaptation knowledge can play a role in the retrieval phase [15]:

d0(a : b, c) = min
d

K(a : b::c : d) − K(a : b) (9)

where K(a : b) removes the impact of the complexity of the source case. Distance
d1(a : b, c) is similar, but has K(a) as a regularizer. The third considered distance
measures how close the structures of a and c are: d1(a : b, c) = K(a::c) − K(a)

The retrieval phase is then implemented as a k-nearest neighbors procedure,
where the neighbors are defined according to the chosen distance function. The
domain knowledge is then given by two parameters: d ∈ {d0, d1, d2}, the chosen
distance function, and k, the number of neighbors, chosen to be equal to 1 in
this paper. The adoption of higher values of k will be explored in future work.

Adaptation Knowledge. The retrieved case {(a, b)} is reused for solving the new
problem c by solving the analogical equations a : b::c : x , using the algorithm
proposed in [10], which states that the solution x of the analogical equation
minimizes the complexity K(a : b::c : x). This algorithm is non-parametric.

Discussion. Altogether, these four knowledge containers fully define the learner’s
CBR model. We notice that the only free parameters considered in this applica-
tion are the understanding of vowel harmony (h ∈ B) and the distance function
used for the retrieval (d ∈ {d1, d2}). Other parameters (for instance k the num-
ber of neighbors) could be considered in more sophisticated models. In addition
to the inference of these parameters, the teacher must also infer the content of
the case base.
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5.3 Empirical Evaluation

This section presents different experiments for evaluating the process of inference
of the CBR parameters, proposed in Sect. 4, in the context of the application of
teaching word inflections. We carried out three sets of experiments focusing on
different aspects of the inference.

In all of these experiments, the specific task considered is the one of teaching
to derive the inessive case of a Finnish word given its nominative case. The list
of Finnish words considered is extracted from the one provided by the Institute
for Languages in Finland (Kotus)1. This list of words also includes characteris-
tics of each word, in particular its group that dictates in part how the radical
is formed based on the nominative case. The inessive case was automatically
scraped from the Wiktionary dictionary2. In the experiments, we considered
only words belonging to the 48th type, which contains a large diversity of stem-
to-radical transformations.

The main idea of the experiments is to simulate the interaction between a
learner, modeled as a CBR agent with fixed parameters strue, and an AI agent
trying to infer these parameters, over a number of steps. The true CBR model is
used to simulate the user’s answers and the evaluation of the parameter inference
is based on how close the estimated parameters are from their true values. In
addition, we also evaluate the ability of the estimated CBR model to reproduce
the true behavior of the user. To measure this ability, we introduce a score metric
that is measured at each step t and defined as follows:

score(t) = Es(t)

⎡
⎣ 1

|CBtest|
∑

(x,y)∈CBtest

I

(
CBR(x, s(t)) = CBR(x, strue))

)
⎤
⎦

(10)
where CBtest is a test case base that is introduced for the sole purpose of eval-
uating the capacity of reproducing the user behavior on a new set of problems.

Experiment 1: Parameter Evaluation with a Fixed Case Base. The first
set of experiments focuses on the special case of parameter inference when the
case base of the user is fixed and does not evolve throughout the interaction.
This setting would remove any potential impact of the dynamic character of
parameters on the inference process as described by Eq. 2, which would itself be
the subject of Experiment 3.

Under this condition, we denote by CBU the fixed case base of the user that
is itself a subset of a larger (also fixed) case base, denoted by CB and containing
all possible cases that the user may have observed or learned. We set the size
of CBU to 30 and that of CB to 100. We consider an interaction session of 50
steps, during which the user does not retain any observation but only provides
answers to the problems based on its content and parameters. The experiment

1 www.kotus.fi. The link to the list of Finnish words: kaino.kotus.fi/sanat/nykysuomi.
2 www.wiktionary.org.

www.kotus.fi
http://kaino.kotus.fi/sanat/nykysuomi
www.wiktionary.org
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is run 20 times and we sample at each run a different CBU and CB from the
complete list of words described above. The parameters of the true user CBR
model are set as follows: h = 0 and d = d2. The different priors are taken as
uniform distributions over the set of related parameters.

(a) Estimation of the distance used for
retrieval.

(b) Estimation of the understanding of
vowel harmony.

(c) Evolution of the predicted score
compared to the real user.

(d) Average error in the prediction of
the word probabilities.

Fig. 1. Results of Experiment 1, considering the case where the user case base is fixed
and measuring the quality of parameter estimation.

As an indication in terms of computational time, running such an experiment
(including the 20 runs) takes up to one hour on a machine with one processor
Intel Core i5 2.3 GHz and 8G of RAM. Such an experiment also includes mea-
suring the score at each step, which is a costly operation, and does not involve
advanced optimization or parallelization of execution.

Results. Figure 1 shows the results obtained for this experiment. Figure 1a dis-
plays the evolution of the probability of each of the potential distance measures
over the number of steps. The estimation of the distance reaches the true value
after a few number of steps and the figure only shows the first few steps of the
interactive process, after which the values relatively stabilize. Following a similar
idea, Fig. 1b shows the estimation of the h parameter related to the understand-
ing of the vowel harmony concept. Its value drops over the number of steps
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until reaching zero, also showing that it is able to reach the desired value after
observing the user solutions. This shows that, even in the absence of a com-
plete certainty over the case base of the user, it remains possible to estimate the
parameters of the CBR model.

Figure 1c presents the score metric (Eq. 10) evaluated at each step of the
experiment on a fixed CBtest of size 100, sampled at the beginning of the exper-
iment from the complete list of words. The score increases over the number of
steps, starting from a score of 0 as no proper estimation of the user model has
been done at t = 0 and the AI agent cannot reproduce the user behavior. The
increase of the score metric throughout the experiment shows that the behavior
of the estimated user model gets closer to the one of the true user model, which
suggests that the estimation quality improves. This idea can also be derived from
Fig. 1d where the curve plotting the average difference between the estimated
probability of a word from the case base and its true probability, decreases over
time. However, and even after a large number of steps, this error does not reach
0: it can be observed that some cases in CB are given a probability of about 0.5.
This phenomenon can be explained by an impossibility to discriminate between
different words, which are seen by the inference as having a completely similar
role, and therefore as completely indiscernible. We discuss further this question
of indiscernibility in the next set of experiments.

Experiment 2: Impossibility of Differentiating Indiscernible States.
The parameter inference takes as evidence the answers given by the user to a
problem set. As mentioned above, it seems that some sets of parameters could
exhibit the same behavior (same answers) from the user’s side. In this set of
experiments, we aim to show that two equivalent states cannot be discernible by
the inference process.

Fig. 2. Results from Experiment 2. The
states s1 and s2 (blue and orange) yield a
similar user’s behaviour, and are therefore
indiscernible. (Color figure online)

We consider the two words “kaura”
and “käyrä”, having the inessive case
as “kaurassa” and “käyrässä” respec-
tively. We focus on the three follow-
ing states: s1 = (kaura ∈ CBU , käyrä
/∈ CBU , h = 1), s2 = (kaura /∈ CBU ,
käyrä ∈ CBU , h = 1), and s3 =
(kaura ∈ CBU , käyrä ∈ CBU , h = 0).
Since s1 and s2 both incorporate vowel
harmony, it can be verified that they
hold the same information in terms of
how to derive the inessive case from
the nominative case, and will therefore
provide similar answers to problems.

To compare the probability of each
of these states given the user answers,
we simulate the behavior of a user having a set of parameters equivalent to s1
on a series of 20 interactions (Note that similar results are obtained with s2).
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Results. Figure 2 shows the evolution of the probability of each state over the
number of steps. It can be seen from the plot that the two states s0 and s1 have
the same probability: It is not possible to differentiate between them or favor
one over the other only based on the user answers. The probability of state s3
decreases over time until reaching 0: if the user were in state s3, they would
retrieve any of the two cases from the case base and would adapt it to form a
potentially incorrect answer.

(a) Evolution of the estimated score
compared to the real user.

(b) Average error in the prediction of
the word probabilities.

Fig. 3. Results of Experiment 3: A learner acquires new data during the interaction
with a teacher. The teacher estimates the case base, with the following assumptions on
retention: (1) Retain with p = 0.2; (2) Retain with p = 0.6; (3) Retain with p = 0.95;
(4) retain with p = 0.5 when predicting the correct answer and with p = 0.8 otherwise.

Experiment 3: Parameter Inference for a Dynamic Case Base. We
complement the results provided in Experiment 1 by showing that an inference
is possible even in a context of a sequential interaction. We mimic a teaching
interaction between the AI and the user, during which the teacher displays a
sequence of problems from a case base CB of size 50. The learner proposes an
answer and observes the actual solution. The presented case is then retained
with a probability which depends on the learner’s answer: p = 0.8 when the
answer is incorrect, and p = 0.5 otherwise. To infer the learner’s CBR model, the
teacher exploits a fixed transition dynamics. We compare four possible dynamics:
three dynamics having a fixed probabilistic retention (with probabilities p = 0.2,
p = 0.6 and p = 0.95) and one having the same dynamics as the learner’s. The
experiments are led in the same conditions as those of Experiment 1 (20 runs,
fixed test base of 100 cases for the score).

Results. The experimental results show that the inference of the distance and
understanding of vowel harmony is unchanged when using the four transition
models. We thus omit to include the corresponding plots. The results presented in
Fig. 3 show however that the content of the inferred case base, and consequently
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the prediction score, are directly affected by the choice of the transition dynam-
ics. In particular, we observe that underestimating the probability of retention
(Teacher 1, in blue) causes lower prediction capabilities and more errors on the
case base. The teachers with larger probabilities of retention (Teachers 2 and 3,
in orange and green) have identical inference of the parameters, which is in par-
ticular better than the estimation based on the exact retention model (Teacher
4, in red). These observations highlight the importance of having a good estima-
tion of the transition dynamics. Although this aspect has been ignored in this
paper, it is a fundamental and unavoidable future work.

6 Conclusion

When interacting with other agents, be it other artificial agents or human users,
an AI must be able to understand its teammate to enhance the quality and effi-
ciency of the cooperation. In this paper, we discussed the possibility to use CBR
as a paradigm underlying the other agent’s behavior. Such a model is particu-
larly interesting when interacting with human users, since it directly incorporates
the fact that humans constantly memorize and reuse knowledge from previous
experiences. However, it introduces the important challenge of identifying the
parameters of such a CBR model based on the observed behavior.

Our first contribution is to clearly identify the dimensions of interest in a
CBR model that would need to be inferred (see Table 1). In particular, we dis-
cussed that a major but unavoidable challenge is to infer the content of the case
base, i.e. what the user knows. This is challenging because of the number of pos-
sible configurations for the case base. A second contribution is to demonstrate
the feasibility of such an operation: using basic probabilistic tools, we could
propose simple algorithms for the inference of the parameters of a CBR agent.
For the application of word declension, we succeeded in inferring the parameters
used by a CBR user for both the retrieval and the adaptation, when considering
fixed and dynamical case bases. However, we also showed that this has limi-
tations: the inference cannot differentiate between different states that exhibit
equivalent behaviours, and all the fixed parameters have to be chosen with care.
Future research is needed to be able to infer the parameters of case retention,
which none of the methods described in our paper can tackle. Furthermore, more
advanced techniques will have to be implemented to enable the inference of more
complicated models: in particular, likelihood-free inference techniques could be
valuable tools for approximating more realistic CBR models of human reasoning.
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Abstract. Research on eXplainable AI (XAI) is continuously propos-
ing novel approaches for the explanation of image classification models,
where we can find both model-dependent and model-independent strate-
gies. However, it is unclear how to choose the best explanation approach
for a given image, as these novel XAI approaches are radically different.
In this paper, we propose a CBR solution to the problem of choosing the
best alternative for the explanation of an image classifier. The case base
reflects the human perception of the quality of the explanations gener-
ated with different image explanation methods. Then, this experience is
reused to select the best explanation approach for a given image.
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1 Introduction

With the success of Machine Learning (ML), interpretability for ML systems has
become an active focus of research. XAI research tries to solve several questions
related to the increasing need for interpretable models, such as: How should
interpretable models be designed? What to explain? When to explain?
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If we focus on the explanation of deep learning image classifiers, we can
find several proposals in the literature [10,23]. There are two major approaches:
model-dependent models that analyze the internal behavior of the classifier to
provide explanations, and model-independent models where the classification
process is considered as a black-box. Concretely, in this paper we analyze and
compare four different XAI methods for the explanation of deep neural net-
works classifiers: Integrated Gradients and XRAI (eXplanation with Ranked
Area Integrals) belonging to the group of model-dependent explainers; and LIME
(Local Interpretable Model-Agnostic Explanations) and Anchors that are rele-
vant model-agnostic explanation methods.

This work is based on two basic hypotheses: (i) the performance of the expla-
nation method depends on the nature and features of the source image, and
(ii) there is no algorithmic solution to determine which explanation method is
most suitable for a concrete image. This way, given an image classification to be
explained, we can only use previous explanation experiences to select the most
suitable XAI method. These hypotheses follow previous research in CBR applied
to XAI that has pointed out the importance of taking advantage of the human
knowledge to generate and evaluate explanations [14,17].

For example, in our previous work [11] we presented a case-based reason-
ing method that takes advantage of human knowledge to generate explanations.
Concretely, we defined and evaluated a CBR solution to the problem of con-
figuring the well-known LIME algorithm, that attempts to understand a global
black-box classification model by perturbing the input of data samples. How-
ever, this method applies a generic setup for any image, that leads to inade-
quate explanations. The CBR solution is based on a case base of images and
their associated “optimal” LIME configurations according to the users. From
this case base, we implement the CBR-LIME method where, given a new query
image, similar images are retrieved, and their corresponding configurations are
reused to generate an explanation through the LIME algorithm.

Generalizing this idea, in this paper we propose a CBR solution to the prob-
lem of selecting the best explanation approach for an image classifier. The case
base reflects the human perception of the quality of the explanations generated
with different XAI approaches. Then, given a query image, several similarity met-
rics are applied to find the most suitable explanation approach. Here, similarity
metrics play a very relevant role as we can compare images using different points
of view: feature vectors, pixel-to-pixel, structural similarity or color distribution.

This paper is organized as follows: Sect. 2 introduces the XAI algorithms.
Section 3 describes the CBR process and the case base elicitation process. In
Sect. 4 we demonstrate the benefits of our approach using both off-line and on-
line evaluations. Concluding remarks are discussed in Sect. 5.

2 Background

CBR can provide a methodology to reuse experiences and generate explanations
for different AI techniques and domains of applications. Therefore, we can find
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Fig. 1. Visual description of the explanation process followed by LIME, Anchors, IG
and XRAI.

several initiatives in the CBR literature to explain AI systems. Some relevant
early works can be found in the review by [7]. Recently there is a relevant body
of work on CBR applied to the explanation of black-box models. Most of these
works are post-hoc explanation systems, where CBR follows the model-agnostic
approach to explain black-box models [2,5,8,21].

Leaving aside CBR as an explanation method per se, the goal of this paper
is to apply CBR to find the most suitable explanation model given an image
classification. Here, there are several XAI models for the explanation of image
classifiers to be considered. Local surrogate models, such as LIME or Anchors
[12,13], focus on explaining individual predictions instead of the whole global
model. They are model-agnostic models based on perturbation mechanisms.
Another popular local surrogate model similar to LIME is SHAP [9]. It is based
on the game theory concept of Shapley values and explains the prediction of
an instance by computing the contribution of each feature to the prediction.
We can also find alternative approaches such as Integrated Gradients (based
on Shapley values too) and XRAI (eXplanation with Ranked Area Integrals)
that aim to explain the relationship between model’s predictions in terms of its
features. These methods are model-dependent and belong to the group of back-
ward propagation mechanisms. The backward propagation starts with the layer
that is producing the given target, e.g. certain classification, and estimates the
contribution of neurons in the layer previous to that target.

Figure 1 shows graphically the process followed by LIME, Anchors, IG and
XRAI to provide explanations for images. Next, we provide further details of
these XAI methods.
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2.1 LIME

LIME focuses on training local surrogate models to explain individual predictions
given by a global black-box prediction model. In a general way, it analyses the
behavior of the global prediction model through the perturbation of the input
data.

In order to figure out what features of the input are contributing to the
prediction, it perturbs the input data around its neighborhood and evaluates
how the model behaves. Then, it trains an interpretable local model that weighs
these perturbed data points by their proximity to the original input. This local
model should be a good and explainable local approximation of the black-box
model. Mathematically, it is formulated as follows [12]:

explanation(x) = arg min
g∈G

L(f, g,Πx) + Ω(g). (1)

This equation defines an explanation as a model g ∈ G, where G is a class of
potentially interpretable models, such as linear models or decision trees. The
goal is to minimize the loss function L that measures how close the explanation
is to the prediction of the original model f given a proximity measure Πx. This
proximity measure defines the size of the neighborhood around the predicted
instance x that is used to obtain the explanation. Additionally, it is necessary
to minimize the complexity (as opposed to interpretability) of the explanation
g ∈ G, denoted as Ω(g).

Regarding the perturbation of the input data, it depends on its type. For
tabular data, LIME creates new samples by perturbing each feature individually
based on statistical indicators. For text and images, the solution is to remove
words or parts of the image (called superpixels). Finally, the interpretable surro-
gate model used by LIME is linear regression, corresponding to the Ω(g) function
in Eq. 1. Here, the user has to define the number of the top superpixels being
considered.

2.2 Anchors

The use of linear regression makes LIME unable to explain the model correctly
on some scenarios where simple perturbations are not enough. Ideally, the per-
turbations would be driven by the variation that is observed in the dataset.
The same authors proposed a new way to perform model interpretation which is
Anchors [13]. Anchors is also a local model-agnostic explanation algorithm that
explains individual predictions, i.e., only captures the behavior of the model on
a local region of the input space. However, it improves the construction of the
perturbation data set around the query. Instead of adding noise to continuous
features, hiding parts of the image, to learn a boundary line (or slope) associated
to the prediction of the query instance, Anchors improves LIME using a “local
region” instead of a slope.

Ribero et al. [13] have demonstrated the usefulness of anchors by applying
them to a variety of ML tasks (classification, structured prediction, text gener-
ation) on a diverse set of domains (tabular, text, and images). They also ran
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a user study, where they observed that anchors enable users to predict how a
model would behave on unseen instances with much less effort and higher pre-
cision as compared to existing techniques for model-agnostic explanation, or no
explanations.

2.3 Integrated Gradients

Integrated Gradients (IG) is a gradients-based method to efficiently compute
feature attributions with the same axiomatic properties as the Shapley value
[16]. IG aims to explain the relationship between a model’s predictions in terms
of its features. It has many use cases including understanding features impor-
tance, identifying data skew, and debugging model performance. IG as an inter-
pretability technique is applicable to any differentiable model (e.g., images, text,
structured data) that allows it to scale to large networks and feature spaces such
as images [19].

In the IG method, the gradient of the prediction output is calculated with
respect to the features of the input, along an integral path [3]. First, the gradi-
ents are calculated at different intervals of a scaling parameter. For image data,
imagine this scaling parameter as a “slider” that is scaling all pixels of the image
to black. Integrated gradients can be visualized by aggregating them along the
color channel and scaling the pixels in the actual image by them.

The formula for IGs is as follows [18]:

IntegratedGradientsi(x) = (xi − x′
i) ×

∫ 1

α=0

∂F (x′ + α × (x − x′))
∂xi

dα, (2)

where i represents each feature (pixel) of input x, x′ is the baseline image (black
image), and α is a interpolation constant to perturb features.

2.4 XRAI

XRAI (eXplanation with Ranked Area Integrals) is an explanation model based
on the IGs method. It is recommended for image models where it is desirable
to localize attributions at the region vs. pixel level [3]. XRAI is a region-based
saliency method, which first over-segments the image, then iteratively tests the
importance of each region, coalescing smaller regions into larger segments based
on attribution scores [19]. Attributions are calculated by back-propagating the
prediction score through each layer of the network, back to the input features.
These methods are in general faster than perturbation-based methods since they
usually require a single or constant number of queries to the neural network
(independent of the number of input features) [4].

The XRAI method combines the IG method with additional steps to deter-
mine which regions of the image contribute the most to a given class prediction
[4]. These steps are:

1. Pixel-level attribution: XRAI performs pixel-level attribution for the input
image. In this step, XRAI uses the integrated gradients method with a black
baseline and a white baseline.
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2. Oversegmentation: Independently of pixel-level attribution, XRAI over-
segments the image to create a patchwork of small regions. XRAI uses
Felzenswalb’s graph-based method [1] to create the image segments.

3. Region selection: XRAI aggregates the pixel-level attribution within each seg-
ment to determine its attribution density. Using these values, XRAI ranks and
orders the segments to determines which areas of the image are most salient,
or contribute most strongly to a given class prediction.

Next, we present our CBR process to select the most suitable explanation
method for a given image.

3 CBR Process Specification

As explanations depend on their utility to the user, it is not possible to find an
algorithmic solution to find the most suitable explanation algorithm given an
image classification. Therefore, we propose the use of a CBR approach where a
case base of instances and their most suitable explanation method is collected
and reused to provide explanations. Next, we present the case base elicitation
process, several similarity metrics that have been considered, as well as alterna-
tive reuse strategies.

3.1 Case Base Elicitation

The case base of images has been obtained from the dataset provided by the
Visual Genome project [6]. We selected 200 images that were confidently clas-
sified by Google’s Inception deep convolutional neural network architecture [20]
with a predominant class (precision > 95%). The distribution of images accord-
ing to the predominant class is not uniform, having classes with different number
of images, as illustrated in Fig. 2. For every image, we generated four different
explanations with the XAI algorithms presented before: LIME, Anchors, IG and
XRAI. Then, these four explanations were presented to users, that could select
the most suitable explanatory image, as illustrated in Fig. 3. Explanations were
randomly shuffled, and the corresponding explanation method is not displayed
to the user. Each time the user selects an explanation, a new image and its
corresponding explanations are shown until the 200 images have been voted.
Concretely, users were asked to select the most specific explanation, meaning
that, in case of two similar images, they should choose the one with less image
area.

After repeating this process with 15 users we collected a total of 3.000 votes
(15 per image) that were used to generate the case base. The description of each
case is the image itself –its pixel matrix, M– plus the feature’s vector returned
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Fig. 2. Pareto diagram showing the distribution of images (total and percentage)
according to the predominant class predicted by the classifier.

by the classifier
−→
f . The solution is the number of votes given by the users to

each explanation strategy, denoted as L,A, I,X. This representation of cases
can be formalized as:

Case = 〈D,S〉
where

D = 〈M,
−→
f 〉

S = 〈L,A, I,X〉. (3)

The preliminary analysis of the explanation methods voted by the users
denoted a higher preference for the backward propagation mechanism, indepen-
dently of the predominant class in

−→
f . The distribution of the votes according to

the explanation method is shown in Fig. 4. Here, it is specially relevant that the
IG method got up to 45% of the votes, followed by XRAI (30%), LIME (18%)
and Anchors (7%).

3.2 Similarity Metrics

A key element in the CBR process is the similarity metric used for the retrieval
of similar images (and their corresponding votes distribution) from the case base.
We have defined four different approaches:

Pixel-to-pixel. A straightforward method to retrieve similar images is the
comparison of the pixel matrix. This similarity metric uses the difference
between the pixels of both images:

sim(Dq,Dc) = 1 − |Mq − Mc|. (4)
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Fig. 3. Web application used to vote for the best explanation and generate the case
base. The original image and the majoritarian predicted class is shown on the top.
Images below are generated through the four XAI methods being considered.

Histogram correlation. This similarity metric is based on the correlation
between the color histograms of the images. It is defined as follows:

sim(Dq,Dc) = 1 − hcorr(h(Mq), h(Mc))

hcorr(H1,H2) =
∑

i(H1(i) − H̄1)(H2(i) − H̄2)√∑
I(H1(i) − H̄1)2

∑
i(H2(I) − H̄2)2

(5)

where

H̄k =
1
N

∑
J

Hk(J). (6)

Here, function h() obtains the color histogram of a pixel matrix with length
N .
Structural similarity index (SSIM). This metric compares the struc-
tural changes in the image. It has demonstrated good agreement with human
observers in image comparison using reference images [24]. The SSIM index
can be viewed as a quality measure of one of the images being compared,
provided the other image is regarded as of perfect quality. It combines three
comparison measurements between the samples of x and y : luminance l, con-
trast c and structure s:

sim(Dq,Dc) = [l(Mq,Mc)]α · [c(Mq,Mc)]β · [s(Mq,Mc)]γ (7)

Where α, β, and γ are parameters that define the relative importance of each
component.
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Fig. 4. Votes distribution aggregated according to the explanation method.

Feature comparison. This approach focuses on the objects in the image
that were identified by the classifier being explained. Therefore, this similarity
metric is based on the comparison of the feature vectors

−→
f by applying a

distance metric such as the Euclidean distance:

sim(Dq,Dc) = 1 − Eucl Dist(
−→
f q,

−→
f c). (8)

Then, the k most similar images can be selected. This retrieval process is
illustrated in Fig. 5, where the three nearest neighbors for a given image query
are retrieved using the strategies defined before.

3.3 Reuse Strategies

The following step in the CBR cycle is solution reuse. Here, we need to define
the strategy to aggregate the votes received by one or several images and assign
the corresponding explanation method. To do so, we need to define the function
that returns the class (LIME, Anchors, IG or XRAI) with the largest number of
votes that are stored in the solution of a case:

mostV oted(S) = arg max
m∈{l,a,i,x}

votes(m,S), (9)

where function votes() returns the number of votes stored in solution S for a
given explanation method x. With this function we can define the following
strategies to aggregate the solutions of the k -nearest neighbors of the query:

Simple voting. This strategy returns the majoritarian class in the solutions
of the nearest neighbors:

sv(S1, . . . , Sk) = arg max
m∈{l,a,i,x}

⋃
i∈{1,...,k}

mostV oted(Si). (10)
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Fig. 5. Example of 3NN retrieval using each similarity metric. Nearest neighbors
show the explanation method with the largest number of votes given by the users in
the bottom-right corner.

Aggregated voting. This alternative strategy aggregates the votes received
by each explanation method in each solution of the k-NNs and then computes
the majority class:

av(S1, . . . , Sk) = mostV oted(A) (11)
where

A = 〈L+, A+, I+,X+〉
m+ =

∑
i∈{1,...,k}

votes(m,Si). (12)

4 Evaluation

In order to demonstrate the benefits of our case-based approach to find the most
suitable explanation method for an image, we performed an evaluation using
cross-validation.
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Fig. 6. Evaluation result for several values of k using the Simple Voting (left) and
Aggregated Voting (right) reuse strategies.

The goal of this evaluation is to compare, using each image similarity metric
and reuse strategy, the outcome of our CBR system to the actual explanation
method chosen by the users. Here, it is important to note that the distribution
of the solutions in the case base is very unbalanced, as the explanation method
assigned to each case is based on the majoritarian class. This way, the 62% of
the cases in the original case base had IG as explanation method. To reduce this
bias and balance the case base, we applied a random subsampling over cases
with solution IG until they represent 45% of the total cases. This figure tries
to reproduce the original distribution of votes presented in Fig. 4. This way,
a dummy classifier that always returns IG as the explanation method for any
image will obtain an accuracy of 45%. We can consider that value the baseline
of our system, although in a completely balanced case base, this baseline should
be 25% as we are considering four classes.

Results, using a 50-times leave-one-out evaluation, are summarized in Fig. 6.
We can clearly observe that the best similarity metric is feature comparison.
It achieves an accuracy around 0.6 for k = 10. The structural similarity index
is the second best similarity metric, although it does not overcome the case
base baseline. The two similarity metrics based on the comparison of the pixel
matrices, either pixel to pixel or through the color histogram, report a low per-
formance. Regarding the comparison of the reuse strategies, aggregated voting is
more stable, specially when k is greater than 3. However, it does not achieve as
good results as the simple voting strategy. It is also worth noting that, indepen-
dently of the reuse strategy, the best accuracy is obtained when the number of
nearest neighbors is relatively high (k > 10). Within this scenario, most of the
configurations of the CBR system achieve an accuracy close to 0.6, that in com-
parison with our case-base baseline (0.45) represents a great improvement. This
improvement is even more relevant if we compare with the theoretical baseline
of a 4-class classifier (0.25).

Finally, we also simulated the learning process of our CBR system and ana-
lyzed its behavior as the case base grows. This analysis is presented in Fig. 7,
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Fig. 7. Analysis of the learning process of the CBR system. Line chart shows the
evolution of the accuracy for the optimal configuration from Fig. 6: k = 10, feature-
based similarity and simple voting reuse strategy.

where we can observe that the accuracy of the CBR system grows approximately
linearly with respect to the size of the case base, specially for the simple voting
aggregation strategy. It is a clear indicator that the performance of the system
could increase if there were more cases available.

5 Conclusions and Future Work

This paper presents a case-based reasoning method that takes advantage of
human knowledge to select the best explanation model for image classification.
Concretely, we have defined and evaluated a CBR solution to the problem of
selecting from four explanation methods –LIME, Anchor, IG and XRAI– that
represent the two major explanation approaches: model-independent and model-
dependent. To evaluate this CBR system we have collected a case base of images
and their associated “optimal” explanation models according to the votes of sev-
eral users. The main conclusion obtained from the elicitation of the case base is
that there is a predominant explanation method according to the users’ votes:
Integrated Gradients. This method belongs to the group of model-dependent
explanation models, and surprisingly it clearly beats XRAI, that can be consid-
ered as an evolution of IG. From the group of model-agnostic models, we also
find a similar conclusion: LIME is preferred over Anchors, although the former
is considered as an enhancement of LIME.

From the collected case base, we implement a system where, given a new
query image, similar images are retrieved, and their corresponding XAI meth-
ods are proposed as the best explanation approach. Here, the behavior of the
similarity metrics to retrieve the most similar cases is a key element to be care-
fully addressed as there are several alternative approaches: features compari-
son, pixel-to-pixel or structural similarity, or even color correlation. Finally, as
the experimental evaluation has demonstrated, the feature-based similarity, that
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compares the features identified by the classifier, is the only one achieving a sig-
nificant performance. This result corroborates the initial findings of our previous
work [11] where feature-based similarity was used to find the proper configuration
of the LIME method using a CBR approach.

The evaluation presented in this paper compares through cross-validation the
images in the case base and the explanation method proposed by the CBR system
or voted by the users. To compare the images, we use the four similarity metrics
and two alternative reuse strategies: simple and aggregated voting. The results of
the evaluation demonstrated that our CBR system achieves an accuracy up to
60% that significantly improves the baseline performance of 45%.

This paper leaves many open lines for future work. Firstly, we would like
to compare with other novel explanation approaches that are constantly being
developed, such as [15,22]. Moreover, we need to extend the number of voting
users, to confirm the predominance of the IG method and discard any kind of bias
on the voting process. As the process of selecting the best explanation image for
a given image and classification may be considered subjective, we could enhance
it by asking for preliminary features about the image or class (for example: how
do you describe a zebra? or what is the most important feature of a zebra?).

Another line of future work is the analysis of the combination of the similar-
ity metrics, as they have been analyzed in isolation. However, we could define
additional metrics that combine, for example, features and structural similarity.
We must also analyze the impact of the case base quality in the explanation
process regarding cold-start scenarios where no similar images are available in
order to find out the minimum similarity threshold required to provide good
explanations.

Finally, our evaluation only includes images that are confidently classified
by the neural network, so we need to evaluate the impact of multi-class images
that combine several elements (for example: an image containing a zebra, a lion
and an elephant). Within this scenario, it is unclear how the model-dependent
methods will behave as the introspection of the neural network becomes more
difficult. On the other side, it is possible that the model-agnostic methods, such
as LIME or Anchors, will raise their performance, as it is much easier to identify
the regions (superpixels) that led to the classification.
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Abstract. Holographic Case-Based Reasoning is a framework devel-
oped to build cognitively appealing case-based reasoners with proactive
and interconnected cases. Improved realizations of the Holographic CBR
framework are developed using the principles of dynamic memory pro-
posed by Roger Schank and tested on their cognitive appeal, efficiency,
and solution quality compared to other relevant systems.
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1 Introduction

Case-Based Reasoning (CBR) has its inspiration in Roger Schank’s seminal work
on Dynamic Memory [13] that aspired to model learning in computers based on
how learning happens in humans. Schank also proposed the concepts of scripts,
plans, and goals as possible knowledge structures used by humans while under-
standing a piece of text. Kolodner actively worked on Schank’s work on dynamic
memory and built a computer program called CYRUS [9] which stands for Com-
puterized Yale Retrieval and Updating System. In particular, CYRUS was an
attempt to model the reconstructive nature of human memory. CYRUS can be
uniquely contrasted against the current day CBR systems in terms of its rich case
representation. CBR systems like CREEK [1], CELIA [16], CHEF [8] were also
built with richly inter-connected case structures. However, in the conventional
CBR theory, a case is usually represented as a simple problem and solution pair
with no provision to accommodate the interconnections/dependencies between
cases. In other words, the conventional CBR theory does not have provisions
to neatly accommodate the richly inter-connected case representations found in
the complex CBR systems of the past. Holographic CBR [7] is an attempt to
provide a single conceptual framework that can cover a spectrum of CBR sys-
tems with case representations ranging from simple problem-solution pairs to
complex inter-connected cases. This is achieved by modifying the case represen-
tation to include a solo and a holo component. While the solo component stands
c© Springer Nature Switzerland AG 2021
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for the conventional problem-solution pair, the holo component is responsible
for acquiring/storing/updating all the interconnections between cases.

The idea of holographic CBR was inspired by the holographic nature of
the human brain. A holographic system is whose individual components con-
tain information about the whole system and where the whole system can be
reconstructed from each of the parts (with some loss in detail). For example,
when a holographic image of an apple is broken down into small pieces, every
piece would still be able to reconstruct the full apple image to some extent under
appropriate conditions. Similarly, the holonomic brain theory suggests that every
part of the brain contains some information about the whole. Motivated by this
observation, holographic CBR was proposed with a holo component to capture
the connection/relation of a single case to the entire case base. However, the
realizations proposed in [7] are simplistic in that they restrict themselves to the
mode of knowledge acquisition during the case acquisition/case addition pro-
cess. In knowledge-rich domains, a holographic reasoner learns the relation of a
case to the whole from the domain expert, whereas, in a knowledge-light setting,
it attempts to infer the same from the cases already present in the case base
using bottom-up learning methods. It is interesting to note that the paradigm of
holographic CBR opens an avenue for integrating both top-down and bottom-up
approaches in the building of a cognitively appealing case base. While there is
significant scope for exploration in this aspect, in this paper, we focus primarily
on forming generalized cases in a holographic reasoner during the case acqui-
sition process itself. This involves invoking a failure-driven reminding process
combined with bottom-up learning of the connections between cases. We have,
however, restricted our work to regression and classification tasks. In the past,
there have been works on generalizations and abstraction in CBR [3,11,18].
However, we are interested in developing a robust and cognitively appealing
bottom-up approach to the same.

We discuss the Holographic CBR framework in Sect. 2. Section 3 introduces
the key ideas realized and the realizations built. We present our results in Sect. 4
and summarize our findings, and discuss the future scope in Sect. 5.

2 Holographic Case-Based Reasoning

Traditional CBR systems treat cases as isolated entities. Any changes made to
one case do not affect the rest of the case base. This is unlike human mem-
ory, where a new experience affects related memories, and information is not
localized. This idea stems from the experiments of Lashley on mice [10] and
observations of Pribram on accident victims [12]. Even when parts of the brain
were removed, an organism could still form a hazy recollection of past experi-
ences instead of completely losing them. This shows the “holographic” nature of
human memory, where every part of the system contains information about the
entire system. Inspired by this, Holographic CBR [7] treats cases as proactive
interconnected entities which actively affect and are affected by any changes to
the rest of the case base. Holographic cases develop their own local knowledge
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containers, which helps them understand their problem-solving competence in
relation to the rest of the case base. They also proactively interact with and
modify the case base. More importantly, this interaction is not necessarily engi-
neered in the reasoner but is learned as the reasoner solves new problems. This
Holographic CBR framework has certain key properties.

The Holographic Case: Cases in a holographic CBR system are made up of
two parts. The solo component stores the problem-solution as in traditional
CBR systems and represents the individual experience that the case stands
for. On the other hand, the holo component defines the case’s role with respect
to the case base and captures diverse forms of relationship of a case with other
cases in the case base.

Holographic Case Addition: New cases are added to the case base only when
the system cannot solve the new case using the existing cases. Thus, the case
base grows only when it identifies a knowledge gap. Instead of merely adding
the new case to the case base, the system informs the existing cases of the
new case’s presence. It highlights why the existing case base could not solve
the problem and the new case’s value-addition and is later used to decide
when/how to use the newly added case to solve future problems.

Holographic Problem Solving: The system has a coarse knowledge of the
competence of the different cases inside it, but problem-solving happens in
a decentralized manner. Cases are expert problem solvers in their neighbor-
hoods. The system uses its global similarity knowledge to retrieve a case to
solve a new problem. The retrieved case, in turn, uses its holo component to
identify if any other cases can solve the problem better and, if found, transfers
control to such a better case.

This treatment of CBR has several advantages. The ability of cases to inter-
act with other cases allows us to design helpful ways to use, modify, and reor-
ganize the case base. The presence of explanations for adding a case not only
ensures that only useful cases get added but also highlights the added case’s nov-
elty. Ganesan et al. [7] built holographic CBR realizations, which demonstrated
some of these ideas. However, the realizations restrict themselves to the mode
of knowledge acquisition during the case acquisition/case addition process and
explored only limited cognitive ideas. We utilize this framework to infuse several
dynamic memory ideas, absent in Ganesan et al.’s initial realizations like form-
ing generalizations based on multiple cases, updating links between cases based
on usage, etc., into our CBR realizations to make it more cognitively appealing.
These ideas draw inspiration from Schank’s works on human understanding and
the properties of a dynamic memory system.

3 Methodology

3.1 Key Ideas

In this section, we provide the intuition and justification for the key cognitive
ideas implemented. These are then implemented in holographic CBR systems
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in Sect. 3.2. We use an example of an animal classification task from the UCI
Zoo Dataset to motivate these ideas. In this task, each animal (case) has certain
binary biological features like - lays eggs, produces milk, is a predator, airborne,
etc., and belongs to a class which is one of mammal, bird, fish, amphibian, reptile,
flight, and non-flight invertebrate. The CBR system is presented with the cases
one at a time from which it learns and then classifies new cases.

Forming Generalizations. Schank observed that past experiences stored in
memory might contain detailed information not relevant to solving a given task
[14]. When two experiences are similar, and when their differences do not con-
tribute additional value to problem-solving, it is useful to form generalizations
by combining such similar experiences. These generalizations should only retain
information which 1) help them solve the task and 2) differentiate them from
other non-similar experiences. This makes the system more efficient by focusing
only on important information and ignoring unnecessary details. Moreover, it
helps in identifying novel information present in new experiences by comparing
them with existing generalizations.

For example, whether an animal is a predator or not does not help in the
classification. When the system sees several animals with the same class but
different predator values, it should identify this unnecessary feature. Similarly,
it should be able to find features that have typical values for a certain class.
For example, the class mammals has lays eggs as predominantly false. With this
information, the system should form generalizations about mammals that ignore
the useless feature and highlights the typical feature. This generalization can
immediately capture interesting information in new cases. For example, when
faced with a platypus case (which lays eggs but is still a mammal), the system
can identify its novelty by comparing it to the mammal generalization.

Failure-Driven Reminding. When a CBR system uses a similar past case
to solve a new problem, it expects that the solutions to the past and the new
problem are similar. When such expectations do not match the ground truth
(expectation-failure), there is a scope for the system to learn. Schank hypothe-
sized that a dynamic memory system should explain such expectation failures
and use them to extract valuable information from the new experience and retain
it in memory. Thus, we want a system that remembers its past mistakes and their
reasons, which it uses to avoid making similar mistakes again. For example, a
tuatara (reptile) and a newt (amphibian) share all features except aquatic but
belong to different classes. So, a CBR system might incorrectly use its memory
of tuatara to classify a newt. Once the mistake is identified, the system should
realize that the aquatic feature explains the failure. This intuition forms the
basis for our failure-driven links present in a case’s holo component. These links
are created when a case makes a mistake in solving a new case. They hold expla-
nations identified by the system for failures and connect the two cases. They
later help the system avoid mistakes by reminding it of its past mistakes. In our
example, if the system retrieves tuatara again to solve a new problem, it checks
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if the new case is also aquatic. If so, the system remembers its past mistakes and
instead transfer problem-solving control to the connected case newt.

Outcome-Driven Solo and Holo Component Weights. Cases in holo-
graphic CBR have two components - a solo component and a holo component.
However, not all information present in these components would be equally
important in solving the CBR task. Also, which information is important might
differ from one case to another. For example, a seal (mammal) and a frog
(amphibian) differ in four features - hair, legs, milk, and eggs. But the differ-
ing feature legs is less important as there are other 4-legged mammals. However,
between a honeybee (flight-invertebrate) and a carp (fish), the feature legs is
important as all flight-invertebrates have legs while no fish do. We have intro-
duced the concept of outcome-driven weights to handle this by which the feature
legs gets a higher weight in certain cases and a lower weight in certain other cases.
These weights indicate the correctness and utility of different parts of informa-
tion stored in a case. The system progressively learns these weights as it solves
new problems.

3.2 Holographic CBR Realization Framework

In this section, we describe a framework of Holographic CBR, which implements
the concepts described earlier. We use this framework to build and test two
systems for a classification task and a regression task.

Components of the Framework. We propose two levels of memory units
- cases and generalized cases. Generalized cases are made of multiple cases as
discussed in Sect. 3.1. These units have a solo component that stores their stan-
dalone expertise and a holo component connecting them with other units. Both
these components have outcome-driven weights (solo-weights and holo-weights)
as discussed in Sect. 3.1 which denote their importance in the unit. When faced
with a new problem, these units are retrieved by the system and are used to
solve the new problem.

Cases: Cases are the storehouses of knowledge from individual training data
points. Each case represents one data point from which the system has learned
and serves as a primary knowledge source to solve new problems. Each case is
stored within a generalized case. A case as shown in Fig. 1 contains the problem
definition, solution, and local knowledge in its solo component. It has information
about its relative competence with respect to its generalized case in its holo
component that is updated as the system learns.

Generalized Cases (GCs): Schank introduced Memory Organization Packets
which are organizers of individual experiences centered around common contexts
or similar themes. Storing experiences within these MOPs would highlight the
interesting aspects of the experiences, and if such interesting aspects are absent



206 R. Subramanian et al.

or irrelevant, the MOPs aid in removing the unnecessary experience. MOPs are
also connected to other MOPs based on important differences.

Similar to this, Generalized Cases are combinations of cases with similar
problem representations and similar solutions. Every time a GC is retrieved to
solve a new case during training and is able to do so, the knowledge in the
new case updates the GC, and the new case is stored within the GC. The GC
can replace the individual cases if the individual case offers no additional value.
Thus, a GC represents a region in the problem space that has similar solutions.
A GC, as shown in Fig. 1 contains a generalized problem description which is
a combination of the problem descriptions of the individual cases. The GC’s
relative competence with respect to other GCs is stored in its holo component
as failure-driven links. Multiple cases are retained within a GC.

Fig. 1. Memory units visualized

Solo Component: The solo component of a memory unit contains:

• Problem Description: These are features and their corresponding values. In
addition, GCs have outcome-driven weights discussed in Sect. 3.1 that indi-
cate the importance of a feature-value combination. For GCs, the value for
a real feature is the mean value from the cases stored within it. In contrast,
categorical features have multiple values for each feature (the feature’s value
in each case inside it) with different importance weights for each value.

• Solution: The solution to the problem the memory unit represents. For regres-
sion tasks, a GC’s solution is the mean solution of the cases within it.

• Local Adaptation Knowledge: This is present in regression tasks and modifies a
memory unit’s solution to account for differences between its problem descrip-
tion and that of a new case. Local adaptation knowledge allows different cases
to have different adaptation applicable to that point in the problem space. We
have used the difference between the values of features in the retrieved and
to-be-solved case to perform adaptation. Let the unit retrieved have a feature
vector x = [x1, . . . xn] and the new problem have x̃ = [x̃1, . . . x̃n]. We know
f(x) and want to predict f(x̃). We define adaptation weights wa

1 , . . . wa
n for

each feature which are initialized as 0 and progressively learned (as discussed
in Sect. 3.2). We perform adaptation using:

f(x̃) = f(x) + wa
1(x̃1 − x1) + wa

2(x̃2 − x2) + . . . + wa
n(x̃n − xn) (1)
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Holo Component: This stores the relative competence of a memory unit with
respect to the rest of the case base. In a regression setup, GCs initially store
the individual cases within them and compare their adaptation success to that
of the GC for future problems. The results of this comparison (how better the
case is at solving new problems when compared to its GC, measured in terms
of closeness of adapted solution to the ground truth) are stored in each case’s
holo component and are used to remove cases that do not add additional value
over the GC. In classification setups, where the GC and its cases have the same
solution and adaptation is not required, such competence is meaningless. Hence,
cases update the GCs but are not retained in the case base.

For a GC, the holo component stores the failure-driven links explained in
Sect. 3.1 and connects GCs with one another. When a GC is retrieved but cannot
solve a new problem, the explanations for the failure identified are stored in these
links, and the new problem is added to the case base and connected via this link.
These links are later used to transfer problem-solving control from the retrieved
GC to another GC linked to it. In addition, these links also have weights denoting
the GC’s confidence in their explanation.

Learning Processes in the Framework. This section describes how the
memory units are created/updated during the learning phase. The system is
presented with training data points one at a time, and it iteratively learns by
solving.

Class 1: Holographic CBR System
1 Class HOLOGRAPHIC SYSTEM :
2 GC base //List of GCs in the system
3 Function ADD CASE(newCase):
4 if GC base is not emtpty then
5 retGC = Retrieve GC in GC base with closest solo-weighted distance to newCase
6 retCG.ADD CASE(newCase)

7 else
8 Create newGC by copying newCase, initialize empty holo component and add to

GC base

9 end

10 end
11 Function SOLVE(newCase):
12 retGC = Retrieve GC in GC base with closest solo-weighted distance to newCase
13 retGC.SOLVE(newCase)

14 end

15 end

Initial Solo-Based Retrieval: When a new case (QUERY) is encountered, the sys-
tem compares this problem description with the solo problem description of each
of its GCs (GCi) to compute a distance between the two (RETd(GCi,QUERY)).
It weighs each feature f by the corresponding outcome-driven solo weight
(w(S,i)

f ). For real features, we use a standardized-Euclidean distance:

RETd(GCi,QUERY) =

√
√
√
√

∑

f∈features

w
(S,i)
f · (xf,GCi

− xf,QUERY)2

Var(f)
(2)
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And for categorical features we use a modified weighted-Hamming distance:

RETd(GCi,QUERY) =
∑

f∈features

∑

xf,k∈GCi(f)

w(S,i)
xf,k

· I(xf,k �= xf,QUERY) (3)

where xf is the value taken by the feature f (Categorical features in a GC can
have multiple values each of which is represented as xf,k), V ar(f) is the variance
of feature f , and I(condition) = 1 if the condition is true and 0 otherwise. The
GC with the lowest distance to the new case is retrieved (Class 1, Step 5) and
is used to predict the solution to the new problem (Class 2, Step 6), and this
solution is validated with the ground truth (expectation validation).

Formation of Generalized Cases: The first case encountered by the system is
stored within a GC with features, values, and solution equal to this case (Class
1, Step 8). It has equal outcome-driven weights for all features and no holo com-
ponents. When a GC is later retrieved, and there is an expectation success,
the problem descriptions are modified to the means of the problem descriptions
of the existing cases within the GC, and the new case (for real features) or
new feature-value pairs are added to the description (for categorical features) as
shown in Class 3, Step 7. If none of the existing GCs can solve a new case, a new
GC is again created by copying the new case in Class 3, Step 19.

Update of Outcome-Driven Solo Weights: The outcome-driven solo weight of a
feature in a GC is increased if the values for the feature in the GC and the case
are close during expectation success (Class 3, Step 8) and are far apart during
expectation failures (Class 3, Step 16). For example, if a GC containing frog and
newt (amphibians) is retrieved to classify a toad (also an amphibian and hence
an expectation success), the weight for the feature backbone, that has a matching
value of 1 in both the GC and the new case, increases. Similarly, if the same
GC is retrieved to classify a flea (flight-invertebrate and hence an expectation
failure), the weight for the feature backbone, which has mismatching values in the
GC and the unsolvable case, increases again. Thus, mismatching during failures
and matching during successes increases the feature-value importance and vice-
versa. For categorical features, we use the ratio of times the feature had matching
values in successes and mismatching values in failures to the number of times
the GC was retrieved as the weight for a feature. For real features, we compute
the difference in values (DIFFf (GCi,QUERY)) for feature f in the GC (GCi)
and a new case (QUERY) as:

DIFFf (GCi,QUERY) =
(xGCi,f − xQUERY,f )2

Var(f)
(4)

Here xGCi,f and xQUERY,f are the values of the feature in the ith GC and a new
case respectively. Since small differences should increase feature weights during
expectation success and decrease weights during expectation failure, we update
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Class 2: Holographic Case
1 Class CASE :
2 solo component //Problem definition, solution and adaptation weights
3 holo component //Relative competence with GC
4 pointer to GC //Parent GC within which the CASE is stored
5 Function PREDICT(newCase):
6 Use adaptation weights to predict solution for newCase
7 end
8 Function UPDATE ADAPT(newCase):
9 Use difference between CASE.predict(newCase) and newCase’s solution to update

adaptation weights of CASE

10 end
11 Function UPDATE HOLO(newCase):
12 Check whether CASE or CASE.pointer to GC is better at predicting newCase and store

result in CASE.holo
13 If CASE is consistently worse, DELETE CASE

14 end

15 end

Class 3: Holographic Generalized Case
1 Class GC(CASE):
2 solo component //Problem definition, solution and adaptation weights
3 holo component //Failure driven links connecting to other GCs
4 cases //Cases stored within GC pointer to system
5 Function ADD CASE(newCase):
6 if GC.PREDICT(newCase) close to solution of newCase then
7 Update problem description and solution of GC
8 Increase(decrease) solo weights of features with close(far) values in newCase and GC
9 Decrease(increase) holo weights of links with close(far) values in newCase and GC

10 for case in GC.cases do
11 case.ADAPT WEIGHT(newCase)
12 end
13 GC.ADAPT WEIGHT(newCase)
14 Add newCase to GC.cases

15 else
16 Decrease(increase) solo weights of features with close(far) values in newCase and GC
17 transfers = Use holo links to find linked GCs with correct linkGC.predict(newCase)
18 if transfers is empty then
19 Create newGC by copying newCase, initialize empty holo component, add to GC base
20 Create holo link from GC to newGC for every feature
21 Initialize holo weights based on difference in feature values between newGC and GC

22 else
23 for linkGC in transfers do
24 Increase(decrease) holo weight of links between linkGC and GC where the link value

and the corresponding feature value in newCase are close(far)

25 end

26 end

27 end

28 end
29 Function SOLVE(newCase):
30 if Solo-weighted distance between GC and newCase high then
31 transferGC = Use holo links to find linked GC with minimum holo link distance to

newCase
32 if Holo distance between newGC and transferGC small then
33 transferGC.SOLVE(newCase)
34 end

35 else
36 retCase = Case in GC.cases closest to newCase
37 RETURN retCase.PREDICT(newCase)

38 end

39 end

40 end
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the solo weights(w(S,i)) for feature f in the ith GC for expectation success as
follows. η is a learning rate parameter between 0 and 1 to avoid over-fitting.

w
(S,i)
f ← w

(S,i)
f + η(S,i) max(df ) + min(df ) − df

∑

f (max(df ) + min(df ) − df )
(5)

w
(S,i)
f =

w
(S,i))
f

∑

f w
(S,i)
f

(6)

For expectation failure we use:

w
(S,i)
f ← w

(S,i)
f + η(S) df

∑

f df
w

(S,i)
f =

w
(S,i)
f

∑

f w
(S,i)
f

(7)

Formation of Failure-driven Links and Holo Update: When an expectation fails,
the system must explain the failure and create failure-driven holo links (if they do
not exist). All feature-values of the unsolved new case are possible explanations
for the failure and become links between the initially retrieved GC and a new GC
which only has the new case (Class 3, Step 20). However, not all feature-value
pairs are equally valid explanations. Features whose values differ significantly
between the GC and the case are more likely to be the correct explanations and
are weighed more (Class 3, Step 24). However, during an expectation success,
the links are not needed, and existing links should not match with the new case.
Thus weights of links that match with the new case are reduced, and weights of
links that do not match are increased (Class 3, Step 9). Hence, every time a GC
is retrieved to solve a new problem, the holo weights of existing failure-driven
links are updated/created depending on whether they are useful or not.

For example, a GC made of antelope and buffalo (mammals) might have
links to another GC made of crab and lobster (non-flight invertebrates) with
features aquatic:1, eggs:1, and backbone:0. When the first GC is retrieved to
classify a dolphin (mammal but has aquatic:1 ), there is an expectation success,
and the failure-driven links should not be used. Thus, the weight of the link
aquatic:1, which spuriously matched, goes down while the confidence in eggs:1
and backbone:1 as valid failure-driven links goes up.

For categorical features, we assign the holo weight for a failure-driven link as
the ratio of the number of times the link matched when needed (expectation fail-
ure) or did not match when not needed (expectation success) to the total number
of times the GC was retrieved. For real features, we use the difference in feature
values between the link and new case defined as LINK DIFFf (linkij,f ,QUERY)
where linkij,f is the failure-driven link between GCs i andj with feature f . This
is calculated as:

LINK DIFFf (linkij,f ,QUERY) =
(linkij,f − xQUERY,f )2

Var(f)
(8)
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If the holo weights are w
(H,ij)
f , during expectation failure, we update it using:

w
(H,ij)
f ← w

(H,ij)
f + ηH max(df ) + min(df ) − df

∑

f (max(df ) + min(df ) − df )
(9)

w
(H,ij)
f =

w
(H,ij)
f

∑

f w
(H,ij)
f

(10)

as features with small differences in values are more likely to be correct links.
Whereas, during expectation success, we want to decrease weights of features

which have small difference in values and update them as:

w
(H,ij)
f ← w

(H,ij)
f + ηH df

∑

f df
w

(H,ij)
f =

w
(H,ij)
f

∑

f w
(H,ij)
f

(11)

Learning Adaptations: For regression tasks, the adaptation weights in the solo
component need to be learnt. During expectation success, when the difference
between problem descriptions of the new case and GC is small, the adaptation
weights of the GC and the cases stored within it are updated using the Newton’s
method for optimization (Class 3, Step 11). If f̂(x) and f(x) are the adapted
and true solutions of the new case respectively, we update the adaptation weight
vector(wa) to minimize the squared difference between these two using:

wa ← wa − [

(x̃ − x)((x̃ − x))T
]−1

[(

f̂(x) − f(x)
)

(x̃ − x)
]

(12)

Solving a New Problem. We discuss how the system solves a new problem
during the prediction phase.

• GC Retrieval: The reasoner uses solo-weighted distance to find the closes GC
to solve the new problem (Class 1, Step 12). If the distance between the
retrieved GC and the new case is greater than a threshold, the system must
decide whether to use this GC or transfer control to another linked GC.

• Failure-driven Reminding: The reasoner matches failure-driven links to identify
potential GCs to transfer problem-solving control (Class 3, Step 31). The sum
of matching weights that lead to any GC denotes the usefulness of a transfer.
Control is transferred to the linked GC with the maximum confidence if the
total weight leading to such a GC is greater than a threshold.

• Local-Adaptation: However, if the confidence is low, control is retained with the
GC. If the GC has cases stored inside it, the case closest to the new problem
is retrieved (Class 1, Step 36), and its solution is adapted using the case’s
local adaptation. If no cases are stored within the GC, the GC’s adaptation
knowledge is used to predict the solution.

Thus, the reasoner can use the interconnected and proactive case base of the holo-
graphic CBR framework to implement the dynamic memory ideas of outcome-
driven weighted retrievals, forming and validating expectations, creating gener-
alizations, and failure-driven reminding to learn and solve problems.
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4 Results and Interpretations

This section tests our realizations on their efficiency and solution quality. All
results are averages over 50 runs where the train-test split and the order of case
addition are randomized. We build two systems that solve different tasks using
data from the UCI Machine Learning Repository [5]:

• Zoo Case Base: This is a classification task that has been discussed before in
Sect. 3.1. It has animals from 7 classes represented by 16 categorical biological
features.

• Energy Efficiency Case Base [17]: This is a regression task to predict the heat-
ing load and cooling load requirements of buildings (that is, energy efficiency)
using eight real-valued building parameters.

4.1 Comparison with Baseline

In this section, we compare our holographic approach with other systems which
perform the same tasks to illustrate the improvements obtained by the holo-
graphic framework. For the classification task, we compare our system with two
machine learning models and two alternate holographic systems:

• Naive Bayes [2]: This is a parametric ML model that does not retain experi-
ences but builds a model using the entire training data at once.

• K-Nearest Neighbors [6]: This is a non-parametric model which retains the
entire training data but uses multiple (k) data points taken together to solve a
problem. This is a simplified version of our holographic CBR without weights,
failure-driven links, or generalizations.

• Ganesan et al.’s System: This previous holographic system does not have
generalizations or outcome-driven weights but has expert-given failure-driven
links to connect cases.

• ML Switching Model: This is a modification made to our realization where the
failure-driven links transfer control to an ML model (Naive Bayes) instead of
other GCs during expectation failures.

For the regression task, we compare the system with:

• Ridge Polynomial Regression: This is a parametric method that, unlike our
approach, does not retain experiences but instead builds a model based on
all the training data points taken at once.

• K-Nearest Neighbors: This non-parametric model uses the average solution of
the k-nearest neighbors to predict the new solution.

• Ganesan et al.’s System: This previous system has local adaptation with a
weighted linear regression model in each case. It does not have control trans-
fers or generalizations and retains all training data points as cases.

The results of the comparison are in Table 1. The improved holographic systems
outperform the ML models. The holographic system does not lose out on the
solution quality despite its cognitive appeal. KNN, which retains all the data



Towards Richer Realizations of Holographic CBR 213

Table 1. Comparison with other systems (averages over 50 runs)

Classification models Test accuracy Regression models Test RMSE

Current system 93.771 Current system 1.4606

Previous system 91.523 Previous system 1.8272

KNN 93.226 KNN 2.1749

Naive Bayes 91.649 Polynomial ridge regression 3.1693

ML Switching Model 92.718

points, can still not outperform our approach, which only retains a fraction of the
training data. In our approach, cases are aware of each other’s competence and
can coordinate better to solve the problem. On the other hand, in (parametric)
ML models (Naive Bayes and Ridge Regression), the training data points interact
to create the model but lose their individual competencies when a model which
might not reflect the ground truth is enforced. Regression builds a model by
treating the entire problem space as one while the holographic system has local
pockets of knowledge in the local knowledge containers.

Our approach thus finds a middle ground by retaining cases but also allowing
them to interact in a holographic fashion. It is able to identify structures in the
problem in a bottom-up fashion and exploit it to achieve better performances.
Our system also outperforms the previous holographic realizations that treat
all components equally important and also miss out on the merits of forming
generalizations. This highlights the importance of the generalization mechanism,
which identifies regions of similarity in the problem space and combines the
knowledge present in multiple similar cases.

4.2 Tests for Efficiency

CBR systems suffer from the utility problem [16] where, as the case base grows,
the knowledge of the system and its solution quality improve, but the system’s
efficiency drops. It has been observed that better indexing and case base mainte-
nance can handle this trade-off [4]. This section tests how our system handles this
trade-off by monitoring its efficiency as the number of training cases increases.
The holographic reasoner has additional computation costs over a traditional
CBR system due to control transfer using failure-driven links. The number of
such transfers is an indication of this additional cost. We track this as a proxy for
efficiency along with the test data accuracy/RMSE. The system’s test accuracy
should ideally increase with more training data without reducing efficiency.

In both the tasks, as shown in Fig. 2a and Fig. 2b, we observe that as the train-
ing data increases, the test performance increases without significantly increasing
the control transfers. Contrarily, the number of transfers decreases after a point.
As the amount of training data crosses a limit, the outcome-driven weights are
well-tuned, and as a consequence, the initial retrievals are more accurate. Even
when control transfers are used, they arrive at the correct solution faster. This
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(a) Zoo Case Base (b) Energy Efficiency Case Base

Fig. 2. Tracking efficiency and accuracy with increase in training data

indicates the system’s ability to improve both its efficiency and solution quality
with increasing training data.

5 Conclusions and Future Directions

We have expanded the holographic CBR framework and developed improved
realizations that draw insights from popular models of dynamic memory and are
cognitively appealing. We have demonstrated holographic CBR’s broad scope,
which offers an interconnected and proactive case base to build practical systems
that can outperform traditional methods in selected tasks both in terms of effi-
ciency and solution quality. With this, we aim to establish holographic CBR as a
general-purpose CBR framework using which we can build a myriad of systems
with different applications, memory models, amount of domain knowledge, and
end goals. In this way, we establish holographic CBR not as a problem-solving
tool but rather as a paradigm to design such tools.

We aim to view CBR the way it was envisioned during its initial phases
and look past the haze created by practical constraints. By framing CBR as a
Memory-based Reasoning Framework and improving its cognitive appeal using
insights from models of human understanding, we aim to demonstrate the rich-
ness of the CBR framework and its relevance in building better Artificial Intel-
ligence systems [15]. This research work is a step in that direction.

The ideas developed here - forming generalizations, failure-driven reminding,
and outcome-driven weights are just a few of the numerous cognitive mechanisms
that can be realized. More importantly, the way in which these have been realized
in this work is not the only way to do so. Nevertheless, we hope that the results
from this work and the ideas presented pave the way for further integrating
cognitive memory-based reasoning components with holographic CBR.
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Abstract. Climate change poses a major challenge to humanity, especially in its
impact on agriculture, a challenge that a responsible AI should meet. In this paper,
we examine a CBR system (PBI-CBR) designed to aid sustainable dairy farming
by supporting grassland management, through accurate crop growth prediction.
As climate changes, PBI-CBR’s historical cases become less useful in predicting
future grass growth. Hence, we extend PBI-CBR using data augmentation, to
specifically handle disruptive climate events, using a counterfactual method (from
XAI). Study 1 shows that historical, extreme climate-events (climate outlier cases)
tend to be used by PBI-CBR to predict grass growth during climate disrupted
periods. Study 2 shows that synthetic outliers, generated as counterfactuals on
an outlier-boundary, improve the predictive accuracy of PBI-CBR, during the
drought of 2018. This study also shows that an case-based counterfactual method
does better than a benchmark, constraint-guided method.

Keywords: Climate change · Counterfactual · Data augmentation · Grass

1 Introduction

Climate change is arguably the single, biggest challenge facing the world today. The
United Nations “AI for Good” platform promotes AI technologies to meet this chal-
lenge and the UN’s Sustainability Goals [1]. But, how can we predict an uncertain future
using historical data that may no longer apply; how can we build predictive systems that
can handle the “concept drift” created by climate change, a drift that may make past
training-data irrelevant. In this paper, we explore one attempt to meet such challenges in
supporting a sustainable smart agriculture. We show how an AI system, PBI-CBR [2, 3],
that aids dairy farmers in sustainable grass management, can better handle crop growth
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prediction in the face of disruptive climate events. Specifically, we explore the novel
use of counterfactual techniques to augment training data, to improve future predictions
during climate-disrupted periods. The intuition is that a case-based counterfactual tech-
nique [4] can generate new cases by adapting historical cases to better handle climate
change; these methods “re-combine” historical cases to produce new synthetic cases that
are “offset” from past cases to better predict the future. This counterfactual technique is
tested against actual grass-growth data for 2018, in Ireland, a year of disrupted weather,
causing a forage crisis across the dairy sector in Europe [5].

In the next section, we detail the grass-growth prediction problem and the case-
based reasoning (CBR) system developed to handle it for farmers (PBI-CBR [2, 3] see
Sect. 1.1). Then, we consider the relevant literature fromCBR, counterfactual techniques
in XAI and the novel use of counterfactuals in data augmentation (see Sect. 1.2). Finally,
we close this introduction by considering the research questions addressed and the nov-
elties that arise (see Sect. 1.3). We then report two major studies that: (a) determine how
PBI-CBR currently handles the prediction of climate-disruptive events (such as those
in 2018; see Sect. 2), (b) comparatively test the PBI-CBR system using two different
counterfactual methods – an instance-guided and constraint-guided one – that generate
synthetic cases differently for this prediction problem (see Sect. 3).

1.1 The Problem: Grass Growth Prediction for Sustainable Dairy Farming

While some climate activists have argued that many sectors of agriculture should simply
be abandoned - as humanity moves from a meat-based diet to a vegetarian (or indeed
vegan) one - the short-term feasibility of such radical changes is questionable. Agroe-
cology may be more feasible, where farming systems are changed to embrace more
sustainable practices [6]. In the dairy sector, such a move could be achieved by adopting
pasture-based dairy systemswhere animals are predominantly fed on grass outdoors (i.e.,
on pastures) rather than on meal/supplements indoors [6]; these pasture-based systems
have lower carbon costs (e.g., feed is not transported over long distances), and grassland
can also be used as a carbon sink. However, such agricultural practices hinge on the
development of a precision agriculture to support sustainability; in the dairy sector, one
initiative relies on the accurate prediction of grass growth to help farmers estimate feed
budgets for dairy herds [6–10].

Grass Budgeting & Sustainability. Accurate grass budgeting sits at the heart of this
sustainable, dairy alternative which, in turn, hinges on farmers accurately predicting the
grass growth on their farm in coming weeks [2, 8, 9]. When grass growth is predicted
accurately a dairy farmer can (i) improve grass utilization, thus reducing reliance on
meal/supplements (reducing carbon costs), (ii) reduce fertilizer use (and potential nitrate
pollution), and (iii) extend of the grazing season (reducing greenhouse gas emissions,
see [7]). The Irish dairy sector mainly operates a pasture-based system with national
sustainability goals [7]. To support these efforts, an online grasslandmanagement system
aids farmers in this task, the PastureBase Ireland (PBI) system [9].

PastureBase Ireland. Since 2013, Ireland’s national agricultural research organization,
Teagasc, have provided PastureBase Ireland (PBI, https://pasturebase.teagasc.ie) as a

https://pasturebase.teagasc.ie
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grassland management system for Irish dairy farmers [9]. PBI has 6,000+ users of the
~18,000 dairy farmers in Ireland. The PBI database has weekly records of grass covers
for individual farms from 2013 to the present (here, a cover refers to the amount of
grass available from each paddock/field on a farm for a given day). The current PBI
system provides a farmer with a model of their farm (i.e., the paddock sizes) and the
current herd-size, to help them estimate feed budgets for a week ahead. At present
in PBI, grass growth is calculated by comparing the grass cover of the current week
with the previous week’s cover. In the future, PBI will provide predictions of grass
growth; traditionally, using mechanistic models such as the Moorepark St. Gilles Grass
Growth model (MoSt [8]). Currently, these models make region-level predictions based
on weather and farm variables and farm-level predictions for selected farms. The present
paper is a collaboration exploring AI techniques, PBI-CBR, in this problem domain [2].

Predicting Grass Growth Using PBI-CBR. PBI-CBR [2, 3] applies CBR to grass-
growth prediction using historical data from the PBI system, that has been entered by
farmers about their own farms; this data has cases recording the time-of-year, farm-id,
current-grass-cover (i.e., dried grass biomass above 4 cm grass height) and 3 weather
parameters (i.e., rainfall, temperature, and solar-radiation; see Fig. 1). PBI-CBR uses
a k-NN to predict grass-growth-rates for the following week using its cases. However,
the historical data is very noisy; some cases have missing data, different farms have
different numbers of cases, and some are manifestly incorrect (e.g., impossible growth
rates from data-entry errors). PBI-CBR cleans this data using a novel method – called
Bayesian Case-Exclusion – where cases that are predictive-outliers are excluded using
a separate gold-standard distribution of grass growth [8]. This cleaned case-base span-
ning several years (2013–2016) makes accurate predictions for grass growth in future
years (optimally, for k = 25–40) as well providing post-hoc explanatory cases from the
same/similar farm. In this paper, we examine PBI-CBR’s grass-growth predictions for
atypical, disruptive climate events. For instance, the summer of 2018 was unusually hot
with low rainfall across Europe. Grass tends to grow faster as temperatures rise (up to
25 °C), but the absence of soil-water can interrupt growth and lead to burnt plants (at
>30 °C). So, in the Irish summer of 2018, when grass-growth rates typically are at their
highest, growth fell back to near zero causing a feed crisis in the dairy sector.

1.2 Related Work: Counterfactuals from XAI to Data Augmentation

This paper focuses on the use of counterfactual methods for data augmentation as a
solution to improving grass growth prediction in the context of climate change. However,
to date, counterfactual methods are usually only used in explainable AI (XAI) rather than
in data augmentation (for reviews see [11, 12]). In example-based post-hoc explanation
strategies, counterfactual explanations have become very popular and are argued to be
superior to factual explanations [13]. Imagine you have applied for a bank loan and
are refused by an automated AI system, a counterfactual explanation might say “if you
requested a loan that was 10% lower, you would have got the loan”. In the last two years,
counterfactual methods have received huge attention in XAI. We review this XAI work
and the few papers that use counterfactuals for data augmentation.
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Fig. 1. Examples of PBI-CBR’s cases from two different farms for week-27 in 2016 and 2018;
a “normal” case where weather values are close the mean and an “extreme” outlier case where
temperature and solar radiation are very high relative to the mean (i.e., a climate-disrupted event)

Counterfactual Generation in XAI. In CBR, counterfactuals have been traditionally
cast as Nearest Unlike Neighbours (NUNs; [14–16]); namely, the closest neighbouring
case to a test case, just over a decision boundary in the dataset. Keane and Smyth [4]
re-christened NUNs as native counterfactuals, to distinguish them from the synthetic
counterfactuals generated by current XAI counterfactual methods. Wachter et al.’s [17]
seminal paper cast synthetic counterfactual generation as a constraint optimization prob-
lem using gradient descent over a space of blindly-perturbed datapoints; using a loss
function to find the “best counterfactual”, balancing the proximity of the counterfactual
case to the test case against its closeness to the decision boundary. So, this method aims
to generate the “closest possible world” to the test case, in which the counterfactual case
is minimally different and sparse (i.e., there are few feature differences between test
and counterfactual). In the XAI literature, this method has been extensively used and
extended with additional constraints (diversity, causality, feature-importance) and other
generative methods (such as, using genetic algorithms, GANs, VARs; see [12] for a full
review). Mothilal et al.’s [18] Diverse Counterfactual Explanations (DiCE) extends this
method to include diversity constraints; so that for given p, the set of counterfactuals
produced minimizes the distance within the set, while maximizing the range of features
changed across the set. DiCE seems to generate counterfactuals that are valid, diverse,
and sparse. Interestingly, [18] also proposed the notion of “substitutability” as an evalu-
ation method for counterfactual XAI; namely, that if a set of counterfactuals were good,
one could substitute them for the original dataset to achieve equivalent predictive per-
formance. In the present tests, we use DiCE as it has become a benchmark-method for
tests of counterfactual generation (e.g., see [19]).

However, Keane and Smyth [4] proposed a very different case-based counterfactual
method that exploits known counterfactual relationships in the dataset. Their instance-
guided method finds the test case’s nearest-neighbour that takes part in a so-called
explanation case (xc, which we label as cf). An explanation case is a pair of mutually-
counterfactual cases which differ by at most 2 features. The test case and the counter-
factual case from this nearest cf are used to generate a new “good” counterfactual for
the test case, by combining the test-case features with the (at most) 2 difference-features
from the cf’s counterfactual. In the loan scenario, imagine historical cases that form a
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native counterfactual about customer-A who was refused a $5k loan (a female accoun-
tant earning $50k a year, who is 2.5 years in her current job) and customer-B who was
granted a $4k loan (a female accountant on $50k a year, who is 3 years in her current
job). Assume customer-C (a female accountant earning $50K and 2.5 years in her job)
has also been refused a $5k loan. In this scenario, the native counterfactual suggests a
counterfactual explanation saying “if you wait 6-months and re-apply for a lower loan
(of say $4k), you will be granted the loan”. So, customer-C’s nearest neighbour in the
dataset is customer-A (who has the same refusal outcome), but because there is a close
counterfactual case, customer-B (with a different outcome), a counterfactual scenario
for customer-C can be generated, using the difference-features found (time-in-job, loan-
requested). In Study 2 reported here, this method is used in data augmentation tests and
compared to DiCE (see Sect. 3.1 for a full algorithmic description).

Counterfactual in Data Augmentation. Beyond XAI, our hypothesis is that counter-
factual methods could also play a role in data augmentation, that generated synthetic
counterfactual cases could improve the predictive accuracy of a model. Though there
are now 100s of papers on counterfactuals in XAI, only a handful of papers consider
their use in data augmentation [22–25]. Recall, that Mothilal et al. [18] proposed sub-
stitutability as a way to evaluate counterfactual XAI methods; namely, that a good set
of generated counterfactuals should be able to substitute for the original dataset. Hasan
[22] explicitly tested this idea using DiCE, to determine if an augmented dataset using
DiCE’s counterfactuals could act as a proxy dataset; however, the improvements found
were minimal. [23] consider the problem of dataset shift, where there is a divergence
between the context in which a model was trained and tested; they use the notion of
“counterfactual risk” to diagnose this problem using causal models. However, this work
does not use the XAI counterfactual methods that have been extensively tested; hence,
this work’s status, reproducibility and/or generality is unclear. So, in the current tests,
we use two proven counterfactual methods from the XAI-literature (i.e., [4, 18]).

1.3 Research Questions and Novelties

In this paper, we test whether the counterfactual methods, developed in XAI, can
be applied to the challenging concept-drift problems associated with climate-change;
specifically, in the context of grass growth prediction for dairy farmers (using the PBI-
CBR model). So, we determine whether generated synthetic, counterfactual cases can
be used to improve prediction during periods of climate disruption (focusing on 2018).
However, before we can consider whether counterfactual data augmentationmight work,
there are several prior steps that need to be considered. First, we need to understand
how the PBI-CBR model currently handles grass-growth prediction when it encounters
climate-disrupted events (as test cases); a reasonable hypothesis might be that it uses
historical-cases capturing past climate-disruptive events. However, this begs the non-
trivial question of how one might define “past climate-disruptive events”. Hence, we
perform two major studies, one that aims to understand how PBI-CBR actually predicts
grass growth for climate-disruptive events (Study 1; Sect. 2) and one that comparatively
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tests whether counterfactual data augmentation methods can improve PBI-CBR’s per-
formance on such climate-disruptive events (Study 2; Sect. 3). So, these studies aim to
answer 3 research questions:

RQ1: How does PBI-CBR currently handle grass growth prediction involving climate-
disruptive events?
RQ2: Can PBI-CBR’s prediction of climate-disruptive events be improved by counter-
factual data-augmentation methods?
RQ3: And, if prediction is improved by counterfactuals, which counterfactual methods
work best?

As we shall see, several significant novelties arise from the answers to these research
questions (see Sect. 4). In the following sections, we describe the studies carried out.

2 Study 1: Predicting Climate Disruption with PBI-CBR

In this first study, we analyze PBI-CBR’s grass-growth predictions when it encounters
climate disruptive events (RQ1).However, beforewe can assess its performance,we need
to define cases that potentially reflect climate-disruptive events (see Sect. 2.1). Then,
armedwith this definition, we perform two experiments. The first experiment determines
whether historical extreme-climate cases in the PBI-CBR case-base tend to be used to
predict growth rates when extreme-climate test-cases are encountered (using 2018 as a
test year; see Expt. 1a in Sect. 2.2). This may seem like an obvious test but it is not. The
grass-growth dataset is very noisy, as the cases come from end-user data-entry on the
PBI website; while PBI-CBR automatically cleans the original dataset, it is still not clear
whether “outlier” cases are “true outliers” representing actual extreme-weather events
on a farm or just invalid data-points created by data-entry errors (e.g., in temperature or
growth data). The second experiment considers the effects of varying k in the model on
these results (see Expt. 1b in Sect. 2.3).

Both experiments used PBI dataset drawn from 6,000 + farms over 6 years 2013–
2018 (N = 70,091)1; divided as follows 2013 (N = 5,205), 2014 (N = 6,852), 2015 (N
= 9,695), 2016 (N = 14,777), 2017 (N = 18,611), and 2018 (N = 14,951). In general,
the number of cases increases each year as more farmers joined the PBI system. So, in
both experiments, the years 2013–2016 (N = 36,529) were used as training data and
2018 (N = 14,951) was used as the test data (2017 was also run but not reported); 2018
had many extreme climate events with high-temperatures, high solar-radiation and low
summer rainfall that caused a feed-crisis for the sector (as grass growth is inhibited by
low soil moisture and damage by solar radiation). As such, it is a real-life, test-case of
the climate challenges now facing agriculture. However, we first need to define which
cases are likely to be the ones that reflect extreme-climate events.

2.1 Defining a Class Boundary for Climate Outlier Cases

To run our tests on PBI-CBR we need some definition of which cases might reflect
extreme-weather events (n.b., extreme values could just be data-entry errors). Here, we

1 Note, this is after pre-processing to remove noisy cases (originally, N = 138,970).
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used a statistical approach to define, what we call, climate outlier cases; that is, cases that
appear to capture extreme weather events by virtue of having high/low extreme values
for either temperature, rainfall, or solar radiation. As weather data follows a normal
distribution [X ∼ (μ, σ 2)] for each week, we defined climate outliers as cases with
values that are >2 standard deviations above/below the mean for a given week. So, this
filter was applied to all the cases for a given week (e.g., week 12) aggregated over all
the years (2013–18) in the dataset (an in-year weekly-average produces broadly similar
results). More formally, weather parameters high/low outliers are defined as:

High Outliers = Xi > μ + 2σ
Low Outliers = Xi < μ − 2σ

whenXi is an observation,μ and σ are themean and standard deviation for a given week.
Figure 1 shows two sample cases, a “normal” farm case with typical weather features for
the week-27 of 2016 and a “extreme” climate-outlier case for the same week of 2018.
Figure 2a shows the distribution of temperature values for each week across 2013–2018
(with box plots) and Fig. 2b shows the high and low outliers found for each week in
this combined dataset. Note, how there are many high-temperature outliers in summer
weeks and many low-temperature ones in winter weeks.

Fig. 2. The distribution of temperature values (with box plots) (a) for all cases by weeks of the
year (from 2013–2018) with (b) high and low outliers separated out.

When we remove these climate outliers from the overall PBI-CBR dataset (N =
70,091) for 2013–2018, we find 7,324 unique outliers2. Most climate outliers reflect
rainfall extremes (44%, N = 3,500), with others reflecting extremes of temperature
(38%, N = 2,997) and solar radiation (18%, N = 1,414). The percentage of outlier
cases in each year is fairly constant, though frequencies increase across years (in-year
%’s shown): 2013 (16%, N = 836), 2014 (10%, N = 707), 2015 (10%, N = 1,008),
2016 (9%, N = 1,259), 2017 (10%, N = 1,778), 2018 (12%, N = 1,736). In these
experiments, we used 2013–2016 as the training set, testing it mainly against 2018 (we
found equivalent results for 2017, though as it was more “normal”, the effects were less
pronounced). So, in these experiments the 2013–16 PBI-CBR case-base had N= 36,529
cases, when all cases are included, and N= 32,719 cases when the climate outliers were
excluded.
2 A unique outlier is a case with an extreme value on any of its weather features.
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Table 1. Frequencies of training outliers used to predict test outliers in 2018 (Expt.1a)

Training (Outliers) Training (Non-Outliers)

Test-Outliers (N = 1,736) 1,534 (88.4%) 202 (11.6%)

Test-Non-Outliers (N = 1,248) 144 (11.5%) 1,104 (88.5%)

2.2 Experiment 1a: The Contribution of Climate Outliers to Predictions

This experiment determines whether historical extreme-climate cases in the PBI-CBR
dataset tend to be used to predict growth rates when extreme-climate problem-cases are
encountered (using 2018 as a test year).

Setup & Method. This experiment ran a version of PBI-CBR (for the years 2013–
2016) with and without its climate outliers (as defined above); so, we compared the (a)
original system with all training outliers included (PBI-CBRO; N = 36,529) and (b)
PBI-CBREX, a version of the system with all training climate-outliers excluded (N =
32,719). For all tests k = 30, the value found to deliver the highest accuracy in previous
tests of PBI-CBR [2]. The measure used was the Absolute Error (AE) found for each
test case in a given year (measured in kg/DM/ha), where the AE = |actual-grass-growth
- predicted-grass-growth|. Mean Absolute Error (MAE) is the aggregate measure over
all test-cases for a given condition.

Results & Discussion. The results showed that the presence of climate-outliers in PBI-
CBR training set significantly improved the performance of the system. The absolute-
errors across the 2018 test-set showed that PBI-CBRO (MAE = 20.20 kg/DM/ha) per-
formed reliably better than PBI-CBREX (MAE = 20.35 kg/DM/ha) which excluded the
climate outliers, t(14950) = 3.58, p < 0.001, one-tailed3. While these MAE differences
may not look large, they could be quite significant for a given farm. Remember the mea-
sure here is kg/DM/ha (kilograms of dried grass/matter per hectare), so a 0.50 kg error
could be a lot of grass, as it is multiplied by the size of the farm for each weekday. Impor-
tantly, we also determined which training-cases were being used to make predictions for
the 2018 test-cases to determine whether PBI-CBRO succeeds by using past extreme-
climate events to handle new extreme-climate events. Specifically, that in PBI-CBRO the
climate-outliers in the training set are used to make predictions for climate-outliers in
the test set. Note, the test-cases were all the outlier cases (N= 1,736) in 2018 and all the
non-outlier cases with “good” predictions in 2018 (N= 1,248); where a good prediction
was one with an AE equal to or better than the MAE for all test cases in that year. Table
1 shows that in solving 2018 test-cases, there is a marked tendency for climate-outlier
test-cases to be solved by climate-outlier training-cases (~88% of the time). This result
confirms the intuition that PBI-CBR is succeeding by flexibly assembling similar cases
in atypical, local regions of the problem space to make better predictions. Recall, this

3 Similar results were found for tests of 2017, though less marked, as that year has fewer disruptive
events: PBI-CBRO (MAE = 18.58 kg/DM/ha) did better than PBI-CBREX (MAE = 18.62 kg
/DM/ha) without the climate outliers, t(18610) = 1.9, p < 0.05, one-tailed.
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result is based on k = 30 for PBI-CBR, so in the second experiment we varied k, to get
a sensitivity analysis of this result.

Fig. 3. Expt. 1b results showing the number of outlier-test-cases and frequency (and%) of outlier-
test-cases solved by outlier-training-cases for different values of k (for 2018)

2.3 Experiment 1b: Role of Training Outliers at Values of k

Expt.1a was run using the optimal k = 30, with predictions being made by averaging
the grass-growth values over all cases in k. However, it would be good to know at what
k-value these training-outlier-cases begin to play a role in solving test-outlier-cases. If
these training outliers appear in solving test-cases at low values of k, then it means
these cases are being readily recruited to solve test-cases (n.b., predicted values of grass
growth are based on mean of the cases in k). So, in this experiment k was varied and
role of training-climate-outliers in predictions was noted.

Setup & Method. Using the 2018 test-set, ~1,000 test-cases with “good predictions”
were tested for every value of k = 1–40; where a good prediction was one with an AE
equal to or better than the MAE for all test cases in that year (n.b., differs for each k).

Results & Discussion. Figure 3 shows the results of varying k on the occurrence of
outlier-training-cases that solve outlier-test-cases. Stated simply, it shows that by k = 4,
climate-outlier training-cases are contributing to predictions in>50% of climate-outlier
test-cases showing that these key past cases are being used. So, having established that
climate-outlier cases are used to make better predictions for disruptive climate events,
in the next study we consider whether counterfactual methods can be used to generate
new outlier-cases, to augment the dataset, and improve prediction even further.

3 Study 2: Predicting Climate Disruption with Counterfactuals

In Study 1, we saw that PBI-CBR’s grass-growth predictions benefit from the use of
historical extreme-climate cases to deal with future extreme-climate test-cases (answer-
ing RQ1). Notably, other unreported experiments, showed that the outlier cases used by
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PBI-CBR to predict climate-extreme events, were sparse two-difference native counter-
factuals. So, these outliers typically have two feature-value differences that “change” a
“normal” case into an outlier, counterfactual-case; for instance, a normal case for farm-
x in week-12 with moderate sunshine and growth is counterfactually “changed” to an
outlier case with very-high solar-radiation and a very-low grass growth (as grass has
been burnt off). This finding identifies the key outlier cases used to realise performance
success seen in Study 1 (and is used in our algorithm).

In Study 2, we determine whether counterfactual methods from XAI have a role to
play in data augmentation (RQ2 and RQ3). So, we explore the idea that counterfactual
methods can be used to populate a case-base with new, synthetic cases that improve
predictive performance. Specifically, in PBI-CBR, whether counterfactual methods can
find new, synthetic outlier cases that improve predictive performance for extreme-climate
test-cases in the future. So, in this study, we compare the performance of PBI-CBR using
its native counterfactuals as outlier cases, as a baseline, against PBI-CBRusing synthetic,
counterfactually-generated outlier-cases. Note, this test pits native-counterfactual out-
liers against counterfactually-generated outliers to assesswhether the artificial datapoints
can “beat” naturally-occurring outlier cases.

Study 2 also performs comparative tests of two counterfactual algorithms from the
XAI literature: Mothilal et al.’s [18] DiCE and Keane & Smyth’s [4] case-based method.
These two methods take quite different approaches. DiCE randomly generates a space
of perturbed cases and then finds the best counterfactuals based on balancing proximity
and diversity constraints [17, 18]. In contrast, the case-based method adapts cases from
the original dataset; it finds a nearest neighbour to the test case, involved in a “good”
counterfactual (i.e., a good native counterfactual) and then adapts the test case using the
feature-differences found in this native counterfactual (see Fig. 4). In the next subsec-
tion, we detail our variant of this algorithm for data augmentation; it differs in how it
selects test-cases and how it uses a statistically-defined boundary between “normal” and
“extreme” climate cases (see Sect. 3.1, Figs. 1 and 4).

3.1 A Case-Based Counterfactual Augmentation Algorithm (CFA)

The Counterfactual Augmentation (CFA) method generates synthetic counterfactual
cases in threemain steps: (i) “good” counterfactual pairs, cf (x, x

′
), are initially computed

over the whole case-base, X , (ii) given a test case, p, a nearest neighbour case, x, is
retrieved from the set of counterfactual pairs, cf (x, x

′
), and (iii) then, a new synthetic

counterfactual case, p
′
, is produced by adapting the original test-case, p, using feature-

difference values from x
′
. More formally:

Definitions:

– Normal (non-outlier) case = xi (x1, x2, x3, . . . , xi), where xi ∈ X
– Counterfactual (outlier) case = x

′
i (x1

′
, x2

′
, x3

′
, . . . , x

′
i), where x

′
i ∈ X

– CF pair cf (x, x
′
) ⇔ target(xi) �= target

(
x

′
i

)

– K-nearest neighbors = k-NN
– Difference between two cases = Diff
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Step 1 Identify native counterfactual (CF) pairs, cf (x, x′):CFAfirst finds all possible
“good” counterfactual pairs cf (x, x′) that already exist in a case-base, X (pairing
a normal case and its outlier counterfactual). These native counterfactuals, cf(x,
x′), pair cases either side of 2σ climate boundary. Each of these native pairs has
a set of match-features and a set of difference-features, where the differences
determine the class change (e.g., the counterfactual case may a high temperature
value relative to the normal case, resulting in a different grass-growth outcome;
see Fig. 1)

Step 2 For a test case, p, find its nearest neighbour, x, from the CF pairs: Given
a test case, p, CFA uses a k-NN to find its nearest neighbour, x, from the set
of native counterfactual pairs, cf(x, x′). The test case, p, is drawn from those
“normal” cases that do not take part in CF-pairs, those unpaired cases that do
not occur in cf (x, x′)

Step 3 Transfer feature values from x′ to p′ and from p to p′: Having identified a
candidate native, cf (x, x′) for the test case, p, CFA generates the synthetic
counterfactual, p′ for p, such that:

– For each of the difference-features between x and x′, take the values from x′
into the synthetic counterfactual case, p′.

– For each of the match-features between x and x′, take the values from p into
the new counterfactual case, p′.

Clearly, the definition of a “good” counterfactual pairing is a critical parameter in this
algorithm. On psychological grounds, [4] defined a “good” counterfactual to be one with
no more than two feature-differences, taking a strong position on sparsity. Interestingly,
subsequent user testing has shown that people prefer counterfactual explanations with
2–3 feature-differences (even over ones with 1 feature-difference [26]). Indeed, in an
analysis of the outliers used in Study 1 (not reported here), we found that 2-difference
native counterfactuals produced more accurate performance relative to 3-, 4- and 5-
difference ones in PBI-CBR. So, the above algorithm, as in [4], uses the 2-difference
definition of counterfactual “goodness” in Study 2.

3.2 Experiment 2: Using Synthetic Counterfactual Cases to Predict Growth

In the present experiment, PBI-CBR’s predictive performance on 2018 is run by compar-
ing it’s native-counterfactual dataset (as a baseline), against datasets of synthetic coun-
terfactuals generated by the Counterfactual Augmentation (CFA) and Diverse Counter-
factual Explanations (DiCE) methods. We want to assess how these data augmentation
techniques deal with climate-extreme events. So, we report MAE by month (n.b., the
“year” consists of the 9 months in which cattle graze). In 2018, the climate disruption
occurred in March (as an unusually cold spring), July (very hot summer) and October
(a cold autumn; see Fig. 5).

Setup & Method. This experiment ran a version of PBI-CBR with three different
datasets testing its performance against the climate-disruptive year of 2018 (see Fig. 5).
All datasets used the k-NN to predict the grass growth-rates (measured in kg/DM/ha),
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Fig. 4. CounterfactualAugmentation (CFA):A test case,p, finds a nearest neighbour,x, takingpart
in a “good” native counterfactual in the case-base, cf (x, x

′
), and then uses the difference-features

of the counterfactual-case, x
′
,to generate a new synthetic counterfactual-case, p

′
, combining them

with the matching-features of the original test case, p. The synthetic counterfactual-case, p
′
, is

added to the case-base to improve future prediction.

Fig. 5. Three graphs compare the long-term means for three weather-variables – air temperature,
solar radiation and soil temperature – to the mean values in 2018, outlining the three main climate-
disruptive periods in 2018 (i.e., March, July, and October).

with k = 30, the value found to deliver the highest accuracy in previous tests. Again,
as before, the measure used was the Mean Absolute Error (AE) found over the 2018
test-set based on averaging the Absolute Error (AE), where AE = |actual-grass-growth
- predicted-grass-growth|. The three datasets used:

• Native-CF: “good” native counterfactuals (i.e., 2 feature-difference ones) from the
original PBI-CBR dataset (N = 2,500)

• DiCE: the synthetic counterfactuals generated by DiCE from finding the best
counterfactual for the test-cases in 2013–2016 (N = 2,500)

• CFA: synthetic counterfactuals generated by CFA based on adapting native counter-
factuals for each of the test-cases in 2013–2016 (N = 2,500)
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Originally, we ran this experiment with unequal datasets, CFA (N = 4,028) and
DiCE (N = 14,951) generate different numbers of counterfactuals for the 2013–2016
data. The current experiment equalized the counterfactual datasets (to N= 2,500) taking
the mean results of 5 random case-selections (the results does not change for these test
variants).

Table 2. Study 2: PBI-CBR predictions (2018) for three different datasets: (i) good native
counterfactuals from the original dataset (Native-CF), and synthetic counterfactuals from the
(ii) constraint method (DiCE) and (iii) case-based method (CFA); the best results are shown in
bold.

Mean Absolute Error (MAE) of growth kg
DM/ha/day

Feb Mar Apr May Jun July Aug Sept Oct

Native-CF 40.9 40.2 19.0 26.4 24.8 30.0 21.7 16.7 33.0

DiCE 41.0 35.9 30.4 48.8 30.8 25.6 31.2 25.0 22.7

CFA 41.3 31.3 17.6 30.2 21.8 23.4 19.4 17.2 25.7

Results & Discussion. Overall, for the year, absolute-error for 2018 showed Native-
CF (MAE = 20.1 kg/DM/ha) and CFA (MAE = 23.8 kg/DM/ha) performing reliably
better than DiCE (MAE = 30.1 kg/DM/ha). Table 2 shows the MAE values by month.
Overall, the CFA does best in 5/9 months, with the Native-CF doing best in 3 and
DiCE just 1 (see Table 2, Figs. 5 and 6); notably, CFA succeeds in periods where
the most climate-disruption occurred, the cold spring (March-April), the hot summer
(Jun-Aug), and is a close second to DiCE for the cold autumn (October; see Fig. 6).
Furthermore, CFA appears to generate better data augmentations than DiCE, especially
in the climate-disrupted months. The MAE across the July test-set showed that CFA
(MAE = 23.4 kg/DM/ha) performed better than DiCE (MAE = 25.6 kg/DM/ha) and
the Native-CF (MAE= 30.0 kg/DM/ha) conditions, F(2, 4446) = 50.49, p < .001; with
a decrease in the error rate of up to 22%. Also, in March, the MAE decreased from
40.2 (Native-CF) to 31.3 (CFA), F(2, 2169,) = 65.59, p < .001; the more extreme the
disruption the better CFA seems to perform (see Fig. 6).

4 Conclusions: Novelties, Explications and Caveats

The present paper exhibits some of the promise that AI, and specifically CBR, offers
to the challenge of climate change; specifically, we can see how AI might be applied
to climate problems in sustainable, dairy agriculture. It shows that the counterfactual
methods developed for XAI can be usefully deployed to augment datasets, with synthetic
cases, that improve subsequent predictions in climate-disruptive periods. This result is
significant because it shows that these techniques can be used to supplement historical
datasets to better predict what could have been “an unpredictable future”.
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Fig. 6. Error in grass-growth predictions (MAE of kg DM/ha/day) in the spring, summer and
autumn of 2018 for the Native-CF, CFA and DiCE datasets. Note, the counterfactual methods,
CFA and DiCE, consistently do better than the native counterfactuals (Native-CF) in the climate-
disrupted months (March, July, October)

Novelties. Specifically, we have answered the three research questions posed in the
introduction: we have shown that (a) the original PBI-CBR system makes accurate pre-
dictions for climate-disrupted periods by relying on historical outlier cases (RQ1), (b) its
prediction of crop growth in climate-disruptive events can be improved by counterfac-
tual data-augmentation methods (RQ2), (c) the case-based CFA method performs better
on this task than a benchmark optimization method (RQ3). As such, this paper reports
several significant novelties: namely, key discoveries on how (a) AI methods for data
augmentation can be used to deal with climate change, (b) counterfactual methods can
be successfully used for data augmentation, (c) case-based counterfactual techniques
can generate useful synthetic datapoints.

Why Does This Work? When we first discovered these effects of counterfactual data
augmentation, they appeared (to us) to be both exciting and, somewhatmagical.We asked
ourselves “Why does this work?”. How can a generated synthetic datapoint better predict
a future event over historical data? There seemed to be no good reason for why it might
work? Now, having completed these experiments (and a 100 more not reported here),
it is beginning to become clear why this case-based counterfactual method succeeds.
CBR is often claimed to be optimal when “local” views of the data are needed to solve
problems (as it seems to be here), rather than generalized, “global” functions over the
whole dataset (e.g., as in iterative optimizationmethods, such as neural networks).When
we encounter a good native-counterfactual in a dataset, we essentially find a rule (a bit
like an adaption rule) that tells us what minimal set of feature-changes move a case
over a decision boundary. CFA exploits this implicit-knowledge in the case-base when
it adapts the native-counterfactual to produce a synthetic counterfactual case, so these
artificial cases are “meaningful offsets” from historical cases (it’s like applying a good
adaptation rule to generate new synthetic data-point). Notably, DiCE does not do this.
DiCE perturbs feature-values and filters results based on broad constraints of proximity
and diversity; as such, while it may “hit on” a case that is useful for solving the problem
it does not do this in the guided way that CFA works. From another perspective, the
present outlier cases here are essentially pivotal cases in competence terms [21] and
CFA is effectively generating novel, synthetic pivotal cases that, of course, have a high
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probability of being useful. These are some of the reasons why we think this case-based
data augmentation works.

Table 3. PBI-CBR’s growthpredictions for 9months of 2018,with (PBI-CBRO+CFA) andwithout
(PBI-CBRO) the synthetic counterfactual outliers generated by the CFA method

Mean Absolute Error (MAE) of growth kg DM/ha/day

Feb Mar Apr May Jun July Aug Sept Oct

PBI-CBRO 22.8 16.7 17.08 21.2 23.6 30.3 19.8 16.5 16.03

PBI-CBRO+CFA 23.3 17.8 17.06 21.7 23.7 29.9 19.6 16.6 16.33

Caveats & Concerns. However, there are some caveats we should keep in mind about
these data augmentation successes. First, we have shown these results in one dataset; so
can we be confident they generalize? Temraz and Keane [27] have applied this method to
many standard datasets and found similar improvements. Second, note that in Study 2we
performed a carefully controlled study, pitting native counterfactuals against synthetic
ones to determine the impacts of the latter. If one was using CFA in the PBI-CBR system,
onewould presumably add the generated counterfactuals to the original historical dataset
and then run that full-dataset on 2018.Whenwe do this, we can see that CFA still delivers
improvements, but only in the more extreme months (April, July, August; see Table 3).
So, obviously, the relative impacts of these techniques will wax and wane depending
on the severity of the climate events encountered. Finally, the CFA method used here
could be improved: Smyth and Keane [20] have proposed a more general counterfactual
method than CFA, that appears to deliver better explanatory counterfactuals. It remains
to be seen whether these are also better augmenting counterfactuals. Indeed, this raises a
broader question about whether the explanatory versus data-augmentation requirements
on counterfactual methods will, at some stage, diverge as they do appear to be very
different use-contexts. But that is, as they say, a question for another day.
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Abstract. Traditional Data-to-Text Generation (D2T) systems utilise
carefully crafted domain specific rules and templates to generate high
quality accurate texts. More recent approaches use neural systems to
learn domain rules from the training data to produce very fluent and
diverse texts. However, there is a trade-off with rule-based systems pro-
ducing accurate text but that may lack variation, while learning-based
systems produce more diverse texts but often with poorer accuracy. In
this paper, we propose a Case-Based approach for D2T that mitigates
the impact of this trade-off by dynamically selecting templates from the
training corpora. In our approach we develop a novel case-alignment
based, feature weighing method that is used to build an effective similar-
ity measure. Extensive experimentation is performed on a sports domain
dataset. Through Extractive Evaluation metrics, we demonstrate the
benefit of the CBR system over a rule-based baseline and a neural bench-
mark.

Keywords: Data-to-Text · Textual CBR · Feature weighting

1 Introduction

Data-to-Text Generation (D2T) is a process that automatically generates tex-
tual summary of insights extracted from structured data [9,25]. With business
processes often generating huge amount of domain-specific data, which is not
easily understandable by humans, there is a growing need to synthesise this
data by converting it into textual summaries that are more accessible. There are
many real-world applications, from weather or financial reporting [10,14,27] to
medical support or sports journalism [4,20,26,31]. D2T is expected to be one of
5 core technologies enabling an economic impact of $5 trillion annually by 2025.

D2T requires two separate problems to be addressed: content selection,
deciding important content from the input data (implicit or explicit), as in what
to say? ; and surface realisation, conveying the selected content into textual
summaries, as in how to say? Traditional methods use a modular approach
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to divide the generation task into several smaller modules. These modules are
based on carefully crafted domain-specific rules and templates [25,27]. Recently,
neural based learning approaches have shown promising results by integrating
all modules into a single end-to-end architecture and learning domain-specific as
well as generation rules from parallel corpora of data and summaries [21,31].

Neural systems demonstrate greater fluency and diversity in generated tex-
tual summaries but often hallucinate by producing inaccurate information that
is not supported by the input data. One of the main reasons for hallucination is
that the systems have to learn multiple domain specific rules to make sense of
input data as well as learn how to verbalise that data [21]. Rule-based systems
however are able to produce high quality texts in terms of accuracy but at the
expense of diversity in the generated texts. Although, in real-world data-to-text
applications, accuracy is usually much more important than fluency and diver-
sity, thus making rule-based systems state-of-the-art in real-world applications.

We propose a Case-Based Reasoning (CBR) approach that learns content
selection and realisation separately to generate accurate and diverse texts. Our
model learns to choose important entities from the data and then verbalises
them via templates extracted from the training corpus. We run experiments
to evaluate our proposed method on a sports domain dataset, SportSett [28]
and demonstrate it produces better quality texts than neural systems while also
maintaining diversity. The contributions are as follows1:

1. introduction of a CBR D2T model with separated planning and realisation;
2. development of a novel feature weighting technique using case-alignment that

can be used for weighting features in problems with complex solutions;
3. demonstrating with experiments the benefits of our CBR approach over neu-

ral and rule-based systems, as well as our case-alignment feature weighting
method over information gain feature weighting.

2 Related Works

Natural Language Generation can be divided into two sub-fields based on the
input to the systems. The task of generating text from unstructured linguistic
data is referred as Text-to-Text generation; while generating text from struc-
tured non-linguistic data is known as D2T generation [9]. D2T has been studied
for decades. One of the very first systems proposed in 1980s generated textual
summaries of financial data [14]. Later other systems were developed to gen-
erate weather forecasts [10,27] and medical support documents [20,26]. These
were modular systems developed using carefully engineered rules and templates
with the help of domain experts dividing the whole task into several sub-tasks.
Later in 2000s, statistical learning methods tried combine different modules into
a single architecture [3,13]. Some methods also performed just content selection
based on statistical methods while utilising rules for surface realisation [4,12].
Advancements in deep learning has boosted the interest in neural-D2T. Several
1 The code can be found at https://github.com/ashishu007/data2text-cbr.

https://github.com/ashishu007/data2text-cbr
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datasets [7,8,31] and systems [22,24,31] have been proposed to utilise neural
networks for solving D2T task. Most datasets, are not realistic of real-world
challenges as they only verbalise few entities and do not require content selec-
tion on the input data. Some datasets, however, such as RotoWire [31] and MLB
[22] do reflect real-world challenges and require extensive content selection from
input data to verbalise many entities in the textual summaries. Initially, neural
systems employed different versions of sequence-to-sequence models to generate
text utilising an end-to-end architecture [22,24,31]. These end-to-end systems,
despite being able to generate very fluent texts, fared poorly on the accuracy,
coherence and structuring of the information in summaries. Pipeline-based sys-
tems that separate content-planning from realisation attempt to address some
of these issues [6,21].

D2T has also been studied in CBR with systems ranging from weather fore-
casts to obituary generation [1,2,30], although these systems have been limited
to generating smaller texts describing very few entities. As with most CBR sys-
tems, similarity is a key component of CBR-D2T systems as effective similarity
measures ensure relevant previously solved problems are reused. Feature weight-
ing is one approach to developing an effective similarity measure [11,32], however
there are challenges in comparing feature weighting schemes where the problem
has a textual solution. Case-alignment measures [15,17] have been employed for
feature weighting in classification and regression environments [11]. Our pro-
posed feature-weighting method uses all features to measure the case-alignment
of a case-base and utilises this information to assign weights to the features.

3 Background

The data in most D2T task is organised on three dimensions. There are multiple
entities (for example, players or teams in the case of sports domains), which are
described by multiple features (points or goals scored in a match), all of which
belong to an event (a match played between two teams). To simplify, a dataset
will have multiple events consisting of multiple entities described by multiple
features. Datasets such as RotoWire [31], SportSett [28] and MLB [22] have
similar properties. Systems trained on these datasets require extensive content
selection on the input data and coherent realisation of longer texts which reflects
the challenges of real-world applications.

An example summary from a sports domain dataset, SportSett is shown in
Fig. 1a with a subset of its corresponding box-score stat in Fig. 1b. The sum-
maries in such problems have different level of complexities. For example, S12 in
Fig. 1a identifies that Reggie Jackson scored a ‘triple-double’ in the game which
was the continuation of top performance from the last game. There are at least
two types of information that are explicitly not available in the input data:

– first, scoring triple-double is identified if the player scores double-digits in
three categories - PTS, REB, and AST. To convey this information, either
developers need to explicitly design a rule that identifies if a player scored
such a thing (in case of a rule-based system) or the system needs to learn
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Fig. 1. (a) An example summary from SportSett dataset. (b) Subset of box-score from
the same game.

the rules to infer if a player scored such a thing (in case of a learning-based
system). The player scoring triple-double is not explicitly given in the data;

– second, the claim that it was the continuation of top performance from the
last game by the same player. To convey this information, the system needs
access to the data from previous games as well which is not available for the
system during run-time.

There are numerous examples of such situations, where several rules are
needed to infer the information either from data of same event or of previous
events. There can be a large number of different combinations of data that can
be mentioned in a summary. Even in other domains, such as finance or weather
reporting, an ample portion of summaries discuss the information aggregated
over many entities, features or events [14,27]. This is one of the many reasons
for the hallucination of neural systems, as they do not just have to learn the
rules of language generation but also have to learn the rules to infer contextual
information, as well as learn content selection. On the other hand, for a rule-
based system, it can be extremely difficult to write rules for discussing important
insights from all the possible combinations from the input data.

There is clear trade-off in current state-of-the-art rule-based and neural-based
D2T systems. Based on the requirement of the application, the developed system
will either be accurate with monotonous, non-fluent texts, if using rule-based
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system; or capable of generating fancy and diverse texts but with some inaccurate
information, if using neural system. Our proposed CBR system tries to reduce the
impact of this trade-off between accuracy and fluency of texts by learning to reuse
previous sentences based on the entities’ feature values within an event. It will
provide more accurate texts than neural systems without sacrificing diversity.

4 Methodology

The input to a D2T system is a set of records organised by entities and fea-
tures. Based on these records, a output summary needs to be generated that
describes the event to which given entities belong. We assume that a summary
is the combination of multiple components organised on higher-level. Typically
sports summaries (such as in SportSett [28] and MLB [22]) are organised in four
components: winning team, a sentence about which team won, with scores;
teams’ performance, few sentences about teams’ performance; players’ per-
formance, several sentences about different players performance from the game;
and next game, next game fixtures of both teams;

Although, this assumption may be an over-generalisation of the problem, it
does apply to a large portion of the SportSett dataset, where more than 90%
of the summaries follow similar pattern (with some extra sentences in between).
Also, similar components can be identified in other domains [12,27]. The texts
in the second and third components (teams’ and players’ performance) appear
to follow the principle of ‘similar problems have similar solutions’ and thus a
CBR approach is used for their generation. The methods described later in the
section are mostly centred around these two components. The methodology is
briefly shown in the Fig. 2. The first and last components (winning team and
next game) use manual rules to select an appropriate template from a bank of
around 10 templates. The template bank is created by selecting a few standard
sentences from the training set.

4.1 Case-Base Creation

First of all, we create separate case-bases for different components (for players’
and teams’ performance). The case-base creation is a semi-automated process
where first textual summaries are broken into sentences and similar sentences
are clustered into the same group. Clusters related to the different components
are identified manually and then used to extract the templates [13].

Semantic Clustering. We first extract all the sentences from the training set
summaries and then abstract them based on their named-entities and pos-tags
using the method described in [29]. The abstracting process uses open-source
NLP libraries spaCy and neuralcoref combined with some domain-specific rules.
Through this process, a sentence from the dataset ‘The Atlanta Hawks (41-9)
beat the Washington Wizards (31-19) 105-96 on Wednesday.’, is transformed to
‘PROPN-ORG (X-Y) beat the PROPN-ORG (X-Y) X-Y on NOUN- DATE.’.



A Case-Based Approach to Data-to-Text Generation 237

Fig. 2. Our methodology for CBR-D2T

These abstract sentences are then embedded into a 786 dimensional vector using
DistilRoBERTa Language Model2. We plot the embedded sentences on a 3-
dimensional space using the UMAP algorithm [18] and count around 50 clusters
based on the plot’s view. Then a K-Means clustering algorithm is used to cluster
the embedded sentences into 50 similar groups. A manual process is then used
to combine the similar clusters and assign them a label identifying the concept
cluster items represent. This way we reduce from 50 clusters to 31 clusters, out
of which four represent sentences from the teams’ component and ten from the
players’ component (rest 17 contain sentences with more complex facts difficult
to classify into just team or player component). Although, the number of clusters
could be increased to a higher number to accommodate the possible diversity in
the dataset, we leave that for future exploration as manually annotating large
number of clusters is a time consuming task.

Template Extraction. Template extraction for both the components is done
separately but follows the same method. For each sentence in the cluster, the
entity mentions are extracted. If a sentence only contains one entity mention
then the entity’s performance stats is taken from the corresponding game. Based
on the stats, an entity matching is performed to replace any occurrence of
a entity’s feature value to its feature name. For example, from the sentence:
“Henry Sims was able to notch a double - double, contributing 11 points (4 -
12 FG, 3 - 4 FT) and 12 rebounds.” where Henry Sims’ performance stats are:
{STARTER : no, PTS : 11, FGM : 4, FGA : 12, FG PCT : 33, FG3M :
0, FG3A : 0, FG3 PCT : 0, FTM : 3, FTA : 4, FT PCT : 75, OREB :
5,DREB : 7, REB : 12, AST : 2, TO : 0, STL : 0, BLK : 0, PF : 2,MIN :
32, IS HOME : no, FIRST NAME : Nerlens, SECOND NAME : Noel},

2 https://github.com/UKPLab/sentence-transformers.

https://github.com/UKPLab/sentence-transformers
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the template extracted is: “FIRST NAME SECOND NAME was able to notch
a double - double, contributing PTS points (FGM - FGA FG , FTM - FTA FT)
and REB rebounds”.

For teams’ component templates we select sentences with more than two
entity mentions (team names) for template extraction. This is done to take
sentences that compare the performance of both teams, rather than just dis-
cussing one team’s performance. Finally, we have two separate case-bases with
their respective problem and solution representations. On the problem-side, the
entities’ performance (box-scores for player component and line-scores for team
components) is used, while the extracted template is used for the solution-side
representation.

4.2 Retrieval and Feature Weighting

After the case-base is created, the retrieval of similar cases for new problems is
done by measuring euclidean distance. We also learn the feature weights for bet-
ter similarity which is necessary because not all features have equal importance.

Content Selection. Central to a D2T task is selection of important contents
from the input data. Most of the entities in the input data are not mentioned
in the output summary. Even for the entities mentioned in the summary, not
all of their features are mentioned. In the SportSett dataset, each game features
around 25 players from both teams, but game summaries only discuss 5 to 6 play-
ers. Thus, similar to [4] we train a classifier to select important entities from the
input data based on their feature values. We use this classifier to select important
players from the game. In most cases, importance of an entity is not independent
and is related to the feature values of other entities as well. Thus, to represent an
entity, we concatenate it’s feature values, with the feature values of other entities
in the data. So, for an event with e entities with f features, an entity E1 is rep-
resented as: {(E11, E12, · · · , E1f ), (E21, E22, · · · , E2f ), · · · , (Ee1, Ee2, · · · , Eef )},
where E11 is E1’s first feature value and Eef is Ee’s f th feature value.

An entity is given class 1 (important) if it was mentioned in the summary of
that game, or class 0 (not important) if it wasn’t mentioned. A classifier is then
trained to learn if the entity should be selected for discussing in the summary
or not. We train a logistic regression classifier which achieves 87% accuracy
and 85% f1 score on the validation set of the SporSett dataset. Finally, the
content selection is extended using templates, where after selecting important
entities from an event by the classifier, important features are selected using
the template of the most similar problem. For example, if a player has scored
‘double-double’ in the game, it is identified by a feature in the player’s stats and
a similar template such as ‘FIRST NAME SECOND NAME lead the way for
the PLAYER-TEAM-NAME, recording PTS points on FGM-of-FGA shooting,
REB rebounds and AST assists in MIN minutes.’ is extracted which discusses
some features in the sentence. This is often synonymous to how summaries are
written (at-least in sports domains), as we first tend to select the important
player from the game and then decide what features to discuss.
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Algorithm 1. Calculate the loss value for each candidate generated in
PSO algorithm
Input: PSO candidate W, Problem-side PCB and Solution-side SCB of case-base
Output: The loss value for W
1: WPCB = PCB ∗ W
2: AlignScoreCB = 0
3: for each idx ∈ range(| WPCB |) do
4: PT , ST = WPCB [idx], SCB [idx]
5: ˆPCB , ˆSCB = WPCB [∼ idx], SCB [∼ idx]
6: Generate problem-side ranked list PL using PT and ˆPCB

7: Generate solution-side ranked list SL using ST and ˆSCB

8: AlignScoreidx = nDCG(PL,SL)
9: AlignScoreCB+ = AlignScoreidx

10: end for
11: LW = 1 − (AlignScoreCB/ | WPCB |)
12: return LW

Feature Weighting. For the players component data, a classifier is already
trained to identify the important players from a game. This classification setting
can also be used to learn the feature-importance of players’ component (infor-
mation gain feature weighting). It is noted that this method cannot be applied
in a non-classification setting, such as in teams’ component. Thus, a novel case-
alignment based feature weighting method is proposed for non-classification set-
tings. CBR systems are based on the principle of ‘similar problems have similar
solutions’ and case-alignment can provide a measure of the extent to which this
principle holds true for a specific design e.g. feature weighting scheme.

We use the method proposed in [30] for measuring the case-alignment of the
case-base. The alignment score is then used as a loss function for a Particle-
Swarm Optimiser whose parameters are the features’ weights for a case-base.
The loss function is formally defined in Algorithm 1. The ranked list on the
problem side is generated using the euclidean distance between the problem-side
of the target problem and the cases in the case-base, while the solution-side
ranked list is generated using the cosine distance between the solution-side of
target problem and cases in the case-base.

4.3 Generation

Generation again is done separately for different components. For a target prob-
lem, k-nearest neighbours are retrieved from the case-base using problem-side
representation. k solutions are generated by filling the tags with their correspond-
ing values in the nearest neighbour solutions. A GPT-2 [23] language model is
used to rank the five sentences based on perplexity score. The best among the
five is chosen as the final solution for the given target problem. Since sentence
ranking is a domain specific task, the GPT2 model is fine-tuned on the training
set of the same dataset used in our experiments. Now several sentences are gen-
erated for different components and are fused into a paragraph using sentence
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fusing algorithm LaserTagger [16] trained on the same training data used in our
experiments.

In the case of SportSett data, for the players’ component: first, important
players are selected using the classifier mentioned in an earlier section; then,
for each important player selected, a sentence is generated using the process
described above. Similarly a sentence is generated for the teams’ component. A
set of rules is used to generate the first component sentence describing which
team won, and another set of rules to generate a sentence for both teams’ next
fixtures. Finally, all these sentences are fused into a paragraph using LaserTagger.

5 Experimental Setup

5.1 Dataset

The SportSett dataset [28] is used to evaluate our proposed and benchmark
algorithm. It contains textual summaries combined with the box- and line-scores
of NBA matches. The training set contains the matches from 2014, 2015 and 2016
seasons (4745 instances) while the dev and test sets contain matches from 2017
and 2018 seasons (1228 and 1229 instances) respectively.

We use the train set of SportSett for the creation of our case-bases. For
training the important players classifier, we used the train set of SportSett with
the dev set for testing. For fine-tuning the GPT2 and LaserTagger, we also used
just the texts from the train set of SportSett. Similarly, only train set data is used
for creating the case-bases for teams’ and players’ components. With all seasons
used from train set, the teams’ component case-base consists of 1200 cases, while
players’ component has 14985. With just 2014 season used for training, 360 and
4405 cases are available in teams’ and players’ case-bases

5.2 Baseline and Benchmark

We compare our system with a rule based baseline and a neural benchmark:

– Rule-Based System is the templatized generator used as baseline in [31].
The system has a standard template for winning team, another template for
players stats which is filled with six highest scoring players’ stats, and finally
last template for teams next-game fixture. We extend the rule-based system
to include day name and arena of the game, as well as next-opponent team
names since this new information is now available in the SportSett data.

– Neural System is a sequence-to-sequence model proposed in [22]. It consists
of an MLP encoder and LSTM decoder with copy mechanism. There’s an
added module to update the input record’s representation during generation
process. At each decoding step, a GRU is used to decide the record that needs
to be updated and updates it’s value.

Although, there are other neural systems with comparable performance to
our selected benchmark, we use the selected one because of its reduced training
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time and ease in reusing the code. For example, authors in [24] proposed a
hierarchical Transformer encoder model with standard LSTM decoder which
achieves slightly better performance than our selected benchmark. But it takes
10 days to train with the hyper-parameters mentioned in the paper on a 16 GB
Nvidia-P100 GPU compared to our selected benchmark which takes just 1 day.

5.3 Evaluation Methods

We use the family of Extractive Evaluation (EE) metrics for [31] for evaluating
the models. These metrics are trained to extract entity names and numerical
values from the text and predict the relation (feature name) between them. For
example, from S05 in Fig. 1a, the IE models (ensemble of three LSTMs and
three CNNs) can extract entity name Ish Smith and numerical value 15. Then
the model can predict its relation name as PTS (points) and will return a tuple as
t = (EntityName|FeatureV alue|FeatureName) as (IshSmith|15|PTS). The
models extract several tuples from both human-written gold (y) and system gen-
erated (ŷ) summaries. These tuples are then compared to calculate the following
metric scores:

– Relation Generation (RG) is the precision of unique tuples t extracted
from generated summary ŷ that also appeared in the input data. This metric
can be used to measure the system’s capability of generating factually correct
texts supported by input data, i.e., accuracy of the system.

– Content Selection (CS) is the precision and recall between unique tuples t
extracted from gold summary y and generated summary ŷ. Here, the systems
ability of selecting content is measured in comparison with the human written
summaries.

– Content Ordering (CO) is measured as the normalized Damerau Leven-
shtein Distance [5] between the sequences of tuples extracted from generated
summary ŷ and gold summary y. This demonstrates the systems ability of
ordering the content in generated summary.

CS primarily targets the challenge of what to say?, while CO targets the how
to say it? aspect. Apart from these metrics, we also use BLEU [19] score to
compare the generations. BLEU score compares the n-gram overlap between the
gold summary and generated summary and primarily rewards fluent texts rather
than generations capturing more information from the input [31]. From all the
metrics discussed here, RG can be used to measure the factual correctness of
generations. While we acknowledge the fact that human judgement is the best
evaluation practice for text generation systems, these autonomous metrics are a
widely used proxy methods as crude surrogate for human judgement.

Initial versions of the Extractive Evaluation metrics [21,31] only evaluated
the numerical claims (such as points, rebounds, steals made by a player or team)
mentioned in the text summaries. Authors in [29], proposed an extended version
capable of evaluating day names, dates and game arenas as well. We further
extend these metrics to evaluate the few more claims made in texts, for example,
if a player was the leading scorer or if a player scored a double-double.
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Table 1. Comparison of our CBR system with baseline and benchmark

System RG CS-Precision CS-Recall CO BLEU

Gold 89.46 − − − −
Rule-Based 95.35 55.20 23.65 10.61 6.50

NeuraloneS 61.34 34.84 25.68 9.84 9.93

NeuralallS 71.07 45.66 40.81 19.56 17.68

CBRoneS 73.22 50.18 24.78 10.91 10.40

CBRallS 77.22 46.46 33.53 11.92 11.93

6 Results and Discussion

6.1 Comparison with Benchmark and Baseline

We train our CBR system and neural system on two different sizes of training
data. First, we use only 2014 season data for training the models, denoted by
(Neural/CBR)oneS . Then, we use all season data from train set for training
which is denoted by (Neural/CBR)allS . We compare these four systems and
a rule-based baseline discussed in the previous section. The results are shown in
Table 1. Results for the neural system are given as the average over 10 training
runs with different random seeds.

First of all, we note that our CBRoneS outperforms NeuraloneS on all met-
rics, except CS-recall. This demonstrates that our CBR system is much better
at producing quality texts compared to neural system, even with fewer training
samples. However, with the increase in training data, there is a huge gain in
NeuralallS across all metrics while CBRallS system improves very little. Still
with any amount of data, our CBR system achieves better performance on RG
(73% & 77% for CBR vs 61% & 71% for neural) and CS-precision (50% & 46%
for CBR vs 34% & 45% for neural) metrics as compared to the neural system,
indicating CBR system’s benefit over neural on accuracy. We also note that
rule-based system achieves best score on RG (95% ) and on CS-precision (55%).
This is not surprising as the system is hard-coded with domain knowledge thus
has very low accuracy errors3. But system fares poorly on mimicking the gold
summaries, as it only recalls 23% of the contents from gold summaries. It also
performs poor on the BLEU score which is conveys that rule-based system is
not very fluent.

On the terms of fluency, we observe that BLEU score achieved by both CBR
systems is better than the rule-based baseline. As compared to neural system,
CBRoneS is slighlty better than NeuraloneS , while for NeuralallS , BLEU score
is quite higher than CBRallS . This reflects that our system is much fluent com-
pared to rule-based system, as well as above-par to neural system when training
data is scarce. To measure the diversity, we first calculate the vocabulary of texts
3 Please note that the scores are not 100% because the metrics are based on trained

models, which themselves achieve around 90% accuracy and f1 score while training.
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Table 2. Ablation study results

RG CS-Precision CS-Recall CO BLEU

Info Gain FtrW 75.22 49.53 28.73 11.78 10.84

without GPT-2 scoring 76.09 44.64 34.88 12.33 9.26

without LaserTagger 76.36 44.50 33.04 11.30 11.04

CBRallS 77.22 46.46 33.53 11.92 11.93

generated from different systems. We identify that the gold summaries from test
set have a vocabulary of more than 5000 words, while both the CBR and neural
systems have the vocabulary of 2000 words but rule-based system has vocabu-
lary of only 900 unique words. In terms of content selected for output summary,
the rule-based system is only able to discuss one-third of the unique record types
discussed in gold summary, while our CBR system is able to discuss all of them.
All this evidence suggests that the CBR system is able to decrease the trade-off
between accuracy and diversity, especially in case of scarcity of training data.

6.2 Ablation Studies

We further perform three ablation studies on our CBRallS system. In the first
study, we analyse the effect of our proposed case-alignment based feature weight-
ing against the information gain based feature weighting (see Sect. 4.2). The
results of this ablation are shown in the first row of Table 2. Here information
gain from the important player classifier data is used to weight the features
in players’ component, however, no weighting is applied for teams’ component.
From the results, we can see that apart from CS-precision, there’s at-least some
drop in all metrics while a sizeable drop in CS-recall. The drop in CS-recall
can mean that the system with case-alignment feature weighing is able to select
templates that have contents closer to the human written summaries.

In the second study, we compare the effect of selecting the ‘nearest neighbour’
against ‘best out of top-k nearest neighbour’ for generating the new solution, of
which results are shown in second row of the Table 2. Here, the CBRallS system
is used without GPT2 solution ranking module. Again, we can see there’s not
much difference in EE metrics but there’s a sizeable difference in BLEU score.
This is expected as GPT2 scores the sentences based on perplexity that rewards
fluency. So with the addition of an extra scoring component for solution reuse,
we can improve the fluency of our generated text summaries.

Third study analyses the effects of applying LaserTagger for sentence fusion.
Results are shown in the third row of the Table 2. We can see that there’s slight
drop in most metrics when LaserTagger is not used for sentence fusion. This
is because that the texts generated from CBR systems have some incohereny
such as: ‘Bradley Beal led the way for the Wizards (32-48) with 25 points,
complementing the Wizards (32-48) with five assists and two rebounds.’. This
incoherence is the result of using co-reference resolution while template extrac-
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tion. With LaserTagger applied to the above sentence, it is modified into ‘Bradley
Beal led the way for the Wizards with 25 points, complementing them with
five assists and two rebounds.’. This is similar to the Referring Expression Gen-
eration phase of traditional D2T methods [25].

6.3 Qualitative Analysis

Table 3. A summary generated from our CBRallS system

The visiting Atlanta Hawks ( 13 - 29 ) defeated the host Philadelphia 76ers ( 27 - 16 )
123 - 121 at Wells Fargo Center on Friday . The 76ers shot 52 percent from the field
, including 33 percent from long range but were not able to hang on for the full 48 ,
as The Hawks surged back to get their revenge . Ben Simmons had a triple - double
with 23 points ( 7 - 13 FG , 1 - 2 3Pt ) , 10 rebounds , 15 assists , three steals and
one block in 43 minutes . Meanwhile , Jimmy Butler was the high - point man for
Philadelphia , with 30 points on 9 - of - 19 shooting , in 40 minutes . JJ Redick was
next in line with 20 points , three rebounds , an assist and a steal , as the only other
76ers player who managed double - digit points . Rookie DeAndre’ Bembry shot 6 -
for - 11 from the field to score 14 points , while also chipping in five rebounds . Kevin
Huerter was the high - point man for the Hawks as he tied a season - high with 29
points on 11 - of - 17 shooting , including 5 - of - 8 from long range . John Collins was
the 3 prong of the Hawks attack , as he finished with 25 points ( 10 - 17 FG , 1 - 1
3PT , 1 - 3 FT ) , along with five rebounds , two assists , two steals and one block , in
27 minutes . The 76ers now head to New York for a Sunday night showdown versus
the Knicks while the Hawks will return home to face the Bucks on Sunday .

A summary of the NBA match between 76ers and Hawks on 11th Jan, 2019
generated from the proposed system is shown in Table 3. The first and last sen-
tences are generated from a set carefully crafted rules, while other sentences are
generated through the CBR methodology. The accurate facts are shown in green
while the inaccurate ones in red. The red inaccuracies are due to the imperfection
in template extraction process, where sometimes an entity is replaced with wrong
feature name because of more than one features having the same value. By
addressing such cases in template extraction can improve the accuracy of the
system in terms on numerical facts being conveyed. Another type of inaccuracy is
shown in grey sentence, which wrongly mentions JJ Redrick being the only player
with double-digit points after Jimmy Butler. These facts are much more complex
to calculate and are grounded in the text, as this information is calculated across
multiple entities (you need to know other players’ scores as well to decide only
two scored in double-digits). To address such errors, new features are needed
to explicitly identify the information from across entities and/or events. Those
new features will help the system in deciding the similarity of a template with
across-entity information in such cases. One interesting observation is that no
discourse is more than a sentence long, that’s because the template extraction is
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done on a sentence level. Extraction on sub-paragraph level will make discourse
longer and summaries much more human-like.

7 Conclusion and Future Work

In this work, we proposed a CBR system for Data-to-Text generation that aims
to provide a good balance in the trade-off between accuracy and diversity of the
text summaries produced by a D2T system. Our CBR system follows a modular
approach to text generation in which content selection is performed first before
surface realisation takes place via templates extracted from the training corpora.
Experimentation results on a sports domain data-set show that our CBR system
achieves better accuracy than a neural benchmark while better fluency and diver-
sity than a rule-based baseline. We also introduce a novel case-alignment based
feature weighting algorithm that is particularly effective in non-classification set-
tings, such as text solutions. The benefit of our feature weighing algorithm over
the information gain feature weighing baseline is also demonstrated.

In future, we would like to improve the template extraction process. In this
paper, the extraction take place at a sentence level (micro-plan) which limits
performance in relation to inter-sentence coherence in the generated texts. With
an extraction process on sub-paragraph level (macro-plan) better coherence and
discourse could be achieved for describing multiple entities in the summary.
We would also like to investigate the possibility of having dynamic higher-level
component organisation to increase the diversity in content structuring of the
summaries. Finally, we plan to conduct more extensive evaluation of the system
with alternative data-sets and using human judgement for evaluations.
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Abstract. The quality of case retrieval in case-based reasoning (CBR)
systems depends on assigning appropriate case indices. Defining feature
vocabularies for indexing is an important knowledge acquisition problem
for CBR, often addressed by hand. The manual process may result in
high-quality vocabularies, but at considerable effort and expense, and
it may be difficult for non-symbolic input such as images. Recently, the
ability of deep learning (DL) to identify important features has made
it appealing for learning to assign case features. However, such meth-
ods may miss features apparent to knowledge engineers. This paper
presents a case study on methods for combining benefits of both engi-
neered and DL-generated features. It considers case-based classification
of cases described by both symbolic features and images. It evaluates
the power of both types of features individually, examines how quality of
engineered feature information affects their combined benefit, and tests
network methods to generate weights for their combination. Experimen-
tal results show that in the test domain under suitable circumstances,
the combined approach can outperform either method individually.

Keywords: Case-based reasoning · Deep learning · Indexing · Hybrid
systems · Knowledge containers · Integrated systems

1 Introduction

The performance of CBR systems depends critically on retrieving the right
cases. This depends on the indices used to organize and retrieve cases (e.g.,
[6,11,14,15,22]), which in turn depend on the vocabulary of features from which
indices can be constructed. The feature vocabulary may be generated through a
knowledge engineering process, sometimes reflecting deep analysis of a domain
(e.g., [6,14,22]). However, relying on manual feature acquisition can be problem-
atic. First, especially in instances where the domain is poorly understood, or in
non-symbolic domains (e.g., classifying images), it may be hard to identify the
right set of features for a feature vocabulary. Second, developing feature vocab-
ularies may be highly expensive—and the expense may need to be repeated as
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vocabularies lose their appropriateness over time due to concept drift. Third, the
situation assessment process required to characterize input problems in terms of
the vocabulary may be difficult, resulting in partial, erroneous, or noisy case
descriptions.

Some of the previous problems can be alleviated by applying machine learn-
ing (ML) to feature selection and similarity assessment. For example, learning
techniques may be used to identify features to consider [7] or assign feature
weightings [4]. Recently, substantial effort has focused on the potential of DL
approaches to generate features and feature weightings. For example, convolu-
tional neural networks (CNNs) have been used to extract feature information
from images [24] and tri-axis sensors [21]. In that work, rather than relying on
human-engineered features and situation assessment, the CBR system imports
feature information from a network and uses it as the sole feature source during
retrieval. Such methods facilitate feature generation and enable features to be
tuned as data changes. However, they are not guaranteed to capture the deep
relationships that may be contained in expert-generated features. Thus each
approach has benefits and drawbacks.

In domains where a set of knowledge-engineered (KE) features exists, it is
natural to consider combining human-engineered and network-learned (NL) fea-
tures extracted using ML techniques. This paper presents a new method for
extracting NL features and a case study on combining symbolic KE features
with features extracted from CNNs for a classification task. It addresses how the
benefit of combining such features varies with symbolic feature quality. As the
effectiveness of retrieval depends strongly on feature weightings (e.g., [1]), it also
studies how feature weight learning can be applied when merging the two sets
of features, and its benefit. Results show that in the test domain, which com-
bines symbolic and image information, the combined approach can outperform
either method individually. This performance increase can be augmented with
certain weight-learning strategies, though results also suggest that the benefit
may be primarily for low-dimensional spaces, so new strategies may be necessary
to accommodate feature-dense spaces created by NL techniques.

2 Convolutional Neural Networks for Classification

As a reference for the architecture described later in this paper, we begin with
a brief description of convolutional neural networks for image classification. A
CNN for image classification begins with alternating convolution and pooling
layers that identify common shapes, contrasts, etc. present in similar regions
of images with the same class during training; these extracted features then
are “flattened” into a single layer and passed through a dense multilayer per-
ceptron (MLP) section connected into the final output layer. A graphic repre-
sentation of this process is shown in Fig. 1. CNNs may be applied broadly to
multi-dimensional data (e.g., image data [24] or sensor data that tracks move-
ment in three dimensions [21]), where their architecture enables processing and
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condensing of complex data into features based on data relationships. Such fea-
tures then may be extracted from the CNN’s internal structure and applied to
the feature set in a case-based reasoner.

Fig. 1. Procedural diagram for a CNN in an aircraft sensor domain. Figure by Iuliana
Tabian, Hailing Fu, and Zahra Sharif Khodaei is licensed under CC BY 4.0 [23].

3 Related Work

There has been much CBR research on feature learning using symbolic learning
methods. Recently, there has been much interest in combining CBR and DL
(e.g., [9,16,18,20]) Much of this work focuses on CBR-DL hybrids in which DL
components provide capabilities such as feature extraction to a CBR system.

Feature Learning. A range of symbolic methods have been used to refine
features/indices for CBR, often using knowledge-rich techniques. One example
of feature learning strategies involves hybridizing with model-based learning to
inform feature selection [3]. Bhatta and Goel apply a model-based system to
select indices based on features simulated in the model. Barletta and Mark
[2] propose explanation-based indexing. Cox and Ram [5] and Fox and Leake
[7] apply introspective reasoning to refine features as expectation failures are
encountered. Such methods rely on rich knowledge but can do powerful feature
learning.

More recent research focuses on applying neural networks to directly infer
similarity information from raw input data. Such methods do not require domain
knowledge within the system (however, the dependence of network architec-
ture on input structure makes many such methods domain-specific). Sani et al.
present a system for human activity recognition that extracts features from a
sensor and then uses a CNN to interpret the input data, which is represented in
three dimensions [21]. The generated features are then compared against known
wave form cases to infer the type, duration, etc. of activity that generated the
sensory input data. Other approaches go a level of abstraction higher and look
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at the similarity functions themselves. Grace et al. [8] propose a hybrid sys-
tem for creating plausible, yet unexpected, recipe designs. Their system applies
DL techniques to infer relationships between cases in a case base; this provides
additional knowledge that can be patterned to expectations when attempting to
address the parameters of a presented goal. Mathisen et al. [17] use neural net-
works to learn similarity measures and also analyze different types of similarity
metrics in depth. Outside of CBR, Kraska et al. [12] explore feature learning
using linear models and neural networks to aggregate and discriminate between
features, showing performance benefits over traditional structures like B-trees,
hashmaps, and bloom filters; they also propose combinations of ML techniques
or multi-dimensional indices as potential means to greater efficiency.

Inductive feature learning is especially applicable in domains such as image
recognition, for which CNNs have been used to extract feature data from complex
inputs to inform case-based reasoning systems. Turner et al. [24] apply this to
novel object recognition. A CNN architecture classifies inputs that correlate
with known classes with high confidence; when encountering “new” inputs with
a correspondingly lower confidence, the image features are extracted from the
CNN to be used in similarity calculations to group the new input with other
similar images. As a result, the combined system can be sensitive to images that
do not have known classification labels by loosely classifying them in terms of one
another. Turner et al. extract features for their CBR system from between the
convolution/pooling and dense layers of the CNN; we take a different approach
by extracting features just before the output layer (details in Sect. 4).

Learning Weights. Many strategies exist to dynamically generate feature
weights for case-based classification. Wettschereck et al. [25] present a survey
of methods including hill-climbers, which modify feature weights according to a
gradient to gradually maximize classification accuracy; genetic algorithms, which
evaluate weights based on fitness as measured relative to the similarity calcu-
lation; and conditional probability models, which define weights based on the
probability that a given class has the feature in question, among other wrap-
per and filter models. However, this is also a ripe domain for neural networks,
which provide numerous opportunities to analyze relative importance of input
features. In particular, Kenny and Keane [10] analyze multiple methods involv-
ing generating weights by taking advantage of neural network properties. One
method generates weights by perturbing input elements individually and track-
ing the corresponding change in accuracy; this method builds on the assumption
that feature importance correlates with the magnitude of accuracy change. We
explore a version of this approach in Sect. 5, with slight modification for our test
domain.

4 Bridging Engineered and Network-Extracted Features

This paper focuses on two aspects of bridging engineered features with features
generated by DL:
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Fig. 2. Illustration of data flow through our model.

1. Extracting features from DL models to use in concert with KE features
2. Using neural networks to learn feature weights for both KE features and

network-learned features.

It investigates these in the context of a case study of case-based classification.
We propose a general model integrating three major components as shown in
Fig. 2. In the model, features are learned by a CNN from training data, feature
weightings for the new features and existing knowledge engineered features are
learned by another network, and the features and weights are used in a case-
based classifier. Specifically, components are:

1. A CNN that extracts features from input data (e.g., images) to be used for
case-based classification

2. A neural network that generates weights for both learned and knowledge
engineered features, for the classifier similarity calculation.

3. A case-based classifier that uses a combination of engineered features and
features from (1), weighted according to (2), for case retrieval.

CNN Architecture. Our feature extraction CNN derives closely from the
AlexNet architecture [13]. AlexNet is a foundational CNN architecture for image
classification that employs a batch-normalized interleaving of five convolution
and three pooling layers that are flattened into a network of two fully-connected
dense layers that feed into the output layer. Our method deviates from other
approaches on extracting CBR features from a CNN [21,24] by extracting fea-
tures from the dense layer preceding the output layer in the CNN, rather than
before the dense layers. The rationale for this approach is as follows. An output
node’s activation in a neural network is determined by a weighted sum of the
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outputs from the previous layer. Thus, extracting features immediately after the
final convolution layer neglects intermediate layers’ modifications to the feature
set ultimately used to perform classification, motivating extracting features from
later in the CNN structure. Also, we remove the bias node from the CNN output
layer. This ensures that NL features are not skewed during training, because a
bias node would factor into the weighted sum used for prediction but would not
be extracted as a feature.

Sequential Architecture and Weight Generation Approaches. To gener-
ate network learned weights, we apply a sequential architecture (i.e., successive
fully-connected layers) mapping inputs corresponding with each feature directly
to the classifying output layer.

1. Directly extracted weights: After training, local feature weights are gen-
erated for each case in the case base. For each feature, the local feature weight
is the normalized absolute value of the weight of the link leading into the out-
put node corresponding to that case’s class (for later similarity calculations,
only magnitude is important). This produces a localized set of feature weights
for the cases that are unique on a per-class basis. Both linear and RELU acti-
vation functions were considered for the output layer before applying softmax
to select a class prediction, with comparative results reported in Sect. 5.

2. Weights from Perturbation: Calculating weight values based on the shift
in prediction accuracy as feature inputs (KE features only, NL features only,
or both combined into a single input set) are perturbed individually, according
to the following equation derived from Kenny and Keane [10]:

wi =
Δacc(fi, σ) + Δacc(fi,−σ)

2
(1)

Here weight wi is the average change in prediction accuracy that results
from perturbing feature fi by ±σ. In contrast to extracting weights from the
network directly, this generates a global set of feature weights applied to all
cases, regardless of class.

5 Evaluation

Our evaluation addresses the following questions:

1. How is classification accuracy affected by degradation of reliability of input
(KE features)?

2. How does using NL features in concert with KE features affect classification
accuracy?

3. How do CBR retrieval weights based on NL weights influence classification
accuracy for different combinations of NL and KE features?
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5.1 Test Domain and Testbed System

Test Domain: As a test domain including both engineered features and non-
symbolic information, we selected the Animals with Attributes 2 data set
(AwA2) [26]. This data set, designed for one-shot learning, includes over 37000
images across 50 animal classes; each class also has an associated feature vec-
tor of 85 features corresponding to 85 symbolic descriptions (e.g., herbivorous,
desert habitat, quadrupedal, etc.). Each feature is assigned a continuous value
in [−1.0, 100.0]. Because all instances of a class are assigned the same feature
vector, with no variance, these feature vectors yield “perfect” classification accu-
racy when used for retrieval. To simulate imperfect situation assessment assign-
ing symbolic feature values and/or symbolic feature characterizations that are
not 100% predictive, we use perturbation. This is defined by a multiplier x that
is applied to each feature value individually. The multiplier x is generated by
taking a random integer k in the interval [1, n] and randomly setting x to k or
1/k with equal probability. We consider values of n on the interval [1,10).

Testbed System: As case adaptation is beyond the scope of our work, the testbed
case-based classifier has no adaptation component. The classifier retrieves the
nearest neighbor (i.e., 1-NN) using a weighted Euclidean distance metric for
similarity calculations, using either local feature weights (for directly extracted
weights) or global weights (for weights extracted by perturbations).

Properties of the chosen data set were reflected in parameter choices for the
networks. The CNN architecture was modified to use 1024 nodes in the dense
layers (rather than the traditional 4096) to concentrate extracted information
into fewer features in an effort to make comparisons between KE and NL features
more one-to-one. However, this was only partially possible, because smaller layers
increase training time and decrease accuracy, to the point where epoch training
steps do not converge. Even though we found a one-to-one comparison impossible
as a result, the number of nodes was still used as it did not appear to negatively
impact classification accuracy. The output layers of both the CNN and sequential
architecture contained 50 nodes based on the number of AWA2 classes, and the
input layer of the sequential architecture contained one node for each feature.
Specifically, this translated to 85 nodes when considering only KE features, 1024
when considering only NL features, and 1109 when considering both feature sets
in tandem. Last, we found that σ = 0.8 led to the highest retrieval accuracy in
preliminary tests when generating weights using perturbation, likely due to the
lack of variance in the KE feature set.

5.2 Preliminary Experiments to Set Network Parameters

Both NL features and NL weights depend on training the networks from which
they are generated. We first determined the number of epochs to use, to balance
the trade-off between predictive accuracy and low training time. For the CNN,
models are trained on ten randomly-selected images from each of the fifty classes
in the AwA2 data set, for a total of 500 images. Sequential architecture models
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Table 1. Comparing classification accuracy values (± one standard deviation) for the
sequential architecture for a given number of epochs, evaluated using the training set
and an independent testing set.

Epochs Train accuracy Test accuracy Epochs Train accuracy Test accuracy

10 0.176 ± 0.028 0.045 ± 0.008 60 1.0 0.085 ± 0.015

20 0.765 ± 0.063 0.064 ± 0.009 70 1.0 0.083 ± 0.014

30 0.974 ± 0.010 0.076 ± 0.014 80 1.0 0.088 ± 0.014

40 0.997 ± 0.003 0.076 ± 0.012 90 1.0 0.088 ± 0.013

50 1.000 ± 0.001 0.081 ± 0.010 100 1.0 0.092 ± 0.013

are trained on the 1024 NL features generated by the CNN and/or the 85 KE
features. All epoch training evaluations are performed for a number of epochs on
the interval [10, 100] in increments of ten, with higher-resolution tests conducted
for feature-dense spaces (i.e., requiring fewer then ten training epochs). Evalu-
ations are performed thirty separate times and averaged to compute a sample
mean and its standard deviation.

Tuning Results. From these procedures, we chose the following parameter set-
tings. For learning NL features, the CNN model is trained for 50 epochs. The
sequential architecture is trained for 80 epochs when learning weights for KE fea-
tures only, 5 epochs when learning weights for NL features or both NL and KE
features combined, and 50 epochs when learning weights using feature perturba-
tion. These decisions reflect values that maximize classification accuracy on the
training set while also minimizing the number of epochs. Further research could
investigate finer tuning parameters, such as learning rate and early stopping.

We note that for our modified AlexNet architecture, training appears to hit a
point of diminishing returns after fifty epochs. This pattern holds for prediction
both on the training set and on an independent testing set of 500 new images
(Table 1). Furthermore, the accuracy on the testing set is significantly lower,
suggesting that a general set of NL features is difficult to learn from the training
set, and/or that the model overfits to the training set. However, considering
that the model is designed to learn features that discriminate between cases of
different classes, overfitting relative to a given case base may be acceptable so
long as network training can efficiently be redone as new cases are added.

5.3 How Retrieval Accuracy Changes with KE Feature Degradation

Experiment Overview. We explore relationships between retrieval accuracy
and perturbation of the KE feature set. Specifically, retrieval accuracy is evalu-
ated for leave-one-out experiments that are unweighted or weighted using linear
or RELU activation functions for the sequential architecture to facilitate NL
weight generation; each experiment is conducted for thirty iterations per value
of n to establish a sample mean and standard deviation.
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Table 2. Comparing classification accuracy values (± one standard deviation) across
the various perturbation levels. Results are shown for unweighted features and features
weighted using linear and RELU output activation functions for the sequential network.

n Unweighted Linear RELU

9 0.440 ± 0.028 0.235 ± 0.045 0.238 ± 0.041

8 0.458 ± 0.030 0.251 ± 0.044 0.253 ± 0.040

7 0.506 ± 0.025 0.266 ± 0.047 0.287 ± 0.035

6 0.567 ± 0.028 0.291 ± 0.056 0.313 ± 0.033

5 0.651 ± 0.028 0.363 ± 0.053 0.358 ± 0.057

4 0.785 ± 0.022 0.481 ± 0.059 0.449 ± 0.060

3 0.931 ± 0.014 0.625 ± 0.068 0.642 ± 0.046

2 0.999 ± 0.002 0.941 ± 0.035 0.924 ± 0.028

1 1.0 1.0 1.0

Sensitivity of Retrieval Accuracy to Feature Quality. Results for these
experiments are shown in Table 2. Predictably, retrieval accuracy decreases as
the perturbation magnitude increases, because a higher degree of noise is present
in the KE feature set. Given this relationship, it is interesting to consider the
possibility of using retrieval accuracy with KE features alone as proxy for the
comprehensiveness/completeness of the KE feature set (and by extension, under
what conditions its combination with a NL feature set might provide the greatest
benefit). More research is required to provide a finer-grained assessment. We
observe that the linear and RELU activation strategies appear less performant
than the unweighted strategy; we explore this result more deeply in Sect. 5.5.

5.4 How Using KE and NL Features in Concert Affects Accuracy

Experiment Overview. We evaluate classification accuracy using KE and NL
features in tandem by considering various perturbations of KE features in concert
with the NL feature set against retrieval accuracy using each set individually.
Each experiment is performed using unweighted leave-one-out testing on the case
base of 500 cases using uniform feature weights for thirty iterations to establish
a sample mean and standard deviation.

Benefits of Combining Features. As shown in Fig. 3, there frequently exists
an interesting–if not always statistically significant–increase in classification
accuracy when considering a combination of KE and NL features over either
feature set’s individual classification accuracy. This accuracy increase is most
evident and most significant when both feature sets considered individually lead
to similar classification accuracy values (i.e., when the perturbation magnitude
is such that their accuracy values are similar) and when classification accuracy
using NL features alone is higher than when using KE features alone.
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Fig. 3. Comparison of classification accuracy values for different feature perturbations
(n = 7 A; n = 6 B; n = 5 C). Error bars represent one standard deviation relative to
thirty iterations.

The existence of this “accuracy bump” has multiple potential causes. For one,
general accuracy trends and standard deviation patterns appear to be dominated
by the NL features; this is unsurprising given that many more NL features (1024)
are considered than KE features (85). While it can be argued that this blunts
the significance of the observed trend, it is important to provide further context.
In particular, the modified AlexNet CNN produces novel features that capture
aspects of the feature space not adequately represented in the KE feature set.
That is, even though this trend may at least partially be attributed simply to
the existence of more features, the NL features must also be significant/helpful
in order to produce an increase in accuracy. The real question becomes whether
the increase in accuracy when considering the union of the feature sets comes
strictly from the existence of new features or from new interplay between the
two feature spaces that creates a whole greater than the sum of its parts. This
proved difficult to measure directly given the chosen domain. In preliminary
tests, a CNN having only 85 nodes per dense layer never converged (i.e., it could
never outperform a random baseline).

Implications for Hybrid Systems. These data suggest an interesting poten-
tial implication. Specifically, if this accuracy increase can be at least partially
attributed to the nature of the two sets of features in a hybrid system (rather
than simply an influx of new features alone), such a result could highlight direct
hybridization of KE and NL features as a new avenue for accuracy improvement
for CBR retrieval. That is, in the presence of additional environmental informa-
tion (represented by the images in the AwA2 domain), a neural network may
be able to generate features that are both novel when compared against the
KE feature set and especially useful in concert with the KE feature set. This is
naturally difficult to verify due to the well-documented inexplainability of neu-
ral network features, but future work focusing on detailed feature relationships
and/or correlations, while likely computationally costly, might be able to identify
useful correspondences between the feature sets for exactly this purpose.
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Fig. 4. Comparison of classification accuracy values for different feature perturbations
(n = 9 D; n = 8 E; n = 7 F; n = 5 A; n = 4 B; n = 3 C). Error bars represent one
standard deviation in experiments using a linear activation function (top) or RELU
activation function (bottom) to generate NL weights using softmax.

5.5 How Learned Weights Further Influence Retrieval Accuracy

Experiment Overview. For these experiments, features are weighted based
on the strategies described for NL weights in the model section. Classification
accuracy values for combined NL and KE features are evaluated against using
each set of features individually, based on leave-one-out experiments repeated
thirty times to establish a sample mean and standard deviation.

On Feature Weights and the “Curse of Dimensionality”. While previous
research appears to achieve reasonable success generating weights by perturbing
KE features [10], such methods may not be applicable to feature-dense spaces.
Specifically, when generating NL weights using feature perturbation on NL fea-
tures, we observe that perturbing a single feature seldom changes the overall
classification accuracy of the model, even when considering large values of σ.
Therefore, many of the generated weights are at or near zero, crippling similar-
ity assessment. It is possible that perturbing features in batches or using more
complex neural network models might address some of these shortcomings; how-
ever, we suspect that existing weighting algorithms are significantly less effective
in high dimensional spaces created by generating NL features. Alternative weight
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generation algorithms may be applicable here (e.g., [1]), but research in addi-
tional domains is needed.

Weighting Can Augment Retrieval Benefits. In terms of overall retrieval
accuracy, our initial results on using NL weights drawn directly from a net-
work model in concert with combined NL and KE weights appear disappointing
(Fig. 4). However, trend behavior in these experiments is interesting. First, we
note that accuracy values for the linear activation function are consistently at
least as high as those for the RELU activation function. This is reasonable given
that RELU would likely favor large-magnitude negative correlation weights less
strongly than positive correlation weights. Curiously, however, the linear acti-
vation accuracy values suggest that combining KE and NL features produces a
harmful effect. Contrast this with the RELU activation function, where combin-
ing KE and NL features produces the most significant relative accuracy improve-
ment across all tests (Fig. 4). So why did the weighting methods attempted not
increase classification accuracy overall? This could be a result of the lack of
variation in the raw KE features, so weighting provides little benefit for fea-
tures that exist due to random perturbations; alternatively, this could simply
be a symptom of the simplicity of the weighting algorithms investigated. How-
ever, the dramatic relative improvement in retrieval accuracy when generating
weights using an RELU activation function suggests that deeper investigation
into interplay between KE and NL features with NL weights is worthwhile.

6 Ramifications for Explainability

The previous experiments support the accuracy benefits of combining knowl-
edge engineered and neural network features, especially for domains where addi-
tional features may be extracted from supplementary/environmental informa-
tion. Unfortunately, while such features may be powerful and have the potential
to capture aspects of the case base that humans cannot, this comes at a cost
for explainability of retrieval. As the network-based features may be difficult to
explain, it may be equally difficult to assess similarity judgments when they are
based on network features.

Such a loss might not always be important. In a domain for which humans
can assess similarity directly from the retrieved case, no explanation may be
needed. In domains for which the combination of features results in substantial
accuracy gains, the loss of explainability might be considered less important
than gains in accuracy. However, the accuracy-explainability trade-off merits
future research, and potential ways to mitigate it, such as integrating aides to
interpreting feature assessments (e.g., CBR-LIME [19]) would be an interesting
area for future research.

7 Conclusions

This paper presents results from a case study on methods for supplementing
existing knowledge-engineered features with features learned from data with deep
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learning, with feature weightings for both learned by a neural network. The paper
illustrates circumstances under which combining network-learned features with
knowledge engineered features can produce classification accuracy values greater
than either of the feature sets considered individually. It also points to challenges
in weight generation for high-dimensional spaces, as may arise from learning
large features sets from deep learning, and considers strategies to alleviate this
difficulty.

These conclusions suggest numerous avenues for future work. First, testing
across additional domains and network architectures and baselines is an essential
next step. Also important exploring the tuning conditions under which combin-
ing KE and NL features produces maximum benefit, or under which the CNN
generates features that are especially useful for retrieval. Investigating weighting
strategies that perform better in feature-dense spaces is an another important
step. Finally, an interesting question outside of the learning methods is how the
inclusion of NL features and NL weights affects the explainability of the CBR
model that applies them and how explanation issues might be addressed.
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19. Recio-Garćıa, J.A., Dı́az-Agudo, B., Pino-Castilla, V.: CBR-LIME: a case-based
reasoning approach to provide specific local interpretable model-agnostic explana-
tions. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp.
179–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2 12

20. Samakovitis, G., Petridis, M., Lansley, M., Polatidis, N., Kapetanakis, S., Amin, K.:
Seen the villains: detecting social engineering attacks using case-based reasoning
and deep learning. In: Proceedings of the ICCBR 2019 Workshop on Case-Based
Reasoning and Deep Learning, pp. 39–48 (2019)

21. Sani, S., Wiratunga, N., Massie, S.: Learning deep features for kNN-based human
activity recognition. In: Proceedings of ICCBR 2017 Workshops (CAW, CBRDL,
PO-CBR), Doctoral Consortium, and Competitions co-located with the 25th Inter-
national Conference on Case-Based Reasoning (ICCBR 2017), Trondheim, Norway,
26–28 June 2017. CEUR Workshop Proceedings, vol. 2028, pp. 95–103. CEUR-
WS.org (2017)

22. Schank, R., et al.: Towards a general content theory of indices. In: Proceedings of
the 1990 AAAI Spring Symposium on Case-Based Reasoning. AAAI Press, Menlo
Park (1990)

23. Tabian, I., Fu, H., Khodaei, Z.S.: A convolutional neural network for impact detec-
tion and characterization of complex composite structures. In: IEEE Trans. Pattern
Anal. Mach. Intell. (T-PAMI) 19 (2018)

https://doi.org/10.1007/978-3-030-58342-2_12


262 Z. Wilkerson et al.

24. Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W.: Novel object discovery using
case-based reasoning and convolutional neural networks. In: Cox, M.T., Funk, P.,
Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 399–414. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01081-2 27

25. Wettschereck, D., Aha, D., Mohri, T.: A review and empirical evaluation of feature-
weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1–
5), 273–314 (1997)

26. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a compre-
hensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal.
Mach. Intell. (T-PAMI) 40, 1–14 (2018)

https://doi.org/10.1007/978-3-030-01081-2_27


Task and Situation Structures
for Case-Based Planning

Hao Yang1(B), Tavan Eftekhar1, Chad Esselink1, Yan Ding2, and Shiqi Zhang2

1 Ford Motor Company, Dearborn, MI, USA
hyang1@ford.com

2 State University of New York-Binghamton, Binghamton, NY, USA

Abstract. This paper introduces two new representation structures for
tasks and situations, and a comprehensive approach for case-based plan-
ning (CBP). We focus on everyday tasks in open or semi-open domains,
where exist a variety of situations that a planning (and execution) agent
must deal with. This paper first introduces a new, generic structure for
representing tasks and task plans. The paper, then, introduces a generic
situation structure and a methodology of situation handling. The pro-
posed structures support encoding all domain knowledge in cases while
avoiding hard-coding domain rules.

Keywords: Case-based planning · Task structure · Task plan ·
Situation handling

1 Introduction

Case-based planning (CBP) [10] sees knowledge being embedded in cases, inside
real-world life stories. Humans are able to directly use previous cases to solve
new planning problems instead of employing domain rules to craft a new plan.
This paper explores a comprehensive approach that encodes domain knowledge
in cases, instead of relying on separate domain knowledge bases in a case-based
planning system. This paper addresses a set of problems that resemble a service
agent dealing with “everyday tasks”, c.f., “problem solving tasks” [15]. A service
agent faces a complicated world with a large variety of tasks and their variations,
and it needs to deal with practically endless types of situations. Our research
starts with a new, generic structure for representing task cases. On the other
hand, a task plan is not to be static in the real world. It often needs to be revised
in response to unexpected situations1. The paper then introduces a new, generic
situation structure for representing situation cases. Accordingly, we develop a
novel situation handling methodology that avoids hard-coding domain rules in
applications while focusing on encapsulating knowledge in tasks and situation
handling cases.
1 The term “situation” in this paper has been frequently referred to as “anomaly” and
“event” in the literature.
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Classical planning is to compute a sequence of actions for transforming the
world from an initial state to a state that satisfies the goals [9]. To perform
an action, the current state should satisfy the preconditions of the action. After
performing the action, the effects of the action are expected to be realized so that
the state will change accordingly. Classical planning assumes that a complete
task plan is generated prior to the execution and it does not consider structures
in a task plan [1,7]. In comparison, people plan at different levels of abstractions,
e.g., a task can be divided into sub-tasks. Hierarchical Task Network (HTN) was
introduced to reflect this intuitive planning technique [13,14,16,19]. In HTN
planning, refinement rules, called methods, break down a task into sub-tasks, or
High Level Actions (HLA) in HTN’s term.

On the other hand, a plan may fail or stale during execution. It could be due
to anomalies as the environment deviates from original assumptions. It could be
due to an extraneous exogenous event that the agent has to handle. Or, there
could be new demands from other agents that the agent needs to accommodate.
All these are Situations that the agent needs to respond to by revising or repair-
ing the task plan. A Situation is defined as “an unexpected event or demands
that an agent needs to respond to” in this research.

Many researchers have addressed situation handling. For example, ASPEN
has a plan repair mechanism developed for Mars rovers [4]. The plan repair
unit keeps monitoring conflicts and applies repair methods when conflicts are
detected. ASPEN has a total of ten repair methods. Goal Driven Autonomy
(GDA) [6] was developed that includes a four-phase discrepancy detection and
goal modification/reformulation process. It takes a control approach as it contin-
uously monitors any deviations from expected states and has policies to address
the discrepancy. More importantly and distinctively, it develops comprehensive
methods to revise goals accordingly. In GDA implementations, the control logic
and goal reasoning are largely rule-based and domain-specific [2]. Another school
of plan repair methods is to use domain rules to remove or add actions to the
existing plan [8,17].

Situations are unpredictable, especially in real-world applications. Rare Sit-
uations are often referred to as “corner cases” or “edge cases”. Take robotaxi as
an example. Assume a vehicle picks up a customer and sends the customer from
location A to location B. Many Situations can happen during the trip. At the
pickup time, the vehicle may not find the customer showing up at the pickup
location, or the vehicle could not access the prearranged pickup spot. During
the trip, the customer may complain about the smell or spill in the car, or the
customer needs to divert for an urgent errand. Those Situations that could be
solved relatively easily by a human driver could be challenging to the Artificial
Intelligence (AI) agent. Not only that Situations are numerous, but also the dif-
ference in the context of Situations compounds variations. The solution space is
impossible to be exhaustively defined.

This paper illustrates a comprehensive design and practice that avoid hard-
coding rules by introducing two new representation structures. It is unique that:

1. It has text-based, generic structures and syntax for tasks and situations.
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2. It embeds domain knowledge in executed cases, not in “hard-coded” rules.
3. It uses context as additional attributes into guiding the search for solutions.

In the following, the paper first discusses Task structure and planning in
Sect. 2, and then discusses Situation structure in Sect. 3. After that the paper
discusses situation handling in Sect. 4. The paper presents a couple of examples
in Sect. 5, where we use our prototype system Virtual Service Agent (VSA), an
agent that serves passengers in a ride-hailing vehicle, as a research workbench for
discussion and illustration. Finally, we summarize the significance of this work
in Sect. 6.

2 Task Structure and Planning

In case-based planning (CBP), a task plan is viewed as a record of history, an
episode of a story. Therefore, we use Task to refer to a task case in this paper.
With this motivation, our Task structure encapsulates all parameter details in
a task. Second, a task is an assignment given to an agent to perform. However,
a subtask can also be viewed as an assignment derived from its parent task.
They are analogous. “Abstraction” is an important concept studied in CBP [3,5].
Recognizing that tasks and subtasks are analogous helps us understand the levels
of abstraction of Tasks. Third, the paper introduces context as an attribute of
a Task that provides variations that will differentiate behaviors of a Task.

2.1 Task Structure

The Task structure is illustrated in Table 1, where it includes the conventional
task plan information such as Conditions and Effects, with a few tweaks.

Table 1. Task structure

Attribute Explanation

Task name: string (could be considered as the task class name)

Parent task: (object or id of the parent task, null if no parent)

Sub-tasks: (a list of sub-tasks of this task. Empty if it is a leaf)

Action: (the action of the task)

Specs: (detail specs of how the action is performed)

Conditions: (conditions to satisfy before this task can be performed)

Effects: (effects that will be assigned after the task is performed)

Context: (a list of contexts of this task, each is in the form of “key: value”)

Goals: (goals to be verified if the task is performed successfully)

Task name is the name of a Task class (not a name for an instance of a
Task). For example, it could be “drive task”. Parent task is the parent of
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this Task, which is null if it is a root Task. Sub tasks is a list of sub-tasks,
where each sub-task takes the same structure of a Task. Action is an abstract
form of a Task. An Action has the action (verb), and a syntax of parameters of
this Action, e.g., “Robot-r drive from location-1 to location-2”. It should be
noted that the idea a task being analogous with action is not new [11]. Specs
contains the details of parameters that are used in the Action. For example, if
location-1 is a parameter in the above “drive” Action, then the location object
is included in the Specs. Finally, Context contains any context information
relevant to this Task. For example, if a drive Task is driving in rain, “raining”
is among the context of this drive Task.

This schema is implemented in json2. We have serialize and deserialize func-
tions in python that transform data to objects or objects to data when needed.
We can encode a whole task object in “data” in a naturally understandable form.

2.2 Execution of Tasks

In our design, task planning is an integral part of the task execution process.
It takes a variational approach which means that instead of applying rules to
develop the plan tree, we use a Task template or a copy of a prior Task and
replace the parameters (spces, context) of the Task with the parameters of the
new Task. It is analogous whether it is from a Task template or a prior Task
since a Task template is in structure the same as a real executed Task. The task
planning agent keeps an agent-level global state stack. During task execution,
checking conditions and checking goals will use the state information, while
applying effects will change the state.

When initiated, a Task has a “status” (not shown in Table 1) of unplanned.
After the planning, where a task develops its sub-tasks, the Task changes its
“status” to planned. When a Task develops its sub-tasks, the “specs” in the sub-
tasks will be mapped from the parent Task ’s “specs.” This is recorded in the
“mapping” field of each sub-task. The “mapping” field was not shown in Table 1,
but it is part of the Task structure. The following is an example of mapping:

{
"spec.origin": "parent.specs.origin",
"specs.destination": "parent.specs.destination"

}

It means that the origin in the specs of this Task is assigned the same as
the origin of the parent Task specs. The destination in the specs of this Task
is also assigned the same as the destination of the parent Task specs.

In the next execution stage, if there are sub-tasks, each sub-task is iterated
and its execution function is recursively called the same way as the parent Task.
If there are no sub-tasks, the Action is executed, which usually is sending the
Action to another agent (the actor) for execution.

If there is an exception detected during the execution, the exception is han-
dled based on the error message. Some of the exceptions will be considered as
2 json is a lightweight data-interchange format. For details, please refer to this page:
https://www.json.org/json-en.html.

https://www.json.org/json-en.html
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Fig. 1. VSA User Interface.

Situations and Situations will be handled by the agent. If the Task could not
be executed, (e.g. when the conditions are not satisfied), and the Situation could
not be handled successfully, the Task status will be changed to failed. When a
Task is completed with no error, it is marked as finished. When a Task status
is changed, the database record is updated. The database retains a rich Task
plan repository, thus the Task plan case library.

2.3 Implementation of Our Task Structure

We implemented the Task structure and Task execution in our prototype system
Virtual Service Agent (VSA). Figure 1 shows the graphic user interface of VSA.
In this user interface, each window represents an agent. Within an agent window,
there is an action panel at the upper and a message panel at the lower. The upper
left window (Fig. 1 1©) is the VSA panel for monitoring the task plan at execution
time. The lower left window is the Map agent that simulates the vehicle driving
through a trip. Among other agents, a Dialogue agent communicates with the
rider using natural language, a Weather agent retrieves live weather information,
a Mobile agent emulates the communication to the rider through a mobile device,
a Vehicle agent controls the vehicle mechanics and sensors, and a Service Center
is the dispatch system that sends Trip Tasks to the vehicle.

Let us take a closer look at the VSA panel (Fig. 1 1©), we can find an example
of the task hierarchy of a Trip Task. Each line prints an action of the Task. Light
green represents “executing” tasks, dark green for “completed” tasks, and white
for “unplanned” Tasks. We implement it to resemble a Trip Task handled by a
vehicle agent sending a customer, Tildaswanson, a fictitious name, from location
Meyers Rd to location Dequindre Rd. The Trip Task is received from a trip
assignment agent (Service Center). A Trip Task has four top-level sub-tasks: A
Drive Task that drives from where the vehicle is to the pickup location Meyers
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Rd; at Meyers Rd, the agent performs the Onboard Task ; it then performs a
Drive Task that drives from Meyers Rd to Dequindre Rd; after arriving Dequin-
dre Rd, it performs the Offboard Task. The sub-task Onboard Task, for example,
has its sub-tasks: connect-passenger, load-luggage, etc. The load-luggage Task is
further developed into sub-tasks: open-trunk, wait-for-load-luggage, close-trunk.
Certainly, whether having the load-luggage Task depends on if the customer
has luggage that needs to be put in the trunk. This information is captured in
the context information of the parent task. Instead of using rules like “if has-
luggage then . . . ” in the refinement method as you would expect in an HTN
system, VSA uses Task attributes, including contexts, as indices to search for a
previous similar Task as a template to develop the sub-tasks.

2.4 Discussions on Task Structure

A major motivation of developing Task structure is to avoid domain-specific data
types and code and to avoid hard-coded rules. A task is decomposed into sub-
tasks in an instance of a Task. The conventional approach usually includes a set
of domain rules (refinement methods) that is separated from the plan data. In
VSA, a Task carries domain rules in the data (the task plan). If a new variation
of a Task refinement needs to be introduced, it is introduced by injecting a new
Task instance into the system, leaving the old data (case) untouched. This Task
structure design also serves the following purposes:

1. It collects task plan data naturally, with every detail of a task plan. It could
potentially offer rich real-world data for machine learning. Machine learning is
recognized as an important method to overcome the bottleneck of knowledge
elicitation in planning systems and it has been used to learn actions and
methods [18,20]. On the other hand, machine learning methods can also be
used to sniff through the task plan data for discrepancies.

2. The proposed Task structure supports simulation well. CHEF [10] showed
the importance of having a simulation system in a case-based planning sys-
tem. Once an old plan is modified, it is not guaranteed to succeed. A robust
simulator will be able to detect failures so that flaws in the modified plan can
be repaired. In our implementation, a simulation function is invoked when a
plan is modified to validate if the plan is feasible. The details of simulation
and validation will be explained later in Sect. 4 and 5.

3 Situation Structure

As discussed in Sect. 1 (Introduction), Situations in an open or semi-open-world
application are numerous and unpredictable. A Situation can happen as a result
of a task failure. For example, it is a Situation when the vehicle cannot connect
to the incoming customer. Or, it is a Situation when the passenger requests to
divert the trip. For example, while en route to the airport, the passenger needs
to go back home because he forgets to bring his passport. It is impractical to
exhaustively enumerate all possible Situations plus all variations in the context
of Situations.
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Here, we present a new, generic Situation structure, similar to the Task
structure, that is capable of describing all Situations and situation handling
without domain-specific data types and code. Situation types and situation-
handling knowledge are not hard-coded, but recorded in plain-text format (json
strings) and are in data.

In a nutshell, a Situation will be handled using a Remedy to repair the
plan. However, we do not expect to always apply the same Remedy to handle
the same Situation (class, identified by the Situation name). A Situation has
variations differentiated by Context. Context is an important attribute of
a Situation. As Leake and Jalali (2014) [12] put it: there are three tenets of
context and CBR: relevance, applicability, and preserving essential specifics of
knowledge. Both our Task and Situation structures contain a Context attribute
for this reason. There is also a Logics field in the Situation data structure.
Logics is used to find additional Context information. It is intended to embed
problem-solving knowledge in Situation data, not hard-coded rules. Table 2 is
the Situation structure.

Table 2. Situation structure

Attribute Explanation

Name: (name of this situation)

Time: (time this situation occurred)

Task: (the Task during which this situation is logged)

Context: (a list of contexts under which this situation happened)

Remedy: (a list of remedy actions to take)

Logics: (knowledge of how to set the Context and the Remedy)

Goals: (a list of new goals that the repaired plan should satisfy)

When a Situation is detected or received (from another agent), it comes with
Name, Time, Task, Context, and Goals. We call it the Situation header.

The agent is then to retrieve Logics of this Situation from the knowledge
base and apply them. Logics is used to help determine the contexts that are most
relevant to this Situation. The context information could be used for situation
handling. For example, in a car-window-broken Situation, the Logics will inquire
a sensor agent to find which window is broken, the severity of the damage, a
weather agent to find out current weather condition. In the implementation,
Logics is a list of functions that feed into the contexts. The following is an
example of Logics. It is in the form of a (python) dictionary:

"logics": {
"window_broken": "vda.checking_window",
"weather": "weather.current_weather",
"wetness": "chat.wetness"

}
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In this example, the keys are attributes that will appear in the context. The
values are the functions. The first is a function of the “vda” agent, referring to
the vehicle agent, with sensors to tell if a window is malfunctioning or broken.
The second corresponds to a “weather” agent function that returns the current
weather condition. The third initiates a “chat” conversation that, through a
Dialogue agent, provides how much of concern of the wetness in the cabin. These
attributes are added to the Context information of this Situation. The functions
could be more sophisticated, and examples of them are beyond the scope of this
paper.

Table 3. Remedy action structure

Attribute Explanation

Operation: (add/delete/modify)

Reference: (a list defines references of attributes)

Mapping: (a mapping function that fills the spec of the with task)

With task: (the new task that will be added or modified)

Remedy is a list of remedy actions used to alter the task plan so that the
Situation is handled. A remedy action is simply adding/deleting/modifying a
Task plan. Table 3 shows details of a remedy action structure. In the remedy
action structure:

– Operation: the operation will be something like: “add after the drive

task”; or “modify this task”. It contains both an operation (add/modify/
delete) and the target (“after the drive task”/“after this task”, etc.). We
adopt this natural syntax. It can be easily parsed with a set of vocabulary.

– References: A list of reference definitions. Through “references”, the keys
in the mapping are referenced to the actual object in the program. In the
following example:

"references": {
"drive_task": "executing task",
"context": "situation context"

}

“drive task” used in the mapping is referenced to the “executing task” (the
Task in Table 2); “context” used in the mapping is referenced to the Context
in the Situation (Table 2).

– Mapping: how the Specs of the new Task (the “With task” in Table 3) is to
be set. The following is an example of the mapping :

"mapping": {
"specs.origin": "drive_task.specs.origin",
"specs.dest": "context.current_location",
"specs.actor": "drive_task.actor",
"action.origin": "drive_task.specs.origin",
"action.dest": "context.current_location",
"estimated_time": "drive_task.actual_duration"

}
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Situa�on name:
Context:

Situa�on name:
Context:
Remedy

Case-base

The old plan

To validate
Validator

2

The modified plan 1
1

Fig. 2. An example of plan modification

In each mapping item, the key is the target of the parameter, the value is the
source of the parameter. Please notice the source parameters “drive task”
and “context” are defined in the “references” described just above.

– With task: the new Task that is to be added into the task plan.

4 Situation Handling

Sections 2 and 3 introduce our structures for representing Tasks and Situations.
Leveraging the new structures we developed, we present our situation handling
approach in this section.

When a Situation is detected, the agent will retrieve the Logics of this
Situation (class) from the knowledge base. The Logics functions are invoked,
and the returned values will populate additional Context information in the
Situation. The Situation with its Context is then pushed to a Situation Queue.
When the agent executes a Task, it also keeps monitoring if there is any Situation
in the Situation Queue. If there is a Situation in the Queue, the agent will
attempt to handle the Situation. The agent will first use the Situation name and
Context to retrieve any prior Situation in the case library that matches best with
the Situation. If a similar Situation is found in the case library, the Remedy of
the old Situation will be used to repair the plan of the new Situation.

Once the Remedy is applied, the modified plan (Fig. 2 1©) will be validated
using the Validator (Fig. 2 2©). In Fig. 2, we use solid lines to refer to the Tasks
that have been executed in the modified plan. The dashed lines are those Tasks
that have not been executed. The Validator is to validate the unexecuted Tasks.
The validation is like a simulation. It starts with the current State. The agent
simulates each Task by checking the conditions first, and then it applies the
effects of the Task to the States, and finally it checks if the goals of the Task
are met.

If the goals are met to the end, the modified plan is validated; otherwise,
there are two options. One is to find another similar Situation case in the case
library to repair the plan and validate the repaired plan again. If those attempts
are failed, another option is to call in human assistance as described below.

What if there is a Situation that the system does not know before? What if
there is no prior Situation that is similar enough (to pass a similarity threshold)
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Fig. 3. Situation handling life cycle process

to the new Situation? In this case, human intervention is inevitable. However,
what we want is that a new Situation class can be easily introduced, and a new
Remedy can be easily constructed. We also want that the new situation handling
case can be reused in the future. Figure 3 depicts this process. Figure 3 1© is when
the remote customer assistant center is informed. A customer assistant will be
able to quickly see the current status of the Situation (“what is the Situation?”,
“when did the Situation happen?”, “the contexts of the Situation?”, and “the
Specs of the Task?”). The customer assistant can directly talk to the customer
to find out additional context that helps him/her to resolve the Situation. The
customer assistant will do all these through a system called Situation Handling
UI (SHUI). SHUI is a comprehensive user interface representing what would be
required for trained customer support experts (support specialists) to craft new
Remedies in the integrated system.

Figure 4 is an example of the SHUI interface. The left panel (Fig. 4 3©) displays
the real-time Task execution that is identical to what is in VSA (Fig. 1 1©). The
lower-middle panel (Fig. 4 1©) displays the situation context. The support spe-
cialist can see exactly what is happening and what has happened at the vehicle
remotely. The right panels are pallets that the support specialist pick, drag and
drop “Tasks” and “remedy actions”. The upper-middle panel (Fig. 4 2©) shows
the revised Remedy and the “submit” button will send the revised Remedy
to VSA to repair the plan.
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Fig. 4. Situation Handling UI

5 Illustrative Examples

The following are two examples to illustrate how situation handling works.
Example 1: The story of “Window Leak”
[It starts raining. Passenger Annie saw water seep into the cabin. The window is not fully closed.]

annie: The water is getting in.
[The vehicle checks the window, one of them is open.
The vehicle sends a command to the control unit to close the window. However, the window is
not closed.
Vehicle realizes that the window is in a malfunction.

Vehicle recalls a case that the window that could not get closed because the window glass was

blocked by a twig.]
vehicle: Is there something that blocked the window glass?
annie: Yes, looks like it is jammed

[The vehicle rolls down the window halfway and the rider cleaned a foreign object that jammed

the window. The vehicle rolls up the window again and the window is closed this time. ]

Here is what to happen: Passenger Kelly gets in the car and the vehicle starts
the journey.

It starts to rain. However, water seeps through the window, and water drops
onto Kelly.

“It is raining and it is wet here”, Kelly claimed. A “wet-in-cabin” Situation
is generated. The Logics of the Situation is:

"logics": {
"window_broken": "vda.checking_window",
"weather": "weather.current_weather",
"wetness": "chat.wetness"

}



274 H. Yang et al.

“window-broken” - It calls the vehicle agent to check if any window is broken;
“weather” - from the weather agent, it returns current weather condition;
“wetness” - it initiates a dialog with the passenger to obtain the following

information: wherein the cabin is wet (seat? floor? on the person?).
The above information feeds into the Context of the Situation.
VSA finds a similar Situation from its Situation case library that has the

following remedy:

"add close-window task"
"add confirm-problem-solved task"

The “close-window” Task is sent to the vehicle, and the vehicle sends a
“close-window” command.

The “confirm-problem-solved” Task will trigger a dialog using the Dialog
agent. It returns the confirmation and related response in the form of context.

Unfortunately, assuming, the confirmation is negative. The water is still
pulling in. A new “window-fail-to-close” Situation is created with all the current
context information.

The Logics under this Situation is:

"logics": {
"close_window": "vda.close_wdw_status",
"window_malfunc": "vda.wdw_malfunc_detect",
"window_broken": "vda.broken_wdw_detect"

}

In the above Logics, the “close window” context is already filled from the
previous situation handling process. Therefore, the context is carried over.

Assume we have the following contexts (in addition to all other contexts we
have had) after applying the Logics:

"context": {
"close_window": true,
"window_malfunc": false,
"window_broken: false

}

A similar Situation was found that has Remedy:

"add confirm-passenger task: window-is-jammed"

The answer populates the Context. Assume that the Context is:
"window-is-jammed": true.

A new similar Situation “window-is-jammed” is found and the remedy is:

"add open-window task"
"add request passenger task: remove foreign obj"
"add close-window task"
"add confirm-problem-solved task"

Assuming the final confirmation is positive, and the Situation is resolved.
The newly logged Situation and the history will be saved to the Situation
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case library and Task case library. In case the final confirmation is negative,
and the agent could not find a relevant Situation. In that case, VSA may send
the Situation to SHUI, and human intervention will be called to resolve the
Situation.

Example 2: The story of “Pharmacy”
[Passenger Joe went on a business trip. He rides in a vehicle towards the hotel. He passed by a pharmacy

and realized that he can pick up a prescription there.]

joe: Could you stop by that pharmacy?
[The vehicle requests the Map Agent to find a pharmacy that is on the way to the hotel. The

vehicle shows the map location of a pharmacy on the screen in the vehicle. ]
vehicle: Do you want to go to this pharmacy?.
joe: No, I’d like to go to the one we just passed. [Joe only wants to go the pharmacy he

just saw.]
[The Map Agent presents more nearby pharmacies on the map on the screen.]

vehicle: How about these?
[Joe points to the one he wants to go on the touch screen.]

vehicle: Will you come back and continue your trip?
joe: Yes.
vehicle: How long should I wait?
joe: Maybe 10 to 15 minutes.
vehicle: I will wait for you at the front door of the store in 10 minutes.

[The vehicle turns around and drives to the pharmacy.
The vehicle offboards Joe at the pharmacy.

10 minutes later, the vehicle will be back to resume the trip to the hotel. ]

Here is how this Situation proceeds in VSA:
The Dialogue Agent posts a “POI dropoff” Situation (POI - point-of-interest)

on the Situation Queue.
When VSA receives the “POI dropoff” Situation on the Situation Queue, it

attempts to handle the Situation.
The Situation Header looks like this:

Situation Name: POI dropoff

Task: Drive task

Context: {
current location: location ...,
stop location: location ...,
stop type: "stop by",
wait time: 15

}

The situation handling finds a previous “POI dropoff” Situation in the case
library. The Context of the retrieved old Situation has “stop type” of “final
destination”, which means the passenger would choose the “stop-location” as
her final destination, she would not continue her original journey. The final
destination of the trip was changed to the “stop location” of the Situation,
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defined in the Context. The retrieved Situation has three remedy actions in the
Remedy:

[
{"operation": "abort at drive_task"...},
{"operation": "add after current_drive_task"...},
{"operation": "modify at next_offboard"...}

]

The Remedy is:

1. abort the current drive task;
2. add a drive task to drive to the stop-location;
3. modify the offboard task so that the offboard location is changed to

the stop-location.

The final destination of the trip was changed to the new “stop location”,
defined in the Context.

The new “POI dropoff” Situation, however, is different such that the passen-
ger will continue his journey to his original destination. This is defined in the
goal of the Situation.

When Remedy of the retrieved Situation was adapted to the new “POI
dropoff” Situation, it encounters an exception in the validation (Fig. 2 2©,
Fig. 3 4©), because the goals of the new Situation are different. One of the new
goals is that the final destination should be the same as the original destination,
instead of the “stop location”. This exception is captured and VSA will send
the Situation to SHUI. A new Remedy is created manually in SHUI and is sent
back (Fig. 4 2©) to VSA. The new Remedy has six remedy actions:

[
{"operation": "abort at drive_task"...},
{"operation": "add after current_drive_task"...},
{"operation": "add after stop_drive"...},
{"operation": "add after new_offboard_task"...},
{"operation": "add after wait_task"...},
{"operation": "add after onboard_task"...}

]

1. abort the current drive task;
2. add a drive task (stop drive) to drive to the “stop-location”;
3. add an offboard task at the “stop-location”;
4. add a wait task after the offboard task;
5. add an onboard task after the wait task;
6. add a drive task after the onboard task that drives to the final desti-

nation.

Applying this Remedy, the new plan passes validation (Fig. 5). The new
Situation with the revised Remedy is saved to the Situation case library so that
next time, similar Situation will be handled without human intervention.
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Fig. 5. The repaired plan

6 Conclusions

This paper focuses on solving planning problems for a service agent who faces
possibly unlimited Task and Situation types, with additional context variations,
in the real-world. Hard-coding domain-specific knowledge in such a system does
not scale. This paper introduces a comprehensive solution that illustrates the
possibility of adopting generic structures for tasks and situations, and completely
embedding problem-solving knowledge in executed cases, both for task planning
and situation handling. The cases can be reused to solve similar new problems.
It enables the system easily expandable by continually injecting new Task plan
cases and Situation handling cases.
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Abstract. Case-based Reasoning (CBR) solves a new problem by
retrieving a stored case for a similar problem and adapting its solu-
tion to fit. Acquiring the required case adaptation knowledge is a clas-
sic problem. A popular method for addressing it is the case difference
heuristic (CDH) approach, which learns adaptations from pairs of cases
based on their problem differences and solution differences. The CDH
approach was originally used to generate adaptation rules, but recent
CBR research on case-based regression has investigated replacing learn-
ing rules with learning CDH-based network models for adaptation. This
paper presents and evaluates a neural network-based CDH approach for
learning adaptation models for classification, C-NN-CDH. It examines
three variants, (1) training a single neural network on problem-solution
differences, (2) segmenting adaptation knowledge by the classes of source
cases, with a separate neural network to generate adaptations for each
class, and (3) adapting from an ensemble of source cases and taking the
majority vote. Experimental results demonstrate improved performance
compared to previous research on statistical methods for computing CDH
differences for classification. Additional results support that C-NN-CDH
achieves classification performance comparable to that of multiple classic
classification approaches.

Keywords: Case adaptation · Case difference heuristic ·
Classification · Ensemble learning · Neural network-based adaptation

1 Introduction

Case-based Reasoning (CBR) solves a new problem by retrieving a stored case
with a similar problem and adapting the solution to accommodate the new prob-
lem (e.g., [1,16,20,26]). Case-based reasoning is appealing for properties such as
enabling a natural knowledge capture process for cases in suitable domains (e.g.,
[21]), facilitating knowledge acquisition, and interpretability of cases to justify
solutions [6,16].

However, obtaining the adaptation knowledge needed to adapt prior solu-
tions is a classic challenge. In response, extensive research has explored the use
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of machine learning methods to acquire case adaptation knowledge for both
classification (e.g., [8,12]) and regression (e.g., [9,11,19,24,25]). An interesting
recent direction is the use of neural network methods for case difference heuris-
tic (CDH) learning of adaptations for case-based regression. This paper presents
and evaluates a neural network method for learning the adaptation knowledge
needed for case-based classification.

The case difference heuristic approach, first proposed by Hanney and Keane
[10], is one of the most-used methods to learn adaptation knowledge. It takes
pairs of cases from the case base and from each pair learns a rule to adapt one
case to another. As a simplified example, consider applying CBR to apartment
rental price prediction. Suppose two apartments A and B are very similar, except
that A has a carpeted floor while B has a wooden floor, and that the rent for B is
$200 more. By comparing apartments A and B, a CDH approach might learn the
rule that changing from carpet to wooden floor increases an apartment’s rent by
$200. An issue for CDH approaches is how to generalize the difference between
case pairs. For example, rather than learning an absolute price difference from
the two apartments, a CDH approach could learn the percent change or another
characterization of the observed difference.

Recent work by Liao, Liu, and Chao [19] learns adaptations for regression
tasks with a case difference heuristic approach using a neural network to learn
the difference characterization. Their approach trains a network to map problem
differences to differences in output values, avoiding the need to pre-define gen-
eralization strategies. Jalali, Leake, and Forouzandehmehr [12] apply the CDH
approach to classification, using a statistical method to generate case adaptation
rules for classification.

To our knowledge, this study presents the first neural network-based case
difference heuristic approach to classification. Our approach, which we refer to as
case-based Classification with Neural Network-based CDH (C-NN-CDH), uses
neural networks to learn adaptation knowledge from pairs of cases. Experimental
results on multiple data sets show that the C-NN-CDH approach outperforms the
statistical approach of [12], the previous state of the art for statistical adaptation
for classification.

This study investigates five variants of the C-NN-CDH approach. Some vari-
ants segment the pairs of cases based on their classes and train a separate model
per segment. The segmented variants offer faster training but slightly lower accu-
racy. We also tested variants using an ensemble of adaptations; these provide
roughly comparable performance to their non-ensemble counterparts. A variant
taking a majority vote of one adaptation from each class provides additional
accuracy for certain data sets. Comparisons with a sampling of standard classi-
fication approaches supports that the accuracy of the C-NN-CDH approaches is
competitive with those methods. In particular, this hybrid method provides accu-
racy comparable to that of a network-only method dedicated to the classification
task, while its use of CBR provides at least two benefits: inertia-free lazy learning
(enabling online learning and avoiding the need for costly retraining with new
data), and the ability to provide cases that can be considered when assessing



Learning Adaptations for Case-Based Classification 281

a classification. Similar cases can be useful for explanation [6], and less similar
cases—for example, whose classifications are changed by adaptation—may be
useful as nearest unlike neighbors [23] or counterfactual explanations [13].

2 Background

2.1 Learning Case Adaptation Knowledge

Adaptation is arguably the most difficult process in CBR. Much CBR research
has applied machine learning to acquire adaptation knowledge of different forms.
Some approaches apply case-based reasoning to adaptation. For example, Leake
et al. [17] present a method in which a case base of adaptation cases is pop-
ulated from past successful adaptations, and Craw et al. [5] present a method
to assemble pairs of stored cases, retrieve the pair most similar to the pair of a
retrieved case and the query, and adapt the retrieved case to the current query.

The case difference heuristic (CDH) approach [10] is a widely used knowledge-
light method for learning case adaptation rules from knowledge contained in the
case base. For each pair of cases, the CDH approach generates an adaptation
rule capturing the transformation needed to adapt the solution of one case into
the solution of the other. Specifically, it attributes the difference in the solution
descriptions of the cases to the difference in their problem descriptions. When
deciding applicability of the generated rules in the future, the rule is considered
to apply if the difference between the retrieved case’s problem and the new
problem is similar to the difference from which the rule is generated. Thus the
similarity to the original difference becomes the antecedent for the rule. When
triggered, the rule adapts the solution of the retrieved case according to the
previous solution difference.

Applying the CDH approach requires addressing several design questions.
One concerns how to calculate problem differences; another concerns how to
select the case pairs for training (e.g., from pairs of neighboring cases or from
random pairs); another concerns how to translate a raw solution difference into
the change to be effected by the rule, for example, as an additive, multiplicative
or other change. Such design questions lead to many variations of CDH-based
systems (e.g. [5,11,19,25]). This paper considers both standard pair selection
methods and a new training pair selection approach (based on class-to-class
classification, described in Sect. 2.2), and proposes a general approach for neural
network CDH-based classification.

Augmenting CDH with Network Methods. Adaptation rule generation
using the CDH approach is often shaped by pre-defined criteria for gener-
ating rules from differences. In contrast, machine learning-based approaches
[4,5,19,25,32] provide increased flexibility. Liao, Liu, and Chao [19], Policastro,
Carvalho, and Delbem [25], and Zhang et al. [32] propose a network approach
in which the network generates adaptations from a problem and retrieved solu-
tion passed to the network. Part of the appeal of network-based approaches is
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that network learning facilitates the generation of more complex transformation
functions. Outside of CBR but in similar spirit, Wetzel et al. [27] use a Siamese
network to predict target value differences given two data points, and predict a
target value using an ensemble of training data points. Leake, Ye, and Crandall
[18] follow the CDH approach of Craw, Wiratunga, and Rowe [5], by consider-
ing both problem difference and adaptation context, and follow Liao, Liu, and
Chao [19] in proposing a neural network-based case difference heuristic approach,
NN-CDH, as a general technique for regression tasks.

Applying the CDH Method to Classification. The traditional CDH app-
roach has been successfully applied in solving regression tasks. However, less
research has addressed classification tasks or dealing with nominal attributes in
generating adaptation rules. Early CDH approaches for classification or dealing
with nominal attributes relied on exact matching and binarization (e.g., [3,8])
which can only express the relationship between nominal values using one bit
of information (i.e. 0 and 1). More recently, CDH was enhanced with the Value
Difference Metric (VDM) and ensemble methods [12]. VDM is a probabilistic
method to measure similarity that enables comparing nominal values in a one
dimensional numeric space. That work used an ensemble of adaptations for clas-
sification (EAC), retrieving multiple source cases, generating needed adaptation
rules, adapting from all retrieved source cases, and producing a final solution by
the majority vote of all adapted solutions.

To illustrate the importance of expressive power in comparing nominal values,
consider a sample classification task in which the goal is to decide whether a
given fruit is an apple, based on its color. In this case, similarity based on exact
match of color results in identical treatment of the difference between the colors
red and yellow and the colors red and blue. However, using a more expressive
method such as VDM enables recognizing the relative proximity of red and yellow
compared to that of red and blue. Recent advances in deep neural networks have
made it possible to take the expressive power in comparing nominal values a step
further by expressing them in multi-dimensional space as embedding vectors.
To the best of our knowledge this has not been exploited previously for CDH
learning.

2.2 Class-to-Class Classification

The Class-to-class (C2C) approach to classification is a difference-based method
that classifies a query based on instances from multiple classes [28–30]. A C2C
model first learns the similarity and difference patterns between pairs of classes.
Given two cases, the trained C2C model can determine whether their similar-
ity and difference conform to learned patterns. If they do, the C2C model can
provide evidence for their belonging to the corresponding classes. The C2C app-
roach inspires a method for choosing CDH training pairs bridging each pair of
classes, as described in Sect. 3.
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Fig. 1. Workflows of NN-CDH (left) and the C-NN-CDHs (right). Variants (1–5) of C-
NN-CDHs involve different procedures and arrows are marked with the corresponding
numbers to reflect that.

Traditional case-based classification methods explain their conclusion by the
most similar case retrieved and its adaptation, while C2C methods have the ben-
efit of explaining with both supportive and contrastive evidence. The contrastive
evidence from the C2C approach is one type of counterfactual explanation (cf.
Keane and Smyth [13] and Kenny and Keane [14]). For example, for an appli-
cant rejected for a loan, the supportive explanation is that another applicant
with similar attributes is also rejected, and the contrastive explanation is that
this applicant shares many attributes of an accepted applicant but has a worse
credit history. The C2C-inspired adaptation variant presented in this paper cap-
tures the information needed for contrastive explanation of classifications.

3 An NN-CDH Approach for Classification

NN-CDH and other CDH methods learn from pairs of cases. One of the pairs is
treated as the source case (with its source problem and solution) and the other
as the target (with its target problem and solution), where the source is to be
adapted toward the target. For simplicity, we will refer to these as a case pair. A
CDH method learns an adaptation rule to adapt the solution of the source case to
provide a solution for the target case. For an NN-CDH approach, the CBR system
first retrieves a source case similar to the query (target case), and calculates
the problem difference between the source problem and the target problem.
The problem difference is then passed to a neural network, which is previously
trained on problem and solution differences of training case pairs. The neural
network predicts the solution difference between the source solution and the
target solution. Finally, the CBR system applies the predicted solution difference
to the source solution, and uses the adapted result as the final prediction. This
process is shown in Fig. 1.
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Algorithm 1. C-CDH, variant (0)
1: for each i in all classes do
2: case pairs[i] ← {}
3: for each source and target in pairs do
4: case pairs[sol(source)].append([prob(source), prob(target):sol(target)])

5: procedure Testing(query)
6: retrieved ← 1-nn(CB, query)
7: r ←1-nn(case pairs[sol(retrieved)], [prob(retrieved), prob(query)])
8: return r

Algorithm 2. C-NN-CDH, variant (1-2)
1: adapt NN ← new classification neural network
2: case pairs ← {}
3: for each source and target in pairs do
4: if using variant (1) then
5: case pairs.append([prob(source), prob(target):sol(target)])
6: else if using variant (2) then
7: case pairs.append([prob(source), prob(target), sol(source):sol(target)])

8: adapt NN .fit(case pairs)
9: procedure Testing(query)

10: retrieved ← 1-nn(CB, query)
11: r ← adapt NN .predict(prob(retrieved), prob(query), sol(retrieved))
12: return r

Calculating the difference between problem or solution values requires a dif-
ference function, which is especially difficult to define for nominal values. Our
method replaces the traditional CDH difference calculation by the implicit calcu-
lation of a machine learning technique (e.g. neural network), potentially taking
into account not only the difference, but the context of the source case itself.
We name this general approach of handling pairs of cases as the case difference
heuristic approach for classification (“C-CDH”).

As a baseline testbed system, we implemented a C-CDH system that stores
case pairs treated as adaptation rules. The case pairs are grouped based on
source solution. We refer to this as variant (0) and describe it in Algorithm1.
The system performs classification by retrieving the most similar source case,
and retrieving the case pair, which is selected to share the same source solution
and has the most similar source problem and target problem (cf. [22]). The target
solution of the retrieved case pair is used as the final classification.

Our implementation of C-CDH uses a classification neural network to learn
and predict the target solution based on information from the source problem
and the target problem. This is the basic version of classification with a neu-
ral network-based case difference heuristic (C-NN-CDH) approach and will be
referred to as variant (1). As a direct extension, we built variant (2) in which the
adaptation neural network also takes in the source solution as input. Variants
(1) and (2) are described in Algorithm2.
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Variants (3–5) add grouping of case pairs based on their source solutions.
The target solutions in a group are not restricted. With grouping, an adapta-
tion neural network can be trained on a specific group of case pairs to learn the
adaptation knowledge where the source solution is determined. In other words,
each specialized adaptation neural network learns how to adapt cases of
a specific solution toward all solutions (including the source solution). By seg-
menting the pairs of cases based on source solutions, we naturally incorporate the
source solution as an important input, as it determines which specialized adap-
tation neural network to use. The training is also easier as one group of case
pairs is more homogeneous and the knowledge to learn is more specific. Variants
(3–5) share the same training procedure for their specialized adaptation neural
networks but differ in their testing procedures.

Variant (3) predicts the target solution by retrieving the most similar source
case and using one specialized adaptation neural network. Inspired by the ensem-
ble of adaptations for classification approach (EAC) [12], variant (4)—named
EAC-NN-CDH—retrieves k multiple similar source cases (we used k = 3), adapts
all source cases using corresponding specialized adaptation neural networks, and
selects a classification by majority vote. Ties are broken arbitrarily.

Variant (5) is inspired by the class-to-class (C2C) approach and is named
C2C-NN-CDH. C2C-NN-CDH retrieves one most similar source case from each
class, adapts all source cases using their corresponding networks, and uses the
majority vote to decide the final classification. The voting process is similar
to the all-versus-all approach in multiclass classification [2]. In principle, the
classification from this approach could be explained contrastively by reference
to cases for other classes that support the majority vote. Variants (3–5) are
described in Algorithm 3.

Variants (1–5) are illustrated in Fig. 1. All variants are summarized below:

(0) Non-network C-CDH.
(1) C-NN-CDH with one adaptation neural network that considers source prob-

lem and target problem.
(2) Based on (1), but also considers source solution.
(3) Uses multiple specialized adaptation neural networks.
(4) Based on (3), but uses an ensemble of adapted solutions from multiple cases.
(5) Based on (4), but uses an ensemble of adapted solutions from multiple cases

of all classes.

4 Evaluation

We evaluated all variants (0–5) on two groups of data sets. The first group of
data sets follows those used in Jalali, Leake, and Forouzandehmehr [12], to enable
comparison with the previous state-of-the-art on statistical CDH classification.
Experiments on this group allow comparison with the ensemble approach EAC
and EAC-retrieval, an ablated EAC removing the adaptation component. The
second group is a subset of data sets in the comparative evaluation of classifica-
tion algorithms by Zhang et al. [31]. Experiments on this group allow comparison
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Algorithm 3. C-NN-CDH, variant (3-5)
1: for each case in CB do

2: CB by class[sol(case)].append(case)

3: for each i in all classes do
4: case pairs[i] ← {}
5: for each source and target in pairs do
6: case pairs[sol(source)].append([prob(source), prob(target):sol(target)])

7: for each i in all classes do

8: adapt NN [i] ← new classification neural network
9: adapt NN [i].fit(case pairs[i])

10: procedure Testing(query)
11: if using variant (3) then

12: retrieved ← 1-nn(CB, query)
13: r ← adapt NN [sol(retrieved)].predict(prob(retrieved), prob(query))

14: else if using variant (4) then

15: for each retrieved in k-nn(CB, query) do

16: rs.append( adapt NN [sol(retrieved)].predict(prob(retrieved), prob(query)))

17: r ← majority vote(rs)

18: else if using variant (5) then

19: for each i in all classes do

20: retrieved ← 1-nn(CB by class[i], query)
21: rs.append( adapt NN [i].predict(prob(retrieved), prob(query)))

22: r ← majority vote(rs)

23: return r

with algorithms evaluated in that paper, including: Extreme Learning Machine
(ELM), Sparse Representation-based Classification (SRC), Deep Learning (DL),
Support Vector Machine (SVM), Random Forests (RF), AdaBoost (AB), C4.5,
Naive Bayes classifier (NB), K Nearest Neighbours classifier (KNN), and Logis-
tic Regression (LR). We compare the results of runs of our systems with the
reported results from Jalali, Leake, and Forouzandehmehr [12] and Zhang et al.
[31]. We note that the data preprocessing steps are not described in detail in the
two papers. This may result in minor variations.

All data sets are for classification tasks, taken from the UCI repository [7].
All nominal values are converted to one-hot encoding and all numeric values
are standardized by removing the mean and scaling to unit variance. For most
data sets, five 10-fold cross validations are carried out, where 10% of the total
cases are used for testing and 90% are used for training (only two 10-fold cross
validations are run for two larger data sets with excessive training time). The
average accuracies and balanced accuracies (with their standard deviations) of
all runs for each data set are recorded. Standard deviations are omitted in reports
below as almost all are less than 0.05. Balanced accuracy in general is comparable
to accuracy but not shown due to space limitations.
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4.1 Assembling Case Pairs

As discussed in Sect. 2.1, the collection of case pairs is a design problem for CDH.
Given a training data set of n cases and m classes, our test implementations learn
adaptation knowledge from three kinds of pairs from the case base:

– Neighboring pairs: Each case is paired with its nearest neighbor using 1-NN
(k-nearest neighbor with k = 1). There are n neighboring pairs.

– Random Pairs: Each case is paired with 10 random cases. There are 10n
random pairs.

– Class-to-class Pairs (C2C Pairs): Each case is paired with its nearest neighbor
in every other class. There are n(m− 1) pairs.

Each type of pair provides one specialized form of adaptation knowledge
to the adaptation model: neighboring pairs provide minor adaptations to cover
small problem differences, random pairs provide random and bigger adaptations,
and C2C pairs provide adaptations needed to change one case into other classes.
The number of each kind of pair is a design parameter that could be fine-tuned.
Pairs might also be selected according to other criteria such as generality or
applicability, but this is beyond the scope of this study.

4.2 Implementation Details

For the C-CDHs, the retrieval component retrieves a single case. As baselines
for performance without adaptation, we also implemented nearest neighbor algo-
rithms 1-NN and 3-NN, with 3-NN averaging the classifications of the three most
similar cases.

The adaptation neural network is a feedforward network with 2 hidden layers
(128 and 64 nodes with ReLU activation functions) and an output layer with
softmax activation function. The loss function is categorical cross entropy and the
model is optimized using Adam [15]. For comparison, a neural network classifier
is implemented with the same configuration. Note that the adaptation neural
network is a component in the CBR system (C-NN-CDH) and produces the
final classification based on a retrieved case and the query, while the neural
network classifier directly produces the final classification based solely on the
query. All networks are trained until their parameters converge.

For 3-NN and 1-NN, all training cases are used as the case base. For the
neural network classifier, 10% of the training cases are separated out for training
validation. For all the C-CDHs, pairs are assembled using methods described in
Sect. 4.1. For non-network variant (0), all case pairs are stored for future search.
For the adaptation neural networks in variants (1–5), 95% of the case pairs are
used for training and 5% for validation.

4.3 C-NN-CDH vs. EAC

Table 1 compares the accuracy of C-NN-CDH with EAC. The accuracy of the
best performing system and the best performing C-CDH for every data set is
highlighted. We observe:
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Table 1. Accuracies of systems compared with EAC [12]

EAC Baseline Systems C-CDHs

EAC-retrieval EAC NNet 3-NN 1-NN (0) (1) (2) (3) (4) (5)

Credit 81.89 84.36 86.33 83.33 79.78 70.04 82.05 81.53 82.29 82.53 84.53

Balance 74.74 84.02 97.37 79.64 77.69 65.61 97.92 97.85 97.63 97.37 97.60

Car 93.50 96.05 99.74 83.13 78.10 68.22 99.93 99.91 98.9 99.36 99.46

– The non-network C-CDH often makes the retrieval result of 1-NN worse.
Because all variants use the same retrieval, this can be ascribed to variant
(0) actually impairing performance. We hypothesize that this is due to using
untuned retrieval for case pairs.

– The C-NN-CDHs have slightly different performance, the best of which is on
par with that of the neural network classifier.

– The C-NN-CDHs consistently improve the retrieval result of 1-NN. The C-
NN-CDHs also outperform EAC in many experiments. Note that the EAC-
retrieval, by using a probability-guided metric, is often better than 1-NN.
This means that C-NN-CDHs build on worse retrieval than EAC but end with
better results, demonstrating the value of their learned adaptation capability.

4.4 C-NN-CDH vs. Other Classification Algorithms

We compare variants of C-CDH with 11 state-of-the-art classification algorithms
(referred to as “other algorithms” in the next paragraph) that are not necessarily
related to CBR [31]. Data sets are chosen to be compatible with the our baseline
and proposed systems. In other words, they require no additional preprocessing
and are not complicated data such as images or structured sequences.

In Table 2, for each data set, the accuracies of the baseline systems and C-
CDHs are listed. In Table 3, the best and the worst of other algorithms and their
corresponding accuracies are listed for comparison. Last, the best performing
C-NN-CDH is chosen and its projected rank is shown in Table 3—i.e., the rank
if it were ranked among other algorithms. We observe:

– The average rank of our best C-NN-CDHs is 3.4. In Zhang et al. [31], SVM
has an average rank of 3.5 and is the third best among the 11 classifiers in
terms of average rank (however we do not test C-NN-CDHs on all the data
sets as in Zhang et al. [31]).

– C-NN-CDHs do not always improve the final result compared to the simple
retrieval of 1-NN. For example, when testing on white wine quality, all C-
NN-CDHs perform worse than 1-NN. We hypothesize that this is due to the
high number of classes in this data set and the subjective nature of wine
quality. When the relation between problem and solution is highly volatile,
nearest neighbor is already a good guess while any adaptation might alter
the prediction for worse.
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Table 2. Variant characteristics and variant accuracies compared with classifiers
in [31]

Baseline systems C-CDHs

NNet 3-NN 1-NN (0) (1) (2) (3) (4) (5)

Neural Network Yes Yes Yes Yes Yes Yes

Segmented Training Yes Yes Yes

Ensemble Yes Yes Yes

Class-to-class Yes

Yeast 59.83 50.10 53.17 42.30 52.18 51.76 46.48 49.23 58.33

Seeds 94.0 91.52 92.85 85.23 95.33 95.33 93.61 95.14 94.85

Pima 75.36 73.20 70.57 64.08 69.40 69.55 68.02 69.08 72.16

Page-blocks 96.85 96.65 96.46 94.73 95.95 95.66 94.89 95.15 96.75

Contraceptive 54.39 41.03 43.46 38.91 47.44 47.78 48.70 48.59 51.39

White Wine 57.63 54.25 65.69 46.93 63.53 63.44 55.04 60.35 63.54

Balance 97.37 79.64 77.69 65.61 97.92 97.85 97.63 97.37 97.60

Car 99.74 83.13 78.10 68.22 99.93 99.91 98.90 99.36 99.46

Table 3. Rank of best C-CDHs among classifiers in Zhang et al. [31]

Best Best C-CDH Worst

Name Accuracy Name Accuracy Rank Name Accuracy

Yeast ELM 64.87 (5) 58.33 7 DL 33.11

Seeds KNN 95.24 (1,2) 95.33 1 DL 23.81

Pima AB 83.12 (5) 72.16 6 DL/SRC 59.74

Page-blocks SVM 94.44 (5) 96.75 1 ELM/DL 87.04

Contraceptive GBDT 55.41 (5) 51.39 7 AB/DL 41.22

White Wine AB/DL 56.94 (5) 63.54 1 NB 39.59

Balance SRC 1.0 (1) 97.92 2 DL 46.03

Car GBDT 1.0 (1) 99.93 2 AB/DL 67.05

4.5 C-NN-CDH vs. Baseline Neural Network

Because standard deviation is not reported in the work being compared to C-
NN-CDH [12,31], we are not able to calculate a P-value stating the significance
of the difference between C-NN-CDHs and their methods. However, we are able
to do so for the difference between the best performing C-NN-CDH and the
baseline neural network in Table 4. The P-value is the probability of obtaining
the observed difference between the samples if the null hypothesis were true.
The null hypothesis states that the two distributions of results are the same.
The calculation is based on the assumption that the distributions are normal.
As Table 4 shows, the neural network wins in three data sets, C-NN-CDH wins
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Table 4. The significance of the difference between best performing C-NN-CDH and
baseline neural network

NNet Better <—————> C-NN-CDH Better

Contra. Pima Credit Yeast Page-b. Seeds Balance Car White W.

NNet .5439 .7536 .8633 .5983 .9685 .9400 .9737 .9974 .5763

C-NN-CDH .5139 .7216 .8453 .5833 .9675 .9533 .9792 .9993 .6354

P-value .0004 .0006 .0525 .0687 .6761 .1407 .1373 .0174 <.0001

in two, and there are no significant differences between the two in the remaining
half of the data sets.

It is expected that Table 4 does not show a clear advantage of C-NN-CDH
over neural network in terms of accuracy, because the two use the same archi-
tecture and are naturally of similar power. However, C-NN-CDH is a component
generally applicable to CBR classification systems, which can offer benefits such
as lazy learning and explainability, in contrast to a neural network.

4.6 Evaluation Summary

From experiments on both groups of data sets, we answer the following questions:

– Can the neural network effectively learn adaptation knowledge? Yes.
One or more C-NN-CDHs can always provide performance comparable to or
even better than that of the neural network classifier. In principle the adap-
tation neural networks might learn to discard the source problem and solely
use the target problem to predict the target solution, effectively performing
as a neural network classifier. However, our experiments reveal that this is
not the case, because (1) the weights associated with the source problem are
non-zero, and (2) as shown in Table 4, C-NN-CDHs perform significantly dif-
ferently from the neural network in multiple experiments. C-NN-CDHs are
indeed learning adaptation knowledge. This demonstrates that if a neural
network is powerful enough to tackle the classification task directly, it may
also be powerful enough to learn the adaptation knowledge or the relation
between pairs of cases in the task domain.

– Is the source solution an important attribute to consider in adapta-
tion? Not necessarily. A surprising result is that variant (1) actually performs
almost identically to variant (2), which also considers the source solution in
adaptation. We speculate that this is because the source solution is heavily
coupled with the source problem, and therefore does not provide additional
information useful in adaptation.

– Does segmenting pairs of cases by source case solution lead to better
performance? This depends. In terms of accuracy, variants (1,2) actually
perform better than variants (3,4) on most data sets. We speculate that this
is because a single adaptation neural network in (1,2) is well trained with all
pairs of cases, while a specialized adaptation neural network in (3,4) is trained
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with a segmented group of examples. In terms of efficiency, the training time
needed for variants (1,2) is several times higher than for variants (3,4). This is
expected as variants (3,4) train on segmented training examples, and therefore
converge faster.

– Does an ensemble of adaptations improve accuracy? Not really, for
these data sets. EAC-NN-CDH (variant (4)) performs about the same as
its counterpart variant (3) without ensemble. Jalali et al. [12] showed that
EAC is a better adaptation method than applying a single adaptation, while
we do not observe a significant benefit of EAC-NN-CDH over C-NN-CDH.
We attribute this to the generalization power of C-NN-CDH, which produces
predictions stable enough that an ensemble version does not appreciably alter
its prediction.

– Is a class-to-class approach useful for adaptation? Yes. C2C-NN-CDH
(variant (5)) performs differently from and, in many scenarios, better than
the other C-NN-CDHs. C2C-NN-CDH reaches its prediction by collecting
evidence from diverse source cases from all classes, which can provide more
global support, especially when there are multiple classes. Moreover, the C2C
approach offers the possibility of explanation with contrastive evidence.

5 Conclusion

The flexibility of a case-based reasoning system to solve novel problems depends
on its ability to adapt prior solutions to new circumstances. The generation
of knowledge for adapting cases is a classic challenge for case-based reasoning.
The case difference heuristic approach is a knowledge-light method for learning
adaptation knowledge. Neural network-based CDH has been successfully applied
to case-based regression but not previously to classification.

This paper presents a method with multiple variants for extending network
CDH for classification tasks with three contributions beyond the prior methods.
First, variants (3–5) group the pairs of cases used for learning by the solutions of
the source problems they adapt, generating per-category adaptation knowledge.
Second, they apply one or multiple neural networks to learn the adaptation
knowledge for classification. Third, variant (5) utilizes cross-class adaptation to
reach a conclusion from cases of diverse classes.

In our experiments, the C-NN-CDH approach achieves better performance
than EAC, the state-of-the-art statistical CDH adaptation method, and is on
par with standard classification methods from outside of case-based reasoning.
As a form of CBR, case-based classification using C-NN-CDH also preserves
other benefits of CBR including lazy learning, suitability for online learning,
and explainability.
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Abstract. Based on the natural truth that similar questions correspond
to similar SQL queries, a CBR-based approach is proposed to deal with
the Text-to-SQL task in this paper. We follow the traditional CBR
processes: similarity assessment, case retrieval, and case reuse. First,
we introduce a neural classifier in the similarity assessment stage and
comprehensively uses classification probability and literal cosine similar-
ity to measure similarity. Then, based on the results of the similarity
assessment, our model retrieves a case template. Finally, our model fills
the columns and values generated by the Ranker module and Question
Answering (QA) module into the solution template. At this point, a SQL
query suitable for the new case is generated. We evaluate our models on a
large-scale Text-to-SQL dataset—WikiSQL. Experimentally, our model
has a competitive performance compared with the baseline and signifi-
cantly improves the accuracy of the aggregation function prediction.

Keywords: Case-based reasoning · Text-to-SQL · Semantic parsing

1 Introduction

As a significant branch of Artificial Intelligence (AI), Case-Based Reasoning
(CBR) has received more and more research attention. It is a kind of analogical
reasoning that focuses on reasoning based on previous experience. The essence
of CBR can be summarized as two principles: the real-world regularities and
the tendency to encounter similar problem [1]. Over the years, research on CBR
has led to a large number of applications in various fields from recommendation
systems [4,5] to design [10,13], education [11] and health [3,12]. In this paper,
CBR is applied to a novel scenario known as Text-to-SQL translation.

As we all know, humans use speech and text to communicate, but machines
take logical expressions or structured data to process information. Hence, there
is a huge gap between natural language and forms that machines can under-
stand. In this case, the task of semantic parsing is proposed. The semantic parser
c© Springer Nature Switzerland AG 2021
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Fig. 1. A sample of Text-to-SQL translation in WikiSQL. Question is the natural lan-
guage description of the query about Table, and SQL is the structured query language
corresponding to Question.

can associate the non-uniform and non-standard human natural language with
abstract and rigorous logical expressions. Text-to-SQL is an important applica-
tion of semantic parsing. As shown in Fig. 1, it is a sample of Text-to-SQL task
in WikiSQL [27]. The task aims to translate the given natural language into
an executable SQL query statement according to the table schema. It tries to
build a bridge between unstructured natural language and structured SQL. In
this way, users can manipulate the database using natural language without a
professional background. Due to the high practicability of this task, it has a large
number of application scenarios and the related research has been extremely hot
in recent years.

In previous works, the mainstream approach is to treat SQL query like the
following structure: SELECT AGG(C) FROM T WHERE [ C OP V ]* .1 By this
means, the task is transformed into a slot filling problem and many sophisticated
neural network structures are used to predict the slots (blue tokens). Despite the
extensive works [8,14,16,19,23] that have been conducted, the AGG prediction
is still a bottleneck for the Text-to-SQL model in WikiSQL [27] and the error of
the current best model is as high as 10%.

Inspired by CBR technology, we firmly believe that similar questions should
correspond to similar SQL queries. Hence, we reorganize the task from the per-
spective of CBR and follow the basic process of traditional CBR to deal with
Text-to-SQL task. As shown in Fig. 2, our model first retrieves the solution tem-
plate based on the similarity assessment, then generates the slot value required
by the solution template, and finally fills the slot value into the solution template
to synthesize a new solution (SQL).

As with other CBR-based tasks, our approach also has to deal with four
main challenges: case representation, similarity assessment, case retrieval, and
case reuse. For the case representation, the pair of question and corresponding
SQL is a natural representation of the case. On this basis, our approach further
divides SQL into 30 categories according to the aggregation function of the SQL
1 AGG is an aggregator (NULL, SUM, COUNT, AVG, MIN and MAX), T is table

name, C is column name, OP is an operation (>, <, =), V is value and []* represents
one or more conditions.
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Fig. 2. Illustration of the proposed model architecture. Part A, the model retrieves
the case template based on the similarity assessment results. The value of the slot is
generated through the Ranker module and the QA module in part B. The new solution
is assembled in part C.

statement and the number of Where clause conditions, see Sect. 3.1 for details.
For the similarity assessment, it is difficult to measure the similarity between
the two questions. The existing textual similarity assessment methods only pay
attention to the literal similarity and ignore the similarity of the query intent.
The retrieved cases can easily have a high degree of literal similarity, but the
corresponding SQL is completely different. To this end, we introduce a neural
classifier in the similarity assessment stage and comprehensively use classification
probability and traditional text cosine similarity to measure similarity. In case
retrieval, our model adopts the solution template corresponding to the higher
classification probability or text cosine similarity. According to the retrieved
template, our approach introduces a Ranker and QA module to generate and fill
the value of slot.

The main contributions of the work are as follows:

i. we design a novel CBR-based translator for Text-to-SQL task. To our best
knowledge, this is the first time the CBR-based method has been used for
Text-to-SQL task;

ii. a composite similarity assessment method is proposed to comprehensively
measure the literal cosine similarity and the classification probability of ques-
tions;

iii. we demonstrate the effectiveness of the approach with experiments on Wik-
iSQL dataset and significant improvement of aggregation function prediction
has been achieved.

The rest of the paper is organized as follows. The related works are discussed in
the Sect. 2. The proposed case-based methodology for Text-to-SQL is highlighted
in Sect. 3. The experimental design and results are discussed in Sect. 4, before
concluding the paper and looking at future works in Sect. 5.
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2 Related Work

2.1 Text-to-SQL

Text-to-SQL is a sub-area of semantic parsing that has received an intensive
study recently. Depending on the constrained setting of the task, it can be clas-
sified into three categories: single-table, cross-domain, and context-dependent.
Single-table Text-to-SQL constrained the problem by two factors: each question
is only addressed by a single table, and the table is known [27]. Cross-domain
means that every query is conditioned on a multi-table database schema, and the
databases do not overlap between the train and test sets [25]. Context-dependent
setting requires the model not only to focus on the precise generation of SQL
queries, but also to consider the comprehensive utilization of contextual infor-
mation [26].

Although some complex Text-to-SQL settings have been proposed, generat-
ing SQL for individual queries in the single table setup (WikiSQL [27]) is the
most fundamental. The existing single-table Text-to-SQL models can be divided
into two categories: sequence-to-sequence or sequence-to-set. They mainly share
a similar encoder-decoder architecture, and the difference lies in the decoder
part. The sequence-to-sequence methods [7,27] decode SQL sequentially, mainly
using the attention and copying mechanism. Such models suffer from the order-
matters, since they do not sufficiently enforce SQL syntax. The sequence-to-set
models decompose SQL generation procedure into sub-modules, e.g., SELECT
column, AGG function, WHERE value, etc. In this way, they can avoid the
order-matters and achieve better performances on WikiSQL. Firstly, SQLNet
[23] performs classification on those sub-modules. Based on that, TypeSQL [24]
introduces the type information to better understand rare entities in the input.
A progressive decoding is performed on Coarse-to-Fine model [8]. Further more,
SQLova [16], X-SQL [14] and Hybrid [19] utilize pre-trained models in encoder
and significantly improve the performance.

Compared to them, our method belongs to the sequence-to-set type, and the
pre-training model is also used to empower our model. Differently, our model
uses CBR technology to translate text into the corresponding SQL, and compre-
hensively uses classification probability and vector similarity to improve model
performance.

2.2 Textual Case-Based Reasoning

Textual case-based reasoning provides a method in which text from previously
solved examples with similar inputs is reused as a template solution to generate
text for the current problem. In the work [2], the authors propose a CBR system
that uses examples with similar weather states in previous cases to generate
weather forecast text. In [9], a Reviewer’s Assistant is designed to help people to
write reviews on sites. In [22], they propose a case-based method for reusing text
to automatically generate obituaries from a set of input attribute-value pairs.
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Fig. 3. Illustration of categorizing the solution template.

Although these works are applied in various fields, the research mainly focuses
on the difficulty of mapping unstructured text from previous experience to struc-
tured representation and measuring semantic similarity to retrieve and reuse pre-
vious cases. Similarly, our work is also doing similar things in the Text-to-SQL
scenario. The difference is that problems and solutions are all unstructured text
in the above-mentioned related work, while the solution in our work is structured
SQL.

3 Case-Based Methodology

The core of developing a CBR system is the availability of experienced knowl-
edge that can provide successful examples of previous solutions for reusing to
solve new problems. The first task is the case representation which is used to
capture case knowledge as associated problem and solution components. Then,
the similarity assessment is developed to measure the similarity of the prob-
lem representation to support retrieval. Finally, fine-tuning the retrieved case
template according to the current problem, that is, case reuse. Following this
process, the rest of this section is organized as:

Case Representation → Similarity Assessment → Case Retrieval → Case
Reuse.

3.1 Case Representation

Cases are generally represented in two parts: problem and solution. For Text-to-
SQL task, the problem is a given natural language question Q = {q1, q2, · · · , qn}
about the table T = {c1, c2, · · · , cm}, where qi represents the i-th token
in the question Q, cl represents the l-th column in the table T , and n,m
is the total number of tokens and columns. The solution is the SQL query
S = {s1, s2, · · · , sk} corresponding to the question Q, where sj represents the
j-th token in the solution S.
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Generally, the CBR system retrieves the solution template based on the simi-
larity between the new case and the cases in the case base. However, the problem
Q is one of 64,776 questions about 26,521 tables in the WikiSQL. It is difficult
to calculate the similarity between the two questions. For this reason, we divide
highly similar solutions (SQL) into 30 categories to facilitate better calculation
of similarity. In this way, the solution can be retrieved as long as the text of the
question meets the characteristics of a certain type of problem, and it does not
necessarily have to be highly literally similar. Hence, the classification probabil-
ity of the problem can be used as a measurement of similarity. Figure 3 is an
illustration of categorizing the solution template, it is categorized based on the
aggregation functions and the number of conditions. For all SQL queries in the
WikiSQL dataset, there are six types of aggregation functions and five types of
conditions in the where clause. Let Temp = {temp1, temp2, · · · , temp30} denote
30 solution templates.

For the neural networks in our approach, we follow the work [19] to build a
column-wise model via an explicit head on Roberta [18]. The inputs are organized
as:

[CLS], x1, x2, · · · , xm, [SEP ], q1, q2, · · · , qn, [EOS],

where x1, x2, · · · , xm is the token sequence of column c, and q1, q2, · · · , qn is the
token sequence of question Q. CLS, SEP , and EOS are special tokens used to
organize text, which are the abbreviation of classification, separation and end of
sentences respectively. Those token sequences are encoded by Roberta to form
the final inputs of our neural networks (Classifier, Ranker, and QA module). The
final inputs contains two hidden states: sequence output –h and pool output –
hCLS . h is the hidden states of each token and hCLS is the hidden states of the
whole sequence.

3.2 Similarity Assessment

Cosine Similarity. When it comes to text similarity, the cosine similarity of
text vectors is usually preferred. Let Vq = {vq1, vq2, · · · , vqn} denote the vector
of the current question, Vbasek = {vbase1 , vbase2 , · · · , vbasen} denote the vector of
k-th question in the case base. The cosine similarity(CS) of two text vectors is
calculated as follows:

CS =
Vq · Vbasek

||Vq|| × ||Vbasek ||

=
∑n

i=1 (vqi × vbasei)√∑n
i=1 (vqi)

2 ×
√∑n

i=1 (vbasei)
2

(1)

However, cosine similarity does not work well in the Text-to-SQL task. There
are two reasons: (1) the word vector is sparse, as shown in Fig. 4.a. (2) the word
vector pays more attention to the similarity of the token level. It easily leads to
a high degree of literal similarity, but the corresponding SQL is not.
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Fig. 4. Two-dimensional presentation of the text vector after dimensionality reduction
by t-SNE [20]. Part a is the original text data and part b is the data with normalized
column names and values.

Cosine Similarity Without Specific Values. To address the above issue, we
propose an improved similarity assessment without specific values. Specifically,
we replace the words in the question that implicate the table columns and values
with fixed tokens. In this way, the interference related to the table content is
reduced. As shown in Fig. 4.b, this change makes the vector of problem text
more aggregated.

Classification Probability as Similarity. The above similarity assessment
calculates the cosine similarity between the new problem and the other problem
in the case base. Although this one-to-one model is straightforward and concise,
finding the most similar problem is error-prone.

For a more comprehensive measure of similarity, a neural classifier is intro-
duced. According to the categorization in Sect. 3.1, the classifier determines what
type of problem the new problem belongs to. In this way, the classification prob-
ability P (Temps|Q) of the neural classifier can be used as a valid similarity
assessment. It is a one-to-group mode, which is a measure of similarity from the
distribution level. The classification probabilities are calculated as follows:

P (Temps|Q) =
∑

ci

P (Temps|ci, Q)P (ci|Q) (2)

P (ci|Q) is the similarity between column ci and question Q and can be computed:

P (ci|Q) = sigmoid(w · h[CLS]), (3)

where w is weight matrix.

3.3 Case Retrieval

In each retrieval, we calculate the classification probability (CP ) and cosine
similarity (CS) separately, and take the case template of the larger corresponding
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to. It should be noted that the value range of cosine similarity and classification
probability is different, i.e., CS ∈ [−1, 1] and CP ∈ [0, 1]. To unify the range,
the cosine similarity is normalized.

Temp = arg max(CPTemps
, CSTemps

)

CPTemps
= max

Temps

P (Temps | Q) = max
Temps

∑

ci

P (Temps | ci, Q)P (ci | Q)

CSTemps
= max

m∈case base
(
1 − CS(Q,Qm)

2
)

(4)

3.4 Case Reuse

For the retrieved case template, the aggregation function AGG and the num-
ber of conditions WHERENUM have been fixed. It only needs to fill in the
Sel Column, Column, OP , and V alue according to the current question Qc.
To address this issue, a Ranker is introduced to rank and choose the candidate
columns and a QA module is introduced to predict objects associated with the
specific column. For the current question Qc, we denote SQc

to be the set of
columns that are in select clause, and WQc

as the set of columns that are in the
Where clause.

i. For Sel Column, let P (ci ∈ SQc
|Qc) = sigmoid(wsc · h[CLS]). The top can-

didate column is chosen to form select clause.
ii. For Column, let P (ci ∈ WQc

|Qc) = sigmoid(wwc · h[CLS]). The top
WHERENUM columns are chosen to form where clause.

iii. For a condition operator oi, let P (oi|ci, Qc) = softmax(wop[i, :] · h[CLS]).
iv. For V alue start and end indices, let P (qi = start|ci, Qc) = softmax(wstart ·

hQc

i ) and P (qi = end|ci, Qc) = softmax(wend · hQc

i ).

where wsc, wwc, wop, wstart, wend are a linear transformation matrices.

4 Experiments

In this section, we demonstrate the results of our approach on the WikiSQL [27]
dataset and compare it to the other state-of-the-art approaches.

4.1 Dataset and Evaluation Metrics

Dataset. WikiSQL [27] is the largest Text-to-SQL dataset with single-table
setting. It contains 56,355, 8421, and 15878 question-SQL pairs about 26,521
tables for training, development, and testing. All the SQL queries have one
select column and aggregation operator, and 0 to 4 conditions.
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Evaluation Metrics. Generally, the single-table Text-to-SQL task takes the
Logical Form Accuracy and Execution Accuracy as evaluation metrics. Execu-
tion accuracy is calculated as follows: ExecutionAccuracy = Nex

N , where Nex is
the number of SQL statements whose execution result is correct, N denotes the
total number of examples in the dataset. Logical Form Accuracy = Nlf

N is the
calculation method of logical form accuracy, where Nlf is the number of queries
that has exact string match with the ground truth. The two evaluation metrics
have different concerns. Execution Accuracy is to evaluate the model in terms
of execution results, while Logical Form Accuracy is more concerned about the
output whether has an exact string matching.

4.2 Baselines

We compare the proposed method to the following state-of-the-art models:

• Seq2SQL [27] takes attentional sequence to sequence neural semantic parser
[7] as baseline model.

• SQLnet [23] fundamentally solves the order-matters problem by employing a
sequence-to-set model to generate SQL queries. It is the first sequence-to-set
model.

• TypeSQL [24] utilizes type information to better capture rare entities and
numbers in the question.

• SQLova [16] takes a full advantage of BERT [6] through an effective table
contextualization method.

• X-SQL [14] proposes to enhance the structural schema representation with
the contextual output from BERT-style pre-training model [6], and together
with type information to learn a new schema representation for down-stream
tasks.

• HydraNet [19] breaks down the problem into column-wise ranking and decod-
ing and finally assembles the column-wise outputs into a SQL query.

• SDSQL [15] presents the Schema Dependency guided multi-task Text-to-SQL
model to guide the network to effectively capture the interactions between
questions and schemas.

4.3 Implementation Details

We utilize PyTorch [21] and Python 3.6 to implement our proposed model. For
the input representation, we use Roberta-large [18] version and fine-turn it with
a 3e−5 learning rate during training. The batch size is set to 16 and we use
Adam [17] optimizer to minimize loss. The system is Ubuntu 18.04 with two
2080ti graphic cards.

4.4 Results

Overall Performance. We first compare the performance with other state-of-
the-art models. As shown in Table 1, we can see that our model outperforms all
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Table 1. Performance of various methods on WikiSQL dataset. LF is an abbreviation
for Logical Form Accuracy and EX is an abbreviation for Execution Accuracy.

Model Dev Test

LF EX LF EX

Seq2SQL [27] 49.5 60.8 48.3 59.4

SQLNet [23] 63.2 69.8 61.3 68.0

TypeSQL [24] 68.0 74.5 66.7 73.5

SQLova [16] 81.6 87.2 80.7 86.2

X-SQL [14] 83.8 89.5 83.3 88.7

HydraNet [19] 83.6 89.1 83.8 89.2

SDSQL [15] 86.0 91.8 85.6 91.4

Ours 84.5 90.3 84.7 90.2

Table 2. Fine-grained analysis for various methods on dev set of WikiSQL dataset.
Sel Column is the column name in the select clause, AGG is the aggregation function,
and WHERE NUM is the number of conditions in the where clause. Column, OP ,
and V alue refer to the column name, operator, and value in a condition, respectively.

Model Sel Column AGG WHERE NUM Column OP V alue

SQLova [16] 96.8 90.6 98.5 94.3 97.3 95.4

X-SQL [14] 97.2 91.1 98.6 95.4 97.6 96.6

HydraNet [19] 97.6 91.4 98.4 95.3 97.4 96.1

SDSQL [15] 97.3 90.9 98.5 98.1 97.7 98.3

Ours 97.4 92.1 98.6 95.6 97.6 96.8

existing models on all evaluation metrics except SDSQL. It should be noted that
SDSQL is a multi-task Text-to-SQL model that integrates additional auxiliary
task (schema dependency) to capture the complex interaction between schemas
and questions. As you can see from the last two rows of the Table 1, despite the
absence of additional auxiliary tasks, our model is competitive with SDSQL.

Fine-Grained Analysis. In order to further investigate the performance of
each sub-module in the various methods, as shown in Table 2, we perform a fine-
grained analysis. Firstly, it can be seen that HydraNet has the highest accuracy
of Sel Column and SDSQL has the best performance in conditions prediction
(Column, OP , and V alue). Secondly, the accuracy of our model is outstand-
ing in all sub-modules, especially AGG and WHERE NUM . The reason is
mainly due to our novel composite similarity assessment could comprehensively
use classification probability and text cosine similarity to improve the model
performance.
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(a) (b)

Fig. 5. Accuracy (part a) and Loss (part b) of our model (CP+CS no val) and ablated
models.

4.5 Ablation Study

To understand the importance of different similarity assessments in our app-
roach, we conduct a series of ablation studies, i.e., Cosine Similarity (CS), Cosine
Similarity without specific value (CS no val), Classification Probability as simi-
larity (CP), and our model (CP+CS no val).

Accuracy of our model and ablated models are presented in Fig. 5.a, we
focus on indicators related to similarity assessment, i.e., Overall, AGG, and
WHERE NUM . Firstly, we notice that CS no val performs better than CS,
demonstrates that Cosine Similarity without specific value is an effective method
to improve performance. Secondly, we observe that CP outperforms both
CS no val and CS. This observation shows that classification probability as a
similarity assessment is superior to cosine similarity in Text-to-SQL task. Finally,
it can be seen that our model(CP+CS no val) is the best performer. It indicates
that there is no conflict and interference between CP and CS no val, and they
work together to further improve the performance of the model.

In order to explore the convergence of our model and ablated models, the loss
data is recorded during training. Closer inspection of the loss curves in Fig. 5.b
shows that: (1) the loss value of CS is the largest and converges the slowest; (2)
CS no val and OP are similar and the convergence speed is in the middle; (3) our
loss value is the smallest and converges the fastest. Overall, these results indicate
that using classification probability and cosine similarity comprehensively can
accelerate the convergence of the model.

4.6 Case Study

We present typical error cases of three state-of-the-art approaches (HydraNet
[19], SDSQL [15], and Ours) and analyze the strengths and weaknesses of them
in this section. As can be seen from the Table 3, there are three types of typical
error cases: Few-shot Errors, Schema Dependency Errors, and Lack of Common
Sense.
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Table 3. Error cases of three state-of-the-art approaches. Incorrect tokens are marked
red.

Case One: Few-shot Errors

Question Name the number of total votes for # of seats won being 30?

HydraNet SELECT COUNT(# of total votes) WHERE # of seats won=30

SDSQL SELECT COUNT(# of total votes) WHERE # of seats won=30

Ours SELECT # of total votes WHERE # of seats won=30

Groundtruth SELECT # of total votes WHERE # of seats won=30

Case Two: Schema Dependency Errors

Question How many times is denmark ranked in technology?

HydraNet SELECT COUNT(Rank) WHERE Technology=denmark

SDSQL SELECT COUNT (Technology) WHERE Rank=denmark

Ours SELECT COUNT(Rank) WHERE Technology=denmark

Groundtruth SELECT COUNT (Technology) WHERE Rank=denmark

Case Three: Lack of Common Sense

Question What is the sum of week number(s) had an attendance of 61,985?

HydraNet SELECT SUM(Week) WHERE Attendance = 61,985

SDSQL SELECT SUM(Week) WHERE Attendance = 61,985

Ours SELECT SUM(Week) WHERE Attendance = 61,985

Groundtruth SELECT COUNT(Week) WHERE Attendance=61,985

Few-Shot Errors. What stands out in Case One is HydraNet and SDSQL use
the COUNT aggregation function incorrectly. The essential reason is that there
are a large number of ‘the number of → COUNT’ pairs in the training corpus.
Encountering the phrase of ‘the number of’, the model mistakenly believes that
the COUNT aggregation function should be used. Why can our model translate
the question into the correct SQL query? Because there is a highly similar case
in the case base—‘Name the number of candidates for # of seats won being
43?’. Our model chooses the template corresponding to this highly similar case,
instead of blindly following the choice of the neural model.

Schema Dependency Errors. Admittedly, SDSQL is indeed better than other
models in terms of Schema dependency. From Case Two, it can be seen that our
model and HydraNet cannot distinguish whether denmark is the value of the
Rank column or the Technology column. However, this is a piece of cake for
SDSQL which has an auxiliary task—schema dependency.

Lack of Common Sense. This result of Case Three is somewhat counter-
intuitive. In general, for the question in Case Three, most models may choose
the SUM aggregation function. However, the value of the Week column is a
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string that cannot be added. Hence, the COUNT aggregation function is the
best choice.

Through the analysis of the above cases, it can be found that the three models
have their own strengths, and our model has more advantages in terms of fewer
samples.

5 Conclusion and Future Work

This paper proposes a novel CBR-based model to solve the Text-to-SQL task. For
the similarity assessment, classification probability and text cosine similarity are
comprehensively used to improve the model performance. The proposed model
has competitive performance and significantly improves the aggregation function
prediction on the WikiSQL dataset. It is a successful attempt of the CBR-based
method on the task of Text-to-SQL translation.

In future work, we will further apply advanced technologies in the field of
CBR to more complex Text-to-SQL task, such as cross-domain and context-
dependent.
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Abstract. Ancient oracle bone inscriptions (OBIs) are important Chi-
nese cultural artefacts, which are difficult and time-consuming to deci-
pher even by the most expert paleographers and, as a result, a large
proportion of excavated OBIs remain unidentified. In practice, OBIs
are deciphered by translating between different writing systems; Chinese
writing systems have evolved over time and ancient OBIs can be deci-
phered by translating their inscriptions to a known inscription in an adja-
cent writing system, but this is a complex and time-consuming process.
In this paper we propose a novel case-based system, to support this task,
allowing a paleographer to present an unknown inscription (image) as a
query, to receive a set of similar images from an adjacent writing system
with associated scholarly information, and so help guide the deciphering
of the query. One important contribution of this work involves the use of
an auto-encoder to learn suitable image representations to capture the
relationship between two adjacent writing systems. We demonstrate the
effectiveness of this approach using a novel, purpose-built case base, and
discuss its use in a paleographic setting.

Keywords: Machine learning · Oracle bone inscriptions · Case-based
reasoning

1 Introduction

Oracle bone inscription (OBI) is the earliest known form of Chinese writing and
an ancestor of modern Chinese characters. It was engraved on oracle bones—
animal bones (see Fig. 1) or turtle plastrons used in pyromantic divination and
story-telling [2]—in the late 2nd millennium BC and the vast majority of more
than 50,000 inscribed items, have been found at the Yinxu site located in Xiaotun
Village, Anyang City, Henan Province.

These items are vital Chinese cultural artefacts and as one of the earliest
systematic writing systems in the world, OBIs are of great international scholas-
tic import. Beginning with the OBI, the modern Chinese writing system has
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evolved, uninterrupted, through several different stages as shown in the insert in
Fig. 1. Indeed, this evolutionary continuity is an important feature of the Chinese
writing system when it comes to deciphering unidentified OBIs, as we shall see,
because it means that paleographers can match unidentified inscriptions with
identified characters from an adjacent writing system based on shared visual
features.

Fig. 1. An example oracle bone script fragment on a scapula bone from the Shang
Dynasty, and five evolution stage examples of the Chinese writing system. Image cour-
tesy of BabelStone, CC BY-SA 3.0 (https://commons.wikimedia.org/w/index.php?
curid=16189953)

Since OBIs were first discovered, more than 4,500 characters have been exca-
vated, but only one-third of these characters have been deciphered or trans-
lated [14]. In part, this is because of the complexity of the task: it requires
considerable paleographic expertise and is time-consuming in the extreme as
paleographers seek to identify subtle matches between complex inscriptions and
more recent writings. For some time, paleographers have been attempting to

https://commons.wikimedia.org/w/index.php?curid=16189953
https://commons.wikimedia.org/w/index.php?curid=16189953
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accelerate this translation process, but with only limited success to date. In
this paper, we argue that modern machine learning techniques are up to the
task [12,15] and we describe a novel case-based reasoning system designed to
support paleographers during this translation process.

In the following section, we describe relevant related work, paying close atten-
tion to some recent efforts that have been conducted to support paleographers
during this important task. Then, in Sect. 3 we present our case-based reason-
ing approach and describe the basic operations of the system. In Sect. 4 we
present a new large-scale public data-set purpose-built for this task. Section 5
describes one important and novel aspect of this approach, namely the use of an
auto-encoder architecture to automatically learn suitable image representations
to facilitate cross-domain retrievals between adjacent writing systems. Finally,
before concluding, In Sect. 6 we describe the results of an initial evaluation.

2 Related Work

The work presented in this paper is, at its core, a version of a familiar machine
translation task, which has been the subject of natural language processing and
machine learning research for many decades [6]. Indeed, case-based reasoning
ideas have a storied history in this field [18] since statistical machine transla-
tion approaches were first presented by IBM’s Peter Brown when he infamously
declared that “Every time I fire a linguist, my system’s performance improves!”
as he described an empirical corpus-based approach to machine translation that,
flew in the face of the conventional linguistic-based approaches that prevailed at
the time [3]. This led to something of a deluge of novel approaches that came to
be viewed as example-based machine translation (EBMT) which relied primarily
on case-like translation pairs as the basis for translation, rather than linguisti-
cally inspired translation rules and other forms of linguistic knowledge [4,19].
Today these EBMT approaches are every bit as mainstream as their linguistic
complements and more recent neural-network based approaches [10].

The present is distinguished by the visual nature of the translation task:
the translation targets are complex and varied visual images rather than well-
defined character-based representations. Early work on the automated analysis
of OBIs is characterised by image processing based approaches to inscription
recognition and classification. For example, Zhou et al. represented OBIs as
non-directional graphs and extracted their topological properties, in addition
to relevant stroke-based features, for the recognition tasks [20]. In 2010, Li et
al. proposed a DNA-based encoding and retrieve method for OBIs [16], while
other researchers [13] proposed a grid point feature extraction algorithm when
dealing with oracle bone rubbings. In 2015, Feng et al. attempted to recognise
OBIs based on a statistical analysis of context and methods combining with the
Hopfield network [7]. The results of these early efforts helped to demonstrate
the potential for computational techniques and machine learning to support the
deciphering of OBIs, even though recognition accuracy was not yet high enough
to greatly accelerate the translation process.
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To be clear, the OBI translation task is an extremely challenging one because
it is based on unusual, domain-specific images without a robust feature represen-
tation, and because conventional feature extraction techniques have proved to be
only partially effective. In this regard, recent advances in deep neural networks
in the area of machine vision are especially important [12] because they provide
a means to learn powerful representations from raw data such as images. For
example, in this work, we rely on ideas from Rumelhart’s auto-encoders (AE)
[17] to learn a representation for the pair of images that make up cases. In fact,
we use a variational auto-encoder (VAE) [11] to learn a suitable representation
because VAEs have been shown to avoid many over-fitting problems associated
with standard AEs by regularising the training process. We will show that these
learned representations provide a much more powerful representational basis for
determining similarity and relevance.

3 A Case-Based Reasoning Perspective

Before we describe our approach further, it is worthwhile to clarify some termi-
nology that will be used in what follows. First, when we refer to two adjacent
writing systems, we refer to two styles of writing that appeared consecutively or
even overlapped in time. In this work, we will focus on three writing systems—
OBIs are the earliest, followed by Bronze Epigraphs (BE), followed by Chu State
Characters (CSC)—as shown in Fig. 2(a). OBIs and BEs are adjacent, as are
BEs and CSCs. This concept of adjacency is important because adjacent writing
systems share some common forms and patterns that will be exploited during
representation learning and case retrieval.

Next, an inscription is an image and different inscriptions may be variations
on a specific category (e.g. ‘Home’) but not every category is known (deciphered);
we will often refer to a category group as a set of inscriptions that related to a
specific known category.

3.1 From Inscriptions to Cases

There are two types of cases in our system, known cases and unknown cases.
In Fig. 2(a) the known cases are shown as filled markers and the unknown case
as unfilled markers. A known case corresponds to an inscription that has been
deciphered, which means it is associated with a category and, typically other
inscriptions from other writing systems, as well as the relevant scholarly infor-
mation that is important to the paleographer such as, the origins and provenance
of the inscription, information about how the inscription was deciphered, links
to other inscriptions associated with the same category, possible from other writ-
ing systems; thus known cases represent deciphered categories. Notice how this
figure suggests that there are proportionally fewer known cases associated with
earlier writing systems. This is in fact the case and it suggests that its retrievals
from later writing systems may be more likely to lead to deciphered categories.
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Fig. 2. The overall design of the deciphering process.

Conversely, an unknown case represents an inscription (or a set of inscrip-
tions thought to refer to the same unknown concept) in a single writing system
that has not yet been deciphered. Unknown cases are incomplete: they may
include some relevant scholarly information (the origins of the inscription, pre-
vious attempts to decipher it, etc.), but there will be no linkages to related
inscriptions in adjacent writing systems. Nonetheless, these unknown inscrip-
tions may still be useful because they may serve as useful follow-up queries to
identify cases from later writing systems, which are more likely to be associated
with already deciphered categories, as we shall see.
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3.2 From Adjacent Writing Systems to Case Bases

Thus, we have access to a large number of cases containing inscriptions from
different (adjacent) writing systems. Some of these inscriptions will be known,
but many will be unknown, especially for older writing systems. In this work,
each case base spans a pair of adjacent writing systems, thus for a sequence of
n adjacent writing systems we can generate n − 1 case bases. Here we focus on
3 writing systems, OBI, BE, and CSC, which means there are two case bases,
OBI-BE and BE-CSC; in what follows, for a case base such as OBI-BE, we refer
to OBI as the source writing systems and BE as the target writing system. For
a given case base, the query will come from the source writing system, and the
cases in the case base will correspond to cases from the target writing system.
For example, for the OBI-BE, queries will be OBIs, and retrieved cases will be
BEs.

This highlights one of the unique features of cases and case bases: retrieval
depends on the form of cross-domain reminding in the sense that the query and
retrieved cases are from different (but adjacent, and therefore related) writing
systems. But how can we compare an inscription (image) from a writing system
i to an inscription from another writing system i + 1? It is more usual in CBR
for the query and (problem descriptions of) cases to be based on a shared set of
features, which facilitates comparison and similarity assessment. Here though,
the query and the case are images from different writing systems.

3.3 Representation Learning and Case Indexing

One approach to solving this problem might be to use conventional image anal-
ysis techniques to extract features from the inscription images from the source
and target domains. However, in this work, we adopt an alternative strategy by
using an extended encoder-decoder architecture to learn suitable representations
from pairs of known inscriptions drawn from writing system i and i + 1 as out-
lined in Fig. 2(b) and detailed in Sect. 5. Thus, we learn a representation for the
OBI-BE case base and a separate representation for BE-CSC.

Once a suitable representation is learned, its target cases are indexed using
this representation so that they are available for retrieval; effectively, this means
that target cases (including unknown cases) are encoded through the same
encoder used during the representation learning, as shown in Fig. 2(c). Notably,
this facilitates the indexing of known and unknown cases, as the encoding process
operates on a raw inscription image regardless of whether it has been deciphered.
This is important because it means that unknown cases can also be made avail-
able for retrieval, which means they can be used as subsequent queries into the
i + 2 writing system.

3.4 An Example Use-Case

An example use-case is shown in Fig. 2(d). The paleographer submits an
unknown (OBI) inscription as a query to the OBI-BE case base, returning the



Deciphering Oracle Bone Inscriptions 315

k = 3 most similar BE cases. In this example, the first two cases are known
BE inscriptions, and the third case is an unknown BE inscription. The hope is
that these known cases may help the paleographer to gain some insights into the
meaning of the query inscription.

Importantly, the retrieval of an unknown case is not a retrieval failure. Indeed
unknown cases can be used follow-up queries, this time into the BE-CSC case
base. In this example, the unknown BE case results in the retrieval of three
further known (CSC) cases. In this way, the unknown case serves as a bridge
into the CSC writing system, which is better populated with known/deciphered
cases.

4 A Novel Oracle Bone Inscription Data-Set

As mentioned already, progress in supporting the OBI translation task using
machine learning ideas has been impeded by the lack of suitable training data.
Hence, for this work, we have developed a suitable data-set, which goes far
beyond that has been available to date; this data-set was needed for the work
presented in this paper but has now also been made available as an important
resource to the ancient Chinese research community, which will be released in
Mendeley Data soon.1

4.1 Data Collection

The original data for our data-set came from two specialised websites—the Chi-
nese Etymology2 website and the ZDIC3 website—both of which provide access
to character images for categories in multiple writing systems using a com-
mon hierarchical labelling system. The data were collected between January
and November 2020. From these data, we can generate the source-target pairs
between writing systems that we need for representation learning.

A total of 5,138 character categories, associated with five writing systems
were collected as shown in Table 1. Writing systems were selected based on the
timeline of culture development and cover the typical evolutionary stages from
OBI. Three of the earliest writing systems (OBI, BE, and CSC) were selected for
training and testing purposes (as mentioned in Sect. 3) because they provided
access to the largest collection of images. We refer to these data as the Ancient-3
data-set. The remaining two writing systems (Qin State’s Character and Small
Seal Style Character) were not used further in this work, but they are included in
the larger Ancient-5 data-set because they include data from important stages
in OBI evolution, which we believe will be useful for the research community.

1 http://dx.doi.org/10.17632/ksk47h2hsh.2.
2 https://hanziyuan.net/.
3 https://www.zdic.net/.

http://dx.doi.org/10.17632/ksk47h2hsh.2
https://hanziyuan.net/
https://www.zdic.net/
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Table 1. The overall statistics of our ancient Chinese data-set.

Writing system Category number Inscription number

Oracle Bone Inscription (OBI) 1,186 39,009

Bronze Epigraph (BE) 1,394 35,140

Chu State’s Character (CSC) 1,640 32,203

Qin State’s Character (QSC) 1,537 3,652

Small Seal Style Character (SSSC) 5,138 5,138

4.2 Data Pre-processing

The Ancient-3 data-set comprises a total of 106,352 image inscriptions for 1,640
character categories albeit with significant variation in category coverage, as
shown in Fig. 3; for example, just over 86% of categories contained less than 50
inscriptions. We deal with this imbalance in two ways:

1. First, we used the Fast Gradient Sign Method (FGSM) [8] to augment cat-
egories with fewer than 50 inscriptions. FGSM is widely used to generate
adversarial training examples to improve the robustness of neural networks;
it provides a practical means to generate additional examples for sparse cat-
egories by perturbing the pixels of existing examples in a manner that is not
obvious to the human eye. In this way, we can effectively over-sample sparse
categories without compromising image fidelity.

2. Conversely, we under-sample categories with an abundance of inscriptions by
using the Mean Shift clustering algorithm [5] to divide a category’s inscrip-
tions into several clusters, only retaining those inscriptions associated with
the largest cluster.

Fig. 3. The distribution of inscriptions by character category in the original Ancient-3
data-set.
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In what follows, we will distinguish between these two variations of the Ancient-3
data-set, where appropriate, by using the term original to indicate the original,
unbalanced version and balanced to refer to the balanced, over/under-sampled
version.

5 Cross-Domain Representation Learning

As mentioned in Sect. 3.3, the major challenge of our solution for the OBI deci-
phering task is: how to compare the inscriptions from two adjacent writing sys-
tems (aka the cross-domain query and case in CBR) in a unified format which
reflects both the common features and the evolution pattern of the inscriptions so
that we can directly compare the similarities/relevance of cross-domain inscrip-
tions. Our idea is to project adjacent writing systems’ inscription images into a
common latent space where known inscriptions in each pair appear similar/close
to each other (see Fig. 2(b)). In this section, we first introduce the Vanilla VAE
architecture [11], which is the basic architecture used for representation learn-
ing; then, we propose two novel approaches for capturing image features from
cross-domain inscriptions. Both approaches can be treated as extensions of the
VAE architecture.

5.1 Vanilla Variational Auto-encoder

This basic architecture, vanilla VAE, is an efficient implementation of the basic
VAE idea, which aims to capture the image features from character inscriptions
through its encoder module. Both the vanilla VAE’s symmetric neural networks
(encoder and decoder) use the same number of convolutional blocks. Each block
contains three stacked layers: a convolution layer, a batch normalisation layer,
and a rectified linear unit (ReLU) layer. The number of blocks in each net-
work is a modifiable parameter for the architecture. By training the vanilla VAE
through inscriptions from different writing systems, the encoder itself can be
used to generate the latent variable z as the abstract representations for the
inscription images, to map all the abstract representations into the common
high-dimensional common space for further analysis (see Fig. 4(a)). Its similar-
ity loss function, l(input, output), consists of two parts: the reconstruction loss
between the input and the output inscriptions and the latent loss defined as
KL-divergence through the latent variable z [11]. However, the drawback of the
vanilla VAE’s encoder is that, except for its function of capturing the common
features of different inscriptions, it still lacks the capability to express the evolu-
tion patterns among pairs of known inscriptions drawn from the adjacent writing
system, i.e., the abstract representations of inscriptions in a pair may be far away
from each other in the latent space.

5.2 MMD-Enhanced Architecture (MA)

To address the drawback discussed above, we propose the first technical app-
roach, MMD-enhanced Architecture (MA), which uses the maximum mean dis-
crepancy (MMD) distance [9] between the abstract representations of known
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inscriptions to reflect the linkage among adjacent writing systems. Precisely,
during the encoder training process, pairs of known inscriptions drawn from
adjacent writing systems are input into the MA. In Fig. 4(b), S represents an
image from the source writing system, T represents an image from the target
writing system. The encoder network extracts two latent variables ZS and ZT .
The MMD between ZS and ZT in the final loss function (Eq. 1) is to make
sure the two latent variables will be mapped close to each other in the high-
dimensional common space.

LMA = l(inputS , outputS) + l(inputT , outputT ) + w ∗ mmd(ZS , ZT ) (1)

Fig. 4. Different architectures of representation learning.
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5.3 Paired Decoder MMD-Enhanced Architecture (PDMA)

Inspired by the work from Artetxe et al., which proposed a framework to gen-
erate parallel corpora through mapping monolingual corpora embedding [1],
we further designed the second technical approach, the paired decoder MMD-
enhanced architecture (PDMA). Instead of only constraining the representations
in adjacent writing systems to approach each other, the PDMA learns the dual
nature from two writing systems and handles bidirectional knowledge transfer-
ring between them simultaneously. As displayed in Fig. 4(c), together with a
shared encoder, a pair of decoders, DS and DT , are used as the decoder module
in the PDMA for decoding abstract representations of different writing systems
(target and source) respectively.

We designed two stages to train the PDMA encoder module. In the first
stage, each decoder (DS and DT ) respectively restores its input latent variable
to an inscription that should be similar to the original inscription where the
latent variable is generated; and the two decoders’ VAE reconstruction losses
are calculated individually. In the second stage, each decoder takes the latent
variable extracted from a different writing system (DS takes ZT , DT takes ZS)
as the input and generates a corresponding pseudo inscription (S′ generated by
DS , T ′ generated by DT ). Then these pseudo inscriptions (S′ and T ′) are fed
into the encoder again to get their latent representations (Z ′

S , Z ′
T ). The two

decoders restore them to pseudo inscriptions (S′′, T ′′) once more. The final loss
(Eq. 2) consists of the similarity losses between original inscriptions and pseudo
inscriptions, together with the MMD distance between the latent variables Z ′

S

and Z ′
T , which have the major influence for the feature representation, received

from the encoder module.

LPDMA = l(S, S′′) + l(T, T ′′) + w ∗ mmd(Z ′
S , Z

′
T ) (2)

By using a pair of decoders in the decoder module, we believe the PDMA
encoder module can be enhanced in two aspects: first, for each inscription, an
abstract representation that is independent from its original writing system can
be generated by the encoder module; second, the encoder module pays more
attention to extract the evolution features of adjacent writing systems (such as
OBI and BE), for example, the leading features, which exist in an OBI and are
the main factors leading to its evolution to its corresponding BE; or the inherited
features, which exist in the BE but inherited from its origin OBI.

6 Evaluations

Due to the novelty of the paleography translation task, we have to design our own
evaluation scheme. We conducted two experiments, the inscription-level and the
category-level, to evaluate our architecture. In our first experiment (inscription-
level), as mentioned in Sect. 3.4, for an unknown query inscription, we retrieved
top-n target cases (individual inscription images from the target writing system)
for paleographers as references; In our second experiment (category-level), we
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focused on directly linking the unknown query inscription to its corresponding
category in the target writing system. In this section, we first introduce how
to split the train/test data sets, then we present our accuracy metrics for two
experiments followed by the final results. The details of the experiments are
presented in an GitHub repository4.

6.1 Train-Test Division

Compared with traditional machine learning tasks, the train-test division for this
OBI deciphering task is more complicated because the data contains multiple
writing systems, and the pseudo unknown inscriptions are specially required. We
first separated the data-set on its category-level, and then we used the category-
level division to collect inscriptions for training and testing. Precisely, for each
two adjacent writing systems, we randomly chose 10% (categories) for the test-
set (pseudo-unknown inscriptions, which will not be used by the architecture for
training). Based on the categories in the train-set, we collected their associated
inscriptions from the balanced Ancient-3 data-set for training; and then based
on the categories in the test-set, we collected their associated inscriptions from
the original Ancient-3 data-set for testing (described in Sect. 4). We only used
practical inscription images for testing to avoid bias.

In the training process, we generated the source-target pairs of known inscrip-
tions from the train-set based on their category information to train the repre-
sentation learning architecture (see Sect. 5). After this, we used the represen-
tation learning architecture to index target cases as described in Sect. 3.3 (i.e.,
projecting all the target cases into the common latent space). The scale of the
target candidate cases will affect the deciphering accuracy. In our experiment,
we tested on two scales: 1) common scale: only used the inscriptions from com-
mon categories in both adjacent writing systems as candidates (e.g., OBI has
1,186 categories, and BE has 1,394 categories, but only 676 of them are common
categories). 2) full scale: all the inscriptions in the target writing system were
used as potential candidates (e.g., all the inscriptions from 1,394 categories in
BE). The second scale helped us estimate the ability of our architecture against
interference in real-world applications.

6.2 Accuracy Calculation Scheme

We measured the possibilities of retrieved cases through the distances between
the unknown inscription and the potential target known inscriptions. We also
sorted the ranking according to the distances. If a candidate inscription is closer
to the unknown inscription, it is more likely to be the deciphered result. In
general, we considered a retrieved case as true-positive if the correct translation
inscription is contained in the top-n candidates. We defined the accuracy of the
translation task as Eq. 3, where hitn is the number of successful cases, and T is
the number of inscriptions used as unknown ancient characters.

4 https://github.com/ICCBR/AncientDiscovery.

https://github.com/ICCBR/AncientDiscovery
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Top N accuracy =
hitn
T

(3)

The accuracy calculation scheme on the category-level is similar to the pre-
vious one. The only different operation is, as a category may contain multi-
ple inscriptions, to represent it, we calculated the centre of all the inscriptions’
encoded latent variables for each category from the target writing system.

6.3 Evaluation Results

Here, we report both inscription-level and category-level results over the two case
bases, OBI-BE and BE-CSC. The top-n accuracy in Eq. 3 is denoted as acc@n in
each table. We selected eight top-n values for each experiment. Each table dis-
plays the performances of our architecture under different settings of approaches
(MA and PDMA), and candidate scales (common scale and full scale).

Table 2. The inscription-level accuracy(%) of translation task from OBI to BE on
26,958 (676 categories) and 35,140 (1,394 categories) BE candidate inscriptions.

acc@1 acc@10 acc@20 acc@50 acc@100 acc@200 acc@400 acc@600

26,958 PDMA 15.57 29.56 33.55 40.07 46.72 53.67 62.72 68.47

MA 10.42 23.42 28.10 36.38 43.93 51.95 60.02 65.17

35,140 PDMA 14.80 28.44 31.53 38.22 43.97 50.62 58.39 63.58

MA 8.79 21.79 26.34 33.38 40.41 48.22 56.11 61.43

Table 3. The category-level accuracy(%) of translation task from OBI to BE on 676
and 1,394 BE candidate categories.

acc@1 acc@10 acc@20 acc@50 acc@100 acc@200 acc@400 acc@600

676 PDMA 5.71 20.42 27.50 43.46 56.89 70.83 85.46 97.73

MA 5.02 19.48 28.70 42.60 53.84 67.70 85.50 96.57

1,394 PDMA 4.38 16.60 22.65 34.66 48.99 61.99 74.56 82.45

MA 3.82 12.78 19.09 31.15 42.13 53.97 66.62 76.88

The results of the two case bases tasks OBI-BE and BE-CSC meet our expec-
tations. Both MA and PDMA approaches performed well. PDMA performed
better in most situations, but we observed it spent more time in both training
and translation processes. For the inscription-level, in the translation task from
OBI to BE (see Table 2), the probability of finding the correct answer attained
almost 50%, when we retrieved top-100 cases; in the translation task from BE
to CSC (see Table 4), this probability also reached over 40%, when top-200 cases
are recalled. For the category-level, it is noteworthy that the performance of our
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architecture was not influenced greatly, even when we used a much larger target
data-set. In both Table 3 and Table 5, when the target changed from the common
scale to the full scale, the number of candidate categories almost doubled, but
our architecture remained over 80% of its common-scale accuracy.

Table 4. The inscription-level accuracy(%) of translation task from BE to CSC on
25,055 (886 categories) and 32,203 (1,640 categories) CSC candidate inscriptions.

acc@1 acc@10 acc@20 acc@50 acc@100 acc@200 acc@400 acc@600

25,055 PDMA 4.35 13.34 18.41 27.27 34.33 43.79 53.78 59.17

MA 2.52 9.52 12.80 21.19 28.72 37.23 46.75 53.47

32,203 PDMA 3.91 11.57 15.64 24.02 31.75 39.79 49.72 54.48

MA 2.21 8.13 11.44 17.65 24.53 33.01 43.32 48.90

Table 5. The category-level accuracy(%) of translation task from BE to CSC on
886 and 1,640 CSC candidate categories.

acc@1 acc@10 acc@20 acc@50 acc@100 acc@200 acc@400 acc@600

886 PDMA 4.82 15.83 21.34 31.27 40.83 53.37 68.47 80.80

MA 3.97 13.40 18.88 28.37 37.52 50.03 67.15 79.76

1,640 PDMA 4.45 14.50 18.47 28.03 36.89 47.29 60.25 69.29

MA 3.12 11.79 16.30 25.35 33.98 44.70 58.13 68.16

7 Conclusions and Future Work

We presented and evaluated a case-based architecture developed for automati-
cally deciphering unknown OBIs. We assessed the performance of the proposed
architecture over a specially collected ancient character data-set, which builds
solid foundations and should assist other researchers for the interdisciplinary
study of machine learning and archeology. The architecture uses unsupervised
machine learning methods and case-based reasoning to simulate different stages
of the OBI evolution process.

In this work, we mainly focused on the inscriptions’ shape features and the
linkages between adjacent writing systems. Although OBIs are hieroglyphs, many
of them have advanced functions and have abstracted away from the shape. Con-
sidering not only the shape but also the semantic and contextual information
over different writing systems would be a natural next towards developing a
more powerful decipher architecture. Combining both computer vision and nat-
ural language process methods to support the identification and translation of
ancient pictographs, may give rise to a new generation of digital assistants for
the archeology community.
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