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Abstract

The term “redundancy” refers to the way a system can work even when some
components have failed. All the coherent systems except the series systems have
redundancy mechanisms in their structure functions. Moreover, sometimes, we
may try to improve the reliability of a given system by adding some redundant
components at different critical points. Other popular redundancy options are to
add standby components in the system to replace the failed components or to
repair these failed components. The main questions analyzed in this chapter are:
What is the reliability of the (new) redundant system? What are the best points in
the structure to add the redundant components?Which one is the best redundancy
option? We also study some component importance indices that can be used to
determine the best replacement options.

5.1 Redundancy Options

There are several redundancy options. Not all of them are available in practice for
all the systems. Thus, we cannot use the same options for a plane or a rocket, that
the ones used for ships or cars. For example, in the first cases we cannot wait for the
system failure to apply the redundancy options (repairs).

In this introductory book we just analyze the most popular ones. There are two
main options called “hot” and “cold” redundancies.

In the first case (hot redundancy), one “spare” is added to a component in the
system with a given structure (which improves the behavior at this point). Both units
work at the same time. The same can be done in other components as well. The
most popular option is to add a new (similar) independent unit in parallel to a given
component. In this case, the life length of the resulting structure at the i th position is
Yi = max(Xi , X ′

i ), where Xi is the lifetime of the original unit and X ′
i the one of the

associated spare. For example, if we consider a series system with two components,
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Fig. 5.1 A series system with two components and hot redundancies at positions 1 (left) and 2
(right)

it can be improved by adding a redundant component in parallel at positions 1 or 2
(see Fig. 5.1).Which one is the best option? To answer this question we need to know
the characteristics of the units and the spares. Thus, we may assume that the spares
have the same distributions as the units, that is, if F1, . . . , Fn are the distribution
functions of the components, we can assume that the spare at the i th position has
distribution Fi . This is a reasonable assumption when the components are different.
Another option is to assume that the components are similar and that a spare with
distributionG can be added at any point. If the components are identically distributed
and we assume G = F1 = · · · = Fn both options coincide.

In the second case (cold redundancy), the spares are in standby and they replace
the components when they fail. Here we also have several options in practice. For
example, the standby units might be placed at fixed positions. Thus, if a plain has four
engines (two in each wing), it could fly just with two (one in each wing), working the
others just in case of the respective failures. Note that in a hot redundancy, the four
engines are working from the beginning while in a cold redundancy the two engines
in each wing work consecutively (one after the other). Which one is the best option?
In other options, we might have just a spare that can be placed at any position in the
system. Thus the spare wheel in a car (or a truck), can be placed at any position in
case of failure.

In both options, we can consider different assumptions for the spares as well. As
above, we can assume that the spares have the same distributions as the original
components when they are new (because they are not working). This option is called
perfect repair since it is equivalent to complete a perfect repair of that unit (a quite
unrealistic situation in some systems). Another popular option is to assume that the
spares have the same distributions of the original units but that they have the same age
as the failed units. This situation is also unrealistic but it is stochastically equivalent
to repair the unit to be as it was just before its failure. So it is called minimal
repair and, in this way, in some situations, it is more realistic than the perfect repair
considered above (which it is not a repair but a replacement with a new unit). In both
cases, the lifetime of the mechanism at the i th position is Yi = Xi + X ′

i . In a perfect
repair, we can assume that Xi and X ′

i are independent and then the distribution of
Yi is the convolution of Fi and F ′

i (see below). However, in a minimal repair, they
are dependent since the distribution of X ′

i depends on the age t = Xi of the failed
component (see below).

Finally, we note that the redundancies can be applied at different levels. If they are
applied as considered above, we say that they are redundancies at the components’
level. However, if they are applied to the entire system, then we say that they are
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Fig. 5.2 A series system with hot redundancies at the components’ level (left) and at the system’s
level (right)

redundancies at the system’s level. Evenmore, if the system is composed of different
modules with several units inside each module, the redundancy could be also applied
at the modules’ level (see, e.g., Torrado et al. 2021). For example, if we consider
again a series system with two components, then we could add two spares at the
components’ level obtaining the system lifetime

Tc = min(max(X1, X
′
1),max(X2, X

′
2)).

or at the system’s level obtaining

Ts = max(min(X1, X
′
1),min(X2, X

′
2)).

The different options can be seen in Fig. 5.2. Which one is the best option?
Many of these replacement options can be represented in a unified way by using

distortions. The definition (extracted from Navarro and Fernández-Martínez 2021)
is the following.

Definition 5.1 We say that q̄ : [0, 1] → [0, 1] is a redundancy dual distortion
function if q̄ is continuous, increasing and satisfies q̄(0) = 0, q̄(1) = 1, and q̄(u) ≥
u for all u ∈ [0, 1].

The purpose is to represent the reliability of the resulting mechanism at the i th
position with q̄(F̄i ) where F̄i is the reliability of the original i th component. Thus,
the meaning of the new condition q̄(u) ≥ u for all u ∈ [0, 1] is that the redundancy
mechanism improves (in the stochastic order) the original one. Other additional
conditions will be considered later.

Let us see some mechanisms that can be represented in this way. The first one is
a hot spare connected in parallel. As mentioned above, the resulting structure at the
i th position is Yi = max(Xi , X ′

i ) and its reliability F̄Yi (t) = Pr(Yi > t) is

F̄Yi (t) = Pr(max(Xi , X
′
i ) > t) = Pr(Xi > t) + Pr(X ′

i > t) − Pr(Xi > t, X ′
i ) > t)

for all t . If we assume that Xi and X ′
i are IID with a common reliability F̄i , then

F̄Yi (t) = 2F̄i (t) − F̄2
i (t) = q̄2:2(F̄i (t)),

where q̄2:2(u) = 2u − u2 is a distortion function satisfying q̄2:2(u) ≥ u for all
u ∈ [0, 1] (since X2:2 ≥ X1).

We can consider several changes in this model. For example, we could consider
that the spare has a different (usually worse) reliability with a proportional hazard
rate, i.e., Pr(X ′

i > t) = F̄θ
i (t) for θ > 0, then

F̄Yi (t) = F̄i (t) + F̄θ
i (t) − F̄1+θ

i (t) = q̄θ (F̄i (t)),
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Fig.5.3 Plots of q̄θ (left) and αθ (right) for an independent hot redundant component with propor-
tional hazard rate with θ = 0.25, 0.5, 0.75 (black), θ = 1 (red, IID case) and θ = 1.5, 2, 3, 5 (blue)

where q̄θ (u) = u + uθ − u1+θ is a distortion function satisfying q̄θ (u) ≥ u for
all u ∈ [0, 1] (since max(Xi , X ′

i ) ≥ Xi ). The hot redundant component is worse
(better) than the original component when θ > 1 (0 < θ < 1). The different
distortion functions can be seen in Fig. 5.3, left. Note that the IID case is obtained
when θ = 1 (red curve) and that they are ST ordered. As it is a distortion, its hazard
rate can be written as

hθ (t) = αθ (F̄(t))h(t),

where h = f/F̄ is the hazard rate of F̄ and

αθ (u) = 1 + θuθ−1 − (1 + θ)uθ

1 + uθ−1 − uθ

for u ∈ [0, 1]. The plots of αθ can be seen in Fig. 5.3, right. As they are ordered for
0 < θ < 1, the respective repairs are hazard rate ordered. This is not the case for
θ > 1 (i.e. when the spare is worse than the original unit).

Another variation is to assume that Xi and X ′
i are DID, that is, they are dependent

and identically distributed. This is a reasonable assumption since they share the same
environment. As in the preceding chapters, we can model this dependency through
a survival copula ̂C which satisfies

Pr(Xi > x, X ′
i > y) = ̂C(F̄i (x), F̄i (y))

for all x, y. Hence

F̄Yi (t) = 2F̄i (t) − ̂C(F̄i (t), F̄i (t)) = q̄(F̄i (t)),

where q̄(u) = 2u− ̂C(u, u) is a distortion function (which depends on Ĉ) satisfying
q̄(u) ≥ u for all u ∈ [0, 1] (since max(Xi , X ′

i ) ≥ Xi ).
Other interesting variations are to add m − 1 IID spares in parallel, which leads

to the distortion function q̄m:m(u) = 1 − (1 − u)m ≥ u (since Xm:m ≥ X1), or to
add them with any other system structure with distortion q̄ satisfying q̄(u) ≥ u for
all u ∈ [0, 1].
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Some cold redundancies can also be represented in this way (i.e. as distortions).
If the lifetime of the resulting mechanism is ˜Yi = Xi + X ′

i , then its reliability is

F̄
˜Yi (t) = Pr(Xi + X ′

i > t) = F̄i (t) +
∫ t

0
Pr(X ′

i > t − x |Xi = x) fi (x)dx (5.1)

for all t ≥ 0, where fi = −F̄ ′
i is the PDF of Xi . If Xi and X ′

i are IID (perfect repair),
then the reliability function of ̂Yi = Xi + X ′

i is

F̄
̂Yi (t) = F̄i (t) +

∫ t

0
F̄i (t − x) fi (x)dx

which is the well know formula for the reliability function of a convolution. It is
represented as F̄

̂Yi = F̄i ∗ F̄i . In some models, this reliability can also be represented
as a distortion (e.g. with exponential distributions). The same happen if they are
dependent (see Navarro and Sarabia 2020).

However, if we consider a minimal repair (MR), that is,

Pr(X ′
i > y|Xi = x) = F̄i (x + y)

F̄i (x)

for all x, y ≥ 0, then from (5.1), the reliability function of ˜Yi = Xi + X ′
i is

F̄
˜Yi (t) = F̄i (t)+

∫ t

0

F̄i (t)

F̄i (x)
fi (x)dx = F̄i (t)− F̄i (t) log F̄i (t) = q̄MR(F̄i (t)) (5.2)

for all t ≥ 0, where
q̄MR(u) = u − u log(u)

is a distortion function satisfying q̄MR(u) ≥ u for all u ∈ [0, 1] (since Xi+X ′
i ≥ Xi ).

This model is also known as the relevation transform and it was introduced in
formula (3.1) of Krakowski (1973) with the notation F̄i# F̄i . In this model we can
also consider some variations. For example we can consider m minimal repairs
obtaining

q̄m(u) = u
m

∑

i=0

1

i ! (− log(u))i (5.3)

with q̄m(u) ≥ u for all u ∈ [0, 1] (since Xi + X ′
i + · · · ≥ Xi ).

We can also consider imperfect repairs (IR) with

Pr(X ′
i > y|Xi = x) = F̄θ

i (x + y)

F̄θ
i (x)

for all x, y ≥ 0 and θ > 1 (the spare is worse than the original component). This
option leads to

F̄Yi (t) = F̄i (t) +
∫ t

0

F̄θ
i (t)

F̄θ
i (x)

fi (x)dx = F̄i (t) − 1

1 − θ
F̄θ
i (t)

[

1 − F̄1−θ
i (t)

]

= q̄ I Rθ (F̄i (t))

for all t ≥ 0, where

q̄ I R
θ (u) = θ

θ − 1
u − 1

θ − 1
uθ
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Fig.5.4 Plots of q̄ I R
θ (left) and α I R

θ (right) for an imperfect repair with θ = 0.25, 0.5, 0.75 (black),
θ = 1 (red, minimal repair) and θ = 1.5, 2, 3, 5 (blue)

is a distortion function satisfying q̄ I R
θ (u) ≥ u for all u ∈ [0, 1] (since Xi +X ′

i ≥ Xi ).
The case 0 < θ < 1 can be considered as well (although it could be unrealistic in
some situations). Note that we obtain a negative mixture of F̄i and F̄θ

i . The plots of
q̄ I R
θ can be seen in Fig. 5.4, left. The case θ → 1 (red curve) represents the minimal

repair case. As they are ordered, the respective repairs are ST ordered.
Its hazard rate can be written as

hI R
θ (t) = α I R

θ (F̄(t))h(t),

where h = f/F̄ is the hazard rate of F̄ and

α I R
θ (u) = u(q̄ I R

θ )′(u)

q̄ I R
θ (u)

= θ
1 − uθ−1

θ − uθ−1

for u ∈ [0, 1]. The plots of α I R
θ can be seen in Fig. 5.4, right. As they are ordered,

the respective repairs are hazard rate ordered.
We conclude this section by comparing the three main replacement options. Of

course, if Yi = max(Xi , X ′
i ) (hot spare parallel), then Yi ≤ Xi + X ′

i and so, in
particular, when they are independent F̄Yi ≤ F̄i ∗ F̄i (perfect repair or convolution).
Under minimal repair F̄Yi ≤ F̄i# F̄i holds since

q̄2:2(u) = 2u − u2 ≤ q̄MR(u) = u − u log(u)

for all u ∈ [0, 1]. Even more, as q̄ ′
MR/q̄ ′

2:2 is decreasing, then Yi ≤LR ˜Yi for all F ,
where ˜Yi represents the total lifetime from the beginning under a minimal repair. To
compare ˜Yi (minimal repair) and ̂Yi = Xi + X ′

i (perfect repair or convolution) when
Xi and X ′

i are IID we have the following result.

Proposition 5.1 With the notation introduced above, if Fi is NBU (NWU), then
˜Yi ≤ST ̂Yi (≥ST ).
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Proof Recall that NBUmeans that F̄i (x)F̄i (y) ≥ F̄i (x + y) for all x, y ≥ 0. Hence,
from (5.2), we get

F̄
˜Yi (t) = F̄i (t) +

∫ t

0

F̄i (t)

F̄i (x)
fi (x)dx ≤ F̄i (t) +

∫ t

0
F̄i (t − x) fi (x)dx = F̄

̂Yi (t)

since F̄i (t − x)F̄i (x) ≥ F̄i (t) for all 0 ≤ x ≤ t . The inequality is reversed for NWU
distributions. �

Note that, for the “natural” aging property (NBU), the perfect repair is better than
the minimal repair (as expected) and we can write

Yi ≤ST ˜Yi ≤ST ̂Yi .

For the dual class (NWU) we get

Yi ≤ST ̂Yi ≤ST ˜Yi .

Of course, for the exponential distribution (which is both NBU and NWU), we have
˜Yi =ST ̂Yi , that is, minimal and perfect repairs coincide.

5.2 Systems with ID Components

In this case we can compare different repair policies by using the ordering results
for distorted distributions obtained in Chap.3. Recall that, in the general case, the
system reliability can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)),

where Q̄ is a distortion function. If we assume that the components are ID, that is,
F̄1 = · · · = F̄n = F̄ say, then this representation can be reduced to

F̄T (t) = Q̄(F̄(t), . . . , F̄(t)) = q̄(F̄(t)),

where q̄(u) = Q̄(u, . . . , u) is a distortion function.
If we apply a redundancy policy r = (r1, . . . , rn)where the redundancy applied to

the i th components is represented by q̄ri , then the reliability function of the lifetime
Tr of the resulting system can be written as

F̄r(t) = Q̄(q̄r1(F̄(t)), . . . , q̄rn (F̄(t))) = q̄r(F̄(t)),

where
q̄r(u) = Q̄(q̄r1(u), . . . , q̄rn (u))

for u ∈ [0, 1]. Note that if we do not apply redundancy to the i th component, then
q̄ri (u) = u. Of course, we always get T ≤ST Tr since Q̄ is increasing and we assume
q̄ri (u) ≥ u for i = 1, . . . , n.

Ifwehave another redundancypolicy s = (s1, . . . , sn), then the reliability function
of the resulting system can be represented in a similar way with another distortion
function q̄s. Hence Tr and Ts can be compared just by comparing their respective
distortion functions using Proposition 3.2.
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The comparisons underminimal repairs were studied inArriaza et al. (2018). Here
r = (r1, . . . , rn) means that ri minimal repairs are applied to the i th component,
with ri ≥ 0 for i = 1, . . . , n. With this notation we can obtain the following classic
result for series systems with IID components that can be traced back to Shaked
and Shanthikumar (1992), Result 2.4(s) (see also Theorem 4 in Li and Ding 2010).
Obviously, in the case of series systems with IID components, the repair strategy
given by the vector r = (r1, . . . , rn) is the same as that of r′ = (rπ(1), . . . , rπ(n))

for any permutation π : {1, . . . , n} → {1, . . . , n}. So, without loss of generality, we
can assume for this system that r1 ≥ . . . ≥ rn . Moreover, we have Q̄(u1, . . . , un) =
u1 . . . un and so

q̄r(u) = q̄r1(u) . . . q̄rn (u)

for u ∈ [0, 1], where these distortions functions are defined as in (5.3). Hence we
have the following theorem.

Theorem 5.1 (Shaked and Shanthikumar 1992) Consider a series systemwith n IID
components with a common reliability function F̄. Suppose that we have available
m ∈ Z+ minimal repairs that canbe freely allocated to any component. Let p, s ∈ Z+
be the unique integer numbers such that m = pn + s and 0 ≤ s < n. Then, the
optimal allocation strategy, in terms of the usual stochastic order, is given by the
vector

r� = (

s
︷ ︸︸ ︷

p + 1, p + 1, . . . , p + 1,
n−s

︷ ︸︸ ︷

p, p, . . . , p).

As expected, the best option is to distribute all the available repairs as much as
possible between the components. An alternative proof to that given in Shaked and
Shanthikumar (1992) is provided in Arriaza et al. (2018). It is interesting to note here
that if the optimal allocation strategy cannot be applied due to some other external
constraint, then using the sequence {ri }i∈{1,...,υ} defined in this proof we always have
available the second best choice as optimal strategy, and so on (or a path to improve
the initial strategy r). Also note that as a consequence of the proof, the worst option
is always (m, 0, . . . , 0), i.e., to assign all the repairs to a fixed component.

We can also compare repairs in any other system structures. Let us see an example
extracted from Arriaza et al. (2018). Additional results for minimal repairs can be
seen in Navarro et al. (2019). Similar results can be obtained for other repair options
based on distortions.

Example 5.1 Consider a 2-out-of-3 system with IID components with a common
reliability function F̄ . Assume a fixed number m = 7 of available minimal repairs.
Let us study all the possible ST comparisons of lifetimes Tr obtained from the repair
policies r = (r1, r2, r3) ∈ Z

3+ with r1 ≥ r2 ≥ r3 and r1 + r2 + r3 = 7. Note
that in this case they are also equivalent under permutations in r. Firstly, given
r = (r1, r2, r3) ∈ Z

3+ and assuming that the component lifetimes are independent,
we obtain that the reliability function of the system lifetime Tr associated to r is

F̄r(t) = Q̄(F̄(r1)(t), F̄(r2)(t), F̄(r3)(t)) = q̄r(F̄(t)),
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where Q̄(u, v, w) = uv + uw + vw − 2uvw,

q̄r(u) = q̄r1(u)q̄r2(u) + q̄r1(u)q̄r3(u) + q̄r2(u)q̄r3(u) − 2q̄r1(u)q̄r2(u)q̄r3(u)

and q̄ri is the distortion function given in (5.3) for i = 1, 2, 3. Then, we have that

Tr1 ≤st Tr2 for all F̄ ⇔ q̄r1(u) ≤ q̄r2(u) for all u ∈ (0, 1).

Therefore, if we want to compare two strategies r1 and r2, we just need to plot
both functions, q̄r1 and q̄r2 on the interval [0, 1]. For instance, in this way we can
confirm that Tr1 ≤ST Tr2 for all reliability functions F̄ when r1 = (7, 0, 0) and
r2 = (6, 1, 0). We will write r1 → r2 to denote that the strategy r1 is better than r2
or, in other words, Tr2 ≤∗ Tr1 holds for a given order ≤∗.

Following the previous procedure, we obtain the graphs given in Fig. 5.5 with
all the relationships for the comparisons of the repair strategies in the HR order
(left) and in the ST order (right). The strategies that are not connected in the graph
represent lifetimes of systems that are not comparable in the usual stochastic order
(respectively, in the hazard rate order). In this case an optimal allocation strategy does
not exist in terms of the usual stochastic order. Note that, a priori, all the minimal
path sets of the 2-out-of-3 system are equally important due to the structure of the
system. Note that the replacement policy represented by the vector r� = (4, 3, 0)
(which applies all the repairs to the components in the first path set) is ordered with a
larger number of alternatives (see Fig. 5.5). However, r� is not stochastically ordered
neither with (3, 3, 1) nor with (3, 2, 2). Similar comments hold for the HR order.

5.3 Systems with Non-ID Components

As in the preceding section, we know that the reliability function of the system
lifetime T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

for all t , where Q̄ is a distortion function. Hence, if we apply a redundancy with
distortion q̄(u) ≥ u to the i th component, the reliability function of the resulting
system lifetime Ti is

F̄Ti (t) = Q̄i (F̄1(t), . . . , F̄n(t))

with
Q̄i (u1, . . . , un) = Q̄(u1, . . . , ui−1, q̄(ui ), ui+1 . . . , un)

for 0 ≤ ui ≤ 1 and i = 1, . . . , n. Note that we are assuming a common redundancy
mechanism (distortion) for all the components.

Of course, thenwe have T ≤ST Ti for i = 1, . . . , n. However,wewant to compare
Ti and Tj to determine where the redundant component should be placed.

In the first result, extracted from Navarro and Fernández-Martínez (2021), we
analyze series systems with independent components. In this case, we just compare
T1 and T2.
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Fig. 5.5 Relationships among all possible lifetimes Tr after seven minimal repairs by using the
hazard rate order (left) and the usual stochastic order (right) for the 2-out-of-3 system considered
in Example 5.1

Proposition 5.2 Let T = min(X1, . . . , Xn) with independent components.

(i) If X1 ≥ST X2 and
q̄(u)

u
is decreasing in (0, 1), (5.4)

then T1 ≤ST T2 for all F3, . . . , Fn.
(ii) If X1 ≥HR X2 and

q̄(uv)

vq̄(u)
is decreasing in (0, 1)2, (5.5)

then T1 ≤HR T2 for all F3, . . . , Fn.
(iii) The condition (5.4) holds iff T ≤HR Ti for all F1, . . . , Fn and i = 1, . . . , n.

Proof (i) The condition T1 ≤ST T2 holds iff

Q̄1(u1, . . . , un) = q̄(u1)u2 . . . un ≤ ū1q(u2) . . . un = Q̄2(u1, . . . , un)

which is equivalent to
q̄(u1)u2 ≤ ū1q(u2).

As we assume F̄1 ≥ F̄2 and (5.4), we get
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q̄(F̄1(t))

F̄1(t)
≤ q̄(F̄2(t))

F̄2(t)

and so T1 ≤ST T2 for all F3, . . . , Fn .
(i i) The condition T1 ≤HR T2 holds if and only if

Q̄2(F̄1(t), . . . , F̄n(t))

Q̄1(F̄1(t), . . . , F̄n(t))
is increasing in t,

which is equivalent to

F̄1(t)q̄(F̄2(t))

F̄2(t)q̄(F̄1(t))
is increasing in t

As we assume X1 ≥HR X2, g(t) = F̄2(t)/F̄1(t) is decreasing in t . Hence g(t) ∈
[0, 1]. Then, by applying (5.5) to u = F̄1(t) and v = g(t), we get that

F̄1(t)q̄(F̄2(t))

F̄2(t)q̄(F̄1(t))

is increasing in t and so T1 ≤HR T2 holds for all F3, . . . , Fn .
(i i i) The condition T ≤HR Ti holds if and only if

Q̄i (F̄1(t), . . . , F̄n(t))

Q̄(F̄1(t), . . . , F̄n(t))
is increasing in t,

which is equivalent to
q̄(F̄i (t))

F̄i (t)
is increasing in t

for all F̄i . This property is equivalent to (5.4). �

Note that (i) means that, under condition (5.4), the redundant component should
be applied to the strongest components (in the ST order). To extend this property
to the HR order we need the stronger condition (5.5). The meaning of (5.4) can
be seen in (iii). It is equivalent to the condition: Ti is HR better than T and to the
same ordering property for the original component Xi and the resulting redundancy
mechanism Yi .

The property (5.4) is satisfied for the usual redundancy mechanism. For example,
for a hot IID spare added in parallel we have

q̄2:2(u)

u
= 2u − u2

u
= 2 − u

which is decreasing. The same happen for m independent spares added in parallel.
For a cold standby unit with minimal repair we have

q̄MR(u)

u
= u − u log u

u
= 1 − log u

that is also decreasing. Hence (5.4) holds. The same happen for m minimal repairs.
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Fig.5.6 Plots of c(u) = q̄θ (u)/u for a hot spare in parallel with reliability F̄θ (left) and an imperfect
repair (right) with θ = 0.25, 0.5, 0.75 (black), θ = 1 (red, minimal repair) and θ = 1.5, 2, 3, 5
(blue)

However, (5.4) is not always true. For example, if we add a spare in parallel with
reliability F̄θ , we obtain the plots in Fig. 5.6 (left) for c(u) = q̄θ (u)/u. There we
can see that function c is decreasing for 0 < θ ≤ 1 but that it is not monotone for
θ > 1 (since c(0) = c(1) = 1).

However, (5.4) holds for imperfect repairs since

c(u) = q̄θ (u)

u
= θ − uθ−1

θ − 1
is decreasing in u for all θ > 0 (see Fig. 5.6, right). As mentioned above, it is also
decreasing for a minimal repair (red curve).

The condition (5.5) is not so common. For example, it fails in active redundancies
since

q̄(uv)

vq̄(u)
= 2uv − u2v2

2uv − u2v
= 2 − uv

2 − u

is increasing in u and decreasing in v in the set (0, 1)2. The same happen for minimal
repairs since

q̄(uv)

vq̄(u)
= uv − uv log(uv)

uv − uv log(u)
= 1 + − log(v)

1 − log(u)

is increasing in u and decreasing in v in the set (0, 1)2.
Similar (reverse) results can be obtained for parallel systems with independent

components. For example, if X1 ≥ST X2 and q(u)/u is increasing, then T1 ≥ST

T2 for all F3, . . . , Fn , that is, in this system, it is better to reinforce the strongest
component (as expected). For other system structures the answer is not so clear, see
Navarro and Fernández-Martínez (2021). The same happen if we consider dependent
components. In these cases they can be compared by using distortions.

We conclude this section by establishing comparisons between redundancies at
components’ or system’s levels. The BP (Barlow and Proschan) principle for active
redundancies in parallel is established in the following theorem. It was given in
Theorem 2.4 of Barlow and Proschan (1975), p. 8, (see also Samaniego 2007, p. 17).
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Theorem 5.2 (BP-principle) If we consider active redundancies added in parallel
and the component and spares lifetimes have the same joint distribution, then the
system with redundancy at components’ level is always ST better than the system
with redundancy at system’s level.

Proof We provide the proof for an active redundancy. The proof form active redun-
dancies is similar. If X1, . . . , Xn are the components’ lifetimes and X ′

1, . . . , X
′
n are

the spares’ lifetimes. We assume that in both redundancy options (X1, . . . , Xn, X ′
1,

. . . , X ′
n) has the same joint distribution or, equivalently, that both systems are built

with the same components.
Let P1, . . . , Pr be the minimal path sets of the original system. Then the minimal

path sets of the systemwith redundancy at system’s level are P1, . . . , Pr , P ′
1, . . . , P

′
r ,

where P ′
i is the set with the spares of the components in the set Pi . It is easy to see

that all these sets are also path sets of the system with redundancy at components’
level. Hence, if we assume that they have the same components, the system with
redundancy at components’ level works whenever the system with redundancy at
system’s level does so. Hence, their lifetimes are ordered for sure and so we have the
ST order when the components have the same joint distribution (see Theorem 1.A.1
in Shaked and Shanthikumar 2007, p. 5). �

We must say that the assumption about a common joint distribution for the com-
ponents and spares is quite unrealistic when the components are dependent (since
the spares are placed at different positions). However, it holds when the components
and spares are independent. Let us see an example.

Example 5.2 Let us consider the system with lifetime

T = max(X1,min(X2, X3))

and independent components. Its dual distortion function is

Q̄(u1, u2, u3) = u1 + u2u3 − u1u2u3

for u1, u2, u3 ∈ [0, 1].
The lifetime of the system with redundancy at the components’ level is

T1 = max(max(X1, X
′
1),min(max(X2, X

′
2),max(X3, X

′
3)),

where X ′
1, X

′
2, X

′
3 represent the lifetimes of the spares. If we assume that the com-

ponents and the spares are independent and that Xi =ST X ′
i for i = 1, 2, 3, then the

dual distortion function of T1 is

Q̄1(u1, u2, u3) = q̄2:2(u1) + q̄2:2(u2)q̄2:2(u3) − q̄2:2(u1)q̄2:2(u2)q̄2:2(u3)

for u1, u2, u3 ∈ [0, 1], where q̄2:2(u) = 2u − u2 for u ∈ [0, 1].
Analogously, the lifetime of the system with redundancy at the system’s level is

T2 = max(max(X1,min(X2, X3)),max(X ′
1,min(X ′

2, X
′
3)))
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Fig. 5.7 Plots of the reliability functions (left) and its ratio (right) for the systems in Example 5.2
with redundancies at components’ level (blue) and at system’s level (red)

that is, in this case we have two independent copies of the system connected in
parallel. If we assume the same joint distribution for components and spares as in
the preceding case, then its dual distortion function is

Q̄2(u1, u2, u3) = q̄2:2(Q̄(u1, u2, u3))

for u1, u2, u3 ∈ [0, 1].
Hence, from the preceding theorem (BP-principle), we have T1 ≥ST T2 for all

F1, F2, F3. The respective reliability functions can be seen in Fig. 5.7 (left) for expo-
nential components with hazard rates 1, 2, 3, respectively. Note that the reliabilities
are very similar. The ratio in the right plot shows that this property cannot be extended
to the hazard rate order.

5.4 Importance Indices

There exist several importance indices for the components in a system, especially in
the case of independent components, see for example Barlow and Proschan (1975)
and Kuo and Zhu (2012). Some of them only depend on the structure of the system,
while others also depend on the components’ distributions.

For example, the structural importance of the i th component is defined (seeBarlow
and Proschan 1975, p. 13) as

nφ(i) = 1

2n−1

∑

x j=0,1, j 	=i

[φ(x1, . . . , 1, . . . , xn) − φ(x1, . . . , 0, . . . , xn)] ,

where the ones and zeros are placed at the i th positions. This measure takes into
account how many times the i th component is crucial for the system. If we consider
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a 2-out-of-3 system, then nφ(i) = 1/2 for i = 1, 2, 3 while if φ(x1, x2, x3) =
min(x1,max(x2, x3)), then nφ(1) = 3/4 and nφ(i) = 1/4 for i = 2, 3. The main
advantage is that these indices can always be compared

Another popular index is the Barlow and Proschan (BP) importance measure
defined as

m(i) = Pr(T = Xi ).

This index depends on the components’ distributions. If we assume IID components
with a common continuous distribution (no ties), then this index only depends on
the structure and so it can be written as mφ(i). For example, in a 2-out-of-3 system,
mφ(i) = 1/3 for i = 1, 2, 3 while if φ(x1, x2, x3) = min(x1,max(x2, x3)), then
mφ(1) = 4/6 and mφ(i) = 1/6 for i = 2, 3. Note that in this index, with no ties, we
have

∑n
i=1m(i) = 1.

In the case of independent components, another popular index based on the reli-
ability function of the structure Q̄� is

Iφ(i) = ∂i Q̄�(u1, . . . , un),

where remember that Q̄� is also the dual distortion function based on the product
copula (or the function obtained with the pivotal decomposition). It is known as the
Birnbaum (B) importance measure (see Birnbaum 1969) and it can also be written
as

Iφ(i) = Q̄(u1, . . . , ui−1, 1, ui+1, . . . , un) − Q̄(u1, . . . , ui−1, 0, ui+1, . . . , un)

or as
Iφ(i) = E(φ(X1, . . . , 1, . . . , Xn) − φ(X1, . . . , 0, . . . , Xn)),

where X1, . . . , Xn are IID with Pr(Xi = 1) = ui and Pr(Xi = 0) = 1 − ui for
i = 1, . . . , n (see Barlow and Proschan 1975, p. 22). The main disadvantage is that
this index is not a number but a function of u1, . . . , un . So the indices for the different
components cannot be compared.

For example, for a 2-out-of-3 system, we get

Iφ(1) = u2 + u3 − 2u2u3,

Iφ(2) = u1 + u3 − 2u1u3

and
Iφ(3) = u1 + u2 − 2u1u2.

However, if we consider the system φ(x1, x2, x3) = min(x1,max(x2, x3)), then

Iφ(1) = u2 + u3 − 2u2u3,

Iφ(2) = u1 − u1u3

and
Iφ(3) = u1 − u1u2.

If the components are IID, we can assume u = u1 = u2 = u3 and then

Iφ(i) = 2u − 2u2, i = 1, 2, 3
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in the 2-out-of-3 system (i.e. all the components have the same importance) while

Iφ(1) = 2u − u2 ≥ u − u2 = Iφ(i), i = 2, 3

in the other system (the first component is more important than the others). These
are expectable properties.

If we consider dependent components, the index should also take into account the
dependence structure. However, it should not depend on the components’ distribu-
tions. It should also be used to determine the best replacement positions. Actually,
we may want to place the best components or the redundancies at the most critical
(important) positions.

In this case (dependent components) the three equivalent expressions considered
above for Iφ(i) lead to different options. The most useful one in practice is

Iφ,C (i) = ∂i Q̄C (u1, . . . , un), (5.6)

where Q̄C is the dual distortion function of the system when the dependence is
determined by the copula C . Note that it also depends on the system structure φ. To
simplify the notation we will just write Ii instead of Iφ,C (i). The meaning is clear
the most important components are those which lead to a higher increment in the
system reliability function (when they are improved).

Again the indices are functions of u1, . . . , un . However, as above, we could con-
sider ID components and then they are just functions of u = u1 = · · · = un with
Ii (u) := Ii (u, . . . , u).

This indexwas analyzed inMiziuła andNavarro (2019) for dependent components
proving that

m(i) = Pr(T = Xi ) =
∫ ∞

0
Ii (F̄1(t), . . . , F̄n(t))dFi (t)

for i = 1, . . . , n. In particular, if the components are ID, then

m(i) = Pr(T = Xi ) =
∫ 1

0
Ii (u)du. (5.7)

In this case, Pr(T = Xi ) does not depend on F = F1 = · · · = Fn and, if Ii (u) ≤
I j (u) for all u ∈ [0, 1], then m(i) ≤ m( j) for all F .

This index can also be used to determine the best replacement position. The result
extracted from Theorem 2.4 of Navarro et al. (2020) can be stated as follows. Its
proof can be seen there.

Theorem 5.3 If I1(u1, . . . , un) ≤ I2(u1, . . . , un) for all u1, . . . , un, then T1 ≤ST

T2, where Ti is the system obtained by applying a redundancy with dual distortion
q̄ to the i th component for i = 1, 2.

The good point of the preceding theorem is that it holds for arbitrary redundancies
satisfying q̄(u) ≥ u for u ∈ [0, 1]. It can also be applied to mixed systems. However,
the condition I1 ≤ I2 assumed there is too strong. So some weaker conditions that
lead to the similar result were analyzed in Navarro et al. (2020). Other conditions for
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specific redundancies (active redundancy in parallel or minimal repair) are analyzed
as well.

Problems

1. Prove equation (5.3).
2. Compare two repair policies in a system with ID components.
3. Check an arrow in Fig. 5.5.
4. Study if Theorem 5.1 can be extended to hot redundancies of independent com-

ponents added in parallel (Indication: Try to prove it first for n = 2).
5. Study the redundancy policies considered in Example 5.1 but using hot inde-

pendent spares connected in parallel.
6. Compare a redundancy at different positions in a system with IID components.
7. Compare a redundancy at different positions in a system with independent com-

ponents.
8. Compare a redundancy at different positions in a system with dependent com-

ponents.
9. Confirm the BP-principle in a system with independent components.

10. Compute the BP and B importance measures in a system with IID components
and confirm that (5.7) holds.

11. Compute the BP and B importance measures in a system with DID components
and confirm that (5.7) holds.
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