
3Stochastic Comparisons

Abstract

In this chapter we use the representations obtained in the preceding chapter to
stochastically compare the performance of different systems. We consider the
main stochastic orders: the usual stochastic order, the hazard rate order, the mean
residual life order, the reversed hazard rate order and the likelihood ratio order.
We use different techniques depending on the assumptions made about the com-
ponents. We consider systems with independent and identically distributed (IID)
components, exchangeable (EXC) components, identically distributed (ID) com-
ponents, independent (IND) components or dependent components. The depen-
dence is modeled by using copulas (or joint reliability functions). This chapter is
based on the review paper Navarro (2018b).

3.1 Main Stochastic Orders

First we give the definitions and the main properties of the stochastic orders consid-
ered here. Note that they can be used to compare both the system and the component
lifetimes (i.e. non-negative random variables). For more properties and applications
we refer the interested readers to Belzunce et al. (2016), Müller and Stoyan (2002)
and Shaked and Shanthikumar (2007).

If X and Y are two random variables (representing the lifetimes of two different
units or systems), there exist several ways to stochastically compare X and Y . The
first option is to compare their means (or expected lifetimes) μX = E(X) and
μY = E(Y ) (if they exist). Thus we write X ≤M Y (mean order) when μX ≤ μY .

The second main option is the (usual) stochastic order defined as follows.

Definition 3.1 X is said to be smaller than Y in the stochastic order (denoted by
X ≤ST Y or by FX ≤ST FY ) if F̄X (t) ≤ F̄Y (t) for all t , where F̄X and F̄Y are the
reliability functions of X and Y, respectively.
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Note that here (and throughout the book) ‘smaller than’ means ‘smaller than
or equal to’. Also, if both X ≤ST Y and X ≥ST Y hold (i.e., X =ST Y ), then
F̄X (t) = F̄Y (t) for all t , that is, they have the same law (distribution). This order can
also be called ‘the reliability order’ since X ≤ST Y means that the reliability of the
units represented by Y is always equal to or greater than the reliability of the units
represented by X .

The ST order X ≤ST Y is characterized by the following property:

E(g(X)) ≤ E(g(Y )) (3.1)

for any increasing function g such that these expectations exist. This property is
sometimes used as a definition. Recall that, throughout the book, we use increasing
(decreasing) in the weak sense, that is, a function g is increasing (decreasing) if
g(a) ≤ g(b) (≥) for all a ≤ b. Therefore, the stochastic order can be seen as an
extension of the expected value order for increasing functions. In particular, we have
that X ≤ST Y implies E(X) ≤ E(Y ) whenever both expectations exist. Also note
that, from (2.3), if X ≤ST Y and E(X) = E(Y ) hold, then X =ST Y .

Another characterization of this order is the following: X ≤ST Y if and only
if there exist two random variables X∗ and Y ∗ over the same probability space
(�, S,Pr) such that X∗ =ST X , Y ∗ =ST Y and X∗(ω) ≤ Y ∗(ω) for all ω ∈ � (see
Shaked and Shanthikumar 2007, p. 5). However, note that if X and Y are defined over
the same probability space �, X ≤ST Y does not necessarily imply that X (ω) ≤ST

Y (ω) for all ω ∈ �. As an immediate consequence we have that if X ≤ST Y , then
aX + b ≤ST aY + b for all a > 0 and b. The ordering is reversed when a < 0.

Another option is to compare X and Y by comparing their respective aging func-
tions. For example, the hazard rate order is defined as follows.

Definition 3.2 X is said to be smaller than Y in the hazard (or failure) rate order
(denoted by X ≤HR Y or by FX ≤HR FY ) if F̄Y /F̄X is an increasing function (with
the convention a/0 = +∞ for all a > 0).

The HR order can be characterized in terms of the ST order by the following
property:

X ≤HR Y ⇔ (X − t |X > t) ≤ST (Y − t |Y > t) for all t. (3.2)

Hence the HR order can be interpreted as follows: X ≤HR Y if and only if the
residual lifetime of a used unit with age t from X is ST-smaller than the residual
lifetime of a used unit with the same age t from Y for all t . Note that X ≤HR Y
implies X ≤ST Y .

If X and Y are two random variables with absolutely continuous (or discrete)
distribution functions, then X ≤HR Y iff hX (t) ≥ hY (t) for all t , where hX =
fX/F̄X and hY = fY /F̄Y are the HR functions of X and Y, respectively.
Analogously, the reversed hazard rate order is defined as follows.

Definition 3.3 X is said to be smaller than Y in the reversed hazard rate order
(denoted by X ≤RHR Y or by FX ≤RHR FY ) if FY /FX is an increasing function.
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The RHR order can be characterized in terms of the ST order by the following
property:

X ≤RHR Y ⇔ (X |X ≤ t) ≤ST (Y |Y ≤ t) for all t

or equivalently, by

X ≤RHR Y ⇔ (t − X |X ≤ t) ≥ST (t − Y |Y ≤ t) for all t. (3.3)

From (3.3), the RHR order can be interpreted as follows: X ≤RHR Y holds if and
only if the inactivity time of a unit which has failed before age t from X is ST-greater
than the inactivity time of a unit which has failed before age t from Y for all t .

If X and Y are two random variables with absolutely continuous (or discrete) dis-
tribution functions, then X ≤RHR Y iff h̄ X (t) ≤ h̄Y (t) for all t , where h̄ X = fX/FX

and h̄Y = fY /FY are the reverse hazard rate functions of X and Y , respectively.
It can be proved that the RHR order does not imply the HR order and that the

HR order does not imply the RHR order. However, they are related by the following
properties:

X ≤RHR Y ⇔ −X ≥HR −Y

and
X ≤HR Y ⇔ −X ≥RHR −Y

since FX (t) = F̄−X (−t), fX (t) = f−X (−t), hX (t) = h̄−X (−t) and h̄ X (t) =
h−X (−t).

Next we give the definition of a stronger order also related with conditional expec-
tations and aging properties, the likelihood ratio order.

Definition 3.4 If X and Y are two random variables with absolutely continuous (or
discrete) distribution functions, X is said to be smaller than Y in the likelihood ratio
order (denoted by X ≤LR Y or by FX ≤LR FY ) if fY / fX is increasing in the union
of their supports, where fX and fY are probability density (or probability mass)
functions of X and Y, respectively.

Note that X ≤LR Y holds if and only if

fX (y) fY (x) ≤ fX (x) fY (y)

for all x < y. The LR order can also be characterized by the following property:

X ≤LR Y ⇔ (X |s < X ≤ t) ≤ST (Y |s < Y ≤ t)

for all s < t such that these conditional randomvariables exist (i.e., such that FX (s) <

FX (t) and FY (s) < FY (t)). This property can be used to give a general definition
of the LR order. Hence the LR order can be interpreted as follows: X ≤LR Y if and
only if when we know that a unit from X and another unit from Y have both failed
in the interval (s, t], the lifetime of the unit from X is ST-smaller than the lifetime
of the unit from Y for all s < t . In particular, we obtain that the LR order implies
both the HR and the RHR orders and, of course, the ST order. The LR order can
also be characterized by the following property: X ≤LR Y holds iff ηX ≥ ηY , where
ηZ := − f ′

Z/ fZ is known as the Glaser’s eta function (see Glaser 1980).
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The relationships between the preceding orders defined in terms of ST orderings
of conditional random variables can be summarized as follows:

X ≤LR Y ⇒ X ≤HR Y
⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y

where the reverse implications are not necessarily true.
We can complete the diagram above by including the orders based on conditional

expectations given below. For a random variable Z , we define the upper end-point
uZ of its support as uZ := sup{x : FZ (x) < 1}. Analogously, the lower end-point
lZ of its support is lZ := inf{x : FZ (x) > 0}. Then the mean residual lifetime order
is defined as follows.

Definition 3.5 X is said to be smaller than Y in the mean residual life order
(denoted by X ≤MRL Y of by FX ≤MRL FY ) if uX ≤ uY and mX (t) ≤ mY (t)
for all t < uX for which that expectations exist, where mX (t) = E(X − t |X > t)
and mY (t) = E(Y − t |Y > t) are the MRL functions of X and Y, respectively.

Analogously, we can define the following orders based on conditional expecta-
tions.

Definition 3.6 X is said to be smaller than Y in the mean inactivity time order
(denoted by X ≤MIT Y ) if lX ≤ lY and m̄X (t) ≥ m̄Y (t) for all t > lY for which that
expectations exist, where m̄X (t) = E(t − X |X ≤ t) and m̄Y (t) = E(t − Y |Y ≤ t)
are the MIT functions of X and Y, respectively.

Definition 3.7 X is said to be smaller than Y in the doubly truncated mean order
(denoted by X ≤DTM Y ) if mX (s, t) ≤ mY (s, t) for all s < t for which that
expectations exist, where mX (s, t) = E(X |s < X ≤ t) and mY (s, t) = E(Y |s <

Y ≤ t) are the DTM functions of X and Y, respectively.

The definitions and relationships between the orders defined in this section can
be summarized in the diagram given in Table3.1 that was obtained by Navarro et al.
(1997). The first and last columns can be used as definitions for general distributions.
The implications from the second column to the third column are consequences of
the characterization of the ST order given in (3.1). The other implications can be
obtained taking limits to ∞ or to −∞. The reverse implications are not necessarily
true.

Another option two compare two independent random variables X and Y defined
over the same probability space is the following.

Definition 3.8 If X and Y are two independent random variables defined over the
same probability space, X is said to be smaller than Y in stochastic precedence
(denoted by X SP Y ) if Pr(X ≤ Y ) ≥ 1/2.
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Table 3.1 Relationships between the main stochastic orders. We use the notation Zt = (Z − t |Z >

t), t Z = (t − Z |Z ≤ t) and s Zt = (Z |s < Z ≤ t)

It is an open problem to determine if stochastic precedence comparisons have the
transitive property. They do not have it when X and Y are dependent. Hence we do
not know if they define a proper order. For that reason we do not use the notation
X ≤SP Y . Moreover, note that if both X SP Y and Y SP X hold, then we do not know
if X and Y have the same law. However, stochastic precedence is a reasonable way
to compare the lifetimes of two independent units or systems. Moreover, Arcones
et al. (2002) prove that if X and Y are two independent random variables defined
over the same probability space and X ≤ST Y holds, then X SP Y . Hence stochastic
precedence is a necessary condition for the ST order to hold. Stochastic precedence
comparisons can be used as an alternative to the mean order when the ST order does
not hold.

3.2 Systems with IID or EXC Components

First of all we prove that the k-out-of-n systems with IID components are LR-ordered
(as expected).

Proposition 3.1 If F is absolutely continuous, then

Xi :n ≤LR X j :m
for all i ≤ j and n − i ≥ m − j .

Proof From (2.12), we get

fi :n(t) = i

(
n

i

)
f (t)Fi−1(t)F̄n−i (t)

and

f j :m(t) = j

(
m

j

)
f (t)F j−1(t)F̄m− j (t).
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Hence
f j :m(t)

fi :n(t)
= c

F j−i (t)

F̄n−i−m+ j (t)

for a constant c > 0. As F is increasing and F̄ is decreasing, this ratio is increaing
in t under the stated assumptions and so the LR order holds. �

As a consequence, in the IID case, we have that

Xi :m ≤LR Xi :n ≤LR X j :n
for all i, j, n,m ∈ Z such that 1 ≤ i ≤ j ≤ n ≤ m. Note that Xi :n is LR increasing
in i and LR decreasing in n. In particular, the k-out-of-n systems (order statistics)
are LR ordered in the IID case, that is,

X1:n ≤LR · · · ≤LR Xn:n . (3.4)

As the LR order is the strongest one, then

X1:n ≤ORD · · · ≤ORD Xn:n (3.5)

for ORD = HR, RHR, ST, MRL , MIT, DTM . This property also hold if F is
not absolutely continuous. Actually,

X1:n ≤ST · · · ≤ST Xn:n (3.6)

holds in the general case since X1:n ≤ · · · ≤ Xn:n . In the general case we also have

X1:n ≤ST · · · ≤ST X1:1,
for the series systems,

X1:1 ≤ST · · · ≤ST Xn:n,
for the parallel systems and, in general, Xi :n ≤ST X j :m whenever i ≤ j and n− i ≥
m − j .

However, surprisingly, we will see that neither

X1:n ≤HR · · · ≤HR Xn:n (3.7)

nor
X1:n ≤MRL · · · ≤MRL Xn:n . (3.8)

hold in the general (or the EXC) case. This fact was first proved in Navarro and
Shaked (2006).

Now we are ready to prove the first ordering results for systems with IID compo-
nents based on Samaniego’s signature representation. They were obtained in Kochar
et al. (1999) and allows us to compare two systems just by comparing their respective
signatures. Note that the signatures of order n can be considered as probability mass
functions of discrete distributions over {1, . . . , n}. Then they can be ordered by using
the orders defined above.

Theorem 3.1 (Kochar et al. 1999) Let T1 and T2 be the lifetimes of two coherent
systems based on n IID components with a common continuous distribution function
F. Let s1 and s2 be their respective signatures. Then the following properties hold:
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(i) If s1 ≤ST s2, then T1 ≤ST T2 for all F;
(ii) If s1 ≤HR s2, then T1 ≤HR T2 for all F;
(iii) If s1 ≤LR s2, then T1 ≤LR T2 for all abs. cont. distribution functions F.

The proof is obtained from Samaniego’s representation (2.5), the ordering
properties of the k-out-of-n systems in (3.5) for the IID case and the preservation
ordering properties for mixtures of ordered distributions given in Theorems 1.A.6,
1.B.14 and 1.C.17 of Shaked and Shanthikumar (2007). Stochastic precedence com-
parisons were obtained in Theorem 5.6 of Samaniego (2007), p. 70.

These results can be extended to the EXC case by using the representations for
coherent and semi-coherent systems obtained in the preceding chapter. These results
were obtained in Navarro et al. (2008). Note that they also hold for systems with ID
component lifetimes and a common DD survival copula due to Theorem 2.13.

Theorem 3.2 (Navarro et al. 2008) Let T1 and T2 be the lifetimes of two semi-
coherent (or coherent) systems with component lifetimes (X1, . . . , Xn) having an
exchangeable joint distribution function F, and signatures of order n (signatures),
s(n)
1 and s(n)

2 , respectively. Then the following properties hold:

(i) If s(n)
1 ≤ST s(n)

2 , then T1 ≤ST T2 for all F;

(ii) If s(n)
1 ≤HR s(n)

2 , then T1 ≤HR T2 for all F such that (3.7) holds;

(iii) If s(n)
1 ≤HR s(n)

2 , then T1 ≤MRL T2 for all F such that (3.8) holds;

(iv) If s(n)
1 ≤LR s(n)

2 , then T1 ≤LR T2 for all absolutely continuous or discrete joint
distribution functions F such that (3.4) holds.

As in the IID case, this theorem is an immediate consequence of the signature rep-
resentation for the EXC case (2.27) and the mixture preservation properties obtained
in Shaked and Shanthikumar (2007). However, in this case, we need to assume the
respective ordering properties for the k-out-of-n systems (except in the case of the
ST order where they are always true). Note that in (i i i) we need the HR order for
the signatures to get the MRL order for the system lifetimes when the k-out-of-n
systems are MRL ordered. The MRL order for the signatures is not enough. Similar
results holds for the MIT and RHR orders (see Navarro and Rubio 2011). Let us see
an example.

Example 3.1 Let us consider the systems with lifetimes T1 = min(X1,max(X2,

X3)) and T2 = max(min(X1, X2),min(X3, X4)). Note that they are of different
orders (or that the first one is a semi-coherent system of order 4). So we need the
signatures of order 4 to compare them.They are s(4)1 = (1/4, 5/12, 1/3, 0) and s(4)2 =
s2 = (0, 2/3, 1/3, 0), respectively. We also have to assume that (X1, X2, X3, X4)

has an EXC joint distribution F (or that they are IID or just ID with a DD survival
copula).
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To check the ST order we need to compute the reliability functions S(4)
1 and S(4)

2
of the respective signatures. They are given in the following table:

s(4)1 1/4 5/12 1/3 0

S(4)
1 1 3/4 1/3 0

s(4)2 0 2/3 1/3 0

S(4)
2 1 1 1/3 0

As S(4)
1 ≤ S(4)

2 , then s(4)1 ≤ST s(4)2 holds. Therefore, from Theorem 3.2, (i), T1 ≤ST

T2 holds for all EXC joint distributions F. This includes the IID∼F case for any
univariate distribution function F . Note that these systems cannot be ordered by
using Theorem 3.1.

Analogously, to check the HR order, we need to compute the ratio of the reliability
functions S(4)

1 and S(4)
2 of the respective signatures. They are given in the following

table:
S(4)
2 1 1 1/3 0

S(4)
1 1 3/4 1/3 0

S(4)
2 /S(4)

1 1 4/3 1 −
Hence s(4)1 and s(4)2 are not HR ordered. Therefore, we do not know if T1 and T2 are
HR ordered for all EXC joint distributions F such that (3.7) holds (or all F in the
IID case). Note that Theorems 3.1 and 3.2 just include sufficient conditions for this
ordering.

Finally, if we want to get the LR order, we need to compute the ratio of the
respective signatures s(4)1 and s(4)2 . It is given in the following table:

s(4)2 0 2/3 1/3 0

s(4)1 1/4 5/12 1/3 0

s(4)2 /s(4)1 0 8/5 1 −
As expected, s(4)1 and s(4)2 are not LR ordered (since they are not HR ordered). So
we do not know what happen with the system lifetimes in the LR order. Note again
that Theorem 3.2 just includes sufficient conditions.

To illustrate these theoretical results we consider the IID case with a standard
exponential distribution. The system reliability functions are plotted in Fig. 3.1, left.
As expected they are ordered. This property holds for any distribution function F .
Even more, it holds for any joint EXC distribution function F. The code in R to get
this plot is the following:

R<-function(t) exp(-t)

s1<-c(1/4,5/12,1/3,0)

s2<-c(0,2/3,1/3,0)

R14<-function(t) (R(t))ˆ4

R24<-function(t) 4*(R(t))ˆ 3-3*(R(t))ˆ4

R34<-function(t) 6*(R(t))ˆ2-8*(R(t))ˆ3+3*(R(t))ˆ 4
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Fig. 3.1 Reliability functions (left) and hazard rate functions (right) for the systems T1 (blue) and
T2 (red) in Example 3.1. The dotted lines correspond to the functions of the k-out-of-4 systems for
k = 1, 2, 3, 4

R44<-function(t) 4*R(t)-6*(R(t))ˆ2+4*(R(t))ˆ 3-1*(R(t))ˆ4

R1<-function(t) {

s1[1]*R14(t)+s1[2]*R24(t)+s1[3]*R34(t)+s1[4]*R44(t)

}

R2<-function(t) {

s2[1]*R14(t)+s2[2]*R24(t)+s2[3]*R34(t)+s2[4]*R44(t)

}

curve(R14(x),xlab=’t’,ylab=’Reliability’,0,3,lty=3,lwd=2)

curve(R24(x),lty=3,add=T,lwd=2)

curve(R34(x),lty=3,add=T,lwd=2)

curve(R44(x),lty=3,add=T,lwd=2)

curve(R1(x),add=T,lwd=2)

curve(R2(x),add=T,col=’red’,lwd=2)

The system hazard rate functions are plotted in Fig. 3.1, right. In this case, they
are not ordered. Thus, the second system is better when they are new but, from time
t = 0.5 on (half a year if t is measured in years), the used systems with the first
structure are a little bit better than that with the second. However, they have the same
limiting behavior 2 when t → ∞. Note that, in this example, the limiting behavior
of the hazard rate function of the k-out-of-4 system is k for k = 1, 2, 3, 4 and that
the common hazard rate of the components is h(t) = 1 for t ≥ 0. The additional
code to plot these hazard rate functions is the following:

f<-function(t) exp(-t)

f14<-function(t) f(t)*4*(R(t))ˆ3

f24<-function(t) f(t)*(12*(R(t))ˆ2-12*(R(t))ˆ3)

f34<-function(t) f(t)*(12*R(t)-24*(R(t))ˆ2+12*(R(t))ˆ3)

f44<-function(t) f(t)*(4-12*R(t)+12*(R(t))ˆ2-4*(R(t))ˆ3)
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f1<-function(t){

s1[1]*f14(t)+s1[2]*f24(t)+s1[3]*f34(t)+s1[4]*f44(t)

}

f2<-function(t) {

s2[1]*f14(t)+s2[2]*f24(t)+s2[3]*f34(t)+s2[4]*f44(t)

}

curve(f14(x)/R14(x),ylab=’HR’,0,3,lty=3,ylim=c(0,4),lwd=2)

curve(f24(x)/R24(x),lty=3,add=T,lwd=2)

curve(f34(x)/R34(x),lty=3,add=T,lwd=2)

curve(f44(x)/R44(x),lty=3,add=T,lwd=2)

curve(f1(x)/R1(x),add=T,col=’blue’,lwd=2)

curve(f2(x)/R2(x),add=T,col=’red’,lwd=2) �

Proceeding as in the preceding example we can obtain all the ordering properties
for all the coherent systems with 1-4 components given in Table 2.1. They were
obtained in Navarro et al. (2008) and are given in Figs. 3.2, 3.3 and 3.4. The systems
with repeated signatures are not included in the graphs (since they are equal in law
to other systems in the graphs). Note that in the EXC case, we need some extra-
conditions for the HR, MRL and LR orders. We do not need them in the IID case.
Also note that the graph for the ST and LR orders are symmetric, that is, Ti ≤ORD Tj

iff the respective dual systems satisfy T D
j ≤ORD T D

i . This is not the case for the HR

and MRL orders. For the hazard rate order, we have Ti ≤HR Tj iff T D
j ≤RHR T D

i
under the respective properties for the order statistics in the EXC case. A similar
property holds for MRL and MIT orders.

As we have seen in the preceding example, when the signature ordering does not
hold, we do not know if the systems are ordered since the theorems just contain suf-
ficient conditions. In Navarro and Rubio (2011) it is proved that the conditions given
in (i), (i i) and (iv) of the preceding theorem are actually necessary and sufficient

Fig. 3.2 ST orderings for
the systems in Table 2.1 and
an EXC F. They also hold
for the IID case
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Fig. 3.3 HR (resp. MRL)
orderings for the systems in
Table 2.1 and an EXC F
under (3.7) (resp. (3.8)).
They also hold for the IID
case (here both conditions
hold and so it is better to get
the HR order)

Fig. 3.4 LR orderings for
the systems in Table 2.1 and
and EXC F under (3.4).
They also hold for the IID
case for any absolute
continuous distribution
function F

conditions to have the ST, HR and LR orderings, respectively, for any exchangeable
distribution function F under these conditions for the order statistics. This result can
be stated as follows. This is not true for the MRL order and, as we will see later, it
is not true for the IID case.

Theorem 3.3 (Navarro and Rubio, 2011) Let T1 and T2 be the lifetimes of two semi-
coherent (or coherent) systems with component lifetimes (X1, . . . , Xn) having an
exchangeable joint distribution function F, and signatures of order n (signatures),
s(n)
1 and s(n)

2 , respectively. Then the following properties hold:

(i) s(n)
1 ≤ST s(n)

2 iff T1 ≤ST T2 for all F;

(ii) s(n)
1 ≤HR s(n)

2 iff T1 ≤HR T2 for all F such that (3.7) holds;
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(iii) s(n)
1 ≤LR s(n)

2 iff T1 ≤LR T2 for all absolutely continuous or discrete distribu-
tion functions F such that (3.4) holds.

Proof The proofs of the “only if” parts are obtained from Theorem 3.2.
To prove the “if” part in (i), we assume that T1 ≤ST T2 holds for all EXC F. Then

we consider a particular EXC F defined as follows. Let (X1, . . . , Xn) be a random
vector defined as Xi = σ(i) for i = 1, . . . , n, where σ : [n] → [n] is a randomly
chosen permutation in the set of all the permutations of the set [n]. Clearly, the joint
distribution F of (X1, . . . , Xn) is EXC since

(X1, . . . , Xn) =ST (Xτ(1), . . . , Xτ(n))

holds for any permutation τ . Note that Xi has a uniform distribution on [n] for all i .
Moreover, as we choose a specific (common) permutation σ , the associated ordered
data are Xi :n = i for sure for all i . Therefore, Tj = 1, . . . , n with probabilities

s(n)
j for j = 1, 2. Hence, T1 ≤ST T2 holds for this EXC distribution F which is

equivalent to s(n)
1 ≤ST s(n)

2 .
The proofs of the “if” parts of (i i) and (i i i) are analogous taking into account that

the specific EXC distribution defined above trivially satisfies (3.7) and (3.4) (since
Xi :n = i for sure for all i). �

This theorem assures that Figs. 3.2, 3.3 and 3.4 contain all the ordering properties
for the EXC case. Navarro and Rubio (2011) noticed a surprising property: Some
systems that cannot be ordered by using signatures of order n, can be ordered with
signatures of order m for some m > n. This fact seems to be against the preceding
theorem but this is not the case. Let us see an example that proves that Fig. 3.4 does
not contain all the ordering properties for the IID case.Wewill see in the next section
that the same happen for Fig. 3.3, providing a procedure to detect all the orderings
for the IID case. We will also prove that Fig. 3.2 does contain all the ST orderings
for the IID case.

Example 3.2 Let us consider the systems5 and24 fromTable 2.1with lifetimesT5 =
min(X1,max(X2, X3)) and T24 = max(X1,min(X2, X3, X4)). Their signatures of
order 4 are s(4)5 = (1/4, 5/12, 1/3, 0) and s(4)24 = (0, 1/2, 1/4, 1/4). The respective
reliability vectors are:

s(4)5 1/4 5/12 1/3 0

S(4)
5 1 3/4 1/3 0

s(4)24 0 1/2 1/4 1/4

S(4)
24 1 1 1/2 1/4

S(4)
24 /S(4)

5 1 4/3 3/2 +∞
As S(4)

24 /S(4)
5 is increasing, s(4)5 ≤HR s(4)24 holds. So we can connect these systems in

Fig. 3.3 and their respective lifetimes satisfy T5 ≤HR T24 for all EXC F satisfying
(3.7). In particular this ordering holds for the IID case and the ST order holds for
any EXC F (note that s(4)5 ≤ST s(4)24 holds).
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However, to check the LR order we compute the following table:

s(4)24 0 1/2 1/4 1/4

s(4)5 1/4 5/12 1/3 0

s(4)24 /s(4)5 0 6/5 3/4 +∞
Therefore, s(4)5 and s(4)24 are not LR-ordered. So these systems are not LR ordered for
all EXC F and so they are not connected in Fig. 3.4.

However, if we compute the respective signatures of order 5 from (2.29), we get

s(5)5 =
(
4

5

1

4
,
1

5

1

4
+ 3

5

5

12
,
2

5

5

12
+ 2

5

1

3
,
3

5

1

3
+ 1

5
0,

4

5
0

)
=

(
1

5
,
3

10
,
3

10
,
1

5
, 0

)

and

s(5)24 =
(
4

5
0,

1

5
0 + 3

5

1

2
,
2

5

1

2
+ 2

5

1

4
,
3

5

1

4
+ 1

5

1

4
,
4

5

1

4

)
=

(
0,

3

10
,
3

10
,
1

5
, 0

)
.

Hence,
s(5)24 0 3/10 3/10 1/5 1/5

s(5)5 1/5 3/10 3/10 1/5 0

s(5)24 /s(5)5 0 1 1 1 +∞
Therefore s(5)5 ≤LR s(5)24 holds and, from Theorem 3.2, (iv), T5 ≤LR T24 for any
EXC joint distribution F.

This property seems to contradict the property obtained with the signatures of
order 4 taking into account that these properties are equivalent from Theorem 3.3,
(i i i). What is the explanation?

The answer is the following. Note that we have proved that T5 ≤LR T24 for all
EXC F of dimension 5. However, this is not true for all EXC F of dimension 4.
In particular, this property fails for the distribution of dimension 4 constructed in
the proof of Theorem 3.3 (since the systems’ probability mass values s(4)5 and s(4)24
are not LR-ordered). This is due to the fact that this particular EXC distribution of
dimension 4 cannot be extended (or included) in an exchangeable distribution of
order 5. Note that we can affirm that T5 ≤LR T24 holds for all EXC F of dimension
4 that can be extended (e.g. that are marginals) of EXC distributions of dimension 5.
This is actually what happen in the IID case that can be extended to any dimension.
So we can affirm that T5 ≤LR T24 holds for the IID case and all distributions F (of
dimension 1). Then note that we can connect these systems in the graph for the IID
case. In the next section we will see how to complete the graphs for the IID case for
all the orderings. �

3.3 Systems with ID Components

Recall that, from the preceding chapter, if the component lifetimes of a system
are identically distributed with a common distribution F and a common reliability
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F̄ = 1 − F , then the respective system’s functions can be written as

FT (t) = q(F(t)) (3.9)

and
F̄T (t) = q̄(F̄(t)) (3.10)

for all t , where q and q̄ are two (univariate) distortion functions satisfying q̄(u) =
1 − q(1 − u) for all u ∈ [0, 1]. These distortion functions are increasing and
continuous and depend on the system structure (minimal path or cut sets) and on the
dependence between the component lifetimes (copula or survival copula).

Hence, we can apply to systems with ID components all the ordering properties
obtained for distorted distributions in Navarro et al. (2013, 2014) and Navarro and
Gomis (2016). They are stated in the following proposition. We say that a function
g is bathtub (upside-down bathtub) shaped if there exist t1 ≤ t2 such that g(t) is
decreasing (increasing) for t ≤ t1, constant for t ∈ [t1, t2], and increasing (decreas-
ing) for t ≥ t2. In many applications, the hazard rate functions of the components
are bathtub shaped.

Proposition 3.2 If Ti has the reliability function q̄i (F̄(t)) and the distribution func-
tion qi (F(t)) for i = 1, 2, then the following properties hold:

(i) T1 ≤ST T2 for all F iff q̄2 ≥ q̄1 (or q2 ≤ q1) in (0, 1);
(ii) T1 ≤HR T2 for all F iff q̄2/q̄1 decreases in (0, 1);
(iii) T1 ≤RHR T2 for all F iff q2/q1 increases in (0, 1);
(iv) T1 ≤LR T2 for all absolutely continuous distribution functions F iff q̄ ′

2/q̄
′
1

decreases (or q ′
2/q

′
1 increases) in (0, 1);

(v) T1 ≤MRL T2 for all F such that E(T1) ≤ E(T2) if q̄2/q̄1 is bathtub in (0, 1).

Proof The proof (i) is immediate.
To prove (i i) we note that T1 ≤HR T2 holds iff

q̄2(F̄(t))

q̄1(F̄(t))

is increasing in t . Clearly, this property holds when q̄2/q̄1 decreases in (0, 1) since F̄
is decreasing. Conversely, if T1 ≤HR T2 holds for all F , then it holds for a continuous
F (e.g. a standard exponential or a uniform distribution), and then q̄2(u)/q̄1(u) is
decreasing for u ∈ (0, 1).

The proof of (i i i) is similar to that of (i i).
To prove (iv) we recall that the respective PDF can be written as fi (t) =

f (t)q ′
i (F(t)) for i = 1, 2, where f = F ′ is the common baseline PDF. Hence,

T1 ≤LR T2 holds iff the ratio

f2(t)

f1(t)
= q̄ ′

2(F̄(t))

q̄ ′
1(F̄(t))
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is increasing in t . Clearly, this property holds when q̄ ′
2/q̄

′
1 decreases in (0, 1) since F̄

is decreasing. Conversely, if T1 ≤LR T2 holds for all F , then it holds for a continuous
F and so q̄ ′

2/q̄
′
1 decreases in (0, 1). The proof for q ′

2/q
′
1 is similar.

Finally, to prove (v), we note that if q̄2/q̄1 is bathtub in (0, 1), then the ratio

F̄2(t)

F̄1(t)
= q̄2(F̄(t))

q̄1(F̄(t))

is bathtub in t . Hence, from the results given in Belzunce et al. (2013), T1 ≤MRL T2
holds for all F such that E(T1) ≤ E(T2). �

Note that in all the orderings we have necessary and sufficient conditions except
in (v) where we just have a sufficient condition and that there we need the additional
condition E(T1) ≤ E(T2). Note that if q̄2/q̄1 is decreasing (or increasing), then we
get the HR order from (i i) which is stronger than the MRL order. Moreover, we do
not need the additional assumption E(T1) ≤ E(T2).

Clearly, these properties can be applied to compare systems with ID components
having a common distribution function F by using the distortion representations
obtained in Sect. 2.4. The result for the ST order can be stated as follows.

Proposition 3.3 Let T1 and T2 be the lifetimes of two semi-coherent (or coherent)
systems with ID component lifetimes having an common distribution function F,
and distortion functions q1 and q2, respectively. Then the following properties are
equivalent:

(i) q̄1 ≤ q̄2 (or q1 ≥ q2) in (0, 1);
(ii) T1 ≤ST T2 for all F;
(iii) T1 ≤ST T2 for a continuous F.

Proof From Proposition 3.2, (i), we have that (i) implies (i i).
Clearly, (i i) implies (i i i).
Finally, if (i i i) holds, then T1 ≤ST T2 for a continuous F , that is, F̄T1 ≤ F̄T2 .

Hence, if 0 < u < 1, then there exists t such that F̄(t) = u (since F is continuous).
Therefore

q̄1(u) = q̄1(F̄(t)) = F̄T1(t) ≤ F̄T2(t) = q̄2(F̄(t)) = q̄2(u)

for all u ∈ (0, 1). �

For the HR order we have the following result.

Proposition 3.4 Let T1 and T2 be the lifetimes of two semi-coherent (or coherent)
systems with ID component lifetimes having an common distribution function F,
and distortion functions q1 and q2, respectively. Then the following properties are
equivalent:

(i) q̄2/q̄1 is decreasing in (0, 1);
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(ii) T1 ≤HR T2 for all F;
(iii) T1 ≤HR T2 for a continuous F.

The proof is similar to that of the STorder. Note that in both cases, the systemsmay
have different orders (i.e. numbers of components), different structures and different
dependency relationships (copulas). Theonly requirement is that theyhave a common
distribution function F . Also note that then we get distribution-free ordering results,
that is, comparisons for any F . Similar results can be stated for the RHR and LR
orders from Proposition 3.2. In the last case we need to assume that the respective
distortion functions are differentiable. However, the result for the MRL ordering is
different. It can be stated as follows.

Proposition 3.5 Let T1 and T2 be the lifetimes of two semi-coherent (or coherent)
systems with ID component lifetimes having an common distribution function F,
and distortion functions q1 and q2, respectively. If q̄2/q̄1 is bathtub in (0, 1), then
T1 ≤MRL T2 for all F such that E(T1) ≤ E(T2).

The converse property does not hold (for strict bathtub shaped functions, that is,
with both strict decreasing and strict increasing pieces). A counterexample can be
seen in Navarro and Gomis (2016). Let us see how to apply the preceding results to
systems with dependent ID components.

Example 3.3 Let us consider a series system and a parallel system with ID compo-
nents having a common reliability F̄ and a survival copula Ĉ . The reliability function
of the series system X1:2 can be written as

F̄1:2(t) = Pr(X1:2 > t) = Pr(X1 > t, X2 > t) = Ĉ(F̄(t), F̄(t)) = q̄1:2(F̄(t)),

where q1:2(u) = Ĉ(u, u) is the diagonal section of the copula Ĉ .
Analogously, the reliability function of the parallel system X2:2 is

F̄2:2(t) = Pr(max(X1, X2) > t)

= Pr(X1 > t) + Pr(X2 > t) − Pr(X1 > t, X2 > t)

= 2F̄(t) − Ĉ(F̄(t), F̄(t))

= q̄2:2(F̄(t)),

where q2:2(u) = 2u − Ĉ(u, u) for u ∈ [0, 1].
Note that, in this case (and in the general case), we know that

X1:2 ≤ST Xi ≤ST X2:2
holds for i = 1, 2, for all F and for all Ĉ .

From Proposition 3.4, X1:2 ≤HR Xi holds for all F̄ iff the ratio

q̄1:2(u)

q̄i (u)
= Ĉ(u, u)

u
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is increasing in (0, 1). In a similar way, Xi ≤HR X2:2 holds for all F iff

q̄2:2(u)

q̄i (u)
= 2u − Ĉ(u, u)

u

decreases in (0, 1), that is, iff Ĉ(u, u)/u is increasing in (0, 1). Analogously, it can
also be proved that X1:2 ≤HR X2:2 holds for all F iff the same condition holds
(i.e. Ĉ(u, u)/u is increasing in (0, 1)). Therefore, in the ID case, these orderings are
equivalent and they will just depend on the copula Ĉ (they are distribution-free with
respect to F).

Of course, if the components are IID, that is, Ĉ(u, v) = uv for u, v ∈ [0, 1], then
Ĉ(u, u)/u = u, which is increasing, and so

X1:2 ≤HR Xi ≤HR X2:2 (3.11)

holds for i = 1, 2 and for all F . This is a well known property already obtained in
the preceding section (by using the LR order).

Analogously, if we consider the following Clayton–Oakes copula

Ĉ(u, v) = uv

u + v − uv
, u, v ∈ [0, 1], (3.12)

which induces a positive dependence between the components, we get

Ĉ(u, u)

u
= u2

2u2 − u3
= 1

2 − u

which is increasing in (0, 1). So (3.11) holds for all F and this copula. Of course,
the sameMRL orderings also hold for any F . However, there exist copulas such that
this condition does not hold (see Example 4.1 in Navarro et al. 2018).

Let us study now the LR orderings. Thus, X1:2 ≤LR Xi holds for all F iff
q̄ ′
1:2(u)/q̄ ′

i (u) = q̄ ′
1:2(u) is increasing in (0, 1), that is, when q̄1:2(u) is convex

in (0, 1). This is also the condition for the other LR orderings. In the IID case
q̄1:2(u) = u2 is convex in (0, 1). Thus we can prove again that

X1:2 ≤LR Xi ≤LR X2:2 (3.13)

holds for any F in the IID case. For the copula (3.12), we note that

q̄1:2(u) = Ĉ(u, u) = u

2 − u

is convex in (0, 1) and so (3.13) holds for any F .
To illustrate these theoretical results we consider a standard exponential

distribution F , and then we plot in Fig. 3.5 the reliability functions (left) and the
hazard rate functions (right) of these systems for the IID case (dashed lines) and the
copula in (3.12) (continuous lines). The R-code to get these plots is the following:

# Reliability functions

#IID case:

R<-function(t) exp(-t)

qIID<-function(u) uˆ2

G12<-function(t) qIID(R(t))
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Fig. 3.5 Reliability (left) and hazard rate functions (right) for the series system X1:2 (black),
the components Xi (red) and the parallel system X2:2 (blue) in Example 3.3 for the case of IID
components (dashed lines) and dependent IDcomponents (continuous lines)with the survival copula
in (3.12)

G22<-function(t) 2*R(t)-G12(t)

curve(G12(x),xlab=’t’,ylab=’Reliability’,0,3,lty=2,lwd=2)

curve(G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(R(x),add=T,col=’red’,lwd=2)

#ID-C case:

C<-function(u,v) u*v/(u+v-u*v)

q<-function(u) C(u,u)

R12<-function(t) q(R(t))

R22<-function(t) 2*R(t)-R12(t)

curve(R12(x),xlab=’t’,add=T,lwd=2)

curve(R22(x),add=T,col=’blue’,lwd=2)

curve(R(x),add=T,col=’red’,lwd=2)

# Hazard rate functions

#IID case:

f<-function(t) exp(-t)

qpIID<-function(u) 2*u

g12<-function(t) f(t)*qpIID(R(t))

g22<-function(t) 2*f(t)-g12(t)

curve(g12(x)/G12(x),ylab=’HR’,0,3,ylim=c(0,2),lty=2,lwd=2)

curve(g22(x)/G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(f(x)/R(x),add=T,col=’red’,lwd=2)

#ID-C case:

qp<-function(u) 2/(2-u)ˆ2

f12<-function(t) f(t)*qp(R(t))

f22<-function(t) 2*f(t)-f12(t)
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curve(f12(x)/R12(x),add=T,lwd=2)

curve(f22(x)/R22(x),add=T,col=’blue’,lwd=2)

curve(f(x)/R(x),add=T,col=’red’,lwd=2)

Analogously, we can compare the systems obtained in the IID case with that
obtained with the copula Ĉ . For example, X I I D

1:2 ≤HR XĈ
1:2 holds for all F since

q̄Ĉ1:2(u)

q̄ I I D
1:2 (u)

= u/(2 − u)

u2
= 1

2u − u2

is decreasing in (0, 1). Analogously, we get that X I I D
2:2 ≥HR XĈ

2:2 holds for all F
since

q̄Ĉ2:2(u)

q̄ I I D
2:2 (u)

= 2u − u/(2 − u)

2u − u2
= 3 − 2u

(2 − u)2

is increasing in (0, 1). Note that the series system improves with the positive depen-
dency but that the parallel system get worse (see Fig. 3.5). �

As we have seen in the preceding example, the (distribution-free) ordering prop-
erties between two systems with ID components will just depend on the copula, that
is, the dependence structure. So they can be related to well known positive/negative
dependence properties. These relationships where studied in Navarro et al. (2018)
and Navarro et al. (2021). For instance, the results obtained in the preceding example
for series and parallel systems with two ID components can be stated as follows.

Proposition 3.6 Let X1 and X2 be the lifetimes of two components having a common
distribution function F and copula and survival copula C and Ĉ, respectively. Then
the following properties are equivalent:

(i) X1:2 ≤HR X1 for all F;
(ii) X1 ≤HR X2.2 for all F;
(iii) X1:2 ≤HR X2:2 for all F;
(iv) Ĉ(u, u)/u is increasing in (0, 1);
(v) (1 − C(u, u))/(1 − u) is increasing in (0, 1).

Note that to prove (iv) (or (v)) we just need one of these orderings for a continuous
distribution function F . Also note that in the ID case, as F̄2:2 = 2F̄ − F̄1:2, then

F̄(t) = 1

2
F̄1:2(t) + 1

2
F̄2:2(t)

for all t , that is, the common components’ distribution is a uniform mixture of
the distributions of the series and the parallel system. So the HR function of the
components will be always between that of series and parallel systems (for any
copula). This fact explains why the orderings stated in the preceding proposition are
equivalent. For the LR order, we have the following result. The conditions for the
RHR order can be seen in Theorem 4.2 of Navarro et al. (2018).
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Proposition 3.7 Let X1 and X2 be the lifetimes of two components having a common
absolutely continuous distribution function F and copula and survival copula C and
Ĉ, respectively. Then the following properties are equivalent:

(i) X1:2 ≤LR X1 for all F;
(ii) X1 ≤LR X2.2 for all F;
(iii) X1:2 ≤LR X2:2 for all F;
(iv) Ĉ(u, u) is convex in (0, 1).
(v) C(u, u) is convex in (0, 1).

Analogously, the condition for the comparisons of the IID case with the DID case
are the following. They were obtained in Proposition 17 of Navarro et al. (2021).

Proposition 3.8 Let X1 and X2 be the lifetimes of two components having a common
distribution function F and survival copula Ĉ. Let δĈ (u) = Ĉ(u, u) for u ∈ [0, 1].
Let Y1 and Y2 be two IID lifetimes with distribution F.

(i) Y1:2 ≤ST X1:2 (≥ST ) for all F iff u2 ≤ δĈ (u) (≥) for all u ∈ (0, 1);
(ii) Y1:2 ≤HR X1:2 (≥HR) for all F iff δĈ (u)/u2 is decreasing (increasing) in

(0, 1);
(iii) Y1:2 ≤LR X1:2 (≥LR) for all abs. cont. F iff δ ′̂

C
(u)/u is decreasing (increasing)

in (0, 1);
(iv) Y2:2 ≥ST X2:2 (≤ST ) for all F iff u2 ≤ δĈ (u) (≥) for all u ∈ (0, 1);
(v) Y2:2 ≥HR X2:2 (≤HR) for all F iff (2u − δĈ (u))/(2u − u2) is increasing

(decreasing) in (0, 1);
(vi) Y2:2 ≥LR X2:2 (≤LR) for all abs. cont. F iff (2− δ ′̂

C
(u))/(1− u) is increasing

(decreasing) in (0, 1).

Note that Y1:2 ≤ST X1:2 (≥ST ) holds iff Y2:2 ≥ST X2:2 (≤ST ). However, the
other orderings are not equivalent. A random vector (X1, X2) is Positive (Negative)
Quadrant Dependent, shortly written as PQD (NQD), if F(x, y) ≥ F1(x)F2(y)
(≤) for all x, y, (see, e.g., Joe 1997). If F1, F2 are continuous, these (dependence)
properties only depend on the copula.

Proposition 3.9 Let X1 and X2 be the two random variables having distribution
functions F1 and F2 and copula and survival copula C and Ĉ, respectively. Then the
following properties are equivalent:

(i) (X1, X2) is PQD (NQD) for all F1, F2;
(ii) (X1, X2) is PQD (NQD) for two continuous distributions F1, F2;
(iii) C(u, v) ≥ uv (≤) for all u, v ∈ [0, 1];
(iv) Ĉ(u, v) ≥ uv (≤) for all u, v ∈ [0, 1].

Note that, in the ID case, Y1:2 ≤ST X1:2 (≥ST ) and Y2:2 ≥ST X2:2 (≤ST ) hold
for all F when (X1, X2) is PQD (NQD). Thus the series system is better under a
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Fig. 3.6 All the HR
orderings for the systems in
Table 2.1 and IID
components. The red arrow
is an ordering that cannot be
obtained by using signatures
of order 4

positive dependence but the opposite holds for the parallel system (as we have seen
in the preceding example). These orderings are reverted for the NQD condition. The
other conditions can also be related with dependence properties (see next section).
These are expectable properties (series systems improve under positive dependence
since both component lifetimes are similar while parallel systems does so when they
are different).

Note that the necessary and sufficient conditions obtained above can also be used
to obtain all the distribution-free comparisons of coherent (or semi-coherent) systems
with IID components. All the orderings for systems with 1-4 components (given in
Table 2.1) were obtained in Navarro (2016). In some cases, these results improve
the results obtained by using signatures (see the preceding section). For example, for
the HR order we obtain the relationships given in Fig. 3.6. Note that we have a new
ordering (13 → 24) that cannot be obtained from signatures of order 4 (see Fig. 3.3).
Analogously, for the LR order, we obtain the relationships given in Fig. 3.7. Note
that we have three new orderings (13 → 24, 5 → 24 and 13 → 7) that cannot be
obtained from signatures of order 4 (see Fig. 3.4). For the ST order we obtain the
same orderings given in the preceding section (see Fig. 3.2). However, for n = 5 and
n = 6, there exist systems that can be ST-ordered with distortion functions but that
cannot be ordered with signatures (see Rychlik et al. 2018). Moreover, note that the
results based on distortions can also be used to check the ordering conditions for
k-out-of-n systems needed in the ordering results based on signatures for the EXC
case. For example, for n = 3, we can check if X1:3 ≤HR X2:3 ≤HR X3:3 holds for
a given copula C .

In other situationswemaywant to study if, for a fixed system (structure) and afixed
dependence (copula), an order is preserved. Thus, if the components X1, . . . , Xn are
ID∼F and Y1, . . . , Yn are ID∼G, they share the same copula C and F ≤ORD G
holds, we want to study if T1 ≤ORD T2 holds (or holds under some conditions) for
a given order ORD, where T1 = φ(X1, . . . , Xn) and T2 = φ(Y1, . . . , Yn) are the
lifetimes of two systems having the same structure.
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Fig. 3.7 All the LR
orderings for the systems in
Table 2.1 and IID
components. The red arrows
are three orderings that
cannot be obtained by using
signatures of order 4

To this end we can use the following ordering results for distorted distributions
extracted from Navarro et al. (2013). The similar results for the non-ID case were
obtained in Navarro et al. (2016).

Proposition 3.10 Let X and Y be the two random variables having absolutely con-
tinuous distribution functions FX and FY . Let T and S be two random variables
having distribution functions q(FX ) and q(FY ) for a distortion function q. Let q̄ be
the dual distortion function and let α(u) = uq̄ ′(u)/q̄(u), ᾱ(u) = uq ′(u)/q(u), and
β(u) = uq̄ ′′(u)/q̄(u).

(i) If X ≤ST Y , then T ≤ST S;
(ii) If X ≤HR Y and α is decreasing in (0, 1), then T ≤HR S;
(iii) If X ≤RHR Y and ᾱ is increasing in (0, 1), then T ≤RHR S;
(iv) If X ≤LR Y and β is non-negative and decreasing in (0, 1), then T ≤LR S.

Proof The proof of (i) is immediate (since q and q̄ are increasing functions).
To prove (i i), we assume X ≤HR Y , that is, hX ≥ hY holds for the respective

hazard rate functions. Hence, X ≤ST Y also holds, that is, F̄X ≤ F̄Y . Then we use
(2.34) and that α is decreasing and non-negative to get

hT (t) = α(F̄X (t))hX (t) ≥ α(F̄Y (t))hY (t) = hS(t)

for all t , for the respective hazard rate functions of T and S. Then T ≤HR S holds.
The proof of (i i i) is similar to the preceding one from (2.35).
Finally, to prove (iv), we note that X ≤LR Y implies ηX ≥ ηY for the respective

Glaser’s eta functions defined in the first section of this chapter. Moreover, X ≤LR Y
implies X ≤HR Y (i.e. hX ≥ hY ) and X ≤ST Y (i.e. F̄X ≤ F̄Y ). Then we use (2.33)
and that β is decreasing and non-negative to get

ηT (t) = ηX (t) + β(F̄(t))hX (t) ≥ ηY (t) + β(F̄Y (t))hY (t) = hS(t)
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for all t , for the respective Glaser’s eta functions of T and S. Then T ≤LR S
holds. �

Note that the ST-order is always preserved. However, we need some conditions
for the preservations of the other orders. An alternative condition for the preservation
of the HR is that the function q̄(uv)/q̄(u) is increasing in (0, 1)2. It can be proved
that the HR order is preserved in k-out-of-n systems with IID components (i.e. α is
decreasing for that systems). However, this is not the case for other coherent systems.
Let us see an example.

Example 3.4 Let us consider the two systems with lifetimes T1 and T2, with a
common structure φ(x1, x2, x3) = max(x1,min(x2, x3)) and with IID components
having distribution functions F andG, respectively. Then the commondual distortion
function for these systems is

q̄(u) = u + u2 − u3.

Hence,

α(u) = u
1 + 2u − 3u2

u + u2 − u3
= 1 + 2u − 3u2

1 + u − u2
.

By plotting α in [0, 1], we see that it is non monotone (it first increases and then
decreases). Therefore we do not know if the HR order is preserved. For example let
us consider IID components having the reliability function

F̄(t; a) = 1 − (1 − e−t )a, t ≥ 0 (3.14)

for a = 2, 5. Then we plot in Fig. 3.8, left, the reliability functions of the components
F̄(t) = F̄(t; 2) (black dashed lines) and Ḡ(t) = F̄(t; 5) (red dashed lines) and
that of the respective systems (black and red continuous lines). As we can see,
the components are ST ordered and this order is preserved in the systems (i.e. the
systemwith the most reliable component, is more reliable than the other). In Fig. 3.8,
right, we plot the hazard rate functions of the components (dashed lines) and the
systems (continuous lines). As we can see, F ≤HR G holds. However, the hazard
rate functions of the systems are not ordered. The code in R to get these plots is the
following:

# Reliability functions:
R1<-function(t) 1-(1-exp(-t))ˆ2
R2<-function(t) 1-(1-exp(-t))ˆ5
q<-function(u) u+uˆ2-uˆ3
RT1<-function(t) q(R1(t))
RT2<-function(t) q(R2(t))
curve(RT1(x),xlab=’t’,ylab=’Reliability’,0,7,lwd=2)
curve(RT2(x),add=T,col=’red’,lwd=2)
curve(R1(x),add=T,lty=2,lwd=2)
curve(R2(x),add=T,col=’red’,lty=2,lwd=2)
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Fig. 3.8 Reliability functions (left) and hazard rate functions (right) for the components (dashed
lines) and the systems (continuous lines) in Example 3.4 for the case of IID components with the
reliability function in (3.14) and a = 2 (black) and a = 5 (red)

# Hazard rate functions:
f1<-function(t) 2*exp(-t)*(1-exp(-t))
f2<-function(t) 5*exp(-t)*(1-exp(-t))ˆ4
qp<-function(u) 1+2*u-3*uˆ2
fT1<-function(t) f1(t)* qp(R1(t))
fT2<-function(t) f2(t)* qp(R2(t))
curve(fT1(x)/RT1(x),xlab=’t’,ylab=’HR’,0,7,lwd=2)
curve(fT2(x)/RT2(x),add=T,col=’red’,lwd=2)
curve(f1(x)/R1(x),add=T,lty=2,lwd=2)
curve(f2(x)/R2(x),add=T,col=’red’,lty=2,lwd=2) �

3.4 Systems with Non-ID Components

First, we recall that, from the representation results obtained in the preceding chapter,
the system distribution function can be written (in the general case) as

FT (t) = Q(F1(t), . . . , Fn(t)),

and its reliability function as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)),

that is, they are generalized distorted distributions from the distributions of the com-
ponent lifetimes. The explicit expression for the distortion functions Q and Q̄ can be
obtained from the minimal path (or cut) sets representation and the survival copula Ĉ
(or the copula C). So they only depend on the structure function and the dependence
between the components (i.e. they do not depend on F1, . . . , Fn).
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If the components are independent (IND), then the function Q̄ is a multinomial
and it is known as the reliability function of the structure (see Barlow and Proschan
1975, p. 21). Actually, this multinomial is the one obtained in the pivotal decompo-
sition (1.3) or in representation based on the Möbius transform (1.10) when these
Boolean functions are extended to real numbers. In this case Q is also a multinomial.

In both cases we can use the following ordering results for generalized distorted
distributions obtained in Navarro et al. (2016) (arbitrary components) and in Navarro
and del Águila (2017) (ordered components). Note that we have necessary and suf-
ficient conditions for the ST, HR and RHR orders. In Navarro et al. (2016) there are
sufficient conditions for the LR order.

Theorem 3.4 If Ti has the distribution function Qi (F1, . . . , Fn) and the reliability
function Q̄i (F̄1, . . . , F̄n), for i = 1, 2, then the following properties hold:

(i) T1 ≤ST T2 for all F1, . . . , Fn iff Q̄1 ≤ Q̄2 (or Q1 ≥ Q2) in (0, 1)n;
(ii) T1 ≤HR T2 for all F1, . . . , Fn iff Q̄2/Q̄1 is decreasing in (0, 1)n;
(iii) T1 ≤RHR T2 for all F1, . . . , Fn iff Q2/Q1 is increasing in (0, 1)n.

Proof The proof of (i) is immediate.
To prove (i i) we note that T1 ≤HR T2 holds iff

F̄T2(t)

F̄T1(t)
= Q̄2(F̄1(t), . . . , F̄n(t))

Q̄1(F̄1(t), . . . , F̄n(t))
(3.15)

is increasing in t .
If this ordering holds for all F1, . . . , Fn and we want to prove that Q̄2/Q̄1 is

decreasing in u1 for fixed u2, . . . , un ∈ (0, 1), we choose distribution functions
such that F̄i (t) = ui for t ∈ (1, 2) and i = 2, . . . , n and F̄1(t) = 1 for t ≤ 1,
F̄1(t) = 2 − t for t ∈ (1, 2), and F̄1(t) = 0 for t ≥ 2. Then, from (3.15), we
have that Q̄2(u1, . . . , un)/Q̄1(u1, . . . , un) is decreasing in u1. We can prove that it
is decreasing in the other variables in a similar way.

Conversely, if we assume that Q̄2/Q̄1 is decreasing in all its variables in (0, 1)n ,
as F̄1, . . . , F̄n are decreasing, from (3.15), F̄T2(t)/F̄T1(t) is increasing in t .

The proof of (i i i) is similar to the proof of (i i). �

Theorem 3.5 If Ti has the distribution function Qi (F1, . . . , Fn) and the reliability
function Q̄i (F̄1, . . . , F̄n), for i = 1, 2, then the following properties hold:

(i) T1 ≤ST T2 for all F1, . . . , Fn such that F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

(ii) T1 ≤HR T2 for all F1, . . . , Fn such that F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) = Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(3.16)

is decreasing in (0, 1)n;
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(iii) T1 ≤RHR T2 for all F1, . . . , Fn such that F1 ≤RHR · · · ≤RHR Fn iff the
function

H(v1, . . . , vn) = Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(3.17)

is increasing in (0, 1)n.

Proof The proof of (i) is immediate since F1 ≥ST · · · ≥ST Fn implies F̄1 ≥ · · · ≥
F̄n .

To prove (i i) we recall that T1 ≤HR T2 holds iff the ratio in (3.15) is increasing
in t .

If we want to prove that this ordering holds for all F1 ≥HR · · · ≥HR Fn when
H̄ is decreasing, we note ri = F̄i/F̄i−1 is decreasing for i = 2, . . . , n. Therefore,
ri ∈ [0, 1] (since ri (0) = 1). Moreover, F̄1 ∈ [0, 1] and it is also decreasing. Hence,

H̄(F̄1(t), r2(t), . . . , rn(t)) = Q̄2(F̄1(t), F̄2(t), . . . , F̄n(t))

Q̄1(F̄1(t), F̄2(t), . . . , F̄n(t))

is increasing in t and so T1 ≤HR T2 holds.
Conversely, let us assume that T1 ≤HR T2 holds for all F1 ≥HR · · · ≥HR Fn . If

we want to prove that H̄ is decreasing in v1 for fixed v2, . . . , vn ∈ (0, 1), we choose
the following reliability functions:

F̄1(t) =
⎧⎨
⎩

1, for 0 ≤ t ≤ 1
2 − t, for 1 < t ≤ 2

0, for t > 2

and

F̄i (t) =
⎧⎨
⎩
1 − (1 − v2 . . . vi )t, for 0 ≤ t ≤ 1

v2 . . . vi (2 − t), for 1 < t ≤ 2
0, for t > 2

for i = 2, . . . , n. Hence

r2(t) = F̄2(t)

F̄1(t)
=

{
1 − (1 − v2)t, for 0 ≤ t ≤ 1

v2, for 1 < t ≤ 2

and

ri (t) = F̄i (t)

F̄i−1(t)
=

{
1−(1−v2...vi )t

1−(1−v2...vi−1)t
, for 0 ≤ t ≤ 1

vi , for 1 < t ≤ 2

for i = 3, . . . , n, which are continuous and decreasing. Therefore, F1 ≥HR · · · ≥HR

Fn holds and from (3.15), we have that

Q̄2(F̄1(t), . . . , F̄n(t))

Q̄1(F̄1(t), . . . , F̄n(t))
= H̄(2 − t, v2, . . . , vn)

is decreasing for t ∈ (1, 2). So H̄(v1, . . . , vn) is decreasing for v1 ∈ (0, 1), for
all v2, . . . , vn ∈ (0, 1). We can prove that it is decreasing in the other variables in a
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similar way (see Navarro and del Águila 2017). For example, for the second variable,
given v1, v3, . . . , vn ∈ (0, 1), we can choose the following reliability functions:

F̄1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 − (1 − v1)t, for 0 ≤ t ≤ 1
v1, for 1 < t ≤ 2

v1(3 − t), for 2 < t ≤ 3
0, for t > 3

F̄2(t) =
⎧⎨
⎩
1 − (1 − v1)t, for 0 ≤ t ≤ 1

v1(2 − t), for 1 < t ≤ 2
0, for t > 2

and

F̄i (t) =
⎧⎨
⎩

vi . . . v3(1 − (1 − v1)t), for 0 ≤ t ≤ 1
vi . . . v3v1(2 − t), for 1 < t ≤ 2

0, for t > 2

for i = 3, . . . , n. Hence

r2(t) = F̄2(t)

F̄1(t)
=

⎧⎨
⎩

1, for 0 ≤ t ≤ 1
2 − t, for 1 < t ≤ 2

0, for 2 < t ≤ 3

and

ri (t) = F̄i (t)

F̄i−1(t)
=

{
vi , for 0 ≤ t ≤ 1
vi , for 1 < t ≤ 2

for i = 3, . . . , n, and the result holds as above.
The proof of (i i i) is similar to the proof of (i i). �

Let us see an example which shows how to use the preceding theoretical results
to compare systems.

Example 3.5 As in the preceding section, we can consider the series and parallel
systems with lifetimes X1:2 and X2:2, respectively. Now we do not assume a com-
mon distribution for the component lifetimes X1 and X2. So they have arbitrary
distribution functions F1 and F2, a copula C and a survival copula Ĉ . Remember
that

X1:2 ≤ST Xi ≤ST X2:2
holds for all F1, F2 and all C .

However, if we consider the hazard rate order, then

X1:2 ≤HR X1

holds for all F1, F2 iff Ĉ(u, v)/u is increasing in (0, 1)2. Of course, this ordering
holds for IND components since Ĉ(u, v)/u = (uv)/u = v is increasing (a well
known property). In this case, it can be proved that the hazard rate of the series
system is h1:2 = h1 + h2, where hi is the hazard rate of Xi . So h1:2 ≥ hi for
i = 1, 2.
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Fig. 3.9 Reliability (left) and hazard rate functions (right) for the series system X1:2 (black), the
components Xi (red) and the parallel system X2:2 (blue) in Example 3.5 for the case of IND
components (dashed lines) and dependent (continuous lines) components with the survival copula
(3.12)

However, surprisingly, this property is not true when the components are depen-
dent. Thus, if we consider the Clayton–Oakes survival copula (3.12), then

Ĉ(u, v)

u
= v

u + v − uv

is decreasing in u and increasing in v. Therefore, for this copula,

X1:2 ≤HR X1

does not hold for all F1, F2. For example, if we consider two exponential distributions
Fi (t) = 1− exp(−i t) for t ≥ 0 and i = 1, 2, then we obtain the reliability (left) and
hazard rate (right) functions plotted in Fig. 3.9 for IND components (dashed lines)
and dependent components (continuous lines) with the survival copula in (3.12).
Note that they are ST ordered in both cases (as expected), that X1:2 ≤HR X1 also
holds in both cases, that X1:2 ≤HR X2 holds for the IND case but that it does not
hold for this copula. Note that the used series systems with age t are going to be
ST better (i.e., more reliable) than the used components X2 with the same age t , for
t ≥ 0.694. Also note that they are equivalent when t → ∞. However, the used series
systems with age t are going to be ST worse than the used components X1 with the
same age t , for all t .

To explain these properties, we can use Theorem 3.5, (i i) to obtain that X1:2 ≤HR

X1 holds for all F1 ≥HR F2 iff the function

H̄1(v1, v2) = Q̄1(v1, v1v2)

Q̄1:2(v1, v1v2)
= v1

Ĉ(v1, v1v2)

is decreasing in (0, 1)2. Analogously, X1:2 ≤HR X2 holds for all F1 ≥HR F2 iff the
function

H̄2(v1, v2) = Q̄2(v1, v1v2)

Q̄1:2(v1, v1v2)
= v1v2

Ĉ(v1, v1v2)
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is decreasing in (0, 1)2.
If the components are dependent with the survival copula in (3.12), then

H̄1(v1, v2) = v1(v1 + v1v2 − v21v2)

v21v2
= 1 + v2 − v1v2

v2
,

which is decreasing in (0, 1)2, and

H̄2(v1, v2) = v1v2(v1 + v1v2 − v21v2)

v21v2
= 1 + v2 − v1v2,

which is decreasing in v1 but increasing in v2. Hence, X1:2 ≤HR X1 holds for all
F1 ≥HR F2 (and this copula) but X1:2 ≤HR X2 does not hold for all F1 ≥HR F2
(as we can see in Fig. 3.9). In this case, the series system is HR ordered with the
best component (X1) but not always with the worse one (X2). If they are ID, both
orderings hold (see Fig. 3.5 in the preceding section).

Let us study now the parallel system. For example, X1 ≤HR X2:2 holds for all
F1, F2 iff

u + v − Ĉ(u, v)

u
= 1 + v − Ĉ(u, v)

u

is decreasing in (0, 1)2. If the components are IND, then

v − Ĉ(u, v)

u
= v

(
1

u
− 1

)

which is increasing in v and decreasing in u. So, surprisingly, this ordering does not
hold for all F1, F2 even if the components are IND, as can be seen in Fig. 3.9, right,
where X2:2 (dashed blue line) and the best component X1 (bottom red line) are not
HR ordered. However, X2:2 (dashed blue line) and the worse component X2 (top red
line) are HR ordered.

In this figure, the same holds for the Clayton–Oakes copula. As above we can use
Theorem 3.5, (i i), to study if this is a general property. Thus X1 ≤HR X2:2 holds
for all F1 ≥HR F2 iff the function

H̄3(v1, v2) = Q̄2:2(v1, v1v2)
Q̄1(v1, v1v2)

= v1 + v1v2 − Ĉ(v1, v1v2)

v1

is decreasing in (0, 1)2. Analogously, X2 ≤HR X2:2 holds for all F1 ≥HR F2 iff the
function

H̄4(v1, v2) = Q̄2:2(v1, v1v2)
Q̄2(v1, v1v2)

= v1 + v1v2 − Ĉ(v1, v1v2)

v1v2

is decreasing in (0, 1)2. If the components are IND, then

H̄3(v1, v2) = v1 + v1v2 − v21v2

v1
= 1 + v2 − v1v2

which is decreasing in v1 and increasing in v2. So X1 and X2:2 are not HR ordered
in Fig. 3.9. However, if the components are IND, then

H̄4(v1, v2) = v1 + v1v2 − v21v2

v1v2
= 1

v2
+ 1 − v1
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which is decreasing in both v1 and v2. So X2 and X2:2 areHR ordered in Fig. 3.9. This
is a general property for IND ordered components (the parallel system is HR better
that the worse component). This property also holds for the chosen Clayton–Oakes
copula since

H̄4(v1, v2) = 1 + 1 − v1v2

v2(1 + v2 − v1v2)

is decreasing in both v1 and v2. However, X1 and X2:2 are not HR ordered as can be
seen in Fig. 3.9, right. Also note that the series systems in both cases are HR ordered
but that the parallel systems are not. The code in R to get these plots is the following:

#Reliability functions:

#IID case:

R1<-function(t) exp(-t)

R2<-function(t) exp(-2*t)

QIND<-function(u,v) u*v

G12<-function(t) QIND(R1(t),R2(t))

G22<-function(t) R1(t)+R2(t)-G12(t)

curve(G12(x),xlab=’t’,ylab=’Reliability’,0,3,lty=2,lwd=2)

curve(G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(R1(x),add=T,col=’red’,lty=2,lwd=2)

curve(R2(x),add=T,col=’red’,lty=2,lwd=2)

#Clayton

C<-function(u,v) u*v/(u+v-u*v)

R12<-function(t) C(R1(t),R2(t))

R22<-function(t) R1(t)+R2(t)-R12(t)

curve(R12(x),xlab=’t’,add=T,lwd=2)

curve(R22(x),add=T,col=’blue’,lwd=2)

#Hazard rate functions

#IND case

f1<-function(t) exp(-t)

f2<-function(t) 2*exp(-2*t)

Q1IID<-function(u,v) v #partial derivative 1

Q2IID<-function(u,v) u #partial derivative2

g12<-function(t) {

f1(t)*Q1IID(R1(t),R2(t))+f2(t)*Q2IID(R1(t),R2(t))

}

g22<-function(t) f1(t)+f2(t)-g12(t)

curve(g12(x)/G12(x),0,3,ylab=’HR’,ylim=c(0,3),lty=2,lwd=2)

curve(g22(x)/G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(f1(x)/R1(x),add=T,col=’red’,lwd=2)

curve(f2(x)/R2(x),add=T,col=’red’,lwd=2)

#Clayton

C1<-function(u,v) vˆ2/(u+v-u*v)ˆ2 #partial derivative 1
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Fig. 3.10 Reliability (left) and hazard rate functions (right) for the series system X1:2 (black), the
parallel system X2:2 (blue) and the components X1 (Exponential, red) and X2 (Pareto, green) in
Example 3.5 for the case of IND components (dashed lines) and dependent components (continuous
lines) with the survival copula (3.12)

C2<-function(u,v) uˆ2/(u+v-u*v)ˆ2 #partial derivative 2

f12<-function(t) f1(t)*C1(R1(t),R2(t))+f2(t)*C2(R1(t),R2(t))

f22<-function(t) f1(t)+f2(t)-f12(t)

curve(f12(x)/R12(x),add=T,lwd=2)

curve(f22(x)/R22(x),add=T,col=’blue’,lwd=2)

We can modify this code to plot these functions for other marginals and/or other
copulas. For example, if we consider the same exponential for X1 but the Pareto
distribution F2(t) = 1 − 1/(1 + 5t) for t ≥ 0 for the second component lifetime
X2, then they are not ordered and we obtain the plot in Fig. 3.10 (for the same
copula). Note that the series and parallel systems are HR ordered in the case of
IND components (dashed lines) but that they are not ordered for the Clayton–Oakes
copula (black and blue continuous lines). This is a really surprising property! �

As in the preceding section,we can obtain conditions for distribution-free ordering
results based on properties of the copula and/or the survival copula. These conditions
are related with negative dependence properties. These relationships were studied in
Navarro et al. (2021). Let us see some examples. The proofs are straightforward.

To get these results we need the definitions of well-known dependence properties
and how they can be stated in terms of copulas. A continuous random pair (X, Y )

with copula C is said to be:

• Positive (Negative) Quadrant Dependent, shortly written as PQD (NQD), iff
Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x)Pr(Y ≤ y) for all x, y. If the marginal distribu-
tions are continuous, then the PQD (NQD) property is equivalent (see Proposition
3.9) to C(u, v) ≥ uv (C(u, v) ≤ uv) in [0, 1]2;
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Table 3.2 Relationships among positive (left) and negative (right) dependence properties

SI (Y |X) ⇒ LT D(Y |X)

⇓ ⇓
RT I (Y |X) ⇒ PQD

SD(Y |X) ⇒ LT I (Y |X)

⇓ ⇓
RT D(Y |X) ⇒ NQD

• LeftTailDecreasing (Increasing) in X , shortlywritten as LTD(Y |X) (LTI(Y |X)),
if, and only if, Pr(Y ≤ y|X ≤ x) is decreasing (increasing) in x for all y or,
equivalently, C(u, v)/u is decreasing (increasing) in u for all v in (0, 1)2. The
concepts LTD(X |Y ) and LTI(X |Y ) are defined in a similar way;

• RightTail Increasing (Decreasing) in X , shortlywritten asRTI(Y |X) (RTD(Y |X)),
if, and only if, Pr(Y > y|X > x) is increasing (decreasing) in x for all y or, equiv-
alently, Ĉ(u, v)/u is decreasing (increasing) in u for all v in (0, 1)2;

• Stochastically Increasing (Decreasing) in X , shortly written as SI (Y |X)

(SD(Y |X)), if, and only if, (Y |X = x) is ST-increasing (decreasing) in x .

We say that (X, Y ) is LTD if it is both LTD(Y |X) and LTD(X |Y ). The concepts
LTI, RTI, RTD, SI and SD are defined similarly. The relationships among the above
dependence properties are summarized in Table3.2. Also note that the PQD (NQD)
property implies that the Pearson correlation, Spearman correlation and Kendal tau
coefficients are nonnegative (nonpositive), see Nelsen (2006). So all of them are
positive (negative) dependence properties.

In the first proposition we compare the components with the series system.

Proposition 3.11 Let X1 and X2 be component lifetimes with survival copula Ĉ
and distribution functions F1 and F2, respectively. Then the following statements
are equivalent:

(i) X1:2 ≤HR X1 holds for all F1 and F2;
(ii) Ĉ(u, v)/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1);
(iii) (v − 1 + C(1 − u, 1 − v))/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1);
(iv) (X1, X2) is RT D(X2|X1).

Note that we need a negative dependence property (RTD) to separate the series
system from its components. For the RHR order we get the following conditions.

Proposition 3.12 Let X1 and X2 be component lifetimes with copula C and with
distribution functions F1 and F2, respectively. Then the following statements are
equivalent:

(i) X1 ≤RHR X2:2 holds for all F1 and F2;
(ii) C(u, v)/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1);
(iii) (v − 1 + Ĉ(1 − u, 1 − v))/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1).
(iv) (X1, X2) is LT I (X2|X1).
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Note that herewe also need a negative dependence property and that the conditions
are duals (by changing Ĉ with C). To compare series and parallel systems we have
the following condition.

Proposition 3.13 Let X1 and X2 be component lifetimes with survival copula Ĉ and
with distribution functions F1 and F2, respectively. Then:

(i) X1:2 ≤HR X2:2 holds for all F1, F2 iff Ĉ(u, v)/(u + v) is increasing in (0, 1)2;
(ii) X1:2 ≤RHR X2:2 holds for all F1, F2 iff C(u, v)/(u+v) is increasing in (0, 1)2.

For ordered components we have the following results.

Proposition 3.14 Let X1 and X2 be component lifetimes. Then:

(i) X1:2 ≤HR X1 holds for all F1 ≥HR F2 iff Ĉ(u, uv)/u is increasing in (0, 1)2;
(ii) X1:2 ≤HR X2 holds for all F1 ≥HR F2 iff Ĉ(u, uv)/(uv) is increasing in

(0, 1)2;
(iii) X1 ≤HR X2:2 holds for all F1 ≥HR F2 iff (uv − Ĉ(u, uv))/u is decreasing in

(0, 1)2;
(iv) X2 ≤HR X2:2 holds for all F1 ≥HR F2 iff (u − Ĉ(u, uv))/(uv) is decreasing

in (0, 1)2;
(v) X1:2 ≤HR X2:2 holds for all F1 ≥HR F2 iff Ĉ(u, uv)/(u + uv) is increasing

in (0, 1)2.

Note that all the conditions for the survival copula Ĉ in the preceding proposition
can be seen as negative dependence properties.

Proposition 10 in Navarro et al. (2021) proves that, for any copula C , X1 and X2:2
are not HR ordered for all F1, F2. Note that X1 ≤HR X2:2 holds for all F1, F2 iff

1 − C(1 − u, 1 − v)

u

is decreasing in (0, 1)2. However, note that this ratio is always increasing in v. Hence,
the results given in Example 3.5 for X1 and X2:2 are valid for any copula C (i.e. for
some distribution functions F1 and F2 they are not HR ordered).

Analogously, it can be proved that X1 and X1:2 are not RHR ordered for all
F1, F2. To get these orderings we need to assume ordered components (as stated in
the preceding proposition).

As in the preceding section, we can compare systems with dependent and inde-
pendent components. If X1 and X2 have a copula C and a survival copula Ĉ and Y1
and Y2 are independent, X1 and Y1 have the common distribution function F1 and
X2 and Y2 have the common distribution function F2, then we obtain the following
results.

Proposition 3.15 The following statements are equivalent:
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(i) X1:2 ≥ST Y1:2 (respectively, ≤ST ) holds for all F1 and F2;
(ii) X2:2 ≤ST Y2:2 (respectively, ≥ST ) holds for all F1 and F2;
(iii) C(u, v) ≥ uv (respectively, C(u, v) ≤ uv) in [0, 1]2;
(iv) Ĉ(u, v) ≥ uv (respectively, Ĉ(u, v) ≤ uv) in [0, 1]2;
(v) (X1, X2) is PQD (respectively, NQD).

Proposition 3.16 The following statements are equivalent:

(i) X1:2 ≥HR Y1:2 (respectively, ≤HR) holds for all F1 and F2;
(ii) Ĉ(u, v)/(uv) is decreasing (respectively, increasing) in (0, 1)2;
(iii) (X1, X2) is RTI (respectively, RTD).

Proposition 3.17 The following statements are equivalent:

(i) X2:2 ≥RHR Y2:2 (respectively, ≤RHR) holds for all F1 and F2;
(ii) C(u, v)/(uv) is increasing (respectively, decreasing) in (0, 1)2;
(iii) (X1, X2) is LTI (respectively, LTD).

As we have seen in Example 3.5, the comparison results for the general case can
also be applied to systemswith INDcomponents. The results for all the semi-coherent
systems with 1-3 components were obtained in Navarro and del Águila (2017). Their
dual distortion functions are given in Table3.3. All the ST andHR orderings for these

Table 3.3 Dual distortions functions of coherent systems with 1–3 independent components

N T = ψ(X1, X2, X3) Q(u1, u2, u3)

1 X1:3 = min(X1, X2, X3) u1u2u3

2 min(X2, X3) u2u3

3 min(X1, X3) u1u3

4 min(X1, X2) u1u2

5 min(X3,max(X1, X2)) u1u3 + u2u3 − u1u2u3

6 min(X2,max(X1, X3)) u1u2 + u2u3 − u1u2u3

7 min(X1,max(X2, X3)) u1u2 + u1u3 − u1u2u3

8 X3 u3

9 X2 u2

10 X1 u1

11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3

12 max(X3,min(X1, X2)) u3 + u1u2 − u1u2u3

13 max(X2,min(X1, X3)) u2 + u1u3 − u1u2u3

14 max(X1,min(X2, X3)) u1 + u2u3 − u1u2u3

15 max(X2, X3) u2 + u3 − u2u3

16 max(X1, X3) u1 + u3 − u1u3

17 max(X1, X2) u1 + u2 − u1u2

18 X3:3 = max(X1, X2, X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3 + u1u2u3
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Table 3.4 Relationships for the ST order between the coherent systems with independent compo-
nents given in Table 3.3. The value 2 indicates that Ti ≤ST Tj holds for any F1, F2, F3 (i denotes
the row and j the column). The value 1 indicates that Ti ≤ST Tj holds for all F1 ≥ST F2 ≥ST F3. It
also indicates that Ti ≤ST Tj does not hold for all F1, F2, F3. The value 0 indicates that Ti ≤ST Tj

does not hold for all F1 ≥ST F2 ≥ST F3

ST 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2

3 0 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2

4 0 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2

5 0 0 0 2 1 1 2 1 1 2 2 2 2 2 2 2 2

6 0 0 0 0 2 1 0 2 1 2 2 2 2 2 2 2 2

7 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2

8 0 0 0 0 0 0 2 1 1 0 2 1 1 2 2 1 2

9 0 0 0 0 0 0 0 2 1 0 0 2 1 2 1 2 2

10 0 0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 2

11 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

12 0 0 0 0 0 0 0 0 0 0 2 1 1 2 2 1 2

13 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 2 2

14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2

15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

systems are given in Tables3.4 and 3.5. The value 2 indicates that the ordering holds
for any components, the value 1 that it only holds for ordered components and the
value 0 that it does not hold for ordered components. The relationships for the HR
order and ordered components are summarized in the graph given in Fig. 3.11.

We conclude this section by showing how to proceed when the systems are built
just by using two kind of components. Here we assume that T1 and T2 are the
lifetimes of two coherent systems with components having one of the two (different)
distribution functions F (type A) or G (type B). For example, we can consider the
systems in Fig. 3.12.

Under this assumption, it is clear that the system reliability functions can be
written as

F̄Ti (t) = Q̄i (F̄, Ḡ)

for i = 1, 2, where Q̄i : [0, 1]2 → [0, 1] are two (bivariate) distortion functions.
They can be obtained from the general distortion functions obtained in Chap.2 (by
using minimal path or cut sets). Under some exchangeabillity assumptions between
the components of the same type, these distortion functions can also be computed
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Table 3.5 Relationships for the HR order between the coherent systems with independent compo-
nents given in Table3.3. The value 2 indicates that Ti ≤HR Tj holds for any F1, F2, F3 (i denotes
the row and j the column). The value 1 indicates that Ti ≤HR Tj holds for all F1 ≥HR F2 ≥HR F3.
It also indicates that Ti ≤HR Tj does not hold for all F1, F2, F3. The value 0 means that Ti ≤HR Tj

does not hold for all F1 ≥HR F2 ≥HR F3

HR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1

3 0 2 1 0 0 1 2 1 2 0 1 1 1 1 2 1 1

4 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 2 0

5 0 0 0 2 0 0 2 1 1 0 0 1 1 1 1 2 2

6 0 0 0 0 2 0 0 2 1 0 0 0 1 0 2 1 2

7 0 0 0 0 0 2 0 0 2 0 0 0 1 2 1 1 2

8 0 0 0 0 0 0 2 1 1 0 0 0 0 1 1 1 1

9 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2

12 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

from the survival signature defined in Coolen and Coolen-Maturi (2012) (see also
Samaniego and Navarro 2016).

For example, for the systems in Fig. 3.12, if we assume IND components, we have

Q̄1(u, v) = uv + v2 − uv2

and
Q̄2(u, v) = 2uv − uv2

for u, v ∈ [0, 1]2.
In this case T1 ≤ST T2 (resp. ≥ST ) holds for all F,G iff Q̄1 ≤ Q̄2 (resp. ≥ST ).

If we define the difference function

�(u, v) := Q̄2(u, v) − Q̄1(u, v),

this ordering holds for all F,G iff �(u, v) ≥ 0 (resp. ≤ 0) for all u, v ∈ [0, 1].
However, in some cases, we need conditions between F andG to get this ordering.

Thus, for the systems in Fig. 3.12, we obtain

�(u, v) = 2uv − uv2 − (uv + v2 − uv2) = uv − v2.
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T11
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T10 T12

T7 T14
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T18

Fig. 3.11 Hazard rate ordering relationships between the coherent systems with 1–3 independent
components given in Table3.3 when F1 ≥HR F2 ≥HR F3 holds

Fig. 3.12 Two coherent systems of order 3 with a similar structure built with components of type
A and B.

Therefore, �(u, v) ≥ 0 (≤ 0) iff u ≥ v (≤). Hence, T1 ≤ST T2 (resp. ≥ST ) holds
iff F̄ ≥ Ḡ (≤), that is, the best component should be placed at the first position (as
expected). Note that they are not ST ordered when F and G are not ST ordered.

In other situations, the conditions to get this ordering can be more complicated.
In this case we can proceed as follows. We plot the level curves (contour plot) of
� in [0, 1]2. In this plot we highlight the border line which leads to � = 0 and we
define the regions

R1 = {(u, v) ∈ [0, 1] : �(u, v) ≤ 0}
and

R2 = {(u, v) ∈ [0, 1] : �(u, v) ≥ 0}.
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Then we add to this plot the parametric curve (F̄(t), Ḡ(t)) for t ≥ 0. Note
that this curve always starts at the point (F̄(0), Ḡ(0)) = (1, 1) and finished at
(F̄(∞), Ḡ(∞)) = (0, 0). These plots were called RR-plots (Reliability-Reliability
plots) in Samaniego and Navarro (2016). Thus, we have three options:

• If (F̄(t), Ḡ(t)) ∈ R1 for all t ≥ 0, then T1 ≥ST T2 for these F,G.
• If (F̄(t), Ḡ(t)) ∈ R2 for all t ≥ 0, then T1 ≤ST T2 for these F,G.
• In the other cases, T1 and T2 are not ST ordered for these F,G.

Let us see an example.

Example 3.6 Let us compare the first system T1 in Fig. 3.12with a 2-out-of-3 system
T2 = X2:3 having two components of type A and one of type B. We assume that all
the components are independent. Then

Q̄2(u, v) = 2uv + u2 − 2u2v

and

�(u, v) = 2uv + u2 − 2u2v − (uv + v2 − uv2) = uv + u2 − v2 − 2u2v + uv2.

The level curves of � are plotted in Fig. 3.13, left. The regions R1 and R2 are
determined by the zero-level curve � = 0 (R1, above, and R2, below). In the right
plot we add several RR-plots. In the first one (blue line), we assume Ḡ = F̄2. As
the curve (RR-plot) belongs to the region R2, we have T1 ≤ST T2. The same happen
for the second example (red line), where we assume Ḡ = F̄ . Note that we have this
property T1 ≤ST T2 for all Ḡ ≤ F̄ (and also for some Ḡ ≥ F̄). However, in the third
case (green line), we assume Ḡ2 = F̄ and the curve crosses both regions. Therefore,
T1 and T2 are not ST-ordered. Finally, we choose G = F3 (i.e. Ḡ = 1 − (1 − F̄)3)
and then the curve (purple line) belongs to the region R1. So we have T1 ≥ST T2.
Note that the level curves can be used to determine approximately the difference
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Fig.3.13 Level curves of � for the systems in Example 3.6 and RR-plots (right) when we assume
Ḡ = F̄2 (blue line), Ḡ = F̄ (red line), Ḡ2 = F̄ (green line) and G = F3 (purple line)
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between both system reliability functions. For example, if F = G (red line), then
0 ≤ F̄2 − F̄1 ≤ 0.2. The R code to get these plots is the following:

# RR-plots
Q1<-function(u,v) u*v+vˆ2-u*vˆ2
Q2<-function(u,v) 2*u*v+uˆ2-2*uˆ2*v
D<-function(u,v) Q2(u,v)-Q1(u,v)
x<-seq(0,1,0.01)
y<-seq(0,1,0.01)
z<-outer(x,y,D)
contour(x,y,z,xlab=’u’,ylab=’v’)
curve(xˆ 2,add=T,col=’blue’,lwd=2)
curve(x+1-1,add=T,col=’red’,lwd=2)
curve(xˆ0.5,add=T,col=’green’,lwd=2)
curve(1-(1-x)ˆ3,add=T,col=’purple’,lwd=2) �

3.5 A Parrondo Paradox in Reliability

TheParrondo’s paradox showshow, in somegames, a randomstrategymight be better
than any deterministic strategy. Di Crescenzo (2007) noted that a similar paradox
holds in reliability for series systems with independent heterogeneous components.
The problem can be stated as follows.

Let T = min(X1, X2) be the lifetime of a series system with two independent
components having reliability functions F̄1 and F̄2. We can assume that the compo-
nents of type 1 are better than the others, that is, F̄1 ≥ F̄2 (but we will see later that
we do not need this assumption).

On the other hand, we can consider the series system with lifetime S =
min(Y1, Y2), where Y1 and Y2 are IID with common reliability

Ḡ = 1

2
F̄1 + 1

2
F̄2.

This system represents the case in which we choose the components randomly from
a mixed population with a 50% of units of type 1 (with reliability F̄1) and a 50% of
units of type 2 (with reliability F̄2), while in the first option we choose for sure one
component of each type.

Which one is the best option? Does this property depend on F̄1 and F̄2? What is
the best general option? Could this property be extended to other system structures?
What happen if the components are dependent?

The respective system reliability functions in both options can be represented with
distortions as

F̄T (t) = Pr(X1 > t, X2 > t) = F̄1(t)F̄2(t) = Q̄T (F̄1(t), F̄2(t))
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and

F̄S(t) = Pr(Y1 > t, Y2 > t) = Ḡ(t)Ḡ(t) =
(
1

2
F̄1(t) + 1

2
F̄2(t)

)2
= Q̄S(F̄1(t), F̄2(t))

with
Q̄T (u1, u2) = u1u2

and

Q̄S(u1, u2) =
(
u1 + u2

2

)2

for u1, u2 ∈ [0, 1]. It is easy to prove that Q̄T ≤ Q̄S since

√
u1u2 ≤ u1 + u2

2
(the geometric mean is always less than the arithmetic mean), or just since

4u1u2 ≤ u21 + 2u1u2 + u22

holds for all u1, u2 ∈ [0, 1] because 0 ≤ (u1 − u2)2. Note that we do not need the
condition u1 ≥ u2, that is, F̄1 ≥ F̄2. They can be ordered in the reverse sense or even
not ordered. In any case, the system with randomly chosen components is always
ST better, that is, T ≤ST S for all F̄1, F̄2. So the Parrondo paradox holds!

The respective reliability functions for exponential components with means 5 and
1 can be seen in Fig. 3.14, left. In the right plot the first unit has aWeibull distribution
with reliability F̄1(t) = exp(−t4) for t ≥ 0. The reliability functions of T and S
are plotted in black and blue, respectively. Note that the first one is always worse
than the second. As mentioned above, this property holds for all F̄1, F̄2. The red
and orange plots correspond to the series systems obtained with just units of type 1
(red) or 2 (orange). Of course, in the left plot, the best option is the red curve, that
is, the series system obtained with just the best units. In many situations this is not a
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Fig. 3.14 Reliability functions for the series systems T (black) and S (blue) in Parrondo paradox
for exponential (left) and Weibull (right) distributions. The red and orange plots correspond to the
series systems obtained with just units of type 1 (red) or 2 (orange)



3.5 A Parrondo Paradox in Reliability 111

realistic option since we do not use the units of type 2, the bests units could be more
expensive, we mighty not know which ones are the best units, or the units could be
not ordered (as in the right plot). However, in the green plot we use an 50% of units
of type 1 and 2 obtaining a better series system. How can we build this system? To
answer this question we need some additional results.

Firstwe are going to studywhen this “Parrondoparadox”holds. It is easy to see that
it can be extended to series systemswith n independent components. The explanation
is simple since these systems are better when the units are similar (homogeneous).
Hence, here the Parrondo paradox is not a paradox but an expectable property. This
property is reverted for parallel systems since, in this case, the systems are betterwhen
the units are different (heterogeneous). What happen in other system structures? Do
these properties hold when the components are dependent?

The answers to some of these questions were obtained in Navarro and Spizzichino
(2010). They are based on the notions of Schur-concave and weakly Schur-concave
functions defined as follows (see Durante and Papini 2007).

Definition 3.9 A function g : Rn → R is weakly Schur-concave (convex) if

g(u1, . . . , un) ≤ g(ū, . . . , ū) (≥)

for all u1, . . . , un , where ū = (u1 + · · · + un)/n.

Definition 3.10 A function g : Rn → R is Schur-concave (convex) if

g(u1, . . . , un) ≤ g(v1, . . . , vn) (≥)

for all u1, . . . , un, v1, . . . , vn such that u1 + · · · + un = v1 + · · · + vn and such that

j∑
i=1

ui :n ≤
j∑

i=1

vi :n

for all j = 1, . . . , n − 1, where ui :n and vi :n are the ordered values obtained from
the respective vectors.

To explain the meaning of these properties let us consider n = 2. In both cases,
we study the monotonicity of function g(u1, u2)when wemove the points in the line
u1 + u2 = c. The function g is Schur-concave when it is increasing when the points
move to the diagonal. Obviously, then the maximum value is obtained in the point
at the diagonal (ū, ū), that is, then it is also weakly Schur-concave. For example, the
function g(u1, u2) = u1u2 is Schur-concave since if we assume u1 + u2 = c, then

g(u1, u2) = u1u2 = u1(c − u1)

which is increasing for u1 ≤ c/2 and decreasing for u1 ≥ c/2. Its maximum value
is obtained when u1 = c/2, that is, u1 = u2. The 3D plot and contour plot (level
curves) can be seen in Fig. 3.15. Note that g increases when we move to the diagonal
(mountain shape).Analogously, it can be proved that g(u1, u2) = 1−(1−u1)(1−u2)
is Schur-convex. The code for these plots is the following:



112 3 Stochastic Comparisons

u1

u2

g(u1,u2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fig. 3.15 Plot (left) and contour plot (right) for g(u1, u2) = u1u2

#Schur-concave

g<-function(x,y) x*y

x<-seq(0,3,length=50)

y<-seq(0,3,length=50)

z<-outer(x,y,g)

persp(x,y,z,xlab=’u1’,ylab=’u2’,zlab=’g(u1,u2)’,col=’red’)

contour(x,y,z,col=’blue’)

Now we can state the following result.

Theorem 3.6 (Navarro and Spizzichino 2010) Let Q̄ be the dual distortion function
of a system. Then the Parrondo paradox holds (is reverted) for this system if and only
if Q̄ is weakly Schur-concave (convex).

Proof Note that to check the Parrondo paradox we have to compare

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

with
F̄S(t) = Q̄(Ḡ(t), . . . , Ḡ(t))

where Ḡ = (F̄1 + · · · + F̄n)/n. Hence, F̄T ≤ F̄S holds if and only if Q̄ is weakly
Schur-concave. The property is reverted when Q̄ is weakly Schur-convex. �

Of course, in particular, the Parrondo paradox holds (is reverted) when Q̄ is Schur-
concave (convex). For series systems with independent components, we have

Q̄1:n(u1, . . . , un) = u1 . . . un,

which is Schur-concave. So the Parrondo paradox holds for any F1, . . . , Fn . If the
components are dependent with a survival copula Ĉ , then

Q̄1:n(u1, . . . , un) = Ĉ(u1, . . . , un).

Hence, the Parrodo paradox holds if and only if Ĉ is weakly Schur-concave. Many
copulas are Schur-concave (see Nelsen 2006). For example, all the Archimedean
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copulas are Schur-concave. Do not exist strict Schur-convex copulas. There are some
copulas that are at the same time Schur-convex and Schur-concave (i.e. they are
Schur-constant). For them, both option coincide (i.e. T =ST S).

However, Durante and Papini (2007) obtained a strict weakly Schur-convex cop-
ula. Hence, under this survival copula, the Parrondo paradox is reverted in this series
system with dependent components. This is really a paradox since, in this case, it is
better to have heterogeneous components in a series system!

These properties are reverted for parallel systems. If the components are
independent, then their dual distortion function is

Q̄n:n(u1, . . . , un) = 1 − (1 − u1) . . . (1 − un),

which is Schur-convex in [0, 1]n and so the Parrondo paradox is reverted. If the
components are dependent with a copula C , then

Q̄n:n(u1, . . . , un) = 1 − C(1 − u1, . . . , 1 − un)

and so the Parrondo paradox is reverted when C is weakly Schur-concave. So this
property holds for many copulas. However, as stated above, it is not always true
(which is also a paradox). For other system structures it is not easy to prove if Q̄ is
weakly Schur-concave/convex.

We can try to extend the Parrondo paradox to other (stronger) orders by using
the comparison results obtained from distortions. For example, in the case of series
systems with two independent components, to extend it to the HR order we haver to
study the monotonicity of the ratio

Q̄S(u1, u2)

Q̄T (u1, u2)
= (u1 + u1)2/4

u1u2
= 1

2
+ u1

4u2
+ u2

4u1
.

It is easy to see that it is not monotone in [0, 1]2. So the Parrondo paradox cannot be
extended to the HR order as can be seen in Fig. 3.16. Note that T ≤HR S holds for
two exponential distributions with mean 5 and 1(left) but that it does not hold when
the first exponential is replaced with a Weibull (right) with hazard rate h1(t) = 4t3

for t ≥ 0. Also note that, in both cases, the limiting value of hS coincides with the
one of the hazard rate of the series system obtained with the best components when
t → ∞. This is a well known property in mixture models where the leading term
is determined by the best components since the worse components fail before (see
Navarro and Hernández 2008a, and the references therein).

Let us come back now to the question of the green line in Fig. 3.14. To answer
this question let us consider more general systems with randomized components.
They were studied in Navarro et al. (2015). If we have two type of components with
reliability function F̄X and F̄Y we can consider the deterministic system Tk which
have k components from X and n − k from Y . Its reliability function is

F̄Tk (t) = Q̄(F̄X (t), . . . , F̄X (t)︸ ︷︷ ︸
k times

, F̄Y (t), . . . , F̄Y (t)︸ ︷︷ ︸
n−k times

)

for k = 0, . . . , n. Here k = 0 means that we only use units from Y and k = n that
we just use units from X .
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Fig.3.16 Hazard rate functions for the series systems T (black) and S (blue) in Parrondo paradox
for exponential (left) and Weibull (right) distributions. The red and orange plots correspond to the
series systems obtained with just units of type 1 (red) or 2 (orange)

Then we can consider the randomized (mixed) system TK which choose Tk when
the random variable K = k, where K is a discrete random variable over the set
{0, . . . , n}.

Note that the systems T and S in the Parrondo paradoxwhen n = 2 are obtained as
T = T1 (i.e. we choose one component of each type) and S = TK where K = 0, 1, 2
with probabilities 0.25, 0.5, 0.25, respectively. Note that E(K ) = 1. Also note that
T1 can be obtained with the atom random variable K which takes the value 1 for sure.

Also note that the red and orange lines in Fig. 3.14 correspond to T2 and T0, respec-
tively. As mentioned above, in some cases, these options are unrealistic because they
only use units of one type. To have “fair” comparisons, we should impose E(K ) = 1,
that is, we use a 50% of units from each type. Under this condition, which one is
the best option for K ? The answer is given in the following result extracted from
Navarro et al. (2015). There we use the convex (CX), increasing convex (ICX) and
increasing concave (ICV) orders. Their definitions and main properties can be seen
in Shaked and Shanthikumar (2007).

Proposition 3.18 If the number k of components of type X is chosen randomly
according to the random variables K1 or K2 and

ϕ(k) = Q̄(u, . . . , u︸ ︷︷ ︸
k times

, v, . . . , v︸ ︷︷ ︸
n−k times

)

is convex (concave) in {0, 1, . . . , n} for all u, v ∈ (0, 1), then:

(i) K1 ≤CX K2 implies TK1 ≤ST TK2 (≥ST );
(ii) X ≥ST Y and K1 ≤ICX K2 (≤ICV ) imply TK1 ≤ST TK2 (≥ST ).

This result says that if ϕ is convex, then the more convex K , the better. If the units
from X are ST better than the ones from Y , then the convex ordering can be relaxed
to the weakly ICX order. These properties are reverted when ϕ is concave.
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In our series system with two independent components

ϕ(k) = ukvn−k

which is a convex function of k for any u, v ∈ (0, 1) since

ϕ′(k) = ϕ(k) log(u/v)

and
ϕ′′(k) = ϕ(k)(log(u/v))2 = ukvn−k(log(u/v))2 ≥ 0.

Hence, from (i) in the preceding proposition, when two randomized options are
ordered in the convex order, the respective systems are ST ordered in the same sense.
As mentioned above, the first option T is obtained with K1 which takes the value
1 with probability 1 and the second S with K2 with probabilities 0.25, 0.5, 0.25
for k = 0, 1, 2, respectively. Another reasonable assumption could be a uniform
distribution, that is, K3 = 0, 1, 2with probability 1/3. Finally,we could also consider
K4 with probabilities 0.5, 0, 0.5 for k = 0, 1, 2, respectively. In all these options we
have E(Ki ) = 1 for i = 1, 2, 3, 4 (i.e. they use the same number of components of
each type). It can also be proved (e.g. by plotting their respective probability mass
functions) that

K1 ≤CX K2 ≤CX K3 ≤CX K4.

Therefore, from (i),
TK1 ≤ST TK2 ≤ST TK3 ≤ST TK4

for all F̄X , F̄Y . Actually, K4 is the more convex option for K such that E(K ) = 1.
Hence it is always the best option in this system. It corresponds to the green line in
Fig. 3.14 and it assumes that the series systems are built with two units of type X or
with two units of type Y , randomly. This is the best option for our system and any
F̄X , F̄Y , that is, the green line will be always above the other lines (reliabilities). Note
that it is also a “randomoption” (so it can also be seen as a Parrondo paradox) and that
we do not need F̄X ≥ F̄Y . However, if this property holds, this best option could be
unreasonable in practice since the 50%of the customers will have a very good system
with two good units but the others will have a very bad system built with two bad
units. In this case, what should be done in practice? The answer is not easy. Although
this best option is very dispersed (we have very good and very bad systems), note
that this what we do at home, for example, with the remote control when we have
good and bad batteries (we put together the units of the same type). This is the best
option for series systems with independent and heterogeneous components.

Problems

1. Compare two systems with IID components by using their signatures. Plot the
respective functions to confirm (or reject) the comparisons obtained.

2. Check that an arrow in Fig. 3.2 is correct. Plot the respective functions to confirm
(or reject) the comparison obtained.

3. Check that a no-arrow in Fig. 3.2 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.
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4. Check that an arrow in Fig. 3.3 is correct. Plot the respective functions to confirm
(or reject) the comparison obtained.

5. Check that a no-arrow in Fig. 3.3 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

6. Check that an arrow in Fig. 3.4 is correct. Plot the respective functions to confirm
(or reject) the comparison obtained.

7. Check that a no-arrow in Fig. 3.4 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

8. Study the orderings for series and parallel systems with ID components for
a given bivariate survival copula. Plot the respective functions to confirm (or
reject) the comparisons obtained.

9. Study the orderings for series systems with ID components and two different
bivariate survival copulas. Plot the respective functions to confirm (or reject)
the comparisons obtained.

10. Study the orderings for two systems with ID components for a given trivariate
survival copula. Plot the respective functions to confirm (or reject) the compar-
isons obtained.

11. Study the effect of the dependence parameter of a copula in the reliability of a
system with ID components. Plot the respective functions to confirm (or reject)
the comparisons obtained.

12. Study the orderings X1:3 ≤HR X2:3 ≤HR X3:3 for ID components and a survival
copula Ĉ .

13. Find an EXC copula for which X1:2 ≤HR X2:2 does not hold in the ID case.
Plot the hazard rate functions to confirm that this comparison does not hold.

14. Check that a number in Table3.4 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

15. Check that a number in Table3.5 is correct. Plot the respective functions to
confirm (or reject) the comparisons obtained.

16. Check that an arrow in Fig. 3.11 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

17. Check that a no-arrow in Fig. 3.11 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

18. Compare X1:2, X1, X2 and X2:2 for a fixed bivariate survival copula Ĉ and
arbitrary distributions F1, F2.

19. Compare two semi-coherent systems of order 3 for a fixed trivariate survival
copula Ĉ and arbitrary distributions F1, F2, F3.

20. Compare two systems by using RR-plots.
21. Confirm the Parrondo paradox in series systems with independent components.
22. Confirm the Parrondo paradox in series systems with dependent components

and an Archimedean copula.
23. Study the Parrondo paradox in a non-series system with independent compo-

nents. Plot the respective reliability functions.
24. Prove that the Parrondo paradox holds for series systems with n independent

components.
25. Prove that the Parrondo paradox is reverted for parallel systems with n indepen-

dent components.
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