
2Coherent SystemLifetimes

Abstract

In the preceding chapter we have studied systems from a “static” point of view
(i.e. at a fixed time value). In the present one, we introduce the time variable
(usually represented as t) andwe analyse the relationships between the component
lifetimes and the system lifetime. In particular, we show how to compute the
system reliability function from the component reliability functions (by using
different representations). We do the same for the main aging functions (hazard
rate, mean residual lifetime, reversed hazard rate, etc.) which allow us to describe
the behavior of the system when the time goes on.

2.1 Coherent System Lifetimes

Let us assume from now on that X1, . . . , Xn are non-negative random variables on a
given probability space (�,S, Pr) that represent the lifetimes of the components in
a system. Hence the system lifetime T can be obtained from the component lifetimes
as follows.

Proposition 2.1 If ψ is a semi-coherent system of order n with minimal path and
minimal cut sets P1, . . . , Pr andC1, . . . ,Cs, then the system lifetime T can bewritten
as

T = max
1≤ j≤r

min
i∈Pj

Xi (2.1)

and
T = min

1≤ j≤s
max
i∈C j

Xi . (2.2)
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The proof is immediate. Let us assume from now on that the above expressions
(2.1) and (2.2) (or the expressions (1.4) and (1.5)) are used to extend the structure
Boolean function ψ to a real valued function ψ : R → R (we use the same nota-
tion). Thus, we can write the lifetime of the system just as T = ψ(X1, . . . , Xn). For
example, the lifetime of a series systemwith n components is T = min(X1, . . . , Xn).
However note that T �= X1 · · · Xn (i.e. we cannot use the product-coproduct repre-
sentation of the Boolean structure function to obtain the system lifetime).

As a consequence T is also a non-negative random variable (over the same prob-
ability space). Another consequence is that T = XI for an I ∈ [n] (but not always
the same I , that is, I is also a random variable that can take the values 1, . . . , n).

Note that the lifetime of the k-out-of-n system coincides with the order statis-
tic Xn−k+1:n from X1, . . . , Xn . Therefore, the coherent systems contain the order
statistics (ordered component lifetimes) as particular cases. Also, as a consequence
of the preceding proposition, we have that T is equal to a X J :n for J ∈ [n], that is, we
know that the system is going to fail in one of the ordered points X1:n ≤ · · · ≤ Xn:n .
In fact, we will show that, under some assumptions, T can be written as a mixture
of the k-out-of-n systems.

We conclude this subsection by noting that the systems can also be studied by
using stochastic processes. Thus, for a fixed time t ≥ 0, we can define the Boolean
(or Bernoulli) random variables

Bi (t) := 1{Xi>t}
for i = 1, . . . , n, where 1A = 1 (resp. 0) if A is true (false) and Bi (t) = 1 (resp.
0) means that the i th component is working (has failed) at time t . Hence the system
state at time t is

B(t) = ψ(B1(t), . . . , Bn(t)) = 1{T>t}.

Conversely, note that Xi = sup{t : Bi (t) = 1} and T = sup{t : B(t) = 1}. Here
the system performance is represented by the stochastic process {B(t)}t≥0 where we
usually assume B(0) = 1 and B(∞) = 0. As mentioned in the preface, we will not
use this approach in the present book. The interested reader can go to the references
cited there.

2.2 Reliability and Aging Functions

As the system and component lifetimes T and X1, . . . , Xn are non-negative random
variables, we can consider all the functions used to describe the aging process. Of
course we can also use the functions used in the probability theory. The main one is
the system reliability (or survival) function F̄T defined as

F̄T (t) := Pr(T > t)

for all t . We usually assume F̄T (0) = 1 (the system is working at time t = 0). F̄T is
always a decreasing function and satisfies limt→∞ F̄T (t) = 0. The same properties
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are satisfied by the components’ reliability functions defined as

F̄i (t) := Pr(Xi > t)

for all t and i = 1, . . . , n. The respective distribution (or unreliability) functions
are defined as

FT (t) := Pr(T ≤ t) = 1 − F̄T (t)

and
Fi (t) := Pr(Xi ≤ t) = 1 − F̄i (t)

for all t and i = 1, . . . , n. Clearly, FT (t) and F̄T (t) represent the probabilities of a
working or a broken system, respectively, at time t . So the people usually prefer to
use F̄T (t) instead of FT (t). Moreover, it is easy to see that, for non-negative random
variables, the mean or expected value (lifetime) can be computed as

E(T ) =
∫ ∞

0
F̄T (x)dx . (2.3)

A similar expression holds for the components. In Reliability Theory, this value is
also called the Mean Time To Failure (MTTF).

The components’ reliability functions will be modelled with the most usual mod-
els (distributions) for non-negative random variables. Then, as we will see in the
following sections, the system reliability will be a function of the components’ reli-
ability functions.

The most important model in this field is the exponential distribution with relia-
bility function

F̄T (t) = exp(−t/μ) for t ≥ 0,

where μ > 0 is the expected value (or MTTF). This model is the unique continuous
model which satisfies the following property

Pr(T > x) = Pr(T − t > x |T > t) for all t, x ≥ 0.

This property is called the lack of memory property and means that the reliability
in this model is the same for new and used units. So this model plays a central
role in the reliability theory representing units which do not have aging. These are
considered as good units since the reliability is usually lower for used units (natural
or positive aging). In the opposite case, the used units (or the system) have greater
reliability functions than the new units (unnatural or negative aging). Note that here
“positive” does not mean “good”.

Agoodalternative (moreflexible)model is theWeibulldistributionwith reliability
function

F̄(t) = exp(−(t/β)α) for t ≥ 0,

where α, β > 0. The parameter α is called the shape parameter and β is the scale
parameter. Note that the Weibull model contains the exponential model (obtained
whenα = 1). It also containsmodelswith natural (α > 1) and unnatural (0 < α < 1)
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Fig. 2.1 Reliability functions of the residual lifetimes of a Weibull model with β = 1 and α = 2
(left) and α = 1/2 (right) for t = 0, 1, 2, 3, 4, 5 (from the top on the left and from the bottom on
the right)

aging (see below). So it is more flexible than the exponential model. Its distribution
function can be computed in R with pweibull(x,α,β).

The random variable Tt = (T − t |T > x) is called the residual lifetime (RL) of
the system. It represents the performance of used systems that are working at time
t . Its reliability function is

F̄T (x |t) := Pr(T − t > x |T > t) = Pr(T > x + t)

Pr(T > t)
= F̄T (x + t)

F̄T (t)
(2.4)

for all x ≥ 0. It is defined for all t ≥ 0 such that F̄(t) > 0. If F̄(t) = 0 for a t , then
this random variable does not exist (since the system has already failed for sure at
time t). The lack of memory property can also be written as

F̄T (x |t) = F̄T (x) for all t, x ≥ 0.

The residual lifetime of the system will be studied in Sect. 4.4.
Analogously, the residual lifetimes of the components are Xi,t = (Xi − t |Xi > t)

and their reliability functions are

F̄i (x |t) := Pr(Xi − t > x |Xi > t) = F̄i (x + t)

F̄i (t)

for i = 1, . . . , n and t ≥ 0 such that F̄i (t) > 0. They are plotted in Fig. 2.1 for
t = 0, 1, 2, 3, 4, 5 when the components have a common Weibull reliability with
β = 1 and α = 2 (left) and α = 1/2 (right). In the left plot they are decreasing in
t (positive or natural aging) while in the right plot they are increasing in t (negative
aging).
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The code for the left plot is the following:

R<-function(x) 1-pweibull(x,2,1)
Rt<-function(x,t) R(x+t)/R(t)
curve(R(x),0,2.5,ylab=’Reliability’)
curve(Rt(x,1),add=T)
curve(Rt(x,2),add=T)
curve(Rt(x,3),add=T)
curve(Rt(x,4),add=T)
curve(Rt(x,5),add=T)

There are several functions that can be used to describe the aging process. The
first one is themean residual life (MRL) defined as

mT (t) = E(Tt ) = E(T − t |T > t)

for all t ≥ 0 such that F̄(t) > 0 and that these expectations exist. TheMRL functions
of the components are defined analogously. From (2.3) and (2.4) it can be computed
as

mT (t) =
∫ ∞

0
F̄T (x |t)dx =

∫ ∞

0

F̄T (x + t)

F̄T (t)
dx = 1

F̄T (t)

∫ ∞

t
F̄T (x)dx .

Note that it is the area below the residual reliability function FT (x |t) for t ≥ 0. This
function is used to define the increasing mean residual life (IMRL) and decreasing
mean residual life (DMRL) aging classes (according to the monotonicity of mT ).
The natural aging is represented by the DMRL class. The exponential model belongs
to both classes since its MRL satisfies m(t) = μ for all t ≥ 0.

The second one is called the hazard (or failure) rate (HR or FR) function and it
is defined as

hT (t) = fT (t)

F̄T (t)

for all t such that F̄T (t) > 0, where fT (t) = F ′
T (t) is a probability density function

(PDF) of T (so, note that hT is not unique). To explain its meaning, we can write it
as

hT (t) = lim
ε→0+

Pr(t < T < t + ε|T > t)

ε
.

Hence, it represents the average probability of failure in the interval [t, t + ε] when
ε → 0+ for a unit that is working at time t .

It is used to define the increasing failure rate (IFR) and the decreasing failure
rate (DFR) aging classes. The exponential model belongs to both classes since its
hazard satisfies h(t) = 1/μ for all t ≥ 0. In the Weibull model we have h(t) =
α(t/β)α−1 for all t ≥ 0. Therefore, it is IFR for α ≥ 1 and DFR for 0 < α ≤ 1.

These aging functions are related (when they exist) by the following expression

h(t) = 1 + m′(t)
m(t)

.
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So both functions determine the reliability function through the following inversion
formula

F̄(t) = exp

(
−

∫ t

0
h(x)dx

)

for all t ≥ 0.
Similar properties can be obtained for the reversed hazard rate (RHR) and the

mean inactivity time (MIT) functions. The first one is defined by

h̄T (t) = fT (t)

FT (t)

for t such that FT (t) > 0 and the second by

m̄T (t) = E(t − T |T ≤ t)

for all t ≥ 0 such that these expectations exist. The meaning of m̄T is clear, it is the
expected inactivity time for a system (or unit) that has failed before t . Analogously,
h̄T (t) represents the instantaneous probability of failure at t for a unit that has failed
in the interval [0, t]. Note that the greater h̄T (t), the best, since it means that the
inactivity time (t − T |T ≤ t) is closed to zero. The monotonicity properties of h̄T
and m̄T are used to define the aging classes IRHR/DRHR and IMIT/DMIT. All these
aging classes will be studied in Chap.4.

2.3 Signature Representations

The first signature representation was obtained by Samaniego (1985) (see also
Samaniego 2007). It is based on the fact that the system is going to fail with a
component failure. However we need some assumptions. The first one is that the
component lifetimes should be independent and identically distributed (IID). In this
case, the common distribution (reliability) of the component lifetimes is represented
just as F (F̄). The second one is that F should be continuous (to avoid ties). Then
the representation can be stated as follows.

Theorem 2.1 (Samaniego, 1985) If T is the lifetime of a coherent system with IID
component lifetimes X1, . . . , Xn having a common continuous distribution function
F, then

F̄T (t) =
n∑

i=1

si F̄i :n(t) (2.5)

for all t , where s1, . . . , sn are nonnegative coefficients such that
∑n

i=1 si = 1 and that
do not depend on F and where F̄i :n is the reliability function of Xi :n for i = 1, . . . , n.
Moreover, these coefficients satisfy si = Pr(T = Xi :n) for i = 1, . . . , n.
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Proof First note that the events {T = Xi :n}, for i = 1, 2, . . . , n, are a partition of
the probability space � since, as F is continuous, then Pr(Xi = X j ) = 0 for all
i �= j . Hence, from the law of total probability, we have

F̄T (t) =
n∑

i=1

Pr({T > t} ∩ {T = Xi :n})

=
n∑

i=1

Pr(T = Xi :n)Pr(T > t |T = Xi :n)

=
n∑

i=1

Pr(T = Xi :n)Pr(Xi :n > t |T = Xi :n)

=
n∑

i=1

Pr(T = Xi :n)Pr(Xi :n > t),

where in the sum we only consider the terms with Pr(T = Xi :n) > 0 (the others are
zero) and where the last equality is obtained from the independence of the events
{Xi :n > t} and {T = Xi :n} (under the stated assumptions). Thus we obtain (2.5)
with si = Pr(T = Xi :n), for i = 1, . . . , n and

n∑
i=1

si =
n∑

i=1

Pr(T = Xi :n) = Pr(�) = 1

which concludes the proof. �

The vector s = (s1, . . . , sn) with the coefficients in (2.5) is called the signature
of the system in Samaniego (1985) (see also Samaniego 2007). It is also called the
destruction spectrum (or simply D-spectrum) when we use networks instead of
systems (see, e.g., Gertsbakh and Shpungin 2010, p. 85).

Moreover, these coefficients only depend on the structure of the system (under
these assumptions). Actually, they can be computed from ψ as

si = |Ai |
n! for i = 1, . . . , n, (2.6)

where |Ai | is the cardinality of the set Ai of all the permutations σ of the set
[n] = {1, . . . , n} which satisfy that ψ(x1, . . . , xn) = xi :n whenever xσ(1) < . . . <

xσ(n) (see Samaniego 2007, Chap.3).
The signature coefficients are also determined by the Boolean structure function

ψ as follows

si = 1( n
i−1

) ∑
∑n

j=1 x j=n−i+1

ψ(x1, . . . xn) − 1(n
i

) ∑
∑n

j=1 x j=n−i

ψ(x1, . . . xn) (2.7)

for i = 1, . . . , n (see Boland 2001).
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Fig. 2.2 Example of a coherent system

Example 2.1 For the coherent system with lifetimeψ = min(x1,max(x2, x3)) (see
Fig. 2.2), we have the following options (permutations):

σ xσ(1) < xσ(2) < xσ(3) ψ J
(1, 2, 3) x1 < x2 < x3 x1 = x1:3 1
(1, 3, 2) x1 < x3 < x2 x1 = x1:3 1
(2, 1, 3) x2 < x1 < x3 x1 = x2:3 2
(2, 3, 1) x2 < x3 < x1 x3 = x2:3 2
(3, 1, 2) x3 < x1 < x2 x1 = x2:3 2
(3, 2, 1) x3 < x2 < x1 x2 = x2:3 2

and hence its signature is s = (1/3, 2/3, 0). Therefore, from (2.5), its reliability
function can be written as

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t)

for all t . The signature can also be computed from (2.7) as

s1 = 1(3
0

) ∑
x1+x2+x3=3

ψ(x1, x2, x3) − 1(3
1

) ∑
x1+x2+x3=2

ψ(x1, x2, x3) = 1 − 2

3
= 1

3
,

s2 = 1(3
1

) ∑
x1+x2+x3=2

ψ(x1, x2, x3) − 1(3
2

) ∑
x1+x2+x3=1

ψ(x1, x2, x3) = 2

3

and s3 = 1 − s1 − s2 = 0. �

Note that the signature contains the probabilities of the discrete random variable
J such that T = X J :n . So we can say that T is a mixture of X1:n, . . . , Xn:n with
weights s1, . . . , sn .

If X1, . . . , Xn are IID, the ordered variables X1:n, . . . , Xn:n are known as the
order statistics. In Reliability Theory, they represent the lifetimes of k-out-of-n
systems. Their basic properties can be seen in Arnold et al. (2008) and David and
Nagaraja (2003). In particular, the expression for their reliability functions are the
following (see, e.g., David and Nagaraja 2003, p. 46).

Proposition 2.2 If X1, . . . , Xn are IID∼F, then the reliability function of Xi :n is

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t). (2.8)



2.3 Signature Representations 31

Proof Let us consider the Bernoulli random variables defined by Bi (t) = 1 iff
Xi > t . Then N (t) := ∑n

i=1 Bi (t) gives the number of components alive at time t .
From the IID assumption, N (t) has a Binomial distributionB(n, pt )with probability
pt = F̄(t). Therefore

F̄i :n(t) = Pr(Xi :n > t) = Pr(N (t) > n − i) =
n∑

k=n−i+1

(
n

k

)
Fn−k(t)F̄k(t)

and by doing the change j = n − k we obtain (2.8). �

Note that we can use the expression (2.8) in (2.5) to obtain F̄T as

F̄T (t) =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t). (2.9)

By interchanging the order of summations in (2.9) we obtain

F̄T (t) =
n∑

k=1

(
n∑

i=n−k+1

si

) (
n

k

)
Fn−k(t)F̄k(t), (2.10)

where Sn−k+1 = ∑n
i=n−k+1 si is the probability that the system works when exactly

k components work, where Fn−k(t)F̄k(t) is the probability of have k specific com-
ponents working at age t and where

(n
k

)
represents the number of options of choosing

such k components. An extension of formula (2.10) to the case of non-ID compo-
nents was obtained in Coolen and Coolen-Maturi (2012) (see also Samaniego and
Navarro 2016).

Example 2.2 For the coherent system considered in Example 2.1 with signature
(1/3, 2/3, 0), we need

F̄1:3(t) = Pr(X1:3 > t) = F̄3(t)

and
F̄2:3(t) = Pr(X2:3 > t) = F̄3(t) + 3 F(t)F̄2(t).

By replacing F with 1 − F̄ we get

F̄2:3(t) = 3F̄2(t) − 2F̄3(t).

Note that we do not need

F̄3:3(t) = 3F̄(t) − 3F̄2(t) + F̄3(t)

(since s3 = 0). Hence

F̄T (t) = 1

3
F̄3(t) + 2

3
(3F̄2(t) − 2F̄3(t)) = 2F̄2(t) − F̄3(t).

These reliability functions are plotted in Fig. 2.3, left, when the components are
IID with a standard (μ = 1) exponential distribution. The dashed line is the com-
mon reliability function of the components. The code in R to get these plots is the
following:
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Fig. 2.3 Reliability (left) and hazard rate functions (right) of the system in Example 2.2 (red) and
the associated k-out-of-3 systems (black) when the components are IID with a standard exponential
distribution. The dashed lines are the common functions for the components

R<-function(t) exp(-t)

R1<-function(t) (R(t))ˆ3

R2<-function(t) 3*(R(t))ˆ2-2*(R(t))ˆ3

R3<-function(t) 3*R(t)-3*(R(t))ˆ2+(R(t))ˆ3

s1<-1/3

s2<-2/3

s3<-0

RT<-function(t) s1*R1(t)+s2*R2(t)+s3*R3(t)

curve(RT(x),0,5,xlab=’t’,ylab=’Reliability’,col=’red’,lwd=2)

curve(R1(x),add=T,lwd=2)

curve(R2(x),add=T,lwd=2)

curve(R3(x),add=T,lwd=2)

curve(R(x),add=T,lty=2,lwd=2)

Note that
F̄1:3 ≤ F̄T ≤ F̄2:3 ≤ F̄3:3.

This is a general property of this system for all F (due to s3 = 0). Also note that
F̄T ≤ F̄ but that F̄ (dashed line) and F̄2:3 (black line in the middle) are not ordered.
By changing the signature we can plot other systems. �

Proceeding as in the preceding example, we can compute the signature vectors for
all the coherent systems with 1-4 components. They were first computed by Shaked
and Suárez–Llorens (2003) and they are given Table2.1. Of course, the systems
equivalent under permutations have the same signatures (so we just include one of
them in the table). However, there are systems not equivalent under permutations
that have the same signature as well (see, e.g., the systems with numbers 20 and
21). As a consequence of (2.5), then they also have the same reliability (distribution)
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Table 2.1 Signatures of all the coherent systems with 1-4 IID components

i Ti s

1 X1:1 = X1 (1)

2 X1:2 = min(X1, X2) (2-series) (1, 0)

3 X2:2 = max(X1, X2) (2-parallel) (0, 1)

4 X1:3 = min(X1, X2, X3) (3-series) (1, 0, 0)

5 min(X1,max(X2, X3)) ( 13 , 2
3 , 0)

6 X2:3 (2-out-of-3) (0, 1, 0)

7 max(X1,min(X2, X3)) (0, 2
3 , 1

3 )

8 X3:3 = max(X1, X2, X3) (3-parallel) (0, 0, 1)

9 X1:4 = min(X1, X2, X3, X4) (4-series) (1, 0, 0, 0)

10 max(min(X1, X2, X3),min(X2, X3, X4)) ( 12 , 1
2 , 0, 0)

11 min(X2:3, X4) ( 14 , 3
4 , 0, 0)

12 min(X1,max(X2, X3),max(X3, X4)) ( 14 , 7
12 , 1

6 , 0)

13 min(X1,max(X2, X3, X4)) ( 14 , 1
4 , 1

2 , 0)

14 X2:4 (3-out-of-4) (0, 1, 0, 0)

15
max(min(X1, X2),min(X1, X3, X4),

min(X2, X3, X4))
(0, 5

6 , 1
6 , 0)

16 max(min(X1, X2),min(X3, X4)) (0, 2
3 , 1

3 , 0)

17
max(min(X1, X2),min(X1, X3),

min(X2, X3, X4))
(0, 2

3 , 1
3 , 0)

18
max(min(X1, X2),min(X2, X3),

min(X3, X4))
(0, 1

2 , 1
2 , 0)

19
max(min(X1,max(X2, X3, X4)),

min(X2, X3, X4))
(0, 1

2 , 1
2 , 0)

20
min(max(X1, X2),max(X1, X3),

max(X2, X3, X4))
(0, 1

3 , 2
3 , 0)

21 min(max(X1, X2),max(X3, X4)) (0, 1
3 , 2

3 , 0)

22
min(max(X1, X2),max(X1, X3, X4),

max(X2, X3, X4))
(0, 1

6 , 5
6 , 0)

23 X3:4 (2-out-of-4) (0, 0, 1, 0)

24 max(X1,min(X2, X3, X4)) (0, 1
2 , 1

4 , 1
4 )

25 max(X1,min(X2, X3),min(X3, X4)) (0, 1
6 , 7

12 , 1
4 )

26 max(X2:3, X4) (0, 0, 3
4 , 1

4 )

27 min(max(X1, X2, X3),max(X2, X3, X4)) (0, 0, 1
2 , 1

2 )

28 X4:4 = max(X1, X2, X3, X4) (4-parallel) (0, 0, 0, 1)
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when the component lifetimes are IID with a common continuous distribution F .
Also note that if T is a system with signature s = (s1, . . . , sn), then the signature of
its dual system T D is sD = (sn, . . . , s1) (see e.g. the systems with numbers 10 and
27). This is a general property and so we do not need to compute the signatures of
the dual systems 20-28. The signatures for all the coherent systems with n = 5 and
n = 6 components were obtained in Navarro and Rubio (2010).

As mentioned above, expression (2.5) is a mixture representation for T . So we
can use here all the properties for mixtures. For example, the expected lifetime for
the system (MTTF) is

E(T ) =
n∑

i=1

si E(Xi :n).

Asimilar property holds for the respective distribution functions and, in the absolutely
continuous case, the respective probability density functions (PDF) satisfy

fT (t) =
n∑

i=1

si fi :n(t). (2.11)

The PDF of the order statistics can be obtained as follows.

Proposition 2.3 If X1, . . . , Xn are IID∼F and F is absolutely continuouswith PDF
f , then the PDF of Xi :n is

fi :n(t) = i

(
n

i

)
f (t)Fi−1(t)F̄n−i (t). (2.12)

Proof From (2.8) we have

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t).

Differentiating this expression we obtain

F̄ ′
i :n(t) = f (t)

i−1∑
j=1

(
n

j

)
j F j−1(t)F̄n− j (t) − f (t)

i−1∑
j=0

(
n

j

)
(n − j)F j (t)F̄n− j−1(t)

= n f (t)
i−1∑
j=1

(
n − 1

j − 1

)
F j−1(t)F̄n− j (t) − n f (t)

i−1∑
j=0

(
n − 1

j

)
F j (t)F̄n− j−1(t)

= n f (t)
i−2∑
k=0

(
n − 1

k

)
Fk(t)F̄n−k−1(t) − n f (t)

i−1∑
j=0

(
n − 1

j

)
F j (t)F̄n− j−1(t)

= −n f (t)

(
n − 1

i − 1

)
Fi−1(t)F̄n−i (t)

= −i

(
n

i

)
f (t)Fi−1(t)F̄n−i (t)

and so (2.12) holds. �
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Remark 2.1 The PDF in (2.12) can be rewritten as

fi :n(t) = �(n + 1)

�(i)�(n − i + 1)
f (t)Fi−1(t)F̄n−i (t) (2.13)

where �(p) = ∫ ∞
0 x p−1e−xdx is the gamma function. It can be proved that the

function defined in (2.13) for i, n ∈ R satisfying 1 ≤ i ≤ n is a proper PDF. Then
we can consider the random variable Xi :n having this PDF for i, n ∈ R satisfying
1 ≤ i ≤ n as an extension of the order statistics (k-out-of-n systems) that are obtained
when i and n are integers.

As an immediate consequence of (2.12), the PDF of the system can be obtained
as follows.

Corollary 2.1 If T is the lifetime of a coherent system with IID component lifetimes
X1, . . . , Xn having a common absolutely continuous distribution function F with
PDF f , then the PDF fT of T can be written as

fT (t) =
n∑

i=1

si fi :n(t) = f (t)
n∑

i=1

isi

(
n

i

)
Fi−1(t)F̄n−i (t)

for all t .

All these expressions are convex combinations and so, the values for the systems
will be between the minimum and maximum values for the k-out-of-n systems.
In particular, as X1:n ≤ · · · ≤ Xn:n , then their respective reliability functions are
ordered, that is,

F̄1:n(t) ≤ · · · ≤ F̄n:n(t)

for all t . Even more, as X1:n ≤ T ≤ Xn:n , then

F̄1:n(t) ≤ F̄T (t) ≤ F̄n:n(t)

for all t . In the IID∼F case we can be more precise and write

F̄i :n(t) ≤ F̄T (t) ≤ F̄j :n(t),

where i is the smallest index with si > 0 and j is the greatest index with s j > 0. In
the preceding example the signature is (1/3, 2/3, 0). Hence i = 1 and j = 2 and
so the orderings for the reliability functions in Fig. 2.3, left, is a general property for
any continuous distribution F . In the next chapter we will use (2.5) and the ordering
properties for mixtures given in Shaked and Shanthikumar (2007) to compare two
systems by comparing their signatures.

However, the expressions for the mean residual life and the hazard rate functions
are different. So it is difficult to determine the behavior of these functions inmixtures.
For example, the hazard rate of the system can be written from (2.5) and (2.11) as

hT (t) = fT (t)

F̄T (t)
=

∑n
i=1 si fi :n(t)∑n
i=1 si F̄i :n(t)

=
n∑

i=1

wi (t)hi :n(t) (2.14)
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where hi :n = fi :n/F̄i :n is the hazard rate of Xi :n and

wi (t) = si F̄i :n(t)∑n
j=1 s j F̄j :n(t)

.

Note that 0 ≤ wi (t) ≤ 1 and
∑n

i=1 wi (t) = 1 for all t . Hence (2.14) is also a convex
combination but, in this case, the coefficients w1(t), . . . , wn(t) depend on t .

In the IID case, the hazard rate functions of the k-out-of-n systems are ordered,
that is, h1:n ≥ · · · ≥ hn:n . Hence, in this case, we also have

hi :n(t) ≥ hT (t) ≥ h j :n(t)

for all F and the indices defined above. For example, the hazard rate functions for
the system in Example 2.2 when the component lifetimes are IID with a standard
exponential are plotted in Fig. 2.3, right. The code in R to get this plot (by using also
the code written above) is:

f<-function(t) exp(-t)

f1<-function(t) 3*f(t)*(R(t))ˆ2

f2<-function(t) (6*R(t)-6*(R(t))ˆ2)*f(t)

f3<-function(t) (3-6*R(t)+3*(R(t))ˆ2)*f(t)

fT<-function(t) s1*f1(t)+s2*f2(t)+s3*f3(t)

curve(fT(x)/RT(x),0,5,ylim=c(0,3),ylab=’HR’,col=’red’,lwd=2)

curve(f1(x)/R1(x),add=T,lwd=2)

curve(f2(x)/R2(x),add=T,lwd=2)

curve(f3(x)/R3(x),add=T,lwd=2)

abline(h=1,lty=2,lwd=2)

The following example shows that the continuity assumption in Samaniego’s
representation cannot be dropped out.

Example 2.3 Let us consider the series system with lifetime T = X1:2 =
min(X1, X2), where X1, X2 are IID with a common Bernoulli distribution of param-
eter 1/2, that is, Pr(Xi = 1) = Pr(Xi = 0) = 1/2 for i = 1, 2. Then

Pr(T = X1:2) = 1

and

Pr(T = X2:2) = Pr(X1 = X2) = 1

2
.

So (2.5) does not hold with these coefficients. Also note that 1+ 1/2 > 1. However,
the signature computed from the structure by using (2.6) (or (2.7)) is s = (1, 0).
Note that (2.5) holds with these coefficients. �

Therefore, in the general case, that is, when (X1, . . . , Xn) is an arbitrary random
vector with joint distribution function

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn)
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and joint reliability function

F̄(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn),

we can define two signatures as follows.

Definition 2.1 The structural signature of a coherent systemψ is s = (s1, . . . , sn)
where si is given by (2.6) (or by (2.7)).

Definition 2.2 Theprobabilistic signature of a coherent systemwith lifetime T and
component lifetimes (X1, . . . , Xn) is p = (p1, . . . , pn) where pi = Pr(T = Xi :n).

Clearly, s only depends on the structure of the system ψ while p can also depend
on the joint distribution function of the components F. In the preceding example
p = (1, 1/2) and s = (1, 0). In this case Samaniego’s representation (2.5) holds
for s. We will see that this is true for the general IID case but that we will not have
representations for non-ID components.

As Samaniego’s representation does not necessarily hold in the general case we
need another way to compute the system reliability. It is provided in the following
theorem and it is called the minimal path set representation.

Theorem 2.2 (Minimal path set representation) If T is the lifetime of a coherent (or
semi-coherent) system with minimal path sets P1, . . . , Pr and component lifetimes
(X1, . . . , Xn), then

F̄T (t) =
r∑

i=1

F̄Pi (t) −
r−1∑
i=1

r∑
j=i+1

F̄Pi∪Pj (t) + · · · + (−1)r+1 F̄P1∪...∪Pr (t) (2.15)

for all t , where F̄P (t) = Pr(XP > t) and XP = min j∈P X j for P ⊆ [n].

Proof First note that from (2.1), the system lifetime can be written as T =
max1≤i≤r X Pi . Then

F̄T (t) = Pr(T > t) = Pr

(
max
1≤i≤r

X Pi > t

)
= Pr

(∪r
i=1{XPi > t}) .

Hence, by using the inclusion-exclusion formula for the union of events, we obtain
(2.15) taking into account that

Pr
({XPi > t} ∩ {XPj > t}) = Pr

(
XPi∪Pj > t

)
. �

Note that (2.15) proves that the reliability function of the system is a linear com-
bination of the reliability functions of the series systems obtained from unions of
its minimal path sets. However, some coefficients can be negative and so it is not a
mixture representation (as (2.5) was). Note that these coefficients sum up to one (take
t → −∞). These representations are called generalized mixtures and they contain
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the usual mixtures (all the coefficients are non-negative) and the negative mixtures
(some coefficients are negative). They have some common properties with the usual
mixtures. For example, similar expressions hold for the respective distribution and
probability density functions.

For the system with lifetime T = min(X1,max(X2, X3)) and minimal path sets
P1 = {1, 2} and P2 = {1, 3}, we have

F̄T (t) = Pr (min(X1,max(X2, X3)) > t)

= Pr ({min(X1, X2) > t} ∪ {min(X1, X3) > t})
= Pr (min(X1, X2) > t) + Pr (min(X1, X3) > t) − Pr (min(X1, X2, X3) > t)

= F̄{1,2}(t) + F̄{1,3}(t) − F̄{1,2,3}(t). (2.16)

The reliability functions of series systems can be computed from the joint relia-
bility function F̄ of the components. For example, in this system, we have

F̄{1,2}(t) = Pr(min(X1, X2) > t) = Pr(X1 > t, X2 > t) = F̄(t, t,−∞).

Analogously, F̄{1,3}(t) = F̄(t, −∞, t) and F̄{1,2,3}(t) = F̄(t, t, t). Therefore,

F̄T (t) = F̄(t, t,−∞) + F̄(t,−∞, t) − F̄(t, t, t).

In the general case, for the series system X{1,...,k} we have
F̄{1,...,k}(t) = Pr(X1 > t, . . . , Xk > t) = F̄(t, . . . , t,−∞, . . . , −∞)

where t is repeated k times, for k = 1, . . . , n. Similarly, for an arbitrary series system
XP with P ⊆ [n] we have

F̄P (t) = Pr

(
min
j∈P

X j > t

)
= F̄(t P1 , . . . , t Pn ),

where t Pi := t if i ∈ P and t Pi := −∞ if i /∈ P .
If the component lifetimes are stochastically independent (IND), that is,

F̄(x1, . . . , xn) = Pr(X1 > x1) . . . Pr(Xn > xn),

then these expressions can be reduced to

F̄P (t) =
∏
j∈P

Pr(X j > t) =
∏
j∈P

F̄j (t)

and if they are IID then F̄P (t) = F̄ |P|(t) where |P| is the cardinality of P .
For the above system, we get

F̄T (t) = F̄1(t)F̄2(t) + F̄1(t)F̄3(t) − F̄1(t)F̄2(t)F̄3(t)

in the IND case and
F̄T (t) = 2F̄2(t) − F̄3(t)

in the IID case. Of course, this last expression coincides with the one obtained
from Samaniego’s representation. It does not coincide when the components are
independent but not identically distributed (INID). For example, in Fig. 2.4 we plot
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the system reliability and hazard rate functionswhen the components are independent
and have exponential distributions with means 1, 1/2, 1/3 (black) and a common
mean 1/2 (red). In this example, the system with heterogeneous components is more
reliable than the one with homogeneous components. The code is the following:

# Reliability functions

R<-function(t) exp(-2*t)

R1<-function(t) exp(-t)

R2<-function(t) exp(-2*t)

R3<-function(t) exp(-3*t)

RT2<-function(t) 2*(R(t))ˆ2-(R(t))ˆ3

RT1<-function(t) R1(t)*R2(t)+R1(t)*R3(t)-R1(t)*R2(t)*R3(t)

curve(RT2(x),0,2,xlab=’t’,ylab=’Reliability’,col=’red’,lwd=2)

curve(RT1(x),add=T,lwd=2)

curve(R1(x),add=T,lty=2,lwd=2)

curve(R2(x),add=T,lty=2,lwd=2)

curve(R3(x),add=T,lty=2,lwd=2)

#Hazard rates

f<-function(t) 2*exp(-2*t)

f1<-function(t) exp(-t)

f2<-function(t) 2*exp(-2*t)

f3<-function(t) 3*exp(-3*t)

fT2<-function(t) (4*R(t)-3*(R(t))ˆ2)*f(t)

fT1<-function(t) {

f1(t)*R2(t)+R1(t)*f2(t)+f1(t)*R3(t)+R1(t)*f3(t)

-f1(t)*R2(t)*R3(t)-f2(t)*R1(t)*R3(t)-f3(t)*R2(t)*R1(t)

}

curve(fT2(x)/RT2(x),0,4,col=’red’,ylim=c(0,4),lwd=2,ylab=’HR)

curve(fT1(x)/RT1(x), add=T,lwd=2)

abline(h=1,lty=2,lwd=2)

abline(h=2,lty=2,lwd=2)

abline(h=3,lty=2,lwd=2)

As a consequence we obtain the following representation for the IND case.

Corollary 2.2 (Minimal path set representation, IND case) If T is the lifetime of a
coherent (or semi-coherent) system with minimal path sets P1, . . . , Pr and indepen-
dent component lifetimes X1, . . . , Xn, then

F̄T (t) =
r∑

i=1

∏
k∈Pi

F̄k(t) −
r−1∑
i=1

r∑
j=i+1

∏
k∈Pi∪Pj

F̄k(t) + · · · + (−1)r+1
∏

k∈P1∪···∪Pr

F̄k(t)

(2.17)
for all t , where F̄k(t) = Pr(Xk > t) for k = 1, . . . , n.
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Fig. 2.4 Reliability (left) and hazard rate functions (right) of the system in Example 2.2 when the
components are independent and have exponential distributions of means 1, 1/2, 1/3 (black) and a
common mean 1/2 (red). The dashed lines are the functions for the components

A similar expression can be obtained from the minimal cut sets. It can be stated
as follows. Its proof is analogous.

Theorem 2.3 (Minimal cut set representation) If T is the lifetime of a coherent (or
semi-coherent) system with minimal cut sets C1, . . . ,Cs and component lifetimes
(X1, . . . , Xn), then

FT (t) =
s∑

i=1

FCi (t) −
s−1∑
i=1

s∑
j=i+1

FCi∪C j (t) + · · · + (−1)s+1FC1∪...∪Cs (t) (2.18)

for all t , where F P (t) = Pr(X P ≤ t) and X P = max j∈P X j for P ⊆ [n].

Note that we obtain again generalized mixtures. Hence the same expression
also holds for the respective reliability functions. We use the distribution functions
because, in the IND case, it can be reduced to the following corollary.

Corollary 2.3 (Minimal cut set representation, IND case) If T is the lifetime of a
coherent (or semi-coherent) system with minimal cut sets C1, . . . ,Cs and indepen-
dent component lifetimes X1, . . . , Xn, then

FT (t) =
s∑

i=1

∏
k∈Ci

Fk(t)−
s−1∑
i=1

s∑
j=i+1

∏
k∈Ci∪C j

Fk(t)+· · ·+ (−1)r+1
∏

k∈C1∪···∪Cs

Fk(t)

(2.19)
for all t , where Fk(t) = Pr(Xk ≤ t) for k = 1, . . . , n.

The general expressions obtained from theminimal path or cut sets can be reduced
to simpler expressions when the component lifetimes are exchangeable. The formal
definition is the following.
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Definition 2.3 The random vector (X1, . . . , Xn) is exchangeable (EXC) if

(X1, . . . , Xn) =ST (Xσ(1), . . . , Xσ(n))

for all the permutations σ : [n] → [n], where =ST denotes equality in distribution
(law).

Clearly, (X1, . . . , Xn) is EXC iff its joint distribution (or reliability) function F
is permutation symmetric, that is,

F(x1, . . . , xn) =ST F(xσ(1), . . . , xσ(n))

for all the permutations σ : [n] → [n] and all x1, . . . , xn ∈ R.
If (X1, . . . , Xn) is EXC, then all the marginal distributions of dimension k are

equal and, in particular, the variables are ID. Hence, the distributions of all the series
(or parallel) systems with k components are equal and we have

F̄P (t) = F̄{1,...,k}(t) = F̄(t, . . . , t,−∞, . . . , −∞),

where t is repeated k = |P| times. As a consequence, we obtain the following
representation given in Navarro et al. (2007).

Theorem 2.4 (Minimal signature representation) If T is the lifetime of a coherent
(or semi-coherent) system with EXC component lifetimes (X1, . . . , Xn), then

F̄T (t) =
n∑

i=1

ai F̄1:i (t) (2.20)

for all t , where a1, . . . , an are some integer coefficients such that a1 + · · · + an = 1
and F̄1:i (t) = Pr(min(X1, . . . , Xi ) > t) for i = 1, . . . , n.

Proof From (2.15), we have that F̄T is a linear combination of reliability functions
F̄P of series systems. But, if (X1, . . . , Xn) is EXC, then F̄P can be replaced by F̄1:i
with i = |P|. Hence (2.20) holds for some coefficients a1, . . . , an ∈ Z. Moreover
these coefficients sum up to one (take t → −∞). �

The vector a = (a1, . . . , an) with these coefficients was call the minimal signa-
ture of the system in Navarro et al. (2007). A similar representation can be obtained
by using the parallel systems as follows.

Theorem 2.5 (Maximal signature representation) If T is the lifetime of a coherent
(or semi-coherent) system with EXC component lifetimes (X1, . . . , Xn), then

FT (t) =
n∑

i=1

bi Fi :i (t) (2.21)

for all t , where b1, . . . , bn are some integer coefficients such that b1 + · · · + bn = 1
and Fi :i (t) = Pr(max(X1, . . . , Xi ) ≤ t) for i = 1, . . . , n.
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The vector b = (b1, . . . , bn) with these coefficients was call themaximal signa-
ture of the system in Navarro et al. (2007). Note that both representations (2.20) and
(2.21) are generalized mixtures and that they hold for the general EXC case (includ-
ing discrete or singular distributions). In both we can use distribution or reliability
functions. However, it is better to use reliability functions with series systems and
distribution functions with parallel systems. In the absolutely continuous case, we
can also use probability density functions. We will see later that they do not hold
without the EXC assumption.

Let us see an example. For the coherent system with lifetime T = min(X1,

max(X2, X3)), we get

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t) − F̄{1,2,3}(t)

that, in the EXC case, can be reduced to

F̄T (t) = 2F̄1:2(t) − F̄1:3(t).

Hence its minimal signature is a = (0, 2,−1). To compute its maximal signature
we first write its distribution function as

FT (t) = F {1}(t) + F {2,3}(t) − F {1,2,3}(t)

which, in the EXC case, gives

FT (t) = F1:1(t) + F2:2(t) − F3:3(t)

for all t . So its maximal signature is b = (1, 1, −1).
The minimal and maximal signatures of all the coherent systems with 1-4 compo-

nents are given in Table2.2. It can be proved that the minimal (maximal) signature
of a system coincides with the maximal (minimal) signature of its dual system (see,
e.g., the systems in rows 10 and 27). This property is due to the fact that the minimal
cut (path) sets of a system are the minimal path (cut) sets of its dual system.

The EXC case includes the general IID case and so we can obtain the following
representations.

Theorem 2.6 (Minimal and maximal signature representations, IID case) If T is the
lifetimeof a coherent (or semi-coherent) systemwithminimal andmaximal signatures
(a1, . . . , an) and (b1, . . . , bn) and IID∼F component lifetimes, then

F̄T (t) =
n∑

i=1

ai F̄
i (t) (2.22)

and

FT (t) =
n∑

i=1

bi F
i (t) (2.23)

for all t .
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Table 2.2 Minimal a and maximal b signatures of all the coherent systems with 1-4 exchangeable
components

i Ti a b

1 X1:1 = X1 (1) (1)

2 X1:2 = min(X1, X2) (2-series) (0, 1) (2,−1)

3 X2:2 = max(X1, X2) (2-parallel) (2,−1) (0, 1)

4 X1:3 = min(X1, X2, X3) (3-series) (0, 0, 1) (3,−3, 1)

5 min(X1,max(X2, X3)) (0, 2,−1) (1, 1,−1)

6 X2:3 (2-out-of-3) (0, 3,−2) (0, 3,−2)

7 max(X1,min(X2, X3)) (1, 1,−1) (0, 2,−1)

8 X3:3 = max(X1, X2, X3) (3-parallel) (3,−3, 1) (0, 0, 1)

9 X1:4 = min(X1, X2, X3, X4) (series) (0, 0, 0, 1) (4,−6, 4,−1)

10 max(min(X1, X2, X3),min(X2, X3, X4)) (0, 0, 2,−1) (2, 0,−2, 1)

11 min(X2:3, X4) (0, 0, 3,−2) (1, 3,−5, 2)

12 min(X1,max(X2, X3),max(X3, X4)) (0, 1, 1,−1) (1, 2,−3, 1)

13 min(X1,max(X2, X3, X4)) (0, 3,−3, 1) (1, 0, 1,−1)

14 X2:4 (3-out-of-4) (0, 0, 4,−3) (0, 6,−8, 3)

15
max(min(X1, X2),min(X1, X3, X4),

min(X2, X3, X4))
(0, 1, 2,−2) (0, 5,−6, 2)

16 max(min(X1, X2),min(X3, X4)) (0, 2, 0,−1) (0, 4,−4, 1)

17
max(min(X1, X2),min(X1, X3),

min(X2, X3, X4))
(0, 2, 0,−1) (0, 4,−4, 1)

18
max(min(X1, X2),min(X2, X3),

min(X3, X4))
(0, 3,−2, 0) (0, 3,−2, 0)

19
max(min(X1,max(X2, X3, X4)),

min(X2, X3, X4))
(0, 3,−2, 0) (0, 3,−2, 0)

20
min(max(X1, X2),max(X1, X3),

max(X2, X3, X4))
(0, 4,−4, 1) (0, 2, 0,−1)

21 min(max(X1, X2),max(X3, X4)) (0, 4,−4, 1) (0, 2, 0,−1)

22
min(max(X1, X2),max(X1, X3, X4),

max(X2, X3, X4))
(0, 5,−6, 2) (0, 1, 2,−2)

23 X3:4 (2-out-of-4) (0, 6,−8, 3) (0, 0, 4,−3)

24 max(X1,min(X2, X3, X4)) (1, 0, 1,−1) (0, 3,−3, 1)

25 max(X1,min(X2, X3),min(X3, X4)) (1, 2,−3, 1) (0, 1, 1,−1)

26 max(X2:3, X4) (1, 3,−5, 2) (0, 0, 3,−2)

27 min(max(X1, X2, X3),max(X2, X3, X4)) (2, 0,−2, 1) (0, 0, 2,−1)

28 X4:4 = max(X1, X2, X3, X4) (4-parallel) (4,−6, 4,−1) (0, 0, 0, 1)
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The proof is immediate from (2.20) and (2.21) since, in the IID case, we have
F̄1:i (t) = F̄ i (t) and Fi :i (t) = Fi (t) for all t . So it is better to use reliability functions
with the minimal signature and distribution functions with the maximal signature.
Note that we do not need the assumption “F is continuous”. In the absolutely con-
tinuous IID case, the system PDF is

fT (t) = f (t)
n∑

i=1

iai F̄
i−1(t) = f (t)

n∑
i=1

ibi F
i−1(t)

where f = F ′ = −F̄ ′ is the common PDF of the components.

The minimal (or maximal) signature representation can be used to extend
Samaniego’s representation to the general EXC case (which includes the IID case
with a general distribution F). It is stated in the following theorem. This result was
obtained in Navarro et al. (2008) by using a different proof. A similar result was
obtained previously in Navarro and Rychlik (2007) for absolutely continuous EXC
distributions.

Theorem 2.7 (Signature representation, EXC case) If T is the lifetime of a coherent
system with structural signature (s1, . . . , sn) and with EXC component lifetimes,
then

F̄T (t) =
n∑

i=1

si F̄i :n(t) (2.24)

for all t .

Proof From (2.20) we have

F̄T (t) =
n∑

i=1

ai F̄1:i (t)

where a = (a1, . . . , an) is the minimal signature of T . This representation can be
written as

F̄T (t) = a(F̄1:1(t), . . . , F̄1:n(t))′,

where v′ represents the transpose of v.
We can apply this representation to the k-out-of-n systems as well. Thus, for X1:n ,

which only has a minimal path set P1 = {1, . . . , n} (the unique set with cardinality
n), we obtain the trivial representation

F̄1:n(t) = 0F̄1:1(t) + · · · + 0F̄1:n−1(t) + 1F̄1:n(t),

that is, its minimal signature is (0, . . . , 0, 1).
Analogously, for X2:n , its minimal path sets are all the sets with cardinality n − 1

(its has
( n
n−1

) = n minimal path sets). Then its minimal path set representation is

F̄2:n(t) = 0F̄1:1(t) + · · · + 0F̄1:n−2(t) + nF̄1:n−1(t) − (n − 1)F̄1:n(t),
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that is, its minimal signature is (0, . . . , 0, n,−n + 1) (the last coefficient is −n + 1
because their sum is one).

In general, for Xi :n , we obtain

F̄i :n(t) = 0F̄1:1(t) + · · · + 0F̄1:n−i (t) +
(
n

i

)
F̄1:n−i+1(t) + · · · + ai,n F̄1:n(t)

for i = 1, . . . , n. The coefficients in that representation are well known in the order
statistics literature (see David and Nagaraja 2003, p. 46 or (2.25) below). However,
we do not need them. We just need the fact that

(F̄1:n(t), . . . , F̄n:n(t))′ = An(F̄1:1(t), . . . , F̄1:n(t))′

for all t , where An = (ai, j ) is a triangular non-singular matrix of real (integer)
numbers. Hence

(F̄1:1(t), . . . , F̄1:n(t))′ = A−1
n (F̄1:n(t), . . . , F̄n:n(t))′

for all t , where A−1
n is the inverse matrix of An .

Therefore, by using the minimal signature representation obtained in (2.20), we
get

F̄T (t) = a(F̄1:1(t), . . . , F̄1:n(t))′

= aA−1
n (F̄1:n(t), . . . , F̄n:n(t))′

= c(F̄1:n(t), . . . , F̄n:n(t))′

=
n∑

i=1

ci F̄i :n(t)

for all t , where c = (c1, . . . , cn) := aA−1
n are some coefficients that do not depend

on the joint distribution of the component lifetimes (they only depend on a and An).
In the IID continuous case these coefficients coincide with the structural signature

coefficients (take e.g. F(t) = t for 0 ≤ t ≤ 1), that is, c = s and so (2.24) holds. �

Remark 2.2 The preceding theorem proves that F̄T belongs to the vectorial space
generated by the reliability functions of the k-out-of-n systems which coincides
with the one generated by the series system reliability functions (in the EXC case).
Actually, in many cases, these reliability functions are bases of this space and so the
signatures can be seen as the coordinates of F̄T in these bases. Thus the structural
signature can be obtained from the minimal signature as

s = aA−1
n

and vice versa
a = sAn .

Moreover, it can be proved that, in the absolutely continuous EXC case, si = Pr(T =
Xi :n) (i.e. the structural and probability signatures coincide), seeNavarro andRychlik
(2007).
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Note that the rows of An are the minimal signatures of the k-out-of-n systems. As
mentioned in the proof, the coefficients in An are well known in the order statistics
literature. Actually, from David and Nagaraja (2003), p. 46, we have

F̄i :n(t) =
n∑

j=n−i+1

(−1) j−n+i−1
(
n

j

)(
j − 1

n − i

)
F̄1: j (t). (2.25)

Of course, the preceding theoremcan also be applied to the case of IID∼F component
lifetimes. Here we do not the continuity assumption for F but we have to use the
structural signature (not the probabilistic signature).

Remark 2.3 A similar proof can be obtained by using the maximal signature rep-
resentations of the k-out-of-n systems. So we can also write

s = bB−1
n

and
b = sBn

for a triangular non-singular matrix Bn = (bi, j ). The coefficients in Bn can also be
obtained from David and Nagaraja (2003), p. 46, as

F̄i :n(t) =
n∑
j=i

bi, j F̄ j : j (t) =
n∑
j=i

(−1) j−i
(
n

j

)(
j − 1

i − 1

)
F̄j : j (t). (2.26)

The rows of Bn are the maximal signatures of the order statistics. Note that, as a
consequence, a can be computed from b and vice versa through

b = sBn = aA−1
n Bn = aCn

and
a = sAn = bB−1

n An = bC−1
n ,

where Cn = A−1
n Bn . If one prefer to use column vectors, just take the transposed

matrices.

Example 2.4 Let us obtain A3 without using (2.25). As mentioned in the proof, the
(trivial) minimal signature representation for X1:3 is

F̄1:3(t) = 0F̄1:1(t) + 0F̄1:2(t) + 1F̄1:3(t).
Analogously, for X2:3, we have

F̄2:3(t) = 0F̄1:1(t) + 3F̄1:2(t) − 2F̄1:3(t).
Finally, the minimal path set representation for X3:3 in the EXC case is

F̄3:3(t) = 3F̄1:1(t) − 3F̄1:2(t) + 1F̄1:3(t).
Hence ⎛

⎝ F̄1:3(t)
F̄2:3(t)
F̄3:3(t)

⎞
⎠ =

⎛
⎝0 0 1
0 3 −2
3 −3 1

⎞
⎠

⎛
⎝ F̄1:1(t)

F̄1:2(t)
F̄1:3(t)

⎞
⎠ ,
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that is,

A3 =
⎛
⎝0 0 1
0 3 −2
3 −3 1

⎞
⎠ .

Its inverse matrix is

A−1
3 =

⎛
⎝ 1/3 1/3 1/3
2/3 1/3 0
1 0 0

⎞
⎠ .

These matrices can be used to obtain one signature from the other. For example, for
the system with lifetime T = min(X1,max(X2, X3)), s can be computed from a as

(s1, s2, s3) = (a1, a2, a3)A
−1
3 = (0, 2,−1)

⎛
⎝ 1/3 1/3 1/3
2/3 1/3 0
1 0 0

⎞
⎠ = (1/3, 2/3, 0).

Conversely, a can be computed from s through

(a1, a2, a3) = (s1, s2, s3)A3 = (1/3, 2/3, 0)

⎛
⎝0 0 1
0 3 −2
3 −3 1

⎞
⎠ = (0, 2,−1).

Analogously, we obtain

B3 =
⎛
⎝ 3 −3 1
0 3 −2
0 0 1

⎞
⎠ .

Note that the rows of Bn are the rows of An in the reverse order (since the dual system
of Xi :n is Xn−i+1:n). Hence the maximal signature of the system can be obtained as

(b1, b2, b3) = (s1, s2, s3)B3 = (1/3, 2/3, 0)

⎛
⎝ 3 −3 1
0 3 −2
0 0 1

⎞
⎠ = (1, 1,−1).

It can be obtained directly from the minimal signature as

(b1, b2, b3) = (a1, a2, a3)A
−1
3 B3 = (0, 2,−1)

⎛
⎝ 1 0 0
2 −1 0
3 −3 1

⎞
⎠ = (1, 1, −1).

Note that the rows of C3 = A−1
3 B3 are the maximal signatures of the series systems

X1:1, X1:2, X1:3. Analogously,

(a1, a2, a3) = (b1, b2, b3)B
−1
3 A3 = (1, 1, −1)

⎛
⎝ 1 0 0
2 −1 0
3 −3 1

⎞
⎠ = (0, 2,−1)

that is, C−1
3 = C3. This is a general property, that is, C−1

n = Cn for all n. �

The Samaniego’s representation can also be extended to semi-coherent systems
as follows. This results was obtained in Navarro et al. (2008) (by using a different
proof).
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Theorem 2.8 If T is the lifetime of a coherent system with component lifetimes
X1, . . . , Xk contained in an EXC random vector (X1, . . . , Xn) (k < n), then

F̄T (t) =
n∑

i=1

s(n)
i F̄i :n(t) (2.27)

for all t , where s(n)
1 , . . . , s(n)

n are some coefficients that only depend on the structure

of the system and that satisfy s(n)
1 + · · · + s(n)

n = 1.

Proof As (X1, . . . , Xn) is EXC, so is (X1, . . . , Xk). Hence, from (2.20), we have

F̄T (t) =
k∑

i=1

ai F̄1:k(t),

where a = (a1, . . . , ak) is the minimal signature of T . This representation can be
written as

F̄T (t) = a(n)(F̄1:1(t), . . . , F̄1:n(t))′

where a(n) := (a1, . . . , ak, 0, . . . , 0) ∈ Z
n .

We can also apply here the representation for the k-out-of-n systems obtained in
the preceding theorem. Thus,

(F̄1:n(t), . . . , F̄n:n(t))′ = An(F̄1:1(t), . . . , F̄1:n(t))′

for all t , where An is a triangular non-singular matrix of real (integer) numbers.
Hence

(F̄1:1(t), . . . , F̄1:n(t))′ = A−1
n (F̄1:n(t), . . . , F̄n:n(t))′

for all t , where A−1
n is the inverse matrix of An .

Therefore, by using the representation obtained above, we get

F̄T (t) = a(n)(F̄1:1(t), . . . , F̄1:n(t))′

= a(n)A−1
n (F̄1:n(t), . . . , F̄n:n(t))′

= s(n)(F̄1:n(t), . . . , F̄n:n(t))′

=
n∑

i=1

s(n)
i F̄i :n(t)

for all t , where s(n) = (s(n)
1 , . . . , s(n)

n ) := a(n)A−1
n are some coefficients that do not

depend on the joint distribution of the component lifetimes (they only depend on a
and An) and that satisfy s

(n)
1 + · · · + s(n)

n = 1. �

The vector s(n) = (s(n)
1 , . . . , s(n)

n ) is called the structural signature of order n of
the system. It can be proved that if (X1, . . . , Xn) has an absolutely continuous EXC
distribution, then s(n)

i = Pr(T = Xi :n). Hence s(n)
i ≥ 0 and so (2.27) is a mixture
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representation. The structural signature of order n of a semi-coherent system ψ can
also be computed from

s(n)
i = 1( n

i−1

) ∑
∑n

j=1 x j=n−i+1

ψ(x1, . . . xn) − 1(n
i

) ∑
∑n

j=1 x j=n−i

ψ(x1, . . . xn)

for i = 1, . . . , n. Of course, if ψ is a coherent system of order n, then we obtain the
expression of the structural signature given in (2.7).

Analogously, a(n). = (a1, . . . , ak, 0, . . . , 0) can be called theminimal signature
of order n. Note that s(n) = a(n)A−1

n and a(n) = s(n)An . Themaximal signature of
order n can be defined in a similar way as b(n) = (b1, . . . , bk, 0, . . . , 0). It can be
used to obtain an alternative proof for the preceding theorem with s(n) = b(n)B−1

n
and b(n) = s(n)Bn .

Remark 2.4 The preceding theorem can also be obtained by using the “Triangle
Rule” of the order statistics. Thus, if (X1, . . . , Xn+1) are EXC without ties, then

Pr(Xi :n < Xn+1 < Xi+1:n) = Pr(Xn+1 = Xi+1:n) = 1

n + 1
for i = 0, . . . , n where, by convention X0:n = −∞ and Xn+1:n = ∞. Hence

Pr(Xi :n = Xi+1:n+1) = Pr(Xn+1 < Xi :n) = i

n + 1
and so

Pr(Xi :n = Xi :n+1) = 1 − i

n + 1
= n + 1 − i

n + 1
.

Consequently the order statistics from an EXC random vector without ties satisfy
the following triangle rule

F̄i :n(t) = n + 1 − i

n + 1
F̄i :n+1(t) + i

n + 1
F̄i+1:n+1(t) (2.28)

for all t . Note that we can use this expression in (2.24) to write the reliability
function F̄T of a coherent system with n components as a linear combination of
F̄1:n+1, . . . , F̄n+1:n+1, that is, to compute its signature of order n+ 1. Thus, if T has
the signature (s(n)

1 , . . . , s(n)
n ) of order n, then

F̄T =
n∑

i=1

s(n)
i F̄i :n

=
n∑

i=1

s(n)
i

n + 1 − i

n + 1
F̄i :n+1 +

n∑
i=1

s(n)
i

i

n + 1
F̄i+1:n+1

=
n∑

i=1

s(n)
i

n + 1 − i

n + 1
F̄i :n+1 +

n+1∑
i=2

s(n)
i−1

i − 1

n + 1
F̄i :n+1

= ns(n)
1

n + 1
F̄1:n+1 +

n∑
i=2

(
i − 1

n + 1
s(n)
i−1 + n + 1 − i

n + 1
s(n)
i

)
F̄i :n+1 + ns(n)

n

n + 1
F̄n+1:n+1.
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Table 2.3 Signatures of order 4 of all the coherent systems with 1-3 EXC components

T s(4)

1 X1:1 = X1 ( 14 , 1
4 , 1

4 , 1
4 )

2 X1:2 = min(X1, X2) (2-series) ( 12 , 1
3 , 1

6 , 0)

3 X2:2 = max(X1, X2) (2-parallel) (0, 1
6 , 1

3 , 1
2 )

4 X1:3 = min(X1, X2, X3) (3-series) ( 34 , 1
4 , 0, 0)

5 min(X1,max(X2, X3)) ( 14 , 5
12 , 1

3 , 0)

6 X2:3 (2-out-of-3) (0, 1
2 , 1

2 , 0)

7 max(X1,min(X2, X3)) (0, 1
3 , 5

12 , 1
4 )

8 X3:3 = max(X1, X2, X3) (3-parallel) (0, 0, 1
4 , 3

4 )

Hence, the signature of order n + 1 can be obtained as

s(n+1) =
(

n

n + 1
s(n)
1 ,

1

n + 1
s(n)
1 + n − 1

n + 1
s(n)
2 ,

2

n + 1
s(n)
2 + n − 2

n + 1
s(n)
3 , . . . ,

n

n + 1
s(n)
n

)
,

(2.29)
that is,

s(n+1)
i = i − 1

n + 1
s(n)
i−1 + n + 1 − i

n + 1
s(n)
i

for i = 1, . . . , n + 1 where, by convention, s(n)
0 = s(n)

n+1 = 0. This gives us an
alternative proof of Theorem 2.8 based on the Triangle Rule. Actually, this was the
proof used in Navarro et al. (2008). We can go further and compute the signature of
order n from the signature of order k < n. The explicit expressions can be seen in
Navarro et al. (2008). Alternatively, we can use (2.29) n − k times.

The signatures of order 4 for all the coherent systems with 1-3 EXC components
are given in Table2.3. Let us see in some examples how to compute them.

Example 2.5 We have seen that if (X1, X2) are EXC (or just ID), then

F̄2:2 = 2F̄1:1 − F̄1:2.
Hence

F̄1:1 = 1

2
F̄1:2 + 1

2
F̄2:2,

that is, the signature of order 2 of X1 is (1/2, 1/2). It can also be obtained from
the Triangle Rule as follows. Obviously, the signature (of order 1) of X1 is s = (1).
Hence, from (2.29), we have

s(2) =
(
1

2
1,

1

2
1

)
=

(
1

2
,
1

2

)
.

By applying (2.29) again, we get

s(3) =
(
2

3

1

2
,
1

3

1

2
+ 1

3

1

2
,
2

3

1

2

)
=

(
1

3
,
1

3
,
1

3

)
.
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Analogously, if (X1, . . . , Xn) are EXC without ties, then Pr(X1 = Xi :n) = 1/n
for i = 1, . . . , n. Hence, the signature of order n of X1 (or Xi ) is s(n) =
(1/n, . . . , 1/n). �

Example 2.6 Let us consider again the coherent systemT = min(X1,max(X2, X3))

with three EXC components. Recall that from Tables 2.1 and 2.2, the signature and
the minimal signature of this system are (1/3, 2/3, 0) and (0, 2,−1), respectively.
Therefore, the signature of order 4 can be obtained as

s(4) = a(4)A−1
4 = (0, 2,−1, 0)

⎛
⎜⎜⎝

1
4

1
4

1
4

1
4

1
2

1
3

1
6 0

3
4

1
4 0 0

1 0 0 0

⎞
⎟⎟⎠ =

(
1

4
,
5

12
,
1

3
, 0

)
,

where (0, 2,−1, 0) is theminimal signature of order 4, that is, the coefficients needed
to write F̄T in terms of F̄1:i , i = 1, 2, 3, 4, and the matrix is the inverse matrix of

A4 =

⎛
⎜⎜⎝
0 0 0 1
0 0 4 −3
0 6 −8 3
4 −6 4 −1

⎞
⎟⎟⎠

obtained by placing in the rows the minimal signatures of the order statistics
X1:4, X2:4, X3:4, X4:4. Note that the rows of A−1

4 contain the signatures of order
4 of the series systems X1:1, X1:2, X1:3, X1:4.

Another option is to use the following representation based on the signature
(1/3, 2/3, 0),

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t) (2.30)

and the relations of the distributions of order statistics based on the Triangle Rule
given in (2.28). Using this rule we have

F̄1:3(t) = 3

4
F̄1:4(t) + 1

4
F̄2:4(t)

F̄2:3(t) = 1

2
F̄2:4(t) + 1

2
F̄3:4(t)

and replacing these expressions in (2.30), we obtain the signature of order 4 as
follows

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t)

= 1

3

(
3

4
F̄1:4(t) + 1

4
F̄2:4(t)

)
+ 2

3

(
1

2
F̄2:4(t) + 1

2
F̄3:4(t)

)

= 1

4
F̄1:4(t) + 5

12
F̄2:4(t) + 1

3
F̄3:4(t).

Another option is to apply formula (2.29) to (1/3, 2/3, 0) to get(
3

4

1

3
,
1

4

1

3
+ 3

4

2

3
,
2

4

2

3
+ 2

4
0,

3

4
0

)
=

(
1

4
,
5

12
,
1

3
, 0

)
.

�
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We conclude this section with an example extracted from Example 5.1 in Navarro
et al. (2008)which proves that representation (2.24) does not necessarily holdwithout
the EXC (ID) assumption. Actually, it proves that the distribution of a system is not
necessarily a mixture of the distributions of the order statistics associated to its
component lifetimes.

Example 2.7 Let us consider the coherent system with three IND components and
with lifetime T = min(X1,max(X2, X3)). Recall that the minimal path sets of T
are {1, 2} and {1, 3}, and so the reliability function of this system can be written as

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t) − F̄1:3(t).
If we assume that the component lifetimes are IND then

F̄T (t) = F̄1(t)F̄2(t) + F̄1(t)F̄3(t) − F̄1(t)F̄2(t)F̄3(t).

However, in general, we do not know if F̄T can necessarily be written as a mixture
of F̄1:3, F̄2:3 and F̄3:3. For example, if the components have exponential distributions
with means 1/2, 1 and 1, respectively, then

F̄1(t) = e−2t

F̄2(t) = F̄3(t) = e−t

F̄{1,2}(t) = F̄{1,3}(t) = e−3t ,

F̄1:3(t) = e−4t ,

F̄2:3(t) = e−2t + 2e−3t − 2e−4t ,

F̄3:3(t) = 2e−t − 2e−3t + e−4t ,

F̄T (t) = 2e−3t − e−4t ,

for all t ≥ 0. If we assume that F̄T can be written as a mixture of the functions F̄1:3,
F̄2:3 and F̄3:3 with some coefficients c1, c2 and c3, we have

2e−3t − e−4t = c1e
−4t + c2

(
e−2t + 2e−3t − 2e−4t) + c3

(
2e−t − 2e−3t + e−4t)

for all t ≥ 0. The functions e−λt and e−μt are linearly independent for λ �= μ.
Therefore, c3 = c2 = 0 and we conclude that F̄T cannot be written as a mixture of
F̄1:3, F̄2:3 and F̄3:3. In particular, F̄T is not equal to the mixture obtained neither with
the structural signature s = (1/3, 2/3, 0) given by

F̄a := 1

3
F̄1:3 + 2

3
F̄2:3

nor with that obtained with the probabilistic signature

F̄p := p1 F̄1:3 + p2 F̄2:3,
where pi = Pr(T = Xi :3) for i = 1, 2. In this example

p1 = Pr(X1 < min(X2, X3)),

where X1 and Y = min(X2, X3) are IID. Therefore, p1 = p2 = 1/2. The plots of
F̄T (black), F̄a (blue) and F̄p (red) and the corresponding hazard rate functions can
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be seen in Fig. 2.5. Note that the reliability functions are different but similar. The
code in R to get the plots of the reliability functions is the following:

R13<-function(t) exp(-4*t)

R23<-function(t) exp(-2*t)+2*exp(-3*t)-2*exp(-4*t)

R33<-function(t) 2*exp(-t)-2*exp(-3*t)+exp(-4*t)

RT<-function(t) 2*exp(-3*t)-exp(-4*t)

Ra<-function(t) (1/3)*R13(t)+(2/3)*R23(t)

Rp<-function(t) (1/2)*R13(t)+(1/2)*R23(t)

curve(R23(x),0,3,lty=2,ylab=’Reliability’,xlab=’t’,lwd=2)

curve(R13(x),add=T,lty=2,lwd=2)

curve(R33(x),add=T,lty=2,lwd=2)

curve(RT(x),add=T,lwd=2)

curve(Ra(x),add=T,col=’blue’,lwd=2)

curve(Rp(x),add=T,col=’red’,lwd=2)

The code in R to get the plots of the hazard rate functions is the following:

f1<-function(t) 2*exp(-2*t)

f2<-function(t) exp(-t)

f13<-function(t) 4*exp(-4*t)

f23<-function(t) 2*exp(-2*t)+6*exp(-3*t)-8*exp(-4*t)

f33<-function(t) 2*exp(-t)-6*exp(-3*t)+4*exp(-4*t)

fT<-function(t) 6*exp(-3*t)-4*exp(-4*t)

fa<-function(t) (1/3)*f13(t)+(2/3)*f23(t)

fp<-function(t) (1/2)*f13(t)+(1/2)*f23(t)

curve(f23(x)/R23(x),0,3,ylim=c(0,4),lty=2,lwd=2,ylab=’HR’)

curve(f13(x)/R13(x),add=T,lty=2,lwd=2)

curve(f33(x)/R33(x),add=T,lty=2,lwd=2)

curve(fT(x)/RT(x),add=T,lwd=2)

curve(fa(x)/Ra(x),add=T,col=’blue’,lwd=2)

curve(fp(x)/Rp(x),add=T,col=’red’,lwd=2) �

Note that in the general case, we can define two mixed systems associated to T ,
the average system

F̄a = s1 F̄1:n + · · · + sn F̄n:n
obtained with the structural signature and the projected system

F̄p = p1 F̄1:n + · · · + pn F̄n:n
obtained with the probabilistic signature. Both can be considered as good
approximations of F̄T , see Navarro et al. (2010) (the second one is usually bet-
ter than the first one as it happen in Fig. 2.5). Note that F̄a is always the reliability
function of a mixed system and that so is F̄p when p1 + · · · + pn = 1. Both F̄a and
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Fig. 2.5 Reliability functions (left) F̄T (black), F̄a (blue) and F̄p (red) and the corresponding
hazard rate functions (right) of the system in Example 2.7 when the components are independent
with exponential distributions of means 1/2, 1, 1. The dashed lines represent the functions for the
k-out-of-3 systems for k = 1, 2, 3

F̄b belongs to the vectorial space generated by F̄1:n, . . . , F̄n:n . However, this is not
always the case for F̄T as we have seen in Example 2.7.

2.4 Distortion Representations

The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the
context of theory of choice under risk. The purpose was to allow a “distortion” (a
change) of the initial (or past) risk distribution function. The formal definition is the
following.

Definition 2.4 The distorted distribution (DD) associated to a distribution func-
tion (DF) F and to an increasing and continuous distortion function q : [0, 1] →
[0, 1] such that q(0) = 0 and q(1) = 1, is given by

Fq(t) = q(F(t)) (2.31)

for all t .

Note that the conditions on q assure that Fq is a proper distribution function for any
distribution function F (actually, for this property, we just need a right-continuous
distortion function). Moreover, if q is strictly increasing in [0, 1], then F and Fq have
the same support. Also note that q is a distribution function with support included
in [0, 1].
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From (2.31), we have a similar expression for the respective reliability functions
F̄ = 1 − F and F̄q = 1 − Fq that satisfy

F̄q(t) = q̄(F̄(t)), (2.32)

where q̄(u) := 1 − q(1 − u) is called the dual distortion function in Hürlimann
(2004).

Note that q̄ is also a “distortion function”, that is, it is continuous, increasing
and satisfies q̄(0) = 0 and q̄(1) = 1. Actually, expressions (2.31) and (2.32) are
equivalent. However, sometimes it is better to use (2.32) instead of (2.31) (or vice
versa).

If F is absolutely continuous with PDF f = F ′ and q is differentiable, then the
PDF of Fq is

fq(t) = f (t)q ′(F(t)) = f (t)q̄ ′(F̄(t)) (2.33)

for all t .
From (2.32) and (2.33), the hazard rate function of Fq is

hq(t) = fq(t)

F̄q(t)
= q̄ ′(F̄(t))

q̄(F̄(t))
f (t) = α(F̄(t))h(t) (2.34)

for all t such that q̄(F̄(t)) > 0, where α(u) := uq̄ ′(u)/q̄(u) for u ∈ [0, 1] and
h(t) = f (t)/F̄(t) is the hazard rate function of F .

Analogously, the reversed hazard rate function of Fq is

h̄q(t) = fq(t)

Fq(t)
= q ′(F(t))

q(F(t))
f (t) = ᾱ(F(t))h̄(t) (2.35)

for all t such that q(F(t)) > 0, where ᾱ(u) := uq ′(u)/q(u) for u ∈ [0, 1] and
h̄(t) = f (t)/F(t) is the reversed hazard rate function of F .

However, the expression connecting the MRL functions is not so simple. Thus, if
we assume that the support of F is contained in [0,∞), then

mq(t) =
∫ ∞
t q̄(F̄(x))dx

q̄(F̄(t))
= F̄(t)

q̄(F̄(t))

∫ ∞
t q̄(F̄(x))dx∫ ∞
t F̄(x)dx

m(t)

for all t such that q̄(F̄(t)) > 0.
Several relevant models are contained in the distorted models. Let us see some of

them:

1. Lehmann’s alternatives. They were introduce in hypothesis testing as an alter-
native to the distribution function proposed in the null hypothesis. They were
defined by

Fθ (t) = Fθ (t)

for all t , where θ is a positive parameter. Clearly, this is a distorted distribution
with distortion function q(u) = uθ and dual distortion function q̄(u) = 1− (1−
u)θ for u ∈ [0, 1]. The original distribution is obtained with θ = 1.
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2. Proportional hazard rate (PHR) Cox model. This model was introduced in
survival analysis to model the different risks of patients. It is defined by the
reliability (survival) function

F̄θ (t) = F̄θ (t)

for all t , where θ is a positive parameter. Clearly, this is a distorted distribution
with dual distortion function q̄(u) = uθ and distortion function q(u) = 1− (1−
u)θ . Again, the original distribution is obtained with θ = 1 and, in the absolutely
continuous case. Its hazard rate is

hθ (t) = θh(t),

that is, the hazard rate function hθ is proportional to the baseline hazard rate
function h. Moreover, the α function in (2.34) is constant and equal to θ . In
practice, the θ parameter is obtained (estimated) as θ = c1x1 + · · · + ckxk ,
where c1, · · · , ck are some positive parameters and x1, . . . , xk represent the
characteristics of the patient.

3. Proportional reversed hazard rate (PRHR) model. This model is similar to
the PHR model and it is defined by the distribution function

Fθ (t) = Fθ (t)

for all t , where θ is a positive parameter. Clearly, this model is equivalent to the
Lehmann’s alternative model given in item 1 above. In the absolutely continuous
case, its reversed hazard rate is

h̄θ (t) = θ h̄(t),

that is, the reversed hazard rate function is proportional to the baseline reversed
hazard rate function (i.e. the function ᾱ in (2.35) is constant).

4. Order statistics. As we have seen in (2.8), the reliability function of the i th
order statistic from a sample of IID∼F random variables can be written as

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t).

Hence it is a distorted distribution with dual distortion function

q̄i :n(t) =
i−1∑
j=0

(
n

j

)
(1 − u) j un− j .

The similar expression for the distortion function is

qi :n(t) =
n∑
j=i

(
n

j

)
u j (1 − u)n− j .

Note that both are polynomials (based on Bernstein polynomials Bn
j (u) =(n

j

)
u j (1−u)n− j ). Actually, these distortion functions can also be obtained from

(2.26) and (2.25) as

qi :n(u) =
n∑
j=i

(−1) j−i
(
n

j

)(
j − 1

i − 1

)
u j
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and

q̄i :n(u) =
n∑

j=n−i+1

(−1) j−n+i−1
(
n

j

)(
j − 1

n − i

)
u j .

Alternatively, we can also use their maximal and minimal signatures, respec-
tively. In particular, for the minimum (series system) and maximum (parallel
system) values we have F̄1:n = F̄n and Fn:n = Fn . So they are included in the
PHR and PRHR models, respectively.

The distorted distributions were generalized in Navarro et al. (2016) as follows.

Definition 2.5 The distorted distribution (DD) associated to n distribution
functions F1, . . . , Fn and to an increasing and continuous distortion function
Q : [0, 1]n → [0, 1] such that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1, is given
by

FQ(t) = Q(F1(t), . . . , Fn(t)) (2.36)

for all t .

As above, the conditions on Q assure that FQ is a proper distribution function
for any distribution functions F1, . . . , Fn (actually, for this property, we just need
a right-continuous distortion function). Moreover, from (2.36), we have a similar
expression for the respective reliability functions

F̄Q(t) = Q̄(F̄1(t), . . . , F̄n(t)), (2.37)

where Q̄(u1, . . . , un) := 1 − Q(1 − u1, . . . , 1 − un) is called the dual distortion
function. Note that Q̄ is also a “distortion function”, that is, it is continuous, increas-
ing and satisfies Q̄(0, . . . , 0) = 0 and Q̄(1, . . . , 1) = 1. Actually, expressions (2.36)
and (2.37) are equivalent. However, sometimes it could be better to use (2.37) instead
of (2.36) (or vice versa). Note that these expressions are similar to copula represen-
tations but that here we obtain a univariate distribution (or reliability) function. The
distortion functions are continuous aggregation functions (see Grabisch et al. 2009).

If F1, . . . , Fn are absolutely continuouswith probability density functions f1, . . . ,
fn and Q is differentiable, then the PDF of FQ is

fQ(t) =
n∑

i=1

fi (t) ∂i Q(F1(t), . . . , Fn(t)) =
n∑

i=1

fi (t) ∂i Q̄(F̄1(t), . . . , F̄n(t)),

(2.38)
for all t , where ∂i G represents the partial derivative of G with respect to its i th
variable.

From (2.37) and (2.38), the hazard rate function of Fq is

hQ(t) =
∑n

i=1 fi (t)∂i Q̄(F̄1(t), . . . , F̄n(t))

Q̄(F̄1(t), . . . , F̄n(t))
=

n∑
i=1

αi (F̄1(t), . . . , F̄n(t))hi (t)

(2.39)
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for all t such that F̄Q(t) > 0, where

αi (u1, . . . , un) := ui∂i Q̄(u1, . . . , un)

Q̄(u1, . . . , un)
≥ 0

for u1, . . . , un ∈ [0, 1] such that Q̄(u1, . . . , un) > 0 and hi (t) = fi (t)/F̄i (t) for
i = 1, . . . , n. A similar expression can be obtained for the reversed hazard rate
function.

Let us see some examples.

1. Finite mixtures. As we have mentioned above, the distribution function of a
finite mixture can be written as

F(t) = p1F1(t) + · · · + pnFn(t)

for all t , where pi ≥ 0 and p1 + · · · + pn = 1. Therefore it is a distorted
distribution with distortion functions

Q(u1, . . . , un) = Q̄(u1, . . . , un) = p1u1 + · · · + pnun .

However, note that the negative mixtures cannot be represented as distorted
distributions.

2. Generalized proportional hazard rate (GPHR) model. The PHR model
defined above can be extended by

F̄(t) = F̄θ1
1 (t) . . . F̄θn

n (t),

where θ1, . . . , θn > 0. Clearly, this is a distorted distribution with dual distortion
function

Q̄(u1, . . . , un) = uθ1
1 . . . uθn

n .

When θ1 = · · · = θn = 1, we obtain the reliability of the series system with n
independent components.

3. Generalized proportional reversed hazard rate (GPRHR) model. Analo-
gously, the PRHR model defined above can be extended by

F(t) = Fθ1
1 (t) . . . Fθn

n (t),

where θ1, . . . , θn > 0. Clearly, this is a distorted distribution with distortion
function

Q(u1, . . . , un) = uθ1
1 . . . uθn

n .

When θ1 = · · · = θn = 1, we obtain the distribution of the parallel system with
n independent components.

4. Aggregation functions. The continuous aggregation functions are equivalent to
distorted distributions. So we can use them to get new (distorted) distributions.
For example, we can use the arithmetic mean

ū = A1(u1, . . . , un) := u1 + · · · + un
n

.
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This is also a mixture model (with a uniform mixing distribution). Another
example is the geometric mean

ug = A2(u1, . . . , un) := n
√
u1 . . . un .

If it is applied to the reliability functions, then it is included in the GPHR model
and if it is applied to the distribution functions, then it is included in the GPRHR
model.

The goal of this section is to prove that the distribution function of a system can
be written as a distortion of the distribution functions of the components. To this end
we will use the copula theory. The main properties of copulas can be seen in Nelsen
(2006) andDurante and Sempi (2016). Thus, if the randomvectorX = (X1, . . . , Xn)

contains the lifetimes of the components in a system then, from Sklar’s theorem, we
know that the joint distribution function F of X can be written as

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2.40)

for all x1, . . . , xn , where F1, . . . , Fn are the marginal (component) distribution func-
tions and C is a copula function, that is, it is a distribution function with uniform
marginals over the interval [0, 1]. Many authors prefer to restrict copula functions
to C : [0, 1]n → [0, 1]. In this case, they can always be extended to determine
an n-dimensional distribution function with uniform marginals. Moreover, if all the
marginal distribution functions F1, . . . , Fn are continuous, thenC is unique.We also
know that ifC is a copula, then the right hand side of (2.40) determines a proper joint
distribution function for all univariate distribution functions F1, . . . , Fn (i.e., from
a copula C , we can construct multivariate models with a fixed dependence structure
and arbitrary univariate marginals).

A similar representation holds for the reliability functions, that is, the joint relia-
bility function satisfies

F̄(x1, . . . , xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)) (2.41)

for all x1, . . . , xn , where F̄1, . . . , F̄n are the marginal (component) reliability func-
tions and Ĉ is a copula function, called survival copula. It is easy to see that C
determines Ĉ and vice versa. For example, if n = 2, then

Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2)

for all u1, u2 ∈ [0, 1].
We can use (2.41) to prove that the series systems have distorted distributions.

For example, if we consider X1:n = min(X1, . . . , Xn), then its reliability function is

F̄1:n(t) = Pr(X1:n > t) = Pr(X1 > t, . . . , Xn > t) = Ĉ(F̄1(t), . . . , F̄n(t)),

that is, it is a distorted distribution with dual distortion Q̄ = Ĉ . Note that copula
functions satisfy the properties of distorted functions but that the reverse is not true
(we will see an example later).
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If we consider the series system with just the first k components for k = 1, . . . , n,
then its lifetime is X1:k = min(X1, . . . , Xk) and its reliability function is

F̄1:k(t) = Pr(X1:k > t)=Pr(X1 > t, . . . , Xk > t)=Ĉ(F̄1(t), . . . , F̄k(t), 1, . . . , 1)

that is, it is a distorted distribution with dual distortion function

Q̄(u1, . . . , un) = Ĉ(u1, . . . , uk, 1, . . . , 1)

for u1, . . . , un ∈ [0, 1].
In the general case, if we consider the series system formed with the components

in the set P ⊆ [n], then its lifetime is XP = min j∈P X j and its reliability function
is

F̄P (t) = Pr(XP > t) = Pr(∩ j∈P {Xi > t}) = ĈP (F̄1(t), . . . , F̄n(t)), (2.42)

where
ĈP (u1, . . . , un) := Ĉ(uP

1 , . . . , uP
n ), (2.43)

uP
i = ui if i ∈ P and uP

i = 1 if i /∈ P for u1, . . . , un ∈ [0, 1]. Hence all the series
systems have distorted distributions. Similar representations can be proved for the
parallel systems by using (2.40).

Now we are in a position to prove the main result of this section which says that
the same property holds for any semi-coherent system.

Theorem 2.9 (Distortion representation, general case) If T is the lifetime of a semi-
coherent system and the component lifetimes (X1, . . . , Xn) have the survival copula
Ĉ, then the reliability function of T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)) (2.44)

for all t , where Q̄ is a distortion function which depends on ψ and Ĉ.

Proof From the minimal path set representation (2.15), we have

F̄T (t) =
r∑

i=1

F̄Pi (t) −
r−1∑
i=1

r∑
j=i+1

F̄Pi∪Pj (t) + · · · + (−1)r+1 F̄P1∪...∪Pr (t).

Hence, from (2.42) and (2.43), we obtain (2.44) with

Q̄(u) =
r∑

i=1

ĈPi (u) −
r−1∑
i=1

r∑
j=i+1

ĈPi∪Pj (u) + · · · + (−1)r+1ĈP1∪···∪Pn (u) (2.45)

for u = (u1, . . . , un) ∈ [0, 1]n , where ĈP is defined by (2.43). The function
Q̄ is always a distortion function since F̄T is a proper reliability function for all
F̄1, . . . , F̄n . �
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A similar proof can be obtained by using parallel systems and the minimal cut set
representation. The function Q̄ can be called distortion function (or domination)
of the system. Note that it depends on both the structure (the minimal path sets) of
the systems and on the structure dependence between the component lifetimes (the
survival copula). However, it does not depend on the component (marginal) reliability
functions. So (2.44) is a very convenient representation for the system reliability
since all the system characteristics (dependence and structure) are included Q̄ and
the different units are represented by their different marginal reliability functions. In
many situations in practice, we can choose different units (reliabilities) for a fixed
system structure Q̄ or study different system characteristics (different Q̄ functions)
for arbitrary or fixed components.

Next we analyse some particular cases of interest.

Theorem 2.10 (Distortion representation, IND case) If T is the lifetime of a semi-
coherent system with independent component lifetimes X1, . . . , Xn, then the
reliability function of T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

for all t , where Q̄ is a multinomial which only depends on ψ .

The proof is immediate from (2.17) or (2.45). The multinomial Q̄ was called reli-
ability function of the structure ψ in Barlow and Proschan (1975), p. 21. However
note that, Q̄ is not a joint reliability function (it is a distortion function). Also note
that this multinomial can be obtained by using the product-coproduct representations
for the structure function given in (1.6) and (1.7). It can also be obtained from the
pivotal decomposition (1.3) or from the Möbius representation (1.10).

In the general case, the distortion function Q̄ in (2.45) can also be obtained from
the Möbius transform ϕ̂ and Ĉ as

Q̄(u) =
∑
I⊆[n]

ϕ̂(I )Ĉ(uI ),

where u = (u1, . . . , un) and uI = (uI
1, . . . , u

I
n) with u

I
i = ui if i ∈ I and uI

i = 1 if
i /∈ I , see (3.6) in Navarro and Spizzichino (2020).

Theorem 2.11 (Distortion representation, ID case) If T is the lifetime of a semi-
coherent system and the component lifetimes (X1, . . . , Xn) have the survival copula
Ĉ and a common reliability F̄ , then the reliability function of T can be written as

F̄T (t) = q̄(F̄(t))

for all t , where q̄ is a distortion function which only depends on ψ and on Ĉ.

The proof is immediate from (2.44) with

q̄(u) = Q̄(u, . . . , u)
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for u ∈ [0, 1]. In particular, in the EXC case, q̄ can be written as

q̄(u) =
n∑

i=1

ai Ĉ(u, . . . , u︸ ︷︷ ︸
i times

, 1, . . . , 1︸ ︷︷ ︸
n−i times

),

where (a1, . . . , an) is the minimal signature of order n.

Theorem 2.12 (Distortion representation, IID case) If T is the lifetime of a semi-
coherent system with IID component lifetimes X1, . . . , Xn having a common relia-
bility F̄ , then the reliability function of T can be written as

F̄T (t) = q̄(F̄(t))

for all t , where q̄(u) = ∑n
i=1 aiu

i is a distortion function and (a1, . . . , an) is the
minimal signature of order n.

The proof is immediate from the two preceding theorems or from the minimal
signature representation given in (2.22). Note that, in this case, q̄ is the polynomial
obtained with the minimal signature coefficients.

Let us see some examples. The simplest one is the representation of the compo-
nents. Thus, the reliability function of Xi can be written as

F̄i (t) = Q̄i (F̄1(t), . . . , F̄n(t))

for Q̄i (u1, . . . , un) = ui and i = 1, . . . , n.
As mentioned above, the representation for the series systems is also immediate.

In particular, the reliability function of X1:k is

F̄1:k(t) = Q̄1:k(F̄1(t), . . . , F̄n(t))

for
Q̄1:k(u1, . . . , un) = Ĉ(u1, . . . , uk, 1, . . . , 1)

for k = 1, . . . , n. If the components are IND, then

Q̄1:k(u1, . . . , un) = u1 . . . uk .

If the components are ID with a common reliability F̄ , then F̄1:k(t) = q̄1:k(F̄(t))
with

q̄1:k(u) = Q̄1:k(u, . . . , u) = Ĉ(u, . . . , u︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

)

and, in particular, it they are IID, then q̄1:k(u) = uk for k = 1, . . . , n.

For the parallel systems, it is better to use the distributional copula C . Thus the
distribution function of Xk:k can be written as

Fk:k(t) = Qk:k(F1(t), . . . , Fn(t))

for
Qk:k(u1, . . . , un) = C(u1, . . . , uk, 1, . . . , 1)
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for k = 1, . . . , n. Hence, its reliability function is

F̄k:k(t) = Q̄k:k(F̄1(t), . . . , F̄n(t))

for
Q̄k:k(u1, . . . , un) = 1 − C(1 − u1, . . . , 1 − uk, 1, . . . , 1)

for k = 1, . . . , n.
We can also obtain representations based on Ĉ from the minimal path set repre-

sentation. For example, for X2:2 we get

F̄2:2(t) = F̄1(t) + F̄2(t) − F̄1:2(t) = Q̄2:2(F̄1(t), . . . , F̄n(t))

with
Q̄2:2(u1, . . . , un) = u1 + u2 − Ĉ(u1, u2).

A similar expression can be obtained for Xk:k . If the components are IND, then

Q̄k:k(u1, . . . , un) = 1 − (1 − u1) . . . (1 − uk) =
k∐

i=1

ui .

If they are ID, then F̄k:k(t) = q̄k:k(F̄(t)) for

q̄k:k(u) = 1 − C(1 − u, . . . , 1 − u︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

)

and, if they are IID, then q̄k:k(u) = 1 − (1 − u)k .
We can also consider a general coherent system. For example, for our favourite

system T = min(X1,max(X2, X3)), we have

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t) − F̄1:3(t) = Q̄T (F̄1(t), F̄2(t), F̄3(t))

with
Q̄T (u1, u2, u3) = Ĉ(u1, u2, 1) + Ĉ(u1, 1, u3) − Ĉ(u1, u2, u3).

If the components are IND, then

Q̄T (u1, u2, u3) = u1u2 + u1u3 − u1u2u3 = u1(u2 � u3).

If they are ID, then F̄T (t) = q̄T (F̄(t)) with

q̄T (u) = Ĉ(u, u, 1) + Ĉ(u, 1, u) − Ĉ(u, u, u)

and, if they are IID, then q̄T (u) = 2u2 − u3 for u ∈ [0, 1]. Recall that its minimal
signature is (0, 2,−1).

Proceeding in a similar way we can obtain the dual distortion functions given in
Tables2.4 and 2.5 for all the systemswith 1-3 IND and IID components, respectively.
In the second case all the systems equivalent under permutations have the same
distortions (so they are not repeated in the table).
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Table 2.4 Dual distortions functions for all the systems with 1-3 IND components

T = ψ(X1, X2, X3) Q̄(u1, u2, u3)

1 X1:3 = min(X1, X2, X3) u1u2u3

2 min(X2, X3) u2u3

3 min(X1, X3) u1u3

4 min(X1, X2) u1u2

5 min(X3,max(X1, X2)) u1u3 + u2u3 − u1u2u3

6 min(X2,max(X1, X3)) u1u2 + u2u3 − u1u2u3

7 min(X1,max(X2, X3)) u1u2 + u1u3 − u1u2u3

8 X3 u3

9 X2 u2

10 X1 u1

11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3

12 max(X3,min(X1, X2)) u3 + u1u2 − u1u2u3

13 max(X2,min(X1, X3)) u2 + u1u3 − u1u2u3

14 max(X1,min(X2, X3)) u1 + u2u3 − u1u2u3

15 max(X2, X3) u2 + u3 − u2u3

16 max(X1, X3) u1 + u3 − u1u3

17 max(X1, X2) u1 + u2 − u1u2

18 X3:3 = max(X1, X2, X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3 + u1u2u3

Table 2.5 Dual distortions functions for all the systems with 1-3 IID components

T = ψ(X1, X2, X3) q̄(u)

1 X1:3 = min(X1, X2, X3) u3

2 X1:2 = min(X1, X2) u2

3 min(X1,max(X2, X3)) 2u2 − u3

4 X1 u

5 X2:3 3u2 − 2u3

6 max(X1,min(X2, X3)) u + 2u2 − u3

7 X2:2 = max(X1, X2) 2u − u2

8 X3:3 = max(X1, X2, X3) 3u − 3u2 + u3

The preceding representations can be used jointly with the representation based
on distortions to compute the reliability and hazard rate functions of a system. For
example, in Fig. 2.6, we plot the reliability functions for series and parallel systems of
order 2 when the component lifetimes have exponential distributions of means 1 and
1/2 and when they are independent (left) or they have the following Clayton–Oakes
survival copula (right)

Ĉ(u, v) = uv

u + v − uv
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Fig.2.6 Reliability functions for the parallel system X2:2 (black) and the series system X1:2 (green)
when the components have exponential distributions of means 1 (red) and 1/2 (blue) and they are
independent (left) or dependent with a Clayton–Oakes copula (right)

for u, v ∈ [0, 1]. This copula induces a positive dependence between the component
lifetimes. Note that, in both cases, F̄1:2 ≤ F̄i ≤ F̄2:2 holds (this property is always
true) and that the positive dependence induced by this copula improves the series
system but that it gets worse the parallel system (as expected). The code in R to get
the right plot is the following. By changing C we can obtain other plots (including
the left plot).

C<-function(u,v) u*v/(u+v-u*v)
Q<-function(u,v) u+v-C(u,v)
R1<-function(t) exp(-t)
R2<-function(t) exp(-2*t)
R<-function(t) Q(R1(t),R2(t))
curve(R(x),0,4,xlab=’t’,ylab=’Reliability’,lwd=2)
curve(R1(x),add=T,col=’red’,lwd=2)
curve(R2(x),add=T,col=’blue’,lwd=2)
curve(C(R1(x),R2(x)),add=T,col=’green’,lwd=2)

We conclude this section by extending the signature representations. We have
seen in the preceding section that they hold when the component lifetimes have an
exchangeable (EXC) joint distribution functionF. This condition is equivalent to have
ID components and an EXC survival copula Ĉ .We have also proved above that the ID
condition cannot be dropped-out. However, let us see that the condition: “Ĉ is EXC”,
can be relaxed. To this end we need the following concept extracted from Okolewski
(2017). Recall that we use the following notation. For any set I ⊆ {1, . . . , n},
uI := (u1, . . . , un) denotes the vector with ui = u for i ∈ I and ui = 1 if i /∈ I .
The cardinality of the set I is denoted by |I |.
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Definition 2.6 An n-dimensional copula C is said to be diagonal-dependent
(shortly denoted by DD) if

C(uP ) = C(uQ) for all P, Q ⊆ {1, . . . , n} with |P| = |Q|. (2.46)

The function δ(u) = C(u, . . . , u) is called the diagonal section of the copula C .
Hence note that C is DD if and only if

C(uP ) = δm(u) for all P ⊆ {1, . . . , n} with |P| = m (2.47)

for m = 1, . . . , n, where

δm(u) := C( u, . . . , u︸ ︷︷ ︸
m−times

, 1, . . . , 1︸ ︷︷ ︸
(n−m)−times

)

is the diagonal section for the copula of the marginal distribution of the first m-
variables. Clearly, δn(u) = C(u, . . . , u) = δ(u) and δ1(u) = u for all u ∈ [0, 1]
(since all the univariatemarginals have a uniformdistribution over the interval (0, 1)).
So we just need to check (2.47) for m = 2, . . . , n − 1.

In particular, a copula C is DD when all the marginals of dimension m have the
same copula for all 1 < m < n. Of course, all the EXC copulas are, in particular,
DD. The reverse is not true, see the counterexample given in Navarro and Fernández-
Sánchez (2020).

Now we are ready to state the following result extracted from Navarro and
Fernández-Sánchez (2020).

Theorem 2.13 (Distortion reprersentation, DD-ID case) If T is the lifetime of a
semi-coherent system and the component lifetimes (X1, . . . , Xn) are ID and have a
DD survival copula, then (2.5) holds for the structural signature of dimension n.

Proof From (2.15)weknow that the system reliability function F̄T can bewritten as a
linear combination of the reliability functions of the series systems. If the component
lifetimes are ID with a common reliability function F̄ and a DD survival copula Ĉ ,
then

F̄P (t) = P

(
min
j∈P

Tj > t

)
= ĈP (F̄(t), . . . , F̄(t)) = δ̂m(F̄(t)) (2.48)

holds for all t and all P ⊆ {1, . . . , n} with |P| = m, where

δ̂m(u) := Ĉ( u, . . . , u︸ ︷︷ ︸
m−times

, 1, . . . , 1︸ ︷︷ ︸
(n−m)−times

)

for all u ∈ [0, 1] and m = 1, . . . , n. Hence, all the series systems with the same
number of components m do have the same reliability function given by (2.48).
Therefore, the general representation (2.15) can be reduced to

F̄T (t) = a1δ̂1(F̄(t)) + · · · + an δ̂n(F̄(t)), (2.49)

where a = (a1, . . . , an) is the minimal signature of order n of the system.
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Thepreceding representation (2.49) holds for any systemstructure (with the appro-
priate coefficients a1, . . . , an). For example, the series system with n components
has just one minimal path set P1 = {1, . . . , n} and lifetime T1:n = min(T1, . . . , Tn).
Hence

F̄1:n(t) = Pr(T1 > t, . . . , Tn > t) = Ĉ(F̄(t), . . . , F̄(t)) = δ̂n(F̄(t))

for all t .
Analogously, the minimal path sets of T2:n are all the subsets with n−1 elements.

So it has n = ( n
n−1

)
minimal path sets and, from (2.15),

F̄2:n(t) = nδ̂n−1(F̄(t)) − (n − 1)̂δn(F̄(t))

holds for all t . The last coefficient in the preceding expression is n − 1 because the
coefficients in (2.49) sum up to 1 (take t → −∞).

In general, Ti :n has
( n
n−i+1

)
minimal path sets and, from (2.15), its reliability

function can be written as

F̄i :n(t) = ai,n−i+1δ̂n−i+1(F̄(t)) + · · · + ai,n δ̂n(F̄(t)) (2.50)

for some coefficients ai,n−i+1, . . . , ai,n such that ai,n−i+1 + · · · + ai,n = 1 and
ai,n−i+1 = ( n

n−i+1

)
for i = 1, . . . , n.

Thus, if we define the column vectors r(t) = (F̄1:n(t), . . . , F̄n:n(t))′ and d(t) =
(̂δ1(F̄(t)), . . . , δ̂n(F̄(t)))′, (2.50) proves that r(t) = And(t) for a triangular real-
valuedmatrix An = (ai, j ) such thatai,n−i+1 = ( n

n−i+1

)
andai, j = 0 for i = 1, . . . , n

and j = 1, . . . , n− i . Hence An is not singular and so we can write d(t) = A−1
n r(t),

where A−1
n is the inverse matrix of An . Moreover, note that (2.49) can be rewritten

as F̄T (t) = a d(t). Then

F̄T (t) = aA−1
n r(t) = (c1, . . . , cn)r(t) = c1 F̄1:n(t) + · · · + cn F̄n:n(t)

for all t , where (c1, . . . , cn) := aA−1
n are some coefficients which only depend on

the structure of the system. Therefore, these coefficients should be the same as that
obtained in the IID continuous case, that is, ci = s(n)

i for i = 1, . . . , n. So (2.5)
holds with the same coefficients for systems with ID component lifetimes and DD
survival copulas. �

In Navarro and Fernández-Sánchez (2020) it is proved that the set SDD of all the
DD copulas is much bigger than the set SEXC of EXC copulas. Actually, SDD is
dense in the set of all the copulas while SEXC is not. Therefore, for any copula C we
can find a “close” DD copula. The following example illustrate these representations.

Example 2.8 Let us consider again T = min(X1,max(X2, X3)) with

F̄(t) = Pr(X1 > t, X2 > t) + Pr(X1 > t, X3 > t) − Pr(X1 > t, X2 > t, X3 > t).

Let us assume

Pr(X1 > x1, X2 > x2, X3 > x3) = Ĉ(F̄1(x1), F̄2(x2), F̄3(x3)),
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where Ĉ is the survival copula. If we assume F̄1 = F̄2 = F̄3 = F̄ (ID), then

Pr(X1 > t, X2 > t) = Ĉ(F̄(t), F̄(t), 1)

Pr(X1 > t, X3 > t) = Ĉ(F̄(t), 1, F̄(t))

Pr(X1 > t, X2 > t, X3 > t) = Ĉ(F̄(t), F̄(t), F̄(t)).

Therefore, F̄T (t) = q̄(F̄(t)) with

q̄(u) = Ĉ(u, u, 1) + Ĉ(u, 1, u) − Ĉ(u, u, u).

Analogously, it can be proved that F̄i :3(t) = q̄i :3(F̄(t)) for i = 1, 2 with

q̄1:3(u) = Ĉ(u, u, u)

q̄2:3(u) = Ĉ(u, u, 1) + Ĉ(u, 1, u) + Ĉ(1, u, u) − 2Ĉ(u, u, u).

As the structural signature is s = (1/3, 2/3, 0), we do not need F̄3:3.
If the components are IID, that is, Ĉ(u1, u2, u3) = u1u2u3, then

q̄(u) = 2u2 − u3

q̄1:3(u) = u3

q̄2:3(u) = 3u2 − 2u3.

Therefore

q̄(u) = 1

3
q̄1:3(u) + 2

3
q̄1:3(u)

holds since

2u2 − u3 = 1

3
(u3) + 2

3
(3u2 − 2u3).

If Ĉ is DD, then

Ĉ(u, u, 1) = Ĉ(u, 1, u) = Ĉ(1, u, u)

and so

q̄(u) = 2Ĉ(u, u, 1) − Ĉ(u, u, u)

q̄1:3(u) = Ĉ(u, u, u)

q̄2:3(u) = 3Ĉ(u, u, 1) − 2Ĉ(u, u, u)

for all u ∈ [0, 1]. Therefore
q̄(u) = 1

3
q̄1:3(u) + 2

3
q̄1:3(u)

holds since

2Ĉ(u, u, 1) − Ĉ(u, u, u) = 1

3
Ĉ(u, u, u) + 2

3
(3Ĉ(u, u, 1) − 2Ĉ(u, u, u)).

However, if Ĉ is the following Farlie-Gumbel-Morgenstern (FGM) copula:

Ĉ(u1, u2, u3) = u1u2u3(1 + θ(1 − u2)(1 − u3))
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for −1 ≤ θ ≤ 1, then

q̄(u) = 2u2 − Ĉ(u, u, u)

q̄1:3(u) = Ĉ(u, u, u)

q̄2:3(u) = 3u2 + θu2(1 − u)2 − 2Ĉ(u, u, u).

Therefore

q̄(u) = 1

3
q̄1:3(u) + 2

3
q̄1:3(u)

does hold for θ �= 0 since

2u2 − Ĉ(u, u, u) �= 1

3
Ĉ(u, u, u) + 2

3
(3u2 + θu2(1 − u)2 − 2Ĉ(u, u, u))

for 0 < u < 1. �

Problems

1. Prove that if X is a non-negative random variable, then

E(X) =
∫ ∞

0
F̄X (x)dx .

2. Compute the MTTF in the exponential model.
3. Prove that the exponential model satisfies the lack of memory property.
4. Prove that the exponential model is the unique continuous model that satisfies

the lack of memory property.
5. Prove that the MRL of the exponential model satisfies m(t) = μ for all t ≥ 0.
6. Prove that the hazard rate of the exponential model satisfies h(t) = 1/μ for all

t ≥ 0.
7. Obtain the hazard rate of the Weibull model.
8. Obtain the reliability function of a model with hazard rate h(t) = a + bt for

t ≥ 0 and a, b ≥ 0.
9. Obtain the reliability function of a model with hazard rate h(t) = 1/(a + bt)

for t ≥ 0 and a, b ≥ 0.
10. Obtain the relationship between the reversed hazard rate and mean inactivity

time functions.
11. Obtain a representation similar to (2.14) for the MRL of the system in the IID

continuous case.
12. Obtain the minimal path set representation of a system of order 4.
13. Obtain the minimal cut set representation of a system of order 4.
14. Obtain the minimal signature representation of a system of order 4.
15. Obtain the maximal signature representation of a system of order 4.
16. Compute the matrices A4 and A−1

4 .
17. Compute the matrices B4 and B−1

4 .
18. Compute the matrix C4.
19. Obtain the signature of order 4 of a coherent system of order 3.
20. Obtain the signature of order 5 of a coherent system of order 4.
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21. Prove with an example that Samaniego’s representation does not hold without
the EXC assumption.

22. Prove that the function in (2.12) is a properPDF for i, n ∈ R satisfying1 ≤ i ≤ n.
23. Prove that Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2).
24. Compute the distortion functions of a system of order 4.
25. Use the distortion function of a system to plot its reliability and hazard rate

functions.
26. Compare the reliability functions of two systems by using distortions.
27. Compare the hazard rate functions of two systems by using distortions.
28. Obtain the signature representation for a DD (non-EXC) copula.
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