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Abstract

In this chapter we study the basic properties of the main concept in the Reliability
Theory: the coherent system structures. In the first section we give the formal
definitions of coherent and semi-coherent (binary) system structures, providing
several examples. We do not study non-coherent systems here. We refer the inter-
ested readers in that systems to Borgonovo (2010), Imakhlaf et al. (2017) and
the references therein. The main properties of coherent systems are given in the
second section, including several representations for the structure function of the
system. Relationships with simple games, connectivity properties of networks
and mixed systems are studied in the third section. The fourth section contains
some results for multi-state systems with binary components. The components’
importance indices are not studied here. Some of them are studied in Chap.5. In
a first reading, Sects. 1.3 and 1.4 can be skipped (if you want).

1.1 Coherent Structures

The systems are the main concepts in the Reliability Theory. They are “structures”
built by using several components. Themain assumption is that the state of the system
only depends on the states of the components through a “structure function”. In this
section we assume that the system and the components only have two possible states,
a functioning state represented by a 1 and a failure state represented by a 0. Then the
formal (mathematical) definition of (binary) system can be stated as follows.

Definition 1.1 A (binary) system with (binary) components of order n is a Boolean
structure function (map)

φ : {0, 1}n → {0, 1},
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2 1 Coherent System Structures

where φ(x1, . . . , xn) ∈ {0, 1} represents the system’s state that is completely deter-
mined by the components’ states represented by x1, . . . , xn ∈ {0, 1}.

To simplify, we just use the word “system” to represent a binary system with
binary components. Here it is natural to assume some additional properties for the
structure function φ. For example, we can expect that a system does not work when
all the components fail or that the system works when all the components do so.
Analogously, we may also assume that if a broken component is replaced by a
functioning component (or it is repaired), then the system state cannot be worse.
These assumptions lead to the concept of semi-coherent systems. If one (or more)
of these properties fails, then we have a non-coherent system that are studied in the
references mentioned above.

Definition 1.2 A semi-coherent system of order n is a system

φ : {0, 1}n → {0, 1}
satisfying the following properties:

(i) φ is increasing;
(ii) φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1.

Throughout the book we use the words “increasing” and “decreasing” in a wide
sense, that is, a function g is increasing (resp. decreasing) when

g(x1, . . . , xn) ≤ g(y1, . . . , yn) (≥)

for all x1 ≤ y1, . . ., xn ≤ yn .
Semi-coherent systems may have “irrelevant” components, that is, components

that do not affect the system. The formal definition is the following.

Definition 1.3 The i th component is irrelevant for the system φ if

φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = φ(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}. If this is not the case, then it is a relevant
component.

For example, the structure function φ(x1, x2) = x1 is a semi-coherent system of
order 2 that represents the system formed just with the first component. Here the
second component is irrelevant for the system since φ(x1, 0) = φ(x1, 1) for all x1.
To avoid this problemwe consider the concept of coherent system defined as follows.
This is the main concept in the present book.

Definition 1.4 A coherent system of order n is a system

φ : {0, 1}n → {0, 1}
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satisfying the following properties:

(i) φ is increasing;
(ii) φ is strictly increasing in each variable in at least a point.

Clearly, the second condition can be replaced with: “All the components are rel-
evant” and we have the following property.

Proposition 1.1 All the coherent systems are also semi-coherent systems.

Proof The condition (i i) in the preceding definition implies that, in particular, φ is
strictly increasing in x1 in at least a point, that is, there exist x2, . . . , xn ∈ {0, 1} such
that

0 = φ(0, x2, . . . , xn) < φ(1, x2, . . . , xn) = 1.

Hence, from (i), we have

0 ≤ φ(0, . . . , 0) ≤ φ(0, x2, . . . , xn) = 0

and
1 = φ(1, x2, . . . , xn) ≤ φ(1, . . . , 1) ≤ 1.

Therefore, φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1. �

Note that some semi-coherent systems of order n can be considered as an extension
of a coherent system in a dimension k < n. For example, the semi-coherent system
in dimension 2 defined by φ(x1, x2) = x1 is an extension of the coherent system
φ(x1) = x1 in dimension 1.

Also note that, from amathematical point of view, the coherent systems φ1(x1, x2,
x3) = min(x1,max(x2, x3)) and φ2(x1, x2, x3) = min(x2,max(x1, x3)) are differ-
ent. However, when we plot them they have a similar “structure” (see Fig. 1.1). This
fact is important whenwewant to count all the coherent systems of a given dimension
(see next section). To consider this fact we need the following definition.

Definition 1.5 We say that two systems φ1 and φ2 of order n are equivalent under
permutations (shortly written as φ1 ∼ φ2) if

φ1(x1, . . . , xn) = φ2(xσ(1), . . . , xσ(n))

for a permutation σ : {1, . . . , n} → {1, . . . , n}.

1
3

2
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3

1

Fig. 1.1 Two coherent systems of order 3 with a similar structure
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Fig. 1.2 A general structure for a coherent systems of order 3

The equivalence classes determined by this relationship can also be called “sys-
tems”. For example, the systems given in Fig. 1.1 can be represented by the equiva-
lence class represented by the system in Fig. 1.2.

A coherent (or semi-coherent) systemcan be determined by the sets of components
that assure that the system works (resp. fails) when these components work (fail).
The formal definition of such sets is the following.

Definition 1.6 A non-empty set P ⊆ {1, . . . , n} is a path set of a system φ if
φ(x1, . . . , xn) = 1 when xi = 1 for all i ∈ P . A non-empty set C ⊆ {1, . . . , n} is
a cut set of φ if φ(x1, . . . , xn) = 0 when xi = 0 for all i ∈ C . A path set P is a
minimal path set if it does not contain other path sets. A cut set C is aminimal cut
set if it does not contain other cut sets.

The sets of path and cut sets of a system φ are represented by P and C. Then we
have the following properties. To simplify, in the book, we use “iff” instead of “if
and only if”.

Proposition 1.2 Let φ be a system. Then:

(i) φ is increasing iffP is closed under super-inclusions (i.e. if P ∈ P and P ⊆ P∗,
then P∗ ∈ P).

(ii) φ is increasing iff C is closed under super-inclusions.
(iii) φ(0, . . . , 0) = 0 iff {1, . . . , n} ∈ C.
(iv) φ(1, . . . , 1) = 1 iff {1, . . . , n} ∈ P.
(v) φ is semi-coherent iff P is non-empty, closed under super-inclusions and does

not contain the empty set.
(vi) φ is semi-coherent iff C is non-empty, closed under super-inclusions and does

not contain the empty set.

Note that, in semi-coherent systems, P and C have the same structural properties.
To explain this fact we need another concept that can be stated as follows.

Definition 1.7 The dual system of a system φ is the system

φD : {0, 1}n → {0, 1}
defined by φD(x1, . . . , xn) := 1−φ(1− x1, . . . , 1− xn) for all x1, . . . , xn ∈ {0, 1}.
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The following properties for the dual systems can be proved easily.

Proposition 1.3 Let φ be a coherent (resp. semi-coherent) system and let φD be its
dual system. Then:

(i) φD is a coherent (resp. semi-coherent) system.
(ii) A set is a path set of φ iff it is a cut set of φD.

(iii) A set is a cut set of φ iff it is a path set of φD.
(iv) A set is a minimal path set of φ iff it is a minimal cut set of φD.
(v) A set is a minimal cut set of φ iff it is a minimal path set of φD.

(vi) (φD)D = φ.

Let us see now several examples of coherent and semi-coherent systems. The
main structures are series and parallel structures defined as follows.

Definition 1.8 The series system of order n is

φ1:n(x1, . . . , xn) := min(x1, . . . , xn).

The parallel system of order n is

φn:n(x1, . . . , xn) := max(x1, . . . , xn).

The series system with components in the set P is

φP (x1, . . . , xn) := min
i∈P

xi .

The parallel system with components in the set P is

φP (x1, . . . , xn) := max
i∈P

xi .

The series and parallel systems of order n are coherent systems but that based on a
set P are just semi-coherent systems. Of course, φ{1,...,n} = φ1:n and φ{1,...,n} = φn:n
and, in these cases, they are also coherent systems. Moreover, the dual system of φP

is φP and vice versa.
Note that Boolean functions can be expressed in many different ways. The main

options are to use min and max operators (as above) or to use polynomials (or
multinomials). For example, the series system φP can also be written as

φP (x1, . . . , xn) =
∏

i∈P

xi .

Note that these options coincide when xi ∈ {0, 1} but that they are different when
we extend these functions to other sets (see next chapter). Analogously, the parallel
system φP can also be written as

φP (x1, . . . , xn) =
∐

i∈P

xi
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where the coproduct
∐

is defined as
∐

i∈P

xi = 1 −
∏

i∈P

(1 − xi ).

For example,

φ2:2(x1, x2) = max(x1, x2) = x1 	 x2 = 1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2

for all x1, x2 ∈ {0, 1}.
We will see in the next section that all the coherent (or semi-coherent) systems

can be written by using series and parallel structures.

Other relevant structures are the k-out-of-n systems that work when at least k of
their n components work. The explicit definition is the following.

Definition 1.9 The k-out-of-n system is defined by

φn−k+1:n(x1, . . . , xn) =
{
1, if x1 + · · · + xn ≥ k
0, if x1 + · · · + xn < k

(1.1)

for k = 1, . . . , n.

The minimal path sets of the k-out-of-n system are all the sets with exactly k
components. So it has

(n
k

)
minimal path sets. Note that with this definition the 1-

out-of-n system is the parallel system φn:n and the n-out-of-n system is the series
system φ1:n . If (x1:n, . . . , xn:n) represents the increasing ordered vector obtained
from (x1, . . . , xn), then

φn−k+1:n(x1, . . . , xn) = xn−k+1:n
for k = 1, . . . , n. This notation is the same as that used to represent the order
statistics, that is, the ordered data obtained from a sample (see, e.g., Arnold et al.
2008; David and Nagaraja 2003). For example, the 2-out-of-3 system is

φ2:3(x1, x2, x3) = x2:3 = max(min(x1, x2),min(x1, x3),min(x2, x3)).

Note that this system cannot be plotted in a plane graph similar to that showed
in Fig. 1.1 (we need to repeat the components). An alternative representation as a
network will be showed in Sect. 1.3.

Other authors prefer to consider the k-out-of-n:F systems (here F means “failed”)
that fail when at least k of their n components fail. Its structure function is φk:n as
defined in (1.1) for k = 1, . . . , n. The minimal cut sets of the k-out-of-n:F system
are all the sets with exactly k components. So it has

(n
k

)
minimal cut sets. In this

case, the k-out-of-n system considered in the preceding definition can also be called
k-out-of-n:G system (here G means “good”). Of course, the dual system of the k-out-
of-n:G system is the k-out-of-n:F system and vice versa.Moreover, the k-out-of-n:F
system coincides with the (n − k + 1)-out-of-n system for k = 1, . . . , n. So we do
not need to use the concept of k-out-of-n:F system. However, this notation is needed
in the concepts of linear and circular systems defined as follows.
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Definition 1.10 For k = 1, . . . , n, the k-out-of-n:G linear system is the system that
works when at least k consecutive components work, that is, its structure function
φk:n:G|l(x1, . . . , xn) = 1 iff there exists i ∈ {0, . . . , n − k} such that xi+1 = · · · =
xi+k = 1. The k-out-of-n:F linear system is the system that fails when at least k
consecutive components fail, that is, its structure function φk:n:F |l(x1, . . . , xn) = 0
iff there exists i ∈ {0, . . . , n − k} such that xi+1 = · · · = xi+k = 0.

The circular systems φk:n:G|c and φk:n:F |c are defined in a similar way but placing
the components in a circle (that is, in this case the first and the last components are
also consecutive).

These systems have several applications in practice. For example, the k-out-of-
n:F linear systems are used to represent transportation systems as oil or gas pipeline
systems and k-out-of-n:F circular systems can represent particle accelerators.

In this case, some k-out-of-n:F linear systems cannot be represented as k-out-of-
n:G linear systems. For example, the 2-out-of-3:F linear system is

φ2:3:F |l(x1, x2, x3) = max(x2,min(x1, x3)).

Its minimal path sets are P1 = {2} and P2 = {1, 3} and its minimal cut sets are
C1 = {1, 2} and C2 = {2, 3}. So it cannot be represented as a k-out-of-3:G linear
system. It is the dual system of the 2-out-of-3:G linear system given by

φ2:3:G|l(x1, x2, x3) = min(x2,max(x1, x3)).

Weconclude this section by computing all the coherent and semi-coherent systems
with orders 1-3. Of course, if n = 1, then we just have a component and a coherent
systemφ1:1(x1) = x1. If n = 2, thenwe have two coherent systems, the series system
φ1:2(x1, x2) = min(x1, x2) and the parallel system φ2:2(x1, x2) = max(x1, x2) of
order 2, and the two semi-coherent systems formed with each component. If n = 3,
thenweobtain all the semi-coherent systemsgiven inTable1.1.Only the nine systems
in lines 1, 5, 6, 7, 11, 12, 13, 14 and 18 are coherent systems of order 3. The others
are just semi-coherent systems or coherent systemof order 1 or 2. The horizontal lines
determine the systems that are equivalent under permutations (we have 5 coherent
systems and 3 that are just semi-coherent). Note that the system in line 18 − i + 1
is the dual system of that in line i for i = 1, . . . , 7. The dual systems of the systems
in lines 8, 9, 10, 11 are themselves.

1.2 Main Properties

The coherent systems (asBoolean functions) can bewritten by using different (equiv-
alent) representations. Let us see some of them. The first one is called the pivotal
decomposition in Barlow and Proschan (1975), p. 5, and can be stated as follows.
We shall use the following notation. If x = (x1, . . . , xn) and i ∈ {1, . . . , n}, then

1i (x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn)
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Table 1.1 Semi-coherent systems of order 3

N φN (x1, x2, x3) Minimal path sets Minimal cut sets

1 x1:3 = min(x1, x2, x3) {1, 2, 3} {1}, {2}, {3}
2 min(x1, x2) {1, 2} {1}, {2}
3 min(x1, x3) {1, 3} {1}, {3}
4 min(x2, x3) {2, 3} {2}, {3}
5 min(x1,max(x2, x3)) {1, 2}, {1, 3} {1}, {2, 3}
6 min(x2,max(x1, x3)) {1, 2}, {2, 3} {2}, {1, 3}
7 min(x3,max(x1, x2)) {1, 3}, {2, 3} {3}, {1, 2}
8 x3 {3} {3}
9 x2 {2} {2}
10 x1 {1} {1}
11 x2:3 {1, 2}, {1, 3}, {2, 3} {1, 2}, {1, 3}, {2, 3}
12 max(x3,min(x1, x2)) {3}, {1, 2} {1, 3}, {2, 3}
13 max(x2,min(x1, x3)) {2}, {1, 3} {1, 2}, {2, 3}
14 max(x1,min(x2, x3)) {1}, {2, 3} {1, 2}, {1, 3}
15 max(x2, x3) {2}, {3} {2, 3}
16 max(x1, x3) {1}, {3} {1, 3}
17 max(x1, x2) {1}, {2} {1, 2}
18 x3:3 = max(x1, x2, x3) {1}, {2}, {3} {1, 2, 3}

and
0i (x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn).

Theorem 1.1 (Pivotal decomposition) Let φ be a system of order n, then

φ(x) = xiφ(1i (x)) + (1 − xi )φ(0i (x)) (1.2)

for all x = (x1, . . . , xn) ∈ {0, 1}n and all i = 1, . . . , n. Moreover,

φ(x) =
∑

y∈{0,1}n

⎛

⎝φ(y)
n∏

j=1

x
y j
j (1 − x j )

1−y j

⎞

⎠ (1.3)

for all x = (x1, . . . , xn) ∈ {0, 1}n.

Proof Clearly, (1.2) holds in the two possible cases, xi = 1 and xi = 0. Expression
(1.3) is obtained by repeated applications of (1.2). For example, we can start with
x1 obtaining

φ(x) = x1φ(1, x2, . . . , xn) + (1 − x1)φ(0, x2, . . . , xn).

Then we apply (1.2) to φ(1, x2, . . . , xn) and φ(0, x2, . . . , xn) for i = 2 and
so on. �
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Expression (1.3) proves that φ can be written as a multinomial of degree n. This
representation will be used in the next chapter to compute the reliability of systems
with independent components.

For example, the pivotal decomposition for the system

φ14(x1, x2, x3) = max(x1,min(x2, x3))

(see Table1.1) is

φ14(x1, x2, x3) = x1(1 − x2)(1 − x3) + (1 − x1)x2x3 + x1x2(1 − x3)

+ x1(1 − x2)x3 + x1x2x3
= x1 + x2x3 − x1x2x3.

The second representation is based on minimal path or minimal cut sets (defined
in the preceding section). It is stated in the following theorem. It will be used in the
next chapter to compute the system lifetime and the system reliability.

Theorem 1.2 (Minimal path/cut sets’ representations) Let φ be a coherent (or semi-
coherent) system of order n and let P1, . . . , Pr and C1, . . . , Cs be its minimal path
and minimal cut sets, respectively. Then

φ(x) = max
i=1,...,r

min
j∈Pi

x j (1.4)

and
φ(x) = min

i=1,...,s
max
j∈Ci

x j (1.5)

for all x = (x1, . . . , xn) ∈ {0, 1}n.

Proof The first expression (1.4) holds since a coherent system works iff at least one
of the series systems obtained from its minimal path sets works. Analogously, (1.5)
holds since a coherent system fails iff at least one of the parallel systems obtained
from its minimal cut sets fails. �

Remark 1.1 The preceding theorem can also be stated by using path or cut sets.
However, the expressions obtained in this way are more complicated than that stated
above (so we will not use them).

The preceding theorem shows that any coherent system can be decomposed as
series systems connected in parallel or as parallel systems connected in series (with
some possible common components). Here we can use the notation introduced in
the preceding section for series and parallel systems and write (1.4) and (1.5) as

φ(x) = max
i=1,...,r

φPi (x)

and
φ(x) = min

i=1,...,s
φCi (x),
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respectively. They can also be written by using products and coproducts as

φ(x) =
r∐

i=1

∏

j∈Pi

x j (1.6)

and

φ(x) =
s∏

i=1

∐

j∈Ci

x j . (1.7)

Note that we obtain again multinomials of degre n and that these representations are
more “efficient” than the pivotal decomposition. For example, for the system φ14
considered above, we obtain

φ14(x1, x2, x3) = x1
∐

x2x3 = 1 − (1 − x1)(1 − x2x3) = x1 + x2x3 − x1x2x3.

In this chapter, representations (1.4)–(1.7) for the Boolean function φ are equiv-
alent. However, in the next chapter, they will be used to extend φ to real numbers
and then they will provide different expressions (that will be used to different pur-
poses). For example, the series system of order 2 can be written as φ2:2(x1, x2) =
min(x1, x2) or as the multinomial ψ2:2(x1, x2) = x1x2. If x1, x2 ∈ {0, 1}, then
φ2:2(x1, x2) = ψ2:2(x1, x2). However, they are different as real functions. For exam-
ple, φ2:2(1/2, 1/2) = 1/2 
= 1/4 = ψ2:2(1/2, 1/2).

The minimal path and minimal cut set representations can also be used to deter-
mine all the coherent systems of order n. They show that a system is completely
determined by its minimal path sets (or by its minimal cut sets). So a system can
also be seen as a finite sequence of subsets of [n] := {1, . . . , n} with the properties
given in the following proposition.

Proposition 1.4 The non-empty sets P1, . . . , Pr ⊆ [n] are the minimal path (or cut)
sets of a coherent system iff the two following properties hold:

(i) Pi is not contained in Pj for all i 
= j ;
(ii) P1 ∪ · · · ∪ Pr = [n].

Proof Clearly, (i) holds when P1, . . . , Pr are the minimal path (or cut) sets of a
semi-coherent system (by definition). Moreover, if i /∈ P1 ∪ · · · ∪ Pr then, from
(1.4), the i th component is irrelevant for the system. Therefore, (i i) holds for the
minimal path sets of any coherent system. From (1.5), (i i) also holds for the minimal
cut sets of a coherent system.

Conversely, if the sets P1, . . . , Pr satisfy (i) and (i i), then we can consider the
system (Boolean function) φ defined by (1.4). Clearly, φ is increasing. Moreover, we
can prove that any component is relevant due to (i i). Thus, if i ∈ [n] = P1∪· · ·∪ Pr ,
then, from (i i), there exists a j ∈ [r ] such that i ∈ Pj . Now we consider the point
x = (x1, . . . , xn) defined as xk = 1 if k ∈ Pj and xk = 0 if k /∈ Pj . Hence,

φ(0i (x)) = 0 < 1 = φ(1i (x))
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since φPj (x) = xi and φP�
(x) = 0 for all � 
= j (from (i)). Therefore φ is a coherent

structure. Moreover, it is easy to see that P1, . . . , Pr are its minimal path sets. The
proof for the minimal cut sets is similar. �

Note that the characteristic properties of minimal path sets and minimal cut sets
of coherent systems coincide. This is an expectable property since the minimal path
sets of a system are the minimal cut sets of its dual system (and vice versa). However,
in the first case we use (1.4) to determine the system while in the second we use
(1.5). Moreover, as we have seen in the proof, the minimal path (or cut) sets of
semi-coherent systems are just characterized by property (i).

The systems can also be represented by using their paths (or cut) sets. However,
as mentioned above, these representations are always more complicated. So we do
not include these properties here. Both structures (path/cut sets and minimal path/cut
sets) can be used in Set Theory (see Ramamurthy 1990).

The preceding proposition can be used jointly with the following algorithm,
extracted from Navarro and Rubio (2010), to determine all the coherent systems
of order n. They are determined by their minimal path sets. We use a recursive
method on the number k of minimal path sets. We use the notation |A| for the car-
dinality of the set A. The coherent system φ is represented here by the sequence
φ = (P1, . . . , Pk) of its minimal path sets with |P1| ≤ · · · ≤ |Pk |. Some systems
can be written in different ways (we avoid repetitions).

Algorithm 1.2.1:
Step 0: Generate the set S with all the non-empty subsets of [n] (there are m =

|S| = 2n − 1 subsets).
Step 1: Generate the unique coherent system with k = 1 minimal path set (the

series system with P1 = [n]). Let S1 = {([n])}.
Step2:Generate all the coherent systemswith k = 2minimal path sets by studying

(using Proposition 1.4) all the couples of sets from S (there are
(m
2

) = m(m − 1)/2
different couples). Their sequences (P1, P2) of minimal path sets are included in the
set S2 with |P1| ≤ |P2| (avoiding repetitions).

Stepk (for k = 3, 4, . . .):For any sequence (P1, P2, . . . , Pk−1) ∈ Sk−1, generate
all the different coherent systems obtained by replacing Pk−1 with a couple of subsets
A, B ∈ S such that |Pk−2| ≤ |A| ≤ |B|. Their sequences of minimal path sets are
included in Sk with |P1| ≤ |P2| ≤ · · · ≤ |Pk | (avoiding repetitions).

Final step: Stop when Sk = ∅.

Theorem 1.3 The preceding algorithm generates all the coherent systems of order n.

Proof Clearly, from the preceding algorithm, S1 and S2 contain all the coherent
systems with k = 1 and k = 2 minimal path sets.

Let us see that the set S3 obtained in step 3 contains all the coherent systems
with k = 3 minimal path sets. Let P1, P2, P3 be the minimal path sets of a coherent
system of size n and let us assume that |P1| ≤ |P2| ≤ |P3|. Then we consider two
cases:
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Case I: If P1 ∪ P2 = [n], then, from Proposition 1.4, P1, P2 are the minimal path
sets of a coherent system of size n, that is, (P1, P2) ∈ S2 or (P2, P1) ∈ S2. Hence
(P1, P2, P3) is generated in step 3 when in (P1, P2) we delete P2 and we add the
couple (P2, P3) or when in (P2, P1) we delete P1 and we add the couple (P1, P3).

Case II: If P1 ∪ P2 
= [n], we define A = [n] − (P1 ∪ P2) and Q = P2 ∪ A.
Clearly, P1 ∪ Q = [n] and |P1| ≤ |P2| < |Q|. Hence (P1, Q) are the minimal path
sets of a coherent system of size n, with |P1| < |Q|, that is, (P1, Q) ∈ S2 (in that
order). Hence (P1, P2, P3) is generated in step 3 when in (P1, Q) we delete Q and
we add the couple (P2, P3).

By induction, let us assume thatSk−1 contains all the coherent systems with k −1
minimal path sets.Wewant to prove that the same happen forSk by using a procedure
similar to that used in step k = 3. Let φ be a coherent system with minimal path sets
P1, . . . , Pk satisfying |P1| ≤ · · · ≤ |Pk |. As above we consider two cases:

Case I: If P1 ∪ · · · ∪ Pk−1 = [n], then, from Proposition 1.4, P1, . . . , Pk−1 are
the minimal path sets of a coherent system of size n, that is, (P1, . . . , Pk−1) ∈ Sk−1
(in this way or in a permuted version). Hence (P1, . . . , Pk) is generated in step 3
when in (P1, . . . , Pk−1) we delete Pk−1 (or the last set Pj ) and we add the couple
(Pk−1, Pk) (we add the couple (Pj , Pk)).

Case II: If P1 ∪ · · · ∪ Pk−1 
= [n], we define A = [n] − (P1 ∪ · · · ∪ Pk−1)

and Q = Pk−1 ∪ A. Clearly, P1 ∪ · · · ∪ Pk−2 ∪ Q = [n] and |P1| ≤ · · · ≤
|Pk−2| < |Q|. Hence P1, . . . , Pk−2, Q are the minimal path sets of a coherent
system of order n, that is, (P1, . . . , Pk−2, Q) ∈ Sk−1 (in this way or in a permuted
version). Moreover, in all these permuted versions, Q is the last set in the sequence
since |Pi | ≤ |Pk−1| < |Q| for i = 1, . . . , k − 2. Hence (P1, . . . , Pk) is generated in
step k when in (P1, . . . , Pk−2, Q) (or in any of its permuted versions) we delete Q
and we add the couple (Pk−1, Pk). �

The preceding theorem can be used to obtain all the coherent systems of order n
(we can use a computer to do so). Let us see an example.

Example 1.1 As we have mentioned in the preceding section, there are 9 coherent
system of order 3 (see Table1.1) that are reduced to just 5 coherent system classes of
equivalent systems under permutations. They can be obtained by using the preceding
algorithm as follows.

Step 0: If n = 3, then S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (with
cardinality 23 − 1 = 7) is the set with all the possible minimal path sets.

Step 1: The unique system with k = 1 is the series system

φ1 = ({1, 2, 3}) = min(x1, x2, x3), S1 = {φ1}.
Step 2: For k = 2, we consider the

(7
2

) = 21 couples of sets from S, obtaining
six coherent systems:

S2 = {φ14, φ13, φ12, φ5, φ6, φ7},
where we use the notation of Table1.1, that is, φ14 = ({1}, {2, 3}), φ13 =
({2}, {1, 3}), φ12 = ({3}, {1, 2}), φ5 = ({1, 2}, {1, 3}), φ6 = ({1, 2}, {2, 3}), φ7 =
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({1, 3}, {2, 3})}. For example, the first one is obtained as follows. First we consider
all the couples that contain the first set P1 = {1}. The first option is (P1, P2 = {2}).
It does not determine a proper coherent system since P1 ∪ P2 
= {1, 2, 3}. The
same happen with (P1, P2 = {3}). The next options are (P1, P2 = {1, 2}) and
(P1, P2 = {1, 3}). They do not determine coherent systems since P1 ⊂ P2. The next
one is (P1, P2 = {2, 3}) that leads us to system φ14.

Step 3: For k = 3, we consider the systems in S2. With the first one φ14 =
({1}, {2, 3}), we delete {2, 3} and when we add the couple ({2}, {3}), we obtain
the parallel system φ18 = ({1}, {2}, {3}). Analogously, with the fourth φ5 =
({1, 2}, {1, 3}), we delete {1, 3}, and when we add the pair {1, 3}, {2, 3}, we obtain
the 2-out-of-3 system

φ2:3 = φ11 = ({1, 2}, {1, 3}, {2, 3}).
In the other options we do not obtain new coherent systems.

Step 4: For k = 4, we consider the systems in S3 = {φ18, φ11}. With the first
one φ18 = ({1}, {2}, {3}), we delete {3} but we cannot obtain coherent systems by
adding A, B ∈ S with 1 ≤ |A| ≤ |B|. The same happen with the second one
φ11 = ({1, 2}, {1, 3}, {2, 3}) when we delete {2, 3} and we add A, B ∈ S with
2 ≤ |A| ≤ |B|. Therefore S4 = ∅ and so we stop here. �

Shaked and Suárez–Llorens (2003) proved that there are 20 classes of order 4.
Navarro and Rubio (2010) used the preceding theorem to compute the 180 and 16145
classes of coherent systems of order 5 and 6. The systems of order 5 can be seen in
that paper and those with 6 components in:

https://webs.um.es/jorgenav/miwiki/doku.php?id=coherent_systems.

The last representation is based on the Möbius transform of φ. First, we note that
a system φ can be seen as a set function

φ : 2[n] → {0, 1},
where 2[n] represents the set (or class) of all the subsets of [n] and for J ⊆ [n] we
have

φ(J ) := φ(1J )

and 1J := (x1, . . . , xn) with xi = 1 if i ∈ J and xi = 0 if i /∈ J . Note that the
condition “φ is increasing” can be written now as

I ⊆ J ⇒ φ(I ) ≤ φ(J )

(i.e., φ is increasing as a set function). Analogously, the conditions φ(0, . . . , 0) = 0
and φ(1, . . . , 1) = 1, can be written now as

φ(∅) = 0 and φ([n]) = 1.

https://webs.um.es/jorgenav/miwiki/doku.php?id=coherent_systems
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Hence, a semi-coherent system φ can be seen as a normalized (or regular) fuzzy
measure (see Fantozzi and Spizzichino 2015; Grabisch 2016). In this sense (see,
e.g., Grabisch 2016), theMöbius transform φ̂ of φ is defined as

φ̂(I ) :=
∑

J⊆I

(−1)|I |−|J |φ(J ). (1.8)

It satisfies the following property: if φ(I ) = 0, then φ̂(I ) = 0 (since φ(J ) = 0 for
all J ⊆ I ). Moreover the inverse relation

φ(J ) =
∑

I⊆J

φ̂(I ) (1.9)

holds. Thus we obtain the following representation.

Theorem 1.4 (Möbius representation) The structure function of a coherent system
φ can be written as

φ(x1, . . . , xn) =
∑

I⊆[n]
φ̂(I )

∏

i∈I

xi (1.10)

for all x1, . . . , xn ∈ {0, 1}, where φ̂ is Möbius transform of φ defined by (1.8).

The proof is immediate from (1.9) taking into account that if (x1, . . . , xn) = 1J ,
then I ⊆ J iff

∏
i∈I xi = 1. The main advantage of this representation is that

it gives us directly the coefficients of the multinomial representation (in the other
representations, we have to do some calculations). Let us see an example.

Example 1.2 Let us consider again the coherent system
φ14(x1, x2, x3) = max(x1,min(x2, x3)).

Its Möbius transform is given by

φ̂14({1}) =
∑

J⊆{1}
(−1)1−|J |φ(J ) = (−1)0φ({1}) = 1,

φ̂14({2, 3}) =
∑

J⊆{2,3}
(−1)2−|J |φ(J ) = (−1)0φ({2, 3}) = 1,

φ̂14({1, 2, 3}) =
∑

J⊆{1,2,3}
(−1)3−|J |φ(J )

= (−1)3−1φ({1}) + (−1)3−2φ({2, 3}) + (−1)3−2φ({1, 2})
+ (−1)3−2φ({1, 3}) + (−1)3−3φ({1, 2, 3})

= −1

and φ̂14(I ) = 0 for the other subsets I . Therefore, from (1.10), we obtain
φ14(x1, x2, x3) = x1 + x2x3 − x1x2x3

as in the preceding examples. �

For more properties on systems’ structures we refer the readers to Barlow and
Proschan (1975), Marichal et al. (2011) and Ramamurthy (1990).
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1.3 Related Concepts

Coherent system structures are similar to other concepts considered in different
mathematical and engineering subjects. Let us see some of them.

1.3.1 Simple Games

Let N be a finite set and let 2N be its power set (with all the subsets of N ). Here
the elements of N are called players and the elements of 2N are called coalitions
(see Ramamurthy 1990, p. 37). Then a simple game (or a voting system) on N is
defined as follows.

Definition 1.11 A simple game on N is λ : 2N → {0, 1} such that:

(i) λ(∅) = 0;
(ii) λ(N ) = 1;
(iii) λ(A) ≤ λ(B) for all A ⊆ B.

A coalition A is a winning (losing) coalition if λ(A) = 1 (0). It is a blocking
coalition if λ(Ac) = 0 where Ac = N − A. A winning (blocking) coalition is
minimal if it does not contain other winning (blocking) coalitions. To simplify, we
can assume N = [n]. A player i ∈ N is called a dictator if {i} is winning and
it is called a veto-player if {i} is blocking. A player i ∈ N is called a dummy if
λ({i} ∩ A) = λ(A) for all A.

Clearly, simple games are equivalent to semi-coherent systems, replacing players
with components, winning coalitions with path sets, blocking coalitions with cut sets
and dummy players with irrelevant components.

The axioms (properties) that must satisfy a simple game are the following (see
Ramamurthy 1990, p. 37).

A1. Every coalition is either winning or losing.
A2. The empty set is losing.
A3. The all player set N is winning.
A4. No losing coalition contains a winning coalition.

Sometimes, the following axioms are also added:

A5. If A is winning, then Ac is losing (proper games).
A6. If A is losing, then Ac is winning (strong games).

The simple games can be classified (see Ramamurthy 1990, p. 42–43) as follows.
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1. Proper games.Everywinning coalition is also a blocking coalition. In this case N
cannot be divided in two disjoint winning coalitions. This prevent to get different
decisions from disjoint coalitions.

2. Strong games. Every blocking coalition is also a winning coalition. In this case
N cannot be divided in two disjoint blocking coalitions. This prevent to get a
blocking situation from disjoint coalitions.

3. Decisive games. They are both proper and strong games.
4. Symmetric games. There exists an integer number k such that A is winning iff

|A| ≥ k. These games are equivalent to k-out-of-n systems.
5. Weighted majority games. There exist a non-negative vector of weights

(w1, . . . , wn) and a real number r such that A is winning iff
∑

i∈A wi ≥ r .
In particular it is also homogeneous if all the minimal winning coalitions have
the same weights.

1.3.2 Networks

The networks are everywhere today. There are several problems related with net-
works. Here we just consider connectivity problems. From a mathematical point of
view, they can be defined as follows. The main results of this section have been
obtained from Gertsbakh and Shpungin (2010, 2020). These references can also be
used to get more results.

Definition 1.12 A network is N = (V, E) where V is the vertex (or node) set and
E is the edge (or link) set.

Here we just consider networks with a finite set V with |V | = m and a finite set
E with |E | = n. Usually, the set E is written as E = {ei = {ui , vi } : ui , vi ∈ V, i =
1, . . . , n} (undirected networks) or as E = {ei = (ui , vi ) : ui , vi ∈ V, i = 1, . . . , n}
(directed networks). We assume that the vertices do not fail but that the edges can
fail. As in the case of systems, we just consider two possible states for the edges (up
and down). A network is connected (all connectivity criterion) if all the nodes are
connected by a chain of edges. Sometimes, we might fix a set of terminal vertices
T ⊆ V and just consider connectivity problems between these terminal vertices. All
the concepts studied for systems can be translated to these connectivity problems by
defining the structure (or state) function of the network

φ : {0, 1}n → {0, 1},
where φ(x1, . . . , xn) = 1 (resp. 0) if the network satisfies (does not satisfy) the
connectivity conditions when just the edges with xi = 1 work.

For example, the network with V = {1, 2, 3} and E = {e1 = {1, 2}, e2 =
{1, 3}, e3 = {2, 3}} might represent three islands connected with three bridges (or
three cities connected by regular lines of airplanes), see Fig. 1.3, left. Then the struc-
ture function for the all connectivity criterion is φ2:3, that is, we need at least two
working edges. In this case, the minimal path sets are P1 = {e1, e2}, P2 = {e1, e3},
and P3 = {e2, e3}. Remember that this coherent system cannot be plotted as a plane
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Fig. 1.3 Network of three islands connected with three bridges

system (without repeating components). However, if we just consider the terminal
vertices T = {1, 3}, then the structure function for the connectivity of these two ter-
minal vertices is φ13(x1, x2, x3) = max(x2,min(x1, x3)). In this case, the minimal
path sets are P1 = {e1, e3} and P2 = {e2}. For other criterion see Gertsbakh and
Shpungin (2010, 2020).

1.3.3 Mixed Systems

The concept ofmixed systemwas introduced by Boland and Samaniego (2004). They
can be used to represent systems that should fulfill different requirements in different
periods of time. They can be defined as follows.

Definition 1.13 We say that φ is amixed system of order n if it is equal to φ j with
probability p j ≥ 0 for j = 1, . . . , m, where φ1, . . . , φm are systems of order n and
p1 + · · · + pm = 1. We say that a mixed system φ is semi-coherent if φ1, . . . , φm

are semi-coherent systems. We say that a mixed system φ is coherent if φ1, . . . , φm

are semi-coherent systems and every component is relevant in at least a system with
a positive probability.

Any (deterministic) system φ1 can be seen as a mixed system φ that takes the
value φ = φ1 with probability 1. However, the reverse is not true. A mixed system
φ can written as a map φ : {0, 1}n → {0, 1} but note that here φ(x1, . . . , xn)

represents a discrete random variable that takes the value φ j (x1, . . . , xn) ∈ {0, 1}
with probability p j , for j = 1, . . . , m. If φ is semi-coherent, then φ(0, . . . , 0) = 0
and φ(1, . . . , 1) = 1 (since the same properties hold for any j). However, we cannot
assure that φ is increasing (due to the randomness). For example, we can consider
the coherent mixed system φ defined as

φ(x1, x2, x3) = φ1:3(x1, x2, x3) = min(x1, x2, x3), with probability 1/2

and

φ(x1, x2, x3) = φ3:3(x1, x2, x3) = max(x1, x2, x3), with probability 1/2.

This mixed system might represent a system (situation) in which we need the three
components half the time (by the day, say) and just one of them in the other half
time (by night). Note that φ(0, 0, 0) = 0 ≤ φ(1, 1, 1) = 1. However, we cannot
assure that φ(1, 0, 0) = 0 ≤ φ(1, 1, 0) = 1 since the following event might happen
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φ(1, 0, 0) = 1 > φ(1, 1, 0) = 0 (with probability 1/4). Instead we have the follow-
ing property. If x = (x1, . . . , xn) and y = (y1, . . . , yn), we say that x ≤ y iff xi ≤ yi

for all i .

Proposition 1.5 If φ is a semi-coherent mixed system and x ≤ y, then

E(φ(x)) ≤ E(φ(y)).

Proof From the definition we have

E(φ(x)) =
m∑

j=1

p jφ j (x) ≤
m∑

j=1

p jφ j (y) = E(φ(y)),

where the inequality holds since φ1, . . . φm are semi-coherent systems. �

1.4 Multi-state Systems with Binary Components

In this section we assume that, for a fixed m ∈ N, the set of possible states of a
system is

S :=
{
0,

1

m
,
2

m
, . . . ,

m − 1

m
, 1

}
,

where, as above, 1 represents the perfect functioning state and 0 the state of failure.
In the middle, we have m − 1 intermediate states. The evolution in time of the
performance of the system can then be seen as a stochastic process starting from 1
(perfect functioning) and eventually going to 0 (failure) as t → ∞.

This representation is clearly equivalent to the classical representation using the
levels {0, 1, . . . , m} for a given integer number m. We could of course consider
systems with more general levels �0 = 0 < �1 < · · · < �m by using the set

S∗ :=
{

h0 = 0, h1 = �1

�m
, h2 = �2

�m
, . . . , hm−1 = �m−1

�m
, hm = 1

}
.

This general case can be studied in a similar way.
Thus we define the structure of a multi-state system with binary components as

follows.

Definition 1.14 A multi-state system with binary components is a function

ϕ : {0, 1}n → S.

It is semi-coherent if ϕ is increasing, ϕ (0, . . . , 0) = 0 and ϕ (1, . . . , 1) = 1. It is
coherent if all the components are relevant (i.e. ϕ is strictly increasing in all the
variables in at least a point).
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Then we notice that ϕ has the properties of a normalized (or regular) fuzzy mea-
sure. As for binary systems, ϕ can be considered as a set function defined over the
family 2[n] of all the subsets of [n] where for J ⊆ [n],

ϕ(J ) := ϕ(1J )

and 1J := (x1, . . . , xn) with x j = 1 for j ∈ J and x j = 0 for i /∈ J . In this sense
(see, e.g., Grabisch 2016), the Möbius transform ϕ̂ of ϕ is

ϕ̂(I ) :=
∑

J⊆I

(−1)|I |−|J |ϕ(J )

and it is such that the inverse relation

ϕ(J ) =
∑

I⊆J

ϕ̂(I ) (1.11)

holds. It is also useful for our purposes below to rewrite the previous equation (1.11)
in a slightly different form. For x ∈ {0, 1}n and I ⊆ [n] such that x = 1I , we can
write

ϕ(x1, . . . , xn) =
∑

J⊆I

ϕ̂(J ) =
∑

J⊆[n]
ϕ̂(J )

∏

j∈J

x j . (1.12)

This expression is similar to the one obtained for binary systems, see (1.10).

1.4.1 Binary Systems Associated to aMulti-state System

Given amulti-state structureϕ, we can consider (seeBlock and Savits 1982;Marichal
et al. 2017) the associated binary systems with the following structures

ϕi (x1, . . . , xn) =
{
1, if ϕ (x1, . . . , xn) ≥ i

m
0, if ϕ (x1, . . . , xn) < i

m
(1.13)

for i = 1, . . . , m. If ϕ is semi-coherent, the binary structures ϕ1, . . . , ϕm are semi-
coherent binary systems and satisfy ϕ1 ≥ · · · ≥ ϕm . Moreover, we have

ϕ(x1, . . . , xn) = 1

m

m∑

i=1

ϕi (x1, . . . , xn). (1.14)

Thus anymulti-level systemcan be associated to amixed system (see the definition
in the preceding subsection) as follows. Note that if φ is a mixed system, then E(φ)

is a semi-coherent multi-level system (see the preceding subsection).

Definition 1.15 The mixed system φ associated to a multi-level system with struc-
ture function ϕ is the one that is equal to the binary system ϕi with probability 1/m,
for i = 1, . . . , m.

Note that

E(φ(x1, . . . , xn)) = 1

m

m∑

i=1

ϕi (x1, . . . , xn) = ϕ(x1, . . . , xn).
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1.4.2 Multi-state System Associated to a Binary System

Conversely, if ψ is a semi-coherent binary system, then we can define an associated
multi-state system. First, we consider the semi-coherent series systems associated to
the minimal path sets P1, . . . , Pr of ψ defined as

ψPj (x1, . . . , xn) = min
i∈Pj

xi

for j = 1, . . . , r . Then we can use these systems to define the multi-state system
with binary components associated to ψ as follows.

Definition 1.16 Let ψ be a semi-coherent system. Then the multi-state system ψ̃ :
{0, 1}n → [0, 1] associated to ψ is defined by

ψ̃(x1, . . . , xn) = 1

r

r∑

j=1

ψPj (x1, . . . , xn). (1.15)

Note that the set of possible states of system ψ̃ is

S :=
{
0,

1

r
,
2

r
, . . . ,

r − 1

r
, 1

}
.

As above, ψ̃ can be seen as a normalized (or regular) fuzzy measure. The meaning
of ψ̃ is clear, it represents the proportion of working minimal path sets in the system
(note that the multi-state system ψ̃ could also be defined over the set {0, . . . , r} as
the number of working minimal path sets). In particular, ψ̃ = 1 means that all the
minimal path sets are working and ψ̃ = 0 that the system has failed (all the minimal
path sets have failed). Therefore, ψ̃ is a risk measure for the system that can be used
to describe the system failure process from the initial state ψ̃ = 1 to the final failure
state ψ̃ = 0 with intermediate states (r − 1)/r, . . . , 1/r . This process could also be
used to determine replacement or repair policies in the system.

As in the preceding subsectionwe can define the associated semi-coherent systems
ψ j : {0, 1} → {0, 1} for j = 1, . . . , r , defined by

ψ j (x1, . . . , xn) = 1 ⇔ ψ̃(x1, . . . , xn) ≥ j/r.

Then

ψ̃(x1, . . . , xn) = 1

r

r∑

j=1

ψ j (x1, . . . , xn)

and we can define (as in the preceding section) the mixed system associated to ψ̃ .
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Problems

1. Prove that if φ is a coherent system and A ⊆ [n], then either A is a path set or
Ac := [n] − A is a cut set.

2. Compute the structure function of a plain with four engines, two in each wing,
that can fly whenever at least an engine is working in each wing.

3. Compute all the coherent systems of order 4 and the number of equivalence
classes.

4. Compute all the semi-coherent systems of order 4.
5. Compute the structure functions of all the k-out-of-5 systems.
6. Compute the structure function of a k-out-of-4 linear or circular system. Could

some of them be written in a simplified way?
7. Obtain the pivotal decomposition of a coherent system of order 3.
8. Obtain the minimal path set representation of a system of order 4.
9. Obtain the minimal cut set representation of a system of order 4.

10. Obtain the Möbius transform representation of a system of order 4.
11. Prove (1.9).
12. Obtain all the coherent systems of order 5 with 3 minimal path sets.
13. Given a coherent system of order 4, obtain an equivalent network.
14. Given a network, obtain an equivalent coherent system.
15. In a parliament, the parties A, B, C and D have 50, 26, 22 and 11 deputies,

respectively. If in a majority decision voting system, they can just vote ‘yes’ or
‘no’, obtain the associated simple game (system).

16. Obtain the binary systems associated to a multi-state system.
17. Obtain the multi-state system associated to a binary coherent system.
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