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Preface

The purpose of this book is to provide the basic tools for a modern post-graduate
introductory course on System Reliability Theory. As the excellent classic book by
Barlow and Proschan (1975), the present one is just devoted to probabilistic aspects
of that theory, including recent results based on signatures, stochastic orders, aging
classes, copulas and distortion (or aggregation) functions.

The only requirements for the readers are basic knowledge on Probability
Theory and on the Mathematical tools needed in that theory (basic Algebra and
Calculus), so that it can serve both for graduate students in Mathematics and for
different Engineering students. Some aspects can also be applied to Survival
Analysis, Network Reliability or Simple Game Theory. So it could be of interest for
other students/researchers in these fields as well.

For that reason, the book includes short introductions to the basic aspects of
lifetime modelling, stochastic comparisons, aging classes, mixtures and copula
theory needed for the present course. For the interested readers, we provide
appropriate references for more advanced results on these topics. Some basic codes
written in the statistical (free) program R are also included.

The purpose is to provide the tools for a short basic course (30–60 hours) for
different graduate students. So, unfortunately, we have to exclude some relevant
aspects on Reliability Theory. For example, the book does not include results based
on stochastic processes (since they need more advances courses on probability).
Fortunately, there are several recent books on this topic available for the interested
readers (see, e.g., Aven and Jensen, 1999; Parzen, 1999; Nakagawa, 2008; Cha and
Finkelstein, 2018). Analogously, we do not study here statistical aspects related
with reliability data. They are left for a possible second volume.

The book is divided into 5 chapters.
In Chap. 1, we study the basic properties of coherent and semi-coherent binary

system structures, obtaining several representations for the structure Boolean
function of the system. We do not study non-coherent systems, but we provide
some results for multi-state systems with binary components. Relationships with
simple games, connectivity properties of networks, mixed systems and fuzzy
measures are provided as well.

Chapter 2 is devoted to studying the (random) system lifetime. First, we study its
relationship with the component lifetimes. So we introduce the basic tools needed
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to study random lifetimes as the reliability function, the Mean Time to Failure
(MTTF), the hazard (failure) rate function, or the mean residual life function. The
different representations based on signatures and distortion functions are studied.

The basic tools to stochastically compare coherent systems are provided in
Chap. 3. We study distribution-free comparisons, that is, orderings that do not
depend on the components’ distribution functions. We consider five cases: systems
with Independent and Identically Distributed (IID) components, with Exchangeable
(EXC) components, with Identically Distributed (ID) components, with Indepen-
dent (IND) components and the general case of arbitrary (dependent or indepen-
dent) components. We use a copula approach to model the dependence structure
between the component lifetimes.

In Chap. 4, we study the process of growing old for both the system and the
components. To this end, we use the main aging classes (IFR, NBU, DMRL, ILR
and their respective dual classes). In particular, we state conditions for the
preservation of some of these aging classes under the formation of coherent sys-
tems. We also consider different system residual and inactivity times. The limiting
behavior (when the time increases) of some system aging functions is studied as
well.

In Chap. 5, we study several mechanisms that are used to improve the system’s
performance. One option is to include some redundant units at some positions in the
system. Another popular redundancy option is to add standby components in the
system to replace the failed components (when they fail). Another one is to repair
these failed components (with perfect or minimal repairs). The main questions
analyzed in this chapter are: What is the reliability of the (new) redundant system?
What are the best positions to add the redundant components? We also study some
component importance indices which can be used to determine the best replacement
positions.

I want to thank all the people that helped me in writing this book: my department
colleagues, my students and my research collaborators. I do not include names here
because I do not know if I will be able to cite all of them.

Murcia, Spain
July 2021

Jorge Navarro
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1Coherent SystemStructures

Abstract

In this chapter we study the basic properties of the main concept in the Reliability
Theory: the coherent system structures. In the first section we give the formal
definitions of coherent and semi-coherent (binary) system structures, providing
several examples. We do not study non-coherent systems here. We refer the inter-
ested readers in that systems to Borgonovo (2010), Imakhlaf et al. (2017) and
the references therein. The main properties of coherent systems are given in the
second section, including several representations for the structure function of the
system. Relationships with simple games, connectivity properties of networks
and mixed systems are studied in the third section. The fourth section contains
some results for multi-state systems with binary components. The components’
importance indices are not studied here. Some of them are studied in Chap.5. In
a first reading, Sects. 1.3 and 1.4 can be skipped (if you want).

1.1 Coherent Structures

The systems are the main concepts in the Reliability Theory. They are “structures”
built by using several components. Themain assumption is that the state of the system
only depends on the states of the components through a “structure function”. In this
section we assume that the system and the components only have two possible states,
a functioning state represented by a 1 and a failure state represented by a 0. Then the
formal (mathematical) definition of (binary) system can be stated as follows.

Definition 1.1 A (binary) system with (binary) components of order n is a Boolean
structure function (map)

φ : {0, 1}n → {0, 1},

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Navarro, Introduction to System Reliability Theory,
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2 1 Coherent System Structures

where φ(x1, . . . , xn) ∈ {0, 1} represents the system’s state that is completely deter-
mined by the components’ states represented by x1, . . . , xn ∈ {0, 1}.

To simplify, we just use the word “system” to represent a binary system with
binary components. Here it is natural to assume some additional properties for the
structure function φ. For example, we can expect that a system does not work when
all the components fail or that the system works when all the components do so.
Analogously, we may also assume that if a broken component is replaced by a
functioning component (or it is repaired), then the system state cannot be worse.
These assumptions lead to the concept of semi-coherent systems. If one (or more)
of these properties fails, then we have a non-coherent system that are studied in the
references mentioned above.

Definition 1.2 A semi-coherent system of order n is a system

φ : {0, 1}n → {0, 1}
satisfying the following properties:

(i) φ is increasing;
(ii) φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1.

Throughout the book we use the words “increasing” and “decreasing” in a wide
sense, that is, a function g is increasing (resp. decreasing) when

g(x1, . . . , xn) ≤ g(y1, . . . , yn) (≥)

for all x1 ≤ y1, . . ., xn ≤ yn .
Semi-coherent systems may have “irrelevant” components, that is, components

that do not affect the system. The formal definition is the following.

Definition 1.3 The i th component is irrelevant for the system φ if

φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = φ(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}. If this is not the case, then it is a relevant
component.

For example, the structure function φ(x1, x2) = x1 is a semi-coherent system of
order 2 that represents the system formed just with the first component. Here the
second component is irrelevant for the system since φ(x1, 0) = φ(x1, 1) for all x1.
To avoid this problemwe consider the concept of coherent system defined as follows.
This is the main concept in the present book.

Definition 1.4 A coherent system of order n is a system

φ : {0, 1}n → {0, 1}
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satisfying the following properties:

(i) φ is increasing;
(ii) φ is strictly increasing in each variable in at least a point.

Clearly, the second condition can be replaced with: “All the components are rel-
evant” and we have the following property.

Proposition 1.1 All the coherent systems are also semi-coherent systems.

Proof The condition (i i) in the preceding definition implies that, in particular, φ is
strictly increasing in x1 in at least a point, that is, there exist x2, . . . , xn ∈ {0, 1} such
that

0 = φ(0, x2, . . . , xn) < φ(1, x2, . . . , xn) = 1.

Hence, from (i), we have

0 ≤ φ(0, . . . , 0) ≤ φ(0, x2, . . . , xn) = 0

and
1 = φ(1, x2, . . . , xn) ≤ φ(1, . . . , 1) ≤ 1.

Therefore, φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1. �

Note that some semi-coherent systems of order n can be considered as an extension
of a coherent system in a dimension k < n. For example, the semi-coherent system
in dimension 2 defined by φ(x1, x2) = x1 is an extension of the coherent system
φ(x1) = x1 in dimension 1.

Also note that, from amathematical point of view, the coherent systems φ1(x1, x2,
x3) = min(x1,max(x2, x3)) and φ2(x1, x2, x3) = min(x2,max(x1, x3)) are differ-
ent. However, when we plot them they have a similar “structure” (see Fig. 1.1). This
fact is important whenwewant to count all the coherent systems of a given dimension
(see next section). To consider this fact we need the following definition.

Definition 1.5 We say that two systems φ1 and φ2 of order n are equivalent under
permutations (shortly written as φ1 ∼ φ2) if

φ1(x1, . . . , xn) = φ2(xσ(1), . . . , xσ(n))

for a permutation σ : {1, . . . , n} → {1, . . . , n}.

1
3

2
2

3

1

Fig. 1.1 Two coherent systems of order 3 with a similar structure
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Fig. 1.2 A general structure for a coherent systems of order 3

The equivalence classes determined by this relationship can also be called “sys-
tems”. For example, the systems given in Fig. 1.1 can be represented by the equiva-
lence class represented by the system in Fig. 1.2.

A coherent (or semi-coherent) systemcan be determined by the sets of components
that assure that the system works (resp. fails) when these components work (fail).
The formal definition of such sets is the following.

Definition 1.6 A non-empty set P ⊆ {1, . . . , n} is a path set of a system φ if
φ(x1, . . . , xn) = 1 when xi = 1 for all i ∈ P . A non-empty set C ⊆ {1, . . . , n} is
a cut set of φ if φ(x1, . . . , xn) = 0 when xi = 0 for all i ∈ C . A path set P is a
minimal path set if it does not contain other path sets. A cut set C is aminimal cut
set if it does not contain other cut sets.

The sets of path and cut sets of a system φ are represented by P and C. Then we
have the following properties. To simplify, in the book, we use “iff” instead of “if
and only if”.

Proposition 1.2 Let φ be a system. Then:

(i) φ is increasing iffP is closed under super-inclusions (i.e. if P ∈ P and P ⊆ P∗,
then P∗ ∈ P).

(ii) φ is increasing iff C is closed under super-inclusions.
(iii) φ(0, . . . , 0) = 0 iff {1, . . . , n} ∈ C.
(iv) φ(1, . . . , 1) = 1 iff {1, . . . , n} ∈ P.
(v) φ is semi-coherent iff P is non-empty, closed under super-inclusions and does

not contain the empty set.
(vi) φ is semi-coherent iff C is non-empty, closed under super-inclusions and does

not contain the empty set.

Note that, in semi-coherent systems, P and C have the same structural properties.
To explain this fact we need another concept that can be stated as follows.

Definition 1.7 The dual system of a system φ is the system

φD : {0, 1}n → {0, 1}
defined by φD(x1, . . . , xn) := 1−φ(1− x1, . . . , 1− xn) for all x1, . . . , xn ∈ {0, 1}.
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The following properties for the dual systems can be proved easily.

Proposition 1.3 Let φ be a coherent (resp. semi-coherent) system and let φD be its
dual system. Then:

(i) φD is a coherent (resp. semi-coherent) system.
(ii) A set is a path set of φ iff it is a cut set of φD.

(iii) A set is a cut set of φ iff it is a path set of φD.
(iv) A set is a minimal path set of φ iff it is a minimal cut set of φD.
(v) A set is a minimal cut set of φ iff it is a minimal path set of φD.

(vi) (φD)D = φ.

Let us see now several examples of coherent and semi-coherent systems. The
main structures are series and parallel structures defined as follows.

Definition 1.8 The series system of order n is

φ1:n(x1, . . . , xn) := min(x1, . . . , xn).

The parallel system of order n is

φn:n(x1, . . . , xn) := max(x1, . . . , xn).

The series system with components in the set P is

φP (x1, . . . , xn) := min
i∈P

xi .

The parallel system with components in the set P is

φP (x1, . . . , xn) := max
i∈P

xi .

The series and parallel systems of order n are coherent systems but that based on a
set P are just semi-coherent systems. Of course, φ{1,...,n} = φ1:n and φ{1,...,n} = φn:n
and, in these cases, they are also coherent systems. Moreover, the dual system of φP

is φP and vice versa.
Note that Boolean functions can be expressed in many different ways. The main

options are to use min and max operators (as above) or to use polynomials (or
multinomials). For example, the series system φP can also be written as

φP (x1, . . . , xn) =
∏

i∈P

xi .

Note that these options coincide when xi ∈ {0, 1} but that they are different when
we extend these functions to other sets (see next chapter). Analogously, the parallel
system φP can also be written as

φP (x1, . . . , xn) =
∐

i∈P

xi
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where the coproduct
∐

is defined as
∐

i∈P

xi = 1 −
∏

i∈P

(1 − xi ).

For example,

φ2:2(x1, x2) = max(x1, x2) = x1 	 x2 = 1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2

for all x1, x2 ∈ {0, 1}.
We will see in the next section that all the coherent (or semi-coherent) systems

can be written by using series and parallel structures.

Other relevant structures are the k-out-of-n systems that work when at least k of
their n components work. The explicit definition is the following.

Definition 1.9 The k-out-of-n system is defined by

φn−k+1:n(x1, . . . , xn) =
{
1, if x1 + · · · + xn ≥ k
0, if x1 + · · · + xn < k

(1.1)

for k = 1, . . . , n.

The minimal path sets of the k-out-of-n system are all the sets with exactly k
components. So it has

(n
k

)
minimal path sets. Note that with this definition the 1-

out-of-n system is the parallel system φn:n and the n-out-of-n system is the series
system φ1:n . If (x1:n, . . . , xn:n) represents the increasing ordered vector obtained
from (x1, . . . , xn), then

φn−k+1:n(x1, . . . , xn) = xn−k+1:n
for k = 1, . . . , n. This notation is the same as that used to represent the order
statistics, that is, the ordered data obtained from a sample (see, e.g., Arnold et al.
2008; David and Nagaraja 2003). For example, the 2-out-of-3 system is

φ2:3(x1, x2, x3) = x2:3 = max(min(x1, x2),min(x1, x3),min(x2, x3)).

Note that this system cannot be plotted in a plane graph similar to that showed
in Fig. 1.1 (we need to repeat the components). An alternative representation as a
network will be showed in Sect. 1.3.

Other authors prefer to consider the k-out-of-n:F systems (here F means “failed”)
that fail when at least k of their n components fail. Its structure function is φk:n as
defined in (1.1) for k = 1, . . . , n. The minimal cut sets of the k-out-of-n:F system
are all the sets with exactly k components. So it has

(n
k

)
minimal cut sets. In this

case, the k-out-of-n system considered in the preceding definition can also be called
k-out-of-n:G system (here G means “good”). Of course, the dual system of the k-out-
of-n:G system is the k-out-of-n:F system and vice versa.Moreover, the k-out-of-n:F
system coincides with the (n − k + 1)-out-of-n system for k = 1, . . . , n. So we do
not need to use the concept of k-out-of-n:F system. However, this notation is needed
in the concepts of linear and circular systems defined as follows.



1.1 Coherent Structures 7

Definition 1.10 For k = 1, . . . , n, the k-out-of-n:G linear system is the system that
works when at least k consecutive components work, that is, its structure function
φk:n:G|l(x1, . . . , xn) = 1 iff there exists i ∈ {0, . . . , n − k} such that xi+1 = · · · =
xi+k = 1. The k-out-of-n:F linear system is the system that fails when at least k
consecutive components fail, that is, its structure function φk:n:F |l(x1, . . . , xn) = 0
iff there exists i ∈ {0, . . . , n − k} such that xi+1 = · · · = xi+k = 0.

The circular systems φk:n:G|c and φk:n:F |c are defined in a similar way but placing
the components in a circle (that is, in this case the first and the last components are
also consecutive).

These systems have several applications in practice. For example, the k-out-of-
n:F linear systems are used to represent transportation systems as oil or gas pipeline
systems and k-out-of-n:F circular systems can represent particle accelerators.

In this case, some k-out-of-n:F linear systems cannot be represented as k-out-of-
n:G linear systems. For example, the 2-out-of-3:F linear system is

φ2:3:F |l(x1, x2, x3) = max(x2,min(x1, x3)).

Its minimal path sets are P1 = {2} and P2 = {1, 3} and its minimal cut sets are
C1 = {1, 2} and C2 = {2, 3}. So it cannot be represented as a k-out-of-3:G linear
system. It is the dual system of the 2-out-of-3:G linear system given by

φ2:3:G|l(x1, x2, x3) = min(x2,max(x1, x3)).

Weconclude this section by computing all the coherent and semi-coherent systems
with orders 1-3. Of course, if n = 1, then we just have a component and a coherent
systemφ1:1(x1) = x1. If n = 2, thenwe have two coherent systems, the series system
φ1:2(x1, x2) = min(x1, x2) and the parallel system φ2:2(x1, x2) = max(x1, x2) of
order 2, and the two semi-coherent systems formed with each component. If n = 3,
thenweobtain all the semi-coherent systemsgiven inTable1.1.Only the nine systems
in lines 1, 5, 6, 7, 11, 12, 13, 14 and 18 are coherent systems of order 3. The others
are just semi-coherent systems or coherent systemof order 1 or 2. The horizontal lines
determine the systems that are equivalent under permutations (we have 5 coherent
systems and 3 that are just semi-coherent). Note that the system in line 18 − i + 1
is the dual system of that in line i for i = 1, . . . , 7. The dual systems of the systems
in lines 8, 9, 10, 11 are themselves.

1.2 Main Properties

The coherent systems (asBoolean functions) can bewritten by using different (equiv-
alent) representations. Let us see some of them. The first one is called the pivotal
decomposition in Barlow and Proschan (1975), p. 5, and can be stated as follows.
We shall use the following notation. If x = (x1, . . . , xn) and i ∈ {1, . . . , n}, then

1i (x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn)
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Table 1.1 Semi-coherent systems of order 3

N φN (x1, x2, x3) Minimal path sets Minimal cut sets

1 x1:3 = min(x1, x2, x3) {1, 2, 3} {1}, {2}, {3}
2 min(x1, x2) {1, 2} {1}, {2}
3 min(x1, x3) {1, 3} {1}, {3}
4 min(x2, x3) {2, 3} {2}, {3}
5 min(x1,max(x2, x3)) {1, 2}, {1, 3} {1}, {2, 3}
6 min(x2,max(x1, x3)) {1, 2}, {2, 3} {2}, {1, 3}
7 min(x3,max(x1, x2)) {1, 3}, {2, 3} {3}, {1, 2}
8 x3 {3} {3}
9 x2 {2} {2}
10 x1 {1} {1}
11 x2:3 {1, 2}, {1, 3}, {2, 3} {1, 2}, {1, 3}, {2, 3}
12 max(x3,min(x1, x2)) {3}, {1, 2} {1, 3}, {2, 3}
13 max(x2,min(x1, x3)) {2}, {1, 3} {1, 2}, {2, 3}
14 max(x1,min(x2, x3)) {1}, {2, 3} {1, 2}, {1, 3}
15 max(x2, x3) {2}, {3} {2, 3}
16 max(x1, x3) {1}, {3} {1, 3}
17 max(x1, x2) {1}, {2} {1, 2}
18 x3:3 = max(x1, x2, x3) {1}, {2}, {3} {1, 2, 3}

and
0i (x) = (x1, . . . , xi−1, 0, xi+1, . . . , xn).

Theorem 1.1 (Pivotal decomposition) Let φ be a system of order n, then

φ(x) = xiφ(1i (x)) + (1 − xi )φ(0i (x)) (1.2)

for all x = (x1, . . . , xn) ∈ {0, 1}n and all i = 1, . . . , n. Moreover,

φ(x) =
∑

y∈{0,1}n

⎛

⎝φ(y)
n∏

j=1

x
y j
j (1 − x j )

1−y j

⎞

⎠ (1.3)

for all x = (x1, . . . , xn) ∈ {0, 1}n.

Proof Clearly, (1.2) holds in the two possible cases, xi = 1 and xi = 0. Expression
(1.3) is obtained by repeated applications of (1.2). For example, we can start with
x1 obtaining

φ(x) = x1φ(1, x2, . . . , xn) + (1 − x1)φ(0, x2, . . . , xn).

Then we apply (1.2) to φ(1, x2, . . . , xn) and φ(0, x2, . . . , xn) for i = 2 and
so on. �
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Expression (1.3) proves that φ can be written as a multinomial of degree n. This
representation will be used in the next chapter to compute the reliability of systems
with independent components.

For example, the pivotal decomposition for the system

φ14(x1, x2, x3) = max(x1,min(x2, x3))

(see Table1.1) is

φ14(x1, x2, x3) = x1(1 − x2)(1 − x3) + (1 − x1)x2x3 + x1x2(1 − x3)

+ x1(1 − x2)x3 + x1x2x3
= x1 + x2x3 − x1x2x3.

The second representation is based on minimal path or minimal cut sets (defined
in the preceding section). It is stated in the following theorem. It will be used in the
next chapter to compute the system lifetime and the system reliability.

Theorem 1.2 (Minimal path/cut sets’ representations) Let φ be a coherent (or semi-
coherent) system of order n and let P1, . . . , Pr and C1, . . . , Cs be its minimal path
and minimal cut sets, respectively. Then

φ(x) = max
i=1,...,r

min
j∈Pi

x j (1.4)

and
φ(x) = min

i=1,...,s
max
j∈Ci

x j (1.5)

for all x = (x1, . . . , xn) ∈ {0, 1}n.

Proof The first expression (1.4) holds since a coherent system works iff at least one
of the series systems obtained from its minimal path sets works. Analogously, (1.5)
holds since a coherent system fails iff at least one of the parallel systems obtained
from its minimal cut sets fails. �

Remark 1.1 The preceding theorem can also be stated by using path or cut sets.
However, the expressions obtained in this way are more complicated than that stated
above (so we will not use them).

The preceding theorem shows that any coherent system can be decomposed as
series systems connected in parallel or as parallel systems connected in series (with
some possible common components). Here we can use the notation introduced in
the preceding section for series and parallel systems and write (1.4) and (1.5) as

φ(x) = max
i=1,...,r

φPi (x)

and
φ(x) = min

i=1,...,s
φCi (x),
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respectively. They can also be written by using products and coproducts as

φ(x) =
r∐

i=1

∏

j∈Pi

x j (1.6)

and

φ(x) =
s∏

i=1

∐

j∈Ci

x j . (1.7)

Note that we obtain again multinomials of degre n and that these representations are
more “efficient” than the pivotal decomposition. For example, for the system φ14
considered above, we obtain

φ14(x1, x2, x3) = x1
∐

x2x3 = 1 − (1 − x1)(1 − x2x3) = x1 + x2x3 − x1x2x3.

In this chapter, representations (1.4)–(1.7) for the Boolean function φ are equiv-
alent. However, in the next chapter, they will be used to extend φ to real numbers
and then they will provide different expressions (that will be used to different pur-
poses). For example, the series system of order 2 can be written as φ2:2(x1, x2) =
min(x1, x2) or as the multinomial ψ2:2(x1, x2) = x1x2. If x1, x2 ∈ {0, 1}, then
φ2:2(x1, x2) = ψ2:2(x1, x2). However, they are different as real functions. For exam-
ple, φ2:2(1/2, 1/2) = 1/2 
= 1/4 = ψ2:2(1/2, 1/2).

The minimal path and minimal cut set representations can also be used to deter-
mine all the coherent systems of order n. They show that a system is completely
determined by its minimal path sets (or by its minimal cut sets). So a system can
also be seen as a finite sequence of subsets of [n] := {1, . . . , n} with the properties
given in the following proposition.

Proposition 1.4 The non-empty sets P1, . . . , Pr ⊆ [n] are the minimal path (or cut)
sets of a coherent system iff the two following properties hold:

(i) Pi is not contained in Pj for all i 
= j ;
(ii) P1 ∪ · · · ∪ Pr = [n].

Proof Clearly, (i) holds when P1, . . . , Pr are the minimal path (or cut) sets of a
semi-coherent system (by definition). Moreover, if i /∈ P1 ∪ · · · ∪ Pr then, from
(1.4), the i th component is irrelevant for the system. Therefore, (i i) holds for the
minimal path sets of any coherent system. From (1.5), (i i) also holds for the minimal
cut sets of a coherent system.

Conversely, if the sets P1, . . . , Pr satisfy (i) and (i i), then we can consider the
system (Boolean function) φ defined by (1.4). Clearly, φ is increasing. Moreover, we
can prove that any component is relevant due to (i i). Thus, if i ∈ [n] = P1∪· · ·∪ Pr ,
then, from (i i), there exists a j ∈ [r ] such that i ∈ Pj . Now we consider the point
x = (x1, . . . , xn) defined as xk = 1 if k ∈ Pj and xk = 0 if k /∈ Pj . Hence,

φ(0i (x)) = 0 < 1 = φ(1i (x))
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since φPj (x) = xi and φP�
(x) = 0 for all � 
= j (from (i)). Therefore φ is a coherent

structure. Moreover, it is easy to see that P1, . . . , Pr are its minimal path sets. The
proof for the minimal cut sets is similar. �

Note that the characteristic properties of minimal path sets and minimal cut sets
of coherent systems coincide. This is an expectable property since the minimal path
sets of a system are the minimal cut sets of its dual system (and vice versa). However,
in the first case we use (1.4) to determine the system while in the second we use
(1.5). Moreover, as we have seen in the proof, the minimal path (or cut) sets of
semi-coherent systems are just characterized by property (i).

The systems can also be represented by using their paths (or cut) sets. However,
as mentioned above, these representations are always more complicated. So we do
not include these properties here. Both structures (path/cut sets and minimal path/cut
sets) can be used in Set Theory (see Ramamurthy 1990).

The preceding proposition can be used jointly with the following algorithm,
extracted from Navarro and Rubio (2010), to determine all the coherent systems
of order n. They are determined by their minimal path sets. We use a recursive
method on the number k of minimal path sets. We use the notation |A| for the car-
dinality of the set A. The coherent system φ is represented here by the sequence
φ = (P1, . . . , Pk) of its minimal path sets with |P1| ≤ · · · ≤ |Pk |. Some systems
can be written in different ways (we avoid repetitions).

Algorithm 1.2.1:
Step 0: Generate the set S with all the non-empty subsets of [n] (there are m =

|S| = 2n − 1 subsets).
Step 1: Generate the unique coherent system with k = 1 minimal path set (the

series system with P1 = [n]). Let S1 = {([n])}.
Step2:Generate all the coherent systemswith k = 2minimal path sets by studying

(using Proposition 1.4) all the couples of sets from S (there are
(m
2

) = m(m − 1)/2
different couples). Their sequences (P1, P2) of minimal path sets are included in the
set S2 with |P1| ≤ |P2| (avoiding repetitions).

Stepk (for k = 3, 4, . . .):For any sequence (P1, P2, . . . , Pk−1) ∈ Sk−1, generate
all the different coherent systems obtained by replacing Pk−1 with a couple of subsets
A, B ∈ S such that |Pk−2| ≤ |A| ≤ |B|. Their sequences of minimal path sets are
included in Sk with |P1| ≤ |P2| ≤ · · · ≤ |Pk | (avoiding repetitions).

Final step: Stop when Sk = ∅.

Theorem 1.3 The preceding algorithm generates all the coherent systems of order n.

Proof Clearly, from the preceding algorithm, S1 and S2 contain all the coherent
systems with k = 1 and k = 2 minimal path sets.

Let us see that the set S3 obtained in step 3 contains all the coherent systems
with k = 3 minimal path sets. Let P1, P2, P3 be the minimal path sets of a coherent
system of size n and let us assume that |P1| ≤ |P2| ≤ |P3|. Then we consider two
cases:
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Case I: If P1 ∪ P2 = [n], then, from Proposition 1.4, P1, P2 are the minimal path
sets of a coherent system of size n, that is, (P1, P2) ∈ S2 or (P2, P1) ∈ S2. Hence
(P1, P2, P3) is generated in step 3 when in (P1, P2) we delete P2 and we add the
couple (P2, P3) or when in (P2, P1) we delete P1 and we add the couple (P1, P3).

Case II: If P1 ∪ P2 
= [n], we define A = [n] − (P1 ∪ P2) and Q = P2 ∪ A.
Clearly, P1 ∪ Q = [n] and |P1| ≤ |P2| < |Q|. Hence (P1, Q) are the minimal path
sets of a coherent system of size n, with |P1| < |Q|, that is, (P1, Q) ∈ S2 (in that
order). Hence (P1, P2, P3) is generated in step 3 when in (P1, Q) we delete Q and
we add the couple (P2, P3).

By induction, let us assume thatSk−1 contains all the coherent systems with k −1
minimal path sets.Wewant to prove that the same happen forSk by using a procedure
similar to that used in step k = 3. Let φ be a coherent system with minimal path sets
P1, . . . , Pk satisfying |P1| ≤ · · · ≤ |Pk |. As above we consider two cases:

Case I: If P1 ∪ · · · ∪ Pk−1 = [n], then, from Proposition 1.4, P1, . . . , Pk−1 are
the minimal path sets of a coherent system of size n, that is, (P1, . . . , Pk−1) ∈ Sk−1
(in this way or in a permuted version). Hence (P1, . . . , Pk) is generated in step 3
when in (P1, . . . , Pk−1) we delete Pk−1 (or the last set Pj ) and we add the couple
(Pk−1, Pk) (we add the couple (Pj , Pk)).

Case II: If P1 ∪ · · · ∪ Pk−1 
= [n], we define A = [n] − (P1 ∪ · · · ∪ Pk−1)

and Q = Pk−1 ∪ A. Clearly, P1 ∪ · · · ∪ Pk−2 ∪ Q = [n] and |P1| ≤ · · · ≤
|Pk−2| < |Q|. Hence P1, . . . , Pk−2, Q are the minimal path sets of a coherent
system of order n, that is, (P1, . . . , Pk−2, Q) ∈ Sk−1 (in this way or in a permuted
version). Moreover, in all these permuted versions, Q is the last set in the sequence
since |Pi | ≤ |Pk−1| < |Q| for i = 1, . . . , k − 2. Hence (P1, . . . , Pk) is generated in
step k when in (P1, . . . , Pk−2, Q) (or in any of its permuted versions) we delete Q
and we add the couple (Pk−1, Pk). �

The preceding theorem can be used to obtain all the coherent systems of order n
(we can use a computer to do so). Let us see an example.

Example 1.1 As we have mentioned in the preceding section, there are 9 coherent
system of order 3 (see Table1.1) that are reduced to just 5 coherent system classes of
equivalent systems under permutations. They can be obtained by using the preceding
algorithm as follows.

Step 0: If n = 3, then S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (with
cardinality 23 − 1 = 7) is the set with all the possible minimal path sets.

Step 1: The unique system with k = 1 is the series system

φ1 = ({1, 2, 3}) = min(x1, x2, x3), S1 = {φ1}.
Step 2: For k = 2, we consider the

(7
2

) = 21 couples of sets from S, obtaining
six coherent systems:

S2 = {φ14, φ13, φ12, φ5, φ6, φ7},
where we use the notation of Table1.1, that is, φ14 = ({1}, {2, 3}), φ13 =
({2}, {1, 3}), φ12 = ({3}, {1, 2}), φ5 = ({1, 2}, {1, 3}), φ6 = ({1, 2}, {2, 3}), φ7 =
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({1, 3}, {2, 3})}. For example, the first one is obtained as follows. First we consider
all the couples that contain the first set P1 = {1}. The first option is (P1, P2 = {2}).
It does not determine a proper coherent system since P1 ∪ P2 
= {1, 2, 3}. The
same happen with (P1, P2 = {3}). The next options are (P1, P2 = {1, 2}) and
(P1, P2 = {1, 3}). They do not determine coherent systems since P1 ⊂ P2. The next
one is (P1, P2 = {2, 3}) that leads us to system φ14.

Step 3: For k = 3, we consider the systems in S2. With the first one φ14 =
({1}, {2, 3}), we delete {2, 3} and when we add the couple ({2}, {3}), we obtain
the parallel system φ18 = ({1}, {2}, {3}). Analogously, with the fourth φ5 =
({1, 2}, {1, 3}), we delete {1, 3}, and when we add the pair {1, 3}, {2, 3}, we obtain
the 2-out-of-3 system

φ2:3 = φ11 = ({1, 2}, {1, 3}, {2, 3}).
In the other options we do not obtain new coherent systems.

Step 4: For k = 4, we consider the systems in S3 = {φ18, φ11}. With the first
one φ18 = ({1}, {2}, {3}), we delete {3} but we cannot obtain coherent systems by
adding A, B ∈ S with 1 ≤ |A| ≤ |B|. The same happen with the second one
φ11 = ({1, 2}, {1, 3}, {2, 3}) when we delete {2, 3} and we add A, B ∈ S with
2 ≤ |A| ≤ |B|. Therefore S4 = ∅ and so we stop here. �

Shaked and Suárez–Llorens (2003) proved that there are 20 classes of order 4.
Navarro and Rubio (2010) used the preceding theorem to compute the 180 and 16145
classes of coherent systems of order 5 and 6. The systems of order 5 can be seen in
that paper and those with 6 components in:

https://webs.um.es/jorgenav/miwiki/doku.php?id=coherent_systems.

The last representation is based on the Möbius transform of φ. First, we note that
a system φ can be seen as a set function

φ : 2[n] → {0, 1},
where 2[n] represents the set (or class) of all the subsets of [n] and for J ⊆ [n] we
have

φ(J ) := φ(1J )

and 1J := (x1, . . . , xn) with xi = 1 if i ∈ J and xi = 0 if i /∈ J . Note that the
condition “φ is increasing” can be written now as

I ⊆ J ⇒ φ(I ) ≤ φ(J )

(i.e., φ is increasing as a set function). Analogously, the conditions φ(0, . . . , 0) = 0
and φ(1, . . . , 1) = 1, can be written now as

φ(∅) = 0 and φ([n]) = 1.

https://webs.um.es/jorgenav/miwiki/doku.php?id=coherent_systems
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Hence, a semi-coherent system φ can be seen as a normalized (or regular) fuzzy
measure (see Fantozzi and Spizzichino 2015; Grabisch 2016). In this sense (see,
e.g., Grabisch 2016), theMöbius transform φ̂ of φ is defined as

φ̂(I ) :=
∑

J⊆I

(−1)|I |−|J |φ(J ). (1.8)

It satisfies the following property: if φ(I ) = 0, then φ̂(I ) = 0 (since φ(J ) = 0 for
all J ⊆ I ). Moreover the inverse relation

φ(J ) =
∑

I⊆J

φ̂(I ) (1.9)

holds. Thus we obtain the following representation.

Theorem 1.4 (Möbius representation) The structure function of a coherent system
φ can be written as

φ(x1, . . . , xn) =
∑

I⊆[n]
φ̂(I )

∏

i∈I

xi (1.10)

for all x1, . . . , xn ∈ {0, 1}, where φ̂ is Möbius transform of φ defined by (1.8).

The proof is immediate from (1.9) taking into account that if (x1, . . . , xn) = 1J ,
then I ⊆ J iff

∏
i∈I xi = 1. The main advantage of this representation is that

it gives us directly the coefficients of the multinomial representation (in the other
representations, we have to do some calculations). Let us see an example.

Example 1.2 Let us consider again the coherent system
φ14(x1, x2, x3) = max(x1,min(x2, x3)).

Its Möbius transform is given by

φ̂14({1}) =
∑

J⊆{1}
(−1)1−|J |φ(J ) = (−1)0φ({1}) = 1,

φ̂14({2, 3}) =
∑

J⊆{2,3}
(−1)2−|J |φ(J ) = (−1)0φ({2, 3}) = 1,

φ̂14({1, 2, 3}) =
∑

J⊆{1,2,3}
(−1)3−|J |φ(J )

= (−1)3−1φ({1}) + (−1)3−2φ({2, 3}) + (−1)3−2φ({1, 2})
+ (−1)3−2φ({1, 3}) + (−1)3−3φ({1, 2, 3})

= −1

and φ̂14(I ) = 0 for the other subsets I . Therefore, from (1.10), we obtain
φ14(x1, x2, x3) = x1 + x2x3 − x1x2x3

as in the preceding examples. �

For more properties on systems’ structures we refer the readers to Barlow and
Proschan (1975), Marichal et al. (2011) and Ramamurthy (1990).
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1.3 Related Concepts

Coherent system structures are similar to other concepts considered in different
mathematical and engineering subjects. Let us see some of them.

1.3.1 Simple Games

Let N be a finite set and let 2N be its power set (with all the subsets of N ). Here
the elements of N are called players and the elements of 2N are called coalitions
(see Ramamurthy 1990, p. 37). Then a simple game (or a voting system) on N is
defined as follows.

Definition 1.11 A simple game on N is λ : 2N → {0, 1} such that:

(i) λ(∅) = 0;
(ii) λ(N ) = 1;
(iii) λ(A) ≤ λ(B) for all A ⊆ B.

A coalition A is a winning (losing) coalition if λ(A) = 1 (0). It is a blocking
coalition if λ(Ac) = 0 where Ac = N − A. A winning (blocking) coalition is
minimal if it does not contain other winning (blocking) coalitions. To simplify, we
can assume N = [n]. A player i ∈ N is called a dictator if {i} is winning and
it is called a veto-player if {i} is blocking. A player i ∈ N is called a dummy if
λ({i} ∩ A) = λ(A) for all A.

Clearly, simple games are equivalent to semi-coherent systems, replacing players
with components, winning coalitions with path sets, blocking coalitions with cut sets
and dummy players with irrelevant components.

The axioms (properties) that must satisfy a simple game are the following (see
Ramamurthy 1990, p. 37).

A1. Every coalition is either winning or losing.
A2. The empty set is losing.
A3. The all player set N is winning.
A4. No losing coalition contains a winning coalition.

Sometimes, the following axioms are also added:

A5. If A is winning, then Ac is losing (proper games).
A6. If A is losing, then Ac is winning (strong games).

The simple games can be classified (see Ramamurthy 1990, p. 42–43) as follows.
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1. Proper games.Everywinning coalition is also a blocking coalition. In this case N
cannot be divided in two disjoint winning coalitions. This prevent to get different
decisions from disjoint coalitions.

2. Strong games. Every blocking coalition is also a winning coalition. In this case
N cannot be divided in two disjoint blocking coalitions. This prevent to get a
blocking situation from disjoint coalitions.

3. Decisive games. They are both proper and strong games.
4. Symmetric games. There exists an integer number k such that A is winning iff

|A| ≥ k. These games are equivalent to k-out-of-n systems.
5. Weighted majority games. There exist a non-negative vector of weights

(w1, . . . , wn) and a real number r such that A is winning iff
∑

i∈A wi ≥ r .
In particular it is also homogeneous if all the minimal winning coalitions have
the same weights.

1.3.2 Networks

The networks are everywhere today. There are several problems related with net-
works. Here we just consider connectivity problems. From a mathematical point of
view, they can be defined as follows. The main results of this section have been
obtained from Gertsbakh and Shpungin (2010, 2020). These references can also be
used to get more results.

Definition 1.12 A network is N = (V, E) where V is the vertex (or node) set and
E is the edge (or link) set.

Here we just consider networks with a finite set V with |V | = m and a finite set
E with |E | = n. Usually, the set E is written as E = {ei = {ui , vi } : ui , vi ∈ V, i =
1, . . . , n} (undirected networks) or as E = {ei = (ui , vi ) : ui , vi ∈ V, i = 1, . . . , n}
(directed networks). We assume that the vertices do not fail but that the edges can
fail. As in the case of systems, we just consider two possible states for the edges (up
and down). A network is connected (all connectivity criterion) if all the nodes are
connected by a chain of edges. Sometimes, we might fix a set of terminal vertices
T ⊆ V and just consider connectivity problems between these terminal vertices. All
the concepts studied for systems can be translated to these connectivity problems by
defining the structure (or state) function of the network

φ : {0, 1}n → {0, 1},
where φ(x1, . . . , xn) = 1 (resp. 0) if the network satisfies (does not satisfy) the
connectivity conditions when just the edges with xi = 1 work.

For example, the network with V = {1, 2, 3} and E = {e1 = {1, 2}, e2 =
{1, 3}, e3 = {2, 3}} might represent three islands connected with three bridges (or
three cities connected by regular lines of airplanes), see Fig. 1.3, left. Then the struc-
ture function for the all connectivity criterion is φ2:3, that is, we need at least two
working edges. In this case, the minimal path sets are P1 = {e1, e2}, P2 = {e1, e3},
and P3 = {e2, e3}. Remember that this coherent system cannot be plotted as a plane
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Fig. 1.3 Network of three islands connected with three bridges

system (without repeating components). However, if we just consider the terminal
vertices T = {1, 3}, then the structure function for the connectivity of these two ter-
minal vertices is φ13(x1, x2, x3) = max(x2,min(x1, x3)). In this case, the minimal
path sets are P1 = {e1, e3} and P2 = {e2}. For other criterion see Gertsbakh and
Shpungin (2010, 2020).

1.3.3 Mixed Systems

The concept ofmixed systemwas introduced by Boland and Samaniego (2004). They
can be used to represent systems that should fulfill different requirements in different
periods of time. They can be defined as follows.

Definition 1.13 We say that φ is amixed system of order n if it is equal to φ j with
probability p j ≥ 0 for j = 1, . . . , m, where φ1, . . . , φm are systems of order n and
p1 + · · · + pm = 1. We say that a mixed system φ is semi-coherent if φ1, . . . , φm

are semi-coherent systems. We say that a mixed system φ is coherent if φ1, . . . , φm

are semi-coherent systems and every component is relevant in at least a system with
a positive probability.

Any (deterministic) system φ1 can be seen as a mixed system φ that takes the
value φ = φ1 with probability 1. However, the reverse is not true. A mixed system
φ can written as a map φ : {0, 1}n → {0, 1} but note that here φ(x1, . . . , xn)

represents a discrete random variable that takes the value φ j (x1, . . . , xn) ∈ {0, 1}
with probability p j , for j = 1, . . . , m. If φ is semi-coherent, then φ(0, . . . , 0) = 0
and φ(1, . . . , 1) = 1 (since the same properties hold for any j). However, we cannot
assure that φ is increasing (due to the randomness). For example, we can consider
the coherent mixed system φ defined as

φ(x1, x2, x3) = φ1:3(x1, x2, x3) = min(x1, x2, x3), with probability 1/2

and

φ(x1, x2, x3) = φ3:3(x1, x2, x3) = max(x1, x2, x3), with probability 1/2.

This mixed system might represent a system (situation) in which we need the three
components half the time (by the day, say) and just one of them in the other half
time (by night). Note that φ(0, 0, 0) = 0 ≤ φ(1, 1, 1) = 1. However, we cannot
assure that φ(1, 0, 0) = 0 ≤ φ(1, 1, 0) = 1 since the following event might happen
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φ(1, 0, 0) = 1 > φ(1, 1, 0) = 0 (with probability 1/4). Instead we have the follow-
ing property. If x = (x1, . . . , xn) and y = (y1, . . . , yn), we say that x ≤ y iff xi ≤ yi

for all i .

Proposition 1.5 If φ is a semi-coherent mixed system and x ≤ y, then

E(φ(x)) ≤ E(φ(y)).

Proof From the definition we have

E(φ(x)) =
m∑

j=1

p jφ j (x) ≤
m∑

j=1

p jφ j (y) = E(φ(y)),

where the inequality holds since φ1, . . . φm are semi-coherent systems. �

1.4 Multi-state Systems with Binary Components

In this section we assume that, for a fixed m ∈ N, the set of possible states of a
system is

S :=
{
0,

1

m
,
2

m
, . . . ,

m − 1

m
, 1

}
,

where, as above, 1 represents the perfect functioning state and 0 the state of failure.
In the middle, we have m − 1 intermediate states. The evolution in time of the
performance of the system can then be seen as a stochastic process starting from 1
(perfect functioning) and eventually going to 0 (failure) as t → ∞.

This representation is clearly equivalent to the classical representation using the
levels {0, 1, . . . , m} for a given integer number m. We could of course consider
systems with more general levels �0 = 0 < �1 < · · · < �m by using the set

S∗ :=
{

h0 = 0, h1 = �1

�m
, h2 = �2

�m
, . . . , hm−1 = �m−1

�m
, hm = 1

}
.

This general case can be studied in a similar way.
Thus we define the structure of a multi-state system with binary components as

follows.

Definition 1.14 A multi-state system with binary components is a function

ϕ : {0, 1}n → S.

It is semi-coherent if ϕ is increasing, ϕ (0, . . . , 0) = 0 and ϕ (1, . . . , 1) = 1. It is
coherent if all the components are relevant (i.e. ϕ is strictly increasing in all the
variables in at least a point).
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Then we notice that ϕ has the properties of a normalized (or regular) fuzzy mea-
sure. As for binary systems, ϕ can be considered as a set function defined over the
family 2[n] of all the subsets of [n] where for J ⊆ [n],

ϕ(J ) := ϕ(1J )

and 1J := (x1, . . . , xn) with x j = 1 for j ∈ J and x j = 0 for i /∈ J . In this sense
(see, e.g., Grabisch 2016), the Möbius transform ϕ̂ of ϕ is

ϕ̂(I ) :=
∑

J⊆I

(−1)|I |−|J |ϕ(J )

and it is such that the inverse relation

ϕ(J ) =
∑

I⊆J

ϕ̂(I ) (1.11)

holds. It is also useful for our purposes below to rewrite the previous equation (1.11)
in a slightly different form. For x ∈ {0, 1}n and I ⊆ [n] such that x = 1I , we can
write

ϕ(x1, . . . , xn) =
∑

J⊆I

ϕ̂(J ) =
∑

J⊆[n]
ϕ̂(J )

∏

j∈J

x j . (1.12)

This expression is similar to the one obtained for binary systems, see (1.10).

1.4.1 Binary Systems Associated to aMulti-state System

Given amulti-state structureϕ, we can consider (seeBlock and Savits 1982;Marichal
et al. 2017) the associated binary systems with the following structures

ϕi (x1, . . . , xn) =
{
1, if ϕ (x1, . . . , xn) ≥ i

m
0, if ϕ (x1, . . . , xn) < i

m
(1.13)

for i = 1, . . . , m. If ϕ is semi-coherent, the binary structures ϕ1, . . . , ϕm are semi-
coherent binary systems and satisfy ϕ1 ≥ · · · ≥ ϕm . Moreover, we have

ϕ(x1, . . . , xn) = 1

m

m∑

i=1

ϕi (x1, . . . , xn). (1.14)

Thus anymulti-level systemcan be associated to amixed system (see the definition
in the preceding subsection) as follows. Note that if φ is a mixed system, then E(φ)

is a semi-coherent multi-level system (see the preceding subsection).

Definition 1.15 The mixed system φ associated to a multi-level system with struc-
ture function ϕ is the one that is equal to the binary system ϕi with probability 1/m,
for i = 1, . . . , m.

Note that

E(φ(x1, . . . , xn)) = 1

m

m∑

i=1

ϕi (x1, . . . , xn) = ϕ(x1, . . . , xn).
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1.4.2 Multi-state System Associated to a Binary System

Conversely, if ψ is a semi-coherent binary system, then we can define an associated
multi-state system. First, we consider the semi-coherent series systems associated to
the minimal path sets P1, . . . , Pr of ψ defined as

ψPj (x1, . . . , xn) = min
i∈Pj

xi

for j = 1, . . . , r . Then we can use these systems to define the multi-state system
with binary components associated to ψ as follows.

Definition 1.16 Let ψ be a semi-coherent system. Then the multi-state system ψ̃ :
{0, 1}n → [0, 1] associated to ψ is defined by

ψ̃(x1, . . . , xn) = 1

r

r∑

j=1

ψPj (x1, . . . , xn). (1.15)

Note that the set of possible states of system ψ̃ is

S :=
{
0,

1

r
,
2

r
, . . . ,

r − 1

r
, 1

}
.

As above, ψ̃ can be seen as a normalized (or regular) fuzzy measure. The meaning
of ψ̃ is clear, it represents the proportion of working minimal path sets in the system
(note that the multi-state system ψ̃ could also be defined over the set {0, . . . , r} as
the number of working minimal path sets). In particular, ψ̃ = 1 means that all the
minimal path sets are working and ψ̃ = 0 that the system has failed (all the minimal
path sets have failed). Therefore, ψ̃ is a risk measure for the system that can be used
to describe the system failure process from the initial state ψ̃ = 1 to the final failure
state ψ̃ = 0 with intermediate states (r − 1)/r, . . . , 1/r . This process could also be
used to determine replacement or repair policies in the system.

As in the preceding subsectionwe can define the associated semi-coherent systems
ψ j : {0, 1} → {0, 1} for j = 1, . . . , r , defined by

ψ j (x1, . . . , xn) = 1 ⇔ ψ̃(x1, . . . , xn) ≥ j/r.

Then

ψ̃(x1, . . . , xn) = 1

r

r∑

j=1

ψ j (x1, . . . , xn)

and we can define (as in the preceding section) the mixed system associated to ψ̃ .



1.4 Multi-state Systems with Binary Components 21

Problems

1. Prove that if φ is a coherent system and A ⊆ [n], then either A is a path set or
Ac := [n] − A is a cut set.

2. Compute the structure function of a plain with four engines, two in each wing,
that can fly whenever at least an engine is working in each wing.

3. Compute all the coherent systems of order 4 and the number of equivalence
classes.

4. Compute all the semi-coherent systems of order 4.
5. Compute the structure functions of all the k-out-of-5 systems.
6. Compute the structure function of a k-out-of-4 linear or circular system. Could

some of them be written in a simplified way?
7. Obtain the pivotal decomposition of a coherent system of order 3.
8. Obtain the minimal path set representation of a system of order 4.
9. Obtain the minimal cut set representation of a system of order 4.

10. Obtain the Möbius transform representation of a system of order 4.
11. Prove (1.9).
12. Obtain all the coherent systems of order 5 with 3 minimal path sets.
13. Given a coherent system of order 4, obtain an equivalent network.
14. Given a network, obtain an equivalent coherent system.
15. In a parliament, the parties A, B, C and D have 50, 26, 22 and 11 deputies,

respectively. If in a majority decision voting system, they can just vote ‘yes’ or
‘no’, obtain the associated simple game (system).

16. Obtain the binary systems associated to a multi-state system.
17. Obtain the multi-state system associated to a binary coherent system.



2Coherent SystemLifetimes

Abstract

In the preceding chapter we have studied systems from a “static” point of view
(i.e. at a fixed time value). In the present one, we introduce the time variable
(usually represented as t) andwe analyse the relationships between the component
lifetimes and the system lifetime. In particular, we show how to compute the
system reliability function from the component reliability functions (by using
different representations). We do the same for the main aging functions (hazard
rate, mean residual lifetime, reversed hazard rate, etc.) which allow us to describe
the behavior of the system when the time goes on.

2.1 Coherent System Lifetimes

Let us assume from now on that X1, . . . , Xn are non-negative random variables on a
given probability space (�,S, Pr) that represent the lifetimes of the components in
a system. Hence the system lifetime T can be obtained from the component lifetimes
as follows.

Proposition 2.1 If ψ is a semi-coherent system of order n with minimal path and
minimal cut sets P1, . . . , Pr andC1, . . . ,Cs, then the system lifetime T can bewritten
as

T = max
1≤ j≤r

min
i∈Pj

Xi (2.1)

and
T = min

1≤ j≤s
max
i∈C j

Xi . (2.2)
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The proof is immediate. Let us assume from now on that the above expressions
(2.1) and (2.2) (or the expressions (1.4) and (1.5)) are used to extend the structure
Boolean function ψ to a real valued function ψ : R → R (we use the same nota-
tion). Thus, we can write the lifetime of the system just as T = ψ(X1, . . . , Xn). For
example, the lifetime of a series systemwith n components is T = min(X1, . . . , Xn).
However note that T �= X1 · · · Xn (i.e. we cannot use the product-coproduct repre-
sentation of the Boolean structure function to obtain the system lifetime).

As a consequence T is also a non-negative random variable (over the same prob-
ability space). Another consequence is that T = XI for an I ∈ [n] (but not always
the same I , that is, I is also a random variable that can take the values 1, . . . , n).

Note that the lifetime of the k-out-of-n system coincides with the order statis-
tic Xn−k+1:n from X1, . . . , Xn . Therefore, the coherent systems contain the order
statistics (ordered component lifetimes) as particular cases. Also, as a consequence
of the preceding proposition, we have that T is equal to a X J :n for J ∈ [n], that is, we
know that the system is going to fail in one of the ordered points X1:n ≤ · · · ≤ Xn:n .
In fact, we will show that, under some assumptions, T can be written as a mixture
of the k-out-of-n systems.

We conclude this subsection by noting that the systems can also be studied by
using stochastic processes. Thus, for a fixed time t ≥ 0, we can define the Boolean
(or Bernoulli) random variables

Bi (t) := 1{Xi>t}
for i = 1, . . . , n, where 1A = 1 (resp. 0) if A is true (false) and Bi (t) = 1 (resp.
0) means that the i th component is working (has failed) at time t . Hence the system
state at time t is

B(t) = ψ(B1(t), . . . , Bn(t)) = 1{T>t}.

Conversely, note that Xi = sup{t : Bi (t) = 1} and T = sup{t : B(t) = 1}. Here
the system performance is represented by the stochastic process {B(t)}t≥0 where we
usually assume B(0) = 1 and B(∞) = 0. As mentioned in the preface, we will not
use this approach in the present book. The interested reader can go to the references
cited there.

2.2 Reliability and Aging Functions

As the system and component lifetimes T and X1, . . . , Xn are non-negative random
variables, we can consider all the functions used to describe the aging process. Of
course we can also use the functions used in the probability theory. The main one is
the system reliability (or survival) function F̄T defined as

F̄T (t) := Pr(T > t)

for all t . We usually assume F̄T (0) = 1 (the system is working at time t = 0). F̄T is
always a decreasing function and satisfies limt→∞ F̄T (t) = 0. The same properties
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are satisfied by the components’ reliability functions defined as

F̄i (t) := Pr(Xi > t)

for all t and i = 1, . . . , n. The respective distribution (or unreliability) functions
are defined as

FT (t) := Pr(T ≤ t) = 1 − F̄T (t)

and
Fi (t) := Pr(Xi ≤ t) = 1 − F̄i (t)

for all t and i = 1, . . . , n. Clearly, FT (t) and F̄T (t) represent the probabilities of a
working or a broken system, respectively, at time t . So the people usually prefer to
use F̄T (t) instead of FT (t). Moreover, it is easy to see that, for non-negative random
variables, the mean or expected value (lifetime) can be computed as

E(T ) =
∫ ∞

0
F̄T (x)dx . (2.3)

A similar expression holds for the components. In Reliability Theory, this value is
also called the Mean Time To Failure (MTTF).

The components’ reliability functions will be modelled with the most usual mod-
els (distributions) for non-negative random variables. Then, as we will see in the
following sections, the system reliability will be a function of the components’ reli-
ability functions.

The most important model in this field is the exponential distribution with relia-
bility function

F̄T (t) = exp(−t/μ) for t ≥ 0,

where μ > 0 is the expected value (or MTTF). This model is the unique continuous
model which satisfies the following property

Pr(T > x) = Pr(T − t > x |T > t) for all t, x ≥ 0.

This property is called the lack of memory property and means that the reliability
in this model is the same for new and used units. So this model plays a central
role in the reliability theory representing units which do not have aging. These are
considered as good units since the reliability is usually lower for used units (natural
or positive aging). In the opposite case, the used units (or the system) have greater
reliability functions than the new units (unnatural or negative aging). Note that here
“positive” does not mean “good”.

Agoodalternative (moreflexible)model is theWeibulldistributionwith reliability
function

F̄(t) = exp(−(t/β)α) for t ≥ 0,

where α, β > 0. The parameter α is called the shape parameter and β is the scale
parameter. Note that the Weibull model contains the exponential model (obtained
whenα = 1). It also containsmodelswith natural (α > 1) and unnatural (0 < α < 1)
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Fig. 2.1 Reliability functions of the residual lifetimes of a Weibull model with β = 1 and α = 2
(left) and α = 1/2 (right) for t = 0, 1, 2, 3, 4, 5 (from the top on the left and from the bottom on
the right)

aging (see below). So it is more flexible than the exponential model. Its distribution
function can be computed in R with pweibull(x,α,β).

The random variable Tt = (T − t |T > x) is called the residual lifetime (RL) of
the system. It represents the performance of used systems that are working at time
t . Its reliability function is

F̄T (x |t) := Pr(T − t > x |T > t) = Pr(T > x + t)

Pr(T > t)
= F̄T (x + t)

F̄T (t)
(2.4)

for all x ≥ 0. It is defined for all t ≥ 0 such that F̄(t) > 0. If F̄(t) = 0 for a t , then
this random variable does not exist (since the system has already failed for sure at
time t). The lack of memory property can also be written as

F̄T (x |t) = F̄T (x) for all t, x ≥ 0.

The residual lifetime of the system will be studied in Sect. 4.4.
Analogously, the residual lifetimes of the components are Xi,t = (Xi − t |Xi > t)

and their reliability functions are

F̄i (x |t) := Pr(Xi − t > x |Xi > t) = F̄i (x + t)

F̄i (t)

for i = 1, . . . , n and t ≥ 0 such that F̄i (t) > 0. They are plotted in Fig. 2.1 for
t = 0, 1, 2, 3, 4, 5 when the components have a common Weibull reliability with
β = 1 and α = 2 (left) and α = 1/2 (right). In the left plot they are decreasing in
t (positive or natural aging) while in the right plot they are increasing in t (negative
aging).
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The code for the left plot is the following:

R<-function(x) 1-pweibull(x,2,1)
Rt<-function(x,t) R(x+t)/R(t)
curve(R(x),0,2.5,ylab=’Reliability’)
curve(Rt(x,1),add=T)
curve(Rt(x,2),add=T)
curve(Rt(x,3),add=T)
curve(Rt(x,4),add=T)
curve(Rt(x,5),add=T)

There are several functions that can be used to describe the aging process. The
first one is themean residual life (MRL) defined as

mT (t) = E(Tt ) = E(T − t |T > t)

for all t ≥ 0 such that F̄(t) > 0 and that these expectations exist. TheMRL functions
of the components are defined analogously. From (2.3) and (2.4) it can be computed
as

mT (t) =
∫ ∞

0
F̄T (x |t)dx =

∫ ∞

0

F̄T (x + t)

F̄T (t)
dx = 1

F̄T (t)

∫ ∞

t
F̄T (x)dx .

Note that it is the area below the residual reliability function FT (x |t) for t ≥ 0. This
function is used to define the increasing mean residual life (IMRL) and decreasing
mean residual life (DMRL) aging classes (according to the monotonicity of mT ).
The natural aging is represented by the DMRL class. The exponential model belongs
to both classes since its MRL satisfies m(t) = μ for all t ≥ 0.

The second one is called the hazard (or failure) rate (HR or FR) function and it
is defined as

hT (t) = fT (t)

F̄T (t)

for all t such that F̄T (t) > 0, where fT (t) = F ′
T (t) is a probability density function

(PDF) of T (so, note that hT is not unique). To explain its meaning, we can write it
as

hT (t) = lim
ε→0+

Pr(t < T < t + ε|T > t)

ε
.

Hence, it represents the average probability of failure in the interval [t, t + ε] when
ε → 0+ for a unit that is working at time t .

It is used to define the increasing failure rate (IFR) and the decreasing failure
rate (DFR) aging classes. The exponential model belongs to both classes since its
hazard satisfies h(t) = 1/μ for all t ≥ 0. In the Weibull model we have h(t) =
α(t/β)α−1 for all t ≥ 0. Therefore, it is IFR for α ≥ 1 and DFR for 0 < α ≤ 1.

These aging functions are related (when they exist) by the following expression

h(t) = 1 + m′(t)
m(t)

.
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So both functions determine the reliability function through the following inversion
formula

F̄(t) = exp

(
−

∫ t

0
h(x)dx

)

for all t ≥ 0.
Similar properties can be obtained for the reversed hazard rate (RHR) and the

mean inactivity time (MIT) functions. The first one is defined by

h̄T (t) = fT (t)

FT (t)

for t such that FT (t) > 0 and the second by

m̄T (t) = E(t − T |T ≤ t)

for all t ≥ 0 such that these expectations exist. The meaning of m̄T is clear, it is the
expected inactivity time for a system (or unit) that has failed before t . Analogously,
h̄T (t) represents the instantaneous probability of failure at t for a unit that has failed
in the interval [0, t]. Note that the greater h̄T (t), the best, since it means that the
inactivity time (t − T |T ≤ t) is closed to zero. The monotonicity properties of h̄T
and m̄T are used to define the aging classes IRHR/DRHR and IMIT/DMIT. All these
aging classes will be studied in Chap.4.

2.3 Signature Representations

The first signature representation was obtained by Samaniego (1985) (see also
Samaniego 2007). It is based on the fact that the system is going to fail with a
component failure. However we need some assumptions. The first one is that the
component lifetimes should be independent and identically distributed (IID). In this
case, the common distribution (reliability) of the component lifetimes is represented
just as F (F̄). The second one is that F should be continuous (to avoid ties). Then
the representation can be stated as follows.

Theorem 2.1 (Samaniego, 1985) If T is the lifetime of a coherent system with IID
component lifetimes X1, . . . , Xn having a common continuous distribution function
F, then

F̄T (t) =
n∑

i=1

si F̄i :n(t) (2.5)

for all t , where s1, . . . , sn are nonnegative coefficients such that
∑n

i=1 si = 1 and that
do not depend on F and where F̄i :n is the reliability function of Xi :n for i = 1, . . . , n.
Moreover, these coefficients satisfy si = Pr(T = Xi :n) for i = 1, . . . , n.
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Proof First note that the events {T = Xi :n}, for i = 1, 2, . . . , n, are a partition of
the probability space � since, as F is continuous, then Pr(Xi = X j ) = 0 for all
i �= j . Hence, from the law of total probability, we have

F̄T (t) =
n∑

i=1

Pr({T > t} ∩ {T = Xi :n})

=
n∑

i=1

Pr(T = Xi :n)Pr(T > t |T = Xi :n)

=
n∑

i=1

Pr(T = Xi :n)Pr(Xi :n > t |T = Xi :n)

=
n∑

i=1

Pr(T = Xi :n)Pr(Xi :n > t),

where in the sum we only consider the terms with Pr(T = Xi :n) > 0 (the others are
zero) and where the last equality is obtained from the independence of the events
{Xi :n > t} and {T = Xi :n} (under the stated assumptions). Thus we obtain (2.5)
with si = Pr(T = Xi :n), for i = 1, . . . , n and

n∑
i=1

si =
n∑

i=1

Pr(T = Xi :n) = Pr(�) = 1

which concludes the proof. �

The vector s = (s1, . . . , sn) with the coefficients in (2.5) is called the signature
of the system in Samaniego (1985) (see also Samaniego 2007). It is also called the
destruction spectrum (or simply D-spectrum) when we use networks instead of
systems (see, e.g., Gertsbakh and Shpungin 2010, p. 85).

Moreover, these coefficients only depend on the structure of the system (under
these assumptions). Actually, they can be computed from ψ as

si = |Ai |
n! for i = 1, . . . , n, (2.6)

where |Ai | is the cardinality of the set Ai of all the permutations σ of the set
[n] = {1, . . . , n} which satisfy that ψ(x1, . . . , xn) = xi :n whenever xσ(1) < . . . <

xσ(n) (see Samaniego 2007, Chap.3).
The signature coefficients are also determined by the Boolean structure function

ψ as follows

si = 1( n
i−1

) ∑
∑n

j=1 x j=n−i+1

ψ(x1, . . . xn) − 1(n
i

) ∑
∑n

j=1 x j=n−i

ψ(x1, . . . xn) (2.7)

for i = 1, . . . , n (see Boland 2001).
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1

3

2

Fig. 2.2 Example of a coherent system

Example 2.1 For the coherent system with lifetimeψ = min(x1,max(x2, x3)) (see
Fig. 2.2), we have the following options (permutations):

σ xσ(1) < xσ(2) < xσ(3) ψ J
(1, 2, 3) x1 < x2 < x3 x1 = x1:3 1
(1, 3, 2) x1 < x3 < x2 x1 = x1:3 1
(2, 1, 3) x2 < x1 < x3 x1 = x2:3 2
(2, 3, 1) x2 < x3 < x1 x3 = x2:3 2
(3, 1, 2) x3 < x1 < x2 x1 = x2:3 2
(3, 2, 1) x3 < x2 < x1 x2 = x2:3 2

and hence its signature is s = (1/3, 2/3, 0). Therefore, from (2.5), its reliability
function can be written as

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t)

for all t . The signature can also be computed from (2.7) as

s1 = 1(3
0

) ∑
x1+x2+x3=3

ψ(x1, x2, x3) − 1(3
1

) ∑
x1+x2+x3=2

ψ(x1, x2, x3) = 1 − 2

3
= 1

3
,

s2 = 1(3
1

) ∑
x1+x2+x3=2

ψ(x1, x2, x3) − 1(3
2

) ∑
x1+x2+x3=1

ψ(x1, x2, x3) = 2

3

and s3 = 1 − s1 − s2 = 0. �

Note that the signature contains the probabilities of the discrete random variable
J such that T = X J :n . So we can say that T is a mixture of X1:n, . . . , Xn:n with
weights s1, . . . , sn .

If X1, . . . , Xn are IID, the ordered variables X1:n, . . . , Xn:n are known as the
order statistics. In Reliability Theory, they represent the lifetimes of k-out-of-n
systems. Their basic properties can be seen in Arnold et al. (2008) and David and
Nagaraja (2003). In particular, the expression for their reliability functions are the
following (see, e.g., David and Nagaraja 2003, p. 46).

Proposition 2.2 If X1, . . . , Xn are IID∼F, then the reliability function of Xi :n is

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t). (2.8)
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Proof Let us consider the Bernoulli random variables defined by Bi (t) = 1 iff
Xi > t . Then N (t) := ∑n

i=1 Bi (t) gives the number of components alive at time t .
From the IID assumption, N (t) has a Binomial distributionB(n, pt )with probability
pt = F̄(t). Therefore

F̄i :n(t) = Pr(Xi :n > t) = Pr(N (t) > n − i) =
n∑

k=n−i+1

(
n

k

)
Fn−k(t)F̄k(t)

and by doing the change j = n − k we obtain (2.8). �

Note that we can use the expression (2.8) in (2.5) to obtain F̄T as

F̄T (t) =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t). (2.9)

By interchanging the order of summations in (2.9) we obtain

F̄T (t) =
n∑

k=1

(
n∑

i=n−k+1

si

) (
n

k

)
Fn−k(t)F̄k(t), (2.10)

where Sn−k+1 = ∑n
i=n−k+1 si is the probability that the system works when exactly

k components work, where Fn−k(t)F̄k(t) is the probability of have k specific com-
ponents working at age t and where

(n
k

)
represents the number of options of choosing

such k components. An extension of formula (2.10) to the case of non-ID compo-
nents was obtained in Coolen and Coolen-Maturi (2012) (see also Samaniego and
Navarro 2016).

Example 2.2 For the coherent system considered in Example 2.1 with signature
(1/3, 2/3, 0), we need

F̄1:3(t) = Pr(X1:3 > t) = F̄3(t)

and
F̄2:3(t) = Pr(X2:3 > t) = F̄3(t) + 3 F(t)F̄2(t).

By replacing F with 1 − F̄ we get

F̄2:3(t) = 3F̄2(t) − 2F̄3(t).

Note that we do not need

F̄3:3(t) = 3F̄(t) − 3F̄2(t) + F̄3(t)

(since s3 = 0). Hence

F̄T (t) = 1

3
F̄3(t) + 2

3
(3F̄2(t) − 2F̄3(t)) = 2F̄2(t) − F̄3(t).

These reliability functions are plotted in Fig. 2.3, left, when the components are
IID with a standard (μ = 1) exponential distribution. The dashed line is the com-
mon reliability function of the components. The code in R to get these plots is the
following:
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Fig. 2.3 Reliability (left) and hazard rate functions (right) of the system in Example 2.2 (red) and
the associated k-out-of-3 systems (black) when the components are IID with a standard exponential
distribution. The dashed lines are the common functions for the components

R<-function(t) exp(-t)

R1<-function(t) (R(t))ˆ3

R2<-function(t) 3*(R(t))ˆ2-2*(R(t))ˆ3

R3<-function(t) 3*R(t)-3*(R(t))ˆ2+(R(t))ˆ3

s1<-1/3

s2<-2/3

s3<-0

RT<-function(t) s1*R1(t)+s2*R2(t)+s3*R3(t)

curve(RT(x),0,5,xlab=’t’,ylab=’Reliability’,col=’red’,lwd=2)

curve(R1(x),add=T,lwd=2)

curve(R2(x),add=T,lwd=2)

curve(R3(x),add=T,lwd=2)

curve(R(x),add=T,lty=2,lwd=2)

Note that
F̄1:3 ≤ F̄T ≤ F̄2:3 ≤ F̄3:3.

This is a general property of this system for all F (due to s3 = 0). Also note that
F̄T ≤ F̄ but that F̄ (dashed line) and F̄2:3 (black line in the middle) are not ordered.
By changing the signature we can plot other systems. �

Proceeding as in the preceding example, we can compute the signature vectors for
all the coherent systems with 1-4 components. They were first computed by Shaked
and Suárez–Llorens (2003) and they are given Table2.1. Of course, the systems
equivalent under permutations have the same signatures (so we just include one of
them in the table). However, there are systems not equivalent under permutations
that have the same signature as well (see, e.g., the systems with numbers 20 and
21). As a consequence of (2.5), then they also have the same reliability (distribution)
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Table 2.1 Signatures of all the coherent systems with 1-4 IID components

i Ti s

1 X1:1 = X1 (1)

2 X1:2 = min(X1, X2) (2-series) (1, 0)

3 X2:2 = max(X1, X2) (2-parallel) (0, 1)

4 X1:3 = min(X1, X2, X3) (3-series) (1, 0, 0)

5 min(X1,max(X2, X3)) ( 13 , 2
3 , 0)

6 X2:3 (2-out-of-3) (0, 1, 0)

7 max(X1,min(X2, X3)) (0, 2
3 , 1

3 )

8 X3:3 = max(X1, X2, X3) (3-parallel) (0, 0, 1)

9 X1:4 = min(X1, X2, X3, X4) (4-series) (1, 0, 0, 0)

10 max(min(X1, X2, X3),min(X2, X3, X4)) ( 12 , 1
2 , 0, 0)

11 min(X2:3, X4) ( 14 , 3
4 , 0, 0)

12 min(X1,max(X2, X3),max(X3, X4)) ( 14 , 7
12 , 1

6 , 0)

13 min(X1,max(X2, X3, X4)) ( 14 , 1
4 , 1

2 , 0)

14 X2:4 (3-out-of-4) (0, 1, 0, 0)

15
max(min(X1, X2),min(X1, X3, X4),

min(X2, X3, X4))
(0, 5

6 , 1
6 , 0)

16 max(min(X1, X2),min(X3, X4)) (0, 2
3 , 1

3 , 0)

17
max(min(X1, X2),min(X1, X3),

min(X2, X3, X4))
(0, 2

3 , 1
3 , 0)

18
max(min(X1, X2),min(X2, X3),

min(X3, X4))
(0, 1

2 , 1
2 , 0)

19
max(min(X1,max(X2, X3, X4)),

min(X2, X3, X4))
(0, 1

2 , 1
2 , 0)

20
min(max(X1, X2),max(X1, X3),

max(X2, X3, X4))
(0, 1

3 , 2
3 , 0)

21 min(max(X1, X2),max(X3, X4)) (0, 1
3 , 2

3 , 0)

22
min(max(X1, X2),max(X1, X3, X4),

max(X2, X3, X4))
(0, 1

6 , 5
6 , 0)

23 X3:4 (2-out-of-4) (0, 0, 1, 0)

24 max(X1,min(X2, X3, X4)) (0, 1
2 , 1

4 , 1
4 )

25 max(X1,min(X2, X3),min(X3, X4)) (0, 1
6 , 7

12 , 1
4 )

26 max(X2:3, X4) (0, 0, 3
4 , 1

4 )

27 min(max(X1, X2, X3),max(X2, X3, X4)) (0, 0, 1
2 , 1

2 )

28 X4:4 = max(X1, X2, X3, X4) (4-parallel) (0, 0, 0, 1)
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when the component lifetimes are IID with a common continuous distribution F .
Also note that if T is a system with signature s = (s1, . . . , sn), then the signature of
its dual system T D is sD = (sn, . . . , s1) (see e.g. the systems with numbers 10 and
27). This is a general property and so we do not need to compute the signatures of
the dual systems 20-28. The signatures for all the coherent systems with n = 5 and
n = 6 components were obtained in Navarro and Rubio (2010).

As mentioned above, expression (2.5) is a mixture representation for T . So we
can use here all the properties for mixtures. For example, the expected lifetime for
the system (MTTF) is

E(T ) =
n∑

i=1

si E(Xi :n).

Asimilar property holds for the respective distribution functions and, in the absolutely
continuous case, the respective probability density functions (PDF) satisfy

fT (t) =
n∑

i=1

si fi :n(t). (2.11)

The PDF of the order statistics can be obtained as follows.

Proposition 2.3 If X1, . . . , Xn are IID∼F and F is absolutely continuouswith PDF
f , then the PDF of Xi :n is

fi :n(t) = i

(
n

i

)
f (t)Fi−1(t)F̄n−i (t). (2.12)

Proof From (2.8) we have

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t).

Differentiating this expression we obtain

F̄ ′
i :n(t) = f (t)

i−1∑
j=1

(
n

j

)
j F j−1(t)F̄n− j (t) − f (t)

i−1∑
j=0

(
n

j

)
(n − j)F j (t)F̄n− j−1(t)

= n f (t)
i−1∑
j=1

(
n − 1

j − 1

)
F j−1(t)F̄n− j (t) − n f (t)

i−1∑
j=0

(
n − 1

j

)
F j (t)F̄n− j−1(t)

= n f (t)
i−2∑
k=0

(
n − 1

k

)
Fk(t)F̄n−k−1(t) − n f (t)

i−1∑
j=0

(
n − 1

j

)
F j (t)F̄n− j−1(t)

= −n f (t)

(
n − 1

i − 1

)
Fi−1(t)F̄n−i (t)

= −i

(
n

i

)
f (t)Fi−1(t)F̄n−i (t)

and so (2.12) holds. �
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Remark 2.1 The PDF in (2.12) can be rewritten as

fi :n(t) = �(n + 1)

�(i)�(n − i + 1)
f (t)Fi−1(t)F̄n−i (t) (2.13)

where �(p) = ∫ ∞
0 x p−1e−xdx is the gamma function. It can be proved that the

function defined in (2.13) for i, n ∈ R satisfying 1 ≤ i ≤ n is a proper PDF. Then
we can consider the random variable Xi :n having this PDF for i, n ∈ R satisfying
1 ≤ i ≤ n as an extension of the order statistics (k-out-of-n systems) that are obtained
when i and n are integers.

As an immediate consequence of (2.12), the PDF of the system can be obtained
as follows.

Corollary 2.1 If T is the lifetime of a coherent system with IID component lifetimes
X1, . . . , Xn having a common absolutely continuous distribution function F with
PDF f , then the PDF fT of T can be written as

fT (t) =
n∑

i=1

si fi :n(t) = f (t)
n∑

i=1

isi

(
n

i

)
Fi−1(t)F̄n−i (t)

for all t .

All these expressions are convex combinations and so, the values for the systems
will be between the minimum and maximum values for the k-out-of-n systems.
In particular, as X1:n ≤ · · · ≤ Xn:n , then their respective reliability functions are
ordered, that is,

F̄1:n(t) ≤ · · · ≤ F̄n:n(t)

for all t . Even more, as X1:n ≤ T ≤ Xn:n , then

F̄1:n(t) ≤ F̄T (t) ≤ F̄n:n(t)

for all t . In the IID∼F case we can be more precise and write

F̄i :n(t) ≤ F̄T (t) ≤ F̄j :n(t),

where i is the smallest index with si > 0 and j is the greatest index with s j > 0. In
the preceding example the signature is (1/3, 2/3, 0). Hence i = 1 and j = 2 and
so the orderings for the reliability functions in Fig. 2.3, left, is a general property for
any continuous distribution F . In the next chapter we will use (2.5) and the ordering
properties for mixtures given in Shaked and Shanthikumar (2007) to compare two
systems by comparing their signatures.

However, the expressions for the mean residual life and the hazard rate functions
are different. So it is difficult to determine the behavior of these functions inmixtures.
For example, the hazard rate of the system can be written from (2.5) and (2.11) as

hT (t) = fT (t)

F̄T (t)
=

∑n
i=1 si fi :n(t)∑n
i=1 si F̄i :n(t)

=
n∑

i=1

wi (t)hi :n(t) (2.14)
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where hi :n = fi :n/F̄i :n is the hazard rate of Xi :n and

wi (t) = si F̄i :n(t)∑n
j=1 s j F̄j :n(t)

.

Note that 0 ≤ wi (t) ≤ 1 and
∑n

i=1 wi (t) = 1 for all t . Hence (2.14) is also a convex
combination but, in this case, the coefficients w1(t), . . . , wn(t) depend on t .

In the IID case, the hazard rate functions of the k-out-of-n systems are ordered,
that is, h1:n ≥ · · · ≥ hn:n . Hence, in this case, we also have

hi :n(t) ≥ hT (t) ≥ h j :n(t)

for all F and the indices defined above. For example, the hazard rate functions for
the system in Example 2.2 when the component lifetimes are IID with a standard
exponential are plotted in Fig. 2.3, right. The code in R to get this plot (by using also
the code written above) is:

f<-function(t) exp(-t)

f1<-function(t) 3*f(t)*(R(t))ˆ2

f2<-function(t) (6*R(t)-6*(R(t))ˆ2)*f(t)

f3<-function(t) (3-6*R(t)+3*(R(t))ˆ2)*f(t)

fT<-function(t) s1*f1(t)+s2*f2(t)+s3*f3(t)

curve(fT(x)/RT(x),0,5,ylim=c(0,3),ylab=’HR’,col=’red’,lwd=2)

curve(f1(x)/R1(x),add=T,lwd=2)

curve(f2(x)/R2(x),add=T,lwd=2)

curve(f3(x)/R3(x),add=T,lwd=2)

abline(h=1,lty=2,lwd=2)

The following example shows that the continuity assumption in Samaniego’s
representation cannot be dropped out.

Example 2.3 Let us consider the series system with lifetime T = X1:2 =
min(X1, X2), where X1, X2 are IID with a common Bernoulli distribution of param-
eter 1/2, that is, Pr(Xi = 1) = Pr(Xi = 0) = 1/2 for i = 1, 2. Then

Pr(T = X1:2) = 1

and

Pr(T = X2:2) = Pr(X1 = X2) = 1

2
.

So (2.5) does not hold with these coefficients. Also note that 1+ 1/2 > 1. However,
the signature computed from the structure by using (2.6) (or (2.7)) is s = (1, 0).
Note that (2.5) holds with these coefficients. �

Therefore, in the general case, that is, when (X1, . . . , Xn) is an arbitrary random
vector with joint distribution function

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn)
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and joint reliability function

F̄(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn),

we can define two signatures as follows.

Definition 2.1 The structural signature of a coherent systemψ is s = (s1, . . . , sn)
where si is given by (2.6) (or by (2.7)).

Definition 2.2 Theprobabilistic signature of a coherent systemwith lifetime T and
component lifetimes (X1, . . . , Xn) is p = (p1, . . . , pn) where pi = Pr(T = Xi :n).

Clearly, s only depends on the structure of the system ψ while p can also depend
on the joint distribution function of the components F. In the preceding example
p = (1, 1/2) and s = (1, 0). In this case Samaniego’s representation (2.5) holds
for s. We will see that this is true for the general IID case but that we will not have
representations for non-ID components.

As Samaniego’s representation does not necessarily hold in the general case we
need another way to compute the system reliability. It is provided in the following
theorem and it is called the minimal path set representation.

Theorem 2.2 (Minimal path set representation) If T is the lifetime of a coherent (or
semi-coherent) system with minimal path sets P1, . . . , Pr and component lifetimes
(X1, . . . , Xn), then

F̄T (t) =
r∑

i=1

F̄Pi (t) −
r−1∑
i=1

r∑
j=i+1

F̄Pi∪Pj (t) + · · · + (−1)r+1 F̄P1∪...∪Pr (t) (2.15)

for all t , where F̄P (t) = Pr(XP > t) and XP = min j∈P X j for P ⊆ [n].

Proof First note that from (2.1), the system lifetime can be written as T =
max1≤i≤r X Pi . Then

F̄T (t) = Pr(T > t) = Pr

(
max
1≤i≤r

X Pi > t

)
= Pr

(∪r
i=1{XPi > t}) .

Hence, by using the inclusion-exclusion formula for the union of events, we obtain
(2.15) taking into account that

Pr
({XPi > t} ∩ {XPj > t}) = Pr

(
XPi∪Pj > t

)
. �

Note that (2.15) proves that the reliability function of the system is a linear com-
bination of the reliability functions of the series systems obtained from unions of
its minimal path sets. However, some coefficients can be negative and so it is not a
mixture representation (as (2.5) was). Note that these coefficients sum up to one (take
t → −∞). These representations are called generalized mixtures and they contain
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the usual mixtures (all the coefficients are non-negative) and the negative mixtures
(some coefficients are negative). They have some common properties with the usual
mixtures. For example, similar expressions hold for the respective distribution and
probability density functions.

For the system with lifetime T = min(X1,max(X2, X3)) and minimal path sets
P1 = {1, 2} and P2 = {1, 3}, we have

F̄T (t) = Pr (min(X1,max(X2, X3)) > t)

= Pr ({min(X1, X2) > t} ∪ {min(X1, X3) > t})
= Pr (min(X1, X2) > t) + Pr (min(X1, X3) > t) − Pr (min(X1, X2, X3) > t)

= F̄{1,2}(t) + F̄{1,3}(t) − F̄{1,2,3}(t). (2.16)

The reliability functions of series systems can be computed from the joint relia-
bility function F̄ of the components. For example, in this system, we have

F̄{1,2}(t) = Pr(min(X1, X2) > t) = Pr(X1 > t, X2 > t) = F̄(t, t,−∞).

Analogously, F̄{1,3}(t) = F̄(t, −∞, t) and F̄{1,2,3}(t) = F̄(t, t, t). Therefore,

F̄T (t) = F̄(t, t,−∞) + F̄(t,−∞, t) − F̄(t, t, t).

In the general case, for the series system X{1,...,k} we have
F̄{1,...,k}(t) = Pr(X1 > t, . . . , Xk > t) = F̄(t, . . . , t,−∞, . . . , −∞)

where t is repeated k times, for k = 1, . . . , n. Similarly, for an arbitrary series system
XP with P ⊆ [n] we have

F̄P (t) = Pr

(
min
j∈P

X j > t

)
= F̄(t P1 , . . . , t Pn ),

where t Pi := t if i ∈ P and t Pi := −∞ if i /∈ P .
If the component lifetimes are stochastically independent (IND), that is,

F̄(x1, . . . , xn) = Pr(X1 > x1) . . . Pr(Xn > xn),

then these expressions can be reduced to

F̄P (t) =
∏
j∈P

Pr(X j > t) =
∏
j∈P

F̄j (t)

and if they are IID then F̄P (t) = F̄ |P|(t) where |P| is the cardinality of P .
For the above system, we get

F̄T (t) = F̄1(t)F̄2(t) + F̄1(t)F̄3(t) − F̄1(t)F̄2(t)F̄3(t)

in the IND case and
F̄T (t) = 2F̄2(t) − F̄3(t)

in the IID case. Of course, this last expression coincides with the one obtained
from Samaniego’s representation. It does not coincide when the components are
independent but not identically distributed (INID). For example, in Fig. 2.4 we plot
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the system reliability and hazard rate functionswhen the components are independent
and have exponential distributions with means 1, 1/2, 1/3 (black) and a common
mean 1/2 (red). In this example, the system with heterogeneous components is more
reliable than the one with homogeneous components. The code is the following:

# Reliability functions

R<-function(t) exp(-2*t)

R1<-function(t) exp(-t)

R2<-function(t) exp(-2*t)

R3<-function(t) exp(-3*t)

RT2<-function(t) 2*(R(t))ˆ2-(R(t))ˆ3

RT1<-function(t) R1(t)*R2(t)+R1(t)*R3(t)-R1(t)*R2(t)*R3(t)

curve(RT2(x),0,2,xlab=’t’,ylab=’Reliability’,col=’red’,lwd=2)

curve(RT1(x),add=T,lwd=2)

curve(R1(x),add=T,lty=2,lwd=2)

curve(R2(x),add=T,lty=2,lwd=2)

curve(R3(x),add=T,lty=2,lwd=2)

#Hazard rates

f<-function(t) 2*exp(-2*t)

f1<-function(t) exp(-t)

f2<-function(t) 2*exp(-2*t)

f3<-function(t) 3*exp(-3*t)

fT2<-function(t) (4*R(t)-3*(R(t))ˆ2)*f(t)

fT1<-function(t) {

f1(t)*R2(t)+R1(t)*f2(t)+f1(t)*R3(t)+R1(t)*f3(t)

-f1(t)*R2(t)*R3(t)-f2(t)*R1(t)*R3(t)-f3(t)*R2(t)*R1(t)

}

curve(fT2(x)/RT2(x),0,4,col=’red’,ylim=c(0,4),lwd=2,ylab=’HR)

curve(fT1(x)/RT1(x), add=T,lwd=2)

abline(h=1,lty=2,lwd=2)

abline(h=2,lty=2,lwd=2)

abline(h=3,lty=2,lwd=2)

As a consequence we obtain the following representation for the IND case.

Corollary 2.2 (Minimal path set representation, IND case) If T is the lifetime of a
coherent (or semi-coherent) system with minimal path sets P1, . . . , Pr and indepen-
dent component lifetimes X1, . . . , Xn, then

F̄T (t) =
r∑

i=1

∏
k∈Pi

F̄k(t) −
r−1∑
i=1

r∑
j=i+1

∏
k∈Pi∪Pj

F̄k(t) + · · · + (−1)r+1
∏

k∈P1∪···∪Pr

F̄k(t)

(2.17)
for all t , where F̄k(t) = Pr(Xk > t) for k = 1, . . . , n.
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Fig. 2.4 Reliability (left) and hazard rate functions (right) of the system in Example 2.2 when the
components are independent and have exponential distributions of means 1, 1/2, 1/3 (black) and a
common mean 1/2 (red). The dashed lines are the functions for the components

A similar expression can be obtained from the minimal cut sets. It can be stated
as follows. Its proof is analogous.

Theorem 2.3 (Minimal cut set representation) If T is the lifetime of a coherent (or
semi-coherent) system with minimal cut sets C1, . . . ,Cs and component lifetimes
(X1, . . . , Xn), then

FT (t) =
s∑

i=1

FCi (t) −
s−1∑
i=1

s∑
j=i+1

FCi∪C j (t) + · · · + (−1)s+1FC1∪...∪Cs (t) (2.18)

for all t , where F P (t) = Pr(X P ≤ t) and X P = max j∈P X j for P ⊆ [n].

Note that we obtain again generalized mixtures. Hence the same expression
also holds for the respective reliability functions. We use the distribution functions
because, in the IND case, it can be reduced to the following corollary.

Corollary 2.3 (Minimal cut set representation, IND case) If T is the lifetime of a
coherent (or semi-coherent) system with minimal cut sets C1, . . . ,Cs and indepen-
dent component lifetimes X1, . . . , Xn, then

FT (t) =
s∑

i=1

∏
k∈Ci

Fk(t)−
s−1∑
i=1

s∑
j=i+1

∏
k∈Ci∪C j

Fk(t)+· · ·+ (−1)r+1
∏

k∈C1∪···∪Cs

Fk(t)

(2.19)
for all t , where Fk(t) = Pr(Xk ≤ t) for k = 1, . . . , n.

The general expressions obtained from theminimal path or cut sets can be reduced
to simpler expressions when the component lifetimes are exchangeable. The formal
definition is the following.
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Definition 2.3 The random vector (X1, . . . , Xn) is exchangeable (EXC) if

(X1, . . . , Xn) =ST (Xσ(1), . . . , Xσ(n))

for all the permutations σ : [n] → [n], where =ST denotes equality in distribution
(law).

Clearly, (X1, . . . , Xn) is EXC iff its joint distribution (or reliability) function F
is permutation symmetric, that is,

F(x1, . . . , xn) =ST F(xσ(1), . . . , xσ(n))

for all the permutations σ : [n] → [n] and all x1, . . . , xn ∈ R.
If (X1, . . . , Xn) is EXC, then all the marginal distributions of dimension k are

equal and, in particular, the variables are ID. Hence, the distributions of all the series
(or parallel) systems with k components are equal and we have

F̄P (t) = F̄{1,...,k}(t) = F̄(t, . . . , t,−∞, . . . , −∞),

where t is repeated k = |P| times. As a consequence, we obtain the following
representation given in Navarro et al. (2007).

Theorem 2.4 (Minimal signature representation) If T is the lifetime of a coherent
(or semi-coherent) system with EXC component lifetimes (X1, . . . , Xn), then

F̄T (t) =
n∑

i=1

ai F̄1:i (t) (2.20)

for all t , where a1, . . . , an are some integer coefficients such that a1 + · · · + an = 1
and F̄1:i (t) = Pr(min(X1, . . . , Xi ) > t) for i = 1, . . . , n.

Proof From (2.15), we have that F̄T is a linear combination of reliability functions
F̄P of series systems. But, if (X1, . . . , Xn) is EXC, then F̄P can be replaced by F̄1:i
with i = |P|. Hence (2.20) holds for some coefficients a1, . . . , an ∈ Z. Moreover
these coefficients sum up to one (take t → −∞). �

The vector a = (a1, . . . , an) with these coefficients was call the minimal signa-
ture of the system in Navarro et al. (2007). A similar representation can be obtained
by using the parallel systems as follows.

Theorem 2.5 (Maximal signature representation) If T is the lifetime of a coherent
(or semi-coherent) system with EXC component lifetimes (X1, . . . , Xn), then

FT (t) =
n∑

i=1

bi Fi :i (t) (2.21)

for all t , where b1, . . . , bn are some integer coefficients such that b1 + · · · + bn = 1
and Fi :i (t) = Pr(max(X1, . . . , Xi ) ≤ t) for i = 1, . . . , n.
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The vector b = (b1, . . . , bn) with these coefficients was call themaximal signa-
ture of the system in Navarro et al. (2007). Note that both representations (2.20) and
(2.21) are generalized mixtures and that they hold for the general EXC case (includ-
ing discrete or singular distributions). In both we can use distribution or reliability
functions. However, it is better to use reliability functions with series systems and
distribution functions with parallel systems. In the absolutely continuous case, we
can also use probability density functions. We will see later that they do not hold
without the EXC assumption.

Let us see an example. For the coherent system with lifetime T = min(X1,

max(X2, X3)), we get

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t) − F̄{1,2,3}(t)

that, in the EXC case, can be reduced to

F̄T (t) = 2F̄1:2(t) − F̄1:3(t).

Hence its minimal signature is a = (0, 2,−1). To compute its maximal signature
we first write its distribution function as

FT (t) = F {1}(t) + F {2,3}(t) − F {1,2,3}(t)

which, in the EXC case, gives

FT (t) = F1:1(t) + F2:2(t) − F3:3(t)

for all t . So its maximal signature is b = (1, 1, −1).
The minimal and maximal signatures of all the coherent systems with 1-4 compo-

nents are given in Table2.2. It can be proved that the minimal (maximal) signature
of a system coincides with the maximal (minimal) signature of its dual system (see,
e.g., the systems in rows 10 and 27). This property is due to the fact that the minimal
cut (path) sets of a system are the minimal path (cut) sets of its dual system.

The EXC case includes the general IID case and so we can obtain the following
representations.

Theorem 2.6 (Minimal and maximal signature representations, IID case) If T is the
lifetimeof a coherent (or semi-coherent) systemwithminimal andmaximal signatures
(a1, . . . , an) and (b1, . . . , bn) and IID∼F component lifetimes, then

F̄T (t) =
n∑

i=1

ai F̄
i (t) (2.22)

and

FT (t) =
n∑

i=1

bi F
i (t) (2.23)

for all t .
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Table 2.2 Minimal a and maximal b signatures of all the coherent systems with 1-4 exchangeable
components

i Ti a b

1 X1:1 = X1 (1) (1)

2 X1:2 = min(X1, X2) (2-series) (0, 1) (2,−1)

3 X2:2 = max(X1, X2) (2-parallel) (2,−1) (0, 1)

4 X1:3 = min(X1, X2, X3) (3-series) (0, 0, 1) (3,−3, 1)

5 min(X1,max(X2, X3)) (0, 2,−1) (1, 1,−1)

6 X2:3 (2-out-of-3) (0, 3,−2) (0, 3,−2)

7 max(X1,min(X2, X3)) (1, 1,−1) (0, 2,−1)

8 X3:3 = max(X1, X2, X3) (3-parallel) (3,−3, 1) (0, 0, 1)

9 X1:4 = min(X1, X2, X3, X4) (series) (0, 0, 0, 1) (4,−6, 4,−1)

10 max(min(X1, X2, X3),min(X2, X3, X4)) (0, 0, 2,−1) (2, 0,−2, 1)

11 min(X2:3, X4) (0, 0, 3,−2) (1, 3,−5, 2)

12 min(X1,max(X2, X3),max(X3, X4)) (0, 1, 1,−1) (1, 2,−3, 1)

13 min(X1,max(X2, X3, X4)) (0, 3,−3, 1) (1, 0, 1,−1)

14 X2:4 (3-out-of-4) (0, 0, 4,−3) (0, 6,−8, 3)

15
max(min(X1, X2),min(X1, X3, X4),

min(X2, X3, X4))
(0, 1, 2,−2) (0, 5,−6, 2)

16 max(min(X1, X2),min(X3, X4)) (0, 2, 0,−1) (0, 4,−4, 1)

17
max(min(X1, X2),min(X1, X3),

min(X2, X3, X4))
(0, 2, 0,−1) (0, 4,−4, 1)

18
max(min(X1, X2),min(X2, X3),

min(X3, X4))
(0, 3,−2, 0) (0, 3,−2, 0)

19
max(min(X1,max(X2, X3, X4)),

min(X2, X3, X4))
(0, 3,−2, 0) (0, 3,−2, 0)

20
min(max(X1, X2),max(X1, X3),

max(X2, X3, X4))
(0, 4,−4, 1) (0, 2, 0,−1)

21 min(max(X1, X2),max(X3, X4)) (0, 4,−4, 1) (0, 2, 0,−1)

22
min(max(X1, X2),max(X1, X3, X4),

max(X2, X3, X4))
(0, 5,−6, 2) (0, 1, 2,−2)

23 X3:4 (2-out-of-4) (0, 6,−8, 3) (0, 0, 4,−3)

24 max(X1,min(X2, X3, X4)) (1, 0, 1,−1) (0, 3,−3, 1)

25 max(X1,min(X2, X3),min(X3, X4)) (1, 2,−3, 1) (0, 1, 1,−1)

26 max(X2:3, X4) (1, 3,−5, 2) (0, 0, 3,−2)

27 min(max(X1, X2, X3),max(X2, X3, X4)) (2, 0,−2, 1) (0, 0, 2,−1)

28 X4:4 = max(X1, X2, X3, X4) (4-parallel) (4,−6, 4,−1) (0, 0, 0, 1)
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The proof is immediate from (2.20) and (2.21) since, in the IID case, we have
F̄1:i (t) = F̄ i (t) and Fi :i (t) = Fi (t) for all t . So it is better to use reliability functions
with the minimal signature and distribution functions with the maximal signature.
Note that we do not need the assumption “F is continuous”. In the absolutely con-
tinuous IID case, the system PDF is

fT (t) = f (t)
n∑

i=1

iai F̄
i−1(t) = f (t)

n∑
i=1

ibi F
i−1(t)

where f = F ′ = −F̄ ′ is the common PDF of the components.

The minimal (or maximal) signature representation can be used to extend
Samaniego’s representation to the general EXC case (which includes the IID case
with a general distribution F). It is stated in the following theorem. This result was
obtained in Navarro et al. (2008) by using a different proof. A similar result was
obtained previously in Navarro and Rychlik (2007) for absolutely continuous EXC
distributions.

Theorem 2.7 (Signature representation, EXC case) If T is the lifetime of a coherent
system with structural signature (s1, . . . , sn) and with EXC component lifetimes,
then

F̄T (t) =
n∑

i=1

si F̄i :n(t) (2.24)

for all t .

Proof From (2.20) we have

F̄T (t) =
n∑

i=1

ai F̄1:i (t)

where a = (a1, . . . , an) is the minimal signature of T . This representation can be
written as

F̄T (t) = a(F̄1:1(t), . . . , F̄1:n(t))′,

where v′ represents the transpose of v.
We can apply this representation to the k-out-of-n systems as well. Thus, for X1:n ,

which only has a minimal path set P1 = {1, . . . , n} (the unique set with cardinality
n), we obtain the trivial representation

F̄1:n(t) = 0F̄1:1(t) + · · · + 0F̄1:n−1(t) + 1F̄1:n(t),

that is, its minimal signature is (0, . . . , 0, 1).
Analogously, for X2:n , its minimal path sets are all the sets with cardinality n − 1

(its has
( n
n−1

) = n minimal path sets). Then its minimal path set representation is

F̄2:n(t) = 0F̄1:1(t) + · · · + 0F̄1:n−2(t) + nF̄1:n−1(t) − (n − 1)F̄1:n(t),
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that is, its minimal signature is (0, . . . , 0, n,−n + 1) (the last coefficient is −n + 1
because their sum is one).

In general, for Xi :n , we obtain

F̄i :n(t) = 0F̄1:1(t) + · · · + 0F̄1:n−i (t) +
(
n

i

)
F̄1:n−i+1(t) + · · · + ai,n F̄1:n(t)

for i = 1, . . . , n. The coefficients in that representation are well known in the order
statistics literature (see David and Nagaraja 2003, p. 46 or (2.25) below). However,
we do not need them. We just need the fact that

(F̄1:n(t), . . . , F̄n:n(t))′ = An(F̄1:1(t), . . . , F̄1:n(t))′

for all t , where An = (ai, j ) is a triangular non-singular matrix of real (integer)
numbers. Hence

(F̄1:1(t), . . . , F̄1:n(t))′ = A−1
n (F̄1:n(t), . . . , F̄n:n(t))′

for all t , where A−1
n is the inverse matrix of An .

Therefore, by using the minimal signature representation obtained in (2.20), we
get

F̄T (t) = a(F̄1:1(t), . . . , F̄1:n(t))′

= aA−1
n (F̄1:n(t), . . . , F̄n:n(t))′

= c(F̄1:n(t), . . . , F̄n:n(t))′

=
n∑

i=1

ci F̄i :n(t)

for all t , where c = (c1, . . . , cn) := aA−1
n are some coefficients that do not depend

on the joint distribution of the component lifetimes (they only depend on a and An).
In the IID continuous case these coefficients coincide with the structural signature

coefficients (take e.g. F(t) = t for 0 ≤ t ≤ 1), that is, c = s and so (2.24) holds. �

Remark 2.2 The preceding theorem proves that F̄T belongs to the vectorial space
generated by the reliability functions of the k-out-of-n systems which coincides
with the one generated by the series system reliability functions (in the EXC case).
Actually, in many cases, these reliability functions are bases of this space and so the
signatures can be seen as the coordinates of F̄T in these bases. Thus the structural
signature can be obtained from the minimal signature as

s = aA−1
n

and vice versa
a = sAn .

Moreover, it can be proved that, in the absolutely continuous EXC case, si = Pr(T =
Xi :n) (i.e. the structural and probability signatures coincide), seeNavarro andRychlik
(2007).
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Note that the rows of An are the minimal signatures of the k-out-of-n systems. As
mentioned in the proof, the coefficients in An are well known in the order statistics
literature. Actually, from David and Nagaraja (2003), p. 46, we have

F̄i :n(t) =
n∑

j=n−i+1

(−1) j−n+i−1
(
n

j

)(
j − 1

n − i

)
F̄1: j (t). (2.25)

Of course, the preceding theoremcan also be applied to the case of IID∼F component
lifetimes. Here we do not the continuity assumption for F but we have to use the
structural signature (not the probabilistic signature).

Remark 2.3 A similar proof can be obtained by using the maximal signature rep-
resentations of the k-out-of-n systems. So we can also write

s = bB−1
n

and
b = sBn

for a triangular non-singular matrix Bn = (bi, j ). The coefficients in Bn can also be
obtained from David and Nagaraja (2003), p. 46, as

F̄i :n(t) =
n∑
j=i

bi, j F̄ j : j (t) =
n∑
j=i

(−1) j−i
(
n

j

)(
j − 1

i − 1

)
F̄j : j (t). (2.26)

The rows of Bn are the maximal signatures of the order statistics. Note that, as a
consequence, a can be computed from b and vice versa through

b = sBn = aA−1
n Bn = aCn

and
a = sAn = bB−1

n An = bC−1
n ,

where Cn = A−1
n Bn . If one prefer to use column vectors, just take the transposed

matrices.

Example 2.4 Let us obtain A3 without using (2.25). As mentioned in the proof, the
(trivial) minimal signature representation for X1:3 is

F̄1:3(t) = 0F̄1:1(t) + 0F̄1:2(t) + 1F̄1:3(t).
Analogously, for X2:3, we have

F̄2:3(t) = 0F̄1:1(t) + 3F̄1:2(t) − 2F̄1:3(t).
Finally, the minimal path set representation for X3:3 in the EXC case is

F̄3:3(t) = 3F̄1:1(t) − 3F̄1:2(t) + 1F̄1:3(t).
Hence ⎛

⎝ F̄1:3(t)
F̄2:3(t)
F̄3:3(t)

⎞
⎠ =

⎛
⎝0 0 1
0 3 −2
3 −3 1

⎞
⎠

⎛
⎝ F̄1:1(t)

F̄1:2(t)
F̄1:3(t)

⎞
⎠ ,
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that is,

A3 =
⎛
⎝0 0 1
0 3 −2
3 −3 1

⎞
⎠ .

Its inverse matrix is

A−1
3 =

⎛
⎝ 1/3 1/3 1/3
2/3 1/3 0
1 0 0

⎞
⎠ .

These matrices can be used to obtain one signature from the other. For example, for
the system with lifetime T = min(X1,max(X2, X3)), s can be computed from a as

(s1, s2, s3) = (a1, a2, a3)A
−1
3 = (0, 2,−1)

⎛
⎝ 1/3 1/3 1/3
2/3 1/3 0
1 0 0

⎞
⎠ = (1/3, 2/3, 0).

Conversely, a can be computed from s through

(a1, a2, a3) = (s1, s2, s3)A3 = (1/3, 2/3, 0)

⎛
⎝0 0 1
0 3 −2
3 −3 1

⎞
⎠ = (0, 2,−1).

Analogously, we obtain

B3 =
⎛
⎝ 3 −3 1
0 3 −2
0 0 1

⎞
⎠ .

Note that the rows of Bn are the rows of An in the reverse order (since the dual system
of Xi :n is Xn−i+1:n). Hence the maximal signature of the system can be obtained as

(b1, b2, b3) = (s1, s2, s3)B3 = (1/3, 2/3, 0)

⎛
⎝ 3 −3 1
0 3 −2
0 0 1

⎞
⎠ = (1, 1,−1).

It can be obtained directly from the minimal signature as

(b1, b2, b3) = (a1, a2, a3)A
−1
3 B3 = (0, 2,−1)

⎛
⎝ 1 0 0
2 −1 0
3 −3 1

⎞
⎠ = (1, 1, −1).

Note that the rows of C3 = A−1
3 B3 are the maximal signatures of the series systems

X1:1, X1:2, X1:3. Analogously,

(a1, a2, a3) = (b1, b2, b3)B
−1
3 A3 = (1, 1, −1)

⎛
⎝ 1 0 0
2 −1 0
3 −3 1

⎞
⎠ = (0, 2,−1)

that is, C−1
3 = C3. This is a general property, that is, C−1

n = Cn for all n. �

The Samaniego’s representation can also be extended to semi-coherent systems
as follows. This results was obtained in Navarro et al. (2008) (by using a different
proof).
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Theorem 2.8 If T is the lifetime of a coherent system with component lifetimes
X1, . . . , Xk contained in an EXC random vector (X1, . . . , Xn) (k < n), then

F̄T (t) =
n∑

i=1

s(n)
i F̄i :n(t) (2.27)

for all t , where s(n)
1 , . . . , s(n)

n are some coefficients that only depend on the structure

of the system and that satisfy s(n)
1 + · · · + s(n)

n = 1.

Proof As (X1, . . . , Xn) is EXC, so is (X1, . . . , Xk). Hence, from (2.20), we have

F̄T (t) =
k∑

i=1

ai F̄1:k(t),

where a = (a1, . . . , ak) is the minimal signature of T . This representation can be
written as

F̄T (t) = a(n)(F̄1:1(t), . . . , F̄1:n(t))′

where a(n) := (a1, . . . , ak, 0, . . . , 0) ∈ Z
n .

We can also apply here the representation for the k-out-of-n systems obtained in
the preceding theorem. Thus,

(F̄1:n(t), . . . , F̄n:n(t))′ = An(F̄1:1(t), . . . , F̄1:n(t))′

for all t , where An is a triangular non-singular matrix of real (integer) numbers.
Hence

(F̄1:1(t), . . . , F̄1:n(t))′ = A−1
n (F̄1:n(t), . . . , F̄n:n(t))′

for all t , where A−1
n is the inverse matrix of An .

Therefore, by using the representation obtained above, we get

F̄T (t) = a(n)(F̄1:1(t), . . . , F̄1:n(t))′

= a(n)A−1
n (F̄1:n(t), . . . , F̄n:n(t))′

= s(n)(F̄1:n(t), . . . , F̄n:n(t))′

=
n∑

i=1

s(n)
i F̄i :n(t)

for all t , where s(n) = (s(n)
1 , . . . , s(n)

n ) := a(n)A−1
n are some coefficients that do not

depend on the joint distribution of the component lifetimes (they only depend on a
and An) and that satisfy s

(n)
1 + · · · + s(n)

n = 1. �

The vector s(n) = (s(n)
1 , . . . , s(n)

n ) is called the structural signature of order n of
the system. It can be proved that if (X1, . . . , Xn) has an absolutely continuous EXC
distribution, then s(n)

i = Pr(T = Xi :n). Hence s(n)
i ≥ 0 and so (2.27) is a mixture
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representation. The structural signature of order n of a semi-coherent system ψ can
also be computed from

s(n)
i = 1( n

i−1

) ∑
∑n

j=1 x j=n−i+1

ψ(x1, . . . xn) − 1(n
i

) ∑
∑n

j=1 x j=n−i

ψ(x1, . . . xn)

for i = 1, . . . , n. Of course, if ψ is a coherent system of order n, then we obtain the
expression of the structural signature given in (2.7).

Analogously, a(n). = (a1, . . . , ak, 0, . . . , 0) can be called theminimal signature
of order n. Note that s(n) = a(n)A−1

n and a(n) = s(n)An . Themaximal signature of
order n can be defined in a similar way as b(n) = (b1, . . . , bk, 0, . . . , 0). It can be
used to obtain an alternative proof for the preceding theorem with s(n) = b(n)B−1

n
and b(n) = s(n)Bn .

Remark 2.4 The preceding theorem can also be obtained by using the “Triangle
Rule” of the order statistics. Thus, if (X1, . . . , Xn+1) are EXC without ties, then

Pr(Xi :n < Xn+1 < Xi+1:n) = Pr(Xn+1 = Xi+1:n) = 1

n + 1
for i = 0, . . . , n where, by convention X0:n = −∞ and Xn+1:n = ∞. Hence

Pr(Xi :n = Xi+1:n+1) = Pr(Xn+1 < Xi :n) = i

n + 1
and so

Pr(Xi :n = Xi :n+1) = 1 − i

n + 1
= n + 1 − i

n + 1
.

Consequently the order statistics from an EXC random vector without ties satisfy
the following triangle rule

F̄i :n(t) = n + 1 − i

n + 1
F̄i :n+1(t) + i

n + 1
F̄i+1:n+1(t) (2.28)

for all t . Note that we can use this expression in (2.24) to write the reliability
function F̄T of a coherent system with n components as a linear combination of
F̄1:n+1, . . . , F̄n+1:n+1, that is, to compute its signature of order n+ 1. Thus, if T has
the signature (s(n)

1 , . . . , s(n)
n ) of order n, then

F̄T =
n∑

i=1

s(n)
i F̄i :n

=
n∑

i=1

s(n)
i

n + 1 − i

n + 1
F̄i :n+1 +

n∑
i=1

s(n)
i

i

n + 1
F̄i+1:n+1

=
n∑

i=1

s(n)
i

n + 1 − i

n + 1
F̄i :n+1 +

n+1∑
i=2

s(n)
i−1

i − 1

n + 1
F̄i :n+1

= ns(n)
1

n + 1
F̄1:n+1 +

n∑
i=2

(
i − 1

n + 1
s(n)
i−1 + n + 1 − i

n + 1
s(n)
i

)
F̄i :n+1 + ns(n)

n

n + 1
F̄n+1:n+1.
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Table 2.3 Signatures of order 4 of all the coherent systems with 1-3 EXC components

T s(4)

1 X1:1 = X1 ( 14 , 1
4 , 1

4 , 1
4 )

2 X1:2 = min(X1, X2) (2-series) ( 12 , 1
3 , 1

6 , 0)

3 X2:2 = max(X1, X2) (2-parallel) (0, 1
6 , 1

3 , 1
2 )

4 X1:3 = min(X1, X2, X3) (3-series) ( 34 , 1
4 , 0, 0)

5 min(X1,max(X2, X3)) ( 14 , 5
12 , 1

3 , 0)

6 X2:3 (2-out-of-3) (0, 1
2 , 1

2 , 0)

7 max(X1,min(X2, X3)) (0, 1
3 , 5

12 , 1
4 )

8 X3:3 = max(X1, X2, X3) (3-parallel) (0, 0, 1
4 , 3

4 )

Hence, the signature of order n + 1 can be obtained as

s(n+1) =
(

n

n + 1
s(n)
1 ,

1

n + 1
s(n)
1 + n − 1

n + 1
s(n)
2 ,

2

n + 1
s(n)
2 + n − 2

n + 1
s(n)
3 , . . . ,

n

n + 1
s(n)
n

)
,

(2.29)
that is,

s(n+1)
i = i − 1

n + 1
s(n)
i−1 + n + 1 − i

n + 1
s(n)
i

for i = 1, . . . , n + 1 where, by convention, s(n)
0 = s(n)

n+1 = 0. This gives us an
alternative proof of Theorem 2.8 based on the Triangle Rule. Actually, this was the
proof used in Navarro et al. (2008). We can go further and compute the signature of
order n from the signature of order k < n. The explicit expressions can be seen in
Navarro et al. (2008). Alternatively, we can use (2.29) n − k times.

The signatures of order 4 for all the coherent systems with 1-3 EXC components
are given in Table2.3. Let us see in some examples how to compute them.

Example 2.5 We have seen that if (X1, X2) are EXC (or just ID), then

F̄2:2 = 2F̄1:1 − F̄1:2.
Hence

F̄1:1 = 1

2
F̄1:2 + 1

2
F̄2:2,

that is, the signature of order 2 of X1 is (1/2, 1/2). It can also be obtained from
the Triangle Rule as follows. Obviously, the signature (of order 1) of X1 is s = (1).
Hence, from (2.29), we have

s(2) =
(
1

2
1,

1

2
1

)
=

(
1

2
,
1

2

)
.

By applying (2.29) again, we get

s(3) =
(
2

3

1

2
,
1

3

1

2
+ 1

3

1

2
,
2

3

1

2

)
=

(
1

3
,
1

3
,
1

3

)
.
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Analogously, if (X1, . . . , Xn) are EXC without ties, then Pr(X1 = Xi :n) = 1/n
for i = 1, . . . , n. Hence, the signature of order n of X1 (or Xi ) is s(n) =
(1/n, . . . , 1/n). �

Example 2.6 Let us consider again the coherent systemT = min(X1,max(X2, X3))

with three EXC components. Recall that from Tables 2.1 and 2.2, the signature and
the minimal signature of this system are (1/3, 2/3, 0) and (0, 2,−1), respectively.
Therefore, the signature of order 4 can be obtained as

s(4) = a(4)A−1
4 = (0, 2,−1, 0)

⎛
⎜⎜⎝

1
4

1
4

1
4

1
4

1
2

1
3

1
6 0

3
4

1
4 0 0

1 0 0 0

⎞
⎟⎟⎠ =

(
1

4
,
5

12
,
1

3
, 0

)
,

where (0, 2,−1, 0) is theminimal signature of order 4, that is, the coefficients needed
to write F̄T in terms of F̄1:i , i = 1, 2, 3, 4, and the matrix is the inverse matrix of

A4 =

⎛
⎜⎜⎝
0 0 0 1
0 0 4 −3
0 6 −8 3
4 −6 4 −1

⎞
⎟⎟⎠

obtained by placing in the rows the minimal signatures of the order statistics
X1:4, X2:4, X3:4, X4:4. Note that the rows of A−1

4 contain the signatures of order
4 of the series systems X1:1, X1:2, X1:3, X1:4.

Another option is to use the following representation based on the signature
(1/3, 2/3, 0),

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t) (2.30)

and the relations of the distributions of order statistics based on the Triangle Rule
given in (2.28). Using this rule we have

F̄1:3(t) = 3

4
F̄1:4(t) + 1

4
F̄2:4(t)

F̄2:3(t) = 1

2
F̄2:4(t) + 1

2
F̄3:4(t)

and replacing these expressions in (2.30), we obtain the signature of order 4 as
follows

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t)

= 1

3

(
3

4
F̄1:4(t) + 1

4
F̄2:4(t)

)
+ 2

3

(
1

2
F̄2:4(t) + 1

2
F̄3:4(t)

)

= 1

4
F̄1:4(t) + 5

12
F̄2:4(t) + 1

3
F̄3:4(t).

Another option is to apply formula (2.29) to (1/3, 2/3, 0) to get(
3

4

1

3
,
1

4

1

3
+ 3

4

2

3
,
2

4

2

3
+ 2

4
0,

3

4
0

)
=

(
1

4
,
5

12
,
1

3
, 0

)
.

�
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We conclude this section with an example extracted from Example 5.1 in Navarro
et al. (2008)which proves that representation (2.24) does not necessarily holdwithout
the EXC (ID) assumption. Actually, it proves that the distribution of a system is not
necessarily a mixture of the distributions of the order statistics associated to its
component lifetimes.

Example 2.7 Let us consider the coherent system with three IND components and
with lifetime T = min(X1,max(X2, X3)). Recall that the minimal path sets of T
are {1, 2} and {1, 3}, and so the reliability function of this system can be written as

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t) − F̄1:3(t).
If we assume that the component lifetimes are IND then

F̄T (t) = F̄1(t)F̄2(t) + F̄1(t)F̄3(t) − F̄1(t)F̄2(t)F̄3(t).

However, in general, we do not know if F̄T can necessarily be written as a mixture
of F̄1:3, F̄2:3 and F̄3:3. For example, if the components have exponential distributions
with means 1/2, 1 and 1, respectively, then

F̄1(t) = e−2t

F̄2(t) = F̄3(t) = e−t

F̄{1,2}(t) = F̄{1,3}(t) = e−3t ,

F̄1:3(t) = e−4t ,

F̄2:3(t) = e−2t + 2e−3t − 2e−4t ,

F̄3:3(t) = 2e−t − 2e−3t + e−4t ,

F̄T (t) = 2e−3t − e−4t ,

for all t ≥ 0. If we assume that F̄T can be written as a mixture of the functions F̄1:3,
F̄2:3 and F̄3:3 with some coefficients c1, c2 and c3, we have

2e−3t − e−4t = c1e
−4t + c2

(
e−2t + 2e−3t − 2e−4t) + c3

(
2e−t − 2e−3t + e−4t)

for all t ≥ 0. The functions e−λt and e−μt are linearly independent for λ �= μ.
Therefore, c3 = c2 = 0 and we conclude that F̄T cannot be written as a mixture of
F̄1:3, F̄2:3 and F̄3:3. In particular, F̄T is not equal to the mixture obtained neither with
the structural signature s = (1/3, 2/3, 0) given by

F̄a := 1

3
F̄1:3 + 2

3
F̄2:3

nor with that obtained with the probabilistic signature

F̄p := p1 F̄1:3 + p2 F̄2:3,
where pi = Pr(T = Xi :3) for i = 1, 2. In this example

p1 = Pr(X1 < min(X2, X3)),

where X1 and Y = min(X2, X3) are IID. Therefore, p1 = p2 = 1/2. The plots of
F̄T (black), F̄a (blue) and F̄p (red) and the corresponding hazard rate functions can
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be seen in Fig. 2.5. Note that the reliability functions are different but similar. The
code in R to get the plots of the reliability functions is the following:

R13<-function(t) exp(-4*t)

R23<-function(t) exp(-2*t)+2*exp(-3*t)-2*exp(-4*t)

R33<-function(t) 2*exp(-t)-2*exp(-3*t)+exp(-4*t)

RT<-function(t) 2*exp(-3*t)-exp(-4*t)

Ra<-function(t) (1/3)*R13(t)+(2/3)*R23(t)

Rp<-function(t) (1/2)*R13(t)+(1/2)*R23(t)

curve(R23(x),0,3,lty=2,ylab=’Reliability’,xlab=’t’,lwd=2)

curve(R13(x),add=T,lty=2,lwd=2)

curve(R33(x),add=T,lty=2,lwd=2)

curve(RT(x),add=T,lwd=2)

curve(Ra(x),add=T,col=’blue’,lwd=2)

curve(Rp(x),add=T,col=’red’,lwd=2)

The code in R to get the plots of the hazard rate functions is the following:

f1<-function(t) 2*exp(-2*t)

f2<-function(t) exp(-t)

f13<-function(t) 4*exp(-4*t)

f23<-function(t) 2*exp(-2*t)+6*exp(-3*t)-8*exp(-4*t)

f33<-function(t) 2*exp(-t)-6*exp(-3*t)+4*exp(-4*t)

fT<-function(t) 6*exp(-3*t)-4*exp(-4*t)

fa<-function(t) (1/3)*f13(t)+(2/3)*f23(t)

fp<-function(t) (1/2)*f13(t)+(1/2)*f23(t)

curve(f23(x)/R23(x),0,3,ylim=c(0,4),lty=2,lwd=2,ylab=’HR’)

curve(f13(x)/R13(x),add=T,lty=2,lwd=2)

curve(f33(x)/R33(x),add=T,lty=2,lwd=2)

curve(fT(x)/RT(x),add=T,lwd=2)

curve(fa(x)/Ra(x),add=T,col=’blue’,lwd=2)

curve(fp(x)/Rp(x),add=T,col=’red’,lwd=2) �

Note that in the general case, we can define two mixed systems associated to T ,
the average system

F̄a = s1 F̄1:n + · · · + sn F̄n:n
obtained with the structural signature and the projected system

F̄p = p1 F̄1:n + · · · + pn F̄n:n
obtained with the probabilistic signature. Both can be considered as good
approximations of F̄T , see Navarro et al. (2010) (the second one is usually bet-
ter than the first one as it happen in Fig. 2.5). Note that F̄a is always the reliability
function of a mixed system and that so is F̄p when p1 + · · · + pn = 1. Both F̄a and
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Fig. 2.5 Reliability functions (left) F̄T (black), F̄a (blue) and F̄p (red) and the corresponding
hazard rate functions (right) of the system in Example 2.7 when the components are independent
with exponential distributions of means 1/2, 1, 1. The dashed lines represent the functions for the
k-out-of-3 systems for k = 1, 2, 3

F̄b belongs to the vectorial space generated by F̄1:n, . . . , F̄n:n . However, this is not
always the case for F̄T as we have seen in Example 2.7.

2.4 Distortion Representations

The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the
context of theory of choice under risk. The purpose was to allow a “distortion” (a
change) of the initial (or past) risk distribution function. The formal definition is the
following.

Definition 2.4 The distorted distribution (DD) associated to a distribution func-
tion (DF) F and to an increasing and continuous distortion function q : [0, 1] →
[0, 1] such that q(0) = 0 and q(1) = 1, is given by

Fq(t) = q(F(t)) (2.31)

for all t .

Note that the conditions on q assure that Fq is a proper distribution function for any
distribution function F (actually, for this property, we just need a right-continuous
distortion function). Moreover, if q is strictly increasing in [0, 1], then F and Fq have
the same support. Also note that q is a distribution function with support included
in [0, 1].
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From (2.31), we have a similar expression for the respective reliability functions
F̄ = 1 − F and F̄q = 1 − Fq that satisfy

F̄q(t) = q̄(F̄(t)), (2.32)

where q̄(u) := 1 − q(1 − u) is called the dual distortion function in Hürlimann
(2004).

Note that q̄ is also a “distortion function”, that is, it is continuous, increasing
and satisfies q̄(0) = 0 and q̄(1) = 1. Actually, expressions (2.31) and (2.32) are
equivalent. However, sometimes it is better to use (2.32) instead of (2.31) (or vice
versa).

If F is absolutely continuous with PDF f = F ′ and q is differentiable, then the
PDF of Fq is

fq(t) = f (t)q ′(F(t)) = f (t)q̄ ′(F̄(t)) (2.33)

for all t .
From (2.32) and (2.33), the hazard rate function of Fq is

hq(t) = fq(t)

F̄q(t)
= q̄ ′(F̄(t))

q̄(F̄(t))
f (t) = α(F̄(t))h(t) (2.34)

for all t such that q̄(F̄(t)) > 0, where α(u) := uq̄ ′(u)/q̄(u) for u ∈ [0, 1] and
h(t) = f (t)/F̄(t) is the hazard rate function of F .

Analogously, the reversed hazard rate function of Fq is

h̄q(t) = fq(t)

Fq(t)
= q ′(F(t))

q(F(t))
f (t) = ᾱ(F(t))h̄(t) (2.35)

for all t such that q(F(t)) > 0, where ᾱ(u) := uq ′(u)/q(u) for u ∈ [0, 1] and
h̄(t) = f (t)/F(t) is the reversed hazard rate function of F .

However, the expression connecting the MRL functions is not so simple. Thus, if
we assume that the support of F is contained in [0,∞), then

mq(t) =
∫ ∞
t q̄(F̄(x))dx

q̄(F̄(t))
= F̄(t)

q̄(F̄(t))

∫ ∞
t q̄(F̄(x))dx∫ ∞
t F̄(x)dx

m(t)

for all t such that q̄(F̄(t)) > 0.
Several relevant models are contained in the distorted models. Let us see some of

them:

1. Lehmann’s alternatives. They were introduce in hypothesis testing as an alter-
native to the distribution function proposed in the null hypothesis. They were
defined by

Fθ (t) = Fθ (t)

for all t , where θ is a positive parameter. Clearly, this is a distorted distribution
with distortion function q(u) = uθ and dual distortion function q̄(u) = 1− (1−
u)θ for u ∈ [0, 1]. The original distribution is obtained with θ = 1.
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2. Proportional hazard rate (PHR) Cox model. This model was introduced in
survival analysis to model the different risks of patients. It is defined by the
reliability (survival) function

F̄θ (t) = F̄θ (t)

for all t , where θ is a positive parameter. Clearly, this is a distorted distribution
with dual distortion function q̄(u) = uθ and distortion function q(u) = 1− (1−
u)θ . Again, the original distribution is obtained with θ = 1 and, in the absolutely
continuous case. Its hazard rate is

hθ (t) = θh(t),

that is, the hazard rate function hθ is proportional to the baseline hazard rate
function h. Moreover, the α function in (2.34) is constant and equal to θ . In
practice, the θ parameter is obtained (estimated) as θ = c1x1 + · · · + ckxk ,
where c1, · · · , ck are some positive parameters and x1, . . . , xk represent the
characteristics of the patient.

3. Proportional reversed hazard rate (PRHR) model. This model is similar to
the PHR model and it is defined by the distribution function

Fθ (t) = Fθ (t)

for all t , where θ is a positive parameter. Clearly, this model is equivalent to the
Lehmann’s alternative model given in item 1 above. In the absolutely continuous
case, its reversed hazard rate is

h̄θ (t) = θ h̄(t),

that is, the reversed hazard rate function is proportional to the baseline reversed
hazard rate function (i.e. the function ᾱ in (2.35) is constant).

4. Order statistics. As we have seen in (2.8), the reliability function of the i th
order statistic from a sample of IID∼F random variables can be written as

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j (t)F̄n− j (t).

Hence it is a distorted distribution with dual distortion function

q̄i :n(t) =
i−1∑
j=0

(
n

j

)
(1 − u) j un− j .

The similar expression for the distortion function is

qi :n(t) =
n∑
j=i

(
n

j

)
u j (1 − u)n− j .

Note that both are polynomials (based on Bernstein polynomials Bn
j (u) =(n

j

)
u j (1−u)n− j ). Actually, these distortion functions can also be obtained from

(2.26) and (2.25) as

qi :n(u) =
n∑
j=i

(−1) j−i
(
n

j

)(
j − 1

i − 1

)
u j
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and

q̄i :n(u) =
n∑

j=n−i+1

(−1) j−n+i−1
(
n

j

)(
j − 1

n − i

)
u j .

Alternatively, we can also use their maximal and minimal signatures, respec-
tively. In particular, for the minimum (series system) and maximum (parallel
system) values we have F̄1:n = F̄n and Fn:n = Fn . So they are included in the
PHR and PRHR models, respectively.

The distorted distributions were generalized in Navarro et al. (2016) as follows.

Definition 2.5 The distorted distribution (DD) associated to n distribution
functions F1, . . . , Fn and to an increasing and continuous distortion function
Q : [0, 1]n → [0, 1] such that Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1, is given
by

FQ(t) = Q(F1(t), . . . , Fn(t)) (2.36)

for all t .

As above, the conditions on Q assure that FQ is a proper distribution function
for any distribution functions F1, . . . , Fn (actually, for this property, we just need
a right-continuous distortion function). Moreover, from (2.36), we have a similar
expression for the respective reliability functions

F̄Q(t) = Q̄(F̄1(t), . . . , F̄n(t)), (2.37)

where Q̄(u1, . . . , un) := 1 − Q(1 − u1, . . . , 1 − un) is called the dual distortion
function. Note that Q̄ is also a “distortion function”, that is, it is continuous, increas-
ing and satisfies Q̄(0, . . . , 0) = 0 and Q̄(1, . . . , 1) = 1. Actually, expressions (2.36)
and (2.37) are equivalent. However, sometimes it could be better to use (2.37) instead
of (2.36) (or vice versa). Note that these expressions are similar to copula represen-
tations but that here we obtain a univariate distribution (or reliability) function. The
distortion functions are continuous aggregation functions (see Grabisch et al. 2009).

If F1, . . . , Fn are absolutely continuouswith probability density functions f1, . . . ,
fn and Q is differentiable, then the PDF of FQ is

fQ(t) =
n∑

i=1

fi (t) ∂i Q(F1(t), . . . , Fn(t)) =
n∑

i=1

fi (t) ∂i Q̄(F̄1(t), . . . , F̄n(t)),

(2.38)
for all t , where ∂i G represents the partial derivative of G with respect to its i th
variable.

From (2.37) and (2.38), the hazard rate function of Fq is

hQ(t) =
∑n

i=1 fi (t)∂i Q̄(F̄1(t), . . . , F̄n(t))

Q̄(F̄1(t), . . . , F̄n(t))
=

n∑
i=1

αi (F̄1(t), . . . , F̄n(t))hi (t)

(2.39)
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for all t such that F̄Q(t) > 0, where

αi (u1, . . . , un) := ui∂i Q̄(u1, . . . , un)

Q̄(u1, . . . , un)
≥ 0

for u1, . . . , un ∈ [0, 1] such that Q̄(u1, . . . , un) > 0 and hi (t) = fi (t)/F̄i (t) for
i = 1, . . . , n. A similar expression can be obtained for the reversed hazard rate
function.

Let us see some examples.

1. Finite mixtures. As we have mentioned above, the distribution function of a
finite mixture can be written as

F(t) = p1F1(t) + · · · + pnFn(t)

for all t , where pi ≥ 0 and p1 + · · · + pn = 1. Therefore it is a distorted
distribution with distortion functions

Q(u1, . . . , un) = Q̄(u1, . . . , un) = p1u1 + · · · + pnun .

However, note that the negative mixtures cannot be represented as distorted
distributions.

2. Generalized proportional hazard rate (GPHR) model. The PHR model
defined above can be extended by

F̄(t) = F̄θ1
1 (t) . . . F̄θn

n (t),

where θ1, . . . , θn > 0. Clearly, this is a distorted distribution with dual distortion
function

Q̄(u1, . . . , un) = uθ1
1 . . . uθn

n .

When θ1 = · · · = θn = 1, we obtain the reliability of the series system with n
independent components.

3. Generalized proportional reversed hazard rate (GPRHR) model. Analo-
gously, the PRHR model defined above can be extended by

F(t) = Fθ1
1 (t) . . . Fθn

n (t),

where θ1, . . . , θn > 0. Clearly, this is a distorted distribution with distortion
function

Q(u1, . . . , un) = uθ1
1 . . . uθn

n .

When θ1 = · · · = θn = 1, we obtain the distribution of the parallel system with
n independent components.

4. Aggregation functions. The continuous aggregation functions are equivalent to
distorted distributions. So we can use them to get new (distorted) distributions.
For example, we can use the arithmetic mean

ū = A1(u1, . . . , un) := u1 + · · · + un
n

.
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This is also a mixture model (with a uniform mixing distribution). Another
example is the geometric mean

ug = A2(u1, . . . , un) := n
√
u1 . . . un .

If it is applied to the reliability functions, then it is included in the GPHR model
and if it is applied to the distribution functions, then it is included in the GPRHR
model.

The goal of this section is to prove that the distribution function of a system can
be written as a distortion of the distribution functions of the components. To this end
we will use the copula theory. The main properties of copulas can be seen in Nelsen
(2006) andDurante and Sempi (2016). Thus, if the randomvectorX = (X1, . . . , Xn)

contains the lifetimes of the components in a system then, from Sklar’s theorem, we
know that the joint distribution function F of X can be written as

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2.40)

for all x1, . . . , xn , where F1, . . . , Fn are the marginal (component) distribution func-
tions and C is a copula function, that is, it is a distribution function with uniform
marginals over the interval [0, 1]. Many authors prefer to restrict copula functions
to C : [0, 1]n → [0, 1]. In this case, they can always be extended to determine
an n-dimensional distribution function with uniform marginals. Moreover, if all the
marginal distribution functions F1, . . . , Fn are continuous, thenC is unique.We also
know that ifC is a copula, then the right hand side of (2.40) determines a proper joint
distribution function for all univariate distribution functions F1, . . . , Fn (i.e., from
a copula C , we can construct multivariate models with a fixed dependence structure
and arbitrary univariate marginals).

A similar representation holds for the reliability functions, that is, the joint relia-
bility function satisfies

F̄(x1, . . . , xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)) (2.41)

for all x1, . . . , xn , where F̄1, . . . , F̄n are the marginal (component) reliability func-
tions and Ĉ is a copula function, called survival copula. It is easy to see that C
determines Ĉ and vice versa. For example, if n = 2, then

Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2)

for all u1, u2 ∈ [0, 1].
We can use (2.41) to prove that the series systems have distorted distributions.

For example, if we consider X1:n = min(X1, . . . , Xn), then its reliability function is

F̄1:n(t) = Pr(X1:n > t) = Pr(X1 > t, . . . , Xn > t) = Ĉ(F̄1(t), . . . , F̄n(t)),

that is, it is a distorted distribution with dual distortion Q̄ = Ĉ . Note that copula
functions satisfy the properties of distorted functions but that the reverse is not true
(we will see an example later).
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If we consider the series system with just the first k components for k = 1, . . . , n,
then its lifetime is X1:k = min(X1, . . . , Xk) and its reliability function is

F̄1:k(t) = Pr(X1:k > t)=Pr(X1 > t, . . . , Xk > t)=Ĉ(F̄1(t), . . . , F̄k(t), 1, . . . , 1)

that is, it is a distorted distribution with dual distortion function

Q̄(u1, . . . , un) = Ĉ(u1, . . . , uk, 1, . . . , 1)

for u1, . . . , un ∈ [0, 1].
In the general case, if we consider the series system formed with the components

in the set P ⊆ [n], then its lifetime is XP = min j∈P X j and its reliability function
is

F̄P (t) = Pr(XP > t) = Pr(∩ j∈P {Xi > t}) = ĈP (F̄1(t), . . . , F̄n(t)), (2.42)

where
ĈP (u1, . . . , un) := Ĉ(uP

1 , . . . , uP
n ), (2.43)

uP
i = ui if i ∈ P and uP

i = 1 if i /∈ P for u1, . . . , un ∈ [0, 1]. Hence all the series
systems have distorted distributions. Similar representations can be proved for the
parallel systems by using (2.40).

Now we are in a position to prove the main result of this section which says that
the same property holds for any semi-coherent system.

Theorem 2.9 (Distortion representation, general case) If T is the lifetime of a semi-
coherent system and the component lifetimes (X1, . . . , Xn) have the survival copula
Ĉ, then the reliability function of T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)) (2.44)

for all t , where Q̄ is a distortion function which depends on ψ and Ĉ.

Proof From the minimal path set representation (2.15), we have

F̄T (t) =
r∑

i=1

F̄Pi (t) −
r−1∑
i=1

r∑
j=i+1

F̄Pi∪Pj (t) + · · · + (−1)r+1 F̄P1∪...∪Pr (t).

Hence, from (2.42) and (2.43), we obtain (2.44) with

Q̄(u) =
r∑

i=1

ĈPi (u) −
r−1∑
i=1

r∑
j=i+1

ĈPi∪Pj (u) + · · · + (−1)r+1ĈP1∪···∪Pn (u) (2.45)

for u = (u1, . . . , un) ∈ [0, 1]n , where ĈP is defined by (2.43). The function
Q̄ is always a distortion function since F̄T is a proper reliability function for all
F̄1, . . . , F̄n . �
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A similar proof can be obtained by using parallel systems and the minimal cut set
representation. The function Q̄ can be called distortion function (or domination)
of the system. Note that it depends on both the structure (the minimal path sets) of
the systems and on the structure dependence between the component lifetimes (the
survival copula). However, it does not depend on the component (marginal) reliability
functions. So (2.44) is a very convenient representation for the system reliability
since all the system characteristics (dependence and structure) are included Q̄ and
the different units are represented by their different marginal reliability functions. In
many situations in practice, we can choose different units (reliabilities) for a fixed
system structure Q̄ or study different system characteristics (different Q̄ functions)
for arbitrary or fixed components.

Next we analyse some particular cases of interest.

Theorem 2.10 (Distortion representation, IND case) If T is the lifetime of a semi-
coherent system with independent component lifetimes X1, . . . , Xn, then the
reliability function of T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

for all t , where Q̄ is a multinomial which only depends on ψ .

The proof is immediate from (2.17) or (2.45). The multinomial Q̄ was called reli-
ability function of the structure ψ in Barlow and Proschan (1975), p. 21. However
note that, Q̄ is not a joint reliability function (it is a distortion function). Also note
that this multinomial can be obtained by using the product-coproduct representations
for the structure function given in (1.6) and (1.7). It can also be obtained from the
pivotal decomposition (1.3) or from the Möbius representation (1.10).

In the general case, the distortion function Q̄ in (2.45) can also be obtained from
the Möbius transform ϕ̂ and Ĉ as

Q̄(u) =
∑
I⊆[n]

ϕ̂(I )Ĉ(uI ),

where u = (u1, . . . , un) and uI = (uI
1, . . . , u

I
n) with u

I
i = ui if i ∈ I and uI

i = 1 if
i /∈ I , see (3.6) in Navarro and Spizzichino (2020).

Theorem 2.11 (Distortion representation, ID case) If T is the lifetime of a semi-
coherent system and the component lifetimes (X1, . . . , Xn) have the survival copula
Ĉ and a common reliability F̄ , then the reliability function of T can be written as

F̄T (t) = q̄(F̄(t))

for all t , where q̄ is a distortion function which only depends on ψ and on Ĉ.

The proof is immediate from (2.44) with

q̄(u) = Q̄(u, . . . , u)
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for u ∈ [0, 1]. In particular, in the EXC case, q̄ can be written as

q̄(u) =
n∑

i=1

ai Ĉ(u, . . . , u︸ ︷︷ ︸
i times

, 1, . . . , 1︸ ︷︷ ︸
n−i times

),

where (a1, . . . , an) is the minimal signature of order n.

Theorem 2.12 (Distortion representation, IID case) If T is the lifetime of a semi-
coherent system with IID component lifetimes X1, . . . , Xn having a common relia-
bility F̄ , then the reliability function of T can be written as

F̄T (t) = q̄(F̄(t))

for all t , where q̄(u) = ∑n
i=1 aiu

i is a distortion function and (a1, . . . , an) is the
minimal signature of order n.

The proof is immediate from the two preceding theorems or from the minimal
signature representation given in (2.22). Note that, in this case, q̄ is the polynomial
obtained with the minimal signature coefficients.

Let us see some examples. The simplest one is the representation of the compo-
nents. Thus, the reliability function of Xi can be written as

F̄i (t) = Q̄i (F̄1(t), . . . , F̄n(t))

for Q̄i (u1, . . . , un) = ui and i = 1, . . . , n.
As mentioned above, the representation for the series systems is also immediate.

In particular, the reliability function of X1:k is

F̄1:k(t) = Q̄1:k(F̄1(t), . . . , F̄n(t))

for
Q̄1:k(u1, . . . , un) = Ĉ(u1, . . . , uk, 1, . . . , 1)

for k = 1, . . . , n. If the components are IND, then

Q̄1:k(u1, . . . , un) = u1 . . . uk .

If the components are ID with a common reliability F̄ , then F̄1:k(t) = q̄1:k(F̄(t))
with

q̄1:k(u) = Q̄1:k(u, . . . , u) = Ĉ(u, . . . , u︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

)

and, in particular, it they are IID, then q̄1:k(u) = uk for k = 1, . . . , n.

For the parallel systems, it is better to use the distributional copula C . Thus the
distribution function of Xk:k can be written as

Fk:k(t) = Qk:k(F1(t), . . . , Fn(t))

for
Qk:k(u1, . . . , un) = C(u1, . . . , uk, 1, . . . , 1)
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for k = 1, . . . , n. Hence, its reliability function is

F̄k:k(t) = Q̄k:k(F̄1(t), . . . , F̄n(t))

for
Q̄k:k(u1, . . . , un) = 1 − C(1 − u1, . . . , 1 − uk, 1, . . . , 1)

for k = 1, . . . , n.
We can also obtain representations based on Ĉ from the minimal path set repre-

sentation. For example, for X2:2 we get

F̄2:2(t) = F̄1(t) + F̄2(t) − F̄1:2(t) = Q̄2:2(F̄1(t), . . . , F̄n(t))

with
Q̄2:2(u1, . . . , un) = u1 + u2 − Ĉ(u1, u2).

A similar expression can be obtained for Xk:k . If the components are IND, then

Q̄k:k(u1, . . . , un) = 1 − (1 − u1) . . . (1 − uk) =
k∐

i=1

ui .

If they are ID, then F̄k:k(t) = q̄k:k(F̄(t)) for

q̄k:k(u) = 1 − C(1 − u, . . . , 1 − u︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

)

and, if they are IID, then q̄k:k(u) = 1 − (1 − u)k .
We can also consider a general coherent system. For example, for our favourite

system T = min(X1,max(X2, X3)), we have

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t) − F̄1:3(t) = Q̄T (F̄1(t), F̄2(t), F̄3(t))

with
Q̄T (u1, u2, u3) = Ĉ(u1, u2, 1) + Ĉ(u1, 1, u3) − Ĉ(u1, u2, u3).

If the components are IND, then

Q̄T (u1, u2, u3) = u1u2 + u1u3 − u1u2u3 = u1(u2 � u3).

If they are ID, then F̄T (t) = q̄T (F̄(t)) with

q̄T (u) = Ĉ(u, u, 1) + Ĉ(u, 1, u) − Ĉ(u, u, u)

and, if they are IID, then q̄T (u) = 2u2 − u3 for u ∈ [0, 1]. Recall that its minimal
signature is (0, 2,−1).

Proceeding in a similar way we can obtain the dual distortion functions given in
Tables2.4 and 2.5 for all the systemswith 1-3 IND and IID components, respectively.
In the second case all the systems equivalent under permutations have the same
distortions (so they are not repeated in the table).
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Table 2.4 Dual distortions functions for all the systems with 1-3 IND components

T = ψ(X1, X2, X3) Q̄(u1, u2, u3)

1 X1:3 = min(X1, X2, X3) u1u2u3

2 min(X2, X3) u2u3

3 min(X1, X3) u1u3

4 min(X1, X2) u1u2

5 min(X3,max(X1, X2)) u1u3 + u2u3 − u1u2u3

6 min(X2,max(X1, X3)) u1u2 + u2u3 − u1u2u3

7 min(X1,max(X2, X3)) u1u2 + u1u3 − u1u2u3

8 X3 u3

9 X2 u2

10 X1 u1

11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3

12 max(X3,min(X1, X2)) u3 + u1u2 − u1u2u3

13 max(X2,min(X1, X3)) u2 + u1u3 − u1u2u3

14 max(X1,min(X2, X3)) u1 + u2u3 − u1u2u3

15 max(X2, X3) u2 + u3 − u2u3

16 max(X1, X3) u1 + u3 − u1u3

17 max(X1, X2) u1 + u2 − u1u2

18 X3:3 = max(X1, X2, X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3 + u1u2u3

Table 2.5 Dual distortions functions for all the systems with 1-3 IID components

T = ψ(X1, X2, X3) q̄(u)

1 X1:3 = min(X1, X2, X3) u3

2 X1:2 = min(X1, X2) u2

3 min(X1,max(X2, X3)) 2u2 − u3

4 X1 u

5 X2:3 3u2 − 2u3

6 max(X1,min(X2, X3)) u + 2u2 − u3

7 X2:2 = max(X1, X2) 2u − u2

8 X3:3 = max(X1, X2, X3) 3u − 3u2 + u3

The preceding representations can be used jointly with the representation based
on distortions to compute the reliability and hazard rate functions of a system. For
example, in Fig. 2.6, we plot the reliability functions for series and parallel systems of
order 2 when the component lifetimes have exponential distributions of means 1 and
1/2 and when they are independent (left) or they have the following Clayton–Oakes
survival copula (right)

Ĉ(u, v) = uv

u + v − uv
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Fig.2.6 Reliability functions for the parallel system X2:2 (black) and the series system X1:2 (green)
when the components have exponential distributions of means 1 (red) and 1/2 (blue) and they are
independent (left) or dependent with a Clayton–Oakes copula (right)

for u, v ∈ [0, 1]. This copula induces a positive dependence between the component
lifetimes. Note that, in both cases, F̄1:2 ≤ F̄i ≤ F̄2:2 holds (this property is always
true) and that the positive dependence induced by this copula improves the series
system but that it gets worse the parallel system (as expected). The code in R to get
the right plot is the following. By changing C we can obtain other plots (including
the left plot).

C<-function(u,v) u*v/(u+v-u*v)
Q<-function(u,v) u+v-C(u,v)
R1<-function(t) exp(-t)
R2<-function(t) exp(-2*t)
R<-function(t) Q(R1(t),R2(t))
curve(R(x),0,4,xlab=’t’,ylab=’Reliability’,lwd=2)
curve(R1(x),add=T,col=’red’,lwd=2)
curve(R2(x),add=T,col=’blue’,lwd=2)
curve(C(R1(x),R2(x)),add=T,col=’green’,lwd=2)

We conclude this section by extending the signature representations. We have
seen in the preceding section that they hold when the component lifetimes have an
exchangeable (EXC) joint distribution functionF. This condition is equivalent to have
ID components and an EXC survival copula Ĉ .We have also proved above that the ID
condition cannot be dropped-out. However, let us see that the condition: “Ĉ is EXC”,
can be relaxed. To this end we need the following concept extracted from Okolewski
(2017). Recall that we use the following notation. For any set I ⊆ {1, . . . , n},
uI := (u1, . . . , un) denotes the vector with ui = u for i ∈ I and ui = 1 if i /∈ I .
The cardinality of the set I is denoted by |I |.
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Definition 2.6 An n-dimensional copula C is said to be diagonal-dependent
(shortly denoted by DD) if

C(uP ) = C(uQ) for all P, Q ⊆ {1, . . . , n} with |P| = |Q|. (2.46)

The function δ(u) = C(u, . . . , u) is called the diagonal section of the copula C .
Hence note that C is DD if and only if

C(uP ) = δm(u) for all P ⊆ {1, . . . , n} with |P| = m (2.47)

for m = 1, . . . , n, where

δm(u) := C( u, . . . , u︸ ︷︷ ︸
m−times

, 1, . . . , 1︸ ︷︷ ︸
(n−m)−times

)

is the diagonal section for the copula of the marginal distribution of the first m-
variables. Clearly, δn(u) = C(u, . . . , u) = δ(u) and δ1(u) = u for all u ∈ [0, 1]
(since all the univariatemarginals have a uniformdistribution over the interval (0, 1)).
So we just need to check (2.47) for m = 2, . . . , n − 1.

In particular, a copula C is DD when all the marginals of dimension m have the
same copula for all 1 < m < n. Of course, all the EXC copulas are, in particular,
DD. The reverse is not true, see the counterexample given in Navarro and Fernández-
Sánchez (2020).

Now we are ready to state the following result extracted from Navarro and
Fernández-Sánchez (2020).

Theorem 2.13 (Distortion reprersentation, DD-ID case) If T is the lifetime of a
semi-coherent system and the component lifetimes (X1, . . . , Xn) are ID and have a
DD survival copula, then (2.5) holds for the structural signature of dimension n.

Proof From (2.15)weknow that the system reliability function F̄T can bewritten as a
linear combination of the reliability functions of the series systems. If the component
lifetimes are ID with a common reliability function F̄ and a DD survival copula Ĉ ,
then

F̄P (t) = P

(
min
j∈P

Tj > t

)
= ĈP (F̄(t), . . . , F̄(t)) = δ̂m(F̄(t)) (2.48)

holds for all t and all P ⊆ {1, . . . , n} with |P| = m, where

δ̂m(u) := Ĉ( u, . . . , u︸ ︷︷ ︸
m−times

, 1, . . . , 1︸ ︷︷ ︸
(n−m)−times

)

for all u ∈ [0, 1] and m = 1, . . . , n. Hence, all the series systems with the same
number of components m do have the same reliability function given by (2.48).
Therefore, the general representation (2.15) can be reduced to

F̄T (t) = a1δ̂1(F̄(t)) + · · · + an δ̂n(F̄(t)), (2.49)

where a = (a1, . . . , an) is the minimal signature of order n of the system.
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Thepreceding representation (2.49) holds for any systemstructure (with the appro-
priate coefficients a1, . . . , an). For example, the series system with n components
has just one minimal path set P1 = {1, . . . , n} and lifetime T1:n = min(T1, . . . , Tn).
Hence

F̄1:n(t) = Pr(T1 > t, . . . , Tn > t) = Ĉ(F̄(t), . . . , F̄(t)) = δ̂n(F̄(t))

for all t .
Analogously, the minimal path sets of T2:n are all the subsets with n−1 elements.

So it has n = ( n
n−1

)
minimal path sets and, from (2.15),

F̄2:n(t) = nδ̂n−1(F̄(t)) − (n − 1)̂δn(F̄(t))

holds for all t . The last coefficient in the preceding expression is n − 1 because the
coefficients in (2.49) sum up to 1 (take t → −∞).

In general, Ti :n has
( n
n−i+1

)
minimal path sets and, from (2.15), its reliability

function can be written as

F̄i :n(t) = ai,n−i+1δ̂n−i+1(F̄(t)) + · · · + ai,n δ̂n(F̄(t)) (2.50)

for some coefficients ai,n−i+1, . . . , ai,n such that ai,n−i+1 + · · · + ai,n = 1 and
ai,n−i+1 = ( n

n−i+1

)
for i = 1, . . . , n.

Thus, if we define the column vectors r(t) = (F̄1:n(t), . . . , F̄n:n(t))′ and d(t) =
(̂δ1(F̄(t)), . . . , δ̂n(F̄(t)))′, (2.50) proves that r(t) = And(t) for a triangular real-
valuedmatrix An = (ai, j ) such thatai,n−i+1 = ( n

n−i+1

)
andai, j = 0 for i = 1, . . . , n

and j = 1, . . . , n− i . Hence An is not singular and so we can write d(t) = A−1
n r(t),

where A−1
n is the inverse matrix of An . Moreover, note that (2.49) can be rewritten

as F̄T (t) = a d(t). Then

F̄T (t) = aA−1
n r(t) = (c1, . . . , cn)r(t) = c1 F̄1:n(t) + · · · + cn F̄n:n(t)

for all t , where (c1, . . . , cn) := aA−1
n are some coefficients which only depend on

the structure of the system. Therefore, these coefficients should be the same as that
obtained in the IID continuous case, that is, ci = s(n)

i for i = 1, . . . , n. So (2.5)
holds with the same coefficients for systems with ID component lifetimes and DD
survival copulas. �

In Navarro and Fernández-Sánchez (2020) it is proved that the set SDD of all the
DD copulas is much bigger than the set SEXC of EXC copulas. Actually, SDD is
dense in the set of all the copulas while SEXC is not. Therefore, for any copula C we
can find a “close” DD copula. The following example illustrate these representations.

Example 2.8 Let us consider again T = min(X1,max(X2, X3)) with

F̄(t) = Pr(X1 > t, X2 > t) + Pr(X1 > t, X3 > t) − Pr(X1 > t, X2 > t, X3 > t).

Let us assume

Pr(X1 > x1, X2 > x2, X3 > x3) = Ĉ(F̄1(x1), F̄2(x2), F̄3(x3)),
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where Ĉ is the survival copula. If we assume F̄1 = F̄2 = F̄3 = F̄ (ID), then

Pr(X1 > t, X2 > t) = Ĉ(F̄(t), F̄(t), 1)

Pr(X1 > t, X3 > t) = Ĉ(F̄(t), 1, F̄(t))

Pr(X1 > t, X2 > t, X3 > t) = Ĉ(F̄(t), F̄(t), F̄(t)).

Therefore, F̄T (t) = q̄(F̄(t)) with

q̄(u) = Ĉ(u, u, 1) + Ĉ(u, 1, u) − Ĉ(u, u, u).

Analogously, it can be proved that F̄i :3(t) = q̄i :3(F̄(t)) for i = 1, 2 with

q̄1:3(u) = Ĉ(u, u, u)

q̄2:3(u) = Ĉ(u, u, 1) + Ĉ(u, 1, u) + Ĉ(1, u, u) − 2Ĉ(u, u, u).

As the structural signature is s = (1/3, 2/3, 0), we do not need F̄3:3.
If the components are IID, that is, Ĉ(u1, u2, u3) = u1u2u3, then

q̄(u) = 2u2 − u3

q̄1:3(u) = u3

q̄2:3(u) = 3u2 − 2u3.

Therefore

q̄(u) = 1

3
q̄1:3(u) + 2

3
q̄1:3(u)

holds since

2u2 − u3 = 1

3
(u3) + 2

3
(3u2 − 2u3).

If Ĉ is DD, then

Ĉ(u, u, 1) = Ĉ(u, 1, u) = Ĉ(1, u, u)

and so

q̄(u) = 2Ĉ(u, u, 1) − Ĉ(u, u, u)

q̄1:3(u) = Ĉ(u, u, u)

q̄2:3(u) = 3Ĉ(u, u, 1) − 2Ĉ(u, u, u)

for all u ∈ [0, 1]. Therefore
q̄(u) = 1

3
q̄1:3(u) + 2

3
q̄1:3(u)

holds since

2Ĉ(u, u, 1) − Ĉ(u, u, u) = 1

3
Ĉ(u, u, u) + 2

3
(3Ĉ(u, u, 1) − 2Ĉ(u, u, u)).

However, if Ĉ is the following Farlie-Gumbel-Morgenstern (FGM) copula:

Ĉ(u1, u2, u3) = u1u2u3(1 + θ(1 − u2)(1 − u3))



2.4 Distortion Representations 69

for −1 ≤ θ ≤ 1, then

q̄(u) = 2u2 − Ĉ(u, u, u)

q̄1:3(u) = Ĉ(u, u, u)

q̄2:3(u) = 3u2 + θu2(1 − u)2 − 2Ĉ(u, u, u).

Therefore

q̄(u) = 1

3
q̄1:3(u) + 2

3
q̄1:3(u)

does hold for θ �= 0 since

2u2 − Ĉ(u, u, u) �= 1

3
Ĉ(u, u, u) + 2

3
(3u2 + θu2(1 − u)2 − 2Ĉ(u, u, u))

for 0 < u < 1. �

Problems

1. Prove that if X is a non-negative random variable, then

E(X) =
∫ ∞

0
F̄X (x)dx .

2. Compute the MTTF in the exponential model.
3. Prove that the exponential model satisfies the lack of memory property.
4. Prove that the exponential model is the unique continuous model that satisfies

the lack of memory property.
5. Prove that the MRL of the exponential model satisfies m(t) = μ for all t ≥ 0.
6. Prove that the hazard rate of the exponential model satisfies h(t) = 1/μ for all

t ≥ 0.
7. Obtain the hazard rate of the Weibull model.
8. Obtain the reliability function of a model with hazard rate h(t) = a + bt for

t ≥ 0 and a, b ≥ 0.
9. Obtain the reliability function of a model with hazard rate h(t) = 1/(a + bt)

for t ≥ 0 and a, b ≥ 0.
10. Obtain the relationship between the reversed hazard rate and mean inactivity

time functions.
11. Obtain a representation similar to (2.14) for the MRL of the system in the IID

continuous case.
12. Obtain the minimal path set representation of a system of order 4.
13. Obtain the minimal cut set representation of a system of order 4.
14. Obtain the minimal signature representation of a system of order 4.
15. Obtain the maximal signature representation of a system of order 4.
16. Compute the matrices A4 and A−1

4 .
17. Compute the matrices B4 and B−1

4 .
18. Compute the matrix C4.
19. Obtain the signature of order 4 of a coherent system of order 3.
20. Obtain the signature of order 5 of a coherent system of order 4.
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21. Prove with an example that Samaniego’s representation does not hold without
the EXC assumption.

22. Prove that the function in (2.12) is a properPDF for i, n ∈ R satisfying1 ≤ i ≤ n.
23. Prove that Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2).
24. Compute the distortion functions of a system of order 4.
25. Use the distortion function of a system to plot its reliability and hazard rate

functions.
26. Compare the reliability functions of two systems by using distortions.
27. Compare the hazard rate functions of two systems by using distortions.
28. Obtain the signature representation for a DD (non-EXC) copula.
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Abstract

In this chapter we use the representations obtained in the preceding chapter to
stochastically compare the performance of different systems. We consider the
main stochastic orders: the usual stochastic order, the hazard rate order, the mean
residual life order, the reversed hazard rate order and the likelihood ratio order.
We use different techniques depending on the assumptions made about the com-
ponents. We consider systems with independent and identically distributed (IID)
components, exchangeable (EXC) components, identically distributed (ID) com-
ponents, independent (IND) components or dependent components. The depen-
dence is modeled by using copulas (or joint reliability functions). This chapter is
based on the review paper Navarro (2018b).

3.1 Main Stochastic Orders

First we give the definitions and the main properties of the stochastic orders consid-
ered here. Note that they can be used to compare both the system and the component
lifetimes (i.e. non-negative random variables). For more properties and applications
we refer the interested readers to Belzunce et al. (2016), Müller and Stoyan (2002)
and Shaked and Shanthikumar (2007).

If X and Y are two random variables (representing the lifetimes of two different
units or systems), there exist several ways to stochastically compare X and Y . The
first option is to compare their means (or expected lifetimes) μX = E(X) and
μY = E(Y ) (if they exist). Thus we write X ≤M Y (mean order) when μX ≤ μY .

The second main option is the (usual) stochastic order defined as follows.

Definition 3.1 X is said to be smaller than Y in the stochastic order (denoted by
X ≤ST Y or by FX ≤ST FY ) if F̄X (t) ≤ F̄Y (t) for all t , where F̄X and F̄Y are the
reliability functions of X and Y, respectively.
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Note that here (and throughout the book) ‘smaller than’ means ‘smaller than
or equal to’. Also, if both X ≤ST Y and X ≥ST Y hold (i.e., X =ST Y ), then
F̄X (t) = F̄Y (t) for all t , that is, they have the same law (distribution). This order can
also be called ‘the reliability order’ since X ≤ST Y means that the reliability of the
units represented by Y is always equal to or greater than the reliability of the units
represented by X .

The ST order X ≤ST Y is characterized by the following property:

E(g(X)) ≤ E(g(Y )) (3.1)

for any increasing function g such that these expectations exist. This property is
sometimes used as a definition. Recall that, throughout the book, we use increasing
(decreasing) in the weak sense, that is, a function g is increasing (decreasing) if
g(a) ≤ g(b) (≥) for all a ≤ b. Therefore, the stochastic order can be seen as an
extension of the expected value order for increasing functions. In particular, we have
that X ≤ST Y implies E(X) ≤ E(Y ) whenever both expectations exist. Also note
that, from (2.3), if X ≤ST Y and E(X) = E(Y ) hold, then X =ST Y .

Another characterization of this order is the following: X ≤ST Y if and only
if there exist two random variables X∗ and Y ∗ over the same probability space
(�, S,Pr) such that X∗ =ST X , Y ∗ =ST Y and X∗(ω) ≤ Y ∗(ω) for all ω ∈ � (see
Shaked and Shanthikumar 2007, p. 5). However, note that if X and Y are defined over
the same probability space �, X ≤ST Y does not necessarily imply that X (ω) ≤ST

Y (ω) for all ω ∈ �. As an immediate consequence we have that if X ≤ST Y , then
aX + b ≤ST aY + b for all a > 0 and b. The ordering is reversed when a < 0.

Another option is to compare X and Y by comparing their respective aging func-
tions. For example, the hazard rate order is defined as follows.

Definition 3.2 X is said to be smaller than Y in the hazard (or failure) rate order
(denoted by X ≤HR Y or by FX ≤HR FY ) if F̄Y /F̄X is an increasing function (with
the convention a/0 = +∞ for all a > 0).

The HR order can be characterized in terms of the ST order by the following
property:

X ≤HR Y ⇔ (X − t |X > t) ≤ST (Y − t |Y > t) for all t. (3.2)

Hence the HR order can be interpreted as follows: X ≤HR Y if and only if the
residual lifetime of a used unit with age t from X is ST-smaller than the residual
lifetime of a used unit with the same age t from Y for all t . Note that X ≤HR Y
implies X ≤ST Y .

If X and Y are two random variables with absolutely continuous (or discrete)
distribution functions, then X ≤HR Y iff hX (t) ≥ hY (t) for all t , where hX =
fX/F̄X and hY = fY /F̄Y are the HR functions of X and Y, respectively.
Analogously, the reversed hazard rate order is defined as follows.

Definition 3.3 X is said to be smaller than Y in the reversed hazard rate order
(denoted by X ≤RHR Y or by FX ≤RHR FY ) if FY /FX is an increasing function.



3.1 Main Stochastic Orders 73

The RHR order can be characterized in terms of the ST order by the following
property:

X ≤RHR Y ⇔ (X |X ≤ t) ≤ST (Y |Y ≤ t) for all t

or equivalently, by

X ≤RHR Y ⇔ (t − X |X ≤ t) ≥ST (t − Y |Y ≤ t) for all t. (3.3)

From (3.3), the RHR order can be interpreted as follows: X ≤RHR Y holds if and
only if the inactivity time of a unit which has failed before age t from X is ST-greater
than the inactivity time of a unit which has failed before age t from Y for all t .

If X and Y are two random variables with absolutely continuous (or discrete) dis-
tribution functions, then X ≤RHR Y iff h̄ X (t) ≤ h̄Y (t) for all t , where h̄ X = fX/FX

and h̄Y = fY /FY are the reverse hazard rate functions of X and Y , respectively.
It can be proved that the RHR order does not imply the HR order and that the

HR order does not imply the RHR order. However, they are related by the following
properties:

X ≤RHR Y ⇔ −X ≥HR −Y

and
X ≤HR Y ⇔ −X ≥RHR −Y

since FX (t) = F̄−X (−t), fX (t) = f−X (−t), hX (t) = h̄−X (−t) and h̄ X (t) =
h−X (−t).

Next we give the definition of a stronger order also related with conditional expec-
tations and aging properties, the likelihood ratio order.

Definition 3.4 If X and Y are two random variables with absolutely continuous (or
discrete) distribution functions, X is said to be smaller than Y in the likelihood ratio
order (denoted by X ≤LR Y or by FX ≤LR FY ) if fY / fX is increasing in the union
of their supports, where fX and fY are probability density (or probability mass)
functions of X and Y, respectively.

Note that X ≤LR Y holds if and only if

fX (y) fY (x) ≤ fX (x) fY (y)

for all x < y. The LR order can also be characterized by the following property:

X ≤LR Y ⇔ (X |s < X ≤ t) ≤ST (Y |s < Y ≤ t)

for all s < t such that these conditional randomvariables exist (i.e., such that FX (s) <

FX (t) and FY (s) < FY (t)). This property can be used to give a general definition
of the LR order. Hence the LR order can be interpreted as follows: X ≤LR Y if and
only if when we know that a unit from X and another unit from Y have both failed
in the interval (s, t], the lifetime of the unit from X is ST-smaller than the lifetime
of the unit from Y for all s < t . In particular, we obtain that the LR order implies
both the HR and the RHR orders and, of course, the ST order. The LR order can
also be characterized by the following property: X ≤LR Y holds iff ηX ≥ ηY , where
ηZ := − f ′

Z/ fZ is known as the Glaser’s eta function (see Glaser 1980).
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The relationships between the preceding orders defined in terms of ST orderings
of conditional random variables can be summarized as follows:

X ≤LR Y ⇒ X ≤HR Y
⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y

where the reverse implications are not necessarily true.
We can complete the diagram above by including the orders based on conditional

expectations given below. For a random variable Z , we define the upper end-point
uZ of its support as uZ := sup{x : FZ (x) < 1}. Analogously, the lower end-point
lZ of its support is lZ := inf{x : FZ (x) > 0}. Then the mean residual lifetime order
is defined as follows.

Definition 3.5 X is said to be smaller than Y in the mean residual life order
(denoted by X ≤MRL Y of by FX ≤MRL FY ) if uX ≤ uY and mX (t) ≤ mY (t)
for all t < uX for which that expectations exist, where mX (t) = E(X − t |X > t)
and mY (t) = E(Y − t |Y > t) are the MRL functions of X and Y, respectively.

Analogously, we can define the following orders based on conditional expecta-
tions.

Definition 3.6 X is said to be smaller than Y in the mean inactivity time order
(denoted by X ≤MIT Y ) if lX ≤ lY and m̄X (t) ≥ m̄Y (t) for all t > lY for which that
expectations exist, where m̄X (t) = E(t − X |X ≤ t) and m̄Y (t) = E(t − Y |Y ≤ t)
are the MIT functions of X and Y, respectively.

Definition 3.7 X is said to be smaller than Y in the doubly truncated mean order
(denoted by X ≤DTM Y ) if mX (s, t) ≤ mY (s, t) for all s < t for which that
expectations exist, where mX (s, t) = E(X |s < X ≤ t) and mY (s, t) = E(Y |s <

Y ≤ t) are the DTM functions of X and Y, respectively.

The definitions and relationships between the orders defined in this section can
be summarized in the diagram given in Table3.1 that was obtained by Navarro et al.
(1997). The first and last columns can be used as definitions for general distributions.
The implications from the second column to the third column are consequences of
the characterization of the ST order given in (3.1). The other implications can be
obtained taking limits to ∞ or to −∞. The reverse implications are not necessarily
true.

Another option two compare two independent random variables X and Y defined
over the same probability space is the following.

Definition 3.8 If X and Y are two independent random variables defined over the
same probability space, X is said to be smaller than Y in stochastic precedence
(denoted by X SP Y ) if Pr(X ≤ Y ) ≥ 1/2.
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Table 3.1 Relationships between the main stochastic orders. We use the notation Zt = (Z − t |Z >

t), t Z = (t − Z |Z ≤ t) and s Zt = (Z |s < Z ≤ t)

It is an open problem to determine if stochastic precedence comparisons have the
transitive property. They do not have it when X and Y are dependent. Hence we do
not know if they define a proper order. For that reason we do not use the notation
X ≤SP Y . Moreover, note that if both X SP Y and Y SP X hold, then we do not know
if X and Y have the same law. However, stochastic precedence is a reasonable way
to compare the lifetimes of two independent units or systems. Moreover, Arcones
et al. (2002) prove that if X and Y are two independent random variables defined
over the same probability space and X ≤ST Y holds, then X SP Y . Hence stochastic
precedence is a necessary condition for the ST order to hold. Stochastic precedence
comparisons can be used as an alternative to the mean order when the ST order does
not hold.

3.2 Systems with IID or EXC Components

First of all we prove that the k-out-of-n systems with IID components are LR-ordered
(as expected).

Proposition 3.1 If F is absolutely continuous, then

Xi :n ≤LR X j :m
for all i ≤ j and n − i ≥ m − j .

Proof From (2.12), we get

fi :n(t) = i

(
n

i

)
f (t)Fi−1(t)F̄n−i (t)

and

f j :m(t) = j

(
m

j

)
f (t)F j−1(t)F̄m− j (t).
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Hence
f j :m(t)

fi :n(t)
= c

F j−i (t)

F̄n−i−m+ j (t)

for a constant c > 0. As F is increasing and F̄ is decreasing, this ratio is increaing
in t under the stated assumptions and so the LR order holds. �

As a consequence, in the IID case, we have that

Xi :m ≤LR Xi :n ≤LR X j :n
for all i, j, n,m ∈ Z such that 1 ≤ i ≤ j ≤ n ≤ m. Note that Xi :n is LR increasing
in i and LR decreasing in n. In particular, the k-out-of-n systems (order statistics)
are LR ordered in the IID case, that is,

X1:n ≤LR · · · ≤LR Xn:n . (3.4)

As the LR order is the strongest one, then

X1:n ≤ORD · · · ≤ORD Xn:n (3.5)

for ORD = HR, RHR, ST, MRL , MIT, DTM . This property also hold if F is
not absolutely continuous. Actually,

X1:n ≤ST · · · ≤ST Xn:n (3.6)

holds in the general case since X1:n ≤ · · · ≤ Xn:n . In the general case we also have

X1:n ≤ST · · · ≤ST X1:1,
for the series systems,

X1:1 ≤ST · · · ≤ST Xn:n,
for the parallel systems and, in general, Xi :n ≤ST X j :m whenever i ≤ j and n− i ≥
m − j .

However, surprisingly, we will see that neither

X1:n ≤HR · · · ≤HR Xn:n (3.7)

nor
X1:n ≤MRL · · · ≤MRL Xn:n . (3.8)

hold in the general (or the EXC) case. This fact was first proved in Navarro and
Shaked (2006).

Now we are ready to prove the first ordering results for systems with IID compo-
nents based on Samaniego’s signature representation. They were obtained in Kochar
et al. (1999) and allows us to compare two systems just by comparing their respective
signatures. Note that the signatures of order n can be considered as probability mass
functions of discrete distributions over {1, . . . , n}. Then they can be ordered by using
the orders defined above.

Theorem 3.1 (Kochar et al. 1999) Let T1 and T2 be the lifetimes of two coherent
systems based on n IID components with a common continuous distribution function
F. Let s1 and s2 be their respective signatures. Then the following properties hold:
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(i) If s1 ≤ST s2, then T1 ≤ST T2 for all F;
(ii) If s1 ≤HR s2, then T1 ≤HR T2 for all F;
(iii) If s1 ≤LR s2, then T1 ≤LR T2 for all abs. cont. distribution functions F.

The proof is obtained from Samaniego’s representation (2.5), the ordering
properties of the k-out-of-n systems in (3.5) for the IID case and the preservation
ordering properties for mixtures of ordered distributions given in Theorems 1.A.6,
1.B.14 and 1.C.17 of Shaked and Shanthikumar (2007). Stochastic precedence com-
parisons were obtained in Theorem 5.6 of Samaniego (2007), p. 70.

These results can be extended to the EXC case by using the representations for
coherent and semi-coherent systems obtained in the preceding chapter. These results
were obtained in Navarro et al. (2008). Note that they also hold for systems with ID
component lifetimes and a common DD survival copula due to Theorem 2.13.

Theorem 3.2 (Navarro et al. 2008) Let T1 and T2 be the lifetimes of two semi-
coherent (or coherent) systems with component lifetimes (X1, . . . , Xn) having an
exchangeable joint distribution function F, and signatures of order n (signatures),
s(n)
1 and s(n)

2 , respectively. Then the following properties hold:

(i) If s(n)
1 ≤ST s(n)

2 , then T1 ≤ST T2 for all F;

(ii) If s(n)
1 ≤HR s(n)

2 , then T1 ≤HR T2 for all F such that (3.7) holds;

(iii) If s(n)
1 ≤HR s(n)

2 , then T1 ≤MRL T2 for all F such that (3.8) holds;

(iv) If s(n)
1 ≤LR s(n)

2 , then T1 ≤LR T2 for all absolutely continuous or discrete joint
distribution functions F such that (3.4) holds.

As in the IID case, this theorem is an immediate consequence of the signature rep-
resentation for the EXC case (2.27) and the mixture preservation properties obtained
in Shaked and Shanthikumar (2007). However, in this case, we need to assume the
respective ordering properties for the k-out-of-n systems (except in the case of the
ST order where they are always true). Note that in (i i i) we need the HR order for
the signatures to get the MRL order for the system lifetimes when the k-out-of-n
systems are MRL ordered. The MRL order for the signatures is not enough. Similar
results holds for the MIT and RHR orders (see Navarro and Rubio 2011). Let us see
an example.

Example 3.1 Let us consider the systems with lifetimes T1 = min(X1,max(X2,

X3)) and T2 = max(min(X1, X2),min(X3, X4)). Note that they are of different
orders (or that the first one is a semi-coherent system of order 4). So we need the
signatures of order 4 to compare them.They are s(4)1 = (1/4, 5/12, 1/3, 0) and s(4)2 =
s2 = (0, 2/3, 1/3, 0), respectively. We also have to assume that (X1, X2, X3, X4)

has an EXC joint distribution F (or that they are IID or just ID with a DD survival
copula).
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To check the ST order we need to compute the reliability functions S(4)
1 and S(4)

2
of the respective signatures. They are given in the following table:

s(4)1 1/4 5/12 1/3 0

S(4)
1 1 3/4 1/3 0

s(4)2 0 2/3 1/3 0

S(4)
2 1 1 1/3 0

As S(4)
1 ≤ S(4)

2 , then s(4)1 ≤ST s(4)2 holds. Therefore, from Theorem 3.2, (i), T1 ≤ST

T2 holds for all EXC joint distributions F. This includes the IID∼F case for any
univariate distribution function F . Note that these systems cannot be ordered by
using Theorem 3.1.

Analogously, to check the HR order, we need to compute the ratio of the reliability
functions S(4)

1 and S(4)
2 of the respective signatures. They are given in the following

table:
S(4)
2 1 1 1/3 0

S(4)
1 1 3/4 1/3 0

S(4)
2 /S(4)

1 1 4/3 1 −
Hence s(4)1 and s(4)2 are not HR ordered. Therefore, we do not know if T1 and T2 are
HR ordered for all EXC joint distributions F such that (3.7) holds (or all F in the
IID case). Note that Theorems 3.1 and 3.2 just include sufficient conditions for this
ordering.

Finally, if we want to get the LR order, we need to compute the ratio of the
respective signatures s(4)1 and s(4)2 . It is given in the following table:

s(4)2 0 2/3 1/3 0

s(4)1 1/4 5/12 1/3 0

s(4)2 /s(4)1 0 8/5 1 −
As expected, s(4)1 and s(4)2 are not LR ordered (since they are not HR ordered). So
we do not know what happen with the system lifetimes in the LR order. Note again
that Theorem 3.2 just includes sufficient conditions.

To illustrate these theoretical results we consider the IID case with a standard
exponential distribution. The system reliability functions are plotted in Fig. 3.1, left.
As expected they are ordered. This property holds for any distribution function F .
Even more, it holds for any joint EXC distribution function F. The code in R to get
this plot is the following:

R<-function(t) exp(-t)

s1<-c(1/4,5/12,1/3,0)

s2<-c(0,2/3,1/3,0)

R14<-function(t) (R(t))ˆ4

R24<-function(t) 4*(R(t))ˆ 3-3*(R(t))ˆ4

R34<-function(t) 6*(R(t))ˆ2-8*(R(t))ˆ3+3*(R(t))ˆ 4
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Fig. 3.1 Reliability functions (left) and hazard rate functions (right) for the systems T1 (blue) and
T2 (red) in Example 3.1. The dotted lines correspond to the functions of the k-out-of-4 systems for
k = 1, 2, 3, 4

R44<-function(t) 4*R(t)-6*(R(t))ˆ2+4*(R(t))ˆ 3-1*(R(t))ˆ4

R1<-function(t) {

s1[1]*R14(t)+s1[2]*R24(t)+s1[3]*R34(t)+s1[4]*R44(t)

}

R2<-function(t) {

s2[1]*R14(t)+s2[2]*R24(t)+s2[3]*R34(t)+s2[4]*R44(t)

}

curve(R14(x),xlab=’t’,ylab=’Reliability’,0,3,lty=3,lwd=2)

curve(R24(x),lty=3,add=T,lwd=2)

curve(R34(x),lty=3,add=T,lwd=2)

curve(R44(x),lty=3,add=T,lwd=2)

curve(R1(x),add=T,lwd=2)

curve(R2(x),add=T,col=’red’,lwd=2)

The system hazard rate functions are plotted in Fig. 3.1, right. In this case, they
are not ordered. Thus, the second system is better when they are new but, from time
t = 0.5 on (half a year if t is measured in years), the used systems with the first
structure are a little bit better than that with the second. However, they have the same
limiting behavior 2 when t → ∞. Note that, in this example, the limiting behavior
of the hazard rate function of the k-out-of-4 system is k for k = 1, 2, 3, 4 and that
the common hazard rate of the components is h(t) = 1 for t ≥ 0. The additional
code to plot these hazard rate functions is the following:

f<-function(t) exp(-t)

f14<-function(t) f(t)*4*(R(t))ˆ3

f24<-function(t) f(t)*(12*(R(t))ˆ2-12*(R(t))ˆ3)

f34<-function(t) f(t)*(12*R(t)-24*(R(t))ˆ2+12*(R(t))ˆ3)

f44<-function(t) f(t)*(4-12*R(t)+12*(R(t))ˆ2-4*(R(t))ˆ3)
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f1<-function(t){

s1[1]*f14(t)+s1[2]*f24(t)+s1[3]*f34(t)+s1[4]*f44(t)

}

f2<-function(t) {

s2[1]*f14(t)+s2[2]*f24(t)+s2[3]*f34(t)+s2[4]*f44(t)

}

curve(f14(x)/R14(x),ylab=’HR’,0,3,lty=3,ylim=c(0,4),lwd=2)

curve(f24(x)/R24(x),lty=3,add=T,lwd=2)

curve(f34(x)/R34(x),lty=3,add=T,lwd=2)

curve(f44(x)/R44(x),lty=3,add=T,lwd=2)

curve(f1(x)/R1(x),add=T,col=’blue’,lwd=2)

curve(f2(x)/R2(x),add=T,col=’red’,lwd=2) �

Proceeding as in the preceding example we can obtain all the ordering properties
for all the coherent systems with 1-4 components given in Table 2.1. They were
obtained in Navarro et al. (2008) and are given in Figs. 3.2, 3.3 and 3.4. The systems
with repeated signatures are not included in the graphs (since they are equal in law
to other systems in the graphs). Note that in the EXC case, we need some extra-
conditions for the HR, MRL and LR orders. We do not need them in the IID case.
Also note that the graph for the ST and LR orders are symmetric, that is, Ti ≤ORD Tj

iff the respective dual systems satisfy T D
j ≤ORD T D

i . This is not the case for the HR

and MRL orders. For the hazard rate order, we have Ti ≤HR Tj iff T D
j ≤RHR T D

i
under the respective properties for the order statistics in the EXC case. A similar
property holds for MRL and MIT orders.

As we have seen in the preceding example, when the signature ordering does not
hold, we do not know if the systems are ordered since the theorems just contain suf-
ficient conditions. In Navarro and Rubio (2011) it is proved that the conditions given
in (i), (i i) and (iv) of the preceding theorem are actually necessary and sufficient

Fig. 3.2 ST orderings for
the systems in Table 2.1 and
an EXC F. They also hold
for the IID case
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Fig. 3.3 HR (resp. MRL)
orderings for the systems in
Table 2.1 and an EXC F
under (3.7) (resp. (3.8)).
They also hold for the IID
case (here both conditions
hold and so it is better to get
the HR order)

Fig. 3.4 LR orderings for
the systems in Table 2.1 and
and EXC F under (3.4).
They also hold for the IID
case for any absolute
continuous distribution
function F

conditions to have the ST, HR and LR orderings, respectively, for any exchangeable
distribution function F under these conditions for the order statistics. This result can
be stated as follows. This is not true for the MRL order and, as we will see later, it
is not true for the IID case.

Theorem 3.3 (Navarro and Rubio, 2011) Let T1 and T2 be the lifetimes of two semi-
coherent (or coherent) systems with component lifetimes (X1, . . . , Xn) having an
exchangeable joint distribution function F, and signatures of order n (signatures),
s(n)
1 and s(n)

2 , respectively. Then the following properties hold:

(i) s(n)
1 ≤ST s(n)

2 iff T1 ≤ST T2 for all F;

(ii) s(n)
1 ≤HR s(n)

2 iff T1 ≤HR T2 for all F such that (3.7) holds;
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(iii) s(n)
1 ≤LR s(n)

2 iff T1 ≤LR T2 for all absolutely continuous or discrete distribu-
tion functions F such that (3.4) holds.

Proof The proofs of the “only if” parts are obtained from Theorem 3.2.
To prove the “if” part in (i), we assume that T1 ≤ST T2 holds for all EXC F. Then

we consider a particular EXC F defined as follows. Let (X1, . . . , Xn) be a random
vector defined as Xi = σ(i) for i = 1, . . . , n, where σ : [n] → [n] is a randomly
chosen permutation in the set of all the permutations of the set [n]. Clearly, the joint
distribution F of (X1, . . . , Xn) is EXC since

(X1, . . . , Xn) =ST (Xτ(1), . . . , Xτ(n))

holds for any permutation τ . Note that Xi has a uniform distribution on [n] for all i .
Moreover, as we choose a specific (common) permutation σ , the associated ordered
data are Xi :n = i for sure for all i . Therefore, Tj = 1, . . . , n with probabilities

s(n)
j for j = 1, 2. Hence, T1 ≤ST T2 holds for this EXC distribution F which is

equivalent to s(n)
1 ≤ST s(n)

2 .
The proofs of the “if” parts of (i i) and (i i i) are analogous taking into account that

the specific EXC distribution defined above trivially satisfies (3.7) and (3.4) (since
Xi :n = i for sure for all i). �

This theorem assures that Figs. 3.2, 3.3 and 3.4 contain all the ordering properties
for the EXC case. Navarro and Rubio (2011) noticed a surprising property: Some
systems that cannot be ordered by using signatures of order n, can be ordered with
signatures of order m for some m > n. This fact seems to be against the preceding
theorem but this is not the case. Let us see an example that proves that Fig. 3.4 does
not contain all the ordering properties for the IID case.Wewill see in the next section
that the same happen for Fig. 3.3, providing a procedure to detect all the orderings
for the IID case. We will also prove that Fig. 3.2 does contain all the ST orderings
for the IID case.

Example 3.2 Let us consider the systems5 and24 fromTable 2.1with lifetimesT5 =
min(X1,max(X2, X3)) and T24 = max(X1,min(X2, X3, X4)). Their signatures of
order 4 are s(4)5 = (1/4, 5/12, 1/3, 0) and s(4)24 = (0, 1/2, 1/4, 1/4). The respective
reliability vectors are:

s(4)5 1/4 5/12 1/3 0

S(4)
5 1 3/4 1/3 0

s(4)24 0 1/2 1/4 1/4

S(4)
24 1 1 1/2 1/4

S(4)
24 /S(4)

5 1 4/3 3/2 +∞
As S(4)

24 /S(4)
5 is increasing, s(4)5 ≤HR s(4)24 holds. So we can connect these systems in

Fig. 3.3 and their respective lifetimes satisfy T5 ≤HR T24 for all EXC F satisfying
(3.7). In particular this ordering holds for the IID case and the ST order holds for
any EXC F (note that s(4)5 ≤ST s(4)24 holds).
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However, to check the LR order we compute the following table:

s(4)24 0 1/2 1/4 1/4

s(4)5 1/4 5/12 1/3 0

s(4)24 /s(4)5 0 6/5 3/4 +∞
Therefore, s(4)5 and s(4)24 are not LR-ordered. So these systems are not LR ordered for
all EXC F and so they are not connected in Fig. 3.4.

However, if we compute the respective signatures of order 5 from (2.29), we get

s(5)5 =
(
4

5

1

4
,
1

5

1

4
+ 3

5

5

12
,
2

5

5

12
+ 2

5

1

3
,
3

5

1

3
+ 1

5
0,

4

5
0

)
=

(
1

5
,
3

10
,
3

10
,
1

5
, 0

)

and

s(5)24 =
(
4

5
0,

1

5
0 + 3

5

1

2
,
2

5

1

2
+ 2

5

1

4
,
3

5

1

4
+ 1

5

1

4
,
4

5

1

4

)
=

(
0,

3

10
,
3

10
,
1

5
, 0

)
.

Hence,
s(5)24 0 3/10 3/10 1/5 1/5

s(5)5 1/5 3/10 3/10 1/5 0

s(5)24 /s(5)5 0 1 1 1 +∞
Therefore s(5)5 ≤LR s(5)24 holds and, from Theorem 3.2, (iv), T5 ≤LR T24 for any
EXC joint distribution F.

This property seems to contradict the property obtained with the signatures of
order 4 taking into account that these properties are equivalent from Theorem 3.3,
(i i i). What is the explanation?

The answer is the following. Note that we have proved that T5 ≤LR T24 for all
EXC F of dimension 5. However, this is not true for all EXC F of dimension 4.
In particular, this property fails for the distribution of dimension 4 constructed in
the proof of Theorem 3.3 (since the systems’ probability mass values s(4)5 and s(4)24
are not LR-ordered). This is due to the fact that this particular EXC distribution of
dimension 4 cannot be extended (or included) in an exchangeable distribution of
order 5. Note that we can affirm that T5 ≤LR T24 holds for all EXC F of dimension
4 that can be extended (e.g. that are marginals) of EXC distributions of dimension 5.
This is actually what happen in the IID case that can be extended to any dimension.
So we can affirm that T5 ≤LR T24 holds for the IID case and all distributions F (of
dimension 1). Then note that we can connect these systems in the graph for the IID
case. In the next section we will see how to complete the graphs for the IID case for
all the orderings. �

3.3 Systems with ID Components

Recall that, from the preceding chapter, if the component lifetimes of a system
are identically distributed with a common distribution F and a common reliability
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F̄ = 1 − F , then the respective system’s functions can be written as

FT (t) = q(F(t)) (3.9)

and
F̄T (t) = q̄(F̄(t)) (3.10)

for all t , where q and q̄ are two (univariate) distortion functions satisfying q̄(u) =
1 − q(1 − u) for all u ∈ [0, 1]. These distortion functions are increasing and
continuous and depend on the system structure (minimal path or cut sets) and on the
dependence between the component lifetimes (copula or survival copula).

Hence, we can apply to systems with ID components all the ordering properties
obtained for distorted distributions in Navarro et al. (2013, 2014) and Navarro and
Gomis (2016). They are stated in the following proposition. We say that a function
g is bathtub (upside-down bathtub) shaped if there exist t1 ≤ t2 such that g(t) is
decreasing (increasing) for t ≤ t1, constant for t ∈ [t1, t2], and increasing (decreas-
ing) for t ≥ t2. In many applications, the hazard rate functions of the components
are bathtub shaped.

Proposition 3.2 If Ti has the reliability function q̄i (F̄(t)) and the distribution func-
tion qi (F(t)) for i = 1, 2, then the following properties hold:

(i) T1 ≤ST T2 for all F iff q̄2 ≥ q̄1 (or q2 ≤ q1) in (0, 1);
(ii) T1 ≤HR T2 for all F iff q̄2/q̄1 decreases in (0, 1);
(iii) T1 ≤RHR T2 for all F iff q2/q1 increases in (0, 1);
(iv) T1 ≤LR T2 for all absolutely continuous distribution functions F iff q̄ ′

2/q̄
′
1

decreases (or q ′
2/q

′
1 increases) in (0, 1);

(v) T1 ≤MRL T2 for all F such that E(T1) ≤ E(T2) if q̄2/q̄1 is bathtub in (0, 1).

Proof The proof (i) is immediate.
To prove (i i) we note that T1 ≤HR T2 holds iff

q̄2(F̄(t))

q̄1(F̄(t))

is increasing in t . Clearly, this property holds when q̄2/q̄1 decreases in (0, 1) since F̄
is decreasing. Conversely, if T1 ≤HR T2 holds for all F , then it holds for a continuous
F (e.g. a standard exponential or a uniform distribution), and then q̄2(u)/q̄1(u) is
decreasing for u ∈ (0, 1).

The proof of (i i i) is similar to that of (i i).
To prove (iv) we recall that the respective PDF can be written as fi (t) =

f (t)q ′
i (F(t)) for i = 1, 2, where f = F ′ is the common baseline PDF. Hence,

T1 ≤LR T2 holds iff the ratio

f2(t)

f1(t)
= q̄ ′

2(F̄(t))

q̄ ′
1(F̄(t))
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is increasing in t . Clearly, this property holds when q̄ ′
2/q̄

′
1 decreases in (0, 1) since F̄

is decreasing. Conversely, if T1 ≤LR T2 holds for all F , then it holds for a continuous
F and so q̄ ′

2/q̄
′
1 decreases in (0, 1). The proof for q ′

2/q
′
1 is similar.

Finally, to prove (v), we note that if q̄2/q̄1 is bathtub in (0, 1), then the ratio

F̄2(t)

F̄1(t)
= q̄2(F̄(t))

q̄1(F̄(t))

is bathtub in t . Hence, from the results given in Belzunce et al. (2013), T1 ≤MRL T2
holds for all F such that E(T1) ≤ E(T2). �

Note that in all the orderings we have necessary and sufficient conditions except
in (v) where we just have a sufficient condition and that there we need the additional
condition E(T1) ≤ E(T2). Note that if q̄2/q̄1 is decreasing (or increasing), then we
get the HR order from (i i) which is stronger than the MRL order. Moreover, we do
not need the additional assumption E(T1) ≤ E(T2).

Clearly, these properties can be applied to compare systems with ID components
having a common distribution function F by using the distortion representations
obtained in Sect. 2.4. The result for the ST order can be stated as follows.

Proposition 3.3 Let T1 and T2 be the lifetimes of two semi-coherent (or coherent)
systems with ID component lifetimes having an common distribution function F,
and distortion functions q1 and q2, respectively. Then the following properties are
equivalent:

(i) q̄1 ≤ q̄2 (or q1 ≥ q2) in (0, 1);
(ii) T1 ≤ST T2 for all F;
(iii) T1 ≤ST T2 for a continuous F.

Proof From Proposition 3.2, (i), we have that (i) implies (i i).
Clearly, (i i) implies (i i i).
Finally, if (i i i) holds, then T1 ≤ST T2 for a continuous F , that is, F̄T1 ≤ F̄T2 .

Hence, if 0 < u < 1, then there exists t such that F̄(t) = u (since F is continuous).
Therefore

q̄1(u) = q̄1(F̄(t)) = F̄T1(t) ≤ F̄T2(t) = q̄2(F̄(t)) = q̄2(u)

for all u ∈ (0, 1). �

For the HR order we have the following result.

Proposition 3.4 Let T1 and T2 be the lifetimes of two semi-coherent (or coherent)
systems with ID component lifetimes having an common distribution function F,
and distortion functions q1 and q2, respectively. Then the following properties are
equivalent:

(i) q̄2/q̄1 is decreasing in (0, 1);
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(ii) T1 ≤HR T2 for all F;
(iii) T1 ≤HR T2 for a continuous F.

The proof is similar to that of the STorder. Note that in both cases, the systemsmay
have different orders (i.e. numbers of components), different structures and different
dependency relationships (copulas). Theonly requirement is that theyhave a common
distribution function F . Also note that then we get distribution-free ordering results,
that is, comparisons for any F . Similar results can be stated for the RHR and LR
orders from Proposition 3.2. In the last case we need to assume that the respective
distortion functions are differentiable. However, the result for the MRL ordering is
different. It can be stated as follows.

Proposition 3.5 Let T1 and T2 be the lifetimes of two semi-coherent (or coherent)
systems with ID component lifetimes having an common distribution function F,
and distortion functions q1 and q2, respectively. If q̄2/q̄1 is bathtub in (0, 1), then
T1 ≤MRL T2 for all F such that E(T1) ≤ E(T2).

The converse property does not hold (for strict bathtub shaped functions, that is,
with both strict decreasing and strict increasing pieces). A counterexample can be
seen in Navarro and Gomis (2016). Let us see how to apply the preceding results to
systems with dependent ID components.

Example 3.3 Let us consider a series system and a parallel system with ID compo-
nents having a common reliability F̄ and a survival copula Ĉ . The reliability function
of the series system X1:2 can be written as

F̄1:2(t) = Pr(X1:2 > t) = Pr(X1 > t, X2 > t) = Ĉ(F̄(t), F̄(t)) = q̄1:2(F̄(t)),

where q1:2(u) = Ĉ(u, u) is the diagonal section of the copula Ĉ .
Analogously, the reliability function of the parallel system X2:2 is

F̄2:2(t) = Pr(max(X1, X2) > t)

= Pr(X1 > t) + Pr(X2 > t) − Pr(X1 > t, X2 > t)

= 2F̄(t) − Ĉ(F̄(t), F̄(t))

= q̄2:2(F̄(t)),

where q2:2(u) = 2u − Ĉ(u, u) for u ∈ [0, 1].
Note that, in this case (and in the general case), we know that

X1:2 ≤ST Xi ≤ST X2:2
holds for i = 1, 2, for all F and for all Ĉ .

From Proposition 3.4, X1:2 ≤HR Xi holds for all F̄ iff the ratio

q̄1:2(u)

q̄i (u)
= Ĉ(u, u)

u
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is increasing in (0, 1). In a similar way, Xi ≤HR X2:2 holds for all F iff

q̄2:2(u)

q̄i (u)
= 2u − Ĉ(u, u)

u

decreases in (0, 1), that is, iff Ĉ(u, u)/u is increasing in (0, 1). Analogously, it can
also be proved that X1:2 ≤HR X2:2 holds for all F iff the same condition holds
(i.e. Ĉ(u, u)/u is increasing in (0, 1)). Therefore, in the ID case, these orderings are
equivalent and they will just depend on the copula Ĉ (they are distribution-free with
respect to F).

Of course, if the components are IID, that is, Ĉ(u, v) = uv for u, v ∈ [0, 1], then
Ĉ(u, u)/u = u, which is increasing, and so

X1:2 ≤HR Xi ≤HR X2:2 (3.11)

holds for i = 1, 2 and for all F . This is a well known property already obtained in
the preceding section (by using the LR order).

Analogously, if we consider the following Clayton–Oakes copula

Ĉ(u, v) = uv

u + v − uv
, u, v ∈ [0, 1], (3.12)

which induces a positive dependence between the components, we get

Ĉ(u, u)

u
= u2

2u2 − u3
= 1

2 − u

which is increasing in (0, 1). So (3.11) holds for all F and this copula. Of course,
the sameMRL orderings also hold for any F . However, there exist copulas such that
this condition does not hold (see Example 4.1 in Navarro et al. 2018).

Let us study now the LR orderings. Thus, X1:2 ≤LR Xi holds for all F iff
q̄ ′
1:2(u)/q̄ ′

i (u) = q̄ ′
1:2(u) is increasing in (0, 1), that is, when q̄1:2(u) is convex

in (0, 1). This is also the condition for the other LR orderings. In the IID case
q̄1:2(u) = u2 is convex in (0, 1). Thus we can prove again that

X1:2 ≤LR Xi ≤LR X2:2 (3.13)

holds for any F in the IID case. For the copula (3.12), we note that

q̄1:2(u) = Ĉ(u, u) = u

2 − u

is convex in (0, 1) and so (3.13) holds for any F .
To illustrate these theoretical results we consider a standard exponential

distribution F , and then we plot in Fig. 3.5 the reliability functions (left) and the
hazard rate functions (right) of these systems for the IID case (dashed lines) and the
copula in (3.12) (continuous lines). The R-code to get these plots is the following:

# Reliability functions

#IID case:

R<-function(t) exp(-t)

qIID<-function(u) uˆ2

G12<-function(t) qIID(R(t))
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Fig. 3.5 Reliability (left) and hazard rate functions (right) for the series system X1:2 (black),
the components Xi (red) and the parallel system X2:2 (blue) in Example 3.3 for the case of IID
components (dashed lines) and dependent IDcomponents (continuous lines)with the survival copula
in (3.12)

G22<-function(t) 2*R(t)-G12(t)

curve(G12(x),xlab=’t’,ylab=’Reliability’,0,3,lty=2,lwd=2)

curve(G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(R(x),add=T,col=’red’,lwd=2)

#ID-C case:

C<-function(u,v) u*v/(u+v-u*v)

q<-function(u) C(u,u)

R12<-function(t) q(R(t))

R22<-function(t) 2*R(t)-R12(t)

curve(R12(x),xlab=’t’,add=T,lwd=2)

curve(R22(x),add=T,col=’blue’,lwd=2)

curve(R(x),add=T,col=’red’,lwd=2)

# Hazard rate functions

#IID case:

f<-function(t) exp(-t)

qpIID<-function(u) 2*u

g12<-function(t) f(t)*qpIID(R(t))

g22<-function(t) 2*f(t)-g12(t)

curve(g12(x)/G12(x),ylab=’HR’,0,3,ylim=c(0,2),lty=2,lwd=2)

curve(g22(x)/G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(f(x)/R(x),add=T,col=’red’,lwd=2)

#ID-C case:

qp<-function(u) 2/(2-u)ˆ2

f12<-function(t) f(t)*qp(R(t))

f22<-function(t) 2*f(t)-f12(t)
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curve(f12(x)/R12(x),add=T,lwd=2)

curve(f22(x)/R22(x),add=T,col=’blue’,lwd=2)

curve(f(x)/R(x),add=T,col=’red’,lwd=2)

Analogously, we can compare the systems obtained in the IID case with that
obtained with the copula Ĉ . For example, X I I D

1:2 ≤HR XĈ
1:2 holds for all F since

q̄Ĉ1:2(u)

q̄ I I D
1:2 (u)

= u/(2 − u)

u2
= 1

2u − u2

is decreasing in (0, 1). Analogously, we get that X I I D
2:2 ≥HR XĈ

2:2 holds for all F
since

q̄Ĉ2:2(u)

q̄ I I D
2:2 (u)

= 2u − u/(2 − u)

2u − u2
= 3 − 2u

(2 − u)2

is increasing in (0, 1). Note that the series system improves with the positive depen-
dency but that the parallel system get worse (see Fig. 3.5). �

As we have seen in the preceding example, the (distribution-free) ordering prop-
erties between two systems with ID components will just depend on the copula, that
is, the dependence structure. So they can be related to well known positive/negative
dependence properties. These relationships where studied in Navarro et al. (2018)
and Navarro et al. (2021). For instance, the results obtained in the preceding example
for series and parallel systems with two ID components can be stated as follows.

Proposition 3.6 Let X1 and X2 be the lifetimes of two components having a common
distribution function F and copula and survival copula C and Ĉ, respectively. Then
the following properties are equivalent:

(i) X1:2 ≤HR X1 for all F;
(ii) X1 ≤HR X2.2 for all F;
(iii) X1:2 ≤HR X2:2 for all F;
(iv) Ĉ(u, u)/u is increasing in (0, 1);
(v) (1 − C(u, u))/(1 − u) is increasing in (0, 1).

Note that to prove (iv) (or (v)) we just need one of these orderings for a continuous
distribution function F . Also note that in the ID case, as F̄2:2 = 2F̄ − F̄1:2, then

F̄(t) = 1

2
F̄1:2(t) + 1

2
F̄2:2(t)

for all t , that is, the common components’ distribution is a uniform mixture of
the distributions of the series and the parallel system. So the HR function of the
components will be always between that of series and parallel systems (for any
copula). This fact explains why the orderings stated in the preceding proposition are
equivalent. For the LR order, we have the following result. The conditions for the
RHR order can be seen in Theorem 4.2 of Navarro et al. (2018).



90 3 Stochastic Comparisons

Proposition 3.7 Let X1 and X2 be the lifetimes of two components having a common
absolutely continuous distribution function F and copula and survival copula C and
Ĉ, respectively. Then the following properties are equivalent:

(i) X1:2 ≤LR X1 for all F;
(ii) X1 ≤LR X2.2 for all F;
(iii) X1:2 ≤LR X2:2 for all F;
(iv) Ĉ(u, u) is convex in (0, 1).
(v) C(u, u) is convex in (0, 1).

Analogously, the condition for the comparisons of the IID case with the DID case
are the following. They were obtained in Proposition 17 of Navarro et al. (2021).

Proposition 3.8 Let X1 and X2 be the lifetimes of two components having a common
distribution function F and survival copula Ĉ. Let δĈ (u) = Ĉ(u, u) for u ∈ [0, 1].
Let Y1 and Y2 be two IID lifetimes with distribution F.

(i) Y1:2 ≤ST X1:2 (≥ST ) for all F iff u2 ≤ δĈ (u) (≥) for all u ∈ (0, 1);
(ii) Y1:2 ≤HR X1:2 (≥HR) for all F iff δĈ (u)/u2 is decreasing (increasing) in

(0, 1);
(iii) Y1:2 ≤LR X1:2 (≥LR) for all abs. cont. F iff δ ′̂

C
(u)/u is decreasing (increasing)

in (0, 1);
(iv) Y2:2 ≥ST X2:2 (≤ST ) for all F iff u2 ≤ δĈ (u) (≥) for all u ∈ (0, 1);
(v) Y2:2 ≥HR X2:2 (≤HR) for all F iff (2u − δĈ (u))/(2u − u2) is increasing

(decreasing) in (0, 1);
(vi) Y2:2 ≥LR X2:2 (≤LR) for all abs. cont. F iff (2− δ ′̂

C
(u))/(1− u) is increasing

(decreasing) in (0, 1).

Note that Y1:2 ≤ST X1:2 (≥ST ) holds iff Y2:2 ≥ST X2:2 (≤ST ). However, the
other orderings are not equivalent. A random vector (X1, X2) is Positive (Negative)
Quadrant Dependent, shortly written as PQD (NQD), if F(x, y) ≥ F1(x)F2(y)
(≤) for all x, y, (see, e.g., Joe 1997). If F1, F2 are continuous, these (dependence)
properties only depend on the copula.

Proposition 3.9 Let X1 and X2 be the two random variables having distribution
functions F1 and F2 and copula and survival copula C and Ĉ, respectively. Then the
following properties are equivalent:

(i) (X1, X2) is PQD (NQD) for all F1, F2;
(ii) (X1, X2) is PQD (NQD) for two continuous distributions F1, F2;
(iii) C(u, v) ≥ uv (≤) for all u, v ∈ [0, 1];
(iv) Ĉ(u, v) ≥ uv (≤) for all u, v ∈ [0, 1].

Note that, in the ID case, Y1:2 ≤ST X1:2 (≥ST ) and Y2:2 ≥ST X2:2 (≤ST ) hold
for all F when (X1, X2) is PQD (NQD). Thus the series system is better under a
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Fig. 3.6 All the HR
orderings for the systems in
Table 2.1 and IID
components. The red arrow
is an ordering that cannot be
obtained by using signatures
of order 4

positive dependence but the opposite holds for the parallel system (as we have seen
in the preceding example). These orderings are reverted for the NQD condition. The
other conditions can also be related with dependence properties (see next section).
These are expectable properties (series systems improve under positive dependence
since both component lifetimes are similar while parallel systems does so when they
are different).

Note that the necessary and sufficient conditions obtained above can also be used
to obtain all the distribution-free comparisons of coherent (or semi-coherent) systems
with IID components. All the orderings for systems with 1-4 components (given in
Table 2.1) were obtained in Navarro (2016). In some cases, these results improve
the results obtained by using signatures (see the preceding section). For example, for
the HR order we obtain the relationships given in Fig. 3.6. Note that we have a new
ordering (13 → 24) that cannot be obtained from signatures of order 4 (see Fig. 3.3).
Analogously, for the LR order, we obtain the relationships given in Fig. 3.7. Note
that we have three new orderings (13 → 24, 5 → 24 and 13 → 7) that cannot be
obtained from signatures of order 4 (see Fig. 3.4). For the ST order we obtain the
same orderings given in the preceding section (see Fig. 3.2). However, for n = 5 and
n = 6, there exist systems that can be ST-ordered with distortion functions but that
cannot be ordered with signatures (see Rychlik et al. 2018). Moreover, note that the
results based on distortions can also be used to check the ordering conditions for
k-out-of-n systems needed in the ordering results based on signatures for the EXC
case. For example, for n = 3, we can check if X1:3 ≤HR X2:3 ≤HR X3:3 holds for
a given copula C .

In other situationswemaywant to study if, for a fixed system (structure) and afixed
dependence (copula), an order is preserved. Thus, if the components X1, . . . , Xn are
ID∼F and Y1, . . . , Yn are ID∼G, they share the same copula C and F ≤ORD G
holds, we want to study if T1 ≤ORD T2 holds (or holds under some conditions) for
a given order ORD, where T1 = φ(X1, . . . , Xn) and T2 = φ(Y1, . . . , Yn) are the
lifetimes of two systems having the same structure.
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Fig. 3.7 All the LR
orderings for the systems in
Table 2.1 and IID
components. The red arrows
are three orderings that
cannot be obtained by using
signatures of order 4

To this end we can use the following ordering results for distorted distributions
extracted from Navarro et al. (2013). The similar results for the non-ID case were
obtained in Navarro et al. (2016).

Proposition 3.10 Let X and Y be the two random variables having absolutely con-
tinuous distribution functions FX and FY . Let T and S be two random variables
having distribution functions q(FX ) and q(FY ) for a distortion function q. Let q̄ be
the dual distortion function and let α(u) = uq̄ ′(u)/q̄(u), ᾱ(u) = uq ′(u)/q(u), and
β(u) = uq̄ ′′(u)/q̄(u).

(i) If X ≤ST Y , then T ≤ST S;
(ii) If X ≤HR Y and α is decreasing in (0, 1), then T ≤HR S;
(iii) If X ≤RHR Y and ᾱ is increasing in (0, 1), then T ≤RHR S;
(iv) If X ≤LR Y and β is non-negative and decreasing in (0, 1), then T ≤LR S.

Proof The proof of (i) is immediate (since q and q̄ are increasing functions).
To prove (i i), we assume X ≤HR Y , that is, hX ≥ hY holds for the respective

hazard rate functions. Hence, X ≤ST Y also holds, that is, F̄X ≤ F̄Y . Then we use
(2.34) and that α is decreasing and non-negative to get

hT (t) = α(F̄X (t))hX (t) ≥ α(F̄Y (t))hY (t) = hS(t)

for all t , for the respective hazard rate functions of T and S. Then T ≤HR S holds.
The proof of (i i i) is similar to the preceding one from (2.35).
Finally, to prove (iv), we note that X ≤LR Y implies ηX ≥ ηY for the respective

Glaser’s eta functions defined in the first section of this chapter. Moreover, X ≤LR Y
implies X ≤HR Y (i.e. hX ≥ hY ) and X ≤ST Y (i.e. F̄X ≤ F̄Y ). Then we use (2.33)
and that β is decreasing and non-negative to get

ηT (t) = ηX (t) + β(F̄(t))hX (t) ≥ ηY (t) + β(F̄Y (t))hY (t) = hS(t)
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for all t , for the respective Glaser’s eta functions of T and S. Then T ≤LR S
holds. �

Note that the ST-order is always preserved. However, we need some conditions
for the preservations of the other orders. An alternative condition for the preservation
of the HR is that the function q̄(uv)/q̄(u) is increasing in (0, 1)2. It can be proved
that the HR order is preserved in k-out-of-n systems with IID components (i.e. α is
decreasing for that systems). However, this is not the case for other coherent systems.
Let us see an example.

Example 3.4 Let us consider the two systems with lifetimes T1 and T2, with a
common structure φ(x1, x2, x3) = max(x1,min(x2, x3)) and with IID components
having distribution functions F andG, respectively. Then the commondual distortion
function for these systems is

q̄(u) = u + u2 − u3.

Hence,

α(u) = u
1 + 2u − 3u2

u + u2 − u3
= 1 + 2u − 3u2

1 + u − u2
.

By plotting α in [0, 1], we see that it is non monotone (it first increases and then
decreases). Therefore we do not know if the HR order is preserved. For example let
us consider IID components having the reliability function

F̄(t; a) = 1 − (1 − e−t )a, t ≥ 0 (3.14)

for a = 2, 5. Then we plot in Fig. 3.8, left, the reliability functions of the components
F̄(t) = F̄(t; 2) (black dashed lines) and Ḡ(t) = F̄(t; 5) (red dashed lines) and
that of the respective systems (black and red continuous lines). As we can see,
the components are ST ordered and this order is preserved in the systems (i.e. the
systemwith the most reliable component, is more reliable than the other). In Fig. 3.8,
right, we plot the hazard rate functions of the components (dashed lines) and the
systems (continuous lines). As we can see, F ≤HR G holds. However, the hazard
rate functions of the systems are not ordered. The code in R to get these plots is the
following:

# Reliability functions:
R1<-function(t) 1-(1-exp(-t))ˆ2
R2<-function(t) 1-(1-exp(-t))ˆ5
q<-function(u) u+uˆ2-uˆ3
RT1<-function(t) q(R1(t))
RT2<-function(t) q(R2(t))
curve(RT1(x),xlab=’t’,ylab=’Reliability’,0,7,lwd=2)
curve(RT2(x),add=T,col=’red’,lwd=2)
curve(R1(x),add=T,lty=2,lwd=2)
curve(R2(x),add=T,col=’red’,lty=2,lwd=2)
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Fig. 3.8 Reliability functions (left) and hazard rate functions (right) for the components (dashed
lines) and the systems (continuous lines) in Example 3.4 for the case of IID components with the
reliability function in (3.14) and a = 2 (black) and a = 5 (red)

# Hazard rate functions:
f1<-function(t) 2*exp(-t)*(1-exp(-t))
f2<-function(t) 5*exp(-t)*(1-exp(-t))ˆ4
qp<-function(u) 1+2*u-3*uˆ2
fT1<-function(t) f1(t)* qp(R1(t))
fT2<-function(t) f2(t)* qp(R2(t))
curve(fT1(x)/RT1(x),xlab=’t’,ylab=’HR’,0,7,lwd=2)
curve(fT2(x)/RT2(x),add=T,col=’red’,lwd=2)
curve(f1(x)/R1(x),add=T,lty=2,lwd=2)
curve(f2(x)/R2(x),add=T,col=’red’,lty=2,lwd=2) �

3.4 Systems with Non-ID Components

First, we recall that, from the representation results obtained in the preceding chapter,
the system distribution function can be written (in the general case) as

FT (t) = Q(F1(t), . . . , Fn(t)),

and its reliability function as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)),

that is, they are generalized distorted distributions from the distributions of the com-
ponent lifetimes. The explicit expression for the distortion functions Q and Q̄ can be
obtained from the minimal path (or cut) sets representation and the survival copula Ĉ
(or the copula C). So they only depend on the structure function and the dependence
between the components (i.e. they do not depend on F1, . . . , Fn).
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If the components are independent (IND), then the function Q̄ is a multinomial
and it is known as the reliability function of the structure (see Barlow and Proschan
1975, p. 21). Actually, this multinomial is the one obtained in the pivotal decompo-
sition (1.3) or in representation based on the Möbius transform (1.10) when these
Boolean functions are extended to real numbers. In this case Q is also a multinomial.

In both cases we can use the following ordering results for generalized distorted
distributions obtained in Navarro et al. (2016) (arbitrary components) and in Navarro
and del Águila (2017) (ordered components). Note that we have necessary and suf-
ficient conditions for the ST, HR and RHR orders. In Navarro et al. (2016) there are
sufficient conditions for the LR order.

Theorem 3.4 If Ti has the distribution function Qi (F1, . . . , Fn) and the reliability
function Q̄i (F̄1, . . . , F̄n), for i = 1, 2, then the following properties hold:

(i) T1 ≤ST T2 for all F1, . . . , Fn iff Q̄1 ≤ Q̄2 (or Q1 ≥ Q2) in (0, 1)n;
(ii) T1 ≤HR T2 for all F1, . . . , Fn iff Q̄2/Q̄1 is decreasing in (0, 1)n;
(iii) T1 ≤RHR T2 for all F1, . . . , Fn iff Q2/Q1 is increasing in (0, 1)n.

Proof The proof of (i) is immediate.
To prove (i i) we note that T1 ≤HR T2 holds iff

F̄T2(t)

F̄T1(t)
= Q̄2(F̄1(t), . . . , F̄n(t))

Q̄1(F̄1(t), . . . , F̄n(t))
(3.15)

is increasing in t .
If this ordering holds for all F1, . . . , Fn and we want to prove that Q̄2/Q̄1 is

decreasing in u1 for fixed u2, . . . , un ∈ (0, 1), we choose distribution functions
such that F̄i (t) = ui for t ∈ (1, 2) and i = 2, . . . , n and F̄1(t) = 1 for t ≤ 1,
F̄1(t) = 2 − t for t ∈ (1, 2), and F̄1(t) = 0 for t ≥ 2. Then, from (3.15), we
have that Q̄2(u1, . . . , un)/Q̄1(u1, . . . , un) is decreasing in u1. We can prove that it
is decreasing in the other variables in a similar way.

Conversely, if we assume that Q̄2/Q̄1 is decreasing in all its variables in (0, 1)n ,
as F̄1, . . . , F̄n are decreasing, from (3.15), F̄T2(t)/F̄T1(t) is increasing in t .

The proof of (i i i) is similar to the proof of (i i). �

Theorem 3.5 If Ti has the distribution function Qi (F1, . . . , Fn) and the reliability
function Q̄i (F̄1, . . . , F̄n), for i = 1, 2, then the following properties hold:

(i) T1 ≤ST T2 for all F1, . . . , Fn such that F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

(ii) T1 ≤HR T2 for all F1, . . . , Fn such that F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) = Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(3.16)

is decreasing in (0, 1)n;
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(iii) T1 ≤RHR T2 for all F1, . . . , Fn such that F1 ≤RHR · · · ≤RHR Fn iff the
function

H(v1, . . . , vn) = Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(3.17)

is increasing in (0, 1)n.

Proof The proof of (i) is immediate since F1 ≥ST · · · ≥ST Fn implies F̄1 ≥ · · · ≥
F̄n .

To prove (i i) we recall that T1 ≤HR T2 holds iff the ratio in (3.15) is increasing
in t .

If we want to prove that this ordering holds for all F1 ≥HR · · · ≥HR Fn when
H̄ is decreasing, we note ri = F̄i/F̄i−1 is decreasing for i = 2, . . . , n. Therefore,
ri ∈ [0, 1] (since ri (0) = 1). Moreover, F̄1 ∈ [0, 1] and it is also decreasing. Hence,

H̄(F̄1(t), r2(t), . . . , rn(t)) = Q̄2(F̄1(t), F̄2(t), . . . , F̄n(t))

Q̄1(F̄1(t), F̄2(t), . . . , F̄n(t))

is increasing in t and so T1 ≤HR T2 holds.
Conversely, let us assume that T1 ≤HR T2 holds for all F1 ≥HR · · · ≥HR Fn . If

we want to prove that H̄ is decreasing in v1 for fixed v2, . . . , vn ∈ (0, 1), we choose
the following reliability functions:

F̄1(t) =
⎧⎨
⎩

1, for 0 ≤ t ≤ 1
2 − t, for 1 < t ≤ 2

0, for t > 2

and

F̄i (t) =
⎧⎨
⎩
1 − (1 − v2 . . . vi )t, for 0 ≤ t ≤ 1

v2 . . . vi (2 − t), for 1 < t ≤ 2
0, for t > 2

for i = 2, . . . , n. Hence

r2(t) = F̄2(t)

F̄1(t)
=

{
1 − (1 − v2)t, for 0 ≤ t ≤ 1

v2, for 1 < t ≤ 2

and

ri (t) = F̄i (t)

F̄i−1(t)
=

{
1−(1−v2...vi )t

1−(1−v2...vi−1)t
, for 0 ≤ t ≤ 1

vi , for 1 < t ≤ 2

for i = 3, . . . , n, which are continuous and decreasing. Therefore, F1 ≥HR · · · ≥HR

Fn holds and from (3.15), we have that

Q̄2(F̄1(t), . . . , F̄n(t))

Q̄1(F̄1(t), . . . , F̄n(t))
= H̄(2 − t, v2, . . . , vn)

is decreasing for t ∈ (1, 2). So H̄(v1, . . . , vn) is decreasing for v1 ∈ (0, 1), for
all v2, . . . , vn ∈ (0, 1). We can prove that it is decreasing in the other variables in a
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similar way (see Navarro and del Águila 2017). For example, for the second variable,
given v1, v3, . . . , vn ∈ (0, 1), we can choose the following reliability functions:

F̄1(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 − (1 − v1)t, for 0 ≤ t ≤ 1
v1, for 1 < t ≤ 2

v1(3 − t), for 2 < t ≤ 3
0, for t > 3

F̄2(t) =
⎧⎨
⎩
1 − (1 − v1)t, for 0 ≤ t ≤ 1

v1(2 − t), for 1 < t ≤ 2
0, for t > 2

and

F̄i (t) =
⎧⎨
⎩

vi . . . v3(1 − (1 − v1)t), for 0 ≤ t ≤ 1
vi . . . v3v1(2 − t), for 1 < t ≤ 2

0, for t > 2

for i = 3, . . . , n. Hence

r2(t) = F̄2(t)

F̄1(t)
=

⎧⎨
⎩

1, for 0 ≤ t ≤ 1
2 − t, for 1 < t ≤ 2

0, for 2 < t ≤ 3

and

ri (t) = F̄i (t)

F̄i−1(t)
=

{
vi , for 0 ≤ t ≤ 1
vi , for 1 < t ≤ 2

for i = 3, . . . , n, and the result holds as above.
The proof of (i i i) is similar to the proof of (i i). �

Let us see an example which shows how to use the preceding theoretical results
to compare systems.

Example 3.5 As in the preceding section, we can consider the series and parallel
systems with lifetimes X1:2 and X2:2, respectively. Now we do not assume a com-
mon distribution for the component lifetimes X1 and X2. So they have arbitrary
distribution functions F1 and F2, a copula C and a survival copula Ĉ . Remember
that

X1:2 ≤ST Xi ≤ST X2:2
holds for all F1, F2 and all C .

However, if we consider the hazard rate order, then

X1:2 ≤HR X1

holds for all F1, F2 iff Ĉ(u, v)/u is increasing in (0, 1)2. Of course, this ordering
holds for IND components since Ĉ(u, v)/u = (uv)/u = v is increasing (a well
known property). In this case, it can be proved that the hazard rate of the series
system is h1:2 = h1 + h2, where hi is the hazard rate of Xi . So h1:2 ≥ hi for
i = 1, 2.
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Fig. 3.9 Reliability (left) and hazard rate functions (right) for the series system X1:2 (black), the
components Xi (red) and the parallel system X2:2 (blue) in Example 3.5 for the case of IND
components (dashed lines) and dependent (continuous lines) components with the survival copula
(3.12)

However, surprisingly, this property is not true when the components are depen-
dent. Thus, if we consider the Clayton–Oakes survival copula (3.12), then

Ĉ(u, v)

u
= v

u + v − uv

is decreasing in u and increasing in v. Therefore, for this copula,

X1:2 ≤HR X1

does not hold for all F1, F2. For example, if we consider two exponential distributions
Fi (t) = 1− exp(−i t) for t ≥ 0 and i = 1, 2, then we obtain the reliability (left) and
hazard rate (right) functions plotted in Fig. 3.9 for IND components (dashed lines)
and dependent components (continuous lines) with the survival copula in (3.12).
Note that they are ST ordered in both cases (as expected), that X1:2 ≤HR X1 also
holds in both cases, that X1:2 ≤HR X2 holds for the IND case but that it does not
hold for this copula. Note that the used series systems with age t are going to be
ST better (i.e., more reliable) than the used components X2 with the same age t , for
t ≥ 0.694. Also note that they are equivalent when t → ∞. However, the used series
systems with age t are going to be ST worse than the used components X1 with the
same age t , for all t .

To explain these properties, we can use Theorem 3.5, (i i) to obtain that X1:2 ≤HR

X1 holds for all F1 ≥HR F2 iff the function

H̄1(v1, v2) = Q̄1(v1, v1v2)

Q̄1:2(v1, v1v2)
= v1

Ĉ(v1, v1v2)

is decreasing in (0, 1)2. Analogously, X1:2 ≤HR X2 holds for all F1 ≥HR F2 iff the
function

H̄2(v1, v2) = Q̄2(v1, v1v2)

Q̄1:2(v1, v1v2)
= v1v2

Ĉ(v1, v1v2)
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is decreasing in (0, 1)2.
If the components are dependent with the survival copula in (3.12), then

H̄1(v1, v2) = v1(v1 + v1v2 − v21v2)

v21v2
= 1 + v2 − v1v2

v2
,

which is decreasing in (0, 1)2, and

H̄2(v1, v2) = v1v2(v1 + v1v2 − v21v2)

v21v2
= 1 + v2 − v1v2,

which is decreasing in v1 but increasing in v2. Hence, X1:2 ≤HR X1 holds for all
F1 ≥HR F2 (and this copula) but X1:2 ≤HR X2 does not hold for all F1 ≥HR F2
(as we can see in Fig. 3.9). In this case, the series system is HR ordered with the
best component (X1) but not always with the worse one (X2). If they are ID, both
orderings hold (see Fig. 3.5 in the preceding section).

Let us study now the parallel system. For example, X1 ≤HR X2:2 holds for all
F1, F2 iff

u + v − Ĉ(u, v)

u
= 1 + v − Ĉ(u, v)

u

is decreasing in (0, 1)2. If the components are IND, then

v − Ĉ(u, v)

u
= v

(
1

u
− 1

)

which is increasing in v and decreasing in u. So, surprisingly, this ordering does not
hold for all F1, F2 even if the components are IND, as can be seen in Fig. 3.9, right,
where X2:2 (dashed blue line) and the best component X1 (bottom red line) are not
HR ordered. However, X2:2 (dashed blue line) and the worse component X2 (top red
line) are HR ordered.

In this figure, the same holds for the Clayton–Oakes copula. As above we can use
Theorem 3.5, (i i), to study if this is a general property. Thus X1 ≤HR X2:2 holds
for all F1 ≥HR F2 iff the function

H̄3(v1, v2) = Q̄2:2(v1, v1v2)
Q̄1(v1, v1v2)

= v1 + v1v2 − Ĉ(v1, v1v2)

v1

is decreasing in (0, 1)2. Analogously, X2 ≤HR X2:2 holds for all F1 ≥HR F2 iff the
function

H̄4(v1, v2) = Q̄2:2(v1, v1v2)
Q̄2(v1, v1v2)

= v1 + v1v2 − Ĉ(v1, v1v2)

v1v2

is decreasing in (0, 1)2. If the components are IND, then

H̄3(v1, v2) = v1 + v1v2 − v21v2

v1
= 1 + v2 − v1v2

which is decreasing in v1 and increasing in v2. So X1 and X2:2 are not HR ordered
in Fig. 3.9. However, if the components are IND, then

H̄4(v1, v2) = v1 + v1v2 − v21v2

v1v2
= 1

v2
+ 1 − v1
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which is decreasing in both v1 and v2. So X2 and X2:2 areHR ordered in Fig. 3.9. This
is a general property for IND ordered components (the parallel system is HR better
that the worse component). This property also holds for the chosen Clayton–Oakes
copula since

H̄4(v1, v2) = 1 + 1 − v1v2

v2(1 + v2 − v1v2)

is decreasing in both v1 and v2. However, X1 and X2:2 are not HR ordered as can be
seen in Fig. 3.9, right. Also note that the series systems in both cases are HR ordered
but that the parallel systems are not. The code in R to get these plots is the following:

#Reliability functions:

#IID case:

R1<-function(t) exp(-t)

R2<-function(t) exp(-2*t)

QIND<-function(u,v) u*v

G12<-function(t) QIND(R1(t),R2(t))

G22<-function(t) R1(t)+R2(t)-G12(t)

curve(G12(x),xlab=’t’,ylab=’Reliability’,0,3,lty=2,lwd=2)

curve(G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(R1(x),add=T,col=’red’,lty=2,lwd=2)

curve(R2(x),add=T,col=’red’,lty=2,lwd=2)

#Clayton

C<-function(u,v) u*v/(u+v-u*v)

R12<-function(t) C(R1(t),R2(t))

R22<-function(t) R1(t)+R2(t)-R12(t)

curve(R12(x),xlab=’t’,add=T,lwd=2)

curve(R22(x),add=T,col=’blue’,lwd=2)

#Hazard rate functions

#IND case

f1<-function(t) exp(-t)

f2<-function(t) 2*exp(-2*t)

Q1IID<-function(u,v) v #partial derivative 1

Q2IID<-function(u,v) u #partial derivative2

g12<-function(t) {

f1(t)*Q1IID(R1(t),R2(t))+f2(t)*Q2IID(R1(t),R2(t))

}

g22<-function(t) f1(t)+f2(t)-g12(t)

curve(g12(x)/G12(x),0,3,ylab=’HR’,ylim=c(0,3),lty=2,lwd=2)

curve(g22(x)/G22(x),add=T,col=’blue’,lty=2,lwd=2)

curve(f1(x)/R1(x),add=T,col=’red’,lwd=2)

curve(f2(x)/R2(x),add=T,col=’red’,lwd=2)

#Clayton

C1<-function(u,v) vˆ2/(u+v-u*v)ˆ2 #partial derivative 1
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Fig. 3.10 Reliability (left) and hazard rate functions (right) for the series system X1:2 (black), the
parallel system X2:2 (blue) and the components X1 (Exponential, red) and X2 (Pareto, green) in
Example 3.5 for the case of IND components (dashed lines) and dependent components (continuous
lines) with the survival copula (3.12)

C2<-function(u,v) uˆ2/(u+v-u*v)ˆ2 #partial derivative 2

f12<-function(t) f1(t)*C1(R1(t),R2(t))+f2(t)*C2(R1(t),R2(t))

f22<-function(t) f1(t)+f2(t)-f12(t)

curve(f12(x)/R12(x),add=T,lwd=2)

curve(f22(x)/R22(x),add=T,col=’blue’,lwd=2)

We can modify this code to plot these functions for other marginals and/or other
copulas. For example, if we consider the same exponential for X1 but the Pareto
distribution F2(t) = 1 − 1/(1 + 5t) for t ≥ 0 for the second component lifetime
X2, then they are not ordered and we obtain the plot in Fig. 3.10 (for the same
copula). Note that the series and parallel systems are HR ordered in the case of
IND components (dashed lines) but that they are not ordered for the Clayton–Oakes
copula (black and blue continuous lines). This is a really surprising property! �

As in the preceding section,we can obtain conditions for distribution-free ordering
results based on properties of the copula and/or the survival copula. These conditions
are related with negative dependence properties. These relationships were studied in
Navarro et al. (2021). Let us see some examples. The proofs are straightforward.

To get these results we need the definitions of well-known dependence properties
and how they can be stated in terms of copulas. A continuous random pair (X, Y )

with copula C is said to be:

• Positive (Negative) Quadrant Dependent, shortly written as PQD (NQD), iff
Pr(X ≤ x, Y ≤ y) ≥ Pr(X ≤ x)Pr(Y ≤ y) for all x, y. If the marginal distribu-
tions are continuous, then the PQD (NQD) property is equivalent (see Proposition
3.9) to C(u, v) ≥ uv (C(u, v) ≤ uv) in [0, 1]2;
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Table 3.2 Relationships among positive (left) and negative (right) dependence properties

SI (Y |X) ⇒ LT D(Y |X)

⇓ ⇓
RT I (Y |X) ⇒ PQD

SD(Y |X) ⇒ LT I (Y |X)

⇓ ⇓
RT D(Y |X) ⇒ NQD

• LeftTailDecreasing (Increasing) in X , shortlywritten as LTD(Y |X) (LTI(Y |X)),
if, and only if, Pr(Y ≤ y|X ≤ x) is decreasing (increasing) in x for all y or,
equivalently, C(u, v)/u is decreasing (increasing) in u for all v in (0, 1)2. The
concepts LTD(X |Y ) and LTI(X |Y ) are defined in a similar way;

• RightTail Increasing (Decreasing) in X , shortlywritten asRTI(Y |X) (RTD(Y |X)),
if, and only if, Pr(Y > y|X > x) is increasing (decreasing) in x for all y or, equiv-
alently, Ĉ(u, v)/u is decreasing (increasing) in u for all v in (0, 1)2;

• Stochastically Increasing (Decreasing) in X , shortly written as SI (Y |X)

(SD(Y |X)), if, and only if, (Y |X = x) is ST-increasing (decreasing) in x .

We say that (X, Y ) is LTD if it is both LTD(Y |X) and LTD(X |Y ). The concepts
LTI, RTI, RTD, SI and SD are defined similarly. The relationships among the above
dependence properties are summarized in Table3.2. Also note that the PQD (NQD)
property implies that the Pearson correlation, Spearman correlation and Kendal tau
coefficients are nonnegative (nonpositive), see Nelsen (2006). So all of them are
positive (negative) dependence properties.

In the first proposition we compare the components with the series system.

Proposition 3.11 Let X1 and X2 be component lifetimes with survival copula Ĉ
and distribution functions F1 and F2, respectively. Then the following statements
are equivalent:

(i) X1:2 ≤HR X1 holds for all F1 and F2;
(ii) Ĉ(u, v)/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1);
(iii) (v − 1 + C(1 − u, 1 − v))/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1);
(iv) (X1, X2) is RT D(X2|X1).

Note that we need a negative dependence property (RTD) to separate the series
system from its components. For the RHR order we get the following conditions.

Proposition 3.12 Let X1 and X2 be component lifetimes with copula C and with
distribution functions F1 and F2, respectively. Then the following statements are
equivalent:

(i) X1 ≤RHR X2:2 holds for all F1 and F2;
(ii) C(u, v)/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1);
(iii) (v − 1 + Ĉ(1 − u, 1 − v))/u is increasing in u ∈ (0, 1) for every v ∈ (0, 1).
(iv) (X1, X2) is LT I (X2|X1).
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Note that herewe also need a negative dependence property and that the conditions
are duals (by changing Ĉ with C). To compare series and parallel systems we have
the following condition.

Proposition 3.13 Let X1 and X2 be component lifetimes with survival copula Ĉ and
with distribution functions F1 and F2, respectively. Then:

(i) X1:2 ≤HR X2:2 holds for all F1, F2 iff Ĉ(u, v)/(u + v) is increasing in (0, 1)2;
(ii) X1:2 ≤RHR X2:2 holds for all F1, F2 iff C(u, v)/(u+v) is increasing in (0, 1)2.

For ordered components we have the following results.

Proposition 3.14 Let X1 and X2 be component lifetimes. Then:

(i) X1:2 ≤HR X1 holds for all F1 ≥HR F2 iff Ĉ(u, uv)/u is increasing in (0, 1)2;
(ii) X1:2 ≤HR X2 holds for all F1 ≥HR F2 iff Ĉ(u, uv)/(uv) is increasing in

(0, 1)2;
(iii) X1 ≤HR X2:2 holds for all F1 ≥HR F2 iff (uv − Ĉ(u, uv))/u is decreasing in

(0, 1)2;
(iv) X2 ≤HR X2:2 holds for all F1 ≥HR F2 iff (u − Ĉ(u, uv))/(uv) is decreasing

in (0, 1)2;
(v) X1:2 ≤HR X2:2 holds for all F1 ≥HR F2 iff Ĉ(u, uv)/(u + uv) is increasing

in (0, 1)2.

Note that all the conditions for the survival copula Ĉ in the preceding proposition
can be seen as negative dependence properties.

Proposition 10 in Navarro et al. (2021) proves that, for any copula C , X1 and X2:2
are not HR ordered for all F1, F2. Note that X1 ≤HR X2:2 holds for all F1, F2 iff

1 − C(1 − u, 1 − v)

u

is decreasing in (0, 1)2. However, note that this ratio is always increasing in v. Hence,
the results given in Example 3.5 for X1 and X2:2 are valid for any copula C (i.e. for
some distribution functions F1 and F2 they are not HR ordered).

Analogously, it can be proved that X1 and X1:2 are not RHR ordered for all
F1, F2. To get these orderings we need to assume ordered components (as stated in
the preceding proposition).

As in the preceding section, we can compare systems with dependent and inde-
pendent components. If X1 and X2 have a copula C and a survival copula Ĉ and Y1
and Y2 are independent, X1 and Y1 have the common distribution function F1 and
X2 and Y2 have the common distribution function F2, then we obtain the following
results.

Proposition 3.15 The following statements are equivalent:
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(i) X1:2 ≥ST Y1:2 (respectively, ≤ST ) holds for all F1 and F2;
(ii) X2:2 ≤ST Y2:2 (respectively, ≥ST ) holds for all F1 and F2;
(iii) C(u, v) ≥ uv (respectively, C(u, v) ≤ uv) in [0, 1]2;
(iv) Ĉ(u, v) ≥ uv (respectively, Ĉ(u, v) ≤ uv) in [0, 1]2;
(v) (X1, X2) is PQD (respectively, NQD).

Proposition 3.16 The following statements are equivalent:

(i) X1:2 ≥HR Y1:2 (respectively, ≤HR) holds for all F1 and F2;
(ii) Ĉ(u, v)/(uv) is decreasing (respectively, increasing) in (0, 1)2;
(iii) (X1, X2) is RTI (respectively, RTD).

Proposition 3.17 The following statements are equivalent:

(i) X2:2 ≥RHR Y2:2 (respectively, ≤RHR) holds for all F1 and F2;
(ii) C(u, v)/(uv) is increasing (respectively, decreasing) in (0, 1)2;
(iii) (X1, X2) is LTI (respectively, LTD).

As we have seen in Example 3.5, the comparison results for the general case can
also be applied to systemswith INDcomponents. The results for all the semi-coherent
systems with 1-3 components were obtained in Navarro and del Águila (2017). Their
dual distortion functions are given in Table3.3. All the ST andHR orderings for these

Table 3.3 Dual distortions functions of coherent systems with 1–3 independent components

N T = ψ(X1, X2, X3) Q(u1, u2, u3)

1 X1:3 = min(X1, X2, X3) u1u2u3

2 min(X2, X3) u2u3

3 min(X1, X3) u1u3

4 min(X1, X2) u1u2

5 min(X3,max(X1, X2)) u1u3 + u2u3 − u1u2u3

6 min(X2,max(X1, X3)) u1u2 + u2u3 − u1u2u3

7 min(X1,max(X2, X3)) u1u2 + u1u3 − u1u2u3

8 X3 u3

9 X2 u2

10 X1 u1

11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3

12 max(X3,min(X1, X2)) u3 + u1u2 − u1u2u3

13 max(X2,min(X1, X3)) u2 + u1u3 − u1u2u3

14 max(X1,min(X2, X3)) u1 + u2u3 − u1u2u3

15 max(X2, X3) u2 + u3 − u2u3

16 max(X1, X3) u1 + u3 − u1u3

17 max(X1, X2) u1 + u2 − u1u2

18 X3:3 = max(X1, X2, X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3 + u1u2u3
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Table 3.4 Relationships for the ST order between the coherent systems with independent compo-
nents given in Table 3.3. The value 2 indicates that Ti ≤ST Tj holds for any F1, F2, F3 (i denotes
the row and j the column). The value 1 indicates that Ti ≤ST Tj holds for all F1 ≥ST F2 ≥ST F3. It
also indicates that Ti ≤ST Tj does not hold for all F1, F2, F3. The value 0 indicates that Ti ≤ST Tj

does not hold for all F1 ≥ST F2 ≥ST F3

ST 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2

3 0 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2

4 0 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2

5 0 0 0 2 1 1 2 1 1 2 2 2 2 2 2 2 2

6 0 0 0 0 2 1 0 2 1 2 2 2 2 2 2 2 2

7 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2

8 0 0 0 0 0 0 2 1 1 0 2 1 1 2 2 1 2

9 0 0 0 0 0 0 0 2 1 0 0 2 1 2 1 2 2

10 0 0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 2

11 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2

12 0 0 0 0 0 0 0 0 0 0 2 1 1 2 2 1 2

13 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 2 2

14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2

15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

systems are given in Tables3.4 and 3.5. The value 2 indicates that the ordering holds
for any components, the value 1 that it only holds for ordered components and the
value 0 that it does not hold for ordered components. The relationships for the HR
order and ordered components are summarized in the graph given in Fig. 3.11.

We conclude this section by showing how to proceed when the systems are built
just by using two kind of components. Here we assume that T1 and T2 are the
lifetimes of two coherent systems with components having one of the two (different)
distribution functions F (type A) or G (type B). For example, we can consider the
systems in Fig. 3.12.

Under this assumption, it is clear that the system reliability functions can be
written as

F̄Ti (t) = Q̄i (F̄, Ḡ)

for i = 1, 2, where Q̄i : [0, 1]2 → [0, 1] are two (bivariate) distortion functions.
They can be obtained from the general distortion functions obtained in Chap.2 (by
using minimal path or cut sets). Under some exchangeabillity assumptions between
the components of the same type, these distortion functions can also be computed
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Table 3.5 Relationships for the HR order between the coherent systems with independent compo-
nents given in Table3.3. The value 2 indicates that Ti ≤HR Tj holds for any F1, F2, F3 (i denotes
the row and j the column). The value 1 indicates that Ti ≤HR Tj holds for all F1 ≥HR F2 ≥HR F3.
It also indicates that Ti ≤HR Tj does not hold for all F1, F2, F3. The value 0 means that Ti ≤HR Tj

does not hold for all F1 ≥HR F2 ≥HR F3

HR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1

3 0 2 1 0 0 1 2 1 2 0 1 1 1 1 2 1 1

4 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 2 0

5 0 0 0 2 0 0 2 1 1 0 0 1 1 1 1 2 2

6 0 0 0 0 2 0 0 2 1 0 0 0 1 0 2 1 2

7 0 0 0 0 0 2 0 0 2 0 0 0 1 2 1 1 2

8 0 0 0 0 0 0 2 1 1 0 0 0 0 1 1 1 1

9 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2

12 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 1

13 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

from the survival signature defined in Coolen and Coolen-Maturi (2012) (see also
Samaniego and Navarro 2016).

For example, for the systems in Fig. 3.12, if we assume IND components, we have

Q̄1(u, v) = uv + v2 − uv2

and
Q̄2(u, v) = 2uv − uv2

for u, v ∈ [0, 1]2.
In this case T1 ≤ST T2 (resp. ≥ST ) holds for all F,G iff Q̄1 ≤ Q̄2 (resp. ≥ST ).

If we define the difference function

�(u, v) := Q̄2(u, v) − Q̄1(u, v),

this ordering holds for all F,G iff �(u, v) ≥ 0 (resp. ≤ 0) for all u, v ∈ [0, 1].
However, in some cases, we need conditions between F andG to get this ordering.

Thus, for the systems in Fig. 3.12, we obtain

�(u, v) = 2uv − uv2 − (uv + v2 − uv2) = uv − v2.
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Fig. 3.11 Hazard rate ordering relationships between the coherent systems with 1–3 independent
components given in Table3.3 when F1 ≥HR F2 ≥HR F3 holds

Fig. 3.12 Two coherent systems of order 3 with a similar structure built with components of type
A and B.

Therefore, �(u, v) ≥ 0 (≤ 0) iff u ≥ v (≤). Hence, T1 ≤ST T2 (resp. ≥ST ) holds
iff F̄ ≥ Ḡ (≤), that is, the best component should be placed at the first position (as
expected). Note that they are not ST ordered when F and G are not ST ordered.

In other situations, the conditions to get this ordering can be more complicated.
In this case we can proceed as follows. We plot the level curves (contour plot) of
� in [0, 1]2. In this plot we highlight the border line which leads to � = 0 and we
define the regions

R1 = {(u, v) ∈ [0, 1] : �(u, v) ≤ 0}
and

R2 = {(u, v) ∈ [0, 1] : �(u, v) ≥ 0}.
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Then we add to this plot the parametric curve (F̄(t), Ḡ(t)) for t ≥ 0. Note
that this curve always starts at the point (F̄(0), Ḡ(0)) = (1, 1) and finished at
(F̄(∞), Ḡ(∞)) = (0, 0). These plots were called RR-plots (Reliability-Reliability
plots) in Samaniego and Navarro (2016). Thus, we have three options:

• If (F̄(t), Ḡ(t)) ∈ R1 for all t ≥ 0, then T1 ≥ST T2 for these F,G.
• If (F̄(t), Ḡ(t)) ∈ R2 for all t ≥ 0, then T1 ≤ST T2 for these F,G.
• In the other cases, T1 and T2 are not ST ordered for these F,G.

Let us see an example.

Example 3.6 Let us compare the first system T1 in Fig. 3.12with a 2-out-of-3 system
T2 = X2:3 having two components of type A and one of type B. We assume that all
the components are independent. Then

Q̄2(u, v) = 2uv + u2 − 2u2v

and

�(u, v) = 2uv + u2 − 2u2v − (uv + v2 − uv2) = uv + u2 − v2 − 2u2v + uv2.

The level curves of � are plotted in Fig. 3.13, left. The regions R1 and R2 are
determined by the zero-level curve � = 0 (R1, above, and R2, below). In the right
plot we add several RR-plots. In the first one (blue line), we assume Ḡ = F̄2. As
the curve (RR-plot) belongs to the region R2, we have T1 ≤ST T2. The same happen
for the second example (red line), where we assume Ḡ = F̄ . Note that we have this
property T1 ≤ST T2 for all Ḡ ≤ F̄ (and also for some Ḡ ≥ F̄). However, in the third
case (green line), we assume Ḡ2 = F̄ and the curve crosses both regions. Therefore,
T1 and T2 are not ST-ordered. Finally, we choose G = F3 (i.e. Ḡ = 1 − (1 − F̄)3)
and then the curve (purple line) belongs to the region R1. So we have T1 ≥ST T2.
Note that the level curves can be used to determine approximately the difference

u
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Fig.3.13 Level curves of � for the systems in Example 3.6 and RR-plots (right) when we assume
Ḡ = F̄2 (blue line), Ḡ = F̄ (red line), Ḡ2 = F̄ (green line) and G = F3 (purple line)
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between both system reliability functions. For example, if F = G (red line), then
0 ≤ F̄2 − F̄1 ≤ 0.2. The R code to get these plots is the following:

# RR-plots
Q1<-function(u,v) u*v+vˆ2-u*vˆ2
Q2<-function(u,v) 2*u*v+uˆ2-2*uˆ2*v
D<-function(u,v) Q2(u,v)-Q1(u,v)
x<-seq(0,1,0.01)
y<-seq(0,1,0.01)
z<-outer(x,y,D)
contour(x,y,z,xlab=’u’,ylab=’v’)
curve(xˆ 2,add=T,col=’blue’,lwd=2)
curve(x+1-1,add=T,col=’red’,lwd=2)
curve(xˆ0.5,add=T,col=’green’,lwd=2)
curve(1-(1-x)ˆ3,add=T,col=’purple’,lwd=2) �

3.5 A Parrondo Paradox in Reliability

TheParrondo’s paradox showshow, in somegames, a randomstrategymight be better
than any deterministic strategy. Di Crescenzo (2007) noted that a similar paradox
holds in reliability for series systems with independent heterogeneous components.
The problem can be stated as follows.

Let T = min(X1, X2) be the lifetime of a series system with two independent
components having reliability functions F̄1 and F̄2. We can assume that the compo-
nents of type 1 are better than the others, that is, F̄1 ≥ F̄2 (but we will see later that
we do not need this assumption).

On the other hand, we can consider the series system with lifetime S =
min(Y1, Y2), where Y1 and Y2 are IID with common reliability

Ḡ = 1

2
F̄1 + 1

2
F̄2.

This system represents the case in which we choose the components randomly from
a mixed population with a 50% of units of type 1 (with reliability F̄1) and a 50% of
units of type 2 (with reliability F̄2), while in the first option we choose for sure one
component of each type.

Which one is the best option? Does this property depend on F̄1 and F̄2? What is
the best general option? Could this property be extended to other system structures?
What happen if the components are dependent?

The respective system reliability functions in both options can be represented with
distortions as

F̄T (t) = Pr(X1 > t, X2 > t) = F̄1(t)F̄2(t) = Q̄T (F̄1(t), F̄2(t))
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and

F̄S(t) = Pr(Y1 > t, Y2 > t) = Ḡ(t)Ḡ(t) =
(
1

2
F̄1(t) + 1

2
F̄2(t)

)2
= Q̄S(F̄1(t), F̄2(t))

with
Q̄T (u1, u2) = u1u2

and

Q̄S(u1, u2) =
(
u1 + u2

2

)2

for u1, u2 ∈ [0, 1]. It is easy to prove that Q̄T ≤ Q̄S since

√
u1u2 ≤ u1 + u2

2
(the geometric mean is always less than the arithmetic mean), or just since

4u1u2 ≤ u21 + 2u1u2 + u22

holds for all u1, u2 ∈ [0, 1] because 0 ≤ (u1 − u2)2. Note that we do not need the
condition u1 ≥ u2, that is, F̄1 ≥ F̄2. They can be ordered in the reverse sense or even
not ordered. In any case, the system with randomly chosen components is always
ST better, that is, T ≤ST S for all F̄1, F̄2. So the Parrondo paradox holds!

The respective reliability functions for exponential components with means 5 and
1 can be seen in Fig. 3.14, left. In the right plot the first unit has aWeibull distribution
with reliability F̄1(t) = exp(−t4) for t ≥ 0. The reliability functions of T and S
are plotted in black and blue, respectively. Note that the first one is always worse
than the second. As mentioned above, this property holds for all F̄1, F̄2. The red
and orange plots correspond to the series systems obtained with just units of type 1
(red) or 2 (orange). Of course, in the left plot, the best option is the red curve, that
is, the series system obtained with just the best units. In many situations this is not a
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Fig. 3.14 Reliability functions for the series systems T (black) and S (blue) in Parrondo paradox
for exponential (left) and Weibull (right) distributions. The red and orange plots correspond to the
series systems obtained with just units of type 1 (red) or 2 (orange)
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realistic option since we do not use the units of type 2, the bests units could be more
expensive, we mighty not know which ones are the best units, or the units could be
not ordered (as in the right plot). However, in the green plot we use an 50% of units
of type 1 and 2 obtaining a better series system. How can we build this system? To
answer this question we need some additional results.

Firstwe are going to studywhen this “Parrondoparadox”holds. It is easy to see that
it can be extended to series systemswith n independent components. The explanation
is simple since these systems are better when the units are similar (homogeneous).
Hence, here the Parrondo paradox is not a paradox but an expectable property. This
property is reverted for parallel systems since, in this case, the systems are betterwhen
the units are different (heterogeneous). What happen in other system structures? Do
these properties hold when the components are dependent?

The answers to some of these questions were obtained in Navarro and Spizzichino
(2010). They are based on the notions of Schur-concave and weakly Schur-concave
functions defined as follows (see Durante and Papini 2007).

Definition 3.9 A function g : Rn → R is weakly Schur-concave (convex) if

g(u1, . . . , un) ≤ g(ū, . . . , ū) (≥)

for all u1, . . . , un , where ū = (u1 + · · · + un)/n.

Definition 3.10 A function g : Rn → R is Schur-concave (convex) if

g(u1, . . . , un) ≤ g(v1, . . . , vn) (≥)

for all u1, . . . , un, v1, . . . , vn such that u1 + · · · + un = v1 + · · · + vn and such that

j∑
i=1

ui :n ≤
j∑

i=1

vi :n

for all j = 1, . . . , n − 1, where ui :n and vi :n are the ordered values obtained from
the respective vectors.

To explain the meaning of these properties let us consider n = 2. In both cases,
we study the monotonicity of function g(u1, u2)when wemove the points in the line
u1 + u2 = c. The function g is Schur-concave when it is increasing when the points
move to the diagonal. Obviously, then the maximum value is obtained in the point
at the diagonal (ū, ū), that is, then it is also weakly Schur-concave. For example, the
function g(u1, u2) = u1u2 is Schur-concave since if we assume u1 + u2 = c, then

g(u1, u2) = u1u2 = u1(c − u1)

which is increasing for u1 ≤ c/2 and decreasing for u1 ≥ c/2. Its maximum value
is obtained when u1 = c/2, that is, u1 = u2. The 3D plot and contour plot (level
curves) can be seen in Fig. 3.15. Note that g increases when we move to the diagonal
(mountain shape).Analogously, it can be proved that g(u1, u2) = 1−(1−u1)(1−u2)
is Schur-convex. The code for these plots is the following:
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Fig. 3.15 Plot (left) and contour plot (right) for g(u1, u2) = u1u2

#Schur-concave

g<-function(x,y) x*y

x<-seq(0,3,length=50)

y<-seq(0,3,length=50)

z<-outer(x,y,g)

persp(x,y,z,xlab=’u1’,ylab=’u2’,zlab=’g(u1,u2)’,col=’red’)

contour(x,y,z,col=’blue’)

Now we can state the following result.

Theorem 3.6 (Navarro and Spizzichino 2010) Let Q̄ be the dual distortion function
of a system. Then the Parrondo paradox holds (is reverted) for this system if and only
if Q̄ is weakly Schur-concave (convex).

Proof Note that to check the Parrondo paradox we have to compare

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

with
F̄S(t) = Q̄(Ḡ(t), . . . , Ḡ(t))

where Ḡ = (F̄1 + · · · + F̄n)/n. Hence, F̄T ≤ F̄S holds if and only if Q̄ is weakly
Schur-concave. The property is reverted when Q̄ is weakly Schur-convex. �

Of course, in particular, the Parrondo paradox holds (is reverted) when Q̄ is Schur-
concave (convex). For series systems with independent components, we have

Q̄1:n(u1, . . . , un) = u1 . . . un,

which is Schur-concave. So the Parrondo paradox holds for any F1, . . . , Fn . If the
components are dependent with a survival copula Ĉ , then

Q̄1:n(u1, . . . , un) = Ĉ(u1, . . . , un).

Hence, the Parrodo paradox holds if and only if Ĉ is weakly Schur-concave. Many
copulas are Schur-concave (see Nelsen 2006). For example, all the Archimedean
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copulas are Schur-concave. Do not exist strict Schur-convex copulas. There are some
copulas that are at the same time Schur-convex and Schur-concave (i.e. they are
Schur-constant). For them, both option coincide (i.e. T =ST S).

However, Durante and Papini (2007) obtained a strict weakly Schur-convex cop-
ula. Hence, under this survival copula, the Parrondo paradox is reverted in this series
system with dependent components. This is really a paradox since, in this case, it is
better to have heterogeneous components in a series system!

These properties are reverted for parallel systems. If the components are
independent, then their dual distortion function is

Q̄n:n(u1, . . . , un) = 1 − (1 − u1) . . . (1 − un),

which is Schur-convex in [0, 1]n and so the Parrondo paradox is reverted. If the
components are dependent with a copula C , then

Q̄n:n(u1, . . . , un) = 1 − C(1 − u1, . . . , 1 − un)

and so the Parrondo paradox is reverted when C is weakly Schur-concave. So this
property holds for many copulas. However, as stated above, it is not always true
(which is also a paradox). For other system structures it is not easy to prove if Q̄ is
weakly Schur-concave/convex.

We can try to extend the Parrondo paradox to other (stronger) orders by using
the comparison results obtained from distortions. For example, in the case of series
systems with two independent components, to extend it to the HR order we haver to
study the monotonicity of the ratio

Q̄S(u1, u2)

Q̄T (u1, u2)
= (u1 + u1)2/4

u1u2
= 1

2
+ u1

4u2
+ u2

4u1
.

It is easy to see that it is not monotone in [0, 1]2. So the Parrondo paradox cannot be
extended to the HR order as can be seen in Fig. 3.16. Note that T ≤HR S holds for
two exponential distributions with mean 5 and 1(left) but that it does not hold when
the first exponential is replaced with a Weibull (right) with hazard rate h1(t) = 4t3

for t ≥ 0. Also note that, in both cases, the limiting value of hS coincides with the
one of the hazard rate of the series system obtained with the best components when
t → ∞. This is a well known property in mixture models where the leading term
is determined by the best components since the worse components fail before (see
Navarro and Hernández 2008a, and the references therein).

Let us come back now to the question of the green line in Fig. 3.14. To answer
this question let us consider more general systems with randomized components.
They were studied in Navarro et al. (2015). If we have two type of components with
reliability function F̄X and F̄Y we can consider the deterministic system Tk which
have k components from X and n − k from Y . Its reliability function is

F̄Tk (t) = Q̄(F̄X (t), . . . , F̄X (t)︸ ︷︷ ︸
k times

, F̄Y (t), . . . , F̄Y (t)︸ ︷︷ ︸
n−k times

)

for k = 0, . . . , n. Here k = 0 means that we only use units from Y and k = n that
we just use units from X .
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Fig.3.16 Hazard rate functions for the series systems T (black) and S (blue) in Parrondo paradox
for exponential (left) and Weibull (right) distributions. The red and orange plots correspond to the
series systems obtained with just units of type 1 (red) or 2 (orange)

Then we can consider the randomized (mixed) system TK which choose Tk when
the random variable K = k, where K is a discrete random variable over the set
{0, . . . , n}.

Note that the systems T and S in the Parrondo paradoxwhen n = 2 are obtained as
T = T1 (i.e. we choose one component of each type) and S = TK where K = 0, 1, 2
with probabilities 0.25, 0.5, 0.25, respectively. Note that E(K ) = 1. Also note that
T1 can be obtained with the atom random variable K which takes the value 1 for sure.

Also note that the red and orange lines in Fig. 3.14 correspond to T2 and T0, respec-
tively. As mentioned above, in some cases, these options are unrealistic because they
only use units of one type. To have “fair” comparisons, we should impose E(K ) = 1,
that is, we use a 50% of units from each type. Under this condition, which one is
the best option for K ? The answer is given in the following result extracted from
Navarro et al. (2015). There we use the convex (CX), increasing convex (ICX) and
increasing concave (ICV) orders. Their definitions and main properties can be seen
in Shaked and Shanthikumar (2007).

Proposition 3.18 If the number k of components of type X is chosen randomly
according to the random variables K1 or K2 and

ϕ(k) = Q̄(u, . . . , u︸ ︷︷ ︸
k times

, v, . . . , v︸ ︷︷ ︸
n−k times

)

is convex (concave) in {0, 1, . . . , n} for all u, v ∈ (0, 1), then:

(i) K1 ≤CX K2 implies TK1 ≤ST TK2 (≥ST );
(ii) X ≥ST Y and K1 ≤ICX K2 (≤ICV ) imply TK1 ≤ST TK2 (≥ST ).

This result says that if ϕ is convex, then the more convex K , the better. If the units
from X are ST better than the ones from Y , then the convex ordering can be relaxed
to the weakly ICX order. These properties are reverted when ϕ is concave.
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In our series system with two independent components

ϕ(k) = ukvn−k

which is a convex function of k for any u, v ∈ (0, 1) since

ϕ′(k) = ϕ(k) log(u/v)

and
ϕ′′(k) = ϕ(k)(log(u/v))2 = ukvn−k(log(u/v))2 ≥ 0.

Hence, from (i) in the preceding proposition, when two randomized options are
ordered in the convex order, the respective systems are ST ordered in the same sense.
As mentioned above, the first option T is obtained with K1 which takes the value
1 with probability 1 and the second S with K2 with probabilities 0.25, 0.5, 0.25
for k = 0, 1, 2, respectively. Another reasonable assumption could be a uniform
distribution, that is, K3 = 0, 1, 2with probability 1/3. Finally,we could also consider
K4 with probabilities 0.5, 0, 0.5 for k = 0, 1, 2, respectively. In all these options we
have E(Ki ) = 1 for i = 1, 2, 3, 4 (i.e. they use the same number of components of
each type). It can also be proved (e.g. by plotting their respective probability mass
functions) that

K1 ≤CX K2 ≤CX K3 ≤CX K4.

Therefore, from (i),
TK1 ≤ST TK2 ≤ST TK3 ≤ST TK4

for all F̄X , F̄Y . Actually, K4 is the more convex option for K such that E(K ) = 1.
Hence it is always the best option in this system. It corresponds to the green line in
Fig. 3.14 and it assumes that the series systems are built with two units of type X or
with two units of type Y , randomly. This is the best option for our system and any
F̄X , F̄Y , that is, the green line will be always above the other lines (reliabilities). Note
that it is also a “randomoption” (so it can also be seen as a Parrondo paradox) and that
we do not need F̄X ≥ F̄Y . However, if this property holds, this best option could be
unreasonable in practice since the 50%of the customers will have a very good system
with two good units but the others will have a very bad system built with two bad
units. In this case, what should be done in practice? The answer is not easy. Although
this best option is very dispersed (we have very good and very bad systems), note
that this what we do at home, for example, with the remote control when we have
good and bad batteries (we put together the units of the same type). This is the best
option for series systems with independent and heterogeneous components.

Problems

1. Compare two systems with IID components by using their signatures. Plot the
respective functions to confirm (or reject) the comparisons obtained.

2. Check that an arrow in Fig. 3.2 is correct. Plot the respective functions to confirm
(or reject) the comparison obtained.

3. Check that a no-arrow in Fig. 3.2 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.
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4. Check that an arrow in Fig. 3.3 is correct. Plot the respective functions to confirm
(or reject) the comparison obtained.

5. Check that a no-arrow in Fig. 3.3 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

6. Check that an arrow in Fig. 3.4 is correct. Plot the respective functions to confirm
(or reject) the comparison obtained.

7. Check that a no-arrow in Fig. 3.4 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

8. Study the orderings for series and parallel systems with ID components for
a given bivariate survival copula. Plot the respective functions to confirm (or
reject) the comparisons obtained.

9. Study the orderings for series systems with ID components and two different
bivariate survival copulas. Plot the respective functions to confirm (or reject)
the comparisons obtained.

10. Study the orderings for two systems with ID components for a given trivariate
survival copula. Plot the respective functions to confirm (or reject) the compar-
isons obtained.

11. Study the effect of the dependence parameter of a copula in the reliability of a
system with ID components. Plot the respective functions to confirm (or reject)
the comparisons obtained.

12. Study the orderings X1:3 ≤HR X2:3 ≤HR X3:3 for ID components and a survival
copula Ĉ .

13. Find an EXC copula for which X1:2 ≤HR X2:2 does not hold in the ID case.
Plot the hazard rate functions to confirm that this comparison does not hold.

14. Check that a number in Table3.4 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

15. Check that a number in Table3.5 is correct. Plot the respective functions to
confirm (or reject) the comparisons obtained.

16. Check that an arrow in Fig. 3.11 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

17. Check that a no-arrow in Fig. 3.11 is correct. Plot the respective functions to
confirm (or reject) the comparison obtained.

18. Compare X1:2, X1, X2 and X2:2 for a fixed bivariate survival copula Ĉ and
arbitrary distributions F1, F2.

19. Compare two semi-coherent systems of order 3 for a fixed trivariate survival
copula Ĉ and arbitrary distributions F1, F2, F3.

20. Compare two systems by using RR-plots.
21. Confirm the Parrondo paradox in series systems with independent components.
22. Confirm the Parrondo paradox in series systems with dependent components

and an Archimedean copula.
23. Study the Parrondo paradox in a non-series system with independent compo-

nents. Plot the respective reliability functions.
24. Prove that the Parrondo paradox holds for series systems with n independent

components.
25. Prove that the Parrondo paradox is reverted for parallel systems with n indepen-

dent components.



4AgingProperties

Abstract

In this chapter we study the process of growing old for the system and the com-
ponents. To this end we use the main aging functions and the associated aging
classes (IFR, NBU, DMRL, ILR and their respective dual classes). In particular
we state conditions for the preservation of some of these aging classes under the
formation of coherent systems. We also consider different system residual and
inactivity times. The limiting behavior (when the time increases) of some system
aging functions are studied as well. The same technique can be used to get bounds
for them.

4.1 Main Aging Classes

First we give the definitions and the main properties of the aging classes considered
here. Note that they can be used to describe the aging process of the system and the
components. For more properties and applications we refer the readers to Belzunce
et al. (2016), Müller and Stoyan (2002) and Shaked and Shanthikumar (2007).

Let X be a non-negative random variable (r.v.) representing the lifetime of a unit
or a system (some aging classes can also be defined for r.v. that can take negative
values). Let F be its distribution function and let F̄ = 1−F be its reliability function.
As in the first chapter, we consider its residual lifetime Xt = (X − t |X > t) and the
MRL function m(t) = E(X − t |X > t) for t ≥ 0 (when these expectations exist). If
F is absolutely continuous, then f = F ′ represents its pdf and h = f/F̄ its hazard
(or failure) rate function. Then we consider the following aging classes.

Definition 4.1 X is said to be Increasing (Decreasing) Failure Rate, IFR (DFR),
if Xs ≥ST Xt (≤ST ) for all s ≤ t (such that these conditional r.v. exist).
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By historical reasons, the researchers prefer to use “failure rate” for this class but
“hazard rate” for the order. However, if you prefer, these classes can also be written
as IHR/DHR. The HR order could also be written as the FR order. Note that IFR
means that the used units with residual lifetimes Xt are ST decreasing in t . These
kind of conditions represent positive (or natural) aging properties where the unit get
worse when the time goes on. Here “positive” does not mean “good”. The reverse
conditions represent “negative” (or unnatural) aging behaviors. The IFR condition
can also be written as

F̄(x + s)F̄(t) − F̄(x + t)F̄(s) ≥ 0

for all s ≤ t and all x ≥ 0. This equality is reversed for the DFR class. The IFR
(DFR) is also characterized by a log-concave (log-convex) reliability, that is, ln F is
concave (convex). If F is abs. cont., then IFR (DFR) is characterized by an increasing
(decreasing) hazard (or failure) rate. Obviously, this property explains its name. The
exponential distribution belongs to both classes (since it has a constant hazard rate
in [0,∞)). Moreover, the ST order used in the definition can be replaced with the
HR order since hXt (x) = h(x + t) for all t, x ≥ 0.

Aswewill see later, these classes are not preserved under the formation of coherent
systems. So we could consider the following weaker conditions.

Definition 4.2 X is said to be New Better (Worse) than Used, NBU (NWU), if
X ≥ST Xt (≤ST ) for all t ≥ 0 (such that these conditional r.v. exist).

Note that in these classes we need to assume that X is non-negative. Again, the
exponential distribution belongs to both classes since X =ST Xt for all t ≥ 0. The
condition for the NBU property can also be written as

F̄(x)F̄(t) ≥ F̄(x + t),

that is, ln F̄ is superaditive. Obviously, IFR implies NBU and DFR implies NWU
but the reverse implications do not hold. Between these classes we have the ones
defined as follows.

Definition 4.3 X is said to be Increasing (Decreasing) Failure Rate Average,
IFRA (DFRA), if the function

A(t) = 1

t

∫ t

0
h(x)dx = −1

t
ln F̄(t)

is increasing (decreasing) for all t ≥ 0.

It can be proved that these conditions are equivalent to

F̄(ct) ≥ F̄c(t) (≤) (4.1)

for all c ∈ (0, 1) and all t ≥ 0. As in the preceding case, the exponential distribution
belongs to both classes and we have

I FR ⇒ I FRA ⇒ N BU
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and
DFR ⇒ DFRA ⇒ NWU.

The classes based on the reversed failure rate are defined in a similar way. For
example, X is DRFR (IRFR) is h̄ = f/F is decreasing (increasing). Block et al.
(1998) proved that there are no non-negative random variables which have the IRFR
property.

For the mean residual life function we have the following classes.

Definition 4.4 X is said to be Increasing (Decreasing)MeanResidual Life, IMRL
(DMRL), if the MRL function

m(t) = E(X − t |X > t) = 1

F̄(t)

∫ t

0
F̄(x)dx

is increasing (decreasing) for all t ≥ 0.

For the exponential distribution we havem(t) = E(X − t |X > t) = E(X) and so
it belongs to both classes. Note that here the positive (negative) aging is represented
by the DMRL (IMRL) class. Weaker classes can be obtained as follows.

Definition 4.5 X is said to be New Better (Worse) than Used in Expectations,
NBUE (NWUE) if E(X) ≥ E(X − t |X > t) (≤) for all t ≥ 0.

Clearly, we have
I FR ⇒ DMRL ⇒ N BUE

and
DFR ⇒ I MRL ⇒ NWUE .

The last classes are the strongest ones and are related with the LR order.

Definition 4.6 X is said to be Increasing (Decreasing) Likelihood Ratio, ILR
(DLR), if Xs ≥LR Xt (≤LR) for all 0 ≤ s ≤ t (such that these conditional r.v. exist).

Clearly, the condition for the ILR (DLR) class implies the IFR (DFR) property
(since the LR order is stronger than the ST order) and is equivalent to: f is log-
concave (log-convex). They can also be stated in terms of the Glaser’s eta function
η(t) = − f ′(t)/ f (t), ILR means that η is increasing and DLR that it is decreasing.

The relationships between these classes are summarized in Table4.1. The dual
classes satisfy similar relationships.

For more properties on aging classes see Bryson and Siddiqui (1969), Barlow and
Proschan (1975), Block et al. (2006) and Navarro et al. (2008). In many applications,
the units (or the systems) do not have monotone failure rate (or mean residual life)
functions. Actually, very often, they have a Bathtub shaped Failure Rate (BFR),
that is, h(t) is decreasing for t ∈ [0, t1], is constant in [t1, t2], and is increasing in
[t2, ∞) for some t1 ≤ t2. However, few distributions have this shape for their hazard
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Table 4.1 Relationships among the main positive aging classes

ILR ⇒ IFR ⇒ IFRA ⇒ NBU

⇓ ⇓ ⇓
DRFR DMRL ⇒ NBUE

rate functions. Some authors try to solve this problem by adding parameters to well
known distributions. Others prefer to consider mixtures (or generalized mixtures)
of populations which also explain why this shape appears (when the populations
contains different units), see e.g. Navarro and Hernández (2004, 2008a, b) and the
references therein.Wewill also see that this shape appearswhenwe consider systems.

4.2 Systems with ID Components

First of all, we recall that if T is the lifetime of a systemwith ID component lifetimes
having a common distribution function F , then, from Theorem 2.11, the system
distribution function can be written as FT (t) = q(F(t)) for all t and for a continuous
and increasing distortion function q : [0, 1] → [0, 1] such that q(0) = 0 and
q(1) = 1. The respective reliability functions satisfy F̄T (t) = q̄(F̄(t)) for all t ,
where q̄(u) := 1 − q(1 − u) for all u ∈ [0, 1] is another distortion function.

Then we can use the preservation results for distorted distributions obtained in
Navarro et al. (2014) to study the preservation of aging classes in systems. They can
be stated as follows. We say that an aging classA is preserved by a distortion q iff
q(F) ∈ A for all F ∈ A.

Theorem 4.1 Let Fq = q(F) be a distorted distribution. Then:

(i) The IFR (DFR) class is preserved by q iff α(u) = uq̄ ′(u)/q̄(u) is decreasing
(increasing) for u ∈ (0, 1).

(ii) The DRFR class is preserved by q iff ᾱ(u) = uq ′(u)/q(u) is decreasing in
(0, 1).

(iii) The NBU (NWU) class is preserved by q iff q̄ is submultiplicative (supermulti-
plicative), that is,

q̄(uv) ≤ q̄(u)q̄(v), (≥) for all u, v ∈ [0, 1]. (4.2)

(iv) The IFRA (DFRA) class is preserved by q iff q̄ satisfies

q̄(uc) ≥ (q̄(u))c, (≤) for all u, c ∈ [0, 1]. (4.3)

(v) If F is absolutely continuous and ILR and there exists u0 ∈ [0, 1] such that
β(u) = uq̄ ′′(u)/q̄ ′(u) is non-negative and decreasing in [0, u0] and β̄(u) =
(1 − u)q̄ ′′(u)/q̄ ′(u) is non-positive and decreasing in [u0, 1], then Fq is ILR.
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Proof To prove (i), we use (2.34) which allows us to write the respective hazard
rate functions as

hq(t) = α(F̄(t))h(t).

Then, if we assume that α is decreasing (increasing) and h is increasing, then hq
is increasing (decreasing) since F̄ is always decreasing.

Conversely, if we assume that the IFR (DFR) class is preserved, then it is preserved
for a standard exponential distributionwhich has reliability function F̄(t) = exp(−t)
and hazard rate function h(t) = 1 for t ≥ 0. Hence hq(t) = α(exp(−t)) is increasing
(decreasing) for t ∈ (0, ∞) and so α decreases (increases) in (0, 1).

The proof of (i i) is analogous to that of (i).
To prove (i i i), we note that Fq is NBU (NWU) iff

q̄(F̄(x + t)) ≤ q̄(F̄(x))q̄(F̄(t)), (≥) for all x, t ≥ 0.

If we assume that F is NBU and q̄ is submultiplicative, that is, it satisfies (4.2),
then

q̄(F̄(x + t)) ≤ q̄(F̄(x)F̄(t)) ≤ q̄(F̄(x))q̄(F̄(t))

for all x, t ≥ 0 and so Fq is NBU.
Conversely, if the NBU class is preserved, then it is preserved for a standard

exponential distribution, that is,

q̄(F̄(x + t)) ≤ q̄(F̄(x))q̄(F̄(t))

holds for all t, x ≥ 0 and F̄(z) = exp(−z). Hence

q̄(e−x e−t ) ≤ q̄(e−x )q̄(e−t )

holds for all t, x ≥ 0 and so (4.2) holds. The proof for the NWU class is similar.
Finally, to prove (iv) we note that, from (4.1), Fq is IFRA (DFRA) iff

q̄(F̄(ct)) ≥ (q̄(F̄(t)))c

for all c ∈ (0, 1) and all t ≥ 0.
If we assume that F is IFRA and (4.3) holds, then

q̄(F̄(ct)) ≥ q̄(F̄c(t)) ≥ (q̄(F̄(t)))c

for all c ∈ (0, 1) and all t ≥ 0.
Conversely, if the IFRA class is preserved, so is it for the standard exponential

distribution. Thus we get
q̄(e−ct ) ≥ (q̄(e−t ))c

for all c ∈ (0, 1) and all t ≥ 0. Hence, (4.3) holds. The proof for the DFRA class is
analogous.

The proof of (v) can be seen in Navarro et al. (2014). �

Note that we can also obtain reverse results. For example, if the distorted distribu-
tion Fq is IFR and α is increasing, then F is also IFR. Also note that if both IFR and
DFR classes are preserved, then the function α is constant in (0, 1) and so q̄(u) = uc

holds for u ∈ [0, 1] and c > 0 (PHR model). This property is satisfied by series
systems with IID components and so both classes are preserved for them. However,
note that if α is increasing (or decreasing) but it is not constant, then just the DFR
(IFR) class is preserved. If α is not monotone, then neither of them are preserved.
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Remark 4.1 We can prove that if the IFR class is preserved, that is, α is decreasing,
then the NBU class is also preserved. Note that if the IFR is preserved, as the standard
exponential distribution is IFR, we have that q̄(e−t ) is IFR. Then, it is also NBU and
so

q̄(e−(t+x)) = q̄(e−t e−x ) ≤ q̄(e−t )q̄(e−x )

holds for all x, t > 0. Hence we get (4.2). A similar property holds for the NWU
class (it is preserved when the DFR class is preserved).

Analogously, we can prove that if the IFR class is preserved, then the IFRA class
is preserved too. Note that if the IFR is preserved, as the exponential distribution is
IFR, we have that q̄(e−ct ) is IFR for all c > 0. Then, it is also IFRA and so

q̄(e−ct ) = q̄((e−t )c) ≥ (q̄(e−t ))c

holds for all c ∈ (0, 1) and t > 0. Hence we get (4.3). A similar property holds for
the DFRA class (it is preserved when the DFR class is preserved).

Let us see some examples. In the first one we see that the IFR class is preserved
under the formation of k-out-of-n systems with IID components. This property was
proved by Esary and Proschan (1963). As a consequence, the DFR class is not
preserved, except in the case of series systems.

Example 4.1 Let us consider the k-out-of-n system with IID∼F components and
lifetime Xi :n (i.e. k = n − i + 1). From (2.8) and (2.12), its hazard rate function is

hi :n(t)=
i
(n
i

)
f (t)Fi−1(t)F̄n−i (t)∑i−1

j=0

(n
j

)
F j (t)F̄n− j (t)

= i
(n
i

)
Fi−1(t)F̄n−i+1(t)∑i−1

j=0

(n
j

)
F j (t)F̄n− j (t)

f (t)

F̄(t)
= α(F̄(t))h(t),

where h is the common hazard rate of the components and

α(u) = i
(n
i

)
∑i−1

j=0

(n
j

)
(1 − u) j−i+1ui− j−1

= i
(n
i

)
∑i−1

j=0

(n
j

)
wi− j−1(u)

being w(u) := u/(1 − u) an increasing function in (0, 1). Hence, α is decreasing
in (0, 1) and so the IFR class is always preserved. As a consequence, the NBU and
IFRA classes are preserved as well and the DFR class is not preserved except in the
case i = 1 (series systems) where α(u) = n. Note that from the results given in the
preceding chapter, the HR order is also preserved under the formation of k-out-of-n
systems with IID components. It can be proved that DRFR, IRFR, NWU and DFRA
classes are not preserved.

To confirm these results we consider k-out-of-3 systems for k = 1, 2, 3, with IID
components having a common standard exponential distribution and constant hazard
rate. In Fig. 4.1, we plot their respective α functions (left) and hazard rate functions
(right). Note that the components are DFR but that X2:3 and X3:3 are not DFR. Also
note that the limiting behavior of h3:3 (black line, right) coincides with that of h
(dotted line, right). The R code to plot these functions is the following. It can be
changed to get similar plots for other systems/distributions.
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Fig.4.1 Alpha functions (left) and hazard rate functions (right) of k-out-of-3 systems for k = 1, 2, 3
(black, blue, red) with IID components having a common standard exponential distribution in
Example 4.1. The dotted line represents the hazard rate of the components

# Alpha functions:

R<-function(t) exp(-t)

q13<-function(u) uˆ3

q23<-function(u) 3*uˆ2-2*uˆ3

q33<-function(u) 3*u-3*uˆ2+uˆ3

q13p<-function(u) 3*uˆ2

q23p<-function(u) 6*u-6*uˆ2

q33p<-function(u) 3-6*u+3*uˆ2

a13<-function(u) u*q13p(u)/q13(u)

a23<-function(u) u*q23p(u)/q23(u)

a33<-function(u) u*q33p(u)/q33(u)

curve(a33(x),xlab=’u’,ylab=’Alpha’,ylim=c(0,3),lwd=2)

curve(a23(x),add=T,col=’blue’,lwd=2)

curve(a13(x),add=T,col=’red’,lwd=2)

#Hazard rate functions:

f<-function(t) exp(-t)

h<-function(t) f(t)/R(t)

curve(a33(R(x))*h(x),ylim=c(0,3),ylab=’HR’,xlab=’t’,0,3,lwd=2)

curve(a23(R(x))*h(x),add=T,col=’blue’,lwd=2)

curve(a13(R(x))*h(x),add=T,col=’red’,lwd=2)

curve(h(x),add=T,lty=3,lwd=2)

In the following example we show that the IFR class can also be preserved in
other systems but that we can also find systems where this class is not preserved.

Example 4.2 Let us consider the systems with IID∼F components and with life-
times T1 = min(X1,max(X2, X3)) and T2 = max(X1,min(X2, X3)). Their
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Fig. 4.2 Alpha functions (left) and hazard rate functions (right) for the systems T1 (blue) and T2
(black) with IID components having a common standard exponential distribution in Example 4.2.
The dotted line represents the common hazard rate of the components

respective distortion functions are q̄1(u) = 2u2 − u3 and q̄2(u) = u + u2 − u3

and their alpha-functions

α1(u) = uq̄ ′
1(u)

q̄1(u)
= 4 − 3u

2 − u

and

α2(u) = uq̄ ′
2(u)

q̄2(u)
= 1 + 2u − 3u2

1 + u − u2

for u ∈ (0, 1). It can be proved that α1 is strictly decreasing but that α2 is not
monotone in (0, 1) (see Fig. 4.2, left). Therefore, the IFR class is preserved in T1 but
it is not preserved in T2. Moreover, the DFR class is not preserved in these systems.

This is a very surprising property since when we put (independent) components
with “natural” aging (IFR) into system T2, then we get a system that does not have
this natural aging property. Actually, as we can see in Fig. 4.2, right, the system T2
improves when t > t0 ≈ 1.444. The meaning of this fact can be seen in Fig. 4.3, left,
wherewe plot the reliability functions of the residual lifetimes (T2)t = (T2−t |T > t)
for t = 0 (black line, new units), t = 0.2 (blue line), t = 1.444 (green line,
more reliable age), and t = 5 (red line, liming behavior). Note that T2 seems to
be NBU since its residual lifetimes are ST worse than T2. We can confirm this
property by using Theorem 4.1 showing that q̄2 is submultiplicative. We will see in
the next section that this property holds for all the coherent systemswith independent
components.

The hazard rate functions for T2 are plotted in Fig. 4.3, right, when the components
have Weibull distributions F(t) = 1 − exp(−tβ), t ≥ 0, with shape parameter
β = 0.5, 1, 1.2, 2 (green, black, red, blue). The dotted lines represent the hazard rate
of the components. Note that the IFR and DFR classes are sometimes preserved but
that this is not always the case. Also note that the limiting behavior of the hazard
rate functions of the systems and the components coincide. We will show later that
this is a general property for this system.
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Fig.4.3 Reliability functions (left) for the system T2 with IID components having a common stan-
dard exponential distribution in Example 4.2 when new (black line) and with ages t = 0.2, 1.444, 5
(blue, green, red). Hazard rate functions (right) for T2 when the components have Weibull distribu-
tions with shape parameter β = 0.5, 1, 1.2, 2 (green, black, red, blue). The dotted lines represent
the hazard rate functions of the components

The code to get these plots is the following:

#Reliability functions (Figure 4.3, left):

R<-function(t) exp(-t)

q2<-function(u) u+uˆ2-uˆ 3

f<-function(t) exp(-t)

h<-function(t) f(t)/R(t)

R2<-function(t) q2(R(t))

curve(R2(x),xlab=’t’,ylab=’Reliability’,ylim=c(0,1),0,3,lwd=2)

curve(R2(x+0.2)/R2(0.2),col=’blue’,add=T,lwd=2)

curve(R2(x+1.444)/R2(1.444),col=’green’,add=T,lwd=2)

curve(R2(x+5)/R2(5),col=’red’,add=T,lwd=2)

# Hazard rate functions (Figure 4.3, right):

R<-function(t,b) exp(-tˆb)

h<-function(t,b) b*tˆ(b-1)

curve(a2(R(x),1)*h(x,1),ylab=’HR’,ylim=c(0,5),0,3,lwd=2)

curve(h(x,1),add=T,lty=3,lwd=2)

curve(a2(R(x,1.2))*h(x,1.2),add=T,col=’red’,lwd=2)

curve(h(x,1.2),add=T,lty=3,col=’red’,lwd=2)

curve(a2(R(x,0.5))*h(x,0.5),add=T,col=’green’,lwd=2)

curve(h(x,0.5),add=T,lty=3,col=’green’,lwd=2)

curve(a2(R(x,2))*h(x,2),add=T,col=’blue’,lwd=2)

curve(h(x,2),add=T,lty=3,col=’blue’,lwd=2)

By using the tools showed in the preceding example we can study the preservation
of IFR and DFR classes in systems with IID components. The results for systems
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Table 4.2 Dual distortion functions q̄i , alpha functions αi (u) = uq̄ ′
i (u)/q̄i (u) and preservation of

IFR and DFR classes for all the coherent systems with 1-4 IID components

i Ti q̄i αi Preserved

1 X1:1 = X1 u 1 I FR&DFR

2 X1:2 = min(X1, X2) (2 − series) u2 2 I FR&DFR

3 X2:2 = max(X1, X2) (2 − parallel) 2u − u2 2−2u
2−u I FR

4 X1:3 = min(X1, X2, X3) (3 − series) u3 3 I FR&DFR

5 min(X1,max(X2, X3)) 2u2 − u3 4−3u
2−u I FR

6 X2:3(2 − out − of − 3) 3u2 − 2u3 6−6u
3−2u I FR

7 max(X1,min(X2, X3)) u + u2 − u3 1+2u−3u2

1+u−u2
−

8 X3:3 = max(X1, X2, X3) (3 − parallel) 3u − 3u2 + u3 3−6u+3u2

3−3u+u2
I FR

9 X1:4 = min(X1, X2, X3, X4) (series) u4 4 I FR&DFR

10 max(min(X1, X2, X3),min(X2, X3, X4)) 2u3 − u4 6−4u
2−u I FR

11 min(X2:3, X4) 3u3 − 2u4 9−8u
3−2u I FR

12 min(X1,max(X2, X3),max(X3, X4)) u2 + u3 − u4 2+3u−4u2

1+u−u2
−

13 min(X1,max(X2, X3, X4)) 3u2 − 3u3 + u4 6−9u+4u2

3−3u+u2
I FR

14 X2:4 (3 − out − of − 4) 4u3 − 3u4 12−12u
4−3u I FR

15
max(min(X1, X2),min(X1, X3, X4),

min(X2, X3, X4))
u2 + 2u3 − 2u4 2+6u−8u2

1+2u−2u2
−

16 max(min(X1, X2),min(X3, X4)) 2u2 − u4 4−4u2

2−u2
I FR

17
max(min(X1, X2),min(X1, X3),

min(X2, X3, X4))
2u2 − u4 4−4u2

2−u2
I FR

18
max(min(X1, X2),min(X2, X3),

min(X3, X4))
3u2 − 2u3 6−6u

3−2u I FR

19
max(min(X1,max(X2, X3, X4)),

min(X2, X3, X4))
3u2 − 2u3 6−6u

3−2u I FR

20
min(max(X1, X2),max(X1, X3),

max(X2, X3, X4))
4u2 − 4u3 + u4 8−12u+4u2

4−4u+u2
I FR

21 min(max(X1, X2),max(X3, X4)) 4u2 − 4u3 + u4 8−12u+4u2

4−4u+u2
I FR

22
min(max(X1, X2),max(X1, X3, X4),

max(X2, X3, X4))
5u2 − 6u3 + 2u4 10−18u+8u2

5−6u+2u2
I FR

23 X3:4(2 − out − of − 4) 6u2 − 8u3 + 3u4 12−24u+12u2

6−8u+3u2
I FR

24 max(X1,min(X2, X3, X4)) u + u3 − u4 1+3u2−4u3

1+u2−u3
−

25 max(X1,min(X2, X3),min(X3, X4)) u + 2u2 − 3u3 + u4 1+4u−9u2+4u3

1+2u−3u2+u3
−

26 max(X2:3, X4) u + 3u2 − 5u3 + 2u4 1+6u−15u2+8u3

1+3u−5u2+2u3
−

27 min(max(X1, X2, X3),max(X2, X3, X4)) 2u − 2u3 + u4 2−6u2+4u3

2−2u2+u3
I FR

28 X4:4 = max(X1, X2, X3, X4)(4 − parallel) 4u − 6u2 + 4u3 − u4 4−12u+12u2−4u3

4−6u+4u2−u3
I FR

with 1-4 components are in Table4.2. Recall that, in this case, the NBU class is
always preserved, that the IFR is preserved in k-out-of-n systems, and that the DFR
class is preserved as well in series systems. Conditions for the preservation of the
NBUE and NWUE classes were obtained in Lindqvist and Samaniego (2019). There
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it is also proved that the DFR class is not preserved by any coherent systems with
IID components other than series systems.

In the last example we show that we can also study systems with dependent ID
components. This example proves that the IFR class is not preserved in k-out-of-n
systemswith dependent components and that the DFR class can be preserved in these
systems.

Example 4.3 We consider now series and parallel systemswith two dependent com-
ponents having standard exponential distributions and the Clayton–Oakes survival
copula in (3.12). Their respective dual distortion functions are

q̄1:2(u) = u

2 − u

and
q̄2:2(u) = 2u − u

2 − u

for u ∈ [0, 1]. Then their respective alpha functions are

α1:2(u) = 2

2 − u

and

α2:2(u) = 2u2 − 8u + 6

2u2 − 7u + 6
.

They are plotted in Fig. 4.4, left. We can see there that α1:2 is increasing but that α2:2
is decreasing. Therefore, the IFR class is preserved in X2:2 but it is not preserved
in X1:2. We have the opposite for the DFR class. The hazard rates for standard
exponential components are plotted in Fig. 4.4, right. As the components are both
IFR and DFR, we get that h1:2 is decreasing and h2:2 is increasing. Moreover, they
have the same limiting behavior as that of the hazard rate of the components. Also
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Fig. 4.4 Alpha functions (left) and hazard rate functions for the series (black) and parallel (blue)
systems in Example 4.3. The dotted line represents the hazard rate of the components



128 4 Aging Properties

note that X1:2 ≤HR Xi ≤HR X2:2 holds for any F (since the alpha functions are
ordered). The code to get these plots is the following:

# Alpha functions:

C<-function(u,v) u*v/(u+v-u*v)

q12<-function(u) C(u,u)

q22<-function(u) 2*u-C(u,u)

q12p<-function(u) 2/(2-u)ˆ2

q22p<-function(u) 2-q12p(u)

a12<-function(u) u*q12p(u)/q12(u)

a22<-function(u) u*q22p(u)/q22(u)

curve(a12(x),xlab=’u’,ylab=’Alpha’,ylim=c(0,2),lwd=2)

curve(a22(x),add=T,col=’blue’,lwd=2)

# Hazard rate functions

R<-function(t) exp(-t)

f<-function(t) exp(-t)

h<-function(t) f(t)/R(t)

curve(a12(R(x))*h(x),ylab=’HR’,xlab=’t’,ylim=c(0,2),0,5,lwd=2)

curve(a22(R(x))*h(x),add=T,col=’blue’,lwd=2)

curve(h(x),add=T,lty=3,lwd=2)

We can also study the preservation of the DMRL/IMRL classes. Abouammoh and
El-Neweihi (1986) proved that the DMRL class is preserved under the formation of
parallel systems with IID components. This result was extended in Navarro (2018a)
given sufficient conditions for the preservation of DMRL/IMRL classes. They can
be stated as follows.

Theorem 4.2 Let Fq = q(F) be a distorted distribution and let q̄ be its associated
dual distortion. Then:

(i) The DMRL class is preserved by q if

sup
u∈(0,v]

q̄(u)

u
≤ q̄2(v)

v2q̄ ′(v)
for all v ∈ (0, 1). (4.4)

(ii) The IMRL class is preserved by q if

inf
u∈(0,v]

q̄(u)

u
≥ q̄2(v)

v2q̄ ′(v)
for all v ∈ (0, 1). (4.5)

Proof First, we recall that the MRL function of F can we obtained as

m(t) = 1

F̄(t)

∫ ∞

t
F̄(x)dx
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for t such that F̄(t) > 0. A similar expression holds for the MRL mq of Fq . Hence

m′(t) =sign −F̄2(t) + f (t)
∫ ∞

t
F̄(x)dx .

Therefore, F is DMRL iff

f (t)

F̄2(t)

∫ ∞

t
F̄(x)dx ≤ 1 (4.6)

for all t ≥ 0. We assume that this property holds and then we want to prove that a
similar condition holds for Fq , that is,

f (t)q̄ ′(F̄(t))

q̄2(F̄(t))

∫ ∞

t
q̄(F̄(x))dx ≤ 1

for all t ≥ 0. We note that

f (t)q̄ ′(F̄(t))

q̄2(F̄(t))

∫ ∞

t
q̄(F̄(x))dx = f (t)q̄ ′(F̄(t))

q̄2(F̄(t))

∫ ∞

t

q̄(F̄(x))

F̄(x)
F̄(x)dx

and then, from (4.4), we get

f (t)q̄ ′(F̄(t))

q̄2(F̄(t))

∫ ∞

t
q̄(F̄(x))dx ≤ f (t)q̄ ′(F̄(t))

q̄2(F̄(t))

q̄2(F̄(t))

F̄2(t)q̄ ′(F̄(t))

∫ ∞

t
F̄(x)dx ≤ 1

where the last inequality holds from (4.6).
The proof of (i i) is similar. �

The result for parallel systems with IID components given in Abouammoh and
El-Neweihi (1986) can be obtained as follows.

Example 4.4 If X1, . . . , Xn are IID∼F , then the distortion functions of Xn:n =
max(X1, . . . , Xn) are qn:n(u) = un and

q̄n:n(u) = 1 − qn:n(1 − u) = 1 − (1 − u)n

for u ∈ [0, 1]. To check if (4.4) holds, we consider the function

gn(u) = q̄n:n(u)

u
= 1 − (1 − u)n

u
=

(
n

1

)
−

(
n

2

)
u +

(
n

3

)
u2 − · · · + (−1)n+1

(
n

n

)
un−1.

It is a decreasing function in [0, 1] and so
sup

u∈(0,v]
q̄n:n(u)

u
= lim

u→0+ gn(u) = gn(0) = n.

Moreover, a straightforward calculation shows that

q̄2n:n(v)

v2q̄ ′
n:n(v)

≥ lim
v→0+

q̄2n:n(v)

v2q̄ ′
n:n(v)

= g2n(0)

q̄ ′
n:n(0)

= n

for u ∈ [0, 1]. Therefore, (4.4) holds and the DMRL class is preserved.
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The next example (extracted from Navarro 2018a) shows that the DMRL is also
preserved in other systems.

Example 4.5 Let us consider the coherent system with lifetime

T = min(max(X1, X2, X3),max(X2, X3, X4))

and IID∼F components. Then q̄(u) = 2u − 2u3 + u4 (see system 27 in Table4.2).
Hence

g1(u) = q̄(u)

u
= 2 − 2u2 + u3

which is a decreasing function in (0, 1). Therefore

sup
u∈(0,v]

q̄(u)

u
= lim

u→0+ g1(u) = g1(0) = 2.

Moreover,

g2(v) = q̄2(v)

v2q̄ ′(v)
= (2 − 2v2 + v3)2

2 − 6v2 + 4v3
≥ lim

v→0+
(2 − 2v2 + v3)2

2 − 6v2 + 4v3
= 2

for all v ∈ (0, 1) (since g2 is increasing in (0, 1)). Hence, (4.4) holds and the DMRL
class is preserved.

Example 3.3 in Navarro (2018a) shows that the DMRL class is also preserved in a
parallel systemwith dependent components and that the IMRL class can be preserved
under the formation of series systems with dependent components. Example 3.4 in
this paper shows that the DMRL class is not preserved under the formation of series
systems (order statistics) with IID components. Lindqvist and Samaniego (2019)
proved that the IMRL class cannot be preserved in systems with IID components.
More preservation properties for the IFR and ILR classes in series and parallel
systems can be seen Navarro and Shaked (2010) and in the references therein.

4.3 Systems with Non-ID Components

In this case we will use the representation of the distributions of systems as gener-
alized distortions of the distributions of the components obtained in Theorem 2.9
and the preservation results for them obtained in Navarro et al. (2014). They can be
stated as follows.

Theorem 4.3 Let FQ = Q(F1, . . . , Fn) be a generalized distorted distribution.
Then:

(i) The IFR (DFR) class is preserved by Q ifαi (u) = ui∂i Q̄(u)/Q̄(u) are decreas-
ing (increasing) for i = 1, . . . , n and for u = (u1, . . . , un) ∈ (0, 1)n.
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(ii) The DRFR (IRFR) class is preserved by Q if ᾱi (u) = ui∂i Q(u)/Q(u) are
decreasing (increasing) for i = 1, . . . , n and for u = (u1, . . . , un) ∈ (0, 1)n.

(iii) The NBU (NWU) class is preserved by Q if Q̄ is submultiplicative (supermul-
tiplicative), that is,

Q̄(u1v1, . . . , unvn) ≤ Q̄(u1, . . . , un)Q̄(v1, . . . , vn), (≥) (4.7)

for all u1, . . . , un, v1, . . . , vn ∈ [0, 1].
(iv) The IFRA (DFRA) class is preserved by Q if Q̄ satisfies

Q̄(uc1, . . . , u
c
n) ≥ (Q̄(u1, . . . , un))

c, (≥) (4.8)

for all u1, . . . , un, c ∈ [0, 1].

Proof To prove that (i) holds, we recall that the hazard rate of FQ can be written as

hQ(t) =
n∑

i=1

αi (F̄1(t), . . . , F̄n(t))hi (t),

where h1, . . . , hn are the hazard rate functions of F1, . . . , Fn . If h1, . . . , hn are
increasing (decreasing) and α1, . . . , αn are decreasing (increasing), then hQ is
increasing (decreasing) since all the reliability functions are decreasing.

The proof of (i i) is similar.
To prove (i i i), we note that FQ is NBU (NWU) iff

Q̄(F̄1(x + t), . . . , F̄n(x + t)) ≤ Q̄(F̄1(x), . . . , F̄n(x))Q̄(F̄1(t), . . . , F̄n(t)), (≥)

for all x, t ≥ 0. If we assume that Fi are NBU for i = 1, . . . , n and Q̄ is submulti-
plicative, that is, it satisfies (4.7), then

Q̄(F̄1(x + t), . . . , F̄n(x + t)) ≤ Q̄(F̄1(x)F̄1(t), . . . , F̄n(x)F̄n(x))

≤ Q̄(F̄1(x), . . . , F̄n(x))Q̄(F̄1(t), . . . , F̄n(t))

and so FQ is NBU. The proof for the NWU class is similar.
The proof of (iv) is analogous to the preceding one.

Note that we just have sufficient conditions. We must say that the conditions in
(i) and (i i) are quite strong. The conditions in (i) (in (i i)) are satisfied by series
(parallel) systems with independent components and so both classes are preserved.
As we can see in Fig. 3.9, the IFR and DFR classes are not preserved in parallel
systems with independent components. However, the conditions for the NBU and
IFRA classes given in (i i i) and (iv) are mild conditions. Actually, we can prove that
they holds for any coherent system with independent components. These properties
were proved in Esary et al. (1970) (see also Barlow and Proschan 1975, p. 85). We
include them in the next proposition with a different proof.

Proposition 4.1 (Esary et al. 1970) If Q̄ is the distortion function of a coherent
system with independent components, then Q̄ satisfies (4.7) and (4.8).
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Proof To prove (4.7) we note that Q̄(u1v1, . . . , unvn) is the dual distortion func-
tion of a system T1 with the same structure as the original system but replac-
ing its components with series systems with two independent components. Let
X1, . . . , Xn, Y1, . . . , Yn be the component lifetimes in that system.

Analogously, the function

Q̄(u1, . . . , un)Q̄(v1, . . . , vn)

is the dual distortion function of the system T2 obtained by connecting in series two
independent copies T3 and T4 of the original system with (independent) component
lifetimes X1, . . . , Xn and Y1, . . . , Yn , respectively.

Thus, if P1, . . . , Pr are the minimal path sets of the original system, the system T1
works iff at least one Pi = {i1, . . . , ik} of these minimal path sets works, that is, the
components with lifetimes Xi1 , . . . , Xik , Yi1 , . . . , Yik work. Then the corresponding
path sets in T3 and T4 work, and so T2 works as well. Note that we have proved
that T2 works whenever T1 works, that is, T1 ≤ T2. So T1 ≤ST T2 holds for any
F1, . . . , Fn and hence their dual distortion functions are ordered as in (4.7).

To prove (4.8) we first note that, when the components are independent, Q̄ is the
polynomial obtained by extending the structure function in the pivotal decomposition
to R.

We are going to prove (4.8) by induction in the number of components. It is clearly
true for n = 1 since Q̄(u1) = u1. Then, we assume that it is true for all the coherent
systems with less than n independent components.

As the components are independent, Q̄(u1, . . . , un) is a polynomial of degree 1
in u1 and so we have

Q̄(u1, . . . , un) = u1 Q̄(1, u2, . . . , un) + (1 − u1)Q̄(0, u2, . . . , un)

(since these linear functions coincide in two points u1 = 0 and u1 = 1).
Then

Q̄(uc1, . . . , u
c
n) = uc1 Q̄(1, uc2, . . . , u

c
n) + (1 − uc1)Q̄(0, uc2, . . . , u

c
n)

holds for all c ∈ (0, 1), where Q̄(1, u2, . . . , un) and Q̄(0, u2, . . . , un) are dual
distortion functions of coherent systems with less than n components (we delete
the first component and all the irrelevant components). Hence, by the induction
hypothesis, we get

Q̄(uc1, . . . , u
c
n) ≥ uc1(Q̄(1, u2, . . . , un))

c + (1 − uc1)(Q̄(0, u2, . . . , un))
c.

Finally, we use that λc yc + (1− λc)xc ≥ (λy + (1− λ)x)c holds for all 0 ≤ x ≤ y
and all 0 ≤ λ ≤ 1. Then, as Q̄(1, u2, . . . , un) ≥ Q̄(0, u2, . . . , un), we get

Q̄(uc1, . . . , u
c
n) ≥ (u1 Q̄(1, u2, . . . , un) + (1 − u1)Q̄(0, u2, . . . , un))

c

= (Q̄(u1, . . . , un))
c

and so (4.8) holds. �



4.3 Systems with Non-ID Components 133

We have seen in Fig. 4.3, left, that a coherent system with IID exponential compo-
nents preserves the NBU property. From the preceding proposition, this is actually
the case for any coherent system with independent components. This property says
that a new coherent system with IND components is always ST better than the resid-
ual lifetimes of its used systems with any age t > 0. However, note that, as we can
see in that figure, these residual lifetimes are not ST ordered for any t (in that figure
the worse used system is obtained at t = 1.444).

4.4 Residual and Inactivity Times of Systems

In the preceding sections we have analyzed the behavior of the residual lifetimes of
a system T with age t defined as Tt = (T − t |T > t) for t ≥ 0. In these residual
lifetimes we assume that, at time t , we just know that the system is working. As we
have seen, the reliability function of Tt is

F̄T (x |t) = F̄T (t + x)

F̄T (t)
= Q̄(F̄1(t + x), . . . , F̄n(t + x))

Q̄(F̄1(t), . . . , F̄n(t))
(4.9)

for t such that F̄T (t) > 0, where Q̄ is the dual distortion function of the system.
In other situations, we may have different information at time t . For example,

we may know that all the components are working. In this case, the system residual
lifetime is

T ∗
t = (T − t |X1 > t, . . . , Xn > t)

for t such that Pr(X1 > t, . . . , Xn > t) > 0. Other options will be considered later.
Note that Tt =ST T ∗

t when T = X1:n (series system).
One can presume that T ∗

t is better than Tt . Thus, if we are in a plane, we would
prefer to know that all the engines are working, instead of just to know that the plane
engine system is working. However, we will see that, surprisingly, this is not always
the case.

To compare the reliability functions of these residual lifetimes, we need to write
them as distortions of the same distributions. To this purpose we will use the residual
lifetimes of the components defined as Xi,t = (Xi − t |Xi > t) for i = 1, . . . , n with
reliability functions

F̄i (x |t) = F̄i (x + t)

F̄i (t)

for x ≥ 0. They are defined for t ≥ 0 such that F̄i (t) > 0 for i = 1, . . . , n. We
shall assume these conditions in this section whenever we consider these conditional
distributions.

The representation for the first case is immediate since from (4.9) we get

F̄T (x |t) = Q̄(F̄1(t)F̄1(x |t), . . . , F̄n(t)F̄n(x |t))
Q̄(F̄1(t), . . . , F̄n(t))

= Q̄t (F̄1(x |t), . . . , F̄n(x |t)), (4.10)
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where

Q̄t (u1, . . . , un) = Q̄(F̄1(t)u1, . . . , F̄n(t)un)

Q̄(F̄1(t), . . . , F̄n(t))

is a distortion function which depends on Q̄ (i.e. the system structure and the copula
of the component lifetimes) and on F̄1(t), . . . , F̄n(t) for t > 0.

The representation for the second case is stated in the following proposition. It is
extracted from Navarro (2018c).

Proposition 4.2 The reliability function of T ∗ = (T − t |X1 > t, . . . , Xn > t) can
be written as

F̄T ∗(x |t) = Q̄∗
t (F̄1(x |t), . . . , F̄n(x |t)), (4.11)

where Q̄∗
t is a distortion function which depends on the system structure (the minimal

path sets), the survival copula Ĉ and on F̄1(t), . . . , F̄n(t).

Proof Recall that if P1, . . . , Pr are the minimal path sets of the system, then its life-
time can be written as T = maxi=1,...,r min j∈Pi X j . Hence, the reliability function
of T ∗

t is

F̄T ∗(x |t) = Pr(T − t > x |X1 > t, . . . , Xn > t)

= Pr(maxi=1,...,r min j∈Pi X j > t + x, X1 > t, . . . , Xn > t)

Pr(X1 > t, . . . , Xn > t)

= N (t)

D(t)
,

where
D(t) = Pr(X1 > t, . . . , Xn > t) = Ĉ(F̄1(t), . . . , F̄n(t)) > 0.

This implies F̄i (t) > 0 for i = 1, . . . , n. Then, by applying the inclusion-exclusion
formula to the numerator N (t) above, we obtain

N (t) =
r∑

i=1

Pr

(
min
j∈Pi

X j > t + x, X1 > t, . . . , Xn > t

)

−
r−1∑
i=1

r∑
j=i+1

Pr

(
min

k∈Pi∪Pj
Xk > t + x, X1 > t, . . . , Xn > t

)

+ · · · + (−1)r+1 Pr

(
min

k∈P1∪···∪Pr
Xk > t + x, X1 > t, . . . , Xn > t

)
,

where

Ḡ P (t) : = Pr

(
min
j∈P

X j > t + x, X1 > t, . . . , Xn > t

)

= Pr
(∩ j∈P X j > t + x, ∩ j /∈P X j > t

)
= ĈP(F̄1(x |t), . . . , F̄n(x |t)) (4.12)



4.4 Residual and Inactivity Times of Systems 135

and
ĈP (u1, . . . , un) = Ĉ(uP

1 , . . . , uP
n )

with uP
i := ui F̄i (t) if i ∈ P and uP

i := F̄i (t) if i /∈ P . Therefore

N (t) =
r∑

i=1

Ḡ Pi (t) −
r−1∑
i=1

r∑
j=i+1

Ḡ Pi∪Pj (t) + · · · + (−1)r+1Ḡ P1∪···∪Pr (t).

Hence, by using (4.12), (4.11) holds. �

If the components are ID, then the above representations for Tt and T ∗
t can be

reduced to univariate distortions. In both cases, we can use the results for distorted
distributions stated in the preceding chapter to compare these residual lifetimes. Let
us see a simple example.

Example 4.6 We consider a parallel system T = max(X1, X2) with two possible
dependent component with lifetimes X1 and X2 and with survival copula Ĉ . As we
have seen before, the system reliability function can be written as

F̄T (t) = Q̄(F̄1(t), F̄2(t)),

where Q̄(u1, u2) = u1 + u2 − Ĉ(u1, u2) for u1, u2 ∈ [0, 1].
Let Tt and T ∗

t be the residual lifetimes defined above. Then the reliability function
of Tt can be written as in (4.10) for

Q̄t (u1, u2) = u1 F̄1(t) + u2 F̄2(t) − Ĉ(u1 F̄1(t), u2 F̄2(t))

F̄1(t) + F̄2(t) − Ĉ(F̄1(t), F̄2(t))
.

Analogously, the reliability function of T ∗
t can be written as in (4.11) for

Q̄∗
t (u1, u2) = Ĉ(u1 F̄1(t), F̄2(t)) + Ĉ(F̄1(t), u2 F̄2(t)) − Ĉ(u1 F̄1(t), u2 F̄2(t))

Ĉ(F̄1(t), F̄2(t))
.

If the components are independent, that is, Ĉ(u1, u2) = u1u2, then

Q̄t (u1, u2) = u1 F̄1(t) + u2 F̄2(t) − u1u2 F̄1(t)F̄2(t)

F̄1(t) + F̄2(t) − F̄1(t)F̄2(t)

and

Q̄∗
t (u1, u2) = u1 F̄1(t)F̄2(t) + u2 F̄1(t)F̄2(t) − u1u2 F̄1(t)F̄2(t)

F̄1(t)F̄2(t)
= Q̄(u1, u2).

In particular, if we assume that the components are ID with a common reliability
F̄ and a survival copula Ĉ , then these representations can be reduced to F̄T (x |t) =
q̄t (F̄(x |t)) and F̄T ∗(x |t) = q̄∗

t (F̄(x |t)), where F̄(x |t) = F̄(x + t)/F̄(t),

q̄t (u) = 2u F̄(t) − Ĉ(u F̄(t), u F̄(t))

2F̄(t) − Ĉ(F̄(t), F̄(t))
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Fig.4.5 Dual distortion functions (left) and reliability functions (right) for T (red), Tt (black) and
T ∗
t (blue) for the parallel system in Example 4.6 when t = 1, the components have a common

standard exponential distribution and a Clayton–Oakes survival copula

and

q̄∗
t (u) = Ĉ(u F̄(t), F̄(t)) + Ĉ(F̄(t), u F̄(t)) − Ĉ(u F̄(t), u F̄(t))

Ĉ(F̄(t), F̄(t))

for u ∈ [0, 1]. By comparing (or plotting) these functions we can see if Tt ≤ST T ∗
t

holds (as expected). For example, in the IID case we get

q̄t (u) = u
2 − u F̄(t)

2 − F̄(t)
≤ 2u − u2 = q̄∗

t (u)

for all u ∈ [0, 1], and so Tt ≤ T ∗
t for any t and any F̄ .

If the components are dependent with the Clayton–Oakes survival copula in
(3.12), and c = F̄(t) = exp(−1), we obtain the plots in Fig. 4.5, left. As they are
ordered, we have Tt ≤ST T ∗

t . In Fig. 4.5, right we can see the respective reliability
functions when the components have a common standard exponential distribution.
We can also compare them with the original system T (red curves). Note that T is
NBU and so Tt ≤ST T holds for all t (and, in particular, for t = 1). However, we
have T ≤ST T ∗

t for t = 1. It can be proved analytically (see Navarro 2018c) that
Tt ≤ST T ∗

t is a general property for any t (any c) and any Clayton–Oakes copula
with positive correlation. Therefore, for these copulas, Tt ≤ST T ∗

t holds for any t
and any F̄ .

However, if we choose the following Gumbel-Barnett Archimedean copula

Ĉ(u1, u2) = u1u2 exp[−(ln u1)(ln u2)],
then we obtain the plots in Fig. 4.6. There we can see that Tt and T ∗

t are not ST
ordered for t = 1. However, note that both are worse than T (red lines). The code
to get these plots is the following. For other t values, copulas or distributions just
change the corresponding definitions in that code.
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Fig.4.6 Dual distortion functions (left) and reliability functions (right) for T (red), Tt (black) and
T ∗
t (blue) for the parallel system in Example 4.6 when t = 1, the components have a common

standard exponential distribution and a Gumbel-Barnett survival copula

# Figure 4.6
R<-function(x) exp(-x)
t<-1
c<-R(t)
C<-function(u,v) u*v*exp(-log(u)*log(v))
q<-function(u) 2*u-C(u,u)
qt<-function(u) (2*u*c-C(u*c,u*c))/(2*c-C(c,c))
qt2<-function(u) (2*C(u*c,c)-C(u*c,u*c))/C(c,c)
curve(qt(x),ylab=’Distortion’,xlab=’u’,lwd=2)
curve(q(x),add=T,col=’red’,lwd=2)
curve(qt2(x),add=T,col=’blue’,lwd=2)
curve(qt(R(x)),ylab=’Reliability’,0,5,xlab=’t’,lwd=2)
curve(q(R(x)),add=T,col=’red’,lwd=2)
curve(qt2(R(x)),add=T,col=’blue’,lwd=2)

We can use the equality Q̄∗
t = Q̄ to prove that Tt ≤ST T ∗

t holds for any t when the
components are independent. This result was obtain in Pellerey and Petakos (2002)
(with a different proof).

Proposition 4.3 If the component lifetimes are independent, then Q̄∗
t = Q̄ and

Tt ≤ST T ∗
t hold for any t

Proof When the components are independent, Q̄ is a multinomial and so Q̄∗
t = Q̄

(see the proof of Proposition 4.2). Hence, from the representations (4.10) and (4.11),
Tt ≤ST T ∗

t holds iff

Q̄t (u1, . . . , un) = Q̄(F̄1(t)u1, . . . , F̄n(t)un)

Q̄(F̄1(t), . . . , F̄n(t))
≤ Q̄(u1, . . . , un)
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holds for all u1, . . . , un . This is equivalent to prove that Q̄ is submultiplicative and
this is what we actually did when we prove in the preceding section that the NBU
class is preserved for coherent systems with independent components. So the stated
ordering holds. �

In the preceding section we prove that the NBU class is preserved under the for-
mation of coherent systems with independent components, that is, if the components
are NBU, then so is T , that is, T ≥ST Tt for any t ≥ 0. We have a similar result for
T ∗
t .

Proposition 4.4 If the components are independent and NBU, then T ≥ST T ∗
t holds

for any t.

Proof If the components are NBU, then F̄i (x) ≥ F̄i (x |t) for any t ≥ 0 and i =
1, . . . , n. Hence, as Q̄∗

t = Q̄, we have

F̄T ∗(x |t) = Q̄∗
t (F̄1(x |t), . . . , F̄n(x |t))

= Q̄(F̄1(x |t), . . . , F̄n(x |t))
≤ Q̄(F̄1(x), . . . , F̄n(x))

= F̄T (x). �

As an immediate consequence we have that, if the components have exponential
distributions, then T ∗

t has the lack of memory property, that is, T =ST T ∗
t ≥ST Tt

for all t . If they are just independent and NBU (or IFR), then T ≥ST T ∗
t ≥ST Tt for

all t .
The last example shows that these properties cannot be extended to the HR order.

Example 4.7 Let us consider a parallel system with two independent components.
Its distortion function is

Q̄(u1, u2) = u1 + u2 − u1u2

for u1, u2 ∈ [0, 1]. Analogously, the distortion functions of Tt and T ∗
t are

Q̄t (u1, u2) = u1 F̄1(t) + u2 F̄2(t) − u1u2 F̄1(t)F̄2(t)

F̄1(t) + F̄2(t) − F̄1(t)F̄2(t)

and Q̄∗
t = Q̄. A straightforward calculation shows that Q̄ ≥ Q̄t for all t . Hence, as

stated in Proposition 4.3, Tt ≤ST T ∗
t holds for all t and all F̄1, F̄2. For example, in

Fig. 4.7, left, we can see that the respective reliability functions are ordered. We do
not include the reliability function of T since it coincides with that of T ∗

t (blue line)
for all t ≥ 0. In the right plot we can see that the respective hazard rate functions are
not ordered, that is, Tt ≤HR T ∗

t does not hold. This is a very surprising property!
Actually note that, after some time, T ∗

t will be worse than Tt . The code to get these
plots is the following:
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Fig. 4.7 Reliability functions (left) and hazard rate functions (right) for Tt (black) and T ∗
t (blue)

for the parallel system in Example 4.7 when t = 1 and the components are independent having
exponential distributions with hazard rates 1 (dashed line, right) and 2

# Reliability functions

R1<-function(x) exp(-x)

R2<-function(x) exp(-2*x)

t<-1

c1<-R1(t)

c2<-R2(t)

Q<-function(u,v) u+v-u*v

Qt<-function(u,v) (u*c1+v*c2-u*v*c1*c2)/(c1+c2-c1*c2)

curve(Qt(R1(x),R2(x)),xlab=’t’,ylab=’Reliability’,0,3,lwd=2)

curve(Q(R1(x),R2(x)),add=T,col=’blue’,lwd=2)

# Hazard rate functions

f1<-function(x) exp(-x)

f2<-function(x) 2*exp(-2*x)

Q1<-function(u,v) 1-v

Q2<-function(u,v) 1-u

Qt1<-function(u,v) (c1-v*c1*c2)/(c1+c2-c1*c2)

Qt2<-function(u,v) (c2-u*c1*c2)/(c1+c2-c1*c2)

f<-function(t) f1(t)*Q1(R1(t),R2(t))+f2(t)*Q2(R1(t),R2(t))

ft<-function(t) f1(t)*Qt1(R1(t),R2(t))+f2(t)*Qt2(R1(t),R2(t))

curve(ft(x)/Qt(R1(x),R2(x)),xlab=’t’,ylab=’HR’,0,3,

ylim=c(0,1.3),lwd=2)

curve(f(x)/Q(R1(x),R2(x)),add=T,col=’blue’,lwd=2)

curve(x+1-x,lty=3,add=T,lwd=2)

However, if we assume that the components are IID, then the respective distortion
functions are

q̄(u) = 2u − u2,
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Fig. 4.8 Reliability functions (left) and hazard rate functions (right) for Tt (black) and T ∗
t (blue)

for the parallel system in Example 4.7 when t = 1 and the components are IID having a common
exponential distribution with hazard rate 1 (dashed line, right)

q̄t (u) = 2u − u2 F̄(t)

2 − F̄(t)

and q̄∗
t = q̄ for all t ≥ 0. As

q̄∗
t (u)

q̄t (u)
= (2 − F̄(t))

2 − u

2 − u F̄(t)

is decreasing in u (for all t), then we have Tt ≤HR T ∗
t for all t and all F̄ . In Fig. 4.8,

we can see the respective reliability functions (left) and hazard rate functions (right)
when t = 1 for a standard exponential distribution (they can be plotted with the code
written above). As we can see, in both cases, the limit behaviors of the hazard rate
functions coincide with that of the hazard rate of the strongest component.

We can go further and as

(q̄∗
t )′(u)

q̄ ′
t (u)

= (2 − F̄(t))
1 − u

1 − u F̄(t)

is decreasing in u (for all t), then we have Tt ≤LR T ∗
t for all t and all absolutely

continuous F̄ .

Other residual lifetimes and inactivity times can be explored in a similar way. For
example, we can consider the residual lifetime

(T − t |X I ≤ t, X J > t),

where I, J ⊆ [n], I ∩ J = ∅, X I = maxi∈I Xi , X J = mini∈J Xi and we assume
that the event {X I ≤ t, X J > t} implies {T > t}. Conversely, if it implies {T ≤ t}
then we can consider the inactivity time

(t − T |X I ≤ t, X J > t).

We can also consider the residual lifetime

(T − t |Xi = t1, X
I ≤ t, X J > t)
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for t1 ≤ t when the event implies T > t and other similar options in an interval
[t1, t2]. These options were explored in Navarro and Durante (2017), Navarro et al.
(2017), Navarro (2018c) and Navarro and Calì (2019). Signature representations for
used systems’ residual lifetimes can be seen in Navarro et al. (2008).

4.5 Limiting Behavior

As we have seem in preceding examples, in many cases, the limiting behavior when
the time goes on of the hazard rate function of the system is similar to that of the com-
ponents in the ID case. This is due to similar properties of mixtures and generalized
mixtures and to the representation based on minimal path sets (which proves that the
system distribution is a generalized mixture of series systems). However, this is not
always the case. In this section we explore these properties in order to determine the
limiting behavior of reliability, hazard rate and mean residual life functions of the
system. These properties are based on the following results for distorted distributions
extracted from Burkschat and Navarro (2018).

Proposition 4.5 Let F1 = q1(F) and F2 = q2(F) be two distorted distributions
from the same distribution function F with F̄(t) > 0 for all t . Let q̄1 and q̄2 be the
associated dual distortion functions.

(i) The reliability functions satisfy

lim
t→∞

F̄1(t)

F̄2(t)
= lim

u→0+
q̄1(u)

q̄2(u)
.

(ii) The hazard rate functions satisfy

lim
t→∞

h1(t)

h2(t)
= lim

u→0+
α1(u)

α2(u)
,

where αi (u) = uq̄ ′
i (u)/q̄i (u) for u ∈ [0, 1] and i = 1, 2.

(iii) The mean residual life functions satisfy

lim
t→∞

m1(t)

m2(t)
= 1

whenever limu→0+ q̄1(u)/q̄2(u) = c > 0.
(iv) The pdf satisfy

lim
t→∞

f1(t)

f2(t)
= lim

u→0+
q̄ ′
1(u)

q̄ ′
2(u)

.

(v) The hazard rate functions satisfy

lim
t→∞

h1(t)

h2(t)
= 1

whenever limu→0+ q̄ ′
1(u)/q̄ ′

2(u) = c > 0.
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Proof The proofs of (i), (i i) and (iv) are immediate from (2.32), (2.33) and (2.34).
To prove (i i i), we note that

lim
t→∞

m1(t)

m2(t)
= lim

t→∞
F̄2(t)

F̄1(t)

∫ ∞
t F̄1(x)dx∫ ∞
t F̄2(x)dx

= 1

c
lim
t→∞

∫ ∞
t F̄1(x)dx∫ ∞
t F̄2(x)dx

since c > 0 and (i) holds. Moreover, from L’Hôpital’s rule, we have

lim
t→∞

∫ ∞
t F̄1(x)dx∫ ∞
t F̄2(x)dx

= lim
t→∞

F̄1(t)

F̄2(t)
= c.

Therefore (i i i) holds. The proof of (v) is similar. �

Clearly, the preceding proposition can be applied to compare the behavior of
systemswith ID components. In particular, it can also be applied to compare a system
with its ID components (by choosing q̄2(u) = u and α2(u) = 1 for u ∈ [0, 1]). This
fact can be used to detect situations where the system behavior coincides with that of
its ID components. In other cases, it will coincide with the behavior of the functions
of some series systems. Let us see an example.

Example 4.8 Let us consider the coherent systems with lifetimes

T1 = min(X1,max(X2, X3))

and
T2 = max(X1,min(X2, X3)).

Let us assume that the components are IID∼F . Then the respective distortion func-
tions are

q̄1(u) = 2u2 − u3

and
q̄2(u) = u + u2 − u3

for u ∈ [0, 1]. Clearly, the behavior of the reliability function of the second system
is similar to that of the components since

lim
t→∞

F̄T2(t)

F̄(t)
= lim

u→0+
q̄2(u)

u
= lim

u→0+
u + u2 − u3

u
= 1

for any F . As a consequence, from (i i i) in the preceding proposition, we have that
the MRL functions also have a similar behavior, that is,

lim
t→∞

m̄T2(t)

m(t)
= 1.

For the HR functions we obtain

lim
t→∞

hT2(t)

h(t)
= lim

u→0+ α2(u) = lim
u→0+

uq̄ ′
2(u)

q̄2(u)
= lim

u→0+ u
1 + 2u − 3u2

u + u2 − u3
= 1.

This property can also be obtained from Proposition 4.5, (v).
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Fig.4.9 Reliability functions (left) and hazard rate functions (right) for T1 (black) and T2 (blue) for
the systems in Example 4.8 when the components are IID with a Weibull distribution with hazard
rate 2t (continuous red line). The dashed red lines represent the functions of the series system X1:2

Analogously, for the first system we have

lim
t→∞

hT1(t)

h(t)
= lim

u→0+ α1(u) = lim
u→0+

uq̄ ′
1(u)

q̄1(u)
= lim

u→0+ u
4u − 3u2

2u2 − u3
= 2.

However, for the reliability functions we have

lim
t→∞

F̄T1(t)

F̄(t)
= lim

u→0+
q̄1(u)

u
= lim

u→0+
2u2 − u3

u
= 0

(the system reliability goes faster to zero that that of the components). To get an
equivalent system we must consider the series system with two components X1:2 =
min(X1, X2) with reliability F̄1:2(t) = F̄2(t) and then

lim
t→∞

F̄T1(t)

F̄1:2(t)
= lim

u→0+
q̄1(u)

u2
= lim

u→0+
2u2 − u3

u2
= 2.

Hence, from Proposition 4.5, (i i i) and (v), we also have

lim
t→∞

hT1(t)

h1:2(t)
= lim

t→∞
mT1(t)

m1:2(t)
= 1

for any F . Similar results can be obtained for dependent components with a given
copula.

To illustrate these results we plot the reliability and hazard rate functions of these
systems in Fig. 4.9 when the components are ID with a common Weibull reliability
F̄(t) = exp(−t2) for t ≥ 0. The hazard rate of the components is h(t) = 2t
(continuous red line) and that of X1:2 is h1:2(t) = 4t (dashed red line) for t ≥ 0. The
code is the following:
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# Reliability functions

R<-function(x) exp(-xˆ2)

q1<-function(u) 2*uˆ2-uˆ3

q2<-function(u) u+uˆ2-uˆ3

curve(q1(R(x)),ylab=’Reliability’,0,2,xlab=’t’,lwd=2)

curve(q2(R(x)),add=T,col=’blue’,lwd=2)

curve(R(x),add=T,col=’red’,lwd=2)

curve((R(x))ˆ 2,add=T,col=’red’,lty=2,lwd=2)

# Hazard rate functions

f<-function(x) 2*x*exp(-xˆ2)

q1p<-function(u) 4*u-3*uˆ2

q2p<-function(u) 1+2*u-3*uˆ2

curve(f(x)*q1p(R(x))/q1(R(x)),ylab=’HR’,0,2,xlab=’t’,lwd=2)

curve(f(x)*q2p(R(x))/q2(R(x)),add=T,col=’blue’,lwd=2)

curve(f(x)/R(x),add=T,col=’red’,lwd=2)

curve(2*f(x)/R(x),add=T,col=’red’,lty=2,lwd=2)

Remark 4.2 It is easy to prove that if a systemwith IID components has theminimal
signature a = (0, . . . , 0, ai , . . . , an) with ai �= 0, then the behavior of the system
aging functions is similar to that of X1:i . In particular,wehave limt→∞ F̄T (t)/F̄(t) =
ai , limt→∞ hT (t)/h(t) = i and limt→∞ mT (t)/m1:i (t) = 1.

4.6 Bounds

A similar technique can be used to obtain bounds for these functions. The results
can be stated as follows.

Proposition 4.6 Let F1 = q1(F) and F2 = q2(F) be two distorted distributions
from the same distribution function F. Let q̄1 and q̄2 be the associated dual distortion
functions.

(i) The reliability functions satisfy

inf
u∈(0,1]

q̄1(u)

q̄2(u)
≤ F̄1(t)

F̄2(t)
≤ sup

u∈(0,1]
q̄1(u)

q̄2(u)

for all t and all F.
(ii) The hazard rate functions satisfy

inf
u∈(0,1]

α1(u)

α2(u)
≤ h1(t)

h2(t)
≤ sup

u∈(0,1]
α1(u)

α2(u)

for all t and all F.
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The proofs are immediate from (2.32) and (2.34).
For example, for the systems considered in the preceding example we have

0 ≤ F̄1(t) ≤ F̄(t),

F̄(t) ≤ F̄2(t) ≤ 1.25F̄(t),

h(t) ≤ h1(t) ≤ 2h(t) = h1:2(t)

and
0 ≤ h2(t) ≤ 1.105573 h(t)

for any t and any F .
The bounds for the case of non-ID components can be obtained from the minimal

path set representation and from the results given in Miziuła and Navarro (2018).
They are based on the average reliability function

Ḡ = F̄1 + · · · + F̄n
n

.

For example, if the components are independent, then we need to get bounds for the
function

D(u1, . . . , un) = n
Q̄(u1, . . . , un)

(u1 + · · · + un)

and, as Q̄ is linear in ui for all i , these bounds are always attained at 0 or 1 for
each ui .

Problems

1. Plot the hazard rate function of a mixture of exponential distributions.
2. Plot the MRL function of a mixture of exponential distributions.
3. Prove that the mixture of two DFR distributions is also DFR.
4. Prove that the mixture of two IFR distributions is not necessarily IFR.
5. Study if the IFR/DFR classes are preserved in a system with IID components.

Plot the hazard rate functions of the system for different distributions.
6. Study if the DRFR class is preserved in a system with IID components. Plot the

reversed hazard rate functions of the system for different distributions.
7. Study if the NBU/NWU classes are preserved in a system with IID components.

Plot the reliability functions of the residual lifetimes of the system for different
ages.

8. Study if the IFR/DFR classes are preserved in a system with ID dependent com-
ponents. Plot the hazard rate functions of the system for different distributions.

9. Study if the DMRL/IMRL classes are preserved in a system with IID compo-
nents.

10. Study if the IFR/DFR classes are preserved in a system with IND components.
Plot the hazard rate functions of the system for different distributions.

11. Study if the DRFR class is preserved in a system with IND components. Plot the
reversed hazard rate functions of the system for different distributions.



146 4 Aging Properties

12. Confirm that NBU class is preserved in a system with IND components. Plot the
reliability functions of the residual lifetimes of the system for different ages.

13. Study if the IFR/DFR classes are preserved in a system with DNID components.
Plot the hazard rate functions of the system for different distributions.

14. Find a systemwith dependent components where theNBU class is not preserved.
15. Compare the residual lifetimes Tt and T ∗

t of two systems with IID components.
16. Compare the residual lifetimes Tt and T ∗

t of two systems with DID components.
17. Study the limiting behavior of the aging functions of a system with IID compo-

nents.
18. Study the limiting behavior of the aging functions of a system with DID com-

ponents.
19. Obtain bounds for the reliability and hazard rate functions of a system with IID

components.
20. Obtain bounds for the reliability and hazard rate functions of a system with DID

components.
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Abstract

The term “redundancy” refers to the way a system can work even when some
components have failed. All the coherent systems except the series systems have
redundancy mechanisms in their structure functions. Moreover, sometimes, we
may try to improve the reliability of a given system by adding some redundant
components at different critical points. Other popular redundancy options are to
add standby components in the system to replace the failed components or to
repair these failed components. The main questions analyzed in this chapter are:
What is the reliability of the (new) redundant system? What are the best points in
the structure to add the redundant components?Which one is the best redundancy
option? We also study some component importance indices that can be used to
determine the best replacement options.

5.1 Redundancy Options

There are several redundancy options. Not all of them are available in practice for
all the systems. Thus, we cannot use the same options for a plane or a rocket, that
the ones used for ships or cars. For example, in the first cases we cannot wait for the
system failure to apply the redundancy options (repairs).

In this introductory book we just analyze the most popular ones. There are two
main options called “hot” and “cold” redundancies.

In the first case (hot redundancy), one “spare” is added to a component in the
system with a given structure (which improves the behavior at this point). Both units
work at the same time. The same can be done in other components as well. The
most popular option is to add a new (similar) independent unit in parallel to a given
component. In this case, the life length of the resulting structure at the i th position is
Yi = max(Xi , X ′

i ), where Xi is the lifetime of the original unit and X ′
i the one of the

associated spare. For example, if we consider a series system with two components,
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Fig. 5.1 A series system with two components and hot redundancies at positions 1 (left) and 2
(right)

it can be improved by adding a redundant component in parallel at positions 1 or 2
(see Fig. 5.1).Which one is the best option? To answer this question we need to know
the characteristics of the units and the spares. Thus, we may assume that the spares
have the same distributions as the units, that is, if F1, . . . , Fn are the distribution
functions of the components, we can assume that the spare at the i th position has
distribution Fi . This is a reasonable assumption when the components are different.
Another option is to assume that the components are similar and that a spare with
distributionG can be added at any point. If the components are identically distributed
and we assume G = F1 = · · · = Fn both options coincide.

In the second case (cold redundancy), the spares are in standby and they replace
the components when they fail. Here we also have several options in practice. For
example, the standby units might be placed at fixed positions. Thus, if a plain has four
engines (two in each wing), it could fly just with two (one in each wing), working the
others just in case of the respective failures. Note that in a hot redundancy, the four
engines are working from the beginning while in a cold redundancy the two engines
in each wing work consecutively (one after the other). Which one is the best option?
In other options, we might have just a spare that can be placed at any position in the
system. Thus the spare wheel in a car (or a truck), can be placed at any position in
case of failure.

In both options, we can consider different assumptions for the spares as well. As
above, we can assume that the spares have the same distributions as the original
components when they are new (because they are not working). This option is called
perfect repair since it is equivalent to complete a perfect repair of that unit (a quite
unrealistic situation in some systems). Another popular option is to assume that the
spares have the same distributions of the original units but that they have the same age
as the failed units. This situation is also unrealistic but it is stochastically equivalent
to repair the unit to be as it was just before its failure. So it is called minimal
repair and, in this way, in some situations, it is more realistic than the perfect repair
considered above (which it is not a repair but a replacement with a new unit). In both
cases, the lifetime of the mechanism at the i th position is Yi = Xi + X ′

i . In a perfect
repair, we can assume that Xi and X ′

i are independent and then the distribution of
Yi is the convolution of Fi and F ′

i (see below). However, in a minimal repair, they
are dependent since the distribution of X ′

i depends on the age t = Xi of the failed
component (see below).

Finally, we note that the redundancies can be applied at different levels. If they are
applied as considered above, we say that they are redundancies at the components’
level. However, if they are applied to the entire system, then we say that they are
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Fig. 5.2 A series system with hot redundancies at the components’ level (left) and at the system’s
level (right)

redundancies at the system’s level. Evenmore, if the system is composed of different
modules with several units inside each module, the redundancy could be also applied
at the modules’ level (see, e.g., Torrado et al. 2021). For example, if we consider
again a series system with two components, then we could add two spares at the
components’ level obtaining the system lifetime

Tc = min(max(X1, X
′
1),max(X2, X

′
2)).

or at the system’s level obtaining

Ts = max(min(X1, X
′
1),min(X2, X

′
2)).

The different options can be seen in Fig. 5.2. Which one is the best option?
Many of these replacement options can be represented in a unified way by using

distortions. The definition (extracted from Navarro and Fernández-Martínez 2021)
is the following.

Definition 5.1 We say that q̄ : [0, 1] → [0, 1] is a redundancy dual distortion
function if q̄ is continuous, increasing and satisfies q̄(0) = 0, q̄(1) = 1, and q̄(u) ≥
u for all u ∈ [0, 1].

The purpose is to represent the reliability of the resulting mechanism at the i th
position with q̄(F̄i ) where F̄i is the reliability of the original i th component. Thus,
the meaning of the new condition q̄(u) ≥ u for all u ∈ [0, 1] is that the redundancy
mechanism improves (in the stochastic order) the original one. Other additional
conditions will be considered later.

Let us see some mechanisms that can be represented in this way. The first one is
a hot spare connected in parallel. As mentioned above, the resulting structure at the
i th position is Yi = max(Xi , X ′

i ) and its reliability F̄Yi (t) = Pr(Yi > t) is

F̄Yi (t) = Pr(max(Xi , X
′
i ) > t) = Pr(Xi > t) + Pr(X ′

i > t) − Pr(Xi > t, X ′
i ) > t)

for all t . If we assume that Xi and X ′
i are IID with a common reliability F̄i , then

F̄Yi (t) = 2F̄i (t) − F̄2
i (t) = q̄2:2(F̄i (t)),

where q̄2:2(u) = 2u − u2 is a distortion function satisfying q̄2:2(u) ≥ u for all
u ∈ [0, 1] (since X2:2 ≥ X1).

We can consider several changes in this model. For example, we could consider
that the spare has a different (usually worse) reliability with a proportional hazard
rate, i.e., Pr(X ′

i > t) = F̄θ
i (t) for θ > 0, then

F̄Yi (t) = F̄i (t) + F̄θ
i (t) − F̄1+θ

i (t) = q̄θ (F̄i (t)),
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Fig.5.3 Plots of q̄θ (left) and αθ (right) for an independent hot redundant component with propor-
tional hazard rate with θ = 0.25, 0.5, 0.75 (black), θ = 1 (red, IID case) and θ = 1.5, 2, 3, 5 (blue)

where q̄θ (u) = u + uθ − u1+θ is a distortion function satisfying q̄θ (u) ≥ u for
all u ∈ [0, 1] (since max(Xi , X ′

i ) ≥ Xi ). The hot redundant component is worse
(better) than the original component when θ > 1 (0 < θ < 1). The different
distortion functions can be seen in Fig. 5.3, left. Note that the IID case is obtained
when θ = 1 (red curve) and that they are ST ordered. As it is a distortion, its hazard
rate can be written as

hθ (t) = αθ (F̄(t))h(t),

where h = f/F̄ is the hazard rate of F̄ and

αθ (u) = 1 + θuθ−1 − (1 + θ)uθ

1 + uθ−1 − uθ

for u ∈ [0, 1]. The plots of αθ can be seen in Fig. 5.3, right. As they are ordered for
0 < θ < 1, the respective repairs are hazard rate ordered. This is not the case for
θ > 1 (i.e. when the spare is worse than the original unit).

Another variation is to assume that Xi and X ′
i are DID, that is, they are dependent

and identically distributed. This is a reasonable assumption since they share the same
environment. As in the preceding chapters, we can model this dependency through
a survival copula ̂C which satisfies

Pr(Xi > x, X ′
i > y) = ̂C(F̄i (x), F̄i (y))

for all x, y. Hence

F̄Yi (t) = 2F̄i (t) − ̂C(F̄i (t), F̄i (t)) = q̄(F̄i (t)),

where q̄(u) = 2u− ̂C(u, u) is a distortion function (which depends on Ĉ) satisfying
q̄(u) ≥ u for all u ∈ [0, 1] (since max(Xi , X ′

i ) ≥ Xi ).
Other interesting variations are to add m − 1 IID spares in parallel, which leads

to the distortion function q̄m:m(u) = 1 − (1 − u)m ≥ u (since Xm:m ≥ X1), or to
add them with any other system structure with distortion q̄ satisfying q̄(u) ≥ u for
all u ∈ [0, 1].
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Some cold redundancies can also be represented in this way (i.e. as distortions).
If the lifetime of the resulting mechanism is ˜Yi = Xi + X ′

i , then its reliability is

F̄
˜Yi (t) = Pr(Xi + X ′

i > t) = F̄i (t) +
∫ t

0
Pr(X ′

i > t − x |Xi = x) fi (x)dx (5.1)

for all t ≥ 0, where fi = −F̄ ′
i is the PDF of Xi . If Xi and X ′

i are IID (perfect repair),
then the reliability function of ̂Yi = Xi + X ′

i is

F̄
̂Yi (t) = F̄i (t) +

∫ t

0
F̄i (t − x) fi (x)dx

which is the well know formula for the reliability function of a convolution. It is
represented as F̄

̂Yi = F̄i ∗ F̄i . In some models, this reliability can also be represented
as a distortion (e.g. with exponential distributions). The same happen if they are
dependent (see Navarro and Sarabia 2020).

However, if we consider a minimal repair (MR), that is,

Pr(X ′
i > y|Xi = x) = F̄i (x + y)

F̄i (x)

for all x, y ≥ 0, then from (5.1), the reliability function of ˜Yi = Xi + X ′
i is

F̄
˜Yi (t) = F̄i (t)+

∫ t

0

F̄i (t)

F̄i (x)
fi (x)dx = F̄i (t)− F̄i (t) log F̄i (t) = q̄MR(F̄i (t)) (5.2)

for all t ≥ 0, where
q̄MR(u) = u − u log(u)

is a distortion function satisfying q̄MR(u) ≥ u for all u ∈ [0, 1] (since Xi+X ′
i ≥ Xi ).

This model is also known as the relevation transform and it was introduced in
formula (3.1) of Krakowski (1973) with the notation F̄i# F̄i . In this model we can
also consider some variations. For example we can consider m minimal repairs
obtaining

q̄m(u) = u
m

∑

i=0

1

i ! (− log(u))i (5.3)

with q̄m(u) ≥ u for all u ∈ [0, 1] (since Xi + X ′
i + · · · ≥ Xi ).

We can also consider imperfect repairs (IR) with

Pr(X ′
i > y|Xi = x) = F̄θ

i (x + y)

F̄θ
i (x)

for all x, y ≥ 0 and θ > 1 (the spare is worse than the original component). This
option leads to

F̄Yi (t) = F̄i (t) +
∫ t

0

F̄θ
i (t)

F̄θ
i (x)

fi (x)dx = F̄i (t) − 1

1 − θ
F̄θ
i (t)

[

1 − F̄1−θ
i (t)

]

= q̄ I Rθ (F̄i (t))

for all t ≥ 0, where

q̄ I R
θ (u) = θ

θ − 1
u − 1

θ − 1
uθ
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Fig.5.4 Plots of q̄ I R
θ (left) and α I R

θ (right) for an imperfect repair with θ = 0.25, 0.5, 0.75 (black),
θ = 1 (red, minimal repair) and θ = 1.5, 2, 3, 5 (blue)

is a distortion function satisfying q̄ I R
θ (u) ≥ u for all u ∈ [0, 1] (since Xi +X ′

i ≥ Xi ).
The case 0 < θ < 1 can be considered as well (although it could be unrealistic in
some situations). Note that we obtain a negative mixture of F̄i and F̄θ

i . The plots of
q̄ I R
θ can be seen in Fig. 5.4, left. The case θ → 1 (red curve) represents the minimal

repair case. As they are ordered, the respective repairs are ST ordered.
Its hazard rate can be written as

hI R
θ (t) = α I R

θ (F̄(t))h(t),

where h = f/F̄ is the hazard rate of F̄ and

α I R
θ (u) = u(q̄ I R

θ )′(u)

q̄ I R
θ (u)

= θ
1 − uθ−1

θ − uθ−1

for u ∈ [0, 1]. The plots of α I R
θ can be seen in Fig. 5.4, right. As they are ordered,

the respective repairs are hazard rate ordered.
We conclude this section by comparing the three main replacement options. Of

course, if Yi = max(Xi , X ′
i ) (hot spare parallel), then Yi ≤ Xi + X ′

i and so, in
particular, when they are independent F̄Yi ≤ F̄i ∗ F̄i (perfect repair or convolution).
Under minimal repair F̄Yi ≤ F̄i# F̄i holds since

q̄2:2(u) = 2u − u2 ≤ q̄MR(u) = u − u log(u)

for all u ∈ [0, 1]. Even more, as q̄ ′
MR/q̄ ′

2:2 is decreasing, then Yi ≤LR ˜Yi for all F ,
where ˜Yi represents the total lifetime from the beginning under a minimal repair. To
compare ˜Yi (minimal repair) and ̂Yi = Xi + X ′

i (perfect repair or convolution) when
Xi and X ′

i are IID we have the following result.

Proposition 5.1 With the notation introduced above, if Fi is NBU (NWU), then
˜Yi ≤ST ̂Yi (≥ST ).
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Proof Recall that NBUmeans that F̄i (x)F̄i (y) ≥ F̄i (x + y) for all x, y ≥ 0. Hence,
from (5.2), we get

F̄
˜Yi (t) = F̄i (t) +

∫ t

0

F̄i (t)

F̄i (x)
fi (x)dx ≤ F̄i (t) +

∫ t

0
F̄i (t − x) fi (x)dx = F̄

̂Yi (t)

since F̄i (t − x)F̄i (x) ≥ F̄i (t) for all 0 ≤ x ≤ t . The inequality is reversed for NWU
distributions. �

Note that, for the “natural” aging property (NBU), the perfect repair is better than
the minimal repair (as expected) and we can write

Yi ≤ST ˜Yi ≤ST ̂Yi .

For the dual class (NWU) we get

Yi ≤ST ̂Yi ≤ST ˜Yi .

Of course, for the exponential distribution (which is both NBU and NWU), we have
˜Yi =ST ̂Yi , that is, minimal and perfect repairs coincide.

5.2 Systems with ID Components

In this case we can compare different repair policies by using the ordering results
for distorted distributions obtained in Chap.3. Recall that, in the general case, the
system reliability can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)),

where Q̄ is a distortion function. If we assume that the components are ID, that is,
F̄1 = · · · = F̄n = F̄ say, then this representation can be reduced to

F̄T (t) = Q̄(F̄(t), . . . , F̄(t)) = q̄(F̄(t)),

where q̄(u) = Q̄(u, . . . , u) is a distortion function.
If we apply a redundancy policy r = (r1, . . . , rn)where the redundancy applied to

the i th components is represented by q̄ri , then the reliability function of the lifetime
Tr of the resulting system can be written as

F̄r(t) = Q̄(q̄r1(F̄(t)), . . . , q̄rn (F̄(t))) = q̄r(F̄(t)),

where
q̄r(u) = Q̄(q̄r1(u), . . . , q̄rn (u))

for u ∈ [0, 1]. Note that if we do not apply redundancy to the i th component, then
q̄ri (u) = u. Of course, we always get T ≤ST Tr since Q̄ is increasing and we assume
q̄ri (u) ≥ u for i = 1, . . . , n.

Ifwehave another redundancypolicy s = (s1, . . . , sn), then the reliability function
of the resulting system can be represented in a similar way with another distortion
function q̄s. Hence Tr and Ts can be compared just by comparing their respective
distortion functions using Proposition 3.2.
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The comparisons underminimal repairs were studied inArriaza et al. (2018). Here
r = (r1, . . . , rn) means that ri minimal repairs are applied to the i th component,
with ri ≥ 0 for i = 1, . . . , n. With this notation we can obtain the following classic
result for series systems with IID components that can be traced back to Shaked
and Shanthikumar (1992), Result 2.4(s) (see also Theorem 4 in Li and Ding 2010).
Obviously, in the case of series systems with IID components, the repair strategy
given by the vector r = (r1, . . . , rn) is the same as that of r′ = (rπ(1), . . . , rπ(n))

for any permutation π : {1, . . . , n} → {1, . . . , n}. So, without loss of generality, we
can assume for this system that r1 ≥ . . . ≥ rn . Moreover, we have Q̄(u1, . . . , un) =
u1 . . . un and so

q̄r(u) = q̄r1(u) . . . q̄rn (u)

for u ∈ [0, 1], where these distortions functions are defined as in (5.3). Hence we
have the following theorem.

Theorem 5.1 (Shaked and Shanthikumar 1992) Consider a series systemwith n IID
components with a common reliability function F̄. Suppose that we have available
m ∈ Z+ minimal repairs that canbe freely allocated to any component. Let p, s ∈ Z+
be the unique integer numbers such that m = pn + s and 0 ≤ s < n. Then, the
optimal allocation strategy, in terms of the usual stochastic order, is given by the
vector

r� = (

s
︷ ︸︸ ︷

p + 1, p + 1, . . . , p + 1,
n−s

︷ ︸︸ ︷

p, p, . . . , p).

As expected, the best option is to distribute all the available repairs as much as
possible between the components. An alternative proof to that given in Shaked and
Shanthikumar (1992) is provided in Arriaza et al. (2018). It is interesting to note here
that if the optimal allocation strategy cannot be applied due to some other external
constraint, then using the sequence {ri }i∈{1,...,υ} defined in this proof we always have
available the second best choice as optimal strategy, and so on (or a path to improve
the initial strategy r). Also note that as a consequence of the proof, the worst option
is always (m, 0, . . . , 0), i.e., to assign all the repairs to a fixed component.

We can also compare repairs in any other system structures. Let us see an example
extracted from Arriaza et al. (2018). Additional results for minimal repairs can be
seen in Navarro et al. (2019). Similar results can be obtained for other repair options
based on distortions.

Example 5.1 Consider a 2-out-of-3 system with IID components with a common
reliability function F̄ . Assume a fixed number m = 7 of available minimal repairs.
Let us study all the possible ST comparisons of lifetimes Tr obtained from the repair
policies r = (r1, r2, r3) ∈ Z

3+ with r1 ≥ r2 ≥ r3 and r1 + r2 + r3 = 7. Note
that in this case they are also equivalent under permutations in r. Firstly, given
r = (r1, r2, r3) ∈ Z

3+ and assuming that the component lifetimes are independent,
we obtain that the reliability function of the system lifetime Tr associated to r is

F̄r(t) = Q̄(F̄(r1)(t), F̄(r2)(t), F̄(r3)(t)) = q̄r(F̄(t)),
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where Q̄(u, v, w) = uv + uw + vw − 2uvw,

q̄r(u) = q̄r1(u)q̄r2(u) + q̄r1(u)q̄r3(u) + q̄r2(u)q̄r3(u) − 2q̄r1(u)q̄r2(u)q̄r3(u)

and q̄ri is the distortion function given in (5.3) for i = 1, 2, 3. Then, we have that

Tr1 ≤st Tr2 for all F̄ ⇔ q̄r1(u) ≤ q̄r2(u) for all u ∈ (0, 1).

Therefore, if we want to compare two strategies r1 and r2, we just need to plot
both functions, q̄r1 and q̄r2 on the interval [0, 1]. For instance, in this way we can
confirm that Tr1 ≤ST Tr2 for all reliability functions F̄ when r1 = (7, 0, 0) and
r2 = (6, 1, 0). We will write r1 → r2 to denote that the strategy r1 is better than r2
or, in other words, Tr2 ≤∗ Tr1 holds for a given order ≤∗.

Following the previous procedure, we obtain the graphs given in Fig. 5.5 with
all the relationships for the comparisons of the repair strategies in the HR order
(left) and in the ST order (right). The strategies that are not connected in the graph
represent lifetimes of systems that are not comparable in the usual stochastic order
(respectively, in the hazard rate order). In this case an optimal allocation strategy does
not exist in terms of the usual stochastic order. Note that, a priori, all the minimal
path sets of the 2-out-of-3 system are equally important due to the structure of the
system. Note that the replacement policy represented by the vector r� = (4, 3, 0)
(which applies all the repairs to the components in the first path set) is ordered with a
larger number of alternatives (see Fig. 5.5). However, r� is not stochastically ordered
neither with (3, 3, 1) nor with (3, 2, 2). Similar comments hold for the HR order.

5.3 Systems with Non-ID Components

As in the preceding section, we know that the reliability function of the system
lifetime T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

for all t , where Q̄ is a distortion function. Hence, if we apply a redundancy with
distortion q̄(u) ≥ u to the i th component, the reliability function of the resulting
system lifetime Ti is

F̄Ti (t) = Q̄i (F̄1(t), . . . , F̄n(t))

with
Q̄i (u1, . . . , un) = Q̄(u1, . . . , ui−1, q̄(ui ), ui+1 . . . , un)

for 0 ≤ ui ≤ 1 and i = 1, . . . , n. Note that we are assuming a common redundancy
mechanism (distortion) for all the components.

Of course, thenwe have T ≤ST Ti for i = 1, . . . , n. However,wewant to compare
Ti and Tj to determine where the redundant component should be placed.

In the first result, extracted from Navarro and Fernández-Martínez (2021), we
analyze series systems with independent components. In this case, we just compare
T1 and T2.
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Fig. 5.5 Relationships among all possible lifetimes Tr after seven minimal repairs by using the
hazard rate order (left) and the usual stochastic order (right) for the 2-out-of-3 system considered
in Example 5.1

Proposition 5.2 Let T = min(X1, . . . , Xn) with independent components.

(i) If X1 ≥ST X2 and
q̄(u)

u
is decreasing in (0, 1), (5.4)

then T1 ≤ST T2 for all F3, . . . , Fn.
(ii) If X1 ≥HR X2 and

q̄(uv)

vq̄(u)
is decreasing in (0, 1)2, (5.5)

then T1 ≤HR T2 for all F3, . . . , Fn.
(iii) The condition (5.4) holds iff T ≤HR Ti for all F1, . . . , Fn and i = 1, . . . , n.

Proof (i) The condition T1 ≤ST T2 holds iff

Q̄1(u1, . . . , un) = q̄(u1)u2 . . . un ≤ ū1q(u2) . . . un = Q̄2(u1, . . . , un)

which is equivalent to
q̄(u1)u2 ≤ ū1q(u2).

As we assume F̄1 ≥ F̄2 and (5.4), we get
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q̄(F̄1(t))

F̄1(t)
≤ q̄(F̄2(t))

F̄2(t)

and so T1 ≤ST T2 for all F3, . . . , Fn .
(i i) The condition T1 ≤HR T2 holds if and only if

Q̄2(F̄1(t), . . . , F̄n(t))

Q̄1(F̄1(t), . . . , F̄n(t))
is increasing in t,

which is equivalent to

F̄1(t)q̄(F̄2(t))

F̄2(t)q̄(F̄1(t))
is increasing in t

As we assume X1 ≥HR X2, g(t) = F̄2(t)/F̄1(t) is decreasing in t . Hence g(t) ∈
[0, 1]. Then, by applying (5.5) to u = F̄1(t) and v = g(t), we get that

F̄1(t)q̄(F̄2(t))

F̄2(t)q̄(F̄1(t))

is increasing in t and so T1 ≤HR T2 holds for all F3, . . . , Fn .
(i i i) The condition T ≤HR Ti holds if and only if

Q̄i (F̄1(t), . . . , F̄n(t))

Q̄(F̄1(t), . . . , F̄n(t))
is increasing in t,

which is equivalent to
q̄(F̄i (t))

F̄i (t)
is increasing in t

for all F̄i . This property is equivalent to (5.4). �

Note that (i) means that, under condition (5.4), the redundant component should
be applied to the strongest components (in the ST order). To extend this property
to the HR order we need the stronger condition (5.5). The meaning of (5.4) can
be seen in (iii). It is equivalent to the condition: Ti is HR better than T and to the
same ordering property for the original component Xi and the resulting redundancy
mechanism Yi .

The property (5.4) is satisfied for the usual redundancy mechanism. For example,
for a hot IID spare added in parallel we have

q̄2:2(u)

u
= 2u − u2

u
= 2 − u

which is decreasing. The same happen for m independent spares added in parallel.
For a cold standby unit with minimal repair we have

q̄MR(u)

u
= u − u log u

u
= 1 − log u

that is also decreasing. Hence (5.4) holds. The same happen for m minimal repairs.
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Fig.5.6 Plots of c(u) = q̄θ (u)/u for a hot spare in parallel with reliability F̄θ (left) and an imperfect
repair (right) with θ = 0.25, 0.5, 0.75 (black), θ = 1 (red, minimal repair) and θ = 1.5, 2, 3, 5
(blue)

However, (5.4) is not always true. For example, if we add a spare in parallel with
reliability F̄θ , we obtain the plots in Fig. 5.6 (left) for c(u) = q̄θ (u)/u. There we
can see that function c is decreasing for 0 < θ ≤ 1 but that it is not monotone for
θ > 1 (since c(0) = c(1) = 1).

However, (5.4) holds for imperfect repairs since

c(u) = q̄θ (u)

u
= θ − uθ−1

θ − 1
is decreasing in u for all θ > 0 (see Fig. 5.6, right). As mentioned above, it is also
decreasing for a minimal repair (red curve).

The condition (5.5) is not so common. For example, it fails in active redundancies
since

q̄(uv)

vq̄(u)
= 2uv − u2v2

2uv − u2v
= 2 − uv

2 − u

is increasing in u and decreasing in v in the set (0, 1)2. The same happen for minimal
repairs since

q̄(uv)

vq̄(u)
= uv − uv log(uv)

uv − uv log(u)
= 1 + − log(v)

1 − log(u)

is increasing in u and decreasing in v in the set (0, 1)2.
Similar (reverse) results can be obtained for parallel systems with independent

components. For example, if X1 ≥ST X2 and q(u)/u is increasing, then T1 ≥ST

T2 for all F3, . . . , Fn , that is, in this system, it is better to reinforce the strongest
component (as expected). For other system structures the answer is not so clear, see
Navarro and Fernández-Martínez (2021). The same happen if we consider dependent
components. In these cases they can be compared by using distortions.

We conclude this section by establishing comparisons between redundancies at
components’ or system’s levels. The BP (Barlow and Proschan) principle for active
redundancies in parallel is established in the following theorem. It was given in
Theorem 2.4 of Barlow and Proschan (1975), p. 8, (see also Samaniego 2007, p. 17).
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Theorem 5.2 (BP-principle) If we consider active redundancies added in parallel
and the component and spares lifetimes have the same joint distribution, then the
system with redundancy at components’ level is always ST better than the system
with redundancy at system’s level.

Proof We provide the proof for an active redundancy. The proof form active redun-
dancies is similar. If X1, . . . , Xn are the components’ lifetimes and X ′

1, . . . , X
′
n are

the spares’ lifetimes. We assume that in both redundancy options (X1, . . . , Xn, X ′
1,

. . . , X ′
n) has the same joint distribution or, equivalently, that both systems are built

with the same components.
Let P1, . . . , Pr be the minimal path sets of the original system. Then the minimal

path sets of the systemwith redundancy at system’s level are P1, . . . , Pr , P ′
1, . . . , P

′
r ,

where P ′
i is the set with the spares of the components in the set Pi . It is easy to see

that all these sets are also path sets of the system with redundancy at components’
level. Hence, if we assume that they have the same components, the system with
redundancy at components’ level works whenever the system with redundancy at
system’s level does so. Hence, their lifetimes are ordered for sure and so we have the
ST order when the components have the same joint distribution (see Theorem 1.A.1
in Shaked and Shanthikumar 2007, p. 5). �

We must say that the assumption about a common joint distribution for the com-
ponents and spares is quite unrealistic when the components are dependent (since
the spares are placed at different positions). However, it holds when the components
and spares are independent. Let us see an example.

Example 5.2 Let us consider the system with lifetime

T = max(X1,min(X2, X3))

and independent components. Its dual distortion function is

Q̄(u1, u2, u3) = u1 + u2u3 − u1u2u3

for u1, u2, u3 ∈ [0, 1].
The lifetime of the system with redundancy at the components’ level is

T1 = max(max(X1, X
′
1),min(max(X2, X

′
2),max(X3, X

′
3)),

where X ′
1, X

′
2, X

′
3 represent the lifetimes of the spares. If we assume that the com-

ponents and the spares are independent and that Xi =ST X ′
i for i = 1, 2, 3, then the

dual distortion function of T1 is

Q̄1(u1, u2, u3) = q̄2:2(u1) + q̄2:2(u2)q̄2:2(u3) − q̄2:2(u1)q̄2:2(u2)q̄2:2(u3)

for u1, u2, u3 ∈ [0, 1], where q̄2:2(u) = 2u − u2 for u ∈ [0, 1].
Analogously, the lifetime of the system with redundancy at the system’s level is

T2 = max(max(X1,min(X2, X3)),max(X ′
1,min(X ′

2, X
′
3)))
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Fig. 5.7 Plots of the reliability functions (left) and its ratio (right) for the systems in Example 5.2
with redundancies at components’ level (blue) and at system’s level (red)

that is, in this case we have two independent copies of the system connected in
parallel. If we assume the same joint distribution for components and spares as in
the preceding case, then its dual distortion function is

Q̄2(u1, u2, u3) = q̄2:2(Q̄(u1, u2, u3))

for u1, u2, u3 ∈ [0, 1].
Hence, from the preceding theorem (BP-principle), we have T1 ≥ST T2 for all

F1, F2, F3. The respective reliability functions can be seen in Fig. 5.7 (left) for expo-
nential components with hazard rates 1, 2, 3, respectively. Note that the reliabilities
are very similar. The ratio in the right plot shows that this property cannot be extended
to the hazard rate order.

5.4 Importance Indices

There exist several importance indices for the components in a system, especially in
the case of independent components, see for example Barlow and Proschan (1975)
and Kuo and Zhu (2012). Some of them only depend on the structure of the system,
while others also depend on the components’ distributions.

For example, the structural importance of the i th component is defined (seeBarlow
and Proschan 1975, p. 13) as

nφ(i) = 1

2n−1

∑

x j=0,1, j 	=i

[φ(x1, . . . , 1, . . . , xn) − φ(x1, . . . , 0, . . . , xn)] ,

where the ones and zeros are placed at the i th positions. This measure takes into
account how many times the i th component is crucial for the system. If we consider
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a 2-out-of-3 system, then nφ(i) = 1/2 for i = 1, 2, 3 while if φ(x1, x2, x3) =
min(x1,max(x2, x3)), then nφ(1) = 3/4 and nφ(i) = 1/4 for i = 2, 3. The main
advantage is that these indices can always be compared

Another popular index is the Barlow and Proschan (BP) importance measure
defined as

m(i) = Pr(T = Xi ).

This index depends on the components’ distributions. If we assume IID components
with a common continuous distribution (no ties), then this index only depends on
the structure and so it can be written as mφ(i). For example, in a 2-out-of-3 system,
mφ(i) = 1/3 for i = 1, 2, 3 while if φ(x1, x2, x3) = min(x1,max(x2, x3)), then
mφ(1) = 4/6 and mφ(i) = 1/6 for i = 2, 3. Note that in this index, with no ties, we
have

∑n
i=1m(i) = 1.

In the case of independent components, another popular index based on the reli-
ability function of the structure Q̄� is

Iφ(i) = ∂i Q̄�(u1, . . . , un),

where remember that Q̄� is also the dual distortion function based on the product
copula (or the function obtained with the pivotal decomposition). It is known as the
Birnbaum (B) importance measure (see Birnbaum 1969) and it can also be written
as

Iφ(i) = Q̄(u1, . . . , ui−1, 1, ui+1, . . . , un) − Q̄(u1, . . . , ui−1, 0, ui+1, . . . , un)

or as
Iφ(i) = E(φ(X1, . . . , 1, . . . , Xn) − φ(X1, . . . , 0, . . . , Xn)),

where X1, . . . , Xn are IID with Pr(Xi = 1) = ui and Pr(Xi = 0) = 1 − ui for
i = 1, . . . , n (see Barlow and Proschan 1975, p. 22). The main disadvantage is that
this index is not a number but a function of u1, . . . , un . So the indices for the different
components cannot be compared.

For example, for a 2-out-of-3 system, we get

Iφ(1) = u2 + u3 − 2u2u3,

Iφ(2) = u1 + u3 − 2u1u3

and
Iφ(3) = u1 + u2 − 2u1u2.

However, if we consider the system φ(x1, x2, x3) = min(x1,max(x2, x3)), then

Iφ(1) = u2 + u3 − 2u2u3,

Iφ(2) = u1 − u1u3

and
Iφ(3) = u1 − u1u2.

If the components are IID, we can assume u = u1 = u2 = u3 and then

Iφ(i) = 2u − 2u2, i = 1, 2, 3
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in the 2-out-of-3 system (i.e. all the components have the same importance) while

Iφ(1) = 2u − u2 ≥ u − u2 = Iφ(i), i = 2, 3

in the other system (the first component is more important than the others). These
are expectable properties.

If we consider dependent components, the index should also take into account the
dependence structure. However, it should not depend on the components’ distribu-
tions. It should also be used to determine the best replacement positions. Actually,
we may want to place the best components or the redundancies at the most critical
(important) positions.

In this case (dependent components) the three equivalent expressions considered
above for Iφ(i) lead to different options. The most useful one in practice is

Iφ,C (i) = ∂i Q̄C (u1, . . . , un), (5.6)

where Q̄C is the dual distortion function of the system when the dependence is
determined by the copula C . Note that it also depends on the system structure φ. To
simplify the notation we will just write Ii instead of Iφ,C (i). The meaning is clear
the most important components are those which lead to a higher increment in the
system reliability function (when they are improved).

Again the indices are functions of u1, . . . , un . However, as above, we could con-
sider ID components and then they are just functions of u = u1 = · · · = un with
Ii (u) := Ii (u, . . . , u).

This indexwas analyzed inMiziuła andNavarro (2019) for dependent components
proving that

m(i) = Pr(T = Xi ) =
∫ ∞

0
Ii (F̄1(t), . . . , F̄n(t))dFi (t)

for i = 1, . . . , n. In particular, if the components are ID, then

m(i) = Pr(T = Xi ) =
∫ 1

0
Ii (u)du. (5.7)

In this case, Pr(T = Xi ) does not depend on F = F1 = · · · = Fn and, if Ii (u) ≤
I j (u) for all u ∈ [0, 1], then m(i) ≤ m( j) for all F .

This index can also be used to determine the best replacement position. The result
extracted from Theorem 2.4 of Navarro et al. (2020) can be stated as follows. Its
proof can be seen there.

Theorem 5.3 If I1(u1, . . . , un) ≤ I2(u1, . . . , un) for all u1, . . . , un, then T1 ≤ST

T2, where Ti is the system obtained by applying a redundancy with dual distortion
q̄ to the i th component for i = 1, 2.

The good point of the preceding theorem is that it holds for arbitrary redundancies
satisfying q̄(u) ≥ u for u ∈ [0, 1]. It can also be applied to mixed systems. However,
the condition I1 ≤ I2 assumed there is too strong. So some weaker conditions that
lead to the similar result were analyzed in Navarro et al. (2020). Other conditions for
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specific redundancies (active redundancy in parallel or minimal repair) are analyzed
as well.

Problems

1. Prove equation (5.3).
2. Compare two repair policies in a system with ID components.
3. Check an arrow in Fig. 5.5.
4. Study if Theorem 5.1 can be extended to hot redundancies of independent com-

ponents added in parallel (Indication: Try to prove it first for n = 2).
5. Study the redundancy policies considered in Example 5.1 but using hot inde-

pendent spares connected in parallel.
6. Compare a redundancy at different positions in a system with IID components.
7. Compare a redundancy at different positions in a system with independent com-

ponents.
8. Compare a redundancy at different positions in a system with dependent com-

ponents.
9. Confirm the BP-principle in a system with independent components.

10. Compute the BP and B importance measures in a system with IID components
and confirm that (5.7) holds.

11. Compute the BP and B importance measures in a system with DID components
and confirm that (5.7) holds.



Glossary

Ac complementary (contrary) of the set (event) A
|A| cardinality of the set A
(a1:n, . . . , an:n) the increasing ordered vector obtained from a = (a1, . . . , an)
a ≤m b majorization order:

∑ j
i=1 ai :n ≤ ∑ j

i=1 bi :n for j = 1, 2, . . . , n−
1 and

∑n
i=1 ai :n = ∑n

i=1 bi :n
0i (x) (x1, . . . , xi−1, 0, xi+1, . . . , xn)
1i (x) (x1, . . . , xi−1, 1, xi+1, . . . , xn)
1J (x1, . . . , xn) with xi = 1 if i ∈ J and xi = 0 if i /∈ J
1A indicator Boolean function, 1A = 1 (resp. 0) if A is true (false)
2[n] set with all the subsets of [n]
[n] set {1, . . . , n} for n = 1, 2, . . .
tP (z1, . . . , zn) with zi = t for i ∈ P and zi = −∞ for i /∈ P
tP (z1, . . . , zn) with zi = t for i ∈ P and zi = ∞ for i /∈ P
tk (z1, . . . , zn) with zi = t for i = 1, 2, . . . , k and zi = −∞ for

i = k + 1, k + 2, . . . , n
tk (z1, . . . , zn) with zi = t for i = 1, 2, . . . , k and zi = ∞ for

i = k + 1, k + 2, . . . , n
Xi :n i th order statistic from X1, . . . , Xn for i = 1, . . . , n
X1:n min(X1, . . . , Xn)

Xn:n max(X1, . . . , Xn)

XP mini∈P Xi

X P maxi∈P Xi
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B
Bathtub shaped, 84
Bathtub shaped failure rate (BFR), 119
BP-principle, 158

C
Clayton–Oakes copula, 64, 87, 98–101, 127,

136
Coherent system, 2
Coproduct, 6
Copula, 59
Cut set, 4

D
Decreasing, 2
Decreasing failure rate (DFR), 118, 127
Decreasing failure rate average (DFRA), 118
Decreasing likelihood ratio (DLR), 119
Decreasing mean residual life (DMRL), 27,

128, 145
Decreasing reversed failure rate (DRFR), 119,

120, 122, 131, 145
Diagonal-dependent (DD) copula, 66
Distorted distribution, 54, 57
Distortion function, 54, 57, 84
Doubly truncated mean
function, 74
order, 74

D-spectrum, 29
Dual distortion function, 55, 57
Dual system, 4, 80

E
Equivalent under permutations, 3
Exchangeable (EXC), 41

F
Failure rate function, 27

G
Generalized mixture, 37
Glaser’s eta function, 73, 92, 119

H
Hazard rate (HR)
function, 27, 72
order, 72, 73, 107

I
Imperfect repair (IR), 151
Inactivity time, 73
Increasing, 2
Increasing failure rate (IFR), 118, 120, 122,

123, 127, 130, 145
Increasing failure rate average (IFRA), 118,

120, 122, 131
Increasing likelihood ratio (ILR), 119
Increasing mean residual life (IMRL), 27, 119,

128, 130, 145
Inversion formula, 28
Irrelevant component, 2

K
k-out-of-n:F linear system, 7
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174 Index

k-out-of-n:F system, 6
k-out-of-n:G linear system, 7
k-out-of-n:G system, 6
k-out-of-n system, 6, 24, 30, 75–77, 91, 93,

122, 127

L
Lack of memory property, 25, 26, 138
Likelihood ratio order, 73

M
Maximal signature, 42
Mean inactivity time (MIT)
function, 74
order, 74

Mean residual life (MRL)
function, 27, 74
order, 74

Mean time to failure (MTTF), 25, 34
Minimal cut set, 4
Minimal cut set representation, 9, 24, 40
Minimal path set, 4
Minimal path set representation, 9, 23, 37, 39
Minimal repair (MR), 151
Minimal signature, 41
Mixed system, 17, 53
Mixture, 30, 58
Möbius representation, 14, 61

N
Negative quadrant dependent (NQD), 90
New better than used (NBU), 118, 120, 122,

131, 136, 146, 153
New better than used in expectations (NBUE),

119
New worse than used (NWU), 118
New worse than used in expectations (NWUE),

119

O
Order statistics, 6, 30

P
Parallel system, 5
Path set, 4
Pivotal decomposition, 7, 61
Positive quadrant dependent (PQD), 90
Probability density function (PDF), 34
Proportional hazard rate (PHR), 56, 58
Proportional reversed hazard rate (PRHR), 56,

58

R
Relevation transform, 151
Reliability function, 23
Residual lifetime, 26, 72
Reversed hazard rate (RHR)
function, 73
order, 72, 73

RR-plots, 108

S
Semi-coherent system, 2
Series system, 5
Signature, 29, 30
Stochastic order, 71–75, 77, 80, 152, 162
Stochastic precedence, 74
Survival signature, 106

T
Triangle rule, 49–51

U
Upside-down bathtub, 84
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