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Abstract. We consider elections that publish anonymised voted ballots
or anonymised cast-vote records for transparency or verification pur-
poses, investigating the implications for privacy, coercion, and vote sell-
ing and exploring how partially masking the ballots can alleviate these
issues.

Risk Limiting Tallies (RLT), which reveal only a random sample of bal-
lots, were previously proposed to mitigate some coercion threats. Mask-
ing some ballots provides coerced voters with plausible deniability, while
risk-limiting techniques ensure that the required confidence level in the
election result is achieved. Risk-Limiting Verification (RLV) extended this
approach to masking a random subset of receipts or trackers.

Here we show how these ideas can be generalised and made more
flexible and effective by masking at a finer level of granularity: at the
level of the components of ballots. In particular, we consider elections
involving complex ballots, where RLT may be vulnerable to pattern-
based vote buying. We propose various measures of verifiability and
coercion-resistance and investigate how several sampling/masking strate-
gies perform against these measures. Using methods from coding theory,
we analyse signature attacks, bounding the number of voters who can
be coerced. We also define new quantitative measures for the level of
coercion-resistance without plausible deniability and the level of vote-
buying-resistance without “free lunch” vote sellers.

These results and the different strategies for masking ballots are of
general interest for elections that publish ballots for auditing, verifica-
tion, or transparency purposes.

1 Introduction

Some voting systems, including many end-to-end verifiable systems and some
conventional elections, publish the (plaintext) ballots. If these ballots are suitably
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anonymised, by for example verifiable mixes published on a bulletin board, then
this is typically quite safe. But in some contexts, revealing such information may
be problematic: certain corner cases, such as unanimous votes or absence of any
votes for a candidate and coercion threats, such as signature attacks.

In [4] the idea of Risk-Limiting Tallies (RLT) and Risk-Limiting Verification
(RLV) was proposed to mitigate such threats. The idea is to shroud a proportion
of the (anonymised) votes so voters can plausibly claim to have complied with
the coercer, even though no votes appear for the candidate demanded by the
coercer or no ballot with the pattern demanded by the coercer shows up in the
tally. The proportion left shrouded can be adjusted using risk-limiting techniques
to ensure that the confidence in the announced outcome achieves the required
threshold, e.g., 99%. The idea extends to the verification aspects: shrouding
some proportion of receipts or trackers. This proves particularly effective in for
example the Selene scheme to counter the “sting in the tail”: the coercer claiming
that the voter’s fake tracker is his own.

In this paper we note that, despite the pleasing features of the constructions of
[4] there are still some drawbacks, in particular if the ballots are rather complex.
While RLT may disincentivize coercion, there may still be an incentive for vote
buying : the voter might still cast the required pattern vote in the hope that it will
be revealed. Further, it has been suggested that RLT is arguably undemocratic in
that some voters’ ballots do not contribute to the final tally. The second objection
can be countered by arguing that every vote has an equal probability of being
included in the count and that the outcome will be, with whatever confidence
level required, a correct reflection of all votes cast. Nonetheless, it is an aspect
that some people find troubling. A pleasing side effect of our construction is that
all ballots are treated on an equal footing.

These observations suggest exploring different ways to apply RLT and RLV
when ballots are complex: rather than shrouding entire ballots at random, we
shroud, at random, some preferences on each ballot. In effect we are filtering the
tally horizontally rather than vertically. This hits both of the issues above: the
chance any given pattern remains identifiable after the filtering is reduced, and
every ballot contributes to the outcome, albeit not necessarily to every contest. In
the full tally construction below, every ballot contributes fully to the announced
outcome, but we shroud the link between the tracker and some components of
the ballots. For tracker-based schemes, the voters can verify some but not all of
their selections. This paper seeks to quantify these effects and explore trade-offs
among them.

Our techniques allow us to state and prove bounds on the number of voters
an adversary is able to attack using pattern-based or “signature” attacks. Note
that assigning the same, or similar, complex ballot pattern to many voters is
counterproductive for the adversary: if even a few voters comply, the rest can
point to the signature ballots that already appear and claim compliance. Thus,
an adversary who wants to influence many voters with a signature attack must be
able to produce many distinguishable ballot patterns. This observation motivates
us to prove lower and upper bounds on the number of distinguishable patterns
an adversary can construct. We prove these bounds using a connection to a
well-studied problem in the theory of error-correcting codes.
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This ballot-masking method and its privacy implications are interesting not
only in for RLT and RLV but for all schemes where all or some ballots are
published for auditing, verification, or transparency. As an example, Colorado
is currently redacting cast-vote records (CVRs) by removing entire CVRs, e.g.,
for rare ballot styles; partial masking has been considered as an alternative. We
note, however, that masking parts of the ballot might make it hard to detect
ill-formed, e.g., over-votes etc.

We also note that this idea has similarities to the SOBA constructions for
Risk-Limiting-Audits (RLAs), [1], which also publishes each audited ballot “dis-
assembled” into different contests, whereas the auditors will see the intact bal-
lot. The VAULT approach [2] also uses homomorphic encryption of the cast-vote
records to achieve the SOBA goals more easily. (VAULT was used for the first
time in a risk-limiting audit in Inyo County, California, in 2020.) The purpose
and the underlying cryptographic constructions are quite different, but our anal-
ysis applies to these cases as well.

For some tally algorithms, we can separate ballots into their atomic parts and
reveal these independently after anonymising them, which effectively counters
signature attacks. However, that reduces public transparency and may reduce
public confidence in the election result. For Selene, where voters verify their votes
via trackers, this separation provides a method to verify without revealing indi-
vidual ballots: we simply assign a distinct tracker to each element of the ballot.
Voters can then verify some or all components of their ballot using those track-
ers. A coerced voter could use the Selene tracker-faking mechanism to assemble
a ballot that matches the coercer’s instructions. Technically this is straightfor-
ward but from a usability standpoint seems problematic. Moreover, even if the
voter were prepared to go the effort of concocting such a fake ballot, the neces-
sary ingredients might not be available, so coercion threats will remain, and the
probability that one of atomic trackers is the same as the coercer’s increases.
Thus it makes sense to look for alternatives.

Below, we present the main ideas and analyse differences in privacy, coercion-
resistance, and receipt-freeness for the different methods. Section 2 introduces
the idea of partially masking ballots. Section 3 describes how it can be used in
masked RLT and RLV. Section 4 defines a distinguishing distance between ran-
domly masked ballots, establishes a connection to the Hamming distance, charac-
terizes the class of masking strategies for which this connection holds, and proves
bounds on the number of voters that can be approached with a pattern-based
attack. It provides another application of the distinguishing distance: to quan-
tify the effect of masking on individual verifiability. Section 5 considers quanti-
tative game-based notions of privacy, coercion-resistance, and receipt-freeness.
Section 6 concludes.

2 Masking Complex Ballots

Many elections use simple plurality voting: the voter selects at most one candi-
date from a set, in the simplest case, a referendum, a choice between “yes” and
“no.” The next level of complexity is single-winner plurality, aka “first past the
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post.” More complex social choice functions and correspondingly more complex
ballots are common. Perhaps the next level in complexity are approval voting
in which the voter can cast votes for several candidates for a single office, and
multi-winner plurality, in which a voter can vote for up to k candidates for k
offices. In some cases voters may have a quota of votes and is allowed to cast
more than one vote for a given candidate, up to some limit. Some methods allow
voters to give a preference ranking to the candidates.

Common to all of these social choice functions, if the ballots are published, is
that they are vulnerable to signature attacks (also known as “Italian” attacks),
i.e. a coercer chooses a particular, unlikely, pattern, instructs the victim to mark
a ballot with that pattern and checks whether a ballot with that pattern appears
in the tally.

Let us assume that the ballots are of the form (v1, v2, . . . , vk) with k the
number of candidates and vi taking values from a specified set V. V might for
example just be {0, 1} or a set of integers plus a blank: {1, ...., s} ⋃ {blank} etc.

In many types of elections, these ballot-level selections, or subsets thereof,
will reappear as part of the tally procedure (e.g. in electronic mixnet tallies), as
part of an audit trail or for transparency (electronic scans of paper ballots), in
Risk-Limiting Audits using samples of votes, or verification procedures (e.g. in
tracker-based schemes such as Selene). In order to preserve privacy, the mapping
between the published votes and the voter is normally anonymised.

As mentioned above, revealing these ballots may endanger the receipt-
freeness of the election. With Masked Tallies, introduced here, only parts of
each ballot are revealed:

(maski1(v
(i)
1 ),maski2(v

(i)
2 ), . . . ,maskik(v(i)

k ) ) for i = 1, . . . , n.

The functions maskij are either the identity, displaying the component of the
vote, or a constant, e.g. ∗ (/∈ V), masking the component. n is the number of
ballots cast.

Risk-Limiting Tallies [4], involved unmasking only as many randomly selected
ballots as are needed to determine the election result with a chosen risk limit. The
remaining ballots were kept completely masked. Here we suggest a generalization,
allowing partial masking of the ballots, and we will discuss the impact on risk
limits, privacy, coercion-resistance, and resistance to vote-buying.

3 Partially Masked RLTs and RLVs

We reprise risk-limiting tallies and verification, RLT and RLV [4], before extend-
ing these to general masks. First we recapitulate the idea of tracker-based veri-
fication in terms of Selene.

Outline of Selene. Selene [8] enables verification by posting the votes in the
clear on the BB along with private tracking numbers. Voters are only notified of
their tracker some time after the vote/tracker pairs have been publicly posted,
giving a coerced voter the opportunity to choose an alternative tracker to placate



110 P. Y. A. Ryan et al.

the coercer. The voter is able to fake the tracker and related cryptographic data
using a secret trapdoor key. The notification of the trackers is carefully designed
to provide assurance to the voter that it is their correctly assigned tracker, i.e.
unique to them, while being deniable to any third party.

Assuming that votes are encrypted component-wise, at the end of the mixing
we will have encrypted votes and trackers on the bulletin board:

({tri}PK , ({v
(i)
1 }PK , {v

(i)
2 }PK , ......{v

(i)
k }PK))

where {·}PK denotes encryption under the public key PK. These ballots can
now be verifiably decrypted to reveal the vote/tracker pairs that can be checked
by the voters, and anyone can compute the tally directly on the plaintext votes.

Risk-Limiting Tallies and Verification with Partially Masked Ballots.
In the original approach to RLT (where ballots are without trackers) and RLV
(with trackers for individual verification), see [4], the idea was to only decrypt
a random subset of the ballots. The number decrypted being controlled by a
risk-limit that bounds the probability that the announced election result will be
wrong.

In the new masked RLV and RLT approach, we instead reveal randomly
selected components of the ballots (and the trackers for RLV). If there is more
than one contest on the ballot, the contests can be treated independently. How
much we reveal will again be governed by a specified risk limit, as in [4]. A
natural choice is to first decrypt m of the k entries in each ballot at random,
and to increase m if necessary to meet the risk limit. This is simplest and will be
used in the analysis below. In practice, it may make sense to dynamically change
the rate of openings per candidate, e.g. if a candidate is popular we might be
able to decrease the rate of unmasking of votes for that candidate, maintaining
the risk limit while improving coercion-resistance.

Using this masked approach for RLV with tracker verification, the masking
means that only parts of the ballot can be verified, but unlike to the original
RLV every voter can verify something. We will quantify how much.

Full Tally with Partial Verification (FTPV). A social choice function is
separable if, for the purposes of tallying, the components of each vote can be con-
sidered separately. Plurality, approval, and Borda count are separable; instant-
runoff voting and single transferrable vote are not. For separable social choice
functions, it is possible to compute the full tally, i.e. achieve 100% confidence
in the outcome while partially masking selections. For each ballot, we randomly
select some components. All selected components for all ballots are gathered in
another part of the BB and subjected to a full, componentwise shuffling before
decryption. Their positions in the original ballots are replaced by ∗. Thus, the
way that these selected components appeared in the original ballots is lost.

The FTPV approach above might still hit corner cases, for instance if no vote
was cast for a particular candidate. This suggests using a hybrid approach in
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which we use the approach above but reveal a random subset of the components
separated out from the ballots. Thus we reveal enough of each ballot linked to
the tracker to make verification meaningful while mitigating coercion threats,
while a larger portion of the ballots is revealed without a link to the trackers to
attain the required risk limit for the tally.

4 Distinguishing Distance and Applications to Signature
Attacks and Individual Verifiability

In this section, we define a metric on the set of complex ballots that charac-
terizes how well pairs of strings can be distinguished under random masking.
We then observe that in some cases this metric is a monotone transformation
of the Hamming distance used in coding theory. We also precisely characterize
the cases when this occurs. Next, we use the connection to coding theory to
answer the following question: how many simultaneous signature attacks can a
coercer and/or vote-buyer launch? Finally, we give another application of the
distinguishing distance: we use it to quantify the effect of a masking strategy on
individual verifiability.

Throughout this section, we consider complex ballots with k components
taken from the set V; thus, the set of possible ballots is Vk. We ignore here any
constraints on what constitute valid ballots. For x ∈ Vk and S ⊂ {1, . . . , k}, we
denote by xS the substring of x on the positions in S.

4.1 Definition and Basic Properties of Distinguishing Distance

How distinguishable are pairs of elements of Vk under masking? For every prob-
ability distribution pS over subsets of {1, . . . , k}, for every x ∈ Vk there is an
induced probability distribution qS,xS

of the pair (S, xS), given by qS,xS
(s, α) =

pS(s)δxs,α. If we keep pS fixed and consider a pair x, y ∈ Vk, we can define the
distance between x and y as the statistical distance of qS,xS

, qS,yS
; thus, we take

dpS
(x, y) =

1
2

∥
∥qS,xS

−qS,yS

∥
∥
1

= sup
D

|Pr(D(S, xS) = 1)−Pr(D(S, yS) = 1)|, (1)

where the supremum is over distinguishers D. We can obtain the following for-
mula for dpS

:

Proposition 1. For all distributions pS, for all x, y ∈ Vk,

dpS
(x, y) =

∑

s:xs �=ys

pS(s) =
∑

s

pS(s)I(s ∩ t �= ∅)

where t is the set of positions on which x, y differ and the operator I transforms
the true/false value of a statement to 1, 0 respectively.
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Proof.

dpS (x, y) =
1

2

∥
∥qS,xS − qS,yS

∥
∥
1

=
∑

(s,α):qS,xS
(s,α)>qS,yS

(s,α)

(qS,xS (s, α) − qS,yS (s, α))

=
∑

(s,α):qS,xS
(s,α)>qS,yS

(s,α)

(pS(s)δxs,α − pS(s)δys,α)

=
∑

s:xs �=ys

pS(s) =
∑

s

pS(s)I(s ∩ t �= ∅).

�	
Under the mild assumption that each position is revealed with strictly posi-

tive probability, dpS
is a metric on Vk.

Proposition 2. For all pS, dPS
is symmetric, satisfies the triangle inequality

and satisfies ∀x, dPS
(x, x) = 0. If in addition ∀i,Pr(i ∈ S) > 0, then dpS

(x, y) =
0 =⇒ x = y.

Proof. The first three claims follow directly from (1). For the last claim, take
any i, any v ∈ V, any x, y with dpS

(x, y) = 0. Consider the distinguisher D given
by “On input s, α, if i is among the revealed positions and the corresponding
entry is v output 1, else output zero.” Then,

Pr(i ∈ S)δxi,v = Pr(D(S, xS) = 1) = Pr(D(S, yS) = 1) = Pr(i ∈ S)δyi,v.

Therefore, ∀i∀v, xi = v ⇐⇒ yi = v, so x = y. �	
Now, we look at another question: how to find an optimal distinguisher

between a pair of strings. For each x ∈ Vk, define distinguisher Dx by “On
input (s, α), if xs = α, output 1, else output 0.” This is optimal regardless of
the particular pS , and regardless of the particular second element y.

Proposition 3. For all distributions pS, for all x, y ∈ Vk,

dpS
(x, y) = Pr(Dx(S, xS) = 1) − Pr(Dx(S, yS) = 1).

Proof.

Pr(Dx(S, xS) = 1) − Pr(Dx(S, yS) = 1)

=
∑

s

pS(s)(Pr(Dx(s, xs) = 1) − Pr(Dx(s, ys) = 1))

=
∑

s

pS(s)(1 − δxs,ys) =
∑

s:xs �=ys

pS(s) = dpS (x, y).

�	

4.2 Distinguishing Distance and Hamming Distance

From Proposition 1, we see that for any pS , dpS
(x, y) does not depend on all

details of the strings x, y, but only on the set of positions where x, y differ. It
turns out that there is a class of distributions pS such that dpS

does not even
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depend on all details of the set of positions where x, y differ, but only on the
Hamming distance between x and y, dH(x, y) = |{i : xi �= yi}|. This class of
probability distributions is precisely those that assign equal weight to subsets of
equal size.

Theorem 1. For all pS, the following are equivalent:

1. There exists a probability vector (r(0), . . . r(k)) such that ∀s, pS(s) = r(|s|)
( k

|s|)
2. There exists a function fpS

such that for all x, y ∈ Vk, dpS
(x, y) =

fpS
(dH(x, y)).

We prove the forward direction of Theorem1 by computing an explicit for-
mula for the function fpS

.

Theorem 2. Suppose ∃(r(0), . . . r(k))∀s, pS(s) = r(|s|)
( k

|s|)
Then,

dpS
(x, y) =

dH(x,y)∑

i=1

k−dH(x,y)∑

j=0

(
dH(x,y)

i

)(
k−dH(x,y)

j

)
r(i + j)

(
k

i+j

) .

Proof (Theorem 2). Take any x, y and let t be the subset of positions where x, y
differ. Then,

dpS
(x, y) =

∑

s:xs �=ys

pS(s) =
∑

s:s∩t�=∅
pS(s) =

|t|∑

i=1

k−|t|∑

j=0

(|t|
i

)(
k−|t|

j

)
r(i + j)

(
k

i+j

) .

�	
To prove the reverse direction of Theorem 1, we think of the 2k − 1 dimensional
vector space over C with entries indexed by non-empty subsets of {1, . . . k}, we
think of the subspace

W = {w ∈ C
2k−1 : |s| = |t| =⇒ w(s) = w(t)}

and we also think of the (2k − 1) × (2k − 1) matrix M with entries M(s, t) =
I(s ∩ t �= ∅) indexed by non-empty subsets of {1, . . . , k}.

From Theorem 2, we see that w ∈ W =⇒ Mw ∈ W , that is, M leaves the
subspace W invariant. Next, we observe that M is self-adjoint, and that M is
also invertible:

Theorem 3. For all k ∈ N, the matrix Mk with entries Mk(s, t) = I(s ∩ t �= ∅)
indexed by non-empty subsets of {1, . . . k} is invertible.

a fact that we will prove at the end of this subsection. From this, we see that
M−1 also leaves subspace W invariant.

Now, assume ∃fpS
,∀x, y : dpS

(x, y) = fpS
(dH(x, y)). Form the vector w ∈

W with entries w(t) = fpS
(|t|). The relation dpS

(x, y) = fpS
(dH(x, y)) and

Proposition 1 imply ∀t, w(t) =
∑

s �=∅ M(t, s)pS(s). Then, (pS(s))s �=∅ = M−1w ∈
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W , so pS assigns equal weight to subsets of equal size. This completes the proof
of Theorem 1, assuming Theorem 3 holds.

It remains to prove Theorem 3. The proof is by induction on k. When k = 1,
M1 = (1) is invertible. Assume now Mk is invertible and consider Mk+1. We
order subsets according to the following: a subset corresponds to a string of 0s
and 1s, and this encodes an integer between 1 and 2k+1 − 1. With this ordering
of the subsets, the matrix Mk+1 has the following block form:

⎛

⎜
⎝

M
(2k−1)×(2k−1)
k 0(2

k−1)×1 M
(2k−1)×(2k−1)
k

01×(2k−1) 11×1 11×(2k−1)

M
(2k−1)×(2k−1)
k 1(2

k−1)×1 1(2
k−1)×(2k−1)

⎞

⎟
⎠

where the sizes of the blocks are indicated in the superscript, and a 0 or 1
indicates that all entries of that block are 0 or 1.

Now we consider the following elementary row operations: subtract the mid-
dle row from all the bottom rows, then subtract the top block of rows from the
bottom block of rows. We arrive at the matrix

⎛

⎜
⎝

M
(2k−1)×(2k−1)
k 0(2

k−1)×1 M
(2k−1)×(2k−1)
k

01×(2k−1) 11×1 11×(2k−1)

0(2
k−1)×(2k−1) 0(2

k−1)×1 (−Mk)(2
k−1)×(2k−1)

⎞

⎟
⎠

and this is invertible by the inductive hypothesis. Hence, Mk+1 is also invertible.

4.3 Bounds on the Number of Simultaneous Signature Attacks

We consider a coercer and/or vote buyer who wants to launch signature attacks
on multiple voters simultaneously. Thus, the adversary chooses r signatures
x1, . . . , xr ∈ Vk and approaches many voters requiring each to submit one of
the signature ballots.

What is the largest number rmax of different signatures that a coercer can
use subject to the natural constraint that the strings x1, . . . , xr are pairwise
distinguishable under random masking? We use the connection to coding theory
from Subsect. 4.2 to answer this question.

First, we prove some properties of the function fpS
from Theorem 1.

Lemma 1. For every pS that satisfies ∃(r(0), . . . , r(k))∀s, pS(s) = r(|s|)
( k

|s|)
, the

function fpS
is non-decreasing, fpS

(0) = 0, and fpS
(k) = 1 − pS(∅).

Proof. Take any i < j ∈ {0, . . . , k}. Take x, y ∈ Vk that differ in the first
i positions and x′, y′ ∈ Vk that differ in the first j positions. Using Proposi-
tion 1 we get fpS

(i) = fpS
(dH(x, y)) = dpS

(x, y) =
∑

s pS(s)I(s ∩ {1, . . . , i} �= ∅)
≤ ∑

s pS(s)I(s ∩ {1, . . . , j} �= ∅) = dpS
(x′, y′) = fpS

(dH(x′, y′)) = fpS
(j).
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For the other two claims, take z, w ∈ Vk that differ in all positions. Then,

fpS (0) = fpS (dH(z, z)) = dpS (z, z) = 0

fpS (k) = fpS (dH(z, w)) = dpS (z, w) =
∑

s

pS(s)I(s ∩ {1, . . . , k} �= ∅) = 1 − pS(∅).

�	
The properties of fpS

established in Lemma 1 allow us to define a partial
inverse of fpS

. Take gpS
: [0, 1 − pS(∅)] → {0, 1, . . . k} given by

gpS
(q) = min{d ∈ {0, 1, . . . , k} : fpS

(d) ≥ q}

so that we have
fpS

(d) ≥ q ⇐⇒ d ≥ gpS
(q). (2)

Now, we are ready to state and prove our bounds on the number of simulta-
neous signature attacks under a pairwise distinguishability constraint.

Theorem 4. For every finite set V, for every k ∈ N, for every probability distri-
bution pS on subsets of {1, . . . , k} satisfying ∃(r(0), . . . , r(k))∀s, pS(s) = r(|s|)

( k
|s|)

,

for every q ∈ [0, 1 − pS(∅)], let rmax(V, k, pS , q) denote the size of the largest
collection {x1, . . . xr} with the property ∀i �= j, dpS

(xi, xj) ≥ q. Then

|V|k
∑gpS

(q)−1

j=0

(
k
j

)
(|V| − 1)j

≤ rmax(V, k, pS , q) ≤ |V|k
∑�(gpS

(q)−1)/2�
j=0

(
k
j

)
(|V| − 1)j

.

Proof. We use the same argument that is used in coding theory to establish the
Gilbert-Varshamov lower bound and the Hamming upper bound on the maxi-
mum number of codewords subject to a pairwise Hamming distance constraint.

First, we observe that a collection {x1, . . . xr} satisfies ∀i �= j, dpS
(xi, xj) ≥ q

if and only if it satisfies ∀i �= j, dH(xi, xj) ≥ gpS
(q). This follows from the relation

dpS
(xi, xj) = fpS

(dH(xi, xj)) and the property (2) of the partial inverse gpS
.

Now, take a collection {x1, . . . xrmax(V,k,pS ,q)} with the maximum num-
ber of elements subject to the constraint ∀i �= j, dH(xi, xj) ≥ gpS

(q).
To prove the upper bound, note that the Hamming balls of radius
�(gpS

(q) − 1)/2� around x1, . . . , xrmax
must be disjoint, that each such ball con-

tains
∑�(gpS

(q)−1)/2�
j=0

(
k
j

)
(|V| − 1)j elements, and that the total number of ele-

ments in all these balls must not exceed the size of the whole set Vk.
To prove the lower bound, note that the Hamming balls of radius gpS

(q) − 1
around x1, . . . , xrmax

must completely cover Vk, or else another element could be
found that has Hamming distance ≥ gpS

(q) to all of x1, . . . , xrmax
and this would
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contradict the choice of {x1, . . . xrmax(V,k,pS ,q)} as having the maximum number

of elements. Now, we have rmax Hamming balls with
∑gpS

(q)−1

j=0

(
k
j

)
(|V| − 1)j

elements each and their total number of elements must exceed |V|k, giving the
lower bound on rmax. �	
These upper and lower bounds are exemplified in Fig. 1 for an election with
k = 5 candidates and |V| = 2 (like the student election example in next section).
We have gpS

(q) = k − m + 1 when g is applied to a uniform distribution over
m-element subsets (m openings) evaluated at q = 1 (perfect distinguishability).

4.4 Quantifying the Effect of Masking on Individual Verifiability

We would like to quantify the effect of a particular masking strategy, specified
by the probability distribution pS , on individual verifiability. We propose the
following quantity:

IV (pS) = inf
x�=y∈Vk

dpS
(x, y).

This quantity takes values between 0 and 1, where IV (pS) = 1 means that the
masking strategy pS leaves the individual verifiability of the underlying vot-
ing protocol invariant, while IV (pS) = 0 means that the masking strategy pS

destroys any individual verifiability that was present in the underlying voting
protocol.

The motivation for choosing the quantity IV (pS) is the following: a voter
who has voted x obtains a pair (s, α) where s ⊂ {1, . . . , k} and α ∈ V |s| and
must decide whether this revealed vote was obtained from his submitted vote x
or from some y �= x. Taking the infimum over x �= y corresponds to considering
the worst case over voter choices x and modifications of the voter choice y.

One attractive feature of this setup is that an individual voter does not need
to know the distribution pS or the modification y in order to apply the optimal
verification strategy; indeed the optimal strategy for a voter who has chosen x
is to apply the distinguisher Dx considered in Proposition 3.

For distributions pS that satisfy ∃(r(0), . . . , r(k))∀s, pS(s) = r(|s|)
( k

|s|)
, Theorem

2 gives a simple formula for IV (pS):

IV (pS) =
k−1∑

j=0

(
k−1

j

)
r(j + 1)

(
k

j+1

) =
k∑

l=1

l

k
r(l),

where we have used the fact that the transformation from Hamming to distin-
guishing distance is non-decreasing (Lemma 1), and so the smallest distinguish-
ing distance is between x, y such that dH(x, y) = 1.
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Fig. 1. Example for |V| = 2 and k = 5. Here
rmax is the number of different signatures that
a coercer can distinguish pairwise.

m \ p pcol (1− pcol)n

1 0.16 1.46 · 10−79

2 0.018 8.3 · 10−9

3 0.0005 0.60
4 9.7 · 10−6 0.99
5 1.6 · 10−7 0.9998

Fig. 2. The probability, pcol that a
single (resp. no) honest voter casts
a ballot which after masking equals
the mask of vO

0 = (0, 1, 1, 1, 1) for
the student election. Here n is the
number of voters, and m is the
number of unmasked components.

5 Quantitative Privacy-Type Properties

We now want to measure and compare privacy-properties for different masked
tally methods. When computing concrete values we will consider approval vot-
ing with k candidates only 0 or 1 is allowed for each candidate, without any
overall constraint, (v1, . . . , vk) ∈ {0, 1}k. For the n honest voters we assume
for simplicity that the probability to vote vi = 1 is pi and these probabilities
are independent. As a special concrete case we consider a student election with
n = 1001 voters (one voter is under observation), k = 5 candidates with probabil-
ities (0.6, 0.4, 0.01, 0.01, 0.01), i.e. two popular candidates and three unpopular.

5.1 Privacy

In order to compare the different approaches we first consider the quantitative δ-
privacy definition from [5]. The main other quantitative privacy definition is [3],
but it is less suited considering signature attacks. The parties are an observer
O, who can use public data, nh honest voters and an additional voter under
observation Vobs, whose vote the observer tries to guess.

Definition 1 (δ-privacy). Let P be a voting protocol and Vobs be the voter
under observation. We say that P achieves δ-privacy if

Pr[(πO||πVobs
(vO

0 )||πv)(l) → 1] − Pr[(πO||πVobs
(vO

1 )||πv)(l) → 1]

is δ-bounded as a function of the security parameter � for all vote choices vO
0 and

vO
1 of the observed voter. Here πO, πVobs

and πv are respectively the programs run
by the observer O, the voter under observation Vobs and all the honest voters.
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The value δ will depend on the chosen vote distribution, and we see that it is
especially relevant to penalize signature attacks: if we assume that there is a vote
choice v∗ = (v∗

1 , . . . , v
∗
k) which rarely gets selected and has a probability close

to zero, then an unmasked tally which reveals all cast plaintext ballots, even in
anonymised form, will have δ = 1—the adversary simply checks if v∗ appears.

Full Ballot Disclosure. When we reveal all ballots, we can consider the case
where the observer tries to distinguish a voter casting the most unpopular vote
vs the most popular vote, as in a signature attack. That is, in the definition
we let vO

0 = (v1, . . . , vk) with vi = 1 if pi ≤ 1/2 and vi = 0 if pi > 1/2,
and we have vO

1 = (1 − v1, . . . , 1 − vk). Denote the corresponding probabil-
ity pmin. Now a good strategy is simply to check if at least one (v1, . . . , vk)
appears in the disclosed ballots, and the algorithm then outputs “1”. This means
Pr[(πO||πVobs

(vO
0 )||πv)(l) → 1] = 1 but (πO||πVobs

(vO
1 )||πv) will also output “1”

if another voter chooses vO
0 . This happens with probability 1− (1−pmin)nh . We

conclude that δ ≥ (1 − pmin)nh . For the case of the student election we have
that vO

0 = (0, 1, 1, 1, 1) with pmin = 0.42 · 0.013 = 1.6 · 10−7. Thus for nh = 1000
we have δ ≥ (1 − pmin)nh ≈ 0.99984, i.e. close to 1.

Result Only. We now consider the case where we only reveal the over-
all result r = (r1, . . . , rk). In this case we can follow an analysis close to
[5,7] for calculating δ. For every possible result r we calculate the prob-
ability that the result happened if the observed voter cast vO

0 or vO
1 .

The algorithm will then output one if the former probability is larger.
We get δ =

∑
r∈M∗

vO
0 ,vO

1

(AvO
0

r −A
vO
1

r ) where M∗
vO
0 ,vO

1
= {r ∈ R : A

vO
1

r ≤ A
vO
0

r }, R is

the set of all possible results of the election and Av
r denotes the probability that

the choices of the honest voters yield the result r given that Vobs’s choice is v.
These probabilities can explicitly be calculated since each candidate count from
the honest voters, Xi, is binomially distributed, Xi ∼ BD(nh, pi). We thus have
Av

r = P(X1 = r1−v1) · · ·P(Xk = rk −vk) =
∏k

i=1

(
n−1

ri−vi

)
pri−vi

i (1−pi)n−ri+vi−1.

RLT. In the original RLT method we keep a certain fraction, fblind, of the
ballots hidden, that is (1 − fblind)n ballots are published. If we consider the
optimal algorithm from the full ballot disclosure and the corresponding δfull we
see that δ = (1 − fblind)δfull since the probability that observed voter’s ballot is
hidden is (1 − fblind).

Masked RLT. We now consider the case of masked RLTs where the we release
all ballots but with only m out of k components unmasked. A good strategy
to lower bound δ is to count the number Nb of colliding ballots v which satisfy
maskvv = maskvvO

b for b = 0, 1. We choose vO
0 as the most unlikely ballot,

as above and take vO
1 as the opposite ballot to discriminate optimally between

the two counts. The main distinguishing power comes from N0, and we let the
distinguishing algorithm output “1” if the probability of the honest voters casting
N0 − 1 colliding votes is higher than getting N0 collisions. The probability for
each honest voter to have a collision is pcol = 1/

(
k
m

)·∑1≤i1<i2<...<im≤k pi1 . . . pim
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and N0 ∼ BD(nh, p), where pi is the probability of a match in the ith candidate.
In Fig. 2 we have displayed the probabilities for the student election example.
The algorithm above will then simply give the probability at the mode of the
binomial distribution with pcol. For m = 3 we find δ ≥ 0.6 for the student
election.

5.2 Coercion-Resistance

In [6] the authors present a definition of quantitative coercion-resistance follow-
ing similar ideas as in Definition 1. We will here use their strategy version and
not go into all details. We let S denote the election system with specified num-
ber candidates, honest (nh) and dishonest voters (mostly neglected here) and a
ballot distribution, and attacker, CS , and voter, VS , interactive Turing machine
models. We let γ denote a property defining the goal of the coerced voter, e.g.
to vote for a specified candidate.

Definition 2. S achieves δcr-coercion-resistance if for all dictated coerced
strategies πVco

∈ VS there exists a counter-strategy π̃Vco
∈ VS s.t. for all coercer

programs πc ∈ CS:

– Pr[(πc||π̃Vco
||πv)(l) �→ γ] is overwhelming,

– Pr[(πc||πVco
||πv)(l) �→ 1] − Pr[(πc||π̃Vco

||πv)(l) �→ 1] is δcr-bounded,

with bounded and overwhelming defined in the security parameter. The first part
says that the voter is able to achieve her goal (e.g. vote for a specific candidate)
and the second part says that the coercer’s distinguishing power is bounded by
δcr. This level of coercion-resistance depends on several parameters especially
the probability distribution on the candidates.

Whereas this definition gives a level of coercion-resistance, it does not tell
the full story. To see this let us consider two different election systems. System A
outputs voter names and corresponding votes with probability 1/2, completely
breaking privacy, and otherwise it only outputs the election result. Neglecting
the information from the election result we get δA = 1/2. In system B the voter
secretly gets a signed receipt of her vote with probability 1/2 and otherwise
the protocol works ideally. In this case a coerced voter can always cast her own
choice and claim that no receipt was received. A voter following the coercer’s
instruction will with probability 1/2 give the corresponding receipt, i.e. we again
have δB = 1/2. However, the two systems are very different from the point of
view of the voter: in system A the coerced voter gets caught cheating with
probability 1/2, whereas in system B, the voter always has plausible deniability.

Since plausible deniability is an essential factor for the usability of coercion-
resistance mechanisms, we need a new definition to be able to measure this
aspect.

5.3 No Deniability

The level of plausibility of a voter claiming to have followed the coercer, while
actually following the counter strategy, relates to the probability of false posi-
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tives when the coercer tries to determine if the voter disregarded the instruc-
tions. In the following we assume without loss of generality that the coercer
outputs 1 when blaming the voter. We now want to define the maximal proba-
bility of getting caught without any deniability, i.e. we consider the case where
Pr[(πc||πVco

||πv)(l) �→ 1] = 0 or negligible, i.e. the coercer only uses strategies
where he never blames an honest voter.

Definition 3. S achieves δcr,no−d-coercion-resistance if for all dictated coerced
strategies πVco

∈ VS there exists a counter-strategy π̃Vco
∈ VS s.t. for all coercer

programs πc ∈ CS:

– Pr[(πc||π̃Vco
||πv)(l) �→ γ] is overwhelming.

– Pr[(πc||π̃Vco
||πv)(l) �→ 1] is δcr,no−d-bounded and Pr[(πc||πVco

||πv)(l) �→ 1] is
negligible.

Note that the coercer’s optimal strategy to obtain this δcr,no−d and the voter’s
strategy might be different from the ones in Definition 2 but δcr,no−d ≤ δcr.

The no deniability probability clearly separates the RLT approaches. The
original RLT always has plausible deniability if we choose to keep some ratio of
ballots shrouded and the voter can claim her ballot was not revealed. This is
e.g. important for RLV giving deniability against an attack where the coercer
provides a ciphertext to cast and asks for its decrypted vote.

In the case of masked ballots, there can be a chance of getting caught unde-
niably. This will depend strongly on the number of revealed ballot components
m, the vote distribution and the voter’s goal. For the student election analysed
above, the worst case when the goal of the voter is to cast (1, 0, 0, 0, 0). The
coercer’s optimal strategy is then to demand a vote for (0, 1, 1, 1, 1). The coercer
will blame the voter if there is no matching masked ballot, i.e. if no honest vot-
ers produce a collision which happens with probability (1 − pcol)nh+1 computed
Fig. 2. The probability of no deniability is then p = 8 ·10−9 for m = 2 but jumps
abruptly to p = 0.6 for m = 3.

An interesting case is when the voter has a relaxed goal allowing to cast a
signature part or not, and when the vote distribution has some ballots strictly
zero probability. Let us consider a three candidate 0/1 election with 1-vote prob-
abilities (1/2, 1/2, 0). The voter’s goal is to cast a 1 for the first candidate. The
coercer’s optimal strategy is to demand a signature ballot (0, 0, 1). The voter has
two counter-strategies: 1) cast a vote (1, 0, 0) without the 0 probability signa-
ture part or 2) casting a vote (1, 0, 1) with the signature part. For 1) the there is
no deniability if no other voter casts a matching ballot and the coerced voter’s
ballot does not match either. For m = 1 this happens with p = (2/3)nh+1 and
for m = 2 with p = (11/12)nh , both are small if we have many voters. For 2)
there will always be a matching vote if the first part of the coerced voter’s bal-
lot is masked. However, if the last part is revealed the coercer can deduce this
ballot comes from the coerced voter since this candidate had probability 0, and
if the 1 vote in the first part is revealed as well then the voter is caught with
no deniability. Thus is no deniability with probability (1/3) · (2/3)nh for m = 1
and 1/3 + (1/3) · (11/12)nh for m = 2. Thus for m = 1 strategy 2) is always
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better, but for m = 2 strategy 1) is better when we have more than 13 voters.
In some cases the voter strategy thus depends on m, which might not be know
beforehand.

Finally, it is also natural to define the level of plausability we can provide.
The average plausability that a voter has e.g. in Definition 2 is a useful quantity
for the voter, but it would be more useful to guarantee that the voter always
has a certain level for coercion-resistance. We leave a precise definition for future
work.

5.4 Receipt-Freeness

Following [6], Definition 2 also covers receipt-freeness. However, we again argue
that modelling some variants is useful. The following definition is based on a
swap of πVco

and ˜πVco
in Definition 3, and models vote buyers who do not want

to pay a “free lunch” to vote sellers who follow their own goal. The voter goal γ
can here be to cast a specified vote or set of votes.

Definition 4 (Weak Vote Buying Resistance). For a given small pfl, S
achieves δwvb-coercion-resistance if for all dictated coerced strategies πVco

∈ VS

there exists a counter-strategy π̃Vco
∈ VS s.t. for all coercer programs πc ∈ CS:

– Pr[(πc||π̃Vco
||πv)(l) �→ γ] is overwhelming.

– Pr[(πc||πVco
||πv)(l) �→ 1] − Pr[(πc||π̃Vco

||πv)(l) �→ 1] is δwvb-bounded and
Pr[(πc||π̃Vco

||πv)(l) �→ 1] is pfl-bounded.

We here interpret outputting “1” as paying the vote seller and this definition
bounds how often an instruction-following vote seller gets paid by a vote-buyer
(by δwvb + pfl), but under the condition that a voter who casts another vote
is only paid with a (very) small probability pfl. This is a weakened vote-buyer
model but interesting since a vote buyer should avoid vote sellers going for a
“free lunch”. If the probability of an honest vote seller getting paid is low, it
would help curb vote selling (even though the vote buyer could increase the
price and create a “vote selling lottery”). In this definition, it also makes sense
to drop the quantification over the coercer’s strategies to see the resistance to
vote buying for different vote choices.

RLT. In the original RLT a signature ballot will get revealed with probability
1− fblind. If the vote buyer sees this he can pay the vote seller and will only pay
the voter seller wrongly with a small probability pfl equal to the probability that
one of the honest voters cast the signature ballot, i.e. δvb � 1 − fblind which can
be rather high and protects badly against vote buying.

Masked RLT. For the masked ballots we can however choose m such that
several ballots will have the same masking as the signature ballot and makes
it hard for the vote buyer to assess if the signature ballot was cast. For the
student election we see from Fig. 2 that the number of matches with the optimal
signature ballot (0, 1, 1, 1, 1) is binomially distributed with an expectation value
of 18.4 colliding ballots and a standard deviation of around 4.
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For a more precise example, we can consider the three-candidate election
with probabilities (1/2, 1/2, 0) as above and assume that the goal of the voter is
to cast 0 for candidate 1 and pfl = 0. For m = 1 we will have δvb = 0, but for
m = 2 the vote-buyer can demand a vote for candidate 1 and 3 and pay out if
he sees (1, ∗, 1). Any counter-strategy with 0 for candidate 1 gives δvb = 1/3.

We note that the new quantitative definitions for no deniability coercion-
resistance (Definition 3), the weak vote buying resistance (Definition 4) and the
original δcr-coercion-resistance (Definition 2) are considering different aspects of
coercion-resistance and stating the three different δ-values gives a more nuanced
description of the security of a given voting protocol. Also note that the δ values
are calculated using potentially different strategies for the coercer and voter,
and finding unified strategies optimising the parameters is an interesting line of
future work. Finally, there are natural, more fine-grained, definitions extending
these which should be also considered in the future.

6 Conclusion

We have shown that the idea of risk-limiting tallies and risk-limiting verification
can be applied effectively to complex ballots. By partially masking each ballot
rather than simply masking a subset of the ballots as in the original RLT and
RLV we gain far greater flexibility in terms of masking strategies. This will be
explored further in order to optimise the trade-offs between the various measures
defined here in future work.

The approach is more robust against any claims of being undemocratic: all
ballots are counted, and indeed in the full tally/partial verification option, all
are counted fully. The only compromise then is some reduction in the level of
verifiability, but this can be adjusted and is probably acceptable. If we compare
this with ThreeBallot, there the chance of detecting a manipulated ballot is
1/3, assuming that the attacker does not learn which ballot was retained by the
voter. In our case we can achieve a good level of coercion mitigation with say
a shrouding of about 1/2 of each ballot. Finally, we did a preliminary analysis
of the quantitative privacy for the different tally methods, and the coercion-
resistance, in particular, the probability a coerced voter gets undeniably caught.
The new masked tallies however, are more appropriate for receipt-freeness, in
particular with upper bounds on the number of vote sellers, whereas the old RLT
provides good plausible deniability to coerced voters. This suggests combining
both methods when possible, but future work is needed to define the precise
level of vote-buying resistance.
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