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1 Introduction

It has been widely acknowledged that the concept of areas of plane shapes and
rigorous methods of their calculation are complex and difficult to learn and to teach. !
Among these methods, the calculation of the area of a circle is particularly challenging
as it requires dealing with infinitesimal methods and an irrational number (7). At the
same time, it is considered crucial for middle school curriculum being embedded into
a rich context of real-life applications along with introduction of ideas and concepts
which are supposed to be used in later schooling.> Not surprisingly, the number
of resources produced to help students deal with the complexity of explanations
and justifications of the formula for the area of a circle has been growing, both
in the traditional form of printed textbooks and teacher’s manuals® and in novel,
digital format. The latter category includes a number of online resources with useful
information (explanations and exercises, learning scenarios and suggestions) for
teachers, some of which are published by official curriculum bodies (e.g., NCTM,*

I'See, for instance, Kordaki and Potari (1998), Rejeki and Putri (2018), among others.
2Cavanagh (2008), O’Dell et al. (2016).

3See, for instance, Van de Walle et al. (2020), p. 530. For a preliminary discussion of some of them,
see Freiman and Volkov (2006).

4NCTM (National Council of Teachers of Mathematics), see nctm.org.

SLearnAlberta.ca is a website providing digital learning and teaching resources correlated with
the educational programs from kindergarten to Grade 12 approved by the Government of Alberta
Province, Canada.

V. Freiman ()
Université de Moncton, Moncton, NB, Canada
e-mail: viktor.freiman @umoncton.ca

A. Volkov
National Tsing-Hua University, Hsinchu, Taiwan

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 365
P. R. Richard et al. (eds.), Mathematics Education in the Age of Artificial Intelligence,
Mathematics Education in the Digital Era 17,

https://doi.org/10.1007/978-3-030-86909-0_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86909-0_16&domain=pdf
mailto:viktor.freiman@umoncton.ca
https://doi.org/10.1007/978-3-030-86909-0_16

366 V. Freiman and A. Volkov

Learn Alberta,> and NZ Math®). With the raise of digital tools and environments,
several applications (applets) were created allowing dynamic investigation of the
formula of the area of a circle by the learners.’

In the present paper, we shall argue that at some point in the history the educa-
tors started adopting (sometimes with considerable modifications) methods coming
from pre-modern (ancient and medieval) mathematical treatises available to them via
translations and interpretations provided by historians of mathematics. The reason
for this adoption usually was not explicitly stated by the educators and deserves a
further study; for the time being we assume that the educators did it in hope that the
“archaic” (and, therefore, presumably “simple”) methods could stimulate interest
and facilitate understanding of the learners.® It is also possible that this conviction
of the educators may have been based on a tacit assumption concerning the growth
of the child’s understanding of geometrical concepts as mirroring the stages of their
historical genesis.

In the context of teaching geometry, this vision led the educators to a transition
from approaches found in Euclidean Elements (ca. 300 BC) and based on quasi-
formal deduction sys.tem9 to more practical, visual, intuitive, and dynamic ones. !0
However, while some of these methods indeed allowed a relatively simple visualiza-
tion, the others involved concepts and ideas particularly difficult for young learners.
The infinitesimal methods of calculation of the areas of a circle and its parts, as well
as the methods of calculation of the volumes of a pyramid and a sphere, arguably
belonged to the latter category. In the case of calculation of the area of a circle, the
search for an appropriate didactical apparatus suitable for this case led some educa-
tors to the use of so-called “method of rearrangement of sectors” or, more precisely,
a group of approaches based on the division of circle into sectors followed by rear-
rangements of different kinds and investigation of possible approximations based
upon them.

Nowadays, this rearrangement method (we will use this term further in the chapter
for the sake of convenience) seems to be the most often used by the authors of
textbooks who suggest it for teaching calculation of the area of a circle; it can be

6 See https://nzmaths.co.nz/, the website containing information about mathematics education in
New Zealand.

7 See, for instance, https://www.mathed.page/constructions/pi/index.html for an applet designed by
Henri Picciotto. With the help of this applet a circle can be divided into 2n sectors, n = 6, ..., 180,
and these sectors can be rearranged to form a “rectangle-like” figure.

8 See, for instance, Francis (1976), Ernest (1998), Marshall and Rich (2000), Farmaki and Paschos
(2007), Furinghetti (2007), Jankvist (2009), Mac an Bhaird (2011) (listed in chronological order).
The earliest publications of this kind we are aware of were authored by D.E. Smith (1860-1944);
yet, he was not the only one who claimed that history of mathematics can be used in classroom;
see, for instance, Wiltshire (1930).

9 For a recent study of the logical structure of Euclid’s Elements, see Acerbi (2008).

10 On this process see, for example, Montoito and Garnica (2015), Herbst et al. (2018).


https://nzmaths.co.nz/
https://www.mathed.page/constructions/pi/index.html

Historical and Didactical Roots of Visual and Dynamic ... 367

43. JUSTIFYING THEOREM 11.9 You can follow the steps below to justify the
formula for the area of a circle with radius r.

TN,
£ €Y

Divide a circle into 16 congruent Rearrange the 16 sectors to form a
sectors. Cut out the sectors. shape resembling a parallelogram.

a. Write expressions in terms of r for the approximate height and base of
the parallelogram. Then write an expression for its area.

b. Explain how your answers to part (a) justify Theorem 11.9.

Fig. 1 A “justification” of the formula of the area of a circle. Larson et al. (2007), p. 755

found in almost all modern textbooks for middle school mathematics and in numerous
resources available online.'!

In particular, the rearrangement method explores the idea of dividing the circle
into a number of equal sectors, then rearranging them in a way that makes it look
like a familiar figure, namely, a polygon (e.g., parallelogram) for which the area can
be easily found (see Fig. 1).

When facing this seemingly attractive, “visual,” and “dynamic” justification of
the formula, the learners are expected to follow the implied reasoning procedure
and are supposed to realize that the area of the rearranged shape is “resembling a
parallelogram,” and, consequently, the area of the original shape (i.e., the circle) is
equal to the product of the “height” and “base” of this “parallelogram.” Further, the
learners are guided toward expressing the area of a parallelogram using the radius,
which is supposed to be the “approximate height” of the parallelogram, and the half
of the circumference, identified as the “approximate base,” and thus would obtain a
“justification” (apparently, problematic'?) of the area of the circle.

Why did the authors of this and other textbooks choose this particular approach?
While seemingly appealing to students’ intuition, it does contain hidden assumptions

1 Freiman and Volkov (2006). The printed textbooks and teaching materials available online that
feature this method are too numerous to be listed here; for the most recent ones see, for example,
Johnson and Mowry (2016), pp. 574-575 and the website https://www.colorado.edu/csl/2017/03/
23/slices-pi containing an animation of this kind. For an analysis of the attempts to use digital
technology to estimate the value of m, see de Silva et al. (2021).

12 There are two elements that make this kind of “justification” problematic: first, the left part of
the picture in Fig. 1 shows that the sectors do not seem congruent while in the right part they are
obviously congruent; second, the term “approximate” used in connection with the terms “base” and
“height” of the “shape resembling a parallelogram” does not help the learner understand why the
area of the circle is equal exactly to the product of the radius and circumference. Much of the work
dealing with these subtleties is thus left to the teacher.


https://www.colorado.edu/csl/2017/03/23/slices-pi
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that are far from being obvious.'? Stacey and Vincent (2009), for example, discuss
this method among other methods that can be used for introducing the area of a circle
(such as a “square grid” method or an “onion layers” model) to young learners; they
stress that when using such methods the educators should be aware of ““a difference
in the mathematical quality of the arguments between the empirical counting squares
method and the approaches that use deductive reasoning” (ibid., p. 9). The authors
stress that these methods include “very complicated limiting processes involved
in formally proving the formula,” and the instructors need to take these complex
elements into account when presenting students with intuitive models that might
help shaping their conceptual understanding (ibid., p. 8).

In line with Tamborg (2017) who refers to classical work of Vérillon and Rabardel
(1995), we look into the process of growth of conceptual understanding through a
view of human cognition and knowledge building as artifact-mediated activities in
which “artifacts (as opposed to natural objects) possess cultural and historical dimen-
sions because they are constructed with a particular purpose and a particular way
of fulfilling this purpose in mind” (op. cit., p. 3). These “cultural and historical
dimensions” are not always made explicit, in our opinion, especially when the arti-
facts undergo transformations in the process of transition from traditional (“usual”)
“mathematical working spaces” (hereafter MWS) to modern (“new”) MWS (e. g.,
in particular, those supported by digital technology).'*

In our view, it appears promising to adopt a genetic paradigm that relates devel-
opmental process of mathematical work and the manner by which it was created and
took shape. This paradigm dialectically unites mathematical, didactical, and histor-
ical aspects of an artifact which further could be transformed through, for example,
an “instrumental genesis” (that is, an instrumentalization and instrumentation, as
result of an interplay between a subject and an artifact, as a part of “didactical situ-
ation”; see, for example, Brousseau (1998) and Trouche (2005)). In this complex
and transformational (eco)system of knowledge development, we consider the rear-
rangement method as an artifact whose history goes back to the Antiquity and whose
genesis (or even “geneses”) has/have not yet been made sufficiently explicit. While
the ancient history of the method seems to be lost in time and space, as we will
show in this chapter, it was later (approximately in the mid-second millennium CE)
refined by mathematicians to help them solve some particular problems (related to
the calculation of the area of circle), or to conduct investigations of other infinites-
imal processes before being taken over by the nineteenth—early twentieth-century
educators as “visual support” for learners. At that time, the rearrangement method
was introduced propaedeutically, as a (novel) didactical approach in introductory
geometry courses; in the case of the area of a circle, it was featured as an alternative
to the relatively technical approaches of Euclid and Archimedes. Apparently, the

13 This “justification” is apparently based on the unstated assumption that the length of any
curved line getting closer to a given straight line tends to the length of this straight line, which
is mathematically incorrect.

14 On the concept of MWS see, for instance, Kuzniak and Richard (2014) and Richard et al. (2019).
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educational reforms of the late 1990s—early 2000s (which coincided with the intro-
duction of electronic calculators and other digital tools) placed it in the foreground
of modern didactical innovations, yet without a clear explanation of the history of
its genesis and possible pitfalls, as well as the challenges it might bear for teachers
and students.

Therefore, we begin our chapter with a brief history of the origins of the rearrange-
ment method and infinitesimal discourses that accompanied some of its versions. We
will then investigate some didactical ideas brought by nineteenth—early twentieth-
century educators into their textbooks. We will finally explore how these works
shaped modern development of innovative spaces of reflection and practice in math-
ematics education. At the end of the chapter, we will outline epistemological and
didactical issues that modern educators might need to be aware of when using the
method and will also discuss how a further and deeper investigation of both historical
and instrumental geneses could help dealing with these issues, both in theory and in
a classroom practice.

2 Historical Roots of the Rearrangement Method

The origin of the rearrangement method is unknown. In his book on the history
of 7 originally published in 1971, Petr Beckmann (1924-1993) claimed that
rearrangement method was used by some unidentified “ancient peoples”:

The ancient peoples had rules for calculating the area of a circle. [...] They probably did it
by a method of rearrangement. They calculated the area of a rectangle as length times width.
To calculate the area of a parallelogram, they could construct a rectangle of equal area by
rearrangement as in the figure below, and thus they found that the area of a parallelogram is
given by base times height (1976, pp. 17-18),

and provided the diagrams shown in Fig. 2.

The word “probably” used by Beckmann in the above-sited quotation reveals that
the author most probably provided here his own reconstruction that, he apparently
believed, was not found in any particular extant historical documents produced by
the unidentified “ancient peoples” (who, he claimed, devised this method ‘“‘almost
five millennia before the integral calculus was invented”). (Beckmann, 1976, p. 17).

15 Even though the author himself admitted that he was “neither an historian nor a mathematician”
(op. cit., p. 3), his book was praised by some of its reviewers (see, for instance, Brieske’s 1977
review of its edition of 1976 and even more recent review of its edition of 1989 by Blank (2001),
p. 155). However, mathematicians and historians of mathematics provided a detailed critique of
this book accompanied with a list of numerous misprints and errors (some of them indeed quite
surprising, such as, for example, the claim that p! + 1 which is not divisible by 2, 3,..., p, “is
therefore a prime”) that can be found in Gould 1974 who (quite justly, in our opinion) concluded
that “[t]he book should be rewritten entirely and the manuscript should be examined by qualified
mathematicians and historians before being committed to the printed page” (p. 327). Unfortunately,
this work has never been done.
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Fig. 2 Diagrams from p. 18 of Beckmann (1976) identical with the diagrams in the first edition
of his book (1971). The caption reads: “Determination of the area of a circle by rearrangement.
The areas of the figures (b), (¢), (d) equal exactly double the area of circle (a).” The origin of the
diagrams is not specified

It thus remains unknown from where Beckmann borrowed this diagram, appar-
ently radically different from the one used by Archimedes of Syracuse (287-212
BC), to prove his statements concerning the area of a circle.!® Some authors, when
putting this method side by side with the one used by Archimedes, remind the reader
that this method should be considered less rigorous and needs to be handled with
care, for example, Bryan and Sangwin (2008, p. 145) write:

We shall approximate the area of each sector by such a triangle. You would be well advised
to retain a suspicious attitude towards the cavalier way we forge ahead with approximations
such as these.

Similarly, (Casselman, 2012) states

Roughly speaking, the reason the Theorem is true is that we can carve up both the circle and
the triangle into very small regions that approximate each other closely in area.

A number of books, articles, and online resources featuring rearrangement
diagrams (along with some descriptive texts) rarely contain the necessary refer-
ences to the original works in which this method was introduced. Some of them
mention David E. Smith’s and Mikami Yoshio’s = | 765 (1875-1950) A History
of Japanese Mathematics (1914) where a similar diagram presumably dated of 1698
and credited to the authorship of Satéo Moshun’s /£ /%% (whose name can also
be spelled Satd Shigeharu; fl. late seventeenth century) can be found on p. 131, as

16 Archimedes (1544), pp. 44-46, 1615, pp. 128-133, 1676, pp. 81-97, 1880, pp. 257-271.
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well as more recent books on the history of mathematics, in particular, the mono-
graphs authored by Carl B. Boyer (1906-1976) (Boyer, 1959) and Margaret Baron
(1915-1996) (Baron, 1969). In her book, M. Baron refers (p. 110) to the approach
used by J. Kepler (1571-1630) whereas C. Boyer, while also pointing at Kepler’s
work, mentions the works of Nicholas of Cusa (1401-1464) as the possible origin of
Kepler’s approach (Boyer, 1959, p. 108). In turn, Beckmann (1976, p. 19) conjectures
that Leonardo da Vinci (1452-1519) may have used the same method; he, however,
does not provide any references to Leonardo’s works.

In his summary of Nicholas of Cusa’s works on mathematics, Hofmann (1971)
lists several treatises of Cusanus related to the squaring of circle.!” The earliest state-
ments of Nicholas concerning a circle and an inscribed polygon are found in his De
Docta Ignorantia (On learned ignorance) completed in 1440.'® Also, in Chap. 3 of
Book 1 of the treatise titled Quod praecisa veritas sit incomprehensibilis (The precise
truth is incomprehensible) Cusanus uses the relationship between these two figures
as a metaphor of the process of approaching the absolute truth. It is interesting that
Cusanus makes a mathematically correct statement: at any step the area of inscribed
polygon is less than the area of the circle, and two of them cannot be equal to each
other unless the polygon becomes identical with the circle (he, apparently, under-
stands that this cannot happen at any finite step of the procedure). Later Cusanus
returns to the topic in his other works including De circuli quadratura, pars theo-
logica (On Squaring the Circle, Theological Part), completed in 1450, Quadratura
circuli (Squaring the Circle), 1450; De sinibus et chordis ou Dialogus de circuli
quadratura (On sines and chords, or Dialog on the Quadrature of the Circle), 1457,
and De caesarea circuli quadratura (On Squaring the Caesarian Circle), 1457."

Pierre Duhem (1861-1916) in his study of Leonardo (1909, vol. 2) devotes a short
section titled “L’infiniment grand et I’infiniment petit dans les notes de Léonard de
Vinci” (pp. 49-53) to Leonardo’s concepts of infinitely small and infinitely large
entities. Duhem quotes Leonardo’s claim that “La Géométrie est infinie parce que
toute quantité continue est divisible a 1’infini dans I’un et 1’autre sens” (p. 50);%°
he borrows this quote from Manuscript M of the Bibliothéque de 1I’'Institut?' and
provides his own reconstruction of Leonardo’s drawing that is supposed to illustrate

17 For more details, see Watanabe (2011), PP XX—XXVi.

18 Watanabe (2011), p. Xxi.

19 For details, see Watanabe (2011), pp. xxiv—xxv. On Cusanus’ interest in mathematics and eval-
uation of his mathematical writings by his contemporaries, see the section “[Nicolaus von Cusa:]
Die mathematischen Schriften” in Scharpff (1871), pp. 294-323; for more recent works, see Boyer
(1959) (esp. see p. 91), Counet (2005) (esp. see pp. 286-289) and Vengeon 2006. Albertson (2014)
on p. 172 cites a (negative) evaluation of Cusanus’ geometry by Regiomontanus (1436-1476); see
also idem, p. 255, n. 15 for relevant references. German translation of Cusanus’ mathematical writ-
ings is available in Nikolaus von Kues (1980), while their French translation is found in Nicolas de
Cues (2007).

20 That is, “Geometry is infinite, because every continuous quantity is infinitely divisible from one
direction to another” (da Vinci, 1964, p. 127). The original statement of Leonardo is found on the
same page of da Vinci (1890).

21 Da Vinci (1890), vol. 5, Ms M, fol. 18r.
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this claim. Surprisingly, Duhem does not mention here Leonardo’s fragment and
diagrams directly related to the calculation of the area of a sector found in Manuscript
E.?? Leonardo gives his verbal formula for the area of a circle on the first page
(verso) of this manuscript; Félix Ravaisson-Mollien (1813—1900) provides his French
translation on the same page (1888, ibid), in our English translation it reads: “The
circleis equal to a quadrilateral made of a half of the diameter of this circle, multiplied
by a half of the circumference of the same circle.”>® Leonardo offers a description
of his procedure accompanied by several pictures; its translation can be found in the
mentioned works of C. Ravaisson-Mollien and V. Zubov.

In the context of infinitesimal (pre-calculus) debates of the sixteenth—seventeenth-
century, Johannes Kepler’s discussion of the circumference and area of a circle is
found in his treatise Nova Stereometria Doliorum Vinariorum (New Stereometry of
Wine Barrels) published in 1615; it makes important setback from Archimedes proof
putting upfront practical utility against rigor. It opens with “Theorem 1” stating that
the ratio Circumference: Diameter is close (but not equal!) to 22:7. Kepler provides
his own proof using only inscribed and circumscribed regular hexagons and mentions
that Archimedes found this ratio using polygons with 12, 24, and 48 sides. In his
Theorem 2, Kepler states that the ratio of the area of a circle and the square built on its
diameter is approximately equal to 11:14. It is surprising to find this outdated approx-
imation in Kepler’s work right after his mention of the much more precise approxima-
tion (3.141592653589793) attributed by him to Adriaan van Roomen (1561-1615),
also known as Adrianus Romanus.?* One can conjecture that for Kepler the main
reason was not obtaining a good approximation of m; instead, he focused on the
method which, as he stressed, differed from the method of Archimedes.?

3 The Rearrangement Method in Nineteenth—Early
Twentieth-Century Western Textbooks

While logico-deductive approach to geometry based on Euclid’s work was having
significant influence on teaching geometry up to the modern times, alternative
approaches were also making their way being grounded in its practical origins as
“the art of measuring well” (Ramus, 1569, cited in Menghini, 2015). Hence, the
activity of measuring, as argued by Marta Menghini (ibid.), was “preceded by a very
interesting and original part of observation, a ‘play’ with figures” in which proofs
were supported by geometric constructions and measurement activities by drawing.
Later on, by the end of the eighteenth century, according to Menghini (2015, p. 568),
one can observe in Western Europe an apparent shift from teaching practical geom-
etry to teaching geometry “practically” (e.g., using problem-based approach). To

22 Da Vinci (1888), vol. 3, Ms E, folios 24r-26v.

23 For a Russian translation, see Zubov (1935), vol. 1, pp. 68-69, Zubov (1955), p. 73.
24 Romanus (1593).

25 For a Russian translation of these two theorems, see Kepler (1935), pp. 111-117.



Historical and Didactical Roots of Visual and Dynamic ... 373

support her claim, Menghini takes as example a textbook authored by Alexis Claude
Clairaut (1713-1765):

In 1741, again in France, Alexis Clairaut wrote his Eléments (sic.- V.E & A.V.) de Géométrie.
His first chapter is about the measurement of fields; nevertheless, Clairaut was not interested
in teaching a practical geometry. With Clairaut we see a shift from measurement as a goal
to measurement as a means to teach geometry via problems. This is seen by the fact that the
part about measurement doesn’t contain numbers; there is only a hint at the necessity for a
comparison with a known measure (See Clairaut, 1743).

The aim of Clairaut is to solve a problem ‘constructing’ the elements he wants to measure.
The focus is on the process of constructing and in a narrative method.?°

In their turn, Richard et al. (2019) argue that Clairaut, when building his proofs on
inductive argument, “tries to make dynamic a figure by reasoning” in such a way that
“the model reader will be able to visualize the animation, while in his demonstration,
a classical figure like those in Euclid’s Elements is proposed” (pp. 141-142).

The rearrangement method was not the only method used by mathematicians of
the past that was taken over by mathematics educators of modern times. For instance,
the so-called “onion” model was used by Rabbi Abraham bar Hiyya ha-Nasi (also
known as Savasorda), a Jewish philosopher, mathematician, and astronomer active
in the late eleventh and early twelfth centuries,”’ to justify the formula of the area of
a circle (Figs. 3 and 4). This method was later used by Emma Castelnuovo (1913—
2014) in her textbook on intuitive geometry (1966) as a part of a hands-on activity
for elementary students as demonstration of the formula for the area of the circle
(Fig. 5).

While the possible historical and didactical sources of the rearrangement method
need to be investigated in more detail,”® our analysis of geometry textbooks published
in the nineteenth and early twentieth centuries shows that this model was already
present in some of them thus becoming a didactical artefact; these archaic methods
were introduced, we claim, because it was assumed that they may have helped artic-
ulate certain didactical ideas of modern “innovative” approaches to teaching geom-
etry. The educators searching for alternatives to “Euclidean” methods of teaching
geometry (that is, to the methods based on quasi-formal logic used in the Elements)
in the second part of the nineteenth century often adopted an approach based
on Anschauung (intuition) in preliminary courses on observational geometry and

26 Menghini 2015, p. 568. Italics as in the original.-V.E.&A.V. On Clairaut and his approach, see
also Schubring 2011, p. 81. In this paper, the author refers to Schubring 1987, 2003 (pp, 54—
58) and Glaeser 1983. For a brief description of Clairaut’s Elémen(t)s de Géométrie (1741) and its
influence on European textbooks of the nineteenth and twentieth centuries, see Barbin and Menghini
(2014), p. 481. Menghini (2015) provides a more detailed description of Clairaut’s textbook on
pages 568-571.

27 The dates of birth and death of Abraham bar Hiyya are unknown. Some authors claim that he
died in 1136, while other scholars consider this date not sufficiently justified; for more details, see
Levey (1954), p. 50, n. 1. Levey himself suggests “fl. [...] before 1136” (1981, p. 22).

28 The results of our investigation will be published elsewhere.
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Fig. 3 The “onion model” used by Abraham bar Hiyya (Savasorda) (1116). The diagram reproduces
Fig. 73 from Guttmann’s (1903) edition of Savasorda’s book

Fig. 4 The diagram from an
earlier edition of Savasorda’s
treatise (Abraham, 1720).
The authors thank Josep
Maria Fortuny Aymemi for
his suggestion to refer to
Savasorda’s work

drawing; this approach was based on the ideas of the pedagogical reformers J.H.
Pestalozzi (1746-1827) and J.F. Herbart (1776-1841).%°

Indeed, several geometry textbooks published during the time period from the
early nineteenth century to the mid-twentieth century by the authors from several

29 For more details, see Henrichi and Treutlein (1897); Castelnuovo (1948).
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Fig. 5 A hands-on activity
for elementary students
learning the formula of the
area of a circle (Castelnuovo,
1966, p. 93)

Western countries, namely, England, Austrian-Hungarian Empire, Germany, United
States, and Russia, included various versions of the rearrangement method. In partic-
ular, its popularity might be attributed to the works of Dionysius Lardner (1793—
1859), Peter Joseph Treutlein (1845-1912),° and Emma Castelnuovo,’! among
others.

We begin our analysis with Lardner’s The First Principles of Arithmetic and Geom-
etry; Explained in a Series of Familiar Dialogues (1835) to pursue with other text-
books that used the method, the latest of them was Zaitseva’s teacher’s manual (1952);
none of these textbooks provides a reference to earlier sources (prior to the nineteenth
century). The authors of these textbooks dealing with elementary geometry stressed
various didactical aspects that were in the heart of innovative approaches at their time.
In particular, the following elements were stated explicitly as the goals: the popu-
larization of scientific (especially, mathematical) knowledge (clearly expressed by
Lardner, 1835), development of the learners’ intuition (Castelnuovo, 1948; Henrici &
Treutlein, 1897), emphasizing “practical approach” (Stern & Topham, 1913),3? and
“hands-on experiments” (Willis, 1922). For instance, Treutlein’s (1911) program
contains three main principles which arguably influenced modern teaching: (1) to
consider intuitive geometry as preliminary step to more formal, deductive instruction;

30 On the reform of school mathematics education designed by P. Treutlein and the textbooks he
co-authored with J.Henrici, see Becker (1994) and Weiss (2019).

31 On Emma Castelnuovo’s work, see Furinghetti and Menghini (2014); esp. see pp. 2-3, see also
Castelnuovo (1977), pp. 42—44 on her interest in A.C. Clairaut’s (1713-1765) didactical ideas.

32 When dealing with the area of a circle (pp. 70-71), Stern and Topham describe the “matching
sectors” method they borrowed from Earl (1894), p. 89-90 (see their footnote on p. 70). In turn,
Earl does not provide any reference to his sources. It should be stressed that Earl’s textbook was
devoted to “lessons in physical measurement” (italics ours.- V.F. and A.V.).
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(2) to conduct an implementation of modern ideas of projective and transformation
geometry; and (3) to focus on spatial imagination and the fusion of spatial and plain
geometry (Weiss, 2019, p. 112). The method (of rearrangement of the sectors) seems
to align with this didactical vision.

The two books by Lardner that contain the method are The First Principles of
Arithmetic and Geometry; Explained in a Series of Familiar Dialogues (1835) and
Lardner’s Cabinet Cyclopedia (1840). According to Peckham (1951), the audience of
Cyclopedia were “those who seek that portion of information respecting technical and
professional subjects which is generally expected from well-educated persons.” The
front page of the First Principles... (“Adapted for Preparatory Schools and Domestic
Instruction; with Copious Examples and Illustrations™) states that it was written
as a mathematics textbook for the beginners. Lardner claimed that he considered
geometry as part of public instruction having two objectives:

First, it may be regarded as an exercise by which the faculty of thinking and reasoning may

be strengthened and sharpened. It is peculiarly fitted for this purpose by the accuracy and

clearness of which its investigations are susceptible, and the very high certitude which attends

its conclusions. Secondly, it is the immediate and only instrument by which almost the whole

range of physical investigation can be conducted; without it we could not advance a step

beyond the surface of the earth in our knowledge of the universe; without it we could obtain

no knowledge of the figure or dimensions of the earth itself, nor of the mutual mechanical
operation, or influence of bodies upon it. (Lardner, 1840, pp. 2-3)

After having stated these two goals, Lardner complained that

In the course of instruction followed by the great mass of students in our universities, geom-
etry has been regarded almost exclusively as a system of intellectual gymnastics; while, on
the other hand, owing to the very stinted portion of instruction attainable by those who are
engaged in the useful arts, the science is with them almost degraded to a mass of rules,
without reasons, and dicta, the truth of which is expected to be received on the authority of
the writer, and of which the reader is not put in a condition to judge. (Lardner, 1840, p. 3)

Therefore, in his textbook, he uses a form of a (Socratic) dialogue between a
student (Henry) and the teacher (“Mr. L.,” with the capital “L” apparently, referring
to Lardner himself). Let us consider one of such dialogues devoted to the area of a
circle. It begins with the student’s questioning:

Henry (Student): [...] How shall I compute the number of inches enclosed within the circle
when I know the length of its diameter?33

Mr. L. presents then a picture of a circle divided into 16 equal sectors while
mentioning that by further dividing the circle into many even smaller sectors the
arches will be made “exceedingly” short so that their curvature would not percep-
tible. The student says that in this case, the sectors would look as “narrow triangles.”
The conversation arrives then at the point at which the teacher mentions that the
space enclosed within the circle would be the same as within a rectangle formed
by the circumference (length) and the radius (height). Further, the teacher brings
even a more “evident” way of rearrangement cutting the two identical circles into
sectors-triangles and then putting them one against the other (Fig. 6).3*

33 Lardner, 1835, p. 112.
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fig. 104.

VAR

fig. 105.

Fig. 6 Figures 104 and 105 from Lardner (1840), p. 101 originally published as Figs. 81-82 in
Lardner (1835), p. 114. The author states that the formula for the area of a circle can be “made still
more evident” with the help of this picture (1835, p. 113; 1840, pp. 100-101)
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Fig. 7 Diagram 112 from Boryshkevich (1893), p. 68
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A Russian textbook by Boryshkevich (?7—1906) published in (1893), expressed a
similar idea of using “saw-teeth,” but this time with only one circle divided into 32
equal pieces; then from two half-circles, two “saws” with 16 teeth each were formed
to be rearranged into a “parallelogram,” see Fig. 7.%

The use of “rearrangement method” for the area of a circle was certainly a part of
the larger didactical agenda focusing on “visualization” of geometrical statements.
For instance, Max (Maximilian) Simon’s (1844—-1918) book (1889) provided some
suggestions for teachers who intended to teach introductory geometry “intuitively.”
In the case of the area of the circle, he explains that one could imagine a circle divided
into many triangles with a common vertex in the center of the circle and the bases on

34 The regular polygon inscribed in the circle that Larnder used is rather unusual: it has 25 sides. It
thus differs from the polygons of all the other authors whose works we inspected. It is possible that
the division of the central angle into 25 equal parts was somehow related to the reform of measure
units that took place in France after the French Revolution of 1789; according to the new system,
the measure of the circumference equaled to 400°.

35 The diagram reproduced in Fig. 7 is not clear: while the circle is divided into 32 sectors, the
second (central) figure shows only 13 + 13 = 26 triangles, while the right figure (composed of the
upper and lower parts of the central diagram) contains only 24 triangles.
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Fig. 8 Simon (1889), p. 19, Fig. 31

the circumference, so all of them, when combined, would form one big triangle with
the base equal to the circumference and the height equal to the radius; see Fig. 8. So,
its area should be equal to area of the circle.

Interestingly, a similar description of the method can be found in the abovemen-
tioned modern book by Bryan and Sangwin (2008), although in a slightly different
manner: the authors subdivide the procedure into three “steps”: (1) the circle is
divided into 18 sectors; (2) the circle unfolds into a “teeth row” (making not very
obvious the curvilinear shape of the “base” of each “tooth”); and then (3) suggesting
a transformation of the “teeth row” into a set of triangles having equal bases and the
same height (their vertices are joined together thus forming a big isosceles triangle,
that is, a rectilinear figure). A warning accompanies this transition from a curvilinear
to a rectilinear shape; it says that the sectors are arranged “along a straight line”
whose length can be (when the number of sectors is large) “approximated very well
by the circumference of the circle” (p. 145) and the height is “practically” equal
to the radius of the circle, and, finally, that the “displacement of the apex of each
triangle does not alter the area” (ibid.). The reader is thus supposed to be convinced
that the circle was transformed into the large triangle, so the area of the circle equals
to the area of the triangle.

Following the same line of thought, P. Treutlein’s Intuitive Geometry (1911)
introduces the process of calculation of the area of a circle by means of an even
more sophisticated visualization passing through two consecutive transformations,
one based on the division of the circle into six pieces and on the rearrangement
(“gluing”) of three of them on top of three others. Then a second circle, identical with
the first one, would be divided into 12 pieces which would be similarly rearranged
into two groups of six pieces completing each other. The student then is asked to
make an observation concerning the differences between the surfaces of both shapes,
and, moreover, is asked what would happen if the number of pieces grows larger. So,
gradually the student would eventually come to the conclusion that the rearranged
shape would become a parallelogram with the base equal to circumference, and the
height, to the radius; see Fig. 9. All this serves to derive the formula for the area of
the circle using the student’s “imagination” (Treutlein, 1911; for a discussion, see
Fujita et al., 2004).

In England, a book on practical mathematics by Stern and Topham (1913) focused
on graphical and experimental processes in mathematics; the projected readership
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Fig. 9 Treutlein (1911), p. 186, Fig. 863

was the militaries, but the book would also have been useful for more general audi-

ence. The authors called their method “approximate” (p. 70) while making reference

to an earlier work by Earl (1894) who also suggested dividing a circle into a large

number of equal sectors so that the obtained pieces, when put together, would form a

figure whose area could be found approximately by treating it as a rectangle (Fig. 10).
As general introduction to his approach, Earl claimed that

Public Schools should not be devoted simply to instilling into boys a certain amount of
technical knowledge, but should rather train them to observe accurately, to reason rightly,
and to front nature with an open and inquiring mind (Earl, 1894, p. v).

In the US, also in attempt to help teaching practical mathematics, C.I. Palmer
(1871-1931) suggested in his Practical mathematics for home study (1919) a similar
approach to approximation of the area of the circle using its division into 16 pieces.
The illustration in his book reproduced below (Fig. 11) presents, however, a half of
a circle divided into 8 pieces.

The ideas of laboratory methods of studying geometry, popular in the first half of
the twentieth century, brought C.A. Willis (1869-7?) to design an experiment-based
lesson to help students “discovering” this formula using a model that suggested
manipulations with sectors (1922, pp. 264-265); see Fig. 12. In his textbook, the
formulas for areas of plane figures were supposed to be obtained as results of “experi-
ments,” and the entire chapter 16 titled “Measurement of areas. Principles determined
experimentally” was devoted to manipulations with paper models of geometrical
figures.

The calculation of the area of a circle is preceded by a definition of 7w and a theorem
stating that “The value of 1 can be calculated with as close an approximation as
desired” (p. 249). His discussion of the matter reads as follows:

36 Note that in this diagram the lower part of the circle shows its division into six equal sectors,
while the upper part shows its further division into 12 sectors. Meanwhile, the results of the re-
composition of the sectors shown on the right side are inversed: the upper figure shows the result
of recombination of the six sectors, while the lower figure features 12 sectors.
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Fig. 10 Earl (1894), p. 89, Fig. 44
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Fig. 11 Palmer (1919), p. 152, Fig. 90

356. Experiment V. The area of a circle.

Draw a circle about 4 inches in diameter and cut it out. Cut it on a diameter AB. Cut each
semicircle into the same number of equal sectors; say into 8 sectors. Place the sectors as
shown in Fig. 2. How may the resulting figure be made to approximate more and more
closely to a rectangle as in Fig. 37 What are the base and altitude of this rectangle? What is
therefore the area of a circle? (Willis, 1922, p. 264)
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Fia. 1.

Fra. 3.

Fig. 12 Figures 1-3 from Willis (1922), p. 2647

The diagrams provided by Willis are quite remarkable. Firstly, they do not show the
presumed division of the circle into 16 sectors, but into a larger number of sectors
only 8 of which are shown. Our exploration of the diagram suggests that the diagrams
shown in Fig. 12 represent a division of the circle into 32 sectors; this number is not
specified in the text. Secondly, and this is even more interesting, the figure obtained
as combination of sectors into which the circle is subdivided (“Fig. 2 of the diagram)
is designed according to some particular strategy: the sectors from the lower half of
the circle are coupled with the symmetric sectors from the upper half, for example,
sector 1 is coupled with sector 2, sector 3 with sector 4, and so on. Apparently, the
author of this diagram suggested that each sector from the upper half of part 1 is
to be paired up with the symmetric sector from the lower half, and this operation
should go from right to left to produce the couples placed in part 2 from left to right.
Thirdly, the object shown in “Fig. 2" of the diagram has straight lines as its upper and
lower sides, which is actually an approximation, since it is obtained as collection of
sectors. So, using these diagrams would require some additional mathematical and
didactical work from the teacher to avoid possible misconceptions.

Several Russian and Soviet authors used the method of rearrangement in the text-
books over the first half of the twentieth century often referring to Western sources
(e.g., Treutlein’s work which was translated into Russian). Some ideas of the above-
mentioned experimental approach could be found, for instance, in Zaitseva (1952).
On the one hand, the author used a diagram (Fig. 13) visually close to that used
by Earl (1894) (however, the number of sectors, 16, was different). On the other
hand, she suggested that students, after dividing a circle into 16 sectors, should have
cut them out and superpose one half of them over the other half to form a figure
resembling a parallelogram.

While visually convincing and eventually accessible to relatively young learners
(the textbook was supposed to be used in grade 5 of Soviet school, that is, by students

37 The lettering in Fig. 1 of the diagram contains a misprint: instead of number “6” the capital letter
“G” is written to mark a sector, while Fig. 2 shows the same sector correctly marked with digit “6”.
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Fig. 13 Diagram from Zaitseva (1952), p. 70, Fig. 14

of 12 years of age), the complexity of the model and especially its infinitesimal part
would have remained obscure for them, unless some extra explanations were provided
by teacher.

As Earl (1894), Zaitseva suggests dividing the circle into 16 equal sectors then
cutting them out and putting together as shown on the right picture to get “approxi-
mately a parallelogram”; its base will be half of circumference and its height will be
equal to radius; so the area of the circle is half of circumference multiplied by radius.

In another part of the world, namely, in Quebec, Canada, the authors of a 1966
secondary school textbook on “new mathematics” (Mathématiques Nouvelles, Hamel
et al., 1966) also were seemingly inspired by the “teeth model.” On pages 203-204
of the textbook, we find first a regular hexagon divided into six triangles with the
common vertex in the center of the circle. At the next step, this hexagon (which can
be inscribed in a circle) is shown as decomposed into a chain of triangles; the area of
one such triangle multiplied by 6 would give the area of the hexagon (Fig. 14). Then
it is said that the same technique can be applied to a regular polygon with a very
large number of sides, so it would “practically coincide” (highlighted by us. - V.
F. & A.V.) with the circle. According to the authors, in the case of a circle, the base
of each “triangle” (interestingly, the illustration shows figures looking rather like
sectors) is “practically” a segment of a straight line and the height (of the triangles)
is “practically” the radius (Fig. 15). This leads to the formula for the area of the
circle.

Overall, in the 1950-60s, the bases of these “novel” approaches to initiation to
geometry in the middle grades (starting from the age of 12) have been discussed,

Fig. 14 Hamel et al. (1966), p. 203
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Fig. 15 Hamel et al. (1966), p. 204

according to Tessier and Beaugrand (1961) at the Congress of the International
Commission for Mathematics Instruction (ICMI) in 1958 where the appropriate
methods of teaching at entry level (first year of secondary school) where identified
as intuitive, experimental, and empirical, based on observation and investigation,
and providing an access to knowledge in a clear, direct, and immediate manner of
perceiving the truth intuitively (without using deductive reasoning). The learners’
access to rigorous modes of reasoning was therefore supposed to be based on exper-
iment, and they were supposed to discover by themselves new properties of already
familiar shapes as result of a process of active research (Tessier and Beaugrand
(1961), see the section titled Présentation). We consider this essence of didactical
genesis as representing an accumulation of the “innovative” elements of the didactical
knowledge produced over the 150 years of reforms.

Not surprisingly, in their textbook, the authors of the “innovative approach”
presented the familiar old rearrangement methods to introduce the area of the circle
by suggesting to decompose the circle into “a big number of sectors, or figures that
resemble to triangles” (the provided illustration shows 32 sectors) and then to operate
with triangles in order to calculate the area of a sector (as base times height divided
by 2 or, in other words, arc times radius divided by 2) which yields the area of the
circle as the area of one sector multiplied by the total number of sectors. It remains
however unclear why the formula of the area of the triangle can be applied to the area
of the sector, and, moreover, why this method is believed to be helpful for transition
to higher levels of rigor in later schooling?

This latter question can be considered fundamental in terms of the interplay
between mathematical, historical, and didactical aspects of the development of the
method as an artifact and its use to (presumably) support teaching and learning. In the
next section, we will look at modern development to confirm that the issue appears
to be well alive in twenty-first century’s mathematical working spaces.
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4 Looking into Modern Mathematical Working Spaces
Through the Lens of Historical, Didactical,
and Instrumental Genesis

From our genetic analysis of possible historical and didactical sources of rearrange-
ment method, we can track a variety of ideas that reflect nineteenth—early twentieth-
century innovations in teaching geometry by making it more visual, intuitive, and
experimental, and therefore accessible to all learners at their early steps in mathe-
matics. In particular, in Lardner’s and Boryshkevich’s textbooks, we find illustrations
of a circle divided into equal sectors that are then rearranged into a new shape that
“looks like” a parallelogram (or rectangle), eventually helping learner to visualize
the process like it was done by the abovementioned authors centuries before.

An intuitive approach (Anschauung) which became the focus of innovative
approaches at the end of the nineteenth—beginning of the twentieth centuries focused
on the perception of a student who imagines “what happens if” a circle is divided into
“many”’ sectors (considered as “triangles”) that could be rearranged in what would
look as a big “triangle” (Simon) or a “parallelogram” (Treutlein).

In the context of a practical (experimental) approach, the focus is put on approx-
imation as the main tool used to grasp the concept of area of the circle by the learner
(Earl; Stern and Topheim) who could also support her or his observation by phys-
ically manipulating with pieces of paper (like in Palmer, Willis, and Zaitseva); the
latter approach was related to the idea of mathematical laboratory popular in the
didactics of the first decades of the twentieth century.

All three approaches are apparently being used in the design of modern middle
school geometry lessons which we will examine in the next section.

4.1 Rearrangement of the Circle in Modern Middle School
Geometry Lessons: Possible Teaching Scenarios
and Didactical Challenges

The approach based on the rearrangement of sectors apparently remains very attrac-
tive to the authors of geometry textbooks even nowadays, as we mentioned in the
introductory section of our chapter (Larson et al., 2007; see Fig. 1).

In their quest for justification of the formula of the area of the circle, similar to
the “approximate method” used in the textbooks of the late nineteenth and early
twentieth centuries discussed above (e.g., Earl, 1894), the authors suggest an inves-
tigation based on the idea of dividing a circle into sectors, cutting them out and
rearranging them into a new shape (“resembling a parallelogram”), and then ask the
students to “write an expression” to calculate its area (using the radius of circle as the
“approximate height of parallelogram.”) Finally, students are asked to connect their
“expression” to the area of the circle (eventually using the formula as “justification”
of the theorem stating the mathematical expression for the area of a circle). However,
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the “task™ does not provide any reference to the possibility of making the number
of sectors grow indefinitely thus entirely omitting the infinitesimal part of the proof.
Another difference with earlier textbooks is that the figure itself does not present a
division of a circle into equal parts (sectors), for example, the circle in the left part
of Fig. 1 looks like an orange sliced into pieces that do not look “congruent,” while
on the right side they, surprisingly, have the same size and shape. Again, in the case
of Willis’s (1922) scenario, some extra work from teacher would be needed to help
students to grasp the subtlety of the process of “division” and “approximation.”

In a popular in the North America manual for (pre- and in-service) teachers which
claims that feaching should be done developmentally (Van de Walle et al., 2020), it
is suggested to challenge students to “figure out the area formula for circles on their
own.” Teachers are, however, advised to give a “hint” by showing the students how
to “cut a circle apart into sectors and rearrange them to look like a parallelogram ”
(ibid., p. 530). According to the authors, the process of approximation (ibid., p. 530,
Fig. 18.19) unfolds in three steps: (1) dividing a circle into 8 equal sectors and
rearranging them a “near parallelogram”; (2) doing the same with 24 sectors (“even
closer to a parallelogram”); (3) as the number of sectors grows, the figure “becomes
closer and closer to a rectangle (a special parallelogram)”. Here, the issue that draws
our attention is that no mechanism is suggested to make students think about the
reason why the fact of being “closer and closer to a rectangle” ensures the equality
of areas (in other words, what justifies the transition from “being close” to “being
equal”).

Another manual for teachers’ preparation (to make them think, as the authors state)
by Brumbaugh et al. (2006) along with the method of “squares counting” suggests an
activity of “cutting a circle” into “several pie-shaped wedges” (the authors suggest,
as example, that wedges should have the central angle of 30°, that is, the circle is
supposed to be cutinto 12 wedges), then getting it “unrolled” and “interlaced” to have
a shape which “approximates a parallelogram” (ibid., p. 187, Fig. 9.13). Again, the
authors only mention that, presumably, an exploration of this fact (“approximating
a parallelogram”) would “lead to the area of the circle” (that is, the area as obtained
by multiplying half of the circumference by the radius, idem.). The question of why
one fact “leads” to the other seems to remain open (or even not formulated).

Finally, Small (2018, p. 167) provides an example of dividing a circle into multiple
parts (“like pieces of a pie”) to help students to see that the parts can be re-united to
form a parallelogram. Her illustration (p. 167) shows first a circle divided into eight
pieces and a rearranged shape (“parallelogram™), to finally come back to a circle (as
a whole) whose area will be “equal” to Pi x radius x radius. Interestingly, the author
does not mention approximation but puts straightly an equality sign for the area of
the “parallelogram” (which is still curvilinear on the illustration) to claim that it is
equal to the area of the circle.

A large number of similar approaches can be found in online resources available
to teachers and learners nowadays. For instance, the method of calculation of the area
of a circle based on the procedure of division of circle into sectors can be found on
the official website of the National Council of Teachers of Mathematics suggesting a
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Fig. 16 Picture from the
NCTM website (accessed on
November 01, 2020)

Fig. 17 Picture from the NCTM website (accessed on November 1, 2020)

number of said-to-be-high-quality resources. The teaching scenario for “measuring
circles” begins with students working in pairs or small groups; they would “cut the
circle from the sheet and divide it into four wedges.” The next step would be to ask
the students to rearrange the wedges in the way shown in Fig. 16 (this configuration
looks similar to Treutlein’s, but contains only four pieces).

The authors suggest highlighting different parts of the circle (its radius and circum-
ference) with a color. Then the authors argue that this shape would not be recognized
by students as something familiar to them. Hence, the next step would be a further
division of each wedge into two thinner wedges so that there would be eight wedges;
the students have to continue the process to get 16 wedges and to finally produce a
shape shown in Fig. 17 (similar to what we had in the above-cited examples, such as
Larson et al. (2007), and in earlier sources).

This work, facilitated by the teacher’s discussion eventually helping the students,
would lead them to identify the shape resembling a parallelogram, which, when being
“continually divided, [...] will more closely resemble a rectangle.”

Another step in the investigation (i.e., the further division of the wedges) would
presumably lead the students to the conclusion that the length of the rectangle is
equal to half the circumference of the circle, or wtr. Additionally, students should
recognize that the height of this rectangle is equal to the radius of the circle, ». And,
similar to the previous examples, students would “try and generate a formula for
area of this new rectangle formed by the pieces of the circle.”” Considering the area

of this rectangle being equal to r x r = 1r2,3° and knowing that “this rectangle is

38 https://www.nctm.org/Classroom-Resources/ARCs/Measures-of-Circles/Circles-Lesson-2/.

39 Interestingly enough, at the moment when we visited the official site of NCTM, it contained a
misprint af this crucial point: instead of wr x r = wr? it was typed “mr x r = mr2.”
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Fig. 18 Picture from the NCTM website (accessed on November 1, 2020)

equal in area to the original circle, this activity gives the area formula for a circle:
A=nr?

The provided figure (Fig. 18) indicates dimensions of the shape to add more clarity
to this conclusion (similar to Zaitseva’s figure).

The final suggestion is to “have a class discussion with students explaining that
total area is almost always an approximation.”*

Again, as in previous examples, we can see the division of the circle into 16
pieces (yet, the authors encourage students into further exploration of situations with
increasing numbers of pieces by saying that the process can be continued). The
authors of this procedure also keep the idea of cutting out pieces of the circle and
rearranging them into “parallelogram”; they also mention that the further division
would transform the “parallelogram” into a “rectangle” without any specific sugges-
tions of how to interpret and explain such transformation, again leaving it to the
teacher’s didactical orchestration (Drijvers, 2012). The website of NCTM does not
mention any rationale of this method to explain why this activity is supposed to be
relevant to teaching and learning mathematics in middle school.

4.2 Novel Approaches to Area Investigation Using Dynamic
Digital Tools

The development of digital tools to support teaching and learning geometry in the late
twentieth—early twenty-first centuries has brought novel didactical dimensions and
tools that might be used by teachers. For instance, the Canadian website LearnAlberta
provides an interactive animation which allows to increase the number of sectors
(using a slider), so their rearrangement rapidly approaches the shape of a rectangle
(see LearnAlberta.ca). Figures 19 and 20 show the division of the circle into 8 and
16 sectors.

40 The exact meaning of this statement remains unknown. Does it refer to the area of a circle or to
the area of any geometrical figure?
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r: The radius of the circle
C: The circumference of the circle [C=2mr]
n: The number of sectors of the circle

A: The area of the circle

Drag the slider thumb to change the the number of sectors of the circle (n).

1c
2

C

m s

As the ber of i without bound, the rearranged sectors
of the circle (on the right) approach the shape of a rectangle.
When "n" increases without bound, the area of the shape approaches A = Iw.
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Fig. 19 LearnAlberta webpage, n = 8

r: The radius of the circle
C: The circumference of the circle [C=2mwr]
n: The number of sectors of the circle

A:The area of the circle

Drag the slider thumt h the the ber of sectors of the circle (n).
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of the circle (on the right) approach the shape of a rectangle.
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Fig. 20 LearnAlberta webpage, n = 16
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r: The radius of the circle

C: The circumference of the circle [C=2Wr]
n: The number of sectors of the circle

A: The area of the circle

Drag the slider thumb to change the the number of sectors of the circle (n).

C

1
2

As the number of sectors increase without bound, the rearranged sectors
of the circle (on the right) approach the shape of a rectangle.
When "n” inc without bound, the area of the shape approaches A = lw.

2

A-[iC][r] - A-[—;(Zﬂ'ti][r] -  A=Tr

Fig. 21 LearnAlberta webpage, n = 300

The maximal possible number of sectors is 300, and when this number is reached,
the figure composed of the sectors looks like a rectangle with the sides C/2 and r
(Fig. 21).

The applet is accompanied by the following explanations:

The area of the interior of a rectangle is the product of the length of the rectangle (/) and the
width of the rectangle (w) [A = Iw].

‘When the number of sectors is large:
— the width of the rectangle (w) is approximated by the radius of the circle (r);

— the length of the rectangle (/) is approximated by half the circumference of the circle

(7).

This explanation is somewhat problematic. Firstly, at no step the figure obtained as
rearrangement of sectors becomes “rectangle,” so the figure referred to as “rectangle”
is actually not a rectangle. Secondly, if / is used to note the length of a rectangle, say,
drawn to approximate the “waved” figure, and w is used for its width, the relationships
between these magnitudes and the half of circumference and radius are not very
clear, for example, what can be [ and w in Fig. 19? Thirdly, it is not very clear
why the approximations suggested by the authors are valid. Again, as in above-cited
textbooks, much of the work dealing with this complexity is left to the teacher.

Numerous interactive applets (like the one created using GeoGebra’s affordances,
see Fig. 22) allow for some more sophisticated exploration using several sliders to
arrive at similar conjectures concerning the formula of area of the circle.

It can be argued that these and other similar recent computer-aided approaches to
the introduction of the formula of area of the circle are largely based on the methods
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Fig. 22 GeoGebra applet for exploring the formula of area of the circle, Authored by Ooi Soo
Huat. (available at https://www.geogebra.org/m/AADNS5Ruq, visited on October 24, 2021)

of teaching already found in the mathematics textbooks compiled in the twentieth
century or even earlier. In other words, the creators of the mentioned software tools
developed their programs to “animate” the procedures that had been found in earlier
textbooks, and by doing so, to transform them, presumably, into more dynamic and
interactive MWS, and, eventually, to make them more attractive and accessible to the
learners. However, this transformation (from traditional “paper-and-pencil” methods
to novel ones, based on digital tools) when carried out without a substantial historical
analysis of the method, especially in regard to its epistemological complexity and
didactical implications, could lead to limited conceptual understanding by students.
One can question whether the application of software aiming at visualization of
infinitesimal procedures can indeed enhance the ability of the learner to understand
the rationale of the derivation of the formal expression for the area; this question will
immediately lead to an even larger question concerning the application of computer-
generated simulations in teaching mathematics (in particular, geometry).

4.3 Discussion and Conclusions

In our paper, we tried to track back the history of introduction of the “matching sectors
method” (or “rearrangement method”) recently used to justify the formula for the
area of a circle in school curricula and resources (printed and available online). It
appears plausible to conjecture that this method was originally used by professional
mathematicians of Antiquity and Middle Ages in the West,*! and only later it was
borrowed by mathematics educators and placed into school textbooks and lessons as
result of didactical transposition from “knowledge to be used” to “knowledge to be
taught and learned” (Chevallard, 1985; Kang & Kilpatrick, 1992). In the case of the
area of a circle, the earliest sources for “rearrangement method” that we were able

41 The original version of this chapter included a discussion of the similar methods found in Chinese
and Japanese mathematical treatises; it was removed as not directly related to the topic discussed
in the present chapter. We plan to return to the collected materials in a future publication.
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to identify in the Western textbooks were produced in the first half of the nineteenth
century (e.g., Lardner, 1835, 1840). What were the particular reasons for the use of
this archaic method for instruction in the nineteenth and especially in the twentieth
century? Was it grounded in some pedagogical or didactical traditions or was it a
result of innovative efforts to improve teaching and learning comparable to other
newly introduced methods?

It remains equally unclear from where did the method of “matching sectors” come
to the modern school textbooks. Why was it perceived as an especially “efficient” tool
for teaching? Was it because Archimedes’ “exhaustion method” involved sophisti-
cated reasoning and thus was considered difficult for beginners, while the method of
“matching sectors” used in textbooks may have seemed more didactically attractive
since the procedure of “matching” the sectors looked easy to understand for even
relatively young learners? This simplicity, along with visual and dynamic nature of
rearrangements, apparently seemed to the modern educators to be the best way to
construct lessons which are hands-on, practical, investigative, and providing students
with initial intuition that could lead to more complex mathematical concepts.

In this chapter, we only briefly discussed possible historical roots of “rearrange-
ment method” while mentioning some mathematical works authored by European
scientists (Cusanus, da Vinci, Kepler), among others. We used mainly the primary
sources cited in modern literature, and used secondary works, such as Baron’s book
on the history of calculus and Beckmann’s History of Pi,** as well as in online
resources (e.g., the Cut-the-Knot educational website created by Alexander Bogo-
molny).** A more detailed historico-didactical and genetic analysis of the process of
calculation of the area of a circle mainly based on primary sources will be published
elsewhere.

The problem of calculation of the area of a circle solved by mathematicians
of the past was of a particular nature; in certain cases, they arguably dealt with
it when focused on some specific problems as, for instance, the quadrature of the
circle (Cusanus) or calculation of the volumes of the wine barrels (Kepler). Yet,
when one turns to the process of transmission of scientific (in this particular case,
mathematical) knowledge featured in the textbooks specifically designed for learning
such as Clairaut’s Elements of 1741 (1830)* or, later, the geometry textbooks of the
nineteenth and twentieth centuries, then the task of transmission of theoretical and
practical knowledge became essentially a didactical issue, and new considerations
took place.

In the case of the area of the circle, the epistemic issue of dealing with infinity
interacted with the need for visualization (in particular, using diagrams in textbooks),
induction (based on intuitive approach to infinitely small and large entities), and
approximation (dictated by practical considerations). In particular, we found two

42 Although several authors cite Beckmann’s work, especially the paragraphs concerning the proce-
dures of calculation of the area of a circle, we find that certain parts of the book are not sufficiently
elaborated and reliable.

43 http://cut-the-knot.org/.

44 On Clairaut’s didactical ideas see, for example, Sander (1982) and Glaeser (1983).
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different interpretations of the “making of a circumference a piece of straight line”
(with the length equal to the circumference): one related to the category of methods
based on the idea of “unfolding a circle” (with sectors becoming “teeth-like” row, as,
for example, in the diagram constructed by Casselman, 2012 or in the one found in
Beckmann, 1976 (Fig. 2)); the other is more like “cutting out the sectors of a circle”
(each sector is to be moved and rearranged), when even the notion of “being equal”
seems to be sacrificed to the goal of making a new arrangement of parts fitting into
a rectangular shape (like in Lardner, 1835 and Willis, 1922).

We argue that the division of a circle into a number of equal sectors and their
further rearrangement thus producing “teeth-like” diagrams in school textbooks was
done mainly for the sake of visualization, even though minor differences between
variants of this procedure can be identified. There is an aspect that needs deeper
reflection as far as the “visual” part of the process is concerned: it is related to the
number of sectors into which the circle is dissected. More specifically, there are two
patterns that can be identified, the first one is based on a regular hexagon inscribed
in the circle and then having its sides doubled (6-12-24...), the second one features
powers of 2 (4-8-16...) and is apparently based on a square inscribed in the circle
and then having its sides doubled. Both visual representations serve to convince the
reader (learner) that the area of a given circle can indeed be calculated in the same
way as the areas of all other circles, via an approximation by the polygons.

At some point, the circle itself is considered (or should one say “defined”?) as
a polygon with an infinite number of sides. Then comes a “rearrangement part”
arguably based on the assumption that the operations of division, decomposition, and
re-composition of a shape do not change its area; several models that we investigated
above reflect this dynamic process. Then comes even more complex (and compli-
cated) issue which remains mathematically and didactically challenging: How to
deal with the infinity? Some sources we analyzed provide a rather static explanation
(providing a “sufficiently large” number of sectors) saying that the new shape “looks
like” a triangle, or a rectangle, or a parallelogram. Others add the word “approxi-
mately” to this visualization. Finally, a number of authors bring dynamic aspects in
the process, explicitly or implicitly, pointing at a possibility to increase the number
of sectors and, consequentially, to make it intuitively clear that the area of the rear-
ranged shape of the circle becomes (approximately) equal to that of a triangle, or a
rectangle, or a parallelogram for which it is known how to calculate the area.

This “knowing” (most often coming from the previously proved formula for the
circumference) allows for further manipulations with the formulas for the area of
a triangle (or rectangle, or parallelogram) and, finally, for advancing conjectures
concerning the formula of the area of the circle.

Considering geometry as a complex activity embracing various processes of inter-
action between practical knowledge (measuring) and its theoretical codification (e.g.,
the Euclidean deductive system used for proving), we are inclined to see in the use of
this “rearrangement” method an attempt to introduce a twofold procedure explaining
to the learners how to calculate the area of a circle and, at the same time, offering a
plausible reasoning strategy explaining why this formula works. While considering it
as “instrumental activity” (implying both signs and tools) from its very beginnings,
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Richard et al. (2019, p. 143) reflect on the complexity of distinguishing between
mathematics as a science and mathematical thought in the context of a particular
situation/task/activity. The authors further refer to Kuzniak and Richard’s (2014)
definition of mathematical work as a “progressively constructed process of bridging
the epistemological and the cognitive aspects in accordance with three yet intertwined
genetic developments as the semiotic, instrumental and discursive geneses” to intro-
duce their model of MWS allowing to “report on mathematical activity, potential or
real, during problem solving or mathematical tasks” (Richard et al., 2019, p. 144).

From the historico-didactical perspective, it appears to be difficult, or even impos-
sible, to make direct connections between the mathematicians’ work prior to eigh-
teenth century and didactical innovations of the later period; however, some of the
issues that they were dealing with certainly merit attentive look of modern educators.
For instance, the idea of da Vinci of separating “the angles of the sectors from each
other in such a way that the space between the vertices of these angles become equal
to flattened bases of the sectors” (Ravaisson-Mollien 1888, Ms E, folios 24r-26v)
might be resonating with that of transforming rearranged sectors into configurations
where sectors (approximately) become triangles, and, when put together, form recti-
linear shapes (triangles, rectangles, or parallelograms). The idea of Cusanus that the
area of the circle may be found by the same means as that employed for any other
polygon, that is, by dividing it up into a number (in this case, an infinite number)
of triangles (Boyer), is also fruitful in terms of the treatment of “teeth-like” repre-
sentations in later (modern) sources.* Kepler’s work, besides following Cusanus’
method of “indivisibles,” provides an insight into the procedure that points at the
approximation as a way of approaching the circle by polygons with a large (even
infinite) number of sides.

In our study, we found that the modern authors (e.g., Boyer, Baron, Beckmann)
seem to add details which were not found in the cited works. Indeed, neither Cusanus,
nor Kepler explicitly discussed the “rearrangement” of sectors. Moreover, despite
a seeming similarity of the way in which the rearrangement method was described
in the nineteenth—early twentieth-century sources that we analyzed in this chapter,
we noticed some substantial differences in representations that need to be reflected
upon from the “teaching and learning” perspective. While the idea of dividing the
circle into sectors is present in all models, there are differences in terms of the
number of pieces, as well as in their pictorial representations. Some authors provided
illustration of the whole circle divided into equal sectors (e.g., Boryshkevich, 1893;
Earl, 1894). Others presented a division of a half of a circle (Palmer, 1919) or showed
a part of the sectors (Willis, 1922). One model (Henrici & Treutlein, 1897) shows
division of one half of a circle into three sectors and the other half into six sectors.
When representing the result of a rearrangement, some authors show the final result
of one transformation (Earl, 1894; Hall & Stevens, 1921; Palmer, 1919), or even
leave the “matching” incomplete (like in Lardner, 1835, 1840), where two rows
of “teeth” are getting close to each other but not yet stuck together (similar to the

45 For discussions of Cusanus’ quadrature, see Uebinger 1985, 1896, 1897, Wertz 2001, Nicolle
1996; 2001; 2020.
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middle configuration in Boryshkevich’s drawing). Other authors might show two
consecutive transformations (like Treutlein’s model with three and six pieces, or
Willis’s showing a part of sectors put together and a plain rectangle) or even three
(similar to Boryshkevich). This variety of the representations of the one and the same
model might have had an impact on its use (in terms of instrumentation) which also
needs a deeper investigation.

Finally, the development of recent didactical models, especially employing the
dynamic aspects of new digital technology (e.g., dynamic geometry) adds more
complexity to the existing MWS while pointing at the fertility of genetic investigation
of their historical and didactical antecedents.
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