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1 Introduction

The chapter does not deal with the concept of artificial intelligence (AI) as it is
usually understood, i.e. as a comprehensive agent, as it is dealt with, for example,
in Russell et al. (2010) or du Sautoy (2019). It relates to AI indirectly, through the
particular properties of currently available free-of-charge dynamic geometry soft-
ware (DGS), namely GeoGebra (2020) and OK Geometry (2020), that undoubtedly
move the capabilities of this software into the realm of AI. With full awareness of
the relevant difference in the conceptual behaviour of this software and of the fact
that the practices we present are not the only solution, the possibility of a purely
automatic solution using GeoGebra is becoming more and more real, Botana et al.
(2020), we specifically discuss the use of the software’s ability to independently
assess an individual geometric sketch, applying the specific method of automated
observation of a dynamic construction and the principles of the automatic proving
and deriving of geometric theorems. Based on this assessment, the software provides
a user with specific feedback on her or his approach to the solution of a particular
task. Such features definitely link this software to the world of AI. We believe in the
usefulness of the connection of the worlds of DGS and AI, and we are convinced
that the wide fulfilment of their potential in educational practice is very real. An
educational environment with AI in the background and equipped with the features
of reading dynamic constructions and automated reasoning could be the right means
to balance the teacher’s supervisory role in the classroom with the individualisation
of learning in terms of the goals formulated by Bloom in his well-known treatise on
mastery learning, Bloom (1968, 1971), Levin (2017).
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From the above perspective, using examples from geometry based on historical
problems, we will show specific educational procedures utilising the environment
of the mentioned software providing users with feedback that leads them in their
independent creative work, the result of which can be both a dynamic geometric
model of the respective phenomenon and a real object, e.g. the physicalmodel printed
on a 3Dprinter. All are based on practical findings from the preparation of prospective
mathematics teachers of lower and upper secondary schools. The use of the software
to interpret historical geometrical subject matter from the perspective of up to date
mathematics, to create a dynamic model of the respective phenomenon and also to
serve as a basis to create its physical model has proven to be a functioning component
of mathematics teacher education, Dennis (2000), Clark (2012), Furinghetti (2007),
Hašek et al. (2017).

2 Historical Context

The story underlying the chapter is based on two contributions submitted by Josef
Rudolf Vaňaus (1839–1910), a Czech grammar school mathematics teacher and one
of the leading personalities of both the professional and social life of his time, to
the Journal for the Cultivation of Mathematics and Physics; a paper Trisektorie
(Trisectrix in English) on the use of an oblique strophoid to trisect an angle, Vaňaus
(1881), published in 1881, and an assignment of a geometry task for the journal’s
problem corner, Vaňaus (1902), the solution of which was based on the trisection of
an angle, Ostermann and Wanner (2012), published in 1902.

Josef Rudolf Vaňaus was born in 1839. In 1862, he graduated from the Faculty of
Arts of Charles University in Prague, and then, for more than thirty years, he worked
as a grammar school teacher. He died in 1910, after fourteen years of retirement.
All his life J. R. Vaňaus was very active in promoting mathematics and its teaching.
Starting as a young university student, in 1862, he became one of four founders of
the Union of Czech Mathematicians and Physicists and he continued doing research
and publishing papers on findings in mathematics and its teaching in relevant Czech
journals.He paid significant attention to supporting studentswithmathematical talent
at the secondary school level through assigning them problems in the problem corner
of theCzech Journal for the Cultivation of Mathematics and Physics (with an original
Czech title Časopis pro pěstování mathematiky a fysiky), Folta and Šišma (2003).

A beneficial and a creative way of using GeoGebra and OK Geometry to solve
the problem assigned by Vaňaus and to model and analyse his original method of
trisecting an angle with contemporary students of mathematics teaching is treated in
this chapter.
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3 Problem 36

The following problem authored by J. R. Vaňaus was, as Problem No. 36, set in the
problem corner of the third issue of the Journal for the Cultivation of Mathematics
and Physics Vaňaus (1902), published in Czech. The target group of the problem
assignment was students of an upper secondary school, ages 15–18.

Given a line segment AB. Circular arcs, both with the radius |AB|, are drawn
around points A and B, passing through points B and A, respectively, and
intersecting at point C . The task is to set points M and N at arcs AC and
BC , respectively, so that the line segment M N is parallel to AB and the angle
∠M AN is equal to a given acute angle; see Fig. 1.

Solution: First, we add a few more elements to our sketch, see Fig. 2, an angle β =
∠B AN , the knowledge of which would immediately lead to point N , and segment
M B, the diagonal of trapezoid AB N M and at the same time the leg of the isosceles
triangle� M AB, which has two sides |AB| and |M B| of equal length due to the fact
that both given arcs have the same radii.

Fig. 1 Problem36:Determine
the line segment M N ;
M N ‖ AB, for a given
angle α

Fig. 2 Problem 36:Elements
β and M B added for
solution, � M AB is an
isosceles triangle
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Following Fig. 2, we express β in terms of α as follows. Since it applies to the
interior angles of � M AB that 2α + 3β = 180◦, angle β can be written as

β = 60◦ − 2
α

3
. (1)

Therefore, obtaining angle β, which leads to solving the problem, is subject to the
trisection of an angle, namely the given angle α, a task that is not solvable by using
just a straightedge and compass.

Trisecting an angle together with squaring the circle and doubling the cube are
three classical problems of Greek mathematics that were proved to be impossible
constructions using just a straightedge and compass. The impossibility of this so-
called Euclidean construction of a trisection of an angle was proved by French math-
ematician Pierre Laurent Wantzel in 1873. For more information, see Impossible
constructions (2020), Ostermann and Wanner (2012).

Three solutions to this problem, leading to the trisection of an angle, all in a similar
manner to the one above, sent by students of upper secondary schools, were published
in the last issue of the journal volumeVaňaus (1902).All three authorswere aware that
the solution is not constructable using only a straightedge and compass. One of them
offered to complete the solution analytically, converting it into the problem of the
intersection of conic sections, namely the circle and hyperbola, as recorded inVaňaus
(1902). Obviously, the upper secondary school students at that time were familiar
with the non-Euclidean techniques of the trisection of the angle, among others using
curves called ‘trisectrix’, namely, for example, the trisectrix of Maclaurin, Trisectrix
ofMaclaurin (2020), see Fig. 3, named after Scottishmathematician ColinMaclaurin

Fig. 3 Trisectrix of
Maclaurin given by the
Cartesian equation
2x(x2 + y2) = a(3x2 − y2),
for a = 3. Processed in
GeoGebra
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(1698–1746). A list of curves that can be used as a trisectrix, i.e. as an additional
tool with compass and ruler to trisect an arbitrary angle, can be found at Wikipedia,
Trisectrix (2020). An angle can also be trisected using other non-Euclidean methods;
see Angle trisection (2020) and Ostermann and Wanner (2012).

4 Problem 36 from the Contemporary Perspective

The possible use of the current free software in the field of Problem 36 will be
presented in this section through the two software mentioned in the introduction,
GeoGebra and OK Geometry. Our ambition is simply to share our specific findings
and experience with the reader. We do not aim to provide a comparative evaluation
of the software used and do not claim that this is the only possible way to solve the
discussed problems with the currently available software.

4.1 GeoGebra

We assigned ProblemNo. 36, as a problem for volunteers, to students of the first year
of the study of mathematics teaching at lower secondary school. Like the authors of
the solutions published in the journal, in 1902, most of the current solvers arrived at
a solution corresponding to (1). Yet there was a difference. Contemporary students
are not as familiar with the non-Euclidean ways of trisecting an angle as their peers
from the early twentieth century. On the contrary, they are well acquainted with the
available mathematical software, which was clearly reflected in their approach to
the solution of the problem. Once they found relation (1), they used GeoGebra to
construct a solution based on the numerically calculated trisection of a given angle.
GeoGebra, thus, served primarily as an environment for creating a dynamic model of
a numerically calculated solution to a given problem, one such model being shown
in Fig. 4.

Another approach to the use of GeoGebra to solving the problem, which we could
identify among the students’ solutions, went to the essence of a dynamic geometry
system. Its author employed the dynamic features ofGeoGebra to try to find a solution
by manipulating the construction; see Fig. 5. She created a movable transversal M N
between given arcs, M ∈ >

CA, N ∈ >
BC, visible from A at a given angle α. Moving

M the midpoint S of M N draws a curve, the locus of point S. The intersection of
this curve with the axis of symmetry of the line segment AB determines the position
of M N we are looking for to solve the problem. This dynamic investigation of the
nature of the locus curve gives rise to the question of which curve it is. Can we
determine its equation? Yes, using GeoGebra CAS, or any other suitable computer
algebra system, it is possible, without any special knowledge of differential geometry
of curves.
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Fig. 4 Problem 36:Student’s solution, a dynamic model created in GeoGebra

Fig. 5 Problem 36:Dynamic
investigation of the solution.
Processed in GeoGebra

First, we place the given construction into the coordinate system appropriately
so that A[0, 0], B[r, 0], M[m1, m2], N [n1, n2], k = tan β and a = tan α, see Fig. 6,
and express its configuration by symbolic equations e1, e2, . . . , e6 as follows: From
the right triangle with hypotenuse AM and an internal angle α + β, we get the first

equation e1 : tan (α + β) = m2

m1
, which can be written as

e1 : (a + k)m1 − (1 − ak)m2 = 0, (2)

where k = tan β and a = tan α. Analogously, from a right triangle with the
hypotenuse AN and an internal angle β, we get the second equation
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Fig. 6 Problem36:Placement
in the coordinate system

e2 : kn1 − n2 = 0. (3)

The other two equations e3 and e4 are based on the fact that S[x, y] is the midpoint
of the line segment M N :

e3 : m1 + n1 − 2x = 0, (4)

e4 : m2 + n2 − 2y = 0. (5)

The last two equations reflect the fact that M and N are the points at circles k(B; r)

and l(A; r), respectively, where r = |AB|:

e5 : m2
1 − 2m1r + m2

2 = 0, (6)

e6 : n2
1 + n2

2 − r2 = 0. (7)

The notation of these equations and their further processing in the CAS environment
are shown in Fig. 7. For equations, see lines 1 to 6. To get the general algebraic
polynomial representation of the locus curve, we use the Eliminate command,
based on the method of the Groebner bases, Kovács (2017), Hašek (2019). Part of
its result can be seen on line 7 of the CAS view. The complete resulting algebraic
equation of the locus curve is as follows:

16x6a2 − 32x5ra2 + 8x4r2a2 + 16x3r3a2 − 7x2r4a2 − 2xr5a2 + r6a2

+ 48x4y2a2 − 64x3r y2a2 + 16xr3y2a2 − 3r4y2a2 + 48x2y4a2

− 32xr y4a2 − 8r2y4a2 + 16y6a2 + 8x2r3ya − 2r5ya + 8r3y3a

+ 16x6 − 32x5r + 8x4r2 + 8x3r3 − 3x2r4 + 48x4y2 − 64x3r y2

+ 8xr3y2 + r4y2 + 48x2y4 − 32xry4 − 8r2y4 + 16y6 = 0. (8)
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Fig. 7 Equation of the locus curve of S derived in GeoGebra CAS

Equation (8), thus, completes the phase of the symbolic solution of the problem.Now,
in order to plot a particular curve given by (8) in the Graphics View of GeoGebra,
we have to substitute some specific values of its parameters into this equation, i.e.
the radius r of arcs and the angle α, precisely, the tangent of the angle α as the value
of a; see line 8 in Fig. 7.

Let us use the values r = 1 and a = tan
(

π
6

) =
√
3
3 . Factorising the resulting poly-

nomial using the Factorise command, we get two curves, a circle drawn by S
when M coincides with A and the curve that interests us, which appears to be the
limacon, Limacon (2020), plotted in the Graphics view of GeoGebra; see Fig. 8.

The solutions mentioned so far have always been based on an idea. But what if we
have no idea? Can any software assist us in such a way that it gives us an impetus to
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Fig. 8 Problem36:Limacon,
the locus of midpoints of
M N for α = π

6 . Processed in
GeoGebra

start a solution? And, moreover, can such software reveal to us a hitherto unknown
solution? In the next section, we will show how OK Geometry can serve us in this
way.

4.2 OK Geometry

OK Geometry is a dynamic geometry software that has a unique ability to analyse
a dynamic geometric construction, either created directly in it or imported from
another DGS, and to provide a list of properties of this construction, not proved,
but determined with a high degree of probability. OK Geometry was conceived by
Zlatan Magajna and is available free of charge from OK Geometry (2020), where an
interested user can find all the necessary information on its use and functionality.

By drawing just a sketch of the assignment of Problem 36 and letting OK Geom-
etry analyse it, a user receives a number of properties that with high probability pay
for this geometric construction. Focussing only on those of them that relate to the
stated task, she or he almost certainly obtains a base for developing some ideas on
the problem’s solution, some of which may be not entirely obvious even to an experi-
enced solver. A small portion of the result of such an analysis is shown in Fig. 9. The
software indicates that the sizes of angles ∠C AM and ∠N AM , where |∠N AM | is
the given acute angle, see α in Fig. 1, are in the ratio 1 : 3. If we manage to prove
this hypothesis, we can design a new way of constructing the segment M N accord-
ing to Problem 36 assignment, of course, again based on the trisection of a given
angle. Having the line AC determined with the fixed points A and C , we simply find
the point M , so that |∠C AM | = 1

3α. So, is the relationship between angles ∠C AM
and ∠N AM , stated by OK Geometry, true? If it is not obvious from Fig. 9, we can
‘ask’ the software for more information on the relations of involved angles. Among
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Fig. 9 Problem 36:Analysis using OK Geometry; |∠N AM| = 3|∠C AM |

Fig. 10 Problem 36:Analysis using OK Geometry; |∠N AC | = 2|∠C AM |

them, we then find the key to the proof, 1 : 2 ratio of measures of angles ∠C AM
and ∠N AC , where ∠N AC ∪ ∠C AM = ∠N AM ; see Fig. 10. Both relationships
between angles are, therefore, equivalent, with the latter being a clear consequence
of the relationship between the inscribed angle∠C AM and the central angle∠C B M ,
where |∠C B M | = 2|∠C AM |. Consequently, due to |∠N AC | = |∠C B M |, the rela-
tion |∠N AC | = 2|∠C AM | pays. Therefore, the former, |∠N AM | = 3|∠C AM |,
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also holds. We have shown how OK Geometry can assist us, both in the recognition
of some geometric properties and in indicating the prospective way of proving them.

5 Vaňaus’ Trisectrix

In Sect. 4, the part dealing with the ‘dynamic geometry’ approach to solving Problem
No. 36, we used the dynamic geometry and computer algebra features of GeoGebra
to create a dynamic model of the respective geometric construction and to derive an
equation of the corresponding locus curve.

Here, in the section devoted to the first of two Vaňaus’ publications covered in
this text, a paper Trisektorie from 1881, Vaňaus (1881), we will apply this approach
again and complete it with the creation of a dynamic geometric model of Vaňaus’
trisector, a mechanical linkage implementing his method of trisection.

Let’s move back to 1902 to complete the story of solving Problem No. 36. In his
comment to the solutions of the three students, published in Vaňaus (1902), Vaňaus
recommended his 1881 paper in which he introduced a method of doing a trisection
using the cubic curve shown in Fig. 11. This cubic curve, currently known as the
oblique strophoid, Gibson (1998), Lockwood (2007), Strophoid (2020), is presented
by Vaňaus as follows.

The locus of points M for B moving along the line l, a secant to the circle c,
so that |M D| = |DB|, where D is the intersection of the line O B with c.

Fig. 11 Vaňaus’ trisectrix,
the oblique strophoid, for
r = 1 and a = 3. Processed
in GeoGebra
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He derives the Cartesian equation of this curve

a(y2(2r + x) − x2(2r − x)) = y(y2 + x2 − 4r x), (9)

where r is the radius of the circle c and a is the slope of the line l (i.e. a is the tangent
of the angle of incline α of the line l), and describes a simple way of using it to trisect
an angle, namely the angle u in Fig. 15. To learn which position of the curve with
respect to the Cartesian coordinate system corresponds to (9), see Fig. 11.

Analysing this curve as a locus curve with students, GeoGebra allows us to apply
different approaches to the derivation of its algebraic equation. On the one hand,
we let the software do it automatically, from the perspective of a user in the hidden
‘black box’mode, and simply ask it to derive the equation based on the geometric con-
struction created in the ‘Graphics’ view. To do so, we apply the LocusEquation
command, which utilises the algorithms of the automated theorem proving to com-
pute an equation of the locus of a given point; see Fig. 12. On the other hand, we can
do it manually, using the ‘CAS’ of GeoGebra, with its functions and tools, as the
environment to control the process. In Fig. 13, the use of the Eliminate command
to derive the locus equation in a manner analogous to the derivation of the limacon
equation in Sect. 4 is shown.

Fig. 12 Derivation of the algebraic equation of Vaňaus’ trisectrix using the LocusEquation
command of GeoGebra
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Fig. 13 Derivation of the algebraic equation of Vaňaus’ trisectrix using theEliminate command
of GeoGebra

To get acquainted with the meaning of the equations r1, r2, . . . r6 that we used
to symbolic derivation of the locus curve equation, see Fig. 11. They are derived as
follows: From the right triangle with hypotenuse AB and an internal angle α, we get

the first equation r1 : tan (α) = b2
b1 − 2r

, which can be written as

r1 : (b1 − 2r)a − b2 = 0, (10)

where a = tan α. The fact that the point D[d1, d2] lies on a circle c with centre S[r, 0]
and radius r led to the second equation

r2 : (d1 − r)2 + d2
2 − r2 = 0. (11)

The third equation reflects the condition of collinearity of points O, D and B, i.e.
d2
d1

= b2
b1
, where the expression a(b1 − 2r) is substituted for b2:

r3 : ad1(b1 − 2r) − b1d2 = 0. (12)
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The other two equations r4 and r5 are based on the fact that D[d1, d2] is the centre
of the line segment M B, with the coordinates M[x, y], B[b1, b2] of its endpoints:

r4 : b1 − 2d1 + x = 0, (13)

r5 : b2 − 2d2 + y = 0. (14)

The last equation represents a non-degenerate condition preventing the case D[0, 0],
which would lead to the curve’s asymptote instead of the curve itself:

r6 : −d1k + d2 − 1 = 0, (15)

where k is the real parameter.
As alreadymentioned,Vaňaus identified this curve as a trisectrix, i.e. the curve that

can be used, togetherwith compass and ruler, to trisect an arbitrary angle. Specifically,
he uses the property of equidistance among the points of the given circle, its secant
and the curve, respectively. For a detailed illustration, see Fig. 14. Let us remember
that B is the mover in Vaňaus’ definition of trisectrix; moving B the point M draws
the curve. Then, decisive for the trisection is a configuration of B and consequently
M , where M lies on a circle centred at O passing through A. Only in this position, it
holds that |∠H O M | = 1

3 |∠H O A|. To prove it, we will deal with Fig. 15, where the
trisectrix is rotated, in comparison with the position used so far, so that the ray O H of
the angle ∠H O A, the trisection of which is the subject of our interest, is horizontal.
Let us focus on the triangle �O B A and its exterior angle ∠M B A, the measure of
which is |∠M B A| = α + 2x . Due to the exterior angle theorem, which states that
an exterior angle of a triangle is equal to the sum of the opposite interior angles,

Fig. 14 Vaňaus’ trisectrix; determining properties for trisection. Processed in GeoGebra
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Fig. 15 Using the ‘Vaňaus curve’ to trisect an angle u

Fig. 16 Proposal of a
possible design of Vaňaus’
mechanism

we know that α + 2x = α + y. After simplification, we get y = 2x . Consequently,
because u = x + y, it follows that x = 1

3u.
In conclusion to his paper, Vaňaus (1881), Vaňaus mentions that he designed a

quite simple mechanism to implement his method of trisection which he had made
with a satisfactory result by a skilled mechanic. However, no such mechanism was
found in his estate, so nobody knows what it looked like. A possible design of this
mechanism is indicated in Fig. 16 usingVaňaus’ trisectionmethod in the background.
Its dynamic model created in GeoGebra is available at Hašek (2020). The author is
not entirely satisfied with this proposal as he believes that there could be a simpler
mechanical implementation of Vaňaus’ method. Of course, there are a number of
other mechanisms for angle trisection; see, e.g. Soluzione (2021).
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Fig. 17 Conchoid of
Nicomedes; the locus of
points D, the midpoints of
M B, when M moves along
the circle centred at O and
passing through A

The use of DGS brought us another interesting revelation in this story of a method
of trisection. When searching for the way of the mechanical trisection of an angle
using Vaňaus’ strophoid, a question appeared; what is the locus of points D, the
midpoints of the segment B M , when M moves along the circle centred at O and
passing through A; see Fig. 12. The resulting curve, shown in Fig. 17, is the conchoid
of Nicomedes, Lawrence (2014), the Cartesian equation of which is (x2 + y2)(x −
a)2 = b2x2, where a = 1

2 |O H | and b = 1
2 |O A|. Thus, applying theGeoGebraTools,

we have found a close relationship of Vaňaus’ trisectrix to this conchoid, a curve
which is well known for its use in trisecting an angle Lockwood (2007).

6 Conclusion

Through a real story from the history of the study and teaching of mathematics con-
cerning the trisection of an angle and related problems, we have shown the properties
of contemporary dynamic geometric software, such as the ability to immediately
respond to user’s demands, the ability to provide individual feedback tailored to the
user’s needs, equipment with the environment supporting creative approach to solve
the given problem and to find new ways of doing it, the possibility of sharing ideas
and approaches, among others. This all predetermines this software for its use in
contemporary mathematics teaching. Its potential to be implemented into an educa-
tional environment controlled by artificial intelligence is obvious and undoubtedly
calls for detailed research.

Theoretical bases of AI implementation in mathematics education are stated in
Balacheff (1993). We are convinced that now all the necessary components of this
implementation, whether of a technical, software or didactic nature, are sufficiently
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mature to assemble them all together for the application of AI to assist a teacher
in supporting and streamlining the school education of pupils according to their
individual needs and to focus on their skills, knowledge and demands.
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