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1 Introduction

Logic appears in a sacred and in a profane form. The sacred form is dominant in proof
theory, the profane form in model theory

D. van Dalen, Logic and Structure (van Dalen, 1980)

Sacred Form

It can be said that the sacred form began circa 300 BC with the writing of Euclid’s
Elements. The Elements can be seen as a seminal work, establishing the basis for
proof theory, with a collection of definitions, postulates, propositions (theorems and
constructions) and mathematical proofs of the propositions. For centuries, it was
included in the curriculum of the majority of the universities. For example, in 1692
Tirso de Molina, Superior General of the Jesuit Order wrote a letter with very specific
orders to improve the teaching of Mathematics at the Portuguese province (i.e. Uni-
versities of Coimbra and Evora). One of the suggestions was the reproduction of the
figures in the Elements in such a way that all the students could see those figures and
discuss about the geometric properties behind those figures. The combination of that
letter with the Portuguese tradition of tilling (“azulejos™) gave rise to a collection of
tiles with faithful representation of many of the figures in the Elementa Geometrice
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Fig. 1 Azulejos with figures from Elementa Geometrie by André Tacquet

by the Jesuit priest André Tacquet (1612-1660) (see Fig. 1) (Gabriel Silva, 2017;
Simdes, 2007).!

David Hilbert in his book Grundlagen der Geometrie (1899) established the foun-
dation for a modern axiomatic treatment of Euclidean geometry (Hilbert, 1977).
Later, Alfred Tarski built a decision method for elementary algebra and geome-
try (Tarski, 1951) allowing constructive and even automated approaches for geome-
try (Beeson, 2015; Quaife, 1989) and, more recently, (1995) Jan von Plato proposed
another constructive approach to geometry (von Plato, 1995).

From a computational perspective, the history of geometry automated theorem
provers (GATP) began with the early computers and the birth of Artificial Intelli-
gence, in the 1960s. The different sets of axioms of Euclidean Geometry attracted
researchers to an attempt to implement synthetic methods, such as the approaches
by Gelernter (1995, 1960), Nevis (1975), Elcock, Greeno et al. (1977), Coelho and
Pereira (1979, 1986), Chou et al. (1993, 1995). The difficulties found with the syn-
thetic methods, where the need to find a suitable rule to be applied lead to a combi-
natorial explosion regarding all the possible choices. This resulted in the exploration
of other approaches, algebraic, semi-synthetic and logical approaches.

The algebraic style approach is characterized by the translation of geometric
problems to algebraic problems, and subsequent development of the proof by the
application of algebraic manipulations. The characteristic set method, also known
as Wu’s method (Chou, 1985; Wu, 1984), the elimination method (Wang, 1995), the
Grobner bases method (Kapur, 1986a, b) and the Clifford algebra approach (Li, 2000)
are examples of practical methods of this type. The algebraic approach led to efficient
implementations, but, given that all the proofs are developed by algebraic means, the
geometric meaning is lost, i.e. apart from a yes/no answer, it is not possible to have
a correspondent geometric proof where the axioms of geometry are used. This led
to the development of methods capable of, at least partially, combine the geometric
readability of synthetics methods with the efficiency of algebraic methods.

! Unfortunately most of the tiles were lost after the expelling of the Jesuits from Portugal by the
Marquis of Pombal in 1759, the subsequent reform of the University of Coimbra and the construction
of new buildings on the expense of the old ones.
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The semi-synthetic methods use a set of specific geometric quantities, e.g. the
ratio of parallel directed segments and signed area, to build an axiom system where
the geometric relations and properties can be represented and the proofs developed
using a set of geometric lemmas and simple algebraic manipulations. Examples of
such methods are the area method (Chou et al., 1996a; JanicCi¢ et al., 2012) and the
full-angle method (Chou et al., 1996b). These methods combine the readability of
synthetic methods and the efficiency of algebraic methods, being able to prove many
geometric theorems, efficiently and with geometric, readable, proofs.

More recently (2000-till present), new synthetic approaches are being proposed;
the geometric deductive database method combines the full-angle axiom system with
the techniques of deductive databases to develop an efficient GATP capable to prove
a large set of geometric problems (Chou et al., 2000). Also tutorial systems like the
QED-Tutrix (Gagnon et al., 2017; Tessier-Baillargeon et al., 2017) are proposed to
address the problem in a more contained form, i.e. instead of trying to implement
a generic GATP, the goal is to have an efficient and capable of readable geometric
proofs GATP, to specific areas of geometry.

Also to be considered are the logical approaches, like the quantifier elimination
method of Tarski (Collins, 1975; Tarski, 1951), or the use of axiom systems for
geometry (e.g. Tarski, Quaife (1989)) and then using generic automated theorem
provers (ATP) to develop the proofs. Many efficient and capable of proving many
geometric conjectures ATP are available, but, like in the algebraic approach, the proof
has no correspondence with any form of geometric reasoning. From the view point
of a geometer, it is difficult to follow (geometrically) the formal proofs produced by
the ATP.

Profane Form

The Profane form came with programs that allow to build and explore geometric
figures. The 1988 Turing prize was awarded to Ivan Sutherland for his pioneering
work in the area of computer graphics. The program Sketchpad changed the way
people interacted with computers, from non-graphical to graphical (Sutherland, 1963,
2003). While the original aim was to make computers more accessible, introducing
graphical manipulations, while retaining the powers of abstraction that are critical to
programmers, the direct manipulation interfaces have since succeeded by reducing
the levels of abstraction exposed to the user.

The program Sketchpad can be considered as the point of origin for today’s
computer-aided graphic design programs (CAD). Not detracting from CAD pro-
grams, they are of little interest for the geometry practitioner, they are very high-
precision tools to draw figures, e.g. for architects, drawing building plans, but they
miss the step from drawings (static object) to figures (geometric construction), i.e.
a set of objects and geometric relations between then (dynamic object). Meanwhile,
dynamic geometry systems (DGS) allow building geometric constructions from free
objects and elementary constructions. It became possible to manipulate the free
objects (objects universally quantified), preserving the geometric properties of the
construction.
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Fig. 2 Gelernter—Angle bisection

The first software packages that can be classified as dynamic geometry systems
were Geometer’s Sketchpad (Jackiw, 2001), which appeared first in 1989, and Cabri
Géometre (Laborde & Strisser, 1990), dating back to 1988, and they started another
revolution: computers could be used in school for teaching geometry. Since then
DGS become mature tools used by millions of users all over the world.

Dynamic geometry systems gave us the profane side of proofs in geometry. For
example Fig.2 (if done with a modern DGS) would have the points A, B and C as
free points and point D as a constructed point (intersection of lines), moving the
free points we can conjecture that the segments AD and C D are equal in length, i.e.
we are exploring “all” possible configurations for a given geometric construction in
the Cartesian model. Although those manipulations are not formal proofs because
only a finite set of positions are considered and visualization can be misleading, they
provide a first clue to the truthfulness of a given geometric conjecture.

The DGS and GATP are in a collision course and that is a good thing. From the
development of GATP and DGS as completely separated tools, to the implementa-
tion of some GATP method in a DGS (e.g. Cinderella) or graphical components into
a GATP (e.g. GCLC and JGEX) to the integration of GATP and DGS (e.g. GeoGe-
bra). The fully integration of automated deduction components in other software is
becoming a reality and it is expected that in a near future it will be possible to have
those components broadly available.

Overview of the chapter In Sect. 2, the evolution of automated deduction in geom-
etry is presented and in Sect.3 the integration of GATP and DGS is discussed. In
Sect. 4 other lines of research are presented and in Sect. 5 conclusions are drawn.
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2 Automated Deduction in Geometry

For the last five decades, automated deduction in geometry, the sacred form, has
been an important field in the area of automated reasoning. Various methods and
techniques have been studied and developed for automatically proving and discov-
ering geometric theorems (Chou, 1987; Chou & Gao, 2001; Chou et al., 1994).

2.1 Synthetic Methods

Adapting general-purpose reasoning approaches developed in the field of artifi-
cial intelligence (in the 60s of the twentieth century), synthetic methods, such as
the approaches by Gelernter (1995, 1960, Nevis (1975), Elcock (1977), Greeno et
al. (1979), Coelho and Pereira (1979, 1986), Zhang et al. (1995), were dedicated
to automating traditional proving processes (Chou & Gao, 2001). Making use of
axiomatic systems close to the ones used in secondary schools these systems tried
to provide readable (by students and teachers) proofs. See Fig.2 for an example of
such proofs, from the GATP by Gelernter.

In many of these first attempts, the diagrams where used as a model (Coelho &
Pereira, 1986):

e the diagram as a filter (acting as a counter-example);
e the diagram as a guide (acting as an example, suggesting eventual conclusions).

As a filter the diagram permits to test the non-provability of a candidate sub-goal,
pruning the proof tree.

As a guide the diagram can be used as a positive indication. Quoting from Coelho
et al. (1986) Coelho and Pereira (1986) (see Fig.3):

We want to prove two equal segments UV = XY, by congruent triangles. Suppose triangle
XY Z exists, and our purpose is to find a triangle U VW on U V to compare to triangle XY Z.
We need to search for existing or generated triangles on U V. The first thing is to find a
convenient third point W, which must be different from U and V. The possible coordinates
of the sought point W are computed from the coordinates of X, Y, Z, U and V, and a check
is made in the diagram to see if a point with such coordinates exists. The diagram is used in
a positive way for computing the possible coordinates for W.

Fig. 3 Coelho et al. 7 w
(1986)—Diagram as a guide I/‘1 N
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The possibility of having geometric proofs, with natural language and (eventually)
visual renderings, is a key aspect of this approach. Unfortunately, the combinatorial
explosion while applying postulates implied the use of suitable heuristics that narrow
the scope of the GATP and prevent the development of a general-purpose efficient
GATP.

New synthetic approaches are being proposed. The geometric deductive database
method combines the full-angle axiom system with the techniques of deductive
databases, to develop an efficient GATP capable of proving a large set of geometric
problems (Chou et al., 2000). A coherent logic2 based GATP, ArgoCLP, is being
developed which can be used to generate both readable and formal (machine ver-
ifiable) proofs in various theories, primarily geometry. The possibility of, using a
top-down approach (from the conjecture to the conclusion), producing natural lan-
guage proofs is a positive point, but, efficiency considerations are still a major con-
cern (Stojanovié et al., 2011).

2.2 Algebraic Methods

A different approach is given by the algebraic style methods, given by the trans-
lation of geometric problems to algebraic problems and the subsequent develop-
ment of the proof by the application of algebraic manipulations. The characteristic
set method, also known as Wu’s method (Chou, 1985; Wu, 1984), the elimination
method (Wang, 1995), the Grobner bases method (Kapur, 1986a,b) and the Clifford
algebra approach (Li, 2000) are examples of practical methods based on the algebraic
approach.
Let us consider, for example, the Euler’s Line theorem.

Theorem 1 (Euler’s Line Theorem) In any given triangle, the orthocentre, the cen-
troid and the centre of the circumscribed circle are collinear (Fig. 4).

Transcribing it to algebraic form we get (GATP: JGEX, Wu’s method):

The Algebraic Form:

A: (0,0) B: (0,x4) C: (x5,x6) D: (x7,x8) E: (0,x10)
F: (x11,x12) G: (x13,x14) H: (x15,x16) I: (0,x18)
J: (x19,x20) K: (x21,x22) L: (x23,x24) M: (x25,x26)

The Equational Hypotheses:
1: D : midpoint(BC) 2x8 - x6 - X
2: E : midpoint(BA) 2x10 - x4
3: F : midpoint (AC) 2x12 - x6

4 =0 2x7 - x5 =0
0
0

2x11 - x5 =0

11: LF L CA x6x24 + x5x23 - x6x12 - x5x11 = 0
12: M : on line EL x23x26 + (-x24 + x10)x25 - x10x23 = 0

2 Coherent logic is a fragment of (finitary) first-order logic which allows only the connectives and
quantifiers A (and), V (or), T (true), L (false), 3 (existential quantifier).
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Fig. 4 Euler’s line theorem,
JGEX construction

At this stage the geometric/algebraic connection is still possible, each geometric
element has a correspondent set of algebraic equations and vice versa. In the proof
itself, pure algebraic methods are used. In Wu’s method, this implies calculating
triangular systems and pseudo-remainders (Chou, 1985; Wu, 1984).

The JGEX’s proof (Wu’s method) is:

The Triangularized Hypotheses (TS):
ho: 2x7 - x5 =0

hl: 2x8 - x6 - x4 = 0

h2: x9 =0

h1l8: 2x5x25 + (-2x6 + 2x4)x8 + x4x6 - x572 - x472 =0
h19: (2x6 - 2x4)x26 + 2x5x25 + (-2x6 + 2x4)x8 - x572 =0

The Conclusion (CONC) :
L, G, K are collinear

(x21 - x13)x24 + (-x22 + x14)x23 + x13x22 - x14x21 = 0

Successive Pseudo Remainder of CONC wrpt TS

R_18 = [x24, 6]

R_17 = prem(R_18, h_17) = [x23, 6]
R_7 = prem(R_8, h_7) = [x13, 6]
R_6 = prem(R_7, h_6) = [0, 0]
Remainder = R_6 = 0

The conclusion is true

GATP based on these methods are efficient and able to proof a large number of
geometric conjectures. The price to pay is the absence of geometric proofs and the
algebraic proofs, if any, are only (barely) readable by experts (Chou & Gao, 2001).
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2.3 Semi-Synthetic Methods

In order to combine the readability of synthetic methods and the efficiency of alge-
braic methods, some approaches, such as the area method (Chou et al., 1996a; Jani¢i¢
et al., 2012) and the full-angle method (Chou et al., 1996b), represent geometric
knowledge in the form of expressions with respect to geometric invariants.

For stating and proving conjectures, these methods use a set of specific geometric
quantities that enable treating geometric relations defining an axiom system. Con-
sidering the area method, we have:3

e ratio of parallel directed segments, denoted AB/CD. If the points A, B, C and
D are collinear, AB/C D is the ratio between the lengths of directed segments
AB and CD. If the points A, B, C and D are not collinear, and it holds AB||C D,

there is a parallelogram AB P Q such that P, Q, C and D are collinear and then
AB _ QP

CD ~ CD’
e signed area for a triangle ABC, denoted S4p¢ is the area of the triangle ABC,

multiplied by —1, if ABC has the negative orientation.
e Pythagoras diﬁ‘erence,4 denoted P 4 ¢, for the points A, B, C, defined as Papc =
AB’ +CB - AC".

An axiom system based on these three geometric quantities allows expressing (in
form of equalities) geometry properties such as collinearity of three points (Sapc =
0), parallelism of two lines (Sapc = Spcp), equality of two points (Papa = 0),
perpendicularity of two lines (Pacp = Prcp), etc. (Chou et al., 1996a; Janicic et al.,
2012).

To prove a given conjecture, we have to express the hypotheses of a theorem
using a set of starting (“free””) points and a set of constructive statements, each of
them introducing a new point, and to express the conclusion by an equality between
polynomials in the geometric quantities of the method (without considering Carte-
sian coordinates). The proof is developed by eliminating, in reverse order, the points
introduced before, using for that purpose a set of appropriate lemmas (see Fig.5).
After eliminating all the introduced points, the goal equality of the conjecture col-
lapses to an equality between two rational expressions involving only free points.
This equation can be further simplified to involve only independent variables. If the
expressions on the two sides are equal, the conjecture is a theorem, otherwise it is
not.

In the example above (see Theorem 1), the conjecture can be expressed using the
signed area of triangles, S, ¢ = 0, i.e. the signed area of the triangle LG K is zero,
so we are considering a degenerate triangle, so the points are collinear. Using the
area method, both GCLC and JGEX failed to prove this conjecture (only using the

3 Negative and positive orientation are only a syntactic convention to disambiguate between “dif-
ferent” geometric constructions built from the same set of points.

4 The Pythagoras difference is a generalization of the Pythagoras equality regarding the three sides
of a right triangle, to an expression applicable to any triangle. For a triangle ABC with the right
angle at B, it holds that P4pc = 0.
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Vg
(1) =2, by the statement
70
(2) <71 . %) =2, by geometric simplifications
T
S by Lemma 37, first case — assuming points
(3) (—1 . #) =2, T, A, and A, are not collinear (point H
TAOAz eliminated)
(4) (S1-57as,) =2, by algebraic simplifications
Sra0a,
(,1 . <<PABF-STA?)>+<PACB-smB)))
(5) L =2, by Lemma 31 (point A> eliminated)
Sta04,
(6) (=1 (Papc - Srac)) + (=1 (Pacs - Stan))) =2, by algebraic simplifications
(PBcB - STA0A,)
—1:(Papc - St —1-(Pacs - . -
(7) « (Papc - Stac)) + ( (Pacs - S1aB))) =2, by Lemma 31 (point A; eliminated)
Ppeop - {Papc-Staoc)+(Pacs-Sraos))
( BCB vy
((=1:(PaBc - Stac)) + (=1 (Pacs - StaB))) L .
8 =2, by algebraic s lifications
®) ((PaBc - Staoc) + (Pacs - Staos)) » Py algebraic simplifications
((=1-(Pagc - Stac)) + (—1- (Pacs - Stag))) L e
9 =2, by geometric simplifications
©) ((Pasc - (Stao + Scro)) + (Pacs - (Stao + Sero))) v 8 P
(1082) 0 =0, by algebraic simplifications

NDG conditions are:

Sace, # Sa,cc, ie., lines AA; and CCy are not parallel (construction based assumption)
Syonzrs # Stinzrs e, lines MIT; and M2T? are not parallel (construction based assumption)
Sacc, # Sa,cc, 1.e., lines AA; and CCy are not parallel (construction based assumption)

Pror # 0 i.e., points T and O are not identical (conjecture based assumption)

Sace, # 0 i.e., points A, C and C; are not collinear (cancellation assumption)

Sacp # 0 i.e., points A, C and B are not collinear (cancellation assumption)

Staa, # 0 ie., points T, A and Ay are not collinear (made for Lemma 37)

Number of elimination proof steps: 386; Number of geometric proof steps: 876;
Number of algebraic proof steps: 5982; Total number of proof steps: 7244;
Time spent by the prover: 4.902 seconds; Number of pages: 169

Fig. 5 Euler’s line theorem, GCLC proof (area method)

algebraic methods they were capable of proving it), but for the same construction the
conjecture GK /LG = 2is provable. The proofitself is a (readable) sequence of steps
preforming algebraic simplifications, geometric simplifications and the application
of lemmas allowing to eliminate the free points, but with 169 pages this formal proof
cannot be considered readable (see Fig.5).

The GATP implementing these methods are efficient and capable of producing
formal, but readable (in some cases, small) proofs. Given the fact that these methods
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do not use the usual axioms systems used in secondary schools, the proofs produced
are readable, even by secondary schools’ students and teachers, but not without a
previous study of the axiom system used by the GATP.

2.4 Generic First-Order Provers

First-order ATP must also be considered. Provers like Vampire, Leo and many others?
are very efficient® and capable of proving theorems in many areas. Using axioms
systems for geometry, e.g. Tarski, they can be used in geometry also. For example, the
Thousands of Problems for Theorem Provers (TPTP) repository (Sutcliffe, 2017) has
the GEO domain with many problems specified in the first-order logic (FOL), using
the Tarski Geometry (Quaife, 1989) or the geometric deductive database method
(GDDM) (Chou et al., 2000)” axiom systems. The proof of those conjectures can
then be attempted by the different ATP.

For example, the Euler’s line theorem can be expressed in the following form
(using the GDDM):

%----Include Geometry Deductive Database Method axioms
include (' geometryDeductiveDatabaseMethod.ax’) .

fof (exemploeulerLineGEO0315a, conjecture, (

' [ A,B,C,D,E,F,G,H,I,J,K,L,M ]

((midp(D,B,C) & midp(E,B,A) & midp(F,A,C) & coll(G,B,F)
& coll(G,C,E) & perp(H,A,B,C) & coll(H,B,C)
& perp(I,C,A,B) & coll(I,A,B) & perp(J,B,A,C)
& coll(J,A,C) & coll(K,A,H) & coll(K,C,I) & perp(B,A,M,E)
& perp(C,B,L,D) & perp(C,A,L,F) & coll(M,D,L))

=>

(coll(L,G,K))) )).

the specification of the problem is done in First-Order Form (FOF). Using the
ATP Vampire, the conjecture is proved by refutation; below an excerpt of the proof
is given:

oe

Refutation found. Thanks to Tanya!
SZS status Theorem for eulerLineGEO0315a

o

% SZS output start Proof for eulerLineGEO0315a
1. ! [X0,X1,X2] : (coll(x0,X1,X2) => coll(X0,X2,X1)) [input]
2.

! [X0,X1,X2] : (coll(X0,X1,X2) => coll(X1l,X0,X2)) [input]

2754. $false <- (74) [resolution 1962,1558]

5 https://en.wikipedia.org/wiki/ Automated_theorem_proving.
6 http://www.tptp.org/CASC/.
7 This is a recent contribution, by the author, to TPTP.
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2765. 774 [avatar contradiction clause 2754]
2766. Sfalse [avatar sat refutation 1963,2749,2765]
% SZS output end Proof for eulerLineGEO0315a

o

oe

Version: Vampire 4.5.1
Termination reason: Refutation

o

0P

Memory used [KB]: 6652
Time elapsed: 0.062 s

o

Using this approach, the proof script (if any) would be a logical proof (e.g. using
the resolution method). As can be seen above, in the case of the proof done by the
ATP Vampire, the proof contains information about the lemmas used and, if some
post-processing is used, can be readable, but the connection with the geometric
construction is difficult, at best.

An advantage of this approach is the availability of many generic ATPs with very
efficient implementations.® The unavailability of geometric proofs is the drawback.

2.5 Other Approaches

Rule-based approaches explore the possibility of building a sound, not necessarily
complete, axiom system. The idea is to have a minimal set of axioms, lemmas and
rules of inference that can characterize a given sub-area of geometry (Pambuccian,
2004).

One example of such an approach is given by the tutorial system QED-tutrix.
Exploring the logic programming language Prolog® (Clocksin & Mellish, 2003) a
set of axioms, lemmas and rules of inference, adapted to the type of problems at
hand, are implemented and explored by the Prolog rule-based logical query mecha-
nism. The QED-tutrix tutorial system builds the Hypothesis, Properties, Definitions,
Intermediate results and Conclusion graph (HPDIC-graph). The HPDIC-graph con-
tains all possible proofs for a given problem, using a given set of axioms. Having
that (possibly, very large) graph the system can help the learner, validating the steps
already taken and providing hints for the next steps (Font et al., 2018; Gagnon et al.,
2017).

A project, still in its early stages, uses Maude'® (Clavel et al., 2007), an equational
(and rewriting) logic system to implement the Tarski axiom system as described by
Art Quaife (1989) (see Fig.6).

8 For the Euler line theorem, GCLC’s Wu Method took 0.012s, Vampire took 0.062s.
? https://en.wikipedia.org/wiki/Prolog.
10 hitp://maude.cs.illinois.edu/w/index.php/The_Maude_System.
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s System Tarski over G3cp

fmod FORMULA is

pr QID . sk Maude's Qualified Identifiers (‘a,'b, etc).

sort Prop . sk Atomic propositions

sort Formula . s Formulas

sort Point . s Points

sort Segment . sk Segments

subsort Qid < Prop < Formula .

subsort Qid < Point .

()

s Tarski geometry primitive relations

opp:—>Point [ctor] .

oppl: —> Point [ctor] .

op pll:—> Point [ctor] .

op _*_: Point Point —> Segment [ctor comm] .

op betweenness : Point Point Point —> Prop [ctor] .

op equidistance : Segment Segment —> Prop [ctor comm] .
op extension : Point Point Point Point —> Point . sk extension
op innerPasch : Point Point Point Point Point —> Point .
op euclidesl : Point Point Point Point Point —> Point .
op euclides2 : Point Point Point Point Point —> Point .
op continuity : Point Point Point Point Point Point —> Point .

op _==_:Point Point —> Formula [ctor comm | .
endfm

mod Tarski is

sk Tarski' Geometry (Art Quaife (1989), JAR 5, 97—-118.
()

sk A7 Inner Pasch

rl [ipl]: C, betweenness(U,V,W), betweenness(Y,X,W) [-— betweenness(V,innerPasch(U,V,W,X,Y),Y), C' =>
proved .

rl [ip2]: C, betweenness(U,V,W), betweenness(Y,X,W) [-— betweenness(X,innerPasch(U,V,W,X,Y),U), C' =>
proved .

sk A10 Euclid's axiom

rl [eucll]: C, betweenness(UW,Y), betweenness(V,W.X) |-— U==W, betweenness(U,V,euclides1(U,V,W.X,Y)),
C'=> proved.

rl [eucl2]: C, betweenness(UW,Y), betweenness(V,W,X) |[-— U==W, betweenness(U,X,euclides2(U,V,W.X,Y)),
C'=> proved.

rl [eucl3]: C, betweenness(UW,Y), betweenness(V,W,X) |[-— U==W, betweenness(euclides1(U,V,W,X,Y),Y,
euclides2(U,V,W,X,Y)), C'=> proved .

(..)

Fig. 6 Implementation, as a Maude module, of Tarski axiom system, as described by Art Quaife

Both approaches share the use of logic programming languages where the intro-
duction of specific lemmas, for specific purposes, can be easily made, e.g. SSS, SAS,
ASA and AAS lemmas for the congruence of triangles, or the alternate interior and
exterior angles of parallel lines.

As stated above, this systems can be used to implement sound, but not necessarily
complete, axiom systems. These kind of system can be useful in specific situations,
e.g. in secondary schools mathematics classes.
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3 Dynamic Geometry

Dynamic Geometry Systems

Dynamic geometry can be characterized by the construction of geometric figures (as
opposed of fixed drawings), built from free objects, i.e. universally quantified objects
(e.g. points) and elementary properties preserving constructions.

Analysing the example given in Fig. 7, the construction has A, B, D and E as free
points, these can be moved freely in the plane, points C and F belongs to AB and
DE, respectively, they have only one degree of freedom, being able to move in the
line they belong and, finally, points G, H and I are the intersections of two lines,
they do not have any degree of freedom.

Dynamic geometry systems give us the profane side of proofs in the Cartesian
model of Euclidean geometry. By moving the free points, we can conjecture that
the points G, H and I are collinear (red line), i.e. we are exploring “all” possible
configurations for that geometric construction. Although these manipulations are
not formal proofs because only a finite set of positions are considered and because
visualisation can be misleading, they provide a first clue to the truthfulness of a given
geometric conjecture.

Dynamic geometry systems are now mature software tools with a very large
users base. The dynamic character of these programs give to its users the possibility
of building dynamic geometric constructions, exploring conjectures about them, so

Fig. 7 Pappus’ Hexagon Theorem, DGS construction
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they give a first, informal, opportunity to explore geometric proofs. But to avoid
the visual proofs pitfall, the connection with geometric automated theorem provers
(GATP) should be considered.

Dynamic Geometry Systems and Geometry Automated Theorem Provers

There are already some systems combining DGS and GATP. The following list is
organized as follows: from GATP and GATP with rendering capabilities to DGS with
some automatic proving capabilities built-in, ending with environments with DGS
and/or GATP capabilities.

Open Geometry Prover The Open Geometry Prover (OGP) is an open source
project,!! aiming to implement various geometry automated theorem provers.
It can be used as a stand-alone tool but can also be integrated into other geometry
tools, such as dynamic geometry software. In its current state, OGP implements the
Wu’s algebraic methods. Some partial work has been made in the semi-synthetic
methods: the area method and the full-angle method (Baeta & Quaresma, 2013;
Botana et al., 2015; Petrovi¢ et al., 2012).

GCLC Geometry Constructions — LaTeX Converter (GCLC), an open source
GATP with a graphics engine, for the Wu, Grobner bases and area methods. It is
possible to add a conjecture to a given geometric construction (with a graphical
rendering) and ask for its proof with natural language rendering (Jani¢i¢, 2006).

JGEX Java Geometry Expert (JGEX), a GATP with graphics engine, for the Wu,
Grobner bases, area, full-angle and deductive database methods. It is possible
to add a conjecture to a given geometric construction and ask for its proof with
natural and visual language renderings (Ye et al., 2011).

Cinderella The Interactive Geometry Software Cinderella is a DGS with a ran-
domized theorem checker (Kortenkamp & Richter-Gebert, 2004; Richter-Gebert
& Kortenkamp, 1999).

The last one has a different approach from the first three, it is not a prover capable
of a formal proof, but more a model checker, capable of generating many random
instances for a given geometric configuration. So, for a given conjecture, we obtain
a probabilistic answer to its validity (Kortenkamp & Richter-Gebert, 2004).

Apart from the library OGP, these systems'? are monolith systems, i.e. even if the
GATP are modules that can be used by themselves (e.g. the GCLC), the DGS and
the GATP are tightly integrated. The DGS are not able to use external GATP and the
GATP are not prepared to be integrated in other DGS.

A modular approach is beginning to make its way, i.e. an approach where DGS and
GATP can be developed by different teams and nevertheless be combined. Examples
of such systems are:

! The OpenGeometryProver github project: https://github.com/opengeometryprover/.
12 JGEX is currently not being supported/developed.
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GeoProof A DGS that interfaces with the Cog Prover Assistant (Bertot & Castéran,
2004), allowing to check proofs built interactively (Narboux, 2007).

GeoGebra The DGS embedded prover system chooses one of the available meth-
ods and translates the problem specified by the end user as the input for the selected
method, similarly to portfolio solvers.'? The available GATP implement the Wu’s
method, the Buchberger—Kapur method, the area method and Recio’s exact check
method. The separation between the GATP and the DGS opens the possibility of
using third-party GATP. For example, the Open Geometry Prover Wu’s method
GATP. From the DGS interface the user can ask for the validation of a given geo-
metric conjecture, related to the construction, e.g. Prove AreCollinear (G,
H, I) isthecommand thata user may use to prove, formally, that the points G,
H and I in the construction of Fig. 7 are collinear. For the moment, this is only a
formal validation, no proof script is available (Botana et al., 2015; Kovdcs, 2015;
Kovacs & Recio, 2020; Nikoli¢ et al., 2019).

This project can be visited at https://www.geogebra.org/m/McEqwQNb.

When applied to areas such as education GATP and DGS are being combined in
environments that use both tools for the purpose of learning.

QED-Tutrix ~ QED-Tutrix is an intelligent tutor for geometry (see Sect. 2.5) offering
an interface to help high school students to freely explore the geometric problems
and their proofs.

For each geometric conjecture, the system builds the tree of all possible proofs,
allowing the students to try to prove the conjecture, with the system helping in
each step of the proof (Font et al., 2018; Gagnon et al., 2017).

Geometriagon ~ Geometriagon'* is a project to explore geometric constructions
made with ruler and compass. The dynamic geometry software supporting the
project is C.a.R." It provides an extensive list of problems to be solved by regis-
tered users, validating (or not) the solution found.

A similar approach, not in the area of geometry, is given by Edukera,'® a Web-
environment to teach Logic and Mathematics (calculus and sets), with the assistance
of the Coq proof assistant.

13 Portfolio problem solving is an approach in which for an individual instance of a specific prob-
lem, one particular, hopefully most appropriate, solving technique is automatically selected among
several available ones and used. The selection usually employs machine learning methods.

14 http://polarprof-001-site 1.htempurl.com/geometriagon/.
15 http://car.rene- grothmann.de/doc_en/index.html.
16 hitps://www.edukera.com/.
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4 Other Lines of Research

The usefulness of automated deduction methods and tools in geometry does not
circumscribe itself to its use in dynamic geometry systems:

Repositories of Geometric Knowledge In the repository Thousand of Geometric
problems for geometric Theorem Provers (TGTP),'” a list of more than two hun-
dred geometric conjectures and their proofs by several GATP are kept (Quaresma,
2011). It implements a protocol for the exchange of geometric information
between applications, allowing a direct access to its repository from external
tools.

In the repository Thousands of Problems for Theorem Provers (TPTP) (Sutcliffe,
2017),'® a section is dedicated to geometric problems (in this repository the prob-
lems are specified as first order logic problems).

Recent efforts are being made to start a Geometry Automated Provers Competi-
tion (Baeta et al., 2020), in order to help improve the efficiency and usefulness of
GATP.

Knowledge Management Besides the efforts to implement readable formal proofs
produced by GATP, there are other avenues of research that are being explored.
For example: to evaluate the complexity and also the interestingness of geometric
proofs (Gao et al., 2019; Quaresma et al., 2020);' to explore the automatic dis-
covery of theorems in elementary geometry (Recio & Vélez, 1999); to implement
a semantic geometric search mechanism, i.e. the possibility of, having a given
geometric construction, to search for other congruent geometric constructions or
even other geometric constructions with some common geometric properties. A
prototype of this search mechanism is already implemented in the TGTP reposi-
tory (Haralambous & Quaresma, 2014, 2018).

All these efforts are being made to help answer the questions related to the use of
GATP as one more tool in the geometer’s toolbox.

5 Conclusions

Itis clear that automated deduction methods and tools are beginning to make their way
into many different uses, in many different contexts. However, there are many issues
to be solved before a more complete integration of automated deductive tools can take
place. Examples of problems related with the use of automated deduction in geom-
etry tools are: application programming interface; common formats for information
interchange; natural and visual languages renderings of the proofs; repositories of

17 http://hilbert.mat.uc.pt/TGTP/index.php.
18 http://www.tptp.org/.

19 pedro Quaresma and Pierluigi Graziani, Measuring the Readability of a Proof, submitted to
publication.


http://hilbert.mat.uc.pt/TGTP/index.php
http://www.tptp.org/

Evolution of Automated Deduction and Dynamic Constructions in Geometry 19

geometric knowledge with powerful search mechanisms; proof discovery; problems
and proof classification for complexity and efficiency.

The complexity and the sheer size of the task led to recent efforts to establish a
network of researchers working in the area of formal reasoning, knowledge-based
intelligent software and geometric knowledge management. The network will need to
focus in the creation of an intelligent computational environment in which advanced
software tools and deduction mechanisms are embedded for symbolic-numeric geo-
metric computation, interactive or automated geometric reasoning, knowledge val-
idation, knowledge discovery and knowledge management. Such a “superset of a
book” of geometric knowledge with embedded tools, freely available in all com-
putational platforms, adaptable, collaborative and adaptive to each and every user’s
profiles, would bring together a whole new generation of mathematical tools with
impact at all levels: exploratory research, applications in mathematics and education.

All these efforts are leading to an integration of formal deduction and dynamic
geometry in vivid environments, to be used in the exploration of mathematics in its
fullness. It is a complex task, but it is also an exciting task, as new advances in many
areas are expected in the near future.
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