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Abstract. The constantly evolving malware brings great challenges to
network security defense. Fortunately, deep learning (DL)-based system
achieved good performance in the malware command and control (C2)
traffic detection field due to its excellent representation capabilities. How-
ever, DL models have been shown to be vulnerable to evasion attacks,
that is, DL models can easily be misled by adding subtle perturbations
to the original samples. In this paper, we propose a GAN-based eva-
sion method, which can help malware C2 traffic bypass the DL detector.
Our main contributions contain: (1) directly generate adversarial traffic
that can implement malicious functions by inserting additional adversar-
ial patches in the original flow; (2) adaptively imitating victim’s normal
traffic by training GAN in victim environment, and introducing transfer
learning to reduce the additional victim resource usage caused by GAN
training. Results show that the adversarial patch generated by GAN can
prevent malware C2 traffic from being detected with 51.4% success rate.
The higher time efficiency and smaller malware impact make our method
more suitable for real attacks.

Keywords: Malware C2 traffic · Evasion attacks · GAN · Transfer
learning

1 Introduction

Malware allows attackers to remotely control computers to perform criminal
activities using Command and Control (C2) channels, which has posed great
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challenges to network security. Fortunately, it can be mitigated by detecting C2
channels on the network.

Among the rich malware C2 traffic detection methods, the deep learning
(DL)-based detection method has been widely used and researched because it
is an end-to-end solution that can automatically learn feature representations
from raw traffic data [13,15,16,24,25]. In this paper, we mainly focus on the
DL-based malware C2 detection model taking raw malware C2 traffic data as
input, which is a state-of-the-art detection method [19].

After the success of DL in the field of malicious traffic identification, their
robustness and security issues have become the subject of much discussion by
security researchers. In 2014, Szegedy et al. [23] first discovered that due to their
linear nature, well-performing DL models are vulnerable to adversarial examples,
which are intentionally crafted by adding tiny perturbations to mislead the DL
model. After that, how to use adversarial machine learning (AML) ideas to
construct adversarial malicious traffic to bypass detection also received attention.

Different from AML in the image recognition field, the construction of adver-
sarial malware traffic has many unique constraints and challenges:

1. Ensure that the generated adversarial traffic can retain the original malicious
functions, and the basic network protocol format will not be destroyed.

2. Directly generate adversarial traffic without the help of other attachments,
rather than generating adversarial features that are just intermediate results
of evasion attacks.

3. How to make adversarial traffic adaptively imitate the normal traffic of indi-
vidual victims, so as to ensure that it can be applied to a variety of terminals.
While those imitations that are limited to specific normal application traffic
will fail when the application is rarely used on some victims.

These three challenges are progressive. Challenge-1 represents effectiveness,
challenge-2 means usability, and challenges-3 is a practical requirement that
proposed based on real attack scenarios.

Unfortunately, none of the existing work can solve the above problems at the
same time. [8] and [10] directly treat traffic samples as image samples, even can-
not meet challenge-1. [14] and [7] can only generate adversarial features violate
challenge-2. What counts is, most of the current work does not consider challenge-
3, which is the most realistic requirement in the malware traffic evasion field.

In light of the challenges, we present an adaptive evasion attack on DL-based
detectors in practical settings. Specifically, we propose a GAN-based method that
can directly generate sample-independent adversarial patches (adv patches ).
Malware can directly send a packet encapsulating the adv patch in C2 commu-
nication to bypass the DL-based detector, without other attachments’ help or
complex source code modification. And the C2 flow that encapsulates adv patch
is called adversarial flow, which can directly bypass the DL detector. Therefore,
our method can solve challenge-1 and challenge-2 mentioned above.

In order to adaptively simulate a specific victim’s traffic, there are two solu-
tions. One is to collect large-scale normal traffics on the victim and send them
back to train GAN, but that is unrealistic because it will increase the exposure
risk of the C2 channel. The other is to train the GAN model on the bot, which
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will increase the exposure risk of malware on the victim. We choose the latter
to solve challenge-3. At the same time, in order to reduce the extra resource uti-
lization caused by GAN training on the victim, we introduced transfer learning
(TL) technology to further improve the similarity between malware C2 traffic
and victim normal traffic at a small cost. Results show that our method can not
only achieve a success rate of 51.4%, but also has a good performance in time
efficiency and a minor negative impact on malware.

Our major contributions are elaborated as follows:

1. We propose a GAN-based black-box malware C2 traffic evasion method to
bypass the DL detector. Under the premise of functionality preserving and
network protocol compliance, we can directly obtain adversarial traffic by
inserting an additional adv patch packet, without other attachments or com-
plex source code modifications.

2. Our method enables adversarial traffic to adaptively imitate host-side normal
traffic, that is, dynamically adjust adversarial traffic according to the traf-
fic characteristics of different victim terminals, which is more practical and
concealed. We also introduce TL to alleviate the additional system resource
occupation caused by GAN training on the victim.

3. We design a real-life experiment to evaluate the proposed method, and proved
its practicability and efficiency from the perspectives of evasion performance,
time performance, and impact on malware.

As far as we know, this is the first work on adaptive evasion method, that con-
siders and comprehensively evaluates the negative impact of the evasion method
on malware.

The rest of the paper is organized as follows: We start by providing back-
grounds and related works in Sect. 2. Section 3 introduces the overview of our eva-
sion method. Section 4 elaborate experimental setting up. Experimental results
and findings are shown in Sect. 5. Finally, we conclude in Sect. 7.

2 Background and Related Work

2.1 Background–Malware Traffic Detection

With the development of machine learning technology, DL technology has been
widely used in the malware C2 traffic detection field. On the one hand, DL-based
methods can automatically learn deep abstract feature representations, thereby
solving the dilemma of manual feature engineering. On the other hand, compared
with the traditional ML methods, DL-based methods also have a considerably
higher capacity to learn complex patterns, so they can deal with large-scale
encryption and unknown malicious traffic detection well.

According to the different model inputs, DL-based classifiers can be divided
into statistic feature-based and raw data-based. [18] and [19] have proved that
DL-based model, using raw flow representations as input, can outperform other
detectors, while without requiring any prior knowledge.
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In this work, we particularly focus on the vulnerability of DL-based malware
C2 traffic detector, which taking raw byte stream flow data as input.

[25] proposed a stacked autoencoder (SAE) based network protocol identifi-
cation method using raw traffic data, and achieved high accuracy.

[24] proposed an end-to-end malware traffic classification method with 2D-
CNN taking the first 784 bytes of flow. Lotfollahi et al. [16] combines SAE and
1D-CNN, and takes the first 1500 bytes of IP header and payload data as input.

Byte Segment Neural Network (BSNN) [13] and Flow Sequence Network
(FS-Net) [15] are both RNN-based traffic classification methods. The difference
is that BSNN takes raw payload as input, while FS-Net’s input is raw flow.

In summary, the current DL model for malware traffic detection often takes
the first few bytes of the raw byte stream as input, then learns the abstract
representation through multi-layer neural networks, and the final prediction is
calculated by the softmax layer.

2.2 Related Work–Malware Traffic Evasion

While the malware traffic detection method is constantly improving, attackers are
also exploring evasion techniques to avoid detection. Evasion and detection tech-
nologies are innovating in the tit-for-tat game, trying to be able to overwhelm the
opponent.

In order to bypass blacklist-based detection, attackers introduced dynamic
resolution technologies such as DGA and Fast-Flux to replace the hard-coding
method. Introducing techniques such as encryption and data encoding to cover
up the payload, so the payload-based detection is invalidation. To bypass the
detector based on statistical characteristics, the attacker introduces technologies
such as protocol tunnels and online-social networks (OSN) to construct covert
channels and overwhelms malicious traffic in mass normal traffic.

In recent years, with the widespread application of DL in the field of malicious
traffic detection, many researchers have also tried to use the inherent security
vulnerabilities of DL to bypass DL-based detectors. We divide these tasks into
two categories according to the adversarial output.

Feature-space attack refers to a type of attack method that can only
generate adversarial feature vectors. However, the mapping process from traf-
fic samples to traffic characteristics is irreversible and non-differentiable. So, it
is difficult to reversely infer traffic samples, even if the adversarial feature vec-
tor is known. In other words, this attack method is just theoretical proof that
DL-detector is vulnerable to evasion attacks, and cannot be directly used for
malicious delivery. This attack method can only be used as theoretical proof
that the detection system is vulnerable to attack.

Clements [8] and Ibitoye [10] used classic AML algorithms (FGSM [9], BIM
[11], PGD [17], C&W [5], JSMA [21] etc.) to evaluate the robustness of DL-based
network intrusion detection system (NIDS) against adversarial attacks in a white
box scenario. They directly convert the traffic samples into gray images and per-
turb the ‘pixel’ indiscriminately. No consideration is given to the fine structure of
traffic samples and the constraints of maintaining malicious functions.
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Lin et al. [14] proposed a black-box evasion attack method-IDSGAN, which
uses GAN to generate adversarial statistical features of malware traffic. Although
IDSGAN can ensure the effectiveness of the intrusion by changing only non-
functional features, it does not consider the dependence between statistical fea-
tures. FENCE [7] solves this problem by combining gradient-based methods and
mathematical constraints to maintain consistency in a family of dependencies.

Traffic-space attack refers to attack methods that can generate adversarial
traffic samples. Unlike feature-space attacks, traffic-space attack methods can be
powerful weapons for attackers to bypass malware traffic detectors.

Novo [20] used the classic AML algorithm FGSM [9] to perturb the encrypted
C&C malware traffic characteristics and achieved a white-box adversarial attack
against the detector. It requires additional traffic proxy or complex source code
modification to obtain the final adversarial traffic. And white-box attacks require
a full understanding of the detector, which is difficult to attain in real life.

Rigaki et al. [22] proposed a method that uses GAN to generate statistical fea-
tures similar to Facebook traffic, thus adjust the behavior of the malware C2 traf-
fic to avoid detection. FlowGAN [12] is no longer limited to Facebook traffic, can
dynamically morph traffic features as any other “normal” network flow to bypass
censorship. However, in these two works, GAN can only output adversarial fea-
tures. If the attacker wants to obtain adversarial traffic based on these adversar-
ial features, he needs to make complex modifications to the malware source code,
which will cause delays to the malware’s communication channel.

In Attack-GAN [6], the generator is viewed as an agent in RL, which can
craft adversarial traffic conditioned to the security domain constraints to ensure
attaining the attack functionality. But Attack-GAN needs to constantly access
IDS to obtain prediction results, which is unrealistic in real-attack.

Unlike the works we reviewed in this section, in this paper we focus specifically
on how to directly generate adaptive adversarial traffic without the help of any
other additional components. Only by adaptively imitating victim traffic, can the
adversarial traffic seemed to be normal-like in bots with different characteristics.
Moreover, while most related work assesses the performance of the evasion attack
on malware traffic detectors, they do not consider the impact of the proposed meth-
ods on malware, nor do they consider the practicality of the method. We properly
solve these problems by performing a real-life experiment in this work.

3 Method

In this section, we use some technical terms to represent various roles in a mal-
ware C2 traffic evasion attack. Malware means the code used to achieve C2,
master means the computer of the attacker, victim means malware-infected
hosts. The adversary tries to control the victim by malware, while the defender
tries to protect the victim through a DL-based malware C2 traffic detector.

3.1 Thread Model

Adversary’s Goal. From the perspective of the CIA (confidentiality, integrity,
and availability), attackers try to reduce the availability of detectors by camou-
flaging malware C2 flow.
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Adversary’s Knowledge. The attacker knows that the target network may be
protected by a flow-level detector based on DL. However, the attacker does not
need to master any prior knowledge about the detector, such as the architecture,
parameters, or training data.

Adversary’s Capability. The attacker has full control of the C2 server and
partial control of the victims, so he can update victims to change their commu-
nication behaviors as he wants.

3.2 Framework

Our framework is inspired by [4], that attackers can mislead the classifier by plac-
ing a gradient-based sample-independent adv patch in a specific area. Adv patch
is effective because it can calculate the most effective perturbation to the DL
model by using gradient backpropagation according to the gradient passed by
the discriminator. When inputting the detector, adv patch can dominate the
feature learning of the detector, thereby misleading the detector

The idea of adv patches suits malware C2 traffic evasion well. On the one
hand, through this method, we can directly operate on the traffic samples and
output traffic samples with actual attack functions.

On the other hand, traffic samples have more complex network protocol con-
straints than images, and there is a need to keep malicious functionality in
the perturbed sample. That makes many AML algorithms designed for images
unavailable. While our method can better meet the constraints of functionality
preserving and network protocol.

Specifically, our method includes two modules, a GAN-based generation mod-
ule and a TL-based transfer module.

To better illustrate our method, we propose two terms. We define universal
benign communication (UBC) traffic as benign communication traffic that
has multiple types benign communication traffic and can cover a variety of benign
communication behavior characteristics, while host benign communication
(HBC) traffic only includes benign communication traffic from a specific host.
HBC is more specific and targeted, while UBC is more versatile and generalized.

In the generation module, we use GAN to imitate the normal traffic to gen-
erate adv patch. By inserting it into the original flow, we can obtain adversarial
malware C2 traffic that can mislead the DL-based malware C2 traffic detector.

In the transfer module, we retrain the GAN model in the victim environ-
ment to adaptively simulate the victim’s normal flow. TL is used in this module
because it can realize the transfer from imitating UBC traffic tasks to adaptively
imitating specific HBC traffic tasks with a smaller data scale requirement and
system resource cost.

The workflow of our method is shown in Fig. 1. It can be divided into three
stages: the pre-training stage in the master environment, the fine-tuning stage
in the victim environment, and the practical stage.

The pre-training stage in the master environment refers to the pre-training
of GAN performed by the attacker before the weapon is delivered. In a fully
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controllable master environment, the attacker can construct a training dataset
by capturing the original malware C2 traffic and the UBC flow. After the pre-
training stage is completed, the attacker compresses and packs the GAN model
together with the malware, and delivers them to the victim.

Generator(G’)

Discriminator(D’)

Malware C2 server

DL-Detector

Model 
Transfer

&
Delivery

Generator(G)

Discriminator(D)

Malware

UBC flow HBC flow

Master environment Victim environment

HBC flowUBC flow

adv_patch(G’(z’)) adv_patch(G(z))

Fine-tuningPre-training

Practical

Adversarial 
traffic

Fig. 1. System framework

Next is the fine-tuning stage in the victim environment. The malware will
call the packet sniffer module to build up the HBC traffic profile, which is used
for fine-tuning the GAN model so that the specific characteristics of the victim’s
normal traffic can be more accurately embedded in output adv patch.

Finally, in the practical stage, the fine-tuned GAN model can be used to
camouflage malware C2 traffic. Specifically, the malware will first access the
generator to obtain the adv patch before communicating with the C2 server,
and send out the packet encapsulating the adv patch after the TCP three-way
handshake, followed by other original malicious packets.

3.3 Generation Module – WGAN

As the core of the method, we choose GAN as the generation module. Generative
Adversarial Networks (GAN), are a class of DL-based generative model. The
GAN model architecture involves two sub-models: a generator (G) that is trained
to generate new examples, and a discriminator (D) that tries to classify examples
as either real or fake. The final goal is to make the data obtained by the generator
becoming more similar to the real data.

In the context of malware C2 traffic evasion, the generator is responsible for
learning the characteristics of the normal communication traffic and generating
fixed-length adv patches to help malware C2 traffic evading the DL-based detec-
tor. While the discriminator plays a similar role to the detector, which is used
to determine whether the generated confrontation traffic is sufficiently similar
to the normal traffic and pass gradients to the generator for parameter tuning.

Specifically, we use Wasserstein GAN (WGAN) [3]. Instead of JS divergence,
WGAN introduces Wasserstein distance (calculate as Eq. 1) to calculate the
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distance between the generated distribution and the real distribution as the loss
function. WGAN can solve many problems of vanilla GAN, such as unstable
training and collapse mode, and Wasserstein distance can be used as an indicator
of training progress.

We choose WGAN not only because of its excellent learning ability, but also
because its adversarial fits well with the confrontation scenarios of malicious
traffic detection and evasion attacks.

W (pr, pg) = inf
γ∼∏

(pr,pg)
E(x,y)∼γ [‖x − y‖] (1)

The loss function of WGAN is:

LD = Ex∼pdata
[D(x)] − Ez∼p(z) [D(G(z))] (2)

LG = Ez∼p(z) [D(G(z))] (3)

WD ← clip by value(WD,−0.01, 0.01) (4)

In our method, during the training process, the generator will take benign
communication flow as input, attempt to generate a fixed-length adv patch, and
return it to the malware. The discriminator takes the new malware C2 flow and
the benign communication flow as input, and learns how to distinguish between
them. During the application process, the generator will be requested by malware
to obtain a new adv patch.

We adopted the classic model in [3] as our generation module. One small dif-
ference is that in order to avoid that the discriminator is too powerful to guide
the parameter learning of the generator well, we have removed several convolu-
tional layers in the discriminator to reduce the complexity of the discriminator.
At the same time, this can also further reduce the size and parameter number
of the GAN model. It is worth mentioning that in order to insert adv patch into

Reshape
Con2D

5*5*128

Con2D
5*5*64

Con2D
3*3*64

Con2D
3*3*32

Con2D
5*5*1

Con2D
3*3*16

FC

Generator convertor Discriminator

benign traffic
(32,32)

malware

adversarial 
C2 traffic

(32,32)

Flatten
FC

sigmoid

adv_patch
(None,200)

benign traffic
(32,32)

UBC flow in pre-training
or

HBC flow in fine-tuning

Fig. 2. The architecture of the GAN model we used
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the original malicious traffic, we built a concatenate layer between the generator
and the discriminator to facilitate gradient propagation. The architecture and
hyperparameters setting of the GAN model are shown in Fig. 2.

3.4 Transfer Module–Transfer Learning

Transfer Learning is a machine learning method that transfers knowledge from
the source domain (task A) to the target domain (task B), so that task B can
achieve better learning results. Usually applicable to situations where the amount
of data in the source field is sufficient, but in the target field is small.

In the context of malware C2 traffic evasion, we regard the pre-training pro-
cess in a fully controllable master environment as task A. Task A attempts to
train the generator to generate a fixed-length payload and insert it into the mali-
cious communication flow, making it difficult for the discriminator to distinguish
the newly constructed malicious flow from the UBC flow.

Task B is a fine-tuning process that occurs in the victim environment. In
this process, the generator will use the HBC traffic captured in the victim as a
template to learn how to construct malware C2 traffic.

The difference between the two tasks is that the traffic distribution of task
B is more specific and concentrated. To some extent, the distribution of UBC
traffic and HBC traffic is similar, so it is very suitable to use parameter-TL.

Specifically, on the premise of further improving evasion performance, apply-
ing TL has the following two advantages:

(1) Reduce the training cost in the victim environment: Parameter-TL can
reduce the later training cost, by only training a small part of the parame-
ters. Therefore, we can reduce the victim’s perception of the fine-tuning pro-
cess and avoid being detected due to taking up too many system resources.

(2) Suitable for small datasets: It is unrealistic to train a large neural network
from scratch to capture a large amount of communication traffic in the
victim environment. While TL can handle this problem well because there
are fewer parameters to learn. Besides, we can rely on TL to generate more
victim-specific adversarial C2 traffic.

4 Experiment

4.1 Dataset

In order to evaluate the performance of our method, we constructed a data set
by selecting 12 botnet traffic from the public dataset CTU and the UBC traffic
from the ISOT dataset. The detail of the dataset we summarized is shown in
Table 1.

The dataset can be divided into two parts, one part is used to train and test
the DL-based detector, the other part is used to train and test our proposed
evasion method. Each part includes both malware and benign traffic.
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The dataset for the detector is the dataset used by the defender. In this part,
malware traffic includes 9 malware families from the CTU covering a variety of
commonly used C2 channels. The benign traffic is captured from the 10 com-
puters in our laboratory environment, which can cover many different types of
normal traffic. The reason for this setting is that in order to protect the inter-
nal network in a targeted manner, the defender often uses the specific internal
normal traffic to train the DL-based detector.

The dataset for WGAN is the dataset used by the attacker. The malicious
traffic is 5 malware families selected from CTU, Neris and Virut are also used to
train the detector, but the Neris traffic files come from different captures. The
benign traffic includes UBC traffic from the ISOT for pre-training, and internal
capture id01 for fine-tuning. The reason for this setting is the fact that it is
difficult for an attacker to obtain a large amount of internal traffic. Therefore,
pre-training can only use public datasets, and in fine-tuning stage, a small volume
of traffic samples can be used to adaptively simulate specific HBC traffic.

The original data needs to be preprocessed before inputting into the model.
The data preprocessing process mainly includes three steps.

1. Split. The captured pcap file is divided into bidirectional flows according to
the five-tuple <sip, dip, sport, dport, protocol>. We use the open-source tool
pkt2flow [1] to complete this operation.

2. Filter. After the split, we only keep the flow with valid data transmission,
and filter out the flow that the TCP connection is not fully established or is
closed immediately after establishment.

3. Anonymization. We perform anonymization on traffic data to avoid specific
information such as IP and MAC misleading the detection model. Specifi-
cally, we replace them all with 0.

Table 1. Details of the dataset

Malware family Flow num. C2 channel

Detector Malware CTU-44-Rbot 2745 IRC

CTU-47-Menti 216 TCP

CTU-49-Murlo 1986 TCP

CTU-42-Neris 1583 HTTP

CTU-54-Virut 3451 HTTP

CTU-127-Miuref 1286 HTTP

CTU-125-Geodo 6320 HTTP

CTU-141-1-Bunitu 6143 HTTP/HTTPS

CTU-348-1-HTbot 10000 HTTP/HTTPS

Benign id01-id10 39452 –

WGAN Malware CTU-50-Neris 19282 HTTP

CTU-54-Virut 3451 HTTP

CTU-264-2-Emotet 10000 HTTPS

CTU-346-1-Dridex 8022 HTTPS

CTU-327-1-Trickbot 25924 HTTPS

Benign UBC traffic 17144 –

HBC traffic-id01 9706 –
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4.2 Hyperparameters

The Length of the New Packet
The output dimension of GAN is fixed, so we need to determine the length of
the generated adv patch.

In order to simulate the normal data packet as much as possible, the mode of
the payload length of the UBC traffic is selected as the length of the adv patch.
This can make the newly added packet look closer to the normal data packet at
least in terms of statistical characteristics.

We perform statistics on the captured UBC traffic, and obtain the distribu-
tion of its payload length, which is shown in Fig. 3.
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Fig. 3. The payload length distribution of universality normal traffic

Through the inspection of the original traffic data, we found that the reason
for many packets with 6 bytes payload is that the Ethernet data link layer will
automatically pad the frame with 0 to ensure that the minimum length of the
frame is 64 bytes. While 1460 is the maximum segment size of TCP transmis-
sion. TCP segmentation will be performed when large-size data is transmitted,
resulting in a large number of packets with a payload length of 1460.

Based on the above findings, we set the length of the adv patch to 200, which
is close to the second most frequent payload length 211, and it is also convenient
for quantification and calculation.

Insertion Position of the New Packet
After getting adv patch, we need to decide when to send it. Through the investi-
gation of the current DL-based detection work, we found that in order to balance
the model accuracy and complexity, researchers often intercept part of the traf-
fic data for learning deep representations as the basis for classification. Wang
et al. [24] proved that the first few packets, up to the first 20 packets, are suffi-
cient for correct accuracy, even for encrypted traffic.
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In this case, to guarantee the impact on the DL-based detector, we decided
to add the adv patch packet after the TCP three-way handshake process. That
means malware should send out the packet encapsulating the adv patch once the
TCP connection is established. In this way, it can be ensured that the carefully
crafted adv patch can appear in the visual field of the detector.

4.3 Detector

Maŕın et al. [19] designed a series of experiments to prove that the raw flows
& DL-based malicious traffic detection models outperform traditional ML-based
models, which use specific hand-crafted features based on domain expert knowl-
edge as input.

RawFlows’s input is a tensor of size (n, 1, m), where n is the number of bytes,
and m represents the number of packets. They set n = 100 and m = 2, that is,
only the first 100 bytes of the first two packets in a flow are considered.

In our work, we refer to their DL architecture and make certain extensions
on it. Our adjustment is mainly reflected in the hyperparameters of the model.
On the one hand, considering that our purpose is to detect malware C2 traffic,
only sampling the first 2 packets may lose a lot of flow information. Moreover,
because the proportion of C2 traffic is relatively small, our data volume does not
reach the scale of RawFlows. In order to provide more flow information to the
model, we set n = 200 and m = 8.

At the same time, to accommodate the expansion of input, we also need to
adjust the model structure accordingly to increase the expressive ability of the
model. Specifically, we refer to the DL architecture of raw packets in [19] to
reshape our DL-based malware C2 traffic detector. The DL architecture of the
target detector in this article is shown in Fig. 4.

Fig. 4. DL architecture for detector

5 Results

As mentioned earlier, we designed comprehensively evaluate the effectiveness of
our method from the perspectives of evasion performance, time performance,
and impact on malware.
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Specifically, in the pre-training stage, we will use the traffic of a specific
family and the UBC traffic to train the GAN model. Then fix the discriminator
and all convolutional layers of the generator, and fine-tune the model using the
victim’s locally captured benign samples and 1000 malicious samples. Finally,
in the practical stage, the generator will directly or be called by malware to
generate the adv patch, which is inserted into the original malicious C2 flow to
construct the adv-C2 traffic. The newly crafted samples are input to the detector
for prediction. So we can evaluate the evasion performance through the change
in the detector’s recall score.

5.1 Evasion Performance

We randomly select 3000 flow samples from each of the 5 families for testing,
and get the results in Table 2. We use DetectionRate and EvasionRate to mea-
sure the performance of the detector and our method, respectively. They are
calculated according to Eq. 5 and Eq. 6.

DetectionRate = Recall =
Number of detected malware flow

Number of all malware flow
(5)

EvasionRate =
Successful evasion attempts

All evasion attempts
(6)

The first column in Table 2 is the original detector recall score for 5 malware
families, indicating that the detector we use has good accuracy and generaliza-
tion performance.

From the table, we can see that the proposed method can achieve an evasion
rate up to 51.4%, while reducing the recall of the detector to 45.4%, less than
50%, which means that it is difficult for the detector to resist our attack method.

Table 2. The evasion performance of our attack method

Family Detection rate Evasion rate

init sample adv sample Pre-training Fine-tuning

CTU-50-Neris 99.00% 62.63% 30.07% 36.37%

CTU-54-Virut 99.83% 67.07% 24.93% 32.77%

CTU-264-2-Emotet 97.47% 48.67% 45.37% 48.80%

CTU-346-1-Dridex 96.80% 45.40% 47.50% 51.40%

CTU-327-1-Trickbot 99.93% 63.37% 31.40% 36.57%

By comparing the last two columns in the table, we can find that after
the fine-tuning process in the victim environment, the evasion rate generally
increases by 7%–21%, which can prove the effectiveness of the TL.

In addition, we have also observed that there are certain differences in the eva-
sion performance of different malware families, from 51.4% in Dridex to 32.77%
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in Virut. Through the analysis of the original flow samples, we believe that the
bypass rate is mainly affected by the following factors: 1) The detection rate of
the detector to the malware. Take Dridex and Neris as examples. The detector
has seen the Neris samples during the training phase, so it can easily get the
characteristics of Neris and achieve a relatively high recall, while the initial recall
of the unseen Dridex family is relatively low. Therefore, a carefully generated
adv patch is more likely to mislead the detector, who has not seen Dridex before.

HBC Virut, SSIM(HBC)=0.2967

TrickBot , SSIM(HBC)=0.2615

Neris, SSIM(HBC)=0.1326

Emotet , SSIM(HBC)=0.3891Dridex , SSIM(HBC)=0.4144

Fig. 5. Visualize flow samples of different families

2) The similarity between the malware C2 sample and the target benign
sample. We turn the input of the detector into a grayscale image for direct
observation, which is shown in Fig. 5. We also calculate the average structural
similarity score (SSIM, a common measure of image similarity) between each
malware family and HBC to measure how similar each family’s traffic is to HBC.
Take Dridex and Trickbot as examples, both of them are mostly TLS traffic and
have high similarities. But through the visualization of the samples, we found
that the Dridex C2 samples are more similar to the target benign C2 samples,
so it is easier to fool the detector by adding disturbances on Dridex C2 flow.

5.2 Time Performance

In order to evaluate the time performance of our method, we recorded the fine-
tuning time elapsed and the evasion rate of 5 CTU malware families under
different training hyperparameters (batch size, epochs).

From Fig. 6, we can find that the time elapsed of batch size = 128 is roughly
1.4 times that of batch size = 256, but what needs to be noted is that larger
batch size often means larger memory consumption. The overall fine-tuning time
consumption will increase linearly with the increase of epochs number, while the
evasion rate is different. The evasion rate at epochs = 100 is significantly higher
than that of epochs = 50, but the evasion rate at epochs = 200 is not significantly
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improved compared to epochs = 100. Therefore, for efficiency considerations, we
think it is reasonable to set the training hyperparameters to (batch size = 128,
epochs = 100) or (batch size = 256, epochs = 100). The attacker can trade-off
between shorter training time and lower resource occupancy as needed.
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Fig. 6. Evasion rate and time elapsed under different setup of fine-tuning process

6 Real-Life Experiment

We believe that in order to develop evasion methods that can be applied in real
attacks, a comprehensive evaluation from the perspective of practicality must be
conducted, rather than just proving the effectiveness.

In this work, we complete the evaluation of practicability by designing a real-
life experiment. Specifically, we built a custom malware on the basis of Byob.
By requesting GAN in real-time to obtain adv patches and communicating with
the server through C2 channel, we obtain a real-life scenario.

It should be pointed out that the real-life experimental settings are exactly
the same as those described in Sect. 4, except that the source of the malware C2
traffic. The effectiveness experiment uses public traffic dataset, while the real-life
experiment uses traffic that generated by our custom malware.

6.1 Custom Malware

To evaluate our method we used the open-source post-exploitation framework
called Byob [2]. Byob was modified to receive the adv patch from the GAN gen-
erator and send it after TCP three-way handshake. Byob consists of a client and
a C2 server that is written in python. We deploy the C2 server in a Linux virtual
machine and the infected victim in a Windows 8 virtual machine respectively.
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The communication between client and server is established over HTTP. In
order to allow the client to receive the payload generated by the generator, we
modify the core module of the client so that every time the client communicates
with the server, it will first call the trained generator to obtain the adv patch,
and send it once the connection is successfully established.

To continuously obtain malicious communication traffic, we write a script to
let Byob client performs the following actions in sequence:
– checks if the server is online.
– sends a heartbeat message with a unique identifier.
– retrieves a command id from server.
– executes the corresponding module.

In this way, we obtained 17,536 Byob C2 flow, which is used as the malware
C2 flow dataset for training GAN.

6.2 Impact on Malware

We evaluated the practicability of our method from two perspectives: malware
C2 channel efficiency impact and resource utilization.

Malware C2 Channel Efficiency
For malware, the transmission efficiency of the C2 channel is a very important
requirement. The significant C2 channel delay caused by evasion methods will
reduce the communication efficiency of the victim and the C2 server.
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Fig. 7. Malware C2 channel efficiency before and after applying our method

Therefore, we evaluated malware C2 channel efficiency before and after apply-
ing our method. By calculating the number of C2 flows sent by malware before
and after applying our method in a time window, we obtained Fig. 7.

Before applying, we program the malware to communicate with the C2 server
every 3 s, so there will be 75–100 flows within a 5 min time window. After apply-
ing our method, this number dropped to 40–75. That is to say, whether we choose
to access a large number of adv patches at one time, or request the generator
every time before the start of each communication, we can guarantee at least 8
C2 communications per minute, which makes it a feasible channel for a C2.
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Resource Utilization
Another major impact of the evasion method on malware is that it will increase
resource usage in the victim environment. To measure the resource utilization
of our method, we recorded the CPU and memory usage of GAN training and
inferring, as shown in Fig. 8. Figure 8 shows that a large amount of resource
occupancy is mainly caused by GAN training, and the resource usage of the
GAN generation process (malware calls GAN to generate adv-patch) is relatively
equivalent to malware calling other malicious functions.

As for GAN training, although the fine-tuning stage has obvious optimiza-
tions in memory utilization compared to the pre-training stage, it seems that
there is no improvement in CPU utilization. That is constrained by the maximum
CPU capacity. The CPU utilization in the fine-tuning stage and the pre-training
stage is close to 100%, but by comparing the training time of each epoch, we
can find that the pre-training is about 14.35 times that of the fine-tuning.
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Fig. 8. Changes in resource utilization caused by GAN model training

Therefore, we can conclude that TL can reduce the resource utilization in
the victim environment, thereby reducing the additional exposure risk caused
by our evasion method. Although our method still brings additional resource
consumption, it is inevitable. In any case, we believe that our method has certain
advantages over other methods in terms of impacts on victim environment.

7 Conclusion

In this paper, we focus on how to use the DL model’s vulnerability to craft
adversarial samples in the field of malware C2 traffic, and propose a GAN-based
evasion attack method. Specifically, GAN generates adv patch by simulating
the distribution of benign samples, so that malware C2 traffic containing that
adv patch can mislead DL-based detectors. Our method is not only able to adap-
tively simulate the normal traffic of the victim, but also has less negative impact
on the malware. These two advantages make our method more suitable for real
attack scenarios. The results show that our method can not only achieve a bypass
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rate of 51.4%, but also has relatively little impact on malware C2 channel and
less victim resource usage.

In future work, we plan to explore the influence of hyperparameters such as
patch length and embedding position on the evasion rate. At the same time,
we will seek ways to further reduce the negative impact of evasion methods on
malware, such as model size and resource utilization.
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