
Rectifying Administrated ERC20 Tokens

Nikolay Ivanov(B), Hanqing Guo, and Qiben Yan

SEIT Lab, Michigan State University, East Lansing, MI 48824, USA
{ivanovn1,guohanqi,qyan}@msu.edu

Abstract. ERC20 token is the most popular type of Ethereum smart
contract. The daily transaction volume of these tokens exceeds 100 bil-
lion dollars, which agitates the popular notions of “decentralized bank-
ing” and “tokenized economy”. Yet, it is a common misconception to
assume that the decentralization of blockchain entails the decentraliza-
tion of smart contracts deployed on this blockchain. In practice, the
developers of smart contracts implement administrating patterns, such
as censoring certain users, creating or destroying balances on demand,
destroying smart contracts, or injecting arbitrary code. These routines,
which are designed to tightly control the operation of these smart con-
tracts, turn an ERC20 token into an administrated token—the type of
Ethereum smart contract that we scrutinize in this research.

We discover that many smart contracts are administrated, which
means that their owners solely possess an omnipotent power over these
contracts. Moreover, the owners of these tokens carry lesser social and
legal responsibilities compared to the traditional centralized actors that
those tokens intend to disrupt. This entails two major problems: a) the
owners of the tokens have the ability to quickly steal all the funds and dis-
appear from the market; and b) if the private key of the owner’s account
is stolen, all the assets might immediately turn into the property of the
attacker. Therefore, the administrated ERC20 tokens are not only dissim-
ilar to the traditional centralized asset management tools, such as banks,
but they are also more vulnerable to adversarial actions by their owners
or attackers. We develop a pattern recognition framework based on 9
syntactic features characterizing administrated ERC20 tokens, which we
use to analyze existing smart contracts deployed on Ethereum Mainnet.
Our analysis of 84,062 unique Ethereum smart contracts reveals that
nearly 58% of them are administrated ERC20 tokens, which accounts
for almost 90% of all ERC20 tokens deployed on Ethereum.

To protect users from the frivolousness of unregulated token own-
ers without depriving the ability of these owners to properly manage
their tokens, we introduce SafelyAdministrated—a library that enforces
a responsible ownership and management of ERC20 tokens. The library
introduces three mechanisms: deferred maintenance, board of trustees
and safe pause. We implement and test SafelyAdministrated in the form
of Solidity abstract contract, which is ready to be used by the next gen-
eration of safely administrated ERC20 tokens.

Keywords: Ethereum · Blockchain · Smart contracts · Security

c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 22–37, 2021.
https://doi.org/10.1007/978-3-030-86890-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_2


Rectifying Administrated ERC20 Tokens 23

1 Introduction

Millions of Ethereum smart contracts operate hundreds of billions of dollars
worth of assets. ERC20 fungible token is the most popular type of smart con-
tract in Ethereum, often compared to decentralized bank account. Ethereum has
two type of accounts: externally owned accounts (EOAs) and smart contracts.
An EOA has an associated private key and can deploy smart contracts, but
cannot execute custom code. On the other hand, a smart contract can execute
custom code, but it does not have any associated private key for determining
its owner. The deploying EOA of the contract does not automatically own this
smart contract, unless this functionality is manually implemented by the contract
developer. Moreover, any functionality related to ownership, role-based access,
or other special permissions must be manually implemented by the developer;
otherwise, the contract becomes orphaned at the moment it is deployed.

Many smart contracts use routines from the OpenZeppelin Contracts [3]
library for implementing ownership and role-based access in the smart con-
tracts. A recent analysis by Zhou et al. [17] shows that at least 2.1 million
Ethereum smart contracts, out of 5.8 million total, use the onlyOwner modifier
from the OpenZeppelin Contracts library, which allows only a certain user (i.e.,
owner) to call the functions of the smart contract implemented with this modi-
fier. Figure 1 shows a Venn diagram of the relationships between different subsets
of Ethereum smart contracts from the perspective of this research. Specifically,
we subdivide all smart contracts into two major categories: administrated con-
tracts, and effectively ungoverned smart contracts, particularly emphasizing that
not all contracts that have an owner are necessarily administrated, as the own-
ership may be purely symbolic sometimes or only allows harmless operations.
The administrated smart contracts are characterized by two major properties:
a) there is at least one Ethereum account whose owner possesses a unique privi-
leged status; b) the privileged status allows the user to perform actions that may
affect other users of the smart contract. These two properties constitute the dif-
ference between the administrated and ownable smart contracts: the ownable
smart contract must only meet the first property; however, there are smart con-
tracts that have an owner, but this owner has no power to disrupt the operation
of the smart contract.1 We further refer to non-administrated smart contracts
as effectively ungoverned, the set that includes the ownable non-administrated
contracts, and many of them are ERC20 tokens.2 In this work, however, we zero
in on the administrated ERC20 tokens, and our goal is to introduce a novel
subset of these tokens—safely administrated ERC20 tokens.

The obvious popularity of owned smart contracts and ERC20 tokens leads us
to the following research question: how many unique administrated ERC20 tokens

1 The smart contracts deployed at 0xdf4df8ee1bd1c9f01e60ee15e4c2f7643b690699

and 0x5dc60c4d5e75d22588fa17ffeb90a63e535efce0 are two (out of many) exam-
ples of ownable non-administrated contracts.

2 A typical example of an effectively ungoverned token is the popular ChainLink Token
deployed at 0x514910771AF9Ca656af840dff83E8264EcF986CA.



24 N. Ivanov et al.

are deployed on Ethereum? To answer this question, we develop an extractor of
9 syntactic features characterizing administrated ERC20 tokens. We then gather
1,173,271 open source smart contracts written in Solidity programming language,
and by removing the duplicates, we reduce the dataset to 84,062 unique, inde-
pendent, and identically distributed (i.i.d.) smart contracts. We further select
385 random contracts for manual labeling in order to choose the most accurate
classifier among several candidates. Finally, we use the 9 features and the cho-
sen classifier to determine the approximate percentage of administrated ERC20
contracts deployed on the Ethereum Mainnet blockchain. Our evaluation shows
that nearly 58% of all the smart contracts and almost 90% of all ERC20 tokens
are administrated ERC20 tokens. To the best of our knowledge, we are the first
to conduct the Ethereum-wide evaluation of administrated ERC20 tokens and
quantify their ubiquity.

To mitigate the potential adverse effects of administrated ERC20 tokens in a
low-regulated economic environment, we propose SafelyAdministered—a Solidity
library that allows developers of ERC20 tokens to implement most common
administrated patterns in a safe and responsible way, thereby increasing the
trust towards their products without sacrificing the need to retain control over
certain operations (e.g., upgrade).

Fig. 1. Venn diagram of different types of Ethereum smart contracts.

In summary, we make the following contributions:

– We analyze the class of administrated ERC20 tokens and show that these
contracts are more owner-controlled and less safe than the services they try
to disrupt, such as banks and centralized online payment systems.

– We develop a binary classifier for identification of administrated ERC20
tokens, and conduct extensive data analysis, which reveals that nearly 9 out
of 10 ERC20 tokens on Ethereum are administrated, and thereby unsafe to
engage with even under the assumption of trust towards their owners.



Rectifying Administrated ERC20 Tokens 25

– We design and implement SafelyAdministrated—a Solidity abstract class that
safeguards users of administrated ERC20 tokens from adversarial attacks or
frivolous behavior of the tokens’ owners.

2 Background

Smart Contracts and EVM. A smart contract is a program deployed on
a blockchain and executed by the blockchain’s virtual machine (VM). A smart
contract consists of a set of functions that can be called through blockchain
transactions. Most smart contracts are written in a high-level special-purpose
programming language, such as Solidity or Vyper, and compiled into the byte-
code for deployment and execution on a blockchain VM. The Ethereum Virtual
Machine (EVM) is the blockchain VM for executing Ethereum smart contracts.

Externally Owned Account. Ethereum blockchain has two types of accounts:
smart contract account and Externally Owned Account (EOA). Both EOAs and
smart contract accounts can be referenced by their 160-bit public addresses.
EOAs can be used to call the functions of smart contracts via signed transactions.

Solidity. Solidity is the most popular programming language for EVM smart
contract development, which syntax is similar to JavaScript and C++. The
source code of a smart contract written in Solidity needs to be compiled into
bytecode before being deployed on EVM. All smart contracts analyzed in this
study are written in Solidity.

ERC20 Tokens. ERC20 is the most popular standard for implementing fun-
gible tokens3 in Ethereum smart contracts. Some of the most traded alternative
cryptocurrencies (altcoins) are ERC20-compatible smart contracts deployed on
Ethereum Mainnet, such as ChainLink and BinanceCoin. The ERC20 standard
defines an interface with 6 mandatory functions, 2 mandatory events, and 3
optional properties that a smart contract should implement in order to become
an ERC20 token to interact with ERC20-compliant clients.4

OpenZeppelin Contracts. OpenZeppelin Contracts is a library of smart con-
tracts that have been extensively tested for adherence to best security practices.
These smart contracts are considered to be the de-facto standardized implemen-
tations of popular smart contract code patterns [4]. The OpenZeppelin project
provides a rich code base for ERC20 token developers [2]. Most ERC20 tokens, as
well as the administrated patterns in these tokens, are implemented by inheriting
routines from the OpenZeppelin Contracts library.
3 Each fungible token has the same value and does not possess any special character-

istics compared with other tokens of the same type.
4 https://eips.ethereum.org/EIPS/eip-20.

https://eips.ethereum.org/EIPS/eip-20


26 N. Ivanov et al.

1 function kill() public onlyAdmin {

2 selfdestruct(payable(msg.sender));

3 }

Fig. 2. A snippet of an administrated self-destruction pattern in the contract deployed
at 0xbF3d14995D4A4A719A3B9101DE60baa47De60F39.

3 Administrated ERC20 Patterns

In this section, we elaborate upon five general re-centralization patterns that we
observe in Ethereum smart contracts.5

3.1 Self-destruction

EVM opcode SELFDESTRUCT6 allows to remove a smart contract from the
blockchain. To provide further incentive for owners to remove unused contracts,
the address supplied as an argument of SELFDESTRUCT call receives the entire
Ether cryptocurrency balance of the smart contract. Solidity uses the built-in
function selfdestruct() to initiate the removal of the smart contract—if this
functionality is implemented, the administrator (or an attacker impersonating
the administrator) can trigger it at any moment, effectively destroying all users’
assets with a single transaction. Figure 2 shows a real-world example of such a
pattern.

3.2 Deprecation

With the exception of self-destruction, the source code of an Ethereum smart
contract is immutable, which impedes the ability for developers to deliver new
features or fix existing bugs. To address this limitation, some developers of smart
contracts implement a bypass scheme, in which a contract can be declared as
deprecated by the owner, resulting in the redirection of the users’ transactions
towards functions of a new contract. The danger of this scheme stems from the
fact that it grants the owner of the contract an ability to replace the code of
some critical functions with arbitrary ones. Figure 3 shows a real-world example
of the deprecation pattern.

5 The discovery of these patterns has been largely facilitated by a manual examination
of approximately 3,800 source codes of smart contracts in the course of our previous
research.

6 This opcode is formerly known as SUICIDE. In this context, the word “remove”
means that the contract is no longer available for transactions; however the entire
transaction history of the contract is still retained by the blockchain.



Rectifying Administrated ERC20 Tokens 27

1 // deprecate current contract in favour of a new one

2 function deprecate(address _upgradedAddress) public

onlyOwner {

3 deprecated = true;

4 upgradedAddress = _upgradedAddress;

5 Deprecate(_upgradedAddress);

6 }

Fig. 3. A snippet of an administrated deprecation pattern in the TetherUSD smart
contract deployed at 0xdAC17F958D2ee523a2206206994597C13D831ec7, which allows
the owner to effectively inject the code of the contract with an arbitrary one.

1 function setFee(address to) public onlyOwner{

2 fee = to;

3 }

Fig. 4. A snippet of a change-of-address pattern in the smart contract deployed at
0x350BDC46d931712d83ef989725Ba4904C487F360. The exploitation of such pattern has
been demonstrated in previous research.

3.3 Change of Address

Another administration strategy is the ability for the owner of a smart contract to
change certain critical addresses, such as recipients of fees or accounts associated
with certain roles. As shown in our previous study [12], a replacement of a public
address in a smart contract can lead to an acquisition of the funds by the owner
of the contract. Figure 4 demonstrates such an address changing pattern.

3.4 Change of Parameters

Another administration pattern is characterized by the change of certain param-
eters by the owner, which may affect the ability by a user of the contract to
perform certain operations. For example, if the owner is allowed to arbitrarily
change the amount of withdrawal fees, this parameter might be set to a very
large value (e.g., 99%), effectively preventing withdrawal of funds by the user.
Another example of this pattern is shown in Fig. 5, where the owner of the
contract exercises an unbounded power to manage administrators of the smart
contract.

1 function setAdmin(address newAdmin , bool activate)

onlyOwner public {

2 admins[newAdmin] = activate;

3 }

Fig. 5. A snippet of a change-parameter pattern in the smart contract deployed at
0x18c210013ea6cbe99b2dacdc9cfcb6e07458f0ca.



28 N. Ivanov et al.

1 function mint(address account , uint amount) public

onlyOwner {

2 _mint(account , amount);

3 }

4 function burn(address account , uint amount) public

onlyOwner {

5 _burn(account , amount);

6 }

Fig. 6. A snippet of a minting and burning patterns in the smart contract deployed at
0x82bfdd53dd95efa2c3e92543f28d46c566bf4b8a.

3.5 Minting and Burning

An increase of a token supply of an ERC20 contract is called token minting,
and the reduction of supply of tokens is called burning. Since the entire supply
of tokens is partitioned between owners in a way that there are no balances
belonging to nobody, minting a token means to increase someone’s balance,
and burning a token means to reduce someone’s balance. Although most tokens
are minted or burned as a result of a certain event, such as token creation,
token swap, crowdsale, or exchange into Ether balance, some contracts allow
privileged users to arbitrarily mint or burn tokens, which is a dangerous action
that even highly centralized commercial banks normally cannot do. Figure 6
demonstrates an example of the minting and burning pattern implemented in a
deployed Ethereum smart contract.

4 Administrated Tokens in the Wild

In this section, we use a pattern recognition method to search for administrated
ERC20 tokens in the Ethereum Mainnet network, as shown in Fig. 7. We start
the process with preprocessing all the input samples by removing comments and
extracting source codes from multi-part JSON files.7 Then we randomly select
385 samples from 84,062 unique source code files and manually assign (label)
them into two classes: a) administrated ERC20 tokens, and b) others. After that,
we extract 385 9-dimensional feature vectors corresponding to the labeled sam-
ples, with the assumption that all the samples are identical and independently
distributed (i.i.d). Then we use 385 labeled samples and the corresponding fea-
ture vectors to evaluate the performance of 9 different classifiers using the K-fold
method (with k = 5). Next, we choose the best performing classifier, i.e., the one
that demonstrated the higher accuracy during the evaluation stage (i.e., SVC).
After that, we extract 84,062 feature vectors corresponding to the entire data
set. Next, we train the SVC classifier with the 385 labelled samples. Due to the

7 The smart contracts that include several files are represented as JSON arrays in our
dataset. Preprocessing these arrays also includes an additional step of replacing the
escaped characters, such as newlines and quotes, with their original ASCII codes.



Rectifying Administrated ERC20 Tokens 29

i.i.d. assumption, we can now classify all the samples using the trained SVC
model. Finally, we gather the output and analyze the results.

Fig. 7. General worflow of the analysis of administrated ERC20 tokens. The
workflow includes 9 major steps. (1): Pre-process input samples to remove comments
and parse multi-part JSON files. (2): Pick 385 samples from 84,062 unique source code
files and manually assign them into two classes: a) administrated ERC20 tokens, and b)
others. (3): Extract 385 feature vectors corresponding to the labeled samples. (4): Use
385 labeled samples and the corresponding feature vectors to evaluate the performance
of 9 different classifiers using the K-fold methods (with k = 5). (5): Choose the best
performing classifier on the 385 labeled samples with the given 9 features. (6): Extract
84,062 feature vectors corresponding to the entire data set. (7): Train the classifier
with the 385 labelled samples. (8): Classify all the samples using the trained classifier.
(9): Analyze and report the results.

4.1 Data Set

First, we gather 1,173,271 open-source smart contracts from Etherscan,8 and by
removing duplicates (using fdupes9), reduce the size of the database to 84,062
distinct smart contracts. Then, we remove all comments from the data points
(i.e., source code files), and select 385 random contracts for manual labelling
using the following formula:

n =
N

1 + N · (1 − c)2
. (1)

Equation 1 is the Slovin’s formula [6], which statistically determines a
required representative sample size for a given data size and desired confidence
level. N is the original population of smart contracts, i.e., N = 84, 062, and n is
the sample size that we choose to represent the population. c is the confidence
8 https://etherscan.io/.
9 https://github.com/adrianlopezroche/fdupes.

https://etherscan.io/
https://github.com/adrianlopezroche/fdupes


30 N. Ivanov et al.

level that represents the certainty that the sample size represents the population.
We set the confidence level as 95% (precisely, 94.915%), leading to sample size
n = 385, which can be split into two partitions of 77 and 308 samples for k-fold
evaluation with k = 5.

4.2 ERC20 Administration Features

Our knowledge of the administration features in ERC20 tokens stems from our
experience of manual analysis of around 3,800 source codes of Ethereum smart
contracts. The experience of manual analysis of thousands of smart contracts,
which has taken more than 140 person/h, allows us to recognize all existing
administration patterns. As a result, we have developed 9 syntactic signatures
which are intuitively well-separated and independent because we have observed
various combinations of these signatures in administrated smart contracts. This
led us to designing 9 syntactic features, denoted f1 . . . f9 that produce one of
two binary values: 1—the corresponding syntactic signature is present; 0—the
signature is absent. Below is the brief description of the syntactic signatures that
the 9 features correspond to.

f1: ERC20 Interface Implementation. The goal of this research is to identify
administrated ERC20 tokens. In order to separate ERC20 tokens from other
types of smart contracts, feature f1 extractor detects the simultaneous presence
of syntactic identifiers corresponding to the eight mandatory items of the ERC20
interface, as described in the EIP-20 standard.

f2: Administrated Self-destruction Signature. If the owner of a smart
contract implements a self-destruction procedure, they may remove the contract
from the Ethereum ecosystem with a single transaction, simultaneously acquiring
all the Ether balance of the contract. Feature f2 detects such a signature, both
in old versions of Solidity and the modern ones (the exact procedure differs for
different versions of the language).

f3: Pausable Functionality Signature. The owner of a smart contract can
inhibit any operations with the contract at their will for indefinite period of time.
Although pausing a smart contract does not allow to directly acquire Ether or
token balances, it may have dire consequences if the owner’s private key is stolen
by an attacker or lost while the token is paused. Feature f3 is intended to identify
signatures of such pausable tokens.

f4: Contract Deprecation Signature. Since Ethereum smart contracts are
non-modifiable, the only means of upgrading the contract is to deprecate the
existing contract and refer the users to the new one using inter-contract calls
(ICCs). Unfortunately, this procedure allows the owner of the smart contract to
effectively introduce any arbitrary code. Feature f4 extracts the signatures of
contract deprecation functionality, which is one of the most dangerous patterns
in administrated ERC20 tokens.



Rectifying Administrated ERC20 Tokens 31

f5: Minting and Burning Signatures. The ability for a privileged user to
arbitrary create and remove tokens, known as minting and burning respectively,
is a major concern associated with administrated ERC20 tokens. Feature f5
represents the signature of a minting and/or burning in the smart contract,
which execution can only be triggered by a privileged user (administrator).

f6: Role-Restricted Transfers and Withdrawals. Another signature of an
administrated ERC20 token is the ability for a privileged user to perform arbi-
trary token or Ether cryptocurrency transfers and withdrawals of the funds that
do not belong to these users. Feature f6 corresponds to the syntactic signature
related to such transfer and withdrawal functionality under a privileged access.

f7: Function-Disabling Modifiers. Some function modifiers do not directly
check for the identity of privileged users; instead, they use the parameters pre-
viously changed by an administrator to decide whether the function needs to be
executed. Feature f7 is related to such modifiers that are capable of disabling
the execution of a function based on a parameter adjustable by the contract’s
privileged user.

f8: Direct Checks of a Sender Address. Although modifiers are popular
means of granting privileged access to certain functions of a smart contract, some
administrated contracts use direct checks of the msg.sender or msg.origin val-
ues. Feature f8 targets the direct (i.e., bypassing Solidity modifiers) transaction
identity checks, which predominantly make sense within the administrated smart
contracts context.

f9: Freezing, Halting, or Killing Methods. A list of some specific fre-
quently occurring function names, such as “freeze”, “halt”, and “kill” empirically
strongly correlate with the administrated property of ERC20 tokens. Feature f9
detects the presence of such frequently used functions that almost always indi-
cate an administration pattern.

4.3 Classifier Evaluation and Model Selection

We use 385 manually labeled samples to evaluate the performance of 9 popular
classifiers using the K-fold method with k = 5. Table 1 summarises the classifi-
cation models used for evaluation and the accuracy of each of these models using
the K-fold evaluation method with 385 labeled samples. The evaluation demon-
strates that 8 out of 9 classifiers stay within the 95% . . . 97% accuracy range,
except for the Gaussian Naive Bayes classifier, which performance is slightly
above 61%.



32 N. Ivanov et al.

Table 1. Tested classifiers.

Model Parameters Accuracy

Support Vector Classifier (SVC) scikit-learn default 96.6233%

Decision Tree max.depth = 9 96.3636%

K-Nearest Neighbors (K-NN) k = 1 95.5844%

Random Forest scikit-learn default 96.3636%

Gaussian Naive Bayes scikit-learn default 61.0389%

Linear Discriminant Analysis (LDA) n components = 1 96.3636%

Gradient Boosting scikit-learn default 96.3636%

Adaptive Boosting (AdaBoost) scikit-learn default 95.0649%

Multi-Layer Perc. Classifier (MLPC) alpha = 1,max iter = 1000 96.6233%

4.4 Implementation and Evaluation of the Analysis Workflow

We implement the extractors of all the 9 syntactic features using Python 3.8.5
and re regular expressions library. We implement the K-fold evaluation and
dataset analysis using Python 3.8.5 with sckit-learn 0.24.1 and numpy 1.20.0
libraries. We randomly selected 385 smart contracts from the i.i.d. set of 84,062
and manually labeled them by human comprehension of the semantics of each
of the smart contracts, which took approximately 40 person/h of total effort.

4.5 Results

Out of 84,062 evaluated smart contracts, 54,626 have been identified as ERC20
tokens, which is around 64.6%. As many as 39,034 contracts have been classified
as administrated ERC20 tokens (by counting the occurrences of f1 = 1), which
is 57.96% of all the evaluated smart contracts, and 89.76% of all ERC20 tokens.
Subsequently, only about 10% of all ERC20 tokens are non-administrated, i.e.,
exhibit full decentralization and permissionless design, while the vast majority
of the tokens are tightly controlled by their owners and other privileged users,
effectively overriding the decentralization capability of the hosting blockchain.
Figure 8 shows the summary of the results of our analysis.

5 SafelyAdministrated Library

Existing administrated ERC20 tokens are generally unsafe because they are
loosely regulated and their functionality often hinges upon a single account’s
private key, which can be abused by its owner or stolen by an adversary. To mit-
igate such an unsafe arrangement without denouncing the idea of administration
or boycotting the administrated tokens, we propose a novel solution for making
these smart contracts safe. As shown in Sect. 4, most ERC20 tokens are adminis-
trated, and therefore potentially unsafe. However, due to their ubiquity, it would



Rectifying Administrated ERC20 Tokens 33

(a) ERC20 tokens vs. other
all other smart contracts.

(b) Administrated ERC20
tokens vs. effectively un-
governed ERC20 tokens.

(c) Administrated ERC20
tokens vs. other types of
smart contracts.

Fig. 8. Results of processing of 84,602 unique source codes of Ethereum smart contracts
using the SVC classifier and the 9 developed syntactic features.

be naive to urge users to boycott 9 out of 10 of currently deployed ERC20 tokens.
In this work, we propose a feasible “evolutionary” fix to the existing problem.
Specifically, we realize that administrated patterns can be used by token owners
without jeopardizing the safety of the contract and requiring trust from the users.
For that, the current primitive administrated routines can be re-implemented to
incorporate three novel concepts: deferred maintenance, board of trustees, and
safe pausing. The details of these three approaches are explained below.

5.1 Deferred Maintenance

The owners of existing administrated ERC20 tokens have the ability to call
the managerial functions without any announcement. In order to prevent
unannounced actions, SafelyAdministrated library implements a mechanism of
deferred maintenance, which allows to announce the maintenance action to the
users and enact it only after a certain delay. For example, if the contract is about
to be upgraded, the users of the contract may be notified and decide whether
they agree on the upgrade or not. If the users disagree with the upgrade, they
may safely quit (i.e., sell or transfer their tokens) before the action takes into
effect.

5.2 Contract Board of Trustees

In most administrated smart contracts, the privileged user (administrator) has a
sole power to perform critical actions upon the smart contract, which incurs the
need of trust from the users of the contract. Moreover, if the private key of the
smart contract’s administrator is stolen, the attacker becomes the administrator
of the contract. Essentially, the safety of the contract often hinges on a single
private key belonging to a single person, which is the major concern about the
administrated smart contracts. The contract board of trustees allows to split the
administrative power among multiple private keys possessed by different parties,
such that the maintenance actions are only possible through a voting consensus
with a pre-determined threshold.



34 N. Ivanov et al.

5.3 Safe Pause

The ability to pause the execution of transactions in a smart contract is not nec-
essarily a whimsical action of the contract administrator. For example, this may
be a necessary action upon discovery of a zero-day vulnerability—by pausing
transactions, the administrator of the contract may prevent an exploitation of
such vulnerability. However, indefinite pause may also be abused by the contract
administrator, or it can be triggered by an adversary who stole a private key of
the administrator’s account. To prevent the adverse effects of the pause func-
tionality, in this work we introduce a safe pause routine, which allows to freeze
all transactions in the smart contract with a forced un-freeze after a certain
deadline. Moreover, once the contract is un-frozen, it cannot be frozen again for
some time. This way, any of the trustees of the contract can enact an emergency
pause, but no one is able to keep the contract paused indefinitely.

5.4 Implementation

We implement SafelyAdministrated as an abstract Solidity class, which includes
6 functions, 3 modifiers, and 5 events, summarized in Table 2. We implemented a
testing ERC20 token that inherits the SafelyAdministrated contract, compiled it
using Solc 0.8.1, and thoroughly tested its functionality to confirm that SafelyAd-
ministrated allows an ERC20 token to be administrated in a safe manner.

5.5 Limitation

One limitation of SafelyAdministrated is that the trustee whose vote attains
the voting threshold effectively pays fees for the execution of the maintenance

Table 2. Inheritable interfaces of SafelyAdministrated abstract class.

Inheritable interface Type Description

actionCleared function Check if a given action can be performed

safelyPaused function Check if contract is paused

safelyUnpaused function Check if contract is unpaused

safelyPause function Safely pause the smart contract

safelyUnpause function Safely un-pause the smart contract

whenSafelyPaused modifier Check if contract is paused

whenSafelyUnpaused modifier Check if contract is un-paused

trusteeVote function Cast trustee vote for an action

SafelyPaused event A trustee paused the contract

SafelyUnpaused event A trustee un-paused the contract

TrusteeVoted event A trustee voted for an action

ActionCleared event Next vote will activate the action

ActionActivated event A trustee vote activated a cleared action

trusteeAction[0...9] modifier Modifiers for nine functions subject to

approval



Rectifying Administrated ERC20 Tokens 35

transaction, while other trustees pay only for execution of recording of their
vote. Although we assume that this unfairness is unlikely to be important in
most cases, we leave the implementation of fee reimbursement for future work.

6 Related Work

Currently, the major concern about the safety of smart contracts comes from
security vulnerabilities in them. Researchers have proposed automated tools for
detecting known smart contract vulnerabilities. Some notable security scanners
for Ethereum include Oyente [13], Mythril [1], and Vandal [5]. Tsankov et al. [16]
propose Securify, a tool that analyzes the bytecode of Ethereum smart con-
tracts to detect patterns associated with known security vulnerabilities. Torres
et al. [15] present a taxonomy of smart contract honeypots, which are deceptive
smart contracts targeting users who attempt to exploit known vulnerabilities of
smart contracts. Recently, Chen et al. propose TokenScope [7], an automated
tool, which detects the discrepancies between syntax and semantics in the func-
tions of ERC20 tokens. In this work, we reach beyond the security vulnerabilities
and explore a generally overlooked safety issue in smart contracts, i.e., admin-
istrated patterns that allow owners of ERC20 tokens (or adversaries who steal
the owner’s account private key) to cause a mass damage to the token owners.

The influence of private actors on blockchain resources has been a subject
of concern for many years. Raman et al. [14] conduct a case study of decen-
tralized web applications and identify a prevalence of re-centralization of such
apps. Griffin et al. [11] discover that TetherUSD ERC20 token has been used for
manipulating the price of cryptocurrencies. In this work, we expand the discus-
sion about the re-centralization and private manipulation of the services that
are intended to be centralized to embrace the realm of ERC20 tokens.

The public trust towards administrated ERC20 tokens may be indicative
of a well-studied irrational or semi-rational human behavior. In our previous
research [12], we explore social engineering attacks in Ethereum smart contracts
by demonstrating how visual cognitive bias and confirmation bias lead a user
into engaging with a malicious smart contract. Fenu et al. [9] demonstrate the
irrational behavior exhibited by many people when engaging with high-risk smart
contracts involved in initial coin offerings (ICOs). In this work, we scrutinize a
new facet of semi-rational human behavior: the false assumption that most smart
contracts are decentralized, permissionless, and ungoverned just because they are
deployed on a blockchain that holds these properties.

Previous studies proposed smart contract-level multi-signature voting
schemes. ÆGIS [10] implements a voting-based mechanism, in which trusted
experts vote for a security patch. Unfortunately, the voting mechanism in ÆGIS
has been design for different context and cannot be applied, even with modifi-
cations, to the trustee-based contract maintenance scenarios. Christodoulou [8]
introduces a decentralized voting scheme similar to the Board of Trustees used
in this work. However, all the above solutions are domain-specific, and cannot
be directly used for general cases, as we see it in the SafelyAdministrated library.



36 N. Ivanov et al.

7 Conclusion

Unlike banks and other financial institutions, smart contracts are weakly regu-
lated or unregulated at all. Simultaneously, an ERC20 token is often owned by
a single account, the security of which hinges on a single private key. At the
same time, we observe that market capitalization of some tokens, such as USDT
and BNB, reaches billions of dollars, which means that if the administrator’s
private key is stolen or abused, all the funds from all users in the contract might
be stolen immediately. ERC20 fungible tokens have been a hope for the next-
generation tokenized economy. However, in this research we demonstrate that
approximately 9 out of 10 ERC20 tokens are administrated assets that are gen-
erally less secure than traditional financial institutions and accounts. Instead of
stigmatizing the widespread administration of the tokens, we deliver a solution
for the honest token owners to achieve their goals in a way that is safe for both
them and the users—through implementing the novel contract ownership mech-
anism, which effectively prevents a single point of security failure and enforces
prior notice of maintenance. At the time of writing, there is no affiliation or spon-
sorship, current or arranged, between the authors of this work and any banks,
online payment systems, and smart contract developers mentioned or implied in
this research.

Acknowledgements. We would like to thank Dr. Arun Ross and other anonymous
reviewers for providing valuable feedback on our work.

References

1. Mythril. https://github.com/ConsenSys/mythril. Accessed 06 Jan 2020
2. OpenZeppelin ERC-20 Token Implementations. https://github.com/OpenZepp

elin/openzeppelin-contracts/tree/master/contracts/token/ERC20. Accessed 12
Jan 2020

3. Openzeppelin contracts (2021). https://github.com/OpenZeppelin/openzeppelin-
contracts

4. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and DApps. O’Reilly Media (2018)

5. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts.
arXiv preprint arXiv:1809.03981 (2018)

6. Burt, J.E., Barber, G.M., Rigby, D.L.: Elementary Statistics for Geographers. Guil-
ford Press (2009)

7. Chen, T., et al.: TokenScope: automatically detecting inconsistent behaviors of
cryptocurrency tokens in Ethereum. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1503–1520 (2019)

8. Christodoulou, P., Christodoulou, K.: A decentralized voting mechanism: engaging
ERC-20 token holders in decision-making. In: 2020 7th International Conference
on Software Defined Systems (SDS), pp. 160–164. IEEE (2020)

9. Fenu, G., Marchesi, L., Marchesi, M., Tonelli, R.: The ICO phenomenon and its
relationships with Ethereum smart contract environment. In: 2018 International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 26–32.
IEEE (2018)

https://github.com/ConsenSys/mythril
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC20
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC20
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
http://arxiv.org/abs/1809.03981


Rectifying Administrated ERC20 Tokens 37

10. Ferreira Torres, C., Baden, M., Norvill, R., Fiz Pontiveros, B.B., Jonker, H., Mauw,
S.: ÆGIS: shielding vulnerable smart contracts against attacks. In: Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security (2020)

11. Griffin, J.M., Shams, A.: Is Bitcoin really untethered? J. Finan. 75(4), 1913–1964
(2020)

12. Ivanov, N., Lou, J., Chen, T., Li, J., Yan, Q.: Targeting the weakest link: social
engineering attacks in Ethereum smart contracts. In: Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, pp. 787–801 (2021)

13. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the CCS, pp. 254–269 (2016)

14. Raman, A., Joglekar, S., Cristofaro, E.D., Sastry, N., Tyson, G.: Challenges in the
decentralised web: the Mastodon case. In: Proceedings of the Internet Measurement
Conference, pp. 217–229 (2019)

15. Torres, C.F., Steichen, M., et al.: The art of the scam: demystifying honeypots
in Ethereum smart contracts. In: 28th USENIX Security Symposium, USENIX
Security 2019, pp. 1591–1607 (2019)

16. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: Proceedings of the CCS
(2018)

17. Zhou, S., et al.: An ever-evolving game: evaluation of real-world attacks and
defenses in Ethereum ecosystem. In: 29th USENIX Security Symposium, USENIX
Security 2020, pp. 2793–2810 (2020)


	Rectifying Administrated ERC20 Tokens
	1 Introduction
	2 Background
	3 Administrated ERC20 Patterns
	3.1 Self-destruction
	3.2 Deprecation
	3.3 Change of Address
	3.4 Change of Parameters
	3.5 Minting and Burning

	4 Administrated Tokens in the Wild
	4.1 Data Set
	4.2 ERC20 Administration Features
	4.3 Classifier Evaluation and Model Selection
	4.4 Implementation and Evaluation of the Analysis Workflow
	4.5 Results

	5 SafelyAdministrated Library
	5.1 Deferred Maintenance
	5.2 Contract Board of Trustees
	5.3 Safe Pause
	5.4 Implementation
	5.5 Limitation

	6 Related Work
	7 Conclusion
	References




