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Abstract. Controller Area Network (CAN) is significantly deployed in
various industrial applications (including current in-vehicle network) due
to its high performance and reliability. Controller area network with
flexible data rate (CAN-FD) is supposed to be the next generation of in-
vehicle network to dispose of CAN limitations of data payload size and
bandwidth. The paper explores for the first time Electronic Control Unit
(ECU) identification on in-vehicle CAN-FD network from bus signaling
and the contributions are four-fold.

– Technically, we discuss the factors that might affect ECU recog-
nition (e.g., CAN-FD controller, CAN-FD transceiver, and voltage
regulator) and look into the signal ringing and its intensity where
dominant states along with rising edges (from recessive to dominant
states) suffice to fingerprint the ECUs. We can thereby design ECU
identification scheme on in-vehicle CAN-FD network.

– For a given network topology (in terms of the stub length and the
number of ECUs), we execute CAN-FD and CAN separately and one
can expect considerable performance for the two kinds of protocols
by using any signal characteristics (rising edges, dominant states,
falling edges, and recessive states). In particular, the recognition
rates by dominant states and rising edges of signals outperform sig-
nificantly those by any other combinations of signal characteristics.

– As a respond to the possible transition mechanism from CAN to
CAN-FD, we also allow a hybrid topology of CAN and CAN-FD,
namely, there exist on the network ECUs sending purely CAN
frames, ECUs sending purely CAN-FD frames, and ECUs sending
both CAN and CAN-FD frames, and our suggestion on dominant
states and rising edges shows robustness to source identification as
expected. This shows convincing evidence on the universal applica-
bility of our approach to forthcoming real vehicles set up by CAN-FD
network.

– The proposed approach can be easily extended to intrusion detec-
tion against attacks not only initiated by external devices but also
internal devices.
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We hope our results could be used as a step forward and a guidance
on securing the commercialization and batch production of in-vehicle
CAN-FD network in the near future.

Keywords: Controller Area Network · CAN-FD · ECU identification

1 Introduction

Controller area network (CAN) is one of the most commonly used bus com-
munication protocols between in-vehicle Electronic Control Units (ECU, simi-
lar to ordinary computer, consists of a microcontroller (MCU), some memory
(ROM/RAM), input/output interface (I/O), analog-to-digital converter (A/D),
and large-scale integrated circuits such as shaping and driving). It was introduced
by Robert Bosch GmBH in 1983. All ECUs inside the vehicles are connected to
each other through CAN bus. However, CAN protocol lacks security mecha-
nisms, such as authentication and encryption [5]. Indeed, an adversary might
easily eavesdrop on the bus, obtain all communication messages between ECUs
at will, and then initiate a replay attack [23]. He can even modify the obtained
messages which will be further injected into the CAN network in an attempt to
control some safety-critical functions. We do see various attacks against CAN
network recently [2,10,14,19,20]. In response to these attacks, researchers pro-
pose a series of countermeasures, represented by Intrusion Detection System
(IDS) and Message Authentication Code (MAC). The latter is not practical
however, as the length of the CAN frame data field is up to 8 bytes. And an
alternative method is to use truncated MACs [22,25]. This method needs to con-
stantly update the key, which will take up more computing resources. What’s
more, frequent key updates may cause malfunctions when the vehicle is moving.
Fortunately, some seminal works [5,15,21] can not only detect the presence of
malicious frames but also identify their sender ECUs. This is really essential for
fast forensic, isolation, security patch, etc.

Robert Bosch GmBH recommends CAN-FD (CAN with flexible data) [7] in
2012 to meet the requirements of modern vehicles and dispose of CAN limitations
of data payload size and bandwidth. Besides compatibility with CAN, CAN-
FD has the following advantages: the maximum length of the CAN-FD data
field is 64 bytes; it supports variable rates (namely, a frame can use different
transmission rates in different stages) and the maximum rate can reach 5Mbit/s
(the maximum rate of CAN is 1Mbit/s); it can refine the load of the existing
bus and increase the number of the nodes1 on the bus.

Unfortunately, CAN-FD itself does not convey security protection either
(similar to CAN) and existing attacks on CAN might also be feasible on CAN-
FD. Take masquerade attack on CAN network [3] as an example. Initiating a
masquerade attack and not being detected by the system, an adversary needs to
stop the transmission of targeted ECU and imitate it to inject attack messages.

1 As a slight abuse of terms, we use hereafter node and ECU indiscriminately.
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The attack also works on in-vehicle CAN-FD network. Although an intrusion
detection system based on topology verification is proposed [26] to detect attacks
by using external intruding devices, it can neither detect masquerade attack nor
identify the sender of the attack messages. Our proposed mechanism explores for
the first time Electronic Control Unit (ECU) identification on in-vehicle CAN-
FD network from bus signaling.

2 Background and Related Work

2.1 Controller Area Network

CAN uses differential signals to transmit messages. Namely, the two signals on
CAN-H and CAN-L have equal amplitudes relative to 2.5 V (common mode
voltage) and opposite polarities. Compared with single-ended signals, differen-
tial signals are subtracted less electromagnetic interference [15]. When the ECU
sends the recessive bit (1), the voltage on CAN-H and CAN-L is about 2.5 V,
so the differential voltage generated is 0 V. For the dominant bit (0), the volt-
ages on CAN-H and CAN-L are 3.5 V and 1.5 V, respectively, and the resulting
differential voltage is 2 V.

The nodes inside the CAN network communicate with each other via CAN
frames. CAN frames are divided into standard frames and extended frames
according to whether they contain extended identifiers. The length of the iden-
tifier of the CAN standard frame is 11 bits, and 29 bits for extended frame
(including 11 bits identifier and 18 bits extended identifier). At present, most
vehicles use CAN standard frames. The composition of standard frames is shown
in Fig. 1(a).

(a) CAN data frame format (b) CAN-FD data frame format

Fig. 1. CAN/CAN-FD data standard frame format with 11 bit identifier.

CAN is a multi-master control bus and the bus conflicts will occur if two or
more ECUs request to send data at the same time. CAN bus can detect and
arbitrate these conflicts in real time by CSMA/CD [1] (Carrier Sense Multiple
Access/Collision Detection) arbitration method, which supports a lossless bit-
wise arbitration decision process. For example, if one ECU transmits a dominant
bit (0) and another ECU transmits a recessive bit (1), then there is a collision
and the ECU transmitting the dominant bit gets priority.
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2.2 Comparing CAN-FD with CAN

CAN-FD and CAN differ in the format and the length of the data frame. Com-
pared with CAN frame, CAN-FD adds FDF (Flexible Data Rate Format), BRS
(Bit Rate Switch) and ESI (Error State Indicator) fields (see Fig. 1(b)) [7].
Therein, FDF indicates whether the sent frame is a CAN frame or a CAN-
FD frame and BRS stands for bit rate conversion. When the bit is a recessive
bit (1), the rate is variable, and when the bit is a dominant bit (0), it is transmit-
ted at a constant rate. ESI is an error status indicator: when ESI is a recessive
bit (1), it means that the sending node is in a passive error, otherwise it is in
an active error state. In addition, according to the role of different bits, CAN
specification divides a frame into different fields, as shown in Fig. 1(b). And in
the experiment, we set the rate of 2Mbit/s for the data field, and set the rate of
1Mbit/s in the arbitration field, control field and CRC field. The length of the
CAN-FD data field is up to 64 bytes, which increases the available load.

Next we say the data rate. The maximum rate of CAN’s arbitration field
and data field is no more than 1Mbit/s [6]. However, CAN-FD supports variable
rates, and the bit rate of its arbitration field and data field might be different.
Among them, the arbitration and the ACK stages continue to use CAN2.0 spec-
ification (i.e., the highest rate does not exceed 1Mbit/s), and the data field can
reach 5Mbit/s through hardware setting, or even higher.

CAN-FD is defined to be compatible with CAN at the physical layer. All
CAN-FD controllers can handle a mix of CAN frames and CAN-FD frames.
One might use CAN-FD controllers in conjunction with CAN controllers on
in-vehicle network. Thus one might see pure CAN frames or both CAN and
CAN-FD frames on the bus.

2.3 Related Work

Generally, we have intrusion detection systems (IDS)2 and cryptographic solu-
tions to strengthen in-vehicle CAN network security. Murvay and Groza [21]
pioneered the methodology of studying the differences in CAN signals (sent by
ECUs), which are significant for ECU identification. However, they only used the
signals corresponding to the CAN frame’s identifier field and did not account
for the blended signals caused by the collisions between ECUs’ simultaneous
messages. The limitation was tackled in [5] where 18-bit identifier extension was
used to fingerprint ECUs. As vehicles commonly conform to the standard speci-
fications (e.g., ISO, SAE etc.), this scheme was howbeit impractical in real-world
applications. Kneib and Huth [15] proposed Scission for in-depth analysis of CAN
signals. In particular, Scission can not only detect intrusion messages, but also
recognize which ECU sends the intrusion messages. For cryptographic solutions,
Lin et al. [14] constructed message authentication code by sending additional
messages, and the authors of [22] proposed to use truncated MACs.

For CAN-FD, security experts can pursue stronger security tricks via its
higher transmission rates and larger loads. In [26], authors proposed an IDS for
2 The paper focuses on signaling based IDS.
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in-vehicle CAN-FD network based on topology verification. Their method uses
variations of the network topology to identify intrusions initiated by external
intruding devices (XIDs), but the method cannot detect attacks initiated by
attackers using the vulnerability of existing ECUs in the vehicle. Woo et al.
[24] proposed a security architecture for in-vehicle CAN-FD according to ISO
26262 standard. However, this method may cause GECU (gate ECU) to generate
excessive load as it has to encrypt the data packets by using the targeted ECU’s
unique key. To relieve pressure on GECU, Agrawal et al. [1] proposed a group-
based approach for the communication among different ECUs. However, their
method still requires the management of a large number of keys which takes up
a large amount of computing resources of the ECUs, making it beyond instant
communication.

3 Signaling and Ringing

3.1 ECUs’ Voltage Output Behavior

The output voltage of an ECU’s regulator varies independently and differently
from other ECUs’ regulators, as their supply characteristics are different (e.g.,
different regulators’ common-mode rejection ratios) [4]. Given the same power
supply (i.e., a 12 V/24 V battery powering all the ECUs), one can get different
output voltage of ECU regulators. On the other hand, due to the differences in
the internal resistance of the CAN transceiver, the dominant voltages of CAN-H
and CAN-L will be different when the dominant bit is sent. When transmit-
ting the recessive bit, both the high and low side transistors are switched off
(inside the CAN transceiver) and thus the voltages on CAN-H and CAN-L are
basically the same. So the dominant voltage can be used for fingerprint ECU.
Similarly, for CAN-FD, the internal components of an ECU mainly include CAN-
FD controller, CAN-FD transceiver, and voltage regulator and we have the same
rationale of the dominant voltages of (CAN-FD)-H and (CAN-FD)-L on the bus.

3.2 Ringing and Its Intensity

The impedance mismatch occurs at two points on CAN-FD bus [8,11,13], e.g.,
one at the junction and another at the front of the non-terminal ECUs. The non-
terminal ECU causes positive reflection since its impedance can be up to several
tens of kΩ, significantly larger than the stub line’s characteristic impedance.
Conversely, the junction’s impedance is lower than the stub line’s characteristic
impedance, resulting in negative reflection.

From Dominant to Recessive States. Let n denote the number of ECUs
connected to the junction through stub lines and ECU1 a transmitter whose
signal voltage need reduce by ΔV to transfer from dominant state to recessive
state. Since the dominant state’s differential voltage value is approximately 2V,
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ΔV has a negative polarity. As seen from Fig. 2, a total of (n+2) lines are con-
nected to the junction (i.e.,. n connected stub lines and the two main bus lines).
The signal transmitted from ECU1 to the junction follows (n + 1) lines in paral-
lel. Thus, the stub lines have the same impedance ZR

n+1 , where the ZR’s nominal
value is 120Ω. The reflectance (Γd) and transmittance (Td) at the junction are
calculated as:

Γd =
ZR

n+1 − ZR

ZR

n+1 + ZR

= − n

n + 2
, Td = 1 + Γd =

2
n + 2

. (1)

Since Γd has a negative polarity, a larger portion of the incident signal is reflected
as n increases, and its small part is delivered into other ECUs.

Denote Zdiff as ECU1’s differential input impedance. Now, we have ECU1’s
front reflectance and transmittance (i.e.,. Γs and Ts):

Γs =
Zdiff − ZR

Zdiff + ZR
, Ts = 1 + Γs =

2Zdiff

Zdiff + ZR
. (2)

When the signal is at the recessive state, Zdiff is much larger than ZR. Conse-
quently, Γs has a positive polarity, and equals approximately one. Thus, ECU1’s
front end reflection direction is the same as the incident signal’s direction, and
the incident signal and reflected signals’ superposition is about twice the original
incident signal.

Fig. 2. Reflection and transmission coefficients at junction and non-terminal ECUs.

For a dominant-to-recessive transition, the negative transition signal ΔV is
transmitted from ECU1 to the junction, undergoing partial transmission and
reflection. The signals are transmitted to other ECUs through the junction and
are partially reflected on the other ECUs’ front end without changing the direc-
tion. At the ECU1’s front, the signal returned from the connection is partially
transmitted to ECU1. These reflections and transmissions are repeated, resulting
in ringing.

From Recessive to Dominant States. In the transitions from recessive state
to dominant state, ECU1’s output impedance is very low. In the recessive state,
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the electrical energy is released on the network. However, when the signal trans-
fers from recessive to dominant states, ECU1’s differential output impedance
becomes lowers and starts charging the network. ECU1 generates the signal of
2V, whose polarity is inverted at the junction and reflected onto ECU1. Unlike
the dominant-to-recessive transition, the reflection signal is partly received at
ECU1 due to the low impedance of ECU1. Since there are no reflections’ repe-
titions, we have small ringing at the recessive-to-dominant state transition.

4 System Model

CAN-FD is designed to transmit large amounts of data at a faster rate and to
replace CAN in future design. It has the potential to advance the current state of
self-driving automobiles and add additional safety and comfort features in non-
automobiles vehicles. As a respond to the possible transition mechanism from
CAN to CAN-FD, we allow a hybrid topology of CAN and CAN-FD, namely,
there exist on the network ECUs sending purely CAN frames, ECUs sending
purely CAN-FD frames, and ECUs sending both CAN and CAN-FD frames.

As shown in Fig. 3, the network consists of two or more CAN nodes, two
termination resistors, and bus lines connecting them. A twisted-wire-pair is com-
monly used for the bus line and its characteristic impedance is defined as R. The
longest bus line (main bus) is terminated with the termination resistors R at
both ends for impedance match. CAN nodes are connected to main bus through
stub lines. In Fig. 3(a), the ECUs connected to the CAN-FD bus can send both
CAN-FD and CAN frames. In Fig. 3(b), blue nodes represent the ECUs that
can send both CAN-FD frames and CAN frames, and yellow nodes only send
CAN frames. In Fig. 3(c), the ECUs connected to the CAN bus only send CAN
frames.

(a) CAN-FD network (b) CAN/CAN-FD hybrid (c) CAN network

Fig. 3. Network topology.

4.1 Threat Models

Without security protection mechanism, the in-vehicle network is vulnerable
to various attacks. For example, the bus-off attack [2] can disconnect ECUs
from the bus, and the masquerade attack [3] can imitate normal ECUs to inject
attack messages. Since one can not determine the sender of any messages, the
attacker might use related identifier to impersonate some ECU. This will seri-
ously threaten passengers’ safety. We consider two attack modes on in-vehicle
CAN and CAN-FD network.
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In the attack mode–known ECU, an attacker exploits the vulnerability of
existing ECUs inside the vehicle. We mention that modern vehicles generally
support wireless connections, such as WiFi, Bluetooth or cellular. Via these
interfaces, the attackers might compromise ECUs to achieve various attacks [19,
20]. This type of attacks seems easy to implement and widespread in life (and
detailed guidance could even be found freely from some online sites), and our
system can detect such attacks accurately and efficiently.

In the second attack mode–unknown ECU, an attacker plugs some extra
external device into the bus to send malicious messages. E.g., the device may
directly access the bus through the On-Board Diagnostics (OBD)-II port3.

4.2 Signal Acquisition and Preprocessing

To obtain the differential signal from CAN-FD/CAN bus prototypes, we first
link the two probes of an oscilloscope to the (CAN-FD)-H/CAN-H and (CAN-
FD)-L/CAN-L lines respectively. Then we use the difference function in the
software of the oscilloscope to calculate the differential signal (CAN-FD)-H) -
(CAN-FD)-L) (or (CAN-H)-(CAN-L)).

Several preprocessing steps are applied to each CAN-FD/CAN signal cap-
tured by the oscilloscope. First, all dominant states are extracted from the sig-
nals. We set a voltage threshold (=0.9V) and voltage greater than the threshold
marks the start of the dominant state. The dominant states are then classified
into five sets (denoted as L1, L2, L3, L4, and L5) based on the number of con-
tained bits. Let Li represent all dominant states containing exactly i bits (see
Fig. 4). Note that CAN-FD/CAN standards specify that a recessive bit is auto-
matically inserted whenever five consecutive dominant bits appear in a CAN-
FD/CAN signal. Thus, no dominant state can contain more than five consecutive
dominant bits.

Fig. 4. A CAN-FD/CAN frame is divided into 5 sets.

4.3 Feature Extraction

We extract the statistical features from the preprocessed electrical CAN-
FD/CAN signal. Due to limited computing resources of ECU, we are more

3 The OBD-II port is near the dashboard interface, and the staff can understand the
status of the vehicle in real time through the port.
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interested in time domain features of the signal and avoid complex frequency
domain conversion. Prior work also discerns the versatility of these features in
ECU identification [5]. We extract 8 features for each set (see Table 1) and a
total of 40 features for each electrical CAN-FD/CAN signal. As too many fea-
tures might cause over fitting and computational cost in practice, we use the
Relief-F [12] algorithm to weight these features. We thus get a general feature
set (see Table 2). In the table, order column represents the order of the input
features, and feature column represents the features selected by the algorithm,
e.g., rms(L40

5 ) means that rms from the set of dominant states of length 5 is
selected as the first feature of the input (where 40 represents the order of this
feature among all features).

Table 1. Vector x is time domain represen-
tation of the data and N its dimension.

Feature Description

Maximum Max = Max(x(i))i=1....N

Minimum Min = Min(x(i))i=1....N

Mean μ = 1
N

∑N
i=1 x(i)

Range R = Max − Min

Average Deviation adv = 1
N

∑N
i=1 |x(i) − μ|

Variance σ2 = 1
N

∑N
i=1(x(i) − μ)2

Standard Deviation σ =
√

1
N

∑N
i=1(x(i) − μ)2

Root Mean Square rms =
√

1
N

∑N
i=1 x(i)2

Table 2. Selected features for classifi-
cation ordered by their rank

Order Feature Order Feature

1 rms(L40
5 ) 11 max(L1

1)

2 adv(L13
2 ) 12 min (L26

4 )

3 σ2 (L30
4 ) 13 R(L20

3 )

4 rms(L21
3 ) 14 rms(L32

4 )

5 mean (L3
1) 15 max(L25

4 )

6 σ (L31
4 ) 16 adv(L5

1)

7 σ2 (L22
3 ) 17 mean (L11

2 )

8 σ (L15
2 ) 18 rms(L16

2 )

9 R(L28
4 ) 19 max(L17

3 )

10 min(L18
3 ) 20 σ (L39

5 )

4.4 Identifying ECUs

ECU identification is a multiclass classification problem and we use supervised
learning to identify the source of CAN-FD/CAN signal. In particular, logistic
regression (LR) is easy to implement with very small amount of calculation,
which is very important for limited computing resources of ECU. To show the
robustness of our system, we also execute support vector machines (SVM) algo-
rithm with good generalization ability.

For the training phase, we generate fingerprints from multiple CAN-FD/CAN
frames of each ECU. The resulting fingerprints are then used together to train
the classifiers. For the testing phase, we have two types of tests. The first is to
evaluate the model obtained by the training stage (i.e., whether or not it can
determine the source of newly received frames), and the second is on intrusion
detection.

5 Source Identification and Intrusion Detection

5.1 Experiment Setup

Our system adapts to different bus prototypes (we have three different network
prototypes, see Fig. 5). Type A (see Fig. 5(a)) contains five CAN-FD nodes that
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can send both CAN-FD and CAN frames. Type B (see Fig. 5(b)) contains five
CAN-FD nodes (the same as in Type A) and four extra CAN nodes that send
purely CAN frames. Type C (see Fig. 5(c)) contains five CAN nodes that send
purely CAN frames. Although the total number of ECUs in real cars might be
up to 70 or even larger, in-vehicle networks are physically divided into several
subnets, e.g., power-related or comfort-related. As analyzed in Sect. 3, ringing
mainly exists between ECUs and junctions. Thus the rationale of fingerprinting
ECUs in real cars is the same as that in our experiments. CAN protocol defines
low-speed CAN and high-speed CAN. Generally speaking, high-speed CAN con-
nects the ECUs related to the important functions of the vehicles. For example,
the ECU that controls the brakes and the ECU that controls acceleration are
both on high-speed CAN, and the data transmission speed of high-speed CAN
is 500 kbit/s. Our CAN bus prototype takes high-speed CAN network topology.

Each CAN node that sends CAN frames consists of an Arduino UNO board
and a CAN shield from Seed Studio. Each CAN shield consists of an MCP2515
controller [16] and an MCP2551 transceiver [17], and the bit rate at which they
send data is 500kbit/s. For CAN-FD nodes, each one consists of a STM32F105
shield and a MCP2517FD controller [18]. MCP2517FD is known as compact,
cost-effective and efficient CAN-FD controller and uses SPI interface and MCU
(Microcontroller Unit) communication. In the experiments, we set the bit rate
of MCP2517FD as 1Mbit/s in the arbitration phase, control phase and CRC
phase, and 2Mbit/s in the data transmission phase. We mention that using signal
characteristics sampled at high bit rate to identify devices is more difficult than
at low bit rate. If our method shows effectiveness on the high-speed CAN-FD
(and CAN), it would also function well on the low-speed CAN-FD (and CAN,
respectively). To maintain the consistency of experimental environments, we
require that all the stub lines, oscilloscope, and other components used in the
experiments are the same in all three prototypes (except the nodes of different
functions).

To simulate the in-vehicle network as realistically as possible, we use twisted
pair as the communication cable in all three prototypes. Each ECU is connected
to main bus through two twisted pairs (CAN-H and CAN-L) (or (CAN-FD)-H
and (CAN-FD)-L). All ECUs are powered by a battery which supplies electric
power to each ECU via USB ports. It is required that main bus (twisted pair as
well) should be longer than any other stub line on the network (our configuration
sets the length of main bus as the sum of those of stub lines). There is a 120 Ω
resistor at each of the two ends of main bus. CAN-FD/CAN signals are measured
by the oscilloscope PicoScope 5244D MSO with a sampling rate of 25 MS/s and
a resolution of 8 bits. Two probes of the oscilloscope are connected to (CAN-
FD)-H/CAN-H and (CAN-FD)-L/CAN-L respectively. For each ECU (CAN-FD
or CAN node), we use 200 frames as the training set (the size of the training
set could be adjusted according to the performance of the model). The machine
learning library Scikit and programming software Python3 are used.
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(a) (b)

(c)

Fig. 5. Three prototypes of network topology: (a) Type A: CAN-FD nodes, (b) Type
B: CAN-FD nodes and CAN nodes, (c): CAN nodes

5.2 Sender Identification

Sender Identification on Pure CAN. For Type C (see Fig. 5(c)), we con-
sider the ringing effect. In particular, we execute SVM and LR by using dominant
states and rising edges, recessive states and falling edges, and ((dominant states
and rising edges) and (recessive states and falling edges)) respectively. The exper-
imental results are shown in Table 3, Table 4, and Table 5. Each diagonal cell in
the same matrix represents the accuracy of the two classification algorithms. As
expected, dominant states and rising edges suffice to fingerprint ECUs.

Using Dominant States and Rising Edges. We then evaluate whether our
system can correctly classify ECUs for Type A and Type B. Table 6 lists the
confusion matrix which allows visualization of the performance of classification
algorithms for 5 ECUs that send CAN-FD frames (Type A). We can see that the
recognition rate of our system is sufficient to correctly recognize the ECU, and
the error rate is very low. Table 7 lists the confusion matrix of 9 ECUs (Type B),
of which 5 ECUs send CAN-FD frames, and the remaining 4 ECUs send CAN
frames. From the result, we can see that our system can still correctly classify
and recognize ECUs even in the case of a hybrid network.
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Table 3. Confusion matrix using
SVM/LR respectively for Type C and
dominant states-rising edges.

ECU 1 ECU 2 ECU 3 ECU

4

ECU

5

ECU

1

99.89/

99.77

0/0 0/0 0.11/

0.23

0/0

ECU

2

0/0 99.59/

99.79

0/0 0.41/

0.21

0/0

ECU

3

0.14/

0.46

0/0 99.76/

99.54

0/0 0/0

ECU

4

0/0 0/0 0.2/

0.02

99.8/

99.98

0/0

ECU

5

0.2/

0.08

0/0 0/0 0/0 99.8/

99.92

Table 4. Confusion matrix using SVM/LR
respectively for Type C and recessive
states-falling edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

86.52/

84.66

0/0 5.23/

6.01

8.25/

9.33

0/0

ECU

2

0/0 88.21/

87.11

6.47/

7.56

0/0 5.32/

5.33

ECU

3

14.34/

11.46

0/0 85.66/

88.54

0/0 0/0

ECU

4

0/0 0/0 15.12/

14.62

84.88/

85.38

0/0

ECU

5

4.32/

5.01

0/0 4.66/

3.84

5.17/

6.23

85.85/

84.92

Table 5. Confusion matrix using
SVM/LR respectively for Type C and
(dominant states and rising edges)-
(recessive states and falling edges).

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

96.12/

95.34

1.81/

2.56

0/0 2.07/

2.1

0/0

ECU

2

4.79/

5.03

95.21/

94.97

0/0 0/0 0/0

ECU

3

5.44/

4.16

0/0 94.56/

95.84

0/0 0/0

ECU

4

0/0 0/0 4.12/

5.02

95.88/

94.98

0/0

ECU

5

2.81/

2.9

0/0 2.34/

2.18

0/0 94.85/

94.92

Table 6. Confusion matrix using SVM/LR
respectively for Type A and dominant
states-rising edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

99.12/

99.34

0/0 0/0 0.88/

0.66

0/0

ECU

2

0/0 99.21/

99

0/0 0/0 0.79/1

ECU

3

0.24/

0.46

0/0 99.76/

99.54

0/0 0/0

ECU

4

0/0 0/0 0.12/

0.02

99.88/

99.98

0/0

ECU

5

0.15/

0.08

0/0 0/0 0/0 99.85/

99.92

Using Recessive States and Falling Edges. To argue the effectiveness of
our recommendation, we also consider the recognition rate if recessive edges and
falling edges are used. As depicted in Sect. 3.2, ringing intensity of falling edges
of signals is higher than that of rising edges. Thus recognition rate would be
affected when the falling edges are used. Table 8 shows the recognition rates
81.54˜86.21% for Type A. Due to space limitation, we write in the Appendix A
(Table 12) the confusion matrix using SVM/LR respectively for Type B where
we can see really low recognition rates (78.01˜83.89%).
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Table 7. Confusion matrix using SVM/LR respectively for Type B and dominant
states-rising edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 ECU 6 ECU 7 ECU 8 ECU 9

ECU 1 98.89/

99.15

0/0 0/0 0/0 0.91/0.7 0.01/0.03 0/0 0/0 0.19/0.12

ECU 2 0/0 98.01/

99.21

0/0 1.2/0.78 0/0 0/0 0.79/

0.01

0/0 0/0

ECU 3 0/0 0/0 98.99/

99.01

0.92/0.89 0/0 0/0 0/0 0/0 0.09/0.1

ECU 4 0/0 0/0 0/0 99.29/

99.11

0/0 0/0 0.7/0.89 0.01/0 0/0

ECU 5 0/0 0/0 0/0 0/0 98.99/

99.31

0/0 0/0 0/0 1.01/0.69

ECU 6 1.01/0.9 0/0 0/0 0.01/0.1 0/0 98.98/

99

0/0 0/0 0/0

ECU 7 1.32/0.98 0/0 0/0 0/0 0.01/0.01 0/0 98.67/

99.01

0/0 0/0

ECU 8 0/0 0/0 0.9/

0.96

0.01/0.03 0/0 0/0 0/0 99.09/

99.01

0/0

ECU 9 1.11/1.8 0/0 0/0 0/0.03 0/0 0/0 0/0 0/0 98.89/

98.17

Table 8. Confusion matrix using
SVM/LR respectively for Type A and
recessive states-falling edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

84.12/

85.34

12/

13.14

0/0 3.88/

1.52

0/0

ECU

2

0/0 86.21/

85

11.79/

12.78

2/

2.22

0/0

ECU

3

5.14/

6.46

4.12/

4.36

82.76/

81.54

3.51/

3.96

4.47/

3.68

ECU

4

0/0 15.82/

16.62

0/0 84.18/

83.38

0/0

ECU

5

0/0 12.32/

12.01

2.93/

3.17

0/0 84.75/

84.82

Table 9. Confusion matrix using SVM/LR
respectively for Type A and (dominant
states and rising edge)-(falling edges and
recessive states).

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

94.32/

95.24

3.36/

3.14

0/0 0/ 0 2.32/

1.62

ECU

2

0/0 93.21/

94.21

5.78/

5.01

0/0 1.01/

0.78

ECU

3

5.14/

1.46

0/0 93.76/

94.54

1.1/

0.45

0/0

ECU

4

0/0 5.2/

6.33

0/

0.09

94.8/

93.58

0/0

ECU

5

5.05/

5.15

0.2/

0.23

0/0 0/0 94.75/

94.62

Using (Dominant States and Rising Edges) and (Recessive States and
Falling Edges). We also compare the execution rates when the system uses
(dominant states and rising edges) and (Recessive States and falling Edges).
Table 9 and Table 10 show the results of Type A and Type B respectively, both
lower than that using dominant states and rising edges.
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Table 10. Confusion matrix using SVM/LR respectively for Type B and (dominant
states and rising edges)-(recessive states and falling edges).

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 ECU 6 ECU 7 ECU 8 ECU 9

ECU 1 93.89/

94.15

5.98/

5.51

0.13/

0.34

0/0 0/0 0/0 0/0 0/0 0/0

ECU 2 0/0 92.01/

93.21

0/0 0/0 6.01/

5.89

0/0 0/0 1.98/

0.9

0/0

ECU 3 0/0 0/0 94.01/

93.1

0/0 5.53/

6.01

0/0 0/0 0.46/

0.89

0/0

ECU 4 3.9/4.01 0/0 0/0 95.29/

95.11

0.81/

0.88

0/0 0/0 0/0 0/0

ECU 5 0/0 0/0 5.8/6.91 0/0 93.99/

92.31

0/0 0/0 0/0 0.21/

0.78

ECU 6 6.01/6.4 0/0 0/0 2.1/1.5 0/0.01 91.98/

92.09

0/0 0/0 0/0

ECU 7 5.32/4.91 0/0 0/0 0/0 1.08/

1.01

0/0 93.67/

94.01

0/0 0/0

ECU 8 0/0 0/0 0.9/

0.2

0.01/0.03 5.9/6.86 0/0 0/0 93.09/

92.01

1.01/

1.82

ECU 9 1.11/1.8 0/0 0/0 1.01/

0.03

0/0 0/0 0/0 5.1/6.01 93.89/

92.17

5.3 Detecting Known/Unknown ECUs

The proposed ECU identification scheme is readily extended to intrusion detec-
tion system on in-vehicle CAN-FD network and the resulting IDS can not only
detect attacks initiated by external devices but also internal devices. The recog-
nition rate can be up to 99%. Due to space limitation, we write the evaluation
in the Appendix B and C.

In practice, one can deploy the offline trained models on dedicated ECU
which is inserted to the bus. Main function of the exact ECU is to monitor the
traffic silently and detect anomaly. In the ECU, a digital signal processor (DSP
chip, a microprocessor especially suitable for digital signal processing operations)
can be integrated to establish the function of an oscilloscope: collect signals in
real time and pass them to the model for detection.

6 Discussions

Sample Rate. We duplicate the experiments at various sample rates to inspect
our system’s effectiveness, especially for Type B. Note that at different sam-
ple rate one will be at different position of sample sizes (which might convey
tight relationship with system performance). Fortunately, our approach mani-
fests robustness as expected (due to the contribution of rising edges and dom-
inant states). Table 11 shows the average identification and false positive rates
at the sample rates 10˜25MS/s (1000 frames for each ECU).

Comparable Performance Between Type A and Type C. For a given net-
work topology (in terms of the stub length and the number of ECUs), one may
note considerable performance for Type A (CAN-FD) and Type C (CAN) by
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Table 11. LR Performance at various sample rates.

Sample rate(MS/s) 10 15 20 25

Identification rate 97.11 98.95 99.01 99.15

False positive rate 2.89 1.05 0.99 0.85

using any signal characteristics (rising edges, dominant states, falling edges, and
recessive states). In fact, Type C could obtain generally a tiny little better recog-
nition rate than Type A. On the one hand, CAN-FD supports data size up to
512 bits, a drastically larger number than that (64 bits) in CAN specification,
thus the cumulative effect of ringing for Type A might be more powerful than
for Type C. On the other hand, CAN-FD provides variable transmission rate
and our experiments specify the bit rate 2 Mbit/s for the data field of CAN-FD
frames and 1Mbit/s for other fields (e.g., arbitration field, control field and CRC
field), whereas CAN frame (Type C) regulates the rate of 500kbit/s. Namely,
our experiments have the bit width 2000ns in a CAN frame, and 1000ns in the
non-data field of and 500ns in the data field of a CAN-FD frame. Now, it is more
likely for Type A (than Type C) that ringing of recessive states functions unceas-
ing (even though the bit itself was already completed on the network)4 and thus
involves the coming dominant states before it attenuates to be unnoticeable.

Applicability to CAN-FD Network in Real Vehicles. The controllers used
in our evaluation conform to ISO11898-1:2015 and support CAN-FD [18]. We
also take into account the possible transition mechanism from CAN to CAN-
FD (i.e., Type A and Type B). Our results show expressive evidence on the
universal applicability of our approach to forthcoming real vehicles set up by
CAN-FD network. We do hope our results could be used as a step forward and a
guidance on securing the commercialization and batch production of in-vehicle
CAN-FD network in the near future.

Environmental Factors. The electrical characteristics of CAN signals may
remain unchanged for several months [21]. However, in actual vehicles, changes
in the internal temperature of the vehicle will affect the characteristics of elec-
trical signals. A typical example is that the voltage output may deviate from
0.012 V to 0.026 V [15] when we start the vehicle from a cooled turn-off engine
to a warmed-up engine. This situation may also exist for the CAN-FD network.
Howbeit, the length of CAN FD frame is greater than 512 bits, and the number
of dominant states contained would be much likely greater than that in CAN
frame. We might thus expect an acceptable impact of temperature changes on
signal characteristics (and further on the system). Precise assessment is left as
one of the future work.

4 It is already reported [8,9] that for CAN-FD protocol, high-speed data phase and
low-speed arbitration phase challenge the same ringing surrounds (as ringing does
not depend on the transmission rate), and ring of some recessive bit might not
converge until criterion and interfere with the next dominant bit.
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Battery/ECU Aging. Generally speaking, the service life of car battery is of 3
to 5 years and its real usage duration is also related to the driver’s driving habits.
Battery aging might affect the characteristics of the electrical signals. The same
problem exists on CAN network. For now, however, we can not track the impact
of battery aging on the system by simulating CAN-FD nodes and car battery
as there is no CAN-FD vehicle for real driving. We hope we can explore the
interesting topic in the coming future. On the other hand, ECU has a relatively
long service life and the aging process is really slow. It is thus rational not to
consider the impact of ECU aging on electrical signals.

Limitation of the Model. Our method can detect compromised ECUs by
monitoring CAN bus. It can determine whether particular frame on the bus
originates from some ECU that is allowed to commit the corresponding identi-
fier. If not, the system will issue a warning. Otherwise said, an attack will be
detected once a known ECU professes some message identifier affiliated with
another normal ECUs. However, if a known ECU abuses its own identifier (that
is permitted under normal circumstances) to launch some attack, our system
cannot recognize the attack.

Acknowledgement. The work was supported by Shanghai Municipal Education
Commission (2021-01-07-00-08-E00101), the National Natural Science Foundation of
China (Grant No. 61971192), and the National Cryptography Development Fund
(Grant No. MMJJ20180106).

A Source Identification on Type B and Recessive
States-Falling Edges

As depicted in Sect. 3.2, ringing intensity of falling edges of signals is higher than
that of rising edges. Thus recognition rate would be affected when the falling
edges are used. Table 12 show the results for Type B (and Table 8 for Type A)
and we can see really low recognition rates.
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Table 12. Confusion matrix using SVM/LR respectively for Type B and recessive
states-falling edges.

ECU 1 ECU
2

ECU 3 ECU 4 ECU 5 ECU 6 ECU 7 ECU
8

ECU
9

ECU 1 79.89/
78.15

15.98/
16.51

3.12/
4.32

0/0 0/0 0/0 0/0 0/0 1.01/
1.02

ECU 2 0/0 80.01/
79.21

0/0 0/0 16.01/
17.99

0/0 0/0 3.78/
2.8

0/0

ECU 3 0/0 0/0 78.01/
79.1

0/0 18.53/
17.01

0/0 0/0 3.73/
3.89

0/0

ECU 4 16.01/
15.99

0/0 0.01/
0.19

80.29/
80.11

3.6/
3.71

0/0 0/0 0/0 0/0

ECU 5 0/0 0/0 16.48/
15.91

0/0 78.99/
79.31

0/0 1.32/
1.01

0/0 3.21/
3.77

ECU 6 15.01/
14.98

0/0 0/0 3.1/
3.25

0.91/
0.76

80.98/
81.01

0/0 0/0 0/0

ECU 7 15.32/
15.91

0/0 0/0 0/0 1.01/
1.1

0/0 83.67/
82.99

0/0 0/0

ECU 8 0/0 0/0 15.91/
14.99

2.01/
2.18

5.9/
6.86

0/0 0/0 80.09/
81.01

1.99/
1.82

ECU 9 14.11/
15.01

0/0 0/0 1.01/
1.99

0/0 0/0 0/0 0.99/
0.83

83.89/
2.17

Table 13. Confusion matrix of the IDS
using SVM

Support vector machines

Prototype True Predicted

No Attack Yes

CAN-FD No Attack 99.38 0.62

Yes 1.5 98.5

CAN-FD And CAN No Attack 99.01 0.99

Yes 1.18 98.82

CAN No Attack 99.58 0.52

Yes 0.99 99.01

Table 14. Confusion matrix of the IDS
using LR

Logistic regression

Prototype True Predicted

No Attack Yes

CAN-FD No Attack 99.85 0.42

Yes 1.88 98.12

CAN-FD And CAN No Attack 99.11 0.89

Yes 1.89 98.11

CAN No Attack 99.44 0.56

Yes 0.89 99.11

B Detecting Known ECUs

For Type C (Fig. 5(c)), we assume that ECU 1 is normal and the attackers can
use other ECUs to send messages with the same identifier as ECU 1. We collect
a total of 500 frames, of which 300 are used as attack frames and the rest as
normal frames. As shown in Table 13, we achieve a detection rate of 99.01%. For
Type A (Fig. 5(a)), we use the same assumptions and operations as for Type C
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and achieve a detection rate of 98.5% (see Table 13). For Type B (see Fig. 5(b)),
we regard ECU 7, ECU 8 and ECU 9 as attackers (equipped with the ability of
sending both CAN and CAN-FD frames). We collect 1000 frames, of which 600
are used as attack frames and the rest are normal. Table 14 shows the results
with comparable performance to Type A and Type C.

C Detecting Unknown ECUs
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Fig. 6. Error rates at varying thresholds.

For unknown ECUs, we adopt a threshold-based method to extend our model.
For Type A, we first remove ECU 5 and obtain about 500 frames from the
remaining ECUs. These data are used to train a new model. Then we plug ECU
5 back to the network and sample a total of 600 frames now. The obtained
model is used to classify the newly collected data and Fig. 6(a) shows the False
Positive (FP) and False Negative (FN) rates for different threshold values. The
recognition rate can be up to 99.36% at threshold = 0.8. For Type B, we remove
ECU 8, use the remaining ECUs to train a new model, and then plug ECU 8
back to the network. We collect now a total of 1,000 data which will be classified
by the obtained model. Figure 6(b) shows FP and FN vs threshold, and the
recognition rate is 99% at threshold = 0.7. For Type C, we use similar method
and Fig. 6(c) shows FP and FN vs threshold. We see the 99.1% recognition rate
at threshold = 0.83.
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