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Abstract. In this paper, we present CAuSe, a CNN-based Continuous
Authentication on smartphones using Auto Augmentation Search,
where the CNN is specially designed for deep feature extraction and the
auto augmentation search is exploited for CNN training data augmen-
tation. Specifically, CAuSe consists of three stages of the offline stage,
registration stage and authentication stage. In the offline stage, we uti-
lize auto augmentation search on the collected data to find an optimal
strategy for CNN training data augmentation. Then, we specially design
a CNN to learn and extract deep features from the augmented data and
train the LOF classifier after 95 features are selected by PCA in the
registration stage. With the trained CNN and LOF classifier, CAuSe
identifies the current user as a legitimate user or an impostor in the
authentication stage. Based on our dataset, we evaluate the effective-
ness of optimal strategy and the performance of CAuSe. The experimen-
tal results demonstrate that the strategy of Time-Warping(0.6)+Time-
Warping(0.6) reaches the highest accuracy of 93.19% with data size 400
and CAuSe achieves the best authentication accuracy of 96.93%, respec-
tively, comparing with other strategies and classifiers.

Keywords: Continuous authentication · Auto augmentation search ·
CNN · LOF classifier

1 Introduction

The mobile devices have played an essential role in our daily lives, which makes
privacy protection in mobile devices extremely important, since they store a lot
of private and sensitive information. Even since 2011, sales of smartphones have
exceeded sales of personal computers [2]. However, due to the high-frequency
usage and information interaction of these devices (e.g. smartphones), it is dif-
ficult to prevent personal information leakage and illegal access by the one-time
authentication that identifies users only at the time of initial logging-in, such
as personal identification numbers (PINs), passwords, voice-prints, fingerprints
and face recognition. PINs face a much serious threat of online guessing and
even longer PINs only attain marginally improved security [3,26]. Wang et al.
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systematically characterized typical targeted online guessing attacks with seven
sound mathematical models, each of which was based on varied kinds of data
available to an attacker [27]. Biometric information cannot be acquired by direct
covert observation, but once biological information is stolen, it is not naturally
available to reissue [22]. For example, fingerprint recognition can be cracked by
people with ulterior motives obtaining legitimate users’ fingerprints left on the
screen. In addition, there is a severe security and privacy threat in one-time
authentication mechanisms that when a legitimate user leaves the supervision
of the device after the initial authentication (the screen is unlocked), impostors
can easily gain access to the device illegally.

Compared with the traditional one-time authentication mechanisms, contin-
uous or implicit authentication approaches would provide an additional line of
defense by designing a non-intrusive and passive security countermeasure [9]. The
current continuous authentication mechanisms essentially use built-in sensors and
accessories to frequently collect physiological or behavioral biometrics to identify
the legitimacy of the user, such as voice [8], face patterns [1], touch gestures [28],
typing motion [10] and gait dynamics [21]. There are two main stages for continu-
ous authentication systems: user registration phase and continuous authentication
phase. During the user registration phase, owners of mobile devices are usually
asked to perform some operations to collect information to recognize the owners.
During the continuous authentication phase, the system collects the user’s sensor
readings at regular intervals to determine whether the current user is the device
owner. If the system finds that the current user is an illegal user, the system will
lock the device to prevent the owner’s privacy from leaking. The accelerometer,
gyroscope, and magnetometer are the three most commonly used sensors for col-
lecting behavioral biometrics without users’ notice. Both accelerometer and gyro-
scope are motion sensors that can monitor the users’ motion on the device. Magne-
tometer is a position sensor used to determine the physical position of the device
in the true frame of reference. However, in order to obtain a high-performance
continuous authentication model, it is often necessary to collect a large amount
of high-quality data for training models, which costs lots of time and resources.
Data augmentation methods, such as flipping, cropping, color dithering and gen-
erative adversarial networks (GANs), are very common techniques in the field of
image recognition, which help cover unexplored input space, prevent overfitting
and improve the generalization ability of classification model. However, there are
currently few data augmentation methods specifically for time-series sensor data
because time-series sensor data are quite different from image data and most of
the current data augmentation methods cannot be used to create time-series data
directly. Since the sufficient amount of sensor data collection needs lots of vol-
unteers to participate, it is challenging to augment time-series sensor data. More-
over, for specific applications, artificially constructing features for time-series sen-
sor data often requires a lot of prior expert knowledge. It is also challenging to
extract features with high representation capacity on time-series sensor data.

To address the challenges of data shortage and feature contribution, we are
among the first to utilize the auto augmentation search to find an optimal
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data augmentation strategy for CNN training and design a CNN-based deep
feature extraction method consisting of feature learning and feature selection.
In this paper, we present CAuSe, a CNN-based Continuous Authentication
on smartphones using Auto Augmentation Search. Specifically, CAuSe con-
sists of five modules: data collection, auto augmentation search, feature extrac-
tion, classifier training and authentication. The process of CAuSe includes three
stages of the offline stage, registration stage, and authentication stage. In the
offline stage, CAuSe collects time-series sensor data of the accelerometer, gyro-
scope, and magnetometer, and then utilizes auto augmentation search on the
collected sensor data to find an optimal data augmentation strategy. In the
registration stage, CAuSe applies the optimal augmentation strategy on the col-
lected sensor data, uses the designed CNN to learn and extract deep features
from the augmented data, and trains the local outlier factor (LOF) classifier
after 95 deep features are selected by principal component analysis (PCA).
In the authentication stage, based on the sampled sensor data, CAuSe uses
the trained CNN to learn and extract features and utilizes the trained LOF
classifier to conduct the authentication based on the 95 PCA-selected fea-
tures. Based on our dataset, we evaluate the effectiveness of auto augmenta-
tion search and the corresponding optimal strategy and the performance of
CAuSe. The experimental results demonstrate that the augmentation strategy of
Time-Warping(0.6)+Time-Warping(0.6) reaches the highest authentication per-
formance with the 93.19% accuracy, 93.77% F1-score, and 3.9% EER with data
size 400, and CAuSe achieves the best accuracy of 96.93% with the LOF classifier
on 95 PCA-selected features, respectively, comparing with other augmentation
strategies and classifiers.

The main contributions of this work are summarized as follows:

– We present CAuSe, a CNN-based continuous authentication on smart-
phones using auto augmentation search, leveraging the smartphone built-in
accelerometer, gyroscope and magnetometer.

– We specially design a CNN for deep feature extraction and utilize the auto
augmentation search to find an optimal data augmentation strategy for CNN
training.

– We evaluate the effectiveness of auto augmentation search and the perfor-
mance of CAuSe, and the experimental results illustrate that the searched
augmentation strategy reaches the highest accuracy (93.19%) with data size
400, and CAuSe achieves the best authentication accuracy (96.93%), respec-
tively.

The remainder of this work is organized as follows: Sect. 2 reviews the state-
of-the-art on continuous authentication. We elaborate the architecture of CAuSe
in Sect. 3 and evaluate the performance of the optimal strategy and CAuSe in
Sect. 4. Section 5 concludes this work.
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2 Related Work

In this section, we review the state-of-the-art of the continuous authentication
systems, time-series data augmentation methods and auto augmentation meth-
ods, respectively.

2.1 Continuous Authentication System

In the field of continuous authentication, high-precision discrimination results
are often inseparable from an efficient system framework. In recent years,
researchers have creatively designed well-performed continuous authentication
systems based on different data sources [20]. The mainstream continuous authen-
tication solutions are broadly composed of two phases: registration phase and
authentication phase. During the registration phase, these systems extract fea-
tures from the collected datasets and train classifiers with labeled features.
During the authentication phase, these systems utilize the trained classifiers
to classify features that are extracted from unidentified users’ data. Considering
that different types of touch operations may contain quite different characteris-
tics, the authors in [28] designed specific features for different touch operations,
and then adopted the trained classifiers for authentication. Z. Sitová et al. [23]
designed hand movement, orientation and grasp behavioral features based on
sensor readings from smartphones, then trained and tested one-class classifiers
after feature selection. Mahbub et al. [19] trained a linear SVM with statisti-
cal features obtained from face proposals that were derived from the estimated
faces in their designed system. In [5], the authors proposed a continuous motion
recognition system that was based on motion data from the accelerometer, gyro-
scope and magnetometer. They used a Siamese convolutional neural network to
learn deep features, and then trained the one-class SVM with learned features
of the legitimate user, to predict new observations. In [13], Li et al. proposed a
two-stream convolutional neural network for feature learning in the continuous
authentication system which was based on bottleneck structure of Mobilenet v2,
with both time domain data and frequency domain data of the accelerometer
and gyroscope as the network inputs.

Inspired by the above contributions, we design an efficient CNN-based con-
tinuous authentication system which can achieve very close performance with
few sampled sensor data for training using time-series data auto Augmentation
technology.

2.2 Time-Series Data Augmentation Method

In the image recognition field, data augmentation can be implemented by label-
ing the same labels for images obtained by performing operations, such as scaling,
cropping, jittering and flipping on raw images. However, in the time-series data
field, such as sensor data, there are few data augmentation approaches proposed.
In [25], the authors were among the first to exploit geometric transformation,
such as permutation, sampling, scaling, cropping and jittering, as sensor data
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Fig. 1. CAuSe architecture.

augmentation approaches, which were different to those in image augmentation.
DeVries et al. [7] used a sequence autoencoder to project data into feature space
and investigated augmentation techniques in the feature space.

Data augmentation with generative adversarial networks (GANs) has
attracted some researchers’ attentions recently. Zhu et al. [31] proposed an emo-
tion classification system using data augmentation with a cycle-consistent adver-
sarial network (CycleGAN) and Luo et al. [17] trained a conditional Wasserstein
generative adversarial network (WGAN) with electroencephalography (EEG)
data to generate additional data for data augmentation. In [24], the authors
investigated the possibility of using GANs to augment time-series Internet of
Things (IoT) data. In [12], the author investigated five sequential data augmen-
tation techniques (additional Gaussian noise, masking noise, signal translation,
amplitude shifting, and time stretching) including sample-based and dataset-
based methods to improve the intelligent fault diagnosis accuracy.

2.3 Auto Augmentation Method

Since the current data augmentation implementations are almost manually
designed [7,25], researchers prefer to apply one or several fixed data augmenta-
tion methods based on their experience for most datasets, although there the-
oretically exists an optimal data augmentation method for a specific dataset.
Cubuk et al. [6] first proposed the concept of auto augmentation, which auto-
matically searched optimal augmentation policies from data to improve valida-
tion accuracy. Their search algorithm (implemented as a RNN controller based
on Reinforcement) sampled thousands of policies to train a child model to mea-
sure the performance of the generalization improvement, and then updated the
augmentation policy distribution with a reward signal. Despite its promising
empirical performance, this scheme was difficult to apply because it was very
expensive with time-consuming calculation in the whole process. Lin et al. [16]
formulated the augmentation policy as a parameterized probability distribution,
thus allowing the augmentation policy probability distribution parameters to be
optimized along with the network parameters simultaneously. Based on a bilevel
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framework, this solution eliminated the need of re-training model after optimal
augmentation policy search and achieved comparable performance with dozens
of times faster than [6]. In [15], the authors proposed a fast auto augmentation
algorithm to find effective augmentation policies via a more efficient search strat-
egy based on density matching. Moreover, [29] proposed effective optimization
algorithms to reduce the computational burden and time consumption of auto
augmentation.

3 CAuSe Architecture

In this section, we present the architecture of CAuSe, the CNN-based continuous
authentication on smartphones with auto augmentation search, as illustrated in
Fig. 1. As shown in Fig. 1, CAuSe consists of three stages: the offline stage,
registration stage, and authentication stage.

In the offline stage, CAuSe collects time-series sensor data and then utilizes
auto augmentation search on the collected sensor data to find an optimal data
augmentation strategy for CNN training data augmentation in the registration
stage. First, we recruit volunteers to use smartphones equipped with sensor
data collection tools to collect sensor data of the accelerometer, gyroscope and
magnetometer. Then, we perform preprocessing operations on the collected time-
series sensor data, and based on the preprocessed data, we conduct the auto
augmentation search to obtain an optimal augmentation strategy.

In the registration stage, CAuSe applies the optimal augmentation strategy
on the collected sensor data, uses the designed CNN to learn and extract deep
features from the augmented data, and trains the local outlier factor (LOF)
classifier after 95 deep features are selected by PCA. Specifically, the owner (the
legitimate user) is required to operate on the smartphone to collect data of the
accelerometer, gyroscope and magnetometer. Then, we use the optimal augmen-
tation strategy to augment the collected sensor data including the legitimate
user’s for feature extraction. We specially design a CNN based on Shufflenet V2
[16] to learn and extract deep features from the augmented sensor data. 95 deep
features are selected by PCA and then used to train the LOF classifier.

In the authentication stage, based on the sampled sensor data, CAuSe uses
the trained CNN to learn and extract features and utilizes the trained LOF
classifier to conduct the authentication based on 95 features selected by PCA.
If the user is a legitimate user, CAuSe will allow the continuous usage of the
smartphone and meanwhile continuously authenticate the user; otherwise, it will
require the initial login inputs.

3.1 Data Collection and Preprocessing

Data Collection. The accelerometer and gyroscope are motion sensors, and
they can capture the motion patterns of the devices. The magnetometer is a
position sensor that records changes in the physical position of the devices. The
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three sensors are widely equipped on the modern smart devices. Considering the
above advantages, we select the accelerometer, gyroscope, and magnetometer to
collect the data for user continuous authentication.

In order to collect the sensor data for CAuSe, we recruited 88 volunteers
(44 male and 44 female) to operate on 10 Samsung Galaxy S4 smartphones,
each of which was installed a designed virtual keyboard. They were required
to participate in 8 sessions, and they used the virtual keyboard to answer 3
questions in each session. For each answer, they entered 250 characters at least.
During their operations, we collected data on the three axes of the accelerometer,
gyroscope and magnetometer with a sampling rate of 100 Hz.

Data Preprocessing. Since the collected raw sensor data are long time-series
streams, we use a sliding window to perform non-repetitive sampling, each con-
taining 2 s-sensor data. In a sliding window, each row represents the sampled
sensor data, and each column indicates the x, y, and z axes of a sensor. In order
to enable the time-series sensor data to be used as the inputs of a CNN with
shape = (H,W,C), we adaptively change the shape of the collected data. Specif-
ically, the three sensor data are regarded as three channels (C), and the rows and
columns of the sliding window correspond to H and W , respectively. Ignoring
the error in the sampling process and according to the sampling frequency, it
can be inferred that H = 200.

We divide the 88 volunteers’ data into three groups (88 users with 3000 win-
dows): 68 users with 2000 windows Dlearning for CNN training, 68 users with
1000 windows Dpositive as legitimate users’ testing dataset for feature extraction
and classifier training, and 20 users with 3000 windows Dnegative as impostors’
testing dataset for feature extraction and classifier training. Dlearning are fit-
ted and transformed by RobustScaler in Python library sklearn.preprocessing,
which ignores outliers in the dataset. Dpositive and Dnegative are transformed
by the same RobustScaler, so that the three groups of data can be consistently
normalized for data augmentation.

3.2 Auto Augmentation Search

Search Space. For images, there is spatial correlation among the pixels and
other pixels around them, while for sensor data, there is temporal correlation
among samples. Therefore, we design specific data augmentation strategies that
consider the possible invariant geometric transformation of sensor data in time
series. For each input of CNN training sensor data, we sample an augmenta-
tion strategy from the search space and apply. Each augmentation strategy is
composed of two augmentation methods.

We design the candidate augmentation methods for sensor data:

1) Rotation: When users operate on mobile devices, the devices are likely to
be flipped or rotated at a certain angle. Accordingly, the x, y, and z axes
of the sensors on the devices rotate at the same angle corresponding to the
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Cartesian coordinate system. In order to simulate this, we design a rotation
method, which rotates the x, y, and z axes of the sampled sensor data by
multiplying a rotation matrix to obtain angles of (−π/3, −π/6, −π/12, π/3,
π/6, π/12).

2) Jittering: Noise can be introduced in the process of sensor data collection
which might be caused by environmental disturbance. Jittering function adds
a noise matrix generated by a normal distribution with standard deviations
of 0.05, 0.25, and 0.5 to the sampled sensor data. Note that we ignore the
injection attacks in jittering augmentation [11].

3) Scaling: Scaling function multiplies the x, y, and z axes of the sampled
sensor data separately by scale factors generated by a normal distribution
with standard deviations of 0.05, 0.1, and 0.2.

4) Permutation: Since the segmentation position of the fixed window is arbi-
trary for sensor data collected in a period of time, the position of the event
implied in the sub-window in the whole window is meaningless. Permutation
function segments the whole sample window to 4, 5, or 8 sub-windows by
rows to perturb the temporal location of within-window events.

5) Magnitude-Warping: We sample values from a normal distribution with
standard deviations of 0.2, 0.4, 0.6, feed them to scipy.interpolate.cubicSpline
to generate three random smooth curves corresponding to x, y, and z axes,
and finally convolute them with the sampled sensor data.

6) Time-Warping: Time-Warping function utilizes the aforementioned smooth
curves and one dimensional linear interpolation to perturb the temporal loca-
tion smoothly.

7) Cropping: Cropping can diminish the dependency on event locations. In the
cropping function, we randomly select different numbers of window rows (e.g.
10, 20, or 30) and set values of these selected window rows to 0.

Seven augmentation functions with specific magnitude parameters make up
a total of 24 augmentation methods. In our designed augmentation strategy
search space, each augmentation strategy consists of 2 augmentation methods
orderly and repeatable. In other words, there are totally 242 strategies in the
augmentation strategy search space.

Search Pipeline. Inspired by Lin et al.’s work [16], we adapt distribution
optimization to the continuous authentication area to search an optimal data
augmentation strategy for time-series sensor data. As mentioned, since each
augmentation strategy consists of two augmentation methods and there are 24
augmentation methods in total, there are 242 strategies in the designed aug-
mentation strategy search space. Thus, we first initialize a 242 matrix sampled
from a uniform distribution as the augmentation probability distribution θ. The
probability of the kth augmentation strategy pθ can be formulated as:

pθ(Sk) =
1

1+e−θk

∑K
i=1

1
1+e−θk

(1)
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where θ ∈ RK , and Sk indicates the kth data augmentation strategy candidate.
Next, we perform the auto augmentation strategy search. We take an epoch

t of total T epochs in model training process. Each input will be applied with
a randomly chosen augmentation strategy for each batch b of total B batches.
Since the validation accuracy acc(w∗) of the network model is only decided
by the optimal network model parameters w∗ and the model training process
is only influenced by the augmentation strategies applied to each input, the
augmentation probability distribution matrix θ is defined as a variable matrix
with gradient about the network model parameters w∗. However, it is a tricky
problem to calculate the gradient of validation accuracy acc(w∗) with respect
to θ. To approximate the gradient, we execute the following steps four times for
epoch t:

1) Sample and apply an augmentation strategy for each input, train the network
model with augmented inputs, obtain the validation accuracy w′, and record
the network parameters;

2) Make gradient back propagation for θ, update values of θ, and then clear the
gradient of θ;

3) Save the network parameters with the highest w′ as the initial network param-
eters for next epoch.

Based on the reinforcement learning and Monte-Carlo sampling, at the end
of epoch t, the cumulative gradient can be approximately formulated as:

∇θΓ (θ) ≈ 1
N

N∑

n=1

I×B∑

j=1

∇θlog(pθ(Sk(j),n))acc(w, n) (2)

where N denotes the total times of network training and acc(w, n) indicates the
validation accuracy of the nth network. Network parameters with the highest
validation accuracy will be broadcast to the network before the next epoch. After
sufficient epochs of parameters updates, the augmentation probability distribu-
tion converges. The augmentation strategy with the highest probability is the
optimal augmentation strategy we search. Note that the network model archi-
tecture is the same to the designed CNN architecture.

3.3 Feature Extraction

In this section, we design a CNN-based deep feature extraction method, which
consists of feature learning and feature selection. In the following, we first elab-
orate the design of the CNN and then detail the CNN-based feature extraction.

CNN Design. We design the architecture of the CNN inspired by Shufflenet
V2 [18], as illustrated in Table 1, for auto augmentation search, feature learning
and extraction. As demonstrated in Table 1, the designed CNN is composed of
a 2D convolutional layer (Conv2d), a 2D max pooling (MaxPooling2d), a stack
of Shufflenet V2 units grouped into three stages (Stage 1, Stage 2, and Stage 3),
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Table 1. CNN architecture.

Layer Output # Kernel KSize Stride Parameter Repeat

Sensor 200 × 3 × 3 – – – – –

Conv2d (BN+ReLU) 100 × 3 × 24 24 3 × 3 (2,1) 672 1

MaxPooling2d 50 × 3 × 24 – 3 × 3 (2,1) – 1

Stage 1 25 × 3 × 48 48 – (2,1) 2760 1

25×3×48 48 – (1,1) 1728 × 3 3

Stage 2 13 × 3 × 96 96 – (2,1) 8976 1

13 × 3 × 96 96 – (1,1) 5760×7 7

Stage 3 7 × 3 × 96 192 – (2,1) 31776 1

7 × 3 × 96 192 – (1,1) 20736 × 3 3

Conv2d (BN+ReLU) 7 × 3 × 1024 1024 1 × 1 (1,1) 197632 1

GlobalAveragePooling2d 1 × 1× 1024 – 7×3 – – 1

Dense CN×1 – – – 69700 1

another Conv2d, a 2D global average pooling (GlobalAveragePooling2d), and
a dense layer. We adopt BN and ReLu right after each Conv2d. In addition,
Stages 1, 2, and 3 are composed of the building blocks of a basic unit followed
by several basic units for spatial down sampling. ‘CN’ represents class number
for CNN training (class num).

Feature Learning. Based on the optimal strategy obtained from the offline
stage, Dlearning are augmented in the registration stage. As illustrated in Table 1,
with the augmented data, there are 1800 (3 sensors × 2 s × 100Hz × 3 axes)
samples in a 2s-sliding window. The first Conv2d layer with 24 filters of 3×3 and
stride of (2,1) followed by a MaxPooling2d with kernel size of 3×3 and stride of
(2,1), aims to make down sampling and increase channels. Then, three stages of
a basic unit with stride (2,1), and several units for spatial down sampling with
stride (1,1) are applied, where Stage 1 repeats 3 times of the unit for spatial down
sampling, Stage 2 repeats 7 times, and Stage 3 repeats 3 times. Next, there is
another Conv2d layer with 1024 filters of 1 × 1 and stride of (1,1) followed by
a GlobalAveragePooling2d layer and a dense layer. The total parameters of the
designed CNN are 419,228 and the second Conv2d layer contributes the most
parameters (19,7632 parameters). The outputs of the GlobalAveragePooling2d
are deep features learned from the sensors of the accelerometer, gyroscope and
magnetometer.

Feature Selection. We use the principal component analysis (PCA) to select
appropriate number of deep features for the classifier based on the CNN-
extracted features. Based on the experiments in Sect. 4.2, PCA selects 95 deep
features for the LOF classifier to conduct the authentication.
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3.4 Authentication with LOF Classifier

With the 95 PCA-selected deep features, CAuSe utilizes the local outlier factor
(LOF) classifier to identify users. LOF measures the local deviation of the data
point to its neighbors, which decides whether a data point is an outlier using
the anomaly score estimated by k-nearest neighbors based on a given distance
metric. A data point with a substantially lower density than its neighbors will
be regarded as an outlier [4].

In the registration stage, CAuSe generates the legitimate user’s profile from
the training data and the LOF classifier is trained by PCA-selected deep features.
In the authentication stage, the trained LOF classifier classifies the PCA-selected
deep features from the sampled sensor data. Based on the trained classifier and
the sampled data while using the device, CAuSe authenticates the current user
as a legitimate user or an impostor. If the user is a legitimate user, CAuSe
will allow the continuous usage of the smartphone and meanwhile continuously
authenticate the user; otherwise, it will require the initial login inputs.

4 Performance Evaluation

In this section, we start with experimental settings, then investigate the perfor-
mance of CAuSe in terms of optimal feature number, and evaluate the effective-
ness of auto augmentation search and optimal strategy, respectively.

4.1 Experimental Settings

Network Model Training. With the inputs of Dlearning, 80% of the data are
used for training and the rest 20% for testing, with a batch size of 128. We use
the cross entropy as the loss function and the stochastic gradient descent (SGD)
optimizer to update the learning rate. The initial learning rate is 0.2, and it
complies with an exponential decay of decay step = 1000 and decay rate = 0.96.
If the lowest validation loss remains for 10 continuous epochs or the network
training process exceeds 150 epochs, the training process stops. The network
with the lowest loss is used as the trained model.
Auto Augmentation Strategy Search. The parameters of the augmentation
distribution initialize as a 24 × 24 matrix with initial values from a uniform
distribution. We use Adam optimizer with learning rate 0.05, β1 = 0.9, β2 =
0.999, weight decay = 0. The distribution parameters are updated 150 times
in total.
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Table 2. Accuracy (SD) % for different classifiers with varying feature numbers

Classifier\Number 5 35 55 75 95 115 135 155 175 195

OC-SVM 91.27 94.58 93.45 90.57 86.55 81.97 77.24 72.90 69.14 66.00

(4.10) (2.53) (1.98) (1.95) (2.13) (2.58) (2.78) (3.26) (3.68) (4.11)

IF 87.25 93.26 94.71 95.28 95.68 95.95 96.03 95.96 95.80 95.58

(7.17) (4.07) (3.32) (2.90) (2.49) (2.15) (1.92) (1.80) (1.78) (1.77)

LOF 80.69 92.51 94.45 95.40 96.93 96.79 96.66 96.38 95.97 95.77

(11.44) (5.91) (3.93) (2.84) (1.80) (1.92) (2.05) (2.10) (2.38) (2.48)

Classifier Training. To train the LOF classifier, we randomly select 1 legit-
imate user from Dpositive for 20 times. With the 1000-window data, we use
10-fold cross validation to obtain 900-window training dataset and 100-window
positive testing dataset. We also randomly select 100-window from Dnegative as
the negative testing dataset.
Evaluation Metric. We utilize three evaluation metrics: accuracy, F1-score,
EER to evaluate the effectiveness of CAuSe. Accuracy is the percentage ratio
of the total number of correct authentication against the total number of
authentication, defined as: Accuracy = TP+TN

TP+TN+FP+FN . F1-score is defined as:
F1 = 2TP

TP+FP+FN . EER is the point where FAR equals to FRR.

4.2 Feature Number and Classifier Parameter

We conduct experiments to investigate classifier selection and optimal feature
number selected by PCA. We consider three classifiers of OC-SVM, IF, and LOF
for classifier selection and vary feature numbers for optimal feature number. We
compute the accuracy (standard deviation) of CAuSe with the three classifiers
as the feature number increases from 5 to 195, as tabulated in Table 2. As shown
in Table 2, the accuracy gradually increases with the feature number growing
until an optimal number and then slightly decreases for all the classifiers. For
OC-SVM, 35 features selected by PCA reach the best accuracy of 94.58% and
for IF, 135 features achieve 96.03% accuracy. However, LOF with 95 features
selected by PCA reaches the highest accuracy of 96.93% and the lowest SD of
1.80%. Therefore, we use PCA to select 95 deep features for the LOF classifier.

In addition, based on the optimal numbers of features, we utilize the grid
search to seek the best parameter combinations for classifiers of the OC-SVM,
IF, and LOF. We list the classifiers, number of features, and optimal parameter
combination in Table 3. As shown in Table 3, the LOF classifier with 95 deep
features obtains the optimal parameters of n neighbors = 800 and p = 1.
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Table 3. Optimal parameter combinations

Classifier # Feature Optimal parameter combination

OC-SVM 35 μ = 0.0001, γ = 0.015625

IF 135 n estimators = 900

LOF 95 n neighbors = 800, p = 1

Table 4. Row and column corresponding to the optimal augmentation strategy

Epoch 0–2 3–4 5 6 7 8–10 11–16

(Row, column) (7,5) (13,22) (6,22) (5,16) (7,14) (17,2) (7,14)

Epoch 17–19 20–26 27–45 46–92 93–107 108–130 131–149

(Row, column) (5,1) (7,14) (16,14) (13,22) (20,20) (13,22) (20,20)

4.3 Auto Augmentation Search

We select dataset D100
learning with 100-window

Fig. 2. Marginal distribution
of augmentation operations.
(Color figure online)

per user from Dlearning to conduct the evalu-
ation of the auto augmentation search, due to
the limitations of computer memory and GPU.
In the auto augmentation search, we instantiate
the augmentation distribution parameters as a
24×24 matrix and save the corresponding matrix
for each epoch. Based on the saved matrices, we
sum the rows of each matrix, normalize all rows
for each epoch, and visualize rows varying with
the epoch grows. We calculate the marginal dis-
tribution of parameters of the first augmentation
method of each strategy, as illustrate in Fig. 2. As illustrated in Fig. 2, the deeper
the red, the closer the probability of the method is to 1, and the deeper the blue,
the closer the probability is to 0. As the search progresses, the edge probability
of each method either converges to 0 or 1. When the search is complete, the
edge probability of the method in rows of 4, 6, 10, 17, 18, and 21 is higher. From
Fig. 2, it can be seen that during random training, the parameter values of some
augmentation methods gradually increase while others gradually decrease, which
indicates that some augmentation methods are abandoned while the probability
of other augmentation methods is increasing.

In addition, after updating the parameters of the augmentation probabil-
ity distribution at the end of each epoch, we calculate the probability for each
augmentation strategy by Eq. (1) and record the row and column of the corre-
sponding optimal augmentation strategy, as shown in Table 4.

It can be seen that during the training process, with the update of the proba-
bility distribution parameters, the optimal strategy (the strategy with the high-
est probability) is also constantly changing, and at the end of the training, a
row and a column (20, 20) of the optimal strategy for local convergence can be
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Table 5. Optimal parameter combinations

Network Accuracy F1-score EER

Network without augmentation 85.37 (7.61) 87.54 (5.71) 7.87 (3.59)

Network searched by auto augmentation 88.88 (6.64) 90.24 (5.29) 6.50 (3.38)

Table 6. Accuracy (SD) % on Different Strategies with Varying Data Sizes

Strategy\Data size 60 80 100 200 400

No augmentation 56.77 (6.33) 54.67 (3.90) 85.37 (7.61) 90.06 (5.95) 92.14 (5.31)

Rota-3+MagnWarp0.2 79.32 (8.18) 81.45 (8.10) 82.61 (7.53) 85.10 (8.20) 90.11 (6.02)

Perm8+Rotate12 84.34 (7.65) 86.75(6.93) 85.79 (7.39) 87.49 (7.36) 89.50 (7.02)

TimeWarp0.6+Perm2 87.99 (6.98) 88.05 (6.43) 89.59 (6.15) 90.76 (6.58) 92.47 (5.49)

Our strategy 88.65 (7.40) 88.70 (7.51) 91.12 (5.69) 91.89 (5.33) 93.19 (4.85)

Table 7. F1 Score (SD) % on different strategies with varying data sizes

Strategy\data size 60 80 100 200 400

No augmentation 68.89 (3.34) 68.43 (2.09) 87.54 (5.71) 91.16 (4.80) 92.87 (4.37)

Rota-3+MagnWarp0.2 83.18 (5.74) 84.68 (5.82) 85.46 (5.52) 87.40 (5.98) 91.23 (4.84)

Perm8+Rota12 86.73 (5.50) 88.55 (5.27) 87.82 (5.50) 89.18 (5.70) 90.79 (5.48)

TimeWarp0.6+Permu2 89.55 (5.44) 89.52 (5.02) 90.76 (4.94) 91.78 (5.27) 93.19 (4.53)

Our strategy 90.12 (5.78) 90.16 (5.70) 92.00 (4.70) 92.64 (4.39) 93.77 (4.09)

Table 8. EER (SD) % on different strategies with varying data sizes

Strategy\data size 60 80 100 200 400

No Augmentation 39.12 (10.61) 37.79 (10.32) 7.87 (3.59) 5.62 (2.82) 4.65 (2.66)

Rota-3+MagnWarp0.2 10.06 (3.77) 9.72 (4.26) 8.62 (3.82) 6.65 (3.24) 5.34 (3.00)

Perm8+Rota12 9.07 (4.29) 7.43 (3.34) 7.90 (3.58) 6.39 (3.31) 5.51 (2.87)

TimeWarp0.6+Perm2 7.21 (3.80) 6.73 (3.12) 6.53 (3.28) 5.24 (2.98) 4.35 (2.73)

Our Strategy 6.67 (3.60) 6.64 (3.71) 5.68 (3.34) 4.99 (2.74) 3.90 (2.48)

obtained. It can be considered that Time-Warping (0.6) + Time-Warping (0.6)
is a relatively good augmentation strategy found in our dataset in the entire
search space with a CNN structure in Table 2 trained to converge. We also illus-
trate the continuous authentication performance of the network model trained
by auto augmentation search and the network model obtained by training the
same network structure without augmentation in Table 5.

4.4 Optimal Strategy

In the above experiments, we searched for an optimal strategy that located in the
20th row and 20th column of the probability distribution parameter matrix. The
optimal strategy is a strategy composed of two identical augmentation operations
Time-Warping(0.6)+Time-Warping(0.6). In order to demonstrate the superior-
ity of the strategy, we randomly select 3 strategies from the search space to
augment different size of data and compute the accuracy, F1-score and EER,
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Fig. 3. Accuracy, F1 score, and EER for different strategies with varying data sizes.

respectively. The corresponding results are tabulated in Tables 6, 7, and 8, and
are plotted in Fig. 3.

We can obtain observations from Tables 6, 7, and 8, and Fig. 3:

1) When there is no data augmentation, as the data size increases, the authen-
tication performance gradually improves, which indicates that the amount of real
data is positively correlated with the authentication performance.

2) When the data size comes to 100, the EERs for the strategies of
the Rotate(-3)+MagnitudeWarp(0.2) and Permutation(8)+Rotate(12) are even
higher than that without data augmentation strategy, which indicates that the
two strategies are relatively worse augmentation strategies.

3) On all data sizes, the strategy of Time-Warping(0.6)+Time-Warping(0.6)
achieves the best authentication performance on the accuracy (93.19%), F1 score
(93.77%), and EER (3.9%), which proves that the optimal strategy searched by
the proposed auto augmentation is optimal on different data sizes.

4.5 Comparison with Representative Schemes

We compare CAuSe to four representative continuous authentication schemes
with data augmentation approaches, as listed in Table 9. As illustrated in Table 9,
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Table 9. Comparison with representative schemes

Scheme Data source Data augmentation approach Accuracy

SensorAuth [13] Acc., Gyr. Perm., sample, scale, crop, jitter EER: 6.29% (dataset size 200)

EchoPrint [30] Face image Rotation BAC: 81.78% (vision features)

SensorCA [14] Acc., Gyr., Mag. Rotation EER: 3.7% (SVM-RBF)

HMOG [23] Acc., Gyr., Mag., Tou. HMOG with tap characteristics EER: 7.16% (walking)

CAuSe Acc., Gyr., Mag. Auto Augmentation Search Accuracy: 96.93% (LOF)

we show the data source, data augmentation approaches, and accuracy for all
the schemes with data augmentation. Specifically, SensorAuth explores five data
augmentation approaches of permutation, sampling, scaling, cropping, and jitter-
ing to create additional acccelerometer and gyroscope data and achieves an EER
of 6.29% with dataset size 200 by combining the five approaches [13]. EchoPrint
uses the projection matrix rotation imitating different camera poses to augment
new face images and obtains 81.78% balanced accuracy (BAC) with vision fea-
tures [30]. SensorCA applies matrix rotation on accelerometer, gyroscope and
magnetometer data to reach an EER of 3.7% on the SVM-RBF classifier [14].
HMOG augments HMOG features with tap characteristics (e.g. tap duration
and contact size) to obtain 7.16% EER for walking [23]. Different from these
continuous authentication schemes with data augmentation, CAuSe exploits the
auto augmentation search to find an optimal strategy for data augmentation of
the accelerometer, gyroscope and magnetometer, and achieves the best accuracy
of 96.93% on the LOF classifier.

5 Conclusion

To address the shortage of training data and improve the feature discriminabil-
ity, we propose CAuSe, a CNN-based continuous authentication on smartphones
using auto augmentation search, where the CNN is specially designed for deep
feature extraction and the auto augmentation search is exploited for finding the
optimal augmentation strategy. Although we take significant efforts to validate
the effectiveness of CAuSe, there are some limitations in this work: 1) power con-
sumption of CAuSe on smartphones, 2) impact of various attacks on CAuSe, and
3) privacy concerns on dataset collection and transportation. In future, we will
consider issues of the energy, privacy and security for continuous authentication
approaches.
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