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Preface

This volume contains papers that were selected for presentation and publication at the
23rd International Conference on Information and Communications Security (ICICS
2021), which was jointly organized by Chongqing University, Xi’an Jiaotong
University, and Peking University in China during November 19–21, 2021. ICICS is
one of the mainstream security conferences with the longest history. It started in 1997
and aims at bringing together leading researchers and practitioners from both academia
and industry to discuss and exchange their experiences, lessons learned, and insights
related to computer and communication security.

This year’s Program Committee (PC) consisted of 141 members with diverse
backgrounds and broad research interests. A total of 202 valid paper submissions were
received. The review process was double blind, and the papers were evaluated on the
basis of their significance, novelty, and technical quality. Most papers were reviewed
by four or more PC members. The PC meeting was held online with intensive dis-
cussion over more than two weeks. Finally, 49 papers were selected for presentation at
the conference giving an acceptance rate of 24%.

A “Best Paper Selection Committee” with five PC members of diverse backgrounds
from around the world was formed, which selected the two best papers after a lengthy
discussion. The paper “Rethinking Adversarial Examples Exploiting Frequency-Based
Analysis” authored by Sicong Han, Chenhao Lin, Chao Shen, and Qian Wang received
the Best Paper Award, while the paper “CyberRel: Joint Entity and Relation Extraction
for Cybersecurity Concepts” authored by Yongyan Guo, Zhengyu Liu, Cheng Huang,
Jiayong Liu, Wangyuan Jing, Ziwang Wang, and Yanghao Wang received the Best
Student Paper Award. Both awards were generously sponsored by Springer.

ICICS 2021 was honored to offer two outstanding keynote talks: “Engineering
Trustworthy Data-Centric Software: Intelligent Software Engineering and Beyond” by
Tao Xie and “Securing Smart Cars – Opportunities and Challenges” by Long Lu. Our
deepest gratitude to Tao and Long for sharing their insights during the conference.

For the success of ICICS 2021, we would like to first thank the authors of all
submissions and the PC members for their great effort in selecting the papers. We also
thank all the external reviewers for assisting the reviewing process. For the conference
organization, we would like to thank the ICICS Steering Committee, the general chairs,
Xiaohong Guan and Xiaofeng Liao, the publicity chairs, Qingni Shen, Qiang Tang, and
Yang Zhang, and the publication chair, Dongmei Liu. Special thanks to Tao Xiang for
the local arrangements. Finally, we thank everyone else, speakers, session chairs, and
volunteer helpers for their contributions to the program of ICICS 2021.

Last but not least, we wish to extend a huge thank you to healthcare frontliners and
our colleagues in the research of vaccine and immunization in fighting COVID-19.
ICICS 2021 could not have become one of the first mainstream security conferences
returning to an in-person setting without their enormous contribution.

November 2021 Debin Gao
Qi Li
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Keynotes



Engineering Trustworthy Data-Centric
Software: Intelligent Software Engineering

and Beyond

Tao Xie

Peking University

Abstract. As an example of exploiting the synergy between AI and software
engineering, the field of intelligent software engineering has emerged with
various advances in recent years. Such field broadly addresses issues on intel-
ligent [software engineering] and [intelligence software] engineering. The for-
mer, intelligent [software engineering], focuses on instilling intelligence in
approaches developed to address various software engineering tasks to
accomplish high effectiveness and efficiency. The latter, [intelligence software]
engineering, focuses on addressing various software engineering tasks for
intelligence software, e.g., AI software. However, engineering trustworthy
data-centric software (which AI software components are part of) requires
research contributions from compiler, programming languages, formal verifi-
cation, security, and software engineering besides systems and hardware. This
talk will discuss recent research and future directions in the field of intelligent
software engineering along with the broad scope of engineering trustworthy
data-centric software.



Securing Smart Cars – Opportunities
and Challenges

Long Lu

NIO

Abstract. As cars become more intelligent and connected, the security of on-car
systems, software, and data has caught heavy attention from academia, industry,
and regulators. This talk will discuss the key technical aspects of smart car
security, including low-level system security, secure and robust autonomous
driving, V2X security, data security, etc., highlighting the research and technical
opportunities and challenges.
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Abstract. The increasing popularity of blockchain-based cryptocurren-
cies has revitalized the search for efficient Byzantine fault-tolerant (BFT)
protocols. Many existing BFT protocols can achieve good performance
in fault-free cases but suffer severe performance degradation when faults
occur. This is also a problem with DiemBFT. To mitigate performance
attacks in DiemBFT, we present an improved BFT protocol with optimal
liveness called the Golden Snitch. The core idea is to introduce unbiased
randomness in leader selection and improve the voting mechanism to
protect honest leaders from being dragged down by the previous leader.
The performance of the Golden Snitch is evaluated through experiments,
turning out it outperforms DiemBFT in the presence of faults.

Keywords: Blockchain · Consensus · Byzantine fault tolerance ·
Randomness · Certificate

1 Introduction

With the advent of Bitcoin [21], cryptocurrencies have been growing in popu-
larity. The cryptocurrency protocol aims to reach a consensus on a distributed
real-time public ledger attacked by potential adversaries.

BFT Consensus. The existing consensus solutions are classified into two broad
categories: Nakamoto consensus and BFT consensus. BFT consensus is com-
monly used in the permissioned blockchain and has the good potential for sig-
nificant improvements in performance as opposed to Nakamoto consensus, espe-
cially with regard to transaction confirmation time, for transactions in BFT
consensus are finalized when enough votes are gathered several times. More-
over, a novel blockchain design approach hybridizes PoW with BFT in various
ways [1,7,17,22]. Such a hybrid design can accomplish higher performance and
scalability in comparison common Nakamoto consensus.

c© Springer Nature Switzerland AG 2021
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The study of consensus in the face of Byzantine failures [8] originated from
the Byzantine General problem [19]. Pease et al. [23] first came up with a syn-
chronous solution, which was then optimized by Dolev et al. [12] later, hav-
ing communication complexity as O(n3). In 1999, Castro et al. [10] developed
PBFT, an efficient leader-based Byzantine agreement protocol, whose stable
leader required O(n2) communication and view-change incurred O(n3) commu-
nication. PBFT has been deployed in multiple systems [6], followed by a series
of improved protocols, such as Zyzzyva presented by Kotla et al. [18].

BFT protocols were initially conceived as being deployed in a small-sized sys-
tem. A renewed focus on these protocols by their applications to the blockchain
would pose a challenge involving large-scale communications.

Many methods have been employed to reduce the cost of reaching a consensus
in BFT protocols [11,18,25]. More recently, Yin et al. proposed HotStuff [26] by
changing the mesh communication network in PBFT to the star-like communi-
cation network. It standardizes each phase to simplify the process of view-change
and results in the reduction of communication complexity. Besides, it pioneers
the chaining paradigm by adopting a brilliant but straightforward commit rule.
This idea has made great progress on BFT protocols recently and is adopted in
the Diem Blockchain [3,4] by Facebook.

In 2018, Facebook presented a consensus protocol DiemBFT for the Diem
Blockchain. DiemBFT is an instance of HotStuff, where the round duration is
about three times the network latency. DiemBFT instantiated the pacemaker
module of HotStuff through a timeout mechanism and a leader selection mech-
anism. Paralleling with Dfinity [15] and Algorand [14], DiemBFT injected ran-
domness into the leader selection mechanism by invoking the VRF.

In April 2020, Facebook released an updated version of DiemBFT, DiemBFT
2.0. In this version, validators send their votes to the leader of the next round
to accelerate the process of committing. It is a trick to further couple the vote
with the view-change, reducing the communication overhead in a round and
therefore causing a reduction in round duration - perhaps down to just twice the
network latency as soon as the leader is stable. Besides, DiemBFT 2.0 has had an
acute analysis of temporary forks in possible scenarios, where the safety is still
maintained as a consensus will be reached finally due to the fact that the fork
will be dismissed after several rounds. Moreover, it has been noticed that a leader
rotates among nodes in the new version, suggesting performance improvement
at the cost of randomness in leader selection. While predictable leaders are likely
to increase the system risk of forking, compromising the throughput.

Randomness. Introducing randomness in leader selection is proved to be a vital
component of BFT protocols [5,14,16]. The most commonly used algorithm to
generate random numbers in the existing BFT based blockchains is to invoke
a verifiable random function (VRF) [20]. There exists a general problem that
the adversary can cheat in the leader selection by selectively discarding blocks,
compromising the unbiasedness of random numbers. To mitigate this problem,
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a recent protocol HydRand [24] was proposed, which incorporates the publicly
verifiable secret sharing (PVSS) scheme to generate unbiased random numbers.

In Table 1, we summarize the main properties of the proposed work and
related works on BFT protocols.

Table 1. Comparison with related works.

Network Comm. complexity Randomness Bias-assistance

Algorand [14] Partial-sync O(n) VRF Biased

Ouroboros [16] Sync O(n3) PVSS Unbiased

RBFT [2] Async O(n3) – –

Hydrand [24] Sync O(n2) PVSS Unbiased

DiemBFT 2.0 [3] Partial-sync Sync O(n) – - -

the Golden Snitch Partial-sync Sync O(n) PVSS Unbiased

Design Challenge. Sending votes to the next leader causes two implicit com-
binations of messages. First, the leader collects the votes for the previous round
as well as proposes its proposal in the current round. Second, replicas send their
votes and the latest confirmation certificates known to them. Nevertheless, sev-
eral potential vulnerabilities must be considered as follows:

(a) “Waste Attack”. In the chaining paradigm, it is intuitive to allow replicas
to change their minds after the first vote while a consensus has not been
reached. Therefore, as analyzed in DiemBFT 2.0, the leader can fork the
chain at the previous two blocks, causing some uncommitted (but maybe
certified) blocks to be abandoned. The forking does causes a waste of blocks,
especially for those generated by honest leaders. Furthermore, if the leader
in the future round can be predicated, adversaries can attack through the
corruption of leaders in every other round to hinder the agreement process
by deliberately forking. This could compromise the throughput.

(b) “Being Dragged Down”. Operations such as proposal and confirmation of a
single block are launched by separate leaders. The leaders of two consecutive
rounds can be read as collaborators. If malicious leaders are allowed, the
worst case is that the previous leader is dragged down and the latter one.

We will elaborate on more details later in Sect. 3.

Our Contribution. Focusing on the potential aforesaid concerns, our proposed
consensus protocol, the Golden Snitch1, made several improvements on Diem-
BFT 2.0. Overall, the core idea is to optimize the performance of the protocol
by introducing unbiased randomness and resist potential malicious behaviors.
Specifically, the main contributions of this paper can be summarised as follows:
1 The Golden Snitch was originally created by writer J.K. Rowling in “Harry Potter”.

The Golden Snitch, often simply called the Snitch, is the third and smallest ball
used in Quidditch. It appears randomly on the court and moves very fast.
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(1) We analyzed DiemBFT and found that the adversary can impede the agree-
ment progress through continuous forks, as permitted by the rules.

(2) Given the inevitability of forking in the protocol that embraces the chaining
paradigm, we introduce unbiased randomness in leader selection. Similar to
Hydrand, we consider utilizing the PVSS scheme to provide continuous unbi-
ased random numbers with fault tolerance in the proposed leader selection
mechanism without increasing communication overhead.

(3) We elaborate on an enhancement called “veto certificate” to balance the
relationship between the two consecutive leaders to keep each leader iso-
lated and independent of others to a certain extent in order to differentiate
between their responsibilities in terms of cooperation.

(4) We report the experimental performance evaluation results in a comparison
between the Snitch and DiemBFT, showing that the Snitch outperforms
DiemBFT in the presence of faults.

Paper Structure. The remainder of this paper is organized as follows. We
present the preliminary knowledge in Sect. 2 and then analyze the limitation of
DiemBFT and overview the Snitch in Sect. 3. The Snitch is outlined in detail in
Sect. 4 and experiment results are presented in Sect. 5. Finally, we discuss the
scalability of the Snitch further and conclude the paper in Sect. 6. Noted that
the correctness properties, i.e., safety and liveness, of the Snitch are rigorously
proved in Appendix A as space is limited.

2 Preliminaries

We propose the Snitch in a permissioned setting. Assumed a system that is
equipped with at least 3f + 1 nodes {P1, . . . , Pn} to tolerate f faults. Faults
can behave arbitrarily and coordinate to take down the system. Nevertheless,
they cannot break cryptographic techniques, showing up as hash functions are
resistant to collision and signatures can not be forged. The Snitch proceeds in
rounds. In each round, there is a single designated leader (in fact, we typically
identify the leader with the round-number r as lr). Furthermore, we adopt the
partially synchronous model of Dwork et al. [13], in which there is a known delay
bound of message transmission after an unknown moment, called the global sta-
ble time (GST). Hence, the Snitch will provide safety all the time while assure
liveness when the system becomes synchronous. Specifically, we use the instance
of (f + 1, n) Scrape’s PVSS [9] as a common building block to generate ran-
domness. It allows a leader to share its secret value among n participants in the
system and then ensures that the f faulty nodes cannot collude to recover the
secret without requiring the collaboration of a correct node.

Next, in conjunction with two different types of sub-blockchain in Fig. 1(a)
and Fig. 1(b), we present several relevant terminologies in existing chain-based
BFT protocols [3,25,26].
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Block: The basic data structure is a block Br =< r,Dr, CCk,H(Br) >.
Transactions are batched into blocks with some predefined ordering as Dr.
Generally, we use parent(Br) to refer to the parent of Br and specify it as
parent(Br) = Bk(k < r). In fact, Br is chained to its parent block Bk via CCk.
H(Br) is the unique hash digest of Br.

Vote: Replica Pi sends a vote Vi(Br) =< H(Br),HCCi > while receiving
Br. H(Br) is the digest of Br and HCCi is the confirmation certificate in the
highest round the replica maintains, serving as the New-View message in PBFT.
Replicas also track the round of its latest vote as rv (i.e., round r + 2 in Fig. 1).

Confirmation Certificate: A confirmation certificate (CC) is a set of signed
votes for a block by a quorum of replicas, from n−f = 2f +1 (out of n = 3f +1)
distinct replicas. A block Br is certified if there exists CCr for it. Replicas
maintain the locked round rl that is defined as the round number of the second-
previous certified block. As presented in Fig. 1(a), replicas that contribute to the
generation of CCr+2 remember round r + 1 as the locked round.

Timeout Message: In the setup, the system initializes a maximum delay Δ
to ensure the duration of each round does not exceed a specific time. Each
replica maintains a local timer. The timer for round r is denoted by Timerr.
If replicas have not received any message from lr up to Timerr expired, they
would broadcast their signatures on r to each other.

Timeout Certificate: A timeout certificate (TC) is a set of timeout messages.
The generation of TCr implies that most replicas give up on round r and move
to round r + 1 (i.e., round r + 2 in Fig. 1(b)).

Vote Rules: To validate a proposal, replicas check its timeliness first according
to the following two constraints:

* Vote in strictly increasing rounds. Replicas vote for block Br, only if r > rv.
* Be consistent with the locked round. Replicas vote for block Br, only if the

round of parent(Br) is no less than rl .

Commit Rule: Take view-change into consideration, three consecutive polls
on a block are necessary for committing it. Accordingly, the commit rule in the
chaining paradigm can be interpreted as: a block is committed as soon as it has
been followed by three consecutive certified blocks.
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(a) CC

(b) TC

(c) VC

Fig. 1. Three manifestations of the
chain.

Fig. 2. An example of the waste attack.
(Color figure online)

3 Protocol Overview

This section shows our improvements on DiemBFT 2.0. These amelioration mea-
sures could have a real impact on liveness on the premise of ensuring safety.

Leader Selection. As discussed earlier, randomness is given greater importance
and forking makes it more necessary. According to Fig. 2, if an adversary can
corrupt f nodes selectively with the knowledge of the future leader, DiemBFT
will be progression-free for 2f rounds in the worst-case scenario.

The adversary attacks by corrupting the leader every other round. Without
generality loss, assuming that leaders in rounds m + 3,m + 5, . . . ,m + 2f + 1
are corrupted. In Fig. 2, CCm and CCm+1 are generated by the honest leaders
lm+1 and lm+2, for certifying blocks Bm and Bm+1. At this point, at least 2f +
1 replicas who contributed to the formation of CCm+1 remember m as their
locked round. Then the corrupted leader lm+3 forks the chain at block Bm, and
causes Bm+1 and Bm+2 to be abandoned. Replicas vote it because there is no
violation of the vote rules. Owing that Bm+3 is the highest certified block with
the generation of CCm+3, the honest leader lm+4 forms CCm+3 and extends the
tail of Bm+3 with Bm+4. Similarly, the corrupted leaders lm+2a+1 (2 � a � f)
still fork the chain at block Bm (the gray area in Fig. 2). Finally, the blocks
(marked in red box of Fig. 2) generated by honest leaders during 2f rounds after
round m will be wasted. And no block will be committed. What’s worse is that
this attack is difficult to detect, because they behave normally.

So it is dreadful if leaders in the future rounds are predicted, facilitating
attacks on the targeted leaders. Randomness has a pivotal role in Diem.

The Snitch uses PVSS as an underlying primitive to generate a consistent and
unbiased random number in each round for leader selection. Each node maintains
a roundup of the possible leader that would change regarding the discovery of
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malicious nodes. The set of nodes with leader candidacy is represented by Lr in
round r. It is stipulated that the leader should reveal the previously committed
secret value and attach the next commitment simultaneously as a preparation
for the subsequent selection. A corrupted leader may decide not to reveal its
secret in time. Therefore, replicas enter the reconstruction phase of PVSS where
they broadcast their decrypted secret shares and the corresponding correctness
proofs. Upon the receipt of f + 1 secret shares, the secret can then be recovered
to decide on the next leader lr+1.

Penalties are meted out to faults as they are being excluded from the eligible
set of leaders in future rounds. It is also be adapted to facilitate that temporarily
failed nodes could rejoin f + 1 rounds after publishing their fresh commitments.

Veto Certificate. Owing to the separation of the proposer and confirmer of a
block, the malicious leader can publish an invalid block to drag the next leader
down. If replicas simply fail to send votes for the invalid block proposed by leader
lr, it will be impossible for the leader lr+1 to collect enough votes. Therefore lr+1

will be forced to lead a timeout in round r + 1. This wastes an opportunity to
propose and deprives the innocent leader of candidacy.

It will be unfair for a leader to be punished for cooperating with a malicious
leader. To address it, we add a field Attitude in vote. Attitude is a Boolean
value filled with YES or NO on behalf of the opinion of the replica. To reject
the proposal, replicas send negative votes instead of being silenced. Likewise,
enough negative votes can form a veto certificate V Cr, identifying Br as an
invalid block (i.e., Br+2 in Fig. 1(c)) whose dataset would be passed over. In
this way, replicas advance to the next round without waiting for the timer to
expire, accelerating the protocol process. And balance is established between
independence and cooperation for leaders in two consecutive rounds.

4 The Golden Snitch Protocol

This section gives a complete and detailed description of the Snitch protocol.
On the whole, the Snitch proceeds in a pipeline of rounds, aiming to commit

blocks in sequence. There is a designated leader in each round to proposing a
block. Replicas send their potential positive votes or negative votes to the next
leader and enter the next round. As soon as a certificate is formed, the leader
of the next round publishes its proposed block that comes with the certificate it
forms. To ensure that the system can continue progress, if a quorum of replicas
suspects that the current leader is faulty, then a recovery occurs. Replicas obtain
the next leader through the proposed leader selection mechanism so that the next
leader will not be affected by the current leader.
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Fig. 3. The overview of the consensus process in the Snitch.

To gain more insight, the protocol is specified as operations triggered by mes-
sages or timer. Specifically, the system is initiated as shown in Algorithm 1. The
algorithms for replicas are defined as Algorithm 2 and Algorithm 3, describ-
ing how replicas perform in a round led by an honest leader or in a timeout
round respectively. The algorithm for the leader is presented in Algorithm 4. To
simplify the description, Table 2 lists the notations used later.

In the Snitch, it is assumed that the round segmentation rests on a leader’s
tenure. To make this same point a little more visually, Fig. 3 shows four rounds

Table 2. Notations used in Algorithms.

Notation Meaning

A All replicas

m All transmitted messages, e.g. block, vote, certificate

round(m) The round in which message m is generated

sharei(r) Pi’s decrypted share of the secret value committed by lr previously

MP The malicious proofs of corrupted leaders

FR() Random number generation function(used once in setup)

s Secret value

H() Cryptographic hash function

Dist() Secret share generation

Dec() Secret share decryption

Rec() Secret reconstruction

V erShare() Secret share verification

V erSig() Signature verification

V erData() Dataset verification



The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 11

of an example execution of the Snitch, where lr = Pr and l3 is faulty. In round 1,
l1 proposes Proposal1 that includes B1 and its revealed secret s1. Replicas then
send votes for B1 to l2. Next, l2 collects votes to generate the certificate (CC1 or
V C1) for B1 and proposes Proposal2. Replicas vote for B2 and move to round
3. While at round 3, l3 experiences a temporary disruption. Round 3 times out
and a reconstruction occurs. Replicas broadcast the decrypted secret shares to
recover the secret l3 committed before and advance to round 4. Therefore, l4
collects timeout messages to generate TC3 for round 3 and extends the chain.

4.1 Setup

For the setup, it is assumed that each participant Pi will be part of the set of
initial potential leaders L0. They mark a fixed genesis block as B0 and exchange
their public keys pki with commitments Com(si) to initial selected secrets.

It should be pointed out that they agree on the random beacon R0 that
becomes public knowledge only after the set of commitments was defined. R0 is
used to select the leader of round 1 that can be obtained via PoW, the method
in [16] and so on. After the first round, replicas enter rounds upon the receipt
of a certificate for the previous round.

4.2 Replicas Vote in an Honest Round

Advance to the Next Round. While receiving a proposal from lr, replicas
first validate its integrity and validity. The replica accepts the proposal provided
that it is constructed properly as 〈Propose,Br,MP,CCr−1, sl, Com(s′

l)〉σl
.

Then replicas stop Timerr and advance to round r + 1.

Process the Certificates Included in the Proposal. The local states of the
replicas are updated according to the received certificates as follows:

– Remove faulty nodes from Lr according to the VC or TC in MP , if MP �=⊥.
– Update rl it maintains and commit block by the commit rule if a CC occurs.

Algorithm 1: Setup - for the system:
1 r ← 0, L0 ← A, B0 ← GenesisBlock, (pki, ski) ← KeyGen(1λ)
2 for Pi ∈ A do
3 selects a secret si,
4 broadcasts (pki, Com(si)), where Com(si) ← Dist(si)

5 end

6 R0 ← FR(1λ)
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Algorithm 2: Vote - for the replica Pi:
1 Initialization:
2 l ← lr { the current leader is the leader of round r}
3 SSsl ←⊥ { set of decrypted secret shares for sl}
4 Lr−1 { set of potential leaders for round r }
5 Rr−1 { the random beacon in round r − 1}

6 on event 〈Propose, Br, MP, Cr−1, sl, Com(s′
l)〉σl

,
where Br = 〈r, Dr, CCk, H(Br)〉σl

7 if V erSig(pkl, σl) = 1 ∧ r > rv then
8 stop Timerr // update local states
9 if MP ⊥ then

10 Lr ← Lr−1

11 else
12 Lr ← Lr−1 − {lk+1, lk+2, . . . , lr−1}
13 end
14 if k > round(HCCi) then
15 HCCi ← CCk

16 if round(parent(Bk)) > rl then
17 rl ← round(parent(Bk))
18 if round(parent(Bk)) = k − 1 ∧ round(parent(Bk−1)) = k − 2 then
19 commit Bk−2

20

21

22 end
23 Rr = H(sl ‖ Rr−1), lr+1 = lRrmod|Lr| // vote for the block
24 if round(parent(Br)) � rl then
25 if V erData(Br) = 1 then
26 Vi(Br) = 〈V ote, H(Br), Y ES, HCCi〉σi

27 else
28 Vi(Br) = 〈V ote, H(Br), NO, HCCi〉σi

29 end
30 send Vi(Br) to lr+1, rv = r and start Timerr+1

31 end

32 end

Send Votes to the Leader in the Next Round. To make a vote for block
Br, it is necessary for replicas to obtain the leader lr+1 first. They select the
leader lr+1 from Lr, depending on the random beacon Rr that is computed from
Rr−1 and the secret sl revealed in proposal:

Rr = H(sl ‖ Rr−1) (1)

lr+1 = lRrmod|Lr| (2)

Then replicas check its validity, mainly from the following several aspects:

– Check whether the proposal is in a timely manner according to vote rules.
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– Check whether the digest of Br is computed correctly.
– Check the validity of Dr.

For a valid proposal, the replica constructs a positive or negative vote as
〈V ote,H(Br), Y ES/NO,HCCi〉σi

and sends to the leader lr+1 (Fig. 3, b, d).
As described before, the vote message also contains the highest confirmation

certificate HCCi the replica maintains, providing branch choices for leader lr+1

to extend. As the close of the polling, replicas update rv and start Timerr+1.

Algorithm 3: Recover - for the replica Pi:
1 Initialization:
2 l ← lr { the current leader is the leader of round r}

3 if Timerr expired then
4 sharei(r) ← Dec(ski, Com(sl)) // local timeout
5 send Recoveri(r) = 〈Recover, r − 1, sharei(r)〉σi

to A

6 end
7

8 on event Recoverj(r)
9 if V erShare (sharej(r), Com(sl)) = 1 then

10 SSsl ← SSsl ∪ σj

11 end
12 if |SSsl | = f + 1 then
13 sl ← Rec(SSsl) // recover the secret
14 lr+1 = lRrmod|Lr|, where Rr = H(sl ‖ Rr−1)
15 send Timeouti(r) = 〈Timeout, r, HCCi〉σi

to lr+1,

16 rv = r and start Timerr+1

17 end

4.3 Replicas Recover in a Timeout Round

The current leader is malicious or a benign crash are some reasons for a timeout.
Replicas can skip the timeout round and keep the proceedings remain unaffected.

Local Timeout Triggers the Recovery. The replica Pi moves into the recov-
ery phase when Timerr expired without receiving the proposal from lr. To this
end, Pi uses ski to compute its decrypted share sharei(r) from the commitment
that lr committed before and broadcasts Recoveri(r) to others (Fig. 3, e).

Recover the Secret and Inform the New Leader. After receiving more
than f + 1 decrypted shares for slr , replicas recover it consistently. Afterwards,
replicas send Timeouti(r) to lr+1 (Fig. 3, f), who is obtained from the recovered
secret. Similarly, replicas update rv and start Timerr+1, moving to round r +1.
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Algorithm 4: Propose - for the leader lr in round r:
1 Initialization:
2 l ← lr { the current leader is the leader of round r}
3 CCr−1 ←⊥ {set of positive votes for round r − 1}
4 V Cr−1 ←⊥ {set of negative votes for round r − 1}
5 TCr−1 ←⊥ {set of timeout messages for round r − 1}
6 MP ←⊥ {set of TC or VC }

7 select a new secret s′
l and computes Com(s′

l) ← Dist(s′
l)

8 on event Vi(Br−1) = 〈V ote, H(Br−1), Y ES, HCCi〉σi

9 CCr−1 ← CCr−1 ∪ σi // collect positive votes
10 if |CCr−1| = 2f + 1 then
11 send 〈Propose, Br, CCr−1, sl, Com(s′

l)〉σl
to A,

where Br = 〈r, Dr, CCr−1, H(Br)〉σl

12 sl ← s′
l

13 end
14

15 on event Vi(Br−1) = 〈V ote, H(Br−1), NO, HCCi〉σi

16 V Cr−1 ← V Cr−1 ∪ σi // collect negative votes
17 if |V Cr−1| = 2f + 1 then

18 CCk ←
(

argmax
Vi(Br−1)∈V Cr−1

{Vi(Br−1).round(HCCi)}
)

.HCCi

19 k ← round(CCk)
20 if k < r − 2 then
21 MP ← {Ck+1, Ck+2, . . . , Cr−2, V Cr−1}
22 end
23 send 〈Propose, Br, MP, V Cr−1, sl, Com(s′

l)〉σl
to A,

where Br = 〈r, Dr, CCk, H(Br)〉σl

24 sl ← s′
l

25 end
26

27 on event Timeouti(r) = 〈Timeout, r, HCCi〉σi

28 TCr−1 ← TCr−1 ∪ σi // collect timeout messages
29 if |TCr−1| = 2f + 1 then

30 CCk ←
(

argmax
Timeouti(r)∈TCr−1

{round(Timeouti(r).HCCi)}
)

.HCCi

31 k ← round(CCk)
32 if k < r − 2 then
33 MP ← {Ck+1, Ck+2, . . . , Cr−2, TCr−1}
34 end
35 send 〈Propose, Br, MP, TCr−1, sl, Com(s′

l)〉σl
to A,

where Br = 〈r, Dr, CCk, H(Br)〉σl

36 sl ← s′
l

37 end
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4.4 A Leader Proposes Proposal

In particular, l1 is only responsible for proposing B1 on the basis of B0 (Fig. 3,
a), given the fact that B0 is agreed upon as part of the setup for the protocol.
Later, lr(r > 1) is required to finish the following tasks (Fig. 3, c, g):

Commit to a New Secret. As a leader of round r, lr selects a new secret and
computes its commitment while revealing its old secret. The commitment will
be in public, containing n secret shares and the corresponding correctness proof.

Generate the Certificate. The leader lr also collects positive votes, negative
votes or timeout messages for round r − 1 and then forms the corresponding
certificate Cr−1 as CCr−1, V Cr−1, or TCr−1.

Propose its Proposal. There are different designs of the proposal depending
on the certificate for the previous round as follows:

CCr−1: With the formation of CCr−1, the leader lr extends the tail of Br−1

with a new proposal as embedding CCr−1 in Br. The proposal is constructed as
〈Propose,Br, CCr−1, sl, Com(s′

l)〉σl
, where Br = 〈r,Dr, CCr−1,H(Br)〉σl

.
V Cr−1 or TCr−1: In case that the leader behaves abnormally in the previous

round, the leader lr chooses the highest confirmation certificate from votes it
collected, denoted by CCk. Then lr packages transactions into Br based on the
block that CCk certified. Concerning the situation where leaders corrupted in
several consecutive rounds, lr piggybacks the certificates (VC or TC) for rounds
from k + 1 to r − 1 for the sake of round continuity. If no such intermediate
round exists, then this set only contains a single value. Hence, the proposal will
be constructed and signed as 〈Propose,Br,MP, V Cr−1/TCr−1, sl, Com(s′

l)〉σl
,

where Br = 〈r,Dr, CCk,H(Br)〉σl
and MP = {Ck+1, . . . , Cr−1}.

5 Performance

This section evaluates the performance of the Snitch from two perspectives:
throughput and latency. Throughput refers to the number of transactions that
can be processed by replicas per second while latency is the time duration
between the sending of a request and the completion of the request at clients.
n order to make the experimental results more obvious,a series of comparative
experiments are conducted to compare DiemBFT 2.0(short for Diem) and the
Snitch in different parameters and conditions.

Experimental Setup. All our experiments are conducted over Aliyun ECS
where replicas were executed on a hfc7.8xlarge instance with 32 vCPUs sup-
ported by Intel Xeon Platinum 8369HB processors, 64GiB RAM, and Ubuntu
18.04 as OS. Our implementation is an adaptation of the open-source implemen-
tation of Diem [3]. We modify the Diem code in primarily the consensus module.
Specifically, the implementation of PVSS uses the P256R1 elliptic curve.
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Baseline. We compare with Diem, for the reason that the Snitch shares the
same code base as Diem enabling a fair comparison and Diem is an acknowledged
implementation of HotStuff. Concretely, Diem is a payment system and includes
many components that are not the focus of our evaluations. The purpose of our
experiments is to compare the performance of two consensus algorithms. Thus,
to have a fair comparison, our implementation is distinguished from Diem by
the consensus module.

Fig. 4. Throughput and latency as the network size varies in fault-free cases

Implementation Details. We deploy our private blockchain with the number
of replicas assigned to be 4, 7, 10, 13, 16, 19, 21 respectively. And we run clients,
which is a separate process different from those for replicas, to inject transactions
into the system. Specifically, We assign the number of clients to be 320 for fixing
the number of transactions to be about 30000. We set the duration of each
experiment as one minute and obtain experimental data every ten seconds. All
results were the average value of at least five independent experiments.

5.1 Fault-Free Cases

In this part, we first evaluate the performance of Diem and the Snitch in fault-
free cases, where the difference between of two protocols is that in the Snitch, the
leader needs to distribute its secret in each round. Figure 4 presents the latency
and throughput achieved by the different protocols as a function of the number
of replicas. Generally, the throughput decreases and the latency increases for
both protocols along with the network size increases. This is because the system
is bottlenecked by a leader communicating with all other replicas. We notice
that two protocols behave almost the same in the network with four replicas.
At more replicas, the throughput of the Snitch tends to be slightly worse than
Diem. This is mainly due to the cost of distributing secret.
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Fig. 5. Throughput and latency as the network size varies in normal cases

5.2 Normal Cases

Our next experiment evaluates the faulty scalability of protocols by observing the
performance change as the percentage of faults increases. We stimulate the faulty
replicas by not responding or proposing invalid proposals arbitrarily. We did not
implement the “waste attack” discussed in Sect. 2, which will only further hurt
the performance of Diem. Since partially synchronous protocols tolerate one-
third faults, we conduct several experiments where the percentage of faults varies
from 10% to 30%. Figure 5 reports the results. As expected, the Snitch and Diem
have the best performance for the 10% faults. As the ratio of faulty replicas raises,
the performance of both protocols is degraded while Diem degrades more sharply.
Therefore, for each set of faults, the Snitch always achieves higher throughput
and lower latency than Diem. When the proportion of faults is up to 30%, the
performance of the Snitch scales much better than Diem. Overall, the higher
the ratio of faults in the network and the more significant the performance
superiority of the Snitch.

6 Discussion and Conclusion

As discussed in Sect. 1, BFT protocols were initially conceived as being deployed
in a small-sized system, with a static group of participants. And we proposed the
Snitch in a permissioned setting above. If necessary, the Snitch can become more
scalable in two ways. On the one hand, the Snitch can be designed to facilitate
open and dynamic participation via reconfiguration [1,3,6]. This demonstrates
the desire shift from permissioned system to permissionless system. On the other
hand, we consider a large-sized system. As analyzed in [24], a system equipped
with 100 replicas can realize the PVSS. Hence, if there are more than 100 replicas
in the system, some replicas are selected by PoW or PoS to execute the Snitch
[17,22]. It makes sure that the protocol is always executed in a system of accept-
able size, regardless of the total number of replicas.
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HotStuff is the best known BFT protocol applied in the blockchain and
famous for its chaining paradigm. As presented in Diem, the temporary fork
exists. We have shown that the adversary can selectively corrupt leaders and
exploit the fork to drastically degrade the performance of the protocol. Our
proposed the Golden Snitch protocol is dedicated to reducing the risk of being
attacked through this vulnerability. Besides, concerned with that view-change
occurs in the process of confirming a block, it is necessary to rationalize the
cooperation of leaders next to each other, rendering a malicious leader cannot
drag another down. We elaborate on an enhancement called “veto certificate” to
balance the relationship between two consecutive leaders. These improvements
will be instrumental for the progressive performance in Diem.

Acknowledgment. This work is supported by National Key R&D Program of
China (2017YFB0802500), Beijing Municipal Science and Technology Project (No
Z191100007119007) and Shandong province major science and technology innovation
project (2019JZZY020129).

A Analysis of Correctness

The correctness of BFT protocols is usually defined by two properties: safety and
liveness. This section surveys that the Snitch can guarantee safety and liveness
under some reasonable assumptions mentioned previously.

A.1 Safety

The safety of the Snitch is proved to be provided regardless of the network status.

Definition 1 (safety). The protocol provides safety if it satisfies agreement and
validity simultaneously.

Lemma 1 (validity). Any block containing invalid data can not be confirmed.

Proof. Because a valid CC can be formed only with n − f = 2f + 1 votes for it,
there must be a correct replica who voted it. In other words, Malicious replicas
cannot generate a certificate without the cooperation of a correct node. As a
correct replica, it is impossible to send a positive vote for a block with invalid
data. Trivially ensures that only valid blocks can be confirmed.

Lemma 2 (agreement). In BFT model, for round r, the replica Pi maintains
a block Br with its confirmation certificate CCr. If there exits any other replica
Pj that maintains a block B′

r with its confirmation certificate CC ′
r in the same

round, it must be Br = B′
r and CCr = CC ′

r.

Proof. We prove Lemma 2 by contradiction. It is assumed that there exists a
round r, where two conflicting blocks Br and B′

r are both confirmed, each by a
correct replica. As defined before, 2f +1 positive votes would be required to form
a CC. Hence, CCr and CC ′

r need 2(2f + 1) = n + f + 1 votes simultaneously.
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It implies that at least f + 1 replicas vote twice with the original setting of
n. It then goes against the assumption that at most f malicious replicas exist.
Consequently, there is at most one valid block in a round.

Theorem 1 (safety). Two conflicting blocks can not be committed according
to the commit rule.

Proof. It is assumed that there are three certified blocks chained in consecutive
rounds, as shown in the example in Fig. 1(a):

Br ← CCr ← Br+1 ← CCr+1 ← Br+2 ← CCr+2.

Here, n−f votes were cast for CC2 to commit Br, out of which at least f+1 were
from correct replicas. These correct replicas that contributed to the generation
of CC2 remember r as their locked round rl, and would not vote for block B if
it is not a descendant of block Br, according to the vote rules. Hence, if there
exist another three certified blocks chained in consecutive rounds as:

B′
r ← CC ′

r ← B′
r+1 ← CC ′

r+1 ← B′
r+2 ← CC ′

r+2.

Then B′
r must be a descendant of Br.

A.2 Liveness

Liveness can be provided after GST. Next, we set the timer for Δ to denote the
maximum round duration and use δ to denote the network delay.

Definition 2 (Liveness). Whenever the network becomes synchronous, the
algorithm provides liveness as to commits will be produced in a timely manner.

Lemma 3 (Round Sync). For two consecutive rounds, round r − 1 is led by a
correct leader and round r is a timeout round. If a correct replica first switches
to a new maximum round r + 1 at time t, then others will move to round r + 1
at time t + 2δ.

Proof. It is assumed that leader lr−1 published Br−1 at time t′. Replicas can be
divided into three parts and discussed as follows:

– Replica A receives Br−1 at time t′:A moves to round r and and starts the
timer at time t′. Then the timer expired at time t′ + Δ.

– Replica B receives Br−1 at time t′ + δ: Similarly, B sends starts its timer at
time t′ + δ and then broadcasts a timeout message at time t′ + δ + Δ.

– Replica C receives Br−1 at time t′ + δ: C starts its timer at time t′ + δ. While
replica C received more than f +1 timeout messages leading to its broadcast
for timeout message before the timer expired.

In consequence, replicas broadcast respective timeout messages before time t′ +
δ + Δ. Then replicas complete the recovery within δ. Finally, we came to the
conclusion that replicas would be synchronized to the same round within 2δ.
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Lemma 4. In the situation of all leaders in three consecutive rounds, lr, . . . , lr+3

are correct, Br can be committed within 4 ∗ 2δ after it is proposed.

Proof. According to the commit rule, three consecutive confirmation certificates
are required to commit a block. For these rounds that generate certificates, each
round duration is at most 2δ. Taking round synchronization into consideration,
no more than 3 ∗ 2δ + 2δ is required to commit a block.

Lemma 5. Malicious nodes cannot impede progress infinitely.

Proof. The recover threshold is f + 1, ensuring that malicious nodes can not
reveal others’ secrets without at least one correct replica. It is inevitable that a
malicious leader can block the process temporarily by means of no response or
publishing an invalid block. While these behaviors cannot affect the next-round
leader at all. Thanks to the punishment, in the worst case, the process will be
made after f + 1 rounds.

Theorem 2 (Liveness). The request issued by a correct client eventually com-
pletes.

Proof. By Lemma 3, it can be concluded that all replicas enter the same round in
time. Besides, owing to Lemma 4 combined with Lemma 5, transaction finality
is guaranteed when a succession of three consecutive leaders behave correctly
one after another. Hence, correct clients will receive replies to their requests
eventually. It means liveness is guaranteed.
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Abstract. ERC20 token is the most popular type of Ethereum smart
contract. The daily transaction volume of these tokens exceeds 100 bil-
lion dollars, which agitates the popular notions of “decentralized bank-
ing” and “tokenized economy”. Yet, it is a common misconception to
assume that the decentralization of blockchain entails the decentraliza-
tion of smart contracts deployed on this blockchain. In practice, the
developers of smart contracts implement administrating patterns, such
as censoring certain users, creating or destroying balances on demand,
destroying smart contracts, or injecting arbitrary code. These routines,
which are designed to tightly control the operation of these smart con-
tracts, turn an ERC20 token into an administrated token—the type of
Ethereum smart contract that we scrutinize in this research.

We discover that many smart contracts are administrated, which
means that their owners solely possess an omnipotent power over these
contracts. Moreover, the owners of these tokens carry lesser social and
legal responsibilities compared to the traditional centralized actors that
those tokens intend to disrupt. This entails two major problems: a) the
owners of the tokens have the ability to quickly steal all the funds and dis-
appear from the market; and b) if the private key of the owner’s account
is stolen, all the assets might immediately turn into the property of the
attacker. Therefore, the administrated ERC20 tokens are not only dissim-
ilar to the traditional centralized asset management tools, such as banks,
but they are also more vulnerable to adversarial actions by their owners
or attackers. We develop a pattern recognition framework based on 9
syntactic features characterizing administrated ERC20 tokens, which we
use to analyze existing smart contracts deployed on Ethereum Mainnet.
Our analysis of 84,062 unique Ethereum smart contracts reveals that
nearly 58% of them are administrated ERC20 tokens, which accounts
for almost 90% of all ERC20 tokens deployed on Ethereum.

To protect users from the frivolousness of unregulated token own-
ers without depriving the ability of these owners to properly manage
their tokens, we introduce SafelyAdministrated—a library that enforces
a responsible ownership and management of ERC20 tokens. The library
introduces three mechanisms: deferred maintenance, board of trustees
and safe pause. We implement and test SafelyAdministrated in the form
of Solidity abstract contract, which is ready to be used by the next gen-
eration of safely administrated ERC20 tokens.
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1 Introduction

Millions of Ethereum smart contracts operate hundreds of billions of dollars
worth of assets. ERC20 fungible token is the most popular type of smart con-
tract in Ethereum, often compared to decentralized bank account. Ethereum has
two type of accounts: externally owned accounts (EOAs) and smart contracts.
An EOA has an associated private key and can deploy smart contracts, but
cannot execute custom code. On the other hand, a smart contract can execute
custom code, but it does not have any associated private key for determining
its owner. The deploying EOA of the contract does not automatically own this
smart contract, unless this functionality is manually implemented by the contract
developer. Moreover, any functionality related to ownership, role-based access,
or other special permissions must be manually implemented by the developer;
otherwise, the contract becomes orphaned at the moment it is deployed.

Many smart contracts use routines from the OpenZeppelin Contracts [3]
library for implementing ownership and role-based access in the smart con-
tracts. A recent analysis by Zhou et al. [17] shows that at least 2.1 million
Ethereum smart contracts, out of 5.8 million total, use the onlyOwner modifier
from the OpenZeppelin Contracts library, which allows only a certain user (i.e.,
owner) to call the functions of the smart contract implemented with this modi-
fier. Figure 1 shows a Venn diagram of the relationships between different subsets
of Ethereum smart contracts from the perspective of this research. Specifically,
we subdivide all smart contracts into two major categories: administrated con-
tracts, and effectively ungoverned smart contracts, particularly emphasizing that
not all contracts that have an owner are necessarily administrated, as the own-
ership may be purely symbolic sometimes or only allows harmless operations.
The administrated smart contracts are characterized by two major properties:
a) there is at least one Ethereum account whose owner possesses a unique privi-
leged status; b) the privileged status allows the user to perform actions that may
affect other users of the smart contract. These two properties constitute the dif-
ference between the administrated and ownable smart contracts: the ownable
smart contract must only meet the first property; however, there are smart con-
tracts that have an owner, but this owner has no power to disrupt the operation
of the smart contract.1 We further refer to non-administrated smart contracts
as effectively ungoverned, the set that includes the ownable non-administrated
contracts, and many of them are ERC20 tokens.2 In this work, however, we zero
in on the administrated ERC20 tokens, and our goal is to introduce a novel
subset of these tokens—safely administrated ERC20 tokens.

The obvious popularity of owned smart contracts and ERC20 tokens leads us
to the following research question: how many unique administrated ERC20 tokens

1 The smart contracts deployed at 0xdf4df8ee1bd1c9f01e60ee15e4c2f7643b690699

and 0x5dc60c4d5e75d22588fa17ffeb90a63e535efce0 are two (out of many) exam-
ples of ownable non-administrated contracts.

2 A typical example of an effectively ungoverned token is the popular ChainLink Token
deployed at 0x514910771AF9Ca656af840dff83E8264EcF986CA.
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are deployed on Ethereum? To answer this question, we develop an extractor of
9 syntactic features characterizing administrated ERC20 tokens. We then gather
1,173,271 open source smart contracts written in Solidity programming language,
and by removing the duplicates, we reduce the dataset to 84,062 unique, inde-
pendent, and identically distributed (i.i.d.) smart contracts. We further select
385 random contracts for manual labeling in order to choose the most accurate
classifier among several candidates. Finally, we use the 9 features and the cho-
sen classifier to determine the approximate percentage of administrated ERC20
contracts deployed on the Ethereum Mainnet blockchain. Our evaluation shows
that nearly 58% of all the smart contracts and almost 90% of all ERC20 tokens
are administrated ERC20 tokens. To the best of our knowledge, we are the first
to conduct the Ethereum-wide evaluation of administrated ERC20 tokens and
quantify their ubiquity.

To mitigate the potential adverse effects of administrated ERC20 tokens in a
low-regulated economic environment, we propose SafelyAdministered—a Solidity
library that allows developers of ERC20 tokens to implement most common
administrated patterns in a safe and responsible way, thereby increasing the
trust towards their products without sacrificing the need to retain control over
certain operations (e.g., upgrade).

Fig. 1. Venn diagram of different types of Ethereum smart contracts.

In summary, we make the following contributions:

– We analyze the class of administrated ERC20 tokens and show that these
contracts are more owner-controlled and less safe than the services they try
to disrupt, such as banks and centralized online payment systems.

– We develop a binary classifier for identification of administrated ERC20
tokens, and conduct extensive data analysis, which reveals that nearly 9 out
of 10 ERC20 tokens on Ethereum are administrated, and thereby unsafe to
engage with even under the assumption of trust towards their owners.
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– We design and implement SafelyAdministrated—a Solidity abstract class that
safeguards users of administrated ERC20 tokens from adversarial attacks or
frivolous behavior of the tokens’ owners.

2 Background

Smart Contracts and EVM. A smart contract is a program deployed on
a blockchain and executed by the blockchain’s virtual machine (VM). A smart
contract consists of a set of functions that can be called through blockchain
transactions. Most smart contracts are written in a high-level special-purpose
programming language, such as Solidity or Vyper, and compiled into the byte-
code for deployment and execution on a blockchain VM. The Ethereum Virtual
Machine (EVM) is the blockchain VM for executing Ethereum smart contracts.

Externally Owned Account. Ethereum blockchain has two types of accounts:
smart contract account and Externally Owned Account (EOA). Both EOAs and
smart contract accounts can be referenced by their 160-bit public addresses.
EOAs can be used to call the functions of smart contracts via signed transactions.

Solidity. Solidity is the most popular programming language for EVM smart
contract development, which syntax is similar to JavaScript and C++. The
source code of a smart contract written in Solidity needs to be compiled into
bytecode before being deployed on EVM. All smart contracts analyzed in this
study are written in Solidity.

ERC20 Tokens. ERC20 is the most popular standard for implementing fun-
gible tokens3 in Ethereum smart contracts. Some of the most traded alternative
cryptocurrencies (altcoins) are ERC20-compatible smart contracts deployed on
Ethereum Mainnet, such as ChainLink and BinanceCoin. The ERC20 standard
defines an interface with 6 mandatory functions, 2 mandatory events, and 3
optional properties that a smart contract should implement in order to become
an ERC20 token to interact with ERC20-compliant clients.4

OpenZeppelin Contracts. OpenZeppelin Contracts is a library of smart con-
tracts that have been extensively tested for adherence to best security practices.
These smart contracts are considered to be the de-facto standardized implemen-
tations of popular smart contract code patterns [4]. The OpenZeppelin project
provides a rich code base for ERC20 token developers [2]. Most ERC20 tokens, as
well as the administrated patterns in these tokens, are implemented by inheriting
routines from the OpenZeppelin Contracts library.
3 Each fungible token has the same value and does not possess any special character-

istics compared with other tokens of the same type.
4 https://eips.ethereum.org/EIPS/eip-20.

https://eips.ethereum.org/EIPS/eip-20


26 N. Ivanov et al.

1 function kill() public onlyAdmin {

2 selfdestruct(payable(msg.sender));

3 }

Fig. 2. A snippet of an administrated self-destruction pattern in the contract deployed
at 0xbF3d14995D4A4A719A3B9101DE60baa47De60F39.

3 Administrated ERC20 Patterns

In this section, we elaborate upon five general re-centralization patterns that we
observe in Ethereum smart contracts.5

3.1 Self-destruction

EVM opcode SELFDESTRUCT6 allows to remove a smart contract from the
blockchain. To provide further incentive for owners to remove unused contracts,
the address supplied as an argument of SELFDESTRUCT call receives the entire
Ether cryptocurrency balance of the smart contract. Solidity uses the built-in
function selfdestruct() to initiate the removal of the smart contract—if this
functionality is implemented, the administrator (or an attacker impersonating
the administrator) can trigger it at any moment, effectively destroying all users’
assets with a single transaction. Figure 2 shows a real-world example of such a
pattern.

3.2 Deprecation

With the exception of self-destruction, the source code of an Ethereum smart
contract is immutable, which impedes the ability for developers to deliver new
features or fix existing bugs. To address this limitation, some developers of smart
contracts implement a bypass scheme, in which a contract can be declared as
deprecated by the owner, resulting in the redirection of the users’ transactions
towards functions of a new contract. The danger of this scheme stems from the
fact that it grants the owner of the contract an ability to replace the code of
some critical functions with arbitrary ones. Figure 3 shows a real-world example
of the deprecation pattern.

5 The discovery of these patterns has been largely facilitated by a manual examination
of approximately 3,800 source codes of smart contracts in the course of our previous
research.

6 This opcode is formerly known as SUICIDE. In this context, the word “remove”
means that the contract is no longer available for transactions; however the entire
transaction history of the contract is still retained by the blockchain.
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1 // deprecate current contract in favour of a new one

2 function deprecate(address _upgradedAddress) public

onlyOwner {

3 deprecated = true;

4 upgradedAddress = _upgradedAddress;

5 Deprecate(_upgradedAddress);

6 }

Fig. 3. A snippet of an administrated deprecation pattern in the TetherUSD smart
contract deployed at 0xdAC17F958D2ee523a2206206994597C13D831ec7, which allows
the owner to effectively inject the code of the contract with an arbitrary one.

1 function setFee(address to) public onlyOwner{

2 fee = to;

3 }

Fig. 4. A snippet of a change-of-address pattern in the smart contract deployed at
0x350BDC46d931712d83ef989725Ba4904C487F360. The exploitation of such pattern has
been demonstrated in previous research.

3.3 Change of Address

Another administration strategy is the ability for the owner of a smart contract to
change certain critical addresses, such as recipients of fees or accounts associated
with certain roles. As shown in our previous study [12], a replacement of a public
address in a smart contract can lead to an acquisition of the funds by the owner
of the contract. Figure 4 demonstrates such an address changing pattern.

3.4 Change of Parameters

Another administration pattern is characterized by the change of certain param-
eters by the owner, which may affect the ability by a user of the contract to
perform certain operations. For example, if the owner is allowed to arbitrarily
change the amount of withdrawal fees, this parameter might be set to a very
large value (e.g., 99%), effectively preventing withdrawal of funds by the user.
Another example of this pattern is shown in Fig. 5, where the owner of the
contract exercises an unbounded power to manage administrators of the smart
contract.

1 function setAdmin(address newAdmin , bool activate)

onlyOwner public {

2 admins[newAdmin] = activate;

3 }

Fig. 5. A snippet of a change-parameter pattern in the smart contract deployed at
0x18c210013ea6cbe99b2dacdc9cfcb6e07458f0ca.
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1 function mint(address account , uint amount) public

onlyOwner {

2 _mint(account , amount);

3 }

4 function burn(address account , uint amount) public

onlyOwner {

5 _burn(account , amount);

6 }

Fig. 6. A snippet of a minting and burning patterns in the smart contract deployed at
0x82bfdd53dd95efa2c3e92543f28d46c566bf4b8a.

3.5 Minting and Burning

An increase of a token supply of an ERC20 contract is called token minting,
and the reduction of supply of tokens is called burning. Since the entire supply
of tokens is partitioned between owners in a way that there are no balances
belonging to nobody, minting a token means to increase someone’s balance,
and burning a token means to reduce someone’s balance. Although most tokens
are minted or burned as a result of a certain event, such as token creation,
token swap, crowdsale, or exchange into Ether balance, some contracts allow
privileged users to arbitrarily mint or burn tokens, which is a dangerous action
that even highly centralized commercial banks normally cannot do. Figure 6
demonstrates an example of the minting and burning pattern implemented in a
deployed Ethereum smart contract.

4 Administrated Tokens in the Wild

In this section, we use a pattern recognition method to search for administrated
ERC20 tokens in the Ethereum Mainnet network, as shown in Fig. 7. We start
the process with preprocessing all the input samples by removing comments and
extracting source codes from multi-part JSON files.7 Then we randomly select
385 samples from 84,062 unique source code files and manually assign (label)
them into two classes: a) administrated ERC20 tokens, and b) others. After that,
we extract 385 9-dimensional feature vectors corresponding to the labeled sam-
ples, with the assumption that all the samples are identical and independently
distributed (i.i.d). Then we use 385 labeled samples and the corresponding fea-
ture vectors to evaluate the performance of 9 different classifiers using the K-fold
method (with k = 5). Next, we choose the best performing classifier, i.e., the one
that demonstrated the higher accuracy during the evaluation stage (i.e., SVC).
After that, we extract 84,062 feature vectors corresponding to the entire data
set. Next, we train the SVC classifier with the 385 labelled samples. Due to the

7 The smart contracts that include several files are represented as JSON arrays in our
dataset. Preprocessing these arrays also includes an additional step of replacing the
escaped characters, such as newlines and quotes, with their original ASCII codes.
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i.i.d. assumption, we can now classify all the samples using the trained SVC
model. Finally, we gather the output and analyze the results.

Fig. 7. General worflow of the analysis of administrated ERC20 tokens. The
workflow includes 9 major steps. (1): Pre-process input samples to remove comments
and parse multi-part JSON files. (2): Pick 385 samples from 84,062 unique source code
files and manually assign them into two classes: a) administrated ERC20 tokens, and b)
others. (3): Extract 385 feature vectors corresponding to the labeled samples. (4): Use
385 labeled samples and the corresponding feature vectors to evaluate the performance
of 9 different classifiers using the K-fold methods (with k = 5). (5): Choose the best
performing classifier on the 385 labeled samples with the given 9 features. (6): Extract
84,062 feature vectors corresponding to the entire data set. (7): Train the classifier
with the 385 labelled samples. (8): Classify all the samples using the trained classifier.
(9): Analyze and report the results.

4.1 Data Set

First, we gather 1,173,271 open-source smart contracts from Etherscan,8 and by
removing duplicates (using fdupes9), reduce the size of the database to 84,062
distinct smart contracts. Then, we remove all comments from the data points
(i.e., source code files), and select 385 random contracts for manual labelling
using the following formula:

n =
N

1 + N · (1 − c)2
. (1)

Equation 1 is the Slovin’s formula [6], which statistically determines a
required representative sample size for a given data size and desired confidence
level. N is the original population of smart contracts, i.e., N = 84, 062, and n is
the sample size that we choose to represent the population. c is the confidence
8 https://etherscan.io/.
9 https://github.com/adrianlopezroche/fdupes.

https://etherscan.io/
https://github.com/adrianlopezroche/fdupes
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level that represents the certainty that the sample size represents the population.
We set the confidence level as 95% (precisely, 94.915%), leading to sample size
n = 385, which can be split into two partitions of 77 and 308 samples for k-fold
evaluation with k = 5.

4.2 ERC20 Administration Features

Our knowledge of the administration features in ERC20 tokens stems from our
experience of manual analysis of around 3,800 source codes of Ethereum smart
contracts. The experience of manual analysis of thousands of smart contracts,
which has taken more than 140 person/h, allows us to recognize all existing
administration patterns. As a result, we have developed 9 syntactic signatures
which are intuitively well-separated and independent because we have observed
various combinations of these signatures in administrated smart contracts. This
led us to designing 9 syntactic features, denoted f1 . . . f9 that produce one of
two binary values: 1—the corresponding syntactic signature is present; 0—the
signature is absent. Below is the brief description of the syntactic signatures that
the 9 features correspond to.

f1: ERC20 Interface Implementation. The goal of this research is to identify
administrated ERC20 tokens. In order to separate ERC20 tokens from other
types of smart contracts, feature f1 extractor detects the simultaneous presence
of syntactic identifiers corresponding to the eight mandatory items of the ERC20
interface, as described in the EIP-20 standard.

f2: Administrated Self-destruction Signature. If the owner of a smart
contract implements a self-destruction procedure, they may remove the contract
from the Ethereum ecosystem with a single transaction, simultaneously acquiring
all the Ether balance of the contract. Feature f2 detects such a signature, both
in old versions of Solidity and the modern ones (the exact procedure differs for
different versions of the language).

f3: Pausable Functionality Signature. The owner of a smart contract can
inhibit any operations with the contract at their will for indefinite period of time.
Although pausing a smart contract does not allow to directly acquire Ether or
token balances, it may have dire consequences if the owner’s private key is stolen
by an attacker or lost while the token is paused. Feature f3 is intended to identify
signatures of such pausable tokens.

f4: Contract Deprecation Signature. Since Ethereum smart contracts are
non-modifiable, the only means of upgrading the contract is to deprecate the
existing contract and refer the users to the new one using inter-contract calls
(ICCs). Unfortunately, this procedure allows the owner of the smart contract to
effectively introduce any arbitrary code. Feature f4 extracts the signatures of
contract deprecation functionality, which is one of the most dangerous patterns
in administrated ERC20 tokens.
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f5: Minting and Burning Signatures. The ability for a privileged user to
arbitrary create and remove tokens, known as minting and burning respectively,
is a major concern associated with administrated ERC20 tokens. Feature f5
represents the signature of a minting and/or burning in the smart contract,
which execution can only be triggered by a privileged user (administrator).

f6: Role-Restricted Transfers and Withdrawals. Another signature of an
administrated ERC20 token is the ability for a privileged user to perform arbi-
trary token or Ether cryptocurrency transfers and withdrawals of the funds that
do not belong to these users. Feature f6 corresponds to the syntactic signature
related to such transfer and withdrawal functionality under a privileged access.

f7: Function-Disabling Modifiers. Some function modifiers do not directly
check for the identity of privileged users; instead, they use the parameters pre-
viously changed by an administrator to decide whether the function needs to be
executed. Feature f7 is related to such modifiers that are capable of disabling
the execution of a function based on a parameter adjustable by the contract’s
privileged user.

f8: Direct Checks of a Sender Address. Although modifiers are popular
means of granting privileged access to certain functions of a smart contract, some
administrated contracts use direct checks of the msg.sender or msg.origin val-
ues. Feature f8 targets the direct (i.e., bypassing Solidity modifiers) transaction
identity checks, which predominantly make sense within the administrated smart
contracts context.

f9: Freezing, Halting, or Killing Methods. A list of some specific fre-
quently occurring function names, such as “freeze”, “halt”, and “kill” empirically
strongly correlate with the administrated property of ERC20 tokens. Feature f9
detects the presence of such frequently used functions that almost always indi-
cate an administration pattern.

4.3 Classifier Evaluation and Model Selection

We use 385 manually labeled samples to evaluate the performance of 9 popular
classifiers using the K-fold method with k = 5. Table 1 summarises the classifi-
cation models used for evaluation and the accuracy of each of these models using
the K-fold evaluation method with 385 labeled samples. The evaluation demon-
strates that 8 out of 9 classifiers stay within the 95% . . . 97% accuracy range,
except for the Gaussian Naive Bayes classifier, which performance is slightly
above 61%.
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Table 1. Tested classifiers.

Model Parameters Accuracy

Support Vector Classifier (SVC) scikit-learn default 96.6233%

Decision Tree max.depth = 9 96.3636%

K-Nearest Neighbors (K-NN) k = 1 95.5844%

Random Forest scikit-learn default 96.3636%

Gaussian Naive Bayes scikit-learn default 61.0389%

Linear Discriminant Analysis (LDA) n components = 1 96.3636%

Gradient Boosting scikit-learn default 96.3636%

Adaptive Boosting (AdaBoost) scikit-learn default 95.0649%

Multi-Layer Perc. Classifier (MLPC) alpha = 1,max iter = 1000 96.6233%

4.4 Implementation and Evaluation of the Analysis Workflow

We implement the extractors of all the 9 syntactic features using Python 3.8.5
and re regular expressions library. We implement the K-fold evaluation and
dataset analysis using Python 3.8.5 with sckit-learn 0.24.1 and numpy 1.20.0
libraries. We randomly selected 385 smart contracts from the i.i.d. set of 84,062
and manually labeled them by human comprehension of the semantics of each
of the smart contracts, which took approximately 40 person/h of total effort.

4.5 Results

Out of 84,062 evaluated smart contracts, 54,626 have been identified as ERC20
tokens, which is around 64.6%. As many as 39,034 contracts have been classified
as administrated ERC20 tokens (by counting the occurrences of f1 = 1), which
is 57.96% of all the evaluated smart contracts, and 89.76% of all ERC20 tokens.
Subsequently, only about 10% of all ERC20 tokens are non-administrated, i.e.,
exhibit full decentralization and permissionless design, while the vast majority
of the tokens are tightly controlled by their owners and other privileged users,
effectively overriding the decentralization capability of the hosting blockchain.
Figure 8 shows the summary of the results of our analysis.

5 SafelyAdministrated Library

Existing administrated ERC20 tokens are generally unsafe because they are
loosely regulated and their functionality often hinges upon a single account’s
private key, which can be abused by its owner or stolen by an adversary. To mit-
igate such an unsafe arrangement without denouncing the idea of administration
or boycotting the administrated tokens, we propose a novel solution for making
these smart contracts safe. As shown in Sect. 4, most ERC20 tokens are adminis-
trated, and therefore potentially unsafe. However, due to their ubiquity, it would



Rectifying Administrated ERC20 Tokens 33

(a) ERC20 tokens vs. other
all other smart contracts.

(b) Administrated ERC20
tokens vs. effectively un-
governed ERC20 tokens.

(c) Administrated ERC20
tokens vs. other types of
smart contracts.

Fig. 8. Results of processing of 84,602 unique source codes of Ethereum smart contracts
using the SVC classifier and the 9 developed syntactic features.

be naive to urge users to boycott 9 out of 10 of currently deployed ERC20 tokens.
In this work, we propose a feasible “evolutionary” fix to the existing problem.
Specifically, we realize that administrated patterns can be used by token owners
without jeopardizing the safety of the contract and requiring trust from the users.
For that, the current primitive administrated routines can be re-implemented to
incorporate three novel concepts: deferred maintenance, board of trustees, and
safe pausing. The details of these three approaches are explained below.

5.1 Deferred Maintenance

The owners of existing administrated ERC20 tokens have the ability to call
the managerial functions without any announcement. In order to prevent
unannounced actions, SafelyAdministrated library implements a mechanism of
deferred maintenance, which allows to announce the maintenance action to the
users and enact it only after a certain delay. For example, if the contract is about
to be upgraded, the users of the contract may be notified and decide whether
they agree on the upgrade or not. If the users disagree with the upgrade, they
may safely quit (i.e., sell or transfer their tokens) before the action takes into
effect.

5.2 Contract Board of Trustees

In most administrated smart contracts, the privileged user (administrator) has a
sole power to perform critical actions upon the smart contract, which incurs the
need of trust from the users of the contract. Moreover, if the private key of the
smart contract’s administrator is stolen, the attacker becomes the administrator
of the contract. Essentially, the safety of the contract often hinges on a single
private key belonging to a single person, which is the major concern about the
administrated smart contracts. The contract board of trustees allows to split the
administrative power among multiple private keys possessed by different parties,
such that the maintenance actions are only possible through a voting consensus
with a pre-determined threshold.
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5.3 Safe Pause

The ability to pause the execution of transactions in a smart contract is not nec-
essarily a whimsical action of the contract administrator. For example, this may
be a necessary action upon discovery of a zero-day vulnerability—by pausing
transactions, the administrator of the contract may prevent an exploitation of
such vulnerability. However, indefinite pause may also be abused by the contract
administrator, or it can be triggered by an adversary who stole a private key of
the administrator’s account. To prevent the adverse effects of the pause func-
tionality, in this work we introduce a safe pause routine, which allows to freeze
all transactions in the smart contract with a forced un-freeze after a certain
deadline. Moreover, once the contract is un-frozen, it cannot be frozen again for
some time. This way, any of the trustees of the contract can enact an emergency
pause, but no one is able to keep the contract paused indefinitely.

5.4 Implementation

We implement SafelyAdministrated as an abstract Solidity class, which includes
6 functions, 3 modifiers, and 5 events, summarized in Table 2. We implemented a
testing ERC20 token that inherits the SafelyAdministrated contract, compiled it
using Solc 0.8.1, and thoroughly tested its functionality to confirm that SafelyAd-
ministrated allows an ERC20 token to be administrated in a safe manner.

5.5 Limitation

One limitation of SafelyAdministrated is that the trustee whose vote attains
the voting threshold effectively pays fees for the execution of the maintenance

Table 2. Inheritable interfaces of SafelyAdministrated abstract class.

Inheritable interface Type Description

actionCleared function Check if a given action can be performed

safelyPaused function Check if contract is paused

safelyUnpaused function Check if contract is unpaused

safelyPause function Safely pause the smart contract

safelyUnpause function Safely un-pause the smart contract

whenSafelyPaused modifier Check if contract is paused

whenSafelyUnpaused modifier Check if contract is un-paused

trusteeVote function Cast trustee vote for an action

SafelyPaused event A trustee paused the contract

SafelyUnpaused event A trustee un-paused the contract

TrusteeVoted event A trustee voted for an action

ActionCleared event Next vote will activate the action

ActionActivated event A trustee vote activated a cleared action

trusteeAction[0...9] modifier Modifiers for nine functions subject to

approval
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transaction, while other trustees pay only for execution of recording of their
vote. Although we assume that this unfairness is unlikely to be important in
most cases, we leave the implementation of fee reimbursement for future work.

6 Related Work

Currently, the major concern about the safety of smart contracts comes from
security vulnerabilities in them. Researchers have proposed automated tools for
detecting known smart contract vulnerabilities. Some notable security scanners
for Ethereum include Oyente [13], Mythril [1], and Vandal [5]. Tsankov et al. [16]
propose Securify, a tool that analyzes the bytecode of Ethereum smart con-
tracts to detect patterns associated with known security vulnerabilities. Torres
et al. [15] present a taxonomy of smart contract honeypots, which are deceptive
smart contracts targeting users who attempt to exploit known vulnerabilities of
smart contracts. Recently, Chen et al. propose TokenScope [7], an automated
tool, which detects the discrepancies between syntax and semantics in the func-
tions of ERC20 tokens. In this work, we reach beyond the security vulnerabilities
and explore a generally overlooked safety issue in smart contracts, i.e., admin-
istrated patterns that allow owners of ERC20 tokens (or adversaries who steal
the owner’s account private key) to cause a mass damage to the token owners.

The influence of private actors on blockchain resources has been a subject
of concern for many years. Raman et al. [14] conduct a case study of decen-
tralized web applications and identify a prevalence of re-centralization of such
apps. Griffin et al. [11] discover that TetherUSD ERC20 token has been used for
manipulating the price of cryptocurrencies. In this work, we expand the discus-
sion about the re-centralization and private manipulation of the services that
are intended to be centralized to embrace the realm of ERC20 tokens.

The public trust towards administrated ERC20 tokens may be indicative
of a well-studied irrational or semi-rational human behavior. In our previous
research [12], we explore social engineering attacks in Ethereum smart contracts
by demonstrating how visual cognitive bias and confirmation bias lead a user
into engaging with a malicious smart contract. Fenu et al. [9] demonstrate the
irrational behavior exhibited by many people when engaging with high-risk smart
contracts involved in initial coin offerings (ICOs). In this work, we scrutinize a
new facet of semi-rational human behavior: the false assumption that most smart
contracts are decentralized, permissionless, and ungoverned just because they are
deployed on a blockchain that holds these properties.

Previous studies proposed smart contract-level multi-signature voting
schemes. ÆGIS [10] implements a voting-based mechanism, in which trusted
experts vote for a security patch. Unfortunately, the voting mechanism in ÆGIS
has been design for different context and cannot be applied, even with modifi-
cations, to the trustee-based contract maintenance scenarios. Christodoulou [8]
introduces a decentralized voting scheme similar to the Board of Trustees used
in this work. However, all the above solutions are domain-specific, and cannot
be directly used for general cases, as we see it in the SafelyAdministrated library.
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7 Conclusion

Unlike banks and other financial institutions, smart contracts are weakly regu-
lated or unregulated at all. Simultaneously, an ERC20 token is often owned by
a single account, the security of which hinges on a single private key. At the
same time, we observe that market capitalization of some tokens, such as USDT
and BNB, reaches billions of dollars, which means that if the administrator’s
private key is stolen or abused, all the funds from all users in the contract might
be stolen immediately. ERC20 fungible tokens have been a hope for the next-
generation tokenized economy. However, in this research we demonstrate that
approximately 9 out of 10 ERC20 tokens are administrated assets that are gen-
erally less secure than traditional financial institutions and accounts. Instead of
stigmatizing the widespread administration of the tokens, we deliver a solution
for the honest token owners to achieve their goals in a way that is safe for both
them and the users—through implementing the novel contract ownership mech-
anism, which effectively prevents a single point of security failure and enforces
prior notice of maintenance. At the time of writing, there is no affiliation or spon-
sorship, current or arranged, between the authors of this work and any banks,
online payment systems, and smart contract developers mentioned or implied in
this research.
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Abstract. Federated learning has migrated data-driven learning to a
model-centric approach. As the server does not have access to the data,
the health of the data poses a concern. The malicious participation injects
malevolent gradient updates to make the model maleficent. They do not
impose an overall ill-behavior. Instead, they target a few classes or pat-
terns to misbehave. Label Flipping and Backdoor attacks belong to tar-
geted poisoning attacks performing adversarial manipulation for targeted
misclassification. The state-of-the-art defenses based on statistical sim-
ilarity or autoencoder credit scores suffer from the number of attackers
or ingenious injection of backdoor noise. This paper proposes a universal
model-agnostic defense technique (Moat) to mitigate different poisoning
attacks in Federated Learning. It uses interpretation techniques to mea-
sure the marginal contribution of individual features. The aggregation of
interpreted values for important features against a baseline input detects
the presence of an adversary. The proposed solution scales in terms of
attackers and is also robust against adversarial noise in either homoge-
neous or heterogeneous distribution. The most appealing about Moat is
that it achieves model convergence even in the presence of 90% attackers.
We ran experiments for different combinations of settings, models, and
datasets, to verify our claim. The proposed technique is compared with
the existing state-of-the-art algorithms and justified that Moat outper-
forms them.

Keywords: Federated learning · Label flipping attack · Backdoor
attack · Hybrid attack · Model interpretation · Shapley value

1 Introduction

Federated Learning (FL) has emerged with growing shares in prominent appli-
cations, protecting users’ security and privacy [11]. It brings the model to the
data existing on the edge devices, felicitating in-place training. It is a promis-
ing alternative to centralized training, which has been vulnerable to privacy
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breaches and data abuse. FL has evolved as a privacy-preserving paradigm for
the participants. However, it induces a risky design trade-off where the aggrega-
tion has come under the scanner, citing that passive data providers may act as
active adversaries [7]. The mere presence of malicious participants will gradually
impede the goal of subtle performance.

The adversaries send erroneous model updates injecting malicious and inge-
nious training strategies, which causes a greater catastrophe. These attacks are
more insidious as they maintain the overall accuracy and achieve desired results
on attacker-chosen samples. Label Flipping and Backdoor attacks are the tar-
geted poisoning attacks, which are deftly crafted by the attacker and mostly
remain untraceable from the existing defense measures. The other poisoning
attacks are Additive Noise and Gradient Ascent attacks. We analyzed these
attacks in various FL settings by varying numbers of attackers, samples, and
triggers through a series of case studies.

Numerous defense strategies have been proposed to mitigate such attacks.
The existing approaches rely on similarity-based techniques like euclidean dis-
tance and cosine similarity or detecting outlier using mean, median-based algo-
rithms [2,5]. They work only in the presence of a majority of benign partici-
pants and are designed as attack-specific. Adversarial defense techniques have
been proposed where the server prepares auxiliary data to detect an adversary’s
presence [18]. This process bears huge computational costs and is impractical
to deploy. Credit score-based approach [8] using autoencoder has been effective
in detecting Label Flipping attacks and outperforms traditional defense-based
approaches.

This paper discusses a novel defense mechanism using model explanation
techniques to detect adversaries’ presence besides their number and strategy.
This analysis does not require any prior knowledge or auxiliary synthesis. It uses
Shapley algorithms, game-theory-based mathematical formulations that give the
features’ marginal contributions based on their importance. It requires some
random samples to learn the reference to interpret the model. Further, operating
over the attribution values on baseline data helps us to spot the heterogeneity.

The following are the major contributions.

– We propose a model agnostic mitigation strategy to defend against targeted
poisoning attacks in Federated Learning. It uses the attribution-based Shap-
ley algorithms to measure the marginal contribution for individual features.
Using an additive feature importance strategy, we could successfully figure
out the presence of adversaries.

– A hybrid attack is designed by colluding the attackers with the intentions of
Label Flipping and Backdoor capabilities.

– The empirical evaluation has been extensively carried over the MNIST and
Fashion MNIST datasets under different attack settings and evaluation met-
rics. It has been tested under both the IID (Independent and Identically Dis-
tributed) and non-IID distributions. The results provide a shred of evidence
to the proposed conjecture.
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– This paper evaluates the existing defense strategies against poisoning attacks.
It demonstrates their limitation against ingenious backdoor attacks and work-
ing at the cost of honest participants in label flipping attacks.

The remainder of this paper is organized as follows. Section 2 discusses the
background and related works. Section 3 briefs Federated Learning and discusses
the capabilities of an adversary. Section 4 proposes a model-agnostic defense
strategy against poisoning attacks in Federated Learning. Section 5 describes
the simulation setup, experiment, and results. Section 6 briefs comparison with
the existing state-of-the-art algorithms. Section 7 concludes this work.

2 Related Work

Cao et al. [3] designed a distributed poisoning attacks colluding multiple attack-
ers. The authors proposed SNIPER’s defense mechanism by constructing a graph
based on euclidean distance between the local model updates. Further, they
aggregate the models present in the largest clique of the graph. Authors claim to
restrict the attack success rate by 2% even in the presence of one-third of attack-
ers. The statistical similarity-based defenses, including Mean-Around-Median,
Trimmed Mean [17], Krum and MultiKrum [2] select m out of n similar mod-
els and declare the remaining as malicious based on similarity measures. They
claim to prevent flipping attacks up to 50% byzantine workers. Fung et al. [5]
proposed a novel defense algorithm FoolsGold to evaluate the vulnerabilities of
Sybil-based poisoning attacks. They claim for no bounds against the number of
attackers present. Li et al. [8] proposed an anomaly detection algorithm based on
the credit score to generate low dimensional surrogates, which requires additional
computation overheads of pre-training for some initial rounds.

Gu et al. [6] highlighted the risks of outdoor training or pre-trained mod-
els using adversarially trained backdoor model aiming to achieve the attacker’s
intention to predict any input as the attacker-chosen label in the presence of
some trigger. Bagdasaryan et al. [1] discussed how attackers could use model
replacement to introduce malicious functionality by encoding the backdoor. Xie
et al. [16] discussed the vulnerabilities arising due to data heterogeneity and
proposed a Distributed Backdoor Attack (DBA) as a novel threat assessment
framework in a federated environment. Salem et al. [12] proposed a dynamic
backdoor generated as a function of inputs, which can be more effective than
semantic or pixel pattern backdoor.

Wang et al. [14] emphasized the requirement of model interpretability, citing
the regulatory and legal perspective to avoid unethical cases like discrimination.
Their method promises to balance it with data privacy to interpret Federated
learning models. Wang et al. [15] measured the contributions of multiple par-
ties in Federated Learning by calculating the grouped feature importance using
Shapley values. Takeishi and Kawahara [13] discussed the challenges in imple-
menting Shapley values for anomaly detection.

Based on the survey of the defense strategies to mitigate against the tar-
geted poisoning attacks in Federated learning, we observe a trade-off with the
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number of attackers present, the encoded backdoor trigger, data heterogeneity,
pre-computational overheads, and the lack of robustness.

3 Federated Learning and Threat Model

3.1 Federated Learning

Federated learning is a distributed training protocol across clients in a multi-
round fashion coordinated through a trusted server. Participating clients share
their model updates or gradients to the server while preserving their training
data. The server has a preliminary untrained global model optionally defined
with local epochs, batch size, learning rate, and other parameters. At every iter-
ation t, the server selects a random sample of clients (St) and sends them a copy
of the global model(wt). Client k on receiving the global model trains on its pri-
vate data by running the optimization algorithm and outputs a new local model
wk

t+1 as ← wk
t −η∇l(wk

t ; b) where η is the local learning rate of clients and b is the
local batch size. Then, each client shares its gradient updates with the server.
Consequently, the server aggregates the received local gradients and updates
the new global model wk

t+1 to the random set of clients selected for the next
round. This process iterates until a predefined accuracy or performance metric
is reached. A typically used aggregation algorithm (FedAvg [10]) is the weighted
averaging of the shared gradients. Federated learning securely aggregates the
individual client updates. However, we assume that these types of obfuscations
are not used, and the central server is able to observe any individual client’s
model update at each iteration.

Fig. 1. Threat model
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3.2 Threat Model

We consider an adversary that can evade the holistic training cycle and induce
insidious behavior by crafting different poisoning attacks. The attacker aims to
poison the global model for high error rates discriminately to victimize a selected
class. It is deftly crafted for targeted misclassification, and becomes substan-
tially worse. The malicious clients craft the poisoning attacks to miscalibrate
the prediction accuracy. They exploit the fact of provable opacity of data to any
trusted entity and gradually impede the model. Figure 1 illustrates our threat
model considering label-flipping, backdoor-ed induced noise, and different data
distributions. The potential poisoning attacks are summarized below.

1. Label Flipping Attack: In this form of attack, the attacker poisons a
specific class § by inverting its label to another chosen label τ . For example,
every ‘4’ is predicted as ‘9’ in the handwritten digit recognition model. The
attacker may pick a rare class from a skewed distribution and flip its label.
It goes undetected in most cases due to little effect on the overall accuracy.
An attacker can also target multiple classes to flip to a single or a subset of
chosen targets.

2. Backdoor Attack: In a backdoor attack, the attacker alters training data
with certain features (ψ) to a target label (τ). The resultant model predicts
the wrong label τ in the presence of these features. The attacker can also
embed some trigger to induce malicious behavior. For example, plus trigger
is embedded to an image of class ‘2’ for getting misclassified as ‘6’ as shown
in Fig. 1. These patterns ψ may vary in shape, size, and position. Attackers
generate adversarial samples dkp by inserting trigger (ψ) using some backdoor
function bf , dkp = [bf (dk, ψ) = τ ] such that dkc ∪ dkp = dk and dkc ∩ dkp = φ.
Further, it solves an optimization problem to update the received global model
by effectively performing well on both the main task and the backdoor task
as

wk
t+1 ← wk

t − ηp∇l(wk
t ; b ∈ dkp) − η∇l(wk

t ; b ∈ dkc )

ηp and η are the learning rate for the backdoor and main task, respectively.
It can be carried out through either a single-shot or multiple-shot attack [16].
The backdoor attack is more vicious than other attacks since it does not affect
the global model performance.

3. Hybrid Attack : Attackers compromise multiple clients or adversaries with
different attack capabilities to perform a hybrid attack. A subset of clients can
perform label flip while the remaining can induce trigger to attempt backdoor.
It is a form of distributed attack, which brings more threats and degrades the
system with only a few poisoned samples. They can also distribute the attack
objectives (ψ in ψ1, ψ2, ..., ψk) to turn the attack more effective.

Apart from that, an adversary can also inject random noise into its locally
held data or trained model. So, it would be difficult to detect fraud in one-
class non-IID distribution. We have considered non-uniform or skewed distri-
bution using a two-class setting and Dirichlet distribution with different hyper-
parameters for varying heterogeneity.
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4 Moat: The Proposed Defense Technique

Here, we present our proposed defense approach against targeted poisoning
attacks named Moat (Model Agnostic Defense against Targeted Poisoning
Attack).

4.1 Overview

Moat exploits the model’s interpretability and is inspired by partial dependence
plots, individual conditional expectation, and accumulated feature importance.
The partial dependence marginalizes the model for the selected feature xS to
other features xC

S present in the input. However, the partial dependence obscures
the heterogeneity based on the interaction between the features. The intuition is
to calculate conditional effects to uncover the heterogeneity. It makes us realize
that the induced trigger or the flipped label’s accumulated feature would impact
the model f(.) to detect the attacker-chosen label. f(x) is the output to be
approximated on instance x with d features, and g is an explanatory model
for calculating the additive feature attributions. It can be expressed as a linear
function of binary variables in Eq. 1.

g
(
z′) = φ0 +

d∑

j=1

φjz
′
j (1)

It uses simplified features x′ as input using a mapping function such that,
x = hx(x′). The explanation for the prediction over x′ is based on the local
methods, which try to ensure g

(
z′) ≈ f

(
hx

(
z′)

)
where z′ ≈ x′, z′ ∈ {0, 1}d,

and φj ∈ R. φj is the corresponding attribution to each feature.
Moat uses the Shapley algorithm to calculate individual feature attributions

(φj) for interpreting the predictions. It assigns an importance score to each
feature value with all possible coalitions for a particular prediction. Equation 2
explains the calculation using a value function where S is the selected set of
features, x is the data vector selected for interpretation, and p be the number of
features considered.

φj(val) =
∑

S⊆[x1,...,xp]\(xj)
|S|!(p−|S|−1)!

p!

(
val

(
S ∪ {x1}

) − val(S)
)

(2)

valx(S) is the prediction for feature values in set S that are marginalized
over features not included in the set S. It is demonstrated in the Eq. 3 and is
calculated through multiple integration’s.

valx(S) =
∫

f̂
(
x1, . . . , xp

)
dPx/∈S − EX(f̂(X)) (3)

Before discussing the proposed algorithm (Moat), we list our observations
that conceptualize our conjecture for defense against targeted poisoning attacks.
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Fig. 2. Feature attributions of ‘4’ for 10 labels in a benign (f) and malign model (f ′)

We start with a label flipping attack and perform preliminary experiments to
demonstrate how it is spotting heterogeneity among labels. Let us consider that
an honest participant trains model f , while the adversary trains f ′ with ‘4’
flipped as ‘9’ in the handwritten digit recognition dataset. The server calcu-
lates interpretable approximations for the predictions against an image of ‘4’.
Attribution effect φj for every feature j in the image is calculated using Eq. 2
by operating over the received gradients at the server. The additive attribu-
tion of the features is calculated for model interpretation using Eq. 1 against
each label. Figure 2 demonstrates the graphical representation of attributions
for every labels (0, 1, 2 ..., 9) in both f (top image) and f ′ (bottom image),
where red color depicts positive influence, and the blue negates it. It is pertinent
to observe that red spectrum of label ‘4’ in f shifts to ‘9’ in f ′. After analyz-
ing the attribution tensors, g

(
z′), two outliers could be easily spotted in the

malicious model f ′ over the sum of φj .

4.2 Algorithm

As described in Algorithm 1, it takes client uploaded gradients (wt), some ref-
erence data (R), and baseline data (B) as input. The server decides an exter-
nal input as threshold ξ. It is defined for varying the strictness to identify the
adversary based on the application’s sensitivity. Interpreting the model and post-
analyzing, we expect it to converge for the next iteration. It will also provide
the probable attacked labels (lm), set of malign (ma) and benign models (mb).

For each client k, the server interprets their uploaded model wk
t with some

reference inputs (R). It only requires black-box access to the model. The refer-
ence data may be some auxiliary data held by the server for validation or some
neutral data. The interpretation rk learns all the changes in prediction to spot
the heterogeneity. Further, it is fed with a baseline input data B for calculating
the additive feature attributions against all the labels. The baseline input can
be real data owned by the server. However, we suggest using a zero vector input,
which acts as a fair baseline and is equitably distributed against all the inputs.
The returned output is the attribution value for every feature against each label
(a1, a2 . . . al), with all the possible coalitions having an influential impact on the
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Algorithm 1. Model-agnostic Defense: Moat
Require: Client’s gradients (wk

t ), Threshold ξ
Ensure: Global model (wt+1), Set of possible attackers (ma) and attacked labels (lm)

1: R ← reference data {Auxiliary / Neutral Data}
2: B ← baseline data {Zero / Mean Vector}
3: mb ← φ {Set of benign models}
4: ma ← φ {Set of attackers}
5: lm ← φ {Set of possible attacked labels}
6: St ← {k} {Set of clients in the round t}
7: for each client k ∈ St do
8: rk ← InterpretModel(wk

t , R)
9: a1, a2 . . . al ← rk(B) //calculation of feature attribution of labels 1,2...,l

10: for j = 1 to l do
11: AF j

k ← ∑f
i=1 φi|φi ∈ aj //f is the number of features

12: end for
13: z ← Z − score(AFk)
14: for j = 1 to l do
15: if zj > ξ then
16: lm ← lm∪ j
17: end if
18: end for
19: if |lm| > 0 then
20: ma ← ma ∪ wk

t

21: else
22: mb ← mb ∪ wk

t

23: end if
24: end for
25: if |mb| == 0 then
26: wt+1 ← wt

27: else
28: wt+1 ← ∑

k∈mb

nk
n

wk
k //Aggregate using FedAvg

29: end if
30: return wt+1, ma and lm

prediction. We suggest adding the individual label attributions ai, either positive
and negative, or their combinations. It results in an array AFk with value for all
the labels.

Further, we perform a Z-score numerical evaluation with varying threshold ξ
to detect the presence of an adversary. It describes the relationship of a value with
the mean of a group of values and is measured in terms of standard deviations(σ)
from the mean μ. For every instance x, it is calculated as (x − μ)/σ. We have
calculated Z-score for label-wise additive attributions AFk. A label with Z-score
exceeding a threshold is identified as a malicious label (lm). Clients with at least
one possible malicious label will be treated as malicious. The server computes
aggregation of the benign clients (mb). The algorithm is expected to converge
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for the next update over all the benign models as long as the convergence of
FedAvg is guaranteed. In the case of no benign model, it returns the previous
global model wt to the newly selected set of clients.

After extensive analysis, it is inferred that different combinations of reference
(R) and baseline data (B) have different detection capabilities. Possible choices
of R and B can be real data, zero-vector data, or single input averaged over
specific samples. The attribution effects can be operated with different cases as
mentioned in the Appendix A with a detailed analysis for all combinations of
references and baselines.

5 Experiment and Result Analysis

Moat is evaluated with varying numbers of attackers, poisoned samples, hetero-
geneous distribution, and different attack strategies. The experiments have been
run for federated learning architecture with n = 50 clients. In each round of
training, the server randomly selects nk = 30 clients. Each of the client runs
mini-batch stochastic gradient descent locally with a batch size b = 32 and a
learning rate η = 0.01 for 2 local epochs. The complete training process has been
carried for 50 iterations.

The proposed defense is evaluated against the widely used MNIST and
Fashion-MNIST datasets. MNIST1 is a dataset of handwritten grayscale digits.
Fashion-MNIST2 is a dataset of grayscale fashion products. Both are equally
distributed among 10 classes with 7000 images each. Data has been distributed
equally, 1200 samples per client, around 120 samples of each category. A convo-
lution Neural Network (CNN) is used for local training at the client device. CNN
has two convolution layers with 32 and 64 kernels of the size of 3X3, followed by
a max-pooling layer and two fully connected layers with 9216 and 128 neurons,
respectively. ReLU activation is used in each layer with a dropout of 0.25.

These experiments are run for testing label-flipping and backdoor attacks
against the proposed defense mechanism. For the label flipping attack, we have
flipped images of label ‘6’ to label ‘2’ in MNIST, and images of label ‘8’ to
label ‘3’ in F-MNIST. Similarly, in the backdoor attack, attackers inject pixel-
pattern triggers as shown in Fig. 3 by changing pixels at appropriate locations.
Each attacker poisons 500 samples and alters the corresponding class label to
target label ‘2’. The rest of the local data are kept unchanged. We have only
considered multiple-shot distributed attack (Attack A-M) following [1] as the
default backdoor setting so that the backdoor contribution of attackers does not
get weakened after global aggregation.

In each case, the number of compromised workers nm varies from 10% to
90%. The global model accuracy is tested against 8000 test samples uniformly
distributed across all classes, and backdoor attack success rates are tested against
1500 trojan-ed samples. Label flipping attack is evaluated with Attack Success
Rate (lasr) and Targeted Misclassification Rate (tmcr). We evaluated Backdoor
1 http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch/fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
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(a) Pattern (b) Plus (c) Size (d) Gap (e) Position

Fig. 3. Variations of backdoor triggers

Attack Success Rate (basr) to calibrate the success of the attacker’s intention
using an embedded trigger. Attackers aim to achieve high lasr, tmcr, and basr
while maintaining the global accuracy.

We have used Deep SHAP [9] as the model-agnostic approximation method
for the computation of SHAP (SHapley Additive exPlanations) values. The input
for the SHAP is the model and some background images. Throughout the exper-
iments, we have used 100 samples uniformly distributed over the classes as the
background images (R) for learning average attributions rk of the kth client
models’ prediction. Increasing the number of background images (R), results in
learning better attribution, and helps in easy detection with fewer rounds. How-
ever, to simulate a worst case scenario and to reduce the impact on learning, we
simulate R with less than 10% of individual client contribution. A zero vector
image of 28 × 28 is used as the baseline image B. Attribution results have been
discussed and plotted against the threats mentioned above for visualization in
Appendix A.

5.1 Results

Defense Against Backdoor Attack. We have implemented Moat defense
against distributed pixel-pattern backdoor attack on MNIST and F-MNIST
dataset. Figure 4 plots the result for backdoor attack success rates (basr) and
corresponding defense for 30%, 60%, and 90% attackers. The external threshold
(ξ) has been set to 1.8 for MNIST. It is observed from Fig. 4a that global model
accuracy (main-acc) does not get impacted by backdoor injection in either of
attack or defense. basr increases gradually from 0.2 to 0.8 in 50 rounds. It is
restricted to 0.1 using Moat, which clearly suggests that no malicious contribu-
tion has been taken while aggregation. Figure 4b and 4c illustrate the defense
results with nm = 60% and nm = 90%, respectively. Similar observation have
been plotted in Fig. 5 on F-MNIST, keeping threshold as 2. Moat has also been
tested against varying trigger size (Fig. 3c), gap (Fig. 3d) and position (Fig. 3e)
as suggested in [16]. Number of attackers have been set to 20% and ξ as 2.
Figure 6 demonstrates the behaviour of Moat against all of these trigger factors
on F-MNIST. It is prominent that Moat successfully defends backdoor attacks
and retains basr to 9–11% for varying size and gap. With little complex trigger
(Fig. 3e), basr is around 15%, which is bit higher compared to other trigger cases
as shown in Fig. 6c.
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(a) 30% attacker (b) 60% attacker (c) 90% attacker

Fig. 4. Moat defense against backdoor attack on MNIST

(a) 30% attacker (b) 60% attacker (c) 90% attacker

Fig. 5. Moat defense against backdoor attack on F-MNIST

(a) Based on size (b) Based on gap (c) Based on position

Fig. 6. Moat defense against backdoor attack on F-MNIST over variations in trigger

Defense Against Label Flipping Attack: Figure 7 illustrates the result for
label flipping attacks and defenses on MNIST. We have plotted the results for
30%, 60%, and 90% attackers. The baseline in all the plots depicts the nature of
performance in the ideal conditions with no attacker present. With nm = 30%
and 36% flipped samples, global accuracy decreases around 4 − 5% as compared
to baseline. However, Moat has successfully managed to recover to baseline accu-
racy. After 40 rounds, it overlaps with the baseline. lasr and tmcr increases around
20% and 30% respectively. It is successfully defended by Moat by retaining lasr
below 10% and tmcr below 20%, respectively. Figure 7d, 7e, and 7f show the
results with nm = 60% and 72% poisonous samples. Figure 7g shows that accu-
racy is largely impacted by the attack with nm = 60%. However, Moat recovers
the accuracy to baseline, when run for more rounds. lasr and tmcr are restricted
at 0.1 and 0.2 respectively as shown in Fig. 7h and 7i. Moat forces to continue
the training with the remaining 10% benign clients, although the convergence
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is delayed as compared to other attack cases. It converges in 15–20 iterations
while reducing the impact by a margin in initial iterations only. We have also
analyzed distributed attack with malicious intention of flipping multiple labels.
Moat can also defend against such attacks and converges with good accuracy as
illustrated in the Fig. 13 of the Appendix B.

(a) 30% attacker (b) 30% attacker (c) 30% attacker

(d) 60% attacker (e) 60% attacker (f) 60% attacker

(g) 90% attacker (h) 90% attacker (i) 90% attacker

Fig. 7. Moat defense against label flipping attack on MNIST

Defense Against Hybrid Attack: Considering that the attacker’s intention
is unknown before training, we formulated a hybrid attack with nm = 50%
malicious clients. 25% of the attacker is actively doing label flipping, and the
rest 25% are inducing ‘plus’ triggers to generate backdoor samples. Moat has
been analyzed against this attack and proves to be robust against it. It is run for
50 iterations to check the fast convergence on F-MNIST as illustrated in Fig. 8.
Figure 8a illustrates the improved main accuracy of 4–5% against the attacked
accuracy plot. It achieves almost 40–45% lasr in 50 iterations as illustrated in
Fig. 8b. Moat brings down lasr to 10% after certain rounds and keeps lasr stable.
basr is also constant around 10% compared to 90% in attack, as shown in Fig. 8c.
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(a) Global model
accuracy

(b) Label Flip Attack
Success Rate

(c) Backdoor Success
Rate

Fig. 8. Moat defense against hybrid attack on F-MNIST

Impact of Heterogeneous Distribution: We have also performed non-IID
distribution of the data to simulate a real-life situation in a federated setting.
We supply each client an unbalanced distribution of data from each class using
a Dirichlet distribution with a hyperparameter α = 0.5, 0.7, and 0.9. α is the
degree of non-IID for varying heterogeneity.

Figure 9 shows the performance of Moat on varying α with 30% attacker for
both the label flip and backdoor attacks. Moat performs very well on α = 0.9
and α = 0.5 but when α = 0.7 the defense performs poorly. After extensive
experiments, we have found that Moat performs well with α = 0.9 on backdoor
attack but not on label flip attack.

(a) Backdoor Success
Rate (MNIST)

(b) Attack Success Rate
(MNIST)

(c) Misclassification Rate
(MNIST)

(d) Backdoor Success
Rate (F-MNIST)

(e) Attack Success Rate
(F-MNIST)

(f) Misclassification Rate
(F-MNIST)

Fig. 9. Moat Defense over non-IID data with varying degree

We have considered a more strict set of non-IID data distribution as suggested
in [10]. First, the training data is sorted by class labels. It is split into chunks of
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(a) 30% attacker (b) 60% attacker (c) 90% attacker

Fig. 10. Moat Defense against backdoor attack in non-IID setting on F-MNIST

300, and each participant is assigned 2 different chunks from 2 different classes.
Figure 10 shows the performance of Moat over this non-uniform distribution. It
is clear that the backdoor attack success rate (basr) fluctuates rapidly in initial
rounds and takes many rounds to converge. However, basr is stable at 0.0 except
for a few rounds 14, 21, and 37. It is pertinent to observe that in a non-IID
setting, main-accuracy is somehow impacted by Moat. With nm = 60%, basr is
constant at 100%. After applying Moat, it keeps fluctuating between 0 and 0.8
at the initial rounds and gets stable after round 10, with some spikes observed
afterward. However, basr is way below the attack-ed backdoor success rate, which
validates the effectiveness of Moat.

6 Discussion

(a) Accuracy (b) Attack Success Rate

Fig. 11. Comparison with existing defenses

We have evaluated some of the existing defense strategies for targeted poi-
soning attacks, namely Krum [2], Autoencoder (AE) credit score [8], GeoMed,
and Trimmed Mean [17]. We ran experiments on F-MNIST with n = 30 clients,
and nm is set to 20% with number of attackers m = 6. For GeoMed, we have
taken the layerwise median of the uploaded client gradients. For Trimmed Mean,



52 A. Manna et al.

top n − 2β values closest to median are chosen with β = 13. For implementing
Krum, we have set the multi-Krum parameter (f = n−m−2) as 22 for meeting
the assumption 2m+2 < n. For the AE credit score-based approach, an autoen-
coder is trained at the server with client updates accumulated till 20 rounds.
The autoencoder input is a vector of 4096 chosen randomly from the first fully
connected layer of the CNN model described above. It is trained for 20 local
epochs with a batch size b = 32, η = 0.0001 and a dropout rate of 0.2. The
pre-trained autoencoder is used for detecting malicious behavior. A client with
a credit score exceeding a threshold is considered an attacker. The threshold is
set to mean anomaly score following [8].

All of the above algorithms are run for 50 communication rounds with the
attacker actively performing label flip with the similar settings discussed above.
Figure 11a and 11b illustrates the result of comparison in terms of global model
accuracy and attack success rates. Similarity-based approaches could achieve
accuracy around 86–88%, while AE looks to outperform them by achieving
90% accuracy. Moat achieves 86–88% accuracy in merely 15–20 iterations and
surpasses 90% with 50 iterations. These are designed attack-specific and are
not robust against different targeted poisoning attacks. GeoMed, Krum, and
Trimmed Mean are only robust up to �n

2 	 − 1 attackers. They require prior
knowledge of malicious participation as well as white-box access to the client
gradients. They suffer badly against a non-IID setting. Authors in [4] claim their
defense strategy is secure against existing attacks and strong adaptive attacks.
However, they suffer with a root dataset having less than 100 examples and
proves to be robust only against 60% attackers. AE credit score-based approach
also requires white-box access to client gradients and is robust only up to �n

3 	
attackers. Moat scales with the number of attackers and are robust against n−1
attackers.

7 Conclusion

The proposed defense Moat is one of the first generic defense strategies against
targeted poisoning attacks in federated learning. It has been extensively run,
tested, and proven effective for Label Flipping, Backdoor, and Hybrid (Dis-
tributed) attacks. It stands robust against varying numbers of adversaries, poi-
soned samples, architectures, datasets, and different attack strategies. It works
under both the IID and non-IID distribution. Moat restricts the attack success
rate to 5–10%, which is significantly lower than existing defense strategies. It
converges with the set of benign clients even in the presence of a majority of
compromised workers (90%).
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Appendix

A SHAP Analysis

Figure 12a shows the SHAP attribution results for all 10 labels a0 to a9, of
‘pattern’ triggered backdoor model with target label ‘2’. Figure 12b illustrates the
attributions of a honest model. It is pertinent to observe the additive increment
of the blue spectrum of a2 for the malign model. Figure 12c illustrates the SHAP
attribution results in a label flipped attack-ed model for class ‘6’ flipped to ‘2’,
where a6 produces more red spectrum as compared to the benign model. It
allows the server to detect the presence of backdoor without any knowledge of
embedded trigger since the additive attributions of attacked label in malicious
model and benign model differs for the same reference and baseline data.

(a) Malicious Model with Trigger and Target Label ‘2’

(b) Benign Model

(c) Malicious Model with ‘6’ as ‘2’

Fig. 12. SHAP attributions over a zero-vector baseline

Different Combinations of References and Baseline: We have analyzed
different combinations of reference data (R) for learning feature attributions and
the baseline data (B). R can be a subset of real data (real), a single sample with
a mean of a set of real data (mean), and zero-vector data (neutral). We have
analyzed this with an instance of label flip attack where ‘4’ is flipped to ‘9’ and
backdoor attack where trojan is inserted in ‘4’ and the class label changed to
‘9’. A image of ‘4’ (victim img), ‘9’ (target img) and a zero-vector(z img) image
is used as B in label flip attack. For backdoor attack, a benign sample of ‘4’
(g img), a triggered sample of ‘4’ (b img) and a zero-vector(z img) image is used
as baseline. After getting label-wise attributions (a1, a2, . . . , al), we can perform
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outlier detection by calculating as, Case 1: total influence (
∑f

i=1 φi ∈ aj), Case
2: absolute influences (

∑f
i=1 |φi| ∈ aj), Case 3: positive influences (

∑f
i=1{φi ∈

aj |φi > 0}), and Case 4: negative influences (
∑f

i=1{φi ∈ aj |φi < 0}).
Table 1 tabulates the detection capabilities, whether Moat can detect the

victim, target, or both the label for label flipping attack. It can be observed that
when R is real with B set to z image, it detects both the victim and flipped
label in all 4 cases. The absolute sum of the attribution influences across all R
can detect either victim, attacked, or both labels. In backdoor attack, we check
whether the altered label (‘9’) of backdoor-ed input can be detected or not, as
listed in the Table below.

Table 1. Detection capabilities for various combinations of R and B against Label Flip
(LF) and Backdoor (B) attacks

R B (LF | B) Case 1 (Sum)
(LF | B)

Case 2 (Abs)
(LF | B)

Case 3 (Pos)
(LF | B)

Case 4 (Neg)
(LF | B)

real victim img |
g img

target | ✓ victim, target
| ✓

victim, target
| ✓

victim, target
| ✓

real target img |
b img

target | ✓ victim, target
| ✓

victim | ✓ victim | ✓

real z img | z img victim, target
| ✓

victim, target
| ✗

victim | ✗ victim, target
| ✗

mean victim img |
g img

target | ✓ victim, target
| ✓

victim, target
| ✓

− | ✓

mean target img |
b img

target | ✓ victim | ✓ victim | ✓ victim | ✓

mean z img | z img − | ✗ victim | ✗ − | ✗ victim | ✗

neutral victim img target | ✓ target | ✗ target | ✓ victim | ✗

neutral target img |
b img

target | ✓ victim | ✗ victim, target
| ✗

victim | ✗

B Results on Distributed Attack

We analysed distributed attack objective by flipping multiple labels on Fashion-
MNIST dataset. Label ‘8’ is flipped to ‘3’, ‘6’ to ‘2’ and ‘9’ to ‘1’. The results
are plotted in Fig. 13a, 13b and 13c and show good convergence for Moat.

(a) Accuracy (b) Attack Success Rate (c) Misclassification Rate

Fig. 13. Distributed attack on Fashion-MNIST dataset
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Abstract. Code-signing PKI ecosystems are vulnerable to abusers. Kim
et al. reported such abuse cases, e.g., malware authors misused the stolen
private keys of the reputable code-signing certificates to sign their mali-
cious programs. This certified malware exploits the chain of the trust
established in the ecosystem and helps an adversary readily bypass secu-
rity mechanisms such as anti-virus engines. Prior work analyzed the large
corpus of certificates collected from the wild to characterize the security
problems. However, this practice was typically performed in a global
perspective and often left the issues that could happen at a local level
behind. Our work revisits the investigations conducted by previous stud-
ies with a local perspective. In particular, we focus on code-signing cer-
tificates issued to South Korean companies. South Korea employs the
code-signing PKI ecosystem with its own regional adaptations; thus, it
is a perfect candidate to make a comparison. To begin with, we build
a data collection pipeline and collect 455 certificates issued for South
Korean companies and are potentially misused. We analyze those cer-
tificates based on three dimensions: (i) abusers, (ii) issuers, and (iii) the
life-cycle of the certificate. We first identify that the strong regulation of
a government can affect the market share of CAs. We also observe that
several problems in certificate revocation: (i) the certificates had issued
by local companies that closed the code-signing business still exist, (ii)
only 6.8% of the abused certificates are revoked, and (iii) eight certifi-
cates are not revoked properly. All of those could lead to extending the
validity of certified malware in the wild. Moreover, we show that the
number of abuse cases is high in South Korea, even though it has a small
population. Our study implies that Korean security practitioners require
immediate attention to code-signing PKI abuse cases to safeguard the
entire ecosystem.

1 Introduction

The establishment of trust in software distributed over the Internet is challenging
due to the nature of software distribution: unknown sources and a high chance
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 59–77, 2021.
https://doi.org/10.1007/978-3-030-86890-1_4
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of tampering during distribution. To overcome these challenges and to guarantee
the authenticity and integrity of software, Code-signing PKI is designed and now
becomes a de-facto standard in the software ecosystem. Similar to other PKIs
such as the Web’s PKI, the code-signing PKI also requires Certificate Authorities
(CAs) to attest that a certificate belongs to a legitimate software publisher.
The CAs issue code-signing certificates for publishers, after the vetting process.
Software publishers sign their software with their issued certificates to warrant
the authenticity and the integrity of the software. In turn, clients can establish
trust in the signed software by verifying the digital code-signing signature. They
can know not only the identity of the publisher but also that the software has
not been altered during the distribution.

A security rule of thumb for a user is to only execute or install software that
contains valid signatures from reputable software publishers with whom she can
establish trust. However, anecdotal evidence has shown that the security rule can-
not be guaranteed since software properly signed by legitimate publishers can be
severe malware [10,24,31]. For example, the Stuxnet worm included device drivers
that had been properly signed with the private keys stolen from two Taiwanese
semiconductor companies, located in close proximity [10]. The fact is that the
malicious usage of these stolen private keys helps remain undetected for a longer
period than the other malware [10]. Furthermore, the abuse of code-signing is also
prevalent among Potentially Unwanted Programs (PUPs) [5,16,17,32].

This observation has sparked an interest in the real-world breaches of trust
in the code-signing ecosystem. In particular, Kim et al. [13,14] conducted a
large-scale analysis of code-signing abuse cases in the Windows code-signing PKI
ecosystem. However, these studies were mostly conducted from a global perspec-
tive; hence, they often left the breaches that would happen in sub-populations
overlooked. Local software publishers may mainly target local customers; so in
this case, the local publishers should have regional adaptations in their code-
signing ecosystem, considering the environmental factors of their countries or
regions—e.g., because of law1. For instance, regulations may state the qualifica-
tion of a CA or force how the PKI should be operating. Thus, the characteristics
of abuse cases can be different from the previous studies. Moreover, the analy-
sis tools in prior work focus on emphasizing the most prevalent findings in the
collected datasets.

In this paper, we tackle the prior emphasis on the global perspective and
make a first step towards understanding the breach cases in the sub-populations.
Specifically, we ask: What characteristics can we find from an analysis of a spe-
cific country? To answer this question, we give an eye to the Windows code-
signing PKI in South Korea. South Korea is known to have its unique PKI
ecosystem, developed alongside the digital signature act (DSA), which was estab-
lished in 1999 [6,15]. DSA states that only a signature is valid if it is endorsed
by an accredited CA. South Korean users are also known to be exposed to vari-
ous “security software” necessary for web activities where identity verification is

1 PKI in Asia – Case Study and Recommendations: https://fidoalliance.org/wp-
content/uploads/FIDO-UAF-and-PKI-in-Asia-White-Paper.pdf.

https://fidoalliance.org/wp-content/uploads/FIDO-UAF-and-PKI-in-Asia-White-Paper.pdf
https://fidoalliance.org/wp-content/uploads/FIDO-UAF-and-PKI-in-Asia-White-Paper.pdf
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required e.g., banking, e-commerce [28,29]. The electronic financial transaction
act, which became active in 2007, has fostered such an environment. Therefore,
we may expect to see unique characteristics reflected in the code-signing PKI
ecosystem as well. Nevertheless, little is known about the regional differences;
the same applies to the Korean code-signing PKI abuse.

We design a system, which extracts code-signing certificates and identifies
Korean certificates that are likely compromised. We utilize information from the
certificate and the scanning reports of the binary for identification. We examine
the characteristics of Korean signed malicious samples and compromised certifi-
cates. Specifically, we investigate how prevalent code-signing abuse is, who are
the abusers, who issue the certificates, and whether the compromised certificates
are adequately revoked or not.

We found code-signing abuse is prevalent in Korea for its population. The
number of signed malicious samples accounted for 1.8% of the total samples,
whereas the population is nearly 1% among the global internet users. We also
find the unique distribution of the CAs. Thawte dominates the population and a
local CA Yessign is observed. Yessign is out of the code-signing business and that
could be a potential problem in revocation. Such characteristics might be due to
the web environment in Korea, cultivated by its regional PKI laws. Besides, we
observe revocation is not done properly in Korea as well. Only 6.8% of the cer-
tificates are revoked, and eight certificates have set revocation dates ineffectively.
It endangers users of the signed malicious binaries.

Contributions. In summary, we make the following contributions:

– We design a system that collects the malicious programs and compromised
certificates from South Korea. We identified 455 certificates that are issued
for South Korean companies and are potentially misused by malware authors.

– We highlight the abuse cases in the code-signing ecosystem in South Korea.
Using the observations in the previous studies as our baseline, we report the
commonalities and differences in our findings.

– Using those differences, we analyze and identify the distinct characteristics
of Korean compromised certificates that are fostered by the regional laws.

2 Background and Motivation

In this section, we briefly overview the code-signing PKI; especially, the code-
signing process, the distinct characteristic of the code-singing PKI that is mainly
different from the Web’s PKI, and revocation that can cause extra security
threats. We then highlight our motivation why we need to study the unique
characteristics of the Korean code-signing PKI ecosystem.

2.1 Overview of the Code-Signing PKI

Code-signing is a security technology that utilizes the digital signature mecha-
nism. It helps authenticate the publisher of a software program and guarantees
the software’s integrity after signing. It requires creating a digital signature using
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the publisher’s private key (i.e., signing), and then embed the digital signature into
the software. In turn, for clients, when verifying the signed software, they need the
public key associated with the publisher’s private key to verify the signature.

The code-signing also relies on Public Key Infrastructure (PKI), called the
Code-signing PKI. As the nature of the Internet, clients cannot trust any pub-
lic key transferred over the Internet that claims to be legitimate. It is because
public keys do not have any information about the ownership. To mend this
problem, third-parties, called Certificate Authorities (CAs), attest that a public
key belongs to a particular owner (in this case, a software publisher or developer)
who possesses the associated private key. We call this endorsed key a certificate.
As long as we trust the CAs, we trust all certificates issued by the CAs except
for revoked certificates. This chain of trust starts from the end entity (i.e., pub-
lisher) to the root certificate pre-installed in client-side systems such as operating
systems or web browsers.

2.2 Code-Signing Process

Like the Web’s PKI (e.g., TLS), a software publisher first applies for code-
signing certificates to CAs with the applicant’s public key. After verifying the
publisher’s identity, the CA issues a code-signing certificate based on the X.509
v3 certificate standard [8]. The software publisher uses its private key associated
with the issued certificate to sign its software. Specifically, in the signing process,
the hash value of the software is first computed, and then, the hash value is
digitally signed with the publisher’s private key. Finally, the digital signature
and the chain of the certificates are bundled with the original software. This
whole process is illustrated in Fig. 5. In turn, the client has to verify the signature
with the public key embedded in the certificate when encountering the signed
software. The verification process allows clients to recognize any modifications
of the program when verifying the signed software.

Trust Timestamping. The distinct difference between the Web’s PKI and
the code-signing PKI is trust timestamping. The trust timestamping guarantees
when a binary file is signed, and if a binary is signed before the certificate’s expi-
ration date, the validity extends after the certificate expires, which is different
from the Web’s PKI where the validity of a domain is no longer ensured after
the certificate expires.

As illustrated in Fig. 5, when a binary file is signed, the hash value of the
binary file is sent to a Time Stamping Authority (TSA), and the TSA issues a
trusted timestamp. The TSA signs the timestamp and the hash value with its
certificate. This so-called trust timestamp is sent back to the publisher. Then
the software publisher embeds the trust-timestamp signature and the TSA’s
certificate into the signed software.

2.3 Revocation

Another important role for CAs besides issuing certificates is to revoke the com-
promised certificates that they have issued. There are various reasons for CAs
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to revoke their issued certificates; (1) when the private key associated with a
certificate is stolen and used to sign malware samples [13], (2) when a weak
cryptographic key is used to generate a certificate [33], (3) when CAs are hacked
and compromised, and then issue certificates for adversaries [24], and (4) when
a certificate is issued under the name of a shell company or through imperson-
ations, etc. [13].

There are two primitive ways for CAs to disseminate the revocation status
information; (1) Certificate Revocation List (CRL) and (2) Online Certificate
Status Protocol (OCSP). In CRL, clients need to download the revocation lists
periodically and to check if the certificate is on the lists. If the certificate’s serial
number is on the list, clients can consider the certificate is revoked and no longer
valid. OCSP is the successor to CRL, and it allows clients to query a CA for the
revocation status of a certain certificate rather than downloading a bulk of the
serial numbers using CRLs. Both CRLs and OCSP responses are signed with
CAs’ certificates to guarantee their integrity.

Erroneous Revocation Data Setting. When revoking certificates, CAs must
set the effective revocation date (c.f., Sect. 2.3). Kim et al. [14] have examined
the security problems of the current code-signing revocations. If CAs erroneously
set an effective revocation date, all signed programs (including malware) signed
before the effective revocation date can remain valid even though the certificate
is revoked. It is due to the trust timestamp mechanism.

2.4 Motivation

Code-Signing Abuse. Recent measurement studies [5,13,14,16–18] have
reported that adversaries have attempted to compromise the code-signing PKI
for their malicious purpose; their main purposes are 1) to efficiently distribute
their malware and 2) to lure clients into installing their malware. Attackers can
make a bold move of stealing the private keys of benign software companies
and use the keys to sign their malware, which makes a much powerful attack.
The signed malware now looks like a legitimate product from a benign software
company, which misleads clients to believe the signed malware is safe to execute.
Furthermore, adversaries incorporate shell companies and use this fake company
information to get issued code-signing certificates legally and legitimately from
the code-signing CAs.

Motivation for a Regional Study. Previous measurement studies have been
conducted from a global perspective considering software publishers and CA as
global entities. However, this global perspective analysis can lead to misunder-
standing or neglecting local characteristics because it mainly focuses on global-
scale cases. In other words, the code-signing abuse cases may vary depending on
the locality of the attackers and their targets. Thus, to enhance the security of
the code-signing PKI ecosystem, we need to understand 1) the local character-
istics of the code-signing abuse cases and 2) adversaries who compromise local
software publishers targeting local victims. Moreover, in terms of data collection,
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the previous methods and results may often be biased to the majority population
and a limited number of countries. Thus, a regional target attack campaign with
a small number of malware samples could have been neglected or overlooked.

South Korean Web Environment. We focus on South Korea for this study.
South Korea has a unique environment fostered by the regulations. Two acts
played as the dominant factor. The digital signature act (DSA) established in
1999 has restricted the “valid” form of digital signatures [6,15]. It only con-
cedes signatures issued from “accredited CA”s to be legitimate. There are six
accredited CAs, including KFTC, KICA, Koscom, KECA, KTD, and Initech [4].
Among them, KFTC once served as a code-signing CA under the name of
“yessign” (https://www.yessign.or.kr/). KICA and KECA act as a distributor
of the global code-signing CA. KICA (https://www.kicassl.com/) is a relay of
Comodo; KECA (https://cert.crosscert.com/) offers Digicert and Thawte prod-
ucts. Next, the electronic financial transaction act, which became active in 2007,
is known as the main cause of the notorious Korean web environment. Due to
this act, Korean users have been forced to install various “security software”
such as keylogger detection for web activities [28,29]. The flood of these manda-
tory “legitimate” software, which are digitally signed, may have introduced side
effects that incapacitate the defense mechanism of code-signing. For instance, a
survey was conducted on Korean adware victims [1], which reported that only
2.8% consciously clicked “allow install” the adware. Moreover, anecdotes [2,3]
show that South Korean software companies have become an attractive target
for adversaries. Specifically, many South Korean software companies were stolen
the private keys of their code-signing certificates, and the stolen private keys
were misused to sign malware. Therefore, we believe South Korea is an attrac-
tive candidate for studying the local characteristics of the code-signing PKI, and
understanding such characteristics may help improve the security of the entire
code-signing PKI ecosystem.

3 Data Collection

To better understand the landscape of code-signing abuse in South Korea, we
first need to capture signed malware and PUPs in the wild and extract code-
signing certificates. From the code-signing certificates, we need to obtain infor-
mation such as publisher names (common names), locality addresses, issue dates,
expiration dates, issuers (CAs), and more. However, due to the nature of soft-
ware distribution, it is significantly challenging to collect all signed malicious
samples and their code-signing certificates in the wild. Whereas in the Web’s
PKI, a comprehensive list of TLS certificates can be readily collected by scan-
ning the entire IPv4 addresses with a network scanner (e.g., ZMap [9]). This
is because signed malware samples can be distributed through a pre-installed
updater/installer tool; or others can be distributed from external storage or
directly from websites. To overcome these challenges, we present a new collec-
tion pipeline for Korean code-signing certificates that are likely compromised,
as illustrated in Fig. 1.

https://www.yessign.or.kr/
https://www.kicassl.com/
https://cert.crosscert.com/
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Fig. 1. The overview of our Korean compromised certificates collection
pipeline. (1) Malicious files are collected from VirusShare, (2) filter out non-PE files,
(3) extract code signing certificates from PE files, (4) validate PE files and certificates
using the Windows SigCheck and SignTool, and (5) extract only Korean certificates.

3.1 Data Source

We utilize VirusShare (http://virusshare.com), the large corpus of malware, to
collect signed malware and to extract Korean compromised code signing cer-
tificates from the corpus. We also utilize VirusTotal (http://virustotal.com) to
label the collected signed malware samples.

VirusShare and VirusTotal. We collect malicious binaries from VirusShare
that is one of the most extensive sets of malware samples available to the public.
Since the data sets are freely downloadable, many security research works have
utilized them. The malicious samples consist of not only Windows Portable Exe-
cutable (PE) files, but also HTML files including malicious JavaScript code. We
sample 57 tar files (out of 312 tar files) from VirusShare. Each tar file contains
either 131,072 or 65,536 malware samples. We collect a total of 5,934,399 mali-
cious files.

To classify the malicious samples, we use VirusTotal. VirusTotal is a Web
service where users can freely upload executable samples (including malware
and benign samples) and analyze the samples to classify with up to 63 different
Anti-Virus (AV) engines. The service provides a report containing the number
of AV engines that detect the samples as malicious and the corresponding labels.
In our work, we utilize that information to classify the collected samples (c.f.,
Sect. 3.3).

3.2 System Overview

In this section, we describe our new system. As presented in Fig. 1, the new
system is a pipeline for identifying digitally signed PE files and extracting com-
promised Korean code-signing certificates.

Identifying PE Files. We first filter out non-PE files from the total of
5,934,399 malicious files (out of 57 VirusShare tar files) since the files include not
only PE files, but also JavaScript code. The 5,934,399 samples are fed into our

http://virusshare.com
http://virustotal.com
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system shown in Fig. 1 to exclude non-PE files and non-signed PE files. When a
PE file is signed, the size of the IMAGE DIRECTORY ENTRY SECURITY field is
non-zero. 525,071 digitally signed PE files remain after this step, which accounts
for 8.8% of the original data set. We now move next to extract code-signing
certificates from signed PE files.

Extracting Certificates. We utilize the Python PE module2 to locate the
PKCS #7 SignedData structure that contains code-signing certificates and to
dump the structure into a file encoded in Distinguished Encoding Rules (DER).
Of 525,071 signed PE files, only 495,124 PKCS #7 files are extracted due to
parsing errors. Then, we extract all code-signing certificates (including TSA
certificates and code-signing intermediate certificates) from the DER-encoded
PKCS #7 files, and then we filter out non-leaf code signing certificates using
the keyword of “CodeSigning” in the extendedKeyUsage extension field and the
“Basic Constraints” field.

Valid Korean Certificates. The last part is where we obtain the set of Korean
certificates that are valid. We can specify the certificates belonging to a particular
country by looking at the country code in the leaf certificate’s subject field. If the
country code of a leaf certificate is “KR,” we know that the certificate is issued
for a Korean publisher. Using this concise but effective method, we identify
844 certificates issued to Korean identities and 8,815 malicious PE files signed
with those certificates. The number of PE files accounts for 1.8% of the initial
data set.

Now we explain the verification process. Only valid certificates remain after
this step. We first verify the digital signatures and code-signing certificates
embedded in PE files using both SignTool3 and SigCheck4 tools in the Win-
dows Sever 2016. SignTool returns error code with a message for the scanned
certificate. Table 4 enumerates the error code returned by SignTool and the
associated messages. We consider the three messages of “Successfully Verified,”
“0x800B0101,” and “0x800B010C” valid since the two error code, “0x800B0101”
and “0x800B010C” are returned only when PE samples have been properly
signed. Specifically, 0x800B0101 returns when a PE file has not been trust-
timestamped and its certificate expires, and when a certificate is revoked, 0x800B
010C returns. Detailed information is described in Table 4. In the end, we have
783 valid Korean certificates and 8,093 PE files signed with the valid Korean
certificates as described in Table 5(left). In other words, 94.2% of signed samples
have a proper PKCS#7 structure.

3.3 Binary Labeling

Samples from VirusShare may contain false positives. Here, we describe the line
of efforts we made to reduce the false positives. First, we re-scan the malicious

2 https://github.com/erocarrera/pefile.
3 https://docs.microsoft.com/en-us/windows/desktop/seccrypto/signtool.
4 https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck.

https://github.com/erocarrera/pefile
https://docs.microsoft.com/en-us/windows/desktop/seccrypto/signtool
https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck
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samples using VirusTotal. It is known that AV engines’ labels may change over
time as more evidence is gathered. Thus, some samples may be re-labeled as
benign. We observe 234 PE samples among the malicious samples signed with
Korean code-signing certificates are no longer malicious after the re-scan.

Next, we set a threshold to filter out samples with less confidence. For each
signed PE sample, we define cmal as the number of AV engines in VirusTotal
that label the sample as malware. We consider a signed PE file as malware
when cmal ≥ 10. For example, cmal ≥ 10 means that about 15% of AV engines
(out of more than 60 AV engines in VirusTotal) detect the samples as malware.
This approach is presented in prior works [13,19]. After this step, we now have
455 valid Korean certificates used to sign malicious samples detected by more
than 10 AV engines in VirusTotal.

As a final step, we utilize a malware labeling tool, called AVClass [30] to label
our malicious samples and classify them into malware and Potential Unwanted
Program (PUP).

4 Code-Signing PKI Abuse in Korea

Table 5(right) summarizes the breakdown of PE malicious files, signed PE mali-
cious files, Korean compromised certificates, and Korean malicious PE files
signed with the Korean certificates. With this data, we investigate the char-
acteristics of code-signing PKI and the abuse within Korea. Here, we try to
answer the following research questions.

1. Q1: How prevalent is code-signing abuse in Korea?
2. Q2. Who abuses the code-signing in Korea?
3. Q3: Who issued the certificate?
4. Q4: Are the certificates issued with safe cryptographic guarantees?
5. Q5: How long do the abusive certificates survive in Korea?

The final goal for these questions is to ask the main research question we raised
in the introduction: Q: What characteristics can we find from an analysis of a
specific country?

4.1 Abusers

We answer a couple of questions Q1. How prevalent is code-signing abuse in
Korea? and Q2. Who abuses the code-signing in Korea? in this section. We ini-
tiate with simple statistics to answer the first question. For the second question,
we investigate the problem from two different angles 1) the malicious sample
family based on their labels and 2) the publisher’s information stated on the
certificate.

Prevalence. As presented in Table 5(right), signed malicious binaries with
Korean certificates are 844 in numbers. It accounts for 1.8% of the data set,
which is a global collection. The Korean internet population is about 5 million,
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Table 1. Top 10 Malware/PUP label breakdown. SINGLETON is labeled when
AVCLass is unable to find a family name for a malware sample such as generics. On
average, a Korean certificate is used to sign 2.5 different family of malicious samples.
Bold malware families are considered as trojan or severe threats.

Family label PE Certificate

Kraddare 2,850 (41.70%) 198 (43.52%)

Onescan 798 (11.68%) 50 (10.99%)

SINGLETON* 418 (6.12%) 191 (41.98%)

Sidetab 298 (4.23%) 5 (1.10%)

Hotclip 177 (2.59%) 6 (1.32%)

Openshopper 169 (2.47%) 7 (1.54%)

Delf 158 (2.31%) 32 (7.03%)

Viruscure 243 (3.23%) 36 (6.79%)

Adkor 135 (1.98%) 63 (13.85%)

Hebogo 121 (1.77%) 7 (1.54%)

Total 6,835 (100%) 1,123 (246.81%)

Table 2. Top 10 common name, issuer, and region breakdown. N/A in region
means that neither province nor locality name information are specified.

which occupies about 1% of all internet users worldwide5. Compared to its popu-
lation, code-signing abuse is quite prevalent in Korea. It may imply that Koreans
tend to be vulnerable to code-signing abuse and attackers are exploiting it. Such
a tendency might have been formed due to its web usability environment, as
mentioned in Subsect. 2.4.

Malicious Sample Family. To better understand what kind of malware family
used Korean code-signing certificates, we utilize the VirusTotal reports of our
collected malicious samples and AVClass [30] to label the samples. We identify
278 different malicious sample families, and we break down the top ten malware

5 Internet world stats: https://www.internetworldstats.com/stats3.htm.

https://www.internetworldstats.com/stats3.htm
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and PUP labels as described in Table 1. The SINGLETON label indicates that
AVClass is unable to classify malicious samples.

About 41% malicious samples signed with Korean certificates is kraddare. This
family is considered PUP/PUA, which redirects to unwanted homepages without
user action, changes the browser settings, shows unwanted advertisements using
pup-ups [11]. Microsoft Defender Antivirus [22] classifies the malicious sample
as a “severe” threat and removes the sample as encountered. The following mal-
ware family is onescan. The family is considered as a “severe” threat by Windows
Defender Antivirus, and called “fakeAV [23].” The malware pretends to scan vic-
tims’ computers, and reports to them that their computers have been infected by
any malware, and then asks them to pay for cleaning up the reported malware.
However, the victims’ computers are not infected by any malware, and nothing
is actually done by the malware, but victims pay for it. Delf [21] is a trojan that
redirects Web traffic, downloads malicious programs, etc. On average, a Korean
certificate is misused to sign 2.5 different families of malware/PUP samples. It
would imply either 1) a couple of malware groups share a code-signing certificate
to sign their malware or 2) a malware group produces a couple of malware families.
However, we have little evidence to specify which.

Publisher. In Windows, when executing/installing a signed PE file, a client is
prompted a request that shows the publisher name of the PE file by the system.
Only after the client accepts the request, the signed PE files will be executed.
Details about the publishers’ information are available when clients look at the
certificates since certificates include publishers’ information such as the com-
pany/individual name, physical address (country, province, street address, and
zip code), etc.

We start the investigation from the publisher’s name stated in the Common
Name (OID: 2.5.4.3) field. The common name is a required field in Subject of
the X.509 v3 standard. It is used to identify the legal name of a publisher.
The Legal names can be specified in the field only when verified by CAs using
notarized documents or legal documents from attorneys. Unlike TLS, where the
common name should have a domain name to be verified, in the code-signing
PKI, the common name is usually an organization’s name such as Google Inc.
and Microsoft Corporation. We observe 330 common names in 455 Korean cer-
tificates; on average, a company has 1.4 different code-signing certificates to sign
malicious samples. The top 10 publishers are enumerated in Table 2. cloudweb
Inc has the largest signed malicious samples in our data set. The publisher had
three different certificates to sign 1,040 malicious samples.

Furthermore, we could find some reputable Korean companies within the
certificates misused to sign malicious samples. We believe that their private keys
associated with the certificates were likely stolen and used to sign malicious sam-
ples. For example, the certificate of a Korean software company that develops
not only software tools but also an AV product was misused to sign malware,
called “plugx.” The malware is a kind of Remote Access Trojan (RAT). For-
tunately, the certificate was explicitly revoked, and the malware is no longer
valid. Moreover, an English education company located in the Gangnam district
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released a program with a Trojan downloader malware payload. The malware
was distributed at a legitimate website. Since it is a reputable and legitimate
company, we believe that the development infrastructures were compromised,
and the payload was injected into the legitimate program.

Next, we take a look at where these publishers are located. We use the
Province filed (OID: 2.5.4.8) to locate the regions of the publishers. According
to the minimum requirements [7], the Province field is required to be specified
when the Locality Name field (OID: 2.5.4.7) is absent. However, we observe that
20 certificates issued by YesSign do not include any information in both the
Province field and the Locality Name field; YesSign does not obey the require-
ment. Specifically, YesSign specifies their CA name on the Organization Name
filed (OID: 2.5.4.10) rather than the publisher’s organization name. Most mali-
cious publishers (58.7%) are located in Seoul as depicted in Table 2. We also
manually investigate certificates located in a small, rural, agricultural area where
IT companies are less likely to exist. We observe that two certificates located
in a small agricultural area are issued to non-existing IT companies. The same
name of the IT companies exists, but they are located in Seoul, not the small
rural area. Moreover, the two certificates were issued on the same day, and the
certificates were misused to sign the same malicious sample families; onescan,
kraddare, and jaik. Therefore, we believe that the two publishers are related to
each other, even though they use different publisher names. This goes along with
our findings from analyzing the malware families.

4.2 Issuer

In this section, we answer the questions: Q2: Who issued the certificate? and
Q3: Are the certificates issued with safe cryptographic guarantees?.

Certificate Authority (CA). CAs issue code-signing certificates to software
publishers (e.g., software developers). In the certificates, CAs specify their infor-
mation such as the country, address, name of the issuer CAs. Similar to the
Subject field, the issuer information is located in the Issuer field.

We observe only seven CAs, and certificates issued by Thawte are the major-
ity (73.8%), which contradicts the finding [13] that VeriSign dominates the code
signing certificate market share. We believe it is because Thawte is distributed by
one of the accredited CAs in Korea, as we described in Subsect. 2.4. Also, Thawte
allows publisher names with Korean alphabets6, which may have boosted the
market share. In addition, we find “YesSign7” in our data set, a CA which is
hardly observed in prior works [13,14]. YesSign is one of the largest Korean CAs,
and is operated by Korea Telecommunications and Clearings Institute (KFTC).
The CA no longer issues code-signing certificates, but it still provides the OCSP
and TSA service. However, as they stopped the business, there is a chance the
revocation checking services may shut down in the future, which may make users
vulnerable.

6 Provided by crosscert: https://www.crosscert.com/symantec/02 1 04.jsp.
7 https://www.yessign.or.kr.

https://www.crosscert.com/symantec/02_1_04.jsp
https://www.yessign.or.kr
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Table 3. Signature and public key algorithm breakdown.

Signature algorithm Count Public key algorithm Count

MD5 With RSA 6 (1.31%) RSA 455 (100%)

SHA1 With RSA 413 (90.77%) DSA 0 (0%)

SHA256 With RSA 36 (7.91%) ECDSA 0 (0%)

Total 455 (100%) Total 455 (100%)

Cryptography Algorithm. It is important to use strong cryptography algo-
rithms for the certificates. Certificates with a weak algorithm may be utilized
for collision attacks. It is critical in code-signing as an attacker could perform
collision attacks on time-stamped binary samples with weak algorithms. MD5
and SHA1 are weak hash algorithms, vulnerable to collision attacks. We have
observed a severe security threat where Flame malware exploited an unknown
chosen prefix collision attack against the MD5 hash algorithm [31]. Google and
CWI Amsterdam demonstrated that two different files could have the same
SHA1 hash [12]. Although the SHA1 collision attack against certificates is not
yet reported, it could be exploited to create fake certificates in the near future.
Therefore, Microsoft deprecates MD5 and SHA1 hash algorithms in 2013 and
2015, respectively [20,26]. Still, CAs should be aware of this fact and move on
to SHA256.

We examine what cryptography algorithms are used for signature and public
keys in Korean certificates. As depicted in Table 3, all certificates in our data
set use RSA for public key generation. For the signature algorithm, the majority
(around 91%) use SHA1. We can also see the use of MD5 in a few certificates
(6, 1.31%). It implies that weak algorithms are still prevalent in Korea, which
has the potential to lead to serious security problems.

4.3 Certificate Life-Cycle

A life cycle of a certificate starts from its issue date and ends at its expiration
date. In case it is compromised, a revocation is conducted to invalidate the
certificate. However, we know that some signed binaries may survive even after
their expiration and revocation due to the trusted timestamp. To answer the next
research question Q4: How long do the abusive certificates survive in Korea?, we
start the examination from the validity period of the Korean certificates. Then we
check how prevalent trust timestamping is among the signed malicious binaries.
In the end, we investigate if the revocation is performed effectively for those
certificates, invalidating all the signed malware.

Validity Period. Each certificate has two fields, notBefore and notAfter for
validity period; notBefore is an issue date and notAfter is an expiration date. In
other words, a certificate is only valid between notBefore and notAfter, inclusive.
As shown in Fig. 2, most certificates (69.43%) were issued between 2009 and
2012. It does not indicate that the signed malware was collected between the
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Fig. 2. Issue year. Around 70% of
certificates in our data set were issued
between 2009 and 2012.

Fig. 3. Validity year. The majority
is one-year-valid certificates since CAs
usually issue one-year-valid certificates.

periods because the signed samples are still being valid even seven or eight years
have passed due to the trust timestamping.

Figure 3 shows that most certificates (70.57%) are only valid for one year
as expected since CAs typically issue one-year-valid code signing certificates.
However, interestingly, the validity period of four certificates is less than one
year. Two certificates issued by Thawte are valid only for three and nine months;
one certificate done by VeriSign is valid only for 11 months, and a certificate
issued by YesSign is valid for four months. Unlike the TLS certificates, because
the code signing PKI has the trust timestamping, signed binary samples can be
valid even after their certificate expiration date as long as the samples are trust
timestamped. Therefore, expiration dates do not count as much as the Web’s
PKI. We do not observe that certificates are valid for more than three years.

Trust Timestamp (Signing Date). The distinct difference between the
Web’s PKI and the code signing PKI is the trust timestamping mechanism
(c.f., Sect. 2.2). We measure how many Korean malicious samples are trust-
timestamped. Of 8,815 Korean malicious signed PE samples, we observe that
6,190 samples (70.2%) are trust-timestamped. Only when we consider the valid
malicious samples (cmal ≥ 10), 4,625 samples (67.7%, out of 6,835) contain the
signing date (trusted timestamps). It means that most malicious samples use
trust timestamping to extend their validation period beyond their certificate’s
expiration date. We also examine when the malicious samples are signed; we
utilize issue dates and expiration dates. More than 50% of malicious samples
are signed about 200 days before their expiration dates, as shown in Fig. 4. It
indicates that most malicious samples are consistently signed with compromised
certificates during the validity periods.

Revocation Status. All certificates we have identified in the paper are mis-
used to sign malicious binary samples. Therefore, they should be revoked. We
check whether or not the certificates in our data set are revoked using CRLs.
We observed three security threats that let signed malware alive. First, only
31 (6.81%) of 455 Korean certificates are explicitly revoked. It implies that mal-



Certified Malware in South Korea 73

Dates

C
D

F

Expiration date - Signing date
Signing date - Issue date

0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

Fig. 4. The difference in days between signing dates and issue dates, and between
expiration dates and signing dates.

ware signed with not-revoked certificates may remain valid even after the certifi-
cate’s expiration date, due to the trust timestamping mechanism (c.f., Sect. 2.2).

Second, we encountered CRLs that are unreachable. Two reasons interfered
with accessing and fetching the CRLs; (1) the CRL domain was taken by a
domain re-seller, and (2) the CRL file was moved/removed, returning a 404
error. Those findings are in line with prior work [14]. Clients exposed to these
certificates become vulnerable as they cannot check the revocation status of
these certificates.

Lastly, several certificates were not effectively revoked. Signed malware can
continue to be valid, although its certificate is revoked if the revocation date is
set erroneously (c.f., Sect. 2.3). We measure if Korean signed malicious samples
are still valid as CAs erroneously set the revocation dates after the samples’
signing dates. We find that 321 malicious samples are still valid, and eight Korean
certificates are used to sign the samples. The average difference between the
signing date and the revocation date is 6,013.01 h (250.51 days); the shortest
difference is 11.04 h (0.46 days), and the longest one is 25,389.82 h (1,057.91
days, 2.9 years).

Although the certificates are mostly issued to be valid for a year, several
signed malware remain a threat for an extended period due to time-stamping
and the clumsy set of revocation dates.

5 Related Work

Compared to the Web’s PKI, little research has been conducted on the code sign-
ing PKI. The first attempt [27] was done in 2010 by F-Secure. In the attempt,
they introduced the ways of abusing Microsoft Authenticode [25]. However, the
work was presentation slides focusing on introducing new threat models rather
than a research paper. In 2015, Kotzias et al. [17] examined 356,000 digitally
signed samples collected between 2006 and 2015. They observed that most of
the collected signed samples were Potentially Unwanted Programs (PUP), while
signed malware was relatively uncommon in their corpus. Kim et al. presented
new threat models that highlight the breaches of trust in the code signing PKI.
Kim et al. also identified the security problems of the revocation mechanisms cur-
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rently deployed in the wild. However, those studies are conducted from a global
perspective while we measure Korean compromised certificates’ characteristics.

6 Conclusion

We investigate the characteristics of code-signing abuse in South Korea. We
design a system that extracts abusive Korean code-signing certificates with a sim-
ple but effective method. A couple of findings were related to its unique web envi-
ronment fostered by regulations. South Korea has its own government-accredited
CAs, and these CAs affect the certificate landscape. We observe Thawte, re-selled
by one of the accredited CAs, dominating the population. Another accredited
CA even acted as a code-signing CA. However, the CA is no longer in busi-
ness, which is a potential threat as they might stop the revocation service. We
observed that code-signing abuse is quite prevalent in Korea, and it might be
due to the exposure of mandatory installation for using the web. Besides, we
also found a common vulnerability reported in prior works. Only 6.8% certifi-
cates have been revoked, and eight certificates of them have erroneous effective
revocation dates, which extends the validity of signed malicious samples.
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A Appendix

Table 4. SignTool error code & message.

Validation Error code Message

Valid N/A Successfully verified

0x800B0101 Expired certificates

0x800B010C Revoked

Invalid 0x800B010A Not a trusted root CA

0x80096010 Signature does not match the file

Terminated in a root cert Not trusted by the trust provider

No signature found No signature found
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Table 5. Breakdowns. Error code of Korean malicious PE files (left), PE files and
certificates (right).

Validation Error code KR malware

Valid Successfully Verified 5, 714

0x800B0101 558

0x800B010C 1, 821

Valid total number 8, 093

Invalid 0x800B010A 405

0x80096010 94

Terminated in a root cert. 24

No signature found 199

Invalid total number 722

Total number 8, 815

Type PE & Cert. Number

Total All malicious sample 5, 934, 399

PE file 3, 240, 176

Signed PE file 525, 071

PKCS #7 495, 124

Korean Malicious signed PE 8, 815

Malicious cert. 844

Valid malicious signed PE 8, 093

Valid malicious cert. 783

Valid malicious signed PE (cmal ≥ 10) 6, 835

Valid malicious cert. (cmal ≥ 10) 455

Fig. 5. Code-signing process. (1) A publisher applies for a code-signing certificate
to a code-signing CA with her/his identifications such as government-issued photo IDs,
(2) After vetting, the CA issues a code-signing certificate to the publisher, (3) Using the
SignTool (a signing tool provided by Microsoft), the software publisher signs a binary
sample with the certificate, (4) when a TimeStamp Authority (TSA) is specified for
timestamping (c.f., Sect. 2.2), the signing tool sends the hash value of the binary sample
to the TSA server, (5) The TSA server issues the timestamp and signs the timestamp
with the TSA’s private key, and send them back to the signing tool, (6) The signing tool
finally embeds the code-signing and the TSA certificate chain, the digital signature,
and the timestamp into the binary sample, and (7) Finally, the publisher distributes
the signed binary sample in the wild.
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Abstract. The constantly evolving malware brings great challenges to
network security defense. Fortunately, deep learning (DL)-based system
achieved good performance in the malware command and control (C2)
traffic detection field due to its excellent representation capabilities. How-
ever, DL models have been shown to be vulnerable to evasion attacks,
that is, DL models can easily be misled by adding subtle perturbations
to the original samples. In this paper, we propose a GAN-based eva-
sion method, which can help malware C2 traffic bypass the DL detector.
Our main contributions contain: (1) directly generate adversarial traffic
that can implement malicious functions by inserting additional adversar-
ial patches in the original flow; (2) adaptively imitating victim’s normal
traffic by training GAN in victim environment, and introducing transfer
learning to reduce the additional victim resource usage caused by GAN
training. Results show that the adversarial patch generated by GAN can
prevent malware C2 traffic from being detected with 51.4% success rate.
The higher time efficiency and smaller malware impact make our method
more suitable for real attacks.
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challenges to network security. Fortunately, it can be mitigated by detecting C2
channels on the network.

Among the rich malware C2 traffic detection methods, the deep learning
(DL)-based detection method has been widely used and researched because it
is an end-to-end solution that can automatically learn feature representations
from raw traffic data [13,15,16,24,25]. In this paper, we mainly focus on the
DL-based malware C2 detection model taking raw malware C2 traffic data as
input, which is a state-of-the-art detection method [19].

After the success of DL in the field of malicious traffic identification, their
robustness and security issues have become the subject of much discussion by
security researchers. In 2014, Szegedy et al. [23] first discovered that due to their
linear nature, well-performing DL models are vulnerable to adversarial examples,
which are intentionally crafted by adding tiny perturbations to mislead the DL
model. After that, how to use adversarial machine learning (AML) ideas to
construct adversarial malicious traffic to bypass detection also received attention.

Different from AML in the image recognition field, the construction of adver-
sarial malware traffic has many unique constraints and challenges:

1. Ensure that the generated adversarial traffic can retain the original malicious
functions, and the basic network protocol format will not be destroyed.

2. Directly generate adversarial traffic without the help of other attachments,
rather than generating adversarial features that are just intermediate results
of evasion attacks.

3. How to make adversarial traffic adaptively imitate the normal traffic of indi-
vidual victims, so as to ensure that it can be applied to a variety of terminals.
While those imitations that are limited to specific normal application traffic
will fail when the application is rarely used on some victims.

These three challenges are progressive. Challenge-1 represents effectiveness,
challenge-2 means usability, and challenges-3 is a practical requirement that
proposed based on real attack scenarios.

Unfortunately, none of the existing work can solve the above problems at the
same time. [8] and [10] directly treat traffic samples as image samples, even can-
not meet challenge-1. [14] and [7] can only generate adversarial features violate
challenge-2. What counts is, most of the current work does not consider challenge-
3, which is the most realistic requirement in the malware traffic evasion field.

In light of the challenges, we present an adaptive evasion attack on DL-based
detectors in practical settings. Specifically, we propose a GAN-based method that
can directly generate sample-independent adversarial patches (adv patches ).
Malware can directly send a packet encapsulating the adv patch in C2 commu-
nication to bypass the DL-based detector, without other attachments’ help or
complex source code modification. And the C2 flow that encapsulates adv patch
is called adversarial flow, which can directly bypass the DL detector. Therefore,
our method can solve challenge-1 and challenge-2 mentioned above.

In order to adaptively simulate a specific victim’s traffic, there are two solu-
tions. One is to collect large-scale normal traffics on the victim and send them
back to train GAN, but that is unrealistic because it will increase the exposure
risk of the C2 channel. The other is to train the GAN model on the bot, which
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will increase the exposure risk of malware on the victim. We choose the latter
to solve challenge-3. At the same time, in order to reduce the extra resource uti-
lization caused by GAN training on the victim, we introduced transfer learning
(TL) technology to further improve the similarity between malware C2 traffic
and victim normal traffic at a small cost. Results show that our method can not
only achieve a success rate of 51.4%, but also has a good performance in time
efficiency and a minor negative impact on malware.

Our major contributions are elaborated as follows:

1. We propose a GAN-based black-box malware C2 traffic evasion method to
bypass the DL detector. Under the premise of functionality preserving and
network protocol compliance, we can directly obtain adversarial traffic by
inserting an additional adv patch packet, without other attachments or com-
plex source code modifications.

2. Our method enables adversarial traffic to adaptively imitate host-side normal
traffic, that is, dynamically adjust adversarial traffic according to the traf-
fic characteristics of different victim terminals, which is more practical and
concealed. We also introduce TL to alleviate the additional system resource
occupation caused by GAN training on the victim.

3. We design a real-life experiment to evaluate the proposed method, and proved
its practicability and efficiency from the perspectives of evasion performance,
time performance, and impact on malware.

As far as we know, this is the first work on adaptive evasion method, that con-
siders and comprehensively evaluates the negative impact of the evasion method
on malware.

The rest of the paper is organized as follows: We start by providing back-
grounds and related works in Sect. 2. Section 3 introduces the overview of our eva-
sion method. Section 4 elaborate experimental setting up. Experimental results
and findings are shown in Sect. 5. Finally, we conclude in Sect. 7.

2 Background and Related Work

2.1 Background–Malware Traffic Detection

With the development of machine learning technology, DL technology has been
widely used in the malware C2 traffic detection field. On the one hand, DL-based
methods can automatically learn deep abstract feature representations, thereby
solving the dilemma of manual feature engineering. On the other hand, compared
with the traditional ML methods, DL-based methods also have a considerably
higher capacity to learn complex patterns, so they can deal with large-scale
encryption and unknown malicious traffic detection well.

According to the different model inputs, DL-based classifiers can be divided
into statistic feature-based and raw data-based. [18] and [19] have proved that
DL-based model, using raw flow representations as input, can outperform other
detectors, while without requiring any prior knowledge.
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In this work, we particularly focus on the vulnerability of DL-based malware
C2 traffic detector, which taking raw byte stream flow data as input.

[25] proposed a stacked autoencoder (SAE) based network protocol identifi-
cation method using raw traffic data, and achieved high accuracy.

[24] proposed an end-to-end malware traffic classification method with 2D-
CNN taking the first 784 bytes of flow. Lotfollahi et al. [16] combines SAE and
1D-CNN, and takes the first 1500 bytes of IP header and payload data as input.

Byte Segment Neural Network (BSNN) [13] and Flow Sequence Network
(FS-Net) [15] are both RNN-based traffic classification methods. The difference
is that BSNN takes raw payload as input, while FS-Net’s input is raw flow.

In summary, the current DL model for malware traffic detection often takes
the first few bytes of the raw byte stream as input, then learns the abstract
representation through multi-layer neural networks, and the final prediction is
calculated by the softmax layer.

2.2 Related Work–Malware Traffic Evasion

While the malware traffic detection method is constantly improving, attackers are
also exploring evasion techniques to avoid detection. Evasion and detection tech-
nologies are innovating in the tit-for-tat game, trying to be able to overwhelm the
opponent.

In order to bypass blacklist-based detection, attackers introduced dynamic
resolution technologies such as DGA and Fast-Flux to replace the hard-coding
method. Introducing techniques such as encryption and data encoding to cover
up the payload, so the payload-based detection is invalidation. To bypass the
detector based on statistical characteristics, the attacker introduces technologies
such as protocol tunnels and online-social networks (OSN) to construct covert
channels and overwhelms malicious traffic in mass normal traffic.

In recent years, with the widespread application of DL in the field of malicious
traffic detection, many researchers have also tried to use the inherent security
vulnerabilities of DL to bypass DL-based detectors. We divide these tasks into
two categories according to the adversarial output.

Feature-space attack refers to a type of attack method that can only
generate adversarial feature vectors. However, the mapping process from traf-
fic samples to traffic characteristics is irreversible and non-differentiable. So, it
is difficult to reversely infer traffic samples, even if the adversarial feature vec-
tor is known. In other words, this attack method is just theoretical proof that
DL-detector is vulnerable to evasion attacks, and cannot be directly used for
malicious delivery. This attack method can only be used as theoretical proof
that the detection system is vulnerable to attack.

Clements [8] and Ibitoye [10] used classic AML algorithms (FGSM [9], BIM
[11], PGD [17], C&W [5], JSMA [21] etc.) to evaluate the robustness of DL-based
network intrusion detection system (NIDS) against adversarial attacks in a white
box scenario. They directly convert the traffic samples into gray images and per-
turb the ‘pixel’ indiscriminately. No consideration is given to the fine structure of
traffic samples and the constraints of maintaining malicious functions.
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Lin et al. [14] proposed a black-box evasion attack method-IDSGAN, which
uses GAN to generate adversarial statistical features of malware traffic. Although
IDSGAN can ensure the effectiveness of the intrusion by changing only non-
functional features, it does not consider the dependence between statistical fea-
tures. FENCE [7] solves this problem by combining gradient-based methods and
mathematical constraints to maintain consistency in a family of dependencies.

Traffic-space attack refers to attack methods that can generate adversarial
traffic samples. Unlike feature-space attacks, traffic-space attack methods can be
powerful weapons for attackers to bypass malware traffic detectors.

Novo [20] used the classic AML algorithm FGSM [9] to perturb the encrypted
C&C malware traffic characteristics and achieved a white-box adversarial attack
against the detector. It requires additional traffic proxy or complex source code
modification to obtain the final adversarial traffic. And white-box attacks require
a full understanding of the detector, which is difficult to attain in real life.

Rigaki et al. [22] proposed a method that uses GAN to generate statistical fea-
tures similar to Facebook traffic, thus adjust the behavior of the malware C2 traf-
fic to avoid detection. FlowGAN [12] is no longer limited to Facebook traffic, can
dynamically morph traffic features as any other “normal” network flow to bypass
censorship. However, in these two works, GAN can only output adversarial fea-
tures. If the attacker wants to obtain adversarial traffic based on these adversar-
ial features, he needs to make complex modifications to the malware source code,
which will cause delays to the malware’s communication channel.

In Attack-GAN [6], the generator is viewed as an agent in RL, which can
craft adversarial traffic conditioned to the security domain constraints to ensure
attaining the attack functionality. But Attack-GAN needs to constantly access
IDS to obtain prediction results, which is unrealistic in real-attack.

Unlike the works we reviewed in this section, in this paper we focus specifically
on how to directly generate adaptive adversarial traffic without the help of any
other additional components. Only by adaptively imitating victim traffic, can the
adversarial traffic seemed to be normal-like in bots with different characteristics.
Moreover, while most related work assesses the performance of the evasion attack
on malware traffic detectors, they do not consider the impact of the proposed meth-
ods on malware, nor do they consider the practicality of the method. We properly
solve these problems by performing a real-life experiment in this work.

3 Method

In this section, we use some technical terms to represent various roles in a mal-
ware C2 traffic evasion attack. Malware means the code used to achieve C2,
master means the computer of the attacker, victim means malware-infected
hosts. The adversary tries to control the victim by malware, while the defender
tries to protect the victim through a DL-based malware C2 traffic detector.

3.1 Thread Model

Adversary’s Goal. From the perspective of the CIA (confidentiality, integrity,
and availability), attackers try to reduce the availability of detectors by camou-
flaging malware C2 flow.
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Adversary’s Knowledge. The attacker knows that the target network may be
protected by a flow-level detector based on DL. However, the attacker does not
need to master any prior knowledge about the detector, such as the architecture,
parameters, or training data.

Adversary’s Capability. The attacker has full control of the C2 server and
partial control of the victims, so he can update victims to change their commu-
nication behaviors as he wants.

3.2 Framework

Our framework is inspired by [4], that attackers can mislead the classifier by plac-
ing a gradient-based sample-independent adv patch in a specific area. Adv patch
is effective because it can calculate the most effective perturbation to the DL
model by using gradient backpropagation according to the gradient passed by
the discriminator. When inputting the detector, adv patch can dominate the
feature learning of the detector, thereby misleading the detector

The idea of adv patches suits malware C2 traffic evasion well. On the one
hand, through this method, we can directly operate on the traffic samples and
output traffic samples with actual attack functions.

On the other hand, traffic samples have more complex network protocol con-
straints than images, and there is a need to keep malicious functionality in
the perturbed sample. That makes many AML algorithms designed for images
unavailable. While our method can better meet the constraints of functionality
preserving and network protocol.

Specifically, our method includes two modules, a GAN-based generation mod-
ule and a TL-based transfer module.

To better illustrate our method, we propose two terms. We define universal
benign communication (UBC) traffic as benign communication traffic that
has multiple types benign communication traffic and can cover a variety of benign
communication behavior characteristics, while host benign communication
(HBC) traffic only includes benign communication traffic from a specific host.
HBC is more specific and targeted, while UBC is more versatile and generalized.

In the generation module, we use GAN to imitate the normal traffic to gen-
erate adv patch. By inserting it into the original flow, we can obtain adversarial
malware C2 traffic that can mislead the DL-based malware C2 traffic detector.

In the transfer module, we retrain the GAN model in the victim environ-
ment to adaptively simulate the victim’s normal flow. TL is used in this module
because it can realize the transfer from imitating UBC traffic tasks to adaptively
imitating specific HBC traffic tasks with a smaller data scale requirement and
system resource cost.

The workflow of our method is shown in Fig. 1. It can be divided into three
stages: the pre-training stage in the master environment, the fine-tuning stage
in the victim environment, and the practical stage.

The pre-training stage in the master environment refers to the pre-training
of GAN performed by the attacker before the weapon is delivered. In a fully
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controllable master environment, the attacker can construct a training dataset
by capturing the original malware C2 traffic and the UBC flow. After the pre-
training stage is completed, the attacker compresses and packs the GAN model
together with the malware, and delivers them to the victim.

Generator(G’)

Discriminator(D’)

Malware C2 server

DL-Detector

Model 
Transfer

&
Delivery

Generator(G)

Discriminator(D)
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UBC flow HBC flow
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Fig. 1. System framework

Next is the fine-tuning stage in the victim environment. The malware will
call the packet sniffer module to build up the HBC traffic profile, which is used
for fine-tuning the GAN model so that the specific characteristics of the victim’s
normal traffic can be more accurately embedded in output adv patch.

Finally, in the practical stage, the fine-tuned GAN model can be used to
camouflage malware C2 traffic. Specifically, the malware will first access the
generator to obtain the adv patch before communicating with the C2 server,
and send out the packet encapsulating the adv patch after the TCP three-way
handshake, followed by other original malicious packets.

3.3 Generation Module – WGAN

As the core of the method, we choose GAN as the generation module. Generative
Adversarial Networks (GAN), are a class of DL-based generative model. The
GAN model architecture involves two sub-models: a generator (G) that is trained
to generate new examples, and a discriminator (D) that tries to classify examples
as either real or fake. The final goal is to make the data obtained by the generator
becoming more similar to the real data.

In the context of malware C2 traffic evasion, the generator is responsible for
learning the characteristics of the normal communication traffic and generating
fixed-length adv patches to help malware C2 traffic evading the DL-based detec-
tor. While the discriminator plays a similar role to the detector, which is used
to determine whether the generated confrontation traffic is sufficiently similar
to the normal traffic and pass gradients to the generator for parameter tuning.

Specifically, we use Wasserstein GAN (WGAN) [3]. Instead of JS divergence,
WGAN introduces Wasserstein distance (calculate as Eq. 1) to calculate the
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distance between the generated distribution and the real distribution as the loss
function. WGAN can solve many problems of vanilla GAN, such as unstable
training and collapse mode, and Wasserstein distance can be used as an indicator
of training progress.

We choose WGAN not only because of its excellent learning ability, but also
because its adversarial fits well with the confrontation scenarios of malicious
traffic detection and evasion attacks.

W (pr, pg) = inf
γ∼∏

(pr,pg)
E(x,y)∼γ [‖x − y‖] (1)

The loss function of WGAN is:

LD = Ex∼pdata
[D(x)] − Ez∼p(z) [D(G(z))] (2)

LG = Ez∼p(z) [D(G(z))] (3)

WD ← clip by value(WD,−0.01, 0.01) (4)

In our method, during the training process, the generator will take benign
communication flow as input, attempt to generate a fixed-length adv patch, and
return it to the malware. The discriminator takes the new malware C2 flow and
the benign communication flow as input, and learns how to distinguish between
them. During the application process, the generator will be requested by malware
to obtain a new adv patch.

We adopted the classic model in [3] as our generation module. One small dif-
ference is that in order to avoid that the discriminator is too powerful to guide
the parameter learning of the generator well, we have removed several convolu-
tional layers in the discriminator to reduce the complexity of the discriminator.
At the same time, this can also further reduce the size and parameter number
of the GAN model. It is worth mentioning that in order to insert adv patch into
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the original malicious traffic, we built a concatenate layer between the generator
and the discriminator to facilitate gradient propagation. The architecture and
hyperparameters setting of the GAN model are shown in Fig. 2.

3.4 Transfer Module–Transfer Learning

Transfer Learning is a machine learning method that transfers knowledge from
the source domain (task A) to the target domain (task B), so that task B can
achieve better learning results. Usually applicable to situations where the amount
of data in the source field is sufficient, but in the target field is small.

In the context of malware C2 traffic evasion, we regard the pre-training pro-
cess in a fully controllable master environment as task A. Task A attempts to
train the generator to generate a fixed-length payload and insert it into the mali-
cious communication flow, making it difficult for the discriminator to distinguish
the newly constructed malicious flow from the UBC flow.

Task B is a fine-tuning process that occurs in the victim environment. In
this process, the generator will use the HBC traffic captured in the victim as a
template to learn how to construct malware C2 traffic.

The difference between the two tasks is that the traffic distribution of task
B is more specific and concentrated. To some extent, the distribution of UBC
traffic and HBC traffic is similar, so it is very suitable to use parameter-TL.

Specifically, on the premise of further improving evasion performance, apply-
ing TL has the following two advantages:

(1) Reduce the training cost in the victim environment: Parameter-TL can
reduce the later training cost, by only training a small part of the parame-
ters. Therefore, we can reduce the victim’s perception of the fine-tuning pro-
cess and avoid being detected due to taking up too many system resources.

(2) Suitable for small datasets: It is unrealistic to train a large neural network
from scratch to capture a large amount of communication traffic in the
victim environment. While TL can handle this problem well because there
are fewer parameters to learn. Besides, we can rely on TL to generate more
victim-specific adversarial C2 traffic.

4 Experiment

4.1 Dataset

In order to evaluate the performance of our method, we constructed a data set
by selecting 12 botnet traffic from the public dataset CTU and the UBC traffic
from the ISOT dataset. The detail of the dataset we summarized is shown in
Table 1.

The dataset can be divided into two parts, one part is used to train and test
the DL-based detector, the other part is used to train and test our proposed
evasion method. Each part includes both malware and benign traffic.
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The dataset for the detector is the dataset used by the defender. In this part,
malware traffic includes 9 malware families from the CTU covering a variety of
commonly used C2 channels. The benign traffic is captured from the 10 com-
puters in our laboratory environment, which can cover many different types of
normal traffic. The reason for this setting is that in order to protect the inter-
nal network in a targeted manner, the defender often uses the specific internal
normal traffic to train the DL-based detector.

The dataset for WGAN is the dataset used by the attacker. The malicious
traffic is 5 malware families selected from CTU, Neris and Virut are also used to
train the detector, but the Neris traffic files come from different captures. The
benign traffic includes UBC traffic from the ISOT for pre-training, and internal
capture id01 for fine-tuning. The reason for this setting is the fact that it is
difficult for an attacker to obtain a large amount of internal traffic. Therefore,
pre-training can only use public datasets, and in fine-tuning stage, a small volume
of traffic samples can be used to adaptively simulate specific HBC traffic.

The original data needs to be preprocessed before inputting into the model.
The data preprocessing process mainly includes three steps.

1. Split. The captured pcap file is divided into bidirectional flows according to
the five-tuple <sip, dip, sport, dport, protocol>. We use the open-source tool
pkt2flow [1] to complete this operation.

2. Filter. After the split, we only keep the flow with valid data transmission,
and filter out the flow that the TCP connection is not fully established or is
closed immediately after establishment.

3. Anonymization. We perform anonymization on traffic data to avoid specific
information such as IP and MAC misleading the detection model. Specifi-
cally, we replace them all with 0.

Table 1. Details of the dataset

Malware family Flow num. C2 channel

Detector Malware CTU-44-Rbot 2745 IRC

CTU-47-Menti 216 TCP

CTU-49-Murlo 1986 TCP

CTU-42-Neris 1583 HTTP

CTU-54-Virut 3451 HTTP

CTU-127-Miuref 1286 HTTP

CTU-125-Geodo 6320 HTTP

CTU-141-1-Bunitu 6143 HTTP/HTTPS

CTU-348-1-HTbot 10000 HTTP/HTTPS

Benign id01-id10 39452 –

WGAN Malware CTU-50-Neris 19282 HTTP

CTU-54-Virut 3451 HTTP

CTU-264-2-Emotet 10000 HTTPS

CTU-346-1-Dridex 8022 HTTPS

CTU-327-1-Trickbot 25924 HTTPS

Benign UBC traffic 17144 –

HBC traffic-id01 9706 –
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4.2 Hyperparameters

The Length of the New Packet
The output dimension of GAN is fixed, so we need to determine the length of
the generated adv patch.

In order to simulate the normal data packet as much as possible, the mode of
the payload length of the UBC traffic is selected as the length of the adv patch.
This can make the newly added packet look closer to the normal data packet at
least in terms of statistical characteristics.

We perform statistics on the captured UBC traffic, and obtain the distribu-
tion of its payload length, which is shown in Fig. 3.
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Fig. 3. The payload length distribution of universality normal traffic

Through the inspection of the original traffic data, we found that the reason
for many packets with 6 bytes payload is that the Ethernet data link layer will
automatically pad the frame with 0 to ensure that the minimum length of the
frame is 64 bytes. While 1460 is the maximum segment size of TCP transmis-
sion. TCP segmentation will be performed when large-size data is transmitted,
resulting in a large number of packets with a payload length of 1460.

Based on the above findings, we set the length of the adv patch to 200, which
is close to the second most frequent payload length 211, and it is also convenient
for quantification and calculation.

Insertion Position of the New Packet
After getting adv patch, we need to decide when to send it. Through the investi-
gation of the current DL-based detection work, we found that in order to balance
the model accuracy and complexity, researchers often intercept part of the traf-
fic data for learning deep representations as the basis for classification. Wang
et al. [24] proved that the first few packets, up to the first 20 packets, are suffi-
cient for correct accuracy, even for encrypted traffic.
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In this case, to guarantee the impact on the DL-based detector, we decided
to add the adv patch packet after the TCP three-way handshake process. That
means malware should send out the packet encapsulating the adv patch once the
TCP connection is established. In this way, it can be ensured that the carefully
crafted adv patch can appear in the visual field of the detector.

4.3 Detector

Maŕın et al. [19] designed a series of experiments to prove that the raw flows
& DL-based malicious traffic detection models outperform traditional ML-based
models, which use specific hand-crafted features based on domain expert knowl-
edge as input.

RawFlows’s input is a tensor of size (n, 1, m), where n is the number of bytes,
and m represents the number of packets. They set n = 100 and m = 2, that is,
only the first 100 bytes of the first two packets in a flow are considered.

In our work, we refer to their DL architecture and make certain extensions
on it. Our adjustment is mainly reflected in the hyperparameters of the model.
On the one hand, considering that our purpose is to detect malware C2 traffic,
only sampling the first 2 packets may lose a lot of flow information. Moreover,
because the proportion of C2 traffic is relatively small, our data volume does not
reach the scale of RawFlows. In order to provide more flow information to the
model, we set n = 200 and m = 8.

At the same time, to accommodate the expansion of input, we also need to
adjust the model structure accordingly to increase the expressive ability of the
model. Specifically, we refer to the DL architecture of raw packets in [19] to
reshape our DL-based malware C2 traffic detector. The DL architecture of the
target detector in this article is shown in Fig. 4.

Fig. 4. DL architecture for detector

5 Results

As mentioned earlier, we designed comprehensively evaluate the effectiveness of
our method from the perspectives of evasion performance, time performance,
and impact on malware.
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Specifically, in the pre-training stage, we will use the traffic of a specific
family and the UBC traffic to train the GAN model. Then fix the discriminator
and all convolutional layers of the generator, and fine-tune the model using the
victim’s locally captured benign samples and 1000 malicious samples. Finally,
in the practical stage, the generator will directly or be called by malware to
generate the adv patch, which is inserted into the original malicious C2 flow to
construct the adv-C2 traffic. The newly crafted samples are input to the detector
for prediction. So we can evaluate the evasion performance through the change
in the detector’s recall score.

5.1 Evasion Performance

We randomly select 3000 flow samples from each of the 5 families for testing,
and get the results in Table 2. We use DetectionRate and EvasionRate to mea-
sure the performance of the detector and our method, respectively. They are
calculated according to Eq. 5 and Eq. 6.

DetectionRate = Recall =
Number of detected malware flow

Number of all malware flow
(5)

EvasionRate =
Successful evasion attempts

All evasion attempts
(6)

The first column in Table 2 is the original detector recall score for 5 malware
families, indicating that the detector we use has good accuracy and generaliza-
tion performance.

From the table, we can see that the proposed method can achieve an evasion
rate up to 51.4%, while reducing the recall of the detector to 45.4%, less than
50%, which means that it is difficult for the detector to resist our attack method.

Table 2. The evasion performance of our attack method

Family Detection rate Evasion rate

init sample adv sample Pre-training Fine-tuning

CTU-50-Neris 99.00% 62.63% 30.07% 36.37%

CTU-54-Virut 99.83% 67.07% 24.93% 32.77%

CTU-264-2-Emotet 97.47% 48.67% 45.37% 48.80%

CTU-346-1-Dridex 96.80% 45.40% 47.50% 51.40%

CTU-327-1-Trickbot 99.93% 63.37% 31.40% 36.57%

By comparing the last two columns in the table, we can find that after
the fine-tuning process in the victim environment, the evasion rate generally
increases by 7%–21%, which can prove the effectiveness of the TL.

In addition, we have also observed that there are certain differences in the eva-
sion performance of different malware families, from 51.4% in Dridex to 32.77%
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in Virut. Through the analysis of the original flow samples, we believe that the
bypass rate is mainly affected by the following factors: 1) The detection rate of
the detector to the malware. Take Dridex and Neris as examples. The detector
has seen the Neris samples during the training phase, so it can easily get the
characteristics of Neris and achieve a relatively high recall, while the initial recall
of the unseen Dridex family is relatively low. Therefore, a carefully generated
adv patch is more likely to mislead the detector, who has not seen Dridex before.

HBC Virut, SSIM(HBC)=0.2967

TrickBot , SSIM(HBC)=0.2615

Neris, SSIM(HBC)=0.1326

Emotet , SSIM(HBC)=0.3891Dridex , SSIM(HBC)=0.4144

Fig. 5. Visualize flow samples of different families

2) The similarity between the malware C2 sample and the target benign
sample. We turn the input of the detector into a grayscale image for direct
observation, which is shown in Fig. 5. We also calculate the average structural
similarity score (SSIM, a common measure of image similarity) between each
malware family and HBC to measure how similar each family’s traffic is to HBC.
Take Dridex and Trickbot as examples, both of them are mostly TLS traffic and
have high similarities. But through the visualization of the samples, we found
that the Dridex C2 samples are more similar to the target benign C2 samples,
so it is easier to fool the detector by adding disturbances on Dridex C2 flow.

5.2 Time Performance

In order to evaluate the time performance of our method, we recorded the fine-
tuning time elapsed and the evasion rate of 5 CTU malware families under
different training hyperparameters (batch size, epochs).

From Fig. 6, we can find that the time elapsed of batch size = 128 is roughly
1.4 times that of batch size = 256, but what needs to be noted is that larger
batch size often means larger memory consumption. The overall fine-tuning time
consumption will increase linearly with the increase of epochs number, while the
evasion rate is different. The evasion rate at epochs = 100 is significantly higher
than that of epochs = 50, but the evasion rate at epochs = 200 is not significantly
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improved compared to epochs = 100. Therefore, for efficiency considerations, we
think it is reasonable to set the training hyperparameters to (batch size = 128,
epochs = 100) or (batch size = 256, epochs = 100). The attacker can trade-off
between shorter training time and lower resource occupancy as needed.
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Fig. 6. Evasion rate and time elapsed under different setup of fine-tuning process

6 Real-Life Experiment

We believe that in order to develop evasion methods that can be applied in real
attacks, a comprehensive evaluation from the perspective of practicality must be
conducted, rather than just proving the effectiveness.

In this work, we complete the evaluation of practicability by designing a real-
life experiment. Specifically, we built a custom malware on the basis of Byob.
By requesting GAN in real-time to obtain adv patches and communicating with
the server through C2 channel, we obtain a real-life scenario.

It should be pointed out that the real-life experimental settings are exactly
the same as those described in Sect. 4, except that the source of the malware C2
traffic. The effectiveness experiment uses public traffic dataset, while the real-life
experiment uses traffic that generated by our custom malware.

6.1 Custom Malware

To evaluate our method we used the open-source post-exploitation framework
called Byob [2]. Byob was modified to receive the adv patch from the GAN gen-
erator and send it after TCP three-way handshake. Byob consists of a client and
a C2 server that is written in python. We deploy the C2 server in a Linux virtual
machine and the infected victim in a Windows 8 virtual machine respectively.
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The communication between client and server is established over HTTP. In
order to allow the client to receive the payload generated by the generator, we
modify the core module of the client so that every time the client communicates
with the server, it will first call the trained generator to obtain the adv patch,
and send it once the connection is successfully established.

To continuously obtain malicious communication traffic, we write a script to
let Byob client performs the following actions in sequence:
– checks if the server is online.
– sends a heartbeat message with a unique identifier.
– retrieves a command id from server.
– executes the corresponding module.

In this way, we obtained 17,536 Byob C2 flow, which is used as the malware
C2 flow dataset for training GAN.

6.2 Impact on Malware

We evaluated the practicability of our method from two perspectives: malware
C2 channel efficiency impact and resource utilization.

Malware C2 Channel Efficiency
For malware, the transmission efficiency of the C2 channel is a very important
requirement. The significant C2 channel delay caused by evasion methods will
reduce the communication efficiency of the victim and the C2 server.
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Fig. 7. Malware C2 channel efficiency before and after applying our method

Therefore, we evaluated malware C2 channel efficiency before and after apply-
ing our method. By calculating the number of C2 flows sent by malware before
and after applying our method in a time window, we obtained Fig. 7.

Before applying, we program the malware to communicate with the C2 server
every 3 s, so there will be 75–100 flows within a 5 min time window. After apply-
ing our method, this number dropped to 40–75. That is to say, whether we choose
to access a large number of adv patches at one time, or request the generator
every time before the start of each communication, we can guarantee at least 8
C2 communications per minute, which makes it a feasible channel for a C2.
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Resource Utilization
Another major impact of the evasion method on malware is that it will increase
resource usage in the victim environment. To measure the resource utilization
of our method, we recorded the CPU and memory usage of GAN training and
inferring, as shown in Fig. 8. Figure 8 shows that a large amount of resource
occupancy is mainly caused by GAN training, and the resource usage of the
GAN generation process (malware calls GAN to generate adv-patch) is relatively
equivalent to malware calling other malicious functions.

As for GAN training, although the fine-tuning stage has obvious optimiza-
tions in memory utilization compared to the pre-training stage, it seems that
there is no improvement in CPU utilization. That is constrained by the maximum
CPU capacity. The CPU utilization in the fine-tuning stage and the pre-training
stage is close to 100%, but by comparing the training time of each epoch, we
can find that the pre-training is about 14.35 times that of the fine-tuning.
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Fig. 8. Changes in resource utilization caused by GAN model training

Therefore, we can conclude that TL can reduce the resource utilization in
the victim environment, thereby reducing the additional exposure risk caused
by our evasion method. Although our method still brings additional resource
consumption, it is inevitable. In any case, we believe that our method has certain
advantages over other methods in terms of impacts on victim environment.

7 Conclusion

In this paper, we focus on how to use the DL model’s vulnerability to craft
adversarial samples in the field of malware C2 traffic, and propose a GAN-based
evasion attack method. Specifically, GAN generates adv patch by simulating
the distribution of benign samples, so that malware C2 traffic containing that
adv patch can mislead DL-based detectors. Our method is not only able to adap-
tively simulate the normal traffic of the victim, but also has less negative impact
on the malware. These two advantages make our method more suitable for real
attack scenarios. The results show that our method can not only achieve a bypass
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rate of 51.4%, but also has relatively little impact on malware C2 channel and
less victim resource usage.

In future work, we plan to explore the influence of hyperparameters such as
patch length and embedding position on the evasion rate. At the same time,
we will seek ways to further reduce the negative impact of evasion methods on
malware, such as model size and resource utilization.
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Abstract. One Time Password (OTP) is the most prevalent 2FA method among
users and service providers worldwide. It is imperative to assess this 2FA
scheme’s security from multiple perspectives, considering its ubiquitous pres-
ence in the user’s day-to-day activities. In this work, we assess the security of
seven commercially deployed OTP-2FA schemes against malware in the termi-
nal attack model without compromising any 2FA device or authentication ser-
vices. To implement this attack scenario, we develop a combination of attack
modules that will capture password and OTP in different ways during the user’s
login attempt. At the same time, it would originate a fresh concurrent hidden ses-
sion from within the terminal or remotely to get possession to the user account
without compromising the service or network or any external device. We exam-
ine implemented attack against seven different popular public services, which
mostly use two variants of OTP-2FA and observed that almost all of them are
vulnerable to this attack. Here, the threat model is practical as the attack compo-
nents can be installed in the user’s terminal without any root/administrator priv-
ilege. Moreover, the attack modules require a small number of resources to run.
The whole procedure would run from the background that makes the attack very
hidden in nature and attain low detectability after examining against prominent
anti-malware programs that indicate a real-world threat. Our findings after the
analysis of the OTP-2FA schemes indicate that an adversary who can install mal-
ware on the user’s terminal can defeat almost all popular and widely used OTP-
2FA schemes, which are vital security components of online accounts and secure
financial transactions. The result also points out that the OTP-2FA scheme does
not add extra security on top of the password in the presence of the malicious
program in the terminal.

1 Introduction

Password-only authentication is the most widely used and deployed authentication
method. Adversaries can steal the password using some well-known method (e.g.,
phishing [13], dictionary attack [2], man-in-the-middle attack [10]), thus the security of
this authentication method always raises questions. Two-Factor Authentication (2FA) is
introduced to provide an extra layer of security over the password-only authentication
system to address the risk of password leakage. 2FA requires another factor of authenti-
cation (Something the user has or Something the user is) besides a password (Something
the user knows).
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Fig. 1. Overview of OTP variant covered in this work

The most primitive and popular form of the 2FA method is One-Time Pin (OTP).
Here, a temporary PIN is generated on or delivered to a user registered device. The user
has to provide this PIN as proof of his possession of the registered device. The OTP can
be generated on a remote server and delivered to the user device (e.g., SMS or email-
based OTP) or generated on the user device itself (e.g., hardware or software token).
We denote this particular 2FA scheme as OTP-2FA throughout the paper.

As a 2FA method, OTP-2FA is popular among both users and service providers.
In a study conducted by Duo in 2017 [4], in the United States, 86% of 2FA users use
email/SMS OTP, and 19% of them use hardware tokens, and 52% of them use software
tokens. OTP-2FA is popular among the users and the service providers for various rea-
sons. It requires a simple deployment and does not require internet connectivity on a
2FA device in most cases (e.g., SMS, software token, hardware token).

The primary motivation of deploying 2FA schemes is to elevate a digital entity’s
security in the face of malicious attacks. Adversaries can launch an attack on authenti-
cation using the user terminal or network components. The malware starts most of the
attacks from the user terminal where it resides. There is an increased risk of malware
infection in shared terminals (e.g., computers in airports and public libraries). These
computing and internet facilities are prevalent among people living in under-developed
countries and under the poverty line. The voluminous number [32] of people habituated
to use public computers increases the chance of being affected by malware.

As OTP-2FA is one of the most deployed 2FA schemes among service providers
(e.g., financial/banking services, email, social networks), security analysis of this 2FA
method always draws the attention of the researchers. They have studied deployment
challenges, usability [16,43,44], and security [21,45] and reveal many issues. The most
common vulnerabilities are wireless attack, SIM swap attack, and attack by mobile mal-
ware [21]. They also did vulnerability analysis of alternative OTP deployment (e.g.,
encap OTP [30], gridcode OTP [26], 2GR protocol of OPTAP-scheme [22]) and bank-
ing system OTP vulnerabilities [45]. Some of the researches also emphasize using an
alternative method of OTP-2FA that will address common usability and security issues.

We classify studied OTP-2FA schemes in this work into two primary categories. One
is Remote Delivery, where the OTP is generated in remote service and communicated
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with the user through a trusted channel (e.g., SMS, email). Here, the user has to prove
possession of an entity (e.g., phone number in case of SMS, a specific account in case
of email) as second-factor authentication (Something the user has). Another is Token-
based OTP, where it is generated in a local device. It can be a software token where OTP
is generated in an app that resides in a 2FA device (e.g., smartphone or smartwatch) or a
hardware token where it is generated in a token like portable hardware devices (shown
in Fig. 7a). Figure 1 illustrates the summary of our covered OTP-2FA categories.

Our Work: Vulnerability analysis of popular OTP-2FA deployment in the face of
malware in the terminal: In this paper, we do a security analysis of 2FA methods that
uses OTP-2FA as the second factor of authentication. We implement malware compo-
nents to generate malware-infected terminal scenarios and evaluate how much protec-
tion the OTP-2FA schemes provide in the face of these attacks. To accomplish that, we
implement two different variants of attack. One of them is launched from the user ter-
minal, and the other is from a remote attacker’s machine. Both of the attack variants
can make concurrent attacks to defeat the OTP-2FA scheme. Our observations indicate
that these attacks can overcome almost all the OTP-2FA schemes we have studied.

Our Contributions: Our contributions to this work are two-fold:

1. Implementation of carefully crafted attack to test the vulnerability of OTP-2FA
schemes: We design two variants of the attack on OTP-2FA aided by malware resid-
ing in the terminal. One of them is Internal Attack, which can launch attacks within
the user’s terminal with the keylogger, headless browser, and browser extensions as
attack components. Another attack is Remote Attack, where malware components
residing in the browser send captured information to the remote attacker. The attack
components used in this technical study are designed to evade the common anti-virus
and anti-malware programs that represent a real-world attack scenario.

2. Vulnerability analysis of OTP-2FA deployed in commonly used service providers.:
We analyze OTP-2FA scheme deployed in different popular service providers that
the users use for different sensitive purposes (e.g., e-commerce, email, online stor-
age service, social networks). Our analysis covers two primary types of OTP-2FA
schemes, Remote Delivery and Token Based OTP. Our observation indicates that
they are all vulnerable to malware in terminal attack where the attacker does not
have to compromise the 2FA device or service itself.

Attack Demonstrations and Paper Outline: We provide our attack implementation
demonstrations at https://sites.google.com/view/otp-attack-demo/home.

2 Background

2.1 One Time Pin Based 2FA

One Time PIN (OTP) is one of the most widely used 2FA methods. The main idea is to
generate a temporary PIN as proof of the user’s possession of a device (e.g., smartphone,
smartphone) or entity (e.g., phone number, email account). OTP can be generated on a
remote service and communicated with the user or generated on the 2FA device itself.

https://sites.google.com/view/otp-attack-demo/home
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For generating OTP, generally, two types of algorithms are used , Time-Based One
Time Password (TOTP) [28] and HMAC-based One-time Password (HOTP) [27,34].
The generation of HOTP depends on a secret key and a “counter”. This “counter’ is
known only to the second-factor device and the server. The “counter” in the token
increments itself each time after a new OTP is generated. The server used it to check
the validity of OTP. In TOTP, instead of “counter”, the incremental factor uses a times-
tamp, which would be incremented every 30 or 60 s. The algorithms also take other
parameters that are used to determine the length of the generated OTP.

We have classified the studied OTP-2FA scheme into two main categories that are
illustrated in Fig. 1. In Remote Delivery method, the OTP is generated in an external
server and communicated with the user by a delivery channel. The most common deliv-
ery channel is the mobile phone network used by SMS (Short Messaging Service)
based OTP. The OTP receiving endpoint is a phone which is subject to mobile net-
work connectivity. It does not depend on internet connectivity, leading the SMS-OTP
to widespread acceptance, especially in remote areas. We show snapshots of the user
interface from the user terminal and phone for SMS-OTP in Appendix Fig. 7e and 7f.
Email and a phone call can also be other mediums of communication in that case.

The second category is Token Based OTP-2FA , which is generated locally in the
device. As this variant does not need any delivery channel, it is safe from an attack
like man-in-the-middle (MitM). Based on the generating device, it has two variants,
hardware token and software token. An example of the hardware token is RSA SecureID
[31], where the user has to carry a small device that can generate the OTP anytime on
demand. A snapshot of the RSA SecureID device is shown in Appendix Fig. 7a. In
software token, OTP is generated by an OTP generator software that can be deployed
in computers (i.e., desktop, laptop), smartphones, or smartwatches. We show the user
interface snapshot of smartphone-based software token in Appendix Fig. 7c and 7d.
Token based OTP also has a desktop-based variant with a “Copy-to-Clipboard” feature
that allows users to copy and paste the generated OTP without typing it on the terminal.
This feature increases both usability (user does not have to type it) and security (cannot
be captured by keylogger-based malware). A snapshot of the desktop-based software
token is shown in Appendix Fig. 7b.

2.2 Malware on Terminal

Malware on the terminal is a common threat for users nowadays. Adversaries infect
the terminal by installing malicious software to steal user data and control sensitive
information and programs. They can target terminals that the users are habituated to
use (e.g., personal computer, smartphone). We focus on desktop-based terminals for
this work. In the operating system market share, about 30.57% of users use Windows,
and approximately 7.65% use other desktop-based operating systems [37]. The rest of
the users use smartphone-based operating systems (e.g., Android, iOS). So, 38.22% of
the internet traffic comes from desktop-based operating systems that indicate that many
users still use desktop-based terminals to do their daily online activities.

The threat introduced by malware on the terminal is prevalent in the shared ter-
minals, where more than one person uses it. People tend to use public comput-
ing resources (e.g., computer terminals, internet connection) in universities, offices,
airports, and many other public places, and the number is significantly large [32]. On
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Fig. 2. Workflow of blocking and non-blocking variant of Internal Attack

the other hand, personal computers have also become one of the prominent targets of
malware creators. They can easily be infected by malware when connected to unsafe
networks (i.e., public network in the airport, coffee shop) and devices (e.g., USB flash
drive, CD).

3 Our Attack: Overview and Design

3.1 Attack Overview

We implement two attack variants, Internal Attack and Remote Attack. We design Inter-
nal Attack in two ways, blocking and non-blocking attacks. The attack’s primary focus
is to learn the password and OTP and request service concurrently using a headless
browser session. In blocking attack, after recording the password, the user’s request
will be blocked by a malicious browser extension and redirects her to an altered page
at the same time. The altered page is the exact replication of the OTP page where the
user is supposed to type the OTP. The keylogger can capture the typed OTP here and
can launch a concurrent attack. After the successful attack, the user will be redirected
to the login page again. A high-level overview of Internal Attack is shown in Fig. 2.

Another variant, Remote Attack is more hidden as most of its attack components are
not residing in the user’s terminal. Here, the keylogger is implemented on the user’s side
to capture passwords like Internal Attack. Moreover, it can send the credential through a
secure channel to the remote attacker. The attack component on the user’s end can also
take a screenshot at any time. Some desktop-based software tokens (e.g., Authy [40])
used the “copy-to-clipboard” feature where the user does not have to type the OTP in the
terminal. In that case, the captured screenshot has been sent to the remote attacker via
a secure channel where the attacker can extract the OTP by Optical Character Reader
(OCR). OCR is implemented on the attacker’s end as part of attack implementation. We
have portrayed a high-level overview of Remote Attack in Fig. 3.

3.2 Attack Assumptions

– The attacker has the capability of installing malicious attack components in any
desktop-based terminals running on Windows 10 or earlier. The installation of attack
components does not need any administrator/root privilege for being installed.
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Fig. 3. OTP capture and screenshot capture workflow of Remote Attack

– The user is habituated to use OTP-2FA as the 2FA method and will not use any other
2FA variant or will not remember her browser’s session.

3.3 Attack Implementations Vs. Other Known Attack

The attack implementation is significantly different from other known forms of attacks.
Session Hijacking attack rides on the user’s existing session to attack authentication
schemes, where our implemented attack creates another independent session (in both
Internal and Remote attacks). As a separate session has been created, the attacker has
more control (i.e., not dependent on expiry of user session and user’s activity) than ses-
sion hijacking attack. As our study’s focus is malware residing in the terminal, external
attacks like active phishing attacks are out of the scope of this comparison.

3.4 Attack Components

We implement different attack components for both variants of our attack. Keylogger is
used in both Internal Attack and Remote Attack to capture password and OTP typed in
keyboard. Along with the keylogger, the malware can eavesdrop on mouse events. For
example, after a specific web page has been opened, the keylogger program can record
the keystroke unless it records an “ENTER” key or right mouse click (submit button or
placing the cursor to password field) and save it as username. Similarly, it can record
and save the password. The saved pattern can be used for future attack initialization. For
Internal Attack, an automated hidden browser has been used to launch the concurrent
attack. Also, it uses a browser extension to monitor, block and redirect any user requests.

Remote Attack variant needs implementation in both user terminal and remote
attacker’s side. Along with the keylogger, this variant has a component that is capa-
ble of taking a screenshot. Implementation on the attacker’s side includes an OCR to
analyze received screenshots and extract OTP.
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3.5 Internal Attack

All the OTP-2FA variants require the user to type OTP on the terminal to complete the
challenge (except the “copy-to-clipboard” feature of Authy, which we discuss in the
next subsection). As generation algorithms and service implementations are different,
different schemes show different characteristics. Generated OTP from different service
implementations can have a different validity period or reusability.

We observed that for some deployed OTP-2FA allows the same OTP to be reused
in concurrent log in (e.g., Google). Others prohibit reusing the same OTP in more than
one session. We use non-blocking variant of attack to the service that allows reusing the
same OTP in multiple sessions. For other services, we use Blocking variant of attack.
We illustrate the block diagram of the Internal Attack in detail in Appendix Fig. 6b. The
step-by-step workflow is listed down here:

1. Keylogger component scans for a predefined pattern (e.g., username or part of
already known password) which works as an indicator that the user is trying to log
in. It then sends a command to other attack modules to launch a concurrent attack.

2. For Blocking attack, the browser extension will block the user’s request and redirect
her to an altered OTP entry page. Non-blocking attack will let the request reach the
service, and the service would redirect the user to the OTP entry page.

3. In OTP capture state, the keylogger records the next N digit (N= Length of OTP).
4. When the Nth digit has been recorded, it would save the OTP in a local file and

instantly launches a headless browser session. With captured password and OTP, the
headless browser session would complete authentication.

5. For Blocking attack, the user would be redirected to the login page after some time.

3.6 Remote Attack

In Remote Attack, user credentials and OTP captured from the user terminal are sent to
the remote attacker’s machine using a secure channel. One of the advantages of Remote
Attack is that it can overcome the keylogger’s limitations to capture the OTP, which
uses the “copy-to-clipboard” feature of Desktop-based software tokens. The step-by-
step procedure is discussed here, and the diagram is shown in Appendix Fig. 6a.

1. Keylogger looks for a predefined pattern like Internal Attack. It then sends a com-
mand to the remote machine to launch the attack.

2. After typing the password, when the user presses the “Enter” key or clicks on
the “Submit” button, the keylogger will send the captured password to the remote
attacker. The automated browser session on the attacker’s machine launches an
attack and waits for OTP to capture.

3. OTP can be captured in two ways. In the case of the “copy-to-clipboard” feature
on desktop-based software-token, the attack component would capture a screenshot
when it finds the software-token app is in the foreground (opened in the screen and
not minimized) and send it to the remote attacker’s machine. The OCR that resides
on the remote attacker’s machine would extract the OTP from the screenshot and
transfer it to the automated browser session to complete the attack.
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4 Implementation

4.1 Attack Components of Internal Attack

Keylogger and Controller: We develop the “Keylogger and Controller” module using
Python 3.7.5 using some standard python keylogger libraries. The detection submodule
is used to match and detect any pre-configured pattern. The capture submodule can cap-
ture any patterns on demand, which can be password or OTP. It can also save captured
patterns on local machines for future use. After matching any pre-configured pattern,
the connector submodule can send the command to launch other modules.

Automated Headless Browser Session: This module’s primary purpose is to launch
an automated browser session in the background to launch a concurrent attack. We use
Selenium Webdriver [35] and PhantomJS [29] to implement this module. The auto-
mated browser session can request and log in to any web-based online service using
captured login credentials and OTP. It also can take any screenshot of a web page or
download an HTML source of a page on demand in a hidden manner. We develop dif-
ferent versions of this module that can work with different services.

Chrome Extension for Request Control: This attack module is developed as a chrome
extension that can monitor, block, and redirect the user’s request to a malicious web
page. It accomplishes its task in such a covert way that the user would not get any
error message in the browser. This component continuously monitors the URL in the
address bar to match a predefined pattern (i.e., part of the URL of a service provider’s
authentication page). It takes action (e.g., block or redirect) after a match is found. We
develop the extension as a standalone Chrome extension. The malicious code can be
ported inside any benign extension without the user’s knowledge.

4.2 Attack Components of Remote Attack

Keylogger and Controller: The Keylogger and Controller component of Remote
Attack can also encrypt the captured password and OTP and send them to a remote
attacker’s machine through a secure channel along with the key pattern detection and
recording.

Screenshot Capture Module: This component resides on the user’s terminal and can
capture a screenshot of a specific window. We develop this module using python 3.7.5
using some standard libraries of python. It can capture screenshots without any admin-
istrator permission or user notification. It can monitor active programs (that are opened
in the foreground or background) and take a screenshot of a specific program’s window
when it comes to the foreground. This attack component can also send the captured
image to the remote attacker via a secure channel.

Remote Attack Controller: This module resides in the attacker’s machine. It waits
for the command to launch a concurrent attack from the “Keylogger and Controller”
component in the user’s terminal. When it receives the command, it activates itself
and collects the user’s terminal information. It can decrypt the encrypted password and
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OTP. This component is also equipped with a specially designed OCR (Optical Char-
acter Reader) that can extract OTP from the user’s terminal screenshot. This module is
developed in python 3.7.5 using some standard libraries.

Remote Automated Browser Session: Remote Attack Controller is another automated
browser session that is implemented on the remote attacker’s side. After getting com-
mands from attack components from the user’s terminal, it activates itself to run a con-
current attack. We implement it using the Selenium Web Driver framework of Java.

Table 1. Evaluation with OTP-2FA deployments of popular service providers

Service name Remote delivery Token based

Microsoft Outlook ✓ ✓

Facebook ✓ ✓

Duo N/A ✓

Google ✓ ✓

LastPass N/A ✓

Amazon ✓ ✓

Twitter ✓ N/A
✓ - Attack Successful, ✗- Not Successful

(a) Snapshot of Google UI after a successful
attack

(b) Snapshot of Outlook UI after a successful
attack

Fig. 4. Snapshot after login in to some popular service after successful attack
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5 Evaluation

5.1 Evaluation of Commercially Deployed OTP-2FA Schemes in the Face of the
Attack

We examine the OTP-2FA scheme of seven well-known services, Microsoft Outlook
[1], Facebook [18], Duo [17], Google [19], LastPass [23], Amazon [3], and Twitter
[41], against our implemented attack. Almost all of them use both Remote Delivery and
Token Based OTP-2FA schemes. Some of the Remote Delivery OTP-2FA schemes allow
the same OTP to be used multiple times (e.g., Google), which might open attack oppor-
tunities. Token Based OTP-2FA schemes normally allow a limited amount of time (e.g.,
30 s) as OTP validity. These schemes also can be reusable or not-reusable, depending
on service implementation. We check that almost all of the schemes mentioned above
are vulnerable to our attack. We present a summary in Table 1. We also show snapshots
of the successful attack on Google and Outlook in Fig. 4a and 4b.

5.2 Detectability from Terminal and 2FA Device

Internal Attack: The attack design is straightforward in case of a non-blocking attack
on OTP-2FA Remote Delivery, where reuse of OTP is allowed for a certain period (e.g.,
30 s). After capturing the user’s OTP, a headless browser can quickly log in to another
independent session using the same OTP. So, no trace of concurrent login would be
visible in the user’s terminal. From the 2FA device’s point of view, multiple SMS would
be received. As they would display the same OTP (OTP is reused in this case), it is very
unlikely that the user would be suspicious.

(a) UI of altered OTP entry page (b) UI of authentic OTP entry page

Fig. 5. Comparison between user interface of OTP entry page when altered page has been shown
to user as a part of blocking attack of Internal Attack variant
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The blocking variant of the attack does not send any duplicate OTP on the user’s
2FA device, thus also not detectable from the 2FA device’s point of view. This attack
variant is also useful for the OTP-2FA schemes where reuse of the same OTP in different
sessions is not allowed. The browser extension would block the user request to the
server and redirect the user to a duplicate OTP entry page. It is a similar-looking page
and hard to detect unless the user pays close attention to the changing URL in the
address bar, which is very unlikely in a real-world scenario. When the user proceeds
after entering OTP on that duplicate page, the extension will redirect the user to the
original login page, which would convince her to think that her login failed due to some
glitch. If the user can detect at this point, she can do nothing much as the attacker has
full control of her account in the meantime. We present a similar-looking malicious
page and authentic page in Fig. 5a and 5b for comparison.

Remote Attack: In the case of the Remote Attack variant, it shows minimal activity
on the user’s terminal. After capturing credentials on the user’s terminal, the attack
components send them to the remote attacker’s machine. Detection scenarios are similar
to Internal Attack from the user terminal and 2FA devices. The screenshot capturing
process also does not show any visible trace.

5.3 Detectability from Service

The Non-blocking variant of the attack sends only one concurrent request along with
the user’s request. As the user’s request is blocked in the Blocking attack, only a single
request would be sent. So, this low amount of request and activity, which is similar to
the user’s benign activity, would not raise a warning to the service provider’s end.

Table 2. Evaluation with free desktop based antivirus and web based malware scanning tool

Desktop based scanning Web based scanning

Antivirus name Quick scan Full scan Runtime warning Version Web-based antivirus
Detection

Bitdefender ✗ ✗ ✗ Free ✗

Avast ✗ ✗ ✗ Free ✗

Avira ✗ ✗ ✗ Free ✗

AVG ✗ ✗ ✗ Free ✗

Sophos Home ✗ ✗ ✗ Free ✗

Kaspersky
Security Cloud

✗ ✗ ✗ Premium
(Free
Trial)

✗

ZoneAlarm ✗ ✗ ✗ Free ✗

Mcafee total
protection (Free
Trial)

✗ ✗ ✗ Premium
(Free
Trial)

✗

✓ - Detected, ✗- Not Detected
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5.4 Detectability in the Presence of Anti-Malware Program

Our implemented attack is tested in the presence of some well-known and free anti-
malware solutions for the desktop terminal. We also did web-based malware analysis
for attack components. We examine attack script against Bitdefender [11], Avast Free
Edition [7], Malwarebytes anti-malware [24], Kaspersky Security Cloud [5], Sophos
Home [36], Avira [9], AVG [8], ZoneAlarm [14] and Mcafee Total Protection [25]. We
also evaluate executable attack files with 68 antivirus engines in VirusTotal [42], where
the above-mentioned antivirus engines are also included. We present the detailed and
comparative results of this analysis in Table 2.

We focus on two types of detection of anti-malware softwares, which are Signature-
based analysis and Behavior-based analysis. In the signature-based analysis, an
antivirus engine matches a predefined signature (i.e., pattern or part of a previously
detected malicious program) in a file. To evade signature-based detection, we obfus-
cate attack script code and use some customized libraries (i.e., a customized version of
python standard libraries). We observed almost zero detection with the desktop-based
antivirus. Only 2 out of 68 engines in Virustotal [42] detect our executable as malware.
We later analyzed to extract the root cause of the detection and found that the detections
were false alarms. It detects other benign python executables in the same way.

We develop the attack script in such a way so that it consumes minimal CPU, mem-
ory, and network resources. We present the average usage of resources during the active
and idle states in Appendix Table 4. From the usage table, it is obvious that resource
consumption is very low for Remote Attack, which is expected as the attack uses mini-
mal resources on the user’s terminal. For Internal Attack, peak usage is more, although
peak usage is observed when an attack is underway. Peak usage remains for a few sec-
onds and remains idle for the rest of the time. As the script demonstrates a small amount
of activity, a runtime scan cannot detect the malware based on Behavior-based Analysis.

5.5 Detectability During Attack Module Deployment

An attacker can deploy the attack components on the Windows platform without any
root/administrator privilege. The “Keylogger and Controller” component and head-
less browser session implemented on phantomJS requires no installation. The headless
browser session developed using the “Selenium web driver” requires only java installa-
tion in the user’s terminal, which also can be avoided if the attacker uses the portable
version of java. A hidden malicious batch script file can copy attack modules in the
user’s terminal promptly.
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Table 3. Summary of analysis

OTP
variant

Generation/
Delivery method

Attack variant Browser
depen-
dency

Detectable
in 2FA
device

Detectable
in rerminal

Attack
success

Token
based

Hardware roken Internal attack
(Blocking)

✓ No Very low ✓

Internal attack
(Non-blocking)

✗ No No ✓

Remote attack ✗ No No ✓

Software token
(2FA device)

Internal attack
(Blocking)

✓ No Very low ✓

Internal attack
(Non-Blocking)

✗ No No ✓

Remote attack ✗ No No ✓

Software token
(Terminal)

Internal attack
(Blocking)

✓ N/A N/A ✗

Internal attack
(Non-blocking)

✗ N/A N/A ✗

Remote attack ✗ No No ✓

Remote
delivery

SMS, Email,
Phone

Internal attack
(Blocking)

✓ No Very low ✓

Internal attack
(Non-blocking)

✗ Medium No ✓

Remote attack ✗ No No ✓

6 Discussion and Future Work

6.1 Attack Summary

We can observe from Table 3 that the attack is successful for both OTP-2FA variants. As
we described in previous sections, both of the attack variants are a combination of mul-
tiple attack components. The “Keylogger and Controller” component records the user’s
password and OTP and can launch the attack both from the user’s terminal and remote
attacker’s end. Our designed attack can defeat OTP-2FA schemes whether OTP can be
reused in multiple sessions or not. The advantage of the implemented attack is that it
can start simultaneously and promptly when the targeted user attempts to authenticate.
The attack begins as soon as a match with a predefined pattern is found. They wait for
OTP to capture and can complete the attack immediately. We have demonstrated that,
after capturing OTP, the attack can be done within seconds.

Desktop-based OTP generator with a “Copy-to-Clipboard” feature secures OTP
from keyloggers. However, our implemented attack can monitor every active window in
the user’s terminal, and take a screenshot of them when they become active and can send
it to the remote attacker. The attack components in the remote attacker’s end can extract
the OTP from the screenshot instantly and can send a concurrent request to the service.
The attack can be done within seconds, which we have shown in the demonstrations. It
is prompt and stealthy, demonstrating the real threat in real-world scenarios.
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6.2 General Discussion

Malware Infection Risk of Windows-based Terminal: Malware infection on
Windows-based desktop terminals is prevalent nowadays. According to the AV test,
90.83 million malware and 5.43 million potentially unwanted programs are reported
for Windows OS [6]. In the United States, 30% of computers are infected with some
form of malware [15]. Moreover, Windows is the most common target of malware writ-
ers as it has 357 dangerous security gaps, according to a recent report [46].

2FA System Vs. Malware in Terminal: Previous literature suggests that the attacker
has to compromise both the terminal and 2FA device to compromise any 2FA system
successfully. According to Bonneau et al. [12], 2FA schemes are resilient-to-internal-
observation, which indicates that they cannot be bypassed by compromising only a
single entity (i.e., the terminal). Our work contradicts this prior line of reasoning.

Feasibility of Installing Keylogger/Browser Extension on User Terminal: Accord-
ing to [38], the development of keylogger-based malware is on the rise, and 80% of
keyloggers are not detectable to anti-malware programs. Our evaluation against stan-
dard anti-malware programs in Sect. 5.4 also supports this claim. Furthermore, a recent
article reveals that 500 malicious Chrome extensions have been identified with a similar
ability to our attack component (i.e., redirecting victims to a malicious website) [39].
Most of them are hidden inside benign and useful user extensions.

6.3 Mitigation Strategy

We propose some prevention techniques that the service providers and the users can
take to prevent themselves from a similar attack scenario.

– Service providers should block reusing the same OTP in two different sessions.
Although that does not prevent the users from all attacks discussed above, this can
make the attacker’s task difficult and challenging.

– To prevent the concurrent attack, the service should discard the concurrent request
if that arrives before another request is not completed.

– The desktop-based operating systems (e.g., Windows) and the software token devel-
opers should work together to prevent taking hidden screenshots by unauthorized
applications.

6.4 Limitations and Future Work

From the attack design perspective, we have some limitations. To design the browser
extension component, we only use “Google Chrome” as the browser and “Windows”
as the user’s terminal operating system. To design a more stealthy attack, we have a
plan to implement browser-independent and platform-independent components in the
future. We will also work on designing a component that can start the software token in
the user’s terminal and capture the OTP in a hidden way without the user’s assistance.

We cover commercially deployed OTP-2FA schemes in this work. We plan to exam-
ine more sophisticated and sensitive OTP-2FA schemes (i.e., academic and banking
OTP-2FA schemes) for more innovative threat models in the future.
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7 Related Work

The authors [45] discussed the vulnerabilities of OTP-2FA implementation in some of
the bank’s online networks in South Korea in this work. Here they intercepted password
and OTP, which is similar to our attack design. The attack we demonstrated can make
both internal and remote attacks. It can create a hidden browser session from the vic-
tim’s terminal to instantly initiate the attack, where the authors in this work send OTP
credentials to the outside attacker only. Our designed “Internal Attack” can launch itself
more promptly compared to them. Not only that, the attack can do similar damage in
the absence of the attacker.

In the work [33], Siadati et al. discussed a social engineering method to steal SMS-
based 2FA, which tricks a victim into sending SMS with authentication code to the
attacker’s device. Our demonstrated attack also uses social engineering, but it is more
hidden compared to the author’s approach, and the user does not have to send the SMS
anywhere. Instead, the user types the OTP to the terminal, and attack components auto-
matically capture it and initiate an attack.

Some works focus on common OTP-2FA vulnerabilities. Examples of similar work
are [21] and [20]. In this work [21], authors focus on wireless attacks, SIM swap attacks,
or mobile malware attacks. We do not compromise mobile phones or any other 2FA
device or network devices in our designed attack. Instead, this attack can start a con-
current attack from the terminal or a remote computer. Similarly, in this work [20], the
author focuses on some vulnerabilities like cookie theft, subject hijacking, SiM swap,
forged SMS recovery messages, and duplicate OTP generators. Our designed attack is
simpler, and it does not need to compromise anything outside of the terminal.

There are many custom OTP-2FA deployments, and researchers analyzed those
schemes and found vulnerabilities. Examples of such work are [22,26,30,45]. In con-
trast, we designed an attack on the “malware-in-terminal” attack scenario and evaluated
commercial and popular OTP-2FA schemes against it.

8 Conclusion

There is a common belief that second-factor authentication schemes should be more
secure deployments that give users an extra step of security to safeguard them from
adversaries. OTP-2FA is the most widely used and acknowledged 2FA implementation.
We evaluated the security of OTP-2FA in the malicious program’s presence in the user
terminal and tried to assess if it adds any additional protection in that circumstance. We
designed and prepared some attack modules and examined them against seven promi-
nent service providers to answer that question. Our findings signify that the concurrent
attack can authenticate the attacker from the terminal or a remote PC without com-
promising any external factor (e.g., service, password, database, 2FA device, network).
The attack also accomplishes low detectability for its hidden nature and little activity
in the user’s terminal for a small amount of time. Our approach is unique as it involves
the users during the attack without their notice and achieves success by only compro-
mising the terminal. More work can be done focusing on concurrent attacks on the
different second-factor schemes and how to safeguard sensitive accounts and resources
from those attacks.
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A Appendix

A.1 Tables

Table 4. Attack variant resource consumption

Variant State CPU Memory Power Network

Internal attack Idle 0.01% 27.5 MB Very low 0.0 MB

Peak 20.0% 108.83 MB Low 0.1 MB

Remote attack (Password and
OTP capture)

Idle 0.01% 23.7 MB Very low 0.0 MB

Peak 0.1% 24.5 MB Low 0.1 MB

Remote attack (Software token
screenshot capture)

Idle 0.01% 29.5 MB Very low 0.0 MB

Peak 0.5% 32.8 MB Low 0.8 MB

A.2 Other snapshots

(a) Flow diagram of Remote Attack (b) Flow diagram of Inside Attack

Fig. 6. Flow diagrams of remote and inside attack on OTP



Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 113

(a) RSA SecureID, that was widely used as
hardware token OTP-2FA

(b) Snapshot from Authy, which
has a desktop based software to-
ken variant.

(c) Snapshot of UI from terminal during au-
thentication using software-token variant of
OTP-2FA

(d) Snapshot of UI from 2FA device during
authentication using Software-token variant
of OTP-2FA

(e) Snapshot of UI from the user terminal
during authentication using remote-delivery
variant of OTP-2FA (SMS)

(f) Snapshot of UI from the 2FA device
(Phone) during authentication using remote-
delivery variant of OTP-2FA (SMS)

Fig. 7. Collection of snapshots of OTP-2FA prompt UI from user terminal and 2FA device
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Abstract. Face detection is a classical problem in the field of com-
puter vision. It has significant application value in face recognition and
face recognition related applications such as face-scan payment, iden-
tity authentication, and other areas. The emergence of adversarial algo-
rithms on face detection poses a substantial threat to the security of face
recognition. The current adversarial attacks on face detection have the
limitations of the need to fully understand the attacked face detection
model’s structure and parameters. Therefore, these methods’ transfer-
ability, which can measure the attack’s effectiveness across many other
models, is not high. Moreover, due to the consideration of commercial
confidentiality, commercial face detection models deployed in real-world
applications cannot be accessed, so we cannot directly launch white-box
adversarial attacks against these models. Aiming at solving the above
problems, we propose a Black-Box Physical Attack Method on face detec-
tion. Through ensemble learning, we can extract the public weakness of
the face detection models. The attack against the public weakness has
high transferability across models and makes escaping black-box face
detection models possible. Our method realizes the successful escape of
both the white-box and black-box face detection models in both the PC
terminal and the mobile terminal, including the camera module, mobile
payment module, selfie beauty module, and official face detection models.

Keywords: Adversarial attack · Face detection · Black-box attack ·
Real-world attack

1 Introduction

Face detection is a classical problem in the field of computer vision. It has signif-
icant application value in face recognition related applications such as face-scan
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payment, identity authentication, image focus, and other areas. What’s more,
face detection is widely integrated into commercial applications in our daily life.
For example, Face Unlock Module of commercial mobile phones, payment soft-
ware Alipay, and selfie beauty application B612 all need to complete the initial
positioning of faces through the face detection module.

Unfortunately, the emergence of adversarial examples seriously threatens the
real-world applications based on face recognition. For example, one person can
escape face detection models by attaching adversarial patches to its face or head-
wear, which means that the face detection model cannot detect the face in the
form of rectangular boxes. Because face detection is the presequence module of
face recognition, this may cause the face recognition related application to crash
unexpectedly. For example, criminals might use specifically trained adversarial
examples to evade facial recognition systems deployed by the police. To investi-
gate the face detection’s vulnerability to improve both the face detection security
and the face recognition security, it is urgent to study the adversarial attacks
on face detection. There are some adversarial attack methods on face detection
nowadays.

According to whether they launch adversarial attacks using digital images
or real-world objects like masks and patches, attack methods can be roughly
categorized into Digital Adversarial Attacks and Physical Adversarial Attacks.

Digital adversarial attacks [16] are methods that rely on an implicit assump-
tion that attackers can directly feed digital adversarial examples to machine
learning algorithms. The adversarial perturbation is directly added to the origi-
nal digital image, and then the perturbation-added digital image is fed into the
classification model [22]. Bose et al. [1] generate adversarial examples by solving
constrained optimization problems such that the face detector cannot detect the
faces in generated adversarial examples. As a white-box attack, their method
relies on full access to the attacked face detection model - Faster R-CNN [12],
which is unrealistic in real-world and commercial scenarios.

Physical adversarial attacks focus on generating adversarial examples on real
objectives such as patches and masks. For example, Adversarial patches are
printed by a laser printer and then attached to the physical-domain target like
human cheeks to fool image classifiers instead of directly feeding digital images
into machine learning algorithms. Zhou et al. [23] use infrared LEDs attached
to headwear to create physical adversarial examples to escape the face detection
systems. However, their method of configuring the infrared light source is quite
complicated. Kaziakhmedov et al. [8] introduce an easily reproducible way to
attack the cascade CNN face detection system - Mtcnn by attaching adversarial
patches to the face directly. However, similar to Bose et al.’s attack method [1],
none of the above attack methods can achieve the black-box adversarial attack
on face detection.

In a word, these methods all require direct access to the model’s structure and
parameters. So, they pose less threat to the real-world commercial applications
that integrate black-box face detection models. It is because that the enterprise
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will not opensource the application source code and the internal details of the
face detection model to protect the core interests.

What is more, the current attacks on face detection generally lack transfer-
ability [11]. Their adversarial examples can only mislead specific models that
take part in training adversarial examples but not other models without par-
ticipation. Model changes caused by changes of structure, parameters, or just
training datasets can seriously affect attack performance.

To solve the above-mentioned problems in existing methods, we propose a
black-box physical adversarial attack method on face detection with high trans-
ferability. We focus on attacking black-box face detection models in the real
world. Our method is inspired by the opinion that some public semantic fea-
tures [3,13] can reflect the public vulnerabilities of unknown DNN models that
focus on the same task [3]. Focus on the task of face detection, the detection
confidence is such a kind of semantic feature in essence. It is because the detec-
tion confidence naturally has the ability to reflect the face detection effect. In
this paper, we use ensemble learning [6] to fuse multiple white-box face detec-
tion models’ detection confidence to construct the total classification loss func-
tion. After we optimize the learnable parameters in the loss function through
ADAM [9], we believe that loss value calculated by the parameters-optimized
loss function can reflect the public vulnerability of face detection task to some
extent. Since generating the adversarial patches by attacking the public vulner-
abilities of face detection, our method bypasses the strict limitation of needing
detailed internal information of the attacked model and has good transferabil-
ity. By directly posting the printed adversarial patches to the cheeks, we realize
the physical adversarial attack on face detection. It also means that we have
breached the whole face recognition module from another aspect.

The demonstration video is available on the Internet1. We show our escape
effect of attacking one real-time black-box face detection model - Official Yolo-
face [4] for demonstration.

Our specific contributions are as follows.

1. For the first time, we successfully realize black-box physical adversarial
attacks on face detection in the real scenes. Our method realizes the escape
of face unlock module and built-in camera software of mobile phones such as
Samsung, Xiaomi, etc. Simultaneously, we realize the escape of commercial
applications, such as Alipay’s face payment and B612 selfie beauty appli-
cations. Our method provides a new way to evaluate the security of face
recognition.

2. We realize the high-transferability adversarial attack on face detection. The
adversarial patches generated by specific face detection models can also suc-
cessfully attack many other face detection models through our method. For
example, the adversarial patches generated by our method can successfully
escape the black-box official face detection models such as Pyramidbox, light-
DSFD, and Yoloface at the same time.

1 https://drive.google.com/file/d/1atQvE9tPMRhKwZw4j-MGt7xFxEY86bBh.

https://drive.google.com/file/d/1atQvE9tPMRhKwZw4j-MGt7xFxEY86bBh
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2 Related Works

2.1 Adversarial Attacks on Face Recognition

There are many adversarial attack methods on face recognition nowadays.
According to the different attack principles, we classify adversarial attacks on
face recognition as the following.

Debayan Deb et al. propose an automated adversarial examples synthesis
method (Advfaces [5]). It uses GAN to limit perturbations on significant pixel
locations (e.g., eyebrows and eyeballs) to improve the invisibility of the generated
adversarial examples. They successfully mislead the face recognition model by
generating a digital adversarial example. However, it is difficult to migrate this
attack to the physical domain because it works by making slight changes to
pixels at specific locations in specific images.

Mahmood Shari et al. [14] limit the adversarial disturbance to the area where
the glasses are worn and use a 3D printer to produce the custom-made glasses.
Later, they come up with a method called AGN [15] (Adversarial Generative
Nets) to generate universal eyewear, which dramatically improves the attack’s
effectiveness and allows the resulting eyewear to resemble the shape and texture
of real eyewears.

Xiao et al. propose an adversarial attack method on face recognition called
StAdv [18]. This method interpolates and merges the neighborhood information
through a spatial transformation attack, making the image smoother. Instead
of adding irrelevant adversarial perturbations to the image, the method distorts
the image by moving the pixels, which can mislead the face recognition model
into giving wrong results.

The above methods directly attack the face recognition model to induce the
models to give the wrong classification results. Focusing on the presequence
module of face recognition, face detection, we will introduce several algorithms
that also pose a severe threat to face recognition.

2.2 Adversarial Attacks on Face Detection

Different from directly attacking the face recognition module, adversarial attacks
on face detection can also threaten the security of face recognition by attacking
its presequence face detection module.

AJ Bose et al. [1] realized the white-box attack against the Faster RCNN face
detection model by training a generator. The training process can be regarded
as a constrained optimization problem, similar to a C&W attack [2]. As a typical
white-box attack method, its white-box escape rate is high. However, the need
to fully understand the structure and parameters of the model makes its attack
capability very limited and lacks in transferability.

Kaziakhmedov et al. [8] were the first to propose the physical adversar-
ial attack on face detection, and they could escape the camera without being
detected. Adversarial patches are adjusted by backward propagation of the gra-
dient value of the loss function. As a gradient-based adversarial algorithm, its
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core advantage lies in fast attack speed and high efficiency. However, its white-
box characteristics make it lack transferability, and its attack success rate is
relatively low.

Zhou et al. [23] proposed a face detection escape method based on infrared
interference. Face recognition systems can be bypassed or misdirected by using
special infrared light that cannot be seen by the naked eyes to interfere with
facial feature point regions. This attack method has strong concealment, but
the escape success rate is relatively low, and it is very complicated to configure
the infrared light source and other steps. The experiments show that the attack
algorithm’s transferability is also low, and it is hard to use their method to
escape other unknown black-box face detection models [23].

3 Our Proposed Method

Although DNNs that focus on the same task may have different structures and
weights, they may share the public semantic feature [3]. The public semantic fea-
ture could reflect the specific task’s public attention(public weakness) to some
extent. Researchers find that by attacking the public attention(public weakness)
of white-box DNNs, they could make DNNs’ attention lose their focus and there-
fore fail in judgment [3]. Inspired by the above idea and ensemble learning [6], we
design an algorithm to find out face detection models’ public weakness. Then,
we train specific adversarial patches to attack the find-out face detection models’
public weakness. When the specific tester posts trained patches on his Living
Face, he could escape Real-World Black-Box face detection models in front of a

Fig. 1. The pipeline of attacking face detection models in the real world. We use a
specific tester to post specific-trained patches on his cheeks; then, he sits in front of a
camera to attack the black-box face detection model.
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camera. The process of attacking black-box face detection models in real scenes
using our method is shown in Fig. 1.

When make judgements, human tend to concentrate on certain parts of an
object to allocate attention efficiently. In computer vision, the same idea has
been applied and becomes an important component in DNNs [3]. Therefore, we
show our escape effect from the respect of the attention heat map. The attention
heat map shows the DNN’s concern area, which is usually essential for its specific
mission (e.g. face detection). When no pasting trained patches, Fig. 2 shows that
all face detection models can focus attention on the face region. However, when
pasting adversarial patches trained by our method, Fig. 3 shows that all four face
detection models are no longer able to focus attention on the face region. That
is maybe why they cannot find faces anymore. You can also prove this with the
average attention heat map of four models in the bottom right corner of Fig. 2
and Fig. 3. (We just average the four attention heat maps to obtain the average
attention heat map.)

Fig. 2. The attention heat map of original face. All face detection models can focus
their attention on the face area. It means that they can detect human faces normally.

Fig. 3. The attention heat map of posting adversarial patches on the Tester’s Cheeks.
After posting specific-trained patches on cheeks, none of the four face detection models
could anymore focus their attention on the face region.

Figure 2 and Fig. 3 essentially illustrate why we can escape the face detection
models, and they visually demonstrate the effectiveness of our method from the
perspective of heat maps.
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Fig. 4. The pipeline of training adversarial patches

The flow chart of training adversarial patches is shown in Fig. 4. Our proposed
method mainly includes three parts: Configure Input Images, Search for
Face Detection Models’ Public Weakness, and Update the Adversarial
Patches using the find-out public weakness. We will cover each part in detail
in the following subsections.

3.1 Configure Input Images

In the “Configure Input Images” part, we take photos to Obtain Input Images.
Then we affine the updated adversarial patches (When the first time of training,
use the initialized patches) to the projection areas to obtain Configured Input
Images. The following describes in detail how to Obtain Input Images and how to
Obtain Configured Input Images. For more details of our datasets and training
parameter, please refer to Sect. 4.1.

Obtain Input Images. Use a laser printer to print out the checkerboard
patches and post them on the tester’s cheeks. We use a camera to collect face
images under different illumination, distance, and angle to enhance the attack’s
robustness. For anyone who wants to escape black-box face detection models and
reach the best escape effect, we should collect his eight face images in different
conditions (distance, lights) to train specific patches.

Obtain Configured Input Images. We mark the edge of the collected input
images’ checkerboard patches. Because we need iterative training adversarial
patches, if it is the first time, we would affine the initialized adversarial patches
to the projection areas obtained by identifying the marked edge; otherwise, we
would affine the updated adversarial patches to the projection areas obtained
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by identifying the marked edge. At this point, we have obtained the Configured
Input Images we need.

3.2 Search for Face Detection Models’ Public Weakness

In order to find out face detection models’ public weakness, we need to select
several white-box face detection models. We uniformly collect unofficial face
detection models with different structures and backbones for training adversarial
patches so that we can use the corresponding official models to run the black-
box escape test. In this paper, we select Mtcnn [20]2, PyramidBox [17]3,
Facebox [21]4, and DSFD [10]5. You can also choose other white-box models,
as long as they can perform the relevant calculations described below. (The
number of models to choose is also changeable, we choose four here.)

First, we feed all the configured images into our selected face detection mod-
els. Due to the uninterpretable nature of artificial intelligence, we cannot obtain
entities that can reflect the public weakness of the face detection task. For each
face detection model, we calculate its classification loss Lclf by formula 1. We
assume that the average sum of multiple face detection models’ classification
losses, Lclftotal

, can reflect the public weakness of the face detection task. Our
hypothesis is reasonable because the total classification loss of multiple face
detection models is an important indicator reflecting the effect of face detection
task. The effectiveness of face detection can, of course, reflect the vulnerability of
the model; therefore, we can use Lclftotal

to naturally reflect the public weakness
of face detection models to some extent.

Lclfi=
∑

N

∑
m max(pm−γi,0)2 (1)

Lclftotal
=

1
K

K∑

i=1

Lclfi
(2)

N is the number of face images participating in training adversarial patches.
pm represents the confidence probability that the region m of the face image is
judged to contain the detected face by the corresponding face detection model.
The trainable parameter γi could reflect the influence of model i on the public
weakness of the face detection task in nature. We will train all γi to represent
the public weakness better in the following.

Train All γi to Represent Public Weakness Better. In order to keep the
contribution of each model to face detection public weakness similar, we design
the following algorithm to train each γi. We do not hope that the contribution
of one model to be so enormous that the other models’ contributions would be
drowned out. When the contribution of one model is much more outstanding

2 https://github.com/edosedgar/Mtcnnattack/tree/master/Mtcnn.
3 https://github.com/EricZgw/PyramidBox.
4 https://github.com/610265158/faceboxes-tensorflow/tree/tf1.
5 https://github.com/610265158/DSFD-tensorflow.

https://github.com/edosedgar/Mtcnnattack/tree/master/Mtcnn
https://github.com/EricZgw/PyramidBox
https://github.com/610265158/faceboxes-tensorflow/tree/tf1
https://github.com/610265158/DSFD-tensorflow
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Fig. 5. The pipeline of training all γi in Lclftotal

than that of the others, our algorithm could not extract the public weakness of
the face detection task, and it is more likely to extract only one model’s weakness
(Instead of public weakness).

By optimizing all γi, we kept all the Lclfi
at the same order of magnitude.

Then Lclftotal
can represent the public weakness better. The specific process is

as follows:
Initially, all γi are set to 0.5. Then, we feed all the original images into selected

face detection models to calculate all Lclfi
and the Lclftotal

. Then, we calculate
the Lgamma by formula 3. Next, we minimize Lgamma through ADAM [9] algo-
rithm and finally obtain all optimized γi values. The pipeline of training all γ is
shown in Fig. 5.

Lgamma =
1
K

K∑

i=1

(Lclfi
− Lclftotal

)2 (3)

Finally, we can calculate the total classification loss (Lclftotal
) through all the

optimized γi values to represent the public weakness of the face detection task
better.

3.3 Update the Adversarial Patches

At this point, we have finished the training of all optimizable parameters γi and
fixed them in the total classification loss function (Lclftotal

). Now, we can use
Lclftotal

to represent the public weakness better. The specific process of ‘Update
the Adversarial Patches’ is as follows.
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First, we artificially define the Total Variation loss LTV to make the opti-
mization prefer good-looking adversarial patches without sharp color transitions
and noise. We calculate LTV from pixel values of the training adversarial patches
in position i, j.

LTV =
√

(pi,j − pi+1,j)2 + (pi,j − pi,j+1)2 (4)

By summing Lclftotal
and LTV , we obtain the Total Loss Ltotal.

Ltotal = αLclftotal
+ βLTV (5)

After calculating the Total Loss Ltotal, we feed Ltotal as the optimization
target into the MI-FGSM [7] algorithm. Then, we use the generated patches
from the MI-FGSM algorithm to update the adversarial patches. Finally, we
would affine the updated adversarial patches to the projection areas of Input
Images and obtain new Configured Images. The new Configured Images are
then used to calculate the Total Loss and update the adversarial patches again
until reaching the setting number of iterative training.

4 Experiments and Result Analysis

In this section, we first introduce the details of our experiment settings. Then, we
use living faces to do escape experiments in the real world. Finally, we conduct
contrast experiments and ablation experiments to illustrate the effectiveness and
feasibility of our method.

4.1 Experiment Settings

Training Datasets. For anyone who wants to escape face detection models,
his 8 face images in different conditions (distance, lights) should be used to train
specific adversarial patches. He can then wear the specific-trained patches on
his cheeks to attack face detection models in the real world. There are only one
tester’s eight face images in training sets.

Testing Datasets. Unlike digital adversarial attacks that focus on evaluations
with well-known digital datasets such as WIDER FACE [19], our physical adver-
sarial attack focuses on launching attacks with a living face. Therefore, we have
no test sets, and we use the living face to attack different face detection mod-
els in the real world to measure our escape effect. To achieve the best escape
effect, the same person who provides the Input Images should be used to attack
real-world face detection models.

Training Parameters. For all experiments in Chapter 4, the training epoch of
adversarial patches is set to 2000, and the training datasets are set to include
only 1 tester’s 8 face images. γi of Mtcnn [20], PyramidBox [17], Facebox [21],
and DSFD [10] are finally optimized to 0.5, 0.45, 0.6, 0.65, respectively. (Refer
to Sect. 3.2 for more details.)
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4.2 Escape Experiments in the Real World

According to different test content, the real-world escape experiments are finally
divided into two parts: escape experiments of face unlock module in mobile
phones, and escape experiments of face detection function-related applications
in mobile phones.

All the experiments here are set to compare the three cases of posting adver-
sarial patches on cheeks, posting randomly generated patches (subject to a uni-
form distribution between 0–255), and no posting.

Escape Experiments of Face Unlock Module in Mobile Phones. Because
the internal details of the face detection models deployed in mobile phones are
inaccessible, this part’s escape experiments are essentially black-box. We collect
mainstream mobile phone brands and finally choose iPhone 11, Samsung Galaxy
S10 5G, Xiaomi Redmi K20 Pro. They all support unlocking the phone by face
recognition. To control the variables, all experiments use the same lighting con-
ditions, background, and test angle. The tester has registered his face in advance,
meaning he could naturally unlock the phone by face recognition under normal
circumstances.

The tester respectively wears the adversarial patches, random patches, and
nothing. Presses the power button and swipes the screen to trigger the face
unlock module. When the mobile phone does not detect a human face, it will
prompt “No face detected!” on the screen. When the mobile phone thinks that
a face is detected, but the face does not match the registered face, it will give
a prompt “Face Does Not Match!” on the screen and refuse to unlock. When
the mobile phone thinks that the face is successfully detected and the detected
face matches the registered face, the mobile phone will be unlocked successfully.
All videos of attacking the face unlock module are available on the
Internet6.

We have successfully achieved the escape of both Samsung and Xiaomi
phones. It can be seen from the video of Samsung S10 5G and Xiaomi Redmi
K20 Pro that when the tester posts trained adversarial patches on his cheeks,
the face detection model can not detect the face after a long-time search and
gives a prompt of ‘No Face Detected!’. When the tester posts randomly gener-
ated patches, The phone quickly detects the face and prompts ‘Face Mismatch’.
The different search times of the above two experiments also prove from another
angle that the adversarial patches obtained by our training have indeed achieved
escape attacks. When the tester does not post any patches, the mobile terminal
is quickly unlocked. These videos demonstrate the excellent escape effect of our
adversarial patches. When we conduct the unlock test with IPhone 11, no mat-
ter the real situation is “No Face Detected!” or “Face Mismatch!” ’, it shows
that the “lock” at the top of the screen is not turned on, and the phone is still

6 https://drive.google.com/drive/folders/1LzGVVWl9OMHqXXL5dnh-FrxXsCnG
vBJ0.

https://drive.google.com/drive/folders/1LzGVVWl9OMHqXXL5dnh-FrxXsCnGvBJ0
https://drive.google.com/drive/folders/1LzGVVWl9OMHqXXL5dnh-FrxXsCnGvBJ0
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locked. Therefore, we cannot verify the escape effect of the generated adversarial
patches through IPhone 11.

The escape videos above show our excellent escape effect. When the tester
posts the specific-trained patches on cheeks, he could successfully escape the
face detection model deployed in the mobile phone. Because face detection is
the presequence module of face recognition, when face detection breaks down,
the entire face-unlock module fails as well.

Escape Experiments of Face Detection Function-Related Software in
Mobile Phones. To enhance our face detection escape method’s credibility
and persuasiveness, we also use our method to attack the above mobile phones’
built-in camera module. At the same time, we conduct escape tests on Alipay
and selfie beauty software B612 with the above mobile phones.

Built-In Camera. The tester respectively wears the adversarial patches, ran-
dom patches, and nothing, turns on the built-in camera application, adjusts the
camera mode to “portrait mode”, switches to the front camera, and faces the
camera. When the camera detects a face, it will frame the face with a rectangular
box. When the rectangular box cannot select the face or disappears, it means
the face detection model cannot detect the face, and we achieve the escape of
the built-in camera module. The test results are saved in Fig. 6 as screenshots.

The figures A1∼F1, A2∼F2, A3∼F3 show that only when testers post adver-
sarial patches generated by our method can they successfully escape the face
detection module in mobile phones. Posting random patches and No Posting can
not escape. A2 shows the automatic Soft-light function fails due to the inability
to detect the face, and A2 is significantly colder than B2 and C2. G1∼I1, G2∼I2,
G3∼I3 show our excellent escape effect for another tester and demonstrate the
generality of our method.

Alipay. The tester respectively wears the adversarial patches, random patches,
and nothing, opens Alipay in the mobile phone, searches for the official service
“Alipay Face-Scan Life”, and selects “Experience Face-Scan Payment” from the
“Face Brushing Settings” to start the face brushing payment test. The test
results are also saved in Fig. 6 as screenshots.

A4∼F4 show the attack effect against Alipay’s face payment module. A4 and
D4 prompt: “No face detected.” B4 and E4 prompt, “Please show your whole
face.” C4 and F4 say, “Please blink.” D4∼F4 show our excellent escape effect
for another tester and demonstrate the generality of our method. Only when the
testers post specific-trained adversarial patches(A4 and D4) can they escape the
Alipay’s face detection module. We successfully escape the commercial black-box
Alipay Face Payment module.

B612. The tester respectively wears the adversarial patches, random patches,
and nothing. In each case, tests are performed in two environments, namely,
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Fig. 6. Escape test effect in mobile terminals. Because of the narrow lines of the rect-
angular boxes, you may need to review this figure carefully.

turning on or turning off beauty function. The test results are also saved in
Fig. 6 as screenshots.

A5∼F5 show the escape effect of B612. A5, C5, and E5 all turn on beauty
function, and B5, D5, F5 not. The selfie beauty app B612 fails to perform its
beauty function only when the user wears the adversarial patches because it could
not detect the face(A5). We successfully escape from the commercial black-box
B612 application.

4.3 Contrast Experiments

Nowadays, similar studies include AJ Bose et al. [1], Zhou et al. [23], and Kazi-
akhmedov et al. [8]. AJ Bose et al. [1] focus on digital attack and is not of compa-
rable value. (We focus on physical attacks.) As for Zhou et al. [23], their method
of configuring the infrared light source is much complicated than ours post-
ing patches. Therefore we design relatively fair experiments with Kaziakhmedov
et al. [8].

We conduct escape tests for Baidu official face detection model: Pyramid-
Box 7, Tencent official face detection model: light-DSFD 8, and Awesome Open
Source recommendation algorithm: Yoloface 9. These official algorithms such as
PyramidBox, lightDSFD, and Yoloface all use the same lighting conditions, the

7 https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/mask
detection.

8 https://github.com/lijiannuist/lightDSFD.
9 https://github.com/sthanhng/yoloface.

https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/mask_detection
https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/mask_detection
https://github.com/lijiannuist/lightDSFD
https://github.com/sthanhng/yoloface
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same background, and the same test angle to control the variables. Since we do
not use the official face detection model in the training process, the following
experiments are essentially black-box escape experiments.

All the contrast experiments are divided into two groups: an experimental
group and a control group. The experimental group uses our method. The control
group uses the method of Kaziakhmedov et al. [8]. Both the experimental and
control group experiments are set to be completed under three distances: close,
middle, and far-distance. In each case, the tester shakes his head at a constant
speed for 5 s. We use FFmpeg to intercept the video frame by frame and define
the escape rate as the percentage of the frames that successfully escape.

Please refer to Fig. 7 to see the results of the contrast experiment. Figure 7
fully demonstrates that our method has much better black-box escape capability
than Kaziakhmedov et al. [8]. It intuitively shows that for three attacked official
models, our method has an excellent black-box escape effect in close-distance,
middle-distance, and far-distance scenarios. The average escape rate at all three
distances is also much higher than that of Kaziakhmedov et al. [8]. The exper-
imental results are reasonable. Unlike Kaziakhmedov et al. [8], who focuses on
a single face detection model, we extract the public vulnerability of the face
detection task by fusing multiple white-box models.

Fig. 7. Contrast experiments: escape rate of Close (a), Middle (b), Far (c) Distance
and average escape rate of all three distance (d)
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4.4 Ablation Experiments

To illustrate that our method is indeed better than using the classification loss
of only one model, we conduct ablation experiments to investigate the effect
of training models’ number on the black-box escape effect. Our ablation exper-
iments still focus on conducting escape tests for official PyramidBox, official
light-DSFD, and official Yoloface. All the experiments can be divided into four
groups: the total classification loss Lclftotal

, respectively including 1, 2, 3, and 4
face detection models’ classification loss.

Because Kaziakhmedov et al. [8] use only one model(Mtcnn) to train patches,
the results of Kaziakhmedov et al. [8] in Fig. 7 are ablation experiments that
integrate only 1 model in essence. Since we do not use the official face detection
model in the training process, our ablation experiments are essentially black-box
escape experiments.

The result of the black-box escape rate of different distance is respectively
shown in Fig. 8. Subgraph (a) , (b) and (c) show the escape rates of attack-
ing Official PyramidBox [17], Official light-DSFD [10], and Official Yoloface [4],
respectively. Subgraph (d) shows the average escape rate of all three distances
for three official models.

Fig. 8. Ablation experiments: escape rate of attacking Official PyramidBox [17] (a),
Official light-DSFD [10] (b), and Official Yoloface [4] (c), and average escape rate of
three distances for three official models (d)

Subfigures (a), (b), and (c) of Fig. 8 show that we attack different black-
box face detection models at different distances and achieve excellent black-box
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escape effects. Subgraph (d) shows that when compared with the fusion of single
model, two models, and three models, the black-box escape rate of fusing four
models is increased by about 80%, 30%, and 10%, respectively. (the green line
in subfigure (d)).

The above results indicate that the fusion of the four face detection models
can achieve the optimal black-box escape effect and prove the effectiveness and
reliability of our method.

5 Conclusion

We propose a Black-Box Physical Adversarial Attack Method on Face Detection
to evaluate face detection security and face recognition security. By calculating
the total classification loss function (Lclftotal

) and training the parameter γ ,
we successfully extract the face detection models’ public vulnerabilities. By exe-
cuting the adversarial attack on the extracted public weakness, we realize the
escape against black-box face detection models with high-transferability. This
means that we have broken the face recognition system in another way. In detail,
we achieve a high-success-rate black-box escape of commercial applications such
as Alipay Face payment, B612, and many official face detection models. Simul-
taneously, we realize the escape of the face detection module in the mainstream
commercial mobile phones and make their Face Unlock, Automatic Soft-light,
and other functions break down because the face could not be detected. Through
our method, it is possible to evaluate the current commercial face detection and
face recognition model’s physical-domain security, which helps to further under-
stand the fragility of the face recognition deep neural network and promote the
face recognition deep learning model to a safer direction step forward.
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Abstract. A variety of sensors are built into intelligent mobile devices.
However, these sensors can be used as side channels for inferring informa-
tion. Researchers have shown that some touchscreen information, such as
PIN and unlock pattern, can be speculated by background applications
with motion sensors. Those attacks mainly focus on the restricted-area
input interface (e.g., virtual keyboard). To date, the privacy risk in the
unrestricted-area input interface does not receive sufficient attention.

In this paper, we investigate such privacy risk and design an
unrestricted-area information speculation framework, called Handwrit-
ten Information Awareness (HIAWare). HIAWare exploits the sensors’
signals that are affected by handwriting actions to speculate the hand-
written characters. To alleviate the impact of different handwriting
habits, we utilize the generality patterns of characters. Furthermore,
to mitigate the impact of holding posture in handwriting, we propose
a user-independent posture-aware approach. As a result, HIAWare can
attack any victim without obtaining the victim’s information in advance.
The experiments show that the speculation accuracy of HIAWare is close
to 90.0%, demonstrating the viability of HIAWare.

Keywords: Motion sensors · Side channel · Privacy leaks

1 Introduction

In recent years, intelligent mobile devices have been equipped a variety of sensors
to assist in navigation, gaming, health monitoring and more. However, these
sensors can also be used as side channels for inferring information, yet until
now the mobile operating systems, Android for example, have no restrictions to
sensors by applications.

By exploiting those sensors, touchscreen information can be speculated, such
as passwords typed by users on the virtual keyboard [10,21,23]. By far, most
researches only focus on the restricted-area input interface, in which touchscreen
information is entered at a specified position/area on the touchscreen, such as
the virtual keyboard [4,11] and the pattern lock screen [2,24]. Mehrnezhad et
al. [12] have shown that primitive operation actions (e.g., click and scroll in
gesture control) on unrestricted-area screen can be recognized with sensors.
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 136–152, 2021.
https://doi.org/10.1007/978-3-030-86890-1_8
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Nevertheless, the speculation for the more complex and meaningful inputs,
such as handwritten contents, has not been sufficiently discussed. Therefore, a
remarkable question is whether handwritten information can be speculated by
a malicious background application? There are two issues related to practicality
and robustness that need to be addressed.

One issue is that, victims are usually unknown to attackers before attacks,
but the speculation model is built on the training data from the known users. We
observe that each person has his/her own handwriting habits, such as writing
strength, sequence, and speed, called chirography difference. This chirography
difference will heavily impact the accuracy of the speculation model which is
trained without the victim’s data [8]. The other is that the sensors’ signals
and noise patterns vary under different holding postures (e.g., sitting, standing),
since the victim’s limb jitter and handwriting strength are significantly different,
called posture variation. Such posture variation can dramatically downgrade the
speculation accuracy of a universal speculation model which is built only on a
single holding posture (sitting or standing), especially when the victim’s holding
posture changes in the handwriting process. Moreover, posture variation should
also be universal for unknown victims.

In this paper, we propose a novel character-based unrestricted-area infor-
mation speculation framework, called Handwritten Information Awareness
(HIAWare). The main idea of HIAWare is to track the changes of sensor signals
caused by handwriting actions on the touchscreen, and recognize the patterns for
each character. The above two issues were successfully solved in HIAWare. It is
effective in attacking unknown victims and can be adapted to different postures.

The main contributions of our paper are as follows.

– To the best of our knowledge, HIAWare is the first work to leverage motion
sensors to speculate handwritten information on mobile devices, which reveals
a security threat that all shared hardware on mobile devices can be exploited
for privacy leakage.

– We propose to utilize generality patterns of characters (e.g., stroke number) to
alleviate the dependency on collecting training data from victims in advance
and reduce the impact of chirography difference on speculation accuracy.

– We build diverse speculation models in HIAWare according to different hold-
ing postures detected by a user-independent posture-aware algorithm. There-
fore, HIAWare is able to complete handwritten information speculation with
a competitive accuracy in the more practical scenarios.

– We implement a HIAWare prototype using off-the-shelf mobile devices
with Android platform. The comprehensive experiments demonstrate that
HIAWare can speculate characters with an accuracy close to 90.0%.

We organize the rest of our paper as follows. We introduce the preliminaries
in Sect. 2. Section 3 and 4 detail the design of HIAWare, and the proposed algo-
rithms, respectively. Then, the performance of HIAWare in different conditions is
shown in Sect. 5. At last, Sect. 6 summarizes related work, and Sect. 7 concludes
our paper.



138 J. Chen et al.

2 Preliminaries

In order to anticipate the feasibility of the solution, the targeted app, available
sensors and possible threat models need to be noticed.

2.1 Targeted Vulnerable Apps

Although the prototype of HIAWare in this paper is implemented on Android
platform, its framework can also be used on other mobile platforms, such as iOS.
The targeted vulnerable apps of HIAWare, a system to speculate handwritten
information, are mainly handwriting-related apps. Four application markets for
Android platform are statistically analyzed. Apple App Store does not have
download statistics, so the number of handwriting-related apps in American
(US) and Chinese (CN) App Store is based on a third-party data set [14]. The
results are shown in Table 1.

Table 1. Survey Of handwriting-related applications

Markets Downloads/Apps Example app

Google Play 347,014,420 Google handwriting input

AppChina 455,663 Chinese handwriting Recog

WanDouJia 224,254 ABC handWriting

AnZhi 4,545,245 Sogou input method

US Apple store 302 Easy writing Board

CN Apple store 1,079 NoteBook+

From Table 1, we can find that the total downloads of targeted apps in the
Google Play is about 300 million and the number of apps in Apple Store is up to
1381 in America and China. It draws a conclusion that there are enormous
targeted vulnerable apps which could potentially be compromised by HIAWare.

2.2 Motion Sensor Selection

The device will be shaken and rotated slightly while handwriting, and these
movements will be captured by the motion sensors. Specifically, two commonly
used sensors are selected: accelerometer, which can measure device vibration and
acceleration, and gyroscope, which can estimate the rotation and deflection [1].
These sensors provide signals at a given frequency which contain the data in three
dimensions (denoted as X, Y, and Z respectively in Fig. 1) and its corresponding
timestamps. HIAWare’s Activity collecting sensors’ signals is shown in Fig. 2.
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Fig. 1. Accelerometer and Gyroscope
Axis of measurement

Fig. 2. Activity of data collection
application

2.3 Threat Model

A malicious app is assumed that launched in application markets and pretend as
a game app. To get unnoticed by the user due to unusual power consumption, the
malicious app tries to stealthily run in the background, and only records sensors’
signals when the user runs a handwriting-related app in the foreground. Existed
work has proposed a way to determine the running app via power analysis [5,6,15].

Note that the signals’ data is written into its own App-specific storage, where
no storage permission is required. And the Vanilla Android, a system not deeply
customized, only restricts the usage of mobile data in the background. However,
this permission is allowed by default and so normal in game apps that the mali-
cious app can gain the access to connect network easily for sending files to the
remote server.

3 HIAWare Design

HIAWare consists of the following five phases: Handwriting Detection, Sensor
Data Capture, Preprocessing, Posture-Aware Analysis, and Character Restora-
tion, as shown in Fig. 3.

3.1 Handwriting Detection

Different from detecting unlocking screen actions, handwriting actions have no
observable system broadcast [24]. Meanwhile, the other applications cannot use
conventional approaches to identify whether the foreground application is a tar-
geted app.
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Fig. 3. The system architecture of HIAWare

Fortunately, different applications use different components of a device and
have different usage patterns, which result in distinguishable power consumption
profiles [6]. By analyzing the power consumption on mobile devices, the sensors
record service can be started as soon as the handwriting actions is detected.

3.2 Sensor Data Capture

Once a handwriting action is detected, HIAWare uses an API provided by
Android system [1] to conduct real-time recording of motion sensors’ signals
during the handwriting process.

HIAWare collects the signals from accelerometer and gyroscope in the mean-
while by polling and the collected data is uploaded to a remote server stealthily
for analysis.

3.3 Preprocessing

The main tasks completed at this stage are denoising, and identifying and
extracting the signal stream corresponding to each character.

Wavelet Denoising. The raw signals usually contain a mass of background
noise (distinguish from the noise caused by user unexpected actions in the next
paragraph). To filter the noise and restore the real signal fluctuations caused by
handwriting actions, we utilize the wavelet denoising for filtering. Figure 4 shows
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the gyroscope’s signals for handwriting actions of some characters. After wavelet
denoising, the difference in the number of peaks for different characters in Fig. 4
can be observed, as the characters have different strokes.

Fig. 4. Original vs. Wavelet Denoised sensor signals of handwriting action

Segment Detection. In the gap between handwriting, there is still action noise
because of victims’ arms and palms’ unexpected shaking. To extract individual
signal segments generated by the handwriting action of a single character, we
design the modified Constant False Alarm Rate (mCFAR), a handwriting signal
segment detection algorithm, to identify handwriting actions from the motion
sensors’ signals. The details are described in Sect. 4.1.

3.4 Posture-Aware Analysis

There have been many studies on human activity recognition (HAR) with motion
sensors [7,16,20]. However, the features used in those former studies are not user-
independent, resulting in insufficient generalization of the trained model. Here
comes the challenge how to use the model trained by the known users’ posture
data to identify the unknown users’ posture data.

To tackle this challenge, HIAWare analyzes noise signals to identify vic-
tim’s holding posture based on correlation analysis of characteristics. A user-
independent posture-aware algorithm is described in details in Sect. 4.2.
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3.5 Character Restoration

In this phase, with detected handwriting signal segments, the denoised signals
are grouped into candidate character sets according to the number of strokes.
Then, we combine the holding posture information and candidate character sets
to extract the features in the feature selection stage. Finally, we utilize the spec-
ulation model corresponding to the holding posture to determine the character
in the character classification stage.

Stroke Detection. To solve the chirography difference issue as explained
in Sect. 1, a more generality pattern of characters in handwriting signals is
employed: the number of strokes (i.e., the number of peaks in a handwriting
signal segment). The uppercase alphabet are divided into three clusters accord-
ing to the number of strokes. The three clusters are:

S1 = {‘C’, ‘G’, ‘J’, ‘L’, ‘M’, ‘N’, ‘O’, ‘Q’, ‘S’, ‘U’, ‘V’, ‘W’, ‘Z’};

S2 = {‘A’, ‘B’, ‘D’, ‘G’, ‘J’, ‘K’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘T’, ‘X’};

S3 = {‘A’, ‘E’, ‘F’, ‘H’, ‘I’, ‘K’, ‘N’, ‘Y’}.

Note that some characters are included in multiple clusters. For example,
character ‘A’ is included in both S2 and S3 according to different writing habits.
However, this situation has limited impact on the subsequent character recogni-
tion, since stroke detection aims to generate a candidate character set, which is
mainly used to narrow the scope of character speculation.

Table 2. The type of feature extracted from the signal segment. “�” means that all
features in the item are used, “φ” means none is used, and “−” means partially used.

Type Feature Introduction Sit Stand

TD Standard deviation,
Maximum, Minimum,
Median and Average

Calculate the four characteristics of the three
coordinate axes separately

� −

Range Difference between maximum and minimum � φ

Strength Expressed by the sum of the squares of the
instantaneous readings of the three axes

� �

FD Centroid Indicates where the spectrum centroid is
located

φ �

Variance Display the frequency density of the
spectrum

φ �

Skewness Measuring the asymmetry of the spectrum φ �
Kurtosis Describe the size of the range of changes in

the spectral values
� �

Wiener entropy Reflecting the flatness of the spectrum of a
digital signal

φ �
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Feature Selection. We first extract original feature set from the time and fre-
quency domains for a given handwriting signal segment. Then, we execute feature
engineering on the segment feature vector, and generate a posture profile. The
posture profile is the selected segment feature subset which makes model achieve
the optimal speculation accuracy. In HIAWare, we adopt the feature selection
module of scikit-learn to filter redundant features from the original feature set.

Table 2 shows the type of original features extracted from the handwriting
signal segment. Original features are calculated from the time domain (TD) and
the frequency domain (FD). It should be clear that the feature set extracted at
this time is the original feature set, and then HIAWare will filter the original
feature set according to the user’s holding posture to obtain the most suitable
set of features for each posture.

Character Classification. Finally, we score the characters in the candidate
set, and select the most possible character based on the score of each character.
The algorithm to score the character is based on the multi-class GBDT. HIAWare
can greatly reduce the impact of the victim’s personal handwriting habits on the
accuracy of the speculation model because of the pre-processing according to the
number of strokes and postures.

4 Algorithm Details

In this section, the details of the algorithms in Preprocessing and Posture-Aware
Analysis are explained.

4.1 MCFAR Algorithm

The modified Constant False Alarm Rate (mCFAR) is shown in Algorithm 1. The
inputs of the algorithm are the sensor signal stream without background noise
and two parameters: t and m (explained in the next paragraph). The output is a
list of signal segments and each segment represents one character’s handwriting
action. The algorithm uses a polynomial fitting function to fit the action noise
which can adjust the parameters automatically to generate the most appropriate
fit curve. The mathematical description of our algorithm is as follows.

A stream of motion sensor signals are denoted by D = {d1, d2, ..., dn} of
size n, where di ∈ D is a set containing four-tuple values (dx

i , dy
i , dz

i , d
t
i): three

axis reading and corresponding timestamp. Particularly, let Dε represents the
projection of the dε values in D, like as Dx = {dx

1 , dx
2 , ..., dx

n}. Then, the mean
values and standard deviation of Dε are denoted by Mε and Sε, where

Mε =
1
n

n∑

k=1

Dε
k (1)

and

Sε =

√√√√ 1
n

n∑

k=1

(Dε
k − Mε)2. (2)
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Algorithm 1. mCFAR
Input: Original signals: D, t, m
Output: Segment signals: D′

1: Initialize D′, tmp as empty vectors;
2: p ← Fm(D) // Polynomial Fitting
3: M ← calcMean(D) // Calculate Mean Value
4: S ← calcSD(D) // Calculate Standard Deviation
5: flag ← False
6: for i = 1 → length(D) do
7: if |D[i] − p[i]| > t ∗ S and D[i] is a start or end point then
8: flag ← True
9: end if

10: if flag = True then
11: Append the element D[i] to tmp;
12: end if
13: if |D[i] − p[i]| > t ∗ S and D[i] is a start or end point then
14: flag ← False
15: Append the element tmp to D′;
16: Clear tmp as empty vectors;
17: end if
18: end for
19: return D′

The polynomial fitting function of Dε is p(ε) (see Eq. (1)), where F is a
conversion function and m is the degree of the fitting polynomial.

p(ε) = Fm(Dε). (3)

A valid value of handwriting signal segment is detected if

|Dε
i − p(ε)| > t ∗ Sε, (4)

where t and m are adjustable according to different granularity.
We use a sliding window of size W to detect potential start and end points of

a handwriting signal segment in Dε
i , as shown in Fig. 5. The handwriting signal

segment is detected if the distance between the start and end points are longer
than a threshold L in Fig. 5. L is a regulable parameter chosen based on prior
knowledge. Through Algorithm 1, the effect of abrupt and sharp noise can be
greatly reduced.

We show the comparison between threshold-based method and our proposed
mCFAR method in Fig. 6. We can observe that a low threshold will result in
the redundancy of extra signals (Fig. 6(a)), while a high threshold will cause
the loss of signals (Fig. 6(b)). Opposite of this, our mCFAR method can extract
handwriting signal segments completely (Fig. 6(c)).

4.2 User-Independent Posture-Aware Algorithm

To tackle the posture variation issue, we consider two representative holding
postures of mobile devices: sitting and standing, since victims usually use hand-
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Fig. 5. An illustration of segment detection with accelerometer signal changes caused
by handwriting actions of character ‘0’

A
m

p
li

tu
d
e

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-1.25
0.0 0.2 0.4 0.6 0.8 1.0

Time

raw data
0.2 Vth

(a) Low Threshold

A
m

p
li

tu
d
e

Time

0.50

0.25

raw data

0.00

-0.25

-0.50

-0.75

-1.00

-1.25
0.0 0.2 0.4 0.6 0.8 1.0

0.5 Vth

(b) High Threshold

A
m

p
li

tu
d

e

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-1.25
0.0 0.2 0.4 0.6 0.8 1.0

Time

raw data
mCFAR

(c) mCFAR

Fig. 6. Effect comparison of different handwritten segment detection methods

writing input under one of those two postures. Note that other holding postures
can also be analyzed by our algorithm.

The feature vectors of action noise signals are constructed by commonly used
digital signal processing methods, including the Power Spectral Density (PSD)
and the Mel-Frequency Cepstral Coefficient (MFCC). Then, the correlation anal-
ysis is performed on the feature vectors and the prior holding posture data. The
prior holding posture data contains the noise signals of the two postures we
collected in advance. The type of holding posture obtained will be used to com-
plete feature selection. The flow chart of the user-independent posture-aware
algorithm is shown in Fig. 7.

Characteristic Vector Construction. As shown in Fig. 8, we calculate PSD
and MFCC of the accelerometer’s signals collected under the two holding pos-
tures. Note that the user’s physical unexpected actions under the two postures
can cause different action noise pattern in the signals. We can clearly observe
the difference of PSD characteristics in Fig. 8(a), and MFCC characteristics in
Fig. 8(b) and 8(c) under the two postures.
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Fig. 7. Flow chart of user-independent posture-aware algorithm

Next, we will formalize the process of characteristic vector construction. The
formal description of the noise characteristic vector for a background noise sig-
nals N is θv = {ϕk0, ξk1}, where k0 and k1 are the size of ϕ and ξ, also

(ϕk0, ξk1) = (PSD(N),MFCC(N)), (5)

where PSD and MFCC are the functions that calculate the corresponding
characteristic.

Correlation Analysis. In this stage, we calculate the Pearson Correlation
Coefficient (PCC) between the action noise characteristic vector generated from
last stage and the prior posture data. The definition of PCC is as follows:

ρ(X,Y ) =
cov(X,Y )

σXσY
, (6)

where cov(X,Y ) is the covariance of X and Y , σX and σY are the standard
deviation of X and Y . Let us suppose the noise characteristic vectors of two
postures in prior data are θsit and θstand. Naturally, the correlation coefficient
between θv and the prior holding postures signals are ρs = ρ(θv, θsit) and ρst =
ρ(θv, θstand), respectively. We choose the holding posture as our perceived result
with its correlation coefficient ρchosen = max{ρs, ρst}.

5 Performance Evaluation

In this section, the experimental setup is described firstly, and then the evalua-
tion is conducted in the speculation accuracy and the Area Under the receiver
operating characteristic Curve (AUC) under different experimental conditions.
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(a) PSD of Two Postures

(b) MFCC of Sitting (c) MFCC of Standing

Fig. 8. Example of extracted PSD and MFCC features

5.1 Experiment Setup

We use three Android phones: Huawei NEM-AL10, Samsung SM-G9208, and
Redmi Note 4X with our app installed to collect motion sensors’ signals. 12
volunteers participate in the experiments, and they are divided into three equal
groups to collect signals using three devices.

Volunteers first start up our app (Fig. 2) and click the START button to
start signal collection. There are two modes for writing characters here. One
is writing characters on HIAWare’s SurfaceView, while this stage allows the
MotionEvent to be obtained for accurately evaluating of the performance of
segment detection. The other is switching our app in the background and writing
on another handwriting-related app. When the handwriting is over, volunteers
then click the STOP button to stop signal collection. The COMMIT button can
dump the collected data into App-specific storage, and the UPLOAD button can
send the dumped files to the remote server.
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Subsequent experiments will consider the impact of different postures, devices
and inputs (finger or stylus) on HIAWare. Therefore, each volunteer will hand-
write all the uppercase characters 15 times stroke by stroke, in two postures and
two handwriting modes. 70% of the data is used as the training set, and these
data are divided into two parts based on the posture of volunteers, to train a
speculative model for the corresponding postures. The remaining 30% is used as
the test set.
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Fig. 9. Performance of three segment detection methods
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Fig. 10. Performance of different holding postures

5.2 Performance of Segment Detection

Figure 9 shows the actual detection result of three segment detection methods.
It is obvious that low threshold detects the least handwriting segments, while
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mCFAR and high threshold’s detection ability is comparable. The high thresh-
old will cause signal loss when extracting handwriting segments from sensors’
signal stream. The reason that not all segments are detected by mCFAR is that
sometimes the strength of the volunteers’ handwriting is so weak that it does
not generate sufficient fluctuating changes. Considering the whole, the mCFAR
achieved a detection rate of 88%, so that the character data for subsequent recog-
nition accuracy experiments is based on the signal segments that are detected
by the mCFAR.

(a) Comparison of Different Devices (b) Comparison on Different Inputs

Fig. 11. ROC curves of different experiment conditions on HIAWare

5.3 Performance of Different Holding Postures

Figure 10 shows the speculation accuracy under two different holding postures.
From Fig. 10, we can observe that sitting data has the higher speculation accu-
racy, which can reach 93.5%, while the speculation accuracy of standing data is
only 81.4%. This is because the sitting posture has less action noise, and rela-
tively more signals are available for speculation model training. What’s more,
when using a posture profile that does not fit the current holding posture to
speculate characters, the accuracy is significantly reduced.

5.4 Performance of Different Devices

We also investigate speculation performance of the three different devices used in
our experiments with the same users. Figure 11(a) shows the ROC curves of three
different devices. HIAWare has similar speculation performance on three devices
with the AUC of Xiaomi as 0.94, and it is only 0.01 higher than Samsung and
Huawei. In general, the discrepancy in sensor performance can lead to subtle
differences in our sampling frequency and precision which may influence the
speculation accuracy. However, as the training data of the speculation model
continues to increase, the impact of this discrepancy could continue to decrease.
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5.5 Performance of Different Inputs

Figure 11(b) shows the ROC curves of handwriting with the finger and the sty-
lus. As we can see that the AUCs of the finger and stylus are 0.92 and 0.94,
respectively. The AUC of stylus is 0.2 more than that of finger, which means
the speculation performance with stylus is better than that with finger. This is
because the physiological characteristics have a relatively weak impact on sensor
signal changes when we use a stylus instead of the finger. Generally speaking,
this degree of speculation performance difference is comprehensible.

5.6 Discussions

What needs to be stated is that the characters in this experiment are all upper-
case. However, the stroke detection cannot effectively narrow the scope of specu-
lation, since lowercase characters have more ligatures. In addition, the characters
written in the experiment are independent. In practice, it is more common that
the written characters are related before and after, so in theory, the Markov
model can be used to improve the accuracy of inference. These are the work we
need to improve in the future.

6 Related Work

Mobile devices’ restricted-area information could be classified as two categoriza-
tions, virtual keyboard input and pattern lock [18]. Cai et al. [3] first proposed
the possibility of eavesdropping virtual keyboard input via embedded sensors in
smartphone. They developed TouchLogger, which can monitor the orientation
signals and extract features from these signals to infer key-press information.
Similar to this work, Xu et al. [21] recorded gyroscope signals to infer user input
and PIN code. Ping et al. [13] proposed a method to infer even longer input.
Mehrnezhad et al. [11] presented a threat of eavesdropping users’ PINs by record-
ing the sensors’ signals from web page. They proposed PINlogger.js which is a
JavaScript-based side channel attack embedded in a web page, recording the
sensor signal changes while a user inputs the sensitive information on other
web pages. All of these researches only focus on the disclosure of restricted-area
information.

Currently, only few works have focused on the leakage of unrestricted-area
information on touchscreens. Researchers have shown that simple touch actions
including clicking, scrolling, zooming, and holding can be recognized via ana-
lyzing motion and orientation sensors’ signals [12,19]. Using accelerometer and
gyroscope sensors, Emanuel etal. [17] implement predicting tap locations, while
Hafez [9] achieve the same functionality based on barometer sensor. However,
compared with simple touch actions, handwritten information is generally more
complicated to restore [8,22].
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7 Conclusions

In this paper, we present the excogitation and evaluation of HIAWare, an efficient
attack framework for handwritten information speculation on Android mobile
devices, based on the motion sensor signal analysis. We utilize a generality pat-
tern of characters (i.e., stroke number) to solve the chirography difference issue
and propose a posture-aware approach to solve the posture variation issue. More-
over, we design a modified constant false alarm rate algorithm (mCFAR) to
extract handwriting segments from the motion sensor signal stream, and a user-
independent posture-aware algorithm which combines digital signal processing
and correlation analysis. Our substantial experiments show that HIAWare can
speculate the handwritten information with an accuracy close to 90.0%, which
induces a significant threat against user privacy on mobile devices.
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Abstract. Keyboard patterns are widely used in password construction,
as they can be easily memorized with the aid of positions on the key-
board. Consequently, keyboard-pattern-based passwords has being the
target in many dictionary attack models. However, most of the existing
researches relies only on recognition methods defining keyboard pattern
structures empirically or even manually. As a result, only those infamous
keyboard patterns such as qwerty are recognized and many potential
structures are not specified. Besides, there are limited studies focusing
on the characteristics of keyboard patterns.

In this paper, we deal with the problem of recognizing and analyzing
keyboard patterns in a systematic approach. Firstly, we put forward a
general recognition method that can pick out keyboard patterns form
passwords automatically. Next, a comprehensive study of keyboard pat-
tern characteristics is presented, which reveals a great deal of amazing
facts about the preference for passwords based on keyboard patterns,
such as: (1) More than half of the pattern-based passwords are com-
pletely composed by keyboard patterns; (2) The frequency distribution
of the keyboard patterns satisfies the PDF-Zipf model; (3) Users prefer to
use keyboard patterns consisted by horizontal continuous keys or those
characters whose physical location are on the upper left of the keyboard.
We further evaluate the security of keyboard-pattern-based passwords by
employing the PCFG-base cracking technique. The experimental results
indicate that the keyboard patterns can reduce the security of passwords.

Keywords: Keyboard pattern · Password strength · Password
cracking · Information security

1 Introduction

Passwords are used as a key to access control in every corner of the Internet
service. Password security is related to users’ data security and even property
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security, but passwords are and will be an Achilles Heel in cybersecurity for
the foreseeable future [2]. NIST SP800-63B [5] points out that although online
services have introduced some rules to increase the complexity of passwords, the
password security is still frustrating. This happens because users like to choose
easy-to-remember passwords with certain structures, which greatly reduces the
security of passwords [16].

Extensive researchers studied on the password characteristics and found out
some password construct rules. Studies [6,11] analyzed the length of passwords
and pointed out that the length of most passwords was between 6 and 10 char-
acters. Li et al. counted the most commonly used passwords and character
combinations in passwords [9]. Researches by Pearman et al. [12] and Wang
et al. [14] showed that many users reused a password in different websites. Data
from several studies [1,4,17] found that a large amount of personal information
(e.g., name, birthday) was used in passwords. The differences between the pass-
words constructed by Chinese users and English users were compared by studies
[10,16,20].

With the development of password security study, especially the improve-
ment of password attack technology, network application providers have to force
users to set stronger passwords than before. For example, the password length
is required to be greater than 8 characters, the password must be constructed
by a combination of three types of characters (i.e., digits, letters, and symbols).
Therefore, many users will construct a password according to the physical posi-
tion of the characters on the keyboard, which is the keyboard pattern. Passwords
formed by this method can satisfy the setting requirements of passwords with
ease, and the shapes formed by these characters on the keyboard are easy to
remember.

Although keyboard-pattern-based passwords seem to be random, they still
follow certain rules. Schweitzer et al. [13] explored the structure of keyboard
patterns through visualization, and defined 11 common pattern elements (e.g.,
Fours, Snake, Reflected). Chou et al. [3] mapped the physical position of keys
on the keyboard to a two-dimensional coordinate axis. Then three definitions of
commonly used patterns (i.e., adjacent patterns, parallel patterns, and both of
two) were given according to the distance between these keys. Kävrestad et al.
[8] pointed out that users with high security awareness were more prone to use
keyboard-pattern-based passwords. Houshmand et al. [7] introduced keyboard
patterns into password attack and achieved a higher success rate than tradi-
tional methods. In addition, Wheeler et al. [19] added keyboard patterns into
the password strength meter (PSM).

The above studies mainly concentrate on two aspects: (i) proposing some
methods to pick out keyboard patterns from passwords; (ii) using keyboard pat-
terns for password attack or PSM. However, most of the keyboard pattern recog-
nition methods are rule-based. These rules are often not rich enough because they
are defined empirically by researchers. Besides, few studies comprehensively ana-
lyze the characteristics of keyboard patterns.

In this paper, we propose a general method to find keyboard pattern based on
the common definition of that, and extract 14.6 million keyboard-pattern-based
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passwords from 157 million leaked passwords. Then the systematical statisti-
cal analysis is performed, which can help us to understand users’ preference
in designing keyboard patterns. Finally, we employ keyboard patterns to the
PCFG-based password attack model [18] and compare the attack results with
the original model to evaluate the security of keyboard-pattern-based passwords.
Experimental results show that the new model can guess 2.8% more passwords
on average than the original.

We make the following key contributions:

– We propose a general method to recognize keyboard patterns, eliminating the
need to define structure empirically.

– We comprehensively analyze the characteristics of keyboard patterns from
multiple aspects, including the length distribution, the most commonly used
keyboard patterns, and the frequency distribution, etc.

– We prove that using keyboard patterns can reduce passwords security through
the PCFG-based password attack experiment.

2 General Method of Keyboard Pattern Recognition

2.1 Recognition Method Design

Keyboard pattern is actually physical structure (graphic) on the keyboard, but
it is difficult to be found by recognizing such graphic. Although rule-based recog-
nition methods define plenty of different rules, they have a common definition
of the keyboard pattern [3,7,19], which we summarize as follows.

Definition: Keyboard pattern is a sequence of characters whose physical posi-
tion in keyboard are contiguous. Contiguity refers to a duplicate key or a key
next to the special key.

Based on the above definition, we propose a general keyboard pattern match-
ing method that only focuses on the physical position of characters on the key-
board, which can avoid the problem that the structures defined by experience
are not rich enough.

Target
character Contiguous Characters

2 2@1 ! 3#wWqQ
@ 2@1 ! 3#wWqQ
s s S aAwWeEdDxXzZ
· · · · · ·
Q qQ1 ! 2@wWaA

Fig. 1. Contiguous characters table

A a S s D d

Z z X x

W w E e

Fig. 2. Contiguous characters of s

Firstly, we remove the dictionary words from passwords in order to avoid mis-
recognizing them as keyboard patterns (e.g., assw in password can be regarded
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as a keyboard pattern). Then, we construct a table to record the contiguous
characters on the keyboard (as shown in the Fig. 1). Consecutive characters of
a target character include the target character itself and characters whose keys’
physical position is adjacent to the target character on the keyboard. Taking the
character s as an example, the characters in the Fig. 2 are all consecutive char-
acters of s. After that, passwords are searched to find the sequence of contiguous
characters. The matched sub-strings longer than l1 characters are regarded as
candidate keyboard patterns. If two or more keyboard patterns are matched
in a password, the positions of the keyboard patterns in the password will be
considered. Two short candidate keyboard patterns can be merged into one
long candidate keyboard pattern if the positions of the two in the password are
consecutive. Finally, the candidate keyboard patterns whose length are longer
than l2 characters are the final keyboard pattern matching results. For example,
a password 12#qwenjnzxcvb is given, l1 is set to 2, and l2 is set to 4. First,
12#, qwe, njn, zxcvb are considered as candidate keyboard patterns. Then 12#
and qwe can be merged because the positions in the password are adjacent.
Finally, 12#qwe and zxcvb are recognized as keyboard patterns in 12#qwen-
jnzxcvb because their length longer than l2. In this paper, we only consider the
qwerty keyboard layout without keypad, but this method can be applied to any
keyboard layout by constructing a corresponding table of contiguous characters.
The proposed method is described in Algorithm 1.

Algorithm 1: Keyboard pattern recognition method
Input: password pw; l1; l2; contiguous characters table T ; dictionary words D
Output: keyboard pattern list kp

1 if a substring s of pw appears in D then
2 p ← remove s from pw
3 end
4 candidate keyboard patterns Ckp ← find contiguous character combinations

from p based on T
5 for itemkp in Ckp do
6 if itemkp.length > l1 then
7 itemkp.startIndex← the start index of itemkp in pw
8 itemkp.endIndex← the end index of itemkp in pw
9 add itemkp to kps

10 end

11 end
12 while kp1s.endIndex=kp2s.startIndex for any two item in kps do
13 kpl ← combine kp1s and kp2s
14 if kpl.length > l2 then
15 add kpl to kp
16 end

17 end
18 return kp
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2.2 Recognition Results

Our empirical analysis employs 8 famous leaked password datasets which are
different in terms of services, size and language. These datasets include four
from Chinese website and the other four from English website. We remove the
passwords that contain characters beyond 95 printable ASCII characters. Pass-
words with length shorter than 5 characters or longer than 20 characters are
also removed. After preprocessing, these datasets have a total of 156.6 million
passwords, of which there are 80.6 million unique passwords. Although these
datasets are publicly available, the risk of leaking user privacy is not ruled out.
Therefore, we only show aggregated statistical information, instead of analyzing
for a certain password or passwords of a certain user. Table 1 summarizes the
information of these 8 datasets.

Table 1. Information of eight datasets

Dataset Web service Language Leaked time Original

passwords

After cleaning Removed

(%)

Unique

passwords

7k7k Gaming Chinese Nov. 2011 18, 577, 194 18,576,977 0.001 4, 877, 255

CSDN Programmer

forum

Chinese Dec. 2011 6, 374, 513 6,374,484 0.001 4, 006, 727

Dodonew E-commerce&

gaming

Chinese Dec.2011 15, 580, 010 15,578,470 0.010 9, 994, 170

Taobao E-commerce Chinese Dec. 2011 15, 073, 116 15,006,881 0.439 11, 589, 222

Gmail Email English Sept. 2014 4, 693, 896 4,691,609 0.049 3, 022, 756

Mate1 Online dating English Mar. 2016 27, 403, 958 25,570,008 6.692 11, 681, 308

RockYou Social forum English Dec. 2009 32, 382, 632 32,368,961 0.042 14, 195, 060

Twitter Social media English Nov. 2016 38, 564, 652 38,470,995 0.243 21, 194, 754

Total 158, 649, 971 156,638,385 1.268 80, 561, 252

Fig. 3. The number of keyboard-pattern-based passwords
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Keyboard-pattern-based passwords (denoted as pwkp) are picked out from
these datasets using the proposed method. l1 is set to 2, and l2 is set to 4. About
14.6 million pwkp are obtained in total, the results are shown in Fig. 3. It is
apparent from this figure that Chinese passwords use keyboard patterns more
than English passwords. On average, one out of every seven Chinese passwords
uses keyboard patterns, while only approximately 7% of English passwords use
keyboard patterns. RockYou dataset has the lowest proportion of pwkp at only
4.9%, while CSDN dataset has the highest proportion at about 21.2%. We then
comprehensive analyze the characteristics of matched keyboard patterns in the
Sect. 3.

3 Characteristic Analyses of Keyboard Patterns

3.1 Length Distribution of Keyboard Patterns

Figure 4 depicts the length distribution of keyboard patterns and passwords.
We use warm colors to mark the Chinese datasets and cool colors to mark
the English datasets. The length distribution of keyboard patterns is similar
to that of passwords. Regardless of web service type or language, both of the
most common keyboard pattern lengths and password lengths are between 6 and
10. But compared to 8-length passwords are more commonly used, the 6-length
keyboard patterns are more popular. Thinking this may be because a password
does not completely consist of keyboard patterns, we further analyze the length
proportion of keyboard patterns in a password.

Fig. 4. Length distribution of keyboard patterns

Figure 5 provides the distribution of the length percentage of keyboard pat-
terns in a password. In all datasets except the Dodonew dataset, 50.34%–67.06%
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of pwkp are completely composed of keyboard patterns, and the remaining pwkp

are construct by adding other elements on the basis of keyboard patterns. The
most used extra elements in Chinese datasets include surname (e.g., wang, liu),
character combinations (e.g., abc, aa), etc. The most used extra elements in
English data include names (e.g., john, jack), dates (e.g., 1991, 1986 ), etc. In
addition, elements with the meaning of love (e.g., woaini and 1314 in Chinese
datasets, love in English datasets) frequently appear in all datasets.

Fig. 5. Distribution of the length percentage of keyboard patterns in a password

3.2 Top Popular Keyboard Patterns

Table 2 shows the top-10 most frequent keyboard patterns in these 8 websites.
123456 is the most frequency keyboard pattern in all datasets except the CSDN
dataset. The top-10 most frequent keyboard patterns are almost all continuous
or repeated sequences of digits. This result may be explained by the fact that
the combinations of these digits are the most commonly used passwords. What
stands out in the table is that the letter sequence qwerty appears in the top-10
most frequent keyboard patterns in English datasets, while only aaaaaa appears
in the Taobao dataset in Chinese datasets.

Table 3 further lists the top-10 most frequency keyboard patterns that are
not entirely composed of digits. In the four Chinese datasets, the first two most
popular keyboard patterns all contain the repetition of a single character (e.g.,
aaaaaa), and the first two most popular keyboard patterns of CSDN are all
of that. In contrast, sequences composed of adjacent characters are used more
frequently in English datasets and it is striking that qwerty is the most popular
keyboard patterns.

From these tables, we can see that only the top-10 most popular keyboard
patterns account for as high as 35.42%–55.15% of each entire dataset with Twit-
ter being the only exception. Specifically, the proportions in Chinese datasets are
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Table 2. Top-10 most popular keyboard patterns

Rank 7k7k CSDN Dodonew Taobao Gmail Mate1 RockYou Twitter

1 123456 123456789 123456 123456 123456 123456 123456 123456

2 111111 12345678 123456789 123456789 123456789 12345 12345 12345

3 123456789 11111111 111111 111111 12345 123456789 123456789 123456789

4 123123 123456 123123 123123 qwerty 1234567 1234567 qwerty

5 111222 00000000 12345 000000 12345678 12345678 12345678 1234567

6 123321 123123123 000000 12345 1234567 1234567890 qwerty 123321

7 12345678 1234567890 321654 123321 111111 qwerty 654321 123123

8 1234567 88888888 12345678 aaaaaa 123123 111111 000000 12345678

9 666666 12345 123321 1234567 1234567890 123123 111111 1234567890

10 12345 1234567 1234567 12345678 000000 zxcvbnm 123123 111111

Sum of top-10 1,413,316 746,868 808,615 667,864 112,674 1,084,426 653,403 732,838

Total passwords 2,767,862 1,354,203 1,860,088 1,763,145 318,088 2,181,879 1,573,332 2,748,136

% of top-10 51.06% 55.15% 43.47% 37.88% 35.42% 49.70% 41.53% 26.67%

Table 3. Top-10 most popular keyboard patterns (digits only are removed)

Rank 7k7k CSDN Dodonew Taobao Gmail Mate1 RockYou Twitter

1 asdasd aaaaaaaa q123456 aaaaaa qwerty qwerty qwerty qwerty

2 aaaaaa qqqqqqqq aaaaaa zxcvbnm zaq12wsx zxcvbnm zxcvbnm Qwerty

3 zxcvbnm qwertyuiop qq123456 asdasd qwerty123 qwertyuiop asdfgh qwerty123

4 qazwsx qq123456 zxcvbnm qq123456 asdfghjkl asdfghjkl qwertyuiop qwertyuiop

5 qqqqqq asdfghjkl asd123 q123456 qazwsx asdfgh asdfghjkl qazwsx

6 qwerty qazwsxedc qwe123 qazwsx zxcvbnm aaaaaa aaaaaa qwert

7 qq123456 asdasdasd q1q1q1q1 asd123 qwertyuiop qwert qazwsx zxcvbnm

8 asd123 qwertyui asdasd asdfghjkl aaaaaa qazwsx qwert qwe123

9 qwe123 asdfasdf qazwsx qwe123 asdfgh mnbvcxz zxcvbn asdfgh

10 qweqwe qwer1234 zxc123 qwertyuiop asdasd asdfg 123qwe asdfghjkl

Sum of top-10 73,286 35,508 75,776 66,407 24,672 126,528 80,949 176,884

Total passwords 2,767,862 1,354,203 1,860,088 1,763,145 318,088 2,181,879 1,573,332 2,748,136

% of top-10 2.65% 2.62% 4.07% 3.77% 7.76% 5.80% 5.15% 6.44%

slightly higher than that in English datasets. But for the top-10 most popular
keyboard patterns that are not entirely composed of digits, the proportions in
Chinese datasets are significantly lower than that in English datasets. This com-
parison shows that Chinese users prefer to use numbers to construct passwords,
because the top-10 most frequent keyboard patterns are almost all digits.

3.3 Common Structures of Keyboard Patterns

Observing the most popular keyboard patterns, we can find that there are four
main ways for users to construct keyboard patterns: (1) multiple consecutive
keys starting from a certain key in the horizontal direction; (2) multiple consec-
utive keys starting from a certain key in the vertical direction; (3) Repetition of
a certain key; (4) Combination of two or more of the above. Correspondingly, we
have defined four basic structures of keyboard patterns, which are called Hori-
zontal (Fig. 6(a)), Vertical (Fig. 6(b)), Repetition (Fig. 6(c)), and Combination
(6(d)). We further analyze the frequency of each basic structure. Since keyboard
patterns composed entirely by digits account for a large proportion and do not
have a Vertical structure, we only count the keyboard patterns that contain
letters or symbols.
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(a) Horizontal (b) Vertical (c) Repetition (d) Combination

Fig. 6. Basic structures of keyboard patterns

Table 4 presents the proportions of each basic structure. Horizontal structure
account for more than half of the whole, while the proportion of Vertical structure
and Combination structure are relatively small, both accounting for less than
12%. A possible explanation for this might be that the keys on the keyboard are
not completely aligned in the vertical direction, which makes it more difficult
to memorize and continuous input compare to the horizontal direction. There
is also a significant difference in the proportions of basic structures on different
language datasets. Compared with the Chinese datasets, English datasets have
more Horizontal structure but less Combined structure.

Table 4. Proportion of basic structures

Horizontal Vertical Repetition Combination

7k7k 56.55% 7.38% 27.05% 9.02%

CSDN 52.10% 7.24% 30.27% 10.38%

Dodonew 59.28% 5.15% 24.53% 11.04%

Taobao 53.77% 6.41% 28.30% 11.51%

Gmail 66.29% 10.38% 16.84% 6.48%

Mate1 62.58% 5.33% 27.70% 4.39%

Rockyou 62.60% 7.21% 25.84% 4.35%

Twitter 67.16% 10.00% 16.33% 6.50%

3.4 Characters’ Frequency in Keyboard Patterns

Wang et al. points out that letter distributions of passwords from diverse lan-
guage datasets are obviously different [16]. We take an investigation for whether
there are such differences in the character distribution of keyboard patterns, and
the results are shown in the Fig. 7.
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Fig. 7. Characters’ frequency in keyboard patterns

We observe from the distribution of digital frequencies that digits 1 to 6 are
used more frequently in the keyboard patterns while digit 0 is significantly lower
in all passwords. For alphabetic characters, we calculate the frequency of upper-
case, lowercase and case-insensitive respectively. Considering that the position
of the key is the main factor that affects constructing keyboard patterns, we
mainly analyze the distribution of character frequency using the result obtained
by case-insensitive. The first 8 characters with the highest frequency in Chinese
datasets are a,q,w,s,d,z,e,x. However, the most frequently occurring characters
are not exactly the same in different English data sets. Generally speaking, e
is the most popular character, and a,s,w,q,r,d are used frequently in English
datasets. What stands out is that the positions of the most frequently occurring
characters are mainly distributed on the left part of the keyboard, while the
least frequently occurring characters (e.g., g,m,v,b,n) are located on the middle
and bottom part of the keyboard.

In Fig. 8, we give a heatmap about the frequency of each key to show how
the keys’ position influences the construction of keyboard pattern more vividly.
Although the most frequently used keys in different language datasets are slightly
different, they are obviously concentrated in the upper left part of the keyboard,
and few user show interest in symbol part of the keyboard.
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Fig. 8. Frequency of each key

3.5 Frequency Distribution of Keyboard Patterns

The study researches by Wang et al. [15] has found that the distribution of
real-life passwords in a dataset obeys PDF-Zipf model. The PDF-Zipf model
describes the relationship between frequency and rank,which can be expressed
as:

fr =
C

rs
, (1)

where fr and r are the frequency and rank of a password, C and s are parameters.
It can be easily observed in log-log graph (10-based is used in this work).

In order to observe frequency distribution of keyboard patterns, the acquired
keyboard patterns are counted and those with a frequency less than 3 are
removed. All keyboard patterns are arranged in descending order of frequency.
The frequency vs. the rank of keyboard patterns from different datasets are
depicted in a log-log scale (Fig. 9). All lines in the figure can be approximately
expressed as:

log(fr) = logC − s× log(r). (2)

log(fr) and log(r) are linearly related, log(C) is the intercept and s is the slope.
The fitting results of each line are shown in the Table 5. All the coefficients of
determination (i.e., R2) are greater than 0.99, which approximately equals 1.
This shows that the frequency distribution of the keyboard patterns can meet
the PDF-Zipf model well.
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Fig. 9. Frequency distribution of keyboard patterns

Table 5. Values of parameters and coefficient of determination

s C R2

7k7k 1.1204 326785.2554 0.9902

CSDN 1.1143 136463.0507 0.9946

Dodonew 1.1160 263810.4820 0.9957

Taobao 1.0614 176958.8258 0.9944

Gmail 1.0741 39450.2511 0.9959

Mate1 1.1595 344243.5774 0.9962

Rockyou 1.1551 304734.1164 0.9956

Twitter 1.1233 490453.4663 0.9964

4 Security Impacts of Keyboard-Pattern-Based
Passwords

4.1 Method Design

We select four datasets (i.e., CSDN, Dodonew, Mate1, Twitter), which have a
total of 8.1 million passwords containing keyboard patterns (pwkp). The pwkp in
each dataset are divided into training set and test set according to the ratio of
7 : 3. The numbers of passwords contained in each set are shown in the Table 6.

We employ the start-of-the-art password attack method (i.e., PCFG-based
[18]) to evaluate the impact of keyboard patterns on passwords security. The
original PCFG-based password guessing method can be divided into two steps:
training and generation.

Training: Divide passwords into sub-strings according to character types. Then
passwords in training set are parsed into basic structure by donating letters as
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Table 6. Number of passwords in each dataset

Training set Training set (unique) Test set Test set (unique)

CSDN 947,960 227,800 406,270 108,758

Dodonew 1,302,061 390,050 558,027 191,908

Mate1 1,527,315 321,663 654,564 157,609

Twitter 1,923,695 587,494 824,441 288,577

L, digits as D and symbols as S. For example, the password 1234zxcvbn@@ can
be parsed into D4L6S2. The probability of basic structure and sub-strings can
be calculated by frequencies in the training set.

Generation: Each generating password has a probability which can be calcu-
lated by the product of the probability of basic structure and sub-strings. For
example, the probability of the generating password 1234zxcvbn@@ is:

P (1234zxcvbn@@) = P (D4L6S2) × P (1234 in D4)
× P (zxcvbn in L6) × P (@@ in S2).

(3)

The candidate guessing passwords can be generated in decreasing order of prob-
ability using the NEXT function.

To evaluate the change in the password security after adding keyboard pat-
terns, we propose K-PCFG by drawing on the idea of NPC model [7]. In K-
PCFG, the keyboard pattern structure (donated as K) is given the highest pri-
ority when identifying the password structure, then the rest of the password is
marked in the same way as PCFG. For example, given a password 1qaz2wsxabc,
the base structure in PCFG is D1L3D1L6, but in K-PCFG, 1qaz2wsx is rec-
ognized as a keyboard pattern first, and then the base structure is denoted as
K8L3. The guessing flow of K-PCFG is shown as Fig. 10.

4.2 Evaluation Results

For each dataset, we generate 10 million candidate passwords and test them on
the test set. The test includes unique matching and repeated matching, and the
results are shown in the Fig. 11.

The success rate of password attack is significantly improved after adding the
keyboard pattern to the PCFG method. With 1 million guesses, the candidate
passwords generated by K-PCFG method can match about 2.8% more repeated
passwords and 1.1% more unique passwords than that generated by the PCFG
method. On the Dodonew dataset, using K-PCFG can guess at most 4.5% more
repeated passwords and about 1.32% more unique passwords than the PCFG
method. On the Twitter dataset, using K-PCFG can match nearly 5% more
repeated passwords and 2.3% more unique passwords than the PCFG method.
When the guess number exceeds 3 million on the CSDN dataset, it is noticed that
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Fig. 11. Evaluation results

the number of unique passwords that can be successfully guessed by using the K-
PCFG method is starting to be lower than that by using the PCFG method, but
the number of repeated passwords that can be successfully guessed by former is
still higher than latter. This shows that the K-PCFG method can first generate
passwords that appear more frequently in the real password dataset after adding
the keyboard pattern into the PCFG method.
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The experimental results reveal that adding the keyboard patterns to the
password attack method can improve the attack efficiency, and it also reflects
that the use of keyboard patterns in passwords reduce the security of passwords
to a certain extent.

5 Conclusions and Suggestions

This paper mainly focuses on the research of keyboard patterns in passwords.
First, a keyboard pattern recognition method is proposed, and then 14.6 million
passwords containing keyboard patterns are found in 8 datasets with a total of
156.6 million passwords. We have conducted a comprehensive analysis of the
obtained keyboard patterns in terms of length, most popular keyboard patterns,
and frequency distribution, etc. Finally, we conduct a password guessing attack
to compare the attack efficiency of the classic PCFG-based method and the K-
PCFG method. The experimental results show that the use of the keyboard pat-
terns in passwords will reduce the passwords’ security. A limitation of this study
is that hat our definition of keyboard patterns is not comprehensive enough. We
will further explore more perfect keyboard pattern recognition methods in our
future work.

Based on these studies in this paper, we put forward the following sugges-
tions on password creation, password strength meter, and password attack. For
password creation, users should completely avoid only using keyboard patterns
to construct a password and using the most popular keyboard patterns. For
password strength meter, attention should be paid to the influence of keyboard
patterns on password strength. For a password that includes keyboard patterns,
the value of strength evaluation result should be appropriately reduced. For
password attack, taking into account the keyboard pattern structures in the
attack method and constructing effective keyboard patterns according to the
above-mentioned characteristics can improve the attack efficiency.
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Abstract. In this paper, we present CAuSe, a CNN-based Continuous
Authentication on smartphones using Auto Augmentation Search,
where the CNN is specially designed for deep feature extraction and the
auto augmentation search is exploited for CNN training data augmen-
tation. Specifically, CAuSe consists of three stages of the offline stage,
registration stage and authentication stage. In the offline stage, we uti-
lize auto augmentation search on the collected data to find an optimal
strategy for CNN training data augmentation. Then, we specially design
a CNN to learn and extract deep features from the augmented data and
train the LOF classifier after 95 features are selected by PCA in the
registration stage. With the trained CNN and LOF classifier, CAuSe
identifies the current user as a legitimate user or an impostor in the
authentication stage. Based on our dataset, we evaluate the effective-
ness of optimal strategy and the performance of CAuSe. The experimen-
tal results demonstrate that the strategy of Time-Warping(0.6)+Time-
Warping(0.6) reaches the highest accuracy of 93.19% with data size 400
and CAuSe achieves the best authentication accuracy of 96.93%, respec-
tively, comparing with other strategies and classifiers.

Keywords: Continuous authentication · Auto augmentation search ·
CNN · LOF classifier

1 Introduction

The mobile devices have played an essential role in our daily lives, which makes
privacy protection in mobile devices extremely important, since they store a lot
of private and sensitive information. Even since 2011, sales of smartphones have
exceeded sales of personal computers [2]. However, due to the high-frequency
usage and information interaction of these devices (e.g. smartphones), it is dif-
ficult to prevent personal information leakage and illegal access by the one-time
authentication that identifies users only at the time of initial logging-in, such
as personal identification numbers (PINs), passwords, voice-prints, fingerprints
and face recognition. PINs face a much serious threat of online guessing and
even longer PINs only attain marginally improved security [3,26]. Wang et al.
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 169–186, 2021.
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systematically characterized typical targeted online guessing attacks with seven
sound mathematical models, each of which was based on varied kinds of data
available to an attacker [27]. Biometric information cannot be acquired by direct
covert observation, but once biological information is stolen, it is not naturally
available to reissue [22]. For example, fingerprint recognition can be cracked by
people with ulterior motives obtaining legitimate users’ fingerprints left on the
screen. In addition, there is a severe security and privacy threat in one-time
authentication mechanisms that when a legitimate user leaves the supervision
of the device after the initial authentication (the screen is unlocked), impostors
can easily gain access to the device illegally.

Compared with the traditional one-time authentication mechanisms, contin-
uous or implicit authentication approaches would provide an additional line of
defense by designing a non-intrusive and passive security countermeasure [9]. The
current continuous authentication mechanisms essentially use built-in sensors and
accessories to frequently collect physiological or behavioral biometrics to identify
the legitimacy of the user, such as voice [8], face patterns [1], touch gestures [28],
typing motion [10] and gait dynamics [21]. There are two main stages for continu-
ous authentication systems: user registration phase and continuous authentication
phase. During the user registration phase, owners of mobile devices are usually
asked to perform some operations to collect information to recognize the owners.
During the continuous authentication phase, the system collects the user’s sensor
readings at regular intervals to determine whether the current user is the device
owner. If the system finds that the current user is an illegal user, the system will
lock the device to prevent the owner’s privacy from leaking. The accelerometer,
gyroscope, and magnetometer are the three most commonly used sensors for col-
lecting behavioral biometrics without users’ notice. Both accelerometer and gyro-
scope are motion sensors that can monitor the users’ motion on the device. Magne-
tometer is a position sensor used to determine the physical position of the device
in the true frame of reference. However, in order to obtain a high-performance
continuous authentication model, it is often necessary to collect a large amount
of high-quality data for training models, which costs lots of time and resources.
Data augmentation methods, such as flipping, cropping, color dithering and gen-
erative adversarial networks (GANs), are very common techniques in the field of
image recognition, which help cover unexplored input space, prevent overfitting
and improve the generalization ability of classification model. However, there are
currently few data augmentation methods specifically for time-series sensor data
because time-series sensor data are quite different from image data and most of
the current data augmentation methods cannot be used to create time-series data
directly. Since the sufficient amount of sensor data collection needs lots of vol-
unteers to participate, it is challenging to augment time-series sensor data. More-
over, for specific applications, artificially constructing features for time-series sen-
sor data often requires a lot of prior expert knowledge. It is also challenging to
extract features with high representation capacity on time-series sensor data.

To address the challenges of data shortage and feature contribution, we are
among the first to utilize the auto augmentation search to find an optimal
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data augmentation strategy for CNN training and design a CNN-based deep
feature extraction method consisting of feature learning and feature selection.
In this paper, we present CAuSe, a CNN-based Continuous Authentication
on smartphones using Auto Augmentation Search. Specifically, CAuSe con-
sists of five modules: data collection, auto augmentation search, feature extrac-
tion, classifier training and authentication. The process of CAuSe includes three
stages of the offline stage, registration stage, and authentication stage. In the
offline stage, CAuSe collects time-series sensor data of the accelerometer, gyro-
scope, and magnetometer, and then utilizes auto augmentation search on the
collected sensor data to find an optimal data augmentation strategy. In the
registration stage, CAuSe applies the optimal augmentation strategy on the col-
lected sensor data, uses the designed CNN to learn and extract deep features
from the augmented data, and trains the local outlier factor (LOF) classifier
after 95 deep features are selected by principal component analysis (PCA).
In the authentication stage, based on the sampled sensor data, CAuSe uses
the trained CNN to learn and extract features and utilizes the trained LOF
classifier to conduct the authentication based on the 95 PCA-selected fea-
tures. Based on our dataset, we evaluate the effectiveness of auto augmenta-
tion search and the corresponding optimal strategy and the performance of
CAuSe. The experimental results demonstrate that the augmentation strategy of
Time-Warping(0.6)+Time-Warping(0.6) reaches the highest authentication per-
formance with the 93.19% accuracy, 93.77% F1-score, and 3.9% EER with data
size 400, and CAuSe achieves the best accuracy of 96.93% with the LOF classifier
on 95 PCA-selected features, respectively, comparing with other augmentation
strategies and classifiers.

The main contributions of this work are summarized as follows:

– We present CAuSe, a CNN-based continuous authentication on smart-
phones using auto augmentation search, leveraging the smartphone built-in
accelerometer, gyroscope and magnetometer.

– We specially design a CNN for deep feature extraction and utilize the auto
augmentation search to find an optimal data augmentation strategy for CNN
training.

– We evaluate the effectiveness of auto augmentation search and the perfor-
mance of CAuSe, and the experimental results illustrate that the searched
augmentation strategy reaches the highest accuracy (93.19%) with data size
400, and CAuSe achieves the best authentication accuracy (96.93%), respec-
tively.

The remainder of this work is organized as follows: Sect. 2 reviews the state-
of-the-art on continuous authentication. We elaborate the architecture of CAuSe
in Sect. 3 and evaluate the performance of the optimal strategy and CAuSe in
Sect. 4. Section 5 concludes this work.
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2 Related Work

In this section, we review the state-of-the-art of the continuous authentication
systems, time-series data augmentation methods and auto augmentation meth-
ods, respectively.

2.1 Continuous Authentication System

In the field of continuous authentication, high-precision discrimination results
are often inseparable from an efficient system framework. In recent years,
researchers have creatively designed well-performed continuous authentication
systems based on different data sources [20]. The mainstream continuous authen-
tication solutions are broadly composed of two phases: registration phase and
authentication phase. During the registration phase, these systems extract fea-
tures from the collected datasets and train classifiers with labeled features.
During the authentication phase, these systems utilize the trained classifiers
to classify features that are extracted from unidentified users’ data. Considering
that different types of touch operations may contain quite different characteris-
tics, the authors in [28] designed specific features for different touch operations,
and then adopted the trained classifiers for authentication. Z. Sitová et al. [23]
designed hand movement, orientation and grasp behavioral features based on
sensor readings from smartphones, then trained and tested one-class classifiers
after feature selection. Mahbub et al. [19] trained a linear SVM with statisti-
cal features obtained from face proposals that were derived from the estimated
faces in their designed system. In [5], the authors proposed a continuous motion
recognition system that was based on motion data from the accelerometer, gyro-
scope and magnetometer. They used a Siamese convolutional neural network to
learn deep features, and then trained the one-class SVM with learned features
of the legitimate user, to predict new observations. In [13], Li et al. proposed a
two-stream convolutional neural network for feature learning in the continuous
authentication system which was based on bottleneck structure of Mobilenet v2,
with both time domain data and frequency domain data of the accelerometer
and gyroscope as the network inputs.

Inspired by the above contributions, we design an efficient CNN-based con-
tinuous authentication system which can achieve very close performance with
few sampled sensor data for training using time-series data auto Augmentation
technology.

2.2 Time-Series Data Augmentation Method

In the image recognition field, data augmentation can be implemented by label-
ing the same labels for images obtained by performing operations, such as scaling,
cropping, jittering and flipping on raw images. However, in the time-series data
field, such as sensor data, there are few data augmentation approaches proposed.
In [25], the authors were among the first to exploit geometric transformation,
such as permutation, sampling, scaling, cropping and jittering, as sensor data



CNN-Based Continuous Authentication on Smartphones 173

Fig. 1. CAuSe architecture.

augmentation approaches, which were different to those in image augmentation.
DeVries et al. [7] used a sequence autoencoder to project data into feature space
and investigated augmentation techniques in the feature space.

Data augmentation with generative adversarial networks (GANs) has
attracted some researchers’ attentions recently. Zhu et al. [31] proposed an emo-
tion classification system using data augmentation with a cycle-consistent adver-
sarial network (CycleGAN) and Luo et al. [17] trained a conditional Wasserstein
generative adversarial network (WGAN) with electroencephalography (EEG)
data to generate additional data for data augmentation. In [24], the authors
investigated the possibility of using GANs to augment time-series Internet of
Things (IoT) data. In [12], the author investigated five sequential data augmen-
tation techniques (additional Gaussian noise, masking noise, signal translation,
amplitude shifting, and time stretching) including sample-based and dataset-
based methods to improve the intelligent fault diagnosis accuracy.

2.3 Auto Augmentation Method

Since the current data augmentation implementations are almost manually
designed [7,25], researchers prefer to apply one or several fixed data augmenta-
tion methods based on their experience for most datasets, although there the-
oretically exists an optimal data augmentation method for a specific dataset.
Cubuk et al. [6] first proposed the concept of auto augmentation, which auto-
matically searched optimal augmentation policies from data to improve valida-
tion accuracy. Their search algorithm (implemented as a RNN controller based
on Reinforcement) sampled thousands of policies to train a child model to mea-
sure the performance of the generalization improvement, and then updated the
augmentation policy distribution with a reward signal. Despite its promising
empirical performance, this scheme was difficult to apply because it was very
expensive with time-consuming calculation in the whole process. Lin et al. [16]
formulated the augmentation policy as a parameterized probability distribution,
thus allowing the augmentation policy probability distribution parameters to be
optimized along with the network parameters simultaneously. Based on a bilevel
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framework, this solution eliminated the need of re-training model after optimal
augmentation policy search and achieved comparable performance with dozens
of times faster than [6]. In [15], the authors proposed a fast auto augmentation
algorithm to find effective augmentation policies via a more efficient search strat-
egy based on density matching. Moreover, [29] proposed effective optimization
algorithms to reduce the computational burden and time consumption of auto
augmentation.

3 CAuSe Architecture

In this section, we present the architecture of CAuSe, the CNN-based continuous
authentication on smartphones with auto augmentation search, as illustrated in
Fig. 1. As shown in Fig. 1, CAuSe consists of three stages: the offline stage,
registration stage, and authentication stage.

In the offline stage, CAuSe collects time-series sensor data and then utilizes
auto augmentation search on the collected sensor data to find an optimal data
augmentation strategy for CNN training data augmentation in the registration
stage. First, we recruit volunteers to use smartphones equipped with sensor
data collection tools to collect sensor data of the accelerometer, gyroscope and
magnetometer. Then, we perform preprocessing operations on the collected time-
series sensor data, and based on the preprocessed data, we conduct the auto
augmentation search to obtain an optimal augmentation strategy.

In the registration stage, CAuSe applies the optimal augmentation strategy
on the collected sensor data, uses the designed CNN to learn and extract deep
features from the augmented data, and trains the local outlier factor (LOF)
classifier after 95 deep features are selected by PCA. Specifically, the owner (the
legitimate user) is required to operate on the smartphone to collect data of the
accelerometer, gyroscope and magnetometer. Then, we use the optimal augmen-
tation strategy to augment the collected sensor data including the legitimate
user’s for feature extraction. We specially design a CNN based on Shufflenet V2
[16] to learn and extract deep features from the augmented sensor data. 95 deep
features are selected by PCA and then used to train the LOF classifier.

In the authentication stage, based on the sampled sensor data, CAuSe uses
the trained CNN to learn and extract features and utilizes the trained LOF
classifier to conduct the authentication based on 95 features selected by PCA.
If the user is a legitimate user, CAuSe will allow the continuous usage of the
smartphone and meanwhile continuously authenticate the user; otherwise, it will
require the initial login inputs.

3.1 Data Collection and Preprocessing

Data Collection. The accelerometer and gyroscope are motion sensors, and
they can capture the motion patterns of the devices. The magnetometer is a
position sensor that records changes in the physical position of the devices. The
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three sensors are widely equipped on the modern smart devices. Considering the
above advantages, we select the accelerometer, gyroscope, and magnetometer to
collect the data for user continuous authentication.

In order to collect the sensor data for CAuSe, we recruited 88 volunteers
(44 male and 44 female) to operate on 10 Samsung Galaxy S4 smartphones,
each of which was installed a designed virtual keyboard. They were required
to participate in 8 sessions, and they used the virtual keyboard to answer 3
questions in each session. For each answer, they entered 250 characters at least.
During their operations, we collected data on the three axes of the accelerometer,
gyroscope and magnetometer with a sampling rate of 100 Hz.

Data Preprocessing. Since the collected raw sensor data are long time-series
streams, we use a sliding window to perform non-repetitive sampling, each con-
taining 2 s-sensor data. In a sliding window, each row represents the sampled
sensor data, and each column indicates the x, y, and z axes of a sensor. In order
to enable the time-series sensor data to be used as the inputs of a CNN with
shape = (H,W,C), we adaptively change the shape of the collected data. Specif-
ically, the three sensor data are regarded as three channels (C), and the rows and
columns of the sliding window correspond to H and W , respectively. Ignoring
the error in the sampling process and according to the sampling frequency, it
can be inferred that H = 200.

We divide the 88 volunteers’ data into three groups (88 users with 3000 win-
dows): 68 users with 2000 windows Dlearning for CNN training, 68 users with
1000 windows Dpositive as legitimate users’ testing dataset for feature extraction
and classifier training, and 20 users with 3000 windows Dnegative as impostors’
testing dataset for feature extraction and classifier training. Dlearning are fit-
ted and transformed by RobustScaler in Python library sklearn.preprocessing,
which ignores outliers in the dataset. Dpositive and Dnegative are transformed
by the same RobustScaler, so that the three groups of data can be consistently
normalized for data augmentation.

3.2 Auto Augmentation Search

Search Space. For images, there is spatial correlation among the pixels and
other pixels around them, while for sensor data, there is temporal correlation
among samples. Therefore, we design specific data augmentation strategies that
consider the possible invariant geometric transformation of sensor data in time
series. For each input of CNN training sensor data, we sample an augmenta-
tion strategy from the search space and apply. Each augmentation strategy is
composed of two augmentation methods.

We design the candidate augmentation methods for sensor data:

1) Rotation: When users operate on mobile devices, the devices are likely to
be flipped or rotated at a certain angle. Accordingly, the x, y, and z axes
of the sensors on the devices rotate at the same angle corresponding to the
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Cartesian coordinate system. In order to simulate this, we design a rotation
method, which rotates the x, y, and z axes of the sampled sensor data by
multiplying a rotation matrix to obtain angles of (−π/3, −π/6, −π/12, π/3,
π/6, π/12).

2) Jittering: Noise can be introduced in the process of sensor data collection
which might be caused by environmental disturbance. Jittering function adds
a noise matrix generated by a normal distribution with standard deviations
of 0.05, 0.25, and 0.5 to the sampled sensor data. Note that we ignore the
injection attacks in jittering augmentation [11].

3) Scaling: Scaling function multiplies the x, y, and z axes of the sampled
sensor data separately by scale factors generated by a normal distribution
with standard deviations of 0.05, 0.1, and 0.2.

4) Permutation: Since the segmentation position of the fixed window is arbi-
trary for sensor data collected in a period of time, the position of the event
implied in the sub-window in the whole window is meaningless. Permutation
function segments the whole sample window to 4, 5, or 8 sub-windows by
rows to perturb the temporal location of within-window events.

5) Magnitude-Warping: We sample values from a normal distribution with
standard deviations of 0.2, 0.4, 0.6, feed them to scipy.interpolate.cubicSpline
to generate three random smooth curves corresponding to x, y, and z axes,
and finally convolute them with the sampled sensor data.

6) Time-Warping: Time-Warping function utilizes the aforementioned smooth
curves and one dimensional linear interpolation to perturb the temporal loca-
tion smoothly.

7) Cropping: Cropping can diminish the dependency on event locations. In the
cropping function, we randomly select different numbers of window rows (e.g.
10, 20, or 30) and set values of these selected window rows to 0.

Seven augmentation functions with specific magnitude parameters make up
a total of 24 augmentation methods. In our designed augmentation strategy
search space, each augmentation strategy consists of 2 augmentation methods
orderly and repeatable. In other words, there are totally 242 strategies in the
augmentation strategy search space.

Search Pipeline. Inspired by Lin et al.’s work [16], we adapt distribution
optimization to the continuous authentication area to search an optimal data
augmentation strategy for time-series sensor data. As mentioned, since each
augmentation strategy consists of two augmentation methods and there are 24
augmentation methods in total, there are 242 strategies in the designed aug-
mentation strategy search space. Thus, we first initialize a 242 matrix sampled
from a uniform distribution as the augmentation probability distribution θ. The
probability of the kth augmentation strategy pθ can be formulated as:

pθ(Sk) =
1

1+e−θk

∑K
i=1

1
1+e−θk

(1)
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where θ ∈ RK , and Sk indicates the kth data augmentation strategy candidate.
Next, we perform the auto augmentation strategy search. We take an epoch

t of total T epochs in model training process. Each input will be applied with
a randomly chosen augmentation strategy for each batch b of total B batches.
Since the validation accuracy acc(w∗) of the network model is only decided
by the optimal network model parameters w∗ and the model training process
is only influenced by the augmentation strategies applied to each input, the
augmentation probability distribution matrix θ is defined as a variable matrix
with gradient about the network model parameters w∗. However, it is a tricky
problem to calculate the gradient of validation accuracy acc(w∗) with respect
to θ. To approximate the gradient, we execute the following steps four times for
epoch t:

1) Sample and apply an augmentation strategy for each input, train the network
model with augmented inputs, obtain the validation accuracy w′, and record
the network parameters;

2) Make gradient back propagation for θ, update values of θ, and then clear the
gradient of θ;

3) Save the network parameters with the highest w′ as the initial network param-
eters for next epoch.

Based on the reinforcement learning and Monte-Carlo sampling, at the end
of epoch t, the cumulative gradient can be approximately formulated as:

∇θΓ (θ) ≈ 1
N

N∑

n=1

I×B∑

j=1

∇θlog(pθ(Sk(j),n))acc(w, n) (2)

where N denotes the total times of network training and acc(w, n) indicates the
validation accuracy of the nth network. Network parameters with the highest
validation accuracy will be broadcast to the network before the next epoch. After
sufficient epochs of parameters updates, the augmentation probability distribu-
tion converges. The augmentation strategy with the highest probability is the
optimal augmentation strategy we search. Note that the network model archi-
tecture is the same to the designed CNN architecture.

3.3 Feature Extraction

In this section, we design a CNN-based deep feature extraction method, which
consists of feature learning and feature selection. In the following, we first elab-
orate the design of the CNN and then detail the CNN-based feature extraction.

CNN Design. We design the architecture of the CNN inspired by Shufflenet
V2 [18], as illustrated in Table 1, for auto augmentation search, feature learning
and extraction. As demonstrated in Table 1, the designed CNN is composed of
a 2D convolutional layer (Conv2d), a 2D max pooling (MaxPooling2d), a stack
of Shufflenet V2 units grouped into three stages (Stage 1, Stage 2, and Stage 3),
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Table 1. CNN architecture.

Layer Output # Kernel KSize Stride Parameter Repeat

Sensor 200 × 3 × 3 – – – – –

Conv2d (BN+ReLU) 100 × 3 × 24 24 3 × 3 (2,1) 672 1

MaxPooling2d 50 × 3 × 24 – 3 × 3 (2,1) – 1

Stage 1 25 × 3 × 48 48 – (2,1) 2760 1

25×3×48 48 – (1,1) 1728 × 3 3

Stage 2 13 × 3 × 96 96 – (2,1) 8976 1

13 × 3 × 96 96 – (1,1) 5760×7 7

Stage 3 7 × 3 × 96 192 – (2,1) 31776 1

7 × 3 × 96 192 – (1,1) 20736 × 3 3

Conv2d (BN+ReLU) 7 × 3 × 1024 1024 1 × 1 (1,1) 197632 1

GlobalAveragePooling2d 1 × 1× 1024 – 7×3 – – 1

Dense CN×1 – – – 69700 1

another Conv2d, a 2D global average pooling (GlobalAveragePooling2d), and
a dense layer. We adopt BN and ReLu right after each Conv2d. In addition,
Stages 1, 2, and 3 are composed of the building blocks of a basic unit followed
by several basic units for spatial down sampling. ‘CN’ represents class number
for CNN training (class num).

Feature Learning. Based on the optimal strategy obtained from the offline
stage, Dlearning are augmented in the registration stage. As illustrated in Table 1,
with the augmented data, there are 1800 (3 sensors × 2 s × 100Hz × 3 axes)
samples in a 2s-sliding window. The first Conv2d layer with 24 filters of 3×3 and
stride of (2,1) followed by a MaxPooling2d with kernel size of 3×3 and stride of
(2,1), aims to make down sampling and increase channels. Then, three stages of
a basic unit with stride (2,1), and several units for spatial down sampling with
stride (1,1) are applied, where Stage 1 repeats 3 times of the unit for spatial down
sampling, Stage 2 repeats 7 times, and Stage 3 repeats 3 times. Next, there is
another Conv2d layer with 1024 filters of 1 × 1 and stride of (1,1) followed by
a GlobalAveragePooling2d layer and a dense layer. The total parameters of the
designed CNN are 419,228 and the second Conv2d layer contributes the most
parameters (19,7632 parameters). The outputs of the GlobalAveragePooling2d
are deep features learned from the sensors of the accelerometer, gyroscope and
magnetometer.

Feature Selection. We use the principal component analysis (PCA) to select
appropriate number of deep features for the classifier based on the CNN-
extracted features. Based on the experiments in Sect. 4.2, PCA selects 95 deep
features for the LOF classifier to conduct the authentication.
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3.4 Authentication with LOF Classifier

With the 95 PCA-selected deep features, CAuSe utilizes the local outlier factor
(LOF) classifier to identify users. LOF measures the local deviation of the data
point to its neighbors, which decides whether a data point is an outlier using
the anomaly score estimated by k-nearest neighbors based on a given distance
metric. A data point with a substantially lower density than its neighbors will
be regarded as an outlier [4].

In the registration stage, CAuSe generates the legitimate user’s profile from
the training data and the LOF classifier is trained by PCA-selected deep features.
In the authentication stage, the trained LOF classifier classifies the PCA-selected
deep features from the sampled sensor data. Based on the trained classifier and
the sampled data while using the device, CAuSe authenticates the current user
as a legitimate user or an impostor. If the user is a legitimate user, CAuSe
will allow the continuous usage of the smartphone and meanwhile continuously
authenticate the user; otherwise, it will require the initial login inputs.

4 Performance Evaluation

In this section, we start with experimental settings, then investigate the perfor-
mance of CAuSe in terms of optimal feature number, and evaluate the effective-
ness of auto augmentation search and optimal strategy, respectively.

4.1 Experimental Settings

Network Model Training. With the inputs of Dlearning, 80% of the data are
used for training and the rest 20% for testing, with a batch size of 128. We use
the cross entropy as the loss function and the stochastic gradient descent (SGD)
optimizer to update the learning rate. The initial learning rate is 0.2, and it
complies with an exponential decay of decay step = 1000 and decay rate = 0.96.
If the lowest validation loss remains for 10 continuous epochs or the network
training process exceeds 150 epochs, the training process stops. The network
with the lowest loss is used as the trained model.
Auto Augmentation Strategy Search. The parameters of the augmentation
distribution initialize as a 24 × 24 matrix with initial values from a uniform
distribution. We use Adam optimizer with learning rate 0.05, β1 = 0.9, β2 =
0.999, weight decay = 0. The distribution parameters are updated 150 times
in total.
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Table 2. Accuracy (SD) % for different classifiers with varying feature numbers

Classifier\Number 5 35 55 75 95 115 135 155 175 195

OC-SVM 91.27 94.58 93.45 90.57 86.55 81.97 77.24 72.90 69.14 66.00

(4.10) (2.53) (1.98) (1.95) (2.13) (2.58) (2.78) (3.26) (3.68) (4.11)

IF 87.25 93.26 94.71 95.28 95.68 95.95 96.03 95.96 95.80 95.58

(7.17) (4.07) (3.32) (2.90) (2.49) (2.15) (1.92) (1.80) (1.78) (1.77)

LOF 80.69 92.51 94.45 95.40 96.93 96.79 96.66 96.38 95.97 95.77

(11.44) (5.91) (3.93) (2.84) (1.80) (1.92) (2.05) (2.10) (2.38) (2.48)

Classifier Training. To train the LOF classifier, we randomly select 1 legit-
imate user from Dpositive for 20 times. With the 1000-window data, we use
10-fold cross validation to obtain 900-window training dataset and 100-window
positive testing dataset. We also randomly select 100-window from Dnegative as
the negative testing dataset.
Evaluation Metric. We utilize three evaluation metrics: accuracy, F1-score,
EER to evaluate the effectiveness of CAuSe. Accuracy is the percentage ratio
of the total number of correct authentication against the total number of
authentication, defined as: Accuracy = TP+TN

TP+TN+FP+FN . F1-score is defined as:
F1 = 2TP

TP+FP+FN . EER is the point where FAR equals to FRR.

4.2 Feature Number and Classifier Parameter

We conduct experiments to investigate classifier selection and optimal feature
number selected by PCA. We consider three classifiers of OC-SVM, IF, and LOF
for classifier selection and vary feature numbers for optimal feature number. We
compute the accuracy (standard deviation) of CAuSe with the three classifiers
as the feature number increases from 5 to 195, as tabulated in Table 2. As shown
in Table 2, the accuracy gradually increases with the feature number growing
until an optimal number and then slightly decreases for all the classifiers. For
OC-SVM, 35 features selected by PCA reach the best accuracy of 94.58% and
for IF, 135 features achieve 96.03% accuracy. However, LOF with 95 features
selected by PCA reaches the highest accuracy of 96.93% and the lowest SD of
1.80%. Therefore, we use PCA to select 95 deep features for the LOF classifier.

In addition, based on the optimal numbers of features, we utilize the grid
search to seek the best parameter combinations for classifiers of the OC-SVM,
IF, and LOF. We list the classifiers, number of features, and optimal parameter
combination in Table 3. As shown in Table 3, the LOF classifier with 95 deep
features obtains the optimal parameters of n neighbors = 800 and p = 1.
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Table 3. Optimal parameter combinations

Classifier # Feature Optimal parameter combination

OC-SVM 35 μ = 0.0001, γ = 0.015625

IF 135 n estimators = 900

LOF 95 n neighbors = 800, p = 1

Table 4. Row and column corresponding to the optimal augmentation strategy

Epoch 0–2 3–4 5 6 7 8–10 11–16

(Row, column) (7,5) (13,22) (6,22) (5,16) (7,14) (17,2) (7,14)

Epoch 17–19 20–26 27–45 46–92 93–107 108–130 131–149

(Row, column) (5,1) (7,14) (16,14) (13,22) (20,20) (13,22) (20,20)

4.3 Auto Augmentation Search

We select dataset D100
learning with 100-window

Fig. 2. Marginal distribution
of augmentation operations.
(Color figure online)

per user from Dlearning to conduct the evalu-
ation of the auto augmentation search, due to
the limitations of computer memory and GPU.
In the auto augmentation search, we instantiate
the augmentation distribution parameters as a
24×24 matrix and save the corresponding matrix
for each epoch. Based on the saved matrices, we
sum the rows of each matrix, normalize all rows
for each epoch, and visualize rows varying with
the epoch grows. We calculate the marginal dis-
tribution of parameters of the first augmentation
method of each strategy, as illustrate in Fig. 2. As illustrated in Fig. 2, the deeper
the red, the closer the probability of the method is to 1, and the deeper the blue,
the closer the probability is to 0. As the search progresses, the edge probability
of each method either converges to 0 or 1. When the search is complete, the
edge probability of the method in rows of 4, 6, 10, 17, 18, and 21 is higher. From
Fig. 2, it can be seen that during random training, the parameter values of some
augmentation methods gradually increase while others gradually decrease, which
indicates that some augmentation methods are abandoned while the probability
of other augmentation methods is increasing.

In addition, after updating the parameters of the augmentation probabil-
ity distribution at the end of each epoch, we calculate the probability for each
augmentation strategy by Eq. (1) and record the row and column of the corre-
sponding optimal augmentation strategy, as shown in Table 4.

It can be seen that during the training process, with the update of the proba-
bility distribution parameters, the optimal strategy (the strategy with the high-
est probability) is also constantly changing, and at the end of the training, a
row and a column (20, 20) of the optimal strategy for local convergence can be
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Table 5. Optimal parameter combinations

Network Accuracy F1-score EER

Network without augmentation 85.37 (7.61) 87.54 (5.71) 7.87 (3.59)

Network searched by auto augmentation 88.88 (6.64) 90.24 (5.29) 6.50 (3.38)

Table 6. Accuracy (SD) % on Different Strategies with Varying Data Sizes

Strategy\Data size 60 80 100 200 400

No augmentation 56.77 (6.33) 54.67 (3.90) 85.37 (7.61) 90.06 (5.95) 92.14 (5.31)

Rota-3+MagnWarp0.2 79.32 (8.18) 81.45 (8.10) 82.61 (7.53) 85.10 (8.20) 90.11 (6.02)

Perm8+Rotate12 84.34 (7.65) 86.75(6.93) 85.79 (7.39) 87.49 (7.36) 89.50 (7.02)

TimeWarp0.6+Perm2 87.99 (6.98) 88.05 (6.43) 89.59 (6.15) 90.76 (6.58) 92.47 (5.49)

Our strategy 88.65 (7.40) 88.70 (7.51) 91.12 (5.69) 91.89 (5.33) 93.19 (4.85)

Table 7. F1 Score (SD) % on different strategies with varying data sizes

Strategy\data size 60 80 100 200 400

No augmentation 68.89 (3.34) 68.43 (2.09) 87.54 (5.71) 91.16 (4.80) 92.87 (4.37)

Rota-3+MagnWarp0.2 83.18 (5.74) 84.68 (5.82) 85.46 (5.52) 87.40 (5.98) 91.23 (4.84)

Perm8+Rota12 86.73 (5.50) 88.55 (5.27) 87.82 (5.50) 89.18 (5.70) 90.79 (5.48)

TimeWarp0.6+Permu2 89.55 (5.44) 89.52 (5.02) 90.76 (4.94) 91.78 (5.27) 93.19 (4.53)

Our strategy 90.12 (5.78) 90.16 (5.70) 92.00 (4.70) 92.64 (4.39) 93.77 (4.09)

Table 8. EER (SD) % on different strategies with varying data sizes

Strategy\data size 60 80 100 200 400

No Augmentation 39.12 (10.61) 37.79 (10.32) 7.87 (3.59) 5.62 (2.82) 4.65 (2.66)

Rota-3+MagnWarp0.2 10.06 (3.77) 9.72 (4.26) 8.62 (3.82) 6.65 (3.24) 5.34 (3.00)

Perm8+Rota12 9.07 (4.29) 7.43 (3.34) 7.90 (3.58) 6.39 (3.31) 5.51 (2.87)

TimeWarp0.6+Perm2 7.21 (3.80) 6.73 (3.12) 6.53 (3.28) 5.24 (2.98) 4.35 (2.73)

Our Strategy 6.67 (3.60) 6.64 (3.71) 5.68 (3.34) 4.99 (2.74) 3.90 (2.48)

obtained. It can be considered that Time-Warping (0.6) + Time-Warping (0.6)
is a relatively good augmentation strategy found in our dataset in the entire
search space with a CNN structure in Table 2 trained to converge. We also illus-
trate the continuous authentication performance of the network model trained
by auto augmentation search and the network model obtained by training the
same network structure without augmentation in Table 5.

4.4 Optimal Strategy

In the above experiments, we searched for an optimal strategy that located in the
20th row and 20th column of the probability distribution parameter matrix. The
optimal strategy is a strategy composed of two identical augmentation operations
Time-Warping(0.6)+Time-Warping(0.6). In order to demonstrate the superior-
ity of the strategy, we randomly select 3 strategies from the search space to
augment different size of data and compute the accuracy, F1-score and EER,
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Fig. 3. Accuracy, F1 score, and EER for different strategies with varying data sizes.

respectively. The corresponding results are tabulated in Tables 6, 7, and 8, and
are plotted in Fig. 3.

We can obtain observations from Tables 6, 7, and 8, and Fig. 3:

1) When there is no data augmentation, as the data size increases, the authen-
tication performance gradually improves, which indicates that the amount of real
data is positively correlated with the authentication performance.

2) When the data size comes to 100, the EERs for the strategies of
the Rotate(-3)+MagnitudeWarp(0.2) and Permutation(8)+Rotate(12) are even
higher than that without data augmentation strategy, which indicates that the
two strategies are relatively worse augmentation strategies.

3) On all data sizes, the strategy of Time-Warping(0.6)+Time-Warping(0.6)
achieves the best authentication performance on the accuracy (93.19%), F1 score
(93.77%), and EER (3.9%), which proves that the optimal strategy searched by
the proposed auto augmentation is optimal on different data sizes.

4.5 Comparison with Representative Schemes

We compare CAuSe to four representative continuous authentication schemes
with data augmentation approaches, as listed in Table 9. As illustrated in Table 9,
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Table 9. Comparison with representative schemes

Scheme Data source Data augmentation approach Accuracy

SensorAuth [13] Acc., Gyr. Perm., sample, scale, crop, jitter EER: 6.29% (dataset size 200)

EchoPrint [30] Face image Rotation BAC: 81.78% (vision features)

SensorCA [14] Acc., Gyr., Mag. Rotation EER: 3.7% (SVM-RBF)

HMOG [23] Acc., Gyr., Mag., Tou. HMOG with tap characteristics EER: 7.16% (walking)

CAuSe Acc., Gyr., Mag. Auto Augmentation Search Accuracy: 96.93% (LOF)

we show the data source, data augmentation approaches, and accuracy for all
the schemes with data augmentation. Specifically, SensorAuth explores five data
augmentation approaches of permutation, sampling, scaling, cropping, and jitter-
ing to create additional acccelerometer and gyroscope data and achieves an EER
of 6.29% with dataset size 200 by combining the five approaches [13]. EchoPrint
uses the projection matrix rotation imitating different camera poses to augment
new face images and obtains 81.78% balanced accuracy (BAC) with vision fea-
tures [30]. SensorCA applies matrix rotation on accelerometer, gyroscope and
magnetometer data to reach an EER of 3.7% on the SVM-RBF classifier [14].
HMOG augments HMOG features with tap characteristics (e.g. tap duration
and contact size) to obtain 7.16% EER for walking [23]. Different from these
continuous authentication schemes with data augmentation, CAuSe exploits the
auto augmentation search to find an optimal strategy for data augmentation of
the accelerometer, gyroscope and magnetometer, and achieves the best accuracy
of 96.93% on the LOF classifier.

5 Conclusion

To address the shortage of training data and improve the feature discriminabil-
ity, we propose CAuSe, a CNN-based continuous authentication on smartphones
using auto augmentation search, where the CNN is specially designed for deep
feature extraction and the auto augmentation search is exploited for finding the
optimal augmentation strategy. Although we take significant efforts to validate
the effectiveness of CAuSe, there are some limitations in this work: 1) power con-
sumption of CAuSe on smartphones, 2) impact of various attacks on CAuSe, and
3) privacy concerns on dataset collection and transportation. In future, we will
consider issues of the energy, privacy and security for continuous authentication
approaches.
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Abstract. In autonomous vehicles (AVs), a critical stage of perception
system is to leverage multi-modal fusion (MMF) detectors which fuse
data from LiDAR (Light Detection and Ranging) and camera sensors
to perform 3D object detection. While single-modal (LiDAR-based and
camera-based) models are found to be vulnerable to adversarial attacks,
there are limited studies on the adversarial robustness of MMF models.
Recent work has proposed a general spoofing attack on LiDAR-based
perception, based on the defect of ignored occlusion patterns in point
clouds. In this paper, we are inspired to attack LiDAR channel alone to
fool the MMF model into detecting a fake near-front object with high
confidence score. We perform the first study to analyze the roubustness of
a popular MMF model against the above attack and discover it is invalid
due to the correction of camera. We propose a black-box attack method
to generate adversarial point clouds with few points and prove the defect
still exists in MMF architecture. We evaluate the attack effectiveness of
different combinations of points and distances and generate universal
adversarial examples at the best distance of 4m, which achieve attack
success rates of more than 95% and average confidence scores over 0.9
on the KITTI validation set when the points exceed 30. Furthermore, we
verify the generality of our attack and the transferability of generated
universal adversarial point clouds across models.

Keywords: Adversarial point clouds · Adversarial attack ·
Multi-modal fusion · Autonomous vehicles · 3D object detection

1 Introduction

Object detection plays an important role in the visual perception system of
AVs, which are equipped with multiple sensors such as LiDARs and cameras to
perceive the surroundings. It is believed that fusion of multi-modal data from
different sensors can obtain complementary and shared information to achieve

c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 187–203, 2021.
https://doi.org/10.1007/978-3-030-86890-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_11


188 H. Wang et al.

better performance and stronger robustness than a single modality. However,
object detectors that rely on deep neural networks (DNNs) have been found
to be vulnerable to adversarial examples [11,37], adding well-crafted malicious
perturbation to inputs can deceive DNNs into making wrong predictions, such
vulnerabilities can lead to catastrophic consequences in AVs.

LiDARs emit laser beams to the surface of objects to capture 360-degree high-
resolution 3D information called point clouds. With the advantage of accurate
depth information and reliability in poor weather or lighting conditions, LiDARs
are considered as more vital sensors in AVs. Many efforts [7,8,29,32] have been
paid to adversarial attacks on LiDAR-based perception, Sun et al. [29] discover
that there exists ignored occlusion patterns in point clouds, making it possible
to attack LiDAR-based perception by adversarial point clouds with few points.
Utilizing such potential defect, they propose a general spoofing attack method
by moving the occluded or distant vehicle point clouds with few points in the
scene to the front, decieving the victim into believing there is an obstacle ahead.
Under this circumstance, emergency braking can cause a rear-end collision and
passengers injury.

While recent work [4,6,31] has shown that MMF detectors can be attacked
when both LiDAR and camera channels are attacked simultaneously, it is unclear
(1) whether the exploited defect in LiDAR-based perception architecture still
exists in MMF-based perception architecture, (2) whether the general spoofing
attack against LiDAR-based detectors mentioned above is still effective on MMF
detectors and (3) how to attack the LiDAR channel of fusion models alone to
achieve the goal of attacking the entire model if the above attack is invalid. We
believe that the answers to these issues can make sense to improve the robustness
of fusion models and better defense adversarial attacks on AVs.

In this paper, we choose AVOD [18] as our target model, a typical feature-
level fusion network which is suitable for autonomous driving with fast speed
and low memory usage. To answer the first two questions, we reproduce the
general spoofing attack done by Sun et al. [29] and implement on AVOD. While
we verify such attack does not work because the images can partially correct the
false detections of point clouds, we can speculate from the experiment results
that the defect still exists and it is feasible to attack the entire model by crafting
adversarial point clouds with few points to attack the LiDAR channel alone.

For the third question, we propose a black-box attack method based on
genetic algorithm to generate adversarial point clouds. Compared to common
gradient-based white-box attacks [9,15,22], our method has stronger attack capa-
bility with no need to access the specific structures and parameters of models,
and we also avoid dealing with the non-differentiable point clouds processing
stage in LiDAR channel of most models, making the method simpler and easy
to transfer. Then we evaluate our attack on the KITTI [14] dataset, we randomly
pick up 200 scenes, on which we generate adversarial point clouds with different
numbers of points from 10 to 200 in step of 10 and varying distances in front of
victim ranging from 4 m to 8 m in step of 1 m, to evaluate attack effectiveness. At
the optimal distance of 4 m, we generate universal adversarial point clouds, the
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attack success rates are stable above 95% and the average confidence scores are
greater than 0.9 after the number of points exceeds 30. We further directly apply
our attack method on another state-of-art MMF model EPNet [16] to make our
study more general, and verify the transferability of our generated universal
adversarial examples, which achieves around 50% average attack success rate.

The contributions of this paper can be summarized as follows:

– We perform the first security study to analyze the robustness of a popular
MMF model against general spoofing attack on LiDAR-based models. We
demonstrate that attack cannot directly generalize to fusion model for the
correction of other input channel.

– To the best of our knowledge, we are the first to explore the adversarial attack
against LiDAR channel on MMF model. We successfully generate adversar-
ial point clouds with few points, proving that the defect caused by ignored
occlusion patterns in point clouds still exists in MMF architecture.

– We propose a simple but effective black-box attack approach based on genetic
algorithm, which can be optimized by only accessing the inputs and outputs
of fusion models. Our method is easy to implement and avoids the issue of
handling non-differentiable processes in gradient-based attacks.

– We provide baselines for future research. We conduct an empirical evaluation
of our attack on KITTI [14] dataset, we evaluate the attack effectiveness
of various combinations of point clouds and generate universal adversarial
examples at the best distance of 4m, achieving attack success rates more than
95% with points exceeding 30. We also verify the generality of our attack and
transferability of our generated universal adversarial point clouds.

The remainder of this paper is organized as follows, we overview the related
work in Sect. 2. Section 3 details the robustness analysis of our target multi-modal
fusion model against existing general spoofing attack on LiDAR-based models.
Then we introduce the attack approach of generating adversarial point clouds
in Sect. 4. Experimental setups and results are presented in Sect. 5. Finally we
conclude the paper in Sect. 6.

2 Related Work

2.1 Multi-modal Fusion

Multi-modal fusion, or multi-sensor fusion, has been widely studied in object
detection field, especially for autonomous driving. Due to the complementary and
shared information, the fusion of multiple sensors is considered to achieve higher
accuracy and stronger robustness in detection tasks than single sensor. AVs
are safety-critical applications and the reliability of object detectors is impor-
tant, therefore, they frequently utilize the fusion detection models of LiDAR
and camera, with the advantages of depth information provided by point clouds
and texture information captured by images. According to the different levels of
fusion, multi-modal fusion can be divided into two major streams: deep fusion
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(feature level) and late fusion (decision level). The former is fusing the features
extracted from point cloud data and image data through a certain stratege (e.g.
addition, mean, concatenation), and then feed it into detection network to obtain
the final detection results, e.g. MV3D [10], AVOD [18], EPNet [16]. The latter is
fusing the results detected by LiDAR perception network and camera perception
network respectively through a certain rule (e.g. geometric association, semantic
consistency), e.g. CLOCs [23], models designed in Apollo [2] and Autoware [1].
In this work, we focus on the feature-level fusion, which is under more extensive
research for its finer-grained fusion mode, from another perspective, it is also
easier to grasp the defects in features to attack models.

2.2 Adversarial Point Clouds

Recently, with more and more mature 3D classification and detection mod-
els [19,25–27,38] proposed, the attention has been paid on the generation of
adversarial examples in 3D space. Point clouds are common representation of
3D objects, existing works [4,20,21,34–36,39,40] mainly focus on generating
adversarial point clouds by shifting, adding or dropping points. Xiang et al. [36]
first propose an optimization algorithm with C&W framework [9] and Haus-
dorff/Chamfer measurements [12] to craft adversarial examples by perturbing
existing points or generating new points. Liu et al. [20] extend variations of the
fast gradient based method (FGSM) [15] to shift points and Zhang et al. [39]
develop a variant of one-pixel attack [28] using pointwise gradient method to
attach new points to the original point clouds. Besides, [35,40] opt to drop
points based on point saliency maps. They all focus on point clouds data level
but neglect the feasibility of reliably manufacturing adversarial examples in real
world. Hence, Tsai et al. [30] extend adversarial point clouds to 3D printed
physical adversarial objects.

2.3 Attacks on 3D Object Detection

In terms of attack methods, according to the knowledge of target model, adver-
sarial attacks are mainly categorized into white-box and black-box. In white-box
attacks, attackers have full access to the structure, parameters and other infor-
mation of models while in black-box attacks, attackers can only access to the
inputs and outputs, which have stronger attack ability than white-box attacks.
In terms of attack effects, adversarial attacks on 3D object detection can be
categorized into spoofing attack and vanishing attack, the former is to generate
a fake near-front obstacle and the latter is to hide real obstacles in the scene.

LiDAR-Based. Cao et al. [7] are the first to implement a white-box spoof-
ing attack on LiDAR-based perception in Apollo [2] by strategically injecting
a small number of points, making the victim believe there is a vehicle ahead.
Sun et al. [29] discover that current LiDAR-based detection models do not learn
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occlusion patterns in point clouds, allowing fake points that almost two magni-
tudes fewer than valid vehicle points to fool the detectors, by moving the distant
or occluded vehicle point clouds with few points to the front of victim, spoof-
ing attack can be easily implemented. Besides, [8] designs an adversarial mesh
placed on the road that can evade from LiDAR-based perception system and [32]
generates universal adversarial objects placed on the roof of target vehicles to
make them invisible.

MMF-Based. There are limited studies on adversarial attacks on MMF mod-
els. Kim et al. [17] theoretically demonstrate the sensitivity of the deep fusion
model to single sensor noise. Wang et al. [33] implement projected gradient
descent (PGD) [22] attacks respectively on camera and LiDAR channel of sim-
ple fusion models they construct, but it is unclear whether the attack is effective
on the mature and well-performed application-level fusion models. Then same as
LiDAR-based attack scenario [32] where adversarial object is placed on the roof
of victim, [4,31] attack image and LiDAR input modalities simultaneously by
rendering a adversarial mesh with specific shape and texture to hide an existing
vehicle and produce false detection. In the latest work, to make attack more prac-
tical and universal, Fang et al. [13] are committed to find a single physical-world
attack vector that affects both images and point clouds, they generate adversar-
ial 3D-printed objects based on common objects on the road, misleading AVs to
fail in detecting them.

Exsiting adversarial attacks on fusion models mainly focus on attacking mul-
tiple inputs simultaneously, they are all white-box attacks that need to know
the specific information inside models and have some complicated steps like
rooftop approximation and sensor simulation, making their methods hard to fol-
low. While our work is to attack the entire model by only attacking one input
channel, seizing the fatal flaw of a more important sensor LiDAR in AVs to
achieve a simple but effective black-box attack. In addition, the physical realiza-
tion of spoofing attack explored in our work is injecting fake signals into LiDARs,
which is more stealthy than the vanishing attack explored in their work of placing
a real adversarial object somewhere.

3 Robustness Analysis

To understand the security of MMF models against general spoofing attack on
LiDAR-based models, we first reproduce the attack method proposed by [29],
and explore the effectiveness of directly applying it to attack the typical MMF
model AVOD [18]. Firstly, We randomly extract 200 vehicle point cloud samples
from KITTI [14] dataset with points within two hundred, containing 100 distant
vehicle point clouds and 100 occluded vehicle point clouds. Next, we apply global
transformation matrix to transform the coordinates of extracted point clouds to
a near-front location, about 4–8 m in front of the victim. Then we add the
transformed fake point clouds into scenes and use the merged data as the input
of LiDAR channel. Finally, we run AVOD and record the detection results.
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We discover that more than 95% of the fake point clouds cannot be detected
or the confidence scores are lower than 0.01 (Fig. 1), and the remaining is around
0.1. Only when the confidence score exceeds 0.8, the fake point cloud is believed
to be a real object by the detector. Therefore, the general adversarial attack
on LiDAR-based detection models is not applicable to AVOD. A potential rea-
son is that MMF model architecture is more robust than single-modal model
architecture, the fake detections generated by cheating a single sensor can be
corrected by other sensors. There are two input channels of LiDAR and cam-
era in AVOD [18], when LiDAR perceives an object ahead but camera does not
detect it, the confidence score of object will be greatly reduced.

Fig. 1. Results of reproduced general spoofing attack on AVOD [18] (1st row: before
attack, 2nd: after attack). We map the 2d bounding boxes on images and set the
confidence score threshold as 0.001 to show more objects with low confidence scores.
Left value on each green box indicates the confidence score and the right is the IoU
with ground truth bounding box. Specifically, the red arrows point to the fake objects
and their confidence scores are lower than 0.01.

But the conclusion drew from another work is quite different from ours,
Park et al. [24] exchange the image data of two scenes while keeping the point
cloud data unchanged and then feed them into AVOD for detection. The results
show that there is not much difference between the detections before and after
the exchange, the bounding boxes of most objects are basically consistent and
confidence scores are still high. To a certain extent, it illustrates that although
AVOD has a symmetrical architecture, the final detections are more dependent
on LiDAR.

Faced with contradictory conclusions, we observe that the confidence scores
of distant or occluded objects drop a lot after exchange, even cannot be detected.
We speculate that for objects with a large number of points, AVOD [18] relies
more on LiDAR, while for objects with a small number of points, the weight
of camera increases. We conduct two more specific experiments to prove the
speculation. Under the same setting that adding point clouds extracted from
one scene to the same position in another scene, the first experiment is adding
the high-confidence point clouds with hundreds of points and they still output
with high confidence scores (greater than 0.9), as shown in Fig. 2(a). The second
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one is adding the high-confidence point clouds with points within two hundred
but they output with low confidence scores (less than 0.01), as shown in Fig. 2(b).

(a) With a large number of points (b) With a small number of points

Fig. 2. Results of LiDAR weight comparison. Images of the upper and lower rows are
original scenes and attacked scenes. (a) adds the vehicle point clouds with 569 points
extracted from scene 134 to scene 454 and outputs with 0.99. (b) adds the vehicle point
clouds with 65 points extracted from scene 2 to scene 4 and output with 0.01.

From the above analysis, we can conclude that blindly applying the general
spoofing attack on LiDAR-based detectors to AVOD [18] is invalid, the detector
with multi-modal architecture is more robust against adversarial attack. How-
ever, we discover that AVOD can output high-confidence point cloud objects in
the case of (1) inputting real image data and fake point cloud data with a large
number of points or (2) inputting real image data and real point cloud data
with a small number of points. Between the two cases, theoretically, there are
objects with few points can be detected with high confidence, overcoming the
correction of images. What we do is to craft such fake point clouds to perform
an adversarial attack against MMF detection models.

4 Generating Adversarial Point Clouds

In this section, we present a novel method for generating adversarial point clouds
to attack MMF detectors, illustrated in Fig. 3. First we demonstrate the prob-
lem definition, then we introduce the perturbation rule of point clouds and the
objective function to be optimized, finally we elaborate on the overall attack
algorithm and optimization algorithm.

4.1 Problem Definition

The goal of our work is to generate adversarial point clouds with as few points
as possible to fool the MMF models into detecting a fake obstacle with high
confidence score in front of the victim. In the context of autonomous driving, as
the distance of fake obstacle more closer, the consequence of emergency braking
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Fig. 3. Overview of adversarial point clouds generation pipeline. We add adversarial
point cloud to LiDAR input while keeping the image input unchanged. They are pro-
cessed by MMF model and output detection results. We constantly perturb the points
in the direction of maxmizing the confidence score of fake object in detections to obtain
the optimal adversarial point cloud eventually.

is more dangerous, so the fake obstacle is supposed to be appear near front. As
the first work of attacking the LiDAR channel alone to attack the entire fusion
model, we expect to explore a feasible attack method theoretically and do not
consider the constraints of injecting fake point clouds into LiDAR sensors by
physical equipment (e.g. photodiode, delay component, infrared laser) in real
world. Besides, we target car as the category of adversarial point clouds instead
of pedestrian or cyclist for the reason that cars are more common in scenes.

4.2 Input Perturbation

Given an image I and a point cloud P , we keep I unchanged and perturb P .
Let P = {p1, p2, · · · , pn} be an input set of N points where each point pi
is represented by a vector of coordinates pi = [pi,x, pi,y, pi,z] ∈ R3, let δi =
[δi,x, δi,y, δi,z] ∈ R3 be the perturbation vector for pi. We aim to shift points to
generate an adversarial point cloud P

′
= {p1+δ1, p1+δ1, · · · , pn+δn}. In this

work, we extract the distant and occluded vehicle point clouds from the dataset
and transform them to the position in front of the victim as our initial fake point
clouds, at the same time we get the initial fake bound boxes. For each initial fake
vehicle point cloud P = {pi | i = 1, · · · , n}, its bounding box is represented by
b = [tx, ty, tz, l, w, h] (tx, ty, tz are the bottom center coordinates and l, w,
h are length, width, height). We limit the perturbation of each point to the
bounding box as Eq. 1:
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p
′
i = [pi,x + δi,x, pi,y + δi,y, pi,z + δi,z]

s.t. δi,x ∈
[
tx − l

2
− pi,x, tx +

l

2
− pi,x

]

δi,y ∈
[
ty − w

2
− pi,y, ty +

w

2
− pi,y

]

δi,z ∈ [tz − pi,x, tz + h − pi,z] (1)

4.3 Objective Function

To make the fake vehicle appear at a specified position in front of the victim,
there must be a corresponding bounding box of that vehicle output by detector
and its confidence score should be above the detection threshold. Inspired from
prior vanishing attack work [32] which suppresses all relevant bounding box
proposals, we come up with the opposite idea that increasing the confidence
score of the most probable bounding box which has the highest IoU with the
initial fake bounding box. Hence, our objective is to maximize the confidence of
the most relevant candidate:

Ladv = (1 − IoU(b∗, b
′
)) log(Cb′ )

s.t. b
′
= argmax

b∈B
IoU(b, b∗) (2)

Where B is the set of all bounding boxes output by the detection model and
each bounding box b has a confidence score C. IoU denotes the Intersection over
union operator, b∗ denotes the bounding box of initial adversarial point cloud
and b

′
denotes the bounding box of the most relevant candidate.

4.4 Attack Method

Attack Algorithm. Based on the above, we propose an attack algorithm to
generate adversarial point clouds on MMF detector. As detailed in Algorithm 1,
given a scene, we transform an extracted distant or occluded point cloud to a
specified position in front of the victim as the initial fake object, the attack
iteratively searches for the perturbation of points to achieve a higher confidence
score. In each iteration, the raw image and the raw scene point cloud merged
with fake point cloud are as inputs and the model output the bounding boxes
and confidence scores of detected objects. We then identify the most relevant
candidate that has the largest IoU with initial fake bounding box. By disturbing
the points in picked bounding box constantly, we generate the adversarial point
cloud with a larger IoU with the initial bounding box and a higher confidence
score. The attack succeeds if the confidence score exceeds threshold, otherwise
enters the next iteration until the maximum number of iterations.
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Algorithm 1: Generating adversarial point clouds.
Input: Raw scene point cloud S, raw image I, object detector M , initial fake

point cloud P , initial fake bounding box b∗, confidence threshold r.
Output: adversarial point cloud P

′
, confidence Cb

′ .
1 begin

2 P
′ ← P

3 iter = 0
4 while iter < maxIter && Cb

′ < r do

5 B ← M(S + P
′
, I)

6 b
′ ← argmax

b∈B
IoU(b, b∗)

7 P
′ ← max (1 − IoU(b∗, b

′
)) log(Cb

′ )
8 iter+ = 1

9 end

10 return P
′
, Cb

′

11 end

Optimization Algorithm. We employ the genetic algorithm [5] to optimize
the objective function. In genetic algorithm, each individual in population rep-
resents a solution in the search space and fitness score measures how good it
is. Through the implementation of coding, selection, crossover, mutation and
other operations on the individuals for several iterations, the individual with the
highest fitness score is considered as the optimal solution to the problem. In our
case, a population of initial fake point clouds are evolved to maximize the fitness
score Ladv. In each iteration, we select a new generation of population based
on roulette wheel selection [3], then preserve the candidate with the highest fit-
ness and cross other candidates according to the crossover rate to generate new
candidates, we then add gaussian noise to points of new candidate point clouds
sampled with a mutation rate. The algorithm ends when the optimal adversarial
point cloud is found or the maximum number of iterations is reached.

5 Experiments

In this section, we first describe our experiment setup, including the dataset and
target fusion model, the metrics used to evaluate our attacks, and the implemen-
tation details. Then we present results and discussions on (1) attack effectiveness,
(2) universal adversarial examples, (3) attack generality, and (4)transfer attack.

5.1 Experiment Setup

Dataset. We evaluate our attack on KITTI [14] dataset, a benchmark in
autonomous driving scenarios, which contains point clouds, images, calibration
files, labels for 3D object detection. Refer to [18], we divide the trainval set into a
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training set of 3712 samples for training model and a validation set of 3769 sam-
ples for evaluation. Considering the fake objects are placed in front of victims,
we further remove scenes that may have conflicts with the original real near-
front objects and use the selected dataset for adversarial examples generation
and attack evaluation.

Target Model. We choose AVOD [18] as our target model, a typical two-stage
object detection architecture with a region proposal network (RPN) and a second
stage detection network. It uses feature extractors to generate feature maps from
point clouds and images which are then shared by two subnetworks. First the
feature maps are fed into RPN and fused via an element-wise mean operation
after cropping and resizing, and then generate top k proposals through fully
connected layers. Second projecting the proposals on feature maps and adopting
similar fusion operations in RPN stage to generate final detections, including
box regression, orientation estimation and category classification.

Metrics. We aim to generate the fake point cloud misleading the detector to
believe that there is a vehicle ahead. We calculate the average confidence score
(ACS) of adversarial point clouds with different numbers of points and distances
to access attack effectiveness. The larger the ACS, the better the attack.

ACS =
∑

confidence score

# of scenes

Besides, object detectors often set default threshold of confidence score to
filter out detected objects with low confidence. Our model considers a fake vehicle
is detected if there exists a bounding box output by the detector overlaps with
the initial bounding box and the confidence score is greater than 0.8. We use
attack success rate (ASR) to measure the percentage at which the fake vehicle
is successfully detected in scenes. The higher the ASR, the better the attack.

ASR =
# of success attack

# of scenes

Implementation Details. We follow the implementation of [18] to train the
target model for car class and conduct the evaluation of adversarial attacks
on V100. For performing attack in a single scenario, we randomly select 200
scenes from validation set to generate adversarial point clouds with different
numbers of points and different distances, then evaluate attack effectiveness. For
performing attack in multiple scenarios, we generate universal adversarial point
clouds on training set and evaluate on the validation set. In genetic algorithm,
the population size is set to 100, the crossover operator is set to 0.8 and the
mutation operator is set to 0.1, besides, we add a mutation coefficient of 0.01 to
perturb the coordinates of point clouds. We repeat experiments to reduce the
randomness introduced by genetic algorithm.
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5.2 Results and Discussion

Attack Effectiveness. In 200 scenes, for each scene we generate adversarial
point clouds with distances from 4 m to 8 m by the step of 1 m and numbers of
points from 10 to 200 by the step of 10. As shown in Fig. 4(a), the ACS increases
as the number of points increases under all distances, and when the number of
points exceeds 30, the ACS is stable above 0.9 (0.98 at most) and the differences
in attack effects get smaller. At the closest distance of 4, the adversarial point
clouds with points of 10 and 20 perform better than other distances, reaching
ACS of 0.69 and 0.91 respectively. When the number of points is relatively small,
the closer the distance, the better the attack effect.

(a) ACS of 200 scenes (b) distance=4 (c) distance=5

(d) distance=6 (e) distance=7 (f) distance=8

Fig. 4. The attack effectiveness of our method. (a) shows the average confidence scores
of adversarial point clouds generated with different distances and number of points.
(b)–(f) show the attack stability at different distances.

In addition, Fig. 4(b)–(f) shows the attack stability of generated adversarial
point clouds at various distances. The data distribution is more concentrated as
the length of box is shorter in box plot, which indicates the confidence scores
of fake vehicles are closer and the attacks are more stable in our work. We
observe that it is consistent with the trend of ACS curve, under all distances, as
the number of points increases, the attack stability gets better. At the closest
distance of 4, the confidence scores of adversarial point clouds with very few
points (e.g. 10, 20, 30) are higher and closer than distance 5–8. Overall, the
close-range attack effect and attack ability is better, we speculate the reason is
that the model has better detection performance on nearby objects.
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Universal Adversarial Examples. From the analysis of attack effectiveness,
we can discover that the adversarial point clouds generated at distance of 4m
perform best with the better attack effect and attack stability than other dis-
tances. Hence, at the optimal distance of 4, we generate universal adversarial
point clouds with 20 groups of points and evaluate on validation set. Table 1
shows that 18 groups with different numbers of points exceeding 30 have achieved
more than 95% ASR and around 0.95 ACS (caculated by successfully attacked
scenes), while the adversarial point clouds with 10 points and 20 points only
achieve ASR of 1.36% and 68.09%. Especially for 10 points, though it reaches
0.69 ACS (caculated by 200 scenes) in the first experiment, the confidence scores
of most adversarial point clouds are less than 0.8, resulting in low ASR. Besides,
with the number of points starting from 30, the ASR is basically unchanged,
fluctuating between 96% and 98%, we speculate that because the adversarial
point cloud with 30 points learned by our attack method is enough to express
the strong features that can be detected by fusion model. A high attack success
rate can be attained by fake point clouds with few points, which also proves the
power of our attack method.

Table 1. The attack success rates and average confidence scores (caculated by success-
fully attacked scenes) of universal adversarial point clouds generated on AVOD [18].

# of points 10 20 30 40 50 60 70 80 90 100

ASR 1.36% 68.09% 95.64% 96.78% 98.20% 95.72% 97.09% 97.00% 96.03% 96.29%

ACS 0.93 0.94 0.95 0.96 0.98 0.93 0.97 0.94 0.94 0.93

# of points 110 120 130 140 150 160 170 180 190 200

ASR 97.47% 96.56% 97.79% 96.65% 96.65% 96.56% 97.47% 96.84% 96.75% 97.98%

ACS 0.94 0.96 0.97 0.95 0.94 0.95 0.95 0.94 0.96 0.95

Figure 5(a) shows a comparison of the detection results before and after our
adversarial attack, the upper shows 2d and 3d detection bounding boxes on
images and the lower shows 3d detection bounding boxes in point clouds. We
can find a fake vehicle appears in front of the victim with the confidence score of
0.95, indicating the attack succeeds. Several universal adversarial point clouds
with different numbers of points are presented in Fig. 5(b).

Attack Generality. To make our study more general, we further implement
our attack on EPNet [16], a state-of-art MMF-based 3D object detection model
which has superior detection performance and ranks high on KITTI [14] bench-
mark. First of all, we conduct robustness exploration experiments on EPNet and
verify conclusions drew in Sect. 3 are not only applicable to AVOD but also to
EPNet, which indicates it is feasible to craft fake point clouds with few points
to attack it. Considering our attack method is black-box which only needs to
combine our algorithm with the input and output of the models, it is easy to
apply our method to various models. We carry out single-scenario adversarial
attack at the farthest distance of 8, the attack effect is a lower bound compared
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(a) The detection results (b) Universal adversarial examples

Fig. 5. (a) The visualization of a successful attack in scene 1140, (b) several universal
adversarial point clouds with 20, 30, 60, 80, 120 and 200 points.

to closer distances. The results show our method has a better attack effect on
EPNet, with the number of points exceeding 30, the ACS of generated adversar-
ial point clouds is stable above 0.95, but with the point of 10 and 20, the ACS
is greater than 0.7 and 0.9 respectively, which can only be obtained on AVOD
at the optimal distance of 4 (shown in Fig. 4(a)). From another perspective, a
fusion model with better detection performance is more vulnerable to adversarial
attack, probably because the model strengthens the ability of learning features
from objects with few points in order to improve the detection accuracy, which
makes it easier for adversaries to catch flaws in features to launch attacks. Over-
all, the defect of using few points to perform spoofing attack widely exsits in
MMF models and our method is general to generate adversarial point clouds
with good attack effect.

Transfer Attack. The adversarial examples generated for the same task are
transferable between different models. We utilize the universal adversarial point
clouds of 20 groups generated on AVOD [18] to attack EPNet [16]. Compared
to AVOD, the ASR of EPNet decreases about half, mainly fluctuating between
40% and 60%, the highest is 58.83% with 20 points and the lowest is 18.26% with
70 points. While both of them are trained in the 3D object detection task, there
are differences between their decision-making faces, the adversarial point clouds
generated on AVOD cannot all achieve good attack performance on EPNet. We
can discover that adversarial example with 10 points has better attack effect on
EPNet with ASR of 18.83% probably due to a better detection performance on
small objects with few points, which is consistent with our analysis in attack
generality. Overall, the transferability of our adversarial examples performs well
and can achieve an average attack success rate around 50%.

6 Conclusion

In this paper, we perform the first study to explore the adversarial attack against
LiDAR channel on a popular MMF model AVOD [18] and achieve the goal
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of fooling the fusion model into detecting fake object ahead, which can cause
rear-end collision in AVs. We first reproduce the general spoofing attack on
LiDAR-based models and find that it cannot directly apply to MMF model due
to the correction by other input channel. We then propose a black box attack
method based on genetic algorithm to generate adversarial point clouds with
few points, avoiding to deal with the issue of non-differentiable stage in models
in gradient-based white-box attacks. We evaluate our attack effectiveness with
different combinations of points and distances on the KITTI [14] dataset and
generate universal adversarial point clouds, achieving attack success rate more
than 95% when the number of points exceed 30. We further explore the attack
generality and transferability of our generated adversarial examples on other
representative fusion model. In the future work, we need to consider more about
the physical realization in real world, and the perturbation of point clouds will
be limited more strictly.
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Abstract. Controller Area Network (CAN) is significantly deployed in
various industrial applications (including current in-vehicle network) due
to its high performance and reliability. Controller area network with
flexible data rate (CAN-FD) is supposed to be the next generation of in-
vehicle network to dispose of CAN limitations of data payload size and
bandwidth. The paper explores for the first time Electronic Control Unit
(ECU) identification on in-vehicle CAN-FD network from bus signaling
and the contributions are four-fold.

– Technically, we discuss the factors that might affect ECU recog-
nition (e.g., CAN-FD controller, CAN-FD transceiver, and voltage
regulator) and look into the signal ringing and its intensity where
dominant states along with rising edges (from recessive to dominant
states) suffice to fingerprint the ECUs. We can thereby design ECU
identification scheme on in-vehicle CAN-FD network.

– For a given network topology (in terms of the stub length and the
number of ECUs), we execute CAN-FD and CAN separately and one
can expect considerable performance for the two kinds of protocols
by using any signal characteristics (rising edges, dominant states,
falling edges, and recessive states). In particular, the recognition
rates by dominant states and rising edges of signals outperform sig-
nificantly those by any other combinations of signal characteristics.

– As a respond to the possible transition mechanism from CAN to
CAN-FD, we also allow a hybrid topology of CAN and CAN-FD,
namely, there exist on the network ECUs sending purely CAN
frames, ECUs sending purely CAN-FD frames, and ECUs sending
both CAN and CAN-FD frames, and our suggestion on dominant
states and rising edges shows robustness to source identification as
expected. This shows convincing evidence on the universal applica-
bility of our approach to forthcoming real vehicles set up by CAN-FD
network.

– The proposed approach can be easily extended to intrusion detec-
tion against attacks not only initiated by external devices but also
internal devices.
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We hope our results could be used as a step forward and a guidance
on securing the commercialization and batch production of in-vehicle
CAN-FD network in the near future.

Keywords: Controller Area Network · CAN-FD · ECU identification

1 Introduction

Controller area network (CAN) is one of the most commonly used bus com-
munication protocols between in-vehicle Electronic Control Units (ECU, simi-
lar to ordinary computer, consists of a microcontroller (MCU), some memory
(ROM/RAM), input/output interface (I/O), analog-to-digital converter (A/D),
and large-scale integrated circuits such as shaping and driving). It was introduced
by Robert Bosch GmBH in 1983. All ECUs inside the vehicles are connected to
each other through CAN bus. However, CAN protocol lacks security mecha-
nisms, such as authentication and encryption [5]. Indeed, an adversary might
easily eavesdrop on the bus, obtain all communication messages between ECUs
at will, and then initiate a replay attack [23]. He can even modify the obtained
messages which will be further injected into the CAN network in an attempt to
control some safety-critical functions. We do see various attacks against CAN
network recently [2,10,14,19,20]. In response to these attacks, researchers pro-
pose a series of countermeasures, represented by Intrusion Detection System
(IDS) and Message Authentication Code (MAC). The latter is not practical
however, as the length of the CAN frame data field is up to 8 bytes. And an
alternative method is to use truncated MACs [22,25]. This method needs to con-
stantly update the key, which will take up more computing resources. What’s
more, frequent key updates may cause malfunctions when the vehicle is moving.
Fortunately, some seminal works [5,15,21] can not only detect the presence of
malicious frames but also identify their sender ECUs. This is really essential for
fast forensic, isolation, security patch, etc.

Robert Bosch GmBH recommends CAN-FD (CAN with flexible data) [7] in
2012 to meet the requirements of modern vehicles and dispose of CAN limitations
of data payload size and bandwidth. Besides compatibility with CAN, CAN-
FD has the following advantages: the maximum length of the CAN-FD data
field is 64 bytes; it supports variable rates (namely, a frame can use different
transmission rates in different stages) and the maximum rate can reach 5Mbit/s
(the maximum rate of CAN is 1Mbit/s); it can refine the load of the existing
bus and increase the number of the nodes1 on the bus.

Unfortunately, CAN-FD itself does not convey security protection either
(similar to CAN) and existing attacks on CAN might also be feasible on CAN-
FD. Take masquerade attack on CAN network [3] as an example. Initiating a
masquerade attack and not being detected by the system, an adversary needs to
stop the transmission of targeted ECU and imitate it to inject attack messages.

1 As a slight abuse of terms, we use hereafter node and ECU indiscriminately.
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The attack also works on in-vehicle CAN-FD network. Although an intrusion
detection system based on topology verification is proposed [26] to detect attacks
by using external intruding devices, it can neither detect masquerade attack nor
identify the sender of the attack messages. Our proposed mechanism explores for
the first time Electronic Control Unit (ECU) identification on in-vehicle CAN-
FD network from bus signaling.

2 Background and Related Work

2.1 Controller Area Network

CAN uses differential signals to transmit messages. Namely, the two signals on
CAN-H and CAN-L have equal amplitudes relative to 2.5 V (common mode
voltage) and opposite polarities. Compared with single-ended signals, differen-
tial signals are subtracted less electromagnetic interference [15]. When the ECU
sends the recessive bit (1), the voltage on CAN-H and CAN-L is about 2.5 V,
so the differential voltage generated is 0 V. For the dominant bit (0), the volt-
ages on CAN-H and CAN-L are 3.5 V and 1.5 V, respectively, and the resulting
differential voltage is 2 V.

The nodes inside the CAN network communicate with each other via CAN
frames. CAN frames are divided into standard frames and extended frames
according to whether they contain extended identifiers. The length of the iden-
tifier of the CAN standard frame is 11 bits, and 29 bits for extended frame
(including 11 bits identifier and 18 bits extended identifier). At present, most
vehicles use CAN standard frames. The composition of standard frames is shown
in Fig. 1(a).

(a) CAN data frame format (b) CAN-FD data frame format

Fig. 1. CAN/CAN-FD data standard frame format with 11 bit identifier.

CAN is a multi-master control bus and the bus conflicts will occur if two or
more ECUs request to send data at the same time. CAN bus can detect and
arbitrate these conflicts in real time by CSMA/CD [1] (Carrier Sense Multiple
Access/Collision Detection) arbitration method, which supports a lossless bit-
wise arbitration decision process. For example, if one ECU transmits a dominant
bit (0) and another ECU transmits a recessive bit (1), then there is a collision
and the ECU transmitting the dominant bit gets priority.
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2.2 Comparing CAN-FD with CAN

CAN-FD and CAN differ in the format and the length of the data frame. Com-
pared with CAN frame, CAN-FD adds FDF (Flexible Data Rate Format), BRS
(Bit Rate Switch) and ESI (Error State Indicator) fields (see Fig. 1(b)) [7].
Therein, FDF indicates whether the sent frame is a CAN frame or a CAN-
FD frame and BRS stands for bit rate conversion. When the bit is a recessive
bit (1), the rate is variable, and when the bit is a dominant bit (0), it is transmit-
ted at a constant rate. ESI is an error status indicator: when ESI is a recessive
bit (1), it means that the sending node is in a passive error, otherwise it is in
an active error state. In addition, according to the role of different bits, CAN
specification divides a frame into different fields, as shown in Fig. 1(b). And in
the experiment, we set the rate of 2Mbit/s for the data field, and set the rate of
1Mbit/s in the arbitration field, control field and CRC field. The length of the
CAN-FD data field is up to 64 bytes, which increases the available load.

Next we say the data rate. The maximum rate of CAN’s arbitration field
and data field is no more than 1Mbit/s [6]. However, CAN-FD supports variable
rates, and the bit rate of its arbitration field and data field might be different.
Among them, the arbitration and the ACK stages continue to use CAN2.0 spec-
ification (i.e., the highest rate does not exceed 1Mbit/s), and the data field can
reach 5Mbit/s through hardware setting, or even higher.

CAN-FD is defined to be compatible with CAN at the physical layer. All
CAN-FD controllers can handle a mix of CAN frames and CAN-FD frames.
One might use CAN-FD controllers in conjunction with CAN controllers on
in-vehicle network. Thus one might see pure CAN frames or both CAN and
CAN-FD frames on the bus.

2.3 Related Work

Generally, we have intrusion detection systems (IDS)2 and cryptographic solu-
tions to strengthen in-vehicle CAN network security. Murvay and Groza [21]
pioneered the methodology of studying the differences in CAN signals (sent by
ECUs), which are significant for ECU identification. However, they only used the
signals corresponding to the CAN frame’s identifier field and did not account
for the blended signals caused by the collisions between ECUs’ simultaneous
messages. The limitation was tackled in [5] where 18-bit identifier extension was
used to fingerprint ECUs. As vehicles commonly conform to the standard speci-
fications (e.g., ISO, SAE etc.), this scheme was howbeit impractical in real-world
applications. Kneib and Huth [15] proposed Scission for in-depth analysis of CAN
signals. In particular, Scission can not only detect intrusion messages, but also
recognize which ECU sends the intrusion messages. For cryptographic solutions,
Lin et al. [14] constructed message authentication code by sending additional
messages, and the authors of [22] proposed to use truncated MACs.

For CAN-FD, security experts can pursue stronger security tricks via its
higher transmission rates and larger loads. In [26], authors proposed an IDS for
2 The paper focuses on signaling based IDS.
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in-vehicle CAN-FD network based on topology verification. Their method uses
variations of the network topology to identify intrusions initiated by external
intruding devices (XIDs), but the method cannot detect attacks initiated by
attackers using the vulnerability of existing ECUs in the vehicle. Woo et al.
[24] proposed a security architecture for in-vehicle CAN-FD according to ISO
26262 standard. However, this method may cause GECU (gate ECU) to generate
excessive load as it has to encrypt the data packets by using the targeted ECU’s
unique key. To relieve pressure on GECU, Agrawal et al. [1] proposed a group-
based approach for the communication among different ECUs. However, their
method still requires the management of a large number of keys which takes up
a large amount of computing resources of the ECUs, making it beyond instant
communication.

3 Signaling and Ringing

3.1 ECUs’ Voltage Output Behavior

The output voltage of an ECU’s regulator varies independently and differently
from other ECUs’ regulators, as their supply characteristics are different (e.g.,
different regulators’ common-mode rejection ratios) [4]. Given the same power
supply (i.e., a 12 V/24 V battery powering all the ECUs), one can get different
output voltage of ECU regulators. On the other hand, due to the differences in
the internal resistance of the CAN transceiver, the dominant voltages of CAN-H
and CAN-L will be different when the dominant bit is sent. When transmit-
ting the recessive bit, both the high and low side transistors are switched off
(inside the CAN transceiver) and thus the voltages on CAN-H and CAN-L are
basically the same. So the dominant voltage can be used for fingerprint ECU.
Similarly, for CAN-FD, the internal components of an ECU mainly include CAN-
FD controller, CAN-FD transceiver, and voltage regulator and we have the same
rationale of the dominant voltages of (CAN-FD)-H and (CAN-FD)-L on the bus.

3.2 Ringing and Its Intensity

The impedance mismatch occurs at two points on CAN-FD bus [8,11,13], e.g.,
one at the junction and another at the front of the non-terminal ECUs. The non-
terminal ECU causes positive reflection since its impedance can be up to several
tens of kΩ, significantly larger than the stub line’s characteristic impedance.
Conversely, the junction’s impedance is lower than the stub line’s characteristic
impedance, resulting in negative reflection.

From Dominant to Recessive States. Let n denote the number of ECUs
connected to the junction through stub lines and ECU1 a transmitter whose
signal voltage need reduce by ΔV to transfer from dominant state to recessive
state. Since the dominant state’s differential voltage value is approximately 2V,
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ΔV has a negative polarity. As seen from Fig. 2, a total of (n+2) lines are con-
nected to the junction (i.e.,. n connected stub lines and the two main bus lines).
The signal transmitted from ECU1 to the junction follows (n + 1) lines in paral-
lel. Thus, the stub lines have the same impedance ZR

n+1 , where the ZR’s nominal
value is 120Ω. The reflectance (Γd) and transmittance (Td) at the junction are
calculated as:

Γd =
ZR

n+1 − ZR

ZR

n+1 + ZR

= − n

n + 2
, Td = 1 + Γd =

2
n + 2

. (1)

Since Γd has a negative polarity, a larger portion of the incident signal is reflected
as n increases, and its small part is delivered into other ECUs.

Denote Zdiff as ECU1’s differential input impedance. Now, we have ECU1’s
front reflectance and transmittance (i.e.,. Γs and Ts):

Γs =
Zdiff − ZR

Zdiff + ZR
, Ts = 1 + Γs =

2Zdiff

Zdiff + ZR
. (2)

When the signal is at the recessive state, Zdiff is much larger than ZR. Conse-
quently, Γs has a positive polarity, and equals approximately one. Thus, ECU1’s
front end reflection direction is the same as the incident signal’s direction, and
the incident signal and reflected signals’ superposition is about twice the original
incident signal.

Fig. 2. Reflection and transmission coefficients at junction and non-terminal ECUs.

For a dominant-to-recessive transition, the negative transition signal ΔV is
transmitted from ECU1 to the junction, undergoing partial transmission and
reflection. The signals are transmitted to other ECUs through the junction and
are partially reflected on the other ECUs’ front end without changing the direc-
tion. At the ECU1’s front, the signal returned from the connection is partially
transmitted to ECU1. These reflections and transmissions are repeated, resulting
in ringing.

From Recessive to Dominant States. In the transitions from recessive state
to dominant state, ECU1’s output impedance is very low. In the recessive state,
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the electrical energy is released on the network. However, when the signal trans-
fers from recessive to dominant states, ECU1’s differential output impedance
becomes lowers and starts charging the network. ECU1 generates the signal of
2V, whose polarity is inverted at the junction and reflected onto ECU1. Unlike
the dominant-to-recessive transition, the reflection signal is partly received at
ECU1 due to the low impedance of ECU1. Since there are no reflections’ repe-
titions, we have small ringing at the recessive-to-dominant state transition.

4 System Model

CAN-FD is designed to transmit large amounts of data at a faster rate and to
replace CAN in future design. It has the potential to advance the current state of
self-driving automobiles and add additional safety and comfort features in non-
automobiles vehicles. As a respond to the possible transition mechanism from
CAN to CAN-FD, we allow a hybrid topology of CAN and CAN-FD, namely,
there exist on the network ECUs sending purely CAN frames, ECUs sending
purely CAN-FD frames, and ECUs sending both CAN and CAN-FD frames.

As shown in Fig. 3, the network consists of two or more CAN nodes, two
termination resistors, and bus lines connecting them. A twisted-wire-pair is com-
monly used for the bus line and its characteristic impedance is defined as R. The
longest bus line (main bus) is terminated with the termination resistors R at
both ends for impedance match. CAN nodes are connected to main bus through
stub lines. In Fig. 3(a), the ECUs connected to the CAN-FD bus can send both
CAN-FD and CAN frames. In Fig. 3(b), blue nodes represent the ECUs that
can send both CAN-FD frames and CAN frames, and yellow nodes only send
CAN frames. In Fig. 3(c), the ECUs connected to the CAN bus only send CAN
frames.

(a) CAN-FD network (b) CAN/CAN-FD hybrid (c) CAN network

Fig. 3. Network topology.

4.1 Threat Models

Without security protection mechanism, the in-vehicle network is vulnerable
to various attacks. For example, the bus-off attack [2] can disconnect ECUs
from the bus, and the masquerade attack [3] can imitate normal ECUs to inject
attack messages. Since one can not determine the sender of any messages, the
attacker might use related identifier to impersonate some ECU. This will seri-
ously threaten passengers’ safety. We consider two attack modes on in-vehicle
CAN and CAN-FD network.
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In the attack mode–known ECU, an attacker exploits the vulnerability of
existing ECUs inside the vehicle. We mention that modern vehicles generally
support wireless connections, such as WiFi, Bluetooth or cellular. Via these
interfaces, the attackers might compromise ECUs to achieve various attacks [19,
20]. This type of attacks seems easy to implement and widespread in life (and
detailed guidance could even be found freely from some online sites), and our
system can detect such attacks accurately and efficiently.

In the second attack mode–unknown ECU, an attacker plugs some extra
external device into the bus to send malicious messages. E.g., the device may
directly access the bus through the On-Board Diagnostics (OBD)-II port3.

4.2 Signal Acquisition and Preprocessing

To obtain the differential signal from CAN-FD/CAN bus prototypes, we first
link the two probes of an oscilloscope to the (CAN-FD)-H/CAN-H and (CAN-
FD)-L/CAN-L lines respectively. Then we use the difference function in the
software of the oscilloscope to calculate the differential signal (CAN-FD)-H) -
(CAN-FD)-L) (or (CAN-H)-(CAN-L)).

Several preprocessing steps are applied to each CAN-FD/CAN signal cap-
tured by the oscilloscope. First, all dominant states are extracted from the sig-
nals. We set a voltage threshold (=0.9V) and voltage greater than the threshold
marks the start of the dominant state. The dominant states are then classified
into five sets (denoted as L1, L2, L3, L4, and L5) based on the number of con-
tained bits. Let Li represent all dominant states containing exactly i bits (see
Fig. 4). Note that CAN-FD/CAN standards specify that a recessive bit is auto-
matically inserted whenever five consecutive dominant bits appear in a CAN-
FD/CAN signal. Thus, no dominant state can contain more than five consecutive
dominant bits.

Fig. 4. A CAN-FD/CAN frame is divided into 5 sets.

4.3 Feature Extraction

We extract the statistical features from the preprocessed electrical CAN-
FD/CAN signal. Due to limited computing resources of ECU, we are more

3 The OBD-II port is near the dashboard interface, and the staff can understand the
status of the vehicle in real time through the port.
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interested in time domain features of the signal and avoid complex frequency
domain conversion. Prior work also discerns the versatility of these features in
ECU identification [5]. We extract 8 features for each set (see Table 1) and a
total of 40 features for each electrical CAN-FD/CAN signal. As too many fea-
tures might cause over fitting and computational cost in practice, we use the
Relief-F [12] algorithm to weight these features. We thus get a general feature
set (see Table 2). In the table, order column represents the order of the input
features, and feature column represents the features selected by the algorithm,
e.g., rms(L40

5 ) means that rms from the set of dominant states of length 5 is
selected as the first feature of the input (where 40 represents the order of this
feature among all features).

Table 1. Vector x is time domain represen-
tation of the data and N its dimension.

Feature Description

Maximum Max = Max(x(i))i=1....N

Minimum Min = Min(x(i))i=1....N

Mean μ = 1
N

∑N
i=1 x(i)

Range R = Max − Min

Average Deviation adv = 1
N

∑N
i=1 |x(i) − μ|

Variance σ2 = 1
N

∑N
i=1(x(i) − μ)2

Standard Deviation σ =
√

1
N

∑N
i=1(x(i) − μ)2

Root Mean Square rms =
√

1
N

∑N
i=1 x(i)2

Table 2. Selected features for classifi-
cation ordered by their rank

Order Feature Order Feature

1 rms(L40
5 ) 11 max(L1

1)

2 adv(L13
2 ) 12 min (L26

4 )

3 σ2 (L30
4 ) 13 R(L20

3 )

4 rms(L21
3 ) 14 rms(L32

4 )

5 mean (L3
1) 15 max(L25

4 )

6 σ (L31
4 ) 16 adv(L5

1)

7 σ2 (L22
3 ) 17 mean (L11

2 )

8 σ (L15
2 ) 18 rms(L16

2 )

9 R(L28
4 ) 19 max(L17

3 )

10 min(L18
3 ) 20 σ (L39

5 )

4.4 Identifying ECUs

ECU identification is a multiclass classification problem and we use supervised
learning to identify the source of CAN-FD/CAN signal. In particular, logistic
regression (LR) is easy to implement with very small amount of calculation,
which is very important for limited computing resources of ECU. To show the
robustness of our system, we also execute support vector machines (SVM) algo-
rithm with good generalization ability.

For the training phase, we generate fingerprints from multiple CAN-FD/CAN
frames of each ECU. The resulting fingerprints are then used together to train
the classifiers. For the testing phase, we have two types of tests. The first is to
evaluate the model obtained by the training stage (i.e., whether or not it can
determine the source of newly received frames), and the second is on intrusion
detection.

5 Source Identification and Intrusion Detection

5.1 Experiment Setup

Our system adapts to different bus prototypes (we have three different network
prototypes, see Fig. 5). Type A (see Fig. 5(a)) contains five CAN-FD nodes that
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can send both CAN-FD and CAN frames. Type B (see Fig. 5(b)) contains five
CAN-FD nodes (the same as in Type A) and four extra CAN nodes that send
purely CAN frames. Type C (see Fig. 5(c)) contains five CAN nodes that send
purely CAN frames. Although the total number of ECUs in real cars might be
up to 70 or even larger, in-vehicle networks are physically divided into several
subnets, e.g., power-related or comfort-related. As analyzed in Sect. 3, ringing
mainly exists between ECUs and junctions. Thus the rationale of fingerprinting
ECUs in real cars is the same as that in our experiments. CAN protocol defines
low-speed CAN and high-speed CAN. Generally speaking, high-speed CAN con-
nects the ECUs related to the important functions of the vehicles. For example,
the ECU that controls the brakes and the ECU that controls acceleration are
both on high-speed CAN, and the data transmission speed of high-speed CAN
is 500 kbit/s. Our CAN bus prototype takes high-speed CAN network topology.

Each CAN node that sends CAN frames consists of an Arduino UNO board
and a CAN shield from Seed Studio. Each CAN shield consists of an MCP2515
controller [16] and an MCP2551 transceiver [17], and the bit rate at which they
send data is 500kbit/s. For CAN-FD nodes, each one consists of a STM32F105
shield and a MCP2517FD controller [18]. MCP2517FD is known as compact,
cost-effective and efficient CAN-FD controller and uses SPI interface and MCU
(Microcontroller Unit) communication. In the experiments, we set the bit rate
of MCP2517FD as 1Mbit/s in the arbitration phase, control phase and CRC
phase, and 2Mbit/s in the data transmission phase. We mention that using signal
characteristics sampled at high bit rate to identify devices is more difficult than
at low bit rate. If our method shows effectiveness on the high-speed CAN-FD
(and CAN), it would also function well on the low-speed CAN-FD (and CAN,
respectively). To maintain the consistency of experimental environments, we
require that all the stub lines, oscilloscope, and other components used in the
experiments are the same in all three prototypes (except the nodes of different
functions).

To simulate the in-vehicle network as realistically as possible, we use twisted
pair as the communication cable in all three prototypes. Each ECU is connected
to main bus through two twisted pairs (CAN-H and CAN-L) (or (CAN-FD)-H
and (CAN-FD)-L). All ECUs are powered by a battery which supplies electric
power to each ECU via USB ports. It is required that main bus (twisted pair as
well) should be longer than any other stub line on the network (our configuration
sets the length of main bus as the sum of those of stub lines). There is a 120 Ω
resistor at each of the two ends of main bus. CAN-FD/CAN signals are measured
by the oscilloscope PicoScope 5244D MSO with a sampling rate of 25 MS/s and
a resolution of 8 bits. Two probes of the oscilloscope are connected to (CAN-
FD)-H/CAN-H and (CAN-FD)-L/CAN-L respectively. For each ECU (CAN-FD
or CAN node), we use 200 frames as the training set (the size of the training
set could be adjusted according to the performance of the model). The machine
learning library Scikit and programming software Python3 are used.
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(a) (b)

(c)

Fig. 5. Three prototypes of network topology: (a) Type A: CAN-FD nodes, (b) Type
B: CAN-FD nodes and CAN nodes, (c): CAN nodes

5.2 Sender Identification

Sender Identification on Pure CAN. For Type C (see Fig. 5(c)), we con-
sider the ringing effect. In particular, we execute SVM and LR by using dominant
states and rising edges, recessive states and falling edges, and ((dominant states
and rising edges) and (recessive states and falling edges)) respectively. The exper-
imental results are shown in Table 3, Table 4, and Table 5. Each diagonal cell in
the same matrix represents the accuracy of the two classification algorithms. As
expected, dominant states and rising edges suffice to fingerprint ECUs.

Using Dominant States and Rising Edges. We then evaluate whether our
system can correctly classify ECUs for Type A and Type B. Table 6 lists the
confusion matrix which allows visualization of the performance of classification
algorithms for 5 ECUs that send CAN-FD frames (Type A). We can see that the
recognition rate of our system is sufficient to correctly recognize the ECU, and
the error rate is very low. Table 7 lists the confusion matrix of 9 ECUs (Type B),
of which 5 ECUs send CAN-FD frames, and the remaining 4 ECUs send CAN
frames. From the result, we can see that our system can still correctly classify
and recognize ECUs even in the case of a hybrid network.
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Table 3. Confusion matrix using
SVM/LR respectively for Type C and
dominant states-rising edges.

ECU 1 ECU 2 ECU 3 ECU

4

ECU

5

ECU

1

99.89/

99.77

0/0 0/0 0.11/

0.23

0/0

ECU

2

0/0 99.59/

99.79

0/0 0.41/

0.21

0/0

ECU

3

0.14/

0.46

0/0 99.76/

99.54

0/0 0/0

ECU

4

0/0 0/0 0.2/

0.02

99.8/

99.98

0/0

ECU

5

0.2/

0.08

0/0 0/0 0/0 99.8/

99.92

Table 4. Confusion matrix using SVM/LR
respectively for Type C and recessive
states-falling edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

86.52/

84.66

0/0 5.23/

6.01

8.25/

9.33

0/0

ECU

2

0/0 88.21/

87.11

6.47/

7.56

0/0 5.32/

5.33

ECU

3

14.34/

11.46

0/0 85.66/

88.54

0/0 0/0

ECU

4

0/0 0/0 15.12/

14.62

84.88/

85.38

0/0

ECU

5

4.32/

5.01

0/0 4.66/

3.84

5.17/

6.23

85.85/

84.92

Table 5. Confusion matrix using
SVM/LR respectively for Type C and
(dominant states and rising edges)-
(recessive states and falling edges).

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

96.12/

95.34

1.81/

2.56

0/0 2.07/

2.1

0/0

ECU

2

4.79/

5.03

95.21/

94.97

0/0 0/0 0/0

ECU

3

5.44/

4.16

0/0 94.56/

95.84

0/0 0/0

ECU

4

0/0 0/0 4.12/

5.02

95.88/

94.98

0/0

ECU

5

2.81/

2.9

0/0 2.34/

2.18

0/0 94.85/

94.92

Table 6. Confusion matrix using SVM/LR
respectively for Type A and dominant
states-rising edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

99.12/

99.34

0/0 0/0 0.88/

0.66

0/0

ECU

2

0/0 99.21/

99

0/0 0/0 0.79/1

ECU

3

0.24/

0.46

0/0 99.76/

99.54

0/0 0/0

ECU

4

0/0 0/0 0.12/

0.02

99.88/

99.98

0/0

ECU

5

0.15/

0.08

0/0 0/0 0/0 99.85/

99.92

Using Recessive States and Falling Edges. To argue the effectiveness of
our recommendation, we also consider the recognition rate if recessive edges and
falling edges are used. As depicted in Sect. 3.2, ringing intensity of falling edges
of signals is higher than that of rising edges. Thus recognition rate would be
affected when the falling edges are used. Table 8 shows the recognition rates
81.54˜86.21% for Type A. Due to space limitation, we write in the Appendix A
(Table 12) the confusion matrix using SVM/LR respectively for Type B where
we can see really low recognition rates (78.01˜83.89%).



216 Y. Liu and X. Li

Table 7. Confusion matrix using SVM/LR respectively for Type B and dominant
states-rising edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 ECU 6 ECU 7 ECU 8 ECU 9

ECU 1 98.89/

99.15

0/0 0/0 0/0 0.91/0.7 0.01/0.03 0/0 0/0 0.19/0.12

ECU 2 0/0 98.01/

99.21

0/0 1.2/0.78 0/0 0/0 0.79/

0.01

0/0 0/0

ECU 3 0/0 0/0 98.99/

99.01

0.92/0.89 0/0 0/0 0/0 0/0 0.09/0.1

ECU 4 0/0 0/0 0/0 99.29/

99.11

0/0 0/0 0.7/0.89 0.01/0 0/0

ECU 5 0/0 0/0 0/0 0/0 98.99/

99.31

0/0 0/0 0/0 1.01/0.69

ECU 6 1.01/0.9 0/0 0/0 0.01/0.1 0/0 98.98/

99

0/0 0/0 0/0

ECU 7 1.32/0.98 0/0 0/0 0/0 0.01/0.01 0/0 98.67/

99.01

0/0 0/0

ECU 8 0/0 0/0 0.9/

0.96

0.01/0.03 0/0 0/0 0/0 99.09/

99.01

0/0

ECU 9 1.11/1.8 0/0 0/0 0/0.03 0/0 0/0 0/0 0/0 98.89/

98.17

Table 8. Confusion matrix using
SVM/LR respectively for Type A and
recessive states-falling edges.

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

84.12/

85.34

12/

13.14

0/0 3.88/

1.52

0/0

ECU

2

0/0 86.21/

85

11.79/

12.78

2/

2.22

0/0

ECU

3

5.14/

6.46

4.12/

4.36

82.76/

81.54

3.51/

3.96

4.47/

3.68

ECU

4

0/0 15.82/

16.62

0/0 84.18/

83.38

0/0

ECU

5

0/0 12.32/

12.01

2.93/

3.17

0/0 84.75/

84.82

Table 9. Confusion matrix using SVM/LR
respectively for Type A and (dominant
states and rising edge)-(falling edges and
recessive states).

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5

ECU

1

94.32/

95.24

3.36/

3.14

0/0 0/ 0 2.32/

1.62

ECU

2

0/0 93.21/

94.21

5.78/

5.01

0/0 1.01/

0.78

ECU

3

5.14/

1.46

0/0 93.76/

94.54

1.1/

0.45

0/0

ECU

4

0/0 5.2/

6.33

0/

0.09

94.8/

93.58

0/0

ECU

5

5.05/

5.15

0.2/

0.23

0/0 0/0 94.75/

94.62

Using (Dominant States and Rising Edges) and (Recessive States and
Falling Edges). We also compare the execution rates when the system uses
(dominant states and rising edges) and (Recessive States and falling Edges).
Table 9 and Table 10 show the results of Type A and Type B respectively, both
lower than that using dominant states and rising edges.



Source Identification from In-Vehicle CAN-FD Signaling 217

Table 10. Confusion matrix using SVM/LR respectively for Type B and (dominant
states and rising edges)-(recessive states and falling edges).

ECU 1 ECU 2 ECU 3 ECU 4 ECU 5 ECU 6 ECU 7 ECU 8 ECU 9

ECU 1 93.89/

94.15

5.98/

5.51

0.13/

0.34

0/0 0/0 0/0 0/0 0/0 0/0

ECU 2 0/0 92.01/

93.21

0/0 0/0 6.01/

5.89

0/0 0/0 1.98/

0.9

0/0

ECU 3 0/0 0/0 94.01/

93.1

0/0 5.53/

6.01

0/0 0/0 0.46/

0.89

0/0

ECU 4 3.9/4.01 0/0 0/0 95.29/

95.11

0.81/

0.88

0/0 0/0 0/0 0/0

ECU 5 0/0 0/0 5.8/6.91 0/0 93.99/

92.31

0/0 0/0 0/0 0.21/

0.78

ECU 6 6.01/6.4 0/0 0/0 2.1/1.5 0/0.01 91.98/

92.09

0/0 0/0 0/0

ECU 7 5.32/4.91 0/0 0/0 0/0 1.08/

1.01

0/0 93.67/

94.01

0/0 0/0

ECU 8 0/0 0/0 0.9/

0.2

0.01/0.03 5.9/6.86 0/0 0/0 93.09/

92.01

1.01/

1.82

ECU 9 1.11/1.8 0/0 0/0 1.01/

0.03

0/0 0/0 0/0 5.1/6.01 93.89/

92.17

5.3 Detecting Known/Unknown ECUs

The proposed ECU identification scheme is readily extended to intrusion detec-
tion system on in-vehicle CAN-FD network and the resulting IDS can not only
detect attacks initiated by external devices but also internal devices. The recog-
nition rate can be up to 99%. Due to space limitation, we write the evaluation
in the Appendix B and C.

In practice, one can deploy the offline trained models on dedicated ECU
which is inserted to the bus. Main function of the exact ECU is to monitor the
traffic silently and detect anomaly. In the ECU, a digital signal processor (DSP
chip, a microprocessor especially suitable for digital signal processing operations)
can be integrated to establish the function of an oscilloscope: collect signals in
real time and pass them to the model for detection.

6 Discussions

Sample Rate. We duplicate the experiments at various sample rates to inspect
our system’s effectiveness, especially for Type B. Note that at different sam-
ple rate one will be at different position of sample sizes (which might convey
tight relationship with system performance). Fortunately, our approach mani-
fests robustness as expected (due to the contribution of rising edges and dom-
inant states). Table 11 shows the average identification and false positive rates
at the sample rates 10˜25MS/s (1000 frames for each ECU).

Comparable Performance Between Type A and Type C. For a given net-
work topology (in terms of the stub length and the number of ECUs), one may
note considerable performance for Type A (CAN-FD) and Type C (CAN) by
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Table 11. LR Performance at various sample rates.

Sample rate(MS/s) 10 15 20 25

Identification rate 97.11 98.95 99.01 99.15

False positive rate 2.89 1.05 0.99 0.85

using any signal characteristics (rising edges, dominant states, falling edges, and
recessive states). In fact, Type C could obtain generally a tiny little better recog-
nition rate than Type A. On the one hand, CAN-FD supports data size up to
512 bits, a drastically larger number than that (64 bits) in CAN specification,
thus the cumulative effect of ringing for Type A might be more powerful than
for Type C. On the other hand, CAN-FD provides variable transmission rate
and our experiments specify the bit rate 2 Mbit/s for the data field of CAN-FD
frames and 1Mbit/s for other fields (e.g., arbitration field, control field and CRC
field), whereas CAN frame (Type C) regulates the rate of 500kbit/s. Namely,
our experiments have the bit width 2000ns in a CAN frame, and 1000ns in the
non-data field of and 500ns in the data field of a CAN-FD frame. Now, it is more
likely for Type A (than Type C) that ringing of recessive states functions unceas-
ing (even though the bit itself was already completed on the network)4 and thus
involves the coming dominant states before it attenuates to be unnoticeable.

Applicability to CAN-FD Network in Real Vehicles. The controllers used
in our evaluation conform to ISO11898-1:2015 and support CAN-FD [18]. We
also take into account the possible transition mechanism from CAN to CAN-
FD (i.e., Type A and Type B). Our results show expressive evidence on the
universal applicability of our approach to forthcoming real vehicles set up by
CAN-FD network. We do hope our results could be used as a step forward and a
guidance on securing the commercialization and batch production of in-vehicle
CAN-FD network in the near future.

Environmental Factors. The electrical characteristics of CAN signals may
remain unchanged for several months [21]. However, in actual vehicles, changes
in the internal temperature of the vehicle will affect the characteristics of elec-
trical signals. A typical example is that the voltage output may deviate from
0.012 V to 0.026 V [15] when we start the vehicle from a cooled turn-off engine
to a warmed-up engine. This situation may also exist for the CAN-FD network.
Howbeit, the length of CAN FD frame is greater than 512 bits, and the number
of dominant states contained would be much likely greater than that in CAN
frame. We might thus expect an acceptable impact of temperature changes on
signal characteristics (and further on the system). Precise assessment is left as
one of the future work.

4 It is already reported [8,9] that for CAN-FD protocol, high-speed data phase and
low-speed arbitration phase challenge the same ringing surrounds (as ringing does
not depend on the transmission rate), and ring of some recessive bit might not
converge until criterion and interfere with the next dominant bit.
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Battery/ECU Aging. Generally speaking, the service life of car battery is of 3
to 5 years and its real usage duration is also related to the driver’s driving habits.
Battery aging might affect the characteristics of the electrical signals. The same
problem exists on CAN network. For now, however, we can not track the impact
of battery aging on the system by simulating CAN-FD nodes and car battery
as there is no CAN-FD vehicle for real driving. We hope we can explore the
interesting topic in the coming future. On the other hand, ECU has a relatively
long service life and the aging process is really slow. It is thus rational not to
consider the impact of ECU aging on electrical signals.

Limitation of the Model. Our method can detect compromised ECUs by
monitoring CAN bus. It can determine whether particular frame on the bus
originates from some ECU that is allowed to commit the corresponding identi-
fier. If not, the system will issue a warning. Otherwise said, an attack will be
detected once a known ECU professes some message identifier affiliated with
another normal ECUs. However, if a known ECU abuses its own identifier (that
is permitted under normal circumstances) to launch some attack, our system
cannot recognize the attack.

Acknowledgement. The work was supported by Shanghai Municipal Education
Commission (2021-01-07-00-08-E00101), the National Natural Science Foundation of
China (Grant No. 61971192), and the National Cryptography Development Fund
(Grant No. MMJJ20180106).

A Source Identification on Type B and Recessive
States-Falling Edges

As depicted in Sect. 3.2, ringing intensity of falling edges of signals is higher than
that of rising edges. Thus recognition rate would be affected when the falling
edges are used. Table 12 show the results for Type B (and Table 8 for Type A)
and we can see really low recognition rates.
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Table 12. Confusion matrix using SVM/LR respectively for Type B and recessive
states-falling edges.

ECU 1 ECU
2

ECU 3 ECU 4 ECU 5 ECU 6 ECU 7 ECU
8

ECU
9

ECU 1 79.89/
78.15

15.98/
16.51

3.12/
4.32

0/0 0/0 0/0 0/0 0/0 1.01/
1.02

ECU 2 0/0 80.01/
79.21

0/0 0/0 16.01/
17.99

0/0 0/0 3.78/
2.8

0/0

ECU 3 0/0 0/0 78.01/
79.1

0/0 18.53/
17.01

0/0 0/0 3.73/
3.89

0/0

ECU 4 16.01/
15.99

0/0 0.01/
0.19

80.29/
80.11

3.6/
3.71

0/0 0/0 0/0 0/0

ECU 5 0/0 0/0 16.48/
15.91

0/0 78.99/
79.31

0/0 1.32/
1.01

0/0 3.21/
3.77

ECU 6 15.01/
14.98

0/0 0/0 3.1/
3.25

0.91/
0.76

80.98/
81.01

0/0 0/0 0/0

ECU 7 15.32/
15.91

0/0 0/0 0/0 1.01/
1.1

0/0 83.67/
82.99

0/0 0/0

ECU 8 0/0 0/0 15.91/
14.99

2.01/
2.18

5.9/
6.86

0/0 0/0 80.09/
81.01

1.99/
1.82

ECU 9 14.11/
15.01

0/0 0/0 1.01/
1.99

0/0 0/0 0/0 0.99/
0.83

83.89/
2.17

Table 13. Confusion matrix of the IDS
using SVM

Support vector machines

Prototype True Predicted

No Attack Yes

CAN-FD No Attack 99.38 0.62

Yes 1.5 98.5

CAN-FD And CAN No Attack 99.01 0.99

Yes 1.18 98.82

CAN No Attack 99.58 0.52

Yes 0.99 99.01

Table 14. Confusion matrix of the IDS
using LR

Logistic regression

Prototype True Predicted

No Attack Yes

CAN-FD No Attack 99.85 0.42

Yes 1.88 98.12

CAN-FD And CAN No Attack 99.11 0.89

Yes 1.89 98.11

CAN No Attack 99.44 0.56

Yes 0.89 99.11

B Detecting Known ECUs

For Type C (Fig. 5(c)), we assume that ECU 1 is normal and the attackers can
use other ECUs to send messages with the same identifier as ECU 1. We collect
a total of 500 frames, of which 300 are used as attack frames and the rest as
normal frames. As shown in Table 13, we achieve a detection rate of 99.01%. For
Type A (Fig. 5(a)), we use the same assumptions and operations as for Type C
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and achieve a detection rate of 98.5% (see Table 13). For Type B (see Fig. 5(b)),
we regard ECU 7, ECU 8 and ECU 9 as attackers (equipped with the ability of
sending both CAN and CAN-FD frames). We collect 1000 frames, of which 600
are used as attack frames and the rest are normal. Table 14 shows the results
with comparable performance to Type A and Type C.

C Detecting Unknown ECUs
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Fig. 6. Error rates at varying thresholds.

For unknown ECUs, we adopt a threshold-based method to extend our model.
For Type A, we first remove ECU 5 and obtain about 500 frames from the
remaining ECUs. These data are used to train a new model. Then we plug ECU
5 back to the network and sample a total of 600 frames now. The obtained
model is used to classify the newly collected data and Fig. 6(a) shows the False
Positive (FP) and False Negative (FN) rates for different threshold values. The
recognition rate can be up to 99.36% at threshold = 0.8. For Type B, we remove
ECU 8, use the remaining ECUs to train a new model, and then plug ECU 8
back to the network. We collect now a total of 1,000 data which will be classified
by the obtained model. Figure 6(b) shows FP and FN vs threshold, and the
recognition rate is 99% at threshold = 0.7. For Type C, we use similar method
and Fig. 6(c) shows FP and FN vs threshold. We see the 99.1% recognition rate
at threshold = 0.83.
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Abstract. Dynamic analysis of IoT firmware is an effective method to
discover security flaws and vulnerabilities. However, limited by emulation
methods concentrating on a single IoT device, it is challenging to find
security issues hidden in communication channels. This paper presents
EmuIoTNet, a tool capable of automatically building an emulated IoT
network for dynamic analysis. First, EmuIoTNet prepares an emulated
hardware environment to emulate a number of devices for firmware.
Then, it employs network virtualization tools to setup two types of net-
works, IntraNet and InterNet, which connect emulated devices, com-
panion applications, and cloud endpoints to support many communica-
tion protocols. Meanwhile, it reconfigures the IP address of emulated
devices at will to support simultaneous operations of multiple users. The
experimental results show that EmuIoTNet can automatically build var-
ious emulated networks and facilitate security analysis in communication
channels.

Keywords: IoT network · IoT security · Device emulation · Network
emulation · Firmware analysis

1 Introduction

With over billions of IoT (internet of things) devices being placed in many
aspects of our lives, e.g., home, hospital, and industry environments, the IoT
devices face increasing attacks on them [5,25]. The attackers leverage exploitable
vulnerabilities in the device to gain the privilege, build botnets, steal private
data, perform DDoS attack, etc., posing severe threats to the devices [6,22,28].

Firmware, which sits between the hardware and the outside world, is reported
to be potentially vulnerable and exploitable. To discover the security flaws and
vulnerabilities, dynamic analysis of firmware, including security testing, vul-
nerability detection and discovery, is one promising approach [7,8,12,24,26]. It
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launches the firmware, carefully monitors the runtime behavior of firmware, and
finally perceives malicious operations on-the-fly. As the first step, launching the
firmware is fundamental to perform dynamic analysis. Many methods have been
proposed in this literature recently. They intend to provide an independent envi-
ronment (i.e., an emulated IoT device) including common hardware (e.g., CPU,
memory) and specific hardware (e.g., NVRAM) so that the firmware can run suc-
cessfully, e.g., Firmadyne [7], Avatar [26], Avatar2 [21], P2IM [14]. With device
emulation, a lot of vulnerabilities have been detected and discovered [23,29].

Unfortunately, emulating only a single IoT device is inadequate to expose
security threats in IoT environments, especially when suffering wide attack sur-
faces. Take the home IoT network as an example, as shown in Fig. 1, the IoT
devices are controlled by a companion application (mobile or desktop) and con-
nect to the cloud endpoints (i.e., public websites) for requesting specific services.
In such a networked scenario, there exist many security issues in the commu-
nication channels due to insecure protocols, unclosed ports, and old vulnerable
firmware. For example, a recent study [5] reports 20 of 27 channels are suscep-
tible to MITM (man in the middle) attack. Therefore, compared to emulating
a single device, emulating an IoT network can provide more opportunities for
dynamic analysis, particularly in communications.

Cloud 

Endpoints

ApplicationsDevices

Fig. 1. Home based IoT network.

In this paper, we present EmuIoTNet to automatically setup an emulated
IoT network for dynamic analysis. EmuIoTNet leverages full-system emulation to
prepare common hardware and proposes an adaptive NVRAM simulator to allow
NVRAM operations, so that a number of firmware can be launched and network
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reachable. Based on the emulated devices, it proposes an automated network
setup approach to build intra-network (IntraNet) and inter-network (InterNet),
thereby allowing the connection between emulated devices, companion applica-
tions and cloud endpoints. Meanwhile, EmuIoTNet designs an IP reconfiguration
approach which sets the given address for each node. Consequently, it supports
many communication protocols, e.g., HTTP, HTTPS, DNS, etc. Compared to
existing works that focus on emulating a single device, EmuIoTNet provides the
ability of emulating an IoT network, which facilities dynamic analysis on not
only a single device but also the communication channels between IoT device
and companion application, and between IoT device and cloud endpoints.

We have implemented EmuIoTNet based on Firmadyne, which is a full sys-
tem emulation platform for IoT devices. EmuIoTNet allows more firmware to be
launched and network reachable than Firmadyne. Moreover, it supports auto-
mated network setup for analyzing HTTP, HTTPS, DNS, SSH, and Telnet traf-
fics. We employ several security analysis tools such as Wireshark, sslsplit, and
Nmap to analyze the emulated networks, and successfully find many weaknesses
in both the firmware and the communication channels. To summarize, this paper
makes the following contributions.

– First, we present EmuIoTNet, an automated tool to build emulated IoT net-
works for dynamic analysis on both devices and the communication channels
between them.

– Second, our implementation addresses several challenges in building IoT net-
works, including an adaptive NVRAM simulator to emulate IoT devices, an
automated network setup approach, and an IP configuration approach.

– Third, we prepared a dataset of 1,026 firmware and several companion appli-
cations to evaluate EmuIoTNet. The results show that EmuIoTNet is scalable
and compatible in building IoT networks, and is useful in supporting dynamic
analysis.

The rest of the paper is organized as follows. First, in Sect. 2, we present a
brief background on IoT network security and summarize some related work of
IoT emulation methods. We then present the basic design of EmuIoTNet, includ-
ing the overview architecture and challenges we need to tackle with in Sect. 3.
The implementation details of EmuIoTNet is described in Sect. 4. In Sect. 5,
we evaluate EmuIoTNet in three aspects to show its scalability, compatibility
and effectiveness. Finally, we discuss some existing limitations of our proposed
framework and conclude our work in Sect. 6.

2 Background and Related Work

2.1 Security Issues in IoT Network

IoT devices are facing increasing attacks on them. For example, Kaspersky
reported 102 million attacks on IoT devices in the first 6 months of 2019, compared
with just 12 million attacks in the first half of 2018 [3]. The devices are suffering a
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wide range of attacks, including Denial of Service, Botnet, Device hijacking, and
Man-in-the-middle attack, making IoT security an important issue [4].

Firmware is the onboard software that sits between the hardware and the
outside world in IoT devices. Generally, it is composed of boot-up software,
operating system, drivers, applications, and web servers. Firmware is known
to be vulnerable, mainly because the associated devices have low computational
power and hardware limitations that don’t allow for built-in security features [1].
For example, due to the heavy computational overhead of encryption, the users’
passwords are stored in plain text, and many web services in firmware are still
using insecure HTTP rather than HTTPS. Besides, even if a vulnerability has
been reported, the firmware may not be updated and repaired in time, leaving
the affected devices still in danger.

Firmware analysis is essential in discovering the security issues in IoT devices.
However, recent studies report that IoT suffers a wide range of attacks. They not
only attack the device (vulnerabilities, weak authentications) but also attack the
companion application (gain-privilege, information leakage) and communications
(lack of encryption, MITM). Therefore, analysis of only a firmware is insufficient
to find threats such as MITM attack in the network environment.

2.2 IoT Emulation Methods

Dynamic analysis is one promising method in firmware analysis. Generally, it
launches the firmware, monitors the runtime behavior, and employs analysis tools
to detect security issues [9,21,23]. Device emulation is necessary and essential
for dynamic analysis. Generally, it refers to preparing the environment (software
or hardware) so that the firmware can be launched, run continuously, and be
network reachable.

Current device emulation methods fall into two categories, full software emu-
lation and hybrid emulation. Full software emulation uses software to emulate the
function of hardware required for firmware execution, including CPU, memory,
disk, etc. [11,12,20]. For example, Firmadyne [7] employs QEMU to emulate
CPUs of different architectures to support Linux-based firmware. It is totally
software-based and thus shows well scalability and compatibility. HALucinator
[10] decouples the hardware from the firmware by providing high-level replace-
ments for HAL functions (a process termed High-Level Emulation–HLE). It
locates the library functions of firmware, and then after binary analysis, it pro-
vides generic implementations of the functions in a full-system emulator, which
enables re-host firmware and allows the virtual device to be used normally.
P2IM [14] models the I/O behaviors of the processor-peripheral interfaces with
a generic processor emulator (QEMU), which is the first to enable peripheral-
oblivious emulation of MCU devices. And in turn, it allows MCU firmware to
be dynamically tested with high code coverage, at scale, and without hardware
dependence. PRETENDER [15] creates models of peripherals automatically by
recording the interactions between the original hardware and the firmware. It
allows for the execution of the firmware in a fully-emulated environment and
the models are interactive, stateful, and transferable. However, due to diversity
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of IoT devices, many firmware cannot be successfully launched when specific
hardware is missing, e.g., camera lens, Bluetooth chip, etc.

The hybrid emulation method mitigates this problem by combining software
emulation and physical hardware. It first launches the firmware in a software
emulation environment (mainly the CPU) and then forwards specific instructions
to the physical hardware, so that the firmware can run successfully [16–19,24].
For example, Avatar [26] is a framework that enables complex dynamic analy-
sis of embedded devices by orchestrating the execution of an emulator together
with the real hardware. By injecting a specific software proxy in the embedded
device, Avatar can execute the firmware instructions inside the emulator while
channeling the I/O operations to the physical hardware. It leverages the real
hardware to handle I/O operations, but extracts the firmware code from the
embedded device and emulates it on an external machine. Taking a hybrid app-
roach, Avatar overcomes the limitation of full software based firmware emulation.
Avatar2 [21], a successor of Avatar, is a dynamic multi-target orchestration pro-
cess framework that aims to achieve interoperability between different dynamic
binary analysis frameworks, debuggers, emulators, and actual physical devices.
Avatar2 enables analysts to organize different tools in complex topologies and
then transfers the execution of binary code from one system to another. It trans-
fers the internal state of the device/application automatically, as well as fowards
the configuration of the I/O and memory access to the physical peripherals or
emulated targets. This method provides more opportunities for firmware exe-
cution with the assistance of physical hardware, especially the one that cannot
be emulated. However, it requires experienced engineers to develop interfaces
for specific hardware, which is non-trivial and greatly limits the scalability of
firmware analysis.

Many studies have employed device emulation to perform dynamic analysis
and successfully discovered dozens of vulnerabilities [13,27]. For example, Firm-
Fuzz [23] is an automated device-independent emulation and dynamic analysis
framework for Linux-based firmware images. It provides targeted and determin-
istic bug discovery within the firmware image by employing a grey box-based
generational fuzzing approach coupled with static analysis and system introspec-
tion. Firm-AFL [29] is a high-throughput greybox fuzzer for IoT firmware. By
combining system mode emulation and user-mode emulation, it proposes a novel
technique called augmented process emulation, providing high compatibility as
system-mode emulation and high throughput as user-mode emulation. Never-
theless, the emulation of only a single device makes them unable to perform
dynamic analysis on companion application and communication. Consequently,
they fail to discover many aspects of security issues hidden in IoT networks.

3 Basic Design of EmuIotNet

3.1 Design Goals

EmuIoTNet intends to build emulated IoT networks for supporting dynamic
analysis, especially on communication between IoT devices, companion
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applications (mobile or desktop), and cloud endpoints. Considering that network
scenarios are diverse due to various vendors, firmware, and protocols, EmuIoT-
Net is designed to satisfy the following goals.

First, a wide range of IoT devices spanning different vendors. Due to the
large number and variety of firmware, it is necessary to support a wide range of
IoT device vendors (e.g., Netgear, D-Link, TP-Link), device types (e.g., router,
switch, camera), and firmware versions.

Second, various types of communications. EmuIoTNet provides connections
between different components for analyzing various communication traffics. 1)
Connection between application and IoT device to support Telnet, HTTP,
HTTPS, UPnP. 2) Connection between IoT device and cloud endpoint to sup-
port DNS, NTP, HTTP. 3) Connection between application and cloud endpoint
to support DNS, HTTPS.

Third, automated network setup. EmuIoTNet enables multiple users to
deploy and operate IoT networks simultaneously. A user simply chooses IoT
devices (actually the firmware) and companion application, provides the net-
work topology, and leaves the complicated network setup to EmuIoTNet.

3.2 Overview Architecture

The overview architecture of EmuIoTNet is illustrated in Fig. 2. As can be seen,
it consists of three components, i.e., Controller, Device Emulator, and Network
Configurator.

EmuIoTNet

Host

Device Emulator

Device Device

Controller

Network 

Configurator
Host

Device Emulator

Device App

Network 

topology

Apps

Firmware
IP IP

DeviceApp

Device

DeviceApp

Device Cloud

IntraNet InterNet

Fig. 2. Overview of EmuIoTNet.

Controller. When using EmuIoTNet, the user first feeds a network topology
which describes i) the nodes within the network (mainly the devices and the
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companion applications), ii) how the nodes are connected, and iii) whether they
access the cloud endpoints. Following the topology, Controller determines the IP
address for each node, requests the firmware and applications from the database,
and employs Device Emulator to emulate the node, which is either an emulated
IoT device for running the firmware or a companion application for operating
the emulated IoT device. Finally, it leverages Network Configurator to configure
IP for nodes so that the IoT devices, applications, and cloud endpoints are
connected.

Device Emulator. It is responsible for emulating two types of nodes, i.e., IoT
device and companion application. For IoT device, Device Emulator prepares the
environment so that the firmware (mainly the services inside, e.g., web server)
can be launched and runs continuously. For application, it takes charge of emu-
lating desktop node or mobile node where the application can be deployed, e.g.,
Netgear Genie that manages Netgear routers, TP-Link that manages TP-Link
devices.

Network Configurator. It takes charge of connecting IoT devices, applica-
tions, and cloud endpoints so that communication protocols, including HTTP,
HTTPS, DNS, NTP, UPnP, can be supported. In addition, it is responsible for
configuring the IP address on-demand, especially when multiple users simulta-
neously deploy IoT networks.

3.3 Challenges

Although the idea of building IoT networks is simple, there exist several chal-
lenges to realize EmuIoTNet.

First, only a small number of firmware can be network reachable using exist-
ing emulation methods. E.g., Firmadyne, a full software emulation method,
enables 8,591 of 23,035 firmware successfully launched, yet only 1,971 of them are
network reachable [7]. Such a low rate definitely limits the capability of building
IoT networks. The hybrid emulation method, such as Avatar, has the potential
to run more firmware with the assistance of physical hardware [26]. However, the
existence of hardware hurts both scalability of device emulation and automation
of network setup.

Second, there exist many types of communication needs for different analysis
requirements. For example, a companion application may operate many emu-
lated devices at the same time, and an emulated device expects to connect to
the cloud endpoints to request services. Accordingly, the analysis may be per-
formed on local communication or remote communication. Therefore, it requires
automated network setup to build IntraNet (a local and isolated network) or
InterNet (a network that can access public websites) for different requirements.

Third, the firmware often stores the default IP address in a hard-coded man-
ner, which causes many emulated devices to share the same address, for example,
192.168.0.1 and 192.168.1.1 in many Netgear and OpenWrt routers, causing in
IP conflicts in building networks. When multiple users deploy networks con-
currently, the IP range of these networks should be different. Although manual
configuration is feasible, it is tedious and requires network experience.
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4 Implementation Details

This section describes how to tackle the challenges above. We start by presenting
the emulation approach to emulate IoT devices and companion applications.
Then, we explain how to set up two network modes. Finally, we introduce how
we reconfigure the IP of the emulated IoT devices.

4.1 IoT Device Emulation

EmuIoTNet leverages Firmadyne, a full software emulation method, to emu-
late a single IoT device for a given firmware. As mentioned before, although
Firmadyne enables many firmware to run successfully, the success rate is still
low. There exist many factors that limit Firmadyne’s ability. Of them, the miss-
ing or imperfect NVRAM device is one key factor. In detail, many drivers and
applications in firmware request execution-related parameters from NVRAM. If
they fail to read the value, the application or even the device would stop exe-
cution. Firmadyne hard-codes a few commonly used parameters in a simulated
NVRAM. Meanwhile, it attempts to read values from several file locations, e.g.,
/etc./nvram.default. Unfortunately, these files are often missing, and the hard-
coded values cannot satisfy the diverse requirements from a larger amount of
firmware, making many firmware crash when requested parameters are not pro-
vided.

To mitigate this problem, we implement NvramSim, an adaptive NVRAM
simulator capable of providing requested parameters on demand. As shown
in Fig. 3, NvramSim is mainly composed of two modules, Nvram Library and
Nvram Configuration.
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Fig. 3. Workflow of NvramSim.
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Nvram Library provides interfaces related to NVRAM functions, such as
nvram get, nvram set, nvram get buffer. It is statically loaded during the OS
boot stage so that those functions issued by the firmware will be redirected
to Nvram Library. Subsequently, the associated functions in Nvram Library
will operate Nvram Configuration, a file storing parameters that are requested
by the firmware, e.g., boardflags, boardtype of Netgear. Compared to the hard-
coded manner, NvramSim decouples the relatively unified interfaces from diverse
configurations. Therefore, the required parameters can be provided at will and
modified adaptively without interfering with the interfaces.

Preparing the configuration requires manual effort. Fortunately, the firmware
of the same vendor are likely to share similar or even the same parameters.
Inspired by this, we can prepare a template configuration for each vendor at
prior. Upon device emulation given a firmware, we simply place the associated
template configuration and the nvram library into the firmware, as shown in
the Boot stage in Fig. 3. Thereafter, when called during the Running stage, the
NVRAM functions will fetch the parameters from the configuration and return
them to the firmware, thereby enabling the successful execution of the firmware.
We have prepared template configurations for many vendors, such as Netgear,
TP-Link, D-Link, etc., which help improve the number of emulated IoT devices
a lot. It is also feasible for an user to generate a template configuration for a
new vendor by googling the NVRAM configurations.

4.2 Companion Application Emulation

Companion application is used to control the associated devices. To deploy an
application in IoT networks, we first install the application in QEMU virtual
machine (VM) configured with desktop OS (e.g., Windows 7) or mobile OS
(e.g., Android) and then launch it to connect the emulated device.

Note that it’s complicated to automatically install or launch the application
unless the operating system is customized. Fortunately, an application intends
to manage a series of IoT devices, e.g., TP-Link is compatible with dozens of
routers. Therefore, the number of applications is much less than the number of
devices. Motivated by this, we adopt the idea of template-based VM deployment
used in many cloud platforms. Specifically, we manually create the VM, install
the OS and the companion application at prior, and prepare the setup steps
such as user registration and application configuration. Afterward, the prepared
VM is stored as an application template. When a companion application is
desired upon network setup, EmuIoTNet deploys the VM from the associated
application template, configures the network on-demand, and starts the VM.
Finally, the user launches the application to connect the device for dynamic
analysis.
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It’s worth noting that the installation of Android in QEMU VM is more
complicated than Windows, mainly because Android requires specific hardware
support such as camera lens and sensors, which are not provided by QEMU.
Fortunately, Android-x86, an open-source project, offers a complete solution for
running Android on common QEMU platforms [2]. Thus, in EmuIoTNet, we
install Android-x86 in QEMU VM to run mobile applications.

4.3 Network Models

EmuIoTNet provides two modes of networks, i.e., IntraNet and InterNet, that
connect the companion application, emulated devices, and cloud endpoints.
Therefore, it supports dynamic analysis on many protocols involved in IoT net-
works.

IntraNet. It is an isolated network that provides local connection between the
companion application and the emulated devices, so that Telnet, UPnP, HTTP,
and HTTPs traffic between the two can be analyzed. We employ two repre-
sentative network virtualization tools, Open vSwitch and VXLAN, to set up
IntraNet. More specifically, suppose a 3-node network is to be deployed, where
App1 and Dev1 are placed on Host1 and Dev3 is placed on Host2, as shown in
Fig. 4. We first leverage Open vSwitch to establish a virtual switch on each host,
e.g., vSwitch1 and vSwitch3, and connect the network nodes to the associated
switch, e.g., App1 and Dev1 to vSwitch1. Then, we use VXLAN to set up a
tunnel (tunnel1) between vSwitch1 and vSwitch2, so that the nodes connected
to the two switches can communicate with each other. Finally, App1, Dev1 and
Dev3 form an isolated network even they are placed on disparate hosts.

InterNet. It allows the connection among three components, so that the traffic
outside to the cloud endpoints, e.g., DNS, NTP, HTTP, can also be analyzed. To
accomplish this, we extend IntraNet with NAT (network address translation).
As shown in Fig. 4, Dev2, App2 and Dev4 have formed an IntraNet via tunnel2.
Then, we add a gateway GW to vSwitch4, which serves as the gateway of this
network. Meanwhile, we use iptables to NAT the traffic so that the traffic sent
from these nodes will be transmitted to the physical network interface of Host2
and finally reach the cloud endpoints. Eventually, these nodes are able to access
cloud endpoints.

Note that EmuIoTNet currently only supports wired communication. There-
fore the nodes using other communication types, such as Wifi, Bluetooth, Zigbee,
cannot be connected. We leave the support of them as our future work.
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Fig. 4. IoT network setup.

4.4 IP Configuration

IP configuration sets the desired IP addresses to a node when deploying networks.
IP configuration for a VM configured with desktop OS or mobile OS has been well
studied. Therefore, this paper focuses on automatically configuring IP addresses
for emulated IoT devices. EmuIoTNet presents two methods for IP configuration,
i.e., dynamic configuration and static rewriting.

Dynamic Reconfiguration. It reconfigures the IP address after the emulated
device and its services have been started. Specifically, it executes a configuration
script, which involves setting the IP address, adding a route to the gateway, and
setting DNS nameserver (only necessary for InterNet). For example, many Linux-
based systems place services initialization-related scripts in directory /etc./rc.d,
and execute them in order by the assigned priorities. Therefore, we can place the
configuration script in this directory with a lower priority. In this way, the script
can be executed automatically, and the reconfiguration result is not affected by
other scripts.

Static Rewriting. It rewrites the textual configurations or binary applications
to set the IP address, netmask, route and gateway. Some firmware store network
configuration in a plain text, e.g., /etc./network/interfaces. In this case, we
use string replacement to modify the configuration. However, some firmware
hard-code this information in binary applications, which makes rewriting non-
trivial since it requires careful operations to ensure binaries’ integrity. To achieve
this, we design a binary rewriting method, which is simple and easily adapts to
binaries on different architectures, such as mipsel, mipseb and armel. Specifically,
we open the binary application in binary format and search the old hard-coded
IP. Once found, if the old IP is longer than the new assigned IP, then the old IP
is replaced directly with the new IP in the binary form. Otherwise, we check k
bytes following the old IP, where k is the length of new IP minus the length of
old IP. If these bytes are all 0s, then the replacement can be performed safely.
Or else, we request Network Configurator to re-assign a shorter IP address, e.g.,
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10.0.0.0/24 instead of 192.168.0.0/16 which is used in most firmware, to ensure
the new IP can be filled without damaging the binary.

Dynamic reconfiguration is easy to implement. However, it may fail when
some shell commands are missing (e.g., route), or the /etc./rc.d directory does
not exist. Besides, some firmware may perform improperly if the IP address
assigned with dynamic reconfiguration is inconsistent with the hard-coded
address. Therefore, static rewriting will be employed to tackle these issues.

5 Evaluation

We evaluate EmuIoTNet in three aspects. First, how many firmware can be
successfully launched and network reachable, i.e., scalability. Second, how many
types of IoT networks can be built, i.e., compatibility. Third, whether it helps
to perform analysis, i.e., effectiveness.

To answer these questions, we prepare a dataset from Firmadyne dataset,
containing 1,026 firmware from 5 IoT vendors, i.e., TP-Link, D-Link, OpenWrt,
Netgear, Tomato by Shibby. These vendors are selected since they release a
large account of firmware. Meanwhile, we download 7 associated companion
applications, i.e., TP-LINK (desktop and mobile), Mydlink Lite (desktop and
mobile), Netgear Genie (desktop and mobile), Openwrt on Android (mobile).
Then, we employ EmuIoTNet to emulate devices, build emulated networks, and
perform analysis on networks.

5.1 Scalability in Device Emulation

EmuIoTNet employs Firmadyne to emulate a single device. Thus, it is expected
to show well scalability and compatibility benefitted from Firmadyne. Moreover,
it improves Firmadyne with NvramSim in device emulation. We first compare
the two in terms of three gradual metrics, i.e., how many firmware can be success-
fully launched, network reachable, and port opened. Here, a firmware is launched
successfully if its initial services and applications can be started. Following Fir-
madyne, we use whether the IP can be inferred as the sign. Moreover, it is
network reachable if the IP address gets pinged, and it is port opened if any of
the following ports is opened, i.e., 21 of FTP, 22 of SSH, 23 of Telnet, 53 of DNS,
80 and 8080 of HTTP, 123 of NTP, 443 of HTTPS, 1900 and 5000 of UPnP.

As illustrated in Table 1, EmuIoTNet launches more firmware than Firma-
dyne and enables more emulated devices to be network reachable and port
opened.
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Table 1. Comparison of device emulation.

Vendor Count Extracted Firmadyne EmuIoTNet

L∗ NR PO L NR PO

D-Link 113 59 42 24 22 44 33 31

TP-Link 184 68 48 42 40 48 42 40

Tomato 102 102 6 6 0 36 36 36

Netgear 282 113 29 17 8 49 33 29

OpenWrt 345 328 90 52 0 116 63 0

Total 1, 026 670 215 141 70 293 207 136
∗L (launched), NR(network reachable), PO(port opened).

For example, for 282 Netgear firmware of which 113 are extracted1, Firma-
dyne successfully launches 29 and enables 17 to be network reachable. As a com-
parison, EmuIoTNet launches 49 firmware, and 33 of them are network reachable.
Meanwhile, it increases the number of firmware whose ports are opened from 8 to
29. The improvement is contributed to NvramSim, which provides the required
parameters upon initialization of services and applications. Thus, many services
and applications can start and run successfully. Note that EmuIoTNet does
not improve Firmadyne for TP-Link firmware, mainly because the parameters
required by TP-Link firmware have been hard-coded in the simulated NVRAM
of Firmadyne. In total, EmuIoTNet improves Firmadyne by 36.3%, 47.1%, and
94.3% respectively in three metrics. Consequently, it provides opportunities for
performing dynamic analysis on more firmware.

5.2 Compatibility in Network Setup

We employ EmuIoTNet to build networks that connect the companion applica-
tion, emulated devices, and cloud endpoints. Note that most applications interact
with devices via HTTP interface (e.g., port 80), thereby ignoring other chan-
nels. Thus, we also deploy SSH client and Telnet client as applications to estab-
lish more communication channels. In addition, although many vendors have
released companion applications to control the devices, an application may only
work with a certain series of devices and firmware versions. E.g., Netgear Genie
currently supports 18 Netgear devices, which is far smaller than the total num-
ber of released devices. Considering that many devices, e.g., routers, provide
control-related HTTP interface that allows both applications and web browsers
to interact with, we therefore install Chrome browser in VM and use the browser
as the companion application to connect emulated devices.

When building a network, we only use one device and one application. If the
two can communicate with each other, then the network is built successfully.

1 Some firmware cannot be extracted if they are encrypted or do not contain a valid
file system.
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Table 2 lists the number of networks via various communication channels. As
can be seen, of 33 Netgear emulated devices that are network reachable, 21
are connected with HTTP applications. Therefore, these 21 networks support
the analysis on HTTP traffic. Meanwhile, 2 and 14 emulated devices can be
connected with SSH and Telnet clients respectively, and 28 emulated devices
request DNS from public sites. OpenWrt devices are unable to build networks
since all their ports are closed. Despite this, the results in Table 2 demonstrate
that EmuIoTNet can build a variety of networks to support analysis on many
communication protocols.

Table 2. Number of networks via different communications.

Count SSH Telnet HTTP DNS

D-Link 33 0 18 27 2

TP-Link 42 0 1 26 0

Tomato 36 32 24 23 33

Netgear 33 2 14 21 28

OpenWrt 63 0 0 0 0

5.3 Dynamic Analysis on Networks

We perform analysis on the emulated devices and networks. Some important
results are listed below.

1) DNS services. 63 emulated devices use open DNS services, i.e., 8.8.8.8 of
Google, 208.67.222.222/220 and 208.67.220.220/222 of OpenDNS. The use of
open DNS services is vulnerable to DNS cache poisoning. DNS cache poison-
ing is a user-end method of DNS spoofing. The user system will record the
fraudulent IP address in the local memory cache, causing DNS to recall bad
sites. In this way, users are at risk of personal data leakage, malware infection,
and halted security updates.

2) HTTP protocol. 97 emulated devices use HTTP protocol and 7 of them
do not use TLS/SSL sessions (HTTPS). HTTP is insecure since its data is
not encrypted, and it can be intercepted by attackers to gather data. Built
on top of HTTP, HTTPS uses SSL or TLS to provide encryption processing
data, verify the identity of the other party, and protect data integrity.

3) UPnP. 15 emulated devices open 1900 or 5000 port (UPnP), which originally
designed to find other smart devices and connect to them automatically. How-
ever, the use of open UPnP may allow an attacker to gain control of multiple
devices once a single device has been hijacked. The vulnerabilities in the
UPnP protocol can also lead the router to direct the network to another
remote address (rather than the local IP address) by malicious programs or
make the device at the risk of being exploited by attackers to perform DDoS
attack.
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4) NTP. 55 emulated devices use NTP protocol for synchronizing the time. It’s
known that NTP is vulnerable to NTP Reply Flood Attack, DDoS attack,
MITM attack, etc.

5) MITM. We use the emulated networks to detect whether the communication
is susceptible to MITM attack. MITM attack means a perpetrator positions
himself in a conversation between a user and an application—either to eaves-
drop or to impersonate one of the parties, making it appear as if a normal
exchange of information is underway, aiming to steal personal information.
We use Wireshark and sslsplit to inspect HTTP and HTTPS traffic and test
their susceptibility to MITM attack. Of the 20 communications we inspected,
3 are susceptible to a MITM attack.

6 Discussion and Conclusion

This paper presents EmuIoTNet, a tool of automatically building emulated IoT
networks for dynamic analysis. Compared to existing works on a single IoT device
emulation, EmuIoTNet provides connections between IoT devices, applications,
and cloud endpoints, enabling many network traffic types to be analyzed. A
set of results show that EmuIoTNet is scalable and compatible in building IoT
networks and effectively support dynamic analysis.

There exist two main limitations in EmuIoTNet. First, limited by Firma-
dyne, EmuIoTNet currently only emulates wired routers and switches yet fails
for wireless devices and devices that require specific hardware (e.g., camera lens).
Second, it requires manual operations for dynamic analysis, including tool setup,
traffic capture and analysis. In the future, we will work towards these two direc-
tions. We plan to explore other emulation methods, e.g., Avatar, to emulate
more devices. In addition, we plan to integrate several automated testing tools,
e.g., fuzzing tools, to support automated analysis.
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Abstract. Vulnerability is one of the main causes of network intru-
sion. An effective way to mitigate security threats is to find and repair
vulnerabilities as soon as possible. Traditional vulnerability detection
methods are limited by expert knowledge. Existing deep learning-based
methods neglect the connection between semantic graphs and cannot
effectively deal with the structure information. Graph neural network
brings new insight into vulnerability detection. However, benign nodes
on the graph account for a large proportion, resulting in vulnerability
information could be disturbed by them. To address the limitations of
existing vulnerability detection approaches, in this paper, we propose
ACGVD, a vulnerability detection method by constructing a graph net-
work with attention. We first combine multiple semantic graphs together
to form a more comprehensive graph. We then adopt the Graph neural
network instead of the sequence-based model to automatically analyze
the comprehensive graph. In order to solve the problem that the vul-
nerability information could be covered up, we add a double-level atten-
tion mechanism to the graph model. We also add a novel classification
layer to extract the high-level features of the code. To make the experi-
ment more realistic, the model is trained over the latest published real-
world dataset. The experiment results demonstrate that compared with
state-of-the-art methods, our model ACGVD achieves 5.01%, 13.89%,
and 8.27% improvement in accuracy, recall and F1-score, respectively.

Keywords: Vulnerability detection · Graph neural network ·
Attention · Comprehensive graph

1 Introduction

The existence of vulnerabilities allows attackers to access to or destroy the system
without authorization, leading to great economic losses for users and endangering
national security [23,33]. Although there have been many vulnerability detection
tools, the number of new vulnerabilities is still emerging in an endless stream
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 243–259, 2021.
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[4,5,11] due to the high complexity of software writing process. As a result, it is
necessary to find and repair vulnerabilities earlier to minimize the loss [16].

Traditional vulnerability detection methods can be categorised into static
analysis [2,18,28], dynamic analysis [9,13,19,27,34] and hybrid analysis [15,31].
However, these methods rely on expert knowledge and known vulnerability
related patterns, resulting in low coverage of vulnerability types. The emergence
of deep learning has alleviated the reliance on human experts. Deep learning can
automatically extract vulnerability feature information from training samples.
But this method has the following problems. The program is either treated as a
simple natural language sequence [14] or a single semantic graph [8,17,20–22,24–
26]. The former treatment of program completely loses the structural information
of the code. The latter neglects the relationship between semantic graphs despite
it considers the structural information. For example, the semantic Control Flow
Graph (CFG) cannot detect data related vulnerabilities, syntax vulnerabilities
cannot be identified by CFG and Data Flow Graph (DFG). Therefore, only when
we consider theses semantic graphs together can we detect more types of vul-
nerabilities. Besides, the semantic graph is directly put into the sequence-based
model for classification in deep learning. The sequence-based models are not
applicable to non-Euclidean structures on graphs. Because each node in a graph
has a different number of neighbors.

To cope with above challenges, we propose a more comprehensive graph which
combines multiple semantic graphs. Thus, we can incorporate more sufficient
syntax and semantic information of vulnerabilities. In addition, the emergence
of graph neural network offers a feasible solution to process the non-Euclidean
structures [36]. But the graph model is easy to be disturbed by considerable
benign nodes, leading to vulnerability information cannot be fully explored.

Fig. 1. An example of the Double Free vulnerability.

As shown in Fig. 1(a), this is a potential Double Free vulnerable code from
Qemu dataset, due to it releases the heap without first determining whether
′s− > write msgfds′ has been freed. The patched code is shown in Fig. 1(b).
The vulnerability exists in line 5 of the code. Lines 1 and 3 of the code have
data dependence on the vulnerability, while lines 6, 7, 8, 9, 10 and 11 are non-
vulnerable lines. With the increase of the number of function lines, more non-
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vulnerable lines corresponding to the benign nodes on graph will occur, which
bring much interference to judgment. Consequently, the node representation of
the whole graph vector tends to be benign, and the vulnerability information
could be covered. Hence, we design a node-level attention mechanism to pay
more attention to those vulnerability related nodes, when the number of nodes
is relatively large.

In addition, in some cases, a few semantic graphs in the comprehensive graph
are more important than other semantic graphs for vulnerability detection. As
shown in Fig. 1, DFG contains more information about the flow direction of vul-
nerability related data ′s− > write msgfds′. Therefore, DFG is more impor-
tant for vulnerability identification, while the rest of the semantic graph only
provides auxiliary information for vulnerability detection. Hence, our work also
proposes a path-level attention mechanism, believing it can automatically give
more attention to semantic graphs that are more relevant to the vulnerability.

Finally, in order to separate the vulnerable features from the non-vulnerable
features, we adopt a novel classifier model that is more suitable for our needs
and conduct experiments on the latest public dataset.

The main contributions of this paper are as follows:

– We combine multiple semantic graphs to form a more comprehensive code
graph representation. By taking into account all the semantic graphs (i.e.,
CFG and DFG), we can detect more types of vulnerabilities than single
semantic graph.

– In order to make better use of the structural information of the code, we
use the graph neural network to learn the vector representation of the code
automatically. So the long-range dependencies induced by using the same
variable or function in distant locations can be treat as a relationship between
neighbors. And we propose a novel classifier layer, which can extract more
high-level code features after graph networks.

– To alleviate the problem that the vulnerability information in the graph is
easy to be concealed, the node-level and path-level attention mechanism are
designed to extract the vulnerability information. The double-level attention
mechanism can learn attention weights on different parts of graph, effectively
paying more attention to those vulnerable related information.

– Finally, we evaluate ACGVD on the latest published real-world dataset, and
the results prove the effectiveness of our scheme.

The rest of this paper is organized as follows: Sect. 2 reviews the related work
of this paper. Section 3 details the design of the proposed system. In Sect. 4,
we introduce the implementation environment of the experiment. In Sect. 5, we
provide the experiment results and provide case studies to demonstrate how
our model performed compared with other methods. In Sect. 6, we analyze the
threats to performance of our work. Section 7 concludes the paper.
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2 Related Work

The traditional static analysis methods include inference method [2] and rule-
based method [18,28]. Inference method [2] is to conclude all possible behaviors
in the process of program execution to eliminate the existence of vulnerabilities,
but this method is limited by the generalization of behavior types. Rule-based
method [28] uses pre-defined rules to observe matching degrees between programs
and rules. However, the recognition accuracy depends on the quality of rules [31].

Different from static analysis, dynamic analysis method can monitor the
behavior of program during running. Dynamic analysis methods include sym-
bolic execution [19], fuzzing [34], and taint analysis [27]. Ghaffarian et al. [15]
by putting specific test cases to determine whether the program has vulnerabili-
ties during the program running. Newsome et al. [27] generated path constraint
conditions to judge path reachability by collecting branch conditions and related
variables during program execution. In order to make full use of the advantages
of dynamic analysis and static analysis, a hybrid analysis method is proposed in
[15], but it is easily limited by the two methods.

Work [29,30] regard the program as a text sequence. Scandariato et al. [30]
directly uses the Continuous Bag-Of-Words (CBOW) technology in natural lan-
guage processing technology to express the program as a collection of related
tokens as the feature of the vulnerability, ignoring the sequence feature of the
code. Dam et al. [14] use Long Short-Term Memory (LSTM) technology to cap-
ture the context of code, although this method can capture the sequence rela-
tionship between codes better, it ignores the structural features between codes.
Li et al. [20] take the structural information between codes into consideration,
the program is first transformed into Abstract Syntax Tree (AST), and then
four rules are used to extract nodes to obtain intermediate code- and Semantics-
based Vulnerability Candidate (iSeVC). After that, it is converted into sequence
tokens and input into the sequence model Recurrent Neural Network (RNN) for
classification. Harer et al. [17] obtain the Control Flow Graph (CFG) according
to the control flow relationship in the code, and make the vector representation
of fixed size by hand, which is input into the Random Forest (RF) for learning
later. Li et al. [21] use Program Dependence Graph (PDG) as a code feature rep-
resentation, PDG increases data dependence on the basis of CFG. This method
improves the detection rate of vulnerabilities related to both data and control.
Although [17,20,21] consider the structure information of the code by using
the semantic graph, they do not make full use of the connection between these
semantic graphs. At the same time, in order to reduce the complexity of calcu-
lation, they first convert these graphs into sequences, and then input them into
the sequence-based classifier for classification. This method cannot deal with the
structure information perfectly.

Zhou [36] propose a new Conv module for the first time, using graph neu-
ral network to learn code features, no longer dependent on the sequence-based
model. On the basis of the work of [36], Chakraborty et al. [10] focus on solving
the problem of dataset imbalance. But different from our work, all their work do
not consider the vulnerability information could be interfered by benign infor-
mation.
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Fig. 2. Overview of the ACGVD vulnerability detection framework.

3 ACGVD Pipeline

3.1 Overview of ACGVD

This work focuses on vulnerability detection at the individual function level.
Given a function, we need to accurately identify whether it contains vulnerabili-
ties. If it contains vulnerabilities, then the label is ‘1’, otherwise, the label is ‘0’.
We will give a brief introduction to the ACGVD pipeline as shown in the Fig. 2.

First, we use the Joern1 tool to transform the samples in the database into
comprehensive graphs, and then the initial node feature representations of the
structure graph are obtained by Word2vec2 model. Next, we use a double-level
attention mechanism to update the graph node information. Finally, the node
information is aggregated and input into convolution module to get the high-
level features of the code. And a MLP module is used to compress the dimension
of high-level features to judge whether the attributes of the sample contain
vulnerabilities.

3.2 Comprehensive Graph Representation

In the field of vulnerability detection, the semantic graph representation of code
is various. In fact, whether building AST graph, CFG graph or PDG graph, pro-
grams need to be transformed into different types of nodes and edges first, and
then connected to construct graphs. To cover more vulnerability information, we
use 12 connection relationships between nodes to construct a more comprehen-
sive code graph as shown in Table 1.

IS AST PARENT edge represents that AST graph is being constructed.
AST is an intermediate representation in the process of program compilation,
which stores the syntax information of functions. While IS AST PARENT
edge can construct the structures of the program, it is unable to reason about
program behavior without understanding the semantics of the structures on
AST. Semantic information can be obtained by the data flow and control flow
information. FLOWS TO edge describes the order in which code statements
are executed, and the conditions that need to be met for a particular path
of execution to be taken. REACHES edge represents the data dependency
between variables. Use-Def edge captures the variable to the sub-tree that uses
the defined value.
1 https://joern.readthedocs.io/en/latest/index.html.
2 http://radimrehurek.com/gensim/models/word2vec.html.

https://joern.readthedocs.io/en/latest/index.html
http://radimrehurek.com/gensim/models/word2vec.html
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Table 1. Edge types and vector.

Edge type Vector

IS AST PARENT 1

FLOWS TO 3

USE 5

DEF 4

REACHES 6

CONTROLS 7

DOM 9

POST DOM 10

IS FUNCTION OF AST 11

IS FUNCTION OF CFG 12

IS CLASS OF 2

DECLARES 8

We use the Joern tool to convert each sample from the dataset into its corre-
sponding comprehensive graph. Under the REACHES connection relationship,
the constructed semantic graph of the code in Fig. 1 can be represented as shown
in Fig. 3. The final Comprehensive Graph of the Fig. 1 can be seen in Fig. 4. For
better visualization, Fig. 4 only shows a comprehensive graph representation
composed of three edges.

Fig. 3. Semantic graph of the REACHES connection relationship. (a) is a simplified
version of the semantic graph which nodes with only Key values; (b) corresponds the
Key values to the code, where the number in brackets are the Key values in (a).
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Fig. 4. A comprehensive graph representation composed of three edges: the
REACHES represented by blue edge, FLOWS TO represented by red edge and
IS AST PARENT represented by yellow edge. (Color figure online)

3.3 Node Feature Initialization

For each node in the graph, as shown in Fig. 3(b), it contains two parts of infor-
mation: code and node type. Since edge types are exhaustible, we replace them
with a preset number vector as shown in Table 1. These vectors are transformed
into one-hot form later. The node types are generated from AST by the Joern.

In order to make better use of the sequence information of the code, the
word2vec model is used to learn the vector representation of the node code.
The comprehensive graph can be expressed as: G = (ν, ε), where ν represents
the node set of the graph, and ε represents the different edge set of the graph.
Concretely, the edge type is represented as εj , j ∈ K, K = 12. The node feature
of each node is represented as hi = [ti, ci], i ∈ N , where ti refers to the node type
vector, ci refers to the node code vector, and N is the total number of nodes in
the graph.

3.4 Double-Level Attention Mechanism

Node Level Attention. Considering that in a semantic graph, the benign
nodes account for a large proportion. When we update the state vectors by
aggregating all incoming messages from node neighbors, the vectors tend to
benign due to that the most information it learned is non-vulnerable. We use
the attention mechanism to imitate manually analyzing vulnerabilities. By giving
more weight to vulnerability related nodes, the node vector can contain more
vulnerable related features.

This paper uses the Graph Attention Networks (GAT) model [32] to imple-
ment the node-level attention mechanism. However, GAT cannot process het-
erogeneous graphs. Therefore, we first divide heterogeneous graphs into multi-
ple homogeneous graphs according to edge types. And then the GAT model is
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adopted to learn and update node information of heterogeneous graphs as shown
in Fig. 5.

The key step of GAT model is to perform self-attention operation on each
node in the graph. Under εk path, the importance of node j to node i is calculated
by the following formula, where W is the weight matrix that needs to be learned.

eεk
ij = attentionnode(Whi,Whj ; εk) (1)

Fig. 5. Double-level attention mechanism.

The attention coefficient is normalized and then combined with its corre-
sponding features to get the updated node features as follows:

h̃
εk

i = σ(
∑

j∈N
εk
i

(softmaxj(e
εk
ij ) · Whj)) (2)

Path Level Attention. Majority of vulnerabilities are subtle, they only can be
spotted with a join consideration of the composite semantic graphs. However,
there are still a small number of vulnerabilities much related to some certain
semantic graphs. In response to this situation, we propose a path-level attention
mechanism. The graph model can automatically pay more attention to venera-
bility related semantic graphs and weaken the weight of non-vulnerable semantic
graphs.

This paper adopts the semantic-level attention [35] to realize the path-level
attention mechanism. In order to learn the importance of each path, a layer of
Multilayer Perceptron (MLP) is applied to transform the embedding of a specific
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path nonlinearly, and the similarity between semantic embedding is measured
by the path level vector q. Finally, the result will be averaged.

ωεk
=

1
|ν|

∑

i∈ν

qT · tanh(W · h̃
εk

i +b) (3)

Normalization is given:

βεk
=

exp(ωεk
)

∑K
k=1 exp(ωεk

)
(4)

Integrating different path information, the final embedding is as follows:

h̃ =
∑K

i=1
βεk

· h̃εk
(5)

3.5 Classifier Module

The goal of [35] is the node level classification task. Different from their work, the
input sample of graph model in this paper is function-level code. So the task is
a graph-level classification. The general method of graph classification is to add
a MLP layer at the end of graph network. First, the embedded representation
of nodes learned by the neural network Hi and the initialized node features hi

are connected together, and next they are input into the MLP for predicting the
labels of samples. As shown below:

ỹ = sigmoid(
∑

i∈N

MLP (Ei)) (6)

where
Ei = [Hi, hi] (7)

Different from the general graph classification work, the connected nodes
are convolved at two layers in this work to obtain the high-level features which
are more related to vulnerabilities. Finally, the learned features are fed into the
multi-layer fully connected neural network for binary classification.

y1 = MAXPOOL 1(RELU(CONV 1(Ei))) (8)

y2 = MAXPOOL 1(RELU(CONV 2(y1))) (9)

ỹ = sigmoid(
∑

MLP (yT
2 )) (10)
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If the final value of ỹ is 1, it means that the function contains vulnerabilities.
Otherwise, the function is benign.

4 Experiments

4.1 Datasets

The quality of datasets has a great impact on experimental results. The exist-
ing public datasets for vulnerability detection are mostly derived from Juliet
Test Suite [12], NVD [3], and SARD [7]. The Juliet Test Suite and the SARD
are synthetic data, which are artificially synthesized using known vulnerability
patterns and do not have authenticity. NVD are semi-synthetic data, it cannot
fully capture the complexity of the real world. Considering this situation, we
use the latest datasets FFmpeg and Qemu in [36] as our dataset to ensure the
authenticity and certainty of our experimental data. The dataset information is
shown in Table 2.

Table 2. Datasets.

Dataset Graphs Vul graphs Non Vul graphs

FFmpeg 6716 3420 3296

Qemu 15645 6648 8997

FFmpeg+Qemu 22361 10068 12293

4.2 Implementation Details

We use Pytorch 1.5.0 with Cuda version 10.2 to implement our method. We ran
our experiments on Nvidia Tesla V100 PCIe 32 GB GPU, Intel(R) Xeon(R) Gold
5115 CPU @ 2.40 GHz with 128 GB ram. In order to eliminate the randomness
of the experiment, we perform 15 independent experiment runs. And the final
result adopts the median value.

In the stage of word2vec, we encode the node code into vector with 100
dimensions, with node features of 69 dimensions and edge types of 12 dimensions.
Batch size is 128; learning rate is 0. 0001. Other parameter configuration of the
model is shown in Table 3.
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Table 3. Parameter settings.

Model Parameter Value

Hierarchical attention module Input size 169

Hidden size 200

Out size 100

Num of heads 4

Dropout 0.75

Learning rate 0.0001

Classification layer Conv filter (1,3) (1,1)

Pool filter (1,3) (2,2)

Dropout 0.2

Activation function RELU

Number of hidden layers 4

4.3 Evaluation Metrics

This paper uses four popular evaluation metrics: Accuracy, Precision, Recall,
and F1-score. Although there is no inevitable correlation between Precision and
Recall according to the calculation formula, these two metrics are often restricted
each other. In general, if the Precision is high, Recall could be low. The F1 score
is used to weigh the two metrics comprehensively.

5 Experiments Study

5.1 How Effective Is ACGVD When Compared with the Traditional
Static Analysis Tools?

Traditional vulnerability analysis methods include static analysis, dynamic anal-
ysis and hybrid analysis. Since we focus on source code level vulnerability iden-
tification, we will compare with static analysis methods.

Table 4. Comparison between ACGVD and static analysis tools.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Flawfinder [1] 54.32 49.76 14.65 22.64

RATS [6] 53.86 46.05 6.65 11.61

ACGVD 63.58 57.12 76.62 65.45

We compare ACGVD with open source static analysis tools, such as
Flatfinder [1] and RATS [6]. These tools have been widely used in the field of
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C/C++ source code vulnerability detection. The experimental results are shown
in Table 4.

From Table 4 we can see that although Flatfinder and RATS perform well on
accuracy (about 50%), the recall rate is very low (less than 20%). The reason is
that static analysis tools mistakenly judge many benign samples as vulnerability
samples. Compared with these tools, our model ACGVD has a better accuracy
rate and a better recall rate.

5.2 How Effective Is ACGVD When Compared with Deep Learning
Method Based on Single Semantic Graph?

On the one hand, in order to make full use of the vulnerability information
contained in each semantic graph, we combine multiple semantic graphs together
to make a comprehensive graph. On the other hand, instead of the traditional
sequence-based model, we use graph neural network to aggregate the structure
information of learning code. We compare ACGVD with the state-of-the-art
deep learning methods based on single semantic graph and sequence model. The
experimental results are shown in Table 5.

Table 5. Comparison between ACGVD and deep learning method.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Russel [29] 58.13 54.04 39.5 45.62

VulDeePecker [22] 53.58 47.36 28.7 35.2

SySeVR [21] 52.52 48.34 65.96 56.03

ACGVD 63.58 57.12 76.62 65.45

We can see that, whether the code is treated as a natural language sequence
[29], a gadeget fragment [22], or the PDG graph [21] and then input into the
sequence-based model (e.g., CNN, RNN, BLSTM) for classification, the experi-
ment result is not good as our model. Concretely, BGNN4VD achieves 11.06%
higher on accuracy, 8.78% higher on recall, 10.66% higher on precision, and
9.42% higher on F1-measure than SySeVR which perform best in the three deep
learning methods we compared. This shows the advantage of using comprehen-
sive graph and graph neural network, which can consider more vulnerability
information and make better use of code structure information.

Here we focus on the analysis of why the method of [22] performs the worst
on our dataset. [22]’s motivation is a little similar to ours. They hold that the
proportion of vulnerable code in a program is too low, resulting vulnerable and
non-vulnerable code is hardly distinguishable. In order to locate the vulnerabil-
ity lines more accurately, they represent the program as a more sophisticated
representation than a function. Therefore, they propose the concept of code gad-
gets according to CFG and DFG information, and then classify gadgets by using
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sequence-based model. They rely on some expert knowledge in the process of
extracting gadgets, which makes them only identify vulnerabilities related to
library/API calls. Considering more types of vulnerabilities and building more
accurate gadgets have become their limitations, which are also the main reason
for their poor performance in our experiment.

5.3 How Effective Is ACGVD When Compared with Graph Neural
Network Method Without Attention Mechanism?

Since Devign [36] did not publish their implementation. And there is little infor-
mation about the configuration of parameters. We encountered difficulties in
reproduce the process. Chakraborty et al. [10] reproduces the work of Devign
[36], and opens all experimental configurations. We quote the experimental
results, which are shown in Table 6. ACGVD outperforms Devign [36] in all
performance metrics. ACGVD’s accuracy, precision, recall, and F1-scores are
5.01%, 3.52%, 13.89%, and 8.27% higher respectively than Devign [36]. This
proves the superiority of ACGVD.

Chakraborty et al. [10] is different from what we pay attention to. They
mainly solve the imbalance problem on the basis of [36]. They divide the vulner-
ability detection problem into two supervised learning stages. In the first stage,
graph neural network is used to study the high-level features of the code. In the
second stage, smote oversampling and representation learning is used to sample
for binary classification. Since solving the problem of imbalanced datasets is not
our concern, it seems unreasonable to compare our work with theirs. Neverthe-
less, we still compared with the work of [10], and the experimental results show
that our scheme still has advantages as shown in Table 6.

Table 6. Comparison between ACGVD and graph neural network method without
attention mechanism.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Devign [36] 58.57 53.6 62.73 57.18

Reveal [10] 62.51 56.85 74.61 64.42

CGVD 62.14 55.82 76.25 64.46

ACGVD 63.58 57.12 76.62 65.45

In order to verify the validity of the double-level attention mechanism, we
also compare ACGVD with the CGVD which only adds the node-level atten-
tion mechanism. The results showed that comparing with CGVD, ACGVD
shows significant improvements on vulnerability detection capability. Specifi-
cally, ACGVD’s accuracy, precision and recall are 1.44%, 1.3%, and 0.37% higher
respectively than CGVD. This proves the necessity of using both node-level and
path-level attention mechanism simultaneously.
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5.4 What Is the Impact of Modifying the Classifier on the
Experiment?

This work replaces the traditional classifier in graph classification method which
directly inputting the node features into the MLP for classification. Instead, a
novel classifier with convolution layer is designed which is more helpful for the
vulnerability detection. To understand the contribution of our classifier mod-
ule, we create a variant of ACGVD with traditional classifier which is called
ACGVD Tra. Table 7 shows the performance metrics for the above setup. Over-
all, ACGVD‘s accuracy, precision, recall, and F1 are 3.26%, 2.84%, 1.54%, and
2.44% improvement than ACGVD Tra. We contend that, since the convolution
layer is added after the graph neural network, more abundant features about the
vulnerability are learned. The result indicates that our classifier improves the
performance of vulnerability prediction.

Table 7. Comparison between ACGVD and ACGVD Tra.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ACGVD Tra 60.32 54.28 75.08 63.01

ACGVD 63.58 57.12 76.62 65.45

6 Threats Factors

One the one hand, the vulnerability samples which are more relevant to some
certain semantic graphs accounts for a small portion in the dataset. As a result,
the path-level attention mechanism cannot significantly improve the experimen-
tal result. We believe that the performance of our model would be better if Zhou
[36] published their Linux Kernel dataset. The source of this insight is the special
case in [36]: on the Linux kernel dataset, the accuracy of model recognition only
based on AST graph is better. On the other hand, our dataset is full of function-
level code. This leads to the poor performance of cross-function vulnerability
identification, which directly affects the detection accuracy of our model.

Another threat to our study is the design of model parameters. A slight
change of each parameter could have a great impact on the experimental results.
However, there are many adjustable parameters in the model. In this paper, when
the experimental results prove the validity of our model, we fix the parameters.
Although we cannot confirm whether the current parameter choose is the optimal
solution of the model or not, ACGVD can still achieve best performance.

7 Conclusion

In this paper, we propose a more comprehensive graph, which considers multiple
semantic graphs together. Compared with the previous deep learning method
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which only considers single semantic graph, we can cover more vulnerability
types. In order to learn the structural information of the code better, we abandon
the traditional deep learning method based on sequence model. We propose to
learn the node vector representation of code directly by graph neural network,
and then add a novel classification layer for end-to-end training. Considering that
the proportion of vulnerable codes is small and the vulnerability information
could be disturbed by benign code information, we add a node-level and a path-
level attention mechanism at the same time. We conduct experiments on the
latest public vulnerability dataset. The experimental results show that ACGVD
achieves a better performance than the state-of-the-art methods. In the future,
we plan to adopt the algorithm to automatically select the optimal parameters
of the model. In the future, we will also focus on file-level vulnerability detection
to identify cross-function vulnerabilities better.
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Abstract. A lot of research effort has been done to investigate how to
attack black-box neural networks. However, less attention has been paid
to the challenge of data and neural networks all black-box. This paper
fully considers the relationship between the challenges related to data
black-box and model black-box and proposes an effective and efficient
non-target attack framework, namely TranFuzz. On the one hand, Tran-
Fuzz introduces a domain adaptation-based method, which can reduce
data difference between the local (or source) and target domains by
leveraging sub-domain feature mapping. On the other hand, TranFuzz
proposes a fuzzing-based method to generate imperceptible adversarial
examples of high transferability. Experimental results indicate that the
proposed method can achieve an attack success rate of more than 68% in
a real-world CVS attack. Moreover, TranFuzz can also reinforce both the
robustness (up to 3.3%) and precision (up to 5%) of the original neural
network performance by taking advantage of the adversarial re-training.

Keywords: Domain adaptation · AI security · Fuzzing · Black-box
attack

1 Introduction

Recently, Deep Neural Networks (DNNs) have been applied to many realistic
AI systems, such as image classification [1]. However, due to the catastrophic
overfitting or underfitting problem, the DNN-based systems always show a very
vulnerable behavior in many corner cases [2]. In other words, if the DNN models
are not tested in particular corner cases (which is referred to as the adversarial
example, i.e., clean data that adds a well-designed noise), there would be dev-
astating consequences. Thus, like traditional software testing, it is particularly
important to systematically test and check the quality of the DNN-based models.
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There exists plenty of works to test the quality of DNN-based systems by tak-
ing advantage of the model attack method [2,3,20]. These works always belong
to white-box attacks, where the adversary usually first draws upon knowledge of
the structure and parameters of the target model and then injects some imper-
ceptible perturbation into a test example to create an adversarial example, and
attacks the victim model. Nevertheless, in real-world scenarios, the target vic-
tim model is always a black box, where an attacker cannot access a complete
knowledge of the target model. This will increase the attack difficulty. How to
successfully attack the target model under the black-box condition is a very
challenging issue.

To solve the above problem, the researchers have proposed two kinds of adver-
sarial black-box attack methods: i) Query-based attack method [5,15], where the
target black-box model is treated as an optimization problem, and the attackers
use query prediction information (for example, a probability value) as an instruc-
tion to generate adversarial examples. Although the query-based attack method
usually has a high attack success rate, it does take a very high number of requests,
which will incur a higher cost [6]. ii) Transfer-based attack method [4,20], where
the adversary ought to construct a comparable model as the local substitution
to the target, and construct highly transferable adversarial examples that can
successfully attack the local model. Then, these adversarial examples are trans-
ferred to attack the target black-box model. In this paper, we mainly focus on
the transfer-based attack.

Unfortunately, the existing transfer-based attack methods [4,20] usually only
consider that the network architecture of the target model is a black box, but do
not consider the target training data is a black box, and it is assumed that the
training data of the source and target models are following the same data distri-
bution [20]. However, it is not the case for practical application. As a result, these
methods often suffer from low attack success rates or poor transfer efficiency in
the black-box attack task. To remedy the above deficiency, in our black-box
attack problem, we summarize the following two key challenges:

C1: Target Training Data Is Black-Box. Due to commercial confidentiality,
the training data used in the target model will not be publicly available, and only
some of the test/validation data examples may be provided to developers with
some special scenes (e.g., adversarial competition1). This will lead to a different
data distribution between training data used in the local (or source) model and
that used in the target model. How to exploit the limited test/validation data
examples of the target model to achieve a successful attacking purpose is a
critical challenge.

C2: Target Model’s Network Is Black-Box. Developing an effective adver-
sarial example always requires that the attacker has complete information about

1 https://github.com/tensorflow/cleverhans/tree/master/examples/nips17
adversarial competition/dataset.

https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adv ersarial_competition/dataset
https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adv ersarial_competition/dataset
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the target model, such an attack method is also known as a white-box attack.
However, the attacker is generally unaware of what kind of neural network archi-
tecture is implemented in the target model. How to successfully tackle the target
model under the C2 is another major challenge.

In this paper, we fully consider and explore the relationship between chal-
lenges C1 and C2. On the one hand, to address the challenge of different data
distributions, we propose a methodology based on domain adaptation to reduce
the difference between the data of the source and target domains by using sub-
domain mapping. Based on this method, we can implement a transfer-based
attack. On the other hand, to counter the challenge of the model’s black-box
(C2), we illustrate an adversarial example (AE) generation framework based
on neuron coverage to measure the logical runtime of the DNN model. Within
our fuzzing framework, we also propose a novel ensemble-based seed mutation
strategy to improve AEs attack transferability. The strategy introduces a small
change in input mutations and to maximizes the expected difference between the
original and the adversarial example. Certainly, there exist some transfer-based
adversarial attack methods [3,20] which are used in iterative gradient attack
methods [20]. But they do not have a guide for exposing incorrect corner case
behaviors. This can result in incorrect DNN behaviors remaining unexplored
after thousands of iterations (low transferability caused by overfitted issues [3]).

In the end, we design a black-box model attack framework, namely, Tran-
Fuzz, which combines the domain adaptation method with the fuzzing strategy.
Evaluation experiments show that the proposed TranFuzz method is best able
to achieve an attack success rate of over 68% in the real-world Cloud Vision
Service (CVS) scenario.

Summary of Contributions – The major contributions to this paper are
shown as follows:

– We propose a black-box attack framework, namely, TranFuzz, which can gen-
erate highly transferable adversarial examples by interconnecting the domain
adaptation-based local alternative model construction method and fuzzing-
based method, respectively. To the best of our knowledge, it is the first work
to combine domain adaptation and fuzz methods against the black-box model.

– TranFuzz2 takes full account of the challenges of the data black-box and the
neural network black-box. To create highly transferable AEs, we propose an
ensemble-based seed mutation strategy, which can rapidly and efficiently trig-
ger objective functions in our fuzzing framework. The experimental results
show that the average attack success rate of TranFuzz can exceed 10%, com-
pared to the state-of-the-art baselines.

– In five real-world Cloud Vision Services (i.e., Aliyun, Baidu, Tencent, Azure,
and Clarifai) attacking scenes, the TranFuzz can better perform over 68%
attack success rate. Furthermore, our proposed method can also enhance the
robustness of the victim’s model with adversarial training.

2 https://github.com/lihaoSDU/ICICS2021.

https://github.com/lihaoSDU/ICICS2021
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Organization – The remainder of this paper is organized as follows. We present
an overview methodology of the TranFuzz framework in Sect. 2. In Sect. 3, we
illustrate details of the evaluation experiments and results. Section 4 highlights
the related work of the paper and we conclude our work in Sect. 5.

2 Methodology

In this section, we first introduce an overview of the TranFuzz (Sect. 2.1), and
then we illustrate the local model construction method based on domain adap-
tation to break the barrier of the data black-box challenge (Sect. 2.2). Finally,
we generate optimal adversarial examples with high transferability by present-
ing a fuzzing-based method to address the neural network black-box challenge
(Sect. 2.3).

2.1 Overview of TranFuzz

TranFuzz takes full account of the unique nature of the data black-box challenge
co-existing with the model black-box challenge in the realistic application scene.
In this paper, we design an effective adversarial example generation framework,
named TranFuzz. The TranFuzz framework is depicted in Fig. 1. In TranFuzz,
we first develop an algorithm based on a deep sub-domain adaptation network
(DSAN) to construct a local substitute model. Afterward, we manufacture an
adversarial example of high transferability on the strength of the mutation-based
fuzzing strategy.

Fig. 1. Framework of TranFuzz.

2.2 Domain Adaptation-Based Local Model Construction

In the data black-box challenge, we assume that the attacker cannot get the
target model’s training data. Only unsupervised validation/test data can be
accessed. To resolve the problem mentioned above and construct a local replace-
ment model, in this section, TranFuzz uses a deep subdomain adaptation network
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(DSAN) algorithm [9] with a certain improvement of the DSAN pseudo-labeling
part. DSAN uses a classification loss function and an adaptive loss function
to close the huge gap between the data of the source and target domain. We
formulate the objective function of the DSAN as:

min
f

1
ns

ns∑

i=1

J(f(xs
i ), y

s
i ) +

∑

l∈L

LMMDl(p, q) (1)

where J(·, ·) is a cross-entropy function, f(·) is the predict function, ns is the
number of a source domain’s samples, and xs and ys corresponding to the source
domain’s samples with the label. LMMD(·, ·) is the local maximum mean dif-
ference function to calculate the loss in the process of subdomain domain adap-
tation. The l is an active layer in the subdomain distribution L. p and q are
the data distributions of the source and target domains. To address the chal-
lenge of the data black box, our optimization goal is to minimize Eq. 1 under the
conditions of different data distributions between p and q.

From Eq. 1, DSAN leverages an algorithm based on domain adaptation net-
works (DANs) [10] and designs a local maximum mean difference as the difference
metric between source and target domains. To compute the LMMD and reduce
the data distribution difference between source and target domains. In our pro-
posed method, we leverage a query-based strategy that adopts the target victim
model as a benchmark to predict the target samples. For each sample, a single
request is necessary for our proposed method. The improved method can sig-
nificantly enhance the generalization capabilities of the local surrogate model’s
construction. Formally, the proposed method is formalized in Eq. 2.

LMMDl(p, q)
�
= Ec||Ep(c) [φ(xs)] − Eq(c) [f

t(xt)]||2 (2)

where E[·] is the mathematical expectation function, c is the different classes
(e.g. labels), xt is the target domain’s example. φ(·) means the feature mapping
function. In this paper, we use a universal function of the Gaussian Kernel as a
mapping function between source and target domains. Our proposed approach
can be applied to any neural network architecture to construct a local model
with a promising performance.

2.3 Fuzzing-Based Adversarial Examples Crafting

In this section, we leverage the coverage-based fuzzing method to fuzz our local
substitution model and generate high transferability adversarial examples. In
the following chapter, we first describe the coverage gauge to guide our fuzzing
neural network framework. Then we also elucidate the fuzzing objective function.
Second, we describe our coverage analysis method (also called coverage analyzer)
of the TranFuzz. Finally, we propose a new comprehensive mutation strategy to
generate highly transferable adversarial examples.

Definitions of the Neuron Coverage and Objective Functions. The fol-
lowing are several definitions that are used in the fuzzing framework.
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Neuron Coverage. TranFuzz exploits neuron coverage (NC) as our fuzzing
coverage criteria, proposed by DeepXplore [2]. Neuron coverage is a metric for
testing the comprehensiveness of the DNN model. NC can also calculate how
many neurons are at least activated once during the current process. The formula
of the neuron coverage is shown below:

NCov(TS, seed) =
|{ni|∀seed ∈ TS, f(ni, seed) > th}|

K
(3)

where TS is a set of test seeds {ts1, ..., tsn}. We suppose all neurons of the
model as N = {n1, ..., nK}, K is the number of neurons in the model, th is
the fuzzing threshold to be considered as an activated neuron (in this paper
we define the value as zero). f(·) is the function that allows you to send back
the output value of the neuron. It is worth mentioning that in our proposed
TranFuzz framework, we did not intentionally pursue a higher neuron coverage
as our optimization objective. We took neuron coverage as a guide instruction
metric to discover more exceptional adversarial examples that can crash the local
substitute model.

Objective Functions. TranFuzz fully considers the high transferability and
human imperceptibility as the objective fuzzing functions to craft adversarial
examples. If an adversarial example complies with the objective function con-
straint, the fuzzing process will jump out of the execution loop.

On the one hand, TranFuzz loosens the differential testing objective function
used in [2] and proposed a novel function, specifically,

objDX : Of1(x) ∪ Of2(x) ∪ ...Ofk(x) = 1, (4)

where f(·) is the predicted function of local models, ∪ is the union function, k
is the number of local models. If fi(x) is not equal to the true label of x, then
Ofi(x) = 1. In addition, the differential testing method requires several local
DNN models with the same prediction task, which will increase training costs.
Unlike the differential testing method above-mentioned, TranFuzz only needs
a local substitution model as our fuzzing framework input (k = 1 in Eq. 4).
Accordingly, one of the fuzzing objective functions obj1TF in TranFuzz describes
as following:

obj1TF : f(xadv) �= true label of xadv (5)

On the other hand, to generate imperceptible adversarial examples, the
structural similarity between adversarial examples and the original examples is
another objective function used in the fuzzing framework. We introduce an Aver-
age Structural Similarity (ASS) [11] as the similarity metric. To deduce structural
changes, ASS captures pixel intensity patterns, especially among adjacent pixels.
ASS can also measure the brightness and contrast of the image which affects the
perceived quality of the image. The formalization of the objective function based
on structural similarity is
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obj2TF : ASS(xavd, x) > τ (6)

where τ is the pre-setting threshold value of ASS, we set it as 0.96 in our eval-
uation experiments. In the end, we combine obj1TF and obj2TF as our objective
functions. If these conditions are triggered, the current fuzzing loop will shut
down.

Coverage Analyzer. In the coverage parser section, if the adversarial example
xi
adv has not satisfied the objective functions, the coverage analyzer will ran-

domly select unfuzzed network layer neurons. After that, the coverage analyzer
will split a new fuzzing path. Next, the coverage analyzer will calculate the cur-
rent neuronal loss values and gradient values gradsi. The coverage analyzer will
combine the xi

adv and gradsi as the Mutator inputs. If the xi+1
adv can reach the

objective functions, the coverage analyzer will update the neuron coverage and
break the current fuzzing loop.

Mutator. Mutator is the schedule against too many fuzzing execution itera-
tions. The mutator can also craft adversarial examples of high transferability
and imperceptibility. In this section, TranFuzz proposes a novel ensemble-based
mutation method that leverages multiple perturbation strategies to generate
adversarial examples. The formal representation is xadv = x + δ, where δ is the
optimal adversarial perturbation.

The mutator is based on the gradient value which is computed by the local
surrogate model output layer and the hidden layer. To generate adversarial per-
turbation δdx, we adopt the occlusion strategy described by DeepXplore to sim-
ulate the camera lens that may be accidentally or deliberately occluded. In con-
trast to DeepXplore’s strategy, we are implementing a smaller occlusion adver-
sarial perturbation δDX = occlusioni:i+m,j:j+n (smaller rectangle that has m∗n
pixels, and (i, j) is the coordinate of a pixel) and operating randomly in multiple
seed positions.

Moreover, to improve the success of the attack under the premise of imper-
ceptibility, TranFuzz does not implement general mutation methods with var-
ious fuzzers, e.g., image blurring, image contrast adjusting, image brightness
adjusting [13]. The TranFuzz proposed a novel method based on the scale of
images [12] to transform adversarial perturbations. The mutator first leverages
the cumulative distribution function (CDF) to calculate the equalization of the
image perturbation histogram. The formalization of the histogram equalization
function (T (·)) is as follows:

T (rk) =
G − 1
MN

k∑

j=0

nj , k = 0, 1, ..., G − 1 (7)

where MN is the sum of pixels, rk is the gray level of the image,
∑k

j=0 nj is the
number of rk, and G is the number of possible gray levels of the image.
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After equalizing the histogram, we adopt the linear interpolation method to
insert the initial Gaussian derived noise from the gradient. Then we calculated
the adversarial perturbation δTF . To avoid invalid values in δTF , the mutator
also quantifies the adversarial perturbations [14]. Finally, we describe the optimal
adversarial perturbation as δ = δDX + δTF .

3 Evaluation

In this section, we first introduce specific details of the data sets adopted in
our evaluation experiments, then the attack configurations are also depicted in
this section (Sect. 3.1). After that, we attack both the non-robustness (Sect. 3.2)
and robustness (Sect. 3.3) of the black-box models that leverage the adversarial
examples generated by TranFuzz. We also compare our method with eight state-
of-the-art baseline methods. In addition, five different business Cloud Vision ser-
vices are conducted as black-box victim targets in real-world scenarios (Sect. 3.4).
We also analyze the positive impacts of the proposed method on the target model
defensibility by leveraging adversarial retraining (Sect. 3.5).

3.1 Experimental Setting

Datasets. To build black-box data with experimental domain adaptation envi-
ronments, we use two different image data sets (namely, Office-31 [16] and Office-
Home [19]), which are often the benchmark dataset in the domain adaptation
field. In our evaluation experimental setting, to simulate the C1 challenge, differ-
ent categories are regarded as the source and target domains (specifically, Ama-
zon and Webcam of the Office-31, Product and RealWorld of the Office-Home),
respectively. All domain adaptation data are downloaded from the open-source
site3.

Attack Configurations. The settings for black-box model attacks and evalu-
ation baselines are described in this section.

Black-Box Model Setting. ResNet50, AlexNet, VGG19, and DenseNet121
are different models of neuronal network structures. We conducted the above-
mentioned models in our black-box attack evaluation experiments. Moreover, to
build the experimental configuration about the model black-box under the C2
challenge, we use the ResNet50 neural network as the source domain model. The
other three models are as the target domain attacked model. For example, under
the C2 challenge, on the one hand, the source domain model with its training
data is the ResNet50 and Webcam. On the other hand, the target domain model
with its training data is defined as DenseNet121 and Amazon. While the two
different models all have 31 different classes (backpack, bike, etc.), the training
data of the models are different and obeys the C1 challenge.
3 https://github.com/jindongwang/transferlearning/tree/master/data.

https://github.com/jindongwang/transferlearning/tree/master/data
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Baselines. 1) In the non-robustness black-box model attack, we leverage eight
different state-of-the-art attack methods as the baselines in our comparison
experiments. Specifically, five white-box attack methods (namely, DDN [14],
PGD [4], FGSM [20], L-BFGS [17], C&W [18]), and three black-box attack meth-
ods (ZOO [15], Pixel Attack (PA) [21], and Spatial Transformation (ST) [22]). 2)
In the robustness black-box model attack task, we use adversarial training algo-
rithms to build robust models as the victim models. The compared baselines
are the same as the above-mentioned in step 1). The details of the adversar-
ial training algorithms are Fast is Better than Free (FBF) [25] and Madry’s
Protocol [4]. 3) To demonstrate the effectiveness of our proposed approach in
real-world black-box attack scenarios, we are also attacking five state-of-the-art
commercial Cloud Vision Services (CVS), namely, Aliyun4, Baidu5, Tencent6,
Azure7, and Clarifai8.

Implementation Details. 1) In our evaluation experiments, all the training
iterations numbers are set as 200. 2) Also, implementation information of the
eight baseline methods are depicted in the AdverTorch [23] and ART [24]. It is
worth noting that the Spatial Transformation parameters of max translation
and max rotation are all equal to 30 degrees (which is consistent with the [22]).
Other employment parameters are all set to default. 3) In the implementation of
adversarial training, we conduct the ART tool to re-train the robustness models
(AdversarialTrainerFBF and AdversarialTrainerMadryPGD). The maximum
number of training iterations also is set to 200. The maximum perturbation
parameter with its step is set to 0.3 and 0.1, respectively. 4) Considering the
cost of the commercial Cloud Vision Services (e.g., one thousand API access
will need to be 3$ for Aliyun), we randomly select 50 adversarial examples to
attack the five CVS which are generated by TranFuzz. The detailed description
is shown in Sect. 3.4. Among the five CVS, we access the provided API of Aliyun,
Baidu, and Clarifai. In addition, the Tencent and Azure attacks are making use
of web browsers upload manually. 5) We randomly divided the target domain
data into the train (80%) and test (20%) parts. The train part is for training
the target victim model and the test part is for constructing the source local
substitute model. 6) In the experimental evaluation, we perform Attack Success
Rate9 to evaluate our proposed framework.

We provide a summary of our trained DNN-based models of the target
domain in Table 1.

4 https://vision.aliyun.com/imagerecog.
5 https://ai.baidu.com/tech/imagerecognition/general.
6 https://ai.qq.com/product/visionimgidy.shtml.
7 https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision.
8 https://www.clarifai.com/label.
9 The Attack Success Rate is the proportion of adversarial examples misclassified by

the target DDN [14].

https://vision.aliyun.com/imagerecog
https://ai.baidu.com/tech/imagerecognition/general
https://ai.qq.com/product/visionimgidy.shtml
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://www.clarifai.com/label
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Table 1. Summary of the target DNN-based models

Target model type Dataset Index Architecture Train & test

data

Testing

accuracy

Training

iterations

Non-robust Office-31 1 AlexNet Amazon 77.53% 200

2 AlexNet Webcam 95.91% 200

3 VGG19 Amazon 83.62% 200

4 VGG19 Webcam 91.81% 200

5 DenseNet121 Amazon 79.97% 200

6 DenseNet121 Webcam 93.57% 200

Non-robust Office-Home 7 AlexNet Product 80.22% 200

8 AlexNet RealWorld 69.6% 200

9 VGG19 Product 85.68% 200

10 VGG19 RealWorld 80.4% 200

11 DenseNet121 Product 85.68% 200

12 DenseNet121 RealWorld 82.85% 200

Robust (FBF) Office-31 13 DenseNet121 Amazon 62.89% 200

14 DenseNet121 Webcam 83.04% 200

Robust (Madry’s Protocol) Office-31 15 DenseNet121 Amazon 52.88% 200

16 DenseNet121 Webcam 76.02% 200

3.2 Black-Box Attack Against Non-robustness Model

This section primarily describes our proposed method to attack the non-
robustness black-box model’s performance. Two different image datasets (Office-
31 and Office-Home) were implemented in the experiments, mentioned in
Sect. 3.1. Details of the comparison experimental results are given in Table 2
and Table 3.

On the one hand, we use ResNet50 as the source neural network to train
a local substitute model for attacking other three different networks. Training
data of the local substitute model differs from the target model on the promise
of C1 challenge. From Table 2, TranFuzz can better achieve more than 33.9%
and 37.5% attack success rates on Webcam and Amazon data, respectively. On
average, TranFuzz can perform a Top-1 attack success rate (specifically, 25.6%)
compared to the other baseline methods. On the other hand, from Table 3, com-
parison experiments also use ResNet50 as the source neural network. The Tran-
Fuzz can mislead the target victim model over 31.3% and 46.9% on RealWorld
and Product data, respectively. For the average attack success rate, TranFuzz
is also capable of making the Top-1 success rate (28.5%) compared to other
baseline methods.

From Table 2 and 3, we observe that AlexNet is not robust against the
nine different black-box attack methods, compared with the DenseNet121 and
VGG19. This demonstrates that the defender should design a more robust and
complex network structure to enhance the DNN-based model’s performance. Fur-
thermore, the C&W attack is one of the most effective and widely used among
the primary attacks. From the evaluation experiments of non-robustness black-
box attack, our proposed method can surpass the C&W method over 2.38% and
6.4% in Office-31 and Office-Home datasets. In addition, the L-BFGS attack
uses L-BFGS to minimize the distance of the original and perturbed images.
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Table 2. The success rate of attacks against the non-robustness black-box model in
the Office-31 dataset

Source model Source data Target model Target data Attack

DDN PGD FGSM L-BFGS C& W ZOO PA ST TranFuzz

ResNet50 Amazon AlexNet Webcam 12.9% 19.2% 22.4% 21.64% 25.25% 1.92% 34.1% 33.9% 33.9%

VGG19 9.9% 14.6% 17.4% 15.35% 20.05% 2.44% 17.9% 26.9% 19.3%

DenseNet121 16.9% 25.6% 18.8% 22.22% 27.49% 1.22% 11.9% 11.7% 18.1%

Webcam AlexNet Amazon 10.6% 19.9% 23.4% 10.28% 20.04% 2.93% 22.3% 35% 37.5%

VGG19 10.6% 11.7% 12.9% 10.62% 20.9% 1.18% 11.9% 23.7% 20.7%

DenseNet121 11.1% 19.3% 18.1% 14.12% 25.61% 2.34% 8.4% 16.2% 24.2%

Average attack success rate 12.0% 18.4% 18.8% 15.71% 23.22% 2.01% 17.8% 24.5% 25.6%

Table 3. The success rate of attacks against the non-robustness black-box model in
the Office-Home dataset (DN121: DenseNet121)

Source model Source data Target model Target data Attack

DDN PGD FGSM L-BFGS C& W ZOO PA ST TranFuzz

ResNet50 Product Alexnet RealWorld 13.0% 18.0% 11.8% 17.93% 21.49% 2.1% 21.5% 30.7% 31.3%

VGG19 14.5% 22.3% 19.6% 13.92% 20.71% 2.8% 16.4% 29.9% 24.8%

DN121 13.4% 26.9% 19.9% 13.25% 21.27% 1.9% 11.0% 21.7% 20.7%

RealWorld AlexNet Product 13.5% 23.1% 24.8% 16.29% 23.72% 2.1% 15.0% 36.7% 46.9%

VGG19 14.9% 18.5% 19.2% 14.1% 24.15% 1.9% 10.0% 23.5% 22.5%

DN121 12.1% 30.4% 20.9% 10.27% 21.23% 0.1% 8.1% 20.9% 25.1%

Average attack success rate 13.6% 23.2% 19.4% 14.29% 22.1% 1.8% 13.7% 27.2% 28.5%

The TranFuzz method also can be better than L-BFGS under the premise of C1
and C2 (specifically, 9.9% in Office-31, 14.2% in Office-Home).

Besides, from the results of the experiment, we also observe that the Spatial
Transformation (ST) method has a promising effect on the local black-box model
attack under C1 and C2 challenges, but is still weaker than TranFuzz (4.2% lower
than us). From the adversarial examples generated by ST, we conclude that the
ST method is not similar to the original natural structure of the images. Hence,
from the ST [22] evaluation result, the adversarial example will have a partial loss
compared to the original due to image rotations. Consequently, the target black-
box model cannot predict the successful adversarial examples which trade by
spatial transformation. While the adversarial examples generated by TranFuzz
can retain the original ASS leverages our proposed image mutating strategy
(examples of the AE can be found on our website mentioned before).

3.3 Black-Box Attack Against Robustness Model

In our evaluation experiments, to achieve the proposed robust networks as a
black-box victim model, we implement commonly adversarial training meth-
ods, specifically, Fast Is Better Than Free (FBF) [25] and Madry’s Protocol [4].
Furthermore, the neural network structure of the target model is also set as
DenseNet121, and the source model is ResNet50. The data set that we have
implemented in this section is the same as in Table 2. Detailed information on
the deployment and implementation of robust models can be found in Sect. 3.1,
Table 1.
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Table 4. The success rate of attacks against the robust black-box model

Adversarial trainer Source data Target data Attack

DDN PGD FGSM L-BFGS C& W ZOO PA ST TranFuzz

FBF [25] Amazon Webcam 38.0% 9.9% 11.7% 9.64% 15.32% 11.7% 48.3% 56.7% 74.8%

Webcam Amazon 6.4% 3.0% 1.9% 7.33% 18.58% 0.5% 24.8% 51.0% 53.8%

Madry’s Protocol [4] Amazon Webcam 5.3% 1.2% 1.8% 19.89% 22.81% 1.2% 31.7% 64.3% 53.8%

Webcam Amazon 4.9% 4.0% 3.0% 4.18% 8.88% 2.1% 6.8% 9.9% 13.6%

Average attack success rate 18.1% 8.9% 9.1% 10.26% 16.4% 8.6% 29.4% 44.4% 48.6%

Table 4 shows the black-box attacks result against two distinct robustness
models between TranFuzz and the other eight baseline methods. According to
the table, TranFuzz can achieve a maximum attack success rate of 74.85%, and
the proposed method also is able to accomplish an average attack success rate
of 48.6%. From the evaluated experiment results, we can conclude that our pro-
posed method is optimal compared with others. Additionally, we also observe
that Madry’s and FBF’s defense methods are effective in resisting gradient
attacks (i.e., FGSM-based attacks like PGD, L-BFGS, and FGSM). Specifically,
in PGD, FGSM, and L-BFGS, the worst one only reaches 1.2% attack success
rate, and the average attack success rate only achieves 8.9%, 9.1%, and 10.26%,
respectively. The attack success rate has dropped by more than half compared
to Table 2, Sect. 3.2. Besides, the C&W method can achieve a success rate of
16.4%, which is also lower than the proposed TranFuzz method. Nevertheless,
Madry’s protocol and FBF defense methods are unable to effectively defend
Spatial Transformation and TranFuzz methods. The reason is that TranFuzz
performs an ensemble-based AEs generation method to enhance transferabil-
ity. But the Spatial Transformation algorithm adopts the technique of image
transformation in space that will decrease the imperceptible performance of the
image. In addition, the TranFuzz method can also exceed the ST method on a
mean attack success rate of 4.2%.

Accordingly, based on the above-mentioned investigation, we have put for-
ward some hypotheses and conjectures for the defense strategy here. The
defender should consider various algorithms to generate adversarial examples
(e.g., gradient-based, space-based, and color-based changes strategy) under the
process of building an adversarial trainer. In our evaluation experiments, we also
use adversarial examples generated by TranFuzz as the robust retraining data to
defend against other attack methods. The implementation details are illustrated
in Sect. 3.5.

3.4 Black-Box Attack Against Cloud Vision Services

In this section, we focus on the black-box attack in real-world scenarios. The
attacking targets are five different businesses Cloud Vision Services (Aliyun,
Baidu, Tencent, Azure, and Clarifai). Considering the cost issue mentioned in
Sect. 3.1, we randomly select 50 images from the Office-Home data set and
develop adversarial examples using our proposed approach. It should be noted
that we define a new attack success metric: if the Top-1 prediction tag (which
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access from Cloud Vision Services response) is different between the adversarial
example and the original natural one, we consider the attack as successful.

On the one hand, we call the API provided by Aliyun, Baidu, and Clarifai
and return the detection result. After that, the experimental results of the attack
success rate are being calculated. On the other hand, we also take advantage of
a method that manually uploads the picture via the web browser (Tencent and
Azure), and we also record the response detection results on each of the adver-
sarial examples. Ultimately, the success rate for the attack on Aliyun, Baidu,
Tencent, Azure, and Clarifai is 19/50, 18/50, 34/50, 13/50, and 8/50 respec-
tively. From the CVS detection results, our proposed method can perform a 68%
higher attack success rate on Tencent, and can also do 16% to attack Clarifai
even though it is the worst.

3.5 Adversarial Defending

In this section, we demonstrate that TranFuzz can also enhance the robustness
of the target model. To meet this objective, we are focusing on an adversarial
training strategy based on additional data. We retrain the victim model from
scratch on the union of the TranFuzz crafted adversarial examples with the
original natural images. In this section, to retrain the target neural network,
we implement the Office-Home dataset and DenseNet121 shown in Table 3. The
maximum number of training iterations is also set to 200.

(a) Defended model in RealWorld ’s
data detection.

(b) Defended model in Product ’s
data detection.

Fig. 2. Comparison with success attack rate before and after TranFuzz defend in seven
different attack methods.

In the evaluation experiments, we defend against other Top-7 different attack-
ing methods (DDN, PGD, FGSM, L-BFGS, C&W, PA, and ST). The source
model also is the ResNet50 and the defense results are illustrated in Fig. 2.
From Fig. 2(a), our proposed model defending method is implemented on the
DenseNet121 that can hamper more than 3.3% average success rate on the
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non-target attacks, compared with the non-defense original model. Furthermore,
from Fig. 2(b), the retrained model can also improve robustness performance by
around 1% on average in the Product data.

Moreover, our proposed retraining method can also improve the detection
accuracy of the model over the clean data. We perform the defended network to
predict the clean data in RealWorld and Product, respectively. Further investi-
gation shows that our retrained model can achieve classification accuracy over
87.2% and 92.27%, which are improving more than 5% on average compares to
the original model (the classification accuracy of the original model is 82.85%
and 85.68%, as shown in Index 11 and Index 12 of Table 1).

4 Related Work

In this section, we list several related works with TranFuzz, specifically, attack
methods and adversarial defenses, and DNN-based model fuzzing techniques.

4.1 Adversarial Attacks and Defenses

Black-Box Attacks. The transfer-based strategy is an extremely important
black-box attack method, and several types of research [3,4] were proposed based
on the transfer attack method. Su et al. [21] analyzed an attack situation under
extreme conditions and proposed an adversarial perturbation based on differ-
ential evolution to perform a single-pixel attack. The results of the experiment
show that the reported method can modify the output of the model and only
change one pixel of the image. In addition, ZOO [15] is a query-based black
box attack method, and they exploit the non-derivative optimization strategy
and symmetrical injury difference to estimate the Hessian gradient matrix. The
method does not need to obtain the gradient information of the target model.
Engstrom et al. [22] proposed an attack method based on spatial transformation,
which makes it possible to study the vulnerability of neural network classifiers
by carrying out image rotation and translation operations.

Adversarial Training. Adversarial training is a data enhancement strategy
to improve the robustness of the model. Madry et al. [4] proposed a min-max
optimization framework using the projected gradient descent method to gener-
ate conflicting samples as augmentation data. This method first finds several
examples by adopting the PGD and then uses these examples as the adversarial
training data to decrease the training loss. Wong et al. [25] adopt a weaker,
lower-cost adversarial strategy to form a robust model. The method combines
the fast gradient sign and random initialization methods in adversarial training.
The results of the experiment have shown that it has effective performance with
lower cost compared to the PGD-based adversarial training method.
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4.2 DNN Model Fuzzers

DeepXplore [2] is a fuzzing-based method to verify the DNN system. The method
first proposed Neuron Coverage as a coverage metric for guiding the DNN
model’s testing. DeepXplore uses differential testing and generates some test
inputs to identify the incorrect behavior of the deep learning system without the
necessary manual operations. In addition, to effectively mutate test inputs, [13]
proposed eight mutation strategies that include neuronal network weight-based
mutation, neuron-based mutation, and layer-based mutation.

5 Conclusion

In this paper, we fully consider the relationship between the challenges of data
black-box. Based on that, we proposed a non-targeted black-box attack frame-
work. The evaluation experiment results show that our proposed framework
can address both the non-robustness and robustness black-box attack tasks. In
addition, TranFuzz can perform over 68% attack success rate against real-world
Cloud Vision Services. Moreover, by taking advantage of the adversarial training
strategy with data augmentation, TranFuzz can also strengthen the robustness
of the original model.
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Abstract. Mixed Boolean-Arithmetic (MBA) expression mixes bitwise
operations (e.g., AND, OR, and NOT) and arithmetic operations (e.g.,
ADD and IMUL). It enables a semantic-preserving program transforma-
tion to convert a simple expression to a difficult-to-understand but equiv-
alent form. MBA expression has been widely adopted as a highly effective
and low-cost obfuscation scheme. However, state-of-the-art deobfuscation
research proposes substantial challenges to the MBA obfuscation tech-
nique. Attacking methods such as bit-blasting, pattern matching, pro-
gram synthesis, deep learning, and mathematical transformation can suc-
cessfully simplify specific categories of MBA expressions. Existing MBA
obfuscation must be enhanced to overcome these emerging challenges.

In this paper, we first review existing MBA obfuscation methods and
reveal that existing MBA obfuscation is based on “linear MBA”, a simple
subset of MBA transformation. This leaves the more complex “non-linear
MBA” in its infancy. Therefore, we propose a new obfuscation method to
unleash the power of non-linear MBA. Non-linear MBA expressions are
generated from the combination or transformation of linear MBA rules
based on a solid theoretical underpinning. Comparing to existing MBA
obfuscation, our method can generate significantly more complex MBA
expressions. To present the practicability of the non-linear MBA obfusca-
tion scheme, we apply non-linear MBA obfuscation to the Tiny Encryp-
tion Algorithm (TEA). We have implemented the method as a prototype
tool, named MBA-Obfuscator , to produce a large-scale dataset. We run
all existing MBA simplification tools on the dataset, and at most 147
out of 1,000 non-linear MBA expressions can be successfully simplified.
Our evaluation shows MBA-Obfuscator is a practical obfuscation scheme
with a solid theoretical cornerstone.

Keywords: Software obfuscation · Mixed Boolean-Arithmetic
expression · Expression transformation

1 Introduction

Software obfuscation [26] performs a semantics-preserving transformation to hide
the implementation of a program, which leads the program is hard to understand
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 276–292, 2021.
https://doi.org/10.1007/978-3-030-86890-1_16
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and analyze. Many obfuscation techniques have been developed in the literature
to hide the behavior of code in different ways, Mixed Boolean-Arithmetic(MBA)
obfuscation is such a prominent example. Zhou et al. [32] define MBA expression
that mixes bitwise operations(e.g., ¬,∧,⊕, . . . ,) and arithmetic operations(e.g.,
+,−,×). MBA obfuscation transforms a simple expression like x+y to a complex
but equivalent expression with mixed bitwise and arithmetic operators. Multi-
ple academic tools and industry projects [6,13,17,21,23] have embedded MBA
obfuscation into their products.

The wide application of MBA obfuscation has attracted researchers to explore
how to recover the initial form of the MBA expression. Guinet et al. [11] presents
a tool, Arybo, which normalizes MBA expressions to bit-level symbolic represen-
tation with only ⊕ and ∧ operations. Eyrolles et al. [9] simplify MBA expressions
by a pattern matching method. Blazytko et al. [4] apply program synthesis tech-
niques [12] to learn the underlying semantics of obfuscated code and generate
another simpler but equivalent expression. Feng et al. [10] introduce a novel solu-
tion based on deep learning, named NeuReduce, to simplify MBA expression. Liu
et al. [18] prove a hidden two-way transformation feature and present a novel
technique to simplify MBA expression. These methods propose a great chal-
lenge to the MBA obfuscation technique. However, we note that existing MBA
obfuscation rules are generated from linear MBA expressions, because non-linear
MBA research is still at an early stage and related non-linear MBA translation
rules are rare.

To improve the resilience of the MBA obfuscation technique, we explore a
new research direction: non-linear MBA obfuscation, which is the relative com-
plement of linear MBA expression in the MBA obfuscation area. Firstly, multi-
ple methods are demonstrated to create unlimited non-linear MBA expressions,
whose correctness is guaranteed based on the basic math rules. Next, we present
a practical application of the non-linear MBA obfuscation technique on the Tiny
Encryption Algorithm(TEA), which hides the key and transforms the original
operation into another different format. We have implemented the method as an
open-source tool named MBA-Obfuscator . Given a simple expression as input,
MBA-Obfuscator generates a related complex non-linear MBA expression. To
the best of our knowledge, MBA-Obfuscator is the first tool to generate diversi-
fied non-linear MBA expressions.

To demonstrate the strength of MBA-Obfuscator , we evaluate it on a compre-
hensive dataset containing 1, 000 diversified linear and related non-linear MBA
expressions. The evaluation demonstrates that existing deobfuscation methods
cannot effectively simplify non-linear MBA expressions. On the other hand, the
overhead to use non-linear MBA expression is low. Our evaluation results show
that the non-linear MBA technique is an practical obfuscation scheme.

In summary, we make the following key contributions:

– We propose how to use linear MBA rules to generate non-linear MBA expres-
sion and guarantee its correctness.

– We discuss one concrete application of non-linear MBA expression, which
obfuscates the Tiny Encryption Algorithm(TEA).
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– Our large-scale evaluation shows that MBA-Obfuscator outperforms existing
linear MBA obfuscation in terms of better resilience, potency, and cost. MBA-
Obfuscator ’s source code and the benchmark are available at https://github.
com/nhpcc502/MBA-Obfuscator.

The rest of the paper is structured as follows. Section 2 illustrates the back-
ground of existing MBA obfuscation and simplification methods. Section 3 intro-
duces our methods to generate infinite non-linear MBA expressions. Next, we
present one practical application (Sect. 4) of non-linear MBA obfuscation on the
Tiny Encryption Algorithm(TEA). Finally, we give the details on our evaluation
results (Sect. 5) and conclude (Sect. 6)

2 Preliminaries

In this section, we provide background on Mixed-Boolean-Arithmetic (MBA)
transformation and deobfuscation techniques. Zhou et al. [31,32] formally present
how to generate unlimited linear MBA expressions. Since MBA rules are applied
as an information hiding technique, it has already generated follow-up deob-
fuscation research to simplify MBA expressions, including bit-blasting, pattern
matching, program synthesis, deep learning, and mathematical transformation
approaches.

2.1 MBA-Based Obfuscation

Zhou et al. [31,32] firstly define an MBA expression as the mixture usage of
bitwise operations (∨, ∧, ⊕, ¬) and integer arithmetic operations(+, −,×). The
formal definition of polynomial MBA expression is denoted as follows:

Definition 1. A polynomial MBA expression is:
∑

i∈I

ai ∗ (
∏

j∈Ji

ei,j(x1, . . . , xt)),

where ai are constants, ei,j are bitwise expressions of variables x1, . . . , xt over
Bn, and I, Ji ⊂ Z, ∀i ∈ I. ai ∗ (

∏
j∈Ji

ei,j(x1, . . . , xt)) is called a term.

Definition 2. A linear MBA expression is a polynomial MBA expression of the
form: ∑

i∈I

ai ∗ ei(x1, . . . , xt),

where ai are constants, ei are bitwise expressions of variables x1, . . . , xt over Bn,
and I ⊂ Z. ai ∗ ei(x1, . . . , xt) is called a term.

Examples of linear and polynomial MBA expression are shown as follows:

x + (x ∧ y) + y − 2 ∗ (x ⊕ y) + (x ∨ y),
x + y ∗ (x ⊕ y) − 2 ∗ (¬x ∨ y) ∗ (¬x) − 1.

https://github.com/nhpcc502/MBA-Obfuscator
https://github.com/nhpcc502/MBA-Obfuscator
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In addition, Zhou et al. [32] present an approach, which uses truth
tables(linearly dependent column vectors) to generate a linear MBA identity,
as shown in Example 1. They propose a formal theoretical foundation to guar-
antee the correctness of this method to build unlimited linear MBA rules.

Example 1. The 0,1-matrix

M =

x y x ⊕ y ¬(x ∨ y) −1
⎛

⎜⎝

⎞

⎟⎠

0 0 0 1 1
0 1 1 0 1
1 0 1 0 1
1 1 0 0 1

, �v =

⎛

⎜⎜⎜⎜⎝

1
1
1
2

−2

⎞

⎟⎟⎟⎟⎠
,

⇒ M�v = [0, 0, 0, 0, 0]T .

It produces a linear MBA identity:

x + y + (x ⊕ y) + 2 ∗ ¬(x ∨ y) − 2 ∗ (−1) = 0.

This linear MBA identity can be transformed into multiple MBA rules:

x + y = −(x ⊕ y) − 2 ∗ ¬(x ∨ y) − 2,
2 = −x − y − (x ⊕ y) − 2 ∗ ¬(x ∨ y).

Example 1 presents how to transform x+ y into a much more complex form:
−(x ⊕ y)− 2 ∗ ¬(x ∨ y)− 2, another example of the code before and after linear
MBA obfuscation is shown in Fig. 1.

Unfortunately, Zhou et al. [32] only propose the formation of polynomial
MBA expression, without any further research. Therefore, all existing MBA
obfuscation work is mainly based on the linear MBA rules. For example, Cloak-
ware [17], Irdeto [13], and Quarkslab [23] apply MBA transformation in their
commercial products. Tigress1 [5], an academic C source code obfuscation tool,
applies MBA rules to encode integer variables and expressions [6,7]. Mougey
and Gabriel [21] use MBA rules to do instruction substitution in a Digital
Rights Management (DRM) system. Recently, Blazy and Hutin [3] strengthen
the CompCert C compiler [16] to generate programs with formally verified MBA
obfuscation rules. Xmark applies MBA obfuscation to hide the static signatures
of software watermarking [19]. ERCIM News reported in 2016 that the MBA
obfuscation technique had been used in malware compilation chains [1].

2.2 MBA Deobfuscation

After the MBA obfuscation technique was proposed, researchers have explored
how to simplify MBA expressions. Eyrolles’s PhD thesis [8] is the first work to
explore this subject at full length. She focuses on simplifying MBA expressions by
1 https://tigress.wtf/index.html.

https://tigress.wtf/index.html
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(a) Original program. (b) Linear MBA obfuscated program.

Fig. 1. An example of MBA obfuscation for x + y.

applying various analyzing tools. Her experiments show that popular computer
algebra software such as Maple [20], SageMath [25], Wolfram Mathematica [29],
and Z3 [22] fail to simplify MBA expression, because existing reduction rules
only work either on pure bitwise expressions or pure arithmetic expressions.
Furthermore, LLVM compiler optimization passes [15] have a very limited effect
on MBA simplification. Therefore, Eyrolles et al. [9] propose a pattern matching
method to simplify MBA expressions. Multiple MBA rules are hard-coded in
the tool, named SSPAM. However, the pattern matching method only detects
and simplifies MBA expressions by a range of fixed patterns. Such an approach
cannot reduce generic MBA rules.

Guinet et al. [11] create a tool, Arybo, which reduces MBA expressions to
bit-level symbolic representation with only ⊕ and ∧ operations. One of the draw-
backs is the performance penalty caused by the bloated size of bit-level expres-
sions. Biondi [2] presents an algebraic approach to simplify MBA expression,
reducing the complexity of MBA obfuscation, but the proposed method strongly
depends on the specific MBA rules.

Blazytko et al. [4] apply program synthesis [12] guided by Monte Carlo Tree
Search (MCTS) to do code deobfuscation. It produces input-output samples
from the obfuscated code and then learns the semantics based on those input-
output pairs. Then it automatically generates another simpler but equivalent
expression. Due to the non-determinism and sampling mechanism of program
synthesis, their method cannot guarantee the correctness of the simplification
result.

Feng et al. [10] introduce a novel solution, named NeuReduce, to simplify
MBA expression. They train NeuReduce using MBA rules based on the sequence
to sequence neural network models. The input of NeuReduce is a character string
format of complex MBA expression, and the related output is the simplification
expression.

Liu et al. [18] investigate the mathematical mechanism of MBA expression
and prove a hidden two-way transformation feature in the MBA obfuscation.
They transform all bitwise expressions to specific MBA forms and then perform
arithmetic reduction to simplify MBA expression.
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3 Non-Linear MBA Expression Generation

In this section, we focus on how to generate unlimited non-linear MBA expres-
sions. First, we present how to create polynomial MBA expressions from the
linear MBA rules. Next, multiple methods are applied to produce non-linear
MBA rules.

3.1 Polynomial MBA Expression

Using Proposition 1, a polynomial MBA expression can be generated based on
the existing linear MBA expression.

Proposition 1. Let E be an expression, n be positive integer,

– E ≡ Ē, Ē is a linear MBA expression,
– Ek is a linear MBA expression, Ek = 1, k = 1, 2, . . . , n,
– E′ = Ē ∗ E1 ∗ E2 ∗ . . . ∗ En,

Then
E′ ≡ E, and E′ is a polynomial MBA expression.

By Proposition 1, any simple expression can be transformed into a complex
polynomial MBA expression, as shown in Example 2.

Example 2. For a simple expression x + y, we have
x + y = (x ∨ y) + (x ∧ y), 1 = (x ∧ y) − y − (x ∨ ¬y),
then

x + y = ((x ∨ y) + (x ∧ y)) ∗ ((x ∧ y) − y − (x ∨ ¬y))
= (x ∨ y) ∗ (x ∧ y) + (x ∧ y) ∗ (x ∧ y) − (x ∨ y) ∗ y

− (x ∧ y) ∗ y − (x ∨ y) ∗ (x ∨ ¬y) − (x ∧ y) ∗ (x ∨ ¬y).

However, Proposition 1 exposes a potential drawback: one polynomial MBA
expression generated by Proposition 1 has a fixed pattern, which can be used
to simplify the polynomial MBA expression through basic algebra laws (i.e.,
commutation, association, and distribution laws). Firstly, a reverse engineer can
carefully recover the original linear MBA expression by factoring. Then, the
linear MBA expressions can be simplified with existing linear MBA simplifica-
tion tools. For instance, the polynomial MBA expression in Example 2 can be
simplified as follows:

((x ∨ y) + (x ∧ y)) ∗ ((x ∧ y) − y − (x ∨ ¬y)) = (x + y) ∗ 1 = x + y.

This flaw shows that the strength of polynomial MBA expression is the same
as linear MBA expression. In order to address this issue, we firstly introduce the
concept of 0-equality, whose formal definition is given in Definition 3. Example 3
presents how to generate a 0-equality.
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Definition 3. Let E1 be an expression, E2 and Ē2 be linear MBA expressions,

– the coefficients in E1 are randomly reversed or not, to construct a new expres-
sion Ē1,

– a sub-expression of E2 forms part of Ē2, and Ē2 ≡ 0,

Then E1 ∗ E2’s 0-equality is ZE1E2 = Ē1 ∗ Ē2 ≡ 0.

Example 3. For expressions
E1 = (x ∨ y) + (x ∧ y), E2 = (x ∧ y) − y − (x ∨ ¬y),we have
Ē1 = (x ∨ y) − (x ∧ y), Ē2 = (x ∧ y) − y + (¬x ∧ y) = 0,
⇒ ZĒE1

= Ē1 ∗ Ē2 = ((x ∨ y) − (x ∧ y)) ∗ ((x ∧ y) − y + (¬x ∧ y)) = 0.

Through the 0-equality, Proposition 2 transforms a polynomial expression
generated by Proposition 1 into another format, which has broken the fixed pat-
tern introduced by Proposition 1. One detailed instance is shown in Example 4.

Proposition 2. Let E be an expression,

– E = Ē, Ē is a linear MBA expression,
– Ek is a linear MBA expression, Ek = 1, k = 1, 2, . . . , n,
– E′ = (. . . ((Ē ∗ E1 + ZĒE1

) ∗ E2 + ZĒE1E2
) ∗ . . .) ∗ En + ZĒE1E2...En

,

Then
E′ ≡ E, and E′ is a polynomial MBA expression.

Example 4. For an expression E = x + y and Example 3, we have

x + y = Ē ∗ E1 + ZĒE1

= ((x ∨ y) + (x ∧ y)) ∗ ((x ∧ y) − y − (x ∨ ¬y))
+ ((x ∨ y) − (x ∧ y)) ∗ ((x ∧ y) − y + (¬x ∧ y))

= 2 ∗ (x ∨ y) ∗ ((x ∧ y) − y) − (x ∨ ¬y) ∗ ((x ∨ y) + (x ∧ y))
+ (¬x ∧ y) ∗ ((x ∨ y) − (x ∧ y)).

3.2 MBA-related Rules

So far, a simple expression can be transformed into a complex polynomial MBA
expression. Next, we demonstrate how to generate a new non-linear MBA expres-
sion based on existing MBA rules.
Recursively Apply MBA Rules. This method firstly transform the simple
expression into a linear MBA expression, then recursively apply MBA rules
to convert the related linear MBA expression into a complex non-linear MBA
format, as seen in Example 5.

Example 5.

x + y =y − ¬x − 1 ⇐ x + y = (x ∨ y) + (x ∧ y)
=((y − ¬x) ∨ −1) + ((y − ¬x) ∧ −1) ⇐ x + y = y + (x ∧ ¬y) + (x ∧ y)
=(((−¬x) + (y ∧ ¬(−¬x)) + (y ∧ (−¬x))) ∨ −1)
+ (((−¬x) + (y ∧ ¬(−¬x)) + (y ∧ (−¬x))) ∧ −1).
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Replace Sub-expression With MBA Expression. This method replaces
part of the original expression with an equivalent non-linear MBA rule, as shown
in Example 6.

Example 6.

2 =(−3 ∗ (x ∨ y) − 1 − 3 ∗ (¬x ∧ ¬y)) ∗ (−x − ¬x)
+ (3 ∗ (x ∨ y) + 1) ∗ (−x + (x ∨ y) + (x ∧ ¬y))

=3 ∗ (¬x ∧ ¬y) ∗ (x + ¬x) + (3 ∗ (x ∧ y) + 1) ∗ (¬x + 1 + 3 ∗ (x ∨ y))
⇒ x + y = −(x ⊕ y) − 2 ∗ ¬(x ∨ y) − 2

= −(x ⊕ y) − 2 ∗ ¬(x ∨ y) − 3 ∗ (¬x ∧ ¬y) ∗ (x + ¬x)
− (3 ∗ (x ∧ y) + 1) ∗ (¬x + 1 + 3 ∗ (x ∨ y)).

Linear Combination of MBA Expression. A new MBA expression can be
generated from the linear combination of existing MBA obfuscation rules. More
specifically, we add a non-linear MBA expression which is equal to 0 to the
original expression, as seen in Example 7.

Example 7.

x = (x ∧ y) + (x ∨ y) − y,

0 = x ∗ y − (x ∧ y) ∗ (x ∨ y) − (x ∧ ¬y) ∗ (¬x ∧ y),
⇒ x = (x ∧ y) + (x ∨ y) − y + x ∗ y − (x ∧ y) ∗ (x ∨ y) − (x ∧ ¬y) ∗ (¬x ∧ y).

Algorithm 1. MBA Expression Generation
1: Input : Simple expression E, Flag F .
2: function MBA-Obfuscator(E, F )
3: Generate a new linear MBA expression Ē that equals to input E.
4: if F .polynomial then
5: Generate a new polynomial MBA expression E′ based on Proposition 2.
6: else if F .recursively then
7: Generate multiple MBA rules that equal to x+ y.
8: Apply the rules to transform Ē into E′.
9: else if F .replace then

10: Generate multiple MBA rules that equal to the sub-expression of Ē.
11: Apply the rules to transform Ē into E′.
12: else if F .combination then
13: Generate a polynomial MBA expression Z that equals to 0.
14: E′ = Ē + Z.
15: end if
16: return E′.
17: end function
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We integrate all methods described above into Algorithm 1. The algorithm
takes a simple expression E and flag F as input and returns its related complex
non-linear MBA expression based on the flag F . One random seed is contained
in the algorithm, as the one in Definition 3, to generate a randomized obfuscated
expression. Note that Algorithm 1 can transform a constant into a complex non-
linear MBA expression, as shown in Example 6.

4 Case Study

In this section, we present how to apply the MBA obfuscation technique on the
Tiny Encryption Algorithm(TEA) to protect the key and algorithm, since MBA
obfuscation technique can hide constant or complicate operations.

In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher
designed by David Wheeler and Roger Needham [28]. The encryption routine
code in C of TEA is shown in Fig. 2. Given the feature of the symmetric encryp-
tion algorithm, the respective decryption routine is similar to the encryption
routine. Since its simple structure and low cost, TEA has been widely applied
to many scenarios [14,24,27,30].

The whole obfuscation process is shown in Fig. 3. Firstly, the key is trans-
formed into a function that outputs a constant value, as shown in Fig. 3a. Next,
the operation in the TEA is replaced with related complex MBA expression,
which is shown in Fig. 3b. For every one operation, MBA-Obfuscator generates
the related complex and equivalent MBA expression. After that, the original
algorithm is replaced with the obfuscation routine, and the entire obfuscation
code is seen in Fig. 3c. Considering the randomness in Algorithm 1, every expres-
sion generated by MBA-Obfuscator is different from each other.

Fig. 2. The TEA encryption procedure implemented in C programming language.
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Fig. 3. The steps of running MBA-Obfuscator on TEA encryption.
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5 Implementation and Evaluation

We implement Algorithm 1 in a prototype tool called MBA-Obfuscator . MBA-
Obfuscator accepts a simple expression input and generates a random related
non-linear MBA expression. The whole prototype is written in 1,900 lines of
Python code. We leverage the NumPy library for generating a linear MBA expres-
sion, and the SymPy library for arithmetic operation. MBA-Obfuscator also
includes utilities for measuring the quantitative metrics for MBA expressions,
such as counting MBA alternation and the number of terms.

We conduct a set of experiments to seek for checking the capability of MBA-
Obfuscator . In particular, we design experiments to answer the following research
questions.

1. RQ1: Is MBA-Obfuscator able to resist related methods simplifying MBA
expression? (resilience)

2. RQ2: How complex is a non-linear MBA expression? (potency)
3. RQ3: How much overhead does MBA-Obfuscator introduce? (cost)

As the answer to RQ1, we apply existing deobfuscation tools to simplify non-
linear MBA expressions. To address RQ2, we calculate the complexity metrics
such as the number of MBA alternation. In response to RQ3, we study MBA-
Obfuscator ’s performance data such as running time and memory usage.

5.1 Experimental Setup

Dataset. Note that the use of non-linear MBA expression is by simply substi-
tuting where the linear MBA rule is used. Therefore we check the capacity of
linear MBA expression and the related non-linear MBA expression generated by
MBA-Obfuscator . We collect 1,000 linear MBA expressions and related ground
truth (correctly simplified form) from existing works [4,5,8,18,31,32]. Next, we
use MBA-Obfuscator to generate a non-linear MBA expression that is equiva-
lent to the ground truth. Therefore, we get the Dataset including 1,000 MBA
expressions. Every sample in the dataset is a 3-tuple: (G,L,NL). G is a simple
expression, named ground truth. L is the related complex linear MBA expres-
sion. NL is the related complex non-linear MBA expression. One example is
shown in Fig. 4.

Fig. 4. The linear and non-linear MBA expressions for the ground truth expression
x + y.
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MBA Complexity Metrics. We use the following metrics to measure MBA
complexity. For these complexity metrics, a larger value indicates a more complex
MBA expression.

1. MBA Alternation. MBA alternation is to count the number of operations
that connect arithmetic operation and bitwise operation. For example, in
(x∧ y)+ 2 ∗ (x∨ y), the + represents an MBA alternation operation, because
its left operator is a bitwise operator, and its right operator is an arithmetic
operator.

2. Number of Terms. How many terms are included in an MBA expression.
3. MBA Length. The string length of an MBA expression is measured as the

MBA length.

MBA Deobfuscation Tools. We collect and check existing, state-of-the-
art MBA deobfuscation tools, as described in Sect. 2.2. Arybo2, MBA-Blast3,
NeuReduce4, SSPAM5, and Syntia6 focus on simplifying MBA expression by bit-
blasting, mathematical transformation, machine learning-based, pattern match-
ing, and program synthesis. Arybo is a tool for transforming MBA expression to a
symbolic representation at the bit-level written in Python. MBA-Blast is a novel
technique to simplify MBA expressions to a normal simple form by arithmetical
reduction. SSPAM (Symbolic Simplification with Pattern Matching) is a Python
tool for simplifying MBA expression. Syntia is a program synthesis framework
for synthesizing the semantic of obfuscated code. It produces input-output pairs
from the obfuscated rules and then generates a new simple expression based on
these pairs. NeuReduce is a string to string method based on neural networks
to learn and reduce complex MBA expressions automatically. We download and
apply those tools to simplify MBA expressions for checking the strength of the
related obfuscation technique.
Machine Configuration. Our experiments were performed on an Intel Xeon
W-2123 4-Core 3.60GHz CPU, with 64GB of RAM, running Ubuntu 18.04.

5.2 Deobfuscation on Non-Linear MBA Expression

In this evaluation, we check the resilience of MBA-Obfuscator , which refers to
the robustness of an obfuscation tool for an automatic deobfuscator. Eyrolles’s
PhD thesis [8] states that reverse engineer focuses on recovering the initial form
of the expression, meaning simplifying the MBA expression. Her experiments
show that existing symbolic software cannot simplify MBA expression because
math reduction rules only work on pure Boolean expressions(e.g., normalization
and constraint solving), or on pure arithmetic expressions(e.g., the algebra laws).
So far, no publicly known methods, including both static and dynamic meth-
ods, can effectively simplify MBA expressions. This fact attracts researchers to
2 https://github.com/quarkslab/arybo.
3 https://github.com/softsec-unh/MBA-Blast.
4 https://github.com/nhpcc502/NeuReduce.
5 https://github.com/quarkslab/sspam.
6 https://github.com/RUB-SysSec/syntia.

https://github.com/quarkslab/arybo
https://github.com/softsec-unh/MBA-Blast
https://github.com/nhpcc502/NeuReduce
https://github.com/quarkslab/sspam
https://github.com/RUB-SysSec/syntia
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develop multiple tools to simplify MBA expression, such as Arybo, MBA-Blast,
NeuReduce, SSPAM, and Syntia. Therefore, we test those deobfuscation tools
on linear and related non-linear MBA expression. After simplification, we use
the Z3 solver [22] library7 to check whether every simplified result is equivalent
to the original expression.

Table 1. Deobfuscation results. ✓ means equivalent(Z3 returns a UNSAT solution),
✗ means not equivalent(Z3 returns an SAT solution), – means time out(deobfuscation
tools cannot return a result in 1 h), “Ratio” indicates the ratio of outputs passing
equivalence checking, “Time” reports the average processing time (seconds) that each
tool takes to process an MBA sample in the ✓ column.

Method Linear MBA Non-Linear MBA
✓ ✗ −− Ratio(%) Time ✓ ✗ −− Ratio(%) Time

Arybo 569 0 431 56.9 1936.5 84 0 916 8.4 2304.9

MBA-Blast 1, 000 0 0 100.0 0.06 147 853 0 14.7 0.09

NeuReduce 756 244 0 75.6 0.06 1 999 0 0.0 0.06

SSPAM 386 356 258 38.6 1465.7 103 192 705 10.3 2132.1

Syntia 97 903 0 9.7 29.7 98 902 0 9.8 29.8

Table 2. The complexity distribution of the MBA expressions in the Dataset.

Metrics Linear MBA Non-Linear MBA
Min Max Average Min Max Average

MBA Alternation 2 99 30.6 5 92 30.3
Number of Terms 3 99 31.4 6 79 27.4
MBA Length 17 1498 438.0 47 1140 391.0

Table 1 shows the deobfuscation result on the Dataset. All existing deobfusca-
tion tools can simplify part or all of the linear MBA expressions. However, up to
14.7% of non-linear MBA expressions can be simplified by these tools in 1 h.
Arybo only simplifies 84 out of 1,000 samples, because it suffers from severe per-
formance penalties when it normalizes all operators to algebraic normal form. We
observe that MBA-Blast performs well on 2-variable polynomial MBA expres-
sions. However, it has a limited simplification effect on other non-linear MBA
expressions. Thus, MBA-Blast can simplify 147 non-linear MBA expressions.
Since NeuReduce is trained on the dataset of linear MBA expressions, it can-
not simplify non-linear MBA expressions. SSPAM can simplify 103 out of 1,000
non-linear MBA expression. Limited by the nature of program synthesis, Syntia
only returns 98 correct results for non-linear MBA expressions.
7 https://github.com/Z3Prover/z3.

https://github.com/Z3Prover/z3
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5.3 Complexity of Non-Linear MBA Expression

In the second evaluation, we seek to check the capability of potency after obfus-
cation by MBA expressions. Potency represents how complex or unreadable the
obfuscated rules are to a reverse engineer. Table 2 shows the complexity results
on the Dataset. From Definition 2, the complexity of a linear MBA expression
mainly depends on the number of terms in the expression. However, a non-linear
MBA expression’s complexity depends on multiple factors, such as the number of
terms and MBA alternation. Overall, the non-linear MBA expression is slightly
simpler than the linear MBA expression from the “Average” column.

Table 3. MBA-Obfuscator ’s performance for generating a non-linear MBA expression
with different complexity. “Time” reports the time (seconds) that MBA-Obfuscator
generates a non-linear MBA expression 10,000 times.

# Of Terms Time(Second) Memory(MB)

10 103.5 0.01
50 259.4 0.01

100 381.1 0.01
200 534.2 0.02

Table 4. Run-time overhead on non-linear MBA expressions with different complexity.
The timing result is the time to run the MBA expression 10,000 times repeatedly.

# of Terms Time (Second)
Linear MBA Non-Linear MBA Ratio(%)

10 0.5 1.5 300.0
50 3.6 8.2 227.8

100 8.1 22.4 276.5
200 18.3 57.9 316.4

5.4 Cost of Non-Linear MBA Expression

As the last experiment, we study the cost of MBA-Obfuscator : performance
overhead representing the cost for generating an MBA expression, and run-time
overhead that refers to the cost when the obfuscated code is running. Table 3
presents the time and memory cost when MBA-Obfuscator generates a non-
linear MBA expression with different complexity measured by the number of
terms. MBA-Obfuscator is effective because it relies on the existing linear MBA
rules.
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For run-time overhead, we integrate MBA expressions into a C program, and
then use gcc to compile it with the -O2 option. Table 4 shows that run-time
overhead introduced by non-linear MBA rules is about 3X as long as the related
linear MBA rules. However, the average run-time overhead for a non-linear MBA
rule is low, which is less than 0.01 s (0.0058 s).

6 Conclusion

Mixed Boolean-Arithmetic (MBA) expression, which mixes both bitwise and
arithmetic operations, can be applied to complicate a simple expression. Our
work is the first research to propose a non-linear MBA obfuscation challenge. We
investigate the class of MBA expression, and demonstrate how to generate infi-
nite non-linear MBA expressions based on existing linear MBA expressions. Fur-
thermore, we present a practical application of the non-linear MBA obfuscation
technique on obfuscating the Tiny Encryption Algorithm(TEA). We develop a
prototype tool MBA-Obfuscator , a novel non-linear MBA obfuscation technique.
Our large-scale experiment demonstrates that MBA-Obfuscator is effective and
efficient—existing deobfuscation tools may be available to simplify polynomial
MBA expressions but hardly for other non-linear MBA expressions, and the cost
of applying non-linear MBA obfuscation is low. Developing MBA-Obfuscator not
only advances the application of the MBA obfuscation technique, but also devel-
ops a dataset for future research on MBA deobfuscation direction.
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Abstract. Memory disclosure attacks give adversaries access to sensi-
tive data in memory, posing a serious threat to the security of crypto-
graphic systems. For example, the plain private key in RAM is exposed to
the attacker during RSA operation. In this paper, we propose a register-
based RSA system with high efficiency, called VIRSA, so that CRT-
enabled 2048-bit RSA is entirely carried out on CPU registers. The
private key and the intermediate results during the calculation process
are all stored in registers, and will not appear in memory, which effec-
tively prevents memory disclosure attacks. The input RSA parameters
are encrypted by an AES key. The AES key is stored in the privileged
debug registers. For performance, we use AVX-512F instruction set to
accelerate the RSA calculation. We adopt vector instructions to imple-
ment 1024-bit Montgomery multiplication and make use of redundant
representation to solve the carry propagation problem. Experiments on
Intel Xeon Silver 4208 CPU shows that VIRSA achieves a performance
factor of 0.8 compared to the OpenSSL RSA implementation, which out-
performs existing approaches such as PRIME. Furthermore, we make use
of the windowing method to improve the RSA performance. The precom-
puted table is encrypted by the AES key to ensure security. The per-
formance of VIRSA using the fixed windowing method slightly exceeds
OpenSSL, achieving a performance factor of 1.02.
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1 Introduction

Memory disclosure attacks, like Cold-boot attacks [1] and DMA attacks, pose a
threat to RSA [2] systems although RSA is considered computationally secure.
Attackers obtain the sensitive data in RAM during the RSA private key opera-
tion to destroy the security of RSA systems in the practical application. Adver-
saries exploit the remanence effect of RAM to launch cold-boot attacks. Since the
memory content stops fading away at low temperatures after loosing power and
is readable once the memory chip is powered on again, attackers can freeze the
memory chip and move the chip into another prepared machine. DMA attacks
use direct memory access through high-speed peripheral ports like Firewire [3]
and PCI [4] to access memory space.

An effective method to resist memory disclosure attacks is to implement
cryptographic operations within CPUs [5–14] because attacks on CPU chips are
costly and hard to accomplish. Register-based [5–11] schemes have been pro-
posed to implement such cryptography system. For register-based RSA system,
PRIME [8] and RegRSA [6] use 256-bit AVX registers to store RSA private key
and finish private key operations.

Before AVX-512 registers appeared, the storage space in registers was lim-
ited. We need to balance the computation speed and storage consumption. Scalar
operations save storage space but reduce performance, while vector method
improves performance but takes up more space. Redundant representation [15]
is a major method for RSA vector implementations. PRIME [8] makes use of
256-bit AVX vector registers to realize RSA system for the first time. How-
ever, due to the limitation of register space, PRIME abandons CRT and the
windowing method, resulting in low performance. PRIME puts the plaintext of
some intermediate results in RAM. RegRSA [6] adopts CRT and the windowing
method. However, RegRSA uses scalar instructions to calculate RSA and uses
AVX vector registers only for data storage instead of the SIMD feature. Besides,
RegRSA symmetrically encrypts the precomputed table and CRT intermediate
results, then stores them in RAM.

Both the number and bit-width of AVX-512 [16] registers are twice those
of AVX registers. AVX-512 register provides more register space, and processes
twice as much data as AVX register in parallel by executing vector instructions.
We use redundant representation to solve the carry overflow problem during
vector operations. Based on AVX-512 registers, we improve the security and
performance of RSA system.
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In this paper, we propose VIRSA, a secure and efficient 2048-bit RSA sys-
tem based on AVX-512 registers. Also, we use AVX-512F instruction subset to
optimize performance. Our contributions are:

1. On the AVX-512 capable processor, we complete CRT-enabled RSA system
entirely in registers without relying on memory. In the whole process of calcu-
lation, all the sensitive data is held in registers and will not appear in memory
in any form. VIRSA effectively resists memory disclosure attacks.

2. We use AVX-512F vector instructions to optimize Montgomery multiplica-
tion. Compared to the optimal scalar implementation with MULX instruc-
tion, our execution time is shortened to 87%.

3. The performance of VIRSA is 8.26 times higher than PRIME, and is 80% of
OpenSSL. When using the windowing method, the performance is 10.9 times
higher than PRIME, and is 102% of OpenSSL. That means VIRSA achieves
acceptable performance while offering protection against memory disclosure.

The rest of this paper is organized as follows. Section 2 briefly introduces the
background information about VIRSA. Section 3 shows how to design VIRSA.
Section 4 describes the implementation highlights of our system. We evaluate the
performance and security of VIRSA in Sect. 5. Section 6 shows the related work.
Section 7 concludes this paper.

2 Preliminaries

In this section, we will present the basic knowledge about VIRSA. We first give
RSA-related algorithms and then give a description of AVX-512. We also intro-
duce how to use redundant representation to solve carry propagation problems
in vector operations.

2.1 RSA-Related Algorithms

Since the modular multiplication is the major operation of RSA and directly
determines the efficiency of RSA, we decide to use Montgomery multiplication
to finish modular multiplication to avoid time-consuming division operations.
We choose the CIOS (Coarsely Integrated Operand Scanning) in [17], shown in
Algorithm 1, to perform Montgomery multiplication. By using Algorithm 1, we
get the result S = A × B × R−1, where R = 21024.
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Algorithm 1. CIOS

Input: 0 ≤ A,B<M<R, M is modules, B =
∑n−1

i=0 bi2
iw, R = 2nw, 2w is radix, n

is digits number, gcd(M,R) = 1, µ = −M−1mod 2w

Output: S = A × B × R−1(mod M)
Operation:
1: S = 0
2: for i = 0 to n-1
3: S = S + A × bi
4: q = S[0] × µ mod 2w

5: S = S + M × q
6: S = S/2w

7: end for
8: if S ≥ M then
9: S = S − M

10: end if
11: return S

We use the Montgomery exponentiation [18], shown in Algorithm 2, to accom-
plish modular exponentiation operations. Montgomery exponentiation will call
the lower-level Montgomery multiplication.

Algorithm 2. Montgomery Exponentiation

Input: a = (al−1, . . . , a0)2, d = (dl−1, . . . , d0)2, n = (nl−1, . . . , n0)2, r = 2l

Output: ad mod n
Operation:
1: result = 1
2: base = a × r (mod n)
3: for i = 0 to l − 1 do
4: if di = 1 then result = Montgomery Multiplication(result, base);
5: base = Montgomery Multiplication(base, base)
6: end
7: return Montgomery Multiplication(result, 1)

CRT method [18] is able to transform 2048-bit Montgomery exponentiation
into two 1024-bit Montgomery exponentiations. We use CRT, shown in Algo-
rithm 3, to improve the performance of RSA.

Algorithm 3. CRT Operations

Input: p, Cp = C mod p, dp = d mod (p−1), q, Cq = C mod q, dq = d mod (q−1),
q−1 mod p

Output: Plaintext M
Operation:

1: Mp = Cp
dp mod p

2: Mq = Cq
dq mod q

3: h = q−1(Mp − Mq) mod p
4: M = Mq + hq
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2.2 AVX-512

Intel Advanced Vector Extensions (AVX) [19] provides a set of registers that
support SIMD instructions. AVX registers are 256-bit width, and process eight
32-bit or four 64-bit data with a single instruction. AVX capable processors
have sixteen 256-bit AVX registers, represented as YMM0 – YMM15. The lower
128-bit of AVX registers are SSE registers, represented as XMM0 – XMM15.

Compared with AVX registers, AVX-512 register expands the bit-width from
256-bit to 512-bit, also doubles the number of AVX registers. AVX-512 capable
processors have thirty-two 512-bit registers, represented as ZMM0 – ZMM31.
Each ZMM register processes eight 64-bit or sixteen 32-bit data simultaneously
with a single instruction. The lower 256-bit of ZMM registers are YMM registers.
The AVX-512 instruction set consists of several subsets. Different processors may
support distinct subsets. For example, Skylake-SP processors only support AVX-
512F, AVX-512CD, AVX-512VL, AVX-512DQ, AVX-512BW subsets. AVX-512F
subset is supported by all AVX-512 capable CPUs. Thus, we use AVX-512F
instructions to accelerate cryptographic operations, which is available for all
AVX-512 capable CPUs and has broad applicability.

2.3 Redundant Representation

Redundant representation is used to handle complex carry propagation prob-
lems in vector instructions. It is easy to deal with carry propagation in scalar
operations. In 64-bit operating system, scalar instruction ADD adds two 64-bit
data stored in GPRs. If the sum of the two integers exceeds 64-bit, then CF
is set to 1 to save the carry. For scalar multiplication, MUL instruction is used
to multiply two 64-bit integers. The lower 64-bit of the result is stored in RAX
register, and the higher 64-bit is stored in RDX in default. However, dealing
with carry propagation in vector instructions is difficult. We take an AVX-512
instruction [20,21] VMULPD as an example. The detail of VMULPD is shown
in Table 1. We find that only the lower 64-bit of the result is retained and the
higher 64-bit is discarded in every multiplication.

Table 1. Details of VMULPD instruction.

Instruction Details of VMULPD

Instruction: VMULPD zmm1, zmm2, zmm3

Description: Multiply packed double-precision (64-bit) floating-point elements in

zmm1 and zmm2, and store the results in zmm3

Operation: For j = 0 to 7

i = j * 64

zmm3[i+63 : i] = zmm1[i+63 : i] * zmm2[i+63 : i]

ENDFOR

zmm3[MAX : 512] = 0

Redundant representation [15] solves carry overflow in vector operations. The
core idea is to put smaller data into large container, so that the computation
result will not produce carry. For example, if the two integers are less than
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232, the product is less than 264. The overflow is avoided. Suppose an n-bit
integer A, written in 264 radix as an l-digits integer, where l = �n/64� and every
64-bit digit 0 ≤ ai ≤ 264. We choose a positive integer m satisfies m < 64
and we use radix 2m to represent integer A with k-digits, k = �n/m� > l and
A =

∑k−1
i=0 xi × 2m×i, xi satisfies 0 ≤ xi ≤ 2m. Then, A is able to be written

in 2m redundant representation. If we select 2m redundant representation, we
only fill the low m-bit in 64-bit container, and the high (64-m) bits are filled
with 0. By choosing an appropriate m, we ensure that carry overflow will not
occur in vector instructions. Finally, we use Algorithm 4 in [15] to transform
the result into 2m redundant representation, then transform the 2m redundant
representation to regular 264 representation.

Algorithm 4. Redundant-to-2m

Input: U in redundant representation with k digits
Output: U in radix 2m representation
Operation:
1: temp = 0
2: for i = 0 to k-1
3: temp = temp + ui

4: vi = temp mod 2m

5: temp = temp / 2m

6: End for
7: Return V

3 System Design

In this section, we present the core idea of designing VIRSA.

3.1 Securing Critical Data and Operations

To protect the cryptographic system against memory disclosure attacks, we need
to ensure both the keys and private key operations are secure.

Protecting Keys. We put an AES master key in debug registers. Attackers
are not allowed to access debug registers during RSA operations to prevent AES
key disclosure. RSA private key is encrypted by the AES key. The encrypted
private key only appears in RAM in the input phase. The plain private key only
appears in registers.

Secure Private Key Operations. In our 2048-bit RSA system, the whole
operations, including modular multiplication, modular exponentiation and CRT,
are register-based. When we use CRT acceleration only, any sensitive data during
RSA operations is stored in registers. There is no memory interaction. When we
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use both CRT and the windowing method [18] to improve performance, we load
the AES-encrypted precomputed table in memory in the form of ciphertext. In
order to avoid context switch during RSA computations, we implement RSA
module atomically in Linux kernel space, so that the data in registers will not
be exchanged to RAM.

3.2 Improving Performance

In this paper, VIRSA is designed based on ZMM registers. The ZMM register
is 512-bit width, and processes eight 64-bit elements in parallel by using CPU
vector instructions, so as to improve the performance.

The carry overflow problems can be solved by using redundant representation
when we use vector instructions. For CRT-enabled 2048-bit RSA, the large inte-
ger operations involve 1024-bit Montgomery multiplication and 1024-bit large
integer multiplication. Montgomery multiplication [22] is the core of RSA com-
putation and directly determines the performance of private key operations. For
1024-bit integer, we take m = 28 to ensure no overflow happens during Mont-
gomery multiplication (Sect. 4.1 explains why we choose 28). When m = 28,
k = �1024/28� = 37. The number of ZMM registers required is q, satisfying
q = �37/8� = 5. We use ZMM registers to load 1024-bit integer in the form of
228 redundant representation, so that we can apply AVX-512F subset to operate
8 digits by SIMD instructions to improve performance. Figure 1 shows the 228

redundant representation form of a 1024-bit integer A.
The windowing method [18] during Montgomery exponentiation further

improves the performance of RSA computation, because it reduces the times
of Montgomery multiplication. However, the windowing method needs space in
RAM to store the precomputed table. To ensure security, we use the AES key to
encrypt the precomputed table. In this paper, we both analyze the performance
of 2048-bit RSA with and without the windowing method.

Fig. 1. 228 redundant representation of a 1024-bit integer A.



300 Y. Fu et al.

3.3 System Architecture

To protect VIRSA from memory disclosure, we integrate RSA module into Linux
kernel space and complete RSA computation in register space. The user processes
pass RSA parameters encrypted by the AES key to kernel RSA module through
system call. We read the AES-encrypted RSA parameters into ZMM registers,
then use the AES key stored in debug registers to decrypt RSA parameters. We
get the plaintext of RSA parameters and perform RSA computation in register
space. We divide RSA module into three levels, the highest level is 2048-bit
CRT, the middle level is 1024-bit Montgomery exponentiation and the lowest
level is 1024-bit Montgomery multiplication. High-level operations call low-level
operations. The system architecture is shown in Fig. 2.

Kernel Space

User Space

EnAES(RSA-Parameters)

Register Space

Debug

Registers

RSA Module

2048-bit CRT

1024-bit Montgomery Exponentiation

1024-bit Montgomery Multiplication

System Call ioctl

Fig. 2. System architecture of VIRSA.

4 Implementation Highlights

In this section, we describe implementation highlights of VIRSA based on AVX-
512 registers. We use assembly language to control registers. We also integrate
RSA module into Linux kernel space to access debug registers and ensure atom-
icity of RSA module.
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4.1 Montgomery Multiplication

We use CIOS, shown in Algorithm 1, to perform 1024-bit Montgomery multipli-
cation. We transform the 1024-bit inputs A, B, M into 228 redundant representa-
tion to avoid carry propagation in CIOS operations and apply vector instructions
in AVX-512F to speed up computation. In step 3 and step 5 of Algorithm 1, we
use VPBROADCASTQ to fill 64-bit data into all elements of ZMM registers,
then use vector multiplication instruction VPMULUDQ and vector addition
instruction VPADDQ. In step 6, the right-shift vector instruction VALIGNQ is
selected. The mod operation in step 4 is realized by scalar instruction AND.
Table 2 describes the main AVX-512F instructions we used.

We use AVX-512F instructions and get the vectorized implementation of
CIOS algorithm refer to [15]. The vectorized CIOS is shown in Algorithm 5. We
finish Montgomery multiplication (Algorithm 5) completely in registers and use
assembly language to control registers.

Table 2. Explanation of AVX-512F instructions used in CIOS algorithm.

Instruction Description

vpbroadcastq zmm, r64 Broadcast 64-bit integer to all elements
of ZMM.

vpmuludq zmm1, zmm2, zmm3 Multiply the low unsigned 32-bit
integers from each packed 64-bit
element in ZMM1 and ZMM2, and
store the unsigned 64-bit results in
ZMM3

vpaddq zmm1, zmm2, zmm3 Add packed 64-bit integers in ZMM1
and ZMM2, and store the results in
ZMM3

valignq zmm1, zmm2, zmm3, imm8 Concatenate ZMM1 and ZMM2 into a
128-byte immediate result, shift the
result right by imm8 64-bit elements,
and store the low 64 bytes (8 elements)
in ZMM3
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Algorithm 5. Vectorized implementation of CIOS with AVX-512F instructions

Input: A, B, M, in radix 264. µ.
Output: S = A × B × R−1(mod M)
Conventions:
We choose m=28, k=37, q=5.
Ai, Mi, Xi, T , represent 512-bit width ZMM registers.
B is consist of b0, b1, . . . , bk−1.

Xi[j] is the jth 64-bit element of ZMM register Xi.
Operation:
1: Transform A, B, M from radix 264 to radix 2m

2: x0 = 0, Xq, . . . , X0 = 0
3: a0 = A mod 2m (digit 0 of A)
4: m0 = M mod 2m (digit 0 of M)
5: Put digits 1, 2, . . . , (k-1) of A into ZMM registers A1, . . . , Aq

6: Put digits 1, 2, . . . , (k-1) of M into ZMM registers M1, . . . ,Mq

7: for i = 0 to k-1
8: x0 = x0 + a0 × bi
9: T = Broadcast bi // using VPBROADCASTQ instruction

10: for j = 1 to q
11: Xj = Xj + Aj × T // using VPMULUDQ and VPADDQ
12: y0 = x0 × µ mod 2m

13: x0 = x0 + m0 × y0
14: T = Broadcast y0 // using VPBROADCASTQ instruction
15: for j = 1 to q
16: Xj = Xj + Mj × T // using VPMULUDQ and VPADDQ
17: x0 = x0 � m
18: x0 = x0 + X1[0]
19: Xq, . . . , X1 = Xq, . . . , X1 � 64 // using VALIGNQ instruction
20: Using Algorithm 4 to convert Xq, . . . , X1, x0 from redundant representation to

2m radix representation. We get result S after Algorithm 4.
21: Transform S from 2m representation to regular 264 representation.
22: If S ≥ M , S = S − M
23: End if
24: Return S

We choose m = 28 instead of other integers. Assuming m is larger than 28, for
example, m is 29. Then, carry overflow will occur once during CIOS operation.
If m is less than 28, m is 27. Then, 38 digits are needed to restore a 1024-bit
integer, leading to extra computational overhead. In conclusion, the best value
of m in this paper is 28.

4.2 Montgomery Exponentiation

We use Algorithm 2 to perform Montgomery exponentiation entirely in CPU
registers to resist memory disclosure.
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Since the windowing method [18] reduces the times of Montgomery multipli-
cation, we can also use the windowing method to speed up Montgomery expo-
nentiation operations. For 2048-bit RSA, 6-bit windows size is the best option.
However, 6-bit fixed windowing method needs 8KB to store the precomputed
table, which exceeds the storage space of registers. So we allocate 8KB memory
to store precomputed table. The table is not allowed to be stored in plaintext. We
use the AES key stored in debug registers to encrypt the precomputed table and
load it into RAM in ciphertext. When data in table is needed, the encrypted data
is loaded into ZMM registers and then is decrypted. We use kmalloc function
to allocate 8KB memory on kernel heap and use function kfree to free memory
after RSA computation. If we use kernel stack space to store the 8KB table,
a stack-overflow error will happen because the Linux kernel stack space is not
enough.

4.3 CRT

We complete CRT operations (shown in Algorithm 3) in registers and keep all
the sensitive data generated during CRT computation, Mp, Mq, h and h × q,
in ZMM registers. The last step of CRT involves large integer multiplication.
Multiplication of two 1024-bit integers yields 2048-bit result. Although 1024-bit
integer multiplication will not cause a significant impact on performance (since
it is only executed once), we also use redundant representation to perform vector
operations in Algorithm 6.

4.4 RSA Module

RSA module starts from receiving RSA parameters. Parameters, including CRT
parameters and Montgomery parameters, are encrypted by the AES key before
RSA computation. The encrypted parameters only appear in memory in the
input phase and then are decrypted in registers. We finish RSA module in register
space without memory interaction. RSA module is consist of CRT, Montgomery
exponentiation and Montgomery multiplication. The high level calls the low level
operation by sending parameters. The low level returns computation results to
high level. Algorithm 7 shows the operations in RSA module.
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Algorithm 6. Vectorized implementation of 1024-bit integer multiplication

Input: A, B, in radix 264.
Output: S = A × B
Conventions:
Ai, Ri, T , represent 512-bit width ZMM registers.
B is consist of b0, b1, . . . , bk−1.

Ri[j] is the jth 64-bit element of ZMM register Ri.
ri : r is a pointer to an array of 64-bit values, i is the index.
Operation:
1: Transform A, B from radix 264 to radix 2m

2: Rq, . . . , R0 = 0
3: Put digits 0, 1, . . . , (k-1) of A into ZMM registers A1, . . . , Aq

4: for i = 0 to k-1
5: T = Broadcast bi // using VPBROADCASTQ instruction
6: for j = 1 to q
7: Rj = Rj + Aj × T // using VPMULUDQ and VPADDQ
8: store R1[0] at ri
9: Rq, . . . , R1 = Rq, . . . , R1 � 64 // using VALIGNQ instruction

10: Store Rq, . . . , R1 starting at rk
11: Using Algorithm 4 to convert ri from redundant representation to 2m-radix.

We get result S after Algorithm 4.
12: Transform S from 2m representation to regular 264 representation.
13: Return S

Algorithm 7. 2048-bit RSA module operation

Input: AES-encrypted RSA parameters (CRT and Montgomery parameters).
En(p, Cp, dp, q, Cq, dq, q

−1 mod p,R2 mod p,R2 mod q,−p−1 mod 2r,−q−1 mod 2r)
Output: Plaintext M
Operation:
1: Passing encrypted parameters p, Cp, dp, R

2 mod p,−p−1 mod 2r from RAM to
registers, then decrypt these parameters in register space.

2: In register space, calculate Mp = C
dp
p mod p, store the result in ZMM registers.

3: Passing encrypted parameters q, Cq, dq, R
2 mod q,−q−1 mod 2r from RAM to

registers, then decrypt these parameters in register space.

4: In register space, calculate Mq = C
dq
q mod q, store the result in ZMM registers.

5: Calculate M = Mq + [(Mp − Mq) × (q−1 mod p) mod p] × q in registers.
6: Return M

4.5 Building Execution Environment

We integrate RSA module into Linux kernel and compile it. We regard RSA
module as a char module and provide interfaces for user processes. Processes in
userspace access RSA module by ioctl system call. The passed RSA parameters
are encrypted by the AES key. The AES key is stored in debug registers dr0 –
dr3, that can only be accessed by ring 0 privilege. In order to protect VIRSA
from memory disclosure attacks, we need to satisfy the following two security
prerequisites.
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Atomicity. Before executing RSA module, we call preempt disable to suspend
kernel preemption and call local irq save to forbid interrupts. So data in registers
will not appear in RAM by context switch. We use preempt enable to restore
kernel preemption and use local irq restore to enable interrupts after finishing
RSA module.

AES Key Protection. We use the existing method TRESOR [7] to produce
and protect the AES key. Before any user process startup, we input the password
to derive the AES key. The generated AES key is placed in debug registers. The
way for userspace processes to access debug registers is through ptrace system
call. We modify these system functions to prevent attackers from accessing debug
registers.

5 Evaluation

In this section, we evaluate the performance and security of VIRSA. The experi-
mental platform is Intel Xeon Silver 4208 CPU (2.2 GHz frequency), 16GB mem-
ory. The operating system is Ubuntu 18.04 64-bit.

5.1 Performance

We evaluate the performance improvement from two aspects, including Mont-
gomery multiplication and 2048-bit RSA private key operation.

Montgomery Multiplication. We apply vector instructions to accomplish
Montgomery multiplication based on AVX-512 registers, and compare its per-
formance with optimal scalar implementation. The scalar implementation uses
MULX instruction to improve performance. We run vector implementation and
scalar implementation respectively and compare the performance difference from
two aspects of execution time and CPU cycles. The execution time and cycles of
each round are the average results of 10 million trials. We find that the perfor-
mance of vector implementation is better than scalar implementation in every
round, with 13% performance improvements. The scalar implementation achieves
87% performance of our vector implementation. Table 3 shows the time (µs) and
CPU cycles when executing Montgomery multiplication.

Table 3. Performance of scalar and vector Montgomery multiplication implementation.

First round Second round Third Round Average

Times Cycles Times Cycles Times Cycles Times Cycles

Scalar [6] implementation 0.396 869 0.396 874 0.393 861 0.396 868

Our vector implementation 0.345 757 0.346 759 0.345 761 0.345 759

Vector/Scalar 87% 87% 87% 87% 88% 88% 87% 87%
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RSA Private Key Operations. We complete VIRSA to resist memory disclo-
sure attacks and accelerate RSA computation by vector instructions. We com-
pare our vector implementation with OpenSSL and PRIME. We run our ASM
code in kernel space and run OpenSSL (version 1.1.1) in user space. By com-
paring the execution time and CPU cycles, we find that when we abandon the
windowing method, our performance is 80% of OpenSSL. When we adopt the
windowing method, our performance is 102% of OpenSSL. That means VIRSA
achieves acceptable performance while offering protection against memory dis-
closure. Table 4 shows our experimental data based on RSA computation. In
Table 4 and Table 5, we use Register-CRT to represent we finish CRT-enabled
RSA system completely within registers. We use Win-CRT to represent we finish
CRT-enabled RSA system with the windowing method.

We also compare our running results with PRIME in Table 5. PRIME [8]
states that the performance of PRIME is 8.6% of OpenSSL. In Table 5, we find
that PRIME achieves 10.8% of Register-CRT and 8.4% of Win-CRT. That means
the performance of Register-CRT is improved by 8.26 times and the performance
of Win-CRT is improved by 10.9 times compared to PRIME.

Table 4. Performance comparison between Register-CRT, Win-CRT and OpenSSL.

Register-CRT Win-CRT OpenSSL OpenSSL/Register-CRT OpenSSL/Win-CRT

Execution time 4.6ms 3.6ms 3.7ms 80% 103%

Cycles 10117276 7965110 8110468 80% 102%

Table 5. Performance comparison between Register-CRT, Win-CRT and PRIME.

PRIME/OpenSSL PRIME/Register-CRT PRIME/Win-CRT

Performance 8.6% 10.8% 8.4%

5.2 Security

Resistance to Memory Disclosure Attacks. Memory disclosure attacks,
like Cold-boot attacks and DMA attacks, allow adversaries to partially or
entirely acquire memory contents. To effectively resist these attacks, we imple-
ment VIRSA, a register-based CRT-enabled RSA system. When we abandon the
windowing method, the RSA module is executed entirely in register space. All
private data, including RSA parameters and intermediate results are stored in
registers during running RSA module. No private information appears in RAM.
When we use the windowing method, the 8KB precomputed table is encrypted
by the AES key and placed in memory as the form of ciphertext. The AES key is
not allowed to be accessed. To ensure the atomicity of RSA module, we disable
kernel preemption and interrupts to avoid context switch. Thus, the attacker
will not get any sensitive information from memory.
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Resistance to Cache Timing Side-Channel Attacks. When using the
fixed windowing method, our system is resistant to cache timing side-channel
attacks [23–25]. We complete CIOS (in Algorithm 1) with always performing
the final subtraction. Besides, the Montgomery multiplication in step 4 (in Algo-
rithm 2) is always executed. Thus, no side-channel timing based on execution
flow happens because there is no branch in instruction paths. Every time when
we load data from precomputed table, we read the table as a whole to stop
attackers deducing the exponents. Thus, no side-channel timing based on data
access happens. When we abandon the windowing method, all the data dur-
ing RSA computation is stored in registers and will not appear in cache, which
obviously resists cache-based timing attacks.

5.3 Discussions

Compared with symmetric cryptography, the implementation of register-based
asymmetric cryptography requires more register space. Fortunately, the amount
of available register space is gradually increasing, from 128-bit XMM registers
to 256-bit YMM registers and then 512-bit ZMM registers. In RegRSA based on
256-bit YMM registers, the total available register space has reached 704-byte.
In VIRSA based on 512-bit ZMM registers, it is 2240-byte including sixteen 64-
bit general purpose registers (GPRs), eight 64-bit MM registers and thirty-two
512-bit ZMM registers. Those registers are enough to complete RSA, ECC and
corresponding acceleration algorithms. Thanks to the improvement of register
space and vector instructions, the performance of RSA, from [11] based on XMM
registers, to PRIME and RegRSA based on YMM registers, to VIRSA based
on ZMM registers in this paper, is also improving. At the same time, using
registers to implement cryptographic system can prevent physical attacks in
board-level and memory disclosure caused by system vulnerabilities. However,
current register-based RSA schemes are almost performed in Linux kernel, which
is difficult to implement and deploy. How to run cryptographic systems within
CPUs in user space is worth considering.

In this paper, we use 228 redundant representation to finish 2048-bit RSA
because 228 is suitable for AVX-512F subset and AVX-512F is suitable for all
AVX-512 capable CPUs. In fact, on some processors like Cannon Lake processors
and Ice Lake processors, the best option is AVX-512IFMA subset since AVX-
512IFMA is able to be used to realize RSA with 252 redundant representation.

6 Related Work

Both register-based [5–11] and cache-based [12–14] cryptography schemes are
implemented within CPUs and have memory disclosure resistance. For register-
based symmetric cryptosystem, AESSE [9], Amnesia [10] and TRESOR [7] keep
the AES keys in registers and complete AES symmetric cryptographic operations
entirely in registers. As for register-based asymmetric cryptosystem, the work
in [11] utilizes SSE XMM registers to store RSA key. PRIME [8] uses AVX
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YMM registers to implement RSA computation without CRT and the windowing
method. RegRSA [6] utilizes AVX YMM registers to store sensitive data during
RSA operations and uses scalar instructions to implement 2048-bit private key
operations instead of using vector instructions. The study in [5] designs and
implements an ECC system in register space.

Cache-based schemes use cache to store private data and implement cryp-
tography computations outside RAM, which is Cache-as-RAM. FrozenCache [12]
uses CPU caches to store keys instead of RAM. Copker [13] stores RSA private
key and intermediate states only in CPU caches and registers during RSA private
key operations to avoid memory disclosure. Mimosa [14] uses hardware transac-
tional memory (HTM) to protect sensitive information and uses caches to store
data. However, Mimosa relies on special CPU hardware features.

7 Conclusion

In this paper, we present VIRSA, which implements 2048-bit CRT-enabled RSA
entirely in CPU registers. Thus, all private data only exists in registers and
will not appear in RAM to effectively resist memory disclosure attacks. We
apply AVX-512 vector instructions to improve performance. Montgomery mul-
tiplication directly determines the performance of RSA computation. So we use
AVX-512F instructions to optimize Montgomery multiplication. We also use the
windowing method to reduce the number of Montgomery multiplication and put
the AES-encrypted precomputed table in memory. We carry out experiments on
Intel Xeon Silver 4208 CPU, and find that the performance is 80% of OpenSSL
without the windowing method. When using the windowing method, the perfor-
mance is 102% of OpenSSL.

In the future, we will make use of AVX-512IFMA instructions to realize
RSA with 252 redundant representation. We will also consider the impact of
Hyper-Threading for our RSA computation. Similarly, vector operations can
speed up the performance of ECC algorithm. We plan to use vector instructions
and redundant representation to finish a high-performance ECC system in prime
field with memory disclosure resistance.
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1 Introduction

With the increasing code size of operating systems and the emergence of
more and more applications, system vulnerabilities and malicious threats from
unknown applications have become more serious. Therefore, a solid and reliable
trusted execution environment becomes particularly important. The Software
Guard eXtension (SGX) [1–3] is currently a hardware-level security extension
that has a wide range of applications and is highly researched. SGX is a set of
CPU instructions, which is applied on the x86 processor to provide a trusted
execution environment called enclave for user mode processes. SGX can provide
integrity and confidentiality guarantee for programs running inside enclaves.
Even the privileged applications, including a potentially malicious operating
system or hypervisor cannot break it. However, SGX technology is still found to
have security vulnerabilities. The most serious security threat to SGX is informa-
tion leakage through the side-channel. In recent years, attacks on SGX scenarios
using or indirectly using side-channel mainly include traditional cache time side-
channel attacks, page fault side-channel attacks, and the most popular micro-
architectural data sampling (MDS) attack, such as Meltdown [4] and Spectre [5].
More worrying is that in the security assumptions of SGX, the applications in
the privileged mode may have malicious behaviors, which can reduce the noise in
the side-channel attacks through many privileged behaviors to make the above
attacks easier to launch.

Whether it is a traditional side-channel attack or an MDS attack, two neces-
sary conditions are required: (1) The adversary and the victim must share some
necessary resources. For example, in a cache side-channel attack, the adversary
must share cache resources with the victim. (2) Both must be executed concur-
rently. The adversary needs to execute simultaneously with the victim in order
to obtain the runtime state of the victim. Many existing researches [6–12] have
focused on how to isolate the resources used by the victim, making it impos-
sible for the adversary to analyze the shared resources. In addition, there are
some researches [13–15] focus on the conditions of concurrent running, trying
to create shadow threads and using effective detection mechanisms to prohibit
concurrent execution of the program when the victim program is running crit-
ical operations. Currently, the attacks are mainly divided into three types: (1)
The adversary achieves concurrent attacks from the same logical core by contin-
uously interrupting the victim thread. (2) Attacks at the sibling core. (3) The
adversary launches an attack from a completely different physical core, we call it
cross-core attack. The existing schemes like Racing [14] and Varys [13] leverage
extra thread to occupy the sibling core and leverage cache access time to defend
against side-channel attack from sibling core. And they have 36.4% and 15%
performance overhead respectively. But they can not defend against the cross-
core attack. Recently, attacks from different physical cores such as Crosstalk [16]
pose a great threat. Therefore, a defense scheme that can effectively deal with
side-channel attacks from all cores is essential. Although E-SGX [15] can resist
cross-core threats, it only supports single thread scenario and imposes a perfor-
mance overhead of over 47.2%.
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In this work, we propose Informer, an efficient scheme against various side-
channel attacks. Informer monopolizes the whole processor during security-
critical execution to break the concurrent execution condition of side-channel
attack. We design an attack detection method to ensure whether the OS is
truthfully scheduling SGX threads. And our solution occupies all idle cores,
which can defend against side-channel attack from all cores. Different from E-
SGX, we specifically set a control thread to be responsible for safety detection
instead of the computing thread, which greatly improves the performance of the
computing thread itself, and also allow multiple computing threads to execute
concurrently on different cores.

Since thread scheduling depends on the OS, it is a significant challenge to
ensure all the logical cores has been occupied with an untrusted or even malicious
OS. In fact, Under the protection of Informer, if the adversary tries to launch
a side-channel attack, he has to make an SGX thread Asynchronous Enclave
Exit (AEX) and resume it afterwards, which will take a fixed number of CPU
cycles. Therefore, we leverage it as a time threshold to create a control thread
to challenge threads on other cores and detect whether the AEX occurs on itself
periodically, which will prevent malicious scheduling of the operating system.

In addition, we also optimize the operating system blocking problem caused
by our scheme and design an extension to reduce the exclusivity to other pro-
grams. We implement Informer based on the Intel Linux SGX SDK and apply it
to ECDSA signature and RSA signature to protect the private key calculation
part with about 39% and 22% performance overhead respectively.

– We propose Informer, a defensive approach against side-channel attacks from
any core without trusting system software.

– We design a mechanism to reduce the impact on the OS and propose an
additional optimized extension to reduce the performance overhead brought
to other programs.

– We implement Informer on OpenSSL with 22% performance overhead.
– We propose an extension that can reduce Informer exclusivity.

2 Backgroud

2.1 Intel SGX

As an extension of the instruction set architecture, SGX provides a trusted exe-
cution environment for applications from the hardware level. SGX uses the Pre-
served Random Memory (PRM) as the memory page of the enclave and encrypts
the PRM through Memory Encryption Engine (MEE) technology. Only when
the data enters processors will it be decrypted, and it is always stored in memory
in the form of ciphertext and measured externally to ensure Confidentiality and
integrity of data. In addition, processor provides users with attestation services
for enclave codes and data through the keys preset in processors.

When a program is running inside an enclave, the processor core on which it
is located will enter enclave mode. In order to allow the core to switch between
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enclave mode and normal mode normally, SGX provides EENTER and EEXIT
instructions to allow the core to enter and exit enclave mode. However, when a
program running inside an enclave is interrupted, the core cannot exit normally.
In this case, the processor will replace it with an asynchronous enclave exit
(AEX). In order to protect the running state and data information in the enclave,
The important information such as the contents of the register is securely saved
inside the enclave (in the thread’s GPRSGX region of State Save Area (SSA)
frame) [17] and then replaced by a synthetic state before the core exits the
enclave mode. An AEX process takes a fixed number of CPU cycles, and we call
this fixed number of CPU cycles an AEX duration.

After the AEX, the ERESUME instruction can resume the program to re-
enter the enclave mode and load the content of the SSA area to restore the
running state. Regarding the SSA, it is a thread-local storage area of enclave
memory. It saves the contents of various registers when the program is running
inside an enclave, and important information when an exception or interrupt
occurs. The organization of the GPRSGX domain includes RIP field and EXIT-
INFO field. The RIP field stores the value of the instruction register when an
AEX occurs. This field is always updated when the AEX occurs.

2.2 Hyper-Threading

Hyper-threading technology [18] is a synchronous multi-threading technology
implemented by Intel, which allows a physical core to execute multiple (usually
two) control flows concurrently. In this case, a physical core is actually divided
into multiple logical cores. The architectural-state storage sections, APIC and
some CPU internal buffers are duplicated among logical cores. In addition, other
resources such as L1/L2 cache, TLB, bus interface, and branch prediction unit
are all competitively shared. In fact, it is precisely because of these completely
shared resources that CPU will have many attack threats from the sibling core.
At the same time, the performance of programs will be greatly affected by occu-
pying resources from the sibling core.

2.3 Side-Channel Attacks and Related Attacks

Launching a cache-time side-channel attack [19–24] needs to concurrently learn
the access pattern of the victim’s program control flow to the cache in a fine-
grained manner, and then leverages the condition of shared cache resources
to obtain cache side-channel information. At present, typical attacks include
flush+reload, prime+probe, and so on. In addition to cache side-channel attacks,
there are also researches on side-channel attacks using page table informa-
tion [25,26]. These researches obtain side-channel information by modifying the
page table entry to observe page conditions.

In addition to the traditional side-channel attack researches, the MDS attacks
such as Meltdown have emerged in recent years. These attacks take advantage
of the out-of-order execution or speculative execution to access some originally
inaccessible data, and leak it to the cache before the instruction rolls back.
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Then, they exploit the cache time side-channel attack to steal information. In
subsequent researches, more in-depth MDS attacks such as Zomebieload [27],
RIDL [28], and Cacheout [29] are proposed. They leak temporary information
in various caches inside the CPU. Although Intel subsequently released patches
for these vulnerabilities, but with little effect. In fact, the initial MDS attack did
not work against SGX. The reason is that they did not consider the restrictions
of SGX on page access. However, by bypassing the protection mechanism of
SGX, MDS attacks such as Foreshadow [30] and Sgaxe [31] were derived as
meltdown–type attacks on SGX scenarios. Although the internal buffers of the
CPU used by them to disclose secrets are different, the principles they use are
similar essentially. At present, most MDS attacks are carried out from the same
core or sibling core where the victim is located, so most of the current defense
schemes are also aimed at attacks from the same physical core.

2.4 Cross-Core Threats

At present, most defenses against side-channel attacks only focus on the protec-
tion of the L1 cache which is shared by sibling cores, because cross-core attacks
are very difficult and have a huge workload. However, attacks from the non-
sibling logical cores have also appeared. It is aimed at some internal buffers
shared by multiple physical cores, such as LLC, staging buffers, etc. Liu et al. [32]
and Disselkoen et al. [33] each designed an LLC based cache side-channel attacks
to extract key information. The latest MDS attack, Crosstalk, leaks information
directly from any cores, exploiting staging buffers. It has a great impact on
the security mechanism of SGX. For these cross-core attacks, SGX is unable
to resist using existing mechanisms. Therefore, a universal defense scheme that
allows SGX programs to resist attacks from any core side channel is urgent.

3 Threat Model

We assume the standard SGX threat model. The adversary takes complete con-
trol of privileged software, in particular, the operating system. He can suspend or
wake up any thread at any time, and at the same time modify the CPU affinity
of the thread. At the same time, the adversary can read, write, delay, lock, and
replay any memory area except the enclave. However, he cannot directly compro-
mise the CPU, steal its internal fuse key, and cannot directly access the enclave
by bypassing Page Miss Handler (PMH) and MEE. In addition, we assume that
the operating system will provide sufficient execution time for the SGX program,
regardless of denial of service provision. The adversary can exploit all resources
except the enclave to launch attacks from any location, including

– The adversary attacks from the same logical core by frequently interrupting
the victim program and alternately executing with the victim program.

– By running concurrently on the same physical core, The adversary continu-
ously monitors and leaks the victim’s operating status from the sibling core.

– By running malicious programs on any physical core, The adversary contin-
uously monitors and reveals the victim’s operating status from any core.
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Fig. 1. The architecture of Informer. The control thread occupies a logical core alone,
and the remaining cores are alternately occupied by computing and dummy threads.

4 Design

4.1 Architecture Overview

Informer mitigates side-channel attacks from any location by introducing a
challenge-response style detection mechanism shortly monopolizing all cores
during security-critical operations. Figure 1 illustrates an overview of Informer,
which includes four main components: a control thread, n-1 dummy threads,
n-1 computing threads (n is the number of CPU logic cores) and a random
number pool. Among them, the dummy threads and the computing threads are
paired one to one, and each pair occupies a logical core. The computing threads
are responsible for performing security-critical operations. The dummy threads
occupy the idle cores when the computing threads are performing security-
critical operations. The control thread occupies a core for a long time, and is
responsible for detection to ensure that all cores are monopolized by the dummy
threads and the computing threads during the security-critical operations. Any
malicious actions against informer threads, such as interruption or suspension,
will be discovered by the control thread. And the random number pool provides
random numbers for the control thread as the challenge content.

These components together serve a detection mechanism, in which the com-
puting threads and the dummy threads respond to periodic challenges initiated
by the control thread, acting as “informers”. In this paper, the term “informer
thread” is used to refer to either a computing thread or a dummy thread. Besides,
even shortly occupying all the cores will also affect the running of the OS. For
this reason, we also design a “response delay tolerance” mechanism, allowing the
OS to work on a core that has lower detection sensitivity but still has security
guarantees.
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4.2 Periodic Detection

In Informer, the control thread performs periodic security detection to ensure
that the adversary cannot attack the computing thread from any core. The
control thread sets a cyclic auto-increment variable as the clock, and uses it to
divide the detection period. As shown in Fig. 2, in each detection period, the
control thread will first check whether an AEX has occurred. After that, the
control thread will select a random number from the random number pool to
challenge informer threads, and the informer threads need to return the random
number within the period as a challenge response. When the detection fails, the
control thread will generate an alarm. The measures to be taken after an alarm
is triggered need to be based on the actual situation.

Fig. 2. Attack detection state transition diagram of the control thread.

The length of the detection period directly affects the security strength and
reliability of Informer. When the detection period is too long, the adversary can
suspend any thread on any core to launch an attack. After the attack succeeds,
the suspended thread can be resumed in time to respond to the challenge, which
fails the detection mechanism indeed. And when the length of the detection
period is too short, it may cause false alarms. From this point of view, the setting
of the period length is very important. Because Informer occupies all cores, the
adversary has to suspend the enclave thread on one of them to initiate an attack,
which will cause an AEX to occur and take an AEX duration. Therefore, setting
the detection cycle to an AEX duration enables the control thread to effectively
perform safety detection on other threads. However, through experiments we
found that there is still room for optimization in the setting of the detection cycle.
In fact, if the adversary wants to launch an attack, in addition to suspending
an enclave thread before the attack, he also needs to resume the suspended
enclave thread after the attack ends in Informer scheme. The process of resume
is basically the reverse operation of AEX, so it will take a similar time to an
AEX. Therefore, setting the detection cycle to about twice an AEX duration is
enough for the control thread to detect malicious behavior in time.
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4.3 AEX Monitoring

We leverage the method used in the Racing [14] solution to determine whether
the control thread has the AEX behavior by monitoring the changes in the
content of the SSA. Specifically, when the enclave thread occurs an AEX, it
will affect the content of the SSA inspected, such as the RIP field. Therefore,
we can detect whether the AEX has occurred by setting the RIP field to 0 and
periodically observing whether the content of the RIP field is still 0. In Informer,
except for the control thread itself, all other threads are inspected by the control
thread. Therefore, the detection of the AEX is only for the control thread itself.
We set the control thread to the highest priority in FIFO mode and do not allow
it to be suspended. Therefore, once an AEX is detected, it is considered that the
system has suffered a malicious attack.

4.4 Response Delay Tolerance

The model proposed in Informer will affect the normal operation of the OS.
Therefore, we propose the “response delay tolerance” mechanism as part of
Informer. The main idea is setting the sibling logical core of the core hosting
the control thread as a loose core. The priority of the informer thread on the
loose core is turned down, so that the OS can perform the necessary execution
on the core. At the same time, Informer can tolerate cases in which the informer
thread on the loose core cannot respond to the challenge timely, to a certain
extent. Although this enables the OS to run relatively normally, this mechanism
undoubtedly also brings security risks to Informer. The adversary can perform
side-channel attacks on this loose core without being discovered. Currently, dis-
closed cross-core attacks such as Crosstalk perform MDS attacks through the
staging buffer shared by all cores and leverage L1 cache to perform side-channel
attacks to steal secrets. Therefore, we let the control thread periodically refresh
the L1 cache. Since the L1 cache is shared on the same physical core, the adver-
sary can no longer obtain side-channel information from the L1 cache of the loose
core. To enable the “response delay tolerance” mechanism, Informer requires the
application computer to support hyper-threading technology.

5 Implementation and Analysis

5.1 Implementation

Informer needs to make the control thread judge whether an AEX has occurred
on its own by monitoring the content of the SSA. The SGX SDK does not
provide such an interface, so we modify the SDK shown in Listing 1.1. In the
initialization phase, the control thread will set the content of the RIP field to
0. When an AEX occurs, this field will be changed to store the contents of the
RIP register, which will be detected by the control thread.

In terms of specific implementation, we apply Informer to the RSA sig-
nature and ECDSA signature in SGX-OpenSSL library to protect the pri-
vate key calculation part. In the OpenSSL, the private key calculation part of
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the RSA signature and the ECDSA signature are performed in two functions,
BN mod exp mont and EC POINTS mul, respectively. The BN mod exp mont
function is mainly responsible for Montgomery modular exponentiation using the
private key during the RSA signature process. The EC POINTS mul function is
mainly responsible for the use of the private key for multiplying points during
the ECDSA signature process. We modify the source code of OpenSSL to set
the flags at the start and end of the two functions to represent the start and end
of the protected operation, and add code fragments to respond to the challenge
in all low level function calls of the two functions. In addition, at the start and
end flags, the computing thread will also record the clock of the current control
thread and compare them to ensure that the control thread is working normally.
Once the two functions in OpenSSL are executed after recompilation, the pro-
tection mechanism of the solution starts to work and periodically challenges the
thread that executes the calculation. And since all low level functions are added
with challenge response code, the challenge can be responded to in time.

Listing 1.1. set SSA RIP

void SGXAPI s e t s s a i p ( ) {
th r ead da ta t ∗ td = ge t th r ead da ta ( ) ;
s s a g p r t ∗ s s a gp r = r e i n t e r p r e t c a s t <s s a g p r t

∗>(td−> f i r s t s s a g p r ) ;
s s a gp r −> REG( ip ) = 0 ;

}

In addition, in order to allow the OS to run normally, we lower the priority of
the informer thread of the same physical core as the control thread so that the
system threads can preempt the core for normal scheduling. In order to ensure
that the adversary cannot launch side-channel attacks through this core, the
control thread periodically refreshes the L1 data cache and instruction cache
shared with the physical core. Since both the data cache and the instruction
cache have a capacity of 32 KB, and they are all virtual address indexes, we only
need to prepare a 32 KB continuous data and instruction space and continuously
access it to refresh the L1 cache.

5.2 Analysis

A key point of Informer is the definition of the detection period. The length of the
detection period should be set to no more than an AEX duration. In this way,
before the adversary completes an attack and resumes normal operations, he
can be discovered. In E-SGX [15], the AEX duration was tested. It is between
8000 and 9000 CPU cycles. Therefore, it is safe to set the detection cycle to
8000 CPU cycles, but frequent detection will cause too many false positives.
In addition to suspending the SGX thread, the attacker launching an attack
also needs to resume the suspended thread. The resume operation is almost the
reverse operation of the suspend operation, which will take almost the same
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time. We conducted 200 rounds of tests and found that the average time it takes
to suspend and resume an SGX thread is 19817 CPU cycles. It is slightly larger
than twice the AEX duration, which is in line with our speculation. Therefore,
it is safe and reliable to set the detection cycle to around 19817 CPU cycles.

The attacks can be launched from any positions. First, if the adversary sus-
pends the control thread to attack, it will cause the control thread to generate
an AEX. This behavior will be detected by the AEX monitoring. In addition, in
order to prevent the attack from suspending the control thread for a long time
and causing the alarm mechanism to fail, the computing thread will compare
the clock of the control thread at the beginning and end of its operation. If the
clocks are consistent, it indicates that the control thread is not working properly
during the security-critical operations and thus triggers an alarm. Second, if the
adversary suspends the computing thread itself or another informer thread, it
takes longer to suspend and resume the informer thread than a detection cycle
of the control thread. The suspended informer thread will not be able to respond
to the challenge of the control thread in time, and an alarm will be triggered.

Table 1. Attack detection. We conduct three rounds of attacks from three different
locations (core 3, core 4 and core 5) and record the detection rate. The core 4 is the
loose core.

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Round 1 C C C/A D(L) D D D

Detection rate 0 0 99.97% 0 0 0 0

Round 2 C C C D/A(L) D D D

Detection rate 0.06% 0.03% 0.04% 99.95% 0 0 0

Round 3 C C C D(L) D/A D D

Detection rate 0.12% 0.03% 0.03% 0 99.96% 0 0

Computing: A computing thread.
Dummy: A dummy thread.
Attack: An attack thread.
Loose: Loose core.

6 Evaluation

Our experiments were conducted on an ThinkCentre with an SGX-enabled i7-
6700 processor and 16 GB DRAM. The processor has 4 cores per CPU and 2
threads per core (with hyper-threading enable), whose maximum frequency is
3.4 GHz. The size of EPC was 128 MB. The operating system was Ubuntu 16.04
with Linux kernel version 4.15.0.132. We use GCC 5.4.0 to compile the source
code including the Linux SGX SDK and OpenSSL.
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6.1 Security Evaluation

Regardless of page table side-channel attacks, cache side-channel attacks, or
MDS attacks that leverage cache side-channel attacks, if the adversary wants
to launch an attack against Informer, it will cause the thread of the protected
enclave to hang. We conduct security evaluation of scenarios where the informer
threads are suspended in various locations relative to computing threads. In
addition, we also conduct a special analysis of the informer thread on the loose
core responding to challenges, as well as the cache access of the loose core.

Table 2. We conduct two rounds of testing, respectively, setting different cores (core 4
and core 5) as the loose core and recording the detection rate. The core 4 and the core
of the control thread belong to the same physical core. The cycles of “delay response
tolerance” is limited to 3.

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Round 1 C C C D(L) D D D

Detection rate 0.05% 0.04% 0.09% 0 0 0 0

Round 2 C C C D D(L) D D

Detection rate 0.05% 0.03% 0.09% 0 0.01% 0 0

Computing: A computing thread.
Dummy: A dummy thread.
Loose: Loose core.

Fig. 3. L1 cache access time of loose core. The left is unrefreshed. The right is refreshed
and no visible information is exposed.

Validating the Effectiveness of Detection Mechanism. We leverage
Informer to protect the private key calculation part of the ECDSA signature
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process in OpenSSL. We let the three cores perform the ECDSA signature oper-
ation 1000 times at the same time and launch the cache side-channel attack from
three locations: (1) the same logical core as a certain computing thread. (2) the
sibling logical core of a certain computing thread on the same physical core.
(3) a different physical core. The detection cycle of the control thread is set to
19000 CPU cycles. As shown in the Table 1, the unaffected dummy thread can
always respond to the challenge of the control thread in a timely manner. The
unaffected calculation threads are constantly doing signature operations. The
operations include numerous other calculations besides the private key calcula-
tion, which leads to frequent switching with the dummy thread, resulting in a
few false alarms. In the worst case, the Informer will have a false alarm rate as
low as 0.1%. The attacked core frequently suspends the informer thread due to
the attacking program, so that the informer thread on the core cannot respond
to the challenge of the control thread in time, resulting in numerous alarms. The
detection rate is as high as 99.9%.

Since we set the sibling logical core of the core hosting the control thread
as a loose core, the informer thread running on it is allowed to be interrupted
shortly by the OS. Because it cannot respond to the challenge of the control
thread timely, we have implemented a “response delay tolerance” strategy for
this thread, which allows it to respond to the challenge within a certain delay.
Specifically, we found through testing that when the delay is smaller than 3
detection periods, it will not trigger an alarm. In addition, since the informer
thread and the control thread are in the same physical core, they share resources
such as L1 cache and TLB, and can respond to challenges faster than the informer
threads on other physical cores. As shown in the Table 2, within the limit of
3 detection period, When the informer thread and the control thread are not
running on the same physical core, there is a phenomenon that it cannot respond
to challenges in time and alarm. If the two threads are in the different physical
core for a long time, the probability of generating an alarm will increase. If
the adversary only temporarily schedules during the attack, frequent thread
scheduling will also generate numerous alarms.

Residual Cache Leakage of the Loose Core. In addition, consider the
case when the adversary initiates a page table side-channel attack similar to
controlled-channel attacks during the suspension of the informer thread on the
loose core. Such an attack will cause numerous AEXs in the computing thread,
the thread will not be able to respond to the challenge in time and thus trigger
an alarm. When the adversary leverages the cache to perform a side-channel
attack, as shown in the Fig. 3, because the control thread refreshes the L1 cache
periodically, the original L1 cache access information will no longer be observed.
The adversary is unable to obtain the L1 cache side-channel information. We also
evaluate Informer’s resistance to last-level cache(LLC) attacks. Because the LLC
is Physical Index Physical Tag(PIPT), the side-channel attacks against LLC can-
not directly select consecutive addresses as the eviction set like L1 cache. Instead,
the appropriate pages position should be selected first as the eviction set accord-
ing to the access time. Our experimental device has 8192 LLC sets, so we must
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construct an LLC eviction set containing 8192 cache sets firstly. We conduct 20
experiments to build the LLC expulsion sets on each of three scenarios: the idle
state, the original OpenSSL runtime, and the OpenSSL protected by Informer
runtime. Compared with the idle state, when the original OpenSSL was running,
there was a 10% failure rate in constructing the LLC eviction sets. When the
OpenSSL protected by Informer was running, the LLC eviction sets cannot be
constructed successfully.

6.2 Performance Evaluation

Performance in OpenSSL. In order to verify the practicability of our scheme,
we mainly design two sets of experiments. Respectively, Informer is applied to
the ECDSA signature and RSA signature in the OpenSSL. We leverage the
security mechanism of Informer to protect their private key calculation part and
record its performance overhead. At the same time, because Informer supports
multi-threading scenarios, we record the performance overhead under different
concurrency during these two sets of experiments.

Fig. 4. The performance of the original OpenSSL and the OpenSSL with Informer. The
horizontal axis is the number of cores used by the computing thread, and the vertical
axis is the number of runs in 100 s. On the left is the performance of the RSA signature
algorithm. On the right is the performance of the ECDSA signature algorithm. Both
have the highest performance when the amount of concurrency is highest. At this time,
the performance overhead is 22% and 39% respectively.

Since our experimental environment is a 4-core 8-thread CPU, and does not
involve network transmission and reception processing, the target program per-
forms best when 8 logical cores are in use. We measure the performance overhead
of the original RSA signature and ECDSA signature programs from a single
thread to 8 threads. In Informer, the control thread needs to occupy a single
core for a long time, so the maximum number of cores that can actually be used
for calculation is 7, so we measure the performance of the protected RSA sig-
nature and ECDSA signature when the amount of concurrency is from 1 to 7.
As shown in Fig. 4, whether it is an RSA signature or an ECDSA signature, the
original performance and the performance under protection are improved with
the increase in the number of concurrency. Compared with the original program,
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under the protection mechanism of Informer has a certain performance overhead,
about 22% and 39%. The performance overhead is mainly caused by the dummy
threads, which cause frequent thread switching.

Performance Overhead of the OS. In addition, since Informer will monop-
olize all CPUs when running, this will affect the operating system operation
and scheduling, even if we set a loose core. We use perf to evaluate the impact
of Informer on the operating system. As shown in Fig. 5, compared with the
original OpenSSL, Informer increases the CPU occupancy rate of the protected
program by 8.87%, and at the same time imposes a burden of 1.58% on the sys-
tem scheduling process. But the overall impact on the operation of the system is
not significant, only the CPU usage of the swapper process responsible for occu-
pying idle time is greatly reduced, which is irrelevant to the normal operation
of the operating system.

Fig. 5. Flame Graph. The TestApp is the target program, and most of its runtime is
spent on switching in and out of the enclave. The swapper process is a process that
runs when the operating system is idle. It mainly performs do idle operations and has
no practical meaning.

7 Extension

Informer occupies all the cores when the computing thread runs security-critical
operations, which will affect the operation of other programs. So we design an
additional extension to allow other programs to execute concurrently to improve
core utilization. As shown in Fig. 6, other SGX programs can replace the dummy
threads to respond to the challenge of the control thread and execute concur-
rently with the protected computing thread. As in different enclaves, the com-
munication security in response to the challenge cannot be guaranteed. So we let
the protected program share the session key (sk) and the random number pool
(random[n], n is the size of the random number pool) with other SGX programs
through SGX local attestation or sharing author identity during the initializa-
tion phase. During each challenge, the control thread will generate a random
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number R and share it with other running SGX programs. The other programs
will randomly pick a number (random[x]) from the pool and leverage Eq. 1 to
generate a reply to the control thread. The control thread uses the reverse Eq. 1
to obtain random numbers for comparison to determine whether the challenge
is correctly responded.

reply = (x||random[x]) ⊕ sk ⊕ R (1)

We have implemented an SGX applet as a “co-current program”, which con-
tinuously run SHA-256 in its own enclave and constantly respond to the challenge
of the control thread. Compared to the original program, our solution generate
about 10% performance overhead, which is mainly due to fact that the applet
needs to continuously accept the challenge of the control thread and respond to
the challenge through calculation.

8 Related Work

Shih and Gruss both propose defense schemes against SGX side-channel attacks,
namely T-SGX [6] and Cloak [7]. Their basic idea is using Intel hardware feature
TSX to cover the side-channel information of the SGX programs so that the
adversary can no longer exploit the resources such as page table entries or caches
to perform side-channel attacks. However, both of the solutions require sensitive
code and data to be placed in transaction memory, which means additional
compilation to support TSX. At the same time, a large number of read and
write operations within a transaction will also cause frequent transaction aborts,
which seriously affects efficiency.

Chen et al. gave a solution called Déjà Vu [8]. By constructing an enclave
with the ability to query the execution time of the application, each control
node in the operation flow chart queries the running time of the application. If
a side-channel attack occurs, the cryptographic computing thread in the enclave
generates an AEX, which will cause the observation time at the next control
node to be significantly longer. Déjà Vu leverages this to determine whether an

Fig. 6. Interaction process of challenge response between other programs and the pro-
tected program
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attack has occurred. However, this solution cannot defend against attacks from
non-hyperthreaded cores.

In addition, there are some solutions similar to the idea of our scheme, which
also prevent side-channel attacks by preventing the adversary from executing
concurrently. Among them, varys [13] and Racing [14] eliminate the side-channel
attacks from sibling cores by occupying the sibling core with a thread and using
the cache access time to ensure that the OS cannot schedule it to other cores.
However, it is not effective for cross-core attacks. Although E-SGX [15] can
defend against cross-physical core attacks, it only supports single-threaded pro-
grams and has a large performance overhead, which is not practical.

9 Discussion

Cache Refreshing. We only refresh the L1 cache on the sibling core where
the control thread is located, but the side-channel information existing in the
L2 cache and LLC has not been completely cleared. This is mainly because the
number of operations that the control thread can do in a detection cycle is lim-
ited. Refreshing the L2 cache and LLC requires a larger memory collection and
longer refresh time, which cannot be done in a detection cycle. And refreshing
the L1 data cache and instruction cache also has a greater impact on the lower-
level cache. To a certain extent, it also has a defensive effect on attacks from
various levels of cache.

Core Utilization. Racing [14] first proposes the idea of occupying the core to
defend side-channel attacks. But it only considers attacks from hyper-threading
and requires a shadow thread to occupy the sibling core. Varys [13] mention that
the threads responsible for the calculation can be paired to occupy a physical
core, which makes more efficient use of the cores. It also proposes an extension
scheme against LLC cache side-channel attacks, but it needs hardware support.
E-SGX [15] provides more comprehensive protection against attacks from vari-
ous cores. However, the overall detection needs to be completed by the thread
responsible for the computing, so it only supports single-threaded programs, and
the remaining cores cannot be used normally. What’s more, it affects the nor-
mal operation of the OS Seriously. In our scheme, only the control thread will
occupy a core for a long time, and the remaining cores can be used normally.
In Sect. 6.1, we evaluated the security of the loose core when a dummy thread
is running on it. Nevertheless, when a computing thread is running on the loose
core, since it generates a small amount of false alarms, the control thread can no
longer determine whether the loose core is attacked based on whether there is an
alarm. Therefore, in this case, an alarm threshold for the loose core needs to be
measured as a criterion for judging whether the loose core have been attacked.
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10 Conclusion

We present Informer, a scheme that can make the SGX program resist cross-
core side-channel attacks. Informer defends against most side-channel attacks
by monopolizing all CPU cores temporarily. We apply it to the OpenSSL. Our
evaluation shows that Informer is secure against side-channel attacks with a
detection rate of as high as 99.9%, and only incurs 22% and 39% performance
overhead in RSA signature and ECDSA signature respectively. At the same time,
through an additional mechanism and extension, Informer has a small impact
on the operating system and other programs.
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Abstract. Due to the dynamic evolution of network traffic, open world
traffic classification has become a vital problem. Traditional traffic classi-
fication methods have achieved success to a certain extent but failed with
unknown traffic detection due to the assumption of a closed world. Exist-
ing techniques on unknown traffic detection suffer from an unsatisfactory
accuracy and robustness because they lack design according to the hier-
archical structure of network flows. Meanwhile, the diverse flow patterns
in the same attacks and the similar flow patterns from different attacks
lead to the existence of hard examples, which degrades the classification
performance. As a solution, we present a Siamese Hierarchical Encoder
Network for traffic classification in an open world setting. We import a
hierarchical encoder mechanism which mines the potential sequential and
spatial characteristics of traffic deeply and adopt the siamese structure
with a new designed complementary loss function which focuses on min-
ing hard paired examples and quickens the convergence. Both of the key
designs conjointly learn the intra-class compactness and inter-class sepa-
rateness in the feature space to set aside more space for unknown traffic.
Our comprehensive experiments on real-world datasets covering intru-
sion detection and malware detection indicate that SHE-Net achieves
excellent performance and outperforms the state-of-the-art methods.

Keywords: Open world · Traffic classification · Hierarchical encoder

1 Introduction

With the advent of information technology and network intercommunication,
more attention has been paid to network management and cyberspace security
owing to the explosion and evolution of network traffic data volume [3,21]. In
network management, to properly prioritize different applications across the lim-
ited bandwidth, most QoS mechanisms have a traffic classification module to first
recognize which application the packets belong to. In cyberspace security, traffic
classification, especially for unknown traffic detection towards open world, can
support security analysts in their effort to identify and classify attack behaviors
to ensure the safety of equipment and information. Thus, most researchers bend
their minds to traffic classification by machine learning methods [2,5,15,27].
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 331–347, 2021.
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There are two main machine learning approaches to cope with this challenge:
supervised methods and unsupervised methods. The supervised methods train
data-driven classifiers on known traffic samples and achieve satisfactory results,
but the results do not take into account the samples that non-existence in train-
ing [8]. Consequently, once a previously unseen sample is sent to the classifier, it
may be misclassified as the predefined class and causes a high false alarm rate.
With the dynamic and evolution of the traffic, this becomes a major bottle-
neck in a traffic classification system. In contrast, unsupervised methods, such
as clustering, are typically used to deal with the unknown by gathering the unla-
beled samples from the same class in the feature space [22,27]. Unfortunately, it
may not work well in high-dimensional traffic data and result in poor precision,
which places restrictions on its practical usefulness. Thereafter, most researches
on traffic classification are shifting to deep learning.

The Deep learning method has made promising progress in many fields for
its excellent capability of feature extraction. Recently, it also has made a break-
through in traffic classification and unknown traffic detection. A recurrent neural
network (RNN) is used to extract sequential features for traffic classification, but
it is bounded by a closed world and cannot solve the unknown traffic detection
problem [12,24]. RNN-based attention network is employed for traffic classifica-
tion, whereas the network is time-consuming, especially when the input sequence
is too long [10]. Besides, a convolutional neural network (CNN) applied to the
studies [5,29] is to discover unknown traffic by learning the spatial feature. How-
ever, with the lack of consideration of the intra-class diversity and inter-class
similarity, the feature extractor confused by hard examples has adverse effect on
detection results. In addition, all of the above methods lack design according to
hierarchical structure of traffic flows and merely extract a single feature (e.g.,
sequential features or spatial features), and thereby these facts highlight the
necessity of building a robust classifier towards open world traffic classification.

Under the comprehensive consideration, we present a new model named SHE-
Net for traffic classification in the open world, which learns deep-level sequential
and spatial features from the raw network flows rather than manually designed
features. Factoring the structure of the network flows, the major structure of the
SHE-Net is a hierarchical encoder that mirrors the hierarchical structure of net-
work flows from bytes to packets to flows. Firstly, the byte encoder is composed
of semantic embedding and position embedding to learn the byte embedding.
Subsequently, the packet encoder is the self-attention network, which handles
the input sequences with different flow lengths and learns the sequential fea-
tures among bytes within a packet. Finally, the flow encoder is the convolution
network to acquire the spatial features of a whole network flow. Inspired by
metric learning, these hierarchical encoders are integrated into the siamese net-
work. Moreover, except for the contrastive loss function (Lcon), we design a
new complementary loss function (Lcom) for the siamese network to accelerate
convergence and mine the hard paired examples. Both Lcon and Lcom jointly
supervise the model to learn compacted intra-class features and separated inter-
class features to set aside more space for unknown instances. After that, we
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utilize the thresholds and the Support Vector Machine (SVM) classifier in open
world traffic classification.

In summary, we make the following contributions:

– We propose a SHE-Net model towards open world traffic classification by
incorporating the sequential and spatial network into the siamese network
without any statistical feature design.

– We design a new complementary loss function (Lcom) which can accelerate
the model learning and hard paired data mining, in association with the
contrastive loss function (Lcon), to learn the discriminative features.

– We conduct extensive experiments on four traffic datasets, inclusive of intru-
sion datasets and malware datasets. The results show that our methods can
achieve excellent performance on open world traffic classification.

2 Related Work

2.1 Closed World Traffic Classification

Many of the existing traffic classification methods are limited to the closed-world
premise. That is, no new classes appear in testing.

In the early studies, some algorithms seek to solve the problem at packet level
features [1,9,11,13,18,26]. The port-based method [18] identifies the application
type by matching the port number in network packets. However, this method is
failed in the situation that dynamic changes of the allocated port bring by new
technology. The payload-based method [9,11] avoids the dynamic port prob-
lem by inspecting the specific application signature in the packet payload for
matching, but it involves user privacy and needs to constantly update the pro-
tocol feature library. Yun et al. propose the Securitas and extract the statistical
protocol message formats by clustering n-grams with the same semantics [26].
Others focus on flow level features [4,7]. Gil et al. use the C4.5 decision tree
and time-related features like flow duration, flow bytes per second, and arrival
intervals [7]. However, such approaches eventually fail to put into practice due
to the error-prone and time-consuming statistical feature design.

Multiple research working on traffic classification is currently based on the
deep learning [12,16,24,28]. Wang et al. present the HAST-IDS system by using
CNN and RNN to learn the low-level spatial features and high-level sequential
features [24]. Zhao et al. design a new objective function to solve the problem
of intra-class diversity and inter-class similarity [28]. A Deep Packet framework,
with a stacked autoencoder and CNN, is employed to integrate both feature
extraction and packet classification phases into one system [16]. Although these
methods are efficient and time-saving in deep feature extraction, they are all
confined to the closed set and cannot be applied to unknown traffic detection.

2.2 Open World Unknown Traffic Detection

The real world is open and dynamic, and in many situations, the model cannot
expect it sees everything in training, which makes open-world unknown traffic
detection intractable.
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There are some flow level approaches to cope with this issues [5,15,27,29].
Zhang et al. propose a parameter-optimized scheme named RTC by combining
supervised and unsupervised machine learning techniques to get an additional
confidence score and judge the probability that a test sample is seen or unseen
[27]. Inspired by the RTC, studies in [5,15] use the deep learning methods to
obtain embedding representations and set critical values between known class
and unknown class. Zhao et al. design a prototype-based approach to perform
robust traffic classification with novelty detection and achieve good results. How-
ever, to our best knowledge, all the existing relevant studies merely use CNN or
RNN to extract a single type of feature at flow level and lack a design based on
the network flow structure in which we think that distinguishable latent infor-
mation may be behind.

3 Our Approach

3.1 Problem Definition

Given a training dataset Dtr = {(xk, yk)}N
k=1, where N is the total flow number,

xk ∈ R is an instance, and yk ∈ Ytr = {1, 2, ..., c} is the label of xk. In testing
stage, there is an open set Do = {(xk, yk)}∞

k=1, where yk ∈ Yo = {1, 2, ..., c, ..., C}
with C > c. In our approach, we aim at learning a model M : xo → Yo =
{1, 2, ..., c, unknown}, where the instance xo that flagged as the option unknown
is unseen in training phase.

3.2 Key Observation

A network flow consists of continuous packets with the same 5-tuple1 in once
intercommunication. Inspired by the hierarchical structure of a network flow,
we assume that the bytes in a network packet from different positions have a
potential correlation and plentiful information. Thus, we deem a byte as a new
language symbol, a packet as a sequence, and a flow as a document.

3.3 Data Preprocessing

We parse the datasets by the tshark tool. Thereafter, we select the initial m
packets in each flow and the original n bytes in each packet starting from the
IP layer header instead of the data-link layer header because the latter only has
information about the linked devices rather than TCP/UDP. And then, we pad
a zero token, which is 0, when the flow length is less than m (or the packet
length is under n). In view of the fact that some new technology, including
network address translation, may confuse classifier performance, we mask the
IP address and the port number in each packet to get rid of this confusion with
four mask tokens presenting by 2, 3, 4, and 5. Meanwhile, we insert a cls token,
which is referring as numeric 1, in front of each packet for aggregating all bytes
information in the current packet. After data preprocessing, a flow xk ∈ R

m×n

can be regarded as an instance.
1 The 5-tuple is (ip src, ip dst, port src, port dst, protocol).
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3.4 Model Design

Based on the key observation, our model SHE-Net is mainly composed of three
encoder layers that aim at coherently learning the low-dimensional representa-
tion of the input flow xk. The framework is shown in Fig. 1.

Byte Encoder Packet Encoder Flow Encoder Input Lcon+Lcom Detector

Flow1

Flow2

Semantic Embedding

Position Embedding

Linear Layer 

Linear Layer 

Linear Layer 

Linear Layer

CNN Vector1

Vector2 Loss

  Element-wise Sum

Known

Unknown

Hard Paired Data

y

x

Fig. 1. An overview of SHE-Net

Byte Encoder. The byte encoder contains two sub-layers including semantic
embedding and position embedding. The semantic embedding is to learn the
semantic representation of each byte b in a packet. Hence, we have:

ose = Wonehot(b) (1)

where W is the learned transformation matrix during training, onehot is a func-
tion that encodes discrete features as a one-hot numeric array, and ose denotes
the d-dimensional semantic embedding vector of a byte.

The position embedding proposed by [23] is to learn the relative position of
the input sequence. As the key observation mentioned in Sect. 3.2, we employ
the position embedding to obtain the d-dimensional position vector ope of a byte
according to:

ope =

⎧
⎨

⎩

PE(pos,2i′ ) = sin(pos/100002i
′
/d)

PE(pos,2i′+1) = cos(pos/100002i
′
/d)

(2)

where 2i
′
, 2i

′
+ 1 ∈ [0, d) are the even and odd position number of bytes in a

packet respectively. Here, we utilize sine and cosine functions of different frequen-
cies with a constant 10000. Each dimension of positional embedding corresponds
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to a sinusoid, and the wavelengths form a geometric progression in [2π, 10000·2π].
For any fixed offset k, PEpos+k can be represented as a linear function of PEpos,
which allows the model to learn the relative position representation effortlessly.

The position embedding has the same dimension d as the semantic embedding
so that the two can be element-wise summed for enriching the meaning of every
byte b in a packet. Ultimately, we get the embedding representation of a packet
p ∈ R

n×d after byte encoder.

Packet Encoder. The packet encoder learns the sequential feature of a packet
by self-attention mechanism. As depicted in Fig. 1, self-attention is comprised
of four linear layers, three of which maps a packet p to three different richer
expressive sub-space, which is defined as follows:

P = softmax(
Linear(p)Linear(p)T

√
d

)Linear(p) (3)

where P ∈ R
d×n is the feature expression of a packet. To enable the encoder to

jointly attend to information from different representation subspaces at different
positions within a packet, we divide the dimension d into h groups first to yield
d

′
-dimensional output vectors. Afterward, the vectors are concatenated, and once

again, projected via the last linear layer to get the ultimate feature representation
of a packet. After doing so, each byte in the current packet, including cls token,
aggregates the packet representation.

Flow Encoder. The flow encoder is employed for obtaining the spatial feature
of a flow by Eq. 4. More specifically, for each packet pt (t ∈ [1,m]) getting from
the byte encoder, we obtain the packet representation Pt in turn through packet
encoder. Next, we take out the cls vector clst corresponding to the cls token
from each Pt in a flow, which represents the latent contextual representation
of a packet. Thereafter, we concatenate cls vectors together in order, so as to
form a matrix of a flow. Finally, we employ CNN to encode the flow matrix into
representation vectors x.

M = Concat(cls1, cls2, ..., clsm ) (M ∈ R
m×d)

x = CNN(M) (x ∈ R
2)

(4)

3.5 Loss Function Design

Contrastive Loss. To measure the distances of pairwise representation vectors
in low dimensional space, we implement the siamese structure [6] with a con-
trastive loss function and consisting of two identical encoders sharing weight. Its
loss function is defined as:

Lcon =
1
2
Y D2 +

1
2
(1 − Y ){max(m − D, 0)}2 (m > 0) (5)

where Y is the indicator whether pairs xi and xj is similar (Y = 1) or not
(Y = 0). D is the Euclidean distance between xi and xj . m is the margin for
dissimilar pairs which contributes to the Lcon only if their distance is within m.
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Complementary Loss. However, the problems of intra-class diversity and
inter-class similarity in attack flows may result in the existence of hard paired
samples. Thus, Lcon suffers from slow convergence and constant fluctuation. To
counteract this issue, we, inspired by focal loss, fix the sampling rule in training
and design a novel complementary loss function by constructing a complemen-
tary feature of the paired data to focus on training the hard examples.

The complementary feature vector vcom based on Euclidean distance will be
activated by softmax function to get the estimated probability distribution p:

p = softmax(vcom ) = softmax([D,max(m − D, 0)]/t) (6)

where t (t ≥ 0) is a temperature normalization factor. After that, we use binary
cross entropy loss for p:

− logPr(Y |p) = −Y log(p) − (1 − Y )log(1 − p) (7)

where Y is the true probability distribution mentioned in Eq. (5). The intuition
here is that we want the predicted probability distribution of similar flow vectors
to be as close to 1 as possible since −log(1) = 0, that is the optimal loss.
We want the distribution of the dissimilar examples to be close to 0 since any
non-zero values will reduce the value of similar vectors. And then, to take into
consideration easy and hard paired samples in training, we design Lcom in such
a way:

Lcom = −(1 − p)γY log(p) − pγ(1 − Y )log(1 − p) (8)

where (1 − p)γ or pγ , with a tweaked parameter γ ≥ 0, is a modulating factor.
In the sense that when a pair is misclassified (hard paired sample) and p is near
0, the factor is close to 1 and Lcom is impervious. In contrast, if p goes to 1, the
factor is on the verge of 0 and Lcom for easy-classified pairs is low-weight that
in turn increases the importance of correcting misclassified examples.

We adopt the joint supervision of Lcon and Lcom to train our model for
discriminative feature learning:

L = Lcon + λLcom (9)

where λ (λ ≥ 0) is a balanced factor between Lcon and Lcom. Here, the Lcom

term can be considered as a further reinforcement of intra-class compactness and
inter-class separateness to save more areas for unknown class in the open world.

3.6 Detector Design

After learning the low dimensional representation, we adopt a threshold based
nearest prototype matching mechanism for open world traffic classification since
the samples in each class approximately follow Gaussian distribution. In addi-
tion, to counter that the threshold may be biased in detection performance, we
additionally join the SVM simultaneously for classification. We summarise the
details in Algorithm 1. Here, twofold need to be noted: First, we get all embed-
ding data Dem through SHE-Net. Second, only if the embedding instance vector
x falls into the threshold and the predicted label judging by the SVM is equal
to its true label can we deem that it belongs to a known class.
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Algorithm 1. Detector Based on the Prototype and the SVM
Input: Data set Dem = {Dem

tr , Dem
va , Dem

te } and its label set Y = {Ytr, Yva, Yte};
Generalization coefficient α

Output: Predicted label set Y p

1: Train a SVM classifier S on (Dem
tr ,Ytr) and optimize it on (Dem

va ,Yva);
2: Initialize T ← ∅ and Y p ← ∅;
3: for i in set(Ytr) do
4: Select all the instance vectors which belong to class i to form Xi set;
5: Compute prototype pi = 1

|Xi|
∑

x∈Xi
x as the centre point of class i;

6: Compute intra-class distance μi = 1
|Xi|

∑
x∈Xi

‖ x − pi ‖2
2;

7: Compute standard deviation distance σi = std({‖ x − pi ‖2
2, ∀x ∈ Xi});

8: Get threshold ti = μi + ασi and add ti to T ;
9: end for

10: for x in Dem
te do % x is an instance in the open world setting

11: dmin ← ∞;
12: for i in set(Yte) do
13: if ‖ x − pi ‖2

2< dmin then
14: dmin ←‖ x − pi ‖2

2; ŷ ← i; t̂ ← ti;
15: end if
16: end for
17: if dmin < t̂ ∧ S(x) = positive then
18: y ← ŷ; % x is a known instance
19: else
20: y ← ′unknown′; % x is an unknown instance
21: end if
22: Add y into Y p;
23: end for
24: return Y p

4 Evaluation

To prove the effectiveness of our method, we mainly present the experiment pro-
cess from the horizontal analysis, longitudinal analysis, and sensitivity analysis.

4.1 Dataset

We use four datasets from intrusion detection and malware detection. The details
of these datasets and the data splitting principles are shown in Table 1.

For intrusion detection, we use public dataset IDS2017 [19] which covering
benign and 7 common attack network flows and kept in separated pcap files.
After data preprocessing, classes with more than 2000 flows are reserved for
known classification and the remains are for unknown detection. To ensure the
effectiveness and generalization of our approach, the latest dataset DAPT2020
[17] for Advanced Persistent Threats which captures real-world network behavior
spanning all stages of an APT is also used for unknown intrusion traffic detection.

For malware detection, we apply USTC-TFC2016 dataset [25] together with
dataset AndMal2017 [14] for the experiment. USTC-TFC2016 dataset contains
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Table 1. Statistics of traffic datasets

Intrusion detection traffic datasets Malware detection traffic datasets

For known For unknown For known For unknown

IDS2017 Flows DAPT2020 Flows TFC2016 Flows AndMal2017 Flows

Benign 100230 AccountDiscovery 560 Cridex 60050 Avforandroid 1000

Ftp-Patator 3974 DirectoryBruteforce 5161 FTP 49889 Dowgin 1000

Ssh-Patator 2979 NetworkScan 4341 Weibo 39806 Kemoge 1000

Goldeneye 7456 VulnerabilityScan 1124 Geodo 38919 Shuanet 1000

Hulk 100900 MalwareDownload 2 Neris 36037 Youmi 1000

Slowhttptest 4212 CSRF 5 Warcraft 7874 Ransombo 1000

Slowloris 3865 Backdoor 6 SMB 32632 Simplocker 1000

DDos 95116 CommandInjection 8 MySQL 13975 Charger 1000

SqlInjection 55 Wannalocker 1000

AccountBruteforce 66 Avpass 1000

Total 318732 Total 11328 Total 279182 Total 10000

Dtr:Dva:Dte = 6 : 2 : 2 Dte Dtr:Dva:Dte = 6 : 2 : 2 Dte

10 classes of malware traffic and 10 classes of benign traffic, we select 8 categories
consisting of benign and malware for known detection. In AndMal2017 dataset,
we pick out 1000 flows uniformly at random from each one of 10 kinds of malware
to verify our approach’s ability of unknown malware traffic detection.

4.2 Baseline

We compare the performance of SHE-Net with the following relevant methods.

– SEEN [5] discovers unknown traffic by using the CNN network for features
extraction and K-Means for unknown clustering on malware traffic dataset.

– DCEMR [29] not only uses CNN network but also imports a distance-based
cross entropy (DCE) loss term and a metric regularization (MR) term to
enable the robustness of unknown malware traffic detection.

– Flow-WGAN [10] blends with the RNN-based attention structure to get flow
feature representations for intrusion detection.

4.3 Metric

We concentrate on the True Positive Rate (TPR) and False Positive Rate (FPR)
for per class evaluation. TPR means the rate of correctly recognized as a given
class, while FPR means the rate of incorrectly identified as another class. Fur-
thermore, we leverage TPRAV E , FPRAV E and FTF to access the overall perfor-
mance [20]. TPRAV E is the ratio between all correctly classified network flows
and total network flows. FPRAV E is the ratio between all wrongly classified
network flows and total network flows. The definitions are as follows:

TPRAV E =
1

N ′

C∑

i=0

TPRi ∗ FlNi (10)
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FPRAV E =
1

N ′

C∑

i=0

FPRi ∗ FlNi (11)

FTF =
C∑

i=0

wi
TPRi

1 + FPRi
(12)

The weight wi of a category i can be defined as:

wi =
FlNi

N ′ (13)

where N
′

is total traffic flow numbers orienting the open world, and C is the
number of categories including class unknown. TPRi and FPRi represent two
measures of category i. FlNi is the traffic flow number of category i. Our ratio-
nale here is that higher TPRi and lower FPRi contribute higher FTF . Besides,
FTF takes the different weights of categories into consideration, which means
the classification accuracy of one class can affect the effectiveness of the model
to a greater extent if it is given more weight whereas less affected.

4.4 Horizontal Analysis

We compare our methods with baselines to prove the effectiveness of SHE-Net
(detailed in Table 2 and Table 3) and make an analogy between the results on
two types of datasets to bear out the generalization of our approach (see Fig. 2).

Table 2. Open world traffic classification results on intrusion detection dataset

ID Category SEEN DCEMR Flow-WGAN SHE-Net

TPR FPR TPR FPR TPR FPR TPR FPR

1 Benign 0.9493 0.0159 0.9129 0.0009 0.9985 0.0209 0.9996 0.0000

2 Ftp-Pat. 0.9211 0.0204 0.8781 0.0129 0.9846 0.1128 1.0000 0.0000

3 Ssh-Pat. 0.9279 0.0350 0.8923 0.0020 0.8871 0.0004 0.9966 0.0000

4 Goldene. 0.9403 0.0211 0.9450 0.0015 0.9385 0.0034 0.9973 0.0000

5 Hulk 0.9576 0.0293 0.9362 0.0032 0.9333 0.0006 0.9987 0.0001

6 Slowhtt. 0.9302 0.0249 0.9390 0.0030 0.9155 0.0008 0.9953 0.0000

7 Slowlor. 0.9110 0.0225 0.9410 0.0024 0.9561 0.0042 1.0000 0.0000

8 DDos 0.8923 0.0024 0.9695 0.0282 0.9622 0.0100 0.9998 0.0000

9 Unknown 0.9641 0.0010 0.9803 0.0286 – – 0.9999 0.0007

AV E 0.9326 0.0192 0.9327 0.0092 0.9470 0.0191 0.9986 0.0001
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Table 3. Open world traffic classification results on malware detection dataset

ID Category SEEN DCEMR Flow-WGAN SHE-Net

TPR FPR TPR FPR TPR FPR TPR FPR

1 Cridex 0.9037 0.0233 0.9391 0.0023 0.9223 0.0989 1.0000 0.0000

2 FTP 0.9210 0.0301 0.9479 0.0092 0.9389 0.0191 1.0000 0.0000

3 Weibo 0.9008 0.0091 0.9334 0.0781 0.9118 0.0150 0.9994 0.0000

4 Geodo 0.9421 0.0105 0.9376 0.0671 0.9410 0.0332 0.9995 0.0000

5 Neris 0.9539 0.0292 0.9632 0.0923 0.9070 0.0292 0.9994 0.0000

6 Warcraft 0.9401 0.0710 0.9747 0.0632 0.8939 0.0105 0.9975 0.0000

7 SMB 0.9312 0.0078 0.9708 0.0293 0.9219 0.0282 0.9995 0.0000

8 MySQL 0.9223 0.0098 0.9871 0.0409 0.9373 0.0324 1.0000 0.0002

9 Unknown 0.9522 0.0081 0.9564 0.0301 – – 0.9985 0.0004

AV E 0.9297 0.2210 0.9567 0.0458 0.9218 0.0333 0.9993 0.0001

(a) Intrusion detection dataset (b) Malware detection dataset

Fig. 2. Confusion matrices results on two types of datasets

From the results, we can observe that the TPR in SHE-Net is reasonably
high. 99.99% of flows are correctly flagged as unseen for intrusion dataset and
99.85% for malware dataset. Moreover, low FPR of each known class means
existing flows are rarely marked as unseen, reducing the load on many man-
ual checking of alert messages. The other methods have a poor performance,
especially for FPR. Here, we view that SEEN and DCEMR have tended to
focus on extracting spatial features but neglect the sequential feature. Further,
DCEMR is better than SEEN since it extra designs a new loss function by taking
into account the intra-class and inter-class distance. Flow-WGAN has no result
about class unknown. It considers the sequential feature but lacks the spatial
feature. Our approach has superiority over other methods in consideration of
both sequential and spatial features together, which makes SHE-Net robust.
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Further investigation revealed that these baselines could not perform well simul-
taneously on both types of datasets while SHE-Net could, which indicates that
our approach has great generalization and robustness.

4.5 Longitudinal Analysis

We analyze several properties of the proposed SHE-Net from the perspective of
model and loss function.

Model Property. As we have mentioned before, the spatial feature can enhance
the feature representation and discrimination by enriching the feature diversity
since a single feature description cannot accurately represent the flow. To verify
it, we implement different variants of the flow encoder. The relevant results
are shown in Table 4. Both RNN and self-attention are used for modeling the
time series relationship among all packets in a flow, while CNN is designed to
automatically and adaptively learn spatial characters of all packets of a flow.
No matter which kind of dataset, the CNN-based flow encoder achieves great
performance among three variants which further implies that the combination
of multiple types of features is critical for feature learning.

Table 4. Comparison results between the SHE-Net and its variants on two datasets

Flow encoder
variants

Intrusion detection dataset Malware detection dataset

TPRAV E FPRAV E FTF TPRAV E FPRAV E FTF

CNN 0.9994 0.0000 0.9993 0.9995 0.0000 0.9994

RNN 0.9829 0.0021 0.9825 0.7253 0.0343 0.6886

Self Attention 0.9950 0.0006 0.9934 0.9994 0.0001 0.9993

Loss Function Property. In addition to model property, we evaluate the
capabilities of Lcom in hard paired data mining and convergence speed. Here, we
embed vectors of all known test data, and the visualization results are shown in
Fig. 3. As we can see in Fig. 3(a), for most categories except for DDoS, some of
their embedding vectors are far away from their respective class prototype and
are relatively discrete. Then, the detector may not find a proper threshold and
result in a high false alarm rate. By comparison, the intra-class distances of each
class are more compact, and the outliers of each class are significantly reduced
in Fig. 3(b). Therefore, with the aid of Lcom, more hard paired examples are
reduced, and more space for unknown examples is saved.2

2 We only show results about the intrusion dataset in the following experiment since
the results can generalize to the other type of dataset.
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(a) Lcon (b) Lcon + Lcom

Fig. 3. All test embedding vectors containing 63749 instances of the intrusion dataset

Fig. 4. The convergence velocity and time consuming

To further illustrate the advantages of Lcom, we evaluate the convergence
speed on the validation dataset and time overhead on the training dataset
through the joint supervision of Lcon with Lcom or not. Figure 4 shows the
result of this experiment. Under the joint supervision of Lcon and Lcom, the
loss curve converges to a lower loss in a shorter time with a smoother trend
which reflects that the model inclines to be more robust, while, without Lcom,
the loss fluctuates severely and converges relatively hard.
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4.6 Sensitivity Analysis

We do some researches on the influence of hyper-parameters from various views.
For input size, we vary byte size by iterating over the set of possible byte

size n while keeping packet size m as its default value (e.g., m = 10). Once
we find an optimal n, it is set as the new default for optimizing m. This way
of iterating through the values allows us to capture dependencies between m
and n. Figure 5(a) shows the results. Obviously, as packet number in per flow
and byte number of a packet increase, the FTF rise. It is worthy to note that
the SHE-Net can outperform the state-of-art models even the packet number is
very small (e.g., m = 2). Intuitively, the more bytes and packets are fed into
the model, the better the result is, and the much more time consuming to train
take. Considering the balance of performance and training time, we choose 128
as n and 10 as m.

(a) Results with different input size (b) Results with diverse embedding size

Fig. 5. The influence of hyper-parameters: input size and embedding size

The embedding dimension d in SHE-Net is to extract and store the latent
information of bytes, and each dimension is an aspect to represent the hidden
information. Hence, the dimension of bytes directly affects the performance. To
account for this fact, we demonstrate the result in Fig. 5(b). A small value results
in a lousy performance due to the weak ability to capture the hidden information,
while a large value (e.g., from 128 to 256) performs excellently. An immense value
may lead to over-fitting since the model might learn worthless information from
the noise data. Therefore, we select 128 as the embedding dimension d.

The λ is used for balancing the Lcon and Lcom. γ is a modulating factor
for concentrating the loss on hard paired examples. We inspect their sensitivity
on the validation dataset and amplify the loss change by normalization. The
result is shown in Fig. 6(a). As λ increase with the same γ, the amplitude in
different loss curve are becoming small (e.g., λ = 4). Besides, as λ = 4 and γ
risen, substantially more weight becomes emphasized the hard examples, and
the convergence value decreases sharply (e.g., from 0.2 to 0.01). In fact, with
λ = 4, γ = 2 (our default setting), the loss value reduces ideally.
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(a) The loss curve with distinct λ and γ (b) The performance with various α

Fig. 6. The influence of hyper-parameters: λ, γ and α

We optimize the generalization coefficient α with respect to FTF that our
approach achieves when recognizing flows. If α is too large, many instances that
are not present in the training set will be recognized as seen instances. Otherwise,
if α is too small, many known samples will be misclassified as previously unseen
samples. We conduct this idea on the validation dataset, and the result is shown
in Fig. 6(b). When α is between 6 and 20, the different amplitude of FTF is no
more than 0.0001. Note that the higher this parameter, the more conservative we
are in flagging flows as originating from novel class. Therefore, it is recommended
to set α with values in [6,8].

5 Conclusion

In this paper, we propose SHE-Net, a novel method for open world traffic clas-
sification. SHE-Net progressively builds a flow vector by hierarchical encoders
that mirroring the hierarchical structure of a flow. Meanwhile, the learned flow
vector contains sequential and spatial information, which can enhance the diver-
sity and robustness of flow representation. Moreover, the new loss function Lcom

together with Lcon jointly forces the model to learn the discriminative feature,
which can mine the hard paired examples, increase the intra-class compactness
and expand the inter-class separateness. We conduct extensive analysis to eval-
uate our methods, and the results demonstrate that SHE-Net achieves excellent
classification performance in an open world setting and outperforms the state-
of-the-art methods.

Acknowledgement. This work is supported by the strategic Priority Research Pro-
gram of Chinese Academy of Sciences, Grant No. XDC02040200.
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Abstract. Aiming at the problem of the insufficient resolution and accuracy of
the key node recognition methods in complex networks, a Comprehensive Degree
Based Key Node Recognition Method (CDKNR) in complex networks is pro-
posed. Firstly, the K-shell method is adopted to layer the network and obtain the
K-shell (Ks) value of each node, and the influence of the global structure of the
network is measured by the Ks value. Secondly, the concept of Comprehensive
Degree (CD) is proposed, and a dynamically adjustable influence coefficient μi
is set, and the Comprehensive Degree of each node is obtained by measuring the
influence of the local structure of the network through the number of neighboring
nodes and sub-neighboring nodes and influence coefficient μi. Finally, the impor-
tance of nodes is distinguished according to the Comprehensive Degree. Com-
pared with several classical methods and risk assessment method, the experimen-
tal results show that the proposed method can effectively identify the key nodes,
and has high accuracy and resolution in different complex networks. In addition,
the CDKNR can provide a basis for risk assessment of network nodes, important
node protection and risk disposal priority ranking of nodes in the network.

Keywords: Complex networks · K-shell · Comprehensive Degree · Neighboring
nodes · Node importance

1 Introduction

In recent years, complex networks have beenwidely used in the field of network security,
identifying key nodes in complex networks is of great significance for understanding
the structure and function of the network and maintaining the stable operation of the
network [1]. In practical applications, node importance ranking in complex networks can
provide a basis for risk assessment of network nodes, protection of important nodes and
risk disposal priority ranking of nodes in the network. However, there are the problems
of low accuracy and high computational complexity in the existing key node identi-
fication methods [2]. Therefore, the research on designing fast and efficient key node
identification methods has become an attractive and hot research area.
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Currently, the key node identification methods for complex networks mainly include
Degree Centrality (DC), Betweenness Centrality (BC), Closeness Centrality (CC), K -
shell and so on [3].DegreeCentrality is a centralitymethod based on local characteristics,
but Degree Centrality does not consider the influence of node location and surrounding
nodes, and its classification effect is not ideal. Closeness Centrality, Betweenness Cen-
trality, and K-shell are methods based on global characteristics. Closeness Centrality
and Betweenness Centrality take better account of the connectivity of the network, but
the computational complexity is high, so they are not suitable for large networks [4].
K-shell method assigns a Ks value to each node to quantify the importance of nodes [5],
and this method has good time complexity, but it is difficult to distinguish key nodes in
the same layer. To address the shortcomings of the above methods, Liu J G [6] ranked
nodes according to the shortest distance between them and the nodes with the largest
Ks value. Zeng A [7] proposed a Mixed Degree Decomposition method by considering
the contributions of both remaining nodes and deleted nodes. Namtirtha A [8] proposed
a weighted K-shell degree neighborhood method. Wen T [9] proposed a new method
based on the local information dimension of nodes, which mainly referred to the local
information around the nodes. Berahmand K [10] proposed a new local ranking method
to identify key nodes, which measured the importance of nodes based on important loca-
tion parameters such as the number of common neighbors, degree, and inverse clustering
coefficient. Bae J [11] proposed an extended K-shell, but the resolution of this method
was insufficient in some networks. The above methods measure the importance of nodes
from different perspectives, but there are some problems: 1) There are various network
topologies in reality, and some methods only consider the local structure of the network
and ignore the global structure of the network. 2) The methods have high computational
complexity. 3) For different networks, some methods require pre-set parameter values
each time. 4) Due to the low resolution of some methods, the ability to identify key
nodes in some networks is poor.

To solve the above problems and effectively identify the key nodes in complex
networks, a Comprehensive Degree Based Key Node Recognition Method (CDKNR)
for complex networks is proposed. The contributions of this paper are as follows:

(1) We propose the CDKNR method that considers both the global and local structure
characteristics of networks.
(2) Compared with other methods, the CDKNRmethod does not contain free parameters
and reduces the calculation cost.
(3) Experimental results show that CDKNRmethod has high accuracy and resolution in
different complex networks and improves the efficiency of network security protection
and emergency disposal in network security applications.

2 Related Method and Analysis

2.1 Representation of Network Graph

Network graph is represented by G = (V, E), where V = {i| i = 1, 2, …, n} corresponds
to node set, E = {eij = eji = {i, j} |i, j∈V} corresponds to edge set, n is the number of
nodes and n = | V |, m is the number of edges and m = | E |, eij is the edge connecting
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vertex i and vertex j. Moreover, eij = eji in undirected graph. The network graph is
represented by an adjacency matrix A = [aij]n×n, if there are edges between nodes i and
j, then aij = 1, otherwise aij = 0.

2.2 K-shell Method

The K-shell method [12] is a coarse-grained decomposition method based on the global
structure of the network, which determines the importance of nodes according to their
positions in the network. The method is implemented as follows.

(1) Suppose there are no isolated nodes of degree 0 in the network graph G. Delete all
nodes of degree 1 and their connected edges in the network graph. After the deletion
operation is completed, determine whether there are new nodes of degree 1, and if there
are such nodes, delete such nodes and their connected edges. Repeat the above process
until there are no nodes with degree 1 in the network graph, then all the deleted nodes
constitute the 1-shell, and set the nodes’ Ks value to 1. For the updated network, the
nodes with degree ≥ 2.
(2) Delete all nodes of degree 2 and their connected edges, and repeat the process until
there are no nodes of degree 2 in the network graph, then all the deleted nodes constitute
the 2-shell, and set the nodes’ Ks value to 2. And so on, until all nodes in the network
graph are stratified and assigned Ks values. Among them, the layer of the nodes with the
largest Ks value is the core layer of the network, and the nodes in the core layer of the
network have the highest influence.

An example of K-shell decomposition for a small network is shown in Fig. 1. The
network in Fig. 1 is divided into three layers by the K-shell method, and nodes 1, 2,
3, 4, 5, 6, 9, 14, 16, 17 are assigned the same Ks value, but it is difficult to distinguish
their importance. Because of this defect, this paper uses the Comprehensive Degree of
nodes in the same layer in the process of K-shell decomposition to further distinguish
the importance of different nodes.
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Fig. 1. K-shell decomposition example
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2.3 θ Method

To solve the defect that the K-shell method is difficult to distinguish the key nodes in the
same shell layer, Liu J G [6] proposed the θ method, which sorted the nodes according
to the shortest distance between nodes and the network core nodes (the nodes with the
maximum Ks value). The closer a node is to the network core nodes, the more important
the node is. This method can be expressed as:

θ(i|Ks) = (KsMax − Ks + 1)
∑

j∈J
dij, i ∈ SKs (1)

Where KsMax is the maximum value of Ks in the network, J is the core node set with
the maximum value of Ks, dij is the shortest distance between node i and node j, and SKs
is the set of all nodes, θ (i|Ks) is the importance value of node i.

2.4 Mixed Degree Decomposition Method

Zeng A [7] proposed theMixed Degree Decomposition (MDD) method to overcome the
shortcomings of the K-shell method by adding other information of nodes to decompose
the network. The MDD method takes into account the influence of the removed nodes
and the remaining nodes in the network, and stratifies the network according to the
new mixed Ks value. In the MDD method, the impact of the already removed nodes
on the designated nodes is measured by the exhausted degree, similarly, the impact of
the remaining nodes on the designated nodes is measured by the residual degree. The
number of network layers is greatly increased by this kind of improved K-shell with
mixed Ks value, however, the parameter λ need to be adjusted for different networks so
that the method can achieve the best effect of distinguishing the importance of nodes. In
the comparative experiment done in this paper, λ is 0.7. The method is then expressed
as:

Km(i) = Kr(i) + λ ∗ Ke(i) (2)

Where Km(i) is the mixed Ks value, Kr(i) is the residual degree and Ke(i) is the
exhausted degree.

2.5 Weighted K-shell Degree Neighborhood Method

Namtirtha et al. [8] proposed a weighted K-shell degree neighborhood method, which
uses the degree and the Ks value of the two end nodes of an edge to arrive at the edge
weight, and the edge weight between node i and j is expressed as:

wij = (α ∗ K(i) + μ ∗ Ks(i)) ∗ (α ∗ K(j) + μ ∗ Ks(j)) (3)

where α and μ are free parameters taking values between 0 and 1, which are varied
for the selected network to obtain optimal results. K(i) and K(j) are the degrees of node
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i and node j respectively, and Ks(i) and Ks(j) are the Ks values of node i and node j
respectively. The weighted K-shell degree neighborhood ksdw(i) of node i is defined as:

ksdw(i) =
∑

j∈�i

wij (4)

Where �i is the nearest neighbor of node i and wij is the weight of the edge between
node i and j.

2.6 Degree and Clustering Coefficient and Location (DCL) Spreading Method

Berahmand et al. [10] proposed an improved local method, namely DCLmethod, which
measures the importance of nodes based on their significant location parameters such
as node degree, neighbor degree, number of common links between a node and its
neighbors, and clustering coefficient. The DCL method is expressed as:

DCL(i) = K(i) ∗ (
1

CC(i) + 1/K(i)
) + (

∑
j∈�i

K(j)

|E(�i)| + 1
) (5)

Where K(i) is the degree of node i, CC(i) is the local clustering coefficient of node
i, �K(j) and | E(�i) | are the sum of the neighbors’ degrees of node i and the number of
common links between neighbors of node i, respectively.

2.7 Extended K-shell Method

To improve the shortcomings of the K-shell method and to distinguish the importance
of nodes in the same level, Bae J [11] proposed an extended K-shell method, the Ks+
method, which incorporates the node degree and the maximum degree to extend the
K-shell, and the method can be expressed as:

Ksp(i) = Ks ∗ (KMax + 1) + K (6)

WhereK is the node degree,KMax is themaximum degree, andKsp(i) is the extended
Ks value.

3 Key Node Identification Method

3.1 Method Design

To improve the shortcomings of theK-shellmethod and achieve the goal of distinguishing
the importance of nodes, the concept of ComprehensiveDegree (CD) is proposed accord-
ing to the characteristics of the local structure of the network, and the Comprehensive
Degree of nodes is defined as:

C(i) = K(i) + μiD(i) (7)
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Where K(i) is the degree of the node, D(i) is the number of sub-neighboring nodes
of the node, and μi is the influence coefficient.

Then, based on K-shell and Comprehensive Degree, a Comprehensive Degree Based
Key Node Recognition Method (CDKNR) for complex networks is proposed. Among
them, the influence of global structure is measured by the K-shell method, and the
influence of local structure is measured by the influence degree (Comprehensive Degree)
of neighboring and sub-neighboring nodes on the designated node.

The design idea of CDKNR is as follows: Firstly, the K-shell method is used to
layer a network in the global scope, and the Ks value of each node is obtained as a
measure of the global characteristics; Secondly, the influence of neighboring nodes and
sub-neighboring nodes is considered in the local scope, the Comprehensive Degree of
each node is calculated and used as a measure of local characteristics. For a node in the
network, not only the directly connected neighboring nodes will affect the node, but also
the distant nodes will affect it. In order to achieve the goal of both improving the ability
to distinguish the importance of nodes and reducing the computational complexity, only
the influence of two-step neighborhoods, that is, neighboring nodes and sub-neighboring
nodes, is considered inCDKNR. Since the neighboring nodes are closer to the designated
node, they have a greater influence on it, while the sub-neighboring nodes are farther
away from the designated node, so they have a smaller influence on it. Therefore, the
influence coefficientμi is set between 0 and 1 and can be adjusted dynamically toweaken
the influence of the sub-neighboring nodes, which makes CDKNRmore consistent with
the actual situation.

The specific process of the CDKNR method is designed as follows:
Step 1: Applying the K-shell method to stratify the network and obtain the Ks value

for each node.
Step 2: Calculate the degree K(i) of all nodes in the network and the total number of

nodes N(i) in the two-step neighborhood.
Step 3: Calculate the influence coefficient μi of each node based on the K(i) and

N(i) values obtained in step 2.

μi = K(i)

N (i)
(8)

Step 4: Calculate the number of sub-neighboring nodes D(i) based on the K(i) and
N(i) values obtained in step 2.

D(i) = N (i) − K(i) (9)

Step 5: Calculate the Comprehensive Degree C(i) of the nodes based on μi, D(i)
obtained in steps 3 and 4.

C(i) = K(i) + μiD(i) (10)

Step 6: Since theKs value of nodes is the same, it is difficult to judge the importance of
nodes in the same level, the importance of nodes in the same level is further distinguished
according to theComprehensiveDegreeC(i): for nodeswith the sameKs value, the nodes
with a higher Comprehensive Degree are more important.
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From the calculation process of CDKNR method, it can be seen that the method
does not contain free parameters and does not need to test parameter values in advance,
therefore, the computational complexity can be reduced and the efficiency of the method
can be improved.

3.2 Example Analysis

Taking an undirected unweighted network with 14 nodes and 20 edges as an example
(as shown in Fig. 2). Firstly, CDKNR is used to rank the nodes in Fig. 2, and the ranking
effect is compared with other methods, then node 8 is taken as an example to illustrate
the calculation process of CDKNR.

(1) Calculate the Ks value of node 8 and get Ks (8) = 2.
(2) Calculate the degree K(8) and the total number of nodes N(8) in the two-step
neighborhood. Because the neighboring nodes of node 8 are 5, 6, 7, 9, 10, 11, and
the sub-neighboring nodes are 3, 12, 13, 14, so K(8) = 6, N(8) = 10.
(3) According to Eq. (8), The influence coefficient μ8 of node 8 is obtained, μ8 =
6/10 = 0.6.
(4) According to Eq. (9), the number of sub-neighboring nodes D(8) is calculated,
D(8) = 10–6 = 4.
(5) According to Eq. (10), the Comprehensive Degree C(8) of node 8 is obtained,
C(8) = 6 + 0.6 * 4 = 8.4.

Repeat the above process to get theKs value and Comprehensive Degree of all nodes
of the network in Fig. 2. The calculation process of the Comprehensive Degree of net-
work nodes in Fig. 2 is shown in Table 1. To compare with other methods, the node
importance values and ranking results obtained by Degree Centrality (K) [1], K-shell
method (Ks) [12], extended K-shell method (Ks +) [11], Mixed Degree Decomposition
(MDD) method [7], θ method [6], Betweenness Centrality (BC) [9], Closeness Central-
ity (CC) [3], Weighted K-shell Degree Neighborhood Method (ksdw) [8], Degree and
Clustering Coefficient and Location (DCL) Spreading Method [10] and Comprehensive
Degree Based Key Node Recognition Method (CDKNR) are respectively presented in
Table 2 and Table 3. (In the ksdw method, α = 0.1, μ = 0.9.) In Table 1, the numbers
in the node column represent the nodes, K(i) column is the degree of node i, Ks column
is the Ks value of node i, N(i) column is the number of nodes in the two-step neighbor-
hood, D(i) column is the number of sub-neighboring nodes, μi column is the influence
coefficient, and CD column is the Comprehensive Degree.

It can be seen from Table 3 that the resolution of methods such as DC, BC, CC
and K-shell are not high. DC only divides the whole network into 6 layers, and the K-
shell method only divides the whole network into 2 layers, while we proposed CDKNR
method divides the whole network into 11 layers. Therefore, the ranking range is wider
and the method resolution is higher compared with other methods.
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12

2 5 7 11

1 8 103

6 9 144
13

Fig. 2. A small network of example analysis

Table 1. The Comprehensive Degree calculation process of the network

Node K(i) Ks N(i) D(i) μi CD

1 1 1 5 4 0.2 1.8

2 1 1 5 4 0.2 1.8

3 5 2 8 3 0.625 6.875

4 1 1 5 4 0.2 1.8

5 4 2 10 6 0.4 6.4

6 4 2 11 7 0.364 6.545

7 2 2 7 5 0.286 3.429

8 6 2 10 4 0.6 8.4

9 4 2 9 5 0.444 6.222

10 5 2 9 4 0.556 7.222

11 3 2 9 6 0.333 5

12 1 1 3 2 0.333 1.667

13 1 1 5 4 0.2 1.8

14 2 2 6 4 0.333 3.333

Table 2. Node importance values are obtained by different methods

Node K Ks MDD θ BC CC Ks + ksdw DCL CDKNR

1 1 1 1 52 0 0.325 8 5.39 6.0 1.8

2 1 1 1 52 0 0.325 8 5.39 6.0 1.8

3 5 2 3.7 17 33 0.464 19 55.37 22.16 6.875

4 1 1 1 52 0 0.325 8 5.39 6.0 1.8

5 4 2 3.7 13 13.1 0.52 18 67.6 9.58 6.4

6 4 2 3.7 12 20.1 0.542 18 74.8 10.08 6.545

(continued)
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Table 2. (continued)

Node K Ks MDD θ BC CC Ks + ksdw DCL CDKNR

7 2 2 2 15 0 0.433 16 21.56 6.33 3.429

8 6 2 4.2 10 28.9 0.565 20 128.76 15.74 8.4

9 4 2 3.7 12 10.3 0.5 18 67.6 9.58 6.222

10 5 2 3.8 13 16.3 0.464 19 79.38 14.0 7.222

11 3 2 2.7 15 12 0.433 17 36.58 10.52 5

12 1 1 1 48 0 0.31 8 3.41 4.0 1.667

13 1 1 1 44 0 0.325 8 5.39 6.0 1.8

14 2 2 2 17 0 0.382 16 19.58 5.83 3.333

Table 3. Node importance rankings are obtained by different methods

Rank K Ks MDD θ BC CC Ks + ksdw DCL CDKNR

1 8 10,
11,
14, 3,
5, 6,
7, 8, 9

8 8 3 8 8 8 3 8

2 10, 3 1, 12,
13, 2,
4

10 6, 9 8 6 10, 3 10 8 10

3 5, 6, 9 3, 5, 6, 9 10, 5 6 5 5, 6, 9 6 10 3

4 11 11 11, 7 10 9 11 5, 9 11 6

5 14, 7 14, 7 14, 3 5 10, 3 14, 7 3 6 5

6 1, 2,
4, 12,
13

1, 12,
13, 2, 4

13 11 11, 7 1, 12,
13, 2,
4

11 5, 9 9

7 12 9 14 7 7 11

8 1, 2,
4

1, 12,
13,
14, 2,
4, 7

1, 13,
2, 4

14 1, 2, 4,
13

7

9 12 1, 13,
2, 4

14 14

10 12 12 1, 13, 2,
4

(continued)
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Table 3. (continued)

Rank K Ks MDD θ BC CC Ks + ksdw DCL CDKNR

11 12

12

13

14

4 Experimental Results and Analysis

4.1 Experimental Data Set and Experimental Design

To compare and analyze the performance of other methods and CDKNR in terms of
accuracy and resolution in six typical complex networks, a comparative experiment
of key node identification is carried out on six classical complex networks. The six
classical complex networks are as follows: (1) Zachary network; (2) Dolphins network;
(3) Jazz network; (4) Blogs network; (5) NetScience network; (6) Powergrid network.
The statistical characteristics of the above six networks are shown in Table 4, where V
represents the number of network nodes, E represents the number of network edges, β th

is the epidemic threshold value, and β is the infection probability. Both α and μ are
parameters from the literature [8].

Table 4. Statistical characteristics of six networks

Network V E β th β α μ

Zachary 34 78 0.129 0.15 0 0.2

Dolphins 62 159 0.147 0.15 0.1 0.9

Jazz 198 2742 0.026 0.05 0 0.2

Blogs 1224 19025 0.012 0.1 1 0.9

NetScience 1461 2742 0.144 0.15 0.1 1

Powergrid 4941 6594 0.258 0.30 0 0.6

In Sect. 4.2, the method performance is evaluated using SIR epidemic model [13],
Kendall correlation coefficient [14], and Monotonicity index [15]. In Sect. 4.3, the
method performance evaluation is verified in network security applications.

4.2 Method Performance Evaluation

In order to evaluate the accuracy and resolution of different methods, ten methods,
including DC, BC, CC, K-shell, MDD, θ, Ks +, ksdw, DCL and CDKNR are selected
for experiments in six typical networks. Firstly, the SIR model is used to examine the
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propagation efficiency of single nodes to determine the importance of nodes. Secondly,
the Kendall correlation coefficient index is used to compare the ranking results of node
importance obtained by different methods with the ranking results of node propagation
efficiency of SIR model, and the correlation coefficients are calculated. Finally, the
Monotonicity index is used to evaluate the ability of different methods to differentiate
the importance of nodes, that is, to check whether there are a large number of nodes with
the same importance value in the ranking results of node importance.

SIR Model. In the SIR model, each node has three possible states: susceptible (S),
infected (I), and recovered (R) states [16]. The goal of this model is to measure the
relative importance of nodes during the spread of an epidemic. In the beginning, only
the transmission initiation node is in the ‘I’ state, while the rest of the nodes are in
the ‘S’ state. After that, at each time step, the infected node spreads the infection to its
neighboring nodes with infection probability β. The initially infected node becomes ‘R’,
and the node in ‘R’ cannot be infected again. The propagation process ends when no
new infected node appears, and the number of recovered nodes reflects the influence of
the initial node. When the infection probability is large, the epidemic can spread widely
in a network, and when the infection probability is small, the epidemic can spread only
in a small area. For a disease to spread and become epidemic in a network, the infection
probability must be greater than the epidemic threshold, the epidemic threshold β th is:

βth ≈ < k >

< k2 >
(11)

Where < k > is the average degree of the network and < k2 > is the second order
average degree of the network.

Kendall Correlation Coefficient. Kendall correlation coefficient is expressed as τ ,
which is used to test the correlation between two sequences. Its value ranges from
−1 to 1, when τ is 1, it means that the two sequences are completely consistent; when
τ is −1, it means that the two sequences are opposite; when τ is 0, it means that the two
sequences are independent of each other.

The node importance ranking results x obtained from different methods and the
node propagation efficiency ranking results y obtained from SIR model are constructed
as sequences of the form (x1, y1), (x2, y2),…, (xn, yn), and for any pair of sequences, if
xi > xj and yi > yj or xi < xj and yi < yj, the pair of sequences is said to be consistent; if
xi > xj but yi < yj or xi < xj but yi > yj, the pair of sequences is said to be inconsistent;
if xi = xj and yi = yj, the pair of sequences is neither consistent nor inconsistent. τ is
defined as follow:

τ = 2 ∗ (C − D)

N ∗ (N − 1)
(12)

Where C and D are the number of consistent and inconsistent sequence pairs and N
is the network size.

Qiu L Q [5] and Berahmand K [10] through an infection probability β to compare
the ranking results obtained by different methods and SIR model and then get τ value.
To observe the trend and correlation of the infection probability β and the correlation
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coefficient τ , this paper simulates the propagation process of the SIR model and the
infection probability of the model varies from β th to 2*β th, and each time increases in
steps of 0.1*β th, then τ is calculated. The probability of infection β is:

β=βth + δ ∗ j (13)

Where δ is the increment of infection probability at each step, j is the number of
steps, and β th is the epidemic threshold.

Experimental Results of Methods Accuracy. In this experiment, small networks (net-
works with edges less than 10000) are simulated 1000 times and large networks (net-
works with edges more than 10000) are simulated 100 times. We compare the sequence
of node importance ranking results obtained by different methods with that obtained by
SIR model simulation, and calculates the corresponding τ value. The higher the τ value,
the higher the correlation between the two ordered sequences, and the more accurate the
node importance ranking results generated by the method.

The ten methods of DC, BC, CC, K-shell, MDD, θ, Ks +, ksdw, DCL and CDKNR
are used with the SIR model for Zachary network, Dolphins network, Jazz network,
Blogs network, NetScience network, and Powergrid network to calculate the Kendall
correlation coefficients τ with different infection probabilities β. Then, the average
Kendall correlation coefficient τA for each network is obtained by averaging the τ values
corresponding to the 10 infection probabilities in the 6 networks (as shown inTable 5). As
can be seen from Table 5, among the Dolphins, NetScience, and Powergrid networks,
the ranking result of network node importance obtained by CDKNR is closest to the
ranking result of node propagation efficiency obtained by the SIRmodel, and the average
Kendall coefficient of CDKNR is higher than other methods. This is the CDKNR not
only considers the global characteristics of the nodes (Ks value) but also incorporates the
local characteristics of the nodes (Comprehensive Degree), thus improving the accuracy
of the ranking results. In the six networks, the infection probability β varies from β th

to 2*β th, increasing in steps of 0.1*β th each time. The variation trend of τ is shown in
Figs. 3, 4, 5, 6, 7, 8. And the higher τ value is, the higher accuracy of the method is. From
Fig. 3 and Fig. 5, it can be seen that in Zachary and Jazz networks, the correlation between
CDKNR and SIR model is slightly lower than that of ksdw method, but the average τ

value is higher, considering that the accuracy of ksdw method is very dependent on the
selection of parameters, and a large number of repeated experiments are needed to test
the parameter taking values for different networks, which increases the computational
complexity and lacks some objectivity, while CDKNR method can still achieve good
accuracy without testing parameters. In addition, the τ of CDKNR method in Blogs
network is slightly lower than other methods, but the correlation coefficient τ obtained
by CDKNRmethod increases with the increase of infection probability β and the overall
trend is upward, in summary CDKNR has high accuracy in different networks.

Resolution Index. For the importance ranking of nodes in complex networks, if each
node has a different node importance ranking value, it means that the method can clearly
distinguish the importance of nodes. The fewer nodes in the same ranking, the higher
resolution of the method is. In the experiment, the monotonicity index M(R) is used to
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Fig. 3. Zachary Network Fig. 4. Dolphins Network

Fig. 5. Jazz Network Fig. 6. Blogs Network

Fig. 7. NetScience Network Fig. 8. Powergrid Network

evaluate the resolution of different methods. The monotonicity index M(R) is:

M (R) =
⎡

⎣1 −
∑
r∈R

nr(nr − 1)

n(n − 1)

⎤

⎦
2

(14)

Where R represents the node importance ranking result, n represents the number of
nodes in the ranking result, and nr represents the number of nodes with the same ranking
result.
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M(R) is used to measure the monotonicity of the node importance ranking result. If
the ranking result of the node importance is completely monotonic, then M(R) = 1; If
the ranking result of the node importance is all the same, then M(R) = 0.

Experiment Results of Methods Resolution. In this experiment, the resolution of the
methods is examined by calculating the monotonicity of the node importance ranking
lists generated by ten methods: DC, BC, CC, K-shell, MDD, θ, Ks +, ksdw, DCL and
CDKNR (as shown in Table 6). As shown in Table 6, the node importance ranking
results obtained by CDKNR have high monotonicity among the six networks, reaching
the highest monotonicity in Blogs network with 0.999, while in Zachary, NetScience
and Powergrid networks have the next highest monotonicity, slightly lower than DCL,
ksdw and CCmethods, respectively. This is because the DCLmethod incorporates more
factors, which improves the monotonicity of the method to some extent, but the method
shows poor accuracy in the above experiments. The ksdw method improves the mono-
tonicity of the method by continuously selecting parameters but increases the computa-
tional overhead to a large extent. The CC method is highly dependent on the network
structure and shows good monotonicity only in Powergrid networks. In contrast, the
CDKNR method in this paper does not depend on a specific network structure, does not
require pre-testing parameters, and has a good resolution for the network nodes in most
cases.

4.3 Method Performance Evaluation in Network Security Applications

To verify the feasibility and effectiveness of the CDKNR method in network security
applications, a comparative validation experiment of key node identification and risk
assessment is conducted for real networks. The experiment includes network node risk
assessment and key node identification. The experimental object is a LocalAreaNetwork
(LAN) of CAUC’s System, which consists of 30 PCs, 5 access switches, 1 aggregation
switch and 2 servers, and the structure of this network is shown in Fig. 9.

In the key node identification experiment, the devices in this network are abstracted
as nodes, and the CDKNRmethod is used to calculate the comprehensive degree of each
node and rank the nodes in terms of node importance, and the experimental results are
shown in Table 7.

As can be seen from Table 7, in this network, the access switches (31, 32, 33, 34, 35)
have the same function, but the importance of each access switch is different because the
number of devices connected to the access switches is different. The aggregation switch
is in the most important position in the whole network, and once the aggregation switch
is attacked, it will affect the operation of the whole network.

In the risk assessment section, the risk values of all nodes (devices) in this LAN
are calculated according to the risk assessment specification [17]. The data sources are
network alarms and fault information from the network management logs for 4 weeks,
and network attack detection data from the network security software. In this part of the
experiment, based on the assets, alarm and fault information, and attack alarm informa-
tion, the risk assessment method based on expected loss [18] is used to obtain the threat
and risk severity indicators for each node in the network, and the risk value of each node
(device) is calculated. The results of the experiments are shown in Table 8.
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Fig. 9. Experimental network structure diagram

Table 7. Ranking of network nodes (devices) importance

Rank CD Nodes (Devices)

1 12.676 38

2 12.6 35

3 11.429 34

4 10.231 33

5 9 32

6
7
8
9
10
11

7.727
1.889
1.875
1.857
1.833
1.8

31
23, 24, 25, 26, 27, 28, 29, 30
16, 17, 18, 19, 20, 21, 22
10, 11, 12, 13, 14, 15, 36, 37
5, 6, 7, 8, 9
1, 2, 3, 4

A comparison of the ranking results of the two experiments mentioned above is
shown in Table 9. As can be seen from Table 9, the node importance ranking of this
network obtained by the CDKNR method is the same as the TOP10 of the risk value
ranking of the network nodes obtained by the risk assessment. This result shows that
the node importance ranking results obtained by the CDKNR method can provide a
basis for risk assessment of network nodes, important node protection and risk disposal
priority ranking of nodes in the network. Based on the node importance ranking, which
will improve the efficiency of network security protection and emergency disposal.
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Table 8. Risk values of network nodes (devices)

Rank Risk values Nodes (Devices)

1 0.941 38

2 0.824 35

3 0.733 34

4 0.711 33

5 0.623 32

6 0.542 31

7 0.507 23, 24, 25, 26, 27, 28, 29, 30

8
9
10
11

0.426
0.389
0.354
0.276

16, 17, 18, 19, 20, 21, 22
10, 11, 12, 13, 14, 15
5, 6, 7, 8, 9, 36, 37
1, 2, 3, 4

Table 9. Network node risk value ranking and network node importance ranking

Risk assessment CDKNR

Rank Nodes (Devices) Nodes (Devices)

1 38 38

2 35 35

3 34 34

4 33 33

5 32 32

6 31 31

7 23, 24, 25, 26, 27, 28, 29, 30 23, 24, 25, 26, 27, 28, 29, 30

8
9
10
11

16, 17, 18, 19, 20, 21, 22
10, 11, 12, 13, 14, 15
5, 6, 7, 8, 9, 36, 37
1, 2, 3, 4

16, 17, 18, 19, 20, 21, 22
10, 11, 12, 13, 14, 15, 36, 37
5, 6, 7, 8, 9
1, 2, 3, 4

5 Conclusion

In this paper, we propose a new method CDKNR to identify key nodes in complex
networks to address the problems of insufficient accuracy and high computational com-
plexity of existing methods. Firstly, the network is decomposed by K-shell method to
obtain the Ks value that can measure the location information of nodes in the network.
Secondly, the Comprehensive Degree of the designated node is calculated according to
the different influence degrees of the neighboring nodes and the sub-neighboring nodes
on the designated node. Finally, the importance of nodes is taken into account both the
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Ks value of nodes and the Comprehensive Degree, that is, for the nodes in the same
shell, the nodes with higher Comprehensive Degree are more important. By verifying
the effectiveness of the CDKNR method in six typical complex networks and network
security applications, experimental results show that, compared with other methods, the
method in this paper not only has lower computational complexity, but also has higher
accuracy and resolution for different complex networks, which can identify the key
nodes in complex networks, improve the efficiency of network security protection and
emergency disposal, and provide a theoretical basis for protecting the key nodes and
improve the security of the networks in the next step.
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Abstract. Webshell detection is highly important for network secu-
rity protection. Conventional methods are based on keywords match-
ing, which heavily relies on experiences of domain experts when facing
emerging malicious webshells of various kinds. Recently, machine learn-
ing, especially supervised learning, is introduced for webshell detection
and has proved to be a great success. As one of state-of-the-art work,
neural network (NN) is designed to input a large number of features and
enable deep learning. Thus, how to properly combine the advantages
of automatic feature selection and the advantages of expert knowledge-
based way has become a key issue. Considering that special features
to indicate unexpected webshell behaviors for a target business system
are usually simple but effective, in this work, we propose a novel app-
roach for improving webshell detection based on convolutional neural
network (CNN) through reinforcement learning. We utilize the reinforce-
ment learning of asynchronous advantage actor-critic (A3C) for auto-
matic feature selection, aiming to maximize the expected accuracy of
the CNN classifier on a validation dataset by sequentially interacting
with the feature space. Moreover, considering the sparseness of feature
values, we build the CNN classifier with two convolutional layers and a
global pooling. Extensive experiments and analysis have been conducted
to demonstrate the effectiveness of our proposed method.

Keywords: Webshell detection · Feature selection · Unexpected
behavior feature · Reinforcement learning · Convolutional neural
network

1 Introduction

Webshell, a program that is written in scripting languages, such as ASP, PHP,
JSP, CGI, etc., provides a useful way to communicate with the web server’s
operating system (OS) [10,13,20,23]. Unfortunately, the webshell also become
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-86890-1_21
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one main threat of website security protection. Malicious users can launch web
attacks by the normal webshell with malicious functions, generating the so-called
webpage backdoor [9]. In such processes, the webshell is installed through vul-
nerabilities in web applications or weak server security configurations, such as
SQL injection [21] and cross-site scripting [11]. Through malicious webshells,
malicious attacks for instance, data theft, DDoS attacks [2] , and watering hole
attacks can be performed. Actually, in addition to common and easily-used tools
of malicious webshells such as WSO, C99, B374K and China Chopper [12], the
advanced persistent threat (APT) [7] and criminal groups also use their special
and unknown tools to exploit webshells, resulting in a lot of cyberspace dam-
aging incidents. Thus, how to effectively detect malicious webshell to win the
longtime game against attacker, is highly important and never out-of-date for
network security protection.

For malicious webshell detection, there are different method classifications.
From the data capture perspective, they can be divided into two categories:
static detection [3] and dynamic detection [18]. The dynamic method requires to
set the environment to be a sandbox or a virtual machine, and further utilizes
the hook technique for monitoring operating system (OS) process-based opera-
tions of file reading and writing. While the static method does not utilize the
hook, capture related data as features for further matching, the statistical feature
thresholding such as NeoPI, and the association analysis based on the knowl-
edge that malicious webshell generally has lower connections with the existing
web files. Due to the difficulty of dynamic detection, the static detection seems
more common and is implemented in real systems. From the feature perspective,
these detection methods can be classified into the content feature-based and the
behavior feature-based. In the content-based method, researchers focus on the
content of suspicious files or content in HTTP POST requests. To fully utilize
the content feature, the words segmentation for text feature representation is
the priority for data preprocessing, and TF-IDF and n-grams are the most fre-
quently used. The behavior-based method aims to analyze the traffic flow in a
sequence of packets. Through the traffic flow analysis, unexpected behaviors or
even malicious behaviors can be detected.

Recently, machine learning, especially supervised learning, is introduced for
webshell detection and has proved to be a great success. A lot of classical mod-
els are developed to treat webshell detection as a task of classification, including
Naive Bayes (NB), k-Nearest Neighbor (kNN), Support Vector Machine (SVM),
Decision Tree (DT). With the development of deep learning, sparse auto-encoder,
soft-max regression and convolutional neural network (CNN) are introduced
[16,19,22,28]. Although the above models are effective to some extent, when fac-
ing real business system, researchers still have to do much challenging work for
the feature engineering or the feature selection for neural network (NN). More-
over, many malicious webshells are confused with normal webpage files after
confusion and mutation, which requires to extract more features for the collab-
orative analysis. In other words, such feature space is relatively large to explore.
Selecting features closely rely on expert experiences. Moreover, for achieving
optimal performance, it is difficult to guarantee that the extracted features com-
prehensively cover the key distinguishing feature of samples.
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Thus, it is highly important to combine the advantages of automatic feature
selection and the advantages of expert knowledge-based methods. In this work,
we propose a novel approach for improving webshell detection based on convolu-
tional neural network (CNN) through reinforcement learning (RL). To the best
of our knowledge, there is hardly any similar work. Especially, we utilize the RL
algorithm of asynchronous advantage actor-critic (A3C) for automatic feature
selection. In our CNN model, two convolutional layers and a global pooling are
built. Through extensive experiments, we find that our method can reduce 32.5%
features and can achieve 96% accuracy. Compared with the single CNN without
reinforcement learning, our method has an average 2.42% improvement.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. In Sect. 3, we propose our A3C-based CNN model. Experiments
and the detailed analysis are reported in Sect. 4. Finally, we conclude the paper
in Sect. 5.

2 Related Work

2.1 Content and Behavior Feature Extraction

In feature extraction, there are two kinds of methods: content feature-based and
behavior feature-based. Deng et al. [4] proposed the lexical analysis for webshell
attacks based on converting the source code syntax into tokens of information.
Yang et al. [26] proposed a webshell detection based on the HTTP traffic analysis.
Ai et al. [1] proposed a GINI-based method; however, their model has an obvious
difference in detection accuracy for different types of files (e.g., .asp and .jsp) even
under the same model. Due to the fact that content-based webshell detection is
more dependent on syntax, behavior feature is also considered in some works.
One direct feature is the connection between existing web files. Wu et al. [25]
extracted webshell attack features from raw sequence data in Web logs and
proposed a statistical method based on the time interval to identify sessions,
using long-term short-term memory model (LSTM) and hidden Markov model
(HMM) to learn.

Table 1 lists typical content features, behavior features and corresponding
values in our feature extraction (detailed descriptions in Sect. 3). Compared with
above related works, our feature extraction integrates both types of features. In
particular, we introduce some business-dependent features as indirect features to
indicate unexpected behaviors, such as alarm and attack features from business
system.

2.2 Supervised Learning-Based Webshell Detection

Supervised learning including Naive Bayes (NB), k-Nearest Neighbor (kNN),
Support Vector Machine (SVM), Decision Tree (DT) has been proved a success in
webshell detection. In recent years, deep learning, is also introduced. Walkowiak
et al. [24] proposed a malicious webshell detection method based on word2vec
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Table 1. Integrated content and behavior features.

Feature name Feature value Feature name Feature value

Interface {0, 1} ReqLength [0, 1]

Content Type {0, 0.5, 1} D value {0, 0.5, 1}
Accept {0, 1} Host {0, 1}
Alarm [0, 1] Method {0, 0.36, 0.88, 1}
Attacker [0, 1] Code {0, 1}
ACL {0, 1} ResLength [0, 1]

Origin {0, 1} Structure(i) {0, 1}
Referer {0, 1} Evil Intentions(i) [0, 1]

representation and CNN, which is the first time that CNN has been applied to
malicious webshell detection. In their work, word2vec is used to depose HTTP
traffic as a fixed-size matrix, and the CNN model is to classify malicious webshells
and normal webshells. Zhang et al. [27] proposed access-based webshell traffic
detection with deep learning-based of character level functionality. They develop
a character-based feature extraction method for continuous content, through
obtaining feature vectors as input to CNN and LSTM. The above work shows
the effectiveness of CNN.

Compared to fully connected neural networks, the CNN-based webshell detec-
tion can reduce computational complexity [17], and focus on local webshell’s
malicious feature. Although the CNN-based webshell detection works had a good
performance, but they use different dataset: Tian et al. [22] simulates the web-
shell traffic and captures the data by wireshark. Nguyen et al. [15] focuses on
php webshell involving Laravel, Wordpress, Joomla, phpMyAdmin, phpPgAd-
min, phpbb, and adopts a dataset from github based on a second preprocessing.
Jinping et al. [8] adopts a dataset from a security company in Xiamen. While
our experiment is based on a real traffic of a bank in China.

In comparison, we redesign the CNN model [6] in two points. First, we build
the CNN classifier with two convolutional layers and a global pooling by con-
sidering the sparseness of feature values. Such changes belong to a structure
improvement. The second one is that we use reinforcement learning for fea-
ture selection, connected to CNN input to form a unified training. This is a
mechanism-related improvement.

3 Our Proposed Method

3.1 Framework Overview

As Fig. 1 shows, our method includes four key modules: feature extraction and
preparation, A3C-based feature selection, CNN classifier and reward module.
The reward module includes reward computing and storage, and reward feedback
and parameter updating.
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Fig. 1. Framework overview

The module of feature extraction and preparation, is responsible for extract-
ing typical features from the traffic flow. We classify features into two categories.
One category is the content feature such as source feature, response feature, and
others which are captured from specific fields in HTTP request body. For each
traffic flow of specific time interval, both content features and behavior features
are integrated together to form a feature vector. Thus, for multiple feature vec-
tors, we reorganize them to form a feature matrix by flow time order. A3C-based
feature selection module is designed on rebuilding feature matrix through rein-
forcement learning for automatic feature selection. For feature matrix, we imple-
ment a CNN classifier with two convolutional layers and a global pooling, which
can achieve the final webshell classification result as reward computation related
feedbacks. Since the CNN and A3C network needs a consuming training, the
reward computing and storage module is utilized to ensure the stable training.
The reward of each classification is computed and stored. Given a specified time
setting, we choose an average reward of top-k from agent’s replay buffer, and
utilize such feedback to update the A3C model parameter. This is an interactive
process until the A3C is converged. Finally, our method can find out the opti-
mal feature composition of feature space and improve the CNN-based webshell
detection.
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3.2 Feature Extraction and Preparation

Feature Vector Extraction: Our extracted features from traffic flow include
types of interface basic feature(4 features), traffic source feature(6 features), traf-
fic request feature(14 features), traffic response feature(16 features) and content
feature(40 features). Among them, the basic feature of the interface describes the
security feature of the target interface itself. The traffic source feature reflects the
legitimacy of the requested source. Traffic request feature and traffic response
feature are the features expressed in this HTTP request message. Content feature
is the feature of a specific field in the HTTP request body, which is described
by the field structure and field content in the body. In total, we have 80 features
in the initial feature space to form the feature vector as follows.

[Interface, Content type,Accept, ACL,Origin,Referer,Alarm,
Attacker,ReqLength,D value,Host,Method,Code,ResLength,

Structure(1), EvilIntentions(1), ..., Structure(20), EvilIntentions(20)]
(1)

In the above vector, we choose 14 typical ones and explain them as follows.

Table 2. Typical features and explanations.

Feature name Feature explanation Value explanation

Interface Describes interface security

status

0: BI API, 1: System API

Content Type Characterize the type of entity

of requester

0.5: audio/*, 1: text/* 0:

application/*

Accept Content type of HTTP 1: not exists accept field 0: exists

accept field

Alarm Confidence-based alarm Alarm confidence coefficient 1: max,

0: min

Attacker Attacker label User confidence coefficient 1: max, 0:

min

ACL Access control flag 1: IP legal, 0: IP illegal

Origin Distinguish authority of

request

1:Origin legal, 0:Origin illegal

Referer Determining the url status 1:Referer legal,0:Referer illegal

D value Difference of content type Difference of content type 1: max, 0:

min

Host Determining the request

whether from host

1: access website by domain 0: access

website by IP

Method Request method 1: PUT/DELETE 0.36: OPTIONS, 0:

GET/POST, 0.88: Others

Code Response code 1: 2XX/3XX/4XX, 0: Others

Structure(i) Content element in HTTP

body

1: reasonable structure 0:

unreasonable structure

Evil Intentions(i) Corresponding behavior status

of structure (i)

Malicious behaviors confidence

coefficient, 1: max, 0: min
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Feature Matrix Generation:

M80×80 =

⎛
⎜⎜⎜⎝

Interface1 · · · Structure1(20) Evil Intentions1(20)
Interface2 · · · Structure2(20) Evil Intentions2(20)

...
...

. . .
...

Interface80 · · · Structure80(20) Evil Intentions80(20)

⎞
⎟⎟⎟⎠ (2)

We capture 80 associated traffic flow sequences. For each flow, there are 80
features. Thus, the matrix size is 80 × 80 (See Formula 2). In our experiment,
a total of 568,936 data streams were processed, the calculation is that: we form
a matrix every 5 min, and if there are not enough 80 traffics, we will use mean
imputation method to impute up to 80 traffic, we finally obtain 12,876 features
matrices.

3.3 A3C-Based Feature Selection

A3C Structure: A3C utilizes a hierarchical actor-critic framework and enables
asynchronous parallel training [14]. Concretely, at the bottom layer, there are
multiple agents in parallel to interact with the environment, and each agent has a
pair of actor network and critic network, which is also called the local actor-critic
network; all agents further connect to a global actor-critic network at an upper
layer. For simplicity, we still employ a common two-layer structure to discuss
in the paper. Each agenti copies the global parameters θ before learning, then
agenti interacts with the environmenti for sampling diverse data. Each agenti
will compute the gradient ∇R̄θ after interacting, then each agenti will push the
gradient to update the parameters of global network θ ← θ + η∇R̄θ , where η is
the learning rate.

In the local actor network, the actor network is responsible for obtaining
an approximate state-action value function. While the local critic network is to
supervise the learning of the local actor network with the state value function, the
global actor-critic network does not train itself but manages cumulated updates
and then cooperates with local actor-critic networks for improving training effi-
ciency. A3C is to learn a policy π, whose input is the observation of agents(also
called actors in A3C) represented as a state a, and its output is a vector of action
probability for any state. Then, the probability to choose at at t time, can use
the policy π(at|st) = p(at|st).

To learn a good policy πθ , it is natural to update the θ to maximize the
expected total reward of all sampled trajectories, namely R̄θ =

∑
τ R(τ)pθ(τ),

thus a gradient ascend can be used θ ← θ + η∇R̄θ . In A3C, the advantage
function is defined as: rn

t +Vπ(st+1)n−Vπ(sn
t ), and the advantage function-based

gradient is ∇R̄θ ≈ 1
N

∑N
n=1

∑Tn

t=1(r
n
t + Vπ(st+1)n − Vπ(sn

t ))∇logpθ (an
t |sn

t ).

Action Space and Reward: The action space in the proposed framework can
be defined as:

a = {a ∈ N ∩ a ≤ |F |} (3)
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where N represents all the alternative original features to be selected and a
termination state to be selected. |F | represent the index of the action which
selects the final terminal action. When a < |F |, action a means to set the element
with index a in the environment state to 1. When a = |F |, action a means that
the agent stops the selection procedure. The reward of A3C is the detection
accuracy of classifier.

3.4 CNN Model Construction with Two Convolutional Layer

Fig. 2. CNN model construction

As depicted in Fig. 2, the network contains four layers. The first two are con-
volutional and the remaining are global pooling layer and softmax layer. The
first convolutional layer filters the 80 × 80 × 1 input feature with 256 kernels of
different sizes (3×80×1, 4×80×1, 5×80×1) with a stride of 1 pixels (this is the
distance between the receptive field centers of neighboring neurons in a feature
map). We stitch the output of the first convolutional layer into a matrix as the
second convolutional layer input. In the second Convolutional layer, each feature
map filters the input with 256 kernels of different sizes(3 × 256 × 1, 4 × 256 × 1,
5 × 256 × 1), then gets a 225 × 1 × 256 feature map by stitching the output fea-
ture map. Global pooling layer summarizes the outputs of neighboring groups of
neurons in the same kernel map and we use max pooling and get a 256 × 1 × 1.
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The softmax layer takes a vector z of K real numbers as input, and normalizes
it into a probability distribution consisting of K probabilities proportional to the
exponentials of the input numbers. That is, prior to applying the softmax, some
vector components could be negative, or greater than one; and might not sum
to 1; but after applying the softmax, each component will be in the interval
(0,1), and the components will add up to 1, so that they can be interpreted
as probabilities. Furthermore, the larger input components will correspond to
larger probabilities. In this work, we employ the standard softmax function σ :
R

K → [0, 1]K as follows:

σ(z)i =
ezi

∑K
j=1 ezj

for i = 1, . . . ,K and z = (z1, . . . , zK) ∈ R
K (4)

As to the loss function (see Formula 4), we use the classical cross entropy to
get a measure of dissimilarity between y and ŷ.

H = −y log ŷ − (1 − y) log(1 − ŷ) (5)

4 Experiments

4.1 Experimental Setup

Hardware and Software: Experiments are performed on Ubuntu 16.04 with
Intel Gold 6240 @2.60 GHz, 32 GB DDR4 RAM, and our method is implemented
by python 3.8 and TensorFlow 2.4.1.

Implementation: We use 3 agents. Both actor-learners and actor-critic con-
troller are implemented by two differently paired neural networks( called Actor
network and Critic network respectively). The Actor network has 2×200×4 neu-
rons from the input layer to output layer, and the Critic network has 2×100×1
neurons.

We also set the parameters as follows: the learning rate LR is set to be 0.001,
the regularization parameter δ = 0.001, the value function accumulate parameter
γ = 0.9 and the bias b = 0. We initialize the convolution kernels of Actor and
Critic neural network with random normal initializer(mean = 0.0, stddev =
0.1), where mean refers to the average value and stddev refers to the standard
deviation.

Dataset: Table 3 shows the source of the data traffic and the relevant infor-
mation. The dataset uses 4 types of traffic totaling 568,936 pieces, occupying
5.26 TB of storage space. The traffic used in the experiment is divided into two
parts, one part comes from the real business traffic of a banking system (includ-
ing real attack traffic), and the other part comes from the artificially generated
attack traffic by the bank researchers through tools, manuals, etc.
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Table 3. Traffic source information.

Number System sevel Data amount Number of
positive
sample

Number of
negative
sample

A1 - A2 Business systems 93,221 2,857 90,364

B1 - B3 Promotion system 86,894 5,240 81,654

C1 - C3 Internal support system 178,908 32,252 146,656

D1 Test system 95,424 53,045 42,379

D2 Honeypot system 114,489 81,287 33,202

Among them, the real business traffic part is the monthly traffic of a certain
bank. During the busy time period of the banking business, a fixed-size time
window is randomly selected for traffic acquisition (the time window size is set
to 1 h). One time window is selected every day, and 30 days of traffic data are
accumulated as the real business traffic. The part of the artificially generated
attack traffic is obtained by professionals using AWVS, Weblogic batch utiliza-
tion tools, Metspoit tools and other tools to attack the system.

We extracted the traffic feature by full traffic equipment, then we formed a
total of 568,936 data traffic into 12,876 traffic feature matrices, of which 4,190
were positive samples (webshell attack samples), and 8,686 were negative samples
(non-webshell attack samples), involving 2,746 users (IP addresses). There were
1,125 users involved in webshell attacks and 1,621 normal users.

Table 4. Evaluation metrics.

Metrics name Definition

Hit rate(HR) TP/(TP+FP)

False positive rate (FPR) TP/(TP+FN)

ACC (TN+TP)/(TN+FN+TP+FP)

AUC Area under the ROC curve

In order to reduce the effect of test set and training set on the result, we
use the K-fold cross-validation (CV) method [5]. The whole data will be divided
into k parts. Each data will take turns as a test set and a validation set and do
not repeat each time one of them as a test set, with other k − 1 parts to do the
training set, and then calculate the model on the test set.

Evaluation Metrics: Webshell detection is a two-classification problem. In
this paper, hit rate (HR), false positive rate (FPR), ACC and AUC are selected
as evaluation metrics (see Table 4).
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4.2 Experimental Results

Detection Evaluation: In the experiment, we used the grid search to traverse
our proposed model. Table 5 shows the results of the grid search (fill mode V-
Valid, S-Same; activation function R-RELU, T-Tanh). From the ACC, HR, AUC
and other aspects, the number of 5 hyperparameter group performance is the
best (ACC is 96%, HR reaches 96%, AUC is 96.7%, while FPR can be as low as
6%).

Table 5. Grid search-based parameter influence. (Bold:best.)

Number Padding Activation
function

Kernel
num

Kernel
size

Learning
rate

ACC AUC HR FPR

1 V R 256 3,4,5 1e-3 94.6% 94.1% 94% 6.2%

2 V R 256 3,4,5 1e-2 94.8% 94.3% 95% 6.1%

3 V R 256 4,5,6 1e-3 92.9% 92.7% 92% 6.3%

4 V R 256 4,5,6 1e-2 91.9% 91.1% 92% 14.1%

5 S R 256 3,4,5 1e-3 96.0% 96.7% 96% 6.0%

6 S R 256 3,4,5 1e-2 94.0% 94.0% 94% 4.2%

7 S R 256 4,5,6 1e-3 94.5% 94.0% 94% 6.2%

8 S R 256 4,5,6 1e-2 93.2% 91.8% 95% 15.5%

9 V T 256 3,4,5 1e-3 94.2% 93.8% 93% 6.3%

10 V T 256 3,4,5 1e-2 95.2% 94.8% 95% 4.1%

11 V T 256 4,5,6 1e-3 95.1% 94.5% 95% 6.1%

12 V T 256 4,5,6 1e-2 95.6% 94.6% 95% 6.1%

13 S T 256 3,4,5 1e-3 94.5% 94.0% 94% 6.1%

14 S T 256 3,4,5 1e-2 94.0% 93.6% 95% 10.0%

15 S T 256 4,5,6 1e-3 93.0% 91.7% 95% 17.3%

16 S T 256 4,5,6 1e-2 93.2% 91.8% 95% 15.5%

Robustness Analysis: In order to test the adversarial effect of the model
presented in this paper, we have conducted the cross-language testing. We select
three different types of language honeypots as a breakthrough in file upload
vulnerability, three different types of language honeypots to attack, to achieve
Trojan upload. In this experiment, in order to facilitate the processing of traffic,
we intercept a portion of the continuous attack traffic in each type of attack
as a detection sample, and if the model could detect abnormal traffic, it was
considered a hit.

As Table 6 shows, when model presented in this paper are in the face of
different Trojan horses [25], which Big Trojan has a large size and comprehen-
sive functions for command execution, database operations, and other malicious
intentions. Small Trojan is small and easy to hide but generally only has an
upload function. We can see that the test results are stable. In addition, due to
the fact that the same Trojans differ greatly in text feature between different lan-
guages, content-based traffic detection devices usually enable different detection
loads to detect the same piece of text multiple times, and the behavior-based
detection model proposed in this paper can detect the traffic of multiple slice
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Table 6. Detection analysis under different Trojan type.

Number Trojan type Language Number of
Webshell
traffic

Our method
HR

1 Small Trojan Java 800 95.5%

2 Big Trojan Java 800 97.3%

3 One word Trojan Java 800 92.5%

4 Photo Trojan Java 80 77.0%

5 Small Trojan PHP 400 97.3%

6 Big Trojan PHP 400 97.3%

7 One word Trojan PHP 400 92.5%

8 Photo Trojan PHP 80 77.0%

9 Small Trojan ASP.NET 240 95.3%

10 Big Trojan ASP.NET 240 97.3%

11 One word Trojan ASP.NET 240 92.9%

12 Photo Trojan ASP.NET 80 77.0%

windows at the same time; thus, the processing efficiency is significantly higher
than the content-based detection mechanism.

Table 7. Comparison between our method and commercial detection device.

Detection model Trojan file type Language Small
Trojan HR

Big Trojan
HR

One word
Trojan HR

Photo
Trojan HR

Our method Original Trojan file Java 95.5% 97.3% 92.5% 77%

Confusing Trojan files Java 98.9% 100% 95.8% 81%

A commercial APT Original Trojan file Java 100% 100% 100% 83.3%

Confusing Trojan files Java 88% 56% 92% 0%

A commercial WAF Original Trojan file Java 95.9% 97.5% 100% 0%

Confusing Trojan files Java 0% 0% 0% 0%

In order to test the detection effect of the model presented in this paper on
different forms of webshell, we construct different forms of webshell based on
four common java Trojan types. Communication encryption uses AES256-bit
fixed passwords, code confusion is confused using open source confusion tools,
code encoding is encoded using Moss encoding, and the experimental results are
shown in Table 7. We can see that, the detection method of this paper is still
effective even when coding, encryption and other bypass mechanisms appear.
Our method experimental results are worse than the commercial APT on the
original Trojan File, but better than them to some extent when there are obfus-
cated samples. Such commercial APT analysis system is well developed based
on a large number of expert rules for real applications. While in the scenario
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Table 8. Comparison between single-layer CNN and two-layer CNN.

Number ACC of
Single-layer
CNN

ACC of
Two-layer
CNN

AUC of
Single-layer
CNN

AUC of
Two-layer
CNN

A0 57% 60% 27% 42%

A1 92% 92% 86% 95%

A2 92% 93% 90% 94%

A3 55% 63% 29% 66%

A4 91% 93% 82% 95%

A5 91% 96% 83% 94%

A6 62% 61% 47% 64%

A7 91% 93% 85% 95%

(a) (b)

(c) (d)

Fig. 3. Loss analysis under different hyperparameters when disable RL. (a) Kernel size
= {3, 4, 5}, Learning Rate = 1e-3; (b) Kernel size = {4, 5, 6}, Learning Rate = 1e-3;
(c) Kernel size = {3, 4, 5}, Learning Rate = 1e-2; (d) Kernel size = {4, 5, 6}, Learning
Rate = 1e-2

with obfuscated samples, the static rules and corresponding rule-based methods
are not always effective.
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Fig. 4. Loss analysis comparison between our method without RL (a) and with RL
(b).

Parameters and Efficiency Analysis: To compare the differences between
the two-layer convolution global pooling CNN model and the single-layer con-
volution maximum pooling CNN model, we trained the two models to configure
the same hyperparametrics. Table 8 shows the comparison. We find that the
two-layer convolution global pooling CNN model is better than the single-layer
convolution maximum pooling model.

From the Fig. 3 we can see that, without RL, even given some optimized
hyperparameters with grid search, the performance dramatically decreases, even
drop average 40% loss on validation set in the fourth subfigure. Moreover, the RL
helps to reduce features in our experiment from 80 features down to 54 features,
with optimal ACC 96%. The filtered features include “x-cache”, “general referrer
policy”, “cache-control” etc.

From the Fig. 4 we can see that, the loss of our method without RL dramat-
ically increases on validation dataset after 200 epochs. As a comparison, in our
method with RL on the validation set, the loss can be reduced to about 25%.

5 Conclusion

In this work, we propose a novel approach for improving the convolutional neural
network-based webshell detection through Reinforcement Learning. To the best
of our knowledge, no similar work has focused on. Especially, we utilize the RL
algorithm of A3C for automatic feature selection. In our CNN model, two convo-
lutional layers and a global pooling are built. Through extensive experiment, we
find that our method can reduce 32.5% features and can achieve 96% accuracy.
Compared with single CNN without reinforcement learning, our method has an
average 2.42% improvement.

This work serves as a first step to further investigate the A3C-based CNN
for webshell detection. It is expected to inspire a series of follow-up studies for
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webshell detection, including but not limited to experiment more reinforcement
learning method and experiment more deep learning method.
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Abstract. Public Key Infrastructure (PKI) is widely used in security
protocols, and the root certification authority (CA) plays a role as the
trust anchor of PKI. However, as researches show, not all root CAs
are trustworthy and malicious CAs might issue fraudulent certificates,
which can cause Man-in-the-Middle attacks and eavesdropping attacks.
Besides, massive CAs and CA certificates make it hard for users to man-
age the CA certificates by themselves. Though PKI applications generally
provide the implementation of trusted CA certificate management (called
CA manager in this paper) to store, manage, and verify CA certificates,
security incidents still exist, and a malicious CA certificate can damage
the entire security. This work explores the security issues of CA man-
agers for three popular operating systems and eight applications installed
on them. We make a systematic analysis of the CA managers, such as
the modification of the certificate trust list, the source of trust, and
the security check of the CA certificates, and propose the functionalities
that a CA manager should have. Our work shows that all CA managers
we analyzed have security issues, e.g., silent addition of CA certificates,
inefficient validation on CA certificates, which will result in insecure CA
certificates being falsely trusted. We also make some suggestions on the
security enhancement for CA managers.

Keywords: Certification authority · Public key infrastructure · CA
certificate management

1 Introduction

Public key infrastructure (PKI) plays a critical role in secure networking, offer-
ing security functionalities such as confidentiality, data integrity, and authen-
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tication. Well-known applications based on PKI include but are not limited to
TLS, HTTPS, code signing, eSign documents, S/MIME, and OpenID Connect.
Research [15] shows that as of March 2020, more than 60% of the top one million
websites in Alexa have used HTTPS, and the number of PKI deployments is still
growing.

The security of a PKI system is based on a secure and trustworthy root certi-
fication authority (CA). Authoritative organizations such as WebTrust [30] will
audit public CAs to ensure their legitimacy and security. However, not all CAs
(including public CAs and unaudited self-built CAs) are trustworthy. Recent
researches and events have shown that due to malicious attacks or misbehaviors,
CAs might issue fraudulent certificates [10,12], which may cause Man-in-the-
Middle (MITM) attacks or phishing attacks to the users. The common way to
realize a PKI system is that users need to choose which CA can be trusted. A
user can trust and accept an end-entity certificate based on the trust of the root
CA. While if a root CA is not trusted by the verifier, any certificate issued by
this CA cannot be trusted.

Since there are a large number of CA companies and the quantity of root
CA certificates is much larger, users even with professional knowledge cannot
identify the trustiness of each CA certificate by themselves [6,7,9]. According
to statistics from Censys [21], there have been more than 68 million self-signed
CA certificates, and 88% are unexpired. Many applications, such as Windows,
macOS, Firefox, and Acrobat, have integrated with trusted CA certificate man-
agement to help the users with certificate verification and storage. Some of them
also offer preset Certificate Trust List (CTL), which usually contains the glob-
ally trusted root CA certificates and some platform/application specified root
CA certificates. When a root CA certificate is added to the local CTL, all the
certificates issued by it can be accepted.

Previous researches have disclosed the security incidents caused by the
improperly preset CTL. Lenovo shipped some laptops with a pre-installed traffic
scanning software called Superfish [3] in 2014, which installed a CA certificate
and then actually injected advertisements to even encrypted web pages through
a MITM attack. The same private key across laptops made things worse as a
third-party entity could interpret or modify encrypted traffic without triggering
any security warnings. Besides the preset CTL, if a trusted CA certificate can
be added to local CTL arbitrarily, the security problem mentioned above still
exists [1,5,8,32].

In this paper, we focus on the implementation of trusted CA certificate man-
agement integrated with operating systems (OSs) and applications to explore the
security issues of trusted CA certificate management. For simplicity, we refer to
the implementation of trusted CA certificate management as a “CA manager,”
which focuses on the local management of CA certificates such as the modifica-
tion of the CTL, the storage of local certificate files, and the security check of CA
certificates. Our work is accomplished by exploring the CA managers on three
OSs (i.e., Windows, macOS, and Linux) and eight applications (i.e., seven Web
Browsers and Adobe Acrobat) installed on these OSs, which are carefully chosen
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according to the market share and security features. We find that all the CA
managers we studied have some security issues. For example, we find that there
is no requirement for explicit participation of the user (e.g., inputting a pass-
word) while importing a CA certificate to the local CTL of some CA managers
(e.g., Windows), which means malicious CA certificates can be installed silently
and the attackers can even accomplish the addition by replacing the CTL files
with a file including malicious CA certificates. Besides, some CA managers have
a weak verification on the certificate security and key usage (or certificate pur-
pose) of the CA certificate, and some CA managers (e.g., Firefox) do not verify
the complete certificate chain when trusting an intermediate CA certificate.

The main contributions are the followings:

1) We investigate the most popular desktop OSs and PKI applications (e.g., web
browsers) for studying the implementation and the use of CA managers. We
propose the functionalities a CA manager should have.

2) We conduct a comprehensive test on different CA managers from the per-
spective of the source of trust, modification to the local CTL, control of the
certificate purpose, and security check of CA certificates. Several security
issues are disclosed and described in this paper.

3) Based on the security issues we found, we make some suggestions to enhance
the security of the CA managers.

The rest of this paper is organized as follows. Related work is introduced in
Sect. 2. In Sect. 3 we explore the CA managers in the wild, including the source
of trust and the functionalities. Section 4 specifies our method for analyzing the
CA managers and reports the security issues we found. We give our suggestions
in Sect. 5 and offer the conclusions of the paper in Sect. 6.

2 Related Work

In recent years, CA managers have been analyzed extensively. Some researches
have exposed many security issues of the CA managers, and several organizations
also develop a root store (or root program), which contains the preset CTL. In
the meantime, there have been some schemes proposed for specific situations.

Schemes for CA Manager. Many well-known organizations (such as
Microsoft [25], Mozilla [27], Apple [16], and Adobe [14]) maintain their CTLs
and root stores for global users. A CA intending to be included in these lists
must comply with the baseline requirements of the CA/Browser Forum [19,20].
Besides, it should be audited by European Telecommunications Standards Insti-
tute (ETSI) [22] or WebTrust [30] to ensure its security and legality. These CA
certificates will be installed by default in the OSs and applications and are con-
sidered secure and trustworthy enough to be used to provide users with security
services.

Besides, due to the arbitrary addition of CA certificates and the lack of secu-
rity knowledge of users, some researchers have introduced some new technologies
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for improvements based on the current CA managers. Li et al. [11] propose a
locally-centralized CA certificate management solution named vCertGuard in
private cloud environments combined with desktop virtualization technology
characteristics that realize centralized CA management by a professional admin-
istrator based on the granularity of trust. CA-TMS [4] proposes a CA reputation
evaluation system based on a computational trust model, which determines the
number of trusted CA certificates and decision-making rules by learning the
browser’s certificate-related parameters and the users’ behavior habits.

Terrible Situations of CA Manager. Some researches have revealed the
terrible situations of the current CA managers. Perl et al. [13] surveyed the
local CTL of eleven OSs or applications, finding that 34% CAs in the root
store were not used to sign HTTPS server certificates and can be removed to
reduce the attack interface without triggering any security warnings in browsers.
Vallina-Rodriguez et al. [32] analyzed the CTLs of thousands of Android devices
installed by hardware vendors, mobile operators, and Android OS, finding that
the Android CAs have no distinction between trust levels and no restrictions on
the purpose of the certificate and the rooted applications might install malicious
CA certificates without any barriers. Besides, it was found that some manu-
facturers [2,3] would pre-install some insecure CA certificates, which caused
severe security problems. Malicious CA certificates can also be imported by audio
drivers [31], antivirus and parental-control software [5], and programming [1].

These works have made a huge contribution to the security of CA managers.
However, there is no study analyzing the specific implementation of current
CA managers, and we focus on this part, exploring the security issues of CA
managers.

3 CA Manager in the Wild

This section specifies the studied target objects and then elaborates their actual
situation in the wild from two perspectives: source of trust and functionality of
the CA manager.

3.1 Target Object

Our research is based on the most mainstream desktop OSs, including Windows,
Linux, and macOS. The specific version is Windows 10 Professional, Ubuntu
16.04 with Linux kernel 4.15.0, and macOS High Sierra 10.13.6.

OS. The OS generally maintains a system-level local CTL shared by all accounts
in the same machine, and each account maintains a user-level local CTL, which
will not affect other users in this machine. We treat them as two different CTLs
for analysis in the following. Note that two system-level local CTL exists in
macOS. One CTL stores the system-level CA certificates which can be mod-
ified at any time by users, and the other CTL stores the original CA certifi-
cates maintained by Apple, which is referred to as “root-level” CTL in this
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paper. For Ubuntu, it stores the system-level CTL in the system directory (i.e.,
/usr/share/ca-certificates/), and the CTL, which is stored in the .pki folder under
the user directory, is considered as user-level CTL in this paper.

Application. We investigate several PKI applications containing seven desktop
browsers and one PDF reader named Adobe Acrobat DC (Acrobat). The seven
browsers consist of the top six desktop browsers (i.e., Chrome, Safari, Edge,
Firefox, Opera, and IE), which are ranked by market share in StatCounter [29]
during the last 12 months, and the Tor browser (Tor), which is known for its
open-source, anonymity and privacy technologies. Table 1 shows the specific ver-
sion of applications. It is worth noting that two different installation methods in
Ubuntu need to be considered: (a) the apt, which gets the applications from the
Ubuntu repositories; and (b) the snap, which is cross-platform, dependency-free,
and more secure than apt.

We also conduct experiments on Windows 7 Ultimate and CentOS 8.3 with
Linux kernel 4.18.0. Windows 7 has similar experiment phenomena with Win-
dows 10. CentOS is different from Ubuntu in the addition and storage location
of the system-level CTL. CentOS stores the CTLs in /usr/share/pki/ca-trust-
source and /etc./pki/ca-trust/source. Many browsers including Firefox will trust
the certificates in the two folders, while the Tor browser and the applications
installed by snap maintain their own CTLs. Overall, CentOS is similar to Ubuntu
in terms of addition, storage security, and verification of certificate security. The
following mainly introduces Windows 10, macOS 10.13.6, and Ubuntu 16.04.

Table 1. The version number of applications studied

App
OS

Windows macOS
Linux

Via snap Via apt

Chrome 87.0.4280.88 87.0.4280.88 � 87.0.4280.88
Safari � 13.1.2 � �
Edge 87.0.664.55 87.0.664.60 � 89.0.723.0
Firefox 83 83 83 83
Opera 76.0.4017.123 76.0.4017.123 76.0.4017.123 76.0.4017.123
IE 11.630.19041.0 � � �
Tor 10.0.15 10.0.15 � 10.0.15
Acrobat 2019.021.20061 2019.021.20058 2020.013.20064 �
�: It indicates that the OS does not support the installation of the
application.

Challenge. (i) There is no unified standard and specification for the CA man-
ager. Different OS platforms have various policies and methods for managing
CTLs, which makes it necessary to employ several unique processing and obser-
vation methods. For example, Windows OS manages the local CTL using Group
Policy, and we can access and modify the CA certificates in the CTL through the
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user interface; while in Ubuntu, each CA certificate is stored as a separate file,
and we can only modify the CTL by moving the file. (ii) The internal implemen-
tation logic of the applications’ local CA managers is different and opaque. In
order to explore the vulnerabilities of the CA manager, it is necessary to design
numerous black box testings. For example, to study the security check of CA
certificate and the use of CA certificate purpose, we create a website and a doc-
ument, generate many CA certificates with insecure fields and special certificate
purpose, and conduct various tests on each browser and Acrobat separately. (iii)
Different CA managers may have various forms of unpredictable phenomena for
the same test case. Therefore, many parts of the experiment require manual
intervention, making it difficult to automate. For example, importing a CA cer-
tificate through the user interface to the user-level CTL requires no password but
shows the information about the certificate on Windows, while the system-level
CTL requires the administrator’s permission without a password and shows no
notification about the addition. We have to perform experiments manually on
each surveyed object and record the results.

3.2 Exploring the Source of Trust

In a PKI system, OSs and applications generally configure a preset CTL as
their source of trust. The preset CTLs of our target objects mainly originate
from the four mainstream platforms, namely Microsoft, Mozilla, Apple, and
Adobe. Among them, Microsoft and Apple maintain the local CTL by them-
selves, Mozilla root store is a part of the Network Security Services (NSS)
cryptographic library [28], and Adobe manages the Adobe Approved Trust List
(AATL) by itself and regards European Union Trusted Lists (EUTL) as a third-
party source. The number of CA certificates in each CTL is shown in Table 2,
which is obtained on April 2021.

Table 2. The widely acknowledged CTLs

Platform Quantity CTL

Microsoft 417 Microsoft Included CA Certificate List [24]

Mozilla 142 Mozilla Included CA Certificate List [26]

Apple 217 Apple Included CA Certificate [17]

Adobe 246 AATL [14] & EUTL [23]

To figure out the local default source of each OS and application, we carry
out a systematic exploration of the CA managers. Then, we classify the target
objects’ management mode of their local CTL into two categories: Global Level
(global-level) and Application Level. Table 3 shows the source of trust and the
category of each manager.
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Table 3. The source of trust and the category of each CA manager

OS CA manager Source of trust Category

Microsoft Apple Mozilla Adobe

Windows System-level/User-level
√

– – – �

Chrome
√

– – – ∓
Edge

√
– – – ∓

Opera
√

– – – ∓
IE

√
– – – ∓

Firefox – –
√

– �
Tor – –

√
– �

Acrobat – – –
√ �

macOS System-level/User-level –
√

– – �

Chrome –
√

– – ∓
Edge –

√
– – ∓

Safari –
√

– – ∓
Opera –

√
– – ∓

Firefox – –
√

– �
Tor – –

√
– �

Acrobat – – –
√ �

Linux System-level/User-level – –
√

– �

Install via snap Firefox – –
√

– �
Opera – –

√
– �

Acrobat – – –
√ �

Install via apt Chrome – –
√

– ∓
Firefox – –

√
– �

Opera – –
√

– ∓
Edge – –

√
– ∓

Tor – –
√

– �
�: Global level. �: Application level. ∓: Use global-level CA manager from
OS.

Global Level. At the Global Level, CA managers maintain a global-level CTL,
including user-level CTL and system-level CTL, and can be modified by any
authorized entities. The modification to the global-level CTL will affect all the
entities trusting it. Specifically, OSs maintain a local CTL on the computer as a
system-level CTL that can be trusted directly by some applications (see Table 3
for details). Besides, some browsers installed via apt package in Ubuntu jointly
trust a user-level CTL from Mozilla located in the .pki folder under the user
directory. Note that the applications that trust the global-level CTL actually do
not have an independent CA manager, and they use the third-party CA managers
directly, which are provided by the user-level CTL of the OS by default, according
to our observation.
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Application Level. At the Application Level, each CA manager maintains
its own CTL, which can only be used and modified by itself. The preset CTL
can be customized or originate from mainstream platforms. For instance, every
browser installed by snap in Ubuntu will occupy a separate folder to store the
CTL deriving from Mozilla. Tor, Firefox, and Acrobat manage their CTLs on
their own, and they can decide whether to put extra trust in the OS’s CTL or
not by preferences. But the extra trust in Ubuntu is not valid according to our
experiments.

3.3 Exploring the Functionalities of CA Manager

Once the CA manager obtains the preset CTL from the source of trust, the
CTL can be modified by entities (e.g., users, system, application, etc.) for some
usage, as shown in Fig. 1. According to the requirements of the audit agency,
such as WebTrust and ETSI, baseline requirements of CA/Browser Forum and
our operation, and our observation of each CA manager, we conclude that the
CA manager should possess the functionalities including but not limited to the
followings.

Fig. 1. Overview of the CA manager

Storage Protection. CA manager should store the local CTL and the corre-
sponding trust relationship of these CA certificates in the form of a file locally.
The storage of the local CTL should be sufficiently secure, and it should be pro-
tected by a security mechanism (such as digital signature and authority man-
agement) and not be modified and moved arbitrarily. Moreover, even the file is
replaced, the trust relationship of the maliciously replaced CA certificate will
not change with the replacement.

Modifying CTL. The CTL can be modified through the user interface and
the command line, and users can customize their local CTL. The allowed oper-
ations include adding, deleting, and blocking the CA certificate. In particular,
the adding operation should require the explicit participation of the user for
security, such as inputting the user’s password.
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Restricting CA Certificate Usage. The usage of CA certificates should be
restricted. By default, an added CA certificate cannot be used for any purpose,
and users can specify the required CA certificate purpose to be available, which
cannot exceed the purposes specified by the key usage and extended key usage
(EKU).

Security Audit. Whenever a CA certificate is added or used, it should be
checked for security, such as validity period, revocation status, certificate pur-
pose, key size, supported cipher suites, and hash algorithms used. For insecure
CA certificates, the CA managers should display a security warning on the user
interface.

Isolation. Different accounts (or applications) on the same computer should
maintain their local CTLs without affecting each other. However, the OSs main-
tain a system-level CTL shared by all accounts, which is contrary to isolation.
In this case, the system-level CTL should not be modified arbitrarily.

Updating CTL. The CA manager should provide the functionality of updating
the local CTL from the source of trust automatically or manually. In this way,
the CA manager can obtain the latest CTL timely when the source of trust adds
or blocks some CA certificates. This functionality can exist independently or as
a part of an overall update of the OS or the applications.

4 Security Analysis on CA Manager

In this section, we conduct a comprehensive security analysis on the CA man-
agers with a systematic and customized experiment method. Our work for the
local CA managers mainly concerns the modifications of the local CTL, security
checks of CA certificate, restrictions and inspections of CA certificate purposes,
and some problems are found during the processes. We elaborate on the disclosed
problems and make a detailed analysis separately in the end.

For simplicity, we hide the applications that do not have a CA manager in
the following tables. Their behaviors are the same as the user-level CA manager.

4.1 Methodology

Given the diversity of experimental scenarios, our methodology is mainly cate-
gorized into two parts, the black box testing and manual alteration of CTL.

Black Box Testing. It is applied for three purposes, including security checks of
CA certificates, inspections of CA certificate purpose, and the verification policy
of the certificate chain. To prepare for our experiments, we utilize OpenSSL
1.1.1 to generate various self-signed root CA certificates with different fields,
and create the corresponding three-tier certificate chains. Besides, we build a
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website using Apache and sign some PDF documents to check the CA managers
of browsers and Acrobat.

Among these self-signed root CA certificates with security risks which are
used for checking the security of CA certificate, some employ weak hash algo-
rithms such as MD5 and SHA-1, or weak key pairs such as RSA-512, RSA-
1024, and ECC-192, and others have disparate certificate purposes (especially
the EKU) for the inspections of the key usage. Moreover, expired CAs are also
considered. For the sake of eliminating interference factors from other irrelevant
aspects, the other certificates in those three-tier certificate chains adopt identical
and secure algorithms, specifically, RSA-4096 and SHA-256.

Manual Alteration of CTL. This method places emphasis on the operations
of importing new CA certificates to the existing CTLs and replacing the CTL
file with another file. To achieve our goals, we import our root CA certificates
which are secure enough to the local CTL of each CA manager using the user
interface or the command line and make them trusted. Meanwhile, we record
the required authorities and prompt messages in the process. Besides, we try
to replace the CTL file with another file that has the same format and can be
identified by the CA manager, observe and record the behaviors of the local CA
managers.

4.2 Silent Addition of CA Certificate

Generally, importing a new CA certificate to the local CTL requires the user’s
knowledge or/and involvement, such as system prompt message or/and password
authentication. However, an attacker can maliciously revise the CTL without
the user’s awareness, such as bypassing the prompt message and adding a CA
certificate or directly replacing unprotected files through a malicious program
when asking users to install software or drivers [1,5,8]. In our experiment, we
adopt the method of manually altering the CTL and find there are several cases
demonstrating that a local CTL can be modified silently.

No Password Required for Addition. When adding a new CA certificate to
the local CTL and making it trusted, we figure out that the CA managers of
Windows, all browsers except Tor, and Acrobat do not require password authen-
tication. Worse still, the system prompt messages can also be bypassed by pro-
grams, which has already been disclosed in related research [1].

These issues make it easy for attackers to add malicious or insecure CA cer-
tificates to the local CTL arbitrarily in silence. Once a malicious CA is trusted,
all certificates issued by it will be used with complete trust, which may result
in severe results, such as launching man-in-the-middle attacks, monitoring the
behavior of the user’s computer, injecting advertisements into the user’s com-
puter, or legally installing malicious software. Besides, when we install Alipay’s
security controls, we also find that the application installed several CA certifi-
cates in our Windows without any prompt of certificate information and adding
quantity, which may leave the user in a monitored state.
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Table 4. Silent addition of CA certificate

OS CA manager Vulnerability¶

Authority Password Storage

Windows User-level • • �
System-level ◦ • �
Firefox • • ⊗
Tor ∗ ∗ �
Acrobat • • ⊗

macOS User-level ◦ ◦ �
System-level ◦ ◦ �
Root-level ∗ ∗ �
Firefox • • ⊗
Tor ∗ ∗ �
Acrobat • • ⊗

Linux Ca-certificates (system-level) ◦ ◦ �
.pki (user-level) • • ⊗
Firefox (via snap/apt) • • ⊗
Opera (via snap) • • ⊗
Tor (via apt) ∗ ∗ �
Acrobat (via snap) • • ⊗

¶: Authority means whether the administrator’s authority is required; Password
means the administrator’s password is required; Storage means whether the
CTL file is protected.
◦ means this feature is required, while • means this feature is not required, and
∗ means this CA manager does not support the functionality of addition.
� means the trust relationship or the file itself cannot be replaced, while ⊗
means this trust relationship can be changed by replacing the file.

Malicious Replacement of CTL File. Since the CTL file generally stores
many CA certificates and the corresponding trust relationship, it is significantly
important to maintain its security. Nevertheless, our experiment reveals that
Acrobat and browsers that trust raw CTL of Mozilla, excluding Tor, can replace
the existing CTL file with another file coming from a disparate machine, and it
only requires the current account’s authorities and shows no security warning.
Meanwhile, the trust relationship in the new CTL file is taken too, which means
the trust relationship in the old CTL file is replaced. Consequently, attackers can
use this physical method (which can also be achieved by programming) to add
many malicious CA certificates to the local CTL without the user’s knowledge,
which may pose a more severe threat than adding CA certificates randomly.

Besides, implementations of some current CA managers may cause the con-
sequences of these issues to be more serious, which are the followings:
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a) Security Issues of Shared CTL. There are local CTLs shared by several
applications on each OS. A malicious CA certificate added to the global-level
CTL will be trusted by these applications, which increases the influence scope of
risk. Besides, due to the dependence of trust, the applications may not perform
any certificate verification but directly trust the global-level CTL, which shows
no support for isolation.
b) Possible Failure in Deleting and Blocking the CA certificates. The
CA certificates in the CA managers of Windows and Acrobat can restore auto-
matically with the update after deletion. Since every CA manager can update
its preset CTL, it is difficult for us to delete these CA certificates thoroughly
in some CA managers. There are also some managers that do not support the
blacklist. For example, Tor does not allow users to make any modifications to
the CA manager for security. The system-level CTL of Ubuntu is allowed to
cancel the trust of the CA certificates, but this certificate can be added again
and trusted. The user may want to cancel the trust of malicious CA certificates,
but the automatic recovery mechanism and ineffective blocking make it difficult.

We try to add secure CA certificates and replace files in various OSs and
applications, and experiment results are shown in Table 4, including the required
authorities during addition and the protection of the CTL file. In summary, we
can spot that Acrobat, most browsers, and Windows OS lack a good security
mechanism for modifications to CTL. The management methods of Ubuntu and
macOS are worth learning.

4.3 Non-strict Security Check of CA Certificate

As required by CA/Browser Forum [19], MD5, SHA-1, RSA with a key size
fewer than 2048 bits, and ECC with a key size fewer than 256 bits are viewed
as insecure or not recommended. CA managers are expected to check these
fields. To observe the security check of each CA manager, we employ the black
box testing and use a three-tier certificate chain to do the experiments. We
import the insecure root CA certificates to the local CTL and attempt to visit
the website using browsers or verify the document signatures using Acrobat,
whose end-entity certificate is issued by one of the insecure CAs. We record
the behaviors of different CA managers, including warning messages on the user
interface and application verification results. Besides, as mentioned in Sect. 4.1,
the intermediate CA certificates and end-entity certificates are secure and valid.

To determine the certificate verification policies of these CA managers, only
the intermediate CA certificates are added to the CTL and trusted, and we check
whether the CA manager verifies the complete certificate chain or not.

For global-level CTLs, we observe the behaviors through the applications
trusting their CTL, such as Safari in macOS. The system-level CTL of Ubuntu
stores the certificates and trust status but does not provide verification functions.
Many command lines such as wget and curl will trust and use the certificates,
and the verification policy mainly depends on the cryptographic libraries such
as OpenSSL and NSS. We only display the results of wget with OpenSSL. Tor
and the root-level CTL of macOS are not considered in this section.
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False Trust in CA Certificate with Insecure Fields. During our experi-
ment, it is indicated that only the CA managers of the macOS consider MD5
to be insecure, and ECC-192 is regarded as secure except for the browsers that
trust Mozilla’s CTL. In addition, SHA-1 and RSA-1024 are thought as secure in
all CA managers. Acrobat can verify the signature of any end-entity certificates
issued by insecure CA, as long as the CA certificate is imported and trusted.
All of these situations should not happen and need to be warned by the CA
managers. But only the CA managers of Windows and macOS show the security
warnings for the insecure CA certificates in the user interface. Such CA certifi-
cates have great potential to be exploited by attackers. For instance, if a CA
certificate uses MD5 as the hash algorithm, the attacker already has the ability
to forge it with the same hash value. And if a CA certificate encrypts a message
with a public key whose length is no longer considered secure, it will be under
the risk that the information can be cracked in a limited time. Any of these can
pose a great threat to the security of applications, OSs, and users. We reported
to Mozilla the issue of not checking the MD5 algorithm in a trusted CA certifi-
cate and got a response. They stated that if the certificate was trusted by the
user, the security of the digest algorithm would not be verified.

Table 5. Trust status of every CA manager for insecure root CA certificate∗

OS CA manager SHA-1 MD5 RSA-512 RSA-1024 ECC-192 Expired

Inter Root Inter Root Inter Root Inter Root Inter Root Inter Root

Windows User-level1,2 ⊕ � ⊕ � ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

System-level1,2 ⊕ � ⊕ � ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

Firefox � � � � ⊕ ⊕ � � � ⊕ � ⊕
Acrobat � � � � � � � � � � � �

macOS User-level1,2 ⊕ � ⊕3 ⊕3 ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

System-level1,2 ⊕ � ⊕3 ⊕3 ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

Firefox � � � � ⊕ ⊕ � � � ⊕ � ⊕
Acrobat � � � � � � � � � � � �

Linux Ca-certificates (system-level)2 ⊕ � ⊕ � ⊕ ⊕ ⊕ � ⊕ � ⊕ ⊕
.pki (user-level) � � � � ⊕ ⊕ � � � ⊕ � �
Firefox via snap/apt � � � � ⊕ ⊕ � � � ⊕ � ⊕
Opera via snap � � � � ⊕ ⊕ � � � ⊕ � �
Acrobat via snap � � � � � � � � � � � �

�: (Intermediate) CA certificate is trusted. ⊕: (Intermediate) CA certificate is not trusted.
∗: Inter indicates that only the intermediate CA certificate with RSA-1096 and SHA-256 is added to the CTL
and set as trusted. Root indicates that the root CA certificate is added to the CTL and form a complete trusted
certificate chain.
1: This CA manager has a user interface to show the security warning.
2: This CA manager verifies the complete certificate chain.
3: The user interface shows this root CA certificate is insecure.

Incomplete Verification of Certificate Chain. Due to the different policies
of certification path validation between CA managers, some CA managers will
not verify the complete certificate chain and stop verifying the rest certificates
of the chain when they encounter a trusted CA certificate (not necessarily a
root CA certificate). With only the intermediate CA certificates added into the
CTL, we retry the above tests and find that CA managers of Acrobat, Firefox,
and other applications (except Tor) that trust Mozilla’s CTL in Ubuntu do not



Exploring the Security Issues of Trusted CA Certificate Management 397

verify the complete certificate chain. For example, when we trust an intermedi-
ate CA certificate issued by a root CA using ECC-192 or an expired CA (the
intermediate CA certificate is issued during the validity of the root CA and is
secure enough), the website can still be accessed successfully in Firefox. Since
the incomplete verification of certificate chains can cause some insecure CA cer-
tificates to bypass the verification, the risk of the non-strict security check is
much larger.

The results are displayed in Table 5. It shows the behaviors of various CA
managers for different insecure fields in the certificate. In particular, CA man-
agers with user interfaces also show us the trust status of the CA manager. The
results of different verification policies are also displayed. In general, we can
see that many managers make no warnings about the insecure fields. Insecure
CA certificates with weak algorithms weaken the security and may bring unde-
tectable attacks to users, and the risks may be larger if the certificate chain is
incompletely validated.

4.4 Potential Abuse of CA Certificate Purpose

The CA certificate usually contains several fields for specifying the certificate
purpose, such as Key Usage and Extended Key Usage, and the certificate should
be used for the purpose for which it is intended. CA managers may have their
unique methods to process the certificate purpose. For example, as EKU is not
required, a CA manager (e.g., Windows) may consider that a certificate without
the EKU field has all the certificate purposes, which include the ones to manage
the OS and can be abused to tamper with or attack the OS. Furthermore, CA
managers (e.g., Firefox) can also provide some commonly used certificate purpose
options on its user interface for authorized users to choose manually, such as
verifying websites and emails. We will describe in detail later. These purposes
may not exist in the certificate purpose field, resulting in inconsistent certificate
purposes. To explore the verification of the certificate purpose, we add the self-
created CA certificate to each CA manager and observe their behaviors.

Loose Verification on CA Certificate Purpose. Our findings manifest that
different OSs vary greatly in verification on certificate purposes of CAs. The
certificate purpose selected by the user on the user interface may be inconsistent
with the actual key usage of the CA certificate. For macOS, it behaves as if it
does not verify the key usage and EKU of the CA certificate after we import
the self-created CA with an EKU Timestamp only to its CTL. If the key usage
of SSL is selected in the user interface, we can still visit the website successfully
whose end-entity certificate is issued by the CA normally. This issue can lead
to the abuse of CA certificates, which may cause some malicious CA certificates
to issue fraudulent certificates and have a great impact on the local users. We
reported that macOS had the issue of inconsistent certificate purposes to apple
and had not received a response yet.

No Restriction on CA Certificate Purpose. For Windows, when the EKU
field of a CA certificate is empty, any purposes in the EKU list are selected
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and allowed, including some system’s functionalities such as Windows Update
and Microsoft Trust List Signing. In our work, we create a CTL using a CA
certificate with the corresponding EKU and successfully add it to the local CTL
in Windows. Then all CAs in this CTL are directly trusted. Besides, we find that
no additional prompt or authentication is required for importing a CA certificate
with such a special purpose. Attackers can inject such a CA certificate and a
CTL signed by it through programs, which can add a set of CA certificates to
the user’s computer at one time. The malicious CA certificates with such high-
privileged certificate purposes can always pass the verification, which can cause
a significant impact on users.

5 Suggestions for Secure CA Manager

Based on the above problems of the CA managers, we put forward the following
suggestions for building a more secure CA manager.

User Participation during Modification. When modifying the local CTL,
especially when a new CA certificate is imported, the user’s participation is nec-
essary, and the need for a password is a recommended way, which can reduce the
risk of being tampered with by malicious entities. For example, the system-level
CTL and user-level CTL of macOS and system-level CTL of Ubuntu stored
in /usr/share/ca-certificates/ need the administrator’s password for addition,
which is considered secure. Furthermore, it is recommended that displaying an
explicit prompt when new CA certificates are imported to the CTL, which can
tell the users about the target local CTL and the specific information and the
quantity of the CA certificates. Therefore, users can be aware of what has hap-
pened and take action to ensure its security.

Meanwhile, deleting or blocking the insecure CA certificates should also be
allowed and supported by CA managers so that users can cancel the trust of
some certificates permanently. For example, when a user discovers a vulnerability
caused by a CA certificate and that the certificate also exists in his computer,
he should be able to delete or block the CA certificate.

Enhanced Security of Local Storage. There should be a certain security
mechanism in the storage of the local CTL so that the corresponding files should
not be moved, copied, or deleted at will. The non-replicability of the trust rela-
tionship is a sign of a secure file, too. The even better proposal is that the file
could be signed by the current user or OS to ensure its integrity and security.
Additionally, we also advise that each application or OS can maintain the CTL
by itself instead of sharing it with others since the isolation of different entities
can greatly reduce the possibility of being attacked.

Here are some pretty good cases in our research. Each CA certificate in the
system-level CTL of Ubuntu is stored in a separate file, and the file replace-
ment has the same requirement as adding, which demands the password of the
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administrator. Tor stores its CTL in a dynamic link library file, which can not be
modified at all. Besides, the root-level CTL file in macOS is protected by System
Integrity Protection (SIP) [18]. As for Windows, the CTL file is occupied since
the user logins in, and we can’t perform any operations on the file.

Strict Security Check on CA Certificate. Though the verification policy
of some CA managers is based on the trust of the user, users may not be able
to determine whether to trust a CA certificate, and a strict security check on
the CA certificate when importing it or periodically is recommended. There are
some fields requiring special attention, such as the validity period, the security
of the cryptographic algorithm, and the certificate purpose/key usage. Besides,
it is worth noting that those applications that directly trust the OS’s list should
also strictly check the security of the list when using it.

More importantly, it is necessary to verify the complete certificate chain
for applications. In detail, the validity, the hash algorithm, and key size of all
certificates in the certificate chain should be verified. Furthermore, we suggest
that if the security strength of the upper-level CA certificate in a certificate
chain is not stronger than the lower-level CA certificate, then the latter should
not be considered secure. Last but not least, updating the CTL from the trusted
source timely can mitigate the risk of trusting in CAs which have been deleted
or blocked.

Restrictions on Certificate Purpose. We recommend that CA certificates in
the CTL provide users with no certificate purpose by default and users can turn
on the certificate purposes by selecting them from common certificate purposes
such as SSL and S/MIME. Besides, the CA manager should verify whether the
selected key usage is consistent with the purpose declared in the certificate. For
the key usage related to some system functionalities, additional authentication
or completely disabling is recommended.

6 Conclusion

This work has analyzed and reported the security issues of the trusted CA cer-
tificate management in current OSs and PKI applications. We explored three
OSs and eight applications installed on each OS, focused on the source of trust,
the functionalities of the CA managers, the modification to the local CTL, con-
trol of the certificate purpose and security check of the CA certificate, and found
several security issues which may bring troubles and risks to users. Furthermore,
we propose some suggestions for these security problems.
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Abstract. Intrusion detection systems (IDS) play an important role in
security monitoring to identify anomalous or suspicious activities. Tra-
ditional IDS could be signature-based (or rule-based) or anomaly-based
(or analytics-based). With the objectives of detecting zero-day attacks,
analytics-based IDS have attracted great interest of the cybersecurity
community. Furthermore, machine learning (ML) techniques have been
extensively explored for advancing analytics-based IDS. Many ML tech-
niques have been studied to improve the efficiency of intrusion detection
and some have shown good performance. However, traditional supervised
learning algorithms need strong supervision information, fully correctly
labeled (FCL) data, to train an accurate model. Whereas, with the rapid
development of network and communication technologies, the volume of
network traffic and system logs has increased drastically in recent years,
especially with the introduction of Next Generation Broadband Network
(NGBN) and 5G networks. This caused huge pressure on analytics-based
IDS because, for ML to train predictive models, security-relevant data
need to be labeled manually, hence leading to practical barriers to achiev-
ing effective IDS. In order to avoid being overly dependent on strong
supervision information, weakly supervised learning techniques, which
utilize incomplete, inexact, or possibly inaccurate labels, have been stud-
ied by cybersecurity researchers in that such weak supervision informa-
tion are easier and cheaper to obtain than FCL data. This research aims
to explore the feasibility of weakly supervised learning techniques in IDS
tasks so as to reduce the reliance on a massive amount of strong supervi-
sion information, which will only continue to grow tremendously in the
big data society. We also investigated the detection stability of the pro-
posed scheme when inaccurate weak supervision information is provided.
In this article, we propose an IDS model training scheme that is based on
a weakly supervised learning algorithm, which requires only unlabeled
data. Experiments have been performed on three publicly available IDS
evaluation datasets. The results showed that the proposed scheme per-
forms well and is even better than some supervised learning-based IDS
(SL-IDS) models. Experimental results also indicated that the weakly
supervised learning based IDS model is robust and can be applied in
real world situations. Besides, we examined detection performance of
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the proposed method when it faces class-imbalanced training data and
the experiment results show that it performs better than the compared
methods.

Keywords: Intrusion detection · Network traffic · Weakly supervised
learning · Class prior

1 Introduction

Intrusion detection system (IDS) is one of the most important measures in any
holistic security architecture. Cybersecurity puts a lot of emphasis on protec-
tion, detection and reactive measures such as data protection, identification and
trust management, authorization and accountability enforcement, behavior ana-
lytics for anomaly detection, malware analysis, digital forensic of computer and
network nodes, privacy protection and anonymity of individuals. As one of the
most significant cybersecurity detection tools, IDS can identify anomalous or
suspicious activities in network traffic and system logs [10,19]. Anomalous or
suspicious activities may include but are not limited to command and control
behind the distributed denial of service (DDoS), port scanning attacks, unau-
thorized access, and remote control. Sensitive information, like credentials and
private data of users, is in danger of being leaked or modified by these attacks.
As a consequence, it becomes a crucial task to design an IDS with high detection
efficiency and accuracy to enhance the integrity, confidentiality, and availabil-
ity of the communication information and secure the privacy of user data in
cyberspace [1,32].

Traditional IDS could be signature-based (or rule-based) or anomaly-based
(or analytics-based). Anomaly-based (or analytics-based) IDS has received great
interest from the cybersecurity community as it has the potential to detect
novel intrusion, like zero-day attacks. Many well-developed machine learning
(ML) and deep learning (DL) techniques, like Support Vector Machine (SVM),
Logistic Regression (LR), Decision Tree (DT) C4.5, Recurrent Neural Net-
works (RNN), Deep Belief Network (DBN), and Convolutional Neural Network
(CNN) have been applied to help improve the detection efficiency and perfor-
mance of analytics-based IDS to better deal with the novel attacks. These are
supervised learning (SL) algorithms which traditionally require a fully correctly
labeled (FCL) dataset to train an effective model. FCL data can also be called
strong supervision information. For most SL algorithms, especially deep learn-
ing approaches, the more FCL data is provided, the more accurate the detec-
tion result can be obtained. However, it is time and cost consuming to contin-
uously get enough strong supervision information (FCL data). Semi-supervised
learning-based IDS (SSL-IDS) and unsupervised learning-based IDS (UL-IDS)
may detect attacks with partially labeled or unlabeled data but they usually
are accompanied by high computational complexity or a high false-positive rate.
Clustering-based unsupervised learning methods face another problem, which is
the difficulty of interpreting different clusters as specific meaningful categories.
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With the rapid development of network and communication technology, the
frequency of network connections among different people and organizations con-
tinues to increase, especially with the widespread adoption of Next Generation
Broadband Network (NGBN) and 5G networks. Network traffic data is enor-
mous in quantity and keeps increasing every year. According to Cisco’s annual
report (2018–2023) [8], there are more and more people involved in network
communication. From 2018 to 2019, global attacks between 100 Gbps and 400
Gbps increased by 776% year over year. The total number of DDoS attacks will
increase from 7.9 million to 15.4 million from 2018 to 2023. Faced with the huge
amount of traffic data in the big data society, the current annotation capabilities
for labeling intrusion data are far from sufficient. It causes difficulty for cyberse-
curity personnel to obtain enough FCL data to train an accurate analytics-based
intrusion detection model by traditional supervised learning techniques. There-
fore, techniques that can construct an effective intrusion detection model by
avoiding overly dependent on FCL data are needed.

As it is challenging to prepare FCL data, research works focused on weakly
supervised learning have been extensively studied in recent years. Weakly super-
vised learning is a special branch of machine learning involving various studies
that attempt to build predictive models by learning with weak supervision infor-
mation on a supervised learning setting [37,56]. Weak supervision information
refers to high-level or noisy labels, including incomplete, inexact, and inaccurate
supervision information that is different from strong supervision information
(fully correct labels).

In reality, weak supervision information is much easier to obtain at a
lower cost than strong supervision information, especially in special circum-
stances when the data providers need to maintain their data privacy. The weak
supervision information can be obtained directly based on the domain knowl-
edge/experience or estimated from mixed data by some statistical methods. For
estimated weak supervision information, one problem is that there may be a
slight bias between the estimated parameters and the true values. Hence, it is
important to check the stability of the weakly supervised learning techniques
when biased weak supervision parameters are provided.

Therefore, we expect that weakly supervised learning in cybersecurity has
promising potential in developing of analytics-based intrusion detection tech-
niques. In this paper, we focus on analytics-based intrusion detection and the
term IDS refers to anomaly detection (anomaly detection in this paper is differ-
ent with its traditional meaning). In fact, weakly supervised learning techniques
have been successfully applied in a wide range of application domains, including
automatic image annotation [55], web mining [27], text classification [21], and
ecoinformatics [23].

Motivated by the aforementioned, we propose a method to construct predic-
tion models for IDS with only unlabeled data by a weakly supervised learning
technique. Unlike the traditional supervised learning method, we only need the
class priors of two training datasets, instead of knowing the specific ground-truth
labels of every sample, to train an intrusion detection model. Class prior is a
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kind of weak supervision information that preserves the proportion of positive
samples in a given dataset. The class priors are easier and cheaper to obtain or
construct than the accurate annotation in intrusion detection tasks. Our purpose
is to construct an effective and robust intrusion detection system. Our contribu-
tions in this paper can be summarized as follows:

– First, for constructing a cost-effective IDS, we explore the feasibility of apply-
ing weakly supervised learning techniques on intrusion detection tasks. We
propose a scheme to generate weak supervision labels and train the intrusion
detection models by a weakly supervised learning technique.

– Second, for evaluating the detection accuracy, we utilize three publicly avail-
able IDS datasets, NSL-KDD [47], UNSW-NB15 [30], and CIC-IDS2017 [42]
to compare the proposed weakly supervised learning (unlabeled training data)
trained IDS model with two baseline supervised learning (labeled training
data) trained models.

– Third, considering the problem in weakly supervised learning that the esti-
mated class prior may exhibit a little bias from real industrial scenarios, we
investigate their influence on model performance by giving different parame-
ter settings. We provide 11 groups of biased class priors to train the weakly
supervised learning based IDS and compare their detection rates with the
true class priors based IDS to check the stability of the proposed method.

– Fourth, considering that it is common to handle class-imbalanced datasets
in real intrusion detection tasks, we checked the practicality of the proposed
method by examining its performance and time overhead when detecting
three types of class-imbalanced malicious traffic data. Five baseline methods
(including two SL-IDSs, one SSL-IDS, and two UL-IDSs) are compared with
the proposed method based on the CIC-IDS2017 dataset.

The rest of this paper is organized as follows: Sect. 2 introduces the rele-
vant terminology and technical background. Section 3 demonstrates the techni-
cal details and the whole scheme of the proposed method. Experiment settings
and results analysis are shown in Sect. 4. We have a discussion in Sect. 5, and
Sect. 6 then reviews the related works. Finally, Sect. 7 makes a conclusion and
summarizes the future work.

2 Background

In this section, we mainly introduce the technology background for our work and
explain the terminologies in weakly supervised learning.

2.1 Weakly Supervised Learning

Machine learning has received increasing attention in recent years. It has
achieved great success in many fields, including computer vision, text/speech
recognition, recommendation system, marketing forecasting, safety warning, etc.
Many well-developed supervised learning (SL) algorithms and traditional SL
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algorithms need a fully correctly labeled dataset to learn an accurate and effec-
tive model. For most SL algorithms, the more FCL data are provided, the more
accurate the predicted result can be obtained. However, it is time-consuming
and expense-consuming to collect enough amount of FCL data in reality [39]. In
the area of intrusion detection, it is more difficult to label the traffic data accu-
rately since there is enormous network traffic every day but a limited number
of security experts. Fortunately, it could be easier to collect weak supervision
information.

There are mainly three types of weak supervision [56], including incom-
plete supervision, inexact supervision, and inaccurate supervision information.
Figure 1 gives a simple illustration to show the difference among traditional
supervised learning and the three typical types of weakly supervised learning
(with different types of weak supervision labels). We assume that there are only
positive and negative samples. Small rectangles represent feature vectors. Red
and blue denote positive (P) and negative (N) labels, respectively. Label with
a question mark means that the label may be inaccurate. Blank circles without
“P” or “N” denote unlabeled samples.

Fig. 1. An illustration for the traditional supervised learning and three typical weakly
supervised learning. Small rectangles denote feature vectors. Red and blue denote pos-
itive and negative labels. Question marks mean that the label maybe inaccurate. Blank
circle represents unlabeled data. (Color figure online)

In supervised learning, the ground-truth labels of all the training samples
are provided. In incomplete supervision, only a subset of the training data is
labeled. Usually, most of the remaining data is unlabeled. In inexact supervision,
a fine-grained label is not given for each sample. Some higher-level, less precise
information like heuristic rules, expected label distributions will be provided
[37]. The data samples are grouped into different data bags. One labeling rule
is that if there is one positive sample, the bag can be labeled as positive. If all
the samples are negative, the bag can be labeled as negative. The purpose of
the task in this case is usually to predict the category of unlabeled data bags.
In inaccurate supervision, the data is labeled but may be incorrect. Sometimes,
noisy information is given. Sometimes, we may know the probability that one
sample belongs to positive or negative. This situation is common in real life when
the annotator is not an expert (e.g., crowdsourcing), the sample is difficult to
identify, or the classifier is not strong enough.
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Weakly supervised learning aims to train a predictive model [37,38,56] with
only weak supervision information (incomplete, inaccurate, inexact, noisy infor-
mation or existing related knowledge). Such kind of weak supervision informa-
tion is much easier and cheaper to collect than strong supervision information.
Using weak supervision information can relieve the pressure of lacking FCL data
in some new research areas that require the application of machine learning
techniques. In practice, the weak supervision information of a dataset may not
be given directly sometimes, while the weak supervision information for mixed
data can be constructed or estimated. Therefore, some estimated weak supervi-
sion parameters may be slightly different from the true values. As a result, when
we utilize weakly supervised learning techniques to train a model, we should
consider its stability of predictive performance. The stability means that the
intrusion detection system can keep high detection accuracy even biased weak
supervision parameters are provided.

2.2 Unlabeled-Unlabeled Learning

In our work, we propose to construct intrusion detection models by unlabeled-
unlabeled (UU) learning [25], which is an emerging weakly supervised binary
classification framework that has not received much attention. The advantage
of UU learning lies in that it only needs two unlabeled training datasets with
different class priors to train a classification model. Class prior is weak super-
vision information representing the ratio of the number of samples belonging
to a certain class to the number of all samples. Bekker and Davis summarized
that there are mainly three ways to get the class prior [5]. The first method is
to directly get class prior from the data providers or obtain class prior based
on the domain knowledge/experience. The second approach is deducing it by
a small fully labeled data set [9]. The third way is estimating it from posi-
tive and unlabeled (PU) data. Elkan and Noto first had the idea of estimating
positive label frequency when training a binary classifier by positive and unla-
beled (PU) learning under the condition that the labeled positive samples are
selected completely at random [11]. Some research works applied kernel den-
sity estimator to estimate class prior [6,17,36]. The authors of [35] proposed a
class prior estimation approach that does not need the assumption that selecting
the observed labels completely at random. Zeiberg et al. provided a simple and
fast class proportions estimation algorithm using a distance curve generated by
repeated sampling and nearest neighbor calculation [54]. These research works
provide detailed methods for estimating class priors, which makes weakly super-
vised learning techniques more practical in real-world systems. Our work mainly
focuses on exploring the feasibility of applying weakly supervised learning tech-
niques to alleviate the burden of continuously acquiring large amounts of FCL
network traffic data in today’s data-driven environment for intrusion detection
tasks.

Unlike supervised learning, UU learning can successfully train a classifier by
using only two unlabeled training sets instead of fully correctly labeled data.
Practically, it is much easier to collect or estimate the class prior than knowing
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the specific label of every sample in a dataset. As mentioned before, collecting
the correct label for each network traffic record is extremely difficult because of
the huge amount of data and the limited number of security professionals. Semi-
supervised and unsupervised learning techniques can also avoid relying too much
on FCL data, while their predictive performance is not as good as supervised
learning techniques and usually have high computational complexity. Compared
with some clustering-based unsupervised learning approaches, UU learning can
overcome the problem of translating the clusters into meaningful categories by
empirical risk minimization [48], which theoretically provides a performance
guarantee of the learned model. Therefore, we aim to explore the applicabil-
ity, stability, and practicality of UU learning based-IDS models to mitigate the
problem of that lacking FCL data in intrusion detection tasks.

3 Our Scheme and Methodology

3.1 Overview of the Scheme

An overview of the proposed intrusion detection scheme is shown in Fig. 2. In this
paper, we do binary classification to study the performance of applying weakly
supervised learning techniques on intrusion detection tasks. First, we describe
the three selected commonly used IDS evaluation datasets. Then we introduce
the data preprocessing steps. We do numeralization and normalization for all
the collected data. We randomly split the dataset into training and testing sets.
Then, we generate weak supervision labels for the three datasets based on the
selected unlabeled-unlabeled learning algorithm. After these steps, we use the
same processed training data as input to train intrusion detection models by
different machine learning techniques. The processed testing data is utilized to
evaluate the intrusion detection performance of the different models.

3.2 Dataset Description

NSL-KDD. There are several publicly available datasets for evaluating intru-
sion detection systems, one of the most popular datasets is KDD Cup 99 [29].
MIT Lincoln Labs prepared this dataset for an intrusion detection competition
task in 1998. It is a compressed binary Transmission Control Protocol (TCP)
dump dataset collected from a simulating Air Force local-area network (LAN)
[46]. The raw data is processed into approximately 7 million connection records.
Each connection record consists of a sequence of TCP packets collected from
a fixed period of time and is labeled as normal or a specific attack. However,
this dataset has some obvious defects. It contains a large number of redundant
records, and the sample distribution is biased in terms of quantity and difficulty
level. Hence, NSL-KDD, an improved version of KDD Cup 99 is generated [47].
NSL-KDD dataset removes the redundant records of KDD Cup 99 and reorga-
nizes the distribution of different kinds of network traffic records to make the
number of samples in training and testing sets more reasonable. This dataset
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Fig. 2. An illustration of the proposed scheme for constructing an intrusion detection
model.

contains 148,517 samples in total. Each sample owns 41 features and 1 label.
The features are classified into three types: basic features of user TCP connec-
tions, content features, and traffic features that are computed by a two-second
time window [29].

Many researchers use NSL-KDD as the benchmark dataset for research
related to intrusion detection problems. Hence, we also choose this dataset to
evaluate the performance of our proposed intrusion detection model. Though
NSL-KDD solves most problems in KDD Cup 99, it still suffers the problem
that it is too old to represent the modern attack traffic. It is more meaning-
ful and convinced to use the recent IDS evaluation dataset. Because the recent
datasets can represent the most up-to-date common attacks. Therefore, in our
work, we also choose another two IDS datasets created in recent years.

UNSW-NB15. One is UNSW-NB15 [30], which is another commonly used IDS
dataset provided in 2015. Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS)1 created this dataset by using IXIA PerfectStorm tool2. The
attack types in UNSW-NB15 are more recent than NSL-KDD, which can better
represent the modern network traffic attack types. There are 2,540,044 samples
in total in UNSW-NB15 dataset and they are distributed into four CSV files. The
generator also constructs a training set and a testing set that contains 175,341
and 82,332 samples, respectively. In UNSW-NB15, each sample has 49 features,

1 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/.
2 http://www.ixiacom.com/products/perfectstorm.

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
http://www.ixiacom.com/products/perfectstorm
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including 5 flow features, 13 basic features, 8 content features, 9 time features, 5
general purpose features, 7 connection features, and 2 class features. There are
164,673 normal records and 93,000 anomaly records in the UNSW-NB15 dataset.

CIC-IDS2017. Another dataset is CIC-IDS2017 [42], which is created by the
Canadian Institute of Cybersecurity. CIC-IDS2017 is also a labeled dataset with
80 network traffic features extracted by CICFlowMeter. The provider also gen-
erates a MachineLearningCSV.zip file, which is specially created for machine
learning and deep learning tasks. It contains 8 CSV files, recording the traffic
data features and types based on the collection date. CIC-IDS2017 has several
advantages over the other two datasets. It contains the most recent and com-
mon attacks that are generated in a more realistic background. The amount and
attack diversity of traffic data in CIC-IDS2017 exceeds that of NSL-KDD and
UNSW-NB15, with a total of 3,119,345 instances. It satisfies the eleven criteria
for a reliable benchmark IDS evaluation dataset that put forward in [14]. One
problem is that the whole data distribution is very skewed, which will cause
inaccurate detection result and high false alarm. We choose the three CSV files
collected on Friday to be our target dataset for CIC-IDS2017. Because we found
that the total traffic data distribution on Friday is not at high-class imbalance
for normal and anomaly samples.

In summary, we use the three datasets to evaluate the performance of the
proposed IDS model and other baseline models in our work.

3.3 Data Preprocessing

As mentioned, we use the three publicly available datasets, NSL-KDD, UNSW-
NB15, and CIC-IDS2017 to evaluate the performance of the proposed intrusion
detection model. There are different types of features (symbolic and numeric) in
both NSL-KDD and UNSW-NB15 datasets. For these two datasets, we need to
convert the values of symbolic features to numbers. For CIC-IDS2017 dataset,
we use the MachineLearningCSV.zip file. The feature values in CIC-IDS2017 are
all numbers, which is more convenient and suitable for machine learning task.
But there exist some infinite values and redundant information in CIC-IDS2017
dataset which need to be processed. All the three datasets face the problem that
the values of many features differ greatly. We need to do normalization for the
three datasets accordingly. Besides, there is still a problem of data imbalance. We
will solve these problems in the data preprocessing and model training steps. We
first explain the data preprocessing works for the three datasets before sending
the training sets to the intrusion detection models as input.

Preparation Works. The CSV files in CIC-IDS2017 are separated. We merge
the CSV files into one CSV file first for the convenience of later process
steps. There are two columns named “Fwd Header Length” and “Fwd Header
Length.1” contain the same information. As a result, we remove the redundant
column “Fwd Header Length.1”.
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Feature Values Transformation. The values of some features in NSL-KDD
and UNSW-NB15 are symbolic or text values. For example, the values for feature
“service” are “http”, “telnet”, “ftp”, “smtp”, etc. The values for feature “proto-
col type” are “tcp”, “udp”, and “icmp”. Only numerical vectors or matrix can
be fed into machine learning classifiers. Hence, we need to transfer the sym-
bolic/text features into numeric values. One hot encoding is used to convert the
text format values to numeric values. As mentioned, the feature values in CIC-
IDS2017 CSV files are all numbers. But some of the values are infinite numbers,
which can not be processed by the system. So we need to convert the infinite
numbers to a specific finite number. The raw datasets of the three evaluation
IDS datasets are labeled datasets. The values of the “label” attribute are “NOR-
MAL/BENIGN” and “ANOMALY/ATTACK”. We need to convert the former
and later items to “−1” (negative) and “+1” (positive) respectively.

Feature Values Normalization. There are different types of features in the
three datasets. The values of different features have different scales. The values of
some features (same srv rate, tcprtt, ACK Flag Count, etc.) are below 10. But
the values of some features (duration, sload, stcpb, Subflow Bwd Bytes, etc.)
range from 0 to 1,000 or even above 10,000. Therefore, we need to standardize
the values of the features in the datasets. The feature values are normalized
based on Eq. (1). The new normalized feature value is denoted by xnew. The
minimum and maximum values of the normalized feature are represented as xmin

and xmax respectively.

xnew =
x − xmin

xmax − xmin
(1)

3.4 Model Training

Training Objective. Let X denotes the feature space of the dataset. As we
do binary classification in this work, the binary label space is † = {+1,−1}.
The underlying joint density is represented by p(x, y). The positive and neg-
ative class-conditional densities are expressed by p+(x) = p(x|y = +1) and
p−(x) = p(x|y = −1) [16]. π+ = p(y = +1) is the class-prior probability of the
raw dataset.

Let f and � be the decision function and loss function. The purpose of the
classification task is to minimize the following risk:

R(f) = E(x,y)∼p(x,y)[�(yf(x))] = π+Ep+(x)[�(f(x))] + π−Ep−(x)[�(−f(x))], (2)

where π− = 1 − π+ is the negative class prior, Ep+(x) and Ep−(x) are the expec-
tations of positive and negative samples over p+(x) and p−(x). If the positive
and negative samples are balanced, the value of π+ is 0.5.

In UU learning, there are two unlabeled training sets {xi}ni=1 and {x′
j}n

′
j=1

with different class priors θ and θ′ (θ �= θ′), which are drawn from the following
marginal distributions:

ptr(x) = θp+(x) + (1 − θ)p−(x), p′
tr(x) = θ′p+(x) + (1 − θ′)p−(x) (3)
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The specific labels of each sample in the two training sets {xi}ni=1 ∼ ptr(x) and
{x′

j}n
′

j=1 ∼ p′
tr(x) are unknown. Given the above notations, it was shown [25]

that we can successfully learn an effective binary classifier by minimizing the
following objective function:

̂Ruu(f) =
1
n

∑n

i=1

(

(1 − θ′)π+

θ − θ′ �(f(xi)) − θ′(1 − π+)
θ − θ′ �(−f(xi))

)

+
1
n′

∑n′

j=1

(

− (1 − θ)π+

θ − θ′ �(f(x′
j)) − θ(1 − π+)

θ − θ′ �(−f(x′
j))

) (4)

This is because Eq. (4) is an unbiased estimator of the classification risk R(f),
which means the expectation of the empirical risk ̂Ruu(f) is equivalent to R(f),
i.e., E[ ̂Ruu(f)] = R(f). Equation (4) is a tool that is used to measure the classifi-
cation risk of weakly supervised learning methods of the proposed system based
on the concept of an unbiased estimator of classification risk. Interested readers
can refer to the proof of Theorem 4 in Lu et al. [25] for more details about the
derivation process.

Class Prior Settings. As mentioned above, it is assumed that the ground-
truth label of each sample is unknown in UU learning. But the weak supervision
information, i.e., class priors of the training and testing sets, is assumed to be
known. Therefore, we need to set the class priors of the processed data. After
data preprocessing, we get 71,463 normal records and 77,054 anomaly records for
the NSL-KDD dataset, 164,673 normal records and 93,000 anomaly records for
the UNSW-NB15 dataset, 592,347 normal records and 285,549 anomaly records
for the CIC-IDS2017 Friday dataset.

As explained, there are two training sets in UU learning. Our paper constructs
different groups of class priors for the two training sets to verify several different
problems. Here, we take NSL-KDD as an example to explain the class priors
setting process. First, we randomly select 55,000 anomaly and normal samples
from the training set of the original NSL-KDD dataset, respectively. Then we
construct two new sub-training data sets by the 110,000 samples as shown in
Fig. 3. Here we set the positive class priors θ and θ′ as 0.3 and 0.7 in the two
new sub-training sets. The proportion of anomaly and normal samples is 3:7 in
set A. The distribution of anomaly and normal samples is 7:3 in set B. In the
experiment, the positive class priors θ and θ′ in the two unlabeled training data
sets can be any values between 0 and 1 but not equal to each other. According
to the settings in UU learning, the specific label of each traffic record is removed
from the two sub-training sets when training the intrusion detection model. All
the class priors setting processes in this paper are followed the above method
for all evaluation datasets.

Since the testing set is randomly selected from the original dataset, the posi-
tive class prior of the testing set is equal to the class prior of the original dataset
π+. Therefore, the testing set class priors of NSL-KDD, UNSW-NB15, and CIC-
IDS2017 are set as 0.5 and 0.6, and 0.67, respectively.
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Fig. 3. An illustration of generating two unlabeled training data sets with class priors
based on UU learning.

The constructed two unlabeled training sets are used to train the proposed
intrusion detection model by the UU learning algorithm. To ensure a fair com-
parison with other methods, we use the same processed training and testing sets
when training the IDS models by other methods. We combine the processed two
sub-training sets into one set and provide the ground-truth label of every samples
when comparing with supervised learning based intrusion detection models.

4 Experiments

4.1 Evaluation Metrics

We use positive to denote anomaly sample and use negative to represent normal
sample. Positive sample is labeled as “1” and negative sample is annotated as
“−1”. The confusion matrix is shown in Table 1. True Positive (TP) and True
Negative (TN) mean the number of correctly identified anomaly samples and
normal samples. False Negative (FN) refers that anomaly samples are wrongly
predicted as normal samples. False Positive (FP) indicates the normal samples
that are incorrectly classified as anomaly samples.

Table 1. This is the confusion matrix.

Predicted class

Anomaly Normal

Actual class Anomaly True positive (TP) False negative (FN)

Normal False positive (FP) True negative (TN)

In our work, we use the following indicators to evaluate the performance of
different network intrusion detection models:
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Precision. Precision represents how many positive samples out of all positive
predictive samples are really positive.

Precision =
TP

TP + FP
(5)

Recall. Recall is also known as true positive rate (TPR) or detection rate (DR).
It reflects the sensitivity of the model to identify positive (anomaly) samples from
all real positive samples.

Recall =
TP

TP + FN
(6)

F Score (Fs). F score is used to evaluate a binary classification model. It is
the harmonic mean of recall and precision, which can give a more comprehensive
assessment for the evaluated network intrusion detection model.

Fs = 2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(7)

The real values of the above metrics are between 0 and 1. The larger the
value of the indicators, the better the model is.

4.2 Experiment Results

We have implemented three experiments in our work to explore the applicability,
stability, and practicality of the UU learning based-IDS (UUL-IDS).

Experiment 1. In the first experiment, we use the same selected training data
to train different intrusion detection models and use the same testing data to
evaluate their performance.

We compare the UU learning method (i.e., directly minimizing Eq. (4)) with
the following methods:

– UUrelu, which denotes the method that minimizes Eq. (4) with the ReLU
function, for alleviating overfitting when training with complex models [26];

– UUabs, which denotes the method that minimizes Eq. (4) with the absolute
value function, for alleviating overfitting when training with complex models
[26];

– SL100, which is a supervised learning method trained by 100% correctly
labeled data;

– Biased, which uses the supervised learning method to treat the unlabeled
dataset with larger class prior as positive data and the other unlabeled dataset
with smaller class prior as negative data to train a model. This baseline
method is the same as the “Binary-Biased” in [12].
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Because UUrelu and UUabs are both UU learning based techniques, we also
apply the two methods to validate their applicability on intrusion detection tasks.
All UU learning, UUrelu, and UUabs trained intrusion detection models are fed
by unlabeled data with class priors. We use “UUL” to represent the UU learning
trained IDS models in the later experiment. In this work, a linear decision model
f(x) = ωTx + b and a hinge loss �hinge(y) = max[0, 1 − f(x)y] are used for the
above five methods (including UUL). We can also use other decision models and
loss functions. Adam optimization algorithm is used and the learning rate and
weight decay are set as 0.001 and 0.0005, respectively. After preprocessing, we
got 110,000/32,000, 155,000/77,500, 380,000/190,000 training/testing samples
for NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets respectively. The class
priors θ/θ′ are set as 0.7/0.3, 0.9/0.3, and 0.8/0.2 for the NSL-KDD, UNSW-
NB15, and CIC-IDS2017 datasets. Precision, recall, and F score are used to
evaluate the detection performance of the above models. Each model is trained
by 100 epochs and we calculate the evaluation metrics’ average values of the last
10 epochs. We trained every model several times to get the average performance
and time cost values.

Table 2. The experiment results of the five intrusion detection models based on the
three selected evaluation datasets and the average time overhead for training and test-
ing a model once.

NSL-KDD UNSW-NB15 CIC-IDS2017

Model Precision Recall F score Time Precision Recall F score Time Precision Recall F score Time

SL100 0.9537 0.9534 0.9534 1.93 s 0.8917 0.8795 0.8756 2.71 s 0.9344 0.9274 0.9271 6.59 s

Biased 0.9214 0.9207 0.9206 1.86 s 0.8185 0.8196 0.8186 2.75 s 0.9047 0.8870 0.8857 6.60 s

UUrelu 0.9500 0.9500 0.9500 1.92 s 0.8822 0.8824 0.8822 2.82 s 0.9268 0.9175 0.9171 6.91 s

UUabs 0.9502 0.9501 0.9502 1.93 s 0.8820 0.8823 0.8820 2.76 s 0.9265 0.9170 0.9165 6.79 s

UUL 0.9519 0.9517 0.9517 1.97 s 0.8918 0.8798 0.8758 2.76 s 0.9258 0.9163 0.9159 6.86 s

This experiment mainly wants to check whether the UU learning technique
is applicable to intrusion detection tasks. Hence, we compare UUL-IDS with
SL-IDS to check its detection performance. Table 2 shows the experiment results
and the time overhead of the five intrusion detection models based on NSL-
KDD, UNSW-NB15, and CIC-IDS2017 datasets. In general, it is reasonable to
expect that SL100 should perform best as its training data are fully correctly
labeled. The SL100 shows the best detection performance for NSL-KDD and
CIC-IDS2017 datasets. But we can find that UUL performs a little better than
SL100 for UNSW-NB15 due to the imbalanced characteristics of this dataset.
SL-IDS cannot always perform well when handling imbalanced data. The pro-
posed UUL-IDS can perform well and is stable when facing imbalanced data,
which is another advantage over SL-IDS. We implemented Experiment 3 to val-
idate this. The proposed method can almost reach the SL100 performance and
perform much better than another baseline method (Biased) only with the class
priors. The time cost of UUL training and testing a model is also reasonable,
which shows that the proposed method is effective and suitable for handling big
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data challenges in real-world intrusion detection tasks. Further time overhead
comparison with semi-supervised learning and unsupervised learning can be seen
in Experiment 3. As explained before, UUrelu and UUabs are modified versions
of UU learning which overcome the overfitting problem. The number of traffic
samples in UNSW-NB15 and CIC-IDS2017 are more than the data samples in
NSL-KDD dataset. Therefore, the overfitting problem is easier to arise when
applying the UU learning trained IDS model on UNSW-NB15 and CIC-IDS2017
datasets. As shown in Table 2, the detection results of UUrelu and UUabs based
IDS models are a little better than the UU learning based IDS models.

We can see from Fig. 4(a), Fig. 4(b), and Fig. 4(c) more intuitively that the
UU learning trained IDS models (blue lines) can perform as well as the fully cor-
rectly labeled data trained supervised learning based IDS models (green lines)
on the NSL-KDD and UNSW-NB15 datasets. The detection rates of UU learn-
ing trained IDS models have obvious advantage over another baseline method
(Biased) trained IDS models for these two IDS evaluation datasets. For the CIC-
IDS2017 dataset, the detection rate of UUL trained IDS is a little bit lower than
the SL100 trained IDS. But it still obviously outperforms the Biased method
trained IDS on CIC-IDS2017 dataset.

(a) (b) (c)

Fig. 4. The comparison of detection rate between UUL and two supervised learn-
ing based baseline methods on NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets.
(Color figure online)

Experiment 2. In the second experiment, we evaluate the stability of the
proposed intrusion detection model. As mentioned in Sect. 2, we can not always
obtain the class priors directly in practice. The constructed or estimated class
priors may deviate a little from the real values. It is necessary to check the
stability of UU learning based IDS in a more realistic scene. We use two real
numbers β and β′ that are around 1 to be the biased coefficients. The biased
class priors α and α′ can be denoted as α = βθ and α′ = β′θ′ respectively.
We use 12 groups of different biased coefficients to generate different biased
class priors to train the intrusion detection model by UU learning algorithm to
check the models’ stability. Other settings are the same as the first experiment.
Experiment 2 is also based on the three selected IDS evaluation datasets.
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Table 3. Experiment results (detection rate %) of checking the stability of the proposed
method when giving inaccurate class priors based on NSL-KDD, UNSW-NB15, and
CIC-IDS2017 datasets.

Dataset θ, θ′ β = β′ = 0.8 β = β′ = 0.9 β = β′ = 1 β = β′ = 1.05 β = β′ = 1.1 β = β′ = 1.11

NSL-KDD 0.7, 0.3 89.16 91.98 95.17 95.36 95.17 95.04

UNSW-NB15 0.9, 0.3 85.15 87.02 87.98 86.85 86.56 86.58

CIC-IDS2017 0.8, 0.2 92.04 92.61 91.63 91.18 90.81 90.74

θ, θ′ β, β′ = 0.8, 1.11 β, β′ = 0.9, 1.05 β, β′ = 0.95, 1 β, β′ = 1, 0.95 β, β′ = 1.05, 0.9 β, β′ = 1.11, 0.8

NSL-KDD 0.7, 0.3 95.67 95.48 93.24 95.17 94.40 92.36

UNSW-NB15 0.9, 0.3 84.50 87.31 87.94 87.25 86.00 85.58

CIC-IDS2017 0.8, 0.2 92.26 92.61 92.40 91.57 91.05 89.83

Table 3 shows the experiment results for experiment 2. We use detection
rate to compare the performance of different class priors based IDS models. We
notice that when β = β′ = 1, the detection rate is the true value, which is higher
than most detection rates of the other groups. The value of α and α′ should be
between 0 and 1, so we set the largest biased coefficient as 1.11. When we set β
and β′ as 0.8, there generates the most biased α and α′. Even under the worst
situation, UU learning based intrusion detection models still achieve desirable
detection rates for all the three evaluation datasets.

Another interesting point that needs to be mentioned is that some detection
rates under biased class priors are a little higher than the real detection rate for
all the three selected evaluation datasets. This is because the proposed model can
perform better when the values of class priors for the two training sets are away
from 0.5. This means if the distribution of anomaly and normal samples is more
skewed, the trained model will perform better. This is a practical ability for IDS,
because it is easy to encounter scenarios that deal with imbalanced datasets in
real life. Therefore, we implemented the third experiment to further examine the
detection performance of the proposed method when detecting class-imbalanced
malicious traffic data.

Experiment 3. In this step, we mainly check the detection ability of the pro-
posed method when dealing with an imbalanced dataset. We compare the pro-
posed UU learning based IDS model with another five IDS models. Except for
SL100 and Biased, we utilize one semi-supervised learning technique (SelfTrain-
ing) and two unsupervised learning techniques (OneClassSVM and Kmeans)
from scikit-learn [33] to train the different intrusion detection models. Semi-
supervised learning uses partially labeled data and unsupervised learning tech-
niques use unlabeled data to train a predictive model, which is fairer to com-
pare with our proposed Unlabeled-Unlabeled learning-based IDS model than the
supervised learning methods. In experiment 3, we also use precision, recall, and
F score to evaluate the detection performance of the six IDS models. We know
that the benefit of semi-supervised and unsupervised learning techniques is that
they do not need much FCL data to train a model. But some of the techniques
have high computational complexity. Therefore, we record the training and test-
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ing time for every method in experiment 3 for convenience to compare their
detection efficiency.

CIC-IDS2017 Friday dataset is selected to evaluate the detection performance
of different models in experiment 3. After preprocessing, the CIC-IDS2017 Friday
dataset consists of 592,347 benign traffic samples, 125,670 DDoS traffic samples,
156,012 Portscan traffic samples, and 3,867 Botnet traffic samples. Compared
with the number of benign samples, the quantities of these three types of mali-
cious samples are obviously small. According to the distribution of different traf-
fic samples in CIC-IDS2017 Friday dataset, the class priors of DDoS, Portscan,
and Botnet can be set as 15%, 18%, and 0.5% respectively. We construct the
training sets and testing sets for the three types of class-imbalanced malicious
network traffic data based on the setting of UU learning. The proportion of
labeled training data, unlabeled data, and testing data for SelfTraining are set
as 10%, 70%, and 20%, respectively. All the six IDS models are trained and
evaluated by the same training and testing data. Other settings are the same as
experiment 1.

(a) (b) (c)

Fig. 5. Detection performance comparison among UUL and other five compared meth-
ods (SL100, Biased, SelfTraining, OneClassSVM, Kmeans) for three types of class-
imbalanced malicious traffic data (DDoS, Portscan, Botnet) based on CIC-IDS2017
Friday dataset.

Figure 5 shows the experiment results when detecting the three class-
imbalanced malicious traffic data by the six machine learning techniques based
IDS models. UU learning based IDS models show the best detection performance
for all the three types of class-imbalanced malicious traffic data. It can achieve
99.00% precision, 99.50% recall, and 99.25% F score even for the most biased
attack type. As there are only 3,867 Botnet samples, the IDS model tends to
predict a sample as “−1” instead of “1” when detecting Botnet traffic. Hence,
the false negative values will be large and the false positive values will be small.
This will easily cause a high precision and low recall. As shown in Fig. 5(c),
almost all the selected methods reach a high detection precision. But the val-
ues of recall are not desirable for all the approaches except UU learning and
SelfTraining based IDS models. However, the time cost of SelfTraining is very
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high, which needs more than 15 h to train an IDS model based on the CIC-
IDS2017 Friday dataset. The two unsupervised learning techniques based IDS
models, OneClassSVM and Kmeans, can train the models by unlabeled data. But
their detection performance is not good when detecting class-imbalanced data.
Besides, OneClassSVM based IDS is also time-consuming, which costs more than
16 h to train an IDS model with the training set generated from CIC-IDS2017
Friday dataset. The proposed UU learning based IDS is much more efficient than
SelfTraining and OneClassSVM approaches, which only costs no more than 10 s
to train an IDS model. It is a vital advantage for the proposed IDS that can
detect the imbalanced malicious traffic data efficiently with a good detection
performance.

5 Discussion

We have implemented three experiments to explore the applicability, stability,
and practicality of the proposed weakly supervised learning (UU learning) based
intrusion detection model. Experiment results show that the proposed intrusion
detection model performs as well as the SL-IDS model in accurately detect-
ing anomaly traffic. It also has the same benefit as SSL-IDS and UL-IDS that
does not demand much FCL data. The UUL-IDS has another advantage that it
can perform better even than the SL-IDS when dealing with imbalanced data.
Besides, UU learning-based IDS is efficient which can train a detection model
at a fast speed. Our experiment results demonstrate the applicability, stability,
and practicability of the proposed UUL-IDS model trained by weak supervision
information (class prior).

There are mainly two reasons that motivate us to try to utilize weak super-
vision information rather than strong supervision information for training an
intrusion detection model. First, the class priors (weak supervision information)
can be obtained easier than specific labels in some special circumstances where
the data providers want to maintain data privacy. Second, constructing or esti-
mating weak supervision information saves time and workforce than obtaining
strong supervision information, especially in the domain of cybersecurity. This
gives an insight that weakly supervised learning technology may be a suitable
method to mitigate the problem that lacking FCL data in intrusion detection
tasks, and it is worthy of further research. One of our previous works focuses on
proactive cyber threat analysis by keeping up with the emerging threat intel-
ligence from open sources [52]. This paper focuses on threat detection from
insider network traffic records. We hope to combine the external threat intel-
ligence analysis with insider intrusion detection works together to enhance the
next-generation security operation centers in the future.

6 Related Work

Effectively monitoring the abnormal network traffic is an important requirement
for IDS [15]. To mitigate the burden of continuously get enough fully correctly
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labeled network traffic data in the big data society, designing an efficient intru-
sion detection model with high economic efficiency and accuracy has become
an important task for a long time. Many machine learning [18,22,32,40,44] and
deep learning techniques [13,24,45,49,53] are applied to improve the intrusion
detection efficiency. Some supervised learning based methods have achieved good
performance on intrusion detection tasks. However, the supervised learning tech-
niques need fully correctly labeled data to train the classifiers. The more labeled
data involved, the more accurate the detection model performs for the deep
learning-based method. As explained before, it is not practical to get much FCL
data when considering the limited annotation capacity, high time and expense
consumption in the real situation. Therefore, some semi-supervised and unsu-
pervised learning techniques are studied for constructing IDS models.

Some research works utilize partially labeled data to train the intrusion detec-
tion models by semi-supervised learning techniques to reduce the dependency on
FCL data. As one of the earliest and the most typical semi-supervised learning
algorithms, self-training trains a classifier by a small portion of labeled data and
a large portion of unlabeled data. The unlabeled samples are given pseudo labels
by the labeled data trained model. Then the predicted unlabeled samples are
added into the labeled data to retrain a classifier. Self-training method is uti-
lized to overcome the difficulty of getting a large amount of FCL data to train
an IDS model in these works [41,50,51]. Rana et al. proposed a fuzzy-based
semi-supervised learning method for constructing an IDS model [4]. Their train-
ing steps are based on the idea of self-training. Other semi-supervised learning
approaches like co-training are also motivated by self-training. Mao et al. applied
a co-training semi-supervised method to design a multi-view intrusion detection
model [28]. Most of the above research works only use KDD Cup 99 or NSL-
KDD dataset to evaluate the performance of the proposed models. It would be
better to use modern datasets to validate their methods. Another problem for
these semi-supervised learning techniques is that the model will be affected by
the incorrect predicted unlabeled samples.

Unsupervised learning techniques can train a model by unlabeled datasets,
which also alleviates the burden of requiring a large amount of FCL data. As a
typical and simple clustering-based unsupervised learning method, Kmeans algo-
rithm has been applied by many researchers to construct an intrusion detection
model [2,31,34]. Though the Kmeans based IDS model is easy and quick to train,
it is sensitive to initialization. The predicted result can not always be transferred
into a meaningful category. Except Kmeans, there are also many other unsuper-
vised learning based techniques. The authors in [20] use an unsupervised learning
approach that applying density-based and grid-based clustering algorithms to do
the anomaly detection works. Casas et al. utilize a multi-clustering-based method
to construct a knowledge independent intrusion detection model [7]. They com-
bine the Sub-Space Clustering, Density-based Clustering, and multiple Evidence
Accumulation algorithms to make an outliers detection. Some unsupervised deep
learning techniques, like auto-encoder, are used to assign the label to unlabeled
data in the intrusion detection tasks [3,43]. These methods can solve the prob-
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lem that a limited amount of annotated data is available in the cybersecurity
domain. However, it is difficult to interpret the different clusters into specific,
meaningful categories for clustering-based unsupervised learning methods. In
addition, the unsupervised learning-based IDS models can not perform as well
as the supervised learning-based IDS and tend to be computationally complex.

Our proposed UU learning-based IDS can train a model by two unlabeled
training sets with class priors. Class priors are weak supervision information
which is easier and faster to get or estimate at a low cost than the strong super-
vision information in reality. The proposed method solves the problem of contin-
uously getting a large amount of FCL data. Besides, it can achieve good detection
performance, high detection efficiency, and keep robust when biased class priors
are provided or facing class-imbalanced datasets. Furthermore, we choose three
IDS evaluation datasets to examine the detection performance of the different
machine learning-based IDS models in our work, which is more convinced.

7 Conclusion and Future Work

This paper proposed a novel direction for efficient and robust intrusion detection
that mitigates the burden of being overly dependent on continuously obtaining
massive FCL data to construct an effective anomaly detection (or analytics-
based intrusion detection) model. The proposed scheme applies weak supervision
information to train an intrusion detection model by weakly supervised learning
techniques in this paper. Experiment results indicated that our proposed IDS
model can achieve good detection performance as FCL data trained supervised
learning-based IDS model and even much better than another baseline model
that also trained under the supervised learning settings.

Weak supervision information, like class prior, is easier and cheaper to obtain
than strong supervision information in real industrial scenarios. Considering the
fact that it may not always be possible to obtain the true class priors directly,
we examined the stability of the proposed IDS model when different pairs of
biased class priors are provided. The experiment results showed that even under
the worst biased coefficients, the detection rates are just 6.01%, 3.48%, and
1.8% less than the real detection rates based on NSL-KDD, UNSW-NB15, and
CIC-IDS2017 datasets, respectively. This implies that our intrusion detection
model is stable to overcome the negative influence from biased weak supervision
information. Additionally, we examined the detection ability for class-imbalanced
traffic data of the proposed method. It keeps good detection performance for all
the three types of selected class-imbalanced traffic data and outperforms other
baseline methods. The results also confirm that the proposed method is much
efficient than two out of the five compared algorithms.

This work mainly focuses on exploring the applicability, stability, and prac-
ticality of applying weakly supervised learning techniques on intrusion detection
tasks. As future work, we expect to design a multi-class classification IDS by
weakly supervised learning algorithms or combine some attack behavior analysis
techniques to enhance the proposed IDS model. Besides, we plan to select more
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intrusion detection datasets, especially the dataset that contains emerging traffic
attacks, to validate the performance of the proposed model in more complicated
scenarios.

Acknowledgments. This research is supported by the Cyber Security Agency of
Singapore (CSA), under its repertoire of initiatives leveraging on research institutes
and think-tanks to contribute to the international community “towards a secure and
trusted IoT ecosystem”.

References

1. Ahmad, Z., Khan, A.S., Shiang, C.W., Abdullah, J., Ahmad, F.: Network intru-
sion detection system: a systematic study of machine learning and deep learning
approaches. Trans. Emerg. Telecommun. Technol. 32(1), e4150 (2021)

2. Al-Yaseen, W.L., Othman, Z.A., Nazri, M.Z.A.: Multi-level hybrid support vector
machine and extreme learning machine based on modified k-means for intrusion
detection system. Expert Syst. Appl. 67, 296–303 (2017)

3. Alom, M.Z., Taha, T.M.: Network intrusion detection for cyber security using
unsupervised deep learning approaches. In: 2017 IEEE National Aerospace and
Electronics Conference (NAECON), pp. 63–69. IEEE (2017)

4. Ashfaq, R.A.R., Wang, X.Z., Huang, J.Z., Abbas, H., He, Y.L.: Fuzziness based
semi-supervised learning approach for intrusion detection system. Inf. Sci. 378,
484–497 (2017)

5. Bekker, J., Davis, J.: Estimating the class prior in positive and unlabeled data
through decision tree induction. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

6. Blanchard, G., Lee, G., Scott, C.: Semi-supervised novelty detection. J. Mach.
Learn. Res. 11, 2973–3009 (2010)

7. Casas, P., Mazel, J., Owezarski, P.: Knowledge-independent traffic monitoring:
unsupervised detection of network attacks. IEEE Network 26(1), 13–21 (2012)

8. Cisco, F.: Cisco annual internet report (2018–2023). White Paper. https://www.
cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-
report/white-paper-c11-741490.html (2020)

9. De Comité, F., Denis, F., Gilleron, R., Letouzey, F.: Positive and unlabeled exam-
ples help learning. In: Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI),
vol. 1720, pp. 219–230. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-46769-6 18

10. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection sys-
tems. Comput. Netw. 31(8), 805–822 (1999)

11. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 213–220 (2008)

12. Feng, L., et al.: Pointwise binary classification with pairwise confidence compar-
isons. In: International Conference on Machine Learning, pp. 3252–3262. PMLR
(2021)

13. Gao, N., Gao, L., Gao, Q., Wang, H.: An intrusion detection model based on deep
belief networks. In: 2014 Second International Conference on Advanced Cloud and
Big Data, pp. 247–252. IEEE (2014)

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1007/3-540-46769-6_18
https://doi.org/10.1007/3-540-46769-6_18


Effective Anomaly Detection Model Training 423

14. Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation frame-
work for intrusion detection dataset. In: 2016 International Conference on Infor-
mation Science and Security (ICISS), pp. 1–6. IEEE (2016)

15. Guo, Z., Lam, K.-Y., Chung, S.-L., Gu, M., Sun, J.-G.: Efficient presentation
of multivariate audit data for intrusion detection of web-based internet services.
In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 63–75.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 5

16. Hou, M., Chaib-Draa, B., Li, C., Zhao, Q.: Generative adversarial positive-
unlabelled learning. arXiv preprint arXiv:1711.08054 (2017)

17. Jain, S., White, M., Radivojac, P.: Estimating the class prior and posterior from
noisy positives and unlabeled data. Adv. Neural. Inf. Process. Syst. 29, 2693–2701
(2016)

18. Kuang, F., Xu, W., Zhang, S.: A novel hybrid KPCA and SVM with GA model
for intrusion detection. Appl. Soft Comput. 18, 178–184 (2014)

19. Lam, K.Y., Hui, L., Chung, S.L.: Multivariate data analysis software for enhancing
system security. J. Syst. Softw. 31(3), 267–275 (1995)

20. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detec-
tion using clusters. In: Proceedings of the Twenty-Eighth Australasian Conference
on Computer Science, vol. 38, pp. 333–342 (2005)

21. Li, X., Bing, L.: Learning to classify texts using positive and unlabeled data. In:
International Joint Conference on Artificial Intelligence (2003)

22. Li, Y., Guo, L.: An active learning based TCM-KNN algorithm for supervised
network intrusion detection. Comput. Secur. 26(7–8), 459–467 (2007)

23. Liu, L.P., Dietterich, T.G.: A conditional multinomial mixture model for superset
label learning. In: NeurIPS. pp. 548–556 (2012)

24. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A.: Application of deep rein-
forcement learning to intrusion detection for supervised problems. Expert Syst.
Appl. 141, 112963 (2020)

25. Lu, N., Niu, G., Menon, A.K., Sugiyama, M.: On the minimal supervision for train-
ing any binary classifier from only unlabeled data. arXiv preprint arXiv:1808.10585
(2018)

26. Lu, N., Zhang, T., Niu, G., Sugiyama, M.: Mitigating overfitting in supervised
classification from two unlabeled datasets: a consistent risk correction approach.
In: International Conference on Artificial Intelligence and Statistics, pp. 1115–1125.
PMLR (2020)

27. Luo, J., Orabona, F.: Learning from candidate labeling sets. In: NeurIPS, pp.
1504–1512 (2010)

28. Mao, C.H., Lee, H.M., Parikh, D., Chen, T., Huang, S.Y.: Semi-supervised co-
training and active learning based approach for multi-view intrusion detection. In:
Proceedings of the 2009 ACM Symposium on Applied Computing, pp. 2042–2048
(2009)

29. MIT, L.L.: KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.htmll. Accessed 20 Jan 2021

30. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: 2015 Military Com-
munications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)

31. Muda, Z., Yassin, W., Sulaiman, M., Udzir, N.: Intrusion detection based on k-
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Abstract. Receiving relevant information on possible cyber threats,
attacks, and data breaches in a timely manner is crucial for early
response. The social media platform Twitter hosts an active cyber secu-
rity community. Their activities are often monitored manually by security
experts, such as Computer Emergency Response Teams (CERTs). We
thus propose a Twitter-based alert generation system that issues alerts
to a system operator as soon as new relevant cyber security related top-
ics emerge. Thereby, our system allows us to monitor user accounts with
significantly less workload. Our system applies a supervised classifier,
based on active learning, that detects tweets containing relevant infor-
mation. The results indicate that uncertainty sampling can reduce the
amount of manual relevance classification effort and enhance the classifier
performance substantially compared to random sampling. Our approach
reduces the number of accounts and tweets that are needed for the clas-
sifier training, thus making the tool easily and rapidly adaptable to the
specific context while also supporting data minimization for Open Source
Intelligence (OSINT). Relevant tweets are clustered by a greedy stream
clustering algorithm in order to identify significant events. The proposed
system is able to work near real-time within the required 15-min time
frameand detects up to 93.8% of relevant events with a false alert rate
of 14.81%.

Keywords: Cyber security event detection · Twitter · Active
learning · CERT

1 Introduction

Social Media has become a viable source for cyber security incident prevention
and response, helping to gain situational awareness for Computer Emergency
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Response Teams (CERTs). Therefore, the trend towards processing Social Media
data in real-time to support emergency management [1] continues to grow. Husák
et al. [2] show how Cyber Situational Awareness (CSA) is an adaptation of situ-
ational awareness to the cyber domain and supports operators to make strategic
decisions. To perform such informed, situational decision-making, CERTs have
to gain CSA by gathering and processing threat data from different closed and
open sources [3]. These include Open Source Intelligence (OSINT), which uses
any publicly available open source to accumulate relevant intelligence [4]. Espe-
cially the micro-blogging service Twitter has proven itself as a valuable source
of OSINT due to its popularity among the cyber security community [5], as well
as its available content and metadata for analysis [6]. Alves et al. [7] have shown
that there is a small but impactful subset of vulnerabilities being discussed on
Twitter before they are included into a vulnerability database. Increasingly big
amounts of data make the use of more complex models possible. While concen-
trating on volume might be the best variable for some use cases, focusing on
near real-time and data minimizing [8] approaches have been neglected in the
recent state of research. Therefore, this paper seeks to answer the following main
research question: (RQ) How can relevant cyber security related events
be detected automatically in near real-time based on Twitter data?

By answering this research question the proposed paper aims to make the
following contributions (C): The first contribution (C1) deducts the concept and
presents the implementation of an automated near real-time alert generation
system for cyber security events based on Twitter data (Sect. 2). The second
contribution (C2) covers the evaluation of the CySecAlert system that assists
CERTs with the detection of cyber security events in order to improve CSA by
automatically generating alerts on the basis of Twitter data (Sect. 3). The near
real-time capability is achieved by labelling and clustering the Twitter stream
within the required 15-min time frame [9]. The third contribution (C3) provides
a comparison of existing tools based on the systematic of Atafeh and Khreich
[10] that are suitable to detect relevant cyber security related events based on
Twitter data (Sect. 4). Lastly, the results are summed up (Sect. 5). To enable
further improvement of our work, we will make the source code and the labelled
Twitter dataset available.1

2 Concept

This section presents the concept of CySecAlert, including the data source and
architecture (Sect. 2.1), data preprocessing (Sect. 2.2), and training of the rel-
evance classifier (Sect. 2.3) which serve as input to detect novel cyber security
events (Sect. 2.4). It concludes with a concise description of the concept’s imple-
mentation (Sect. 2.5).

1 https://github.com/PEASEC/CySecAlert.

https://github.com/PEASEC/CySecAlert
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2.1 Data Source and Architecture

Twitter offers a multitude of advantages over other Social Media platforms.
Firstly, Twitter is frequently used for the early discussion and disclosure of
software vulnerabilities [7]. Secondly, Twitter accommodates a broad variety
of participants, that are involved in the discourse evolving around cyber security
topics. Since most important cyber security news feeds (e.g., NVD, ExploitDB,
CVE) are present on the platform, Twitter serves as a cyber security news feed
aggregate [11] and is used by both individuals and organisations [12]. In addi-
tion, tweets can be processed fast and easily [11], due to their limited length.
Hasan et al. [13] propose a general framework for Event Detection systems. We
added a relevance classifier to the architecture that filters out irrelevant tweets.
By classifying relevance per tweet, the individual relevance of each tweet was
determined before the clustering process, reducing the number of tweets at an
early stage. This extension was necessary because our tweet retrieval method
is account-based, leveraging preexisting lists of cyber security experts’ Twitter
accounts (see Appendix A).

2.2 Preprocessing and Representation

In a preprocessing step, we standardized the tweet representation by converting
their content to a lower case and removing any textual part that is unlikely to
contain relevant information, i.e., stop words, URLs, and Social Media specific
terms and constructs (e.g. “tweet”, “retweet”, user name mentions) as well as
non-alphanumerical characters. Then the text was tokenized and stemmed.

We applied a clustering-based approach to Event Detection. Therefore, a rep-
resentation of individual tweets was necessary. To address this issue we adopted
the setting of Kaufhold et al. [14], where a Bag-of-Words approach was applied.
Clustering and classification were performed online. Therefore, the Inverse Doc-
ument Frequency (IDF) regularization term would have had to be updated after
every iteration, undermining the benefits of online techniques. In the context of
crisis informatics, it has been suggested that the regularization via IDF does not
necessarily yield a relevant benefit on classification performance [14]. Therefore,
we omitted IDF regularization and represented tweets by Term Frequency (TF)
vectorization only.

2.3 Relevance Classifier

To filter relevant tweets, we used an active learning approach [15], which has
been found to reduce the amount of labelled data that is required to reach a
certain accuracy level [16,17]. We employed uncertainty sampling in order to
obtain beneficial tweet samples for labeling. Therefore, we examined the sugges-
tion of Kaufhold et al. [14] regarding rapid relevance classification. Lewis and
Catlett [18] point out that it is reasonable to label the post which the current
classifier instance is least confident about. Thus, the Relevance Classification is
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performed by application of pool-based sampling with the least confidence met-
ric. Pool-based sampling refers to an algorithm class that picks an optimal data
point out of the set of non-labelled data points utilizing a metric that refers
to the data’s information content [16]. We applied the least confidence metric
that regarded a data point as the most optimal labeling sample if the classifier
was least confident about its classification [16]. Therefore, the datum with a
prediction confidentiality closest to the decision boundary was selected.

Uncertainty sampling requires retraining of the classifier after every labeling
process [18], which is not done in online learning. Kaufhold et al. [14] have
shown, that this improvement in training time comes at the price of classifier
accuracy, which can be addressed by using a fast online learning algorithm for
the selection of data to be labelled, while batchwise creating a more sophisticated
offline classifier with the same labelled data in parallel [18]. The combination of
an incremental k Nearest Neighbor (kNN) classifier for uncertainty sampling and
Random Forest (RF) is suggested to perform well on datasets in crisis informatics
[14]. The Evaluation shows that this is true for the domain of cyber security as
well (Sect. 3.2). Despite the increase of deep learning algorithms in this field, the
utilization of classical machine learning algorithms suits best for this use case as
the retraining can be performed automatically without the need for long training
phases and specific training optimizations for every batch.

2.4 Detecting Events and Generating Alerts

Clustering based event detection approaches utilize vectorized representations
of Social Media posts. In this scenario, every cluster represented a candidate
event. We applied a simple greedy clustering algorithm that utilizes similarity
metrics of new Social Media posts to old ones by considering them part of a new
cluster if they exceeded a certain similarity threshold and otherwise adding them
to the most similar preexisting cluster [19]. We performed the clustering based
on nearest-neighbor search and used cosine similarity to the nearest cluster’s
centroids.

Alves et al. [11] propose a more sophisticated method that applies regular
offline k-means clustering to improve the cluster quality. However, we chose not
to do so as we put a special emphasis on near real-time applicability on our
system. Furthermore, we justify the choice of relatively simple event detection
techniques by the fact that the active learning approach for relevance classifica-
tion in the cyber security event detection domain constitutes the core novelty of
our contribution.

To obtain significant events, candidate events are filtered by their significance.
Depending on the costs of alert processing and underlying costs regarding false
alerts, it is reasonable to allow a system operator to configure the system’s alert
generation sensibility. CySecAlert supports the prediction of candidate events
based on (1) overall post count associated with the event, (2) count of experts
covering the event, and (3) the number of retweets.

The significance of candidate events based on the system operator’s config-
uration was evaluated when a new tweet was added to the respective cluster. If
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the cluster met the significance criteria and no alert had been issued based on
the candidate event before, an alert was issued to the system operator. In order
to assure the application’s near-real-time capabilities tweets older than a certain
time threshold (14 days by default) were removed from their respective cluster.

To summarize events, research suggests that textual clusters can be rep-
resented by display of their respective centroid [20,21]. We chose this event
representation because it is cost-efficient and maintains the feeling of handling
original Twitter data. We additionally allowed the display of the entirety of
posts associated with an event to allow a system operator to further examine
the event.

2.5 Implementation

CySecAlert was implemented in Java 11 and utilized a MongoDB database
because of its high performance in handling textual documents. Figure 1 serves
as an overview of the implementation’s architecture.

Fig. 1. Architecture of proposed Information and Communication Technology (ICT)
illustrating the information flow for [T]weets, [L]abels and [E]vents. The ICT is divided
into Tweet Retrieval (blue), Relevance Classifier Training (green) and Real-Time Event
Detection (yellow). (Color figure online)

The Crawler module requested the most recent tweets of a list of trusted
Twitter users in a regular manner. For this purpose, it used the Connector mod-
ule. This functionality was implemented using Twitter4J2. To train a relevance

2 Twitter4J Version 4.0.7 (twitter4j.org/en/index.html on 14.08.2020).

http://twitter4j.org/en/index.html
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classifier, it is necessary to manually label a set of tweets. The proposed appli-
cation offers the use of active learners to reduce labeling effort. We evaluated
an active batch RF, an active Naive Bayes, and an active kNN classifier. We
used the classifier implementation of Weka3. A Relevance Classifier was trained
based on the labelled data. The tweets to be labelled depended on the chosen
sampling method. We chose an RF because its performance is well-proven in
the context of Twitter Analysis, which was verified by qualitative evaluation.
Our implementation utilized the Weka (See Footnote 3) implementation of an
RF in its default configuration. The Relevance Classifier was used to filter out
irrelevant tweets.

Then relevant tweets that covered the same topics were clustered to candi-
date events. This allowed an estimation of how much coverage a topic has on
Twitter and helped to avoid alerts being used twice for the same topic. There-
fore, we employed a greedy streaming clustering algorithm, which assigned each
new tweet to the cluster with the most similar centroid according to the cosine
similarity. If this similarity was smaller than a certain operator-defined threshold
(Similarity Threshold) the tweet was designed to a new cluster.

A pre-evaluation has shown that the TF-IDF representation yielded perfor-
mance benefits compared to the TF representation for the clustering task. Due
to the sparsity of these vectors, we modeled them as HashMaps. Since classical
IDF had to be updated after every added tweet, we stored the tweets in TF vec-
torized form and a centralized instance of IDF vector. The IDF regularization
was applied on-demand if calculations required a vectorized representation. After
every tweet insertion, the altered cluster was examined regarding its qualifica-
tions for an alert. Such a cluster was eligible for an alert if no alert had yet been
issued for it and the count of unique tweets it contained exceeds a predefined
threshold (Alert Tweet Count Threshold). The cosine similarity threshold and
the tweet count threshold for the issuing of alerts were passed during program
initialization.

3 Evaluation

This section presents the dataset (Sect. 3.1). The dataset is used to evaluate the
active learning (Sect. 3.2), relevance classification (Sect. 3.2), alert generation
(Sect. 3.3), system performance (Sect. 3.4), and near real-time capability (Sect.
3.5) of CySecAlert.

3.1 Dataset

We gathered 350,061 English tweets (151,861 tweets excl. retweets) published
by 170 Twitter accounts of leading cyber security experts in the time period
between 1st January 2019 and 31st July 2020. The list of accounts was derived
based on a set of blog entries that provide lists of leading cyber security experts
on Twitter (see Appendix A, Table 4).
3 Weka v3.8.4(https://www.cs.waikato.ac.nz/ml/weka/ on 14.08.2020).

https://www.cs.waikato.ac.nz/ml/weka/
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Table 1. Class distribution over tweets of ground truth datasets.

S1 S2

From 01/12/2019 01/05/2020

To 31/12/2019 14/05/2020

Irrelevant 5,801 (88.9%) 5,780 (85.25%)

Relevant 724 (11.10%) 1000 (14.25%)

Total 6,525 6,780

κ 0.9318 0,9377

In Relevance Classification, it is common to apply a binary classification into
relevant and irrelevant tweets [11,22,23]. The class definitions of relevant and
not relevant we applied are illustrated in a codebook (see Appendix B, Table 5)
after Mayring [24].

Based on the dataset and the proposed annotation scheme, we created an
annotated ground truth dataset consisting of two subsets (S1, S2) covering dif-
ferent time frames. The Datasets S1 and S2 were annotated by an additional
researcher to estimate the inter-rater reliability of the coding scheme as shown in
the codebook (Appendix B). Our ground truth shows a high level of inter-rater
reliability (κ > 0.90) measured by Cohen’s kappa (κ). We used S2 for evaluation
purposes. The class distributions of these datasets are illustrated in Table 1.

3.2 Relevance Classification

Sampling Method. We evaluated the influence of active learning and the
selection of a sampling method and sampling classifier on the performance of
a relevance classifier in order to choose a high-performing classifier. Therefore,
we used the preprocessed and stemmed ground truth datasets S1 and S2. In
this evaluation, a scenario was simulated where no labelled data is available
initially. A virtual expert incrementally labelled tweets that were chosen by
different sampling methods. The labels were taken from the respective ground-
truth dataset. We examined a Naive Bayes classifier, a kNN classifier with
k = 50 and an RF classifier. As uncertainty sampling technique we applied least
confidence measure in a pool-based sampling scenario were examined.

While Naive Bayes and kNN can be implemented in an incremental manner
and thus allow to add single tweets without retraining, the RF classifier did not
offer this property. For this reason, kNN and Naive Bayes were updated after
every new labelled tweet and the next uncertainty sampling step was performed
on the updated classifier. In contrast, the RF classifier sampled a set of most
uncertain tweets (rather than one) which were labelled as batches before being
added to the training set. Thereafter, the classifier was retrained on the updated
dataset.

An evaluation of the experiment (see Appendix C, Fig. 3) showed, that the
active version of the Naive Bayes classifier performed worst, representing nearly
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random classification behaviour. However, the kNN classifier was able to train a
model whose AUC measure plateaus around roughly 0.75 for both datasets. This
finding is similar to the results of Kaufhold et al. [14]. In contrast to them, we
also considered active learning with an RF classifier. In our evaluation setting,
it performed best with an AUC in the range of 0.9. Therefore, we choose a RF
classifier for our system.

Classification Model. In this subsection, we analyse whether the use of a dif-
ferent active learning algorithm-based sampling method is useful for an RF rele-
vance classifier. We compare (1) kNN and (2) batchwise RF uncertainty sampling
with (3) random sampling and (4) batchwise Random-RF-Hybrid Sampling. This
hybrid approach picks 50% of tweets per batch by RF-based uncertainty sam-
pling and 50% tweets at random. By determining a threshold of Random Trees,
which is needed to classify an instance as positive, a classifier is instantiated
from the learned RF. In the context of this contribution, we chose the F1 metric
for evaluation purposes, as it is suitable for imbalanced datasets.

We evaluated the performance of the RF instances based on the F1 measure of
the classifier instance with the highest F1 measure for every 100 labelled tweets.
The evaluation was conducted by leaving out 1,000 tweets and using them as a
test set. In order to mitigate performance issues, the uncertainty sampling was
performed on a randomly chosen subsample of size 200 (500 for active batch
RF), which changed in every iteration, rather than on the complete data pool.
The results of this evaluation are illustrated in Fig. 2.

Fig. 2. Performance comparison of RF Classifier trained on dataset S1 (left) and S2
(right) with uncertainty sampling by different classifiers: Random (blue), RF Classifier
(red), 50% RF and 50% Random (brown) and by kNN classifier with k = 50 (black).
Average over 5 Executions using a 1,000 tweet holdout set measured in F1. (Color
figure online)

The experimental results show that every examined type of uncertainty sam-
pling leads to classifier out-performance compared to random sampling. For every
experiment, the classifier instance that used a randomly sampled dataset was
not able to achieve the performance of uncertainty sampled classifier with 300
or more labelled tweets, even if it was trained based on 1,000 randomly sampled
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tweets. Furthermore, the results indicate that there are no significant perfor-
mance differences between the tested uncertainty sampling classifiers.

Due to the fact that there are no substantial classification quality impli-
cations, we opted for the kNN based uncertainty sampling because it can be
executed in an online manner. Additionally, the results suggest that the over-
all classification performance suffered for datasets with higher class imbalance.
Nevertheless, the results indicate that after around 600 labelled tweets the classi-
fier achieved its best classification quality and therefore did not show significant
improvements for a bigger training dataset. This constituted a reduction of man-
ual tweet annotation of up to 90% compared to a randomly sampled approach,
which makes it necessary to label the whole dataset (roughly 6,000 tweets each).

3.3 Alert Generation

In this section, we jointly evaluate the clustering algorithm and the alert gen-
eration process. Therefore, we executed the combination of these modules using
different parameters for Similarity Threshold and Alert Tweet Count Threshold.
Even though there are multiple configurations for alert generation thresholds,
the evaluation was performed based on the relevant tweet count per cluster met-
ric only. Thereby, we received a list of clusters that represent a list of relevant
events and their associated tweets. By comparing this list to the ground truth
dataset (Sect. 3.1), the quality of the alert generation process could be estimated.

Therefore, clusters that were found by the clustering algorithm and flagged
as alerts are classified as topic related, mixed or duplicate. A cluster was regarded
as topic related if more than half of its tweets belong to the same topic of the
ground truth topic list. If a topic related cluster that discussed this topic had
been found before, the cluster was marked as duplicate. If there was no major
topic in the cluster, it was defined as mixed. Topic related clusters were marked as
positive, while mixed and duplicate clusters were marked as negative. Combining
this information we derived a calculation for precision and recalled measures as
follows:

Precision =
#truepositives

#truepositives + #falsepositives
=

#topicrelated
#clusters

(1)

Recall =
#truepositives

#truepositives + #falsenegatives
=

#topicrelated
#topics

(2)

In order to decouple the evaluation of clustering and alert generation from the
performance of the relevance classifier, we tested the clustering-based alert gen-
eration algorithm on the set of relevant and potentially relevant tweets from our
ground truth datasets S1 and S2. We used TF-IDF as tweet vectorization in
order to avoid the formation of big clusters based on frequently used common
words. The results show that an increase in the value of the used similarity
threshold (in the observed range) decreases the recall (see Appendix D). Intu-
itively, this can be explained by the creation of more clusters due to similarity
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failing the threshold. Therefore, clusters are smaller on average and stay under
the alert generation threshold, which leads to suppression of alert generation for
relevant topics. In contrast, the influence of similarity threshold on cluster preci-
sion (which is the invert of the wrongful alert quote) is lower. This is the reason
why operators should be advised to prefer lower values for the Cosine Similarity
Threshold. Even though this configuration increases the wrongful alert rate, it
increases the recall. Nevertheless, if the similarity threshold is chosen too low,
this does not hold. For example, a similarity threshold of 0 led to every tweet
being part of one giant cluster. This led to a low recall as well. The alert gen-
eration instance with the best performance regarding the F1 score resulted in a
precision of 96.08% and a recall of 96.23%.

Our experiment shows that the value of the Cosine Similarity Threshold
leading to an optimal F1-measure depends on the Alert Tweet Count Thresh-
old. Furthermore, the results indicate that minor changes in Alert Tweet Count
Threshold have no significant effect on the Alert Generation System’s perfor-
mance. Comparing the best performing configurations for every examined Alert
Tweet Count Threshold (similarity threshold of 0.3 for 3, similarity threshold of
0.25 for 5) shows that the performance differences are lower than 5%. Therefore,
the system operator is advised to choose the Alert Tweet Count Threshold based
on an alert frequency, that s/he is willing to process.

3.4 System Performance

This section examines the performance of the overall system combining Uncer-
tainty Sampling, Relevance Classification, and Alert Generation. The evaluation
is conducted based on the datasets S1 and S2. After data preprocessing, an
RF classifier was trained based on 600 tweets that were chosen by Uncertainty
Sampling using a kNN classifier. Every tweet in the dataset that the resulting
classifier deemed relevant was passed to the Alert Generation System which is
configured according to the findings in Sect. 3.3: Alert Tweet Count Threshold
= 5, Cosine Similarity Threshold = 0.25. The evaluation of the clusters was
performed analogous to the procedure in Sect. 3.3 with irrelevant clusters as
additional cluster class. A cluster was thereby considered irrelevant if it con-
tained at least 50% tweets that are labelled as irrelevant. The experimental
results (Table 2) suggest that the system is capable of detecting 90% of the
events occurring in the ground truth data while 15% of reported alerts were not
part of the ground truth data (false alert rate).

3.5 (Near-)Real-Time Capability

The run-time tests were performed on a computer with an AMD Phenom II
X6 CPU and 12 GB DDR3 RAM running Windows 10. We divided the alert
generation system into two stages and measured their execution time separately:
(TU1) the Relevance Classifier and (TU2) combining the clustering process with
the alert generation process. We conducted the experiments using dataset S1.
Since individual tweet frequency is highly volatile, we conducted our simulation
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Table 2. Combined performance of relevance classifier, clustering algorithm and alert
generation for datasets S1 and S2.

Dataset S1 S2

Precision 95% 85.19%

Recall 90.48% 93.88%

F1 92.68% 89.32%

assuming the following worst-case scenario: Every user sends twice his/her aver-
age daily tweet count in the same one our frame: 2.5 Tweets per user per 15 min
time-frame.

Sabottke et al. [9] suggest that the cyber security community on Twitter
consists of about 32,000 accounts. Assuming that the system is used to issue
alerts based on the tweets of 25% of these accounts, 20,000 have to be processed in
a 15-min time frame in order to allow near real-time execution. Our experiments
show that the execution of (TU1) takes 17.5 s for 20,000 Tweets. Based on the
class distribution, we determined in Sect. 3.1, ≈2,000 of these tweets are going
to be labelled as positive. Assuming that tweets that are older than 14 days are
discarded, the clusters of the clustering service contain about 112,000 tweets at
any time in this scenario. Extrapolation of the experiment on the execution time
for the proposed clustering algorithm suggests that the clustering of 500 tweets
takes about 210 s in this case. That corresponds to around 840 s (or 14 min) for
the given 2,000 tweets. Adding the execution times of (TU1) and (TU2) up shows
that an execution in the given 15-min time frame is possible. An execution in
a timely manner for more accounts or accounts that are more active is possible
using a more powerful machine.

4 Related Work and Discussion

To use Twitter as an OSINT source for CERTs, we conducted a comparative
analysis of existing tools and approaches which are suitable to complete this task
(Sect. 4.1). Based on our contributions (Sect. 4.2), we identified limitations and
potentials for future work (Sect. 4.3).

4.1 Cyber Security Event and Hot Topic Detection

Previous work has examined the possibilities of Twitter as an information source
for cyber security event detection (overview in Table 3). As the techniques for
event detection using Twitter differ, Atafeh and Khreich [10] offer a system-
atic approach that allows a comparison based on the of the necessary parts.
Most previous work [12,21–23,25] examines the detection of generic cyber secu-
rity threats. The majority of these publications [12,21,23] employs some kind
of clustering algorithm on a Term Frequency-Inverse Document Frequency (TF-
IDF) representation of single tweets compared by the cosine similarity distance.
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Even though the publications’ core approach is related, they differ in details
concerning the preprocessing of tweets and usage of the detected clusters. On
closer inspection, most methodologies use human-generated input that serves as
a filter for user-generated content and automatically expands these filters con-
figuration by utilizing Twitter data [26]. These filters are either represented by
lists of relevant keywords [26] or a set of credible experts [27]. To our knowl-
edge, the scientific literature has not discussed the advantages and disadvan-
tages of either approach extensively. This is especially true for the performance
of machine learning algorithms on the respective databases. While a keyword-
based retrieval approach is less prone to miss relevant tweets regarding a certain
objective, it may attract a lot of tweets that contain a relevant keyword in a
different semantic. Account-based approaches reduce the number of tweets that
have to be processed and therefore reduce performance requirements for the
underlying hardware. However, these accounts have to be known beforehand.

Table 3. An overview of event detection techniques with application to the cyber
security domain, categorized by Retrieval Method (RM, [A]ccount-based or [K]eyword-
based (∗ is filtering)), Detection Method (DM, [S]upervised or [U]nsupervised), as well
as Pivot Technique (PT, [D]ocument- or [F]eature-based) and Detection Technique
(DT) and Model, based on Atefeh and Khreich [10].

RM DM PT

Work A K S U D F Application DT Model

[11] � ∗ � � Summarization CluStream, SVM, NN TF-IDF

[23] � � � Threats DBSCAN TF-IDF

[21] � � � Novel malware Counting, K-Means #, TF-IDF

[22] � ∗ � � Threats NER by NN Word Emb.

[28] � ∗ � � Threats NER by MTL Word Emb.

[29] � � � Threat events MTL Word Emb.

[30] � � � Cur. incidents Prob. learning TF

[31] � � � Attacks Clustering Exp. queries

[27] � � � Topics Clustering TF, Corr.

[26] � � � Classification Clustering TF-IDF

[32] � � � IT-Sec. alerts Rule-based reason. Graph(VKG)

[20] � � � IT-Sec. events Expect. Reg. Diff. feat.

[25] � � � Ident. Attacks Term Filtering TF

[33] � � � Threat indicators CNN-GRU Random Emb.

[12] � � � 0-day exploits K-Means Documents

CySecAlert

� � � � IT-Sec Events Rel. Filter, Clustering TF-IDF

4.2 Contributions

For the CySecAlert concept (C1), we opted for an account-based retrieval
approach, that retrieves tweets based on a list of credible cyber security experts’
accounts. Active learning using uncertainty sampling has shown to be beneficial
for training supervised classifiers with limited data in other domains [14,16,17,34].
Literature of crisis informatics in combination with our evaluation suggests that an



CySecAlert 441

incremental kNNclassifier outperforms aNaiveBayes classifier and an active batch
sampling version of an RF classifier if they are used as uncertainty sampling clas-
sifier for a batch RF classifier. Therefore, they allow high-quality classifiers with a
smaller training set. This is valuable for the privacy by design principle of data min-
imization [8]. This means that fewer accounts and tweets are needed. In detail, our
evaluations (C2) show that a training set containing only 600 tweets gathered by
Uncertainty Sampling (10% of ground truth database) is suited to build a sufficient
classifier. A classifier based on a training set consisting of 1,000 randomly sampled
tweets is outperformed by a set of 200 uncertainty sampled tweets. The evalua-
tion shows that CySecAlert scores a maximal F1 measure of 92.68% (Precision:
95%, Recall: 90.48%) (Sect. 3.4). In comparison to other approaches (C3),
this exceeds the performance of Bose et al. [23] with an F1 measure of 78.26% (Pre-
cision: 81.82%, Recall: 75%) and is comparable to the results of Diońısio et al. [28]
with an F1 measure of 95.1%, who have examined a related task. Although these
papers are most comparable as they conduct similar experiments, a direct com-
parison of the evaluation results is nevertheless impractical because they refer to
datasets of different time periods gathered from different sets of accounts. Regard-
ing the real-time capability to our knowledge, only Le Sceller et al. [26] included a
simple evaluation in their experiments. We extend the research in this direction as
we perform a more in-depth analysis also incorporating the usage behavior. The
near real-time of the system is not only supported by its capability to analyse the
real-time Twitter stream [21,25,26], it also performs almost as fast as the SONAR
system [26] (17.5 s for 20,000 tweets compared to 12 s).

4.3 Limitations and Future Work

As the CySecAlert system is designed to support CERTs, further improvements
and evaluations as part of larger-scale incident monitoring are planned, such as
the deployment on other social media platforms and longitudinal testing with
larger datasets. The tests will include further studies regarding the security of
the system against hacked or fake accounts as well as the risk of model poisoning.
Further, controlled experiments will be conducted to exclude the impact of the
dataset. Additionally, in recent times more sophisticated clustering algorithms
have been proposed. For instance, Alves et al. [11] extends a greedy clustering
approach by offline re-clustering if the cluster affiliation of a new tweet is unclear.
This approach may be suited to avoid duplicate clusters in our clustering algo-
rithm but may have a negative impact on the real-time properties. Furthermore,
re-clustering, in general, interferes with the used online event selection process by
changing cluster affiliation of past tweets. Future work should examine streaming
clustering algorithms that are suited to enhance the proposed system’s overall
performance without strongly influencing the capability of processing tweets of
many users in a timely manner and the need for re-clustering.

Following the proposed system by Kaufhold et al. [14], we used the bag-
of-word approach to represent text. However, recent contributions suggest that
Word Embeddings can have relevant performance advantages over a multitude
of other textual representation methods, including the bag of word approach
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applied in this contribution [35]. Future research should examine if the applica-
tion of Word Embeddings is suited to further improve the proposed alert genera-
tion system’s performance without the negative influence of the system’s timing
constraints. Furthermore, NNs in general and in the domain of cyber security
related event detection enjoy increasing popularity and show high performance
in relevance classification tasks [22]. While the current state of the system with
its real-time, low-resource, and robust applicability is only suited for classical
machine learning algorithms, future work should examine the influence of dif-
ferent uncertainty sampling classifiers on the performance of NNs as relevance
classifiers.

5 Conclusion

This work proposes a framework for timely detection of novel and relevant cyber
security related events based on data from the social media platform Twitter
(CySecAlert). CySecAlert is capable of collecting tweets based on a list of trusted
user accounts, filtering them by relevance, dividing them into clusters by topic
similarity, and issuing alerts if one such topic surpasses a predefined significance
threshold. The system further aims to support data minimization for OSINT by
focussing on a network of expert accounts. Further, it is easy for an expert com-
munity, such as CERTs, to adopt as well as quick to train with little labelling and
runs in near real-time. Our study based on manually labelled ground truth data
shows that the amount of labelled data to train a classifier can be substantially
reduced by the application of uncertainty sampling for training set generation
in contrast to random sampling. The proposed classifier achieves a precision of
87.18% and a recall of 84.12%, while the cluster-based alert generation subsys-
tem achieves a false alert rate of 3.77% and detects 96.08% of relevant events in
the ground truth dataset. An evaluation of the overall system shows that it is
able to detect up to 93.88% of relevant events in a ground truth dataset with a
false alert rate of 14.81%.
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Appendix A Dataset

Table 4 provides the websites and blogs we used to retrieve 170 accounts of the
leading cyber security experts on Twitter, from which we gathered the dataset
of 350,061 English tweets (see Sect. 3.1).
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Table 4. Sources for cyber security experts on Twitter

List of security expert sources

The top 25 infosec leaders to follow on Twittera

Top 15 security experts to follow on Twitter in 2018b

Best cyber security Twitter profiles to follow 2018c

100 security experts you could follow on Twitterd

10 cybersecurity Twitter profiles to watche

21 cyber security Twitter accounts you should be followingf

a techbeacon.com/security/top-25-infosec-leaders-follow-twitter, accessed 2021-07-08
b resources.whitesourcesoftware.com/blog-whitesource/top-15-security-experts-to-foll-
ow-on-twitter-in-2018, accessed 08.07.2021
c cyberdb.co/best-cyber-security-twitter-profiles-follow-2018, accessed 08.07.2021
d bridewellconsulting.com/100-security-experts-follow-twitter, accessed 08.07.2021
e darkreading.com/vulnerabilities—threats/10-cybersecurity-twitter-profiles-to-watch
/d/d-id/1325031, accessed 08.07.2021
f sentinelone.com/blog/21-cybersecurity-twitter-accounts-you-should-follow/, accessed
08.07.2021

Appendix B Codebook

In Table 5 the codebook [24] for the annotation of tweets is presented, which is
applied to the coding of the dataset (see Sect. 3.1). Table 5 gives an overview of
the codes’ definitions.

Table 5. Codebook for tweet relevance classification.

Code Definition Example

Relevant (2) Information on existence,
properties, assessment,
real-world application or
warning of (1) vulnerabilities in
software, (2) vulnerabilities in
hardware, (3) malware, or (4)
attack vectors, that are (a)
currently in use, (b) may be
(ab-used) or (c) in theory

“Zeppelin, a new #ransomware
variant of Vega family, is
targeting #technology and
health companies across
Europe, the US and Canada.”a,
“Frankfurt City IT Network
Taken Offline to Stop #Emotet
#Botnet Infection”b, “Citrix
Vulnerability Puts 80K
Companies at Risk”c

Irrelevant (1) None of the above
a Twitter (twitter.com/unix root/status/1204813126371295238)
b Twitter (twitter.com/neirajones/status/1208817022295068672)
c Twitter (twitter.com/InfosecurityMag/status/1209175732695523330)
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Appendix C Classifier Comparison

Figure 3 depicts the results of active classifier comparison. Experiment details
are discussed in Sect. 3.2.

Fig. 3. Performance comparison of Naive Bayes (red), kNN with k = 50 (blue) and
Random Forest (brown) classifier with uncertainty sampling based on their respective
model on dataset S1 (left) and S2 (right). Average over 5 executions using Cross-
Validation. (Color figure online)

Appendix D Alert Generation by Similarity Threshold

Table 6 depicts how recall and alert generation is impacted by the similarity
threshold of the greedy clustering (see Sect. 3.3).

Table 6. Performance measures of greedy clustering-based generated alerts for different
similarity thresholds and for alert count thresholds 3 and 5 for the datasets S1 and S2,
respectively.

Alert count thresh. 3 (S1) 5 (S2)

Similarity-thresh. 0.25 0.3 0.4 0.5 0.2 0.25 0.3

Precision 81.54% 96.08% 90.63% 94.11% 75% 95.24% 86.67%

Recall 100% 96.23% 60.41% 30.18% 100% 95.24% 61.9%

F1 89.83% 96.15% 72.5% 45.7% 86% 95.24% 72.22%
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Abstract. Cyber threats are becoming increasingly sophisticated, while
new attack techniques are emerging, causing serious harm to businesses
and even countries. Therefore, how to analyze attack incidents and trace
the attack groups behind them becomes extremely important. Threat
intelligence provides a new technical solution for attack traceability by
constructing Cybersecurity Knowledge Graph (CKG). The CKG cannot
be constructed without a large number of entity-relation triples, and the
existing entity and relation extraction for cybersecurity concepts uses the
traditional pipeline model that suffers from error propagation and ignores
the connection between the two subtasks. To solve the above problem, we
propose CyberRel, a joint entity and relation extraction model for cyber-
security concepts. We model the joint extraction problem as a multiple
sequence labeling problem, generating separate label sequences for differ-
ent relations containing information about the involved entities and the
subject and object of that relation. CyberRel introduces the latest pre-
trained model BERT to generate word vectors, then uses BiGRU neural
network and the attention mechanism to extract features, and finally
decodes them by BiGRU combined with CRF. Experimental results on
Open Source Intelligence (OSINT) data show that the F1 value of Cyber-
Rel is 80.98%, which is better than the previous pipeline model.

Keywords: Relation extraction · Joint model · Threat intelligence ·
Knowledge graph

1 Introduction

Nowadays, the damage and impact caused by malicious behavior in cyberspace
such as hacker attacks, frauds, and rumors have become more serious. Therefore,
how to effectively and accurately detect cyber attacks as early as possible, ana-
lyze attack incidents, and trace the source of attackers and groups has become
a severe problem for enterprises and countries.

The concept of Cyber Threat Intelligence (CTI) was developed supplying new
theoretic support for cyber-attack source tracing, making it possible to trace the
source of a wide range of attacks. Therefore, many researchers extract and ana-
lyze different threat intelligence to generate the Cybersecurity Knowledge Graph
c© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 447–463, 2021.
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(CKG). The CKG has the characteristic of strong timeliness and high accuracy,
which can timely and easily detect, respond and defend against specific targets
providing a new measure for attack source tracking, and can even effectively
deal with sophisticated cyberattacks (e.g., zero-day attacks, advanced persistent
threat).

The key step in constructing CKG is cyber threat intelligence information
extraction, which involves subtasks such as entity recognition, relation extrac-
tion, and event extraction. Currently, many research groups have conducted
research on the automated construction and analysis of CKG [3–9]. In terms of
CTI information extraction, previous studies are dedicated to extracting cyber-
security concepts [10–12] and entities [13–15] from unstructured data.

However, the construction of CKG is inseparable from a large number of
cybersecurity entity-relation triples. The CKG consists of a number of nodes and
edges, where the nodes represent entities and the edges represent the relations
between entities. Because that information comes from a large scale of unstruc-
tured data through various sources like system logs, vulnerability databases,
cybersecurity reports, hacker forums, and social media, it has the characteris-
tics of multisource, heterogeneous, polysemy, and highly dependent on domain
knowledge. Therefore, relation extraction of cybersecurity is still a great chal-
lenge. Existing researches on cybersecurity relation extraction [16,17] uses the
traditional pipeline model, named entity recognition first and then relation
extraction, which leads to error propagation and losses sight of the relevance
between entity recognition and relation extraction.

To solve the above problem, we propose CyberRel, a joint entity and relation
extraction model for cybersecurity concepts, which extracts both cybersecurity
entities and relations and generates the semantic triples. Specifically, we use a
tagging scheme to convert the joint extraction problem into a multiple sequence
labeling problem by generating separate label sequences for different relations
containing information about the related entities and the subject and object of
that relation. CyberRel applies the pre-trained model, BERT, to generate word
vectors. After extracting semantic features by BiGRU, the model assigns higher
weights to relation-related words in the sentences by an attention mechanism.
Finally, BiGRU combined with CRF is used to decode and construct cybersecu-
rity triples.

In summary, the main contribution of this paper are as follows:

– We propose a joint entity and relation extraction model for cybersecurity
concepts, named CyberRel. The model employs deep learning techniques to
extract entities and relations in sentences simultaneously, avoiding the error
propagation of traditional pipeline models.

– We model the joint extraction problem as a multiple sequence labeling prob-
lem by generating separate label sequences for different relations. Each label
sequence contains information about the related entities and the subject and
object of that relation. This method can effectively solve the entity overlap-
ping problem commonly found in the cybersecurity corpus.
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– To validate the effectiveness of CyberRel, we collected and manually labeled
OSINT data including vulnerability databases, security bulletins, and APT
reports. The experimental results show that CyberRel outperforms the tra-
ditional pipeline model with an F1 value of 80.98%.

The rest of the paper is organized as follows: Sect. 2 discusses related work,
and Sect. 3 presents the details of the joint entity and relation extraction model
for cybersecurity concepts (CyberRel) which we proposed in this paper. Section 4
provides the experiments and analysis related to this work. Section 5 summarizes
conclusion and proposes future works.

2 Related Work

In this section, we first review the methods for automated construction and
analysis of CKG. Secondly, since the pivotal step of CKG construction is threat
intelligence information extraction, we review the work related to CTI extraction
including entity recognition, relation extraction, and event extraction subtasks.
Finally, we present the related research on relation extraction.

2.1 Cybersecurity Knowledge Graph

The Knowledge Graph (KG) was originally proposed by Google. It is a knowledge
base that integrates information from multiple sources, links real-world entities
or concepts, and provides search services through semantic retrieval. In the field
of cybersecurity, correlating and fusing threat intelligence data from different
sources to generate the CKG can provide new technical means for situational
awareness and attack traceability.

Building a CKG first requires abstracting a myriad of concepts and complex
relations in the cybersecurity domain into a semantic network. Iannacone et al.
[1] proposed STUCCO, an ontology for building CKGs, integrating 13 different
formats of cybersecurity data sources. Building on this foundation, Syed et al. [2]
proposed a Unified Cybersecurity Ontology (UCO). The UCO ontology provides
a general understanding of the cybersecurity domain and, in addition to mapping
to STIX, UCO extends several related cybersecurity standards, vocabularies,
and ontologies such as CVE, CCE, CVSS, CAPEC, CYBOX, KillChain, and
STUCCO.

In the area of automated construction and analysis of CKG, researchers have
also proposed several ideas and approaches in recent years [3–9]. Jia et al. [3]
introduced a cybersecurity knowledge base and deduction rules based on a quin-
tuple model. Gao et al. [4] proposed EFFHUNTER, a system that facilitates
threat hunting in computer systems using OSINT. The system uses an unsu-
pervised, lightweight, and accurate NLP pipeline to extract structured threat
behaviors from unstructured OSINT text. Piplai et al. [5] described a system
that extracts information from After Action Reports (AARs) and represents the
extracted information in a CKG. Zhao et al. [6] demonstrated a threat intelli-
gence framework (HINTI). HINTI first recognizes IOCs and models the inter-
dependent relations between IOCs using heterogeneous information networks
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(HINs), and then proposes a threat intelligence computing framework based on
graph convolutional networks to explore complex security knowledge. Although
these approaches have made initial attempts and achieved good results in CKG
construction, further research is needed in the key steps of knowledge graph
construction.

2.2 Threat Intelligence Information Extraction

The construction of a knowledge graph can be divided into three steps, includ-
ing information extraction, knowledge fusion, and knowledge reasoning. Among
them, information extraction plays a decisive role in the quality of the generated
knowledge graph. Information extraction for threat intelligence is divided into
several subtasks, including entity recognition [10–15], relation extraction [16,17]
and event extraction [18].

In terms of cybersecurity entity and concept recognition, Mittal et al. [10]
proposed a framework for extracting threat intelligence from Twitter, Cyber-
Twitter, which automates the extraction of security vulnerability concepts. Liao
et al. [11] introduced iACE for automatically extracting IOCs and their context
in the sentences of technical articles. Zhu et al. [12] designed Chainsmith, an IOC
extraction system that collects IOCs from security articles and classifies them
according to the stages of the Kill Chain. Ghazi et al. [13] used natural language
processing to extract threat sources from unstructured web threat information
sources and provided comprehensive threat reports in the STIX standard.

Due to the lack of a well-labeled corpus for training, relatively few stud-
ies have been conducted on cybersecurity relation extraction and event extrac-
tion compared to entity recognition. Pingle et al. [16] proposed RelExt, a deep
learning-based cybersecurity relation extraction method for constructing CKGs.
The model uses a pipeline approach, first identifying entities in the text by
an entity recognizer then classifying the relations by a deep learning model.
Jones et al. [17] implemented a semi-supervised cybersecurity relation extraction
method based on a bootstrapping algorithm to extract relations. Satyapanich
et al. [18] proposed CASIE, a security event extraction system that uses deep
neural networks and can incorporate rich linguistic features and word embed-
dings for extracting security events related to cyber-attacks and vulnerabilities.

2.3 Relation Extraction

As a subtask of information extraction, relation extraction has a long research
history. The main approaches to relation extraction can be broadly divided
into three categories, including early rule-based approaches [19,20]; traditional
machine learning-based approaches [21,22]; and deep learning-based approaches
[23–27]. In recent years, the latest research results in the field of relation extrac-
tion have focused on deep learning models [28–31]. The advantage of deep learn-
ing methods is that they do not require manual extraction of features nor a large
amount of domain knowledge.



CyberRel: Joint Entity and Relation Extraction for Cybersecurity Concepts 451

Currently, there are two main approaches to relation extraction based on
deep learning: the pipeline approach and the joint approach. The pipeline app-
roach performs relation classification after extracting all the entities. Zeng et al.
[23] first applied CNN to relation extraction to automatically extract lexical and
sentence-level features. Wei et al. [24] proposed a novel cascaded binary annota-
tion framework (CASREL) that models relations as functions that map subjects
to objects in a sentence, which naturally handles the overlapping triple problems.
Although these methods achieve promising results, the pipeline architectures suf-
fer from the problem of error propagation. In addition, neglecting the relationship
between the two tasks of entity recognition and relation extraction for training
can also affect the effectiveness of relation extraction. Therefore, to construct
the bridge between the two subtasks, building a joint model that extracts enti-
ties together with relations simultaneously has attracted much attention. Miwa
et al. [25] proposed a joint relation extraction model based on shared parameters,
which captures both word sequences and dependency tree substructure informa-
tion for end-to-end relation extraction via LSTM. Bekoulis et al. [26] propose a
joint model that uses a CRF layer to model the entity recognition task and the
relation extraction task as a multi-headed selection problem. Zheng et al. [27]
proposed a new tagging scheme that can convert the joint extraction task to a
sequence labeling problem. Yuan et al. [30] proposed a relation-based attention
network (RSAN) to jointly extract entities and relations using a relation-aware
attention mechanism.

In the construction of CKG, a lot of research has been conducted on the
extraction of cybersecurity entities and concepts, while research on cybersecu-
rity relation extraction is still in its infancy. Existing approaches use traditional
pipeline methods, which leads to error propagation and loses sight of the rele-
vance between entity recognition and relation extraction. Different from these
above works, this paper proposes a joint entity and relation extraction model
for cybersecurity concepts, which extracts entities and relations simultaneously,
effectively avoiding the shortcomings of the traditional pipeline model.

3 Methodology

In this section, we introduce CyberRel, a joint entity and relation extraction
model for cybersecurity concepts. We briefly outline the overall strategy here
before discussing details in the following subsections. The overall architecture of
CyberRel is shown in Fig. 1. CyberRel takes threat intelligence data collected
from multiple sources as raw input. Then the data undergoes a pre-processing
process including data cleaning, sentence segmentation, and tokenization to
obtain the training corpus, which will be fed into the joint extraction model
subsequently (see Sect. 3.1 for details). We adopt the cybersecurity entities and
relations defined in the UCO 2.0 [2] ontology and model the joint entity and
relation extraction problem as a multiple sequence labeling problem by generat-
ing a sequence of labels for each relation through a specific tagging schema (see
Sect. 3.2 for details). Each relation label sequence contains information about the
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entities involved and the subject and object of the relation. Our proposed multi-
ple sequence labeling model is structured into an embedding layer, an encoding
layer, an attention layer, and a decoding layer (see Sect. 3.3 for details). Finally,
CyberRel constructs cybersecurity triples based on the label sequences predicted
by the model, and these triples will eventually be used to construct CKGs.

Data Sources & Preprocess Joint Entity and Relation Extraction Model Cybersecurity Knowledge Graph

Knowledge Graph

Threat Intelligence

Preprocess Corpus

Cybersecurity Triples

...

hasVulnerability

Entity 1 Entity 2attributiedTo

Entity 1 Entity 2uses

Entity 1 Entity 2

Multiple Sequence Labeling Model

Embedding Encoder Attention Decoder

hasVulnerability

hasProduct

attributedTo

mitigates

indicates

uses

Tag Sequences for 
each relation

Fig. 1. CyberRel architecture.

3.1 Data Preprocess

CyberRel can extract cybersecurity triples from massive amounts of heteroge-
neous threat intelligence data. Threat intelligence data can be sourced from
vulnerability databases, security bulletins, APT reports, security or technology
blogs, hacking forums. This data is usually stored in rich text documents such as
PDF, HTML/XML, JSON, and other formats. First, we use various text parsing
tools (e.g. HTMLParser, PDFLib) to extract the raw text from these documents.
But the extracted raw text is not well-formatted. Therefore, we devised some
data pre-processing procedures as follows.

The first step in preprocessing is data cleaning, where we remove non-ASCII
characters from the text and whitespace characters at the beginning and end
of each sentence. It is worth noting that in some threat intelligence data,
special types of entities are often rewritten to prevent readers from clicking
on them by mistake. For example, the IP address “136.244.119.85” is rewrit-
ten as “136. 244.119[.]85”; the URL “http://www.test.com” is rewritten to
“http://www.test[.]com”; the email address “hacker@test.com” is rewritten as
“hacker[at]test.com”. We revert this rewritten form to its original form.

The next step in preprocessing is special entity substitution. In the field of
cybersecurity, some entities are very different in form from the normal natural
language, such as IP, MAC, Hash, URL, Email, domain name, file name, and file
path. We build regular expressions to match these entities from text and replace
them with natural language strings in the form of “sub type”, where “type” is
the type of the special entity. For example, we would replace the IP address
“136.244.119.85” with “sub ip”.

http://www.test.com
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The last step in the preprocessing process is text segmentation, which is the
process of converting text into sequences. We use the NLTK library for sentence
segmentation and WordPiece for word tokenization.

3.2 Tagging Scheme

In this section, we will introduce the tagging schema for the joint entity and
relation extraction. The entities and relations applied by CyberRel are derived
from UCO 2.0 [2], which provides a general understanding of the cybersecurity
domain.

– The main entity types in UCO 2.0 include: Indicator, Threat Actor, Attack
Pattern, Malware, Tool, Campaign, Course of Action, Vulnerability.

– The main relation types in UCO 2.0 include: hasProduct, hasVulnerability,
uses, attributedTo, mitigates, indicates.

In the field of relation extraction, there has been related work [27,30,31]
on the joint entity and relation extraction through the construction of a specific
tagging schema. For cybersecurity concepts, the extracted relation usually suffers
from the entity overlapping problem that different types of relations sharing
the same entities, so the tagging scheme has to overcome this issue. CyberRel
generates a sequence of labels for each relation in UCO 2.0. In each tag sequence,
we use the typical “BIO” signs to locate the entities in the sentence, where “B”
represents the starting part of the entity, “I” represents the middle part of the
entity, and “O” is the non-entity part. At the same time, we also label the entity
as subject or object in the relation, with “1” representing the subject in the
triple and “2” representing the object in the triple.

B-2 O O B-1 I-1 I-1 I-1 O O O O O O O O O O O O O

O O O O O O O O O OO O O O O B-2 I-2 B-1 I-1 I-1

O O O O O OO O O O O B-1 I-1 O O O B-2 I-2 I-2 I-2

hasVulnerablity

attributedTo

uses

(Microsoft VFP_OLE_Server ActiveX control, hasVulnerablity, CVE-2008-0235)

(execute arbitrary code, attributedTo, remote attackers)

(remote attackers, uses, invoking the foxcommand method)

Fig. 2. An example for tagging scheme.

Figure 2 shows an example of our tagging scheme. The first label sequence
describes the “hasVulnerablity” relation, where “Microsoft VFP OLE Server
ActiveX control” is an entity of type “Software”, as the subject of the “hasVul-
nerablity” relation; “CVE-2008-0235” is an entity of type “Vulnerability”, as
the object of the “hasVulnerablity” relation. Through the label sequence, we
can generate triple (“Microsoft VFP OLE Server ActiveX control”, “hasVul-
nerability”, “CVE-2008-0235”). Likewise, other label sequences can be used to
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generate triples of corresponding relations. If a relation does not exist in a sen-
tence, the label sequence for that relation will be all “O”. Besides, as we can see,
the “attributedTo” and “uses” relations have the over-lapped entity “remote
attackers”, and they can be extracted without conflict based on the separate
label sequences.

3.3 Multiple Sequence Labeling Model

Buffer

et

in PCRE before 7.6 allows ...overflow

...

ht ...

lkrk

...

...
B-2 O B-1 O O O ...I-2

BERT

BiGRU

BiGRU

CRF

Embedding

Encoder

Attention

Decoder

Fig. 3. The multiple sequence labeling model for joint entity and relation extraction.
It receives the same sentence input and different relation rk to extract all triples in
the sentence. et is the BERT embedding of the word, ht is the hidden vector of time
step t, rk is the trainable embedding of the k-th relation, lk is the attention weights
under relation type rk. Under the given relation rk (Take hasVulnerability for exam-
ple), the decoder extracts the corresponding entities of rk to generate triples (PCRE,
hasVulnerability, Buffer overflow).

Based on the tagging scheme above, we propose an end-to-end multiple sequence
labeling model to jointly extract cybersecurity entities and relations. We take the
sentence and a type of relation as input to the model, and the output sequence
holds information about the subject and object entities involved in that relation.
Thus, for a sentence, when we traverse all the relation types, the model generates
a label sequence for each type of relation, resulting in a joint extraction of entities
and relations. Figure 3 gives an overall structure of the model, which is divided
into four parts. The embedding layer generates a word vector et for each word
xt in sentence X. In the encoding layer, the embedding sentence is fed into
the bi-directional Gated Recurrent Units (BiGRU) neural network to generate a
hidden state representation ht. Then we apply the attention mechanism to assign
different weights to the context words under different relations and constructs a
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relation-specific sentence representation lk. Finally, in the decoding layer, we use
another BiGRU neural network and joined it with CRF for decoding to obtain
the label sequence and extract corresponding entities under the specific relation.

Embedding. Given a sentence as a sequence of tokens, the word embedding
layer is responsible to map each token to a word vector. In this paper, we pro-
pose to use a pre-trained model to generate word vectors. The pre-trained word
embedding model converts words in natural language into dense vectors, and
semantically similar words will have similar vector representations. The latest
pre-trained model BERT [35] can solve the problem of polysemy, generating
different word vectors for the same word according to the context, which can
better express the semantic features of the words. This situation often occurs
in the cybersecurity corpus. For a piece of software, when describing the vul-
nerabilities that exist in that software, this entity should then be recognized as
a “Software” type, and the triple (“Software”, “hasVulnerability”, “Vulnerabil-
ity”) can be extracted. In another context, the software may be exploited as a
tool by an attacker, at which point the entity should be recognized as a “Tool”
type, and the triple (“Threat Actor”, “uses”, “Tool”) can be extracted. So, we
use the BERT model to generate word embedding vectors in the embedding
layer. For the input sentence X = {x1, x2, x3, ..., xn}, where xt is the t-th word
in the sentence. After the computation of the BERT pre-trained model, the word
embedding vector E = {e1, e2, e3, ..., en} of the sentence is generated, where et
is the word vector of the t-th word in the sentence.

Encoder. Compared with the traditional recurrent neural network (RNN),
GRU consists of an update gate and a reset gate, which can alleviate the gradi-
ent disappearance or explosion problem that occurs during training. The GRU
hidden state ht is generated by the previous hidden state ht−1 and the input et
of the current state together. The GRU only calculates the correlation between
time step t and the previous time step. However, in the cybersecurity corpus,
entities may constitute relations with the entities before or after. So, for the
word vectors generated by the embedding layer, we further extract the semantic
features of the sentences H = {h1, h2, h3, ..., hn} using BiGRU and then con-
catenate the forward and backward GRU hidden states as the contextual word
representation. The transformations are as follows:

ht =
[−−−→
GRU(et),

←−−−
GRU(et)

]
(1)

Attention Mechanism. In the cybersecurity corpus, a sentence usually con-
tains many entities and complex relations. As shown in Fig. 2, the sentence con-
tains five different entities (“Vulnerability”, “Software”, “Threat Actor”, “Cam-
paign”, “Attack Pattern”) and three different relations (“hasVulnerability”,
“attributedTo”, “uses”). Therefore, it is necessary to assign different weights
to the words in a sentence according to different types of relations. For example,
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for the “hasVulnerability” relation, the words in the sentence indicating a soft-
ware name or identify a specific vulnerability should be paid higher attention.
Thus, we have referred to the relation-based attention mechanism proposed by
Yuan et al. [30]. The attention mechanism can assign different weights to the
words in a sentence under each relation, and the attention score can be calculated
as follows:

hg = avg {h1, h2, h3, . . . , hn} (2)

etk = vT tanh (Wrrk + Wghg + Whht) (3)

atk =
exp (etk)∑n
j=1 exp (ejk)

(4)

where hg indicates the global representation of the sentence, rk is the embed-
ding of the k-th relation. v, Wr, Wg, and Wh are all trainable parameters. The
attention score generated reflects the importance of the sentence’s words in the
context as well as relational expression in the current relation. The sentence
representation lk under the rk relation is generated by the weighted sum of the
sentence words, which is calculated as shown in Eq. 5. The attention layer com-
bines the generated lk and the sentence representations output by the encoding
layer as input to the decoding layer, as shown in Eq. 6.

lk =
n∑

t=1

atkht (5)

hk
t = ht ⊕ lk (6)

Decoder. The decoding layer generates the label sequences of the sentences
under the rk relation and returns the relational triples through the tagging
scheme described in Sect. 3.2. We first used another BiGRU to produce sen-
tence representations Ho = {ho

1, h
o
2, h

o
3, ..., h

o
n} and generate sequence scores

Z = {z1, z2, z3, ..., zn}using features from the encoding and attention layers.
The calculation process is as follows, where W is the parameter:

ho
t =

[−−−→
GRU(hk

t ),
←−−−
GRU(hk

t )
]

(7)

zt = Who
t (8)

Next, the sequence is decoded by the CRF layer, which is able to obtain con-
strained rules from the training data, to ensure that the predicted cybersecurity
entity labels are valid. The decoding process is shown as follows:

score(Z, y) =
n∑

t=0

Ayt,yt+1 +
n∑

t=1

Zt,yt
(9)

p(y | Z) =
exp(score(Z, y))∑

y′∈YZ
exp (score (Z, y′))

(10)
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y∗ = arg max
y∈YZ

score(Z, y) (11)

where A is the transition matrix between labels, score(Z, y) is the position
score, and p(y | Z) is the normalized probability function. Finally, the label
sequence y∗ is generated.

4 Experiments

4.1 Datasets

The datasets used in this paper are collected from publicly available OSINT
data, including the CVE vulnerability database, security bulletins, and Advanced
Persistent Threats (APT) reports. To train the CyberRel model, we invited
five graduate students majoring in cybersecurity to annotate the dataset, using
the BRAT annotation platform [34]. In total, we annotated 13,262 sentences
containing 75,990 triples.

– CVE vulnerability database: CVE is the Common Vulnerabilities and
Exposures, a list of various computer security vulnerabilities that have been
publicly disclosed. The CVE Automation Working Group is piloting the use
of git to share information about public vulnerabilities [32].

– Security bulletins: Many vendors (e.g. Microsoft, Adobe, Oracle, Vmware)
regularly publish security bulletins that are intended to disclose security
vulnerabilities in their software, describe remedies, and provide applicable
updates for the affected software.

– APT reports: APT reports are publicly available papers and blogs related
to malicious activities and associated with APT organizations or toolsets [33].

4.2 Evaluation Metrics

We use standard Precision (P), Recall (R), and F1-score to measure the perfor-
mance of CyberRel. A triple is considered to be correctly extracted if and only
if its relation type and both entities are correctly matched.

4.3 Experimental Settings

To evaluate the effectiveness of CyberRel, we design a set of experiments. Since
the previous work used the traditional pipeline model, we compare CyberRel
(joint model) with the previous work [16] (pipeline model) in the main experi-
ment. As CyberRel is built with the word embedding model and neural networks,
we designed two comparison experiments to analyze the effects of different word
embedding models and different neural networks on the performance of Cyber-
Rel.

We use StratifiedKFold to create train/test splits and set k = 5. The size of
the BERT embedding vector is 768 dimensions. The size of the BiGRU hidden
layer and relational embedding vector are both set to 300. We choose RMSprop
as our model optimizer, the learning rate is 0.0001, and the batch size is 64. We
use the dropout mechanism to avoid overfitting with a rate of 0.5.
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4.4 Experimental Result

Main Results. The CyberRel proposed in this paper is a joint entity and rela-
tion extraction model, so we compare it with the existing pipeline approach,
RelExt [16]. From Table 1, we can see that CyberRel outperforms RelExt, sig-
nificantly improving precision (83.00%), recall (79.09%) and F1-score (80.98%).
This indicates that the joint model extracts both entities and relations, which
avoids the error propagation between the two subtasks of the pipeline model,
and effectively improves the performance of entity-relation triples extraction.

Table 1. Main results of the compared models.

Models Precision Recall F1-score

RelExt [16] 57.48% 63.90% 60.52%

CyberRel 83.00% 79.09% 80.98%

Effect of Different Word Embeddings. As the word vectors generated by
the word embedding model serve as the input to the downstream model, the
quality of the word vectors has an important impact on the model performance.
In this section, we experiment with two representative word embedding models,
BERT [35] and Word2Vec [36], where the BERT model is the “cased L-12 H-
768 A-12” version, and the Word2Vec model is trained by Youngja et al. [36]
through cybersecurity corpus. It can be seen from Table 2 that using BERT for
word embedding has a certain improvement compared to Word2Vec. The F1
value is improved by 13.10% when GRU is used and by 14.03% when LSTM
is used. This is attributed to the fact that BERT can generate different word
vectors for the same word depending on the context thus making better use of
the contextual information of the text, while Word2Vec can only generate a fixed
word vector representation for each word.

Table 2. Results for different word embeddings and different neural networks in Cyber-
Rel.

Methods Precision Recall F1-score

Embedding Neural Network

Word2Vec LSTM 70.84% 62.55% 66.40%

GRU 73.91% 62.81% 67.88%

BERT LSTM 82.40% 78.63% 80.43%

GRU 83.00% 79.09% 80.98%

Effect of Different Neural Networks. Since a neural network is used in our
model for the sequence labeling task, we investigated the effect of different neural
networks on the model performance, specifically, we experimented with the per-
formance of LSTM and GRU neural networks, respectively. As shown in Table 2,
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when using the same word embedding model, such as BERT, GRU (Precision:
83.00%, Recall: 79.09%, F1-score: 80.98%) performs slightly better than LSTM
(Precision: 82.40%, Recall: 78.63%, F1-score: 80.43%). The experimental results
show that GRU is more suitable for the problem of the joint entity and rela-
tion extraction for cybersecurity concepts. So we take BiGRU neural network in
CyberRel.

4.5 Case Study

In this section, we illustrate the advantages of the joint model over the pipeline
model by two examples, as shown in Appendix Table 3. In both examples, our
proposed joint model predicts all the triples in the sentences correctly.

For Case 1, although the pipeline model correctly predicts all the “Software”
entities in the entity recognition task, in the relation prediction between the
three “Software” entities, the model predicts the three entities in two-by-two
combinations and comes up with the wrong relations (“mitigates”). This indi-
cates that the pipeline model does not take into account the connection between
entity recognition and relation extraction tasks, while the joint model is able to
predict the two “hasProduct” triples between the three “Software” entities well.

For Case 2, the pipeline model only recognizes the “patches/Course-of-
Action” entity but not the “CVE-2008-3138/Vulnerability” entity, resulting in
a null input to the relation extraction model that fails to predict the relation
between them. This indicates that the pipeline model has the defect of error
propagation, implying that if an entity is not predicted or is incorrectly pre-
dicted, it will affect the subsequent relation extraction task.

5 Conclusion

In this paper, we propose CyberRel, a joint entity and relation extraction model
for cybersecurity concepts, which can extract both entities and relations in the
cybersecurity corpus. Specifically, we use an tagging scheme to convert the joint
extraction problem into a multiple sequence labeling problem by generating sep-
arate label sequences for different relations containing information about the
related entities and the subject and object of that relation. In addition, Cyber-
Rel employs BERT model, BiGRU neural network, and attention mechanism
to extract the features of sentences and generate label sequences under differ-
ent relations. In the experimental part, our results on OSINT data demonstrate
that CyberRel achieves better results compared to the traditional pipeline app-
roach. To further improve the quality of CKG generation, our future research
work will focus on document-level relation extraction and cybersecurity entity
disambiguation.

Acknowledgment. This research is funded by the National Natural Science Foun-
dation of China (No. 61902265), Sichuan Science and Technology Program (No.
2020YFG0047, No. 2020YFG0374).
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A Appendix

Table 3. The examples of the triples to the given sentences extracted by joint model
and pipeline model.

#Case 1

Raw text CVE-2008-3138: The (1) PANA and (2) KISMET dissectors in
Wireshark (formerly Ethereal) 0.99.3 through 1.0.0 allow remote
attackers to cause a denial of service (application stop) via
unknown vectors.

Joint model (PANA/Software, hasVulnerability,
CVE-2008-3138/Vulnerability)

(KISMET/Software, hasVulnerability,
CVE-2008-3138/Vulnerability)

(Wireshark/Software, hasProduct, PANA/Software)

(Wireshark/Software, hasProduct, KISMET/Software)

(remote attackers/Threat-Actor, uses, unknown
vectors/Attack-Pattern)

(denial of service/Campaign, attributedTo, remote
attacker/Threat-Actor)

(denial of service/Campaign, attributedTo, unknown
vectors/Attack-Pattern)

Pipeline model (PANA/Software, mitigates, Wireshark/Software)

(KISMET/Software, mitigates, Wireshark/Software)

(PANA/Software, mitigates, KISMET/Software)

(KISMET/Software, mitigates, PANA/Software)

(Wireshark/Software, mitigates, PANA/Software)

(Wireshark/Software, mitigates, KISMET/Software)

(remote attackers/Threat-Actor, uses, unknown
vectors/Attack-Pattern)

(denial of service/Campaign, attributedTo, remote
attackers/Threat-Actor)

(denial of service/Campaign, attributedTo, unknown
vectors/Attack-Pattern)

#Case2

Raw text To remediate CVE-2020-3956 apply the patches listed in the
‘Fixed Version’ column of the ‘Response Matrix’ found below.

Joint model (patches/Course-of-Action, mitigates,
CVE-2008-3138/Vulnerability)

Pipeline model Only “patches/Course-of-Action” found
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Abstract. Location inference ofmicroblog users is of great significance for disas-
ter monitoring, public opinion tracing and tracking, and extensive location-based
services. However due to the noisy content of microblog text and the ambiguity of
geographic location, it is quite difficult to infer user location based only on user-
generated text. This paper proposes a microblog user location inference algorithm
based on POI and query likelihood model, named PaQL. First, the POI (Point of
Interest) model of each region is constructed based on the electronic map. Then,
from the word segmentation results of the user’s blog texts, the POIs with stronger
location orientation are extracted as user features. Next, the inverse region fre-
quency of POIs is calculated, based on which the correlation between users and
the candidate regions is calculated based on the query likelihood model. Finally,
the candidate regionwith the highest correlation is considered as the user’s inferred
location. The location inference experiment is conducted on the provincial-level
data set (3,862k blogs of 154k users) and the city-level data set (3,086k blogs
of 103k users) of Sina Weibo platform. The results show that: Compared with
three existing typical algorithms, GP-FLIW, GP-LIWTF andWC-EFS, which are
only based on user text, the precision of provincial-level inference is improved
by 7.80%, 4.99% and 1.41%, respectively, and the city-level inference precision
is improved by 10.67%, 8.38% and 3.72%, respectively. Moreover, the proposed
algorithm also outperforms the existing methods in terms of recall and F1.

Keywords: User location inference · Query likelihood model · Inverse region
frequency · Likelihood probability · POI

1 Introduction

With the development of mobile Internet technology and the popularity of intelligent
mobile terminals, more and more people are accustomed to obtaining information and
sharing anecdotes around them anytime and anywhere, which further promotes the appli-
cation and development of location-based social media platforms. As a high-quality
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information resource in social media big data [1], user geolocation can connect the vir-
tual network world and the real society. It can help government departments to carry out
election prediction [2], event monitoring [3], disease transmission control [4], etc., help
businesses to accurately place advertisements [5] and assist security personnel to ana-
lyze location-based attack technology [6]. It is of great importance to study the location
inference technology of social media users.

However, the real location information contained in social network data is extremely
sparse, making location-based social media applications lack sufficient support data
[7, 8]. Social media platforms such as Twitter, Facebook, Foursquare, and Sina Weibo
provide users with ways to share their locations. Taking SinaWeibo as an example, users
need to fill in their locations when registering an account, as shown in Fig. 1(a); users
can choose to add geo-tags when publishing blogs to associate them with geographical
coordinates, as shown in Fig. 1(b); users can also mention geolocations in their blogs,
such as tourist attractions they have visited, restaurants they want to try, as shown in
Fig. 1(c). However, due to the increasing awareness of privacy protection, most social
media users are reluctant to disclose their geolocation information. For example, Chen
et al. [7] found that only 26%of Twitter users filled in city-level locations in their profiles,
and only 0.42% of tweets were geo-tagged with GPS. Ryoo et al. [8] reported that only
34% of Twitter users filled in meaningful location information in their profiles, and less
than 1% of tweets added GPS location tags.

Fig. 1. Sample diagram of three types of user location information in Sina Weibo

In this paper, the goal is to find a way to accurately infer a user’s geographic location
from the user’s published blogs. This avoids the need for user’s private information, IP
addresses or other sensitive data. However, it is a difficult task to effectively locate the
microblog users based solely on the blog text [7]. Because of the randomness of people’s
writing in the daily use of microblogs, the blog data becomes noisy due to abbreviations,
spelling errors, etc. In addition, the location nouns mentioned in the blog also have
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geographic ambiguities; for example, “Yuntai Mountain” can point to 19 locations in
China. These factors make it difficult to infer the user’s location accurately.

In response to the above issues, this paper proposes a microblog user location infer-
ence algorithm based on POI and query likelihood model, named PaQL. In PaQL, the
geographic location inference problem of microblog users is transformed into a docu-
ment retrieval problem. The candidate region is regarded as a document, and the POI list
mentioned by users is regarded as a query. PaQL calculates the correlation between the
user and each region based on the query likelihood model, and selects the region with
the highest correlation as the user’s inferred location. The experimental results show that
PaQL is superior to the existing three typical algorithms based only on user-generated
text in terms of precision, recall and F1. The main contributions of this paper are as
follows:

(1) A microblog user location inference algorithm based on POI and query likeli-
hood model is proposed. The algorithm refers to IDF (inverse document frequency) and
query likelihood models in the information retrieval field, and proposes IRF (inverse
region frequency) of POI and the query likelihood probability of POI generated by can-
didate regions. This helps to extract more location-oriented words from user blogs, thus
improving the precision of location inference.

(2) A nationwide POI-region map is constructed. Based on the electronic map API,
the POI information of all provinces, cities, districts/counties is crawled. After machine
processing and manual screening, a relatively accurate and complete POI-region map
is constructed. In addition, the information of administrative divisions subdivided to
street level is obtained through manual query and added to the POI-region map, which
is helpful to improve the precision of location inferences based on users’ POI.

The rest of this paper is organized as follows: Sect. 2 discusses the related work of
microblog user location inference; Sect. 3 describes the problem studied in this paper and
gives an explanation of the symbols used in the paper; Sect. 4 introduces the proposed
algorithm and its main steps in detail; Sect. 5 conducts experimental verification and
analysis on the effect of microblog user location inference; Sect. 6 summarizes the paper.

2 Related Work

The location inference technology of microblog users has great research significance,
and many scholars have carried out relevant researches. The existing methods can be
divided into three categories: methods based on user-generated text [9, 10], social net-
works [11, 12] and multiple data sources [13, 14]. Methods based on social networks
generally consider that users with social relationships or frequent interactions are closer
in geographic location, so as to infer the users’ location based on their social friends’
location [15]. Methods based on multiple data sources integrate multiple data sources
such as geographic information in the text, user’s social network information, context
information (timestamp, topic, etc.), and user’s other social platform information [13].

The emphasis of this paper is to infer the user’s location when only the blog texts are
available. The method based on user-generated text generally uses language regionalism
to analyze the relationship between words in the text and locations [16].

Hecht et al. [17] first used a polynomial naive Bayes model based on word frequency
to infer users’ location. Ryoo et al. [8] used a generative probability model to construct
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the geographic distribution of words, and calculated weighted centroids based on user’s
mentioned words as inferred locations, and used data binning technology to reduce
computational costs. Hosseini et al. [18] proposed a spatial phrase detection method.
Inspired by TwiNER [19], the geo-tagged tweets of target regions were segmented into
phrases based onNER, and calculate the probability that the phrase links to the candidate
region based on the Twitter Search API. Zola et al. [1] used Google Trends to query the
words in the text, converted the returned multiple cities into two-dimensional polygons,
then extracted multiple points and used Gaussian mixture model and DBSCAN for
clustering, and took the centroid of the largest class as the user’s location.

Han et al. [20] first formally proposed the concept of Location Indicative Words
(LIW), that is, theword associatedwith a specific location, and proposed a LIW selection
method based on information gain ratio (IGR) and maximum entropy. Han et al. [21]
compared a variety of LIW selection methods on the basis of Ref. [20], and the results
showed that the method based on IGR performed best in user location inference. Chi
et al. [22] used LIW and textual features (including city/country names, topic tags, and
mentioned user names) to construct a feature set, then trained a polynomial naive Bayes
classifier to infer users’ location. Tian et al. [23] improved Han’s method, after selecting
LIW based on IGR, clustering words based on the distance of word vectors, then using
the package feature selection algorithm to select the best cluster subset as the location
indicative words.

Above methods can locate users only based on generating text, and can effectively
solve the problem that the methods based on social networks cannot locate isolated
users. However, the key of these methods lies in the extracted statistical features and
location indicativewords, and theremay still existmany commonwordswithout location
directivity in the extracted words, which has a negative influence on the accuracy of user
location inference. Therefore, this paper only retains the POI mentioned in the blog as
user’s features, and each POI has an explicit location. Besides, this paper also adds the
national administrative division information subdivided into streets to the POI-region
map, so that the reserved POI words have stronger location-oriented, thereby improving
the accuracy of user location inference.

3 Problem Formulation

To ease the understanding of the proposed algorithm, the symbols and concepts used in
this paper are defined, and the problem formulation is also presented here.

User location. For each user u ∈ U , the user’s inferred location is denoted as Lu,
which refers to the user’s home location, that is, the location where the user lives in.

User text. For each user u ∈ U , the user text is denoted as Tu = {t1, t2, . . .}, which
refers to the user’s historical blog set, and ti ∈ Tu represents a single historical blog text.

Candidate region. Denote the set of candidate regions as L. The candidate regions
are determined by the location inference granularity, which can be provinces, cities, or
locations with specified granularity, also can be a set of a certain number of regions.

Point of Interest (POI). Denote the set of POIs as P, and each POI entry as poi ∈ P.
POI refers to a geographic location entity with known location information, such as
restaurants, movie theaters, and scenic spots.
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POI-region map. POI-region map includes a mapping Mpoi→l from each POI to a
geographic region, and a mapping Ml→poi from each geographic region to a POI set.

Inverse Region Frequency (IRF). Defining the inverse region frequency as the
distinguishing ability of a certain poi ∈ P to different geographic regions.

User location inference problem. For each user u ∈ U , given a set of historical blog
Tu posted by user u, and a set of candidate regions L, calculate the probability P(L|Tu)

that u is located in each candidate region L ∈ L. Select the candidate region with the
highest probability as the user’s inferred location Lu.

The symbols used in this paper are described in Table 1.

Table 1. List of notations.

Notations Description

Lu The inferred location of user u

Tu A collection of historical blog posted by user u

L, L Candidate region, The set of candidate regions

poi, P Point of interest, The set of point of interest

Mpoi→l A mapping from POI to a geographic location

Ml→poi A mapping from geographic location to POIs

Wu The set of words after text segmentation

W
′
u The set of words after excluding stop words

Pu POIs mentioned by user u

4 The Proposed PaQL Algorithm

Aiming at the low accuracy of existing methods based only on user-generated text, this
paper proposes a microblog user location inference algorithm based on POI and query
likelihood model (named PaQL). This algorithm considers user location inference as
a document retrieval problem, candidate regions as pseudo documents, the POI list
mentioned by users as queries, and uses a variant of query likelihood model to infer the
most likely location of users. The algorithm framework is shown in Fig. 2.

The main steps of the algorithm are as follows.
Step1: Build the POI library of the candidate region. POI information of 19 categories

in candidate regions is obtained based on electronic map API, and POI-region map is
constructed.

Step2: Data preprocessing. Preprocessing includes text merging, data cleaning, text
segmentation, and stop words elimination.

Step3: Obtain the mentioned POI vector of users. According to the POI library, the
BOW (Bag of Word) model is used to generate the mentioned POI vector from the word
list after the user’s word segmentation.
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Step4: Train the classifier. The process of training classifier is to calculate the prob-
abilities needed in the query likelihood model, including the inverse region frequency
of POI and the conditional probability that POI is mentioned in each candidate region.

Step5: Infer user location. The trained classifier is used to infer the user location; that
is, the correlation between the target user’s mentioned POI vector and each candidate
region is calculated based on the query likelihood model, and the region with the highest
correlation is regarded as the inferred location.

Fig. 2. Schematic diagram of user location inference

Step1–3 is thePOIvector constructionmodule. Step4–5 is the user location inference
module. These twomodules are described in detail in Sect. 4.1 and Sect. 4.2, respectively.

4.1 The Construction of Mentioned POI Vector Based on BOW

(1) POI Library Construction for Candidate Regions
Firstly, POI information in all candidate regions is crawled based on electronic map

API, including 19 categories. The POI category and the content contained in the POI
information are shown in Table 2.

More POI entries can be obtained from the POI name and POI address. For exam-
ple, “Manyu Fusion Restaurant (Xintian 360)” is a POI located in Zhengzhou, Henan
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Table 2. POI category and POI information content.

Content

Category Food, hotel, shopping, service life, beauty, tourist sites, leisure, exercise,
education and training, cultural media, health, auto service, transportation,
financial, real estate, company, government, gateway, natural features

Information Name, address, province, city, district/county, street, longitude, latitude, type

Province. Therefore, two POI entries can be obtained: “Manyu Fusion Restaurant” and
“Xintian 360”. Based on this, the POI-region map is constructed, and the mapping from
POI to its region and the mapping from candidate region to its POI are respectively
established. Take all cities as the candidate region for example, as shown in Table 3.

Table 3. Examples of two mappings in the POI-region map.

Examples

The mapping from POI to its region “Fangzhongshan Spicy Soup”:
[“Zhengzhou”, “Shangqiu”, “Zhoukou”,
“Xinxiang”, “Xuchang”, “Kaifeng”]
“Zhengzhou Dong Railway Station”:
[“Zhengzhou”]

The mapping from candidate region to its POI
contained in it

“Zhengzhou”: [“Foxconn Wojin Commercial
Plaza”, “Fangzhongshan Spicy Soup “,
“Yanhuang Avenue”, “Zhongji Yuman
Building”, “Zhengzhou Dong Railway
Station”, “Songshan Building”,…]

(2) Data Preprocessing
Preprocessing of user blog text data includes four steps: text merging, data cleaning,

word segmentation and stop word elimination, as shown in Fig. 3.

• Text merge. In order to facilitate the subsequent data processing, the user’s historical
texts Tu = {t1, t2, . . .} are first concatenated before and after, and merged into one
text.

• Data cleaning. Remove the emoticons, URLs, English words, etc., in the merged text,
and only retain Chinese characters and numbers.

• Text segmentation. The existing Chinese word segmentation tools are used for text
segmentation, and all the POIs in the POI library are added to the word library of the
word segmenter. In the segmentation results, only the words with part of speech of
n./ns./nt./nz./f./an./x./s. are retained, and words with other parts of speech are deleted
to obtain the word set, denoted asWu. An example is shown in Table 4.
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Text Merging
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Raw blog data

Data Cleaning

， 。。

 http://t.cn/EVzWJl2

yyds
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punctuation

abbreviation

url

Text Segmentation

segment

Stop Word Elimination

Delete
stop 

words 
list

Fig. 3. Schematic diagram of the preprocessing process of blog text data

Table 4. Examples of text word segmentation.

The text content

The original text
Translation: 1) I finally had the spicy soup of Fangzhongshan near my 

home. It is much better than that of Zhengzhou Dong Railway Station. 

Sure enough, it is more delicious in streets and lanes. 2) Today, I spent 

the whole day staring at the sky, thinking about whether my ideal can 

come true (ˇˍˇ)

Data cleaning

Text segmentation

Screening of part 

of speech
Translation: near my home/ Fangzhongshan Spicy Soup / Zhengzhou 

Dong Railway Station/ street/ alley/ authentic/ sky/ idea

• Stop word elimination. The stop words are eliminated based on the stop word library,
and the word set of the target user’s blogs W

′
u is obtained.

(3) Getting the Mentioned POI Vector

All the words in W
′
u are matched with the POI library to extract the mentioned POI

list. Then the mentioned POI vector is obtained based on the BOW model. Taking the
POI library in Table 3 and the results in Table 4 as examples, an example of mentioned
POI vector is shown in Table 5.
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Table 5. Example of mentioned POI vector.

The text content

The word set with stop words 

removed
Translation: near my home/ Fangzhongshan Spicy Soup / 

Zhengzhou Dong Railway Station/ alley/ authentic

The target user’ mentioned POI 

list
Translation: Fangzhongshan Spicy Soup, Zhengzhou Dong 

Railway Station

The target user’ mentioned POI 

vector uP
[0, 1, 0, 0, 1, 0, …]

4.2 User Location Inference Based on Query Likelihood Model

After obtaining the POI library of each candidate region and the POI vector mentioned
by the user, this paper trains the classifier and infers the user location based on the query
likelihood model [24], as shown in Fig. 4. The classifier training is mainly to calculate
the inverse region frequency of POI and the query likelihood probability between the
user’s blogs and the candidate region.

Fig. 4. Schematic diagram of user location inference

(1) Inverse Region Frequency
Different POIs have different capabilities to reflect geolocation. For example, the

scenic spot “Tang Paradise” is only associated with a place in “Yanta District, Xi’an
City, Shaanxi Province”, while the “Manyu fusion restaurant” is associated with 8 places
in Henan Province, Beijing and Shaanxi Province. In order to reflect the ability of
different POIs to distinguish different regions, this paper proposes IRF (Inverse Region
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Frequency) by referring to IDF (Inverse Document Frequency) [25]. The IRF of each
POI entry poi ∈ P is calculated by the following formula.

IRF(poi) = log
|R|

∣
∣Mpoi→l(poi)

∣
∣

(1)

where, R is all candidate regions,Mpoi→l is the mapping from POI to the candidate
region, and Mpoi→l(poi) is the regions containing the POI.

(2) Query Likelihood Probability
The set of all POIs is denoted as P = {

poi1, poi2, . . . , poi|P|
}

. The user’s historical
blog and candidate region can be represented by POI sequence.Pu = p1p2p3 . . . pm, pi ∈
P represents the POI sequence mentioned in the user’s blogs; L = l1l2l3 . . . ln, lj ∈ P
represents the POI sequence contained in the candidate region L. Model each candidate
region L on the POI library P, to get the probability model θL. Then the probability of
generating the user’s mentioned POI vector under θL is P(Pu|θL), which is called query
likelihood probability.

Themultinomialmodel is used to calculate the query likelihoodprobabilityP(Pu|θL),
abbreviated as P(Pu|L):

P(Pu|L) =
m

∏

i=1

P(pi|L) =
∏

p∈Pu

P(p|L)TF(p,Pu) (2)

where, TF(p,Pu) represents the word frequency of p ∈ Pu in the user’s blogs.
Use the maximum likelihood estimation method to estimate P(p|L) in Formula (2):

P(p|L) = PML(p|L) = TF(p,L)
∑

poi∈L TF(poi,L)
(3)

where, TF(poi,L) is the number of times that poi appears in the candidate region.
Due to the data sparsity, a certain POI in the mentioned POI list is probably not in the

POI library of the candidate region. In this case, TF(p,L) = 0; that is, the user cannot
be in the region, which is clearly wrong. In order to solve the zero probability problem,
the Linear Interpolation Smoothing method is used to improve the model:

P(p|L) = (1 − λ)
TF(p,L)

∑

poi∈L TF(poi,L)
+ λ

TF(p,L)
∑

poi∈L TF(poi,L)
, λ ∈ [0, 1] (4)

Refer to the TF-IDF model, we can obtain Formula (5) by combining the query
likelihood probability and the IRF:

P(p|L) = (1 − λ)
TF(p,L)

∑

poi∈L
TF(poi,L)

IRF(p) + λ
TF(p,L)

∑

poi∈L
TF(poi,L)

IRF(p), λ ∈ [0, 1]

(5)

P(p|L) is expressed as the general form shown below:

P(p|L) =
{

PSeen(p|L), if p ∈ L
αLP(p|L), if p /∈ L

(6)
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(3) User Location Inference
To infer the user’s location, we need to calculate the posterior probability P(L|Pu),

that is, given the user’s blogs, to analyze which candidate region the user is most likely
to be in. Because of P(L|Pu) ∝ P(Pu|L)P(L), and P(L) is usually assumed uniform
distribution, so the candidate regions can be sorted according to P(Pu|L) to infer the
user’s location.

Taking the logarithm of both sides of Eq. (2), we can get:

logP(Pu|L) =
∑

p∈Pu
TF(p,Pu)logP(p|L) (7)

Substitute Formula (6) into Formula (7):

logP(Pu|L) =
∑

p∈L
TF(p,Pu)log

PSeen(p|L)

αLP(p|L)
+ |Pu|αL +

∑

p

TF(p,Pu)logP(p|L) (8)

Since the last term in the above equation has nothing to do with candidate region L
and has no influence on the sorting result, Formula (8) can be equivalent to:

logP(Pu|L) =
∑

p∈L
TF(p,Pu)log

PSeen(p|L)

αLP(p|L)
+ |Pu|αL (9)

Finally, the candidate region with the highest probability obtained by Formula (10)
is taken as the user’s inferred location:

Lu = argmaxL∈LlogP(Pu|L) (10)

5 Experimental Results and Analysis

In order to verify the feasibility and effectiveness of the proposed algorithm, this section
carried out provincial-level and city-level location inference experiments based on Sina
Weibo, and compared the results with three existing typical algorithms: GP-FLIW [21]
proposed by Han et al., GP-LIWTF [22] proposed by Chi et al., and WC-EFS [23]
proposed by Tian et al.

5.1 Experimental Data Set

(1) POI-Region Map
This paper crawled nationwide POI information based on Baidu Map API, with

a total of 741,240 results. In order to expand the POI library, more POI name-region
mapping relationships are extracted from the original POI information using the method
described in Sect. 4.1.

In addition, in order to supplement more and high-quality POI location information,
the nationwide administrative division information is obtained by manual query, includ-
ing provinces, cities, districts/counties, towns, streets, and some scenic spots. It is refined
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and converted into POI-region information, totaling 49,222 items. After combining the
data from the above two sources and remove duplicates, the statistics are shown in Table
6.

Considering the update timeliness of administrative division information on the Inter-
net and theBaiduMap POI information, this section hasmanually adjusted the alignment
of both data.

Table 6. Statistics of POI-region database.

Items Data

The number of POI categories 19

The number of provinces covered 34

The number of cities covered 392

The number of Districts/counties covered 3,066

The number of POI-region information 1,203,543

(2) Data of Users and Blogs
This section uses SinaWeibo as an example to conduct experiments. The SinaWeibo

data comes from Ref. [23], including two parts: a provincial-level data set and a city-
level data set. The statistical results are shown in Table 7. The registered location in the
user profile is used as the ground truth of experiments.

Table 7. Statistics of the experimental data set.

Items Provincial-level City-level

The number of provinces and cities covered 34 197

The number of user data 154,478 102,735

The number of blog data 3,862,117 3,085,972

The proposed algorithm only needs the POI information when training the classifier,
but does not need users’ blog data. However, the three comparison algorithms all need
to use blog data to train the model, so this section randomly selects 80% of all users in
each location as the training set, and the remaining 20% as the test set.

5.2 Experimental Setup

(1) Parameter Setting

The experimental parameter settings are shown in Table 8, and the parameters are
selected through experiments with the optimum results.
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Table 8. Experimental parameter settings.

Parameter Description Value

λ1 Smoothing parameters of provincial location inference 0.35

λ2 Smoothing parameters of city-level location inference 0.15

I The threshold of information gain ratio in comparison algorithms 0.2

(2) Evaluation Metrics
Considering that when users post fewer blogs or the blogs do not contain location

information, the location inference algorithm cannot locate them [15]. So we use preci-
sion, recall and F1, which are commonly used in previous location inference researches
[7, 26], to evaluate the algorithm’s effectiveness. Given a target user set U, where each
user is denoted as u, the user’s real location is Ls, and the inferred location is L∗

s . The
definition and calculation formula of the evaluation metrics are as follows.

• Precision: among all users who got the inferred location, the proportion of the correct
inferred results.

Precision =
∣
∣
{

u ∈ U : L∗
s = Ls

}∣
∣

∣
∣
{

u ∈ U : L∗
s �= NULL

}∣
∣

(11)

• Recall: among all users, the proportion of the correct inferred results.

Recall =
∣
∣
{

u ∈ U : L∗
s = Ls

}∣
∣

|U| (12)

• F1: the harmonic average of precision and recall.

F1 = 2 × Precision × Recall

Precision + Recall
(13)

5.3 Comparative Experimental Results of Location Inference

In this section, the user’s provincial-level and city-level location inference experiments
are conducted on Sina Weibo. The experimental results of the proposed algorithm are
compared with three existing typical algorithms, GP-FLIW [21], GP-LIWTF [22] and
WC-EFS [23] on the same data set. The results are shown in Fig. 5 and Table 9.

The bolded part in the table is the highest value in the comparison results. It can be
seen from Table 9 and Fig. 5 that the algorithm proposed outperforms the three existing
baseline algorithms on both the provincial-level and city-level data sets. The precision of
provincial-level location inference is 7.80%, 4.99%, and 1.41% higher than the baseline
algorithms, respectively, and the precision of city-level is 10.67%, 8.38%, and 3.72%
higher than the three algorithms, respectively.
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Fig. 5. Comparison of experimental results

Table 9. Comparison results between the proposed algorithm and the baseline algorithms.

Algorithm Provincial-level location inference City-level location inference

Precision Recall F1 Precision Recall F1

GP-FLIW [22] 0.6315 0.4429 0.5580 0.4523 0.3798 0.4724

GP-LIWTF [23] 0.6596 0.4607 0.5778 0.4752 0.3926 0.4872

WC-EFS [24] 0.6954 0.5607 0.64815 0.5218 0.4324 0.5282

Proposed algorithm 0.7095 0.7027 0.7061 0.5590 0.5573 0.5582

The inference precision improvement is mainly because the features selected by the
proposed algorithm are more location-oriented than baseline algorithms. The baseline
algorithms use information gain ratio, word clustering and other methods to extract
location indicative words from all contents posted by users; thus, there are still common
words without location-oriented in the word screening results, which will affect the
accuracy of location inference. However, the proposed PaQL algorithm only retains
the POIs mentioned by the user as features. Each POI crawled by electric map has a
corresponding geographic location, and the national administrative division information
subdivided into streets is also added to the POI library, so that the user features obtained
by PaQL have a stronger location-oriented.

5.4 The Influence of the Smoothing Parameter on Location Inference

This section analyzes the influence of the smoothing parameter on the location inference
results of the proposed algorithm. Different smoothing parameters are used to carry out
experiments at provincial and city levels, and the results are shown in Fig. 6.
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Fig. 6. Effect of smoothing parameters on the results of location inference

Figure 6 shows the results of the provincial-level and city-level location inference
when the smoothing parameter changes from 0 to 1 in a span of 0.05. It can be seen
from the figure that the smoothing process will greatly improve the precision of user
location inference. According to the experimental results, it is more reasonable to set
the smoothing parameter between 0.15 and 0.35.

6 Conclusion

Aiming to improve the precision of user location inference based only on user-generated
text, this paper proposes a microblog user location inference algorithm based on POI
and query likelihood model. This algorithm only retains the POI mentioned in the blog
as user features, then calculates the correlation between the candidate region and the
user based on the query likelihood model, which improves the accuracy of user location
inference. This paper builds a POI-region map for each province and city in China based
on electronic map API and manual processing, which improves the precision of location
inference, and avoids the computational and time overhead of training a language model
for each candidate region. Experiments conducted on the provincial-level and city-level
data set of Sina Weibo show that: compared with three existing typical algorithms, the
proposed algorithm has better performance in the precision, recall and F1 of location
inference. However, this algorithm cannot infer the location of users without blogs.
In future work, a hybrid method combining user-generated text and social relationship
networks will be studied to infer microblog users’ location.

Acknowledgments. This work was supported by the National Natural Science Foundation of
China (No. U1804263, U1736214), the Zhongyuan Science and Technology Innovation Leading
Talent Project (No. 214200510019).



Microblog User Location Inference 479

References

1. Zola, P., Ragno, C., Cortez, P.: A google trends spatial clustering approach for a worldwide
twitter user geolocation. Information Processing & Management 57(6), 102312 (2020).

2. Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe I.M.: Predicting elections with twitter:
what 140 characters reveal about political sentiment. In: 4th International Conference on
Weblogs and Social Media, pp. 178–185. AAAI, Washington DC, USA (2010).

3. Carmela, C., Agostino, F., Clara, P.: Bursty event detection in twitter streams. ACM Trans.
Knowl. Discov. Data 13(4), 1–28 (2019)

4. Lan, L., Malbasa, V., Vucetic, S.: Spatial scan for disease mapping on a mobile population.
In: 28th AAAI conference on Artificial Intelligence, pp. 431–437. AAAI, Québec, Canada
(2014).

5. Heba, A., John, K., Gireeja, R., Horvitz, E.: To buy or not to buy: computing value of spa-
tiotemporal information. ACM Transactions on Spatial Algorithms and Systems 5(40), 1–25
(2019)

6. Halimi, A., Ayday, E.: Profile Matching Across Online Social Networks. In: Meng, W., Goll-
mann, D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 54–70. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61078-4_4

7. Chen, Z.Y., James, C., Kyumin, L.: You arewhere you tweet: a content-based approach to geo-
locating twitter users. In: 19th ACM International Conference on Information andKnowledge
Management, pp. 759–768. ACM, Toronto, Canada (2010).

8. Ryoo, K.M., Moon, S.S.: Inferring twitter user locations with 10km accuracy. In: 23rd
International Conference on World Wide Web, pp. 643–648. ACM, Seoul, Korea (2014).

9. Rahimi, A., Vu, D., Cohn, T., Baldwin, T.: Exploiting text and network context for geolocation
of social media users. In: 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1362–1367. NAACL,
Denver, USA (2015).

10. Huang, B., Carley, K.M.: A hierarchical location prediction neural network for twitter user
geolocation. In: 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pp. 4731–4741.
ACL, Hong Kong, China (2019).

11. Longbo, K., Zhi, L., Yan, H.: Spot: Locating social media users based on social network
context. Proceedings of the VLDB Endowment 7(13), 1681–1684 (2014)

12. Tian, H.C., Zhang, M., Luo, X.Y., Liu, F.L., Qiao, Y.Q.: Twitter user location inference based
on representation learning and label propagation. In: The Web Conference 2020, pp. 2648–
2654. ACM, Taipei, Taiwan (2020).

13. Miura, Y., Taniguchi, M., Taniguchi, T., Ohkuma, T.: Unifying text, metadata, and user
network representations with a neural network for geolocation prediction. In: 55th Annual
Meeting of the Association for Computational Linguistics, pp. 1260–1272. ACL, Vancouver,
Canada (2017).

14. Rahimi, A., Cohn, T., Baldwin, T.: Semi-supervised user geolocation via graph convolu-
tional networks. In: 56th Annual Meeting of the Association for Computational Linguistics,
pp. 2009–2019. ACL, Melbourne, Australia (2018).

15. Ryan, C., David, J., David, A.: Geotagging one hundred million twitter accounts with total
variation minimization. In: 2014 IEEE International Conference on Big Data, pp. 393–401.
IEEE, Washington DC, USA (2014).

16. Xin, Z., Han, J., Sun, A.: A survey of location prediction on twitter. IEEE Trans. Knowl. Data
Eng. 30(9), 1–20 (2017)

17. Hecht, B., Hong, L.C., Suh, B.W., Chi, E.H.: Tweets from Justin Bieber’s heart: the dynamics
of the location field in user profiles. In: 2011CHIConference onHumanFactors inComputing
Systems, pp. 237–246. ACM, Vancouver, Canada (2011).

https://doi.org/10.1007/978-3-030-61078-4_4


480 Y. Liu et al.

18. Hosseini, S., Unankard, S., Zhou, X., Sadiq, S.: Location Oriented Phrase Detection in
Microblogs. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A.,
Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8421, pp. 495–509. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05810-8_33

19. Li, C., Weng, J.S., He, Q., Yao, Y.X., Datta, A., Sun, A., et al.: Twiner: Named entity recog-
nition in targeted twitter stream. In: 35th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 721–730. ACM, Portland, USA (2012).

20. Han, B., Cook, P., Baldwin, T.: Geolocation prediction in social media data by finding location
indicative words. In: 24th International Conference on Computational Linguistics, pp. 1045–
1062. ACM, Mumbai, India (2012).

21. Han, B., Cook, P., Baldwin, T.: Text-based twitter user geolocation prediction. Journal of
Artificial Intelligence Research 49(1), 451–500 (2014)

22. Chi, L.H., Lim, K.H., Alam, N., Butler, C.: Geolocation prediction in twitter using location
indicative words and textual features. In: 2nd Workshop on Noisy User-Generated Text,
pp. 227–234. COLING, Osaka, Japan (2016).

23. Tian, H.C.: Research on social network user location prediction technology, University of
Information Engineering (2019).

24. Jay, M., Croft, Bruce, W.: A language modeling approach to information retrieval. In: 21st
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 275–281. ACM, Melbourne, Australia (1998).

25. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process.
Manage. 24(5), 513–523 (1988)

26. Huang, B., Carley, K.M.: On Predicting Geolocation of Tweets Using Convolutional Neural
Networks. In: Lee, D., Lin, Y.-R., Osgood, N., Thomson, R. (eds.) SBP-BRiMS 2017. LNCS,
vol. 10354, pp. 281–291. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60240-
0_34

https://doi.org/10.1007/978-3-319-05810-8_33
https://doi.org/10.1007/978-3-319-60240-0_34


Author Index

Aldeen, Mohammed Shujaa II-174
An, Zhiyuan II-231

Bai, Xue II-321
Bayer, Markus I-429
Bi, Lei II-265

Cai, Lijun I-331
Chen, Jing I-136
Chen, Kai I-119
Chen, Shiwei II-163
Chen, Zan II-93
Chen, Zhenxiang I-260
Cheng, Chi II-283
Chow, Yang-Wai II-142
Cui, Hui II-321
Cui, Lei I-224
Cui, Ting II-163

Deng, Shaojiang I-169
Ding, Ruoyu II-283
Ding, Zhenquan I-224
Du, Ruiying I-136

Feng, Weijie I-276
Feng, Yuanjing II-93
Fu, Yanduo I-384
Fu, Yu I-293

Gong, Junqing II-358
Guo, Hanqing I-22
Guo, Shanqing I-260
Guo, Yongyan I-447
Guthe, Stefan I-429

Han, Sicong II-73
Hao, Zhiyu I-224
He, Kun I-136
He, Xin I-119
Hong, Sanghyun I-59
Hou, Xingsong II-93
Hu, Chengyu I-260
Hu, Xuexian I-153

Huang, Cheng I-447
Huang, Haixiang I-368

Ivanov, Nikolay I-22

Jeon, Yuseok I-59
Ji, Yunfeng II-394
Jia, Bowei I-368
Jiang, Peidong I-136
Jiang, Zhe II-358
Jiang, Zike II-301
Jin, Chenhui II-163
Jing, Huiyun I-119
Jing, Wangyuan I-447
Jubur, Mohammed I-97

Kasyap, Harsh I-38
Kaufhold, Marc-André I-429
Kim, Doowon I-59
Klai, Kais II-210
Knauthe, Volker I-429
Kühn, Philipp I-429
Kwon, Bumjun I-59

Lam, Kwok-Yan I-402
Lan, Shuwen II-125
Lang, Fan I-310
Li, Bao II-265
Li, Chunfang I-243
Li, Han I-464
Li, Hao I-260
Li, Jie II-55
Li, Jing I-276
Li, Lun I-224
Li, Min I-243
Li, Peili I-3
Li, Qiong I-368
Li, Shuaigang II-265
Li, Shuailou I-243
Li, Weihan II-341
Li, Wenxin II-3
Li, Xiangxue I-204
Li, Yantao I-169



482 Author Index

Li, Yike I-368
Liang, Xiaojian II-301
Liao, Huimei I-3
Lin, Chenhao II-73
Lin, Dongdai II-192
Lin, Jingqiang I-293, I-310, I-384
Liu, Binbin I-276
Liu, Chaoge I-78
Liu, Jiayong I-447
Liu, Jiqiang I-368
Liu, Qixu I-78
Liu, Wenfen I-153
Liu, Yimin I-464
Liu, Yongji I-224
Liu, Yucheng I-204
Liu, Zhen II-249
Liu, Zhengyu I-447
Liu, Zhu I-331
Lu, Linli I-384
Lu, Xianhui II-265
Luo, Jiaxing I-169
Luo, Xiangyang I-464
Luo, Yiyuan II-321

Ma, Chaocheng II-93
Ma, Duohe I-119
Mahdad, Ahmed Tanvir I-97
Manna, Arpan I-38
Meng, Dan I-187, I-331, II-39
Meng, Lingjia I-293, I-310

Niu, Wenjia I-368

Pan, Yanbin II-249

Qian, Haifeng II-358
Qin, Baodong II-321

Reuter, Christian I-429
Riebe, Thea I-429

Saxena, Nitesh I-97
Shen, Chao II-73
Shen, Huixin I-187
Si, Qin I-224
Song, Li I-310
Song, Minglu I-368
Souid, Nour Elhouda II-210
Su, Wengui II-55
Sun, Aozhuo I-384

Sun, Honghong I-348
Susilo, Willy II-142

Tang, Guofeng II-375
Tang, Peng I-260
Tao, Hongyu II-341
Tao, Yang II-394
Tian, Yunzhe I-368
Tong, Endong I-368
Tripathy, Somanath I-38

Wang, Gao II-21
Wang, Gaoli II-21
Wang, Huiying I-187
Wang, Junnan I-78
Wang, Liming I-119
Wang, Lina II-3
Wang, Qi II-3
Wang, Qian II-73
Wang, Qiongxiao I-293, I-310, I-384
Wang, Run II-3
Wang, Wei I-293, I-310
Wang, Yanghao I-447
Wang, Zhaoyang II-39
Wang, Ziwang I-447
Wei, Jianghong I-153
Wen, Jinghang II-301
Wen, Yamin II-231
Wen, Yu I-187, I-243, II-39
Weng, Jian II-301
Wirth, Tristan I-429
Wu, Baofeng II-192
Wu, Yalun I-368
Wu, Yanna I-243
Wu, Zhenghao II-301

Xiao, Di II-125
Xiao, Yang II-55
Xie, Lixia I-348
Xu, Dongpeng I-276
Xu, Haixia I-3
Xu, Yaqi II-192

Yan, Qiben I-22
Yang, Anjia II-301
Yang, Hongyu I-348
Yang, Kunyu I-153
Yang, Long II-110
Yang, Wenzhuo I-402



Author Index 483

Yao, Lisha II-301
Yin, Jie I-78
Yu, Aimin I-331

Zeng, Cheng I-136
Zeng, Hualin II-110
Zhang, Boyang I-187, I-243, II-39
Zhang, Fangguo II-231
Zhang, Jiang II-265
Zhang, Kai II-358
Zhang, Liang I-348
Zhang, Qihui I-153
Zhang, Rui II-394
Zhang, Xiaohan II-283

Zhang, Yuxuan II-39
Zhang, Zhuoran II-231
Zhang, Zongyang II-341
Zhao, Chuan II-174
Zhao, Lei II-3
Zhao, Lixin I-331
Zhao, Yuan I-293
Zheng, Dong II-321
Zheng, Qilong I-276
Zhou, Chuan I-119
Zhou, Zibo II-341
Zhu, Dali II-110
Zhu, Yiming II-249
Zong, Wei II-142


	Preface
	Organization
	Keynotes
	Engineering Trustworthy Data-Centric Software: Intelligent Software Engineering and Beyond
	Securing Smart Cars – Opportunities and Challenges
	Contents – Part I
	Contents – Part II
	Blockchain and Federated Learning
	The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity
	1 Introduction
	2 Preliminaries
	3 Protocol Overview
	4 The Golden Snitch Protocol
	4.1 Setup
	4.2 Replicas Vote in an Honest Round
	4.3 Replicas Recover in a Timeout Round
	4.4 A Leader Proposes Proposal

	5 Performance
	5.1 Fault-Free Cases
	5.2 Normal Cases

	6 Discussion and Conclusion
	A  Analysis of Correctness
	A.1  Safety
	A.2  Liveness

	References

	Rectifying Administrated ERC20 Tokens
	1 Introduction
	2 Background
	3 Administrated ERC20 Patterns
	3.1 Self-destruction
	3.2 Deprecation
	3.3 Change of Address
	3.4 Change of Parameters
	3.5 Minting and Burning

	4 Administrated Tokens in the Wild
	4.1 Data Set
	4.2 ERC20 Administration Features
	4.3 Classifier Evaluation and Model Selection
	4.4 Implementation and Evaluation of the Analysis Workflow
	4.5 Results

	5 SafelyAdministrated Library
	5.1 Deferred Maintenance
	5.2 Contract Board of Trustees
	5.3 Safe Pause
	5.4 Implementation
	5.5 Limitation

	6 Related Work
	7 Conclusion
	References

	Moat: Model Agnostic Defense against Targeted Poisoning Attacks in Federated Learning
	1 Introduction
	2 Related Work
	3 Federated Learning and Threat Model
	3.1 Federated Learning
	3.2 Threat Model

	4 Moat: The Proposed Defense Technique
	4.1 Overview
	4.2 Algorithm

	5 Experiment and Result Analysis
	5.1 Results

	6 Discussion
	7 Conclusion
	A  SHAP Analysis
	B  Results on Distributed Attack

	References

	Malware Analysis and Detection
	Certified Malware in South Korea: A Localized Study of Breaches of Trust in Code-Signing PKI Ecosystem
	1 Introduction
	2 Background and Motivation
	2.1 Overview of the Code-Signing PKI
	2.2 Code-Signing Process
	2.3 Revocation
	2.4 Motivation

	3 Data Collection
	3.1 Data Source
	3.2 System Overview
	3.3 Binary Labeling

	4 Code-Signing PKI Abuse in Korea
	4.1 Abusers
	4.2 Issuer
	4.3 Certificate Life-Cycle

	5 Related Work
	6 Conclusion
	A  Appendix
	References

	GAN-Based Adversarial Patch for Malware C2 Traffic to Bypass DL Detector
	1 Introduction
	2 Background and Related Work
	2.1 Background–Malware Traffic Detection
	2.2 Related Work–Malware Traffic Evasion

	3 Method
	3.1 Thread Model
	3.2 Framework
	3.3 Generation Module – WGAN
	3.4 Transfer Module–Transfer Learning

	4 Experiment
	4.1 Dataset
	4.2 Hyperparameters
	4.3 Detector

	5 Results
	5.1 Evasion Performance
	5.2 Time Performance

	6 Real-Life Experiment
	6.1 Custom Malware
	6.2 Impact on Malware

	7 Conclusion
	References

	Analyzing the Security of OTP 2FA in the Face of Malicious Terminals
	1 Introduction
	2 Background
	2.1 One Time Pin Based 2FA
	2.2 Malware on Terminal

	3 Our Attack: Overview and Design
	3.1 Attack Overview
	3.2 Attack Assumptions
	3.3 Attack Implementations Vs. Other Known Attack
	3.4 Attack Components
	3.5 Internal Attack
	3.6 Remote Attack

	4 Implementation
	4.1 Attack Components of Internal Attack
	4.2 Attack Components of Remote Attack

	5 Evaluation
	5.1 Evaluation of Commercially Deployed OTP-2FA Schemes in the Face of the Attack
	5.2 Detectability from Terminal and 2FA Device
	5.3 Detectability from Service
	5.4 Detectability in the Presence of Anti-Malware Program
	5.5 Detectability During Attack Module Deployment

	6 Discussion and Future Work
	6.1 Attack Summary
	6.2 General Discussion
	6.3 Mitigation Strategy
	6.4 Limitations and Future Work

	7 Related Work
	8 Conclusion
	A  Appendix
	A.1  Tables
	A.2  Other snapshots

	References

	IoT Security
	Disappeared Face: A Physical Adversarial Attack Method on Black-Box Face Detection Models
	1 Introduction
	2 Related Works
	2.1 Adversarial Attacks on Face Recognition
	2.2 Adversarial Attacks on Face Detection

	3 Our Proposed Method
	3.1 Configure Input Images
	3.2 Search for Face Detection Models' Public Weakness
	3.3 Update the Adversarial Patches

	4 Experiments and Result Analysis
	4.1 Experiment Settings
	4.2 Escape Experiments in the Real World
	4.3 Contrast Experiments
	4.4 Ablation Experiments

	5 Conclusion
	References

	HIAWare: Speculate Handwriting on Mobile Devices with Built-In Sensors
	1 Introduction
	2 Preliminaries
	2.1 Targeted Vulnerable Apps
	2.2 Motion Sensor Selection
	2.3 Threat Model

	3 HIAWare Design
	3.1 Handwriting Detection
	3.2 Sensor Data Capture
	3.3 Preprocessing
	3.4 Posture-Aware Analysis
	3.5 Character Restoration

	4 Algorithm Details
	4.1 MCFAR Algorithm
	4.2 User-Independent Posture-Aware Algorithm

	5 Performance Evaluation
	5.1 Experiment Setup
	5.2 Performance of Segment Detection
	5.3 Performance of Different Holding Postures
	5.4 Performance of Different Devices
	5.5 Performance of Different Inputs
	5.6 Discussions

	6 Related Work
	7 Conclusions
	References

	Studies of Keyboard Patterns in Passwords: Recognition, Characteristics and Strength Evolution
	1 Introduction
	2 General Method of Keyboard Pattern Recognition
	2.1 Recognition Method Design
	2.2 Recognition Results

	3 Characteristic Analyses of Keyboard Patterns
	3.1 Length Distribution of Keyboard Patterns
	3.2 Top Popular Keyboard Patterns
	3.3 Common Structures of Keyboard Patterns
	3.4 Characters' Frequency in Keyboard Patterns
	3.5 Frequency Distribution of Keyboard Patterns

	4 Security Impacts of Keyboard-Pattern-Based Passwords
	4.1 Method Design
	4.2 Evaluation Results

	5 Conclusions and Suggestions
	References

	CNN-Based Continuous Authentication on Smartphones with Auto Augmentation Search
	1 Introduction
	2 Related Work
	2.1 Continuous Authentication System
	2.2 Time-Series Data Augmentation Method
	2.3 Auto Augmentation Method

	3 CAuSe Architecture
	3.1 Data Collection and Preprocessing
	3.2 Auto Augmentation Search
	3.3 Feature Extraction
	3.4 Authentication with LOF Classifier

	4 Performance Evaluation
	4.1 Experimental Settings
	4.2 Feature Number and Classifier Parameter
	4.3 Auto Augmentation Search
	4.4 Optimal Strategy
	4.5 Comparison with Representative Schemes

	5 Conclusion
	References

	Generating Adversarial Point Clouds on Multi-modal Fusion Based 3D Object Detection Model
	1 Introduction
	2 Related Work
	2.1 Multi-modal Fusion
	2.2 Adversarial Point Clouds
	2.3 Attacks on 3D Object Detection

	3 Robustness Analysis
	4 Generating Adversarial Point Clouds
	4.1 Problem Definition
	4.2 Input Perturbation
	4.3 Objective Function
	4.4 Attack Method

	5 Experiments
	5.1 Experiment Setup
	5.2 Results and Discussion

	6 Conclusion
	References

	Source Identification from In-Vehicle CAN-FD Signaling: What Can We Expect?
	1 Introduction
	2 Background and Related Work
	2.1 Controller Area Network
	2.2 Comparing CAN-FD with CAN
	2.3 Related Work

	3 Signaling and Ringing
	3.1 ECUs' Voltage Output Behavior
	3.2 Ringing and Its Intensity

	4 System Model
	4.1 Threat Models
	4.2 Signal Acquisition and Preprocessing
	4.3 Feature Extraction
	4.4 Identifying ECUs

	5 Source Identification and Intrusion Detection
	5.1 Experiment Setup
	5.2 Sender Identification
	5.3 Detecting Known/Unknown ECUs

	6 Discussions
	A  Source Identification on Type B and Recessive States-Falling Edges
	B  Detecting Known ECUs
	C  Detecting Unknown ECUs
	References

	EmuIoTNet: An Emulated IoT Network for Dynamic Analysis
	1 Introduction
	2 Background and Related Work
	2.1 Security Issues in IoT Network
	2.2 IoT Emulation Methods

	3 Basic Design of EmuIotNet
	3.1 Design Goals
	3.2 Overview Architecture
	3.3 Challenges

	4 Implementation Details
	4.1 IoT Device Emulation
	4.2 Companion Application Emulation
	4.3 Network Models
	4.4 IP Configuration

	5 Evaluation
	5.1 Scalability in Device Emulation
	5.2 Compatibility in Network Setup
	5.3 Dynamic Analysis on Networks

	6 Discussion and Conclusion
	References

	Software Security
	ACGVD: Vulnerability Detection Based on Comprehensive Graph via Graph Neural Network with Attention
	1 Introduction
	2 Related Work
	3 ACGVD Pipeline
	3.1 Overview of ACGVD
	3.2 Comprehensive Graph Representation
	3.3 Node Feature Initialization
	3.4 Double-Level Attention Mechanism
	3.5 Classifier Module

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Evaluation Metrics

	5 Experiments Study
	5.1 How Effective Is ACGVD When Compared with the Traditional Static Analysis Tools?
	5.2 How Effective Is ACGVD When Compared with Deep Learning Method Based on Single Semantic Graph?
	5.3 How Effective Is ACGVD When Compared with Graph Neural Network Method Without Attention Mechanism?
	5.4 What Is the Impact of Modifying the Classifier on the Experiment?

	6 Threats Factors
	7 Conclusion
	References

	TranFuzz: An Ensemble Black-Box Attack Framework Based on Domain Adaptation and Fuzzing
	1 Introduction
	2 Methodology
	2.1 Overview of TranFuzz
	2.2 Domain Adaptation-Based Local Model Construction
	2.3 Fuzzing-Based Adversarial Examples Crafting

	3 Evaluation
	3.1 Experimental Setting
	3.2 Black-Box Attack Against Non-robustness Model
	3.3 Black-Box Attack Against Robustness Model
	3.4 Black-Box Attack Against Cloud Vision Services
	3.5 Adversarial Defending

	4 Related Work
	4.1 Adversarial Attacks and Defenses
	4.2 DNN Model Fuzzers

	5 Conclusion
	References

	Software Obfuscation with Non-Linear Mixed Boolean-Arithmetic Expressions
	1 Introduction
	2 Preliminaries
	2.1 MBA-Based Obfuscation
	2.2 MBA Deobfuscation

	3 Non-Linear MBA Expression Generation
	3.1 Polynomial MBA Expression
	3.2 MBA-related Rules

	4 Case Study
	5 Implementation and Evaluation
	5.1 Experimental Setup
	5.2 Deobfuscation on Non-Linear MBA Expression
	5.3 Complexity of Non-Linear MBA Expression
	5.4 Cost of Non-Linear MBA Expression

	6 Conclusion
	References

	VIRSA: Vectorized In-Register RSA Computation with Memory Disclosure Resistance
	1 Introduction
	2 Preliminaries
	2.1 RSA-Related Algorithms
	2.2 AVX-512
	2.3 Redundant Representation

	3 System Design
	3.1 Securing Critical Data and Operations
	3.2 Improving Performance
	3.3 System Architecture

	4 Implementation Highlights
	4.1 Montgomery Multiplication
	4.2 Montgomery Exponentiation
	4.3 CRT
	4.4 RSA Module
	4.5 Building Execution Environment

	5 Evaluation
	5.1 Performance
	5.2 Security
	5.3 Discussions

	6 Related Work
	7 Conclusion
	References

	Informer: Protecting Intel SGX from Cross-Core Side Channel Threats
	1 Introduction
	2 Backgroud
	2.1 Intel SGX
	2.2 Hyper-Threading
	2.3 Side-Channel Attacks and Related Attacks
	2.4 Cross-Core Threats

	3 Threat Model
	4 Design
	4.1 Architecture Overview
	4.2 Periodic Detection
	4.3 AEX Monitoring
	4.4 Response Delay Tolerance

	5 Implementation and Analysis
	5.1 Implementation
	5.2 Analysis

	6 Evaluation
	6.1 Security Evaluation
	6.2 Performance Evaluation

	7 Extension
	8 Related Work
	9 Discussion
	10 Conclusion
	References

	Internet Security
	Towards Open World Traffic Classification
	1 Introduction
	2 Related Work
	2.1 Closed World Traffic Classification
	2.2 Open World Unknown Traffic Detection

	3 Our Approach
	3.1 Problem Definition
	3.2 Key Observation
	3.3 Data Preprocessing
	3.4 Model Design
	3.5 Loss Function Design
	3.6 Detector Design

	4 Evaluation
	4.1 Dataset
	4.2 Baseline
	4.3 Metric
	4.4 Horizontal Analysis
	4.5 Longitudinal Analysis
	4.6 Sensitivity Analysis

	5 Conclusion
	References

	Comprehensive Degree Based Key Node Recognition Method in Complex Networks
	1 Introduction
	2 Related Method and Analysis
	2.1 Representation of Network Graph
	2.2 K-shell Method
	2.3  Method
	2.4 Mixed Degree Decomposition Method
	2.5 Weighted K-shell Degree Neighborhood Method
	2.6 Degree and Clustering Coefficient and Location (DCL) Spreading Method
	2.7 Extended K-shell Method

	3 Key Node Identification Method
	3.1 Method Design
	3.2 Example Analysis

	4 Experimental Results and Analysis
	4.1 Experimental Data Set and Experimental Design
	4.2 Method Performance Evaluation
	4.3 Method Performance Evaluation in Network Security Applications

	5 Conclusion
	References

	Improving Convolutional Neural Network-Based Webshell Detection Through Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Content and Behavior Feature Extraction
	2.2 Supervised Learning-Based Webshell Detection

	3 Our Proposed Method
	3.1 Framework Overview
	3.2 Feature Extraction and Preparation
	3.3 A3C-Based Feature Selection
	3.4 CNN Model Construction with Two Convolutional Layer

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

	Exploring the Security Issues of Trusted CA Certificate Management
	1 Introduction
	2 Related Work
	3 CA Manager in the Wild
	3.1 Target Object
	3.2 Exploring the Source of Trust
	3.3 Exploring the Functionalities of CA Manager

	4 Security Analysis on CA Manager
	4.1 Methodology
	4.2 Silent Addition of CA Certificate
	4.3 Non-strict Security Check of CA Certificate
	4.4 Potential Abuse of CA Certificate Purpose

	5 Suggestions for Secure CA Manager
	6 Conclusion
	References

	Effective Anomaly Detection Model Training with only Unlabeled Data by Weakly Supervised Learning Techniques
	1 Introduction
	2 Background
	2.1 Weakly Supervised Learning
	2.2 Unlabeled-Unlabeled Learning

	3 Our Scheme and Methodology
	3.1 Overview of the Scheme
	3.2 Dataset Description
	3.3 Data Preprocessing
	3.4 Model Training

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Experiment Results

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Data-Driven Cybersecurity
	CySecAlert: An Alert Generation System for Cyber Security Events Using Open Source Intelligence Data
	1 Introduction
	2 Concept
	2.1 Data Source and Architecture
	2.2 Preprocessing and Representation
	2.3 Relevance Classifier
	2.4 Detecting Events and Generating Alerts
	2.5 Implementation

	3 Evaluation
	3.1 Dataset
	3.2 Relevance Classification
	3.3 Alert Generation
	3.4 System Performance
	3.5 (Near-)Real-Time Capability

	4 Related Work and Discussion
	4.1 Cyber Security Event and Hot Topic Detection
	4.2 Contributions
	4.3 Limitations and Future Work

	5 Conclusion
	Appendix A  Dataset
	Appendix B  Codebook
	Appendix C  Classifier Comparison
	Appendix D  Alert Generation by Similarity Threshold
	References

	CyberRel: Joint Entity and Relation Extraction for Cybersecurity Concepts
	1 Introduction
	2 Related Work
	2.1 Cybersecurity Knowledge Graph
	2.2 Threat Intelligence Information Extraction
	2.3 Relation Extraction

	3 Methodology
	3.1 Data Preprocess
	3.2 Tagging Scheme
	3.3 Multiple Sequence Labeling Model

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Experimental Settings
	4.4 Experimental Result
	4.5 Case Study

	5 Conclusion
	A  Appendix
	References

	Microblog User Location Inference Based on POI and Query Likelihood Model
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Proposed PaQL Algorithm
	4.1 The Construction of Mentioned POI Vector Based on BOW
	4.2 User Location Inference Based on Query Likelihood Model

	5 Experimental Results and Analysis
	5.1 Experimental Data Set
	5.2 Experimental Setup
	5.3 Comparative Experimental Results of Location Inference
	5.4 The Influence of the Smoothing Parameter on Location Inference

	6 Conclusion
	References

	Author Index



