Debin Gao

Qi Li

Xiaohong Guan
Xiaofeng Liao (Eds.)

Information and
Communications Security

23rd International Conference, ICICS 2021
Chonggqing, China, November 19-21, 2021
Proceedings, Part |

LNCS 12918

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12918

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Debin Gao - Qi Li - Xiaohong Guan -
Xiaofeng Liao (Eds.)

Information and
Communications Security

23rd International Conference, ICICS 2021
Chongqing, China, November 19-21, 2021
Proceedings, Part |

@ Springer

Editors

Debin Gao Qi Li

Singapore Management University Tsinghua University
Singapore, Singapore Beijing, China
Xiaohong Guan Xiaofeng Liao

Xi’an Jiaotong University Chongging University
Xi'an, China Chongqing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-86889-5 ISBN 978-3-030-86890-1 (eBook)

https://doi.org/10.1007/978-3-030-86890-1
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9412-9961
https://orcid.org/0000-0001-8776-8730
https://orcid.org/0000-0002-3566-8161
https://doi.org/10.1007/978-3-030-86890-1

Preface

This volume contains papers that were selected for presentation and publication at the
23rd International Conference on Information and Communications Security (ICICS
2021), which was jointly organized by Chongqing University, Xi’an Jiaotong
University, and Peking University in China during November 19-21, 2021. ICICS is
one of the mainstream security conferences with the longest history. It started in 1997
and aims at bringing together leading researchers and practitioners from both academia
and industry to discuss and exchange their experiences, lessons learned, and insights
related to computer and communication security.

This year’s Program Committee (PC) consisted of 141 members with diverse
backgrounds and broad research interests. A total of 202 valid paper submissions were
received. The review process was double blind, and the papers were evaluated on the
basis of their significance, novelty, and technical quality. Most papers were reviewed
by four or more PC members. The PC meeting was held online with intensive dis-
cussion over more than two weeks. Finally, 49 papers were selected for presentation at
the conference giving an acceptance rate of 24%.

A “Best Paper Selection Committee” with five PC members of diverse backgrounds
from around the world was formed, which selected the two best papers after a lengthy
discussion. The paper “Rethinking Adversarial Examples Exploiting Frequency-Based
Analysis” authored by Sicong Han, Chenhao Lin, Chao Shen, and Qian Wang received
the Best Paper Award, while the paper “CyberRel: Joint Entity and Relation Extraction
for Cybersecurity Concepts” authored by Yongyan Guo, Zhengyu Liu, Cheng Huang,
Jiayong Liu, Wangyuan Jing, Ziwang Wang, and Yanghao Wang received the Best
Student Paper Award. Both awards were generously sponsored by Springer.

ICICS 2021 was honored to offer two outstanding keynote talks: “Engineering
Trustworthy Data-Centric Software: Intelligent Software Engineering and Beyond” by
Tao Xie and “Securing Smart Cars — Opportunities and Challenges” by Long Lu. Our
deepest gratitude to Tao and Long for sharing their insights during the conference.

For the success of ICICS 2021, we would like to first thank the authors of all
submissions and the PC members for their great effort in selecting the papers. We also
thank all the external reviewers for assisting the reviewing process. For the conference
organization, we would like to thank the ICICS Steering Committee, the general chairs,
Xiaohong Guan and Xiaofeng Liao, the publicity chairs, Qingni Shen, Qiang Tang, and
Yang Zhang, and the publication chair, Dongmei Liu. Special thanks to Tao Xiang for
the local arrangements. Finally, we thank everyone else, speakers, session chairs, and
volunteer helpers for their contributions to the program of ICICS 2021.

Last but not least, we wish to extend a huge thank you to healthcare frontliners and
our colleagues in the research of vaccine and immunization in fighting COVID-19.
ICICS 2021 could not have become one of the first mainstream security conferences
returning to an in-person setting without their enormous contribution.

November 2021 Debin Gao
Qi Li

Steering Committee

Robert Deng
Dieter Gollmann
Javier Lopez
Qingni Shen
Zhen Xu
Jianying Zhou

General Chairs

Xiaohong Guan
Xiaofeng Liao

Organization

Singapore Management University, Singapore

Hamburg University of Technology, Germany

University of Malaga, Spain

Peking University, China

Institute of Information Engineering, CAS, China

Singapore University of Technology and Design,
Singapore

Xi’an Jiaotong University, China
Chongqing University, China

Program Committee Chairs

Debin Gao
Qi Li

Program Committee

Chuadhry M. Ahmed
Cristina Alcaraz
Man Ho Au
Zhongjie Ba
Joonsang Baek
Guangdong Bai
Jia-Ju Bai
Diogo Barradas
Yinzhi Cao
Guangke Chen
Rongmao Chen
Songqging Chen
Ting Chen

Xiaofeng Chen

Xun Chen

Yaohui Chen
Sherman S. M. Chow

Singapore Management University, Singapore
Tsinghua University, China

University of Strathclyde, UK

University of Malaga, Spain

The University of Hong Kong, Hong Kong, China

Zhejiang University, China

University of Wollongong, Australia

The University of Queensland, Australia

Tsinghua University, China

Universidade de Lisboa, Portugal

Johns Hopkins University, USA

ShanghaiTech University, China

National University of Defense Technology, China

George Mason University, USA

University of Electronic Science and Technology
of China, China

Xidian University, China

Samsung Research America, USA

Facebook, USA

The Chinese University of Hong Kong, Hong Kong,
China

viii Organization

Mauro Conti

Wenrui Diao

Jintai Ding

Xuhua Ding

Josep Domingo-Ferrer
Ruian Duan

Xinwen Fu

Zhangjie Fu

Jose Maria de Fuentes
Fei Gao

Xing Gao

Joaquin Garcia-Alfaro
Dieter Gollmann
Stefanos Gritzalis

Le Guan

Fuchun Guo

Shuai Hao

Jiaqi Hong

Hongxin Hu

Pengfei Hu

Jun Huang

Xinyi Huang
Shouling Ji

Jinyuan Jia

Chenglu Jin

Georgios Kambourakis
Sokratis Katsikas

Dongseong Kim
Doowon Kim
Hyoungshick Kim
Shujun Li
Wenjuan Li

Feng Lin
Jingqgiang Lin
Yan Lin

Jian Liu
Tongping Liu
Xiangyu Liu
Zhuotao Liu
Giovanni Livraga
Javier Lopez

Jian Lou

University of Padua, Italy

Shandong University, China

Tsinghua University, China

Singapore Management University, Singapore

Universitat Rovira i Virgili, Spain

Palo Alto Networks Inc, USA

University of Massachusetts Lowell, USA

Nanjing University of Information Science
and Technology, China

Universidad Carlos III de Madrid, Spain

Beijing University of Posts and Telecommunications,
China

University of Delaware, USA

Institut Polytechnique de Paris, France

Hamburg University of Technology, Germany

University of Piraeus, Greece

University of Georgia, USA

University of Wollongong, Australia

Old Dominion University, USA

Singapore Management University, Singapore

University at Buffalo, SUNY, USA

Shandong University, China

Massachusetts Institute of Technology, USA

Fujian Normal University, China

Zhejiang University, China

Duke University, USA

CWI Amsterdam, The Netherlands

University of the Aegean, Greece

Norwegian University of Science and Technology,
Norway

The University of Queensland, Australia

University of Tennessee, Knoxville, USA

Sungkyunkwan University, South Korea

University of Kent, UK

The Hong Kong Polytechnic University, Hong Kong,
China

Zhejiang University, China

University of Science and Technology of China, China

Singapore Management University, Singapore

Zhejiang University, China

University of Massachusetts Amherst, USA

Alibaba Inc., China

Tsinghua University, China

University of Milan, Italy

UMA, Spain

Emory University, USA

Kangjie Lu
Bo Luo
Xiapu Luo

Haoyu Ma
Christian Mainka
Daisuke Mashima
Jake Massimo
Weizhi Meng
Jiang Ming

Chris Mitchell
Yuhong Nan
Jianbing Ni
Jianting Ning
Liang Niu
Satoshi Obana
Rolf Oppliger
Roberto Di Pietro
Joachim Posegga
Giovanni Russello
Nitesh Saxena
Shawn Shan
Vishal Sharma
Qingni Shen
Wenbo Shen
Purui Su
Hung-Min Sun
Kun Sun

Willy Susilo
Qiang Tang

Yuzhe Tang
Luca Vigano
Binghui Wang
Cong Wang
Ding Wang
Gang Wang
Haining Wang
Haoyu Wang

Lei Wang
Lingyu Wang
Shuai Wang

Ting Wang

Organization ix

University of Minnesota, USA

The University of Kansas, USA

The Hong Kong Polytechnic University, Hong Kong,
China

Xidian University, China

Ruhr University Bochum, Germany

Advanced Digital Sciences Center, Singapore

Amazon Web Services, USA

Technical Universtiy of Denmark, Denmark

UTA, USA

Royal Holloway, University of London, UK

Purdue University, USA

Queen’s University, Canada

Singapore Management University, Singapore

New York University, USA

Hosei University, Japan

eSECURITY Technologies, Switzerland

Hamad Bin Khalifa University, Qatar

University of Passau, Germany

The University of Auckland, New Zealand

Texas A&M University, USA

University of Chicago, USA

Queen’s University Belfast, UK

Peking University, China

Zhejiang University, China

CAS, China

National Tsing Hua University, Taiwan, China

George Mason University, USA

University of Wollongong, Australia

Luxembourg Institute of Science and Technology,
Luxemburg

Syracuse University, USA

King’s College London, UK

Duke University, USA

City University of Hong Kong, Hong Kong, China

Nankai University, China

University of Illinois at Urbana-Champaign, USA

Virginia Tech, USA

Beijing University of Posts and Telecommunications,
China

Shanghai Jiao Tong University, China

Concordia University, Canada

The Hong Kong University of Science
and Technology, Hong Kong, China

East China Normal University, China

X Organization
Xiuhua Wang

Zhe Wang
Jinpeng Wei
Weiping Wen
Daoyuan Wu

Zhe Xia
Xiaofei Xie
Dongpeng Xu
Jia Xu

Jun Xu

Minhui Xue
Toshihiro Yamauchi
Feng Yan
Qiben Yan
Guomin Yang
Zheng Yang
Roland Yap
Xun Yi

Qilei Yin
Meng Yu

Yu Yu
Xingliang Yuan
Chuan Yue
Tsz Hon Yuen
Chao Zhang
Fan Zhang
Fengwei Zhang
Jialong Zhang
Jiang Zhang
Kehuan Zhang

Yang Zhang

Yingian Zhang
Lei Zhao
Qingchuan Zhao
Tianwei Zhang
Yuan Zhang
Yongjun Zhao
Yunlei Zhao
Yajin Zhou
Yongbin Zhou
Shuofei Zhu

Huazhong University of Science and Technology,
China

ICT, China

University of North Carolina at Charlotte, USA

Peking University, China

The Chinese University of Hong Kong, Hong Kong,
China

Wuhan University of Technology, China

Nanyang Technological University, Singapore

University of New Hampshire, USA

NUS-Singtel Cyber Security R&D Lab, Singapore

Stevens Institute of Technology, USA

The University of Adelaide, Australia

Okayama University, Japan

University of Nevada, Reno, USA

Michigan State University, USA

University of Wollongong, Australia

Southwest University, China

National University of Singapore, Singapore

RMIT University, Australia

Tsinghua University, China

Roosevelt University, USA

Shanghai Jiao Tong University, China

Monash University, Australia

Colorado School of Mines, USA

The University of Hong Kong, Hong Kong, China

Tsinghua University, China

Zhejiang University, China

SUSTech, China

ByteDance, China

State Key Laboratory of Cryptology, China

The Chinese University of Hong Kong, Hong Kong,
China

CISPA Helmholtz Center for Information Security,
Germany

Southern University of Science and Technology, China

Computer School of Wuhan University, China

Ohio State University, USA

Nanyang Technological University, Singapore

Fudan University, China

Nanyang Technological University, Singapore

Fudan University, China

Zhejiang University, China

Chinese Academy of Sciences, China

Pennsylvania State University, USA

Additional Reviewers

Isaac Agudo
Md Rabbi Alam
Cristina Alcaraz
Ahsan Ali

Saed Alsayigh
Enkeleda Bardhi
Christof Beierle
Christian Berger
Alessandro Brighente
Cailing Cai
Giovanni Calore
Xinle Cao
Kwan Yin Chan
Jinrong Chen
Long Chen

Min Chen
Tianyang Chen
Tommy Chin
Murilo Coutinho
Andrei Cozma
Handong Cui
Vasiliki Diamantopoulou
Qiying Dong
Minxin Du

Orr Dunkelman
Alexandros Fakis
Pengbin Feng
Ankit Gangwal
Yiwen Gao
Nicholas Genise
Junqing Gong
Qingyuan Gong
Kamil D. Gur
Yonglin Hao
Ke He

Xu He

Jiaqi Hong
Xinyue Hu
Yupu Hu
Mengdie Huang
Huiwen Jia
Xiangkun Jia
Ziming Jiang

Organization

Georgios Karopoulos
Maria Karyda
Andrei Kelarev
Minjune Kim

Felix Klement
Vasileios Kouliaridis
Gulshan Kumar
Jianchang Lai

Qiqi Lai

Chhagan Lal
Gregor Leander

Bo Li

Huizhong Li
Shaofeng Li
Wanpeng Li
Yannan Li

Zheng Li

Ziyuan Liang
Kyungchan Lim
Chaoge Liu

Gang Liu

Songsong Liu
Xiaoning Liu
Xueqiao Liu
Yichen Liu

Yiyong Liu

Yuejun Liu
Yunpeng Liu
Zengrui Liu
Eleonora Losiouk
Xin Lou

Junwei Luo

Lan Luo

Xiaolong Ma

Zhou Ma

Ahmed Tanvir Mahdad
Fei Meng

Vladislav Mladenov
William H. Y. Mui
Lucien K. L. Ng
Shimin Pan
Dimitris Papamartzivanos
Bryan Pearson

xi

xii Organization

Henrich C. P6hls
Hunter Price
Xianrui Qin

Yue Qin
Tingting Rao
Pengcheng Ren
Yujie Ren
Ruben Rios
Shalini Saini

Md Sajidul Islam Sajid
Stewart Santanoe
Shiqi Shen

Siyu Shen
Menghan Sun
Shuo Sun
Azadeh Tabiban
Fei Tang

Jiaxun Steven Tang
Utku Tefek
Guangwei Tian
Guohua Tian
Zhihua Tian
Yosuke Todo
Zisis Tsiatsikas
Payton Walker
Hongbing Wang
Jiafan Wang
Jianfeng Wang
Kailong Wang
Lihchung Wang
Lu Wang

Shu Wang

Ti Wang

Ting Wang
Wenhao Wang

Xinda Wang
Xinying Wang
Yunling Wang
Rui Wen
Mingli Wu

Yi Xie

Guorui Xu
Jing Xu
Shengmin Xu
Bolin Yang
Fan Yang
Hanmei Yang
Shishuai Yang
Wenjie Yang
Xu Yang
Zhichao Yang
Amirhesam Yazdi
Quanqgi Ye
Jun Yi

Xiao Yi

Qilei Yin
Pinghai Yuan
Syed Zawad
Zhe Zhao
Zhiyu Zhao
Ziming Zhao
Chennan Zhang
Yuexin Zhang
Yubo Zheng
Ce Zhou

Jin Zhou
Rahman Ziaur
Max Zinkus
Yang Zou
Yunkai Zou

Sponsors

Gold Sponsor

U3 ER]
ANT GROUP

Silver Sponsors

Nation &
l]EHﬁﬂi'\>
TRUSTED

COMPUTING
GROUP

intel.

Organization

Xiii

Keynotes

Engineering Trustworthy Data-Centric
Software: Intelligent Software Engineering
and Beyond

Tao Xie

Peking University

Abstract. As an example of exploiting the synergy between Al and software
engineering, the field of intelligent software engineering has emerged with
various advances in recent years. Such field broadly addresses issues on intel-
ligent [software engineering] and [intelligence software] engineering. The for-
mer, intelligent [software engineering], focuses on instilling intelligence in
approaches developed to address various software engineering tasks to
accomplish high effectiveness and efficiency. The latter, [intelligence software]
engineering, focuses on addressing various software engineering tasks for
intelligence software, e.g., Al software. However, engineering trustworthy
data-centric software (which AI software components are part of) requires
research contributions from compiler, programming languages, formal verifi-
cation, security, and software engineering besides systems and hardware. This
talk will discuss recent research and future directions in the field of intelligent
software engineering along with the broad scope of engineering trustworthy
data-centric software.

Securing Smart Cars — Opportunities
and Challenges

Long Lu

NIO

Abstract. As cars become more intelligent and connected, the security of on-car
systems, software, and data has caught heavy attention from academia, industry,
and regulators. This talk will discuss the key technical aspects of smart car
security, including low-level system security, secure and robust autonomous
driving, V2X security, data security, etc., highlighting the research and technical
opportunities and challenges.

Contents — Part 1

Blockchain and Federated Learning

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 3
Huimei Liao, Haixia Xu, and Peili Li

Rectifying Administrated ERC20 Tokens. 22
Nikolay Ivanov, Hanqing Guo, and Qiben Yan

Moat: Model Agnostic Defense against Targeted Poisoning Attacks
in Federated Learning 38
Arpan Manna, Harsh Kasyap, and Somanath Tripathy

Malware Analysis and Detection

Certified Malware in South Korea: A Localized Study of Breaches
of Trust in Code-Signing PKI Ecosystem. 59
Bumjun Kwon, Sanghyun Hong, Yuseok Jeon, and Doowon Kim

GAN-Based Adversarial Patch for Malware C2 Traffic to Bypass
DL Detector. oo 78
Junnan Wang, Qixu Liu, Chaoge Liu, and Jie Yin

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 97
Ahmed Tanvir Mahdad, Mohammed Jubur, and Nitesh Saxena

IoT Security

Disappeared Face: A Physical Adversarial Attack Method

on Black-Box Face Detection Models 119
Chuan Zhou, Huiyun Jing, Xin He, Liming Wang, Kai Chen,
and Duohe Ma

HIAWare: Speculate Handwriting on Mobile Devices
with Built-In Sensors. 136
Jing Chen, Peidong Jiang, Kun He, Cheng Zeng, and Ruiying Du

Studies of Keyboard Patterns in Passwords: Recognition, Characteristics
and Strength Evolution 153
Kunyu Yang, Xuexian Hu, Qihui Zhang, Jianghong Wei, and Wenfen Liu

XX Contents — Part 1

CNN-Based Continuous Authentication on Smartphones with Auto
Augmentation Search. L 169
Shaojiang Deng, Jiaxing Luo, and Yantao Li

Generating Adversarial Point Clouds on Multi-modal Fusion Based 3D
Object Detection Model. 187
Huiying Wang, Huixin Shen, Boyang Zhang, Yu Wen, and Dan Meng

Source Identification from In-Vehicle CAN-FD Signaling:

Yucheng Liu and Xiangxue Li

EmuloTNet: An Emulated IoT Network for Dynamic Analysis. 224
Qin Si, Lei Cui, Lun Li, Zhenquan Ding, Yongji Liu, and Zhiyu Hao

Software Security

ACGVD: Vulnerability Detection Based on Comprehensive Graph via

Graph Neural Network with Attention 243
Min Li, Chunfang Li, Shuailou Li, Yanna Wu, Boyang Zhang,
and Yu Wen

TranFuzz: An Ensemble Black-Box Attack Framework Based on Domain
Adaptation and Fuzzing L 260
Hao Li, Shanging Guo, Peng Tang, Chengyu Hu, and Zhenxiang Chen

Software Obfuscation with Non-Linear Mixed
Boolean-Arithmetic Expressions 276
Binbin Liu, Weijie Feng, Qilong Zheng, Jing Li, and Dongpeng Xu

VIRSA: Vectorized In-Register RSA Computation with Memory

Disclosure Resistance 293
Yu Fu, Wei Wang, Lingjia Meng, Qiongxiao Wang, Yuan Zhao,
and Jingqiang Lin

Informer: Protecting Intel SGX from Cross-Core Side Channel Threats 310
Fan Lang, Wei Wang, Lingjia Meng, Qiongxiao Wang, Jinggiang Lin,
and Li Song

Internet Security

Towards Open World Traffic Classification 331
Zhu Liu, Lijun Cai, Lixin Zhao, Aimin Yu, and Dan Meng

Comprehensive Degree Based Key Node Recognition Method
in Complex Networks 348
Lixia Xie, Honghong Sun, Hongyu Yang, and Liang Zhang

Contents — Part [

Improving Convolutional Neural Network-Based Webshell Detection

Through Reinforcement Learning

Yalun Wu, Minglu Song, Yike Li, Yunzhe Tian, Endong Tong,
Wenjia Niu, Bowei Jia, Haixiang Huang, Qiong Li, and Jigiang Liu

Exploring the Security Issues of Trusted CA Certificate Management

Yanduo Fu, Qiongxiao Wang, Jinggiang Lin, Aozhuo Sun, and Linli Lu

Effective Anomaly Detection Model Training with only Unlabeled Data

by Weakly Supervised Learning Techniques.

Wenzhuo Yang and Kwok-Yan Lam

Data-Driven Cybersecurity

CySecAlert: An Alert Generation System for Cyber Security Events Using

Open Source Intelligence Data

Thea Riebe, Tristan Wirth, Markus Bayer, Philipp Kiihn, Marc-André
Kaufhold, Volker Knauthe, Stefan Guthe, and Christian Reuter

CyberRel: Joint Entity and Relation Extraction

for Cybersecurity CONCePtS. o ot v ettt e e e e e

Yongyan Guo, Zhengyu Liu, Cheng Huang, Jiayong Liu, Wangyuan
Jing, Ziwang Wang, and Yanghao Wang

Microblog User Location Inference Based on POI and Query

Likelihood Model e

Yimin Liu, Xiangyang Luo, and Han Li

Author Index e

XXi

Contents — Part 11

Machine Learning Security

Exposing DeepFakes via Localizing the Manipulated Artifacts
Wenxin Li, Qi Wang, Run Wang, Lei Zhao, and Lina Wang

Improved Differential-ML Distinguisher: Machine Learning Based Generic
Extension for Differential Analysis
Gao Wang and Gaoli Wang

Black-Box Buster: A Robust Zero-Shot Transfer-Based Adversarial

Attack Method
Yuxuan Zhang, Zhaoyang Wang, Boyang Zhang, Yu Wen,
and Dan Meng

A Lightweight Metric Defence Strategy for Graph Neural Networks
Against Poisoning Attacks L
Yang Xiao, Jie Li, and Wengui Su

Rethinking Adversarial Examples Exploiting Frequency-Based Analysis
Sicong Han, Chenhao Lin, Chao Shen, and Qian Wang

Multimedia Security

Compressive Sensing Image Steganography via Directional Lifting
Wavelet Transform
Zan Chen, Chaocheng Ma, Yuanjing Feng, and Xingsong Hou

Remote Recovery of Sound from Speckle Pattern Video Based
on Convolutional LSTM
Dali Zhu, Long Yang, and Hualin Zeng

Secure Image Coding Based on Compressive Sensing with Optimized
Rate-Distortion
Di Xiao and Shuwen Lan

Black-Box Audio Adversarial Example Generation Using
Variational Autoencoder. L
Wei Zong, Yang-Wai Chow, and Willy Susilo

XXV Contents — Part II

Security Analysis

Security Analysis of Even-Mansour Structure Hash Functions. 163
Shiwei Chen, Ting Cui, and Chenhui Jin

Rare Variants Analysis in Genetic Association Studies with Privacy
Protection via Hybrid System L 174
Mohammed Shujaa Aldeen and Chuan Zhao

Rotational-Linear Attack: A New Framework of Cryptanalysis on ARX
Ciphers with Applications to Chaskey 192
Yaqi Xu, Baofeng Wu, and Dongdai Lin

A Novel Approach for Supervisor Synthesis to Enforce Opacity of Discrete
Event Systems e 210
Nour Elhouda Souid and Kais Klai

Post-quantum Cryptography

Lattice-Based Secret Handshakes with Reusable Credentials. 231
Zhiyuan An, Zhuoran Zhang, Yamin Wen, and Fangguo Zhang

When NTT Meets Karatsuba: Preprocess-then-NTT Technique Revisited 249
Yiming Zhu, Zhen Liu, and Yanbin Pan

Predicting the Concrete Security of LWE Against the Dual Attack Using
Binary Search. 265
Shuaigang Li, Xianhui Lu, Jiang Zhang, Bao Li, and Lei Bi

Small Leaks Sink a Great Ship: An Evaluation of Key Reuse Resilience
of PQC Third Round Finalist NTRU-HRSS 283
Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

Efficient and Fully Secure Lattice-Based IBE with Equality Test. 301
Zhenghao Wu, Jian Weng, Anjia Yang, Lisha Yao, Xiaojian Liang,
Zike Jiang, and Jinghang Wen

Applied Cryptography

Forward-Secure Revocable Identity-Based Encryption 321
Baodong Qin, Xue Bai, Dong Zheng, Hui Cui, and Yiyuan Luo

An Optimized Inner Product Argument with More Application Scenarios. . .. 341
Zongyang Zhang, Zibo Zhou, Weihan Li, and Hongyu Tao

Updatable All-But-One Dual Projective Hashing and Its Applications 358
Kai Zhang, Zhe Jiang, Junqing Gong, and Haifeng Qian

Contents — Part 11 XXV

On Tightly-Secure (Linkable) Ring Signatures 375
Guofeng Tang

More Efficient Construction of Anonymous Signatures 394
Yunfeng Ji, Yang Tao, and Rui Zhang

Author Index e 413

Blockchain and Federated Learning

®

Check for
updates

The Golden Snitch: A Byzantine Fault
Tolerant Protocol with Activity

Huimei Liao'?3, Haixia Xu"23®) and Peili Li"?3

! State Key Laboratory of Information Security,
Institute of Information Engineering, Beijing, China
{liachuimei,xuhaixia,lipeili}@iie.ac.cn
2 Data Assurance and Communication Security Research Center, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Science, Beijing, China

Abstract. The increasing popularity of blockchain-based cryptocurren-
cies has revitalized the search for efficient Byzantine fault-tolerant (BFT)
protocols. Many existing BF'T protocols can achieve good performance
in fault-free cases but suffer severe performance degradation when faults
occur. This is also a problem with DiemBFT. To mitigate performance
attacks in DiemBFT, we present an improved BFT protocol with optimal
liveness called the Golden Snitch. The core idea is to introduce unbiased
randomness in leader selection and improve the voting mechanism to
protect honest leaders from being dragged down by the previous leader.
The performance of the Golden Snitch is evaluated through experiments,
turning out it outperforms DiemBFT in the presence of faults.

Keywords: Blockchain + Consensus * Byzantine fault tolerance -
Randomness * Certificate

1 Introduction

With the advent of Bitcoin [21], cryptocurrencies have been growing in popu-
larity. The cryptocurrency protocol aims to reach a consensus on a distributed
real-time public ledger attacked by potential adversaries.

BFT Consensus. The existing consensus solutions are classified into two broad
categories: Nakamoto consensus and BFT consensus. BFT consensus is com-
monly used in the permissioned blockchain and has the good potential for sig-
nificant improvements in performance as opposed to Nakamoto consensus, espe-
cially with regard to transaction confirmation time, for transactions in BFT
consensus are finalized when enough votes are gathered several times. More-
over, a novel blockchain design approach hybridizes PoW with BFT in various
ways [1,7,17,22]. Such a hybrid design can accomplish higher performance and
scalability in comparison common Nakamoto consensus.

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 3-21, 2021.
https://doi.org/10.1007/978-3-030-86890-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_1

4 H. Liao et al.

The study of consensus in the face of Byzantine failures [8] originated from
the Byzantine General problem [19]. Pease et al. [23] first came up with a syn-
chronous solution, which was then optimized by Dolev et al. [12] later, hav-
ing communication complexity as O(n?). In 1999, Castro et al. [10] developed
PBFT, an efficient leader-based Byzantine agreement protocol, whose stable
leader required O(n?) communication and view-change incurred O(n?®) commu-
nication. PBFT has been deployed in multiple systems [6], followed by a series
of improved protocols, such as Zyzzyva presented by Kotla et al. [18].

BFT protocols were initially conceived as being deployed in a small-sized sys-
tem. A renewed focus on these protocols by their applications to the blockchain
would pose a challenge involving large-scale communications.

Many methods have been employed to reduce the cost of reaching a consensus
in BFT protocols [11,18,25]. More recently, Yin et al. proposed HotStuff [26] by
changing the mesh communication network in PBFT to the star-like communi-
cation network. It standardizes each phase to simplify the process of view-change
and results in the reduction of communication complexity. Besides, it pioneers
the chaining paradigm by adopting a brilliant but straightforward commit rule.
This idea has made great progress on BFT protocols recently and is adopted in
the Diem Blockchain [3,4] by Facebook.

In 2018, Facebook presented a consensus protocol DiemBFT for the Diem
Blockchain. DiemBFT is an instance of HotStuff, where the round duration is
about three times the network latency. DiemBFT instantiated the pacemaker
module of HotStuff through a timeout mechanism and a leader selection mech-
anism. Paralleling with Dfinity [15] and Algorand [14], DiemBFT injected ran-
domness into the leader selection mechanism by invoking the VRF.

In April 2020, Facebook released an updated version of DiemBFT, DiemBFT
2.0. In this version, validators send their votes to the leader of the next round
to accelerate the process of committing. It is a trick to further couple the vote
with the view-change, reducing the communication overhead in a round and
therefore causing a reduction in round duration - perhaps down to just twice the
network latency as soon as the leader is stable. Besides, DiemBFT 2.0 has had an
acute analysis of temporary forks in possible scenarios, where the safety is still
maintained as a consensus will be reached finally due to the fact that the fork
will be dismissed after several rounds. Moreover, it has been noticed that a leader
rotates among nodes in the new version, suggesting performance improvement
at the cost of randomness in leader selection. While predictable leaders are likely
to increase the system risk of forking, compromising the throughput.

Randomness. Introducing randomness in leader selection is proved to be a vital
component of BFT protocols [5,14,16]. The most commonly used algorithm to
generate random numbers in the existing BFT based blockchains is to invoke
a verifiable random function (VRF) [20]. There exists a general problem that
the adversary can cheat in the leader selection by selectively discarding blocks,
compromising the unbiasedness of random numbers. To mitigate this problem,

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 5

a recent protocol HydRand [24] was proposed, which incorporates the publicly
verifiable secret sharing (PVSS) scheme to generate unbiased random numbers.

In Table1, we summarize the main properties of the proposed work and
related works on BFT protocols.

Table 1. Comparison with related works.

Network Comm. complexity | Randomness | Bias-assistance
Algorand [14] Partial-sync | O(n) VRF Biased
Ouroboros [16] Sync o(n?) PVSS Unbiased
RBFT [2] Async O(n?) - -
Hydrand [24] Sync O(n?) PVSS Unbiased
DiemBFT 2.0 [3] | Partial-sync | Sync O(n) - - -
the Golden Snitch | Partial-sync | Sync O(n) PVSS Unbiased

Design Challenge. Sending votes to the next leader causes two implicit com-
binations of messages. First, the leader collects the votes for the previous round
as well as proposes its proposal in the current round. Second, replicas send their
votes and the latest confirmation certificates known to them. Nevertheless, sev-
eral potential vulnerabilities must be considered as follows:

(a) “Waste Attack”. In the chaining paradigm, it is intuitive to allow replicas
to change their minds after the first vote while a consensus has not been
reached. Therefore, as analyzed in DiemBFT 2.0, the leader can fork the
chain at the previous two blocks, causing some uncommitted (but maybe
certified) blocks to be abandoned. The forking does causes a waste of blocks,
especially for those generated by honest leaders. Furthermore, if the leader
in the future round can be predicated, adversaries can attack through the
corruption of leaders in every other round to hinder the agreement process
by deliberately forking. This could compromise the throughput.

(b) “Being Dragged Down”. Operations such as proposal and confirmation of a
single block are launched by separate leaders. The leaders of two consecutive
rounds can be read as collaborators. If malicious leaders are allowed, the
worst case is that the previous leader is dragged down and the latter one.

We will elaborate on more details later in Sect. 3.

Our Contribution. Focusing on the potential aforesaid concerns, our proposed
consensus protocol, the Golden Snitch', made several improvements on Diem-
BFT 2.0. Overall, the core idea is to optimize the performance of the protocol
by introducing unbiased randomness and resist potential malicious behaviors.
Specifically, the main contributions of this paper can be summarised as follows:

! The Golden Snitch was originally created by writer J.K. Rowling in “Harry Potter”.
The Golden Snitch, often simply called the Snitch, is the third and smallest ball
used in Quidditch. It appears randomly on the court and moves very fast.

6 H. Liao et al.

(1) We analyzed DiemBFT and found that the adversary can impede the agree-
ment progress through continuous forks, as permitted by the rules.

(2) Given the inevitability of forking in the protocol that embraces the chaining
paradigm, we introduce unbiased randomness in leader selection. Similar to
Hydrand, we consider utilizing the PVSS scheme to provide continuous unbi-
ased random numbers with fault tolerance in the proposed leader selection
mechanism without increasing communication overhead.

(3) We elaborate on an enhancement called “veto certificate” to balance the
relationship between the two consecutive leaders to keep each leader iso-
lated and independent of others to a certain extent in order to differentiate
between their responsibilities in terms of cooperation.

(4) We report the experimental performance evaluation results in a comparison
between the Snitch and DiemBFT, showing that the Snitch outperforms
DiemBFT in the presence of faults.

Paper Structure. The remainder of this paper is organized as follows. We
present the preliminary knowledge in Sect.2 and then analyze the limitation of
DiemBFT and overview the Snitch in Sect. 3. The Snitch is outlined in detail in
Sect. 4 and experiment results are presented in Sect. 5. Finally, we discuss the
scalability of the Snitch further and conclude the paper in Sect.6. Noted that
the correctness properties, i.e., safety and liveness, of the Snitch are rigorously
proved in Appendix A as space is limited.

2 Preliminaries

We propose the Snitch in a permissioned setting. Assumed a system that is
equipped with at least 3f + 1 nodes {Py,..., P,} to tolerate f faults. Faults
can behave arbitrarily and coordinate to take down the system. Nevertheless,
they cannot break cryptographic techniques, showing up as hash functions are
resistant to collision and signatures can not be forged. The Snitch proceeds in
rounds. In each round, there is a single designated leader (in fact, we typically
identify the leader with the round-number r as [,.). Furthermore, we adopt the
partially synchronous model of Dwork et al. [13], in which there is a known delay
bound of message transmission after an unknown moment, called the global sta-
ble time (GST). Hence, the Snitch will provide safety all the time while assure
liveness when the system becomes synchronous. Specifically, we use the instance
of (f +1,n) Scrape’s PVSS [9] as a common building block to generate ran-
domness. It allows a leader to share its secret value among n participants in the
system and then ensures that the f faulty nodes cannot collude to recover the
secret without requiring the collaboration of a correct node.

Next, in conjunction with two different types of sub-blockchain in Fig. 1(a)
and Fig. 1(b), we present several relevant terminologies in existing chain-based
BFT protocols [3,25,26].

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 7

Block: The basic data structure is a block B, =< r,D,,CCy,H(B,) >.
Transactions are batched into blocks with some predefined ordering as D,.
Generally, we use parent(B,) to refer to the parent of B, and specify it as
parent(B,) = Bi(k < r). In fact, B, is chained to its parent block By via CC}.
H(B,) is the unique hash digest of B,..

Vote: Replica P; sends a vote Vi(B,) =< H(B,), HCC; > while receiving
B,. H(B,) is the digest of B, and HCC; is the confirmation certificate in the
highest round the replica maintains, serving as the New-View message in PBFT.
Replicas also track the round of its latest vote as r, (i.e., round r + 2 in Fig. 1).

Confirmation Certificate: A confirmation certificate (CC) is a set of signed
votes for a block by a quorum of replicas, from n— f = 2f+41 (out of n = 3f+1)
distinct replicas. A block B, is certified if there exists C'C, for it. Replicas
maintain the locked round r; that is defined as the round number of the second-
previous certified block. As presented in Fig. 1(a), replicas that contribute to the
generation of C'C.4o remember round r + 1 as the locked round.

Timeout Message: In the setup, the system initializes a maximum delay A
to ensure the duration of each round does not exceed a specific time. Each
replica maintains a local timer. The timer for round r is denoted by Timer,.
If replicas have not received any message from [, up to Timer, expired, they
would broadcast their signatures on r to each other.

Timeout Certificate: A timeout certificate (TC) is a set of timeout messages.
The generation of T'C'. implies that most replicas give up on round r and move
to round r 4+ 1 (i.e., round r + 2 in Fig. 1(b)).

Vote Rules: To validate a proposal, replicas check its timeliness first according
to the following two constraints:

* Vote in strictly increasing rounds. Replicas vote for block B,., only if r > r,.
* Be consistent with the locked round. Replicas vote for block B,., only if the
round of parent(B,) is no less than r; .

Commit Rule: Take view-change into consideration, three consecutive polls
on a block are necessary for committing it. Accordingly, the commit rule in the
chaining paradigm can be interpreted as: a block is committed as soon as it has
been followed by three consecutive certified blocks.

8 H. Liao et al.

2 8
by
=
(a) CC

bis

bniopi

© ve

o) bl | bed o)

Fig.1. Three manifestations of the Fig. 2. An example of the waste attack.
chain. (Color figure online)

3 Protocol Overview

This section shows our improvements on DiemBFT 2.0. These amelioration mea-
sures could have a real impact on liveness on the premise of ensuring safety.

Leader Selection. As discussed earlier, randomness is given greater importance
and forking makes it more necessary. According to Fig.2, if an adversary can
corrupt f nodes selectively with the knowledge of the future leader, DiemBFT
will be progression-free for 2f rounds in the worst-case scenario.

The adversary attacks by corrupting the leader every other round. Without
generality loss, assuming that leaders in rounds m+3,m+5,.... m+2f + 1
are corrupted. In Fig.2, CC,, and CC,,+1 are generated by the honest leaders
lm+1 and [, 4o, for certifying blocks B,, and B,+1. At this point, at least 2f +
1 replicas who contributed to the formation of C'C),11 remember m as their
locked round. Then the corrupted leader [,,, 13 forks the chain at block B,,, and
causes B,4+1 and B,,4+2 to be abandoned. Replicas vote it because there is no
violation of the vote rules. Owing that B,, s is the highest certified block with
the generation of CC), 3, the honest leader l,,, 44 forms C'C), 13 and extends the
tail of By,ts with By, 4. Similarly, the corrupted leaders l,, 124,41 (2 < a < f)
still fork the chain at block B,, (the gray area in Fig.2). Finally, the blocks
(marked in red box of Fig. 2) generated by honest leaders during 2f rounds after
round m will be wasted. And no block will be committed. What’s worse is that
this attack is difficult to detect, because they behave normally.

So it is dreadful if leaders in the future rounds are predicted, facilitating
attacks on the targeted leaders. Randomness has a pivotal role in Diem.

The Snitch uses PVSS as an underlying primitive to generate a consistent and
unbiased random number in each round for leader selection. Each node maintains
a roundup of the possible leader that would change regarding the discovery of

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 9

malicious nodes. The set of nodes with leader candidacy is represented by L, in
round r. It is stipulated that the leader should reveal the previously committed
secret value and attach the next commitment simultaneously as a preparation
for the subsequent selection. A corrupted leader may decide not to reveal its
secret in time. Therefore, replicas enter the reconstruction phase of PVSS where
they broadcast their decrypted secret shares and the corresponding correctness
proofs. Upon the receipt of f + 1 secret shares, the secret can then be recovered
to decide on the next leader l,.41.

Penalties are meted out to faults as they are being excluded from the eligible
set of leaders in future rounds. It is also be adapted to facilitate that temporarily
failed nodes could rejoin f 4+ 1 rounds after publishing their fresh commitments.

Veto Certificate. Owing to the separation of the proposer and confirmer of a
block, the malicious leader can publish an invalid block to drag the next leader
down. If replicas simply fail to send votes for the invalid block proposed by leader
I, it will be impossible for the leader [, to collect enough votes. Therefore [,.11
will be forced to lead a timeout in round r 4 1. This wastes an opportunity to
propose and deprives the innocent leader of candidacy.

It will be unfair for a leader to be punished for cooperating with a malicious
leader. To address it, we add a field Attitude in vote. Attitude is a Boolean
value filled with YES or NO on behalf of the opinion of the replica. To reject
the proposal, replicas send negative votes instead of being silenced. Likewise,
enough negative votes can form a veto certificate V C,., identifying B, as an
invalid block (i.e., B,12 in Fig.1(c)) whose dataset would be passed over. In
this way, replicas advance to the next round without waiting for the timer to
expire, accelerating the protocol process. And balance is established between
independence and cooperation for leaders in two consecutive rounds.

4 The Golden Snitch Protocol

This section gives a complete and detailed description of the Snitch protocol.

On the whole, the Snitch proceeds in a pipeline of rounds, aiming to commit
blocks in sequence. There is a designated leader in each round to proposing a
block. Replicas send their potential positive votes or negative votes to the next
leader and enter the next round. As soon as a certificate is formed, the leader
of the next round publishes its proposed block that comes with the certificate it
forms. To ensure that the system can continue progress, if a quorum of replicas
suspects that the current leader is faulty, then a recovery occurs. Replicas obtain
the next leader through the proposed leader selection mechanism so that the next
leader will not be affected by the current leader.

10 H. Liao et al.

L =P

Proposal,

Fig. 3. The overview of the consensus process in the Snitch.

To gain more insight, the protocol is specified as operations triggered by mes-
sages or timer. Specifically, the system is initiated as shown in Algorithm 1. The
algorithms for replicas are defined as Algorithm 2 and Algorithm 3, describ-
ing how replicas perform in a round led by an honest leader or in a timeout
round respectively. The algorithm for the leader is presented in Algorithm 4. To
simplify the description, Table 2 lists the notations used later.

In the Snitch, it is assumed that the round segmentation rests on a leader’s
tenure. To make this same point a little more visually, Fig. 3 shows four rounds

Table 2. Notations used in Algorithms.

Notation Meaning

A All replicas

m All transmitted messages, e.g. block, vote, certificate
round(m) | The round in which message m is generated

share;(r) P;’s decrypted share of the secret value committed by I, previously
MP The malicious proofs of corrupted leaders

Fr() Random number generation function(used once in setup)
s Secret value

H() Cryptographic hash function

Dist() Secret share generation

Dec() Secret share decryption

Rec() Secret reconstruction

VerShare() | Secret share verification

VerSig() Signature verification

VerData() |Dataset verification

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 11

of an example execution of the Snitch, where [, = P, and I3 is faulty. In round 1,
ly proposes Proposaly that includes By and its revealed secret s;. Replicas then
send votes for B; to ly. Next, lo collects votes to generate the certificate (C'Cy or
V() for By and proposes Proposals. Replicas vote for By and move to round
3. While at round 3, I3 experiences a temporary disruption. Round 3 times out
and a reconstruction occurs. Replicas broadcast the decrypted secret shares to
recover the secret [3 committed before and advance to round 4. Therefore, I4
collects timeout messages to generate T'Cs for round 3 and extends the chain.

4.1 Setup

For the setup, it is assumed that each participant P; will be part of the set of
initial potential leaders L. They mark a fixed genesis block as By and exchange
their public keys pk; with commitments Com(s;) to initial selected secrets.

It should be pointed out that they agree on the random beacon Ry that
becomes public knowledge only after the set of commitments was defined. Ry is
used to select the leader of round 1 that can be obtained via PoW, the method
in [16] and so on. After the first round, replicas enter rounds upon the receipt
of a certificate for the previous round.

4.2 Replicas Vote in an Honest Round

Advance to the Next Round. While receiving a proposal from [,., replicas
first validate its integrity and validity. The replica accepts the proposal provided
that it is constructed properly as (Propose, B,., MP,CCy_1,s;,Com(s]))
Then replicas stop Timer, and advance to round r + 1.

o’

Process the Certificates Included in the Proposal. The local states of the
replicas are updated according to the received certificates as follows:

— Remove faulty nodes from L, according to the VC or TC in M P, if MP #.1.
— Update r; it maintains and commit block by the commit rule if a CC occurs.

Algorithm 1: Setup - for the system:
r«—0, Lo — A, By — GenesisBlock, (pki,sk;) — KeyGen(1*)
for P, € A do

selects a secret s;,

broadcasts (pki, Com(s;)), where Com(s;) < Dist(s;)
end
Ro — FR(l)‘)

[=2 L B NV R VI

12 H. Liao et al.

Algorithm 2: Vote - for the replica P;:

1 Initialization:

2 11, { the current leader is the leader of round r}
3 58 —1L { set of decrypted secret shares for s;}
4 L., { set of potential leaders for round r }
5 Ry { the random beacon in round r — 1}

6 on event (Propose, B,, MP,C,_1,s;,Com(s}))
where B, = (r, D,,CCy, H(B,))

o’

I

7 if VerSig(pki,01) =1 A1 > r, then
8 stop Timer, // update local states
9 if MP 1 then
10 \ Ly — L.
11 else
12 ‘ LT Herl *{lk+1,lk+2,...,lrf1}
13 end
14 if k> round(HCC;) then
15 HCC; — CCy,
16 if round(parent(By)) > r then
17 r; < round(parent(By))
18 if round(parent(By)) = k — 1 A round(parent(By—1)) = k — 2 then
19 ‘ commit Bi_o
20
21
22 end
23 R, =H(s || Rr—1), ley1 =Ilg,moair,| // vote for the block
24 if round(parent(By)) > r then
25 if VerData(B,) =1 then
26 | Vi(By) = (Vote, H(B,),YES, HCC;),,.
27 else
28 | Vi(B.) = (Vote, H(B,), NO,HCC;),
29 end
30 send V;(By) to lyy1, ro =7 and start Timer, 41
31 end
32 end

Send Votes to the Leader in the Next Round. To make a vote for block
B, it is necessary for replicas to obtain the leader l,,; first. They select the
leader I, 1 from L,., depending on the random beacon R, that is computed from
R, _1 and the secret s; revealed in proposal:

Ry = H(s; || Ry—1) (1)
lr+1 = ZRTm,od\LT| (2)
Then replicas check its validity, mainly from the following several aspects:

— Check whether the proposal is in a timely manner according to vote rules.

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 13

— Check whether the digest of B, is computed correctly.
— Check the validity of D,.

For a valid proposal, the replica constructs a positive or negative vote as
(Vote, H(B,),YES/NO,HCC;), and sends to the leader I, 1 (Fig.3, b, d).

As described before, the vote message also contains the highest confirmation
certificate HCC; the replica maintains, providing branch choices for leader [,.41
to extend. As the close of the polling, replicas update r, and start Timer, ;1.

Algorithm 3: Recover - for the replica P;:

1 Initialization:

21— { the current leader is the leader of round r}
3 if Timer, expired then

4 share;(r) <« Dec(ski,Com(s;)) // local timeout

5 send Recoveri(r) = (Recover,r — 1, sharei(r)),. to A

6 end

7

8 on event Recover;(r)

9 if VerShare (share;(r),Com(s;)) = 1 then

10 ‘ SSs, — 585, Uaj

11 end

12 if |SS,,|=f+1 then

13 s; < Rec(SSs;) // recover the secret

14 lry1 = lRTmod\Lr\a where R, = H(Sl H R771)

15 send T'imeout;(r) = (Timeout,r, HCC),. to lr41,
16 ry, =1 and start Timer,y41

17 end

4.3 Replicas Recover in a Timeout Round

The current leader is malicious or a benign crash are some reasons for a timeout.
Replicas can skip the timeout round and keep the proceedings remain unaffected.

Local Timeout Triggers the Recovery. The replica P; moves into the recov-
ery phase when T'imer, expired without receiving the proposal from [,.. To this
end, P; uses sk; to compute its decrypted share share;(r) from the commitment
that I, committed before and broadcasts Recover;(r) to others (Fig. 3, e).

Recover the Secret and Inform the New Leader. After receiving more
than f + 1 decrypted shares for s, replicas recover it consistently. Afterwards,
replicas send Timeout;(r) to l,4+1 (Fig. 3, f), who is obtained from the recovered
secret. Similarly, replicas update 7, and start Timer, 11, moving to round r + 1.

14

H. Liao et al.

Algorithm 4: Propose - for the leader [, in round r:

D Uk W N

10
11

12
13
14
15
16
17

18

19
20
21
22
23

24
25
26
27
28
29

30

31
32
33
34
35

36
37

Initialization:

l—1 { the current leader is the leader of round r}
CCroq —1L {set of positive votes for round r — 1}
VCro1 —1 {set of negative votes for round r — 1}
TC,_1 «—1 {set of timeout messages for round r — 1}
MP —1 {set of TC or VC }

select a new secret s; and computes Com(s;) < Dist(s])

on event V;(B,_1) = (Vote, H(B--1),YES, HCC})
CCr—1 +— CCr_1Ug; // collect positive votes
if |CC,_1|=2f+1 then
send (Propose,BT,C’CT_l,sl,Com(SE»UZ to A,
where B, = (r,D,,CCr_1, H(B))

81« 8]

aq

gl
end

on event V;(B,_1) = (Vote, H(B,_1), NO, HCC})
VCr_1 «— VCr_1Uo; // collect negative votes
if |VCr—1]=2f+1 then

i

CCy «— argmazx {Vi(Brl).round(HCCi)}> HCC;
Vi(Br-1)EVCr_1

k — round(CCf)

if Kk <r —2 then
‘ MPH{Ck+1,ck+2,...,CT72,VCT71}

end

send (Propose, By, MP,VC,_1,s;,Com(s}))

where B, = (r, D,,CCy, H(B))

!
S1 — 8

to A,

I

I

end

on event Timeout;(r) = (T'imeout,r, HCC}),,.

TCr_1 — TCr_1Uo; // collect timeout messages
if |TCr—1]=2f+ 1 then

CCy argmax {round(Timeouti(r).HC’Ci)}> HCC

Timeout;(r)ETC_1
k — round(CCy)
if £k <r — 2 then
\ MP «— {Ciy1,Cra2,...,Cr2, TCr_1}
end
send (Propose, B,, MP,TC_1,s;, Com(s}))
where B, = (r, D,,CCy, H(B,))

/
S < 5

to A,

a1

Il

end

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 15

4.4 A Leader Proposes Proposal

In particular, [y is only responsible for proposing B; on the basis of By (Fig. 3,
a), given the fact that By is agreed upon as part of the setup for the protocol.
Later, [,.-(r > 1) is required to finish the following tasks (Fig. 3, ¢, g):

Commit to a New Secret. As a leader of round r, [, selects a new secret and
computes its commitment while revealing its old secret. The commitment will
be in public, containing n secret shares and the corresponding correctness proof.

Generate the Certificate. The leader [, also collects positive votes, negative
votes or timeout messages for round r — 1 and then forms the corresponding
certificate C,._1 as CCy_1, VCy_1, or TC,_1.

Propose its Proposal. There are different designs of the proposal depending
on the certificate for the previous round as follows:

CC,_1: With the formation of C'C,._1, the leader [, extends the tail of B, _1
with a new proposal as embedding C'C._; in B,.. The proposal is constructed as
(Propose, B,.,CC_1, s1, C’om(sg)>m, where B, = (r, D, CCy—1, H(B;)),,.

VC,_1 or TC,_q: In case that the leader behaves abnormally in the previous
round, the leader [, chooses the highest confirmation certificate from votes it
collected, denoted by C'Cy. Then [, packages transactions into B, based on the
block that C'Cy certified. Concerning the situation where leaders corrupted in
several consecutive rounds, I, piggybacks the certificates (VC or TC) for rounds
from k£ + 1 to r — 1 for the sake of round continuity. If no such intermediate
round exists, then this set only contains a single value. Hence, the proposal will
be constructed and signed as (Propose, B,, MP,VCy._1/TCy_1, s;,Com(s;))
where B, = (r, D,,CCy,H(B,))_, and MP = {Ci41,...,Cr_1}.

o’

(o3

5 Performance

This section evaluates the performance of the Snitch from two perspectives:
throughput and latency. Throughput refers to the number of transactions that
can be processed by replicas per second while latency is the time duration
between the sending of a request and the completion of the request at clients.
n order to make the experimental results more obvious,a series of comparative
experiments are conducted to compare DiemBFT 2.0(short for Diem) and the
Snitch in different parameters and conditions.

Experimental Setup. All our experiments are conducted over Aliyun ECS
where replicas were executed on a hfc7.8xlarge instance with 32 vCPUs sup-
ported by Intel Xeon Platinum 8369HB processors, 64GiB RAM, and Ubuntu
18.04 as OS. Our implementation is an adaptation of the open-source implemen-
tation of Diem [3]. We modify the Diem code in primarily the consensus module.
Specifically, the implementation of PVSS uses the P256R1 elliptic curve.

16 H. Liao et al.

Baseline. We compare with Diem, for the reason that the Snitch shares the
same code base as Diem enabling a fair comparison and Diem is an acknowledged
implementation of HotStuff. Concretely, Diem is a payment system and includes
many components that are not the focus of our evaluations. The purpose of our
experiments is to compare the performance of two consensus algorithms. Thus,
to have a fair comparison, our implementation is distinguished from Diem by
the consensus module.

=& Snitch ~#i— Diem 100 =& Snitch —@— Diem

550
— 90
|9}
9]
1 500
5 —_
o v 80
9 £
4 -
< 450 >
5 [9)
o 5 70
g’ e
3 400 3
8 60
<
F 350

50
300
4 7 10 13 16 19 21 4 7 10 13 16 19 21
Number of Replicas Number of Replicas

Fig. 4. Throughput and latency as the network size varies in fault-free cases

Implementation Details. We deploy our private blockchain with the number
of replicas assigned to be 4, 7, 10, 13, 16, 19, 21 respectively. And we run clients,
which is a separate process different from those for replicas, to inject transactions
into the system. Specifically, We assign the number of clients to be 320 for fixing
the number of transactions to be about 30000. We set the duration of each
experiment as one minute and obtain experimental data every ten seconds. All
results were the average value of at least five independent experiments.

5.1 Fault-Free Cases

In this part, we first evaluate the performance of Diem and the Snitch in fault-
free cases, where the difference between of two protocols is that in the Snitch, the
leader needs to distribute its secret in each round. Figure 4 presents the latency
and throughput achieved by the different protocols as a function of the number
of replicas. Generally, the throughput decreases and the latency increases for
both protocols along with the network size increases. This is because the system
is bottlenecked by a leader communicating with all other replicas. We notice
that two protocols behave almost the same in the network with four replicas.
At more replicas, the throughput of the Snitch tends to be slightly worse than
Diem. This is mainly due to the cost of distributing secret.

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 17

600 == Snitch f=10% =i Diem f=10% @ Snitch f=10% il Diem f=10%
= =@= = Snitch f=20% == == = Diem f=20% 300 = =@= = Snitch f=20% == =i~ = Diem f=20%
==« 4@-++ Snitch f=30% =+« -+- Diemf=30% ==« 4@=-+= Snitch f=30% ==« -+ Diemf=30%

)
@
8

IS
S
5

Throughput(kops/sec

.
o
5

10 13 16 19 21 4 7 10 13 16 19 21
Number of Replicas Number of Replicas

Fig. 5. Throughput and latency as the network size varies in normal cases

5.2 Normal Cases

Our next experiment evaluates the faulty scalability of protocols by observing the
performance change as the percentage of faults increases. We stimulate the faulty
replicas by not responding or proposing invalid proposals arbitrarily. We did not
implement the “waste attack” discussed in Sect. 2, which will only further hurt
the performance of Diem. Since partially synchronous protocols tolerate one-
third faults, we conduct several experiments where the percentage of faults varies
from 10% to 30%. Figure 5 reports the results. As expected, the Snitch and Diem
have the best performance for the 10% faults. As the ratio of faulty replicas raises,
the performance of both protocols is degraded while Diem degrades more sharply.
Therefore, for each set of faults, the Snitch always achieves higher throughput
and lower latency than Diem. When the proportion of faults is up to 30%, the
performance of the Snitch scales much better than Diem. Overall, the higher
the ratio of faults in the network and the more significant the performance
superiority of the Snitch.

6 Discussion and Conclusion

As discussed in Sect. 1, BFT protocols were initially conceived as being deployed
in a small-sized system, with a static group of participants. And we proposed the
Snitch in a permissioned setting above. If necessary, the Snitch can become more
scalable in two ways. On the one hand, the Snitch can be designed to facilitate
open and dynamic participation via reconfiguration [1,3,6]. This demonstrates
the desire shift from permissioned system to permissionless system. On the other
hand, we consider a large-sized system. As analyzed in [24], a system equipped
with 100 replicas can realize the PVSS. Hence, if there are more than 100 replicas
in the system, some replicas are selected by PoW or PoS to execute the Snitch
[17,22]. Tt makes sure that the protocol is always executed in a system of accept-
able size, regardless of the total number of replicas.

18 H. Liao et al.

HotStuff is the best known BFT protocol applied in the blockchain and
famous for its chaining paradigm. As presented in Diem, the temporary fork
exists. We have shown that the adversary can selectively corrupt leaders and
exploit the fork to drastically degrade the performance of the protocol. Our
proposed the Golden Snitch protocol is dedicated to reducing the risk of being
attacked through this vulnerability. Besides, concerned with that view-change
occurs in the process of confirming a block, it is necessary to rationalize the
cooperation of leaders next to each other, rendering a malicious leader cannot
drag another down. We elaborate on an enhancement called “veto certificate” to
balance the relationship between two consecutive leaders. These improvements
will be instrumental for the progressive performance in Diem.

Acknowledgment. This work is supported by National Key R&D Program of
China (2017YFB0802500), Beijing Municipal Science and Technology Project (No
7191100007119007) and Shandong province major science and technology innovation
project (2019JZ7Y020129).

A Analysis of Correctness

The correctness of BE'T protocols is usually defined by two properties: safety and
liveness. This section surveys that the Snitch can guarantee safety and liveness
under some reasonable assumptions mentioned previously.

A.1 Safety
The safety of the Snitch is proved to be provided regardless of the network status.

Definition 1 (safety). The protocol provides safety if it satisfies agreement and
validity simultaneously.

Lemma 1 (validity). Any block containing invalid data can not be confirmed.

Proof. Because a valid CC can be formed only with n — f = 2f 4+ 1 votes for it,
there must be a correct replica who voted it. In other words, Malicious replicas
cannot generate a certificate without the cooperation of a correct node. As a
correct replica, it is impossible to send a positive vote for a block with invalid
data. Trivially ensures that only valid blocks can be confirmed.

Lemma 2 (agreement). In BFT model, for round r, the replica P; maintains
a block B, with its confirmation certificate CC,.. If there exits any other replica
P; that maintains a block B]. with its confirmation certificate CC). in the same
round, it must be B, = Bl. and CC, = CC!.

Proof. We prove Lemma 2 by contradiction. It is assumed that there exists a
round r, where two conflicting blocks B, and B.. are both confirmed, each by a
correct replica. As defined before, 2 f+1 positive votes would be required to form
a CC. Hence, CC, and CC/ need 2(2f +1) = n + f + 1 votes simultaneously.

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 19

It implies that at least f + 1 replicas vote twice with the original setting of
n. It then goes against the assumption that at most f malicious replicas exist.
Consequently, there is at most one valid block in a round.

Theorem 1 (safety). Two conflicting blocks can not be committed according
to the commait rule.

Proof. Tt is assumed that there are three certified blocks chained in consecutive
rounds, as shown in the example in Fig. 1(a):

Br — CC’I“ — Br+1 — CCrJrl — BT+2 — CC’I"+2'

Here, n— f votes were cast for C'Cy to commit B,., out of which at least f+1 were
from correct replicas. These correct replicas that contributed to the generation
of CCy remember r as their locked round 7;, and would not vote for block B if
it is not a descendant of block B,, according to the vote rules. Hence, if there
exist another three certified blocks chained in consecutive rounds as:

B, —CC| — B, , —CCy — B, ,—CC,,.

Then B! must be a descendant of B,.

A.2 Liveness

Liveness can be provided after GST. Next, we set the timer for A to denote the
maximum round duration and use § to denote the network delay.

Definition 2 (Liveness). Whenever the network becomes synchronous, the
algorithm provides liveness as to commits will be produced in a timely manner.

Lemma 3 (Round Sync). For two consecutive rounds, round r — 1 is led by a
correct leader and round r is a timeout round. If a correct replica first switches
to a new maximum round r + 1 at time t, then others will move to round r + 1
at time t + 20.

Proof. 1t is assumed that leader [,_; published B,_; at time t’. Replicas can be
divided into three parts and discussed as follows:

— Replica A receives B,_1 at time t':A moves to round r and and starts the
timer at time t’. Then the timer expired at time ¢’ + A.

— Replica B receives B,_1 at time ¢’ + ¢: Similarly, B sends starts its timer at
time ¢’ + ¢ and then broadcasts a timeout message at time ¢’ + 4§ + A.

— Replica C receives B,_; at time t' +J: C starts its timer at time ¢’ +¢§. While
replica C received more than f + 1 timeout messages leading to its broadcast
for timeout message before the timer expired.

In consequence, replicas broadcast respective timeout messages before time ¢’ +
6 + A. Then replicas complete the recovery within §. Finally, we came to the
conclusion that replicas would be synchronized to the same round within 24.

20 H. Liao et al.

Lemma 4. In the situation of all leaders in three consecutive rounds, l,, ..., .43
are correct, B, can be committed within 4 x 25 after it is proposed.

Proof. According to the commit rule, three consecutive confirmation certificates
are required to commit a block. For these rounds that generate certificates, each
round duration is at most 2. Taking round synchronization into consideration,
no more than 3 % 2§ + 24 is required to commit a block.

Lemma 5. Malicious nodes cannot impede progress infinitely.

Proof. The recover threshold is f + 1, ensuring that malicious nodes can not
reveal others’ secrets without at least one correct replica. It is inevitable that a
malicious leader can block the process temporarily by means of no response or
publishing an invalid block. While these behaviors cannot affect the next-round
leader at all. Thanks to the punishment, in the worst case, the process will be
made after f + 1 rounds.

Theorem 2 (Liveness). The request issued by a correct client eventually com-
pletes.

Proof. By Lemma 3, it can be concluded that all replicas enter the same round in
time. Besides, owing to Lemma 4 combined with Lemma 5, transaction finality
is guaranteed when a succession of three consecutive leaders behave correctly
one after another. Hence, correct clients will receive replies to their requests
eventually. It means liveness is guaranteed.

References

1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solida: a
blockchain protocol based on reconfigurable byzantine consensus. arXiv preprint
arXiv:1612.02916 (2016)

2. Aublin, P.L., Mokhtar, S.B., Quéma, V.: Rbft: redundant byzantine fault tolerance.
In: 2013 IEEE 33rd International Conference on Distributed Computing Systems,
pp. 297-306. IEEE (2013)

3. Bano, S., et al.: State machine replication in the libra blockchain (2020). https://
developers.libra.org/docs/state-machine-replication-paper, Accessed 19 Dec 2020

4. Baudet, M., et al.: State machine replication in the libra blockchain. The Libra
Assn., Technical Report (2019)

5. Bentov, 1., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. TACR
Cryptol. ePrint Arch. 2016, 919 (2016)

6. Bessani, A., Sousa, J., Alchieri, E.E.: State machine replication for the masses with
bft-smart. In: 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pp. 355-362. IEEE (2014)

7. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437 (2017)

8. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: Proceedings of the twenty-fifth annual ACM symposium on The-
ory of computing, pp. 42-51 (1993)

http://arxiv.org/abs/1612.02916
https://developers.libra.org/docs/state-machine-replication-paper
https://developers.libra.org/docs/state-machine-replication-paper
http://arxiv.org/abs/1710.09437

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

The Golden Snitch: A Byzantine Fault Tolerant Protocol with Activity 21

Cascudo, 1., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537-556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_27
Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol.
99, pp. 173-186 (1999)

Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: Hq replication: A
hybrid quorum protocol for byzantine fault tolerance. In: Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, pp. 177-190 (2006)
Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Com-
puting, pp. 401-407 (1982)

Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM (JACM) 35(2), 288-323 (1988)

Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51-68 (2017)

Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system. arXiv preprint arXiv:1805.04548 (2018)

Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357-388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th {usenix} Security Symposium ({usenix} Security 16), pp. 279-296 (2016)
Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles, pp. 45-58 (2007)

Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. In: Concur-
rency: The Works of Leslie Lamport, pp. 203-226 (2019)

Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer cience (cat. No. 99CB37039), pp. 120—
130. IEEE (1999)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.
In: 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM (JACM) 27(2), 228-234 (1980)

Schindler, P., Judmayer, A., Stifter, N., Weippl, E.R..: Hydrand: efficient continuous
distributed randomness. In: 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, 18-21 May 2020 pp. 73-89. IEEE (2020). https://
doi.org/10.1109/SP40000.2020.00003

Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient
byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16-30 (2011)

Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pp. 347-356 (2019)

https://doi.org/10.1007/978-3-319-61204-1_27
http://arxiv.org/abs/1805.04548
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/SP40000.2020.00003
https://doi.org/10.1109/SP40000.2020.00003

q

Check for
updates

Rectifying Administrated ERC20 Tokens

Nikolay Ivanov®™), Hanqing Guo, and Qiben Yan

SEIT Lab, Michigan State University, East Lansing, MI 48824, USA
{ivanovnl,guohanqi,qyan}@msu.edu

Abstract. ERC20 token is the most popular type of Ethereum smart
contract. The daily transaction volume of these tokens exceeds 100 bil-
lion dollars, which agitates the popular notions of “decentralized bank-
ing” and “tokenized economy”. Yet, it is a common misconception to
assume that the decentralization of blockchain entails the decentraliza-
tion of smart contracts deployed on this blockchain. In practice, the
developers of smart contracts implement administrating patterns, such
as censoring certain users, creating or destroying balances on demand,
destroying smart contracts, or injecting arbitrary code. These routines,
which are designed to tightly control the operation of these smart con-
tracts, turn an ERC20 token into an administrated token—the type of
Ethereum smart contract that we scrutinize in this research.

We discover that many smart contracts are administrated, which
means that their owners solely possess an omnipotent power over these
contracts. Moreover, the owners of these tokens carry lesser social and
legal responsibilities compared to the traditional centralized actors that
those tokens intend to disrupt. This entails two major problems: a) the
owners of the tokens have the ability to quickly steal all the funds and dis-
appear from the market; and b) if the private key of the owner’s account
is stolen, all the assets might immediately turn into the property of the
attacker. Therefore, the administrated ERC20 tokens are not only dissim-
ilar to the traditional centralized asset management tools, such as banks,
but they are also more vulnerable to adversarial actions by their owners
or attackers. We develop a pattern recognition framework based on 9
syntactic features characterizing administrated ERC20 tokens, which we
use to analyze existing smart contracts deployed on Ethereum Mainnet.
Our analysis of 84,062 unique Ethereum smart contracts reveals that
nearly 58% of them are administrated ERC20 tokens, which accounts
for almost 90% of all ERC20 tokens deployed on Ethereum.

To protect users from the frivolousness of unregulated token own-
ers without depriving the ability of these owners to properly manage
their tokens, we introduce SafelyAdministrated—a library that enforces
a responsible ownership and management of ERC20 tokens. The library
introduces three mechanisms: deferred maintenance, board of trustees
and safe pause. We implement and test SafelyAdministrated in the form
of Solidity abstract contract, which is ready to be used by the next gen-
eration of safely administrated ERC20 tokens.

Keywords: Ethereum - Blockchain - Smart contracts - Security

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 22-37, 2021.
https://doi.org/10.1007/978-3-030-86890-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_2

Rectifying Administrated ERC20 Tokens 23

1 Introduction

Millions of Ethereum smart contracts operate hundreds of billions of dollars
worth of assets. ERC20 fungible token is the most popular type of smart con-
tract in Ethereum, often compared to decentralized bank account. Ethereum has
two type of accounts: externally owned accounts (EOAs) and smart contracts.
An EOA has an associated private key and can deploy smart contracts, but
cannot execute custom code. On the other hand, a smart contract can execute
custom code, but it does not have any associated private key for determining
its owner. The deploying EOA of the contract does not automatically own this
smart contract, unless this functionality is manually implemented by the contract
developer. Moreover, any functionality related to ownership, role-based access,
or other special permissions must be manually implemented by the developer;
otherwise, the contract becomes orphaned at the moment it is deployed.

Many smart contracts use routines from the OpenZeppelin Contracts [3]
library for implementing ownership and role-based access in the smart con-
tracts. A recent analysis by Zhou et al. [17] shows that at least 2.1 million
Ethereum smart contracts, out of 5.8 million total, use the onlyOwner modifier
from the OpenZeppelin Contracts library, which allows only a certain user (i.e.,
owner) to call the functions of the smart contract implemented with this modi-
fier. Figure 1 shows a Venn diagram of the relationships between different subsets
of Ethereum smart contracts from the perspective of this research. Specifically,
we subdivide all smart contracts into two major categories: administrated con-
tracts, and effectively ungoverned smart contracts, particularly emphasizing that
not all contracts that have an owner are necessarily administrated, as the own-
ership may be purely symbolic sometimes or only allows harmless operations.
The administrated smart contracts are characterized by two major properties:
a) there is at least one Ethereum account whose owner possesses a unique privi-
leged status; b) the privileged status allows the user to perform actions that may
affect other users of the smart contract. These two properties constitute the dif-
ference between the administrated and ownable smart contracts: the ownable
smart contract must only meet the first property; however, there are smart con-
tracts that have an owner, but this owner has no power to disrupt the operation
of the smart contract.! We further refer to non-administrated smart contracts
as effectively ungoverned, the set that includes the ownable non-administrated
contracts, and many of them are ERC20 tokens.? In this work, however, we zero
in on the administrated ERC20 tokens, and our goal is to introduce a novel
subset of these tokens—safely administrated ERC20 tokens.

The obvious popularity of owned smart contracts and ERC20 tokens leads us
to the following research question: how many unique administrated ERC20 tokens

! The smart contracts deployed at 0xdf4df8eelbd1c9f01e60eelbedc2f7643b690699
and 0x5dc60c4d5e75d22588fa17ffeb90a63e535efcel are two (out of many) exam-
ples of ownable non-administrated contracts.

2 A typical example of an effectively ungoverned token is the popular ChainLink Token
deployed at 0x514910771AF9Ca656af840dff83E8264EcFI86CA.

24 N. Ivanov et al.

are deployed on Ethereum? To answer this question, we develop an extractor of
9 syntactic features characterizing administrated ERC20 tokens. We then gather
1,173,271 open source smart contracts written in Solidity programming language,
and by removing the duplicates, we reduce the dataset to 84,062 unique, inde-
pendent, and identically distributed (i.i.d.) smart contracts. We further select
385 random contracts for manual labeling in order to choose the most accurate
classifier among several candidates. Finally, we use the 9 features and the cho-
sen classifier to determine the approximate percentage of administrated ERC20
contracts deployed on the Ethereum Mainnet blockchain. Our evaluation shows
that nearly 58% of all the smart contracts and almost 90% of all ERC20 tokens
are administrated ERC20 tokens. To the best of our knowledge, we are the first
to conduct the Ethereum-wide evaluation of administrated ERC20 tokens and
quantify their ubiquity.

To mitigate the potential adverse effects of administrated ERC20 tokens in a
low-regulated economic environment, we propose SafelyAdministered—a Solidity
library that allows developers of ERC20 tokens to implement most common
administrated patterns in a safe and responsible way, thereby increasing the
trust towards their products without sacrificing the need to retain control over
certain operations (e.g., upgrade).

Administrated ERC20 Tokens

Goal: Safely Administrated ERC20 Tokens

ERC20 Tokens

Ownable Smart Contracts

Effectively Ungoverned
Administrated Smart Contracts S Smart Contracts

=== ==

Ethereum Smart Contracts

Fig. 1. Venn diagram of different types of Ethereum smart contracts.

In summary, we make the following contributions:

— We analyze the class of administrated ERC20 tokens and show that these
contracts are more owner-controlled and less safe than the services they try
to disrupt, such as banks and centralized online payment systems.

— We develop a binary classifier for identification of administrated ERC20
tokens, and conduct extensive data analysis, which reveals that nearly 9 out
of 10 ERC20 tokens on Ethereum are administrated, and thereby unsafe to
engage with even under the assumption of trust towards their owners.

Rectifying Administrated ERC20 Tokens 25

— We design and implement SafelyAdministrated—a Solidity abstract class that
safeguards users of administrated ERC20 tokens from adversarial attacks or
frivolous behavior of the tokens’ owners.

2 Background

Smart Contracts and EVM. A smart contract is a program deployed on
a blockchain and executed by the blockchain’s virtual machine (VM). A smart
contract consists of a set of functions that can be called through blockchain
transactions. Most smart contracts are written in a high-level special-purpose
programming language, such as Solidity or Vyper, and compiled into the byte-
code for deployment and execution on a blockchain VM. The Ethereum Virtual
Machine (EVM) is the blockchain VM for executing Ethereum smart contracts.

Externally Owned Account. Ethereum blockchain has two types of accounts:
smart contract account and Externally Owned Account (EOA). Both EOAs and
smart contract accounts can be referenced by their 160-bit public addresses.
EOAs can be used to call the functions of smart contracts via signed transactions.

Solidity. Solidity is the most popular programming language for EVM smart
contract development, which syntax is similar to JavaScript and C++. The
source code of a smart contract written in Solidity needs to be compiled into
bytecode before being deployed on EVM. All smart contracts analyzed in this
study are written in Solidity.

ERC20 Tokens. ERC20 is the most popular standard for implementing fun-
gible tokens® in Ethereum smart contracts. Some of the most traded alternative
cryptocurrencies (altcoins) are ERC20-compatible smart contracts deployed on
Ethereum Mainnet, such as ChainLink and BinanceCoin. The ERC20 standard
defines an interface with 6 mandatory functions, 2 mandatory events, and 3
optional properties that a smart contract should implement in order to become
an ERC20 token to interact with ERC20-compliant clients.*

OpenZeppelin Contracts. OpenZeppelin Contracts is a library of smart con-
tracts that have been extensively tested for adherence to best security practices.
These smart contracts are considered to be the de-facto standardized implemen-
tations of popular smart contract code patterns [4]. The OpenZeppelin project
provides a rich code base for ERC20 token developers [2]. Most ERC20 tokens, as
well as the administrated patterns in these tokens, are implemented by inheriting
routines from the OpenZeppelin Contracts library.

3 Each fungible token has the same value and does not possess any special character-
istics compared with other tokens of the same type.
* https://eips.ethereum.org/EIPS /eip-20.

https://eips.ethereum.org/EIPS/eip-20

26 N. Ivanov et al.

1 function kill() public onlyAdmin {
2 selfdestruct (payable (msg.sender));

3}

Fig. 2. A snippet of an administrated self-destruction pattern in the contract deployed
at 0xbF3d14995D4A4A719A3B9101DE60baa47De60F39.

3 Administrated ERC20 Patterns

In this section, we elaborate upon five general re-centralization patterns that we
observe in Ethereum smart contracts.®

3.1 Self-destruction

EVM opcode SELFDESTRUCT® allows to remove a smart contract from the
blockchain. To provide further incentive for owners to remove unused contracts,
the address supplied as an argument of SELFDESTRUCT call receives the entire
Ether cryptocurrency balance of the smart contract. Solidity uses the built-in
function selfdestruct() to initiate the removal of the smart contract—if this
functionality is implemented, the administrator (or an attacker impersonating
the administrator) can trigger it at any moment, effectively destroying all users’
assets with a single transaction. Figure 2 shows a real-world example of such a
pattern.

3.2 Deprecation

With the exception of self-destruction, the source code of an Ethereum smart
contract is immutable, which impedes the ability for developers to deliver new
features or fix existing bugs. To address this limitation, some developers of smart
contracts implement a bypass scheme, in which a contract can be declared as
deprecated by the owner, resulting in the redirection of the users’ transactions
towards functions of a new contract. The danger of this scheme stems from the
fact that it grants the owner of the contract an ability to replace the code of
some critical functions with arbitrary ones. Figure 3 shows a real-world example
of the deprecation pattern.

5 The discovery of these patterns has been largely facilitated by a manual examination
of approximately 3,800 source codes of smart contracts in the course of our previous
research.

6 This opcode is formerly known as SUICIDE. In this context, the word “remove”
means that the contract is no longer available for transactions; however the entire
transaction history of the contract is still retained by the blockchain.

Rectifying Administrated ERC20 Tokens 27

[y

// deprecate current contract in favour of a new one
function deprecate(address _upgradedAddress) public
onlyOwner {
deprecated = true;
upgradedAddress = _upgradedAddress;
Deprecate (_upgradedAddress) ;

[\

}

Fig. 3. A snippet of an administrated deprecation pattern in the TetherUSD smart
contract deployed at 0xdAC17F958D2ee523a2206206994597C13D831ec7, which allows
the owner to effectively inject the code of the contract with an arbitrary one.

1 function setFee(address to) public onlyOwner{
2 fee = to;
3%

Fig.4. A snippet of a change-of-address pattern in the smart contract deployed at
0x350BDC46d931712d83e£989725Ba4904C487F360. The exploitation of such pattern has
been demonstrated in previous research.

3.3 Change of Address

Another administration strategy is the ability for the owner of a smart contract to
change certain critical addresses, such as recipients of fees or accounts associated
with certain roles. As shown in our previous study [12], a replacement of a public
address in a smart contract can lead to an acquisition of the funds by the owner
of the contract. Figure4 demonstrates such an address changing pattern.

3.4 Change of Parameters

Another administration pattern is characterized by the change of certain param-
eters by the owner, which may affect the ability by a user of the contract to
perform certain operations. For example, if the owner is allowed to arbitrarily
change the amount of withdrawal fees, this parameter might be set to a very
large value (e.g., 99%), effectively preventing withdrawal of funds by the user.
Another example of this pattern is shown in Fig.5, where the owner of the
contract exercises an unbounded power to manage administrators of the smart
contract.

1 function setAdmin(address newAdmin, bool activate)
onlyOwner public {
2 admins [newAdmin] = activate;

3}

Fig.5. A snippet of a change-parameter pattern in the smart contract deployed at
0x18c210013eabcbe99b2dacdc9cfcb6e07458f0ca.

28 N. Ivanov et al.

1 function mint (address account, uint amount) public
onlyOwner {

2 _mint (account, amount);

3}

4 function burn(address account, uint amount) public
onlyOwner {

5 _burn(account, amount);

6

Fig. 6. A snippet of a minting and burning patterns in the smart contract deployed at
0x82bfdd53dd95efa2c3e92543£28d46c566bf4b8a

3.5 Minting and Burning

An increase of a token supply of an ERC20 contract is called token minting,
and the reduction of supply of tokens is called burning. Since the entire supply
of tokens is partitioned between owners in a way that there are no balances
belonging to nobody, minting a token means to increase someone’s balance,
and burning a token means to reduce someone’s balance. Although most tokens
are minted or burned as a result of a certain event, such as token creation,
token swap, crowdsale, or exchange into Ether balance, some contracts allow
privileged users to arbitrarily mint or burn tokens, which is a dangerous action
that even highly centralized commercial banks normally cannot do. Figure6
demonstrates an example of the minting and burning pattern implemented in a
deployed Ethereum smart contract.

4 Administrated Tokens in the Wild

In this section, we use a pattern recognition method to search for administrated
ERC20 tokens in the Ethereum Mainnet network, as shown in Fig. 7. We start
the process with preprocessing all the input samples by removing comments and
extracting source codes from multi-part JSON files.” Then we randomly select
385 samples from 84,062 unique source code files and manually assign (label)
them into two classes: a) administrated ERC20 tokens, and b) others. After that,
we extract 385 9-dimensional feature vectors corresponding to the labeled sam-
ples, with the assumption that all the samples are identical and independently
distributed (i.i.d). Then we use 385 labeled samples and the corresponding fea-
ture vectors to evaluate the performance of 9 different classifiers using the K-fold
method (with k& = 5). Next, we choose the best performing classifier, i.e., the one
that demonstrated the higher accuracy during the evaluation stage (i.e., SVC).
After that, we extract 84,062 feature vectors corresponding to the entire data
set. Next, we train the SVC classifier with the 385 labelled samples. Due to the

" The smart contracts that include several files are represented as JSON arrays in our
dataset. Preprocessing these arrays also includes an additional step of replacing the
escaped characters, such as newlines and quotes, with their original ASCII codes.

Rectifying Administrated ERC20 Tokens 29

i.i.d. assumption, we can now classify all the samples using the trained SVC
model. Finally, we gather the output and analyze the results.

84,062 Source |=(1)—p E%\):? (6)——>|
Code Files @

PREPROCESSING

3 SYNTACTIC @) ADMINISTRATED
FEATURES ERC20 FEATURES
2 EXTRACTOR (9 TOTAL)
[ssae)]
® u 385 Labeled s sas)
IEjg —@| semwies | —@—»-COBCO—~51— ©)->
o Q
LABELING

K-FOLD BEST-PERFORMING ANALYSIS
EVALUATION CLASSIFIER AND REPORT
(svc)

(7) - train.

Fig. 7. General worflow of the analysis of administrated ERC20 tokens. The
workflow includes 9 major steps. (1): Pre-process input samples to remove comments
and parse multi-part JSON files. (2): Pick 385 samples from 84,062 unique source code
files and manually assign them into two classes: a) administrated ERC20 tokens, and b)
others. (3): Extract 385 feature vectors corresponding to the labeled samples. (4): Use
385 labeled samples and the corresponding feature vectors to evaluate the performance
of 9 different classifiers using the K-fold methods (with & = 5). (5): Choose the best
performing classifier on the 385 labeled samples with the given 9 features. (6): Extract
84,062 feature vectors corresponding to the entire data set. (7): Train the classifier
with the 385 labelled samples. (8): Classify all the samples using the trained classifier.
(9): Analyze and report the results.

4.1 Data Set

First, we gather 1,173,271 open-source smart contracts from Etherscan,® and by
removing duplicates (using fdupes?), reduce the size of the database to 84,062
distinct smart contracts. Then, we remove all comments from the data points
(i.e., source code files), and select 385 random contracts for manual labelling
using the following formula:

e (1)
n = .
1+N-(1-¢)?

Equation1 is the Slovin’s formula [6], which statistically determines a

required representative sample size for a given data size and desired confidence

level. N is the original population of smart contracts, i.e., N = 84,062, and n is
the sample size that we choose to represent the population. ¢ is the confidence

8 https://etherscan.io/.
9 https://github.com/adrianlopezroche/fdupes.

https://etherscan.io/
https://github.com/adrianlopezroche/fdupes

30 N. Ivanov et al.

level that represents the certainty that the sample size represents the population.
We set the confidence level as 95% (precisely, 94.915%), leading to sample size
n = 385, which can be split into two partitions of 77 and 308 samples for k-fold
evaluation with k£ = 5.

4.2 ERC20 Administration Features

Our knowledge of the administration features in ERC20 tokens stems from our
experience of manual analysis of around 3,800 source codes of Ethereum smart
contracts. The experience of manual analysis of thousands of smart contracts,
which has taken more than 140 person/h, allows us to recognize all existing
administration patterns. As a result, we have developed 9 syntactic signatures
which are intuitively well-separated and independent because we have observed
various combinations of these signatures in administrated smart contracts. This
led us to designing 9 syntactic features, denoted f; ... f9 that produce one of
two binary values: 1—the corresponding syntactic signature is present; 0—the
signature is absent. Below is the brief description of the syntactic signatures that
the 9 features correspond to.

f1: ERC20 Interface Implementation. The goal of this research is to identify
administrated ERC20 tokens. In order to separate ERC20 tokens from other
types of smart contracts, feature f; extractor detects the simultaneous presence
of syntactic identifiers corresponding to the eight mandatory items of the ERC20
interface, as described in the EIP-20 standard.

f2: Administrated Self-destruction Signature. If the owner of a smart
contract implements a self-destruction procedure, they may remove the contract
from the Ethereum ecosystem with a single transaction, simultaneously acquiring
all the Ether balance of the contract. Feature fy detects such a signature, both
in old versions of Solidity and the modern ones (the exact procedure differs for
different versions of the language).

fs: Pausable Functionality Signature. The owner of a smart contract can
inhibit any operations with the contract at their will for indefinite period of time.
Although pausing a smart contract does not allow to directly acquire Ether or
token balances, it may have dire consequences if the owner’s private key is stolen
by an attacker or lost while the token is paused. Feature f3 is intended to identify
signatures of such pausable tokens.

fa: Contract Deprecation Signature. Since Ethereum smart contracts are
non-modifiable, the only means of upgrading the contract is to deprecate the
existing contract and refer the users to the new one using inter-contract calls
(ICCs). Unfortunately, this procedure allows the owner of the smart contract to
effectively introduce any arbitrary code. Feature f; extracts the signatures of
contract deprecation functionality, which is one of the most dangerous patterns
in administrated ERC20 tokens.

Rectifying Administrated ERC20 Tokens 31

f5: Minting and Burning Signatures. The ability for a privileged user to
arbitrary create and remove tokens, known as minting and burning respectively,
is a major concern associated with administrated ERC20 tokens. Feature f5
represents the signature of a minting and/or burning in the smart contract,
which execution can only be triggered by a privileged user (administrator).

fe: Role-Restricted Transfers and Withdrawals. Another signature of an
administrated ERC20 token is the ability for a privileged user to perform arbi-
trary token or Ether cryptocurrency transfers and withdrawals of the funds that
do not belong to these users. Feature fs corresponds to the syntactic signature
related to such transfer and withdrawal functionality under a privileged access.

f7: Function-Disabling Modifiers. Some function modifiers do not directly
check for the identity of privileged users; instead, they use the parameters pre-
viously changed by an administrator to decide whether the function needs to be
executed. Feature f; is related to such modifiers that are capable of disabling
the execution of a function based on a parameter adjustable by the contract’s
privileged user.

fs: Direct Checks of a Sender Address. Although modifiers are popular
means of granting privileged access to certain functions of a smart contract, some
administrated contracts use direct checks of the msg.sender or msg.origin val-
ues. Feature fg targets the direct (i.e., bypassing Solidity modifiers) transaction
identity checks, which predominantly make sense within the administrated smart
contracts context.

fo: Freezing, Halting, or Killing Methods. A list of some specific fre-
quently occurring function names, such as “freeze”, “halt”, and “kill” empirically
strongly correlate with the administrated property of ERC20 tokens. Feature fo
detects the presence of such frequently used functions that almost always indi-
cate an administration pattern.

4.3 Classifier Evaluation and Model Selection

We use 385 manually labeled samples to evaluate the performance of 9 popular
classifiers using the K-fold method with k£ = 5. Table 1 summarises the classifi-
cation models used for evaluation and the accuracy of each of these models using
the K-fold evaluation method with 385 labeled samples. The evaluation demon-
strates that 8 out of 9 classifiers stay within the 95%...97% accuracy range,
except for the Gaussian Naive Bayes classifier, which performance is slightly
above 61%.

32 N. Ivanov et al.

Table 1. Tested classifiers.

Model Parameters Accuracy
Support Vector Classifier (SVC) scikit-learn default 96.6233%
Decision Tree mazx.depth = 9 96.3636%
K-Nearest Neighbors (K-NN) k=1 95.5844%
Random Forest scikit-learn default 96.3636%
Gaussian Naive Bayes scikit-learn default 61.0389%
Linear Discriminant Analysis (LDA) | n_components = 1 96.3636%
Gradient Boosting scikit-learn default 96.3636%
Adaptive Boosting (AdaBoost) scikit-learn default 95.0649%
Multi-Layer Perc. Classifier (MLPC) | alpha = 1, maz_iter = 1000 | 96.6233%

4.4 Implementation and Evaluation of the Analysis Workflow

We implement the extractors of all the 9 syntactic features using Python 3.8.5
and re regular expressions library. We implement the K-fold evaluation and
dataset analysis using Python 3.8.5 with sckit-learn 0.24.1 and numpy 1.20.0
libraries. We randomly selected 385 smart contracts from the i.i.d. set of 84,062
and manually labeled them by human comprehension of the semantics of each
of the smart contracts, which took approximately 40 person/h of total effort.

4.5 Results

Out of 84,062 evaluated smart contracts, 54,626 have been identified as ERC20
tokens, which is around 64.6%. As many as 39,034 contracts have been classified
as administrated ERC20 tokens (by counting the occurrences of f; = 1), which
is 57.96% of all the evaluated smart contracts, and 89.76% of all ERC20 tokens.
Subsequently, only about 10% of all ERC20 tokens are non-administrated, i.e.,
exhibit full decentralization and permissionless design, while the vast majority
of the tokens are tightly controlled by their owners and other privileged users,
effectively overriding the decentralization capability of the hosting blockchain.
Figure 8 shows the summary of the results of our analysis.

5 SafelyAdministrated Library

Existing administrated ERC20 tokens are generally unsafe because they are
loosely regulated and their functionality often hinges upon a single account’s
private key, which can be abused by its owner or stolen by an adversary. To mit-
igate such an unsafe arrangement without denouncing the idea of administration
or boycotting the administrated tokens, we propose a novel solution for making
these smart contracts safe. As shown in Sect. 4, most ERC20 tokens are adminis-
trated, and therefore potentially unsafe. However, due to their ubiquity, it would

Rectifying Administrated ERC20 Tokens 33

Effectively
Ungoverned

C20 Tokens,

Other

Contracts ottisr

Contracts

Administrated
ERC20 Tokens

ERC20
Tokens

Administrate
ERC20 Tokens

(a) ERC20 tokens vs. other (b) Administrated ERC20 (c) Administrated ERC20
all other smart contracts. tokens vs. effectively un- tokens vs. other types of
governed ERC20 tokens. smart contracts.

Fig. 8. Results of processing of 84,602 unique source codes of Ethereum smart contracts
using the SVC classifier and the 9 developed syntactic features.

be naive to urge users to boycott 9 out of 10 of currently deployed ERC20 tokens.
In this work, we propose a feasible “evolutionary” fix to the existing problem.
Specifically, we realize that administrated patterns can be used by token owners
without jeopardizing the safety of the contract and requiring trust from the users.
For that, the current primitive administrated routines can be re-implemented to
incorporate three novel concepts: deferred maintenance, board of trustees, and
safe pausing. The details of these three approaches are explained below.

5.1 Deferred Maintenance

The owners of existing administrated ERC20 tokens have the ability to call
the managerial functions without any announcement. In order to prevent
unannounced actions, SafelyAdministrated library implements a mechanism of
deferred maintenance, which allows to announce the maintenance action to the
users and enact it only after a certain delay. For example, if the contract is about
to be upgraded, the users of the contract may be notified and decide whether
they agree on the upgrade or not. If the users disagree with the upgrade, they
may safely quit (i.e., sell or transfer their tokens) before the action takes into
effect.

5.2 Contract Board of Trustees

In most administrated smart contracts, the privileged user (administrator) has a
sole power to perform critical actions upon the smart contract, which incurs the
need of trust from the users of the contract. Moreover, if the private key of the
smart contract’s administrator is stolen, the attacker becomes the administrator
of the contract. Essentially, the safety of the contract often hinges on a single
private key belonging to a single person, which is the major concern about the
administrated smart contracts. The contract board of trustees allows to split the
administrative power among multiple private keys possessed by different parties,
such that the maintenance actions are only possible through a voting consensus
with a pre-determined threshold.

34 N. Ivanov et al.

5.3 Safe Pause

The ability to pause the execution of transactions in a smart contract is not nec-
essarily a whimsical action of the contract administrator. For example, this may
be a necessary action upon discovery of a zero-day vulnerability—by pausing
transactions, the administrator of the contract may prevent an exploitation of
such vulnerability. However, indefinite pause may also be abused by the contract
administrator, or it can be triggered by an adversary who stole a private key of
the administrator’s account. To prevent the adverse effects of the pause func-
tionality, in this work we introduce a safe pause routine, which allows to freeze
all transactions in the smart contract with a forced un-freeze after a certain
deadline. Moreover, once the contract is un-frozen, it cannot be frozen again for
some time. This way, any of the trustees of the contract can enact an emergency
pause, but no one is able to keep the contract paused indefinitely.

5.4 Implementation

We implement SafelyAdministrated as an abstract Solidity class, which includes
6 functions, 3 modifiers, and 5 events, summarized in Table 2. We implemented a
testing ERC20 token that inherits the SafelyAdministrated contract, compiled it
using Solc 0.8.1, and thoroughly tested its functionality to confirm that SafelyAd-
ministrated allows an ERC20 token to be administrated in a safe manner.

5.5 Limitation

One limitation of SafelyAdministrated is that the trustee whose vote attains
the voting threshold effectively pays fees for the execution of the maintenance

Table 2. Inheritable interfaces of SafelyAdministrated abstract class.

Inheritable interface Type Description

actionCleared function | Check if a given action can be performed
safelyPaused function | Check if contract is paused
safelyUnpaused function | Check if contract is unpaused
safelyPause function | Safely pause the smart contract
safelyUnpause function | Safely un-pause the smart contract
whenSafelyPaused modifier | Check if contract is paused

whenSafelyUnpaused | modifier | Check if contract is un-paused

trusteeVote function | Cast trustee vote for an action
SafelyPaused event A trustee paused the contract
SafelyUnpaused event A trustee un-paused the contract
TrusteeVoted event A trustee voted for an action
ActionCleared event Next vote will activate the action
ActionActivated event A trustee vote activated a cleared action

trusteeAction[0...9] | modifier | Modifiers for nine functions subject to
approval

Rectifying Administrated ERC20 Tokens 35

transaction, while other trustees pay only for execution of recording of their
vote. Although we assume that this unfairness is unlikely to be important in
most cases, we leave the implementation of fee reimbursement for future work.

6 Related Work

Currently, the major concern about the safety of smart contracts comes from
security vulnerabilities in them. Researchers have proposed automated tools for
detecting known smart contract vulnerabilities. Some notable security scanners
for Ethereum include Oyente [13], Mythril [1], and Vandal [5]. Tsankov et al. [16]
propose Securify, a tool that analyzes the bytecode of Ethereum smart con-
tracts to detect patterns associated with known security vulnerabilities. Torres
et al. [15] present a taxonomy of smart contract honeypots, which are deceptive
smart contracts targeting users who attempt to exploit known vulnerabilities of
smart contracts. Recently, Chen et al. propose TokenScope [7], an automated
tool, which detects the discrepancies between syntax and semantics in the func-
tions of ERC20 tokens. In this work, we reach beyond the security vulnerabilities
and explore a generally overlooked safety issue in smart contracts, i.e., admin-
istrated patterns that allow owners of ERC20 tokens (or adversaries who steal
the owner’s account private key) to cause a mass damage to the token owners.

The influence of private actors on blockchain resources has been a subject
of concern for many years. Raman et al. [14] conduct a case study of decen-
tralized web applications and identify a prevalence of re-centralization of such
apps. Griffin et al. [11] discover that TetherUSD ERC20 token has been used for
manipulating the price of cryptocurrencies. In this work, we expand the discus-
sion about the re-centralization and private manipulation of the services that
are intended to be centralized to embrace the realm of ERC20 tokens.

The public trust towards administrated ERC20 tokens may be indicative
of a well-studied irrational or semi-rational human behavior. In our previous
research [12], we explore social engineering attacks in Ethereum smart contracts
by demonstrating how visual cognitive bias and confirmation bias lead a user
into engaging with a malicious smart contract. Fenu et al. [9] demonstrate the
irrational behavior exhibited by many people when engaging with high-risk smart
contracts involved in initial coin offerings (ICOs). In this work, we scrutinize a
new facet of semi-rational human behavior: the false assumption that most smart
contracts are decentralized, permissionless, and ungoverned just because they are
deployed on a blockchain that holds these properties.

Previous studies proposed smart contract-level multi-signature voting
schemes. EGIS [10] implements a voting-based mechanism, in which trusted
experts vote for a security patch. Unfortunately, the voting mechanism in AGIS
has been design for different context and cannot be applied, even with modifi-
cations, to the trustee-based contract maintenance scenarios. Christodoulou [8]
introduces a decentralized voting scheme similar to the Board of Trustees used
in this work. However, all the above solutions are domain-specific, and cannot
be directly used for general cases, as we see it in the SafelyAdministrated library.

36 N. Ivanov et al.

7 Conclusion

Unlike banks and other financial institutions, smart contracts are weakly regu-
lated or unregulated at all. Simultaneously, an ERC20 token is often owned by
a single account, the security of which hinges on a single private key. At the
same time, we observe that market capitalization of some tokens, such as USDT
and BNB, reaches billions of dollars, which means that if the administrator’s
private key is stolen or abused, all the funds from all users in the contract might
be stolen immediately. ERC20 fungible tokens have been a hope for the next-
generation tokenized economy. However, in this research we demonstrate that
approximately 9 out of 10 ERC20 tokens are administrated assets that are gen-
erally less secure than traditional financial institutions and accounts. Instead of
stigmatizing the widespread administration of the tokens, we deliver a solution
for the honest token owners to achieve their goals in a way that is safe for both
them and the users—through implementing the novel contract ownership mech-
anism, which effectively prevents a single point of security failure and enforces
prior notice of maintenance. At the time of writing, there is no affiliation or spon-
sorship, current or arranged, between the authors of this work and any banks,
online payment systems, and smart contract developers mentioned or implied in
this research.

Acknowledgements. We would like to thank Dr. Arun Ross and other anonymous
reviewers for providing valuable feedback on our work.

References

1. Mythril. https://github.com/ConsenSys/mythril. Accessed 06 Jan 2020

2. OpenZeppelin ERC-20 Token Implementations. https://github.com/OpenZepp
elin/openzeppelin-contracts/tree/master /contracts/token/ERC20. Accessed 12
Jan 2020

3. Openzeppelin contracts (2021). https://github.com/OpenZeppelin/openzeppelin-
contracts

4. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and DApps. O’'Reilly Media (2018)

5. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts.
arXiv preprint arXiv:1809.03981 (2018)

6. Burt, J.E., Barber, G.M., Rigby, D.L.: Elementary Statistics for Geographers. Guil-
ford Press (2009)

7. Chen, T., et al.: TokenScope: automatically detecting inconsistent behaviors of
cryptocurrency tokens in Ethereum. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1503-1520 (2019)

8. Christodoulou, P., Christodoulou, K.: A decentralized voting mechanism: engaging
ERC-20 token holders in decision-making. In: 2020 7th International Conference
on Software Defined Systems (SDS), pp. 160-164. IEEE (2020)

9. Fenu, G., Marchesi, L., Marchesi, M., Tonelli, R.: The ICO phenomenon and its
relationships with Ethereum smart contract environment. In: 2018 International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 26-32.
IEEE (2018)

https://github.com/ConsenSys/mythril
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC20
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC20
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
http://arxiv.org/abs/1809.03981

10.

11.

12.

13.

14.

15.

16.

17.

Rectifying Administrated ERC20 Tokens 37

Ferreira Torres, C., Baden, M., Norvill, R., Fiz Pontiveros, B.B., Jonker, H., Mauw,
S.: AGIS: shielding vulnerable smart contracts against attacks. In: Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security (2020)
Griffin, J.M., Shams, A.: Is Bitcoin really untethered? J. Finan. 75(4), 1913-1964
(2020)

Ivanov, N., Lou, J., Chen, T., Li, J., Yan, Q.: Targeting the weakest link: social
engineering attacks in Ethereum smart contracts. In: Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, pp. 787-801 (2021)
Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the CCS, pp. 254-269 (2016)

Raman, A., Joglekar, S., Cristofaro, E.D., Sastry, N., Tyson, G.: Challenges in the
decentralised web: the Mastodon case. In: Proceedings of the Internet Measurement
Conference, pp. 217-229 (2019)

Torres, C.F., Steichen, M., et al.: The art of the scam: demystifying honeypots
in Ethereum smart contracts. In: 28th USENIX Security Symposium, USENIX
Security 2019, pp. 1591-1607 (2019)

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: Proceedings of the CCS
(2018)

Zhou, S., et al.: An ever-evolving game: evaluation of real-world attacks and
defenses in Ethereum ecosystem. In: 29th USENIX Security Symposium, USENIX
Security 2020, pp. 2793-2810 (2020)

q

Check for
updates

Moat: Model Agnostic Defense against
Targeted Poisoning Attacks in Federated
Learning

Arpan Manna, Harsh Kasyap®™), and Somanath Tripathy

Department of Computer Science and Engineering,
Indian Institute of Technology Patna, Patna, India
{arpan_1911cs05,harsh 1921cs01,som}@iitp.ac.in

Abstract. Federated learning has migrated data-driven learning to a
model-centric approach. As the server does not have access to the data,
the health of the data poses a concern. The malicious participation injects
malevolent gradient updates to make the model maleficent. They do not
impose an overall ill-behavior. Instead, they target a few classes or pat-
terns to misbehave. Label Flipping and Backdoor attacks belong to tar-
geted poisoning attacks performing adversarial manipulation for targeted
misclassification. The state-of-the-art defenses based on statistical sim-
ilarity or autoencoder credit scores suffer from the number of attackers
or ingenious injection of backdoor noise. This paper proposes a universal
model-agnostic defense technique (Moat) to mitigate different poisoning
attacks in Federated Learning. It uses interpretation techniques to mea-
sure the marginal contribution of individual features. The aggregation of
interpreted values for important features against a baseline input detects
the presence of an adversary. The proposed solution scales in terms of
attackers and is also robust against adversarial noise in either homoge-
neous or heterogeneous distribution. The most appealing about Moat is
that it achieves model convergence even in the presence of 90% attackers.
We ran experiments for different combinations of settings, models, and
datasets, to verify our claim. The proposed technique is compared with
the existing state-of-the-art algorithms and justified that Moat outper-
forms them.

Keywords: Federated learning - Label flipping attack + Backdoor
attack - Hybrid attack - Model interpretation - Shapley value

1 Introduction

Federated Learning (FL) has emerged with growing shares in prominent appli-
cations, protecting users’ security and privacy [11]. It brings the model to the
data existing on the edge devices, felicitating in-place training. It is a promis-
ing alternative to centralized training, which has been vulnerable to privacy

A. Manna, H. Kasyap and S. Tripathy—Equal contribution.

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 38-55, 2021.
https://doi.org/10.1007/978-3-030-86890-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_3

Moat 39

breaches and data abuse. FL has evolved as a privacy-preserving paradigm for
the participants. However, it induces a risky design trade-off where the aggrega-
tion has come under the scanner, citing that passive data providers may act as
active adversaries [7]. The mere presence of malicious participants will gradually
impede the goal of subtle performance.

The adversaries send erroneous model updates injecting malicious and inge-
nious training strategies, which causes a greater catastrophe. These attacks are
more insidious as they maintain the overall accuracy and achieve desired results
on attacker-chosen samples. Label Flipping and Backdoor attacks are the tar-
geted poisoning attacks, which are deftly crafted by the attacker and mostly
remain untraceable from the existing defense measures. The other poisoning
attacks are Additive Noise and Gradient Ascent attacks. We analyzed these
attacks in various FL settings by varying numbers of attackers, samples, and
triggers through a series of case studies.

Numerous defense strategies have been proposed to mitigate such attacks.
The existing approaches rely on similarity-based techniques like euclidean dis-
tance and cosine similarity or detecting outlier using mean, median-based algo-
rithms [2,5]. They work only in the presence of a majority of benign partici-
pants and are designed as attack-specific. Adversarial defense techniques have
been proposed where the server prepares auxiliary data to detect an adversary’s
presence [18]. This process bears huge computational costs and is impractical
to deploy. Credit score-based approach [8] using autoencoder has been effective
in detecting Label Flipping attacks and outperforms traditional defense-based
approaches.

This paper discusses a novel defense mechanism using model explanation
techniques to detect adversaries’ presence besides their number and strategy.
This analysis does not require any prior knowledge or auxiliary synthesis. It uses
Shapley algorithms, game-theory-based mathematical formulations that give the
features’ marginal contributions based on their importance. It requires some
random samples to learn the reference to interpret the model. Further, operating
over the attribution values on baseline data helps us to spot the heterogeneity.

The following are the major contributions.

— We propose a model agnostic mitigation strategy to defend against targeted
poisoning attacks in Federated Learning. It uses the attribution-based Shap-
ley algorithms to measure the marginal contribution for individual features.
Using an additive feature importance strategy, we could successfully figure
out the presence of adversaries.

— A hybrid attack is designed by colluding the attackers with the intentions of
Label Flipping and Backdoor capabilities.

— The empirical evaluation has been extensively carried over the MNIST and
Fashion MNIST datasets under different attack settings and evaluation met-
rics. It has been tested under both the IID (Independent and Identically Dis-
tributed) and non-IID distributions. The results provide a shred of evidence
to the proposed conjecture.

40 A. Manna et al.

— This paper evaluates the existing defense strategies against poisoning attacks.
It demonstrates their limitation against ingenious backdoor attacks and work-
ing at the cost of honest participants in label flipping attacks.

The remainder of this paper is organized as follows. Section 2 discusses the
background and related works. Section 3 briefs Federated Learning and discusses
the capabilities of an adversary. Section4 proposes a model-agnostic defense
strategy against poisoning attacks in Federated Learning. Section5 describes
the simulation setup, experiment, and results. Section 6 briefs comparison with
the existing state-of-the-art algorithms. Section 7 concludes this work.

2 Related Work

Cao et al. [3] designed a distributed poisoning attacks colluding multiple attack-
ers. The authors proposed SNIPER’s defense mechanism by constructing a graph
based on euclidean distance between the local model updates. Further, they
aggregate the models present in the largest clique of the graph. Authors claim to
restrict the attack success rate by 2% even in the presence of one-third of attack-
ers. The statistical similarity-based defenses, including Mean-Around-Median,
Trimmed Mean [17], Krum and MultiKrum [2] select m out of n similar mod-
els and declare the remaining as malicious based on similarity measures. They
claim to prevent flipping attacks up to 50% byzantine workers. Fung et al. [5]
proposed a novel defense algorithm FoolsGold to evaluate the vulnerabilities of
Sybil-based poisoning attacks. They claim for no bounds against the number of
attackers present. Li et al. [8] proposed an anomaly detection algorithm based on
the credit score to generate low dimensional surrogates, which requires additional
computation overheads of pre-training for some initial rounds.

Gu et al. [6] highlighted the risks of outdoor training or pre-trained mod-
els using adversarially trained backdoor model aiming to achieve the attacker’s
intention to predict any input as the attacker-chosen label in the presence of
some trigger. Bagdasaryan et al. [1] discussed how attackers could use model
replacement to introduce malicious functionality by encoding the backdoor. Xie
et al. [16] discussed the vulnerabilities arising due to data heterogeneity and
proposed a Distributed Backdoor Attack (DBA) as a novel threat assessment
framework in a federated environment. Salem et al. [12] proposed a dynamic
backdoor generated as a function of inputs, which can be more effective than
semantic or pixel pattern backdoor.

Wang et al. [14] emphasized the requirement of model interpretability, citing
the regulatory and legal perspective to avoid unethical cases like discrimination.
Their method promises to balance it with data privacy to interpret Federated
learning models. Wang et al. [15] measured the contributions of multiple par-
ties in Federated Learning by calculating the grouped feature importance using
Shapley values. Takeishi and Kawahara [13] discussed the challenges in imple-
menting Shapley values for anomaly detection.

Based on the survey of the defense strategies to mitigate against the tar-
geted poisoning attacks in Federated learning, we observe a trade-off with the

Moat 41

number of attackers present, the encoded backdoor trigger, data heterogeneity,
pre-computational overheads, and the lack of robustness.

3 Federated Learning and Threat Model

3.1 Federated Learning

Federated learning is a distributed training protocol across clients in a multi-
round fashion coordinated through a trusted server. Participating clients share
their model updates or gradients to the server while preserving their training
data. The server has a preliminary untrained global model optionally defined
with local epochs, batch size, learning rate, and other parameters. At every iter-
ation t, the server selects a random sample of clients (S;) and sends them a copy
of the global model(w;). Client k on receiving the global model trains on its pri-
vate data by running the optimization algorithm and outputs a new local model
wy,; as — wy—nVI(wf; b) where 1 is the local learning rate of clients and b is the
local batch size. Then, each client shares its gradient updates with the server.
Consequently, the server aggregates the received local gradients and updates
the new global model wa to the random set of clients selected for the next
round. This process iterates until a predefined accuracy or performance metric
is reached. A typically used aggregation algorithm (FedAvg [10]) is the weighted
averaging of the shared gradients. Federated learning securely aggregates the
individual client updates. However, we assume that these types of obfuscations
are not used, and the central server is able to observe any individual client’s
model update at each iteration.

/ e e ‘ ------------------- Colluded c®

A i
“ Malicious Client ﬂ 5
Update !
Plus Trigger o :
2 flipped as 6 Random Noise
(/\\ Update Y7
g) <—Update—> < . > J
) Gradient Ascent
Honest Client Trusted Servel# (Aggregation) Malicious Client
Pl OEW P OBm B Update label = 1 label =9
0ED v E E OB W B o
Non-uniform Distribution g S -

CHNCN

... Pattern Trigger
v 4 flipped as 9
Honest Client Uniform Distribution

Fig. 1. Threat model

42 A. Manna et al.

3.2 Threat Model

We consider an adversary that can evade the holistic training cycle and induce
insidious behavior by crafting different poisoning attacks. The attacker aims to
poison the global model for high error rates discriminately to victimize a selected
class. It is deftly crafted for targeted misclassification, and becomes substan-
tially worse. The malicious clients craft the poisoning attacks to miscalibrate
the prediction accuracy. They exploit the fact of provable opacity of data to any
trusted entity and gradually impede the model. Figure1 illustrates our threat
model considering label-flipping, backdoor-ed induced noise, and different data
distributions. The potential poisoning attacks are summarized below.

1. Label Flipping Attack: In this form of attack, the attacker poisons a
specific class § by inverting its label to another chosen label 7. For example,
every ‘4’ is predicted as ‘9’ in the handwritten digit recognition model. The
attacker may pick a rare class from a skewed distribution and flip its label.
It goes undetected in most cases due to little effect on the overall accuracy.
An attacker can also target multiple classes to flip to a single or a subset of
chosen targets.

2. Backdoor Attack: In a backdoor attack, the attacker alters training data
with certain features (¢) to a target label (7). The resultant model predicts
the wrong label 7 in the presence of these features. The attacker can also
embed some trigger to induce malicious behavior. For example, plus trigger
is embedded to an image of class ‘2’ for getting misclassified as ‘6’ as shown
in Fig. 1. These patterns ¢ may vary in shape, size, and position. Attackers
generate adversarial samples dz’f by inserting trigger () using some backdoor
function by, df = [by(d”,) = 7] such that df Udf = d* and df N df = ¢.
Further, it solves an optimization problem to update the received global model
by effectively performing well on both the main task and the backdoor task
as

wyy — wy =0 Vi(wi;b e dl;) — nVi(w;b € dy)
7p and 7 are the learning rate for the backdoor and main task, respectively.
It can be carried out through either a single-shot or multiple-shot attack [16].
The backdoor attack is more vicious than other attacks since it does not affect
the global model performance.

3. Hybrid Attack : Attackers compromise multiple clients or adversaries with
different attack capabilities to perform a hybrid attack. A subset of clients can
perform label flip while the remaining can induce trigger to attempt backdoor.
It is a form of distributed attack, which brings more threats and degrades the
system with only a few poisoned samples. They can also distribute the attack
objectives (¢ in 1, ¥, ..., ¥r) to turn the attack more effective.

Apart from that, an adversary can also inject random noise into its locally
held data or trained model. So, it would be difficult to detect fraud in one-
class non-IID distribution. We have considered non-uniform or skewed distri-
bution using a two-class setting and Dirichlet distribution with different hyper-
parameters for varying heterogeneity.

Moat 43

4 Moat: The Proposed Defense Technique

Here, we present our proposed defense approach against targeted poisoning
attacks named Moat (Model Agnostic Defense against Targeted Poisoning
Attack).

4.1 Overview

Moat exploits the model’s interpretability and is inspired by partial dependence
plots, individual conditional expectation, and accumulated feature importance.
The partial dependence marginalizes the model for the selected feature zg to
other features a:g present in the input. However, the partial dependence obscures
the heterogeneity based on the interaction between the features. The intuition is
to calculate conditional effects to uncover the heterogeneity. It makes us realize
that the induced trigger or the flipped label’s accumulated feature would impact
the model f(.) to detect the attacker-chosen label. f(x) is the output to be
approximated on instance x with d features, and g is an explanatory model
for calculating the additive feature attributions. It can be expressed as a linear
function of binary variables in Eq. 1.

d
g(Z) =0+ 6% (1)
j=1

It uses simplified features x’ as input using a mapping function such that,
x = hg(2'). The explanation for the prediction over z’ is based on the local
methods, which try to ensure g (z’) ~ f (hm (z’)) where 2/ ~ 2/, 2 € {0,1}4,
and ¢; € R. ¢; is the corresponding attribution to each feature.

Moat uses the Shapley algorithm to calculate individual feature attributions
(¢;) for interpreting the predictions. It assigns an importance score to each
feature value with all possible coalitions for a particular prediction. Equation 2
explains the calculation using a value function where S is the selected set of
features, x is the data vector selected for interpretation, and p be the number of
features considered.

6000 = Sscre 1) U2 (val (SU fra}) — val(S)) (2

valy(S) is the prediction for feature values in set S that are marginalized
over features not included in the set S. It is demonstrated in the Eq.3 and is
calculated through multiple integration’s.

val, (S) = /f(a:l,...,xp) dP,¢s — Ex(f(X)) (3)

Before discussing the proposed algorithm (Moat), we list our observations
that conceptualize our conjecture for defense against targeted poisoning attacks.

44 A. Manna et al.

2 /
L-l L4 v

1 T |) I ;
-0.010 -0.005 0.000 0005 0010
SHAP value

4 g

i I
-0015 -0010 ~0.005 0000 0005 0010 0015
SHAP value

Fig. 2. Feature attributions of ‘4’ for 10 labels in a benign (f) and malign model (')

We start with a label flipping attack and perform preliminary experiments to
demonstrate how it is spotting heterogeneity among labels. Let us consider that
an honest participant trains model f, while the adversary trains f’ with ‘4’
flipped as ‘9’ in the handwritten digit recognition dataset. The server calcu-
lates interpretable approximations for the predictions against an image of ‘4’.
Attribution effect ¢; for every feature j in the image is calculated using Eq.2
by operating over the received gradients at the server. The additive attribu-
tion of the features is calculated for model interpretation using Eq.1 against
each label. Figure2 demonstrates the graphical representation of attributions
for every labels (0, 1, 2 ..., 9) in both f (top image) and f’ (bottom image),
where red color depicts positive influence, and the blue negates it. It is pertinent
to observe that red spectrum of label ‘4’ in f shifts to ‘9’ in f’. After analyz-
ing the attribution tensors, g (z/), two outliers could be easily spotted in the
malicious model f” over the sum of ¢,.

4.2 Algorithm

As described in Algorithm 1, it takes client uploaded gradients (w;), some ref-
erence data (R), and baseline data (B) as input. The server decides an exter-
nal input as threshold &. It is defined for varying the strictness to identify the
adversary based on the application’s sensitivity. Interpreting the model and post-
analyzing, we expect it to converge for the next iteration. It will also provide
the probable attacked labels (I,,), set of malign (m,) and benign models (my).

For each client k, the server interprets their uploaded model w! with some
reference inputs (R). It only requires black-box access to the model. The refer-
ence data may be some auxiliary data held by the server for validation or some
neutral data. The interpretation rj learns all the changes in prediction to spot
the heterogeneity. Further, it is fed with a baseline input data B for calculating
the additive feature attributions against all the labels. The baseline input can
be real data owned by the server. However, we suggest using a zero vector input,
which acts as a fair baseline and is equitably distributed against all the inputs.
The returned output is the attribution value for every feature against each label
(a1,az...a;), with all the possible coalitions having an influential impact on the

Moat 45

Algorithm 1. Model-agnostic Defense: Moat

Require: Client’s gradients (w}), Threshold &
Ensure: Global model (w;1), Set of possible attackers (mq) and attacked labels (I,,)

R « reference data {Auxiliary / Neutral Data}
B «— baseline data {Zero / Mean Vector}

my — ¢ {Set of benign models}

me «— ¢ {Set of attackers}

Im < ¢ {Set of possible attacked labels}

Sy« {k} {Set of clients in the round t}

for each client k € S; do
i, «— InterpretModel(wf, R)
9: ai,az...a; — ri(B) //calculation of feature attribution of labels 1,2...,1
10: for j =1 to 1do
11: AF] Zf:l ildi € a; //f is the number of features
12: end for
13: z — Z — score(AFy)
14: for j =1 to 1do

15: if z; > ¢ then
16: I — U]
17: end if

18: end for

19: if|l,n| > 0 then
20: Mg — Mg U wf
21: else

22: mp «— mp U wf
23: end if

24: end for

25: if [my| == 0 then
261 W41 < Wt

27: else

28: wiqq — Zk@nb %‘w’g //Aggregate using FedAvg
29: end if

30: return wiy1, mq and Iy,

prediction. We suggest adding the individual label attributions a;, either positive
and negative, or their combinations. It results in an array AF}, with value for all
the labels.

Further, we perform a Z-score numerical evaluation with varying threshold &
to detect the presence of an adversary. It describes the relationship of a value with
the mean of a group of values and is measured in terms of standard deviations(o)
from the mean p. For every instance z, it is calculated as (z — p)/o. We have
calculated Z-score for label-wise additive attributions AF}. A label with Z-score
exceeding a threshold is identified as a malicious label (I,,,). Clients with at least
one possible malicious label will be treated as malicious. The server computes
aggregation of the benign clients (m;). The algorithm is expected to converge

46 A. Manna et al.

for the next update over all the benign models as long as the convergence of
FedAvg is guaranteed. In the case of no benign model, it returns the previous
global model w; to the newly selected set of clients.

After extensive analysis, it is inferred that different combinations of reference
(R) and baseline data (B) have different detection capabilities. Possible choices
of R and B can be real data, zero-vector data, or single input averaged over
specific samples. The attribution effects can be operated with different cases as
mentioned in the Appendix A with a detailed analysis for all combinations of
references and baselines.

5 Experiment and Result Analysis

Moat is evaluated with varying numbers of attackers, poisoned samples, hetero-
geneous distribution, and different attack strategies. The experiments have been
run for federated learning architecture with n = 50 clients. In each round of
training, the server randomly selects ny = 30 clients. Each of the client runs
mini-batch stochastic gradient descent locally with a batch size b = 32 and a
learning rate n = 0.01 for 2 local epochs. The complete training process has been
carried for 50 iterations.

The proposed defense is evaluated against the widely used MNIST and
Fashion-MNIST datasets. MNIST! is a dataset of handwritten grayscale digits.
Fashion-MNIST? is a dataset of grayscale fashion products. Both are equally
distributed among 10 classes with 7000 images each. Data has been distributed
equally, 1200 samples per client, around 120 samples of each category. A convo-
lution Neural Network (CNN) is used for local training at the client device. CNN
has two convolution layers with 32 and 64 kernels of the size of 3X3, followed by
a max-pooling layer and two fully connected layers with 9216 and 128 neurons,
respectively. ReLU activation is used in each layer with a dropout of 0.25.

These experiments are run for testing label-flipping and backdoor attacks
against the proposed defense mechanism. For the label flipping attack, we have
flipped images of label ‘6’ to label ‘2’ in MNIST, and images of label ‘8’ to
label ‘3’ in F-MNIST. Similarly, in the backdoor attack, attackers inject pixel-
pattern triggers as shown in Fig. 3 by changing pixels at appropriate locations.
Each attacker poisons 500 samples and alters the corresponding class label to
target label ‘2°. The rest of the local data are kept unchanged. We have only
considered multiple-shot distributed attack (Attack A-M) following [1] as the
default backdoor setting so that the backdoor contribution of attackers does not
get weakened after global aggregation.

In each case, the number of compromised workers n,, varies from 10% to
90%. The global model accuracy is tested against 8000 test samples uniformly
distributed across all classes, and backdoor attack success rates are tested against
1500 trojan-ed samples. Label flipping attack is evaluated with Attack Success
Rate (l,s) and Targeted Misclassification Rate (¢,,¢). We evaluated Backdoor

! http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch /fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist

) Pattern) Plus (c) Size (d) Gap (e) Position

Fig. 3. Variations of backdoor triggers

Attack Success Rate (bys-) to calibrate the success of the attacker’s intention
using an embedded trigger. Attackers aim to achieve high l,s, tmer, and bgs,
while maintaining the global accuracy.

We have used Deep SHAP [9] as the model-agnostic approximation method
for the computation of SHAP (SHapley Additive exPlanations) values. The input
for the SHAP is the model and some background images. Throughout the exper-
iments, we have used 100 samples uniformly distributed over the classes as the
background images (R) for learning average attributions rj of the k' client
models’ prediction. Increasing the number of background images (R), results in
learning better attribution, and helps in easy detection with fewer rounds. How-
ever, to simulate a worst case scenario and to reduce the impact on learning, we
simulate R with less than 10% of individual client contribution. A zero vector
image of 28 x 28 is used as the baseline image B. Attribution results have been
discussed and plotted against the threats mentioned above for visualization in
Appendix A.

5.1 Results

Defense Against Backdoor Attack. We have implemented Moat defense
against distributed pixel-pattern backdoor attack on MNIST and F-MNIST
dataset. Figure4 plots the result for backdoor attack success rates (bgsr) and
corresponding defense for 30%, 60%, and 90% attackers. The external threshold
(€) has been set to 1.8 for MNIST. It is observed from Fig. 4a that global model
accuracy (main-acc) does not get impacted by backdoor injection in either of
attack or defense. b, increases gradually from 0.2 to 0.8 in 50 rounds. It is
restricted to 0.1 using Moat, which clearly suggests that no malicious contribu-
tion has been taken while aggregation. Figure4b and 4c illustrate the defense
results with n,, = 60% and n,, = 90%, respectively. Similar observation have
been plotted in Fig.5 on F-MNIST, keeping threshold as 2. Moat has also been
tested against varying trigger size (Fig. 3c), gap (Fig. 3d) and position (Fig. 3e)
as suggested in [16]. Number of attackers have been set to 20% and & as 2.
Figure 6 demonstrates the behaviour of Moat against all of these trigger factors
on F-MNIST. It is prominent that Moat successfully defends backdoor attacks
and retains by, to 9-11% for varying size and gap. With little complex trigger
(Fig. 3e), bysr is around 15%, which is bit higher compared to other trigger cases
as shown in Fig. 6¢c.

48 A. Manna et al.

10 20 30 40 50 10 20 30 40 50 [10 20 30 40 50
communication rounds communication rounds communication rounds

(a) 30% attacker (b) 60% attacker (c) 90% attacker

Fig. 4. Moat defense against backdoor attack on MNIST

20 30 40 EY 10 20 30 40 50 [10 20 30 40 50
communication rounds communication rounds communication rounds

(a) 30% attacker (b) 60% attacker (c) 90% attacker

Fig. 5. Moat defense against backdoor attack on F-MNIST

10 20 30 40 50 10 20 30 40 50 0 10 20 30 40 50
communication rounds communication rounds communication rounds

(a) Based on size (b) Based on gap (c¢) Based on position

Fig. 6. Moat defense against backdoor attack on F-MNIST over variations in trigger

Defense Against Label Flipping Attack: Figure7 illustrates the result for
label flipping attacks and defenses on MNIST. We have plotted the results for
30%, 60%, and 90% attackers. The baseline in all the plots depicts the nature of
performance in the ideal conditions with no attacker present. With n,, = 30%
and 36% flipped samples, global accuracy decreases around 4 — 5% as compared
to baseline. However, Moat has successfully managed to recover to baseline accu-
racy. After 40 rounds, it overlaps with the baseline. [, and ¢,,., increases around
20% and 30% respectively. It is successfully defended by Moat by retaining .,
below 10% and t,,. below 20%, respectively. Figure7d, 7e, and 7f show the
results with n,, = 60% and 72% poisonous samples. Figure 7g shows that accu-
racy is largely impacted by the attack with n,, = 60%. However, Moat recovers
the accuracy to baseline, when run for more rounds. l,s- and t,,., are restricted
at 0.1 and 0.2 respectively as shown in Fig.7h and 7i. Moat forces to continue
the training with the remaining 10% benign clients, although the convergence

Moat 49

is delayed as compared to other attack cases. It converges in 15-20 iterations
while reducing the impact by a margin in initial iterations only. We have also
analyzed distributed attack with malicious intention of flipping multiple labels.
Moat can also defend against such attacks and converges with good accuracy as
illustrated in the Fig. 13 of the Appendix B.

— baseline

—< defense (Moat)

e

o 10 2 30) 50 10 20 30 40 50 [10 20 30 40 50
communicatian rounds communication rounds communication rounds

(a) 30% attacker (b) 30% attacker (c) 30% attacker

10 20 30 40 EY 10 20 30 40 50 3 10 20 30 40 50
communication rounds communication rounds communication rounds

(g) 90% attacker (h) 90% attacker (i) 90% attacker

Fig. 7. Moat defense against label flipping attack on MNIST

Defense Against Hybrid Attack: Considering that the attacker’s intention
is unknown before training, we formulated a hybrid attack with n,, = 50%
malicious clients. 25% of the attacker is actively doing label flipping, and the
rest 256% are inducing ‘plus’ triggers to generate backdoor samples. Moat has
been analyzed against this attack and proves to be robust against it. It is run for
50 iterations to check the fast convergence on F-MNIST as illustrated in Fig. 8.
Figure 8a illustrates the improved main accuracy of 4-5% against the attacked
accuracy plot. It achieves almost 40-45% I, in 50 iterations as illustrated in
Fig. 8b. Moat brings down I, to 10% after certain rounds and keeps I, stable.
basr is also constant around 10% compared to 90% in attack, as shown in Fig. 8c.

50 A. Manna et al.

Foes
B o000

o750

0725

znz 2!

o 10 20 30 40 50 10 20 30 4o 50 [10 20 30 40 50
communication rounds communication rounds communication rounds

0.700

(a) Global model (b) Label Flip Attack (c) Backdoor Success
accuracy Success Rate Rate

Fig. 8. Moat defense against hybrid attack on F-MNIST

Impact of Heterogeneous Distribution: We have also performed non-11D
distribution of the data to simulate a real-life situation in a federated setting.
We supply each client an unbalanced distribution of data from each class using
a Dirichlet distribution with a hyperparameter a = 0.5, 0.7, and 0.9. « is the
degree of non-IID for varying heterogeneity.

Figure 9 shows the performance of Moat on varying o with 30% attacker for
both the label flip and backdoor attacks. Moat performs very well on @ = 0.9
and a = 0.5 but when o = 0.7 the defense performs poorly. After extensive
experiments, we have found that Moat performs well with a = 0.9 on backdoor
attack but not on label flip attack.

¥ e

0 5 10 15 20 25 30 35 40
communication rounds

(a) Backdoor Success (b) Attack Success Rate (c) Misclassification Rate
Rate (MNIST) (MNIST) (MNIST)

communicatior

(d) Backdoor Success (e) Attack Success Rate (f) Misclassification Rate
Rate (F-MNIST) (F-MNIST) (F-MNIST)

Fig. 9. Moat Defense over non-1ID data with varying degree

We have considered a more strict set of non-IID data distribution as suggested
n [10]. First, the training data is sorted by class labels. It is split into chunks of

(a) 30% attacker (b) 60% attacker (c) 90% attacker

Fig. 10. Moat Defense against backdoor attack in non-IID setting on F-MNIST

300, and each participant is assigned 2 different chunks from 2 different classes.
Figure 10 shows the performance of Moat over this non-uniform distribution. It
is clear that the backdoor attack success rate (bys,) fluctuates rapidly in initial
rounds and takes many rounds to converge. However, b, is stable at 0.0 except
for a few rounds 14, 21, and 37. It is pertinent to observe that in a non-I1ID
setting, main-accuracy is somehow impacted by Moat. With n,, = 60%, by, is
constant at 100%. After applying Moat, it keeps fluctuating between 0 and 0.8
at the initial rounds and gets stable after round 10, with some spikes observed
afterward. However, b, 4, is way below the attack-ed backdoor success rate, which
validates the effectiveness of Moat.

6 Discussion

—&— FedAvg

—#— GeoMed

—o— TrimmedMean
—<& Krum

—»— AE credit score
—#— Moat

accuracy

~¥— GeoMed
—&— TrimmedMean
—=— Krum
—&— AE credit score
—< Moat

attack success rates

10 15 20 25 30 35 40 45 50 0 10 20 30 40 50
communication rounds communication rounds

(a) Accuracy (b) Attack Success Rate

Fig. 11. Comparison with existing defenses

We have evaluated some of the existing defense strategies for targeted poi-
soning attacks, namely Krum [2], Autoencoder (AE) credit score [8], GeoMed,
and Trimmed Mean [17]. We ran experiments on F-MNIST with n = 30 clients,
and n,, is set to 20% with number of attackers m = 6. For GeoMed, we have
taken the layerwise median of the uploaded client gradients. For Trimmed Mean,

52 A. Manna et al.

top n — 20 values closest to median are chosen with g = 13. For implementing
Krum, we have set the multi-Krum parameter (f = n—m —2) as 22 for meeting
the assumption 2m+ 2 < n. For the AE credit score-based approach, an autoen-
coder is trained at the server with client updates accumulated till 20 rounds.
The autoencoder input is a vector of 4096 chosen randomly from the first fully
connected layer of the CNN model described above. It is trained for 20 local
epochs with a batch size b = 32, n = 0.0001 and a dropout rate of 0.2. The
pre-trained autoencoder is used for detecting malicious behavior. A client with
a credit score exceeding a threshold is considered an attacker. The threshold is
set to mean anomaly score following [8].

All of the above algorithms are run for 50 communication rounds with the
attacker actively performing label flip with the similar settings discussed above.
Figure 11a and 11b illustrates the result of comparison in terms of global model
accuracy and attack success rates. Similarity-based approaches could achieve
accuracy around 86-88%, while AE looks to outperform them by achieving
90% accuracy. Moat achieves 86-88% accuracy in merely 15-20 iterations and
surpasses 90% with 50 iterations. These are designed attack-specific and are
not robust against different targeted poisoning attacks. GeoMed, Krum, and
Trimmed Mean are only robust up to [§] — 1 attackers. They require prior
knowledge of malicious participation as well as white-box access to the client
gradients. They suffer badly against a non-1ID setting. Authors in [4] claim their
defense strategy is secure against existing attacks and strong adaptive attacks.
However, they suffer with a root dataset having less than 100 examples and
proves to be robust only against 60% attackers. AE credit score-based approach
also requires white-box access to client gradients and is robust only up to [%]
attackers. Moat scales with the number of attackers and are robust against n — 1

attackers.

7 Conclusion

The proposed defense Moat is one of the first generic defense strategies against
targeted poisoning attacks in federated learning. It has been extensively run,
tested, and proven effective for Label Flipping, Backdoor, and Hybrid (Dis-
tributed) attacks. It stands robust against varying numbers of adversaries, poi-
soned samples, architectures, datasets, and different attack strategies. It works
under both the IID and non-IID distribution. Moat restricts the attack success
rate to 5-10%, which is significantly lower than existing defense strategies. It
converges with the set of benign clients even in the presence of a majority of
compromised workers (90%).

Acknowledgement. We acknowledge the Ministry of Human Resource Development,
Government of India, for providing fellowship to complete this work.

Moat 53

Appendix

A SHAP Analysis

Figure 12a shows the SHAP attribution results for all 10 labels ag to ag, of
‘pattern’ triggered backdoor model with target label ‘2’. Figure 12b illustrates the
attributions of a honest model. It is pertinent to observe the additive increment
of the blue spectrum of as for the malign model. Figure 12¢ illustrates the SHAP
attribution results in a label flipped attack-ed model for class ‘6’ flipped to ‘27,
where ag produces more red spectrum as compared to the benign model. It
allows the server to detect the presence of backdoor without any knowledge of
embedded trigger since the additive attributions of attacked label in malicious
model and benign model differs for the same reference and baseline data.

’ ~ " - ’
. 'y
" ’ > a fom

S [T

-0.010 B 0005 0010

(a) Malicious Model with Trigger and Target Label ‘2’

o - r
. ¥
f .

LT [HIETTE VT

|
-0.02 -0.01 000 001 002

(b) Benign Model

» - - - -
’ : N
¥ y = w . X ’ 3 .

R0
15

0020 00 2010 a 005 0000 0005

(¢) Malicious Model with ‘6> as ‘2’

Fig.12. SHAP attributions over a zero-vector baseline

Different Combinations of References and Baseline: We have analyzed
different combinations of reference data (R) for learning feature attributions and
the baseline data (B). R can be a subset of real data (real), a single sample with
a mean of a set of real data (mean), and zero-vector data (neutral). We have
analyzed this with an instance of label flip attack where ‘4’ is flipped to ‘9’ and
backdoor attack where trojan is inserted in ‘4’ and the class label changed to
‘9’. A image of ‘4’ (victim_img), ‘9’ (target_-img) and a zero-vector(z_img) image
is used as B in label flip attack. For backdoor attack, a benign sample of ‘4’
(g-img), a triggered sample of ‘4’ (b_img) and a zero-vector(z_img) image is used
as baseline. After getting label-wise attributions (a1, as, ..., a;), we can perform

54 A. Manna et al.

outlier detection by calculating as, Case 1: total influence (Zlf:l ¢; € a;), Case
2: absolute influences (Z{Zl |¢;| € a;), Case 3: positive influences (Z{Zl{@ €
aj|¢; > 0}), and Case 4: negative influences (37_ {¢; € aj|¢; < 0}).

Table1 tabulates the detection capabilities, whether Moat can detect the
victim, target, or both the label for label flipping attack. It can be observed that
when R is real with B set to z_image, it detects both the victim and flipped
label in all 4 cases. The absolute sum of the attribution influences across all R
can detect either victim, attacked, or both labels. In backdoor attack, we check
whether the altered label (‘9’) of backdoor-ed input can be detected or not, as
listed in the Table below.

Table 1. Detection capabilities for various combinations of R and B against Label Flip
(LF) and Backdoor (B) attacks

R B (LF | B) Case 1 (Sum) |Case 2 (Abs) | Case 3 (Pos) | Case 4 (Neg)
(LF | B) (LF | B) (LF | B) (LF | B)
real victim_img | target | v/ victim, target |victim, target | victim, target
g-img | v v 4
real target_img | target | v/ victim, target |victim | v/ victim | v/
b_img | v
real zimg | zimg | victim, target | victim, target |victim | X victim, target
K4 | X | X
mean | victim_img | target | v/ victim, target |victim, target | — | v/
g-img |V (4
mean | target_img | target | v/ victim | v/ victim | v/ victim | v/
b_img
mean |z.img |zimg |— | X victim | X - X victim | X
neutral | victim_img target | v/ target | X target | v/ victim | X
neutral | target_img | target | v/ victim | X victim, target | victim | X
b_img | X

B Results on Distributed Attack

We analysed distributed attack objective by flipping multiple labels on Fashion-
MNIST dataset. Label ‘8 is flipped to ‘3", ‘6’ to ‘2" and ‘9’ to ‘1’. The results
are plotted in Fig. 13a, 13b and 13c and show good convergence for Moat.

0875 0275

0850 £ 0250

ras

7 0825 § 025
g 3

& oo £ o0
foms g ows
§ s

£ 0750 g o0

or2s Bous

60 0100

) 50 [10 P EY @ 50 0 1 2 EY © 0
communication rounds

(a) Accuracy (b) Attack Success Rate (c) Misclassification Rate

Fig. 13. Distributed attack on Fashion-MNIST dataset

Moat 55

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor fed-
erated learning. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 2938-2948. PMLR (2020)

Blanchard, P., Guerraoui, R., Stainer, J., et al.: Machine learning with adversaries:
Byzantine tolerant gradient descent. In: Advances in Neural Information Processing
Systems, pp. 119-129 (2017)

Cao, D., Chang, S., Lin, Z., Liu, G., Sun, D.: Understanding distributed poison-
ing attack in federated learning. In: 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 233-239. IEEE (2019)

Cao, X., Fang, M., Liu, J., Gong, N.Z.: Fltrust: Byzantine-robust federated learning
via trust bootstrapping. arXiv preprint arXiv:2012.13995 (2020)

Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poi-
soning. arXiv preprint arXiv:1808.04866 (2018)

Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)
Kasyap, H., Tripathy, S.: Privacy-preserving decentralized learning framework for
healthcare system. ACM Trans. Multimed. Comput. Commun. Appl. 17(2s), 1-24
(2021)

Li, S., Cheng, Y., Liu, Y., Wang, W., Chen, T.: Abnormal client behavior detection
in federated learning. arXiv preprint arXiv:1910.09933 (2019)

Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, pp. 4765-4774 (2017)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelli-
gence and Statistics, pp. 1273-1282. PMLR (2017)

McMahan, H.B., Moore, E., Ramage, D., y Arcas, B.A.: Federated learning of deep
networks using model averaging. CoRR abs/1602.05629 (2016). http://arxiv.org/
abs/1602.05629

Salem, A., Wen, R., Backes, M., Ma, S., Zhang, Y.: Dynamic backdoor attacks
against machine learning models. arXiv preprint arXiv:2003.03675 (2020)
Takeishi, N., Kawahara, Y.: On anomaly interpretation via shapley values. arXiv
preprint arXiv:2004.04464 (2020)

Wang, G.: Interpret federated learning with shapley values. arXiv preprint
arXiv:1905.04519 (2019)

Wang, G., Dang, C.X., Zhou, Z.: Measure contribution of participants in federated
learning. In: 2019 IEEE International Conference on Big Data (Big Data), pp.
2597-2604. IEEE (2019)

Xie, C., Huang, K., Chen, P.Y., Li, B.: Dba: distributed backdoor attacks against
federated learning. In: International Conference on Learning Representations
(2019)

Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learn-
ing: Towards optimal statistical rates. In: International Conference on Machine
Learning, pp. 5650-5659. PMLR (2018)

Zhao, Y., Chen, J., Zhang, J., Wu, D., Teng, J., Yu, S.: Pdgan: A novel poisoning
defense method in federated learning using generative adversarial network. In:
International Conference on Algorithms and Architectures for Parallel Processing,
pp- 595-609. Springer (2019)

http://arxiv.org/abs/2012.13995
http://arxiv.org/abs/1808.04866
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1910.09933
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/2003.03675
http://arxiv.org/abs/2004.04464
http://arxiv.org/abs/1905.04519

Malware Analysis and Detection

®

Check for
updates

Certified Malware in South Korea:
A Localized Study of Breaches of Trust
in Code-Signing PKI Ecosystem

Bumjun Kwon', Sanghyun Hong?, Yuseok Jeon®, and Doowon Kim*®)
! The Affiliated Institute of ETRI, Daejeon, South Korea
2 Oregon State University, Corvallis, USA
3 Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
4 University of Tennessee, Knoxville, USA
doowonQutk.edu

Abstract. Code-signing PKI ecosystems are vulnerable to abusers. Kim
et al. reported such abuse cases, e.g., malware authors misused the stolen
private keys of the reputable code-signing certificates to sign their mali-
cious programs. This certified malware exploits the chain of the trust
established in the ecosystem and helps an adversary readily bypass secu-
rity mechanisms such as anti-virus engines. Prior work analyzed the large
corpus of certificates collected from the wild to characterize the security
problems. However, this practice was typically performed in a global
perspective and often left the issues that could happen at a local level
behind. Our work revisits the investigations conducted by previous stud-
ies with a local perspective. In particular, we focus on code-signing cer-
tificates issued to South Korean companies. South Korea employs the
code-signing PKI ecosystem with its own regional adaptations; thus, it
is a perfect candidate to make a comparison. To begin with, we build
a data collection pipeline and collect 455 certificates issued for South
Korean companies and are potentially misused. We analyze those cer-
tificates based on three dimensions: (i) abusers, (ii) issuers, and (iii) the
life-cycle of the certificate. We first identify that the strong regulation of
a government can affect the market share of CAs. We also observe that
several problems in certificate revocation: (i) the certificates had issued
by local companies that closed the code-signing business still exist, (ii)
only 6.8% of the abused certificates are revoked, and (iii) eight certifi-
cates are not revoked properly. All of those could lead to extending the
validity of certified malware in the wild. Moreover, we show that the
number of abuse cases is high in South Korea, even though it has a small
population. Our study implies that Korean security practitioners require
immediate attention to code-signing PKI abuse cases to safeguard the
entire ecosystem.

1 Introduction

The establishment of trust in software distributed over the Internet is challenging
due to the nature of software distribution: unknown sources and a high chance

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 59-77, 2021.
https://doi.org/10.1007/978-3-030-86890-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_4

60 B. Kwon et al.

of tampering during distribution. To overcome these challenges and to guarantee
the authenticity and integrity of software, Code-signing PKI is designed and now
becomes a de-facto standard in the software ecosystem. Similar to other PKIs
such as the Web’s PKI, the code-signing PKI also requires Certificate Authorities
(CAs) to attest that a certificate belongs to a legitimate software publisher.
The CAs issue code-signing certificates for publishers, after the vetting process.
Software publishers sign their software with their issued certificates to warrant
the authenticity and the integrity of the software. In turn, clients can establish
trust in the signed software by verifying the digital code-signing signature. They
can know not only the identity of the publisher but also that the software has
not been altered during the distribution.

A security rule of thumb for a user is to only execute or install software that
contains valid signatures from reputable software publishers with whom she can
establish trust. However, anecdotal evidence has shown that the security rule can-
not be guaranteed since software properly signed by legitimate publishers can be
severe malware [10,24,31]. For example, the Stuxnet worm included device drivers
that had been properly signed with the private keys stolen from two Taiwanese
semiconductor companies, located in close proximity [10]. The fact is that the
malicious usage of these stolen private keys helps remain undetected for a longer
period than the other malware [10]. Furthermore, the abuse of code-signing is also
prevalent among Potentially Unwanted Programs (PUPs) [5,16,17,32].

This observation has sparked an interest in the real-world breaches of trust
in the code-signing ecosystem. In particular, Kim et al. [13,14] conducted a
large-scale analysis of code-signing abuse cases in the Windows code-signing PKI
ecosystem. However, these studies were mostly conducted from a global perspec-
tive; hence, they often left the breaches that would happen in sub-populations
overlooked. Local software publishers may mainly target local customers; so in
this case, the local publishers should have regional adaptations in their code-
signing ecosystem, considering the environmental factors of their countries or
regions—e.g., because of law'. For instance, regulations may state the qualifica-
tion of a CA or force how the PKI should be operating. Thus, the characteristics
of abuse cases can be different from the previous studies. Moreover, the analy-
sis tools in prior work focus on emphasizing the most prevalent findings in the
collected datasets.

In this paper, we tackle the prior emphasis on the global perspective and
make a first step towards understanding the breach cases in the sub-populations.
Specifically, we ask: What characteristics can we find from an analysis of a spe-
cific country? To answer this question, we give an eye to the Windows code-
signing PKI in South Korea. South Korea is known to have its unique PKI
ecosystem, developed alongside the digital signature act (DSA), which was estab-
lished in 1999 [6,15]. DSA states that only a signature is valid if it is endorsed
by an accredited CA. South Korean users are also known to be exposed to vari-
ous “security software” necessary for web activities where identity verification is

! PKI in Asia — Case Study and Recommendations: https://fidoalliance.org/wp-
content /uploads/FIDO-UAF-and-PKI-in- Asia- White- Paper.pdf.

https://fidoalliance.org/wp-content/uploads/FIDO-UAF-and-PKI-in-Asia-White-Paper.pdf
https://fidoalliance.org/wp-content/uploads/FIDO-UAF-and-PKI-in-Asia-White-Paper.pdf

Certified Malware in South Korea 61

required e.g., banking, e-commerce [28,29]. The electronic financial transaction
act, which became active in 2007, has fostered such an environment. Therefore,
we may expect to see unique characteristics reflected in the code-signing PKI
ecosystem as well. Nevertheless, little is known about the regional differences;
the same applies to the Korean code-signing PKI abuse.

We design a system, which extracts code-signing certificates and identifies
Korean certificates that are likely compromised. We utilize information from the
certificate and the scanning reports of the binary for identification. We examine
the characteristics of Korean signed malicious samples and compromised certifi-
cates. Specifically, we investigate how prevalent code-signing abuse is, who are
the abusers, who issue the certificates, and whether the compromised certificates
are adequately revoked or not.

We found code-signing abuse is prevalent in Korea for its population. The
number of signed malicious samples accounted for 1.8% of the total samples,
whereas the population is nearly 1% among the global internet users. We also
find the unique distribution of the CAs. Thawte dominates the population and a
local CA Yessign is observed. Yessign is out of the code-signing business and that
could be a potential problem in revocation. Such characteristics might be due to
the web environment in Korea, cultivated by its regional PKI laws. Besides, we
observe revocation is not done properly in Korea as well. Only 6.8% of the cer-
tificates are revoked, and eight certificates have set revocation dates ineffectively.
It endangers users of the signed malicious binaries.

Contributions. In summary, we make the following contributions:

— We design a system that collects the malicious programs and compromised
certificates from South Korea. We identified 455 certificates that are issued
for South Korean companies and are potentially misused by malware authors.

— We highlight the abuse cases in the code-signing ecosystem in South Korea.
Using the observations in the previous studies as our baseline, we report the
commonalities and differences in our findings.

— Using those differences, we analyze and identify the distinct characteristics
of Korean compromised certificates that are fostered by the regional laws.

2 Background and Motivation

In this section, we briefly overview the code-signing PKI; especially, the code-
signing process, the distinct characteristic of the code-singing PKI that is mainly
different from the Web’s PKI, and revocation that can cause extra security
threats. We then highlight our motivation why we need to study the unique
characteristics of the Korean code-signing PKI ecosystem.

2.1 Overview of the Code-Signing PKI

Code-signing is a security technology that utilizes the digital signature mecha-
nism. It helps authenticate the publisher of a software program and guarantees
the software’s integrity after signing. It requires creating a digital signature using

62 B. Kwon et al.

the publisher’s private key (i.e., signing), and then embed the digital signature into
the software. In turn, for clients, when verifying the signed software, they need the
public key associated with the publisher’s private key to verify the signature.

The code-signing also relies on Public Key Infrastructure (PKI), called the
Code-signing PKI. As the nature of the Internet, clients cannot trust any pub-
lic key transferred over the Internet that claims to be legitimate. It is because
public keys do not have any information about the ownership. To mend this
problem, third-parties, called Certificate Authorities (CAs), attest that a public
key belongs to a particular owner (in this case, a software publisher or developer)
who possesses the associated private key. We call this endorsed key a certificate.
As long as we trust the CAs, we trust all certificates issued by the CAs except
for revoked certificates. This chain of trust starts from the end entity (i.e., pub-
lisher) to the root certificate pre-installed in client-side systems such as operating
systems or web browsers.

2.2 Code-Signing Process

Like the Web’s PKI (e.g., TLS), a software publisher first applies for code-
signing certificates to CAs with the applicant’s public key. After verifying the
publisher’s identity, the CA issues a code-signing certificate based on the X.509
v3 certificate standard [8]. The software publisher uses its private key associated
with the issued certificate to sign its software. Specifically, in the signing process,
the hash value of the software is first computed, and then, the hash value is
digitally signed with the publisher’s private key. Finally, the digital signature
and the chain of the certificates are bundled with the original software. This
whole process is illustrated in Fig. 5. In turn, the client has to verify the signature
with the public key embedded in the certificate when encountering the signed
software. The verification process allows clients to recognize any modifications
of the program when verifying the signed software.

Trust Timestamping. The distinct difference between the Web’s PKI and
the code-signing PKI is trust timestamping. The trust timestamping guarantees
when a binary file is signed, and if a binary is signed before the certificate’s expi-
ration date, the validity extends after the certificate expires, which is different
from the Web’s PKI where the validity of a domain is no longer ensured after
the certificate expires.

As illustrated in Fig.5, when a binary file is signed, the hash value of the
binary file is sent to a Time Stamping Authority (TSA), and the TSA issues a
trusted timestamp. The TSA signs the timestamp and the hash value with its
certificate. This so-called trust timestamp is sent back to the publisher. Then
the software publisher embeds the trust-timestamp signature and the TSA’s
certificate into the signed software.

2.3 Revocation

Another important role for CAs besides issuing certificates is to revoke the com-
promised certificates that they have issued. There are various reasons for CAs

Certified Malware in South Korea 63

to revoke their issued certificates; (1) when the private key associated with a
certificate is stolen and used to sign malware samples [13], (2) when a weak
cryptographic key is used to generate a certificate [33], (3) when CAs are hacked
and compromised, and then issue certificates for adversaries [24], and (4) when
a certificate is issued under the name of a shell company or through imperson-
ations, etc. [13].

There are two primitive ways for CAs to disseminate the revocation status
information; (1) Certificate Revocation List (CRL) and (2) Online Certificate
Status Protocol (OCSP). In CRL, clients need to download the revocation lists
periodically and to check if the certificate is on the lists. If the certificate’s serial
number is on the list, clients can consider the certificate is revoked and no longer
valid. OCSP is the successor to CRL, and it allows clients to query a CA for the
revocation status of a certain certificate rather than downloading a bulk of the
serial numbers using CRLs. Both CRLs and OCSP responses are signed with
CAs’ certificates to guarantee their integrity.

Erroneous Revocation Data Setting. When revoking certificates, CAs must
set the effective revocation date (c.f., Sect.2.3). Kim et al. [14] have examined
the security problems of the current code-signing revocations. If CAs erroneously
set an effective revocation date, all signed programs (including malware) signed
before the effective revocation date can remain valid even though the certificate
is revoked. It is due to the trust timestamp mechanism.

2.4 Motivation

Code-Signing Abuse. Recent measurement studies [5,13,14,16-18] have
reported that adversaries have attempted to compromise the code-signing PKI
for their malicious purpose; their main purposes are 1) to efficiently distribute
their malware and 2) to lure clients into installing their malware. Attackers can
make a bold move of stealing the private keys of benign software companies
and use the keys to sign their malware, which makes a much powerful attack.
The signed malware now looks like a legitimate product from a benign software
company, which misleads clients to believe the signed malware is safe to execute.
Furthermore, adversaries incorporate shell companies and use this fake company
information to get issued code-signing certificates legally and legitimately from
the code-signing CAs.

Motivation for a Regional Study. Previous measurement studies have been
conducted from a global perspective considering software publishers and CA as
global entities. However, this global perspective analysis can lead to misunder-
standing or neglecting local characteristics because it mainly focuses on global-
scale cases. In other words, the code-signing abuse cases may vary depending on
the locality of the attackers and their targets. Thus, to enhance the security of
the code-signing PKI ecosystem, we need to understand 1) the local character-
istics of the code-signing abuse cases and 2) adversaries who compromise local
software publishers targeting local victims. Moreover, in terms of data collection,

64 B. Kwon et al.

the previous methods and results may often be biased to the majority population
and a limited number of countries. Thus, a regional target attack campaign with
a small number of malware samples could have been neglected or overlooked.

South Korean Web Environment. We focus on South Korea for this study.
South Korea has a unique environment fostered by the regulations. Two acts
played as the dominant factor. The digital signature act (DSA) established in
1999 has restricted the “valid” form of digital signatures [6,15]. It only con-
cedes signatures issued from “accredited CA”s to be legitimate. There are six
accredited CAs, including KFTC, KICA, Koscom, KECA, KTD, and Initech [4].
Among them, KFTC once served as a code-signing CA under the name of
“yessign” (https://www.yessign.or.kr/). KICA and KECA act as a distributor
of the global code-signing CA. KICA (https://www.kicassl.com/) is a relay of
Comodo; KECA (https://cert.crosscert.com/) offers Digicert and Thawte prod-
ucts. Next, the electronic financial transaction act, which became active in 2007,
is known as the main cause of the notorious Korean web environment. Due to
this act, Korean users have been forced to install various “security software”
such as keylogger detection for web activities [28,29]. The flood of these manda-
tory “legitimate” software, which are digitally signed, may have introduced side
effects that incapacitate the defense mechanism of code-signing. For instance, a
survey was conducted on Korean adware victims [1], which reported that only
2.8% consciously clicked “allow install” the adware. Moreover, anecdotes [2,3]
show that South Korean software companies have become an attractive target
for adversaries. Specifically, many South Korean software companies were stolen
the private keys of their code-signing certificates, and the stolen private keys
were misused to sign malware. Therefore, we believe South Korea is an attrac-
tive candidate for studying the local characteristics of the code-signing PKI, and
understanding such characteristics may help improve the security of the entire
code-signing PKI ecosystem.

3 Data Collection

To better understand the landscape of code-signing abuse in South Korea, we
first need to capture signed malware and PUPs in the wild and extract code-
signing certificates. From the code-signing certificates, we need to obtain infor-
mation such as publisher names (common names), locality addresses, issue dates,
expiration dates, issuers (CAs), and more. However, due to the nature of soft-
ware distribution, it is significantly challenging to collect all signed malicious
samples and their code-signing certificates in the wild. Whereas in the Web’s
PKI, a comprehensive list of TLS certificates can be readily collected by scan-
ning the entire IPv4 addresses with a network scanner (e.g., ZMap [9]). This
is because signed malware samples can be distributed through a pre-installed
updater/installer tool; or others can be distributed from external storage or
directly from websites. To overcome these challenges, we present a new collec-
tion pipeline for Korean code-signing certificates that are likely compromised,
as illustrated in Fig. 1.

https://www.yessign.or.kr/
https://www.kicassl.com/
https://cert.crosscert.com/

Certified Malware in South Korea 65

Windows
Extract R e Sigcheck
Cert|f|cates / SignTool
Collect only ﬁo
PE flles >
AII certlflcates Re
Extract
only KR
Data source
(VirusShare) Only PE files

Linux machine Valid certificates

\@V

Fig.1. The overview of our Korean compromised certificates collection
pipeline. (1) Malicious files are collected from VirusShare, (2) filter out non-PE files,
(3) extract code signing certificates from PE files, (4) validate PE files and certificates
using the Windows SigCheck and SignTool, and (5) extract only Korean certificates.

3.1 Data Source

We utilize VirusShare (http://virusshare.com), the large corpus of malware, to
collect signed malware and to extract Korean compromised code signing cer-
tificates from the corpus. We also utilize VirusTotal (http://virustotal.com) to
label the collected signed malware samples.

VirusShare and VirusTotal. We collect malicious binaries from VirusShare
that is one of the most extensive sets of malware samples available to the public.
Since the data sets are freely downloadable, many security research works have
utilized them. The malicious samples consist of not only Windows Portable Exe-
cutable (PE) files, but also HTML files including malicious JavaScript code. We
sample 57 tar files (out of 312 tar files) from VirusShare. Each tar file contains
either 131,072 or 65,536 malware samples. We collect a total of 5,934,399 mali-
cious files.

To classify the malicious samples, we use VirusTotal. VirusTotal is a Web
service where users can freely upload executable samples (including malware
and benign samples) and analyze the samples to classify with up to 63 different
Anti-Virus (AV) engines. The service provides a report containing the number
of AV engines that detect the samples as malicious and the corresponding labels.
In our work, we utilize that information to classify the collected samples (c.f.,
Sect. 3.3).

3.2 System Overview

In this section, we describe our new system. As presented in Fig. 1, the new
system is a pipeline for identifying digitally signed PE files and extracting com-
promised Korean code-signing certificates.

Identifying PE Files. We first filter out non-PE files from the total of
5,934,399 malicious files (out of 57 VirusShare tar files) since the files include not
only PE files, but also JavaScript code. The 5,934,399 samples are fed into our

http://virusshare.com
http://virustotal.com

66 B. Kwon et al.

system shown in Fig. 1 to exclude non-PE files and non-signed PE files. When a
PE file is signed, the size of the IMAGE_DIRECTORY_ENTRY _SECURITY field is
non-zero. 525,071 digitally signed PE files remain after this step, which accounts
for 8.8% of the original data set. We now move next to extract code-signing
certificates from signed PE files.

Extracting Certificates. We utilize the Python PE module? to locate the
PKCS #7 SignedData structure that contains code-signing certificates and to
dump the structure into a file encoded in Distinguished Encoding Rules (DER).
Of 525,071 signed PE files, only 495,124 PKCS #7 files are extracted due to
parsing errors. Then, we extract all code-signing certificates (including TSA
certificates and code-signing intermediate certificates) from the DER-encoded
PKCS #7 files, and then we filter out non-leaf code signing certificates using
the keyword of “CodeSigning” in the extendedKeyUsage extension field and the
“Basic Constraints” field.

Valid Korean Certificates. The last part is where we obtain the set of Korean
certificates that are valid. We can specify the certificates belonging to a particular
country by looking at the country code in the leaf certificate’s subject field. If the
country code of a leaf certificate is “KR,” we know that the certificate is issued
for a Korean publisher. Using this concise but effective method, we identify
844 certificates issued to Korean identities and 8,815 malicious PE files signed
with those certificates. The number of PE files accounts for 1.8% of the initial
data set.

Now we explain the verification process. Only valid certificates remain after
this step. We first verify the digital signatures and code-signing certificates
embedded in PE files using both SignTool®> and SigCheck? tools in the Win-
dows Sever 2016. SignTool returns error code with a message for the scanned
certificate. Table4 enumerates the error code returned by SignTool and the
associated messages. We consider the three messages of “Successfully Verified,”
“0x800B0101,” and “0x800B010C” valid since the two error code, “0x800B0101”
and “0x800B010C” are returned only when PE samples have been properly
signed. Specifically, 0z800B0101 returns when a PE file has not been trust-
timestamped and its certificate expires, and when a certificate is revoked, 0x800B
010C returns. Detailed information is described in Table4. In the end, we have
783 valid Korean certificates and 8,093 PE files signed with the valid Korean
certificates as described in Table 5(left). In other words, 94.2% of signed samples
have a proper PKCS#7 structure.

3.3 Binary Labeling

Samples from VirusShare may contain false positives. Here, we describe the line
of efforts we made to reduce the false positives. First, we re-scan the malicious

2 https://github.com/erocarrera/pefile.
3 https://docs.microsoft.com/en-us/windows/desktop/seccrypto/signtool.
4 https://docs.microsoft.com/en-us/sysinternals /downloads /sigcheck.

https://github.com/erocarrera/pefile
https://docs.microsoft.com/en-us/windows/desktop/seccrypto/signtool
https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck

Certified Malware in South Korea 67

samples using VirusTotal. It is known that AV engines’ labels may change over
time as more evidence is gathered. Thus, some samples may be re-labeled as
benign. We observe 234 PE samples among the malicious samples signed with
Korean code-signing certificates are no longer malicious after the re-scan.

Next, we set a threshold to filter out samples with less confidence. For each
signed PE sample, we define ¢,,,4; as the number of AV engines in VirusTotal
that label the sample as malware. We consider a signed PE file as malware
when ¢,,q; > 10. For example, ¢;,q; > 10 means that about 15% of AV engines
(out of more than 60 AV engines in VirusTotal) detect the samples as malware.
This approach is presented in prior works [13,19]. After this step, we now have
455 valid Korean certificates used to sign malicious samples detected by more
than 10 AV engines in VirusTotal.

As a final step, we utilize a malware labeling tool, called AVClass [30] to label
our malicious samples and classify them into malware and Potential Unwanted
Program (PUP).

4 Code-Signing PKI Abuse in Korea

Table 5(right) summarizes the breakdown of PE malicious files, signed PE mali-
cious files, Korean compromised certificates, and Korean malicious PE files
signed with the Korean certificates. With this data, we investigate the char-
acteristics of code-signing PKI and the abuse within Korea. Here, we try to
answer the following research questions.

1. QI1: How prevalent is code-signing abuse in Korea?

2. Q2. Who abuses the code-signing in Korea?

3. Q3: Who issued the certificate?

4. Q4: Are the certificates issued with safe cryptographic guarantees?
5. Q5: How long do the abusive certificates survive in Korea?

The final goal for these questions is to ask the main research question we raised
in the introduction: Q: What characteristics can we find from an analysis of a
specific country?

4.1 Abusers

We answer a couple of questions Q1. How prevalent is code-signing abuse in
Korea? and Q2. Who abuses the code-signing in Korea? in this section. We ini-
tiate with simple statistics to answer the first question. For the second question,
we investigate the problem from two different angles 1) the malicious sample
family based on their labels and 2) the publisher’s information stated on the
certificate.

Prevalence. As presented in Table5(right), signed malicious binaries with
Korean certificates are 844 in numbers. It accounts for 1.8% of the data set,
which is a global collection. The Korean internet population is about 5 million,

68 B. Kwon et al.

Table 1. Top 10 Malware/PUP label breakdown. SINGLETON is labeled when
AVClLass is unable to find a family name for a malware sample such as generics. On
average, a Korean certificate is used to sign 2.5 different family of malicious samples.

Bold malware families are considered as trojan or severe threats.

Family label PE Certificate
Kraddare 2,850 (41.70%) | 198 (43.52%)
Onescan 798 (11.68%) | 50 (10.99%)
SINGLETON* | 418 (6.12%) 191 (41.98%)
Sidetab 208 (4.23%) |5 (1.10%)
Hotelip 177 (2.59%) | 6 (1.32%)
Openshopper | 169 (2.47%) 7 (1.54%)
Delf 158 (2.31%) | 32 (7.03%)
Viruscure 243 (3.23%) 36 (6.79%)
Adkor 135 (1.98%) 63 (13.85%)
Hebogo 121 (1.77%) 7 (1.54%)
Total 6,835 (100%) | 1,123 (246.81%)

Table 2. Top 10 common name, issuer, and region breakdown. N/A in region
means that neither province nor locality name information are specified.

Common Name PE Cert. Issuer Cert. Region Cert.
cloudweb Inc 1,040 (15.22%) 3 (0.66%) Thawte 336 (73.85%) Seoul 267 (58.68%)
nbiz Ltd. 702 (10.27%) 5 (1.10%) VeriSign 74 (16.26%) Busan 63 (13.85%)
UCF 489 (7.15%) 4 (0.88%) YesSign 19 (4.18%) Gyeonggi-do 63 (13.85%)
NKsolution Corp. 358 (5.24%) 5 (1.10%) eBiz Networks 10 (2.20%) N/A 20 (4.40%)
Akorea 306 (4.48%) 5 (1.10%) Symantec 7 (1.54%) Incheon 11 (2.42%)
SearchLink Co., Ltd. 263 (3.85%) 3 (0.66%) GlobalSign 6 (1.32%) Gyeongsangbuk-do 7 (1.54%)
TGSM Inc. 194 (2.84%) 5 (1.10%) COMODO 3 (0.66%) Dacgu 7 (1.54%)
JE communication 166 (2.43%) 4 (0.88%) Gyeongsangnam-do 6 (1.32%)
A a0 161 (2.36%) 2 (0.44%) Jeollanam-do 2 (0.44%)
OPEN.co., Itd 158 (2.31%) 4 (0.88%) Ulsan 2 (0.44%)
Total 6,835 (100%) 455 (100%) Total 455 (100%) Total 455 (100%)

which occupies about 1% of all internet users worldwide®. Compared to its popu-
lation, code-signing abuse is quite prevalent in Korea. It may imply that Koreans
tend to be vulnerable to code-signing abuse and attackers are exploiting it. Such
a tendency might have been formed due to its web usability environment, as
mentioned in Subsect. 2.4.

Malicious Sample Family. To better understand what kind of malware family
used Korean code-signing certificates, we utilize the VirusTotal reports of our
collected malicious samples and AVClass [30] to label the samples. We identify
278 different malicious sample families, and we break down the top ten malware

5 Internet world stats: https://www.internetworldstats.com /stats3.htm.

https://www.internetworldstats.com/stats3.htm

Certified Malware in South Korea 69

and PUP labels as described in Table 1. The SINGLETON label indicates that
AVClass is unable to classify malicious samples.

About 41% malicious samples signed with Korean certificates is kraddare. This
family is considered PUP/PUA, which redirects to unwanted homepages without
user action, changes the browser settings, shows unwanted advertisements using
pup-ups [11]. Microsoft Defender Antivirus [22] classifies the malicious sample
as a “severe” threat and removes the sample as encountered. The following mal-
ware family is onescan. The family is considered as a “severe” threat by Windows
Defender Antivirus, and called “fakeAV [23].” The malware pretends to scan vic-
tims’ computers, and reports to them that their computers have been infected by
any malware, and then asks them to pay for cleaning up the reported malware.
However, the victims’ computers are not infected by any malware, and nothing
is actually done by the malware, but victims pay for it. Delf [21] is a trojan that
redirects Web traffic, downloads malicious programs, etc. On average, a Korean
certificate is misused to sign 2.5 different families of malware/PUP samples. It
would imply either 1) a couple of malware groups share a code-signing certificate
to sign their malware or 2) a malware group produces a couple of malware families.
However, we have little evidence to specify which.

Publisher. In Windows, when executing/installing a signed PE file, a client is
prompted a request that shows the publisher name of the PE file by the system.
Only after the client accepts the request, the signed PE files will be executed.
Details about the publishers’ information are available when clients look at the
certificates since certificates include publishers’ information such as the com-
pany/individual name, physical address (country, province, street address, and
zip code), etc.

We start the investigation from the publisher’s name stated in the Common
Name (OID: 2.5.4.3) field. The common name is a required field in Subject of
the X.509 v3 standard. It is used to identify the legal name of a publisher.
The Legal names can be specified in the field only when verified by CAs using
notarized documents or legal documents from attorneys. Unlike TLS, where the
common name should have a domain name to be verified, in the code-signing
PKI, the common name is usually an organization’s name such as Google Inc.
and Microsoft Corporation. We observe 330 common names in 455 Korean cer-
tificates; on average, a company has 1.4 different code-signing certificates to sign
malicious samples. The top 10 publishers are enumerated in Table 2. cloudweb
Inc has the largest signed malicious samples in our data set. The publisher had
three different certificates to sign 1,040 malicious samples.

Furthermore, we could find some reputable Korean companies within the
certificates misused to sign malicious samples. We believe that their private keys
associated with the certificates were likely stolen and used to sign malicious sam-
ples. For example, the certificate of a Korean software company that develops
not only software tools but also an AV product was misused to sign malware,
called “plugx.” The malware is a kind of Remote Access Trojan (RAT). For-
tunately, the certificate was explicitly revoked, and the malware is no longer
valid. Moreover, an English education company located in the Gangnam district

70 B. Kwon et al.

released a program with a Trojan downloader malware payload. The malware
was distributed at a legitimate website. Since it is a reputable and legitimate
company, we believe that the development infrastructures were compromised,
and the payload was injected into the legitimate program.

Next, we take a look at where these publishers are located. We use the
Province filed (OID: 2.5.4.8) to locate the regions of the publishers. According
to the minimum requirements [7], the Province field is required to be specified
when the Locality Name field (OID: 2.5.4.7) is absent. However, we observe that
20 certificates issued by YesSign do not include any information in both the
Province field and the Locality Name field; YesSign does not obey the require-
ment. Specifically, YesSign specifies their CA name on the Organization Name
filed (OID: 2.5.4.10) rather than the publisher’s organization name. Most mali-
cious publishers (58.7%) are located in Seoul as depicted in Table2. We also
manually investigate certificates located in a small, rural, agricultural area where
IT companies are less likely to exist. We observe that two certificates located
in a small agricultural area are issued to non-existing IT companies. The same
name of the IT companies exists, but they are located in Seoul, not the small
rural area. Moreover, the two certificates were issued on the same day, and the
certificates were misused to sign the same malicious sample families; onescan,
kraddare, and jaik. Therefore, we believe that the two publishers are related to
each other, even though they use different publisher names. This goes along with
our findings from analyzing the malware families.

4.2 Issuer

In this section, we answer the questions: Q2: Who issued the certificate? and
Q3: Are the certificates issued with safe cryptographic gquarantees?.

Certificate Authority (CA). CAs issue code-signing certificates to software
publishers (e.g., software developers). In the certificates, CAs specify their infor-
mation such as the country, address, name of the issuer CAs. Similar to the
Subject field, the issuer information is located in the Issuer field.

We observe only seven CAs, and certificates issued by Thawte are the major-
ity (73.8%), which contradicts the finding [13] that VeriSign dominates the code
signing certificate market share. We believe it is because Thawte is distributed by
one of the accredited CAs in Korea, as we described in Subsect. 2.4. Also, Thawte
allows publisher names with Korean alphabets®, which may have boosted the
market share. In addition, we find “YesSign”” in our data set, a CA which is
hardly observed in prior works [13,14]. YesSign is one of the largest Korean CAs,
and is operated by Korea Telecommunications and Clearings Institute (KFTC).
The CA no longer issues code-signing certificates, but it still provides the OCSP
and TSA service. However, as they stopped the business, there is a chance the
revocation checking services may shut down in the future, which may make users
vulnerable.

6 Provided by crosscert: https://www.crosscert.com/symantec/02_1_04.jsp.
" https://www.yessign.or.kr.

https://www.crosscert.com/symantec/02_1_04.jsp
https://www.yessign.or.kr

Certified Malware in South Korea 71

Table 3. Signature and public key algorithm breakdown.

Signature algorithm | Count Public key algorithm | Count
MD5 With RSA 6 (1.31%) | RSA 455 (100%)
SHA1 With RSA 413 (90.77%) | DSA 0 (0%)
SHA256 With RSA |36 (7.91%) |ECDSA 0 (0%)
Total 455 (100%) | Total 455 (100%)

Cryptography Algorithm. It is important to use strong cryptography algo-
rithms for the certificates. Certificates with a weak algorithm may be utilized
for collision attacks. It is critical in code-signing as an attacker could perform
collision attacks on time-stamped binary samples with weak algorithms. MD5
and SHA1 are weak hash algorithms, vulnerable to collision attacks. We have
observed a severe security threat where Flame malware exploited an unknown
chosen prefix collision attack against the MD5 hash algorithm [31]. Google and
CWI Amsterdam demonstrated that two different files could have the same
SHAT1 hash [12]. Although the SHA1 collision attack against certificates is not
yet reported, it could be exploited to create fake certificates in the near future.
Therefore, Microsoft deprecates MD5 and SHA1 hash algorithms in 2013 and
2015, respectively [20,26]. Still, CAs should be aware of this fact and move on
to SHA256.

We examine what cryptography algorithms are used for signature and public
keys in Korean certificates. As depicted in Table 3, all certificates in our data
set use RSA for public key generation. For the signature algorithm, the majority
(around 91%) use SHA1. We can also see the use of MD5 in a few certificates
(6, 1.31%). It implies that weak algorithms are still prevalent in Korea, which
has the potential to lead to serious security problems.

4.3 Certificate Life-Cycle

A life cycle of a certificate starts from its issue date and ends at its expiration
date. In case it is compromised, a revocation is conducted to invalidate the
certificate. However, we know that some signed binaries may survive even after
their expiration and revocation due to the trusted timestamp. To answer the next
research question Q4: How long do the abusive certificates survive in Korea?, we
start the examination from the validity period of the Korean certificates. Then we
check how prevalent trust timestamping is among the signed malicious binaries.
In the end, we investigate if the revocation is performed effectively for those
certificates, invalidating all the signed malware.

Validity Period. Each certificate has two fields, notBefore and notAfter for
validity period; notBefore is an issue date and notAfter is an expiration date. In
other words, a certificate is only valid between notBefore and notAfter, inclusive.
As shown in Fig.2, most certificates (69.43%) were issued between 2009 and
2012. It does not indicate that the signed malware was collected between the

72 B. Kwon et al.

Number of Certificates

Issue Year

Fig. 2. Issue year. Around 70% of
certificates in our data set were issued
between 2009 and 2012.

Number of Certificates

| =

0 1 2 3
Validity Period (number of years)

Fig. 3. Validity year. The majority
is one-year-valid certificates since CAs
usually issue one-year-valid certificates.

periods because the signed samples are still being valid even seven or eight years
have passed due to the trust timestamping.

Figure 3 shows that most certificates (70.57%) are only valid for one year
as expected since CAs typically issue one-year-valid code signing certificates.
However, interestingly, the validity period of four certificates is less than one
year. Two certificates issued by Thawte are valid only for three and nine months;
one certificate done by VeriSign is valid only for 11 months, and a certificate
issued by YesSign is valid for four months. Unlike the TLS certificates, because
the code signing PKI has the trust timestamping, signed binary samples can be
valid even after their certificate expiration date as long as the samples are trust
timestamped. Therefore, expiration dates do not count as much as the Web’s
PKI. We do not observe that certificates are valid for more than three years.

Trust Timestamp (Signing Date). The distinct difference between the
Web’s PKI and the code signing PKI is the trust timestamping mechanism
(c.f., Sect.2.2). We measure how many Korean malicious samples are trust-
timestamped. Of 8,815 Korean malicious signed PE samples, we observe that
6,190 samples (70.2%) are trust-timestamped. Only when we consider the valid
malicious samples (¢pqr > 10), 4,625 samples (67.7%, out of 6,835) contain the
signing date (trusted timestamps). It means that most malicious samples use
trust timestamping to extend their validation period beyond their certificate’s
expiration date. We also examine when the malicious samples are signed; we
utilize issue dates and expiration dates. More than 50% of malicious samples
are signed about 200 days before their expiration dates, as shown in Fig.4. It
indicates that most malicious samples are consistently signed with compromised
certificates during the validity periods.

Revocation Status. All certificates we have identified in the paper are mis-
used to sign malicious binary samples. Therefore, they should be revoked. We
check whether or not the certificates in our data set are revoked using CRLs.
We observed three security threats that let signed malware alive. First, only
31 (6.81%) of 455 Korean certificates are explicitly revoked. It implies that mal-

Certified Malware in South Korea 73

//,7[—
1 /
08| : S
4 //
e
w i
Lo o6 v
(&} 4 /
/
0.4 [l
/»/ —— Expiration date - Signing date
/S —- Signing date - Issue date
0.2 /
1/
o T T T T T T T T T
200 400 600 800 1000

Dates

Fig. 4. The difference in days between signing dates and issue dates, and between
expiration dates and signing dates.

ware signed with not-revoked certificates may remain valid even after the certifi-
cate’s expiration date, due to the trust timestamping mechanism (c.f., Sect. 2.2).

Second, we encountered CRLs that are unreachable. Two reasons interfered
with accessing and fetching the CRLs; (1) the CRL domain was taken by a
domain re-seller, and (2) the CRL file was moved/removed, returning a 404
error. Those findings are in line with prior work [14]. Clients exposed to these
certificates become vulnerable as they cannot check the revocation status of
these certificates.

Lastly, several certificates were not effectively revoked. Signed malware can
continue to be valid, although its certificate is revoked if the revocation date is
set erroneously (c.f., Sect.2.3). We measure if Korean signed malicious samples
are still valid as CAs erroneously set the revocation dates after the samples’
signing dates. We find that 321 malicious samples are still valid, and eight Korean
certificates are used to sign the samples. The average difference between the
signing date and the revocation date is 6,013.01h (250.51 days); the shortest
difference is 11.04h (0.46 days), and the longest one is 25,389.82h (1,057.91
days, 2.9 years).

Although the certificates are mostly issued to be valid for a year, several
signed malware remain a threat for an extended period due to time-stamping
and the clumsy set of revocation dates.

5 Related Work

Compared to the Web’s PKI, little research has been conducted on the code sign-
ing PKI. The first attempt [27] was done in 2010 by F-Secure. In the attempt,
they introduced the ways of abusing Microsoft Authenticode [25]. However, the
work was presentation slides focusing on introducing new threat models rather
than a research paper. In 2015, Kotzias et al. [17] examined 356,000 digitally
signed samples collected between 2006 and 2015. They observed that most of
the collected signed samples were Potentially Unwanted Programs (PUP), while
signed malware was relatively uncommon in their corpus. Kim et al. presented
new threat models that highlight the breaches of trust in the code signing PKI.
Kim et al. also identified the security problems of the revocation mechanisms cur-

74 B. Kwon et al.

rently deployed in the wild. However, those studies are conducted from a global
perspective while we measure Korean compromised certificates’ characteristics.

6 Conclusion

We investigate the characteristics of code-signing abuse in South Korea. We
design a system that extracts abusive Korean code-signing certificates with a sim-
ple but effective method. A couple of findings were related to its unique web envi-
ronment fostered by regulations. South Korea has its own government-accredited
CAs, and these CAs affect the certificate landscape. We observe Thawte, re-selled
by one of the accredited CAs, dominating the population. Another accredited
CA even acted as a code-signing CA. However, the CA is no longer in busi-
ness, which is a potential threat as they might stop the revocation service. We
observed that code-signing abuse is quite prevalent in Korea, and it might be
due to the exposure of mandatory installation for using the web. Besides, we
also found a common vulnerability reported in prior works. Only 6.8% certifi-
cates have been revoked, and eight certificates of them have erroneous effective
revocation dates, which extends the validity of signed malicious samples.

Acknowledgements. We thank the anonymous referees for their constructive feed-
back. This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education
(2021R1F 1A1049822). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the sponsor.

A Appendix

Table 4. SignTool error code & message.

Validation | Error code Message

Valid N/A Successfully verified
0x800B0101 Expired certificates
0x800B010C Revoked

Invalid 0x800B0O10A Not a trusted root CA
0x80096010 Signature does not match the file
Terminated in a root cert | Not trusted by the trust provider
No signature found No signature found

Certified Malware in South Korea 75

Table 5. Breakdowns. Error code of Korean malicious PE files (left), PE files and
certificates (right).

Validation | Error code KR malware Type |PE & Cert. Number

Valid Successfully Verified 5,714 Total | All malicious sample 5,934,399
0x800B0101 558 PE file 3,240,176
0x800B010C 1,821 Signed PE file 525,071
Valid total number 8,093 PKCS #7 495,124

Invalid 0x800B010A 405 Korean | Malicious signed PE 8,815
0x80096010 94 Malicious cert. 844
Terminated in a root cert. 24 Valid malicious signed PE 8,093
No signature found 199 Valid malicious cert. 783
Invalid total number 722 Valid malicious signed PE (¢nar > 10) 6,835

Total number ‘ 8.815 Valid malicious cert. (¢mar > 10) 455

CAs

0o 4
idd T e
(5) TSA

Publishers Clients

Fig. 5. Code-signing process. (1) A publisher applies for a code-signing certificate
to a code-signing CA with her/his identifications such as government-issued photo IDs,
(2) After vetting, the CA issues a code-signing certificate to the publisher, (3) Using the
SignTool (a signing tool provided by Microsoft), the software publisher signs a binary
sample with the certificate, (4) when a TimeStamp Authority (TSA) is specified for
timestamping (c.f., Sect. 2.2), the signing tool sends the hash value of the binary sample
to the TSA server, (5) The TSA server issues the timestamp and signs the timestamp
with the TSA’s private key, and send them back to the signing tool, (6) The signing tool
finally embeds the code-signing and the TSA certificate chain, the digital signature,
and the timestamp into the binary sample, and (7) Finally, the publisher distributes
the signed binary sample in the wild.

References

1. What should i do with the annoying ads? (in Korean) https://www.donga.com/
news/Economy /article/all/20140914/66399483 /1. Accessed 03 Sept 2020

2. N. Korea fakes ‘code signing’ to spread spyware. KBS world radio. http://
world.kbs.co.kr/service /news_view.htm?lang=e&Seq_-Code=119375. Accessed 30
Aug 2020

https://www.donga.com/news/Economy/article/all/20140914/66399483/1
https://www.donga.com/news/Economy/article/all/20140914/66399483/1
http://world.kbs.co.kr/service/news_view.htm?lang=e&Seq_Code=119375
http://world.kbs.co.kr/service/news_view.htm?lang=e&Seq_Code=119375

76

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

B. Kwon et al.

To bypass code-signing checks, malware gang steals lots of certificates. ars
technica. https://arstechnica.com/information-technology/2016/03/to-bypass-
code-signing-checks-malware-gang-steals-lots-of-certificates/. Accessed 30 Aug
2020

Adobe. Electronic Signature Laws and Regulations - South Korea (2020). https://
helpx.adobe.com /sign/using/legality-south-korea.html

Alrawi, O., Mohaisen, A.: Chains of distrust: towards understanding certificates
used for signing malicious applications. In: WWW 2016, Republic and Canton of
Geneva, Switzerland (2016)

Chai, S.-W., Min, K.-S., Lee, J.-H.: A study of issues about accredited certification
methods in Korea. Int. J. Secur. Appl. 9(3), 77-84 (2015)

Code Signing Working Group. Minimum requirements for the issuance and man-
agement of publicly-trusted code signing certificates. Technical report (2016)
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280. RFC Editor (May 2008). http://www.rfc-editor.org/rfc/rfc5280.
txt

Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: Proceedings of the 22Nd USENIX Conference on
Security, SEC 2013, Berkeley, CA, USA, pp. 605-620. USENIX Association (2013)
Falliere, N., O’Murchu, L., Chien, E.: W32.Stuxnet dossier. Symantec Whitepaper
(February 2011)

Geater, J.: How to remove Kraddare. https://www.solvusoft.com/en/malware/
potentially-unwanted-application/kraddare/

Google: Announcing the first SHA1 collision (February 2017)

Kim, D., Kwon, B. J., Dumitras, T.: Certified malware: measuring breaches of
trust in the windows code-signing PKI. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017 (2017)

Kim, D., Kwon, B.J., Kozdk, K., Gates, C., Dumitras, T.: The broken shield: mea-
suring revocation effectiveness in the windows code-signing PKI. In: 27th USENIX
Security Symposium, USENIX Security 2018. USENIX Association (2018)

KLRI: Digital Signature Act, 2017. https://elaw.klri.re.kr/eng_service/lawView.
do7hseq=42625&lang=ENG

Kotzias, P., Bilge, L., Caballero, J.: Measuring PUP prevalence and pup distri-
bution through pay-per-install services. In: Proceedings of the USENIX Security
Symposium (2016)

Kotzias, P., Matic, S., Rivera, R., Caballero, J.: Certified PUP: abuse in authen-
ticode code signing. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015. ACM, New York (2015)
Kozak, K., Kwon, B.J., Kim, D., Gates, C., Dumitrag, T.: Issued for abuse: mea-
suring the underground trade in code signing certificate. In: 17th Annual Workshop
on the Economics of Information Security (WEIS) (2018)

Kwon, B.J., Srinivas, V., Deshpande, A., Dumitras, T.: Catching worms, trojan
horses and pups: unsupervised detection of silent delivery campaigns. In: 24th
Annual Network and Distributed System Security Symposium, NDSS 2017 (2017)
Microsoft: Microsoft security advisory: update for deprecation of MD5 hashing
algorithm for Microsoft root certificate program, 13 August 2013

Microsoft: Trojan:win32/delf. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Trojan:Win32/Delf

Microsoft: Trojan:win32/kraddare. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Trojan:Win32/Kraddare

https://arstechnica.com/information-technology/2016/03/to-bypass-code-signing-checks-malware-gang-steals-lots-of-certificates/
https://arstechnica.com/information-technology/2016/03/to-bypass-code-signing-checks-malware-gang-steals-lots-of-certificates/
https://helpx.adobe.com/sign/using/legality-south-korea.html
https://helpx.adobe.com/sign/using/legality-south-korea.html
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.solvusoft.com/en/malware/potentially-unwanted-application/kraddare/
https://www.solvusoft.com/en/malware/potentially-unwanted-application/kraddare/
https://elaw.klri.re.kr/eng_service/lawView.do?hseq=42625&lang=ENG
https://elaw.klri.re.kr/eng_service/lawView.do?hseq=42625&lang=ENG
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Delf
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Delf
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Kraddare
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Kraddare

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Certified Malware in South Korea 77

Microsoft: ~ Win32/onescan. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?name=win32%2Fonescan

Microsoft: Erroneous VeriSign-issued Digital Certificates Pose Spoofing Hazard
(2001)

Microsoft: Windows Authenticode portable executable signature format
(March 2008). http://download.microsoft.com/download/9/c/5/9c5b2167-8017-
4bae-9fde-d599bac8184a/Authenticode_PE.docx

Morowczynski, M.: SHA-1 deprecation and changing the root CA’s hash algorithm
(2018)

Niemela, J.: It’s Signed, therefore it’s Clean, right? (2010)

NLIC: Electronic Financial Transaction Act, 2017. http://www.law.go.kr/eng/
englLsSc.do?menuld=1&query=electronic+financial+transactions+act&x=0&
y=0#liBgcolor0

Park, H.M.: The web accessibility crisis of the Korea’s electronic government: fatal
consequences of the digital signature law and public key certificate. In: 2012 45th
Hawaii International Conference on System Sciences, pp. 2319-2328. IEEE (2012)
Sebastian, M., Rivera, R., Kotzias, P., Caballero, J.: AVCLASS: a tool for massive
malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
RAID 2016. LNCS, vol. 9854, pp. 230-253. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45719-2_11

Swiat: Flame malware collision attack explained (June 2012)

Wood, M.: Want my autograph? The use and abuse of digital signatures by mal-
ware. In: Virus Bulletin Conference, September 2010, pp. 1-8 (September 2010)
Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Proceedings of
the 9th ACM SIGCOMM Conference on Internet Measurement, IMC 2009. ACM
(2009)

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fonescan
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fonescan
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx
http://www.law.go.kr/eng/engLsSc.do?menuId=1&query=electronic+financial+transactions+act&x=0&y=0#liBgcolor0
http://www.law.go.kr/eng/engLsSc.do?menuId=1&query=electronic+financial+transactions+act&x=0&y=0#liBgcolor0
http://www.law.go.kr/eng/engLsSc.do?menuId=1&query=electronic+financial+transactions+act&x=0&y=0#liBgcolor0
https://doi.org/10.1007/978-3-319-45719-2_11
https://doi.org/10.1007/978-3-319-45719-2_11

l‘)

Check for
updates

GAN-Based Adversarial Patch
for Malware C2 Traffic to Bypass
DL Detector

Junnan Wang!2, Qixu Liu®2, Chaoge Liu"2®) and Jie Yin!

! Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
liuchaoge@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. The constantly evolving malware brings great challenges to
network security defense. Fortunately, deep learning (DL)-based system
achieved good performance in the malware command and control (C2)
traffic detection field due to its excellent representation capabilities. How-
ever, DL models have been shown to be vulnerable to evasion attacks,
that is, DL models can easily be misled by adding subtle perturbations
to the original samples. In this paper, we propose a GAN-based eva-
sion method, which can help malware C2 traffic bypass the DL detector.
Our main contributions contain: (1) directly generate adversarial traffic
that can implement malicious functions by inserting additional adversar-
ial patches in the original flow; (2) adaptively imitating victim’s normal
traffic by training GAN in victim environment, and introducing transfer
learning to reduce the additional victim resource usage caused by GAN
training. Results show that the adversarial patch generated by GAN can
prevent malware C2 traffic from being detected with 51.4% success rate.
The higher time efficiency and smaller malware impact make our method
more suitable for real attacks.

Keywords: Malware C2 traffic - Evasion attacks + GAN - Transfer
learning

1 Introduction

Malware allows attackers to remotely control computers to perform criminal
activities using Command and Control (C2) channels, which has posed great

This work is supported by the Youth Innovation Promotion Association CAS
(No. 2019163), the National Natural Science Foundation of China (No. 61902396),
the Strategic Priority Research Program of Chinese Academy of Sciences (No.
XDC02040100), the Key Laboratory of Network Assessment Technology at Chinese
Academy of Sciences and Beijing Key Laboratory of Network security and Protection

Technology.

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 78-96, 2021.
https://doi.org/10.1007/978-3-030-86890-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_5

GAN-Based Adversarial Patch for Malware C2 Traffic 79

challenges to network security. Fortunately, it can be mitigated by detecting C2
channels on the network.

Among the rich malware C2 traffic detection methods, the deep learning
(DL)-based detection method has been widely used and researched because it
is an end-to-end solution that can automatically learn feature representations
from raw traffic data [13,15,16,24,25]. In this paper, we mainly focus on the
DL-based malware C2 detection model taking raw malware C2 traffic data as
input, which is a state-of-the-art detection method [19].

After the success of DL in the field of malicious traffic identification, their
robustness and security issues have become the subject of much discussion by
security researchers. In 2014, Szegedy et al. [23] first discovered that due to their
linear nature, well-performing DL models are vulnerable to adversarial examples,
which are intentionally crafted by adding tiny perturbations to mislead the DL
model. After that, how to use adversarial machine learning (AML) ideas to
construct adversarial malicious traffic to bypass detection also received attention.

Different from AML in the image recognition field, the construction of adver-
sarial malware traffic has many unique constraints and challenges:

1. Ensure that the generated adversarial traffic can retain the original malicious
functions, and the basic network protocol format will not be destroyed.

2. Directly generate adversarial traffic without the help of other attachments,
rather than generating adversarial features that are just intermediate results
of evasion attacks.

3. How to make adversarial traffic adaptively imitate the normal traffic of indi-
vidual victims, so as to ensure that it can be applied to a variety of terminals.
While those imitations that are limited to specific normal application traffic
will fail when the application is rarely used on some victims.

These three challenges are progressive. Challenge-1 represents effectiveness,
challenge-2 means usability, and challenges-3 is a practical requirement that
proposed based on real attack scenarios.

Unfortunately, none of the existing work can solve the above problems at the
same time. [8] and [10] directly treat traffic samples as image samples, even can-
not meet challenge-1. [14] and [7] can only generate adversarial features violate
challenge-2. What counts is, most of the current work does not consider challenge-
3, which is the most realistic requirement in the malware traffic evasion field.

In light of the challenges, we present an adaptive evasion attack on DL-based
detectors in practical settings. Specifically, we propose a GAN-based method that
can directly generate sample-independent adversarial patches (adv_patches).
Malware can directly send a packet encapsulating the adv_patch in C2 commu-
nication to bypass the DL-based detector, without other attachments’ help or
complex source code modification. And the C2 flow that encapsulates adv_patch
is called adversarial flow, which can directly bypass the DL detector. Therefore,
our method can solve challenge-1 and challenge-2 mentioned above.

In order to adaptively simulate a specific victim’s traffic, there are two solu-
tions. One is to collect large-scale normal traffics on the victim and send them
back to train GAN, but that is unrealistic because it will increase the exposure
risk of the C2 channel. The other is to train the GAN model on the bot, which

80 J. Wang et al.

will increase the exposure risk of malware on the victim. We choose the latter
to solve challenge-3. At the same time, in order to reduce the extra resource uti-
lization caused by GAN training on the victim, we introduced transfer learning
(TL) technology to further improve the similarity between malware C2 traffic
and victim normal traffic at a small cost. Results show that our method can not
only achieve a success rate of 51.4%, but also has a good performance in time
efficiency and a minor negative impact on malware.
Our major contributions are elaborated as follows:

1. We propose a GAN-based black-box malware C2 traffic evasion method to
bypass the DL detector. Under the premise of functionality preserving and
network protocol compliance, we can directly obtain adversarial traffic by
inserting an additional adv_patch packet, without other attachments or com-
plex source code modifications.

2. Our method enables adversarial traffic to adaptively imitate host-side normal
traffic, that is, dynamically adjust adversarial traffic according to the traf-
fic characteristics of different victim terminals, which is more practical and
concealed. We also introduce TL to alleviate the additional system resource
occupation caused by GAN training on the victim.

3. We design a real-life experiment to evaluate the proposed method, and proved
its practicability and efficiency from the perspectives of evasion performance,
time performance, and impact on malware.

As far as we know, this is the first work on adaptive evasion method, that con-
siders and comprehensively evaluates the negative impact of the evasion method
on malware.

The rest of the paper is organized as follows: We start by providing back-
grounds and related works in Sect. 2. Section 3 introduces the overview of our eva-
sion method. Section 4 elaborate experimental setting up. Experimental results
and findings are shown in Sect. 5. Finally, we conclude in Sect. 7.

2 Background and Related Work

2.1 Background—Malware Traffic Detection

With the development of machine learning technology, DL technology has been
widely used in the malware C2 traffic detection field. On the one hand, DL-based
methods can automatically learn deep abstract feature representations, thereby
solving the dilemma of manual feature engineering. On the other hand, compared
with the traditional ML methods, DL-based methods also have a considerably
higher capacity to learn complex patterns, so they can deal with large-scale
encryption and unknown malicious traffic detection well.

According to the different model inputs, DL-based classifiers can be divided
into statistic feature-based and raw data-based. [18] and [19] have proved that
DL-based model, using raw flow representations as input, can outperform other
detectors, while without requiring any prior knowledge.

GAN-Based Adversarial Patch for Malware C2 Traffic 81

In this work, we particularly focus on the vulnerability of DL-based malware
C2 traffic detector, which taking raw byte stream flow data as input.

[25] proposed a stacked autoencoder (SAE) based network protocol identifi-
cation method using raw traffic data, and achieved high accuracy.

[24] proposed an end-to-end malware traffic classification method with 2D-
CNN taking the first 784 bytes of flow. Lotfollahi et al. [16] combines SAE and
1D-CNN, and takes the first 1500 bytes of IP header and payload data as input.

Byte Segment Neural Network (BSNN) [13] and Flow Sequence Network
(FS-Net) [15] are both RNN-based traffic classification methods. The difference
is that BSNN takes raw payload as input, while FS-Net’s input is raw flow.

In summary, the current DL model for malware traffic detection often takes
the first few bytes of the raw byte stream as input, then learns the abstract
representation through multi-layer neural networks, and the final prediction is
calculated by the softmax layer.

2.2 Related Work—Malware Traffic Evasion

While the malware traffic detection method is constantly improving, attackers are
also exploring evasion techniques to avoid detection. Evasion and detection tech-
nologies are innovating in the tit-for-tat game, trying to be able to overwhelm the
opponent.

In order to bypass blacklist-based detection, attackers introduced dynamic
resolution technologies such as DGA and Fast-Flux to replace the hard-coding
method. Introducing techniques such as encryption and data encoding to cover
up the payload, so the payload-based detection is invalidation. To bypass the
detector based on statistical characteristics, the attacker introduces technologies
such as protocol tunnels and online-social networks (OSN) to construct covert
channels and overwhelms malicious traffic in mass normal traffic.

In recent years, with the widespread application of DL in the field of malicious
traffic detection, many researchers have also tried to use the inherent security
vulnerabilities of DL to bypass DL-based detectors. We divide these tasks into
two categories according to the adversarial output.

Feature-space attack refers to a type of attack method that can only
generate adversarial feature vectors. However, the mapping process from traf-
fic samples to traffic characteristics is irreversible and non-differentiable. So, it
is difficult to reversely infer traffic samples, even if the adversarial feature vec-
tor is known. In other words, this attack method is just theoretical proof that
DL-detector is vulnerable to evasion attacks, and cannot be directly used for
malicious delivery. This attack method can only be used as theoretical proof
that the detection system is vulnerable to attack.

Clements [8] and Ibitoye [10] used classic AML algorithms (FGSM [9], BIM
[11], PGD [17], C&W [5], JSMA [21] etc.) to evaluate the robustness of DL-based
network intrusion detection system (NIDS) against adversarial attacks in a white
box scenario. They directly convert the traffic samples into gray images and per-
turb the ‘pixel’ indiscriminately. No consideration is given to the fine structure of
traffic samples and the constraints of maintaining malicious functions.

82 J. Wang et al.

Lin et al. [14] proposed a black-box evasion attack method-IDSGAN, which
uses GAN to generate adversarial statistical features of malware traffic. Although
IDSGAN can ensure the effectiveness of the intrusion by changing only non-
functional features, it does not consider the dependence between statistical fea-
tures. FENCE [7] solves this problem by combining gradient-based methods and
mathematical constraints to maintain consistency in a family of dependencies.

Traffic-space attack refers to attack methods that can generate adversarial
traffic samples. Unlike feature-space attacks, traffic-space attack methods can be
powerful weapons for attackers to bypass malware traffic detectors.

Novo [20] used the classic AML algorithm FGSM [9] to perturb the encrypted
C&C malware traffic characteristics and achieved a white-box adversarial attack
against the detector. It requires additional traffic proxy or complex source code
modification to obtain the final adversarial traffic. And white-box attacks require
a full understanding of the detector, which is difficult to attain in real life.

Rigaki et al. [22] proposed a method that uses GAN to generate statistical fea-
tures similar to Facebook traffic, thus adjust the behavior of the malware C2 traf-
fic to avoid detection. FlowGAN [12] is no longer limited to Facebook traffic, can
dynamically morph traffic features as any other “normal” network flow to bypass
censorship. However, in these two works, GAN can only output adversarial fea-
tures. If the attacker wants to obtain adversarial traffic based on these adversar-
ial features, he needs to make complex modifications to the malware source code,
which will cause delays to the malware’s communication channel.

In Attack-GAN [6], the generator is viewed as an agent in RL, which can
craft adversarial traffic conditioned to the security domain constraints to ensure
attaining the attack functionality. But Attack-GAN needs to constantly access
IDS to obtain prediction results, which is unrealistic in real-attack.

Unlike the works we reviewed in this section, in this paper we focus specifically
on how to directly generate adaptive adversarial traffic without the help of any
other additional components. Only by adaptively imitating victim traffic, can the
adversarial traffic seemed to be normal-like in bots with different characteristics.
Moreover, while most related work assesses the performance of the evasion attack
on malware traffic detectors, they do not consider the impact of the proposed meth-
ods on malware, nor do they consider the practicality of the method. We properly
solve these problems by performing a real-life experiment in this work.

3 Method

In this section, we use some technical terms to represent various roles in a mal-
ware C2 traffic evasion attack. Malware means the code used to achieve C2,
master means the computer of the attacker, victim means malware-infected
hosts. The adversary tries to control the victim by malware, while the de fender
tries to protect the victim through a DL-based malware C2 traffic detector.

3.1 Thread Model

Adversary’s Goal. From the perspective of the CIA (confidentiality, integrity,
and availability), attackers try to reduce the availability of detectors by camou-
flaging malware C2 flow.

GAN-Based Adversarial Patch for Malware C2 Traffic 83

Adversary’s Knowledge. The attacker knows that the target network may be
protected by a flow-level detector based on DL. However, the attacker does not
need to master any prior knowledge about the detector, such as the architecture,
parameters, or training data.

Adversary’s Capability. The attacker has full control of the C2 server and
partial control of the victims, so he can update victims to change their commu-
nication behaviors as he wants.

3.2 Framework

Our framework is inspired by [4], that attackers can mislead the classifier by plac-
ing a gradient-based sample-independent adv_patch in a specific area. Adv_patch
is effective because it can calculate the most effective perturbation to the DL
model by using gradient backpropagation according to the gradient passed by
the discriminator. When inputting the detector, adv_patch can dominate the
feature learning of the detector, thereby misleading the detector

The idea of adv_patches suits malware C2 traffic evasion well. On the one
hand, through this method, we can directly operate on the traffic samples and
output traffic samples with actual attack functions.

On the other hand, traffic samples have more complex network protocol con-
straints than images, and there is a need to keep malicious functionality in
the perturbed sample. That makes many AML algorithms designed for images
unavailable. While our method can better meet the constraints of functionality
preserving and network protocol.

Specifically, our method includes two modules, a GAN-based generation mod-
ule and a TL-based transfer module.

To better illustrate our method, we propose two terms. We define universal
benign communication (UBC) traffic as benign communication traffic that
has multiple types benign communication traffic and can cover a variety of benign
communication behavior characteristics, while host benign communication
(HBCQ) traffic only includes benign communication traffic from a specific host.
HBC is more specific and targeted, while UBC is more versatile and generalized.

In the generation module, we use GAN to imitate the normal traffic to gen-
erate adv_patch. By inserting it into the original flow, we can obtain adversarial
malware C2 traffic that can mislead the DL-based malware C2 traffic detector.

In the transfer module, we retrain the GAN model in the victim environ-
ment to adaptively simulate the victim’s normal flow. TL is used in this module
because it can realize the transfer from imitating UBC traffic tasks to adaptively
imitating specific HBC traffic tasks with a smaller data scale requirement and
system resource cost.

The workflow of our method is shown in Fig. 1. It can be divided into three
stages: the pre-training stage in the master environment, the fine-tuning stage
in the victim environment, and the practical stage.

The pre-training stage in the master environment refers to the pre-training
of GAN performed by the attacker before the weapon is delivered. In a fully

84 J. Wang et al.

controllable master environment, the attacker can construct a training dataset
by capturing the original malware C2 traffic and the UBC flow. After the pre-
training stage is completed, the attacker compresses and packs the GAN model
together with the malware, and delivers them to the victim.

/~ Pre-training \ /W

UBC flo HBC flow
adidll Generator(G’) Generator(G) -—

adv_patch(G (Z’)%V[o del ltadv_patd (G(z)) Practical
Delivery s

UBC fl)vu_l \ \ l—

\Master environment | _Victim environment/

HBC(flow

Fig. 1. System framework

Next is the fine-tuning stage in the victim environment. The malware will
call the packet sniffer module to build up the HBC traffic profile, which is used
for fine-tuning the GAN model so that the specific characteristics of the victim’s
normal traffic can be more accurately embedded in output adv_patch.

Finally, in the practical stage, the fine-tuned GAN model can be used to
camouflage malware C2 traffic. Specifically, the malware will first access the
generator to obtain the adv_patch before communicating with the C2 server,
and send out the packet encapsulating the adv_patch after the TCP three-way
handshake, followed by other original malicious packets.

3.3 Generation Module - WGAN

As the core of the method, we choose GAN as the generation module. Generative
Adversarial Networks (GAN), are a class of DL-based generative model. The
GAN model architecture involves two sub-models: a generator (G) that is trained
to generate new examples, and a discriminator (D) that tries to classify examples
as either real or fake. The final goal is to make the data obtained by the generator
becoming more similar to the real data.

In the context of malware C2 traffic evasion, the generator is responsible for
learning the characteristics of the normal communication traffic and generating
fixed-length adv_patches to help malware C2 traffic evading the DL-based detec-
tor. While the discriminator plays a similar role to the detector, which is used
to determine whether the generated confrontation traffic is sufficiently similar
to the normal traffic and pass gradients to the generator for parameter tuning.

Specifically, we use Wasserstein GAN (WGAN) [3]. Instead of JS divergence,
WGAN introduces Wasserstein distance (calculate as Eq.1) to calculate the

GAN-Based Adversarial Patch for Malware C2 Traffic 85

distance between the generated distribution and the real distribution as the loss
function. WGAN can solve many problems of vanilla GAN, such as unstable
training and collapse mode, and Wasserstein distance can be used as an indicator
of training progress.

We choose WGAN not only because of its excellent learning ability, but also
because its adversarial fits well with the confrontation scenarios of malicious
traffic detection and evasion attacks.

W(pr,pg) = inf Eg ey [z —yll] (1)
~T1(pr.pg)

The loss function of WGAN is:

LP = Borpyora[D(@)] = Ezngp., [D(G(2))] (2)
L6 = Fory [D(G(2)) 3)
Wp « clip-byvalue(Wp, —0.01,0.01) (4)

In our method, during the training process, the generator will take benign
communication flow as input, attempt to generate a fixed-length adv_patch, and
return it to the malware. The discriminator takes the new malware C2 flow and
the benign communication flow as input, and learns how to distinguish between
them. During the application process, the generator will be requested by malware
to obtain a new adv_patch.

We adopted the classic model in [3] as our generation module. One small dif-
ference is that in order to avoid that the discriminator is too powerful to guide
the parameter learning of the generator well, we have removed several convolu-
tional layers in the discriminator to reduce the complexity of the discriminator.
At the same time, this can also further reduce the size and parameter number
of the GAN model. It is worth mentioning that in order to insert adv_patch into

Generator convertor Discriminator

Con2D Con2D Con2D

5¥5%]128 5*5%64 5*5*
adv_patch
(None 200)
adversarial
C2 traffic
(32.32)

Reshape

_.I

benign traffic
(32,32)

Con2D Con2D Con2D
3%3*16 3*3*32 3*3%64

-N-e
UBC flow in pre-training . d
or sigmoi
HBC flow in fine-tuning
benign traffic FlEen FC

(3232)

Fig. 2. The architecture of the GAN model we used

86 J. Wang et al.

the original malicious traffic, we built a concatenate layer between the generator
and the discriminator to facilitate gradient propagation. The architecture and
hyperparameters setting of the GAN model are shown in Fig. 2.

3.4 Transfer Module—Transfer Learning

Transfer Learning is a machine learning method that transfers knowledge from
the source domain (task A) to the target domain (task B), so that task B can
achieve better learning results. Usually applicable to situations where the amount
of data in the source field is sufficient, but in the target field is small.

In the context of malware C2 traffic evasion, we regard the pre-training pro-
cess in a fully controllable master environment as task A. Task A attempts to
train the generator to generate a fixed-length payload and insert it into the mali-
cious communication flow, making it difficult for the discriminator to distinguish
the newly constructed malicious flow from the UBC flow.

Task B is a fine-tuning process that occurs in the victim environment. In
this process, the generator will use the HBC traffic captured in the victim as a
template to learn how to construct malware C2 traffic.

The difference between the two tasks is that the traffic distribution of task
B is more specific and concentrated. To some extent, the distribution of UBC
traffic and HBC traffic is similar, so it is very suitable to use parameter-TL.

Specifically, on the premise of further improving evasion performance, apply-
ing TL has the following two advantages:

(1) Reduce the training cost in the victim environment: Parameter-TL can
reduce the later training cost, by only training a small part of the parame-
ters. Therefore, we can reduce the victim’s perception of the fine-tuning pro-
cess and avoid being detected due to taking up too many system resources.

(2) Suitable for small datasets: It is unrealistic to train a large neural network
from scratch to capture a large amount of communication traffic in the
victim environment. While TL can handle this problem well because there
are fewer parameters to learn. Besides, we can rely on TL to generate more
victim-specific adversarial C2 traffic.

4 Experiment

4.1 Dataset

In order to evaluate the performance of our method, we constructed a data set
by selecting 12 botnet traffic from the public dataset CTU and the UBC traffic
from the ISOT dataset. The detail of the dataset we summarized is shown in
Table 1.

The dataset can be divided into two parts, one part is used to train and test
the DL-based detector, the other part is used to train and test our proposed
evasion method. Each part includes both malware and benign traffic.

GAN-Based Adversarial Patch for Malware C2 Traffic 87

The dataset for the detector is the dataset used by the defender. In this part,
malware traffic includes 9 malware families from the CTU covering a variety of
commonly used C2 channels. The benign traffic is captured from the 10 com-
puters in our laboratory environment, which can cover many different types of
normal traffic. The reason for this setting is that in order to protect the inter-
nal network in a targeted manner, the defender often uses the specific internal
normal traffic to train the DL-based detector.

The dataset for WGAN is the dataset used by the attacker. The malicious
traffic is 5 malware families selected from CTU, Neris and Virut are also used to
train the detector, but the Neris traffic files come from different captures. The
benign traffic includes UBC traffic from the ISOT for pre-training, and internal
capture id01 for fine-tuning. The reason for this setting is the fact that it is
difficult for an attacker to obtain a large amount of internal traffic. Therefore,
pre-training can only use public datasets, and in fine-tuning stage, a small volume
of traffic samples can be used to adaptively simulate specific HBC traffic.

The original data needs to be preprocessed before inputting into the model.
The data preprocessing process mainly includes three steps.

1. Split. The captured pcap file is divided into bidirectional flows according to
the five-tuple <sip, dip, sport, dport, protocol>>. We use the open-source tool
pkt2flow [1] to complete this operation.

2. Filter. After the split, we only keep the flow with valid data transmission,
and filter out the flow that the TCP connection is not fully established or is
closed immediately after establishment.

3. Anonymization. We perform anonymization on traffic data to avoid specific
information such as IP and M AC misleading the detection model. Specifi-
cally, we replace them all with 0.

Table 1. Details of the dataset

Malware family Flow num. | C2 channel
Detector | Malware | CTU-44-Rbot 2745 IRC
CTU-47-Menti 216 TCP
CTU-49-Murlo 1986 TCP
CTU-42-Neris 1583 HTTP
CTU-54-Virut 3451 HTTP
CTU-127-Miuref 1286 HTTP
CTU-125-Geodo 6320 HTTP
CTU-141-1-Bunitu 6143 HTTP/HTTPS
CTU-348-1-HTbot 10000 HTTP/HTTPS
Benign |id01-id10 39452 -
WGAN | Malware | CTU-50-Neris 19282 HTTP
CTU-54-Virut 3451 HTTP
CTU-264-2-Emotet | 10000 HTTPS
CTU-346-1-Dridex 8022 HTTPS
CTU-327-1-Trickbot | 25924 HTTPS
Benign | UBC traffic 17144 -
HBC traffic-id01 9706 -

88 J. Wang et al.

4.2 Hyperparameters

The Length of the New Packet
The output dimension of GAN is fixed, so we need to determine the length of
the generated adv_patch.

In order to simulate the normal data packet as much as possible, the mode of
the payload length of the UBC traffic is selected as the length of the adv_patch.
This can make the newly added packet look closer to the normal data packet at
least in terms of statistical characteristics.

We perform statistics on the captured UBC traffic, and obtain the distribu-
tion of its payload length, which is shown in Fig. 3.

0.7
6, 57.3%
0.6
(0]
Q05
8
= 0.4
3
0.3
5] 211, 9.8%
[a 1460, 8.0%
0.2
0.1 I I
0 - - - N
S O & & & & O O OO OO OO
LSO S S
NS @Q I IFT TS &S
LN NN\

Payload Length

Fig. 3. The payload length distribution of universality normal traffic

Through the inspection of the original traffic data, we found that the reason
for many packets with 6 bytes payload is that the Ethernet data link layer will
automatically pad the frame with 0 to ensure that the minimum length of the
frame is 64 bytes. While 1460 is the maximum segment size of TCP transmis-
sion. TCP segmentation will be performed when large-size data is transmitted,
resulting in a large number of packets with a payload length of 1460.

Based on the above findings, we set the length of the adv_patch to 200, which
is close to the second most frequent payload length 211, and it is also convenient
for quantification and calculation.

Insertion Position of the New Packet

After getting adv_patch, we need to decide when to send it. Through the investi-
gation of the current DL-based detection work, we found that in order to balance
the model accuracy and complexity, researchers often intercept part of the traf-
fic data for learning deep representations as the basis for classification. Wang
et al. [24] proved that the first few packets, up to the first 20 packets, are suffi-
cient for correct accuracy, even for encrypted traffic.

GAN-Based Adversarial Patch for Malware C2 Traffic 89

In this case, to guarantee the impact on the DL-based detector, we decided
to add the adv_patch packet after the TCP three-way handshake process. That
means malware should send out the packet encapsulating the adv_patch once the
TCP connection is established. In this way, it can be ensured that the carefully
crafted adv_patch can appear in the visual field of the detector.

4.3 Detector

Marin et al. [19] designed a series of experiments to prove that the raw flows
& DL-based malicious traffic detection models outperform traditional ML-based
models, which use specific hand-crafted features based on domain expert knowl-
edge as input.

RawFlows’s input is a tensor of size (n, 1, m), where n is the number of bytes,
and m represents the number of packets. They set n = 100 and m = 2, that is,
only the first 100 bytes of the first two packets in a flow are considered.

In our work, we refer to their DL architecture and make certain extensions
on it. Our adjustment is mainly reflected in the hyperparameters of the model.
On the one hand, considering that our purpose is to detect malware C2 traffic,
only sampling the first 2 packets may lose a lot of flow information. Moreover,
because the proportion of C2 traffic is relatively small, our data volume does not
reach the scale of RawFlows. In order to provide more flow information to the
model, we set n=200 and m=38.

At the same time, to accommodate the expansion of input, we also need to
adjust the model structure accordingly to increase the expressive ability of the
model. Specifically, we refer to the DL architecture of raw packets in [19] to
reshape our DL-based malware C2 traffic detector. The DL architecture of the
target detector in this article is shown in Fig. 4.

ot bilbyn = lom
:5: J bunalbyns o 4
e - A - | |- -0-°
A———————— - 1 1
n bytes ID-CNN ID-CNN sigmoid
5*%5%32 5*5%64
— FC FC
Flatten 500 units 100 units
Fig. 4. DL architecture for detector
5 Results

As mentioned earlier, we designed comprehensively evaluate the effectiveness of
our method from the perspectives of evasion performance, time performance,
and impact on malware.

90 J. Wang et al.

Specifically, in the pre-training stage, we will use the traffic of a specific
family and the UBC traffic to train the GAN model. Then fix the discriminator
and all convolutional layers of the generator, and fine-tune the model using the
victim’s locally captured benign samples and 1000 malicious samples. Finally,
in the practical stage, the generator will directly or be called by malware to
generate the adv_patch, which is inserted into the original malicious C2 flow to
construct the adv-C2 traffic. The newly crafted samples are input to the detector
for prediction. So we can evaluate the evasion performance through the change
in the detector’s recall score.

5.1 Evasion Performance

We randomly select 3000 flow samples from each of the 5 families for testing,
and get the results in Table 2. We use DetectionRate and EvasionRate to mea-
sure the performance of the detector and our method, respectively. They are
calculated according to Eq.5 and Eq. 6.

Number of detected malware flow
Number of all malware flow

(5)

DetectionRate = Recall =

Success ful evasion attempts

(6)

The first column in Table 2 is the original detector recall score for 5 malware
families, indicating that the detector we use has good accuracy and generaliza-
tion performance.

From the table, we can see that the proposed method can achieve an evasion
rate up to 51.4%, while reducing the recall of the detector to 45.4%, less than
50%, which means that it is difficult for the detector to resist our attack method.

FvasionRate = -
All evasion attempts

Table 2. The evasion performance of our attack method

Family Detection rate Evasion rate

init_sample | adv_sample | Pre-training | Fine-tuning
CTU-50-Neris 99.00% 62.63% 30.07% 36.37%
CTU-54-Virut 99.83% 67.07% 24.93% 32.77%
CTU-264-2-Emotet | 97.47% 48.67% 45.37% 48.80%
CTU-346-1-Dridex | 96.80% 45.40% 47.50% 51.40%
CTU-327-1-Trickbot | 99.93% 63.37% 31.40% 36.57%

By comparing the last two columns in the table, we can find that after
the fine-tuning process in the victim environment, the evasion rate generally
increases by 7%-21%, which can prove the effectiveness of the TL.

In addition, we have also observed that there are certain differences in the eva-
sion performance of different malware families, from 51.4% in Dridex to 32.77%

GAN-Based Adversarial Patch for Malware C2 Traffic 91

in Virut. Through the analysis of the original flow samples, we believe that the
bypass rate is mainly affected by the following factors: 1) The detection rate of
the detector to the malware. Take Dridex and Neris as examples. The detector
has seen the Neris samples during the training phase, so it can easily get the
characteristics of Neris and achieve a relatively high recall, while the initial recall
of the unseen Dridex family is relatively low. Therefore, a carefully generated
adv_patch is more likely to mislead the detector, who has not seen Dridex before.

IR 2 B G T ——
EE 7 E 7] —
I T M P T P ——
I 7 T DL ——

Neris, SSIM(HBC)=0.1326 Virut, SSIM(HBC)=0.2967

IR TR N TR
ENFIe e b -
ERETE RS I R —
L il BRI — =l EERM

Dridex , SSIM(HBC)=0.4144 Emotet , SSIM(HBC)=0.3891 TrickBot , SSIM(HBC)=0.2615

Fig. 5. Visualize flow samples of different families

2) The similarity between the malware C2 sample and the target benign
sample. We turn the input of the detector into a grayscale image for direct
observation, which is shown in Fig.5. We also calculate the average structural
similarity score (SSIM, a common measure of image similarity) between each
malware family and HBC to measure how similar each family’s traffic is to HBC.
Take Dridex and Trickbot as examples, both of them are mostly TLS traffic and
have high similarities. But through the visualization of the samples, we found
that the Dridex C2 samples are more similar to the target benign C2 samples,
so it is easier to fool the detector by adding disturbances on Dridex C2 flow.

5.2 Time Performance

In order to evaluate the time performance of our method, we recorded the fine-
tuning time elapsed and the evasion rate of 5 CTU malware families under
different training hyperparameters (batch_size, epochs).

From Fig. 6, we can find that the time elapsed of batch_size =128 is roughly
1.4 times that of batch_size =256, but what needs to be noted is that larger
batch_size often means larger memory consumption. The overall fine-tuning time
consumption will increase linearly with the increase of epochs number, while the
evasion rate is different. The evasion rate at epochs =100 is significantly higher
than that of epochs =50, but the evasion rate at epochs =200 is not significantly

92 J. Wang et al.

improved compared to epochs =100. Therefore, for efficiency considerations, we
think it is reasonable to set the training hyperparameters to (batch_size =128,
epochs =100) or (batch_size =256, epochs=100). The attacker can trade-off
between shorter training time and lower resource occupancy as needed.

8 0.6
g

7
2 - 0.5
S6
= 04 2
% 5 - @©
o) 24
Q. o -
Q4 03 §
© —
c 0
83 3
% 0.2 wl
3 2
7] 0.1
Q 1
©
L
©0 0
= (128, 50) (256, 50) (128, 100) (256, 100) (128, 200) (256, 200)
|_

(batch_size, epochs)

=@=Neris =i=\/irut «=4==Emotet Dridex === Trickbot

Fig. 6. Evasion rate and time elapsed under different setup of fine-tuning process

6 Real-Life Experiment

We believe that in order to develop evasion methods that can be applied in real
attacks, a comprehensive evaluation from the perspective of practicality must be
conducted, rather than just proving the effectiveness.

In this work, we complete the evaluation of practicability by designing a real-
life experiment. Specifically, we built a custom malware on the basis of Byob.
By requesting GAN in real-time to obtain adv_patches and communicating with
the server through C2 channel, we obtain a real-life scenario.

It should be pointed out that the real-life experimental settings are exactly
the same as those described in Sect. 4, except that the source of the malware C2
traffic. The effectiveness experiment uses public traffic dataset, while the real-life
experiment uses traffic that generated by our custom malware.

6.1 Custom Malware

To evaluate our method we used the open-source post-exploitation framework
called Byob [2]. Byob was modified to receive the adv_patch from the GAN gen-
erator and send it after TCP three-way handshake. Byob consists of a client and
a C2 server that is written in python. We deploy the C2 server in a Linux virtual
machine and the infected victim in a Windows 8 virtual machine respectively.

GAN-Based Adversarial Patch for Malware C2 Traffic 93

The communication between client and server is established over HT'TP. In
order to allow the client to receive the payload generated by the generator, we
modify the core module of the client so that every time the client communicates
with the server, it will first call the trained generator to obtain the adv_patch,
and send it once the connection is successfully established.

To continuously obtain malicious communication traffic, we write a script to
let Byob client performs the following actions in sequence:

— checks if the server is online.

— sends a heartbeat message with a unique identifier.
— retrieves a command id from server.

— executes the corresponding module.

In this way, we obtained 17,536 Byob C2 flow, which is used as the malware
C2 flow dataset for training GAN.

6.2 Impact on Malware

We evaluated the practicability of our method from two perspectives: malware
C2 channel efficiency impact and resource utilization.

Malware C2 Channel Efficiency

For malware, the transmission efficiency of the C2 channel is a very important
requirement. The significant C2 channel delay caused by evasion methods will
reduce the communication efficiency of the victim and the C2 server.

120
[100
g 100
2
Q
2 & . “
5 [
40
g 40
2 20
[T
0
Before After After
(load one-time) (load alone)

Fig. 7. Malware C2 channel efficiency before and after applying our method

Therefore, we evaluated malware C2 channel efficiency before and after apply-
ing our method. By calculating the number of C2 flows sent by malware before
and after applying our method in a time window, we obtained Fig. 7.

Before applying, we program the malware to communicate with the C2 server
every 3s, so there will be 75-100 flows within a 5 min time window. After apply-
ing our method, this number dropped to 40-75. That is to say, whether we choose
to access a large number of adv_patches at one time, or request the generator
every time before the start of each communication, we can guarantee at least 8
C2 communications per minute, which makes it a feasible channel for a C2.

94 J. Wang et al.

Resource Utilization

Another major impact of the evasion method on malware is that it will increase
resource usage in the victim environment. To measure the resource utilization
of our method, we recorded the CPU and memory usage of GAN training and
inferring, as shown in Fig.8. Figure8 shows that a large amount of resource
occupancy is mainly caused by GAN training, and the resource usage of the
GAN generation process (malware calls GAN to generate adv-patch) is relatively
equivalent to malware calling other malicious functions.

As for GAN training, although the fine-tuning stage has obvious optimiza-
tions in memory utilization compared to the pre-training stage, it seems that
there is no improvement in CPU utilization. That is constrained by the maximum
CPU capacity. The CPU utilization in the fine-tuning stage and the pre-training
stage is close to 100%, but by comparing the training time of each epoch, we
can find that the pre-training is about 14.35 times that of the fine-tuning.

-
N

100

90

[| 80
pre-training, 70
91.11s 60
50

. 40
30

fine-tuning, 6.35s | 20

B
— 0

malware (init) pre-training fine-tuning malware (WGAN)

[N

o
o

o

S
Time elapsed
second/epoch

Utilization percentage
[=} [=}
N [}

o

u CPU utilization = memory utilization

Fig. 8. Changes in resource utilization caused by GAN model training

Therefore, we can conclude that TL can reduce the resource utilization in
the victim environment, thereby reducing the additional exposure risk caused
by our evasion method. Although our method still brings additional resource
consumption, it is inevitable. In any case, we believe that our method has certain
advantages over other methods in terms of impacts on victim environment.

7 Conclusion

In this paper, we focus on how to use the DL model’s vulnerability to craft
adversarial samples in the field of malware C2 traffic, and propose a GAN-based
evasion attack method. Specifically, GAN generates adv_patch by simulating
the distribution of benign samples, so that malware C2 traffic containing that
adv_patch can mislead DL-based detectors. Our method is not only able to adap-
tively simulate the normal traffic of the victim, but also has less negative impact
on the malware. These two advantages make our method more suitable for real
attack scenarios. The results show that our method can not only achieve a bypass

GAN-Based Adversarial Patch for Malware C2 Traffic 95

rate of 51.4%, but also has relatively little impact on malware C2 channel and
less victim resource usage.

In future work, we plan to explore the influence of hyperparameters such as
patch length and embedding position on the evasion rate. At the same time,
we will seek ways to further reduce the negative impact of evasion methods on
malware, such as model size and resource utilization.

References
1. https://github.com/caesar0301/pkt2flow
2. https://github.com/malwaredllc/byob
3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)
4. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. CoRR

abs/1712.09665 (2017). http://arxiv.org/abs/1712.09665

5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39-57. IEEE (2017)

6. Cheng, Q., Zhou, S., Shen, Y., Kong, D., Wu, C.: Packet-level adversarial network
traffic crafting using sequence generative adversarial networks (2021)

7. Chernikova, A., Oprea, A.: FENCE: feasible evasion attacks on neural networks in
constrained environments (2020)

8. Clements, J., Yang, Y., Sharma, A., Hu, H., Lao, Y.: Rallying adversarial tech-
niques against deep learning for network security (2019)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2015)

10. Ibitoye, O., Shafiq, O., Matrawy, A.: Analyzing adversarial attacks against deep
learning for intrusion detection in IoT networks. In: 2019 IEEE Global Communi-
cations Conference (GLOBECOM), pp. 1-6 (2019)

11. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236 (2016)

12. Li, J., Zhou, L., Li, H., Yan, L., Zhu, H.: Dynamic traffic feature camouflaging via
generative adversarial networks. In: 2019 IEEE Conference on Communications
and Network Security (CNS), pp. 268-276 (2019)

13. Li, R., Xiao, X., Ni, S., Zheng, H., Xia, S.: Byte segment neural network for net-
work traffic classification. In: 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS), pp. 1-10 (2018)

14. Lin, Z., Shi, Y., Xue, Z.: IDSGAN: generative adversarial networks for attack
generation against intrusion detection (2019)

15. Liu, C., He, L., Xiong, G., Cao, Z., Li, Z.: FS-Net: a flow sequence network for
encrypted traffic classification. In: IEEE Conference on Computer Communica-
tions, IEEE INFOCOM 2019, pp. 1171-1179 (2019)

16. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep Packet: a novel
approach for encrypted traffic classification using deep learning. Soft. Comput.
24(3), 1999-2012 (2020)

17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

18. Marin, G., Casas, P., Capdehourat, G.: RawPower: deep learning based anomaly
detection from raw network traffic measurements. In: Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos, pp. 75-77 (2018)

https://github.com/caesar0301/pkt2flow
https://github.com/malwaredllc/byob
http://arxiv.org/abs/1712.09665
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.06083

96

19.

20.

21.

22.

23.

24.

25.

J. Wang et al.

Marin, G., Casas, P., Capdehourat, G.: Deep in the dark - deep learning-based
malware traffic detection without expert knowledge. In: 2019 IEEE Security and
Privacy Workshops (SPW), pp. 3642 (2019)

Novo, C., Morla, R.: Flow-based detection and proxy-based evasion of encrypted
malware c2 traffic. In: Proceedings of the 13th ACM Workshop on Artificial Intelli-
gence and Security, AlSec 2020, pp. 83-91. Association for Computing Machinery,
New York (2020)

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 372-387. IEEE (2016)

Rigaki, M., Garcia, S.: Bringing a GAN to a knife-fight: adapting malware com-
munication to avoid detection. In: 2018 TEEE Security and Privacy Workshops
(SPW), pp. 70-75 (2018)

Szegedy, C., Zaremba, W., Sutskever, I.: Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013)

Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using
convolutional neural network for representation learning. In: 2017 International
Conference on Information Networking (ICOIN), pp. 712-717 (2017)

Wang, Z.: The applications of deep learning on traffic identification. BlackHat USA
24(11), 1-10 (2015)

http://arxiv.org/abs/1312.6199

®

Check for
updates

Analyzing the Security of OTP 2FA in the Face
of Malicious Terminals

Ahmed Tanvir Mahdad'®, Mohammed Jubur?, and Nitesh Saxena!

! Texas A&M University, College Station, TX, USA
{mahdad, nsaxena}@tamu.edu
2 University of Alabama at Birmingham, Birmingham, AL, USA
mjabour@uab.edu

Abstract. One Time Password (OTP) is the most prevalent 2FA method among
users and service providers worldwide. It is imperative to assess this 2FA
scheme’s security from multiple perspectives, considering its ubiquitous pres-
ence in the user’s day-to-day activities. In this work, we assess the security of
seven commercially deployed OTP-2FA schemes against malware in the termi-
nal attack model without compromising any 2FA device or authentication ser-
vices. To implement this attack scenario, we develop a combination of attack
modules that will capture password and OTP in different ways during the user’s
login attempt. At the same time, it would originate a fresh concurrent hidden ses-
sion from within the terminal or remotely to get possession to the user account
without compromising the service or network or any external device. We exam-
ine implemented attack against seven different popular public services, which
mostly use two variants of OTP-2FA and observed that almost all of them are
vulnerable to this attack. Here, the threat model is practical as the attack compo-
nents can be installed in the user’s terminal without any root/administrator priv-
ilege. Moreover, the attack modules require a small number of resources to run.
The whole procedure would run from the background that makes the attack very
hidden in nature and attain low detectability after examining against prominent
anti-malware programs that indicate a real-world threat. Our findings after the
analysis of the OTP-2FA schemes indicate that an adversary who can install mal-
ware on the user’s terminal can defeat almost all popular and widely used OTP-
2FA schemes, which are vital security components of online accounts and secure
financial transactions. The result also points out that the OTP-2FA scheme does
not add extra security on top of the password in the presence of the malicious
program in the terminal.

1 Introduction

Password-only authentication is the most widely used and deployed authentication
method. Adversaries can steal the password using some well-known method (e.g.,
phishing [13], dictionary attack [2], man-in-the-middle attack [10]), thus the security of
this authentication method always raises questions. Two-Factor Authentication (2FA) is
introduced to provide an extra layer of security over the password-only authentication
system to address the risk of password leakage. 2FA requires another factor of authenti-
cation (Something the user has or Something the user is) besides a password (Something
the user knows).

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 97-115, 2021.
https://doi.org/10.1007/978-3-030-86890-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_6

98 A. T. Mahdad et al.

OTP-2FA

v v

Remote Delivery Token Based

Desktop

SmartPhone

|

>(SmartWatch

Fig. 1. Overview of OTP variant covered in this work

The most primitive and popular form of the 2FA method is One-Time Pin (OTP).
Here, a temporary PIN is generated on or delivered to a user registered device. The user
has to provide this PIN as proof of his possession of the registered device. The OTP can
be generated on a remote server and delivered to the user device (e.g., SMS or email-
based OTP) or generated on the user device itself (e.g., hardware or software token).
We denote this particular 2FA scheme as OTP-2FA throughout the paper.

As a 2FA method, OTP-2FA is popular among both users and service providers.
In a study conducted by Duo in 2017 [4], in the United States, 86% of 2FA users use
email/SMS OTP, and 19% of them use hardware tokens, and 52% of them use software
tokens. OTP-2FA is popular among the users and the service providers for various rea-
sons. It requires a simple deployment and does not require internet connectivity on a
2FA device in most cases (e.g., SMS, software token, hardware token).

The primary motivation of deploying 2FA schemes is to elevate a digital entity’s
security in the face of malicious attacks. Adversaries can launch an attack on authenti-
cation using the user terminal or network components. The malware starts most of the
attacks from the user terminal where it resides. There is an increased risk of malware
infection in shared terminals (e.g., computers in airports and public libraries). These
computing and internet facilities are prevalent among people living in under-developed
countries and under the poverty line. The voluminous number [32] of people habituated
to use public computers increases the chance of being affected by malware.

As OTP-2FA is one of the most deployed 2FA schemes among service providers
(e.g., financial/banking services, email, social networks), security analysis of this 2FA
method always draws the attention of the researchers. They have studied deployment
challenges, usability [16,43,44], and security [21,45] and reveal many issues. The most
common vulnerabilities are wireless attack, SIM swap attack, and attack by mobile mal-
ware [21]. They also did vulnerability analysis of alternative OTP deployment (e.g.,
encap OTP [30], gridcode OTP [26], 2GR protocol of OPTAP-scheme [22]) and bank-
ing system OTP vulnerabilities [45]. Some of the researches also emphasize using an
alternative method of OTP-2FA that will address common usability and security issues.

We classify studied OTP-2FA schemes in this work into two primary categories. One
is Remote Delivery, where the OTP is generated in remote service and communicated

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 99

with the user through a trusted channel (e.g., SMS, email). Here, the user has to prove
possession of an entity (e.g., phone number in case of SMS, a specific account in case
of email) as second-factor authentication (Something the user has). Another is Token-
based OTP, where it is generated in a local device. It can be a software token where OTP
is generated in an app that resides in a 2FA device (e.g., smartphone or smartwatch) or a
hardware token where it is generated in a token like portable hardware devices (shown
in Fig. 7a). Figure 1 illustrates the summary of our covered OTP-2FA categories.

Our Work: Vulnerability analysis of popular OTP-2FA deployment in the face of
malware in the terminal: In this paper, we do a security analysis of 2FA methods that
uses OTP-2FA as the second factor of authentication. We implement malware compo-
nents to generate malware-infected terminal scenarios and evaluate how much protec-
tion the OTP-2FA schemes provide in the face of these attacks. To accomplish that, we
implement two different variants of attack. One of them is launched from the user ter-
minal, and the other is from a remote attacker’s machine. Both of the attack variants
can make concurrent attacks to defeat the OTP-2FA scheme. Our observations indicate
that these attacks can overcome almost all the OTP-2FA schemes we have studied.

Our Contributions: Our contributions to this work are two-fold:

1. Implementation of carefully crafted attack to test the vulnerability of OTP-2FA
schemes: We design two variants of the attack on OTP-2FA aided by malware resid-
ing in the terminal. One of them is Internal Attack, which can launch attacks within
the user’s terminal with the keylogger, headless browser, and browser extensions as
attack components. Another attack is Remote Attack, where malware components
residing in the browser send captured information to the remote attacker. The attack
components used in this technical study are designed to evade the common anti-virus
and anti-malware programs that represent a real-world attack scenario.

2. Vulnerability analysis of OTP-2FA deployed in commonly used service providers.:
We analyze OTP-2FA scheme deployed in different popular service providers that
the users use for different sensitive purposes (e.g., e-commerce, email, online stor-
age service, social networks). Our analysis covers two primary types of OTP-2FA
schemes, Remote Delivery and Token Based OTP. Our observation indicates that
they are all vulnerable to malware in terminal attack where the attacker does not
have to compromise the 2FA device or service itself.

Attack Demonstrations and Paper Outline: We provide our attack implementation
demonstrations at https://sites.google.com/view/otp-attack-demo/home.

2 Background

2.1 One Time Pin Based 2FA

One Time PIN (OTP) is one of the most widely used 2FA methods. The main idea is to
generate a temporary PIN as proof of the user’s possession of a device (e.g., smartphone,
smartphone) or entity (e.g., phone number, email account). OTP can be generated on a
remote service and communicated with the user or generated on the 2FA device itself.

https://sites.google.com/view/otp-attack-demo/home

100 A. T. Mahdad et al.

For generating OTP, generally, two types of algorithms are used , Time-Based One
Time Password (TOTP) [28] and HMAC-based One-time Password (HOTP) [27,34].
The generation of HOTP depends on a secret key and a “counter”. This “counter’ is
known only to the second-factor device and the server. The “counter” in the token
increments itself each time after a new OTP is generated. The server used it to check
the validity of OTP. In TOTP, instead of “counter”, the incremental factor uses a times-
tamp, which would be incremented every 30 or 60s. The algorithms also take other
parameters that are used to determine the length of the generated OTP.

We have classified the studied OTP-2FA scheme into two main categories that are
illustrated in Fig. 1. In Remote Delivery method, the OTP is generated in an external
server and communicated with the user by a delivery channel. The most common deliv-
ery channel is the mobile phone network used by SMS (Short Messaging Service)
based OTP. The OTP receiving endpoint is a phone which is subject to mobile net-
work connectivity. It does not depend on internet connectivity, leading the SMS-OTP
to widespread acceptance, especially in remote areas. We show snapshots of the user
interface from the user terminal and phone for SMS-OTP in Appendix Fig. 7e and 7f.
Email and a phone call can also be other mediums of communication in that case.

The second category is Token Based OTP-2FA , which is generated locally in the
device. As this variant does not need any delivery channel, it is safe from an attack
like man-in-the-middle (MitM). Based on the generating device, it has two variants,
hardware token and software token. An example of the hardware token is RSA SecureID
[31], where the user has to carry a small device that can generate the OTP anytime on
demand. A snapshot of the RSA SecureID device is shown in Appendix Fig.7a. In
software token, OTP is generated by an OTP generator software that can be deployed
in computers (i.e., desktop, laptop), smartphones, or smartwatches. We show the user
interface snapshot of smartphone-based software token in Appendix Fig.7c and 7d.
Token based OTP also has a desktop-based variant with a “Copy-to-Clipboard” feature
that allows users to copy and paste the generated OTP without typing it on the terminal.
This feature increases both usability (user does not have to type it) and security (cannot
be captured by keylogger-based malware). A snapshot of the desktop-based software
token is shown in Appendix Fig. 7b.

2.2 Malware on Terminal

Malware on the terminal is a common threat for users nowadays. Adversaries infect
the terminal by installing malicious software to steal user data and control sensitive
information and programs. They can target terminals that the users are habituated to
use (e.g., personal computer, smartphone). We focus on desktop-based terminals for
this work. In the operating system market share, about 30.57% of users use Windows,
and approximately 7.65% use other desktop-based operating systems [37]. The rest of
the users use smartphone-based operating systems (e.g., Android, i0S). So, 38.22% of
the internet traffic comes from desktop-based operating systems that indicate that many
users still use desktop-based terminals to do their daily online activities.

The threat introduced by malware on the terminal is prevalent in the shared ter-
minals, where more than one person uses it. People tend to use public comput-
ing resources (e.g., computer terminals, internet connection) in universities, offices,
airports, and many other public places, and the number is significantly large [32]. On

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 101

)
o
ass¥

> 3. Submit OTP

2. Fetch OTP P:
OTP page Login Page |L = = OTP page

Sniff o

m S.orp

4. password
Headless Browser Headless Browser Successful Headless Browser Headless Browser
Login Page OTP Page Login Login Page OTP Page Login

(a) Workflow of blocking attack (b) Workflow of non-blocking attack

3. Submit OTP

Successful
| Login

Fig. 2. Workflow of blocking and non-blocking variant of Internal Attack

the other hand, personal computers have also become one of the prominent targets of
malware creators. They can easily be infected by malware when connected to unsafe
networks (i.e., public network in the airport, coffee shop) and devices (e.g., USB flash
drive, CD).

3 Ouwr Attack: Overview and Design

3.1 Attack Overview

We implement two attack variants, Internal Attack and Remote Attack. We design Inter-
nal Attack in two ways, blocking and non-blocking attacks. The attack’s primary focus
is to learn the password and OTP and request service concurrently using a headless
browser session. In blocking attack, after recording the password, the user’s request
will be blocked by a malicious browser extension and redirects her to an altered page
at the same time. The altered page is the exact replication of the OTP page where the
user is supposed to type the OTP. The keylogger can capture the typed OTP here and
can launch a concurrent attack. After the successful attack, the user will be redirected
to the login page again. A high-level overview of Internal Attack is shown in Fig. 2.

Another variant, Remote Attack is more hidden as most of its attack components are
not residing in the user’s terminal. Here, the keylogger is implemented on the user’s side
to capture passwords like Internal Attack. Moreover, it can send the credential through a
secure channel to the remote attacker. The attack component on the user’s end can also
take a screenshot at any time. Some desktop-based software tokens (e.g., Authy [40])
used the “copy-to-clipboard” feature where the user does not have to type the OTP in the
terminal. In that case, the captured screenshot has been sent to the remote attacker via
a secure channel where the attacker can extract the OTP by Optical Character Reader
(OCR). OCR is implemented on the attacker’s end as part of attack implementation. We
have portrayed a high-level overview of Remote Attack in Fig. 3.

3.2 Attack Assumptions

— The attacker has the capability of installing malicious attack components in any
desktop-based terminals running on Windows 10 or earlier. The installation of attack
components does not need any administrator/root privilege for being installed.

102 A. T. Mahdad et al.

Software Tokenat |- " °™% U
Terminal ser

&
wﬁw‘
3
Login Page Successful Successful
Login Login
st s st

8
Password, OTP
m Password and OTP Remote and Screenshot Remote screenshot
OCR
Controller Take 5| Controller
4. passwors 5.01P Screenshot 0 S0t orp
. 1% -
Headless Browser Headless Browser Successful Headless Browser Headless Browser Successful
Login Page OTP Page Login Login Page OTP Page Login

(a) OTP capture by keylogger workflow (b) OTP capture by screenshot workflow

3. Submit OTP 4. Submit OTP

2. Fetch OTP Page

2. Fetch OTP Page

OTP page Login Page OTP page

Fig. 3. OTP capture and screenshot capture workflow of Remote Attack

— The user is habituated to use OTP-2FA as the 2FA method and will not use any other
2FA variant or will not remember her browser’s session.

3.3 Attack Implementations Vs. Other Known Attack

The attack implementation is significantly different from other known forms of attacks.
Session Hijacking attack rides on the user’s existing session to attack authentication
schemes, where our implemented attack creates another independent session (in both
Internal and Remote attacks). As a separate session has been created, the attacker has
more control (i.e., not dependent on expiry of user session and user’s activity) than ses-
sion hijacking attack. As our study’s focus is malware residing in the terminal, external
attacks like active phishing attacks are out of the scope of this comparison.

3.4 Attack Components

We implement different attack components for both variants of our attack. Keylogger is
used in both Internal Attack and Remote Attack to capture password and OTP typed in
keyboard. Along with the keylogger, the malware can eavesdrop on mouse events. For
example, after a specific web page has been opened, the keylogger program can record
the keystroke unless it records an “ENTER” key or right mouse click (submit button or
placing the cursor to password field) and save it as username. Similarly, it can record
and save the password. The saved pattern can be used for future attack initialization. For
Internal Attack, an automated hidden browser has been used to launch the concurrent
attack. Also, it uses a browser extension to monitor, block and redirect any user requests.

Remote Attack variant needs implementation in both user terminal and remote
attacker’s side. Along with the keylogger, this variant has a component that is capa-
ble of taking a screenshot. Implementation on the attacker’s side includes an OCR to
analyze received screenshots and extract OTP.

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 103

3.5 Internal Attack

All the OTP-2FA variants require the user to type OTP on the terminal to complete the
challenge (except the “copy-to-clipboard” feature of Authy, which we discuss in the
next subsection). As generation algorithms and service implementations are different,
different schemes show different characteristics. Generated OTP from different service
implementations can have a different validity period or reusability.

We observed that for some deployed OTP-2FA allows the same OTP to be reused
in concurrent log in (e.g., Google). Others prohibit reusing the same OTP in more than
one session. We use non-blocking variant of attack to the service that allows reusing the
same OTP in multiple sessions. For other services, we use Blocking variant of attack.
We illustrate the block diagram of the Internal Attack in detail in Appendix Fig. 6b. The
step-by-step workflow is listed down here:

1. Keylogger component scans for a predefined pattern (e.g., username or part of
already known password) which works as an indicator that the user is trying to log
in. It then sends a command to other attack modules to launch a concurrent attack.

2. For Blocking attack, the browser extension will block the user’s request and redirect

her to an altered OTP entry page. Non-blocking attack will let the request reach the

service, and the service would redirect the user to the OTP entry page.

In OTP capture state, the keylogger records the next N digit (N= Length of OTP).

4. When the Nth digit has been recorded, it would save the OTP in a local file and
instantly launches a headless browser session. With captured password and OTP, the
headless browser session would complete authentication.

5. For Blocking attack, the user would be redirected to the login page after some time.

W

3.6 Remote Attack

In Remote Attack, user credentials and OTP captured from the user terminal are sent to
the remote attacker’s machine using a secure channel. One of the advantages of Remote
Attack is that it can overcome the keylogger’s limitations to capture the OTP, which
uses the “copy-to-clipboard” feature of Desktop-based software tokens. The step-by-
step procedure is discussed here, and the diagram is shown in Appendix Fig. 6a.

1. Keylogger looks for a predefined pattern like Internal Attack. It then sends a com-
mand to the remote machine to launch the attack.

2. After typing the password, when the user presses the “Enter” key or clicks on
the “Submit” button, the keylogger will send the captured password to the remote
attacker. The automated browser session on the attacker’s machine launches an
attack and waits for OTP to capture.

3. OTP can be captured in two ways. In the case of the “copy-to-clipboard” feature
on desktop-based software-token, the attack component would capture a screenshot
when it finds the software-token app is in the foreground (opened in the screen and
not minimized) and send it to the remote attacker’s machine. The OCR that resides
on the remote attacker’s machine would extract the OTP from the screenshot and
transfer it to the automated browser session to complete the attack.

104 A. T. Mahdad et al.

4 Implementation

4.1 Attack Components of Internal Attack

Keylogger and Controller: We develop the “Keylogger and Controller” module using
Python 3.7.5 using some standard python keylogger libraries. The detection submodule
is used to match and detect any pre-configured pattern. The capture submodule can cap-
ture any patterns on demand, which can be password or OTP. It can also save captured
patterns on local machines for future use. After matching any pre-configured pattern,
the connector submodule can send the command to launch other modules.

Automated Headless Browser Session: This module’s primary purpose is to launch
an automated browser session in the background to launch a concurrent attack. We use
Selenium Webdriver [35] and PhantomJS [29] to implement this module. The auto-
mated browser session can request and log in to any web-based online service using
captured login credentials and OTP. It also can take any screenshot of a web page or
download an HTML source of a page on demand in a hidden manner. We develop dif-
ferent versions of this module that can work with different services.

Chrome Extension for Request Control: This attack module is developed as a chrome
extension that can monitor, block, and redirect the user’s request to a malicious web
page. It accomplishes its task in such a covert way that the user would not get any
error message in the browser. This component continuously monitors the URL in the
address bar to match a predefined pattern (i.e., part of the URL of a service provider’s
authentication page). It takes action (e.g., block or redirect) after a match is found. We
develop the extension as a standalone Chrome extension. The malicious code can be
ported inside any benign extension without the user’s knowledge.

4.2 Attack Components of Remote Attack

Keylogger and Controller: The Keylogger and Controller component of Remote
Attack can also encrypt the captured password and OTP and send them to a remote
attacker’s machine through a secure channel along with the key pattern detection and
recording.

Screenshot Capture Module: This component resides on the user’s terminal and can
capture a screenshot of a specific window. We develop this module using python 3.7.5
using some standard libraries of python. It can capture screenshots without any admin-
istrator permission or user notification. It can monitor active programs (that are opened
in the foreground or background) and take a screenshot of a specific program’s window
when it comes to the foreground. This attack component can also send the captured
image to the remote attacker via a secure channel.

Remote Attack Controller: This module resides in the attacker’s machine. It waits
for the command to launch a concurrent attack from the “Keylogger and Controller”
component in the user’s terminal. When it receives the command, it activates itself
and collects the user’s terminal information. It can decrypt the encrypted password and

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 105

OTP. This component is also equipped with a specially designed OCR (Optical Char-
acter Reader) that can extract OTP from the user’s terminal screenshot. This module is
developed in python 3.7.5 using some standard libraries.

Remote Automated Browser Session: Remote Attack Controller is another automated
browser session that is implemented on the remote attacker’s side. After getting com-
mands from attack components from the user’s terminal, it activates itself to run a con-
current attack. We implement it using the Selenium Web Driver framework of Java.

Table 1. Evaluation with OTP-2FA deployments of popular service providers

Service name Remote delivery | Token based
Microsoft Outlook | v/ v

Facebook v v

Duo N/A v

Google v v

LastPass N/A v

Amazon v v

Twitter v N/A

v - Attack Successful, X- Not Successful

Search Images Maps Play YouTube News Gmail Dibe Mores
otptest2011@gmail.com | Google Account | Settings | Help | Sign out

You have been redirected to the basic HTML version because this browser is not supported. To use standard T
view please upgrade to a supported browser.

M Gmail T [scorchmoil [Searchthe v Eszmssis OTP Test Twenty Five =]
Q commensicn P—
o a g
ComposeMail e ReportSpom Delete MoreActons . v Go Refesh 1-3of3 re actions Setup)
Inbox (3) <
Stared ¥ O Google Security alert May 11
Sent Mail 0 Google 2-Step Verification tuned on Apr2d
Drats Google
Al Mail O Community Finish setting up your new Google Account Apr 24 Subscriptions Family Devices
o Team
Spam
Tiash
Contacts
Labels Archive ReportSpom Delete MoreActions.. ~ Go Refiesh 1-3of3 ~ d 9 H‘A ‘
Edtiatess
T AES VAL
You are currently using 0 MB (0%) of your 15350 MB.
actviy: 0 minutes ago on this computer @ . » Buy Microsoft 365 Family One happy connected Get support for your
Grad view: standard | basic HTML family device
(a) Snapshot of Google UI after a successful (b) Snapshot of Outlook UI after a successful

attack attack

Fig. 4. Snapshot after login in to some popular service after successful attack

106 A. T. Mahdad et al.

5 Evaluation

5.1 Evaluation of Commercially Deployed OTP-2FA Schemes in the Face of the
Attack

We examine the OTP-2FA scheme of seven well-known services, Microsoft Outlook
[1], Facebook [18], Duo [17], Google [19], LastPass [23], Amazon [3], and Twitter
[41], against our implemented attack. Almost all of them use both Remote Delivery and
Token Based OTP-2FA schemes. Some of the Remote Delivery OTP-2FA schemes allow
the same OTP to be used multiple times (e.g., Google), which might open attack oppor-
tunities. Token Based OTP-2FA schemes normally allow a limited amount of time (e.g.,
30s) as OTP validity. These schemes also can be reusable or not-reusable, depending
on service implementation. We check that almost all of the schemes mentioned above
are vulnerable to our attack. We present a summary in Table 1. We also show snapshots
of the successful attack on Google and Outlook in Fig. 4a and 4b.

5.2 Detectability from Terminal and 2FA Device

Internal Attack: The attack design is straightforward in case of a non-blocking attack
on OTP-2FA Remote Delivery, where reuse of OTP is allowed for a certain period (e.g.,
30s). After capturing the user’s OTP, a headless browser can quickly log in to another
independent session using the same OTP. So, no trace of concurrent login would be
visible in the user’s terminal. From the 2FA device’s point of view, multiple SMS would
be received. As they would display the same OTP (OTP is reused in this case), it is very
unlikely that the user would be suspicious.

accounts.goo.. ©r & 3y Incognito
€ X @ File | C/Gmail/Gmail_authentic.. © ¥ @

Google
Google 9
o 2-Step Verification
2-Step Verification P
This extra step shows it's really you trying to sign in
This extra step shows it’'s really you trying to sign in

@ otptest2011@gmail.com v
@ otptest2011@gmail.com v

2-Step Verification
2-Step Verification
Get a verification code from the Google Authenticator app
Get a verification code from the Google Authenticator app

I l Enter code

Don't ask again on this computer
Don't ask again on this computer

ry another way

(a) UI of altered OTP entry page (b) UI of authentic OTP entry page

Fig. 5. Comparison between user interface of OTP entry page when altered page has been shown
to user as a part of blocking attack of Internal Attack variant

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 107

The blocking variant of the attack does not send any duplicate OTP on the user’s
2FA device, thus also not detectable from the 2FA device’s point of view. This attack
variant is also useful for the OTP-2FA schemes where reuse of the same OTP in different
sessions is not allowed. The browser extension would block the user request to the
server and redirect the user to a duplicate OTP entry page. It is a similar-looking page
and hard to detect unless the user pays close attention to the changing URL in the
address bar, which is very unlikely in a real-world scenario. When the user proceeds
after entering OTP on that duplicate page, the extension will redirect the user to the
original login page, which would convince her to think that her login failed due to some
glitch. If the user can detect at this point, she can do nothing much as the attacker has
full control of her account in the meantime. We present a similar-looking malicious
page and authentic page in Fig. 5a and 5b for comparison.

Remote Attack: In the case of the Remote Attack variant, it shows minimal activity
on the user’s terminal. After capturing credentials on the user’s terminal, the attack
components send them to the remote attacker’s machine. Detection scenarios are similar
to Internal Attack from the user terminal and 2FA devices. The screenshot capturing
process also does not show any visible trace.

5.3 Detectability from Service

The Non-blocking variant of the attack sends only one concurrent request along with
the user’s request. As the user’s request is blocked in the Blocking attack, only a single
request would be sent. So, this low amount of request and activity, which is similar to
the user’s benign activity, would not raise a warning to the service provider’s end.

Table 2. Evaluation with free desktop based antivirus and web based malware scanning tool

Desktop based scanning Web based scanning
Antivirus name Quick scan | Full scan | Runtime warning | Version Web-based antivirus
Detection
Bitdefender X X X Free X
Avast X X X Free X
Avira X X X Free X
AVG X X X Free X
Sophos Home X X X Free X
Kaspersky X X X Premium | X
Security Cloud (Free
Trial)
ZoneAlarm X X X Free X
Mcafee total X X X Premium | X
protection (Free (Free
Trial) Trial)

v - Detected, X- Not Detected

108 A. T. Mahdad et al.

5.4 Detectability in the Presence of Anti-Malware Program

Our implemented attack is tested in the presence of some well-known and free anti-
malware solutions for the desktop terminal. We also did web-based malware analysis
for attack components. We examine attack script against Bitdefender [11], Avast Free
Edition [7], Malwarebytes anti-malware [24], Kaspersky Security Cloud [5], Sophos
Home [36], Avira [9], AVG [8], ZoneAlarm [14] and Mcafee Total Protection [25]. We
also evaluate executable attack files with 68 antivirus engines in VirusTotal [42], where
the above-mentioned antivirus engines are also included. We present the detailed and
comparative results of this analysis in Table 2.

We focus on two types of detection of anti-malware softwares, which are Signature-
based analysis and Behavior-based analysis. In the signature-based analysis, an
antivirus engine matches a predefined signature (i.e., pattern or part of a previously
detected malicious program) in a file. To evade signature-based detection, we obfus-
cate attack script code and use some customized libraries (i.e., a customized version of
python standard libraries). We observed almost zero detection with the desktop-based
antivirus. Only 2 out of 68 engines in Virustotal [42] detect our executable as malware.
We later analyzed to extract the root cause of the detection and found that the detections
were false alarms. It detects other benign python executables in the same way.

We develop the attack script in such a way so that it consumes minimal CPU, mem-
ory, and network resources. We present the average usage of resources during the active
and idle states in Appendix Table 4. From the usage table, it is obvious that resource
consumption is very low for Remote Attack, which is expected as the attack uses mini-
mal resources on the user’s terminal. For Internal Attack, peak usage is more, although
peak usage is observed when an attack is underway. Peak usage remains for a few sec-
onds and remains idle for the rest of the time. As the script demonstrates a small amount
of activity, a runtime scan cannot detect the malware based on Behavior-based Analysis.

5.5 Detectability During Attack Module Deployment

An attacker can deploy the attack components on the Windows platform without any
root/administrator privilege. The “Keylogger and Controller” component and head-
less browser session implemented on phantomJS requires no installation. The headless
browser session developed using the “Selenium web driver” requires only java installa-
tion in the user’s terminal, which also can be avoided if the attacker uses the portable
version of java. A hidden malicious batch script file can copy attack modules in the
user’s terminal promptly.

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 109

Table 3. Summary of analysis

OTP Generation/ Attack variant Browser Detectable | Detectable | Attack
variant Delivery method depen- in 2FA in rerminal | success
dency device
Token Hardware roken Internal attack v No Very low |/
based (Blocking)
Internal attack X No No v
(Non-blocking)
Remote attack X No No v
Software token Internal attack v No Very low |V
(2FA device) (Blocking)
Internal attack X No No v
(Non-Blocking)
Remote attack X No No v
Software token Internal attack v N/A N/A X
(Terminal) (Blocking)
Internal attack X N/A N/A X
(Non-blocking)
Remote attack X No No v
Remote SMS, Email, Internal attack v No Very low v
delivery Phone (Blocking)
Internal attack X Medium No v
(Non-blocking)
Remote attack X No No v

6 Discussion and Future Work

6.1 Attack Summary

We can observe from Table 3 that the attack is successful for both OTP-2FA variants. As
we described in previous sections, both of the attack variants are a combination of mul-
tiple attack components. The “Keylogger and Controller” component records the user’s
password and OTP and can launch the attack both from the user’s terminal and remote
attacker’s end. Our designed attack can defeat OTP-2FA schemes whether OTP can be
reused in multiple sessions or not. The advantage of the implemented attack is that it
can start simultaneously and promptly when the targeted user attempts to authenticate.
The attack begins as soon as a match with a predefined pattern is found. They wait for
OTP to capture and can complete the attack immediately. We have demonstrated that,
after capturing OTP, the attack can be done within seconds.

Desktop-based OTP generator with a “Copy-to-Clipboard” feature secures OTP
from keyloggers. However, our implemented attack can monitor every active window in
the user’s terminal, and take a screenshot of them when they become active and can send
it to the remote attacker. The attack components in the remote attacker’s end can extract
the OTP from the screenshot instantly and can send a concurrent request to the service.
The attack can be done within seconds, which we have shown in the demonstrations. It
is prompt and stealthy, demonstrating the real threat in real-world scenarios.

110 A. T. Mahdad et al.

6.2 General Discussion

Malware Infection Risk of Windows-based Terminal: Malware infection on
Windows-based desktop terminals is prevalent nowadays. According to the AV test,
90.83 million malware and 5.43 million potentially unwanted programs are reported
for Windows OS [6]. In the United States, 30% of computers are infected with some
form of malware [15]. Moreover, Windows is the most common target of malware writ-
ers as it has 357 dangerous security gaps, according to a recent report [46].

2FA System Vs. Malware in Terminal: Previous literature suggests that the attacker
has to compromise both the terminal and 2FA device to compromise any 2FA system
successfully. According to Bonneau et al. [12], 2FA schemes are resilient-to-internal-
observation, which indicates that they cannot be bypassed by compromising only a
single entity (i.e., the terminal). Our work contradicts this prior line of reasoning.

Feasibility of Installing Keylogger/Browser Extension on User Terminal: Accord-
ing to [38], the development of keylogger-based malware is on the rise, and 80% of
keyloggers are not detectable to anti-malware programs. Our evaluation against stan-
dard anti-malware programs in Sect. 5.4 also supports this claim. Furthermore, a recent
article reveals that 500 malicious Chrome extensions have been identified with a similar
ability to our attack component (i.e., redirecting victims to a malicious website) [39].
Most of them are hidden inside benign and useful user extensions.

6.3 Mitigation Strategy

We propose some prevention techniques that the service providers and the users can
take to prevent themselves from a similar attack scenario.

— Service providers should block reusing the same OTP in two different sessions.
Although that does not prevent the users from all attacks discussed above, this can
make the attacker’s task difficult and challenging.

— To prevent the concurrent attack, the service should discard the concurrent request
if that arrives before another request is not completed.

— The desktop-based operating systems (e.g., Windows) and the software token devel-
opers should work together to prevent taking hidden screenshots by unauthorized
applications.

6.4 Limitations and Future Work

From the attack design perspective, we have some limitations. To design the browser
extension component, we only use “Google Chrome” as the browser and “Windows”
as the user’s terminal operating system. To design a more stealthy attack, we have a
plan to implement browser-independent and platform-independent components in the
future. We will also work on designing a component that can start the software token in
the user’s terminal and capture the OTP in a hidden way without the user’s assistance.

We cover commercially deployed OTP-2FA schemes in this work. We plan to exam-
ine more sophisticated and sensitive OTP-2FA schemes (i.e., academic and banking
OTP-2FA schemes) for more innovative threat models in the future.

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 111

7 Related Work

The authors [45] discussed the vulnerabilities of OTP-2FA implementation in some of
the bank’s online networks in South Korea in this work. Here they intercepted password
and OTP, which is similar to our attack design. The attack we demonstrated can make
both internal and remote attacks. It can create a hidden browser session from the vic-
tim’s terminal to instantly initiate the attack, where the authors in this work send OTP
credentials to the outside attacker only. Our designed “Internal Attack” can launch itself
more promptly compared to them. Not only that, the attack can do similar damage in
the absence of the attacker.

In the work [33], Siadati et al. discussed a social engineering method to steal SMS-
based 2FA, which tricks a victim into sending SMS with authentication code to the
attacker’s device. Our demonstrated attack also uses social engineering, but it is more
hidden compared to the author’s approach, and the user does not have to send the SMS
anywhere. Instead, the user types the OTP to the terminal, and attack components auto-
matically capture it and initiate an attack.

Some works focus on common OTP-2FA vulnerabilities. Examples of similar work
are [21] and [20]. In this work [21], authors focus on wireless attacks, SIM swap attacks,
or mobile malware attacks. We do not compromise mobile phones or any other 2FA
device or network devices in our designed attack. Instead, this attack can start a con-
current attack from the terminal or a remote computer. Similarly, in this work [20], the
author focuses on some vulnerabilities like cookie theft, subject hijacking, SiM swap,
forged SMS recovery messages, and duplicate OTP generators. Our designed attack is
simpler, and it does not need to compromise anything outside of the terminal.

There are many custom OTP-2FA deployments, and researchers analyzed those
schemes and found vulnerabilities. Examples of such work are [22,26,30,45]. In con-
trast, we designed an attack on the “malware-in-terminal” attack scenario and evaluated
commercial and popular OTP-2FA schemes against it.

8 Conclusion

There is a common belief that second-factor authentication schemes should be more
secure deployments that give users an extra step of security to safeguard them from
adversaries. OTP-2FA is the most widely used and acknowledged 2FA implementation.
We evaluated the security of OTP-2FA in the malicious program’s presence in the user
terminal and tried to assess if it adds any additional protection in that circumstance. We
designed and prepared some attack modules and examined them against seven promi-
nent service providers to answer that question. Our findings signify that the concurrent
attack can authenticate the attacker from the terminal or a remote PC without com-
promising any external factor (e.g., service, password, database, 2FA device, network).
The attack also accomplishes low detectability for its hidden nature and little activity
in the user’s terminal for a small amount of time. Our approach is unique as it involves
the users during the attack without their notice and achieves success by only compro-
mising the terminal. More work can be done focusing on concurrent attacks on the
different second-factor schemes and how to safeguard sensitive accounts and resources
from those attacks.

112 A. T. Mahdad et al.

Acknowledgements. Authors are thankful to the shepherd Yuhong Nan and the anonymous
reviewers for their feedback. This work is funded in part by NSF grants: CNS-1547350, CNS-
1526524 and CNS-1714807.

A Appendix

A.1 Tables
Table 4. Attack variant resource consumption

Variant State | CPU | Memory Power Network

Internal attack Idle | 0.01% | 27.5 MB Very low | 0.0 MB
Peak | 20.0% | 108.83 MB | Low 0.1 MB

Remote attack (Password and Idle | 0.01% | 23.7 MB Very low | 0.0 MB

OTP capture) Peak | 0.1% |245MB | Low 0.1 MB

Remote attack (Software token Idle | 0.01% | 29.5 MB Very low | 0.0 MB

screenshot capture) Peak | 0.5% |32.8MB | Low 0.8 MB

A.2 Other snapshots

Start Attack Key Capture Matched
Controller State with pattern
Yes

Remote Start Remote Attack
Attack
Controller

No
Password
Capture State

No Start Atack (eeTe
Controller Sie
Enter” Ke)
pressed?
Yes

Start
Headless
browser

Headless
Wait for Password Passward Record Browser
”' State Password Controller
1]
AN Start k
Password esktop Headless
Screenshot
captured? et St Software ot
Token?

No

Screenshot
Captured?

Successful
Login

No

OTP Capture
State
Successful
' >

(a) Flow diagram of Remote Attack (b) Flow diagram of Inside Attack

Block Users
requestand
Tedirect

Wait for OTP
state

Yes.

oTP
Captured?

Fig. 6. Flow diagrams of remote and inside attack on OTP

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals

(a) RSA SecurelD, that was widely used as

hardware token OTP-2FA

Google
2-Step Verification
sir

ly you trying to sign

(c) Snapshot of UI from terminal during au-
thentication using software-token variant of
OTP-2FA

Google
2-Step Verification
out

This extra step sho

(e) Snapshot of UI from the user terminal
during authentication using remote-delivery
variant of OTP-2FA (SMS)

113

1@ Twilio Authy . X
Authy Desktop Edit Window Help

B Microsoft

817 051

(3 & &

Tokens Requests Settings

(b) Snapshot from Authy, which
has a desktop based software to-
ken variant.

Google Authenticator

797043

Google (] @gmail.com) (1

(d) Snapshot of UI from 2FA device during
authentication using Software-token variant
of OTP-2FA

@ New message

O IOm P4 52%s

22000
G-344889 is your Google verification code.

THANKS THANKS! |—D G-344889

REPLY VIA SMS MARK AS READ

(f) Snapshot of UI from the 2FA device
(Phone) during authentication using remote-
delivery variant of OTP-2FA (SMS)

Fig.7. Collection of snapshots of OTP-2FA prompt Ul from user terminal and 2FA device

114

A. T. Mahdad et al.

References

1. Outlook- free personal email and calender from microsoft (2020). https://outlook.live.com/
owa/

2. Adams, C.: Dictionary Attack, pp. 332. Springer, Boston (2011). https://doi.org/10.1007/
978-1-4419-5906-5_74

3. Amazon.com Inc: Amazon.com: Online shopping for electronics, apparels, computer, books
& dvd and more (2020). https://www.amazon.com

4. Anise, O., Lady, K.: State of the auth: experiences and perceptions of multi-factor authenti-
cation. Duo security (2017)

5. AO Kaspersky Lab: Kaspersky security cloud - free (2020). https://www.kaspersky.com/
free-cloud-antivirus

6. AV-TEST - The independent IT Security Institute: Malware statistics & trends report (2020).
https://www.av-test.org/en/statistics/malware

7. Avast Foundation: Avast free antivirus (2020). https://www.avast.com/en-us

8. Avast Software s.r.o.: Avg free antivirus (2020). https://www.avg.com/en-us/

9. Avira Operations GmbH & Co. KG.: Avira antivirus (2020). https://www.avira.com/

10. Bhushan, B., Sahoo, G., Rai, A.K.: Man-in-the-middle attack in wireless and computer net-
working — a review. In: 2017 3rd International Conference on Advances in Computing, Com-
munication Automation (ICACCA) (Fall), pp. 1-6 (2017)

11. Bitdefender: Bitdefender - global leader in cybersecurity software (2020). https://www.
bitdefender.com/

12. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: The quest to replace passwords: a
framework for comparative evaluation of web authentication schemes. In: 2012 IEEE Sym-
posium on Security and Privacy, pp. 553-567. IEEE (2012)

13. Chandel, A., Kumar, P., Yadav, D.K.: Phishing attack and its countermeasures. IEEE Elec-
tron. Device Lett 7, 569-571 (1999)

14. Check Point Software Technologies Inc: Pc and mobile security software - zonealarm (2020).
https://www.zonealarm.com/

15. DataProt: A not-so-common cold: malware statistics in 2021 (2021). https://dataprot.net/
statistics/malware-statistics/

16. De Cristofaro, E., Du, H., Freudiger, J., Norcie, G.: A comparative usability study of two-
factor authentication. arXiv preprint arXiv:1309.5344 (2013)

17. Duo: Duo two factor authentication and endpoint security (2020). https://duo.com

18. Facebook: Facebook (2020). https://www.facebook.com/

19. Google: Google accounts (2020). https://accounts.google.com

20. Grimes, R.: The many ways to hack 2fa. Netw. Secur. 2019(9), 8-13 (2019)

21. Karia, M.A.R., Patankar, A., Tawde, M.P.: SMS-based one time password vulnerabilities and
safeguarding OTP over network. Int. J. Eng. Res. Technol. (IJERT) 3(5), 1339-1343 (2014)

22. Kuo, W.C,, Lee, Y.C.: Attack and improvement on the one-time password authentication
protocol against theft attacks. In: 2007 International Conference on Machine Learning and
Cybernetics, vol. 4, pp. 1918-1922. IEEE (2007)

23. Logmeln Inc.: Lastpass - password manager & vault app (2020). https://www.lastpass.com/

24. MalwareBytes: Malwarebytes cybersecurity for home and business (2020). https://www.
malwarebytes.com/

25. McAfee: Mcafee total protection (2020). https://www.mcafee.com/en-us/antivirus/free.html

26. Molloy, 1., Li, N.: Attack on the gridcode one-time password. In: Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security, pp. 306-315
(2011)

https://outlook.live.com/owa/
https://outlook.live.com/owa/
https://doi.org/10.1007/978-1-4419-5906-5_74
https://doi.org/10.1007/978-1-4419-5906-5_74
https://www.amazon.com
https://www.kaspersky.com/free-cloud-antivirus
https://www.kaspersky.com/free-cloud-antivirus
https://www.av-test.org/en/statistics/malware
https://www.avast.com/en-us
https://www.avg.com/en-us/
https://www.avira.com/
https://www.bitdefender.com/
https://www.bitdefender.com/
https://www.zonealarm.com/
https://dataprot.net/statistics/malware-statistics/
https://dataprot.net/statistics/malware-statistics/
http://arxiv.org/abs/1309.5344
https://duo.com
https://www.facebook.com/
https://accounts.google.com
https://www.lastpass.com/
https://www.malwarebytes.com/
https://www.malwarebytes.com/
https://www.mcafee.com/en-us/antivirus/free.html

27.

28.

29.

30.

31.

32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.

44.

45.

46.

Analyzing the Security of OTP 2FA in the Face of Malicious Terminals 115

M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: Hotp: an hmac-based one-
time password algorithm. The Internet Society, Network Working Group. RFC4226 (2005)
M’Raihi, D., Machani, S., Pei, M., Rydell, J.: Totp: time-based one-time password algorithm.
Internet Request for Comments (2011)

PhantomJS Contributors: Phantomjs- scriptable headless browser (2010-2018). https://
phantomjs.org

Raddum, H., Nestas, L.H., Hole, K.J.: Security analysis of mobile phones used as OTP gen-
erators. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.)
WISTP 2010. LNCS, vol. 6033, pp. 324-331. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12368-9_26

RSA Security LLC.: RSA securid hardware tokens (2020). https://www.rsa.com/en-
us/products/rsa-securid-suite/rsa-securid-access/securid-hardware-tokens/rsa-securid-
hardware-tokens

Separd, D.: First-ever national study: millions of people rely on library computers for
employment, health, and education (2020). https://www.gatesfoundation.org/media-center/
press-releases/2010/03/millions- of-people-rely-on-library-computers-for-employment-
health-and-education

Siadati, H., Nguyen, T., Gupta, P., Jakobsson, M., Memon, N.: Mind your SMSes: mitigating
social engineering in second factor authentication. Comput. Secur. 65, 14-28 (2017)

Smith, N.: Hotp vs totp, whats the difference? (2018). https://www.microcosm.com/blog/
hotp-totp-what-is-the-difference

Software Freedom Conservancy- Selenium Project: Selenium webdriver (2020). https://
www.selenium.dev/projects/

Sophos Ltd: Sophos home - cybersecurity made simple (2020). https://home.sophos.com/en-
us.aspx

StatCounter: Operating system market share worldwide- february 2020 (2020). https://gs.
statcounter.com/os-market-share

TechJury.net: What is a keylogger? [everything you need to know] (2021). https://techjury.
net/blog/what-is-a-keylogger/

ThreatPost: 500 malicious chrome extensions impact millions of users (2020). https://
threatpost.com/500-malicious-chrome-extensions-millions/152918/

Twilio Inc.: Authy- two factor authentication (2fa) app & guides (2020). https://authy.com/
Twitter Inc: Explore twitter (2020). https://twitter.com/explore

VirusTotal: Virustotal (2020). https://www.virustotal.com/gui/home/upload

Weir, C.S., Douglas, G., Carruthers, M., Jack, M.: User perceptions of security, convenience
and usability for ebanking authentication tokens. Comput. Secur. 28(1-2), 47-62 (2009)
Weir, C.S., Douglas, G., Richardson, T., Jack, M.: Usable security: user preferences for
authentication methods in ebanking and the effects of experience. Interact. Comput. 22(3),
153-164 (2010)

Yoo, C., Kang, B.T., Kim, H.K.: Case study of the vulnerability of OTP implemented in
internet banking systems of South Korea. Multimedia Tools Appl. 74(10), 3289-3303 (2015)
Ziff Davis, LLC. PCMAG Digital Group: Windows computers were targets of 83% of
all malware attacks in q1 2020 (2020). https://www.pcmag.com/news/windows-computers-
account-for-83-of-all-malware-attacks-in-q1-2020

https://phantomjs.org
https://phantomjs.org
https://doi.org/10.1007/978-3-642-12368-9_26
https://doi.org/10.1007/978-3-642-12368-9_26
https://www.rsa.com/en-us/products/rsa-securid-suite/rsa-securid-access/securid-hardware-tokens/rsa-securid-hardware-tokens
https://www.rsa.com/en-us/products/rsa-securid-suite/rsa-securid-access/securid-hardware-tokens/rsa-securid-hardware-tokens
https://www.rsa.com/en-us/products/rsa-securid-suite/rsa-securid-access/securid-hardware-tokens/rsa-securid-hardware-tokens
https://www.gatesfoundation.org/media-center/press-releases/2010/03/millions-of-people-rely-on-library-computers-for-employment-health-and-education
https://www.gatesfoundation.org/media-center/press-releases/2010/03/millions-of-people-rely-on-library-computers-for-employment-health-and-education
https://www.gatesfoundation.org/media-center/press-releases/2010/03/millions-of-people-rely-on-library-computers-for-employment-health-and-education
https://www.microcosm.com/blog/hotp-totp-what-is-the-difference
https://www.microcosm.com/blog/hotp-totp-what-is-the-difference
https://www.selenium.dev/projects/
https://www.selenium.dev/projects/
https://home.sophos.com/en-us.aspx
https://home.sophos.com/en-us.aspx
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://techjury.net/blog/what-is-a-keylogger/
https://techjury.net/blog/what-is-a-keylogger/
https://threatpost.com/500-malicious-chrome-extensions-millions/152918/
https://threatpost.com/500-malicious-chrome-extensions-millions/152918/
https://authy.com/
https://twitter.com/explore
https://www.virustotal.com/gui/home/upload
https://www.pcmag.com/news/windows-computers-account-for-83-of-all-malware-attacks-in-q1-2020
https://www.pcmag.com/news/windows-computers-account-for-83-of-all-malware-attacks-in-q1-2020

IoT Security

®

Check for
updates

Disappeared Face: A Physical Adversarial
Attack Method on Black-Box Face

Detection Models

Chuan Zhou"?, Huiyun Jing®®™, Xin He?*, Liming Wang?, Kai Chen?,
and Duohe Ma?

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhouchuanl,wangliming, chenkai7274,maduohe}@iie.ac.cn
3 China Academy of Information and Communications Technology, Beijing, China
jinghuiyun@caict.ac.cn
4 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing, China
hexin@cert.org.cn

Abstract. Face detection is a classical problem in the field of com-
puter vision. It has significant application value in face recognition and
face recognition related applications such as face-scan payment, iden-
tity authentication, and other areas. The emergence of adversarial algo-
rithms on face detection poses a substantial threat to the security of face
recognition. The current adversarial attacks on face detection have the
limitations of the need to fully understand the attacked face detection
model’s structure and parameters. Therefore, these methods’ transfer-
ability, which can measure the attack’s effectiveness across many other
models, is not high. Moreover, due to the consideration of commercial
confidentiality, commercial face detection models deployed in real-world
applications cannot be accessed, so we cannot directly launch white-box
adversarial attacks against these models. Aiming at solving the above
problems, we propose a Black-Box Physical Attack Method on face detec-
tion. Through ensemble learning, we can extract the public weakness of
the face detection models. The attack against the public weakness has
high transferability across models and makes escaping black-box face
detection models possible. Our method realizes the successful escape of
both the white-box and black-box face detection models in both the PC
terminal and the mobile terminal, including the camera module, mobile
payment module, selfie beauty module, and official face detection models.

Keywords: Adversarial attack - Face detection - Black-box attack -
Real-world attack

1 Introduction

Face detection is a classical problem in the field of computer vision. It has signif-
icant application value in face recognition related applications such as face-scan

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 119-135, 2021.
https://doi.org/10.1007/978-3-030-86890-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_7

120 C. Zhou et al.

payment, identity authentication, image focus, and other areas. What’s more,
face detection is widely integrated into commercial applications in our daily life.
For example, Face Unlock Module of commercial mobile phones, payment soft-
ware Alipay, and selfie beauty application B612 all need to complete the initial
positioning of faces through the face detection module.

Unfortunately, the emergence of adversarial examples seriously threatens the
real-world applications based on face recognition. For example, one person can
escape face detection models by attaching adversarial patches to its face or head-
wear, which means that the face detection model cannot detect the face in the
form of rectangular boxes. Because face detection is the presequence module of
face recognition, this may cause the face recognition related application to crash
unexpectedly. For example, criminals might use specifically trained adversarial
examples to evade facial recognition systems deployed by the police. To investi-
gate the face detection’s vulnerability to improve both the face detection security
and the face recognition security, it is urgent to study the adversarial attacks
on face detection. There are some adversarial attack methods on face detection
nowadays.

According to whether they launch adversarial attacks using digital images
or real-world objects like masks and patches, attack methods can be roughly
categorized into Digital Adversarial Attacks and Physical Adversarial Attacks.

Digital adversarial attacks [16] are methods that rely on an implicit assump-
tion that attackers can directly feed digital adversarial examples to machine
learning algorithms. The adversarial perturbation is directly added to the origi-
nal digital image, and then the perturbation-added digital image is fed into the
classification model [22]. Bose et al. [1] generate adversarial examples by solving
constrained optimization problems such that the face detector cannot detect the
faces in generated adversarial examples. As a white-box attack, their method
relies on full access to the attacked face detection model - Faster R-CNN [12],
which is unrealistic in real-world and commercial scenarios.

Physical adversarial attacks focus on generating adversarial examples on real
objectives such as patches and masks. For example, Adversarial patches are
printed by a laser printer and then attached to the physical-domain target like
human cheeks to fool image classifiers instead of directly feeding digital images
into machine learning algorithms. Zhou et al. [23] use infrared LEDs attached
to headwear to create physical adversarial examples to escape the face detection
systems. However, their method of configuring the infrared light source is quite
complicated. Kaziakhmedov et al. [8] introduce an easily reproducible way to
attack the cascade CNN face detection system - Mtcnn by attaching adversarial
patches to the face directly. However, similar to Bose et al.’s attack method [1],
none of the above attack methods can achieve the black-box adversarial attack
on face detection.

In a word, these methods all require direct access to the model’s structure and
parameters. So, they pose less threat to the real-world commercial applications
that integrate black-box face detection models. It is because that the enterprise

Disappeared Face 121

will not opensource the application source code and the internal details of the
face detection model to protect the core interests.

What is more, the current attacks on face detection generally lack transfer-
ability [11]. Their adversarial examples can only mislead specific models that
take part in training adversarial examples but not other models without par-
ticipation. Model changes caused by changes of structure, parameters, or just
training datasets can seriously affect attack performance.

To solve the above-mentioned problems in existing methods, we propose a
black-box physical adversarial attack method on face detection with high trans-
ferability. We focus on attacking black-box face detection models in the real
world. Our method is inspired by the opinion that some public semantic fea-
tures [3,13] can reflect the public vulnerabilities of unknown DNN models that
focus on the same task [3]. Focus on the task of face detection, the detection
confidence is such a kind of semantic feature in essence. It is because the detec-
tion confidence naturally has the ability to reflect the face detection effect. In
this paper, we use ensemble learning [6] to fuse multiple white-box face detec-
tion models’ detection confidence to construct the total classification loss func-
tion. After we optimize the learnable parameters in the loss function through
ADAM [9], we believe that loss value calculated by the parameters-optimized
loss function can reflect the public vulnerability of face detection task to some
extent. Since generating the adversarial patches by attacking the public vulner-
abilities of face detection, our method bypasses the strict limitation of needing
detailed internal information of the attacked model and has good transferabil-
ity. By directly posting the printed adversarial patches to the cheeks, we realize
the physical adversarial attack on face detection. It also means that we have
breached the whole face recognition module from another aspect.

The demonstration video is available on the Internet!. We show our escape
effect of attacking one real-time black-box face detection model - Official Yolo-
face [4] for demonstration.

Our specific contributions are as follows.

1. For the first time, we successfully realize black-box physical adversarial
attacks on face detection in the real scenes. Our method realizes the escape
of face unlock module and built-in camera software of mobile phones such as
Samsung, Xiaomi, etc. Simultaneously, we realize the escape of commercial
applications, such as Alipay’s face payment and B612 selfie beauty appli-
cations. Our method provides a new way to evaluate the security of face
recognition.

2. We realize the high-transferability adversarial attack on face detection. The
adversarial patches generated by specific face detection models can also suc-
cessfully attack many other face detection models through our method. For
example, the adversarial patches generated by our method can successfully
escape the black-box official face detection models such as Pyramidbox, light-
DSFD, and Yoloface at the same time.

! https://drive.google.com/file/d/1atQVEQtPMRhKwZw4j- MGt 7xFxEY86bBh.

https://drive.google.com/file/d/1atQvE9tPMRhKwZw4j-MGt7xFxEY86bBh

122 C. Zhou et al.

2 Related Works

2.1 Adversarial Attacks on Face Recognition

There are many adversarial attack methods on face recognition nowadays.
According to the different attack principles, we classify adversarial attacks on
face recognition as the following.

Debayan Deb et al. propose an automated adversarial examples synthesis
method (Advfaces [5]). It uses GAN to limit perturbations on significant pixel
locations (e.g., eyebrows and eyeballs) to improve the invisibility of the generated
adversarial examples. They successfully mislead the face recognition model by
generating a digital adversarial example. However, it is difficult to migrate this
attack to the physical domain because it works by making slight changes to
pixels at specific locations in specific images.

Mahmood Shari et al. [14] limit the adversarial disturbance to the area where
the glasses are worn and use a 3D printer to produce the custom-made glasses.
Later, they come up with a method called AGN [15] (Adversarial Generative
Nets) to generate universal eyewear, which dramatically improves the attack’s
effectiveness and allows the resulting eyewear to resemble the shape and texture
of real eyewears.

Xiao et al. propose an adversarial attack method on face recognition called
StAdv [18]. This method interpolates and merges the neighborhood information
through a spatial transformation attack, making the image smoother. Instead
of adding irrelevant adversarial perturbations to the image, the method distorts
the image by moving the pixels, which can mislead the face recognition model
into giving wrong results.

The above methods directly attack the face recognition model to induce the
models to give the wrong classification results. Focusing on the presequence
module of face recognition, face detection, we will introduce several algorithms
that also pose a severe threat to face recognition.

2.2 Adversarial Attacks on Face Detection

Different from directly attacking the face recognition module, adversarial attacks
on face detection can also threaten the security of face recognition by attacking
its presequence face detection module.

AJ Bose et al. [1] realized the white-box attack against the Faster RCNN face
detection model by training a generator. The training process can be regarded
as a constrained optimization problem, similar to a C&W attack [2]. As a typical
white-box attack method, its white-box escape rate is high. However, the need
to fully understand the structure and parameters of the model makes its attack
capability very limited and lacks in transferability.

Kaziakhmedov et al. [8] were the first to propose the physical adversar-
ial attack on face detection, and they could escape the camera without being
detected. Adversarial patches are adjusted by backward propagation of the gra-
dient value of the loss function. As a gradient-based adversarial algorithm, its

Disappeared Face 123

core advantage lies in fast attack speed and high efficiency. However, its white-
box characteristics make it lack transferability, and its attack success rate is
relatively low.

Zhou et al. [23] proposed a face detection escape method based on infrared
interference. Face recognition systems can be bypassed or misdirected by using
special infrared light that cannot be seen by the naked eyes to interfere with
facial feature point regions. This attack method has strong concealment, but
the escape success rate is relatively low, and it is very complicated to configure
the infrared light source and other steps. The experiments show that the attack
algorithm’s transferability is also low, and it is hard to use their method to
escape other unknown black-box face detection models [23].

3 Owur Proposed Method

Although DNNs that focus on the same task may have different structures and
weights, they may share the public semantic feature [3]. The public semantic fea-
ture could reflect the specific task’s public attention(public weakness) to some
extent. Researchers find that by attacking the public attention(public weakness)
of white-box DNNs, they could make DNNs’ attention lose their focus and there-
fore fail in judgment [3]. Inspired by the above idea and ensemble learning [6], we
design an algorithm to find out face detection models’ public weakness. Then,
we train specific adversarial patches to attack the find-out face detection models’
public weakness. When the specific tester posts trained patches on his Living
Face, he could escape Real-World Black-Box face detection models in front of a

Sitin the

front

Camera and Face Face is Successfully
Detection Model Detected

Sitin the
front

e

)

Living Person with Trained Camera and Face No Face is Detected
Patches on his cheeks Detection Model

Fig. 1. The pipeline of attacking face detection models in the real world. We use a
specific tester to post specific-trained patches on his cheeks; then, he sits in front of a
camera to attack the black-box face detection model.

124 C. Zhou et al.

camera. The process of attacking black-box face detection models in real scenes
using our method is shown in Fig. 1.

When make judgements, human tend to concentrate on certain parts of an
object to allocate attention efficiently. In computer vision, the same idea has
been applied and becomes an important component in DNNs [3]. Therefore, we
show our escape effect from the respect of the attention heat map. The attention
heat map shows the DNN’s concern area, which is usually essential for its specific
mission (e.g. face detection). When no pasting trained patches, Fig. 2 shows that
all face detection models can focus attention on the face region. However, when
pasting adversarial patches trained by our method, Fig. 3 shows that all four face
detection models are no longer able to focus attention on the face region. That
is maybe why they cannot find faces anymore. You can also prove this with the
average attention heat map of four models in the bottom right corner of Fig. 2
and Fig. 3. (We just average the four attention heat maps to obtain the average
attention heat map.)

Attention Heat Map of Attention Heat Map of
PyramidBox[13] EaceRox[14] |
Attention Heat Map of Attention Heat Map of Average Attention Heat
Mtenn[12] DSFD[15] Map

Fig. 2. The attention heat map of original face. All face detection models can focus
their attention on the face area. It means that they can detect human faces normally.

-
m -
- -
Attention Heat Map of Attention Heat Map of

PyramidBox[13] EaceBox[14]

Attention Heat Map of Attention Heat Map of Average Attention Heat
Mtenn[12] DSFD[15] Map

Fig. 3. The attention heat map of posting adversarial patches on the Tester’s Cheeks.
After posting specific-trained patches on cheeks, none of the four face detection models
could anymore focus their attention on the face region.

Figure 2 and Fig. 3 essentially illustrate why we can escape the face detection
models, and they visually demonstrate the effectiveness of our method from the
perspective of heat maps.

Disappeared Face 125

Update Adversarial Patches:

Find Out .
Face Models’ Train
' semmmme Detection Public Adversarial
Models Patches

WEELGEIESS

Configured
Input Images

Fig. 4. The pipeline of training adversarial patches

The flow chart of training adversarial patches is shown in Fig. 4. Our proposed
method mainly includes three parts: Configure Input Images, Search for
Face Detection Models’ Public Weakness, and Update the Adversarial
Patches using the find-out public weakness. We will cover each part in detail
in the following subsections.

3.1 Configure Input Images

In the “Configure Input Images” part, we take photos to Obtain Input Images.
Then we affine the updated adversarial patches (When the first time of training,
use the initialized patches) to the projection areas to obtain Configured Input
Images. The following describes in detail how to Obtain Input Images and how to
Obtain Configured Input Images. For more details of our datasets and training
parameter, please refer to Sect.4.1.

Obtain Input Images. Use a laser printer to print out the checkerboard
patches and post them on the tester’s cheeks. We use a camera to collect face
images under different illumination, distance, and angle to enhance the attack’s
robustness. For anyone who wants to escape black-box face detection models and
reach the best escape effect, we should collect his eight face images in different
conditions (distance, lights) to train specific patches.

Obtain Configured Input Images. We mark the edge of the collected input
images’ checkerboard patches. Because we need iterative training adversarial
patches, if it is the first time, we would affine the initialized adversarial patches
to the projection areas obtained by identifying the marked edge; otherwise, we
would affine the updated adversarial patches to the projection areas obtained

126 C. Zhou et al.

by identifying the marked edge. At this point, we have obtained the Configured
Input Images we need.

3.2 Search for Face Detection Models’ Public Weakness

In order to find out face detection models’ public weakness, we need to select
several white-box face detection models. We uniformly collect unofficial face
detection models with different structures and backbones for training adversarial
patches so that we can use the corresponding official models to run the black-
box escape test. In this paper, we select Mtcnn [20]?, PyramidBox [17]?,
Facebox [21]*, and DSFD [10]°. You can also choose other white-box models,
as long as they can perform the relevant calculations described below. (The
number of models to choose is also changeable, we choose four here.)

First, we feed all the configured images into our selected face detection mod-
els. Due to the uninterpretable nature of artificial intelligence, we cannot obtain
entities that can reflect the public weakness of the face detection task. For each
face detection model, we calculate its classification loss L.y by formula 1. We
assume that the average sum of multiple face detection models’ classification
losses, Leif,,,..» can reflect the public weakness of the face detection task. Our
hypothesis is reasonable because the total classification loss of multiple face
detection models is an important indicator reflecting the effect of face detection
task. The effectiveness of face detection can, of course, reflect the vulnerability of
the model; therefore, we can use L;y,,,,, to naturally reflect the public weakness
of face detection models to some extent.

Lefi=x v 5, maz(pr—:.0)2 (1)
1 K

Letfiorr = 3¢ > Lay, (2)
1=1

N is the number of face images participating in training adversarial patches.
Pm represents the confidence probability that the region m of the face image is
judged to contain the detected face by the corresponding face detection model.
The trainable parameter 7; could reflect the influence of model ¢ on the public
weakness of the face detection task in nature. We will train all v; to represent
the public weakness better in the following.

Train All v; to Represent Public Weakness Better. In order to keep the
contribution of each model to face detection public weakness similar, we design
the following algorithm to train each ;. We do not hope that the contribution
of one model to be so enormous that the other models’ contributions would be
drowned out. When the contribution of one model is much more outstanding

2 https://github.com/edosedgar/Mtcnnattack/tree /master/Mtcnn.
3 https://github.com/EricZgw/PyramidBox.

* https://github.com/610265158 /faceboxes-tensorflow /tree/tf1.

5 https://github.com /610265158 /DSFD-tensorflow.

https://github.com/edosedgar/Mtcnnattack/tree/master/Mtcnn
https://github.com/EricZgw/PyramidBox
https://github.com/610265158/faceboxes-tensorflow/tree/tf1
https://github.com/610265158/DSFD-tensorflow

Disappeared Face 127

/#Update
Face Detetion o)
Model 2

w Model 3 L

|
|
Face Detetion R 73 |
Original Imagps clfs ‘

Face Detetion N US

Model K Lclfx

Fig. 5. The pipeline of training all v; in Ly, ,, .,

than that of the others, our algorithm could not extract the public weakness of
the face detection task, and it is more likely to extract only one model’s weakness
(Instead of public weakness).

By optimizing all 7;, we kept all the L., at the same order of magnitude.
Then Ley,,,., can represent the public weakness better. The specific process is
as follows:

Initially, all v; are set to 0.5. Then, we feed all the original images into selected
face detection models to calculate all L.y, and the Ly, ,.,. Then, we calculate
the Lggmma by formula 3. Next, we minimize Lgqmmq through ADAM [9] algo-
rithm and finally obtain all optimized ~; values. The pipeline of training all v is
shown in Fig. 5.

K
1
Lgamma = E Z(Lclfz - Lletotal)2 (3)
i=1

Finally, we can calculate the total classification loss (Lcy,,,,,) through all the
optimized ~; values to represent the public weakness of the face detection task
better.

3.3 Update the Adversarial Patches

At this point, we have finished the training of all optimizable parameters 7; and
fixed them in the total classification loss function (Ley,,,,,).- Now, we can use
Ley,,... to represent the public weakness better. The specific process of ‘Update
the Adversarial Patches’ is as follows.

128 C. Zhou et al.

First, we artificially define the Total Variation loss Lpy to make the opti-
mization prefer good-looking adversarial patches without sharp color transitions
and noise. We calculate Lpy from pixel values of the training adversarial patches
in position i, j.

Ly = \/(pi,j —pi+17j)2 + (pi,j _ pi,j+1)2 (4)
By summing Ly,,,,, and Lpy, we obtain the Total Loss L¢otqi-
LtOtal = aLletotal + BLTV (5)

After calculating the Total Loss Liotq;, we feed Ligtq; as the optimization
target into the MI-FGSM [7] algorithm. Then, we use the generated patches
from the MI-FGSM algorithm to update the adversarial patches. Finally, we
would affine the updated adversarial patches to the projection areas of Input
Images and obtain new Configured Images. The new Configured Images are
then used to calculate the Total Loss and update the adversarial patches again
until reaching the setting number of iterative training.

4 Experiments and Result Analysis

In this section, we first introduce the details of our experiment settings. Then, we
use living faces to do escape experiments in the real world. Finally, we conduct
contrast experiments and ablation experiments to illustrate the effectiveness and
feasibility of our method.

4.1 Experiment Settings

Training Datasets. For anyone who wants to escape face detection models,
his 8 face images in different conditions (distance, lights) should be used to train
specific adversarial patches. He can then wear the specific-trained patches on
his cheeks to attack face detection models in the real world. There are only one
tester’s eight face images in training sets.

Testing Datasets. Unlike digital adversarial attacks that focus on evaluations
with well-known digital datasets such as WIDER FACE [19], our physical adver-
sarial attack focuses on launching attacks with a living face. Therefore, we have
no test sets, and we use the living face to attack different face detection mod-
els in the real world to measure our escape effect. To achieve the best escape
effect, the same person who provides the Input Images should be used to attack
real-world face detection models.

Training Parameters. For all experiments in Chapter 4, the training epoch of
adversarial patches is set to 2000, and the training datasets are set to include
only 1 tester’s 8 face images. ~; of Mtcnn [20], PyramidBox [17], Facebox [21],
and DSFD [10] are finally optimized to 0.5, 0.45, 0.6, 0.65, respectively. (Refer
to Sect. 3.2 for more details.)

Disappeared Face 129

4.2 Escape Experiments in the Real World

According to different test content, the real-world escape experiments are finally
divided into two parts: escape experiments of face unlock module in mobile
phones, and escape experiments of face detection function-related applications
in mobile phones.

All the experiments here are set to compare the three cases of posting adver-
sarial patches on cheeks, posting randomly generated patches (subject to a uni-
form distribution between 0-255), and no posting.

Escape Experiments of Face Unlock Module in Mobile Phones. Because
the internal details of the face detection models deployed in mobile phones are
inaccessible, this part’s escape experiments are essentially black-box. We collect
mainstream mobile phone brands and finally choose iPhone 11, Samsung Galaxy
S10 5G, Xiaomi Redmi K20 Pro. They all support unlocking the phone by face
recognition. To control the variables, all experiments use the same lighting con-
ditions, background, and test angle. The tester has registered his face in advance,
meaning he could naturally unlock the phone by face recognition under normal
circumstances.

The tester respectively wears the adversarial patches, random patches, and
nothing. Presses the power button and swipes the screen to trigger the face
unlock module. When the mobile phone does not detect a human face, it will
prompt “No face detected!” on the screen. When the mobile phone thinks that
a face is detected, but the face does not match the registered face, it will give
a prompt “Face Does Not Match!” on the screen and refuse to unlock. When
the mobile phone thinks that the face is successfully detected and the detected
face matches the registered face, the mobile phone will be unlocked successfully.
All videos of attacking the face unlock module are available on the
Internet©.

We have successfully achieved the escape of both Samsung and Xiaomi
phones. It can be seen from the video of Samsung S10 5G and Xiaomi Redmi
K20 Pro that when the tester posts trained adversarial patches on his cheeks,
the face detection model can not detect the face after a long-time search and
gives a prompt of ‘No Face Detected!”. When the tester posts randomly gener-
ated patches, The phone quickly detects the face and prompts ‘Face Mismatch’.
The different search times of the above two experiments also prove from another
angle that the adversarial patches obtained by our training have indeed achieved
escape attacks. When the tester does not post any patches, the mobile terminal
is quickly unlocked. These videos demonstrate the excellent escape effect of our
adversarial patches. When we conduct the unlock test with IPhone 11, no mat-
ter the real situation is “No Face Detected!” or “Face Mismatch!” ’, it shows
that the “lock” at the top of the screen is not turned on, and the phone is still

5 https://drive.google.com/drive/folders/1LzGVVWI9OMHqX XL5dnh-FrxXsCnG
vBJO.

https://drive.google.com/drive/folders/1LzGVVWl9OMHqXXL5dnh-FrxXsCnGvBJ0
https://drive.google.com/drive/folders/1LzGVVWl9OMHqXXL5dnh-FrxXsCnGvBJ0

130 C. Zhou et al.

locked. Therefore, we cannot verify the escape effect of the generated adversarial
patches through IPhone 11.

The escape videos above show our excellent escape effect. When the tester
posts the specific-trained patches on cheeks, he could successfully escape the
face detection model deployed in the mobile phone. Because face detection is
the presequence module of face recognition, when face detection breaks down,
the entire face-unlock module fails as well.

Escape Experiments of Face Detection Function-Related Software in
Mobile Phones. To enhance our face detection escape method’s credibility
and persuasiveness, we also use our method to attack the above mobile phones’
built-in camera module. At the same time, we conduct escape tests on Alipay
and selfie beauty software B612 with the above mobile phones.

Built-In Camera. The tester respectively wears the adversarial patches, ran-
dom patches, and nothing, turns on the built-in camera application, adjusts the
camera mode to “portrait mode”, switches to the front camera, and faces the
camera. When the camera detects a face, it will frame the face with a rectangular
box. When the rectangular box cannot select the face or disappears, it means
the face detection model cannot detect the face, and we achieve the escape of
the built-in camera module. The test results are saved in Fig. 6 as screenshots.

The figures A1~F1, A2~F2, A3~F3 show that only when testers post adver-
sarial patches generated by our method can they successfully escape the face
detection module in mobile phones. Posting random patches and No Posting can
not escape. A2 shows the automatic Soft-light function fails due to the inability
to detect the face, and A2 is significantly colder than B2 and C2. G1~11, G2~12,
G3~I3 show our excellent escape effect for another tester and demonstrate the
generality of our method.

Alipay. The tester respectively wears the adversarial patches, random patches,
and nothing, opens Alipay in the mobile phone, searches for the official service
“Alipay Face-Scan Life”, and selects “Experience Face-Scan Payment” from the
“Face Brushing Settings” to start the face brushing payment test. The test
results are also saved in Fig. 6 as screenshots.

A4~F4 show the attack effect against Alipay’s face payment module. A4 and
D4 prompt: “No face detected.” B4 and E4 prompt, “Please show your whole
face.” C4 and F4 say, “Please blink.” D4~F4 show our excellent escape effect
for another tester and demonstrate the generality of our method. Only when the
testers post specific-trained adversarial patches(A4 and D4) can they escape the
Alipay’s face detection module. We successfully escape the commercial black-box
Alipay Face Payment module.

B612. The tester respectively wears the adversarial patches, random patches,
and nothing. In each case, tests are performed in two environments, namely,

Disappeared Face 131

Samsung
Galaxy S10
5G

Alipay/B612

Fig. 6. Escape test effect in mobile terminals. Because of the narrow lines of the rect-
angular boxes, you may need to review this figure carefully.

turning on or turning off beauty function. The test results are also saved in
Fig. 6 as screenshots.

A5~F5 show the escape effect of B612. A5, C5, and E5 all turn on beauty
function, and B5, D5, F5 not. The selfie beauty app B612 fails to perform its
beauty function only when the user wears the adversarial patches because it could
not detect the face(A5). We successfully escape from the commercial black-box
B612 application.

4.3 Contrast Experiments

Nowadays, similar studies include AJ Bose et al. [1], Zhou et al. [23], and Kazi-
akhmedov et al. [8]. AJ Bose et al. [1] focus on digital attack and is not of compa-
rable value. (We focus on physical attacks.) As for Zhou et al. [23], their method
of configuring the infrared light source is much complicated than ours post-
ing patches. Therefore we design relatively fair experiments with Kaziakhmedov
et al. [8].

We conduct escape tests for Baidu official face detection model: Pyramid-
Box 7, Tencent official face detection model: light-DSFD ®, and Awesome Open
Source recommendation algorithm: Yoloface . These official algorithms such as
PyramidBox, light DSFD, and Yoloface all use the same lighting conditions, the

" https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/mask_
detection.

8 https://github.com/lijiannuist /light DSFD.

9 https://github.com/sthanhng /yoloface.

https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/mask_detection
https://github.com/PaddlePaddle/PaddleHub/tree/release/v1.8/demo/mask_detection
https://github.com/lijiannuist/lightDSFD
https://github.com/sthanhng/yoloface

132 C. Zhou et al.

same background, and the same test angle to control the variables. Since we do
not use the official face detection model in the training process, the following
experiments are essentially black-box escape experiments.

All the contrast experiments are divided into two groups: an experimental
group and a control group. The experimental group uses our method. The control
group uses the method of Kaziakhmedov et al. [8]. Both the experimental and
control group experiments are set to be completed under three distances: close,
middle, and far-distance. In each case, the tester shakes his head at a constant
speed for 5s. We use FFmpeg to intercept the video frame by frame and define
the escape rate as the percentage of the frames that successfully escape.

Please refer to Fig.7 to see the results of the contrast experiment. Figure 7
fully demonstrates that our method has much better black-box escape capability
than Kaziakhmedov et al. [8]. It intuitively shows that for three attacked official
models, our method has an excellent black-box escape effect in close-distance,
middle-distance, and far-distance scenarios. The average escape rate at all three
distances is also much higher than that of Kaziakhmedov et al. [8]. The exper-
imental results are reasonable. Unlike Kaziakhmedov et al. [8], who focuses on
a single face detection model, we extract the public vulnerability of the face
detection task by fusing multiple white-box models.

Contrast Experiment — Close Distance Contrast Experiment — Middle Distance
3 10000% 10000 92.00% 92.67%
& 10000 P
£ oo e o~
= o
8 w0 e -
8 S oo
Ec 6000% % c000%
-1 S soox
e s
i 40.00%
g g
g & 000
a o 2067%
s o 2000 1558%
1 e . g

oo = z 8 1o 5 I

Attack Official Attack Official Attack Official oo M . .

Pyramidbox [12] light-DSFD [7] YoloFace [4] Attack Official /_\ttack Official Attack Official

Pyramidbox [12] light-DSFD [7] YoloFace [4]
W Kaziakhmedov et al. [6] B Our Method W Kaziakhmedov et al.[6] B Our Method
(a) (b)
Contrast Experiment — Far Distance Contrast Experiment — Average

10000%
10000% 9667% 92.45%
smasx
9000%
a67%
8067%

8000% — 75:33% 8000%

7000%

6000% -

50.00%
a000%

Distances

4000%

1930%
2000% e

Escape Rate of Middle Distance

bl 20.00% 1378%

Average Escape Rate of All three

| = acos 4% 7o
Attack Official Attack Official Attack Official . |
Pyramidbox [12] light-DSFD [7] YoloFace [4] Attack Official Attack Official Attack Official
 Kaziakhmedov et al [6] M Our Method Pyramidbox [12] | Kmkmj‘ﬂ%t‘l‘;‘D[sS]FDomm , Yoloface [
(c) (d)

Fig. 7. Contrast experiments: escape rate of Close (a), Middle (b), Far (c) Distance
and average escape rate of all three distance (d)

Disappeared Face 133

4.4 Ablation Experiments

To illustrate that our method is indeed better than using the classification loss
of only one model, we conduct ablation experiments to investigate the effect
of training models’ number on the black-box escape effect. Our ablation exper-
iments still focus on conducting escape tests for official PyramidBox, official
light-DSFD, and official Yoloface. All the experiments can be divided into four
groups: the total classification loss Ly,,,.,, respectively including 1, 2, 3, and 4
face detection models’ classification loss.

Because Kaziakhmedov et al. [8] use only one model(Mtcnn) to train patches,
the results of Kaziakhmedov et al. [8] in Fig.7 are ablation experiments that
integrate only 1 model in essence. Since we do not use the official face detection
model in the training process, our ablation experiments are essentially black-box
escape experiments.

The result of the black-box escape rate of different distance is respectively
shown in Fig.8. Subgraph (a) , (b) and (c) show the escape rates of attack-
ing Official PyramidBox [17], Official light-DSFD [10], and Official Yoloface [4],
respectively. Subgraph (d) shows the average escape rate of all three distances
for three official models.

: : 5 N Ablation E: il ts — Attack Official light-DSFD[7]
Ablation Experimrnts — Attack Official Pyramidbox[12] I ac icial light-DSFD(7]

12000%

100.00%
D — X
£ Voo o 2 - 10000%
% 80.67% T I w000 92.67%
O X's0.00% . S A 9745%
JriNe} 75.33% S o
£ Qo E o oo 84.67%
<T 74.67% < N
— T 60.00% Pl
c E S £ oo
(G 50.00% 5 <
25 . L2 o
© 0.00% 56.00% S . © = 000% — L istance
e ~—— Close Distance 5 il_"l“““'r‘"‘:‘“
@ @9 — Middle DIstance LD L S B
2 é 2000% - 6.61% = Far Distance S :16 s —_— \m Distance
9 B 000 6.42% = Average % 110% Average
a O o] 000%
% 22979 ne Model wo Models ree Models our Models
W s 333% One Model Two Model Three Model Four Model
One Model Two Models Three Models o Four %Aode(lﬁ) (Mtcnn) (Mtcnn + Pyramidbox) (Mtenn + Pyramidbox (Mtcnn + Pyramidbox
. (Mtcnn + Pyramidbox Itcnn + Pyramidbox: + Facebox) + Facebox + DSFD)
(Mtenn) (Mitenn + Pyramidbox) (AR~ V! + Facebox 3 DSFD)
(a) (b)
Ablation Experiments — Attack Official Yoloface[4] Ablation Experiments — Attack All Three Official Models
100.00%
92.45%
12000 o 88.45%
=y 90.67% 96.67% U 37,152
< 2 "
£ ooa . o g o
v X c 2 N
8 o 58,00 o C 7w
E O am v &
< 3 80.67% Qo o o
5 2 SO ..
S o woox G g s
L > Close Dist; DL e
Z —— Close Distance 0
o 2 10.34% X o = oo — Attack light-DSFD[12]
2 G wox gy ==FarDistance g < .. — At loface [12]
g La2% — Average % 1 —— Average rate of three distance
w 0.00% o 10.00% 9.
One Model Two Models Three Models Four Models e
(Mtcnn + Py idb (Mtenn + Py idb
(Mtenn) (Mtcon + Pyramidbon) Mgl 2 EMIOK (M - Pyrerox One Model Two Models Three Models Four Models
(Mtcnn + Pyramidbox (Mtcnn + Pyramidb
(Mtcnn) (Mtenn + Pyramidbox) "Fgfgbuxf“’“ ok (Mt + § A
(c) (d)

Fig. 8. Ablation experiments: escape rate of attacking Official PyramidBox [17] (a),
Official light-DSFD [10] (b), and Official Yoloface [4] (c), and average escape rate of
three distances for three official models (d)

Subfigures (a), (b), and (c) of Fig.8 show that we attack different black-
box face detection models at different distances and achieve excellent black-box

134 C. Zhou et al.

escape effects. Subgraph (d) shows that when compared with the fusion of single
model, two models, and three models, the black-box escape rate of fusing four
models is increased by about 80%, 30%, and 10%, respectively. (the green line
in subfigure (d)).

The above results indicate that the fusion of the four face detection models
can achieve the optimal black-box escape effect and prove the effectiveness and
reliability of our method.

5 Conclusion

We propose a Black-Box Physical Adversarial Attack Method on Face Detection
to evaluate face detection security and face recognition security. By calculating
the total classification loss function (Lgy,,,,,) and training the parameter v ,
we successfully extract the face detection models’ public vulnerabilities. By exe-
cuting the adversarial attack on the extracted public weakness, we realize the
escape against black-box face detection models with high-transferability. This
means that we have broken the face recognition system in another way. In detail,
we achieve a high-success-rate black-box escape of commercial applications such
as Alipay Face payment, B612, and many official face detection models. Simul-
taneously, we realize the escape of the face detection module in the mainstream
commercial mobile phones and make their Face Unlock, Automatic Soft-light,
and other functions break down because the face could not be detected. Through
our method, it is possible to evaluate the current commercial face detection and
face recognition model’s physical-domain security, which helps to further under-
stand the fragility of the face recognition deep neural network and promote the
face recognition deep learning model to a safer direction step forward.

Acknowledgment. This research was supported by National Research and Develop-
ment Program of China (No.2019YFB1005203).

References

1. Bose, A.J., Aarabi, P.: Adversarial attacks on face detectors using neural net based
constrained optimization. In: 2018 IEEE 20th International Workshop on Multi-
media Signal Processing (MMSP), pp. 1-6. IEEE (2018)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP) (2017)

3. Chen, S., He, Z., Sun, C., Yang, J., Huang, X.: Universal adversarial attack on
attention and the resulting dataset damagenet. IEEE Trans. Pattern Anal. Mach.
Intell. (2020)

4. Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.: YOLO-face: a real-time face
detector. Vis. Comput. 37(4), 805-813 (2020). https://doi.org/10.1007/s00371-
020-01831-7

5. Deb, D., Zhang, J., Jain, A.K.: Advfaces: adversarial face synthesis. In: 2020 IEEE
International Joint Conference on Biometrics (IJCB), pp. 1-10. IEEE (2020)

6. Dietterich, T.G., et al.: Ensemble learning. Handb. Brain Theory Neural Netw. 2,
110-125 (2002)

https://doi.org/10.1007/s00371-020-01831-7
https://doi.org/10.1007/s00371-020-01831-7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Disappeared Face 135

Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9185-9193
(2018)

Kaziakhmedov, E., Kireev, K., Melnikov, G., Pautov, M., Petiushko, A.: Real-
world attack on MTCNN face detection system. arXiv preprint arXiv:1910.06261
(2019)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Li, J., et al.: DSFD: dual shot face detector. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5060-5069 (2019)

Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning;:
from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277 (2016)

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137-1149 (2016)

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618—
626 (2017)

Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Accessorize to a crime: real
and stealthy attacks on state-of-the-art face recognition. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
1528-1540 (2016)

Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.K.: Adversarial generative
nets: neural network attacks on state-of-the-art face recognition. arXiv preprint
arXiv:1801.00349 2(3) (2017)

Shen, M., Liao, Z., Zhu, L., Xu, K., Du, X.: Vla: a practical visible light-based
attack on face recognition systems in physical world. Proc. ACM Interact. Mobile
Wearable Ubiquit. Technol. 3(3), 1-19 (2019)

Tang, X., Du, D.K., He, Z., Liu, J.: Pyramidbox: a context-assisted single shot
face detector. In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 797813 (2018)

Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adver-
sarial examples. arXiv preprint arXiv:1801.02612 (2018)

Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp- 5525-5533 (2016)

Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499—
1503 (2016)

Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: Faceboxes: a CPU real-time
face detector with high accuracy. In: 2017 IEEE International Joint Conference on
Biometrics (IJCB), pp. 1-9. IEEE (2017)

Zhao, Y., Zhu, H., Liang, R., Shen, Q., Zhang, S., Chen, K.: Seeing isn’t believing:
towards more robust adversarial attack against real world object detectors. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1989-2004 (2019)

Zhou, Z., Tang, D., Wang, X., Han, W., Liu, X., Zhang, K.: Invisible mask: practical
attacks on face recognition with infrared. arXiv preprint arXiv:1803.04683 (2018)

http://arxiv.org/abs/1910.06261
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1801.00349
http://arxiv.org/abs/1801.02612
http://arxiv.org/abs/1803.04683

q

Check for
updates

HIAWare: Speculate Handwriting on
Mobile Devices with Built-In Sensors

1) Cheng Zeng?, and Ruiying Du'

Jing Chen!, Peidong Jiang', Kun He
! Wuhan University, Wuhan, Hubei 430072, China
{chenjing, jiangpd,hekun,duraying}@whu.edu.cn

2 Wuhan University of Technology, Wuhan, Hubei 430070, China

Abstract. A variety of sensors are built into intelligent mobile devices.
However, these sensors can be used as side channels for inferring informa-
tion. Researchers have shown that some touchscreen information, such as
PIN and unlock pattern, can be speculated by background applications
with motion sensors. Those attacks mainly focus on the restricted-area
input interface (e.g., virtual keyboard). To date, the privacy risk in the
unrestricted-area input interface does not receive sufficient attention.

In this paper, we investigate such privacy risk and design an
unrestricted-area information speculation framework, called Handwrit-
ten Information Awareness (HIAWare). HIAWare exploits the sensors’
signals that are affected by handwriting actions to speculate the hand-
written characters. To alleviate the impact of different handwriting
habits, we utilize the generality patterns of characters. Furthermore,
to mitigate the impact of holding posture in handwriting, we propose
a user-independent posture-aware approach. As a result, HIAWare can
attack any victim without obtaining the victim’s information in advance.
The experiments show that the speculation accuracy of HIAWare is close
to 90.0%, demonstrating the viability of HIAWare.

Keywords: Motion sensors - Side channel - Privacy leaks

1 Introduction

In recent years, intelligent mobile devices have been equipped a variety of sensors
to assist in navigation, gaming, health monitoring and more. However, these
sensors can also be used as side channels for inferring information, yet until
now the mobile operating systems, Android for example, have no restrictions to
sensors by applications.

By exploiting those sensors, touchscreen information can be speculated, such
as passwords typed by users on the virtual keyboard [10,21,23]. By far, most
researches only focus on the restricted-area input interface, in which touchscreen
information is entered at a specified position/area on the touchscreen, such as
the virtual keyboard [4,11] and the pattern lock screen [2,24]. Mehrnezhad et
al. [12] have shown that primitive operation actions (e.g., click and scroll in
gesture control) on unrestricted-area screen can be recognized with sensors.

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 136-152, 2021.
https://doi.org/10.1007/978-3-030-86890-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_8

Speculate Handwriting with Sensors 137

Nevertheless, the speculation for the more complex and meaningful inputs,
such as handwritten contents, has not been sufficiently discussed. Therefore, a
remarkable question is whether handwritten information can be speculated by
a malicious background application? There are two issues related to practicality
and robustness that need to be addressed.

One issue is that, victims are usually unknown to attackers before attacks,
but the speculation model is built on the training data from the known users. We
observe that each person has his/her own handwriting habits, such as writing
strength, sequence, and speed, called chirography difference. This chirography
difference will heavily impact the accuracy of the speculation model which is
trained without the victim’s data [8]. The other is that the sensors’ signals
and noise patterns vary under different holding postures (e.g., sitting, standing),
since the victim’s limb jitter and handwriting strength are significantly different,
called posture variation. Such posture variation can dramatically downgrade the
speculation accuracy of a universal speculation model which is built only on a
single holding posture (sitting or standing), especially when the victim’s holding
posture changes in the handwriting process. Moreover, posture variation should
also be universal for unknown victims.

In this paper, we propose a novel character-based unrestricted-area infor-
mation speculation framework, called Handwritten Information Awareness
(HIAWare). The main idea of HIAWare is to track the changes of sensor signals
caused by handwriting actions on the touchscreen, and recognize the patterns for
each character. The above two issues were successfully solved in HIAWare. It is
effective in attacking unknown victims and can be adapted to different postures.

The main contributions of our paper are as follows.

— To the best of our knowledge, HIAWare is the first work to leverage motion
sensors to speculate handwritten information on mobile devices, which reveals
a security threat that all shared hardware on mobile devices can be exploited
for privacy leakage.

— We propose to utilize generality patterns of characters (e.g., stroke number) to
alleviate the dependency on collecting training data from victims in advance
and reduce the impact of chirography difference on speculation accuracy.

— We build diverse speculation models in HIAWare according to different hold-
ing postures detected by a user-independent posture-aware algorithm. There-
fore, HIAWare is able to complete handwritten information speculation with
a competitive accuracy in the more practical scenarios.

— We implement a HIAWare prototype using off-the-shelf mobile devices
with Android platform. The comprehensive experiments demonstrate that
HIAWare can speculate characters with an accuracy close to 90.0%.

We organize the rest of our paper as follows. We introduce the preliminaries
in Sect. 2. Section 3 and 4 detail the design of HIAWare, and the proposed algo-
rithms, respectively. Then, the performance of HTAWare in different conditions is
shown in Sect. 5. At last, Sect. 6 summarizes related work, and Sect. 7 concludes
our paper.

138 J. Chen et al.

2 Preliminaries

In order to anticipate the feasibility of the solution, the targeted app, available
sensors and possible threat models need to be noticed.

2.1 Targeted Vulnerable Apps

Although the prototype of HIAWare in this paper is implemented on Android
platform, its framework can also be used on other mobile platforms, such as iOS.
The targeted vulnerable apps of HIAWare, a system to speculate handwritten
information, are mainly handwriting-related apps. Four application markets for
Android platform are statistically analyzed. Apple App Store does not have
download statistics, so the number of handwriting-related apps in American
(US) and Chinese (CN) App Store is based on a third-party data set [14]. The
results are shown in Table 1.

Table 1. Survey Of handwriting-related applications

Markets Downloads/Apps | Example app

Google Play 347,014,420 Google handwriting input
AppChina 455,663 Chinese handwriting Recog
WanDoulia 224,254 ABC handWriting

AnZhi 4,545,245 Sogou input method

US Apple store | 302 Easy writing Board

CN Apple store | 1,079 NoteBook+

From Table 1, we can find that the total downloads of targeted apps in the
Google Play is about 300 million and the number of apps in Apple Store is up to
1381 in America and China. It draws a conclusion that there are enormous
targeted vulnerable apps which could potentially be compromised by HIAWare.

2.2 Motion Sensor Selection

The device will be shaken and rotated slightly while handwriting, and these
movements will be captured by the motion sensors. Specifically, two commonly
used sensors are selected: accelerometer, which can measure device vibration and
acceleration, and gyroscope, which can estimate the rotation and deflection [1].
These sensors provide signals at a given frequency which contain the data in three
dimensions (denoted as X, Y, and Z respectively in Fig. 1) and its corresponding
timestamps. HIAWare’s Activity collecting sensors’ signals is shown in Fig. 2.

Speculate Handwriting with Sensors 139

A
#£9:58
Data Collection
P\ease “r_\gg,wwth yourfinger or styms
2z -
® ©
START STOP
coMMIT UPLOAD
Fig. 1. Accelerometer and Gyroscope Fig.2. Activity of data collection
Axis of measurement application

2.3 Threat Model

A malicious app is assumed that launched in application markets and pretend as
a game app. To get unnoticed by the user due to unusual power consumption, the
malicious app tries to stealthily run in the background, and only records sensors’
signals when the user runs a handwriting-related app in the foreground. Existed
work has proposed a way to determine the running app via power analysis [5,6,15].

Note that the signals’ data is written into its own App-specific storage, where
no storage permission is required. And the Vanilla Android, a system not deeply
customized, only restricts the usage of mobile data in the background. However,
this permission is allowed by default and so normal in game apps that the mali-
cious app can gain the access to connect network easily for sending files to the
remote server.

3 HIAWare Design

HIAWare consists of the following five phases: Handwriting Detection, Sensor
Data Capture, Preprocessing, Posture-Aware Analysis, and Character Restora-
tion, as shown in Fig. 3.

3.1 Handwriting Detection

Different from detecting unlocking screen actions, handwriting actions have no
observable system broadcast [24]. Meanwhile, the other applications cannot use
conventional approaches to identify whether the foreground application is a tar-
geted app.

140 J. Chen et al.

’ ™ e N
"/ Handwriting Detection \‘ [Sensor Data Capture)
‘ ‘ | |
| | | |
| oo Rme]
1 B riting? > v
* NP 1 1 |
l S | : |
\ " = o / \\\‘ ‘//:’

Device
Server - ~N T T
[Character Restoration \ [Preprocessing \
Wavelet ‘
Stroke | Denoising ‘
Detection |- I §
|
Segment ‘
L Detection /
I —— - v
e RN
v /" Posture-Aware Analysis
Character Feature . Characteristic ||
. - e— . < Correlation I
Classification Selection |~ Analysis [¢<— Vector ‘w
| \ Y Construction |/
\\ // \\ //

Fig. 3. The system architecture of HIAWare

Fortunately, different applications use different components of a device and
have different usage patterns, which result in distinguishable power consumption
profiles [6]. By analyzing the power consumption on mobile devices, the sensors
record service can be started as soon as the handwriting actions is detected.

3.2 Sensor Data Capture

Once a handwriting action is detected, HIAWare uses an API provided by
Android system [1] to conduct real-time recording of motion sensors’ signals
during the handwriting process.

HIAWare collects the signals from accelerometer and gyroscope in the mean-
while by polling and the collected data is uploaded to a remote server stealthily
for analysis.

3.3 Preprocessing

The main tasks completed at this stage are denoising, and identifying and
extracting the signal stream corresponding to each character.

Wavelet Denoising. The raw signals usually contain a mass of background
noise (distinguish from the noise caused by user unexpected actions in the next
paragraph). To filter the noise and restore the real signal fluctuations caused by
handwriting actions, we utilize the wavelet denoising for filtering. Figure 4 shows

Speculate Handwriting with Sensors 141

the gyroscope’s signals for handwriting actions of some characters. After wavelet
denoising, the difference in the number of peaks for different characters in Fig. 4
can be observed, as the characters have different strokes.

Original sensor signal

0.2 A
0.1 1
0.0 A1
—0.14 A F D B C L
_02 4
0 1000 2000 3000 4000 5000 6000 7000
time (ms)
After filter
0.10 1
0.05 1
0.00 1
—0.05 A
_0'10 L T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
time (ms)

Fig. 4. Original vs. Wavelet Denoised sensor signals of handwriting action

Segment Detection. In the gap between handwriting, there is still action noise
because of victims’ arms and palms’ unexpected shaking. To extract individual
signal segments generated by the handwriting action of a single character, we
design the modified Constant False Alarm Rate (mnCFAR), a handwriting signal
segment detection algorithm, to identify handwriting actions from the motion
sensors’ signals. The details are described in Sect. 4.1.

3.4 Posture-Aware Analysis

There have been many studies on human activity recognition (HAR) with motion
sensors [7,16,20]. However, the features used in those former studies are not user-
independent, resulting in insufficient generalization of the trained model. Here
comes the challenge how to use the model trained by the known users’ posture
data to identify the unknown users’ posture data.

To tackle this challenge, HIAWare analyzes noise signals to identify vic-
tim’s holding posture based on correlation analysis of characteristics. A user-
independent posture-aware algorithm is described in details in Sect. 4.2.

142 J. Chen et al.

3.5 Character Restoration

In this phase, with detected handwriting signal segments, the denoised signals
are grouped into candidate character sets according to the number of strokes.
Then, we combine the holding posture information and candidate character sets
to extract the features in the feature selection stage. Finally, we utilize the spec-
ulation model corresponding to the holding posture to determine the character
in the character classification stage.

Stroke Detection. To solve the chirography difference issue as explained
in Sect.1, a more generality pattern of characters in handwriting signals is
employed: the number of strokes (i.e., the number of peaks in a handwriting
signal segment). The uppercase alphabet are divided into three clusters accord-
ing to the number of strokes. The three clusters are:

Sl — {407’ ‘G,, ‘J’, ‘L’, ‘M’, ‘N’, 407’ cQa’ ‘S’, 4U77 :\/'77 ‘W’, ‘Z’};
S2 — {4A7, ‘B’, ‘D’, ‘G’, ‘J’, ‘K’, ‘M’, ‘1\]77 ‘P’, ‘Q’a ‘R’, LT77 ‘X’};
53 — {LA7, ‘E’, ‘F’, 41_177 <I77 ‘K’, ‘N’, ‘Y’}.

Note that some characters are included in multiple clusters. For example,
character ‘A’ is included in both S2 and 53 according to different writing habits.
However, this situation has limited impact on the subsequent character recogni-
tion, since stroke detection aims to generate a candidate character set, which is
mainly used to narrow the scope of character speculation.

Table 2. The type of feature extracted from the signal segment. “v"” means that all
features in the item are used, “¢” means none is used, and “—” means partially used.

Type | Feature Introduction Sit | Stand
TD | Standard deviation, Calculate the four characteristics of the three | v/ | —
Maximum, Minimum, coordinate axes separately
Median and Average
Range Difference between maximum and minimum |v' | ¢
Strength Expressed by the sum of the squares of the vV
instantaneous readings of the three axes
FD Centroid Indicates where the spectrum centroid is ¢ |V
located
Variance Display the frequency density of the ¢ |V
spectrum
Skewness Measuring the asymmetry of the spectrum ¢ |V
Kurtosis Describe the size of the range of changesin | v |V

the spectral values

Wiener entropy Reflecting the flatness of the spectrum of a ¢ |V
digital signal

Speculate Handwriting with Sensors 143

Feature Selection. We first extract original feature set from the time and fre-
quency domains for a given handwriting signal segment. Then, we execute feature
engineering on the segment feature vector, and generate a posture profile. The
posture profile is the selected segment feature subset which makes model achieve
the optimal speculation accuracy. In HIAWare, we adopt the feature_selection
module of scikit-learn to filter redundant features from the original feature set.

Table 2 shows the type of original features extracted from the handwriting
signal segment. Original features are calculated from the time domain (TD) and
the frequency domain (FD). It should be clear that the feature set extracted at
this time is the original feature set, and then HIAWare will filter the original
feature set according to the user’s holding posture to obtain the most suitable
set of features for each posture.

Character Classification. Finally, we score the characters in the candidate
set, and select the most possible character based on the score of each character.
The algorithm to score the character is based on the multi-class GBDT. HIAWare
can greatly reduce the impact of the victim’s personal handwriting habits on the
accuracy of the speculation model because of the pre-processing according to the
number of strokes and postures.

4 Algorithm Details

In this section, the details of the algorithms in Preprocessing and Posture-Aware
Analysis are explained.

4.1 MCFAR Algorithm

The modified Constant False Alarm Rate (mCFAR) is shown in Algorithm 1. The
inputs of the algorithm are the sensor signal stream without background noise
and two parameters: t and m (explained in the next paragraph). The output is a
list of signal segments and each segment represents one character’s handwriting
action. The algorithm uses a polynomial fitting function to fit the action noise
which can adjust the parameters automatically to generate the most appropriate
fit curve. The mathematical description of our algorithm is as follows.

A stream of motion sensor signals are denoted by D = {di,ds,...,d,} of
size n, where d; € D is a set containing four-tuple values (d¥,d?,d?,d!): three
axis reading and corresponding timestamp. Particularly, let D*® represents the
projection of the d° values in D, like as D* = {df,d3,...,d%}. Then, the mean
values and standard deviation of D¢ are denoted by M€ and S¢, where

€]‘ . €
M=~ > Dj (1)
k=1
and
1 n
5e = EZ(D; — M#)2, (2)

k=1

144 J. Chen et al.

Algorithm 1. mCFAR
Input: Original signals: D,t, m
Output: Segment signals: D’

1: Initialize D’,tmp as empty vectors;
2: p — F,(D) // Polynomial Fitting

3: M « calcMean(D) // Calculate Mean Value

4: S « caleSD(D) // Calculate Standard Deviation
5: flag <— False
6
7
8

: for i = 1 — length(D) do
if |D[i] — p[i]| > t * S and D]i] is a start or end point then

flag — True
9: end if
10: if flag = True then
11: Append the element D[i] to tmp;
12: end if

13: if |D[i] — p[i]| > t * S and D]i] is a start or end point then
14: flag < False

15: Append the element tmp to D’;

16: Clear tmp as empty vectors;

17: end if

18: end for

19: return D’

The polynomial fitting function of D° is p(e) (see Eq. (1)), where F' is a
conversion function and m is the degree of the fitting polynomial.

p(e) = Frn(D7). 3)
A valid value of handwriting signal segment is detected if
|D7 —p(e)| >t x5, (4)

where ¢t and m are adjustable according to different granularity.

We use a sliding window of size W to detect potential start and end points of
a handwriting signal segment in D7, as shown in Fig. 5. The handwriting signal
segment is detected if the distance between the start and end points are longer
than a threshold L in Fig.5. L is a regulable parameter chosen based on prior
knowledge. Through Algorithm 1, the effect of abrupt and sharp noise can be
greatly reduced.

We show the comparison between threshold-based method and our proposed
mCFAR method in Fig.6. We can observe that a low threshold will result in
the redundancy of extra signals (Fig.6(a)), while a high threshold will cause
the loss of signals (Fig. 6(b)). Opposite of this, our mCFAR method can extract
handwriting signal segments completely (Fig. 6(c)).

4.2 User-Independent Posture-Aware Algorithm

To tackle the posture variation issue, we consider two representative holding
postures of mobile devices: sitting and standing, since victims usually use hand-

Speculate Handwriting with Sensors 145

startpoint endpoint
0.5 W w

g 00 mmlul Ll Ij ‘NLI wml I.
] ul 1 hauadll |
é Faree l AN ey va N 1. kel
= " s |
=
< -05

: —— sensor data

fit function
(') 5(')0 10'00 15'00 20'00 25'00 30'00
Time

Fig. 5. An illustration of segment detection with accelerometer signal changes caused
by handwriting actions of character ‘0’

0.50- 0.5¢ 0.5
0.25: o 0.25 0.25.
'§ 000 E 000 g oo
22 o2y MM T e N 202 = 0
£4.0.50 i groso 20,50
g -0.75 < -0.75 g -0.75-

-1.00- ~—raw-data 1.0 ~raw-data -1.00; —raw data

125 0.2 Vth 125 —0.5Vth 125 ~~mCFAR

0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Time Time Time
(a) Low Threshold (b) High Threshold (c) mCFAR

Fig. 6. Effect comparison of different handwritten segment detection methods

writing input under one of those two postures. Note that other holding postures
can also be analyzed by our algorithm.

The feature vectors of action noise signals are constructed by commonly used
digital signal processing methods, including the Power Spectral Density (PSD)
and the Mel-Frequency Cepstral Coefficient (MFCC). Then, the correlation anal-
ysis is performed on the feature vectors and the prior holding posture data. The
prior holding posture data contains the noise signals of the two postures we
collected in advance. The type of holding posture obtained will be used to com-
plete feature selection. The flow chart of the user-independent posture-aware
algorithm is shown in Fig. 7.

Characteristic Vector Construction. As shown in Fig. 8, we calculate PSD
and MFCC of the accelerometer’s signals collected under the two holding pos-
tures. Note that the user’s physical unexpected actions under the two postures
can cause different action noise pattern in the signals. We can clearly observe
the difference of PSD characteristics in Fig. 8(a), and MFCC characteristics in
Fig.8(b) and 8(c) under the two postures.

146 J. Chen et al.

Noise Vector Character
Signal Construction Features

Feature
Selection

Posture
Database

| Sitting
Profile

Fig. 7. Flow chart of user-independent posture-aware algorithm

Next, we will formalize the process of characteristic vector construction. The
formal description of the noise characteristic vector for a background noise sig-
nals N is 0, = {©ko, &1}, where k0 and k1 are the size of ¢ and &, also

(0, &r1) = (PSD(N), MFCC(N)), ()

where PSD and MFCC are the functions that calculate the corresponding
characteristic.

Correlation Analysis. In this stage, we calculate the Pearson Correlation
Coefficient (PCC) between the action noise characteristic vector generated from
last stage and the prior posture data. The definition of PCC is as follows:

cov(X,Y)

p(X,Y) =
OxXO0Oy

(6)
where cov(X,Y) is the covariance of X and Y, ox and oy are the standard
deviation of X and Y. Let us suppose the noise characteristic vectors of two
postures in prior data are 04 and 6g4,q. Naturally, the correlation coefficient
between 6,, and the prior holding postures signals are ps = p(0,,0s¢) and ps =
0(0y, Ostand), respectively. We choose the holding posture as our perceived result
with its correlation coefficient peposen = maz{ps, pst }-

5 Performance Evaluation

In this section, the experimental setup is described firstly, and then the evalua-
tion is conducted in the speculation accuracy and the Area Under the receiver
operating characteristic Curve (AUC) under different experimental conditions.

Speculate Handwriting with Sensors 147

= Sitting Standing
—9 4
T 3] Y —Y
m - — X — X
= —z | ~197 —z
_23.
2
) —29 1
= —334
[}
A -39
= —43 1
B
8 -53- —497
&
¢, —63 =591
()
2
O =73+ T T —69 - T T
[a¥ 0 200 400 0 200 400
Frequency Frequency

(a) PSD of Two Postures

-
S
o

= I \/M‘\HH U =0

Exfl M \‘\ ”"\"' \‘ \ ! I Ex “u ’W \0

é 6 nw lh H WH V *l X E :|\ | Il W JH I| W
§4 }H HHH "'w I 54 ‘ ‘ . ' f .
£ z M ” H|‘ 'JI\ M’ it | g H} u‘{ ﬂl , N B

(b) MFCC of Sitting (¢) MFCC of Standing

Fig. 8. Example of extracted PSD and MFCC features

5.1 Experiment Setup

We use three Android phones: Huawei NEM-AL10, Samsung SM-G9208, and
Redmi Note 4X with our app installed to collect motion sensors’ signals. 12
volunteers participate in the experiments, and they are divided into three equal
groups to collect signals using three devices.

Volunteers first start up our app (Fig.2) and click the START button to
start signal collection. There are two modes for writing characters here. One
is writing characters on HIAWare’s SurfaceView, while this stage allows the
MotionFEvent to be obtained for accurately evaluating of the performance of
segment detection. The other is switching our app in the background and writing
on another handwriting-related app. When the handwriting is over, volunteers
then click the STOP button to stop signal collection. The COMMIT button can

dump the collected data into App-specific storage, and the UPLOAD button can
send the dumped files to the remote server.

148 J. Chen et al.

Subsequent experiments will consider the impact of different postures, devices
and inputs (finger or stylus) on HIAWare. Therefore, each volunteer will hand-
write all the uppercase characters 15 times stroke by stroke, in two postures and
two handwriting modes. 70% of the data is used as the training set, and these
data are divided into two parts based on the posture of volunteers, to train a
speculative model for the corresponding postures. The remaining 30% is used as
the test set.

Low]

72}
E High B]
S
=
&
= mCFAR B]
<

Raw Data R — o

0 0.2 04 0.6 0.8 1
Detection accuracy

Fig. 9. Performance of three segment detection methods

B S-Profiles ™ ST-Profiles

93.5
83.8
81.4
I - I

Sitting Data Standing Data

Speculation Accuracy
~ 0 o] O Nel
(91 [} W [« (9]

2
S

Fig. 10. Performance of different holding postures

5.2 Performance of Segment Detection

Figure 9 shows the actual detection result of three segment detection methods.
It is obvious that low threshold detects the least handwriting segments, while

Speculate Handwriting with Sensors 149

mCFAR and high threshold’s detection ability is comparable. The high thresh-
old will cause signal loss when extracting handwriting segments from sensors’
signal stream. The reason that not all segments are detected by mCFAR is that
sometimes the strength of the volunteers’ handwriting is so weak that it does
not generate sufficient fluctuating changes. Considering the whole, the mCFAR
achieved a detection rate of 88%, so that the character data for subsequent recog-
nition accuracy experiments is based on the signal segments that are detected
by the mCFAR.

1.0 1.0 .
N Q s S
508 5 0.8 &
& e
i o T
206 206!
2 £ 08}
o o
£o4 o4
[[
=1 =3
£0.2 -=- ROC curve of Samsung (area = 0.93) £0.2
ROC curve of Xiaomi (area = 0.94) === ROC curve of Finger (area = 0.92)
<<<<< ROC curve of Huawei (area = 0.93) ROC curve of stylus (area = 0.94)
0.% 0.%
.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) Comparison of Different Devices (b) Comparison on Different Inputs

Fig. 11. ROC curves of different experiment conditions on HIAWare

5.3 Performance of Different Holding Postures

Figure 10 shows the speculation accuracy under two different holding postures.
From Fig. 10, we can observe that sitting data has the higher speculation accu-
racy, which can reach 93.5%, while the speculation accuracy of standing data is
only 81.4%. This is because the sitting posture has less action noise, and rela-
tively more signals are available for speculation model training. What’s more,
when using a posture profile that does not fit the current holding posture to
speculate characters, the accuracy is significantly reduced.

5.4 Performance of Different Devices

We also investigate speculation performance of the three different devices used in
our experiments with the same users. Figure 11(a) shows the ROC curves of three
different devices. HIAWare has similar speculation performance on three devices
with the AUC of Xiaomi as 0.94, and it is only 0.01 higher than Samsung and
Huawei. In general, the discrepancy in sensor performance can lead to subtle
differences in our sampling frequency and precision which may influence the
speculation accuracy. However, as the training data of the speculation model
continues to increase, the impact of this discrepancy could continue to decrease.

150 J. Chen et al.

5.5 Performance of Different Inputs

Figure 11(b) shows the ROC curves of handwriting with the finger and the sty-
lus. As we can see that the AUCs of the finger and stylus are 0.92 and 0.94,
respectively. The AUC of stylus is 0.2 more than that of finger, which means
the speculation performance with stylus is better than that with finger. This is
because the physiological characteristics have a relatively weak impact on sensor
signal changes when we use a stylus instead of the finger. Generally speaking,
this degree of speculation performance difference is comprehensible.

5.6 Discussions

What needs to be stated is that the characters in this experiment are all upper-
case. However, the stroke detection cannot effectively narrow the scope of specu-
lation, since lowercase characters have more ligatures. In addition, the characters
written in the experiment are independent. In practice, it is more common that
the written characters are related before and after, so in theory, the Markov
model can be used to improve the accuracy of inference. These are the work we
need to improve in the future.

6 Related Work

Mobile devices’ restricted-area information could be classified as two categoriza-
tions, virtual keyboard input and pattern lock [18]. Cai et al. [3] first proposed
the possibility of eavesdropping virtual keyboard input via embedded sensors in
smartphone. They developed TouchLogger, which can monitor the orientation
signals and extract features from these signals to infer key-press information.
Similar to this work, Xu et al. [21] recorded gyroscope signals to infer user input
and PIN code. Ping et al. [13] proposed a method to infer even longer input.
Mehrnezhad et al. [11] presented a threat of eavesdropping users’ PINs by record-
ing the sensors’ signals from web page. They proposed PINlogger.js which is a
JavaScript-based side channel attack embedded in a web page, recording the
sensor signal changes while a user inputs the sensitive information on other
web pages. All of these researches only focus on the disclosure of restricted-area
information.

Currently, only few works have focused on the leakage of unrestricted-area
information on touchscreens. Researchers have shown that simple touch actions
including clicking, scrolling, zooming, and holding can be recognized via ana-
lyzing motion and orientation sensors’ signals [12,19]. Using accelerometer and
gyroscope sensors, Emanuel etal. [17] implement predicting tap locations, while
Hafez [9] achieve the same functionality based on barometer sensor. However,
compared with simple touch actions, handwritten information is generally more
complicated to restore [8,22].

Speculate Handwriting with Sensors 151
7 Conclusions

In this paper, we present the excogitation and evaluation of HIAWare, an efficient
attack framework for handwritten information speculation on Android mobile
devices, based on the motion sensor signal analysis. We utilize a generality pat-
tern of characters (i.e., stroke number) to solve the chirography difference issue
and propose a posture-aware approach to solve the posture variation issue. More-
over, we design a modified constant false alarm rate algorithm (mCFAR) to
extract handwriting segments from the motion sensor signal stream, and a user-
independent posture-aware algorithm which combines digital signal processing
and correlation analysis. Our substantial experiments show that HIAWare can
speculate the handwritten information with an accuracy close to 90.0%, which
induces a significant threat against user privacy on mobile devices.

Acknowledgments. This research was supported in part by the National Natural
Science Foundation of China under grants No. 61772383, U1836202, 62076187.

References

1. Android Developers: Motion sensors — android developers. https://developer.
android.com/guide/topics/sensors/sensors_motion

2. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of accelerometer side
channels on smartphones. In: Proceedings of ACSAC, pp. 41-50 (2012)

3. Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smart-
phone motion. In: Proceedings of HotSec (2011)

4. Chen, D., et al.: Magleak: a learning-based side-channel attack for password recog-
nition with multiple sensors in IIoT environment. IEEE Trans. Ind. Inform. (2020)

5. Chen, J., Fang, Y., He, K., Du, R.: Charge-depleting of the batteries makes smart-
phones recognizable. In: Proceedings of ICPADS, pp. 33-40 (2017)

6. Chen, Y., Jin, X., Sun, J., Zhang, R., Zhang, Y.: POWERFUL: mobile app finger-
printing via power analysis. In: Proceedings of INFOCOM, pp. 1-9 (2017)

7. Chen, Z., Zhu, Q., Soh, Y.C., Zhang, L.: Robust human activity recognition using
smartphone sensors via CT-PCA and Misc SVM. IEEE Trans. Ind. Inform. 13(6),
3070-3080 (2017)

8. Du, H., Li, P., Zhou, H., Gong, W., Luo, G., Yang, P.. WordRecorder: accurate
acoustic-based handwriting recognition using deep learning. In: Proceedings of
INFOCOM, pp. 1448-1456 (2018)

9. Hafez, A.: Information inference based on barometer sensor in android devices.
dissertation, University of Alberta (2020). https://era.library.ualberta.ca/items/
15d8d051-45ab-4b1f-ba8a-005688e92f05

10. Javed, A.R., Beg, M.O., Asim, M., Baker, T., Al-Bayatti, A.H.: Alphalogger:
detecting motion-based side-channel attack using smartphone keystrokes. J. Ambi-
ent Intell. Humanized Comput. 1-14 (2020). https://doi.org/10.1007/s12652-020-
01770-0

11. Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Stealing PINs via mobile
sensors: actual risk versus user perception. Int. J. Inf. Secur. 17(3), 291-313 (2017).
https://doi.org/10.1007 /s10207-017-0369-x

https://developer.android.com/guide/topics/sensors/sensors_motion
https://developer.android.com/guide/topics/sensors/sensors_motion
https://era.library.ualberta.ca/items/15d8d051-45ab-4b1f-ba8a-005688e92f05
https://era.library.ualberta.ca/items/15d8d051-45ab-4b1f-ba8a-005688e92f05
https://doi.org/10.1007/s12652-020-01770-0
https://doi.org/10.1007/s12652-020-01770-0
https://doi.org/10.1007/s10207-017-0369-x

152

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

J. Chen et al.

Mehrnezhad, M., Toreini, E., Shahandashti, S.F., Hao, F.: Touchsignatures: iden-
tification of user touch actions and pins based on mobile sensor data via javascript.
J. Inf. Sec. Appl. 26, 23-38 (2016)

Ping, D., Sun, X., Mao, B.: TextLogger: inferring longer inputs on touch screen
using motion sensors. In: Proceedings of WiSec, pp. 24:1-24:12 (2015)

Qimai: Apple store app downloads analysis (2019). https://www.qimai.cn/

Qin, Y., Yue, C.: Website fingerprinting by power estimation based side-channel
attacks on Android 7. In: Proceedings of TrustCom, pp. 1030-1039 (2018)
Quispe, K.G.M., Lima, W.S., Batista, D.M., Souto, E.: MBOSS: a symbolic repre-
sentation of human activity recognition using mobile sensors. Sensors 18(12), 4354
(2018)

Schmitt, E., Voigt-Antons, J.-N.: Predicting tap locations on touch screens in the
field using accelerometer and gyroscope sensor readings. In: Moallem, A. (ed.) HCII
2020. LNCS, vol. 12210, pp. 637-651. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-50309-3-43

Spreitzer, R., Moonsamy, V., Korak, T., Mangard, S.: Systematic classification
of side-channel attacks: a case study for mobile devices. IEEE Commun. Surv.
Tutorials 20(1), 465-488 (2018)

Spreitzer, R., Kirchengast, F., Gruss, D., Mangard, S.: ProcHarvester: fully auto-
mated analysis of procfs side-channel leaks on Android. In: Proceedings of ASI-
ACCS, pp. 749-763 (2018)

Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based
activity recognition: a survey. Patt. Recogn. Lett. 119, 3-11 (2019)

Xu, Z., Bai, K., Zhu, S.: Taplogger: inferring user inputs on smartphone touch-
screens using on-board motion sensors. In: Proceedings of WiSec, pp. 113-124
(2012)

Yu, T., Jin, H., Nahrstedt, K.: Writinghacker: audio based eavesdropping of hand-
writing via mobile devices. In: Proceedings of UbiComp, pp. 463-473 (2016)
Zhao, R., Yue, C., Han, Q.: Sensor-based mobile web cross-site input inference
attacks and defenses. IEEE Trans. Inf. Forensics Secur. 14(1), 75-89 (2019)
Zhou, M., Wang, Q., Yang, J., Li, Q., Xiao, F., Wang, Z., Chen, X.: Patternlistener:
cracking android pattern lock using acoustic signals. In: Proceedings of CCS, pp.
17751787 (2018)

https://www.qimai.cn/
https://doi.org/10.1007/978-3-030-50309-3_43
https://doi.org/10.1007/978-3-030-50309-3_43

®

Check for
updates

Studies of Keyboard Patterns
in Passwords: Recognition,
Characteristics and Strength Evolution

Kunyu Yang!, Xuexian Hu'®) | Qihui Zhang', Jianghong Wei',
and Wenfen Liu?

! State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, China
xuexian_hu@hotmail.com
2 Guilin University of Electronic Technology, Guilin, China

Abstract. Keyboard patterns are widely used in password construction,
as they can be easily memorized with the aid of positions on the key-
board. Consequently, keyboard-pattern-based passwords has being the
target in many dictionary attack models. However, most of the existing
researches relies only on recognition methods defining keyboard pattern
structures empirically or even manually. As a result, only those infamous
keyboard patterns such as qwerty are recognized and many potential
structures are not specified. Besides, there are limited studies focusing
on the characteristics of keyboard patterns.

In this paper, we deal with the problem of recognizing and analyzing
keyboard patterns in a systematic approach. Firstly, we put forward a
general recognition method that can pick out keyboard patterns form
passwords automatically. Next, a comprehensive study of keyboard pat-
tern characteristics is presented, which reveals a great deal of amazing
facts about the preference for passwords based on keyboard patterns,
such as: (1) More than half of the pattern-based passwords are com-
pletely composed by keyboard patterns; (2) The frequency distribution
of the keyboard patterns satisfies the PDF-Zipf model; (3) Users prefer to
use keyboard patterns consisted by horizontal continuous keys or those
characters whose physical location are on the upper left of the keyboard.
We further evaluate the security of keyboard-pattern-based passwords by
employing the PCFG-base cracking technique. The experimental results
indicate that the keyboard patterns can reduce the security of passwords.

Keywords: Keyboard pattern - Password strength - Password
cracking - Information security

1 Introduction

Passwords are used as a key to access control in every corner of the Internet
service. Password security is related to users’ data security and even property
© Springer Nature Switzerland AG 2021

D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 153-168, 2021.
https://doi.org/10.1007/978-3-030-86890-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_9

154 K. Yang et al.

security, but passwords are and will be an Achilles Heel in cybersecurity for
the foreseeable future [2]. NIST SP800-63B [5] points out that although online
services have introduced some rules to increase the complexity of passwords, the
password security is still frustrating. This happens because users like to choose
easy-to-remember passwords with certain structures, which greatly reduces the
security of passwords [16].

Extensive researchers studied on the password characteristics and found out
some password construct rules. Studies [6,11] analyzed the length of passwords
and pointed out that the length of most passwords was between 6 and 10 char-
acters. Li et al. counted the most commonly used passwords and character
combinations in passwords [9]. Researches by Pearman et al. [12] and Wang
et al. [14] showed that many users reused a password in different websites. Data
from several studies [1,4,17] found that a large amount of personal information
(e.g., name, birthday) was used in passwords. The differences between the pass-
words constructed by Chinese users and English users were compared by studies
[10,16,20].

With the development of password security study, especially the improve-
ment of password attack technology, network application providers have to force
users to set stronger passwords than before. For example, the password length
is required to be greater than 8 characters, the password must be constructed
by a combination of three types of characters (i.e., digits, letters, and symbols).
Therefore, many users will construct a password according to the physical posi-
tion of the characters on the keyboard, which is the keyboard pattern. Passwords
formed by this method can satisfy the setting requirements of passwords with
ease, and the shapes formed by these characters on the keyboard are easy to
remember.

Although keyboard-pattern-based passwords seem to be random, they still
follow certain rules. Schweitzer et al. [13] explored the structure of keyboard
patterns through visualization, and defined 11 common pattern elements (e.g.,
Fours, Snake, Reflected). Chou et al. [3] mapped the physical position of keys
on the keyboard to a two-dimensional coordinate axis. Then three definitions of
commonly used patterns (i.e., adjacent patterns, parallel patterns, and both of
two) were given according to the distance between these keys. Kévrestad et al.
[8] pointed out that users with high security awareness were more prone to use
keyboard-pattern-based passwords. Houshmand et al. [7] introduced keyboard
patterns into password attack and achieved a higher success rate than tradi-
tional methods. In addition, Wheeler et al. [19] added keyboard patterns into
the password strength meter (PSM).

The above studies mainly concentrate on two aspects: (i) proposing some
methods to pick out keyboard patterns from passwords; (ii) using keyboard pat-
terns for password attack or PSM. However, most of the keyboard pattern recog-
nition methods are rule-based. These rules are often not rich enough because they
are defined empirically by researchers. Besides, few studies comprehensively ana-
lyze the characteristics of keyboard patterns.

In this paper, we propose a general method to find keyboard pattern based on
the common definition of that, and extract 14.6 million keyboard-pattern-based

Studies of Keyboard Patterns in Passwords 155

passwords from 157 million leaked passwords. Then the systematical statisti-
cal analysis is performed, which can help us to understand users’ preference
in designing keyboard patterns. Finally, we employ keyboard patterns to the
PCFG-based password attack model [18] and compare the attack results with
the original model to evaluate the security of keyboard-pattern-based passwords.
Experimental results show that the new model can guess 2.8% more passwords
on average than the original.
We make the following key contributions:

— We propose a general method to recognize keyboard patterns, eliminating the
need to define structure empirically.

— We comprehensively analyze the characteristics of keyboard patterns from
multiple aspects, including the length distribution, the most commonly used
keyboard patterns, and the frequency distribution, etc.

— We prove that using keyboard patterns can reduce passwords security through
the PCFG-based password attack experiment.

2 General Method of Keyboard Pattern Recognition

2.1 Recognition Method Design

Keyboard pattern is actually physical structure (graphic) on the keyboard, but
it is difficult to be found by recognizing such graphic. Although rule-based recog-
nition methods define plenty of different rules, they have a common definition
of the keyboard pattern [3,7,19], which we summarize as follows.

Definition: Keyboard pattern is a sequence of characters whose physical posi-
tion in keyboard are contiguous. Contiguity refers to a duplicate key or a key
next to the special key.

Based on the above definition, we propose a general keyboard pattern match-
ing method that only focuses on the physical position of characters on the key-
board, which can avoid the problem that the structures defined by experience
are not rich enough.

Target Contiguous Characters
character Ww| Ee
2 2Q113#wWWqQ
(@ 2Q113#wWqQ Azl ss|Da
s sSaAwWeEdDxXzZ
Q qQ1!2@wWaA Zz | Xx
Fig. 1. Contiguous characters table Fig. 2. Contiguous characters of s

Firstly, we remove the dictionary words from passwords in order to avoid mis-
recognizing them as keyboard patterns (e.g., assw in password can be regarded

156 K. Yang et al.

as a keyboard pattern). Then, we construct a table to record the contiguous
characters on the keyboard (as shown in the Fig.1). Consecutive characters of
a target character include the target character itself and characters whose keys’
physical position is adjacent to the target character on the keyboard. Taking the
character s as an example, the characters in the Fig. 2 are all consecutive char-
acters of s. After that, passwords are searched to find the sequence of contiguous
characters. The matched sub-strings longer than [; characters are regarded as
candidate keyboard patterns. If two or more keyboard patterns are matched
in a password, the positions of the keyboard patterns in the password will be
considered. Two short candidate keyboard patterns can be merged into one
long candidate keyboard pattern if the positions of the two in the password are
consecutive. Finally, the candidate keyboard patterns whose length are longer
than [y characters are the final keyboard pattern matching results. For example,
a password 12#qwenjnzzcvb is given, [; is set to 2, and [l is set to 4. First,
12#, quwe, njn, zxcvb are considered as candidate keyboard patterns. Then 12#
and qwe can be merged because the positions in the password are adjacent.
Finally, 12#qwe and zzcvb are recognized as keyboard patterns in 12#qwen-
Jnzzcvb because their length longer than lo. In this paper, we only consider the
qwerty keyboard layout without keypad, but this method can be applied to any
keyboard layout by constructing a corresponding table of contiguous characters.
The proposed method is described in Algorithm 1.

Algorithm 1: Keyboard pattern recognition method

Input: password pw; l1; l2; contiguous characters table T'; dictionary words D
Output: keyboard pattern list kp
if a substring s of pw appears in D then

‘ p < remove s from pw
end
candidate keyboard patterns Ci, < find contiguous character combinations
from p based on T’

BW N =

5 for itemy, in Cip do
6 if itempp.length > 1, then
7 itempp.startIndex«— the start index of itemy), in pw
8 itemyp.endIndex«— the end index of itemy, in pw
9 add itemyp to kps
10 end
11 end
12 while kp?.endIndex==kp? startIndex for any two item in kps do
13 kp; — combine kp! and kp?
14 if kp;.length > > then
15 ‘ add kp; to kp
16 end
17 end

18 return kp

Studies of Keyboard Patterns in Passwords 157

2.2 Recognition Results

Our empirical analysis employs 8 famous leaked password datasets which are
different in terms of services, size and language. These datasets include four
from Chinese website and the other four from English website. We remove the
passwords that contain characters beyond 95 printable ASCII characters. Pass-
words with length shorter than 5 characters or longer than 20 characters are
also removed. After preprocessing, these datasets have a total of 156.6 million
passwords, of which there are 80.6 million unique passwords. Although these
datasets are publicly available, the risk of leaking user privacy is not ruled out.
Therefore, we only show aggregated statistical information, instead of analyzing
for a certain password or passwords of a certain user. Table1 summarizes the
information of these 8 datasets.

Table 1. Information of eight datasets

Dataset | Web service Language | Leaked time | Original After cleaning | Removed | Unique
passwords (%) passwords
TkTk Gaming Chinese |Nov. 2011 18,577,194 18,576,977 0.001 4,877,255
CSDN Programmer Chinese | Dec. 2011 6,374,513 6,374,484 0.001 4,006, 727
forum
Dodonew | E-commerce& |Chinese |Dec.2011 15,580,010 | 15,578,470 0.010 9,994,170
gaming
Taobao E-commerce Chinese |Dec. 2011 15,073,116 15,006,881 0.439 11, 589, 222
Gmail Email English Sept. 2014 4,693, 896 4,691,609 0.049 3,022,756
Matel Online dating | English Mar. 2016 27,403,958 | 25,570,008 6.692 11,681, 308
RockYou | Social forum English Dec. 2009 32,382,632 32,368,961 0.042 14,195, 060
Twitter |Social media English Nov. 2016 38,564,652 | 38,470,995 0.243 21,194,754
Total 158,649,971 | 156,638,385 1.268 80, 561, 252

Chinese website English website F 20%

2.51

F18%
2.01
F15%

1.5 1

1.01 F10%

Keyboard pattern nums (106)

F 8%

i
|
|
I
I
I
|
|
|
I
I
I
I
|
|
|
}
i L 12%
|
I
I
I
|
1,
|
}
0.5 1 !
}
|
I

F 5%

Proportion of passwords containing keyboard patterns

0.0

7k7k CSDN Dodonew Taobao Gamil Matel RockYou Twitter
Website name

Fig. 3. The number of keyboard-pattern-based passwords

158 K. Yang et al.

Keyboard-pattern-based passwords (denoted as pwy,) are picked out from
these datasets using the proposed method. [y is set to 2, and I5 is set to 4. About
14.6 million pwy, are obtained in total, the results are shown in Fig.3. It is
apparent from this figure that Chinese passwords use keyboard patterns more
than English passwords. On average, one out of every seven Chinese passwords
uses keyboard patterns, while only approximately 7% of English passwords use
keyboard patterns. RockYou dataset has the lowest proportion of pwy, at only
4.9%, while CSDN dataset has the highest proportion at about 21.2%. We then
comprehensive analyze the characteristics of matched keyboard patterns in the
Sect. 3.

3 Characteristic Analyses of Keyboard Patterns

3.1 Length Distribution of Keyboard Patterns

Figure4 depicts the length distribution of keyboard patterns and passwords.
We use warm colors to mark the Chinese datasets and cool colors to mark
the English datasets. The length distribution of keyboard patterns is similar
to that of passwords. Regardless of web service type or language, both of the
most common keyboard pattern lengths and password lengths are between 6 and
10. But compared to 8-length passwords are more commonly used, the 6-length
keyboard patterns are more popular. Thinking this may be because a password
does not completely consist of keyboard patterns, we further analyze the length
proportion of keyboard patterns in a password.

50.0% 4 — keyboard patterns
++ passwords

7k7k
CSDN
Dodonew
Taobao
Gmail
Matel
RockYou
Twitter

40.0% A

30.0% A

ercentage

a 20.0% -

10.0% A

0.0% 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Length

Fig. 4. Length distribution of keyboard patterns

Figure 5 provides the distribution of the length percentage of keyboard pat-
terns in a password. In all datasets except the Dodonew dataset, 50.34%—67.06%

Studies of Keyboard Patterns in Passwords 159

of pwy,),, are completely composed of keyboard patterns, and the remaining pwy,,
are construct by adding other elements on the basis of keyboard patterns. The
most used extra elements in Chinese datasets include surname (e.g., wang, liu),
character combinations (e.g., abc, aa), etc. The most used extra elements in
English data include names (e.g., john, jack), dates (e.g., 1991, 1986), etc. In
addition, elements with the meaning of love (e.g., woaini and 1314 in Chinese
datasets, love in English datasets) frequently appear in all datasets.

70.0%

7k7k
CSDN
60.0% 1 Dodonew
Taobao
Gmail
Matel
RockYou
Twitter

50.0% A

Percentage
w IN
o o
3 <
S N

20.0% A

10.0% 4

0.0% -
20% 30% 40% 50% 60% 70% 80% 90% 100%
Length percentage of keyboard patterns in a password

Fig. 5. Distribution of the length percentage of keyboard patterns in a password

3.2 Top Popular Keyboard Patterns

Table 2 shows the top-10 most frequent keyboard patterns in these 8 websites.
128456 is the most frequency keyboard pattern in all datasets except the CSDN
dataset. The top-10 most frequent keyboard patterns are almost all continuous
or repeated sequences of digits. This result may be explained by the fact that
the combinations of these digits are the most commonly used passwords. What
stands out in the table is that the letter sequence qwerty appears in the top-10
most frequent keyboard patterns in English datasets, while only aaaaaa appears
in the Taobao dataset in Chinese datasets.

Table 3 further lists the top-10 most frequency keyboard patterns that are
not entirely composed of digits. In the four Chinese datasets, the first two most
popular keyboard patterns all contain the repetition of a single character (e.g.,
aaaaaa), and the first two most popular keyboard patterns of CSDN are all
of that. In contrast, sequences composed of adjacent characters are used more
frequently in English datasets and it is striking that qwerty is the most popular
keyboard patterns.

From these tables, we can see that only the top-10 most popular keyboard
patterns account for as high as 35.42%-55.15% of each entire dataset with Twit-
ter being the only exception. Specifically, the proportions in Chinese datasets are

160 K. Yang et al.

Table 2. Top-10 most popular keyboard patterns

Rank [77k CSDN Dodonew | Taobao Gmail Matel | RockYou | Twitter

1 123456 123456789 | 123456 123456 123456 123456 123456 123456

2 111111 12345678 | 123456789 | 123456789 || 123456789 | 12345 12345 12345

3 123456789 | 11111111 | 111111 111111 12345 123456789 | 123456789 | 123456789
4 123123 123456 123123 123123 qwerty 1234567 1234567 | qwerty

5 111222 00000000 | 12345 000000 12345678 | 12345678 | 12345678 | 1234567

6 123321 123123123 | 000000 12345 1234567 1234567890 qwerty 123321

7 12345678 | 1234567890 | 321654 123321 111111 qwerty 654321 123123

8 1234567 | 88888888 | 12345678 | aaaaaa 123123 111111 000000 12345678
9 666666 12345 123321 1234567 || 1234567890 | 123123 111111 1234567890
10 12345 1234567 1234567 | 12345678 || 000000 zxevbnm | 123123 111111
Sum of top-10 | 1,413,316 | 746,868 808,615 | 667,864 112,674 1,084,426 | 653,403 | 732,838
Total passwords | 2,767,862 | 1,354,203 | 1,860,088 | 1,763,145 | 318,088 2,181,879 | 1,573,332 | 2,748,136
% of top-10 51.06% | 55.15% 43.47% | 37.88% 35.42% 49.70% 41.53% | 26.67%

Table 3. Top-10 most popular keyboard patterns (digits only are removed)

Rank TkTk CSDN Dodonew | Taobao Gmail Matel RockYou Twitter

1 asdasd aaaaaaaa | q123456 | aaaaaa qwerty qwerty qwerty qwerty

2 aaaaaa qqqggqaqq aaaaaa zxcvbnm zaql2wsx zxcvbnm zxcvbnm Qwerty

3 zxcvbnm | gqwertyuiop | qql123456 | asdasd qwerty123 | gwertyuiop | asdfgh qwerty123
4 qazwsx qql23456 zxcvbnm | qql123456 asdfghjkl asdfghjkl qwertyuiop | gwertyuiop
5 qaqqqq asdfghjkl asd123 ql123456 qazwsx asdfgh asdfghjkl qazwsx

6 qwerty qazwsxedc | qwel23 qazwsx zxcvbnm aaaaaa aaaaaa qwert

7 qq123456 | asdasdasd | qlqlqlql | asd123 qwertyuiop | gwert qazwsx zxcvbnm
8 asd123 qwertyui asdasd asdfghjkl aaaaaa qazwsx qwert qwel23

9 qwel23 asdfasdf qazwsx qwel23 asdfgh mnbvcxz zxcvbn asdfgh

10 qweqwe | qwer1234 | zxc123 qwertyuiop || asdasd asdfg 123qwe asdfghjkl
Sum of top-10 73,286 35,508 75,776 66,407 24,672 126,528 80,949 176,884
Total passwords | 2,767,862 | 1,354,203 1,860,088 | 1,763,145 318,088 2,181,879 1,573,332 2,748,136
% of top-10 2.65% 2.62% 4.07% 3.77% 7.76% 5.80% 5.15% 6.44%

slightly higher than that in English datasets. But for the top-10 most popular
keyboard patterns that are not entirely composed of digits, the proportions in
Chinese datasets are significantly lower than that in English datasets. This com-
parison shows that Chinese users prefer to use numbers to construct passwords,
because the top-10 most frequent keyboard patterns are almost all digits.

3.3 Common Structures of Keyboard Patterns

Observing the most popular keyboard patterns, we can find that there are four
main ways for users to construct keyboard patterns: (1) multiple consecutive
keys starting from a certain key in the horizontal direction; (2) multiple consec-
utive keys starting from a certain key in the vertical direction; (3) Repetition of
a certain key; (4) Combination of two or more of the above. Correspondingly, we
have defined four basic structures of keyboard patterns, which are called Hori-
zontal (Fig.6(a)), Vertical (Fig.6(b)), Repetition (Fig.6(c)), and Combination
(6(d)). We further analyze the frequency of each basic structure. Since keyboard
patterns composed entirely by digits account for a large proportion and do not
have a Vertical structure, we only count the keyboard patterns that contain
letters or symbols.

Studies of Keyboard Patterns in Passwords 161

I RN N R N N e e 2

IS i i O A T AN AN B e W O B e I VA

i —— IANAN R i il e W VA
L ’

(a) Horizontal (b) Vertical (c¢) Repetition (d) Combination

Fig. 6. Basic structures of keyboard patterns

Table 4 presents the proportions of each basic structure. Horizontal structure
account for more than half of the whole, while the proportion of Vertical structure
and Combination structure are relatively small, both accounting for less than
12%. A possible explanation for this might be that the keys on the keyboard are
not completely aligned in the vertical direction, which makes it more difficult
to memorize and continuous input compare to the horizontal direction. There
is also a significant difference in the proportions of basic structures on different
language datasets. Compared with the Chinese datasets, English datasets have
more Horizontal structure but less Combined structure.

Table 4. Proportion of basic structures

Horizontal | Vertical | Repetition | Combination
7kTk 56.55% 7.38% |27.05% 9.02%
CSDN 52.10% 7.24% |30.27% 10.38%
Dodonew | 59.28% 5.15% |24.53% 11.04%
Taobao | 53.77% 6.41% | 28.30% 11.51%
Gmail 66.29% 10.38% | 16.84% 6.48%
Matel 62.58% 5.33% |27.70% 4.39%
Rockyou | 62.60% 7.21% | 25.84% 4.35%
Twitter |67.16% 10.00% |16.33% 6.50%

3.4 Characters’ Frequency in Keyboard Patterns

Wang et al. points out that letter distributions of passwords from diverse lan-
guage datasets are obviously different [16]. We take an investigation for whether
there are such differences in the character distribution of keyboard patterns, and
the results are shown in the Fig. 7.

162 K. Yang et al.

25.0%{ — kevboard pattems TkTk — Keyboard pattems — 7Kk
passwords CooN passwords CSDN
Dodonew 25.0% Dodonew

—— Taobao —— Taobao

20.0% Gmail —— Gmail

— Matel 20.0% —— Matel

—— RockYou
— Twitter

—— RockYou

% — Twitter
15.0% 15.0%

Percentage
Percentage

10.0% 10.0%

0 1 2 3 4 5 6 7 8 9 ABCDEFGHI JKLMNOPQRSTUVWXYZ

(a) Digits (b) Uppercases

16.0% 1 —— keyooard pattems e

16.0% 4 — keyboard pattems N ¢
passwords — Tk7k passwords s

CSDN
Dodonew

14.0% Dodonew
—— Taobao
—— Gmail
—— Matel
—— RockYou
— Twitter

14.0%
—— Taobao
—— Gmail
—— Matel
—— RockYou
— Twitter

12.0% 12.0%

10.0% 10.0%

Percentage
®
)
2
Percentage
©
S
=

¥
H o W I I3 1 D
abcdefghijkimnopagrstuvwxyz &%’bgaug’ﬁﬁ\>S§§§a§§>5§;\§$‘§$

(c) Lowercases (d) Case-insensitive

Fig. 7. Characters’ frequency in keyboard patterns

We observe from the distribution of digital frequencies that digits 1 to 6 are
used more frequently in the keyboard patterns while digit 0 is significantly lower
in all passwords. For alphabetic characters, we calculate the frequency of upper-
case, lowercase and case-insensitive respectively. Considering that the position
of the key is the main factor that affects constructing keyboard patterns, we
mainly analyze the distribution of character frequency using the result obtained
by case-insensitive. The first 8 characters with the highest frequency in Chinese
datasets are a,q,w,s,d,z e,x. However, the most frequently occurring characters
are not exactly the same in different English data sets. Generally speaking, e
is the most popular character, and a,s,w,q,7,d are used frequently in English
datasets. What stands out is that the positions of the most frequently occurring
characters are mainly distributed on the left part of the keyboard, while the
least frequently occurring characters (e.g., g,m,v,b,n) are located on the middle
and bottom part of the keyboard.

In Fig. 8, we give a heatmap about the frequency of each key to show how
the keys’ position influences the construction of keyboard pattern more vividly.
Although the most frequently used keys in different language datasets are slightly
different, they are obviously concentrated in the upper left part of the keyboard,
and few user show interest in symbol part of the keyboard.

Studies of Keyboard Patterns in Passwords 163

ceaioncy
E R T Y u | (0} P { } \

z | x|c|lv B | N|M]| |]/

fH\gh
Y | u I o | P | { } \ I"““"y
H J K L ' 0

B N M . . /

(b) English datasets

Fig. 8. Frequency of each key

3.5 Frequency Distribution of Keyboard Patterns

The study researches by Wang et al. [15] has found that the distribution of
real-life passwords in a dataset obeys PDF-Zipf model. The PDF-Zipf model
describes the relationship between frequency and rank,which can be expressed
as:

C
f’r = ;7 (1)
where f,. and r are the frequency and rank of a password, C' and s are parameters.
It can be easily observed in log-log graph (10-based is used in this work).

In order to observe frequency distribution of keyboard patterns, the acquired
keyboard patterns are counted and those with a frequency less than 3 are
removed. All keyboard patterns are arranged in descending order of frequency.
The frequency vs. the rank of keyboard patterns from different datasets are
depicted in a log-log scale (Fig.9). All lines in the figure can be approximately
expressed as:

log(fr) =logC — s x log(r). (2)

log(f,) and log(r) are linearly related, log(C) is the intercept and s is the slope.
The fitting results of each line are shown in the Table 5. All the coefficients of
determination (i.e., R?) are greater than 0.99, which approximately equals 1.
This shows that the frequency distribution of the keyboard patterns can meet
the PDF-Zipf model well.

164 K. Yang et al.

106 4

CSDN
Dodonew
----- Taobao

105 4

..... Matel
----- RockYou
----- Twitter

104 4

1000 A

100+

Frequency of keyboard patterns

101

1 10 100 1000 10
Rank of keyboard patterns

Fig. 9. Frequency distribution of keyboard patterns

Table 5. Values of parameters and coefficient of determination

s C R?

TkTk 1.1204 | 326785.2554 | 0.9902
CSDN | 1.1143 | 136463.0507 | 0.9946
Dodonew | 1.1160 | 263810.4820 | 0.9957
Taobao | 1.0614 | 176958.8258 | 0.9944
Gmail | 1.0741| 39450.2511 | 0.9959
Matel | 1.1595 | 344243.5774 | 0.9962
Rockyou |1.1551 | 304734.1164 | 0.9956
Twitter | 1.1233 | 490453.4663 | 0.9964

4 Security Impacts of Keyboard-Pattern-Based
Passwords

4.1 Method Design

We select four datasets (i.e., CSDN, Dodonew, Matel, Twitter), which have a
total of 8.1 million passwords containing keyboard patterns (pwy,). The pwy, in
each dataset are divided into training set and test set according to the ratio of
7 : 3. The numbers of passwords contained in each set are shown in the Table 6.

We employ the start-of-the-art password attack method (i.e., PCFG-based
[18]) to evaluate the impact of keyboard patterns on passwords security. The
original PCFG-based password guessing method can be divided into two steps:
training and generation.

Training: Divide passwords into sub-strings according to character types. Then
passwords in training set are parsed into basic structure by donating letters as

Studies of Keyboard Patterns in Passwords 165

Table 6. Number of passwords in each dataset

Training set | Training set (unique) | Test set | Test set (unique)
CSDN 947,960 227,800 406,270 | 108,758
Dodonew | 1,302,061 390,050 558,027 | 191,908
Matel 1,527,315 321,663 654,564 | 157,609
Twitter | 1,923,695 | 587,494 824,441 | 288,577

L, digits as D and symbols as S. For example, the password 1234zxcvbn@@ can
be parsed into D4LgSs. The probability of basic structure and sub-strings can
be calculated by frequencies in the training set.

Generation: Each generating password has a probability which can be calcu-
lated by the product of the probability of basic structure and sub-strings. For
example, the probability of the generating password 1234zxcvbn@Q@ is:

P(1234zxcvbn@QQ) = P(D4LgS2) x P(1234 in Dy)

X P(zxzcvbn in Lg) x P(QQ in Sy). ®)
The candidate guessing passwords can be generated in decreasing order of prob-
ability using the NEXT function.

To evaluate the change in the password security after adding keyboard pat-
terns, we propose K-PCFG by drawing on the idea of NPC model [7]. In K-
PCFG, the keyboard pattern structure (donated as K) is given the highest pri-
ority when identifying the password structure, then the rest of the password is
marked in the same way as PCFG. For example, given a password 1gaz2wszabc,
the base structure in PCFG is D1L3D1Lg, but in K-PCFG, 1qaz2wsx is rec-
ognized as a keyboard pattern first, and then the base structure is denoted as
KgLjs. The guessing flow of K-PCFG is shown as Fig. 10.

4.2 Evaluation Results

For each dataset, we generate 10 million candidate passwords and test them on
the test set. The test includes unique matching and repeated matching, and the
results are shown in the Fig. 11.

The success rate of password attack is significantly improved after adding the
keyboard pattern to the PCFG method. With 1 million guesses, the candidate
passwords generated by K-PCFG method can match about 2.8% more repeated
passwords and 1.1% more unique passwords than that generated by the PCFG
method. On the Dodonew dataset, using K-PCFG can guess at most 4.5% more
repeated passwords and about 1.32% more unique passwords than the PCFG
method. On the Twitter dataset, using K-PCFG can match nearly 5% more
repeated passwords and 2.3% more unique passwords than the PCFG method.
When the guess number exceeds 3 million on the CSDN dataset, it is noticed that

166 K. Yang et al.

___________________ | | P, |
Training | : Generating
|
Pstructure : :
LoKsDy 2 0.7 | ! Structure: 1,KsD;
D;S3: 0.3 b
7 7 b abKsD; 0.7%0.6
keyboard letters | | LogwertD 0.7%0.6
K L : T opre LoKs1 0.7+0.7
qwert : 0.6 a:09 | | | terminal 1
12345:0.4 b:0.1 | | abKs1 0.7%0.7%0.6
Ks i : : Logwertl 0.7*%0.7%0.6
qazwsx : 0.6 ab: 0.6 | |
_asdzxc : 0.4 CD:04 | | abKs1 0.7%0.6*0.7
K L3 Iﬁl L

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
abgwert1 0.7%0.6%0.6%0.7 :
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| |
- .
| | [candidate .
| : CD123452 0.7%0.4*0.4*%0.3
Pdigits Psymbals : |
D Si | !
1:0.7 @:06 I :
. . |
2:03 .04 ! Structure: D3S;
D2 S | !
P
| |
|
D Sa : |
123:0.8 '@#:0.7 | |
789:0.2 #HH#:03 | :
|
| |
|

cson
e Dodonew

o 700%

— Mate

— Tuiter o
00 0%

— kocra

P

0% 600%
s00%

0% s00%

“00% as0%

0% 00%

01 o2 03 04 05 Us 07 o8 o9 To 20 30 40 50 60 70 80 890 01 02 03 0¢ 05 Os 07 08 09 To 20 30 40 50 60 70 80 S0
millon millon millon millon

(a) Unique matching (b) Repeated matching

Fig. 11. Evaluation results

the number of unique passwords that can be successfully guessed by using the K-
PCFG method is starting to be lower than that by using the PCFG method, but
the number of repeated passwords that can be successfully guessed by former is
still higher than latter. This shows that the K-PCFG method can first generate
passwords that appear more frequently in the real password dataset after adding
the keyboard pattern into the PCFG method.

Studies of Keyboard Patterns in Passwords 167

The experimental results reveal that adding the keyboard patterns to the
password attack method can improve the attack efficiency, and it also reflects
that the use of keyboard patterns in passwords reduce the security of passwords
to a certain extent.

5 Conclusions and Suggestions

This paper mainly focuses on the research of keyboard patterns in passwords.
First, a keyboard pattern recognition method is proposed, and then 14.6 million
passwords containing keyboard patterns are found in 8 datasets with a total of
156.6 million passwords. We have conducted a comprehensive analysis of the
obtained keyboard patterns in terms of length, most popular keyboard patterns,
and frequency distribution, etc. Finally, we conduct a password guessing attack
to compare the attack efficiency of the classic PCFG-based method and the K-
PCFG method. The experimental results show that the use of the keyboard pat-
terns in passwords will reduce the passwords’ security. A limitation of this study
is that hat our definition of keyboard patterns is not comprehensive enough. We
will further explore more perfect keyboard pattern recognition methods in our
future work.

Based on these studies in this paper, we put forward the following sugges-
tions on password creation, password strength meter, and password attack. For
password creation, users should completely avoid only using keyboard patterns
to construct a password and using the most popular keyboard patterns. For
password strength meter, attention should be paid to the influence of keyboard
patterns on password strength. For a password that includes keyboard patterns,
the value of strength evaluation result should be appropriately reduced. For
password attack, taking into account the keyboard pattern structures in the
attack method and constructing effective keyboard patterns according to the
above-mentioned characteristics can improve the attack efficiency.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (Grant Nos. 62172433, 61862011, 61872449, 61772548), and Guangxi
Natural Science Foundation (Grant Nos. 2018GXNSFAA138116).

References

1. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, pp. 538-552 (2012)

2. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7), 78-87 (2015)

3. Chou, H.C., Lee, H.C., Hsueh, C.W., Lai, F.P.: Password cracking based on special
keyboard patterns. Int. J. Innov. Comput. Inf. Control 8(1(A)), 387-402 (2012)

4. Deng, G., Yu, X., Guo, H.: Efficient password guessing based on a password seg-
mentation approach. In: 2019 IEEE Global Communications Conference (GLOBE-
COM), pp. 1-6 (2019)

168

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Yang et al.

Grassi, P.A., et al.: Digital identity guidelines-authentication and lifecycle man-
agement. National Institute of Standards and Technology (2020)

Han, W., Xu, M., Zhang, J., Wang, C., Zhang, K., Wang, X.S.: TransPCFG :
transferring the grammars from short passwords to guess long passwords effectively.
IEEE Trans. Inf. Forensics Secur. 16(pp), 451-465 (2021)

. Houshmand, S., Aggarwal, S., Flood, R.: Next gen PCFG password cracking. IEEE

Trans. Inf. Forensics Secur. 10(8), 1776-1791 (2015)

Kévrestad, J., Zaxmy, J., Nohlberg, M.: Analyzing the usage of character groups
and keyboard patterns in password creation. Inf. Comput. Secur. 28(3), 347-358
(2020)

Li, J., Zeigler, E., Holland, T., Papamichail, D., Greco, D., Grabentein, J., Liang,
D.: Common passwords and common words in passwords. In: World Conference
on Information Systems and Technologies, pp. 818-827 (2020)

Li, Z., Han, W., Xu, W.: A large-scale empirical analysis of Chinese web passwords.
In: SEC 2014 Proceedings of the 23rd USENIX Conference on Security Symposium,
pp. 559-574 (2014)

Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
2014 IEEE Symposium on Security and Privacy, pp. 689-704 (2014)

Pearman, S., et al.: Let’s go in for a closer look: observing passwords in their natural
habitat. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 295-310 (2017)

Schweitzer, D., Boleng, J., Hughes, C., Murphy, L.: Visualizing keyboard pattern
passwords. Inf. Vis. 10(2), 127-133 (2011)

Wang, C., Jan, S.T., Hu, H., Bossart, D., Wang, G.: The next domino to fall:
empirical analysis of user passwords across online services. In: Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy, pp. 196—
203 (2018)

Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inf. Forensics Secur. 12(11), 2776-2791 (2017)

Wang, D., Wang, P., He, D., Tian, Y.: Birthday, name and bifacial-security: under-
standing passwords of Chinese web users. In: SEC 2019 Proceedings of the 28th
USENIX Conference on Security Symposium, pp. 1537-1554 (2019)

Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1242-1254 (2016)
Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 IEEE Symposium on Security and
Privacy, pp. 391-405 (2009)

Wheeler, D.L.: zxcvbn: Low-budget password strength estimation. In: SEC 2016
Proceedings of the 25th USENIX Conference on Security Symposium, pp. 157-173
(2016)

Zhang, Y., Xian, H., Yu, A.: CSNN: password guessing method based on Chinese
syllables and neural network. Peer-to-Peer Netw. Appl. 13(6), 2237-2250 (2020).
https://doi.org/10.1007/s12083-020-00893-7

https://doi.org/10.1007/s12083-020-00893-7

®

Check for
updates

CNN-Based Continuous Authentication
on Smartphones with Auto Augmentation
Search

Shaojiang Deng, Jiaxing Luo, and Yantao Li(®)

College of Computer Science, Chongqing University, Chongqing 400044, China
yantaoli@cqu.edu.cn

Abstract. In this paper, we present CAuSe, a CNN-based Continuous
Authentication on smartphones using Auto Augmentation Search,
where the CNN is specially designed for deep feature extraction and the
auto augmentation search is exploited for CNN training data augmen-
tation. Specifically, CAuSe consists of three stages of the offline stage,
registration stage and authentication stage. In the offline stage, we uti-
lize auto augmentation search on the collected data to find an optimal
strategy for CNN training data augmentation. Then, we specially design
a CNN to learn and extract deep features from the augmented data and
train the LOF classifier after 95 features are selected by PCA in the
registration stage. With the trained CNN and LOF classifier, CAuSe
identifies the current user as a legitimate user or an impostor in the
authentication stage. Based on our dataset, we evaluate the effective-
ness of optimal strategy and the performance of CAuSe. The experimen-
tal results demonstrate that the strategy of Time-Warping(0.6)+Time-
Warping(0.6) reaches the highest accuracy of 93.19% with data size 400
and CAuSe achieves the best authentication accuracy of 96.93%, respec-
tively, comparing with other strategies and classifiers.

Keywords: Continuous authentication + Auto augmentation search -
CNN - LOF classifier

1 Introduction

The mobile devices have played an essential role in our daily lives, which makes
privacy protection in mobile devices extremely important, since they store a lot
of private and sensitive information. Even since 2011, sales of smartphones have
exceeded sales of personal computers [2]. However, due to the high-frequency
usage and information interaction of these devices (e.g. smartphones), it is dif-
ficult to prevent personal information leakage and illegal access by the one-time
authentication that identifies users only at the time of initial logging-in, such
as personal identification numbers (PINs), passwords, voice-prints, fingerprints
and face recognition. PINs face a much serious threat of online guessing and
even longer PINs only attain marginally improved security [3,26]. Wang et al.

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 169-186, 2021.
https://doi.org/10.1007/978-3-030-86890-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_10

170 S. Deng et al.

systematically characterized typical targeted online guessing attacks with seven
sound mathematical models, each of which was based on varied kinds of data
available to an attacker [27]. Biometric information cannot be acquired by direct
covert observation, but once biological information is stolen, it is not naturally
available to reissue [22]. For example, fingerprint recognition can be cracked by
people with ulterior motives obtaining legitimate users’ fingerprints left on the
screen. In addition, there is a severe security and privacy threat in one-time
authentication mechanisms that when a legitimate user leaves the supervision
of the device after the initial authentication (the screen is unlocked), impostors
can easily gain access to the device illegally.

Compared with the traditional one-time authentication mechanisms, contin-
uous or implicit authentication approaches would provide an additional line of
defense by designing a non-intrusive and passive security countermeasure [9]. The
current continuous authentication mechanisms essentially use built-in sensors and
accessories to frequently collect physiological or behavioral biometrics to identify
the legitimacy of the user, such as voice [8], face patterns [1], touch gestures [28],
typing motion [10] and gait dynamics [21]. There are two main stages for continu-
ous authentication systems: user registration phase and continuous authentication
phase. During the user registration phase, owners of mobile devices are usually
asked to perform some operations to collect information to recognize the owners.
During the continuous authentication phase, the system collects the user’s sensor
readings at regular intervals to determine whether the current user is the device
owner. If the system finds that the current user is an illegal user, the system will
lock the device to prevent the owner’s privacy from leaking. The accelerometer,
gyroscope, and magnetometer are the three most commonly used sensors for col-
lecting behavioral biometrics without users’ notice. Both accelerometer and gyro-
scope are motion sensors that can monitor the users’ motion on the device. Magne-
tometer is a position sensor used to determine the physical position of the device
in the true frame of reference. However, in order to obtain a high-performance
continuous authentication model, it is often necessary to collect a large amount
of high-quality data for training models, which costs lots of time and resources.
Data augmentation methods, such as flipping, cropping, color dithering and gen-
erative adversarial networks (GANSs), are very common techniques in the field of
image recognition, which help cover unexplored input space, prevent overfitting
and improve the generalization ability of classification model. However, there are
currently few data augmentation methods specifically for time-series sensor data
because time-series sensor data are quite different from image data and most of
the current data augmentation methods cannot be used to create time-series data
directly. Since the sufficient amount of sensor data collection needs lots of vol-
unteers to participate, it is challenging to augment time-series sensor data. More-
over, for specific applications, artificially constructing features for time-series sen-
sor data often requires a lot of prior expert knowledge. It is also challenging to
extract features with high representation capacity on time-series sensor data.

To address the challenges of data shortage and feature contribution, we are
among the first to utilize the auto augmentation search to find an optimal

CNN-Based Continuous Authentication on Smartphones 171

data augmentation strategy for CNN training and design a CNN-based deep
feature extraction method consisting of feature learning and feature selection.
In this paper, we present CAuSe, a CNN-based Continuous Authentication
on smartphones using Auto Augmentation Search. Specifically, CAuSe con-
sists of five modules: data collection, auto augmentation search, feature extrac-
tion, classifier training and authentication. The process of CAuSe includes three
stages of the offline stage, registration stage, and authentication stage. In the
offline stage, CAuSe collects time-series sensor data of the accelerometer, gyro-
scope, and magnetometer, and then utilizes auto augmentation search on the
collected sensor data to find an optimal data augmentation strategy. In the
registration stage, CAuSe applies the optimal augmentation strategy on the col-
lected sensor data, uses the designed CNN to learn and extract deep features
from the augmented data, and trains the local outlier factor (LOF) classifier
after 95 deep features are selected by principal component analysis (PCA).
In the authentication stage, based on the sampled sensor data, CAuSe uses
the trained CNN to learn and extract features and utilizes the trained LOF
classifier to conduct the authentication based on the 95 PCA-selected fea-
tures. Based on our dataset, we evaluate the effectiveness of auto augmenta-
tion search and the corresponding optimal strategy and the performance of
CAuSe. The experimental results demonstrate that the augmentation strategy of
Time-Warping(0.6)+Time-Warping(0.6) reaches the highest authentication per-
formance with the 93.19% accuracy, 93.77% F}-score, and 3.9% EER with data
size 400, and CAuSe achieves the best accuracy of 96.93% with the LOF classifier
on 95 PCA-selected features, respectively, comparing with other augmentation
strategies and classifiers.
The main contributions of this work are summarized as follows:

— We present CAuSe, a CNN-based continuous authentication on smart-
phones using auto augmentation search, leveraging the smartphone built-in
accelerometer, gyroscope and magnetometer.

— We specially design a CNN for deep feature extraction and utilize the auto
augmentation search to find an optimal data augmentation strategy for CNN
training.

— We evaluate the effectiveness of auto augmentation search and the perfor-
mance of CAuSe, and the experimental results illustrate that the searched
augmentation strategy reaches the highest accuracy (93.19%) with data size
400, and CAuSe achieves the best authentication accuracy (96.93%), respec-
tively.

The remainder of this work is organized as follows: Sect. 2 reviews the state-
of-the-art on continuous authentication. We elaborate the architecture of CAuSe
in Sect. 3 and evaluate the performance of the optimal strategy and CAuSe in
Sect. 4. Section 5 concludes this work.

172 S. Deng et al.

2 Related Work

In this section, we review the state-of-the-art of the continuous authentication
systems, time-series data augmentation methods and auto augmentation meth-
ods, respectively.

2.1 Continuous Authentication System

In the field of continuous authentication, high-precision discrimination results
are often inseparable from an efficient system framework. In recent years,
researchers have creatively designed well-performed continuous authentication
systems based on different data sources [20]. The mainstream continuous authen-
tication solutions are broadly composed of two phases: registration phase and
authentication phase. During the registration phase, these systems extract fea-
tures from the collected datasets and train classifiers with labeled features.
During the authentication phase, these systems utilize the trained classifiers
to classify features that are extracted from unidentified users’ data. Considering
that different types of touch operations may contain quite different characteris-
tics, the authors in [28] designed specific features for different touch operations,
and then adopted the trained classifiers for authentication. Z. Sitova et al. [23]
designed hand movement, orientation and grasp behavioral features based on
sensor readings from smartphones, then trained and tested one-class classifiers
after feature selection. Mahbub et al. [19] trained a linear SVM with statisti-
cal features obtained from face proposals that were derived from the estimated
faces in their designed system. In [5], the authors proposed a continuous motion
recognition system that was based on motion data from the accelerometer, gyro-
scope and magnetometer. They used a Siamese convolutional neural network to
learn deep features, and then trained the one-class SVM with learned features
of the legitimate user, to predict new observations. In [13], Li et al. proposed a
two-stream convolutional neural network for feature learning in the continuous
authentication system which was based on bottleneck structure of Mobilenet v2,
with both time domain data and frequency domain data of the accelerometer
and gyroscope as the network inputs.

Inspired by the above contributions, we design an efficient CNN-based con-
tinuous authentication system which can achieve very close performance with
few sampled sensor data for training using time-series data auto Augmentation
technology.

2.2 Time-Series Data Augmentation Method

In the image recognition field, data augmentation can be implemented by label-
ing the same labels for images obtained by performing operations, such as scaling,
cropping, jittering and flipping on raw images. However, in the time-series data
field, such as sensor data, there are few data augmentation approaches proposed.
In [25], the authors were among the first to exploit geometric transformation,
such as permutation, sampling, scaling, cropping and jittering, as sensor data

CNN-Based Continuous Authentication on Smartphones 173

il v _O_fﬂ;ne Stages\ I’ Registration Stage) / A;lil_lel_ltication Stage\i
TR :) !
Data Collection | | : Legitimate Data LOF Classifier |! Traine d: Sensors Sampling
- |(Accelerometer, | ! ;| Collection Training ! LOF | i
i ! J I .
Gyroscope, " CNN Feature

Magnetometer) | | Optimal I /—l—\ ! i .
i | | Extraction

i
i

|

i

i

i I ng! CNN Febature i [

: I ﬂlﬂ&/ i Trained ! PCA Feature
I

i

i

i

Auto ﬂ,: Selection

|
|

! Y

'l CNN Feature 4’{ PCA Feature
|

i

.| Augmentation : i [
Search Extraction Selection |1 : Authentication
« J !

~

N~ = N ——— e —

Fig. 1. CAuSe architecture.

augmentation approaches, which were different to those in image augmentation.
DeVries et al. [7] used a sequence autoencoder to project data into feature space
and investigated augmentation techniques in the feature space.

Data augmentation with generative adversarial networks (GANSs) has
attracted some researchers’ attentions recently. Zhu et al. [31] proposed an emo-
tion classification system using data augmentation with a cycle-consistent adver-
sarial network (CycleGAN) and Luo et al. [17] trained a conditional Wasserstein
generative adversarial network (WGAN) with electroencephalography (EEG)
data to generate additional data for data augmentation. In [24], the authors
investigated the possibility of using GANs to augment time-series Internet of
Things (IoT) data. In [12], the author investigated five sequential data augmen-
tation techniques (additional Gaussian noise, masking noise, signal translation,
amplitude shifting, and time stretching) including sample-based and dataset-
based methods to improve the intelligent fault diagnosis accuracy.

2.3 Auto Augmentation Method

Since the current data augmentation implementations are almost manually
designed [7,25], researchers prefer to apply one or several fixed data augmenta-
tion methods based on their experience for most datasets, although there the-
oretically exists an optimal data augmentation method for a specific dataset.
Cubuk et al. [6] first proposed the concept of auto augmentation, which auto-
matically searched optimal augmentation policies from data to improve valida-
tion accuracy. Their search algorithm (implemented as a RNN controller based
on Reinforcement) sampled thousands of policies to train a child model to mea-
sure the performance of the generalization improvement, and then updated the
augmentation policy distribution with a reward signal. Despite its promising
empirical performance, this scheme was difficult to apply because it was very
expensive with time-consuming calculation in the whole process. Lin et al. [16]
formulated the augmentation policy as a parameterized probability distribution,
thus allowing the augmentation policy probability distribution parameters to be
optimized along with the network parameters simultaneously. Based on a bilevel

174 S. Deng et al.

framework, this solution eliminated the need of re-training model after optimal
augmentation policy search and achieved comparable performance with dozens
of times faster than [6]. In [15], the authors proposed a fast auto augmentation
algorithm to find effective augmentation policies via a more efficient search strat-
egy based on density matching. Moreover, [29] proposed effective optimization
algorithms to reduce the computational burden and time consumption of auto
augmentation.

3 CAuSe Architecture

In this section, we present the architecture of CAuSe, the CNN-based continuous
authentication on smartphones with auto augmentation search, as illustrated in
Fig.1. As shown in Fig.1, CAuSe consists of three stages: the offline stage,
registration stage, and authentication stage.

In the offline stage, CAuSe collects time-series sensor data and then utilizes
auto augmentation search on the collected sensor data to find an optimal data
augmentation strategy for CNN training data augmentation in the registration
stage. First, we recruit volunteers to use smartphones equipped with sensor
data collection tools to collect sensor data of the accelerometer, gyroscope and
magnetometer. Then, we perform preprocessing operations on the collected time-
series sensor data, and based on the preprocessed data, we conduct the auto
augmentation search to obtain an optimal augmentation strategy.

In the registration stage, CAuSe applies the optimal augmentation strategy
on the collected sensor data, uses the designed CNN to learn and extract deep
features from the augmented data, and trains the local outlier factor (LOF)
classifier after 95 deep features are selected by PCA. Specifically, the owner (the
legitimate user) is required to operate on the smartphone to collect data of the
accelerometer, gyroscope and magnetometer. Then, we use the optimal augmen-
tation strategy to augment the collected sensor data including the legitimate
user’s for feature extraction. We specially design a CNN based on Shufflenet V2
[16] to learn and extract deep features from the augmented sensor data. 95 deep
features are selected by PCA and then used to train the LOF classifier.

In the authentication stage, based on the sampled sensor data, CAuSe uses
the trained CNN to learn and extract features and utilizes the trained LOF
classifier to conduct the authentication based on 95 features selected by PCA.
If the user is a legitimate user, CAuSe will allow the continuous usage of the
smartphone and meanwhile continuously authenticate the user; otherwise, it will
require the initial login inputs.

3.1 Data Collection and Preprocessing

Data Collection. The accelerometer and gyroscope are motion sensors, and
they can capture the motion patterns of the devices. The magnetometer is a
position sensor that records changes in the physical position of the devices. The

CNN-Based Continuous Authentication on Smartphones 175

three sensors are widely equipped on the modern smart devices. Considering the
above advantages, we select the accelerometer, gyroscope, and magnetometer to
collect the data for user continuous authentication.

In order to collect the sensor data for CAuSe, we recruited 88 volunteers
(44 male and 44 female) to operate on 10 Samsung Galaxy S4 smartphones,
each of which was installed a designed virtual keyboard. They were required
to participate in 8 sessions, and they used the virtual keyboard to answer 3
questions in each session. For each answer, they entered 250 characters at least.
During their operations, we collected data on the three axes of the accelerometer,
gyroscope and magnetometer with a sampling rate of 100 Hz.

Data Preprocessing. Since the collected raw sensor data are long time-series
streams, we use a sliding window to perform non-repetitive sampling, each con-
taining 2s-sensor data. In a sliding window, each row represents the sampled
sensor data, and each column indicates the x, y, and z axes of a sensor. In order
to enable the time-series sensor data to be used as the inputs of a CNN with
shape = (H, W, C), we adaptively change the shape of the collected data. Specif-
ically, the three sensor data are regarded as three channels (C), and the rows and
columns of the sliding window correspond to H and W, respectively. Ignoring
the error in the sampling process and according to the sampling frequency, it
can be inferred that H = 200.

We divide the 88 volunteers’ data into three groups (88 users with 3000 win-
dows): 68 users with 2000 windows Djcgrning for CNN training, 68 users with
1000 windows Dpositive as legitimate users’ testing dataset for feature extraction
and classifier training, and 20 users with 3000 windows Dpegative as impostors’
testing dataset for feature extraction and classifier training. Dijcqrning are fit-
ted and transformed by RobustScaler in Python library sklearn.preprocessing,
which ignores outliers in the dataset. Dpositive and Dypegative are transformed
by the same RobustScaler, so that the three groups of data can be consistently
normalized for data augmentation.

3.2 Auto Augmentation Search

Search Space. For images, there is spatial correlation among the pixels and
other pixels around them, while for sensor data, there is temporal correlation
among samples. Therefore, we design specific data augmentation strategies that
consider the possible invariant geometric transformation of sensor data in time
series. For each input of CNN training sensor data, we sample an augmenta-
tion strategy from the search space and apply. Each augmentation strategy is
composed of two augmentation methods.
We design the candidate augmentation methods for sensor data:

1) Rotation: When users operate on mobile devices, the devices are likely to
be flipped or rotated at a certain angle. Accordingly, the z, y, and z axes
of the sensors on the devices rotate at the same angle corresponding to the

176 S. Deng et al.

Cartesian coordinate system. In order to simulate this, we design a rotation
method, which rotates the x, y, and z axes of the sampled sensor data by
multiplying a rotation matrix to obtain angles of (—n/3, —7/6, —7 /12, 7/3,
w/6, m/12).

2) Jittering: Noise can be introduced in the process of sensor data collection
which might be caused by environmental disturbance. Jittering function adds
a noise matrix generated by a normal distribution with standard deviations
of 0.05, 0.25, and 0.5 to the sampled sensor data. Note that we ignore the
injection attacks in jittering augmentation [11].

3) Scaling: Scaling function multiplies the z, y, and z axes of the sampled
sensor data separately by scale factors generated by a normal distribution
with standard deviations of 0.05, 0.1, and 0.2.

4) Permutation: Since the segmentation position of the fixed window is arbi-
trary for sensor data collected in a period of time, the position of the event
implied in the sub-window in the whole window is meaningless. Permutation
function segments the whole sample window to 4, 5, or 8 sub-windows by
rows to perturb the temporal location of within-window events.

5) Magnitude-Warping: We sample values from a normal distribution with
standard deviations of 0.2, 0.4, 0.6, feed them to scipy.interpolate.cubicSpline
to generate three random smooth curves corresponding to z, y, and z axes,
and finally convolute them with the sampled sensor data.

6) Time-Warping: Time-Warping function utilizes the aforementioned smooth
curves and one dimensional linear interpolation to perturb the temporal loca-
tion smoothly.

7) Cropping: Cropping can diminish the dependency on event locations. In the
cropping function, we randomly select different numbers of window rows (e.g.
10, 20, or 30) and set values of these selected window rows to 0.

Seven augmentation functions with specific magnitude parameters make up
a total of 24 augmentation methods. In our designed augmentation strategy
search space, each augmentation strategy consists of 2 augmentation methods
orderly and repeatable. In other words, there are totally 242 strategies in the
augmentation strategy search space.

Search Pipeline. Inspired by Lin et al.’s work [16], we adapt distribution
optimization to the continuous authentication area to search an optimal data
augmentation strategy for time-series sensor data. As mentioned, since each
augmentation strategy consists of two augmentation methods and there are 24
augmentation methods in total, there are 242 strategies in the designed aug-
mentation strategy search space. Thus, we first initialize a 24% matrix sampled
from a uniform distribution as the augmentation probability distribution 6. The
probability of the kth augmentation strategy pg can be formulated as:

1
Thre—0r
Po(Si) = —E T &
Zi:l 1+e 9%

CNN-Based Continuous Authentication on Smartphones 177

where § € R¥ | and S), indicates the kth data augmentation strategy candidate.

Next, we perform the auto augmentation strategy search. We take an epoch
t of total T' epochs in model training process. Each input will be applied with
a randomly chosen augmentation strategy for each batch b of total B batches.
Since the validation accuracy acc(w*) of the network model is only decided
by the optimal network model parameters w* and the model training process
is only influenced by the augmentation strategies applied to each input, the
augmentation probability distribution matrix 6 is defined as a variable matrix
with gradient about the network model parameters w*. However, it is a tricky
problem to calculate the gradient of validation accuracy acc(w*) with respect
to 0. To approximate the gradient, we execute the following steps four times for
epoch t:

1) Sample and apply an augmentation strategy for each input, train the network
model with augmented inputs, obtain the validation accuracy w’, and record
the network parameters;

2) Make gradient back propagation for 8, update values of #, and then clear the
gradient of 6;

3) Save the network parameters with the highest w’ as the initial network param-
eters for next epoch.

Based on the reinforcement learning and Monte-Carlo sampling, at the end
of epoch ¢, the cumulative gradient can be approximately formulated as:

N IxB

Vol (0) ~ 5 D2 3 Volog(po(Sigy) ace(uw,) (2)

n=1 j=1

where N denotes the total times of network training and acc(w,n) indicates the
validation accuracy of the nmth network. Network parameters with the highest
validation accuracy will be broadcast to the network before the next epoch. After
sufficient epochs of parameters updates, the augmentation probability distribu-
tion converges. The augmentation strategy with the highest probability is the
optimal augmentation strategy we search. Note that the network model archi-
tecture is the same to the designed CNN architecture.

3.3 Feature Extraction

In this section, we design a CNN-based deep feature extraction method, which
consists of feature learning and feature selection. In the following, we first elab-
orate the design of the CNN and then detail the CNN-based feature extraction.

CNN Design. We design the architecture of the CNN inspired by Shufflenet
V2 [18], as illustrated in Table 1, for auto augmentation search, feature learning
and extraction. As demonstrated in Table 1, the designed CNN is composed of
a 2D convolutional layer (Conv2d), a 2D max pooling (MaxPooling2d), a stack
of Shufflenet V2 units grouped into three stages (Stage 1, Stage 2, and Stage 3),

178 S. Deng et al.

Table 1. CNN architecture.

Layer Output # Kernel | KSize | Stride | Parameter | Repeat
Sensor 200x 3 x 3 |- - - - -
Conv2d (BN+ReLU) 100 x 3 x 24 | 24 3x3 (2,1 |672 1
MaxPooling2d 50 x 3 x 24 |- 3x3|(21) |- 1
Stage 1 25 x 3 x 48 |48 (2,1) | 2760 1
25x3x48 48 - (1,1) | 1728 x 3 3
Stage 2 13 x 3 x 96 | 96 - (2,1) | 8976 1
13 x3x96 |96 - (1,1) | 5760x7 7
Stage 3 7 X 3% 96 192 - (2,1) | 31776 1
7 x 3 x 96 192 - (1,1) | 20736 x3 |3
Conv2d (BN+ReLU) 7 x 3 x 1024 | 1024 1x1 | (1,1) 197632 1
GlobalAveragePooling2d | 1 x 1x 1024 | — X3 |- - 1
Dense CNx1 — — — 69700 1

another Conv2d, a 2D global average pooling (GlobalAveragePooling2d), and
a dense layer. We adopt BN and ReLu right after each Conv2d. In addition,
Stages 1, 2, and 3 are composed of the building blocks of a basic unit followed
by several basic units for spatial down sampling. ‘CN’ represents class number
for CNN training (class_num).

Feature Learning. Based on the optimal strategy obtained from the offline
stage, Dicarning are augmented in the registration stage. As illustrated in Table 1,
with the augmented data, there are 1800 (3 sensors X 2s x 100Hz x 3 axes)
samples in a 2s-sliding window. The first Conv2d layer with 24 filters of 3 x 3 and
stride of (2,1) followed by a MaxPooling2d with kernel size of 3 x 3 and stride of
(2,1), aims to make down sampling and increase channels. Then, three stages of
a basic unit with stride (2,1), and several units for spatial down sampling with
stride (1,1) are applied, where Stage 1 repeats 3 times of the unit for spatial down
sampling, Stage 2 repeats 7 times, and Stage 3 repeats 3 times. Next, there is
another Conv2d layer with 1024 filters of 1 x 1 and stride of (1,1) followed by
a GlobalAveragePooling2d layer and a dense layer. The total parameters of the
designed CNN are 419,228 and the second Conv2d layer contributes the most
parameters (19,7632 parameters). The outputs of the GlobalAveragePooling2d
are deep features learned from the sensors of the accelerometer, gyroscope and
magnetometer.

Feature Selection. We use the principal component analysis (PCA) to select
appropriate number of deep features for the classifier based on the CNN-
extracted features. Based on the experiments in Sect. 4.2, PCA selects 95 deep
features for the LOF classifier to conduct the authentication.

CNN-Based Continuous Authentication on Smartphones 179

3.4 Authentication with LOF Classifier

With the 95 PCA-selected deep features, CAuSe utilizes the local outlier factor
(LOF) classifier to identify users. LOF measures the local deviation of the data
point to its neighbors, which decides whether a data point is an outlier using
the anomaly score estimated by k-nearest neighbors based on a given distance
metric. A data point with a substantially lower density than its neighbors will
be regarded as an outlier [4].

In the registration stage, CAuSe generates the legitimate user’s profile from
the training data and the LOF classifier is trained by PCA-selected deep features.
In the authentication stage, the trained LOF classifier classifies the PCA-selected
deep features from the sampled sensor data. Based on the trained classifier and
the sampled data while using the device, CAuSe authenticates the current user
as a legitimate user or an impostor. If the user is a legitimate user, CAuSe
will allow the continuous usage of the smartphone and meanwhile continuously
authenticate the user; otherwise, it will require the initial login inputs.

4 Performance Evaluation

In this section, we start with experimental settings, then investigate the perfor-
mance of CAuSe in terms of optimal feature number, and evaluate the effective-
ness of auto augmentation search and optimal strategy, respectively.

4.1 Experimental Settings

Network Model Training. With the inputs of Dicarning, 80% of the data are
used for training and the rest 20% for testing, with a batch size of 128. We use
the cross entropy as the loss function and the stochastic gradient descent (SGD)
optimizer to update the learning rate. The initial learning rate is 0.2, and it
complies with an exponential decay of decay_step = 1000 and decay_rate = 0.96.
If the lowest validation loss remains for 10 continuous epochs or the network
training process exceeds 150 epochs, the training process stops. The network
with the lowest loss is used as the trained model.

Auto Augmentation Strategy Search. The parameters of the augmentation
distribution initialize as a 24 x 24 matrix with initial values from a uniform
distribution. We use Adam optimizer with learning rate 0.05, §; = 0.9, fo =
0.999, weight_decay = 0. The distribution parameters are updated 150 times
in total.

180 S. Deng et al.

Table 2. Accuracy (SD) % for different classifiers with varying feature numbers

Classifier\Number | 5 35 55 75 95 115 | 135 155 | 175 | 195
0C-SVM 91.27 | 94.58 | 93.45 | 90.57 |86.55 |81.97 |77.24 | 72.90 | 69.14 | 66.00
(4.10) | (2.53) | (1.98) | (1.95) | (2.13) | (2.58) | (2.78) | (3.26) | (3.68) | (4.11)
IF 87.25 |93.26 |94.71 | 95.28 | 95.68 | 95.95 | 96.03 | 95.96 | 95.80 | 95.58
(7.17) | (4.07) | (3.32) | (2.90) | (2.49) | (2.15) | (1.92) | (1.80) | (1.78) | (1.77)
LOF 80.69 | 92.51 | 94.45 | 95.40 | 96.93 | 96.79 | 96.66 | 96.38 |95.97 | 95.77
(11.44) | (5.91) | (3.93) | (2.84) | (1.80) | (1.92) | (2.05) | (2.10) | (2.38) | (2.48)

Classifier Training. To train the LOF classifier, we randomly select 1 legit-
imate user from Dpositive for 20 times. With the 1000-window data, we use
10-fold cross validation to obtain 900-window training dataset and 100-window
positive testing dataset. We also randomly select 100-window from Dy,cgative a8
the negative testing dataset.

Evaluation Metric. We utilize three evaluation metrics: accuracy, Fi-score,
EER to evaluate the effectiveness of CAuSe. Accuracy is the percentage ratio
of the total number of correct authentication against the total number of

authentication, defined as: Accuracy = %. Fi-score is defined as:
Fy = 7prpprw- BER is the point where FAR equals to FRR.

4.2 Feature Number and Classifier Parameter

We conduct experiments to investigate classifier selection and optimal feature
number selected by PCA. We consider three classifiers of OC-SVM, IF, and LOF
for classifier selection and vary feature numbers for optimal feature number. We
compute the accuracy (standard deviation) of CAuSe with the three classifiers
as the feature number increases from 5 to 195, as tabulated in Table 2. As shown
in Table2, the accuracy gradually increases with the feature number growing
until an optimal number and then slightly decreases for all the classifiers. For
OC-SVM, 35 features selected by PCA reach the best accuracy of 94.58% and
for IF, 135 features achieve 96.03% accuracy. However, LOF with 95 features
selected by PCA reaches the highest accuracy of 96.93% and the lowest SD of
1.80%. Therefore, we use PCA to select 95 deep features for the LOF classifier.
In addition, based on the optimal numbers of features, we utilize the grid
search to seek the best parameter combinations for classifiers of the OC-SVM,
IF, and LOF. We list the classifiers, number of features, and optimal parameter
combination in Table3. As shown in Table3, the LOF classifier with 95 deep
features obtains the optimal parameters of n_neighbors = 800 and p = 1.

CNN-Based Continuous Authentication on Smartphones 181

Table 3. Optimal parameter combinations

Classifier | # Feature | Optimal parameter combination
OC-SVM | 35 ©=0.0001, v = 0.015625

IF 135 n_estimators = 900

LOF 95 nneighbors = 800,p =1

Table 4. Row and column corresponding to the optimal augmentation strategy

Epoch 0-2 34 5 6 7 8-10 11-16
(Row, column) | (7,5) | (13,22) | (6,22) | (5,16) | (7,14) | (17,2) (7,14)
Epoch 17-19 | 20-26 27-45 46-92 93-107 | 108-130 | 131-149
(Row, column) | (5,1) | (7,14) | (16,14) | (13,22) | (20,20) | (13,22) | (20,20)

4.3 Auto Augmentation Search

We select dataset DjJp .., with 100-window
per user from Djeqrning to conduct the evalu-
ation of the auto augmentation search, due to
the limitations of computer memory and GPU.
In the auto augmentation search, we instantiate
the augmentation distribution parameters as a
24 x 24 matrix and save the corresponding matrix
for each epoch. Based on the saved matrices, we
sum the rows of each matrix, normalize all rows
for each epoch, and visualize rows varying with
the epoch grows. We calculate the marginal dis-
tribution of parameters of the first augmentation
method of each strategy, as illustrate in Fig. 2. As illustrated in Fig. 2, the deeper
the red, the closer the probability of the method is to 1, and the deeper the blue,
the closer the probability is to 0. As the search progresses, the edge probability
of each method either converges to 0 or 1. When the search is complete, the
edge probability of the method in rows of 4, 6, 10, 17, 18, and 21 is higher. From
Fig. 2, it can be seen that during random training, the parameter values of some
augmentation methods gradually increase while others gradually decrease, which
indicates that some augmentation methods are abandoned while the probability
of other augmentation methods is increasing.

In addition, after updating the parameters of the augmentation probabil-
ity distribution at the end of each epoch, we calculate the probability for each
augmentation strategy by Eq. (1) and record the row and column of the corre-
sponding optimal augmentation strategy, as shown in Table4.

It can be seen that during the training process, with the update of the proba-
bility distribution parameters, the optimal strategy (the strategy with the high-
est probability) is also constantly changing, and at the end of the training, a
row and a column (20,20) of the optimal strategy for local convergence can be

Fig. 2. Marginal distribution
of augmentation operations.
(Color figure online)

182 S. Deng et al.

Table 5. Optimal parameter combinations

Network Accuracy F'1-score EER

Network without augmentation 85.37 (7.61) | 87.54 (5.71) | 7.87 (3.59)
Network searched by auto augmentation | 88.88 (6.64) | 90.24 (5.29) | 6.50 (3.38)

Table 6. Accuracy (SD) % on Different Strategies with Varying Data Sizes

Strategy\Data size 60 80 100 200 400

No augmentation 56.77 (6.33) | 54.67 (3.90) | 85.37 (7.61) | 90.06 (5.95) | 92.14 (5.31)
Rota-3+MagnWarp0.2 | 79.32 (8.18) | 81.45 (8.10) | 82.61 (7.53) | 85.10 (8.20) | 90.11 (6.02)
Perm8+Rotatel2 84.34 (7.65) | 86.75(6.93) | 85.79 (7.39) | 87.49 (7.36) | 89.50 (7.02)
TimeWarp0.6+Perm2 | 87.99 (6.98) | 88.05 (6.43) | 89.59 (6.15) | 90.76 (6.58) | 92.47 (5.49)
Our strategy 88.65 (7.40) | 88.70 (7.51) | 91.12 (5.69) | 91.89 (5.33) | 93.19 (4.85)

Table 7. Fy Score (SD) % on different strategies with varying data sizes

Strategy\data size 60 80 100 200 400

No augmentation 68.89 (3.34) | 68.43 (2.09) | 87.54 (5.71) | 91.16 (4.80) | 92.87 (4.37)
Rota-3+MagnWarp0.2 | 83.18 (5.74) | 84.68 (5.82) | 85.46 (5.52) | 87.40 (5.98) | 91.23 (4.84)
Perm8+Rotal2 86.73 (5.50) | 88.55 (5.27) | 87.82 (5.50) | 89.18 (5.70) | 90.79 (5.48)
TimeWarp0.6+Permu2 | 89.55 (5.44) | 89.52 (5.02) | 90.76 (4.94) | 91.78 (5.27) | 93.19 (4.53)
Our strategy 90.12 (5.78) | 90.16 (5.70) | 92.00 (4.70) | 92.64 (4.39) | 93.77 (4.09)

Table 8. EER (SD) % on different strategies with varying data sizes

Strategy\data size 60 80 100 200 400

No Augmentation 39.12 (10.61) | 37.79 (10.32) | 7.87 (3.59) | 5.62 (2.82) | 4.65 (2.66)
Rota-3+MagnWarp0.2 | 10.06 (3.77) | 9.72 (4.26) | 8.62 (3.82) | 6.65 (3.24) | 5.34 (3.00)
Perm8+Rotal2 0.07 (4.29) | 7.43 (3.34) | 7.90 (3.58) | 6.39 (3.31) | 5.51 (2.87)
TimeWarp0.6+Perm2 | 7.21 (3.80) | 6.73 (3.12) | 6.53 (3.28) | 5.24 (2.98) | 4.35 (2.73)
Our Strategy 6.67 (3.60) | 6.64 (3.71) | 5.68 (3.34) | 4.99 (2.74) | 3.90 (2.48)

obtained. It can be considered that Time-Warping (0.6) + Time-Warping (0.6)
is a relatively good augmentation strategy found in our dataset in the entire
search space with a CNN structure in Table 2 trained to converge. We also illus-
trate the continuous authentication performance of the network model trained
by auto augmentation search and the network model obtained by training the
same network structure without augmentation in Table 5.

4.4 Optimal Strategy

In the above experiments, we searched for an optimal strategy that located in the
20th row and 20th column of the probability distribution parameter matrix. The
optimal strategy is a strategy composed of two identical augmentation operations
Time-Warping(0.6)+Time-Warping(0.6). In order to demonstrate the superior-
ity of the strategy, we randomly select 3 strategies from the search space to
augment different size of data and compute the accuracy, Fj-score and EER,

Accuracy (%)

90

80

70

60

50

40

CNN-Based Continuous Authentication on Smartphones

105

183

T Range within 1.51QR

I+

fi

— Median Line

+

No Augmenlalion

Rotate-3 + MagnitudeWarp0.2
Permutation§ + Rotate]2
TimeWarp0.6 + Permutation2
I TimeWarp0.6 + TimeWarp0.6

Fl-score (%)

100

95

90

85

80

75

70

65

60

55

T Range within 1.5IQR

— Median Line + Outliers

+
s
T

No Augmentation

Rotate-3 + MagnitudeWarp0.2
Permutation8 + Rotate12
TimeWarp0.6 + Permutation2
B TimeWarp0.6 + TimeWarp0.6

0 [80

[oo T 200 400

80

[00 T 200 400

Window Number

Window Number

70 -

T Range within 1.5IQR
iy

= Median Line

= Mean

+ Outliers

No Augmentation

Rotate-3 + MagnitudeWarp0.2
Permutation8 + Rotate]2
TimeWarp0.6 + Permutation2
I TimeWarp0.6 + TimeWarp0.6

60

Equal Error Rate (%)
g & 2

<)
S

hES

.

Fig. 3. Accuracy, F; score, and EER for different strategies with varying data sizes.

>

o

100 |
Window Number

respectively. The corresponding results are tabulated in Tables6, 7, and 8, and
are plotted in Fig. 3.

We can obtain observations from Tables6, 7, and 8, and Fig. 3:

1) When there is no data augmentation, as the data size increases, the authen-
tication performance gradually improves, which indicates that the amount of real
data is positively correlated with the authentication performance.

2) When the data size comes to 100, the EERs for the strategies of
the Rotate(-3)+MagnitudeWarp(0.2) and Permutation(8)+Rotate(12) are even
higher than that without data augmentation strategy, which indicates that the
two strategies are relatively worse augmentation strategies.

3) On all data sizes, the strategy of Time-Warping(0.6)+Time-Warping(0.6)
achieves the best authentication performance on the accuracy (93.19%), Fy score
(93.77%), and EER (3.9%), which proves that the optimal strategy searched by
the proposed auto augmentation is optimal on different data sizes.

4.5 Comparison with Representative Schemes

We compare CAuSe to four representative continuous authentication schemes
with data augmentation approaches, as listed in Table 9. As illustrated in Table 9,

184 S. Deng et al.

Table 9. Comparison with representative schemes

Scheme Data source Data augmentation approach Accuracy

SensorAuth [13] | Acc., Gyr. Perm., sample, scale, crop, jitter | EER: 6.29% (dataset size 200)
EchoPrint [30] |Face image Rotation BAC: 81.78% (vision features)
SensorCA [14] | Acc., Gyr., Mag. Rotation EER: 3.7% (SVM-RBF)
HMOG [23] Acc., Gyr., Mag., Tou. HMOG with tap characteristics | EER: 7.16% (walking)

CAuSe Acc., Gyr., Mag. Auto Augmentation Search Accuracy: 96.93% (LOF)

we show the data source, data augmentation approaches, and accuracy for all
the schemes with data augmentation. Specifically, SensorAuth explores five data
augmentation approaches of permutation, sampling, scaling, cropping, and jitter-
ing to create additional acccelerometer and gyroscope data and achieves an EER
of 6.29% with dataset size 200 by combining the five approaches [13]. EchoPrint
uses the projection matrix rotation imitating different camera poses to augment
new face images and obtains 81.78% balanced accuracy (BAC) with vision fea-
tures [30]. SensorCA applies matrix rotation on accelerometer, gyroscope and
magnetometer data to reach an EER of 3.7% on the SVM-RBF classifier [14].
HMOG augments HMOG features with tap characteristics (e.g. tap duration
and contact size) to obtain 7.16% EER for walking [23]. Different from these
continuous authentication schemes with data augmentation, CAuSe exploits the
auto augmentation search to find an optimal strategy for data augmentation of
the accelerometer, gyroscope and magnetometer, and achieves the best accuracy
of 96.93% on the LOF classifier.

5 Conclusion

To address the shortage of training data and improve the feature discriminabil-
ity, we propose CAuSe, a CNN-based continuous authentication on smartphones
using auto augmentation search, where the CNN is specially designed for deep
feature extraction and the auto augmentation search is exploited for finding the
optimal augmentation strategy. Although we take significant efforts to validate
the effectiveness of CAuSe, there are some limitations in this work: 1) power con-
sumption of CAuSe on smartphones, 2) impact of various attacks on CAuSe, and
3) privacy concerns on dataset collection and transportation. In future, we will
consider issues of the energy, privacy and security for continuous authentication
approaches.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under Grant 62072061 and by the Fundamental Research
Funds for the Central Universities under Grant 2021CDJQY-026.

CNN-Based Continuous Authentication on Smartphones 185

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abeni, P., Baltatu, M., D’Alessandro, R.: Nis03-4: Implementing biometrics-based
authentication for mobile devices. In: IEEE Globecom 2006. pp. 1-5. IEEE (2006)
Al-Hadithy, N., Gikas, P.D., Al-Nammari, S.S.: Smartphones in orthopaedics. Int.
Orthop. 36(8), 1543-1547 (2012)

Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: Passwords and the evo-
lution of imperfect authentication. Commun. ACM 58(7), 78-87 (2015)

Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based
local outliers. SIGMOD Rec. 29(2), 93-104 (2000)

Centeno, M.P.; Guan, Y., van Moorsel, A.: Mobile based continuous authentica-
tion using deep features. In: Proceedings of the 2nd International Workshop on
Embedded and Mobile Deep Learning, pp. 19-24 (2018)

Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning
augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113-123 (2019)

DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. arXiv preprint
arXiv:1702.05538 (2017)

Feng, H., Fawaz, K., Shin, K.G.: Continuous authentication for voice assistants.
In: Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking, pp. 343-355 (2017)

Frank, M., Biedert, R., Ma, E., Martinovic, 1., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics Secur. 8(1), 136-148 (2012)

Gascon, H., Uellenbeck, S., Wolf, C., Rieck, K.: Continuous authentication on
mobile devices by analysis of typing motion behavior. Sicherheit 2014-Sicherheit,
Schutz und Zuverlassigkeit (2014)

Gonzalez-Manzano, L., Mahbub, U., de Fuentes, J.M., Chellappa, R.: Impact of
injection attacks on sensor-based continuous authentication for smartphones. Com-
put. Commun. 163, 150-161 (2020)

Li, X., Zhang, W., Ding, Q., Sun, J.-Q.: Intelligent rotating machinery fault diag-
nosis based on deep learning using data augmentation. J. Intell. Manuf. 31(2),
433-452 (2018). https://doi.org/10.1007/s10845-018-1456-1

Li, Y., Hu, H., Zhou, G.: Using data augmentation in continuous authentication
on smartphones. IEEE Internet Things J. 6(1), 628-640 (2018)

Li, Y., Hu, H., Zhou, G., Deng, S.: Sensor-based continuous authentication using
cost-effective kernel ridge regression. IEEE Access 6, 32554-32565 (2018)

Lim, S., Kim, I., Kim, T., Kim, C.; Kim, S.: Fast autoaugment. arXiv preprint
arXiv:1905.00397 (2019)

Lin, C., et al.: Online hyper-parameter learning for auto-augmentation strategy.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6579-6588 (2019)

Luo, Y., Lu, B.L.: Eeg data augmentation for emotion recognition using a condi-
tional wasserstein gan. In: 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pp. 2535-2538. IEEE (2018)
Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision — ECCV 2018. LNCS, vol. 11218, pp. 122-138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

http://arxiv.org/abs/1702.05538
https://doi.org/10.1007/s10845-018-1456-1
http://arxiv.org/abs/1905.00397
https://doi.org/10.1007/978-3-030-01264-9_8

186

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Deng et al.

Mahbub, U., Patel, V.M., Chandra, D., Barbello, B., Chellappa, R.: Partial face
detection for continuous authentication. In: 2016 IEEE International Conference
on Image Processing (ICIP), pp. 2991-2995. IEEE (2016)

Mosenia, A., Sur-Kolay, S., Raghunathan, A., Jha, N.K.: Caba: continuous authen-
tication based on bioaura. IEEE Trans. Comput. 66(5), 759-772 (2016)

Muaaz, M., Mayrhofer, R.: An analysis of different approaches to gait recognition
using cell phone based accelerometers. In: Proceedings of International Conference
on Advances in Mobile Computing & Multimedia, pp. 293-300 (2013)

Quan, F., Fei, S., Anni, C., Feifei, Z.: Cracking cancelable fingerprint template of
ratha. In: 2008 International Symposium on Computer Science and Computational
Technology, vol. 2, pp. 572-575. IEEE (2008)

Sitovd, Z., Sedénka, J., Yang, Q., Peng, G., Zhou, G., Gasti, P., Balagani, K.S.:
HMOG: new behavioral biometric features for continuous authentication of smart-
phone users. IEEE Trans. Inf. Forensics Secur. 11(5), 877-892 (2015)
Tschuchnig, M.E., Ferner, C., Wegenkittl, S.: Sequential IoT data augmentation
using generative adversarial networks. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4212-4216.
IEEE (2020)

Um, T.T., et al.: Data augmentation of wearable sensor data for parkinson’s disease
monitoring using convolutional neural networks. In: Proceedings of the 19th ACM
International Conference on Multimodal Interaction, pp. 216-220 (2017)

Wang, D., Gu, Q., Huang, X., Wang, P.: Understanding human-chosen pins: charac-
teristics, distribution and security. In: 2017 ACM on Asia Conference on Computer
and Communications Security (ASIA CCS 2017), pp. 372-385. ACM (2017)
Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: 2016 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 2016), pp. 1242-1254. ACM (2016)
Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via
touch biometrics: an experimental study on smartphones. In: 10th Symposium On
Usable Privacy and Security (SOUPS 2014), pp. 187-198 (2014)

Zhang, X., Wang, Q., Zhang, J., Zhong, Z.: Adversarial autoaugment. arXiv
preprint arXiv:1912.11188 (2019)

Zhou, B., Lohokare, J., Gao, R., Ye, F.: Echoprint: two-factor authentication using
acoustics and vision on smartphones. In: MobiCom, pp. 321-336. ACM (2018)
Zhu, X., Liu, Y., Qin, Z., Li, J.: Data augmentation in emotion classification using
generative adversarial networks. arXiv preprint arXiv:1711.00648 (2017)

http://arxiv.org/abs/1912.11188
http://arxiv.org/abs/1711.00648

®

Check for
updates

Generating Adversarial Point Clouds
on Multi-modal Fusion Based 3D Object
Detection Model

Huiying Wang®?, Huixin Shen'?, Boyang Zhang', Yu Wen!(®),

and Dan Meng!'

! Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wanghuiying,shenhuixin,zhangboyang,wenyu,mengdan}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. In autonomous vehicles (AVs), a critical stage of perception
system is to leverage multi-modal fusion (MMF) detectors which fuse
data from LiDAR (Light Detection and Ranging) and camera sensors
to perform 3D object detection. While single-modal (LiDAR-based and
camera-based) models are found to be vulnerable to adversarial attacks,
there are limited studies on the adversarial robustness of MMF models.
Recent work has proposed a general spoofing attack on LiDAR-based
perception, based on the defect of ignored occlusion patterns in point
clouds. In this paper, we are inspired to attack LIDAR channel alone to
fool the MMF model into detecting a fake near-front object with high
confidence score. We perform the first study to analyze the roubustness of
a popular MMF model against the above attack and discover it is invalid
due to the correction of camera. We propose a black-box attack method
to generate adversarial point clouds with few points and prove the defect
still exists in MMF architecture. We evaluate the attack effectiveness of
different combinations of points and distances and generate universal
adversarial examples at the best distance of 4m, which achieve attack
success rates of more than 95% and average confidence scores over 0.9
on the KITTTI validation set when the points exceed 30. Furthermore, we
verify the generality of our attack and the transferability of generated
universal adversarial point clouds across models.

Keywords: Adversarial point clouds - Adversarial attack -
Multi-modal fusion - Autonomous vehicles + 3D object detection

1 Introduction

Object detection plays an important role in the visual perception system of
AVs, which are equipped with multiple sensors such as LiDARs and cameras to
perceive the surroundings. It is believed that fusion of multi-modal data from
different sensors can obtain complementary and shared information to achieve
© Springer Nature Switzerland AG 2021

D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 187-203, 2021.
https://doi.org/10.1007/978-3-030-86890-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_11

188 H. Wang et al.

better performance and stronger robustness than a single modality. However,
object detectors that rely on deep neural networks (DNNs) have been found
to be vulnerable to adversarial examples [11,37], adding well-crafted malicious
perturbation to inputs can deceive DNNs into making wrong predictions, such
vulnerabilities can lead to catastrophic consequences in AVs.

LiDARs emit laser beams to the surface of objects to capture 360-degree high-
resolution 3D information called point clouds. With the advantage of accurate
depth information and reliability in poor weather or lighting conditions, LiDARs
are considered as more vital sensors in AVs. Many efforts [7,8,29,32] have been
paid to adversarial attacks on LiDAR-based perception, Sun et al. [29] discover
that there exists ignored occlusion patterns in point clouds, making it possible
to attack LiDAR-based perception by adversarial point clouds with few points.
Utilizing such potential defect, they propose a general spoofing attack method
by moving the occluded or distant vehicle point clouds with few points in the
scene to the front, decieving the victim into believing there is an obstacle ahead.
Under this circumstance, emergency braking can cause a rear-end collision and
passengers injury.

While recent work [4,6,31] has shown that MMF detectors can be attacked
when both LiDAR and camera channels are attacked simultaneously, it is unclear
(1) whether the exploited defect in LiDAR-based perception architecture still
exists in MMF-based perception architecture, (2) whether the general spoofing
attack against LiDAR-based detectors mentioned above is still effective on MMF
detectors and (3) how to attack the LiDAR channel of fusion models alone to
achieve the goal of attacking the entire model if the above attack is invalid. We
believe that the answers to these issues can make sense to improve the robustness
of fusion models and better defense adversarial attacks on AVs.

In this paper, we choose AVOD [18] as our target model, a typical feature-
level fusion network which is suitable for autonomous driving with fast speed
and low memory usage. To answer the first two questions, we reproduce the
general spoofing attack done by Sun et al. [29] and implement on AVOD. While
we verify such attack does not work because the images can partially correct the
false detections of point clouds, we can speculate from the experiment results
that the defect still exists and it is feasible to attack the entire model by crafting
adversarial point clouds with few points to attack the LiDAR channel alone.

For the third question, we propose a black-box attack method based on
genetic algorithm to generate adversarial point clouds. Compared to common
gradient-based white-box attacks [9,15,22], our method has stronger attack capa-
bility with no need to access the specific structures and parameters of models,
and we also avoid dealing with the non-differentiable point clouds processing
stage in LiDAR channel of most models, making the method simpler and easy
to transfer. Then we evaluate our attack on the KITTI [14] dataset, we randomly
pick up 200 scenes, on which we generate adversarial point clouds with different
numbers of points from 10 to 200 in step of 10 and varying distances in front of
victim ranging from 4 m to 8 m in step of 1 m, to evaluate attack effectiveness. At
the optimal distance of 4 m, we generate universal adversarial point clouds, the

Generating Adversarial Point Clouds on Multi-modal Fusion 189

attack success rates are stable above 95% and the average confidence scores are

greater than 0.9 after the number of points exceeds 30. We further directly apply

our attack method on another state-of-art MMF model EPNet [16] to make our

study more general, and verify the transferability of our generated universal

adversarial examples, which achieves around 50% average attack success rate.
The contributions of this paper can be summarized as follows:

— We perform the first security study to analyze the robustness of a popular
MMF model against general spoofing attack on LiDAR-based models. We
demonstrate that attack cannot directly generalize to fusion model for the
correction of other input channel.

— To the best of our knowledge, we are the first to explore the adversarial attack
against LIDAR channel on MMF model. We successfully generate adversar-
ial point clouds with few points, proving that the defect caused by ignored
occlusion patterns in point clouds still exists in MMF architecture.

— We propose a simple but effective black-box attack approach based on genetic
algorithm, which can be optimized by only accessing the inputs and outputs
of fusion models. Our method is easy to implement and avoids the issue of
handling non-differentiable processes in gradient-based attacks.

— We provide baselines for future research. We conduct an empirical evaluation
of our attack on KITTI [14] dataset, we evaluate the attack effectiveness
of various combinations of point clouds and generate universal adversarial
examples at the best distance of 4m, achieving attack success rates more than
95% with points exceeding 30. We also verify the generality of our attack and
transferability of our generated universal adversarial point clouds.

The remainder of this paper is organized as follows, we overview the related
work in Sect. 2. Section 3 details the robustness analysis of our target multi-modal
fusion model against existing general spoofing attack on LiDAR-based models.
Then we introduce the attack approach of generating adversarial point clouds
in Sect.4. Experimental setups and results are presented in Sect.5. Finally we
conclude the paper in Sect. 6.

2 Related Work

2.1 Multi-modal Fusion

Multi-modal fusion, or multi-sensor fusion, has been widely studied in object
detection field, especially for autonomous driving. Due to the complementary and
shared information, the fusion of multiple sensors is considered to achieve higher
accuracy and stronger robustness in detection tasks than single sensor. AVs
are safety-critical applications and the reliability of object detectors is impor-
tant, therefore, they frequently utilize the fusion detection models of LiDAR
and camera, with the advantages of depth information provided by point clouds
and texture information captured by images. According to the different levels of
fusion, multi-modal fusion can be divided into two major streams: deep fusion

190 H. Wang et al.

(feature level) and late fusion (decision level). The former is fusing the features
extracted from point cloud data and image data through a certain stratege (e.g.
addition, mean, concatenation), and then feed it into detection network to obtain
the final detection results, e.g. MV3D [10], AVOD [18], EPNet [16]. The latter is
fusing the results detected by LiDAR perception network and camera perception
network respectively through a certain rule (e.g. geometric association, semantic
consistency), e.g. CLOCs [23], models designed in Apollo [2] and Autoware [1].
In this work, we focus on the feature-level fusion, which is under more extensive
research for its finer-grained fusion mode, from another perspective, it is also
easier to grasp the defects in features to attack models.

2.2 Adversarial Point Clouds

Recently, with more and more mature 3D classification and detection mod-
els [19,25-27,38] proposed, the attention has been paid on the generation of
adversarial examples in 3D space. Point clouds are common representation of
3D objects, existing works [4,20,21,34-36,39,40] mainly focus on generating
adversarial point clouds by shifting, adding or dropping points. Xiang et al. [36]
first propose an optimization algorithm with C&W framework [9] and Haus-
dorff/Chamfer measurements [12] to craft adversarial examples by perturbing
existing points or generating new points. Liu et al. [20] extend variations of the
fast gradient based method (FGSM) [15] to shift points and Zhang et al. [39]
develop a variant of one-pixel attack [28] using pointwise gradient method to
attach new points to the original point clouds. Besides, [35,40] opt to drop
points based on point saliency maps. They all focus on point clouds data level
but neglect the feasibility of reliably manufacturing adversarial examples in real
world. Hence, Tsai et al. [30] extend adversarial point clouds to 3D printed
physical adversarial objects.

2.3 Attacks on 3D Object Detection

In terms of attack methods, according to the knowledge of target model, adver-
sarial attacks are mainly categorized into white-box and black-box. In white-box
attacks, attackers have full access to the structure, parameters and other infor-
mation of models while in black-box attacks, attackers can only access to the
inputs and outputs, which have stronger attack ability than white-box attacks.
In terms of attack effects, adversarial attacks on 3D object detection can be
categorized into spoofing attack and vanishing attack, the former is to generate
a fake near-front obstacle and the latter is to hide real obstacles in the scene.

LiDAR-Based. Cao et al. [7] are the first to implement a white-box spoof-
ing attack on LiDAR-based perception in Apollo [2] by strategically injecting
a small number of points, making the victim believe there is a vehicle ahead.
Sun et al. [29] discover that current LIDAR-based detection models do not learn

Generating Adversarial Point Clouds on Multi-modal Fusion 191

occlusion patterns in point clouds, allowing fake points that almost two magni-
tudes fewer than valid vehicle points to fool the detectors, by moving the distant
or occluded vehicle point clouds with few points to the front of victim, spoof-
ing attack can be easily implemented. Besides, [8] designs an adversarial mesh
placed on the road that can evade from LiDAR-based perception system and [32]
generates universal adversarial objects placed on the roof of target vehicles to
make them invisible.

MMF-Based. There are limited studies on adversarial attacks on MMF mod-
els. Kim et al. [17] theoretically demonstrate the sensitivity of the deep fusion
model to single sensor noise. Wang et al. [33] implement projected gradient
descent (PGD) [22] attacks respectively on camera and LiDAR channel of sim-
ple fusion models they construct, but it is unclear whether the attack is effective
on the mature and well-performed application-level fusion models. Then same as
LiDAR-based attack scenario [32] where adversarial object is placed on the roof
of victim, [4,31] attack image and LiDAR input modalities simultaneously by
rendering a adversarial mesh with specific shape and texture to hide an existing
vehicle and produce false detection. In the latest work, to make attack more prac-
tical and universal, Fang et al. [13] are committed to find a single physical-world
attack vector that affects both images and point clouds, they generate adversar-
ial 3D-printed objects based on common objects on the road, misleading AVs to
fail in detecting them.

Exsiting adversarial attacks on fusion models mainly focus on attacking mul-
tiple inputs simultaneously, they are all white-box attacks that need to know
the specific information inside models and have some complicated steps like
rooftop approximation and sensor simulation, making their methods hard to fol-
low. While our work is to attack the entire model by only attacking one input
channel, seizing the fatal flaw of a more important sensor LiDAR in AVs to
achieve a simple but effective black-box attack. In addition, the physical realiza-
tion of spoofing attack explored in our work is injecting fake signals into LiDARs,
which is more stealthy than the vanishing attack explored in their work of placing
a real adversarial object somewhere.

3 Robustness Analysis

To understand the security of MMF models against general spoofing attack on
LiDAR-based models, we first reproduce the attack method proposed by [29],
and explore the effectiveness of directly applying it to attack the typical MMF
model AVOD [18]. Firstly, We randomly extract 200 vehicle point cloud samples
from KITTT [14] dataset with points within two hundred, containing 100 distant
vehicle point clouds and 100 occluded vehicle point clouds. Next, we apply global
transformation matrix to transform the coordinates of extracted point clouds to
a near-front location, about 4-8 m in front of the victim. Then we add the
transformed fake point clouds into scenes and use the merged data as the input
of LiDAR channel. Finally, we run AVOD and record the detection results.

192 H. Wang et al.

We discover that more than 95% of the fake point clouds cannot be detected
or the confidence scores are lower than 0.01 (Fig. 1), and the remaining is around
0.1. Only when the confidence score exceeds 0.8, the fake point cloud is believed
to be a real object by the detector. Therefore, the general adversarial attack
on LiDAR-based detection models is not applicable to AVOD. A potential rea-
son is that MMF model architecture is more robust than single-modal model
architecture, the fake detections generated by cheating a single sensor can be
corrected by other sensors. There are two input channels of LiDAR and cam-
era in AVOD [18], when LiDAR perceives an object ahead but camera does not
detect it, the confidence score of object will be greatly reduced.

Fig. 1. Results of reproduced general spoofing attack on AVOD [18] (1st row: before
attack, 2nd: after attack). We map the 2d bounding boxes on images and set the
confidence score threshold as 0.001 to show more objects with low confidence scores.
Left value on each green box indicates the confidence score and the right is the IoU
with ground truth bounding box. Specifically, the red arrows point to the fake objects
and their confidence scores are lower than 0.01.

But the conclusion drew from another work is quite different from ours,
Park et al. [24] exchange the image data of two scenes while keeping the point
cloud data unchanged and then feed them into AVOD for detection. The results
show that there is not much difference between the detections before and after
the exchange, the bounding boxes of most objects are basically consistent and
confidence scores are still high. To a certain extent, it illustrates that although
AVOD has a symmetrical architecture, the final detections are more dependent
on LiDAR.

Faced with contradictory conclusions, we observe that the confidence scores
of distant or occluded objects drop a lot after exchange, even cannot be detected.
We speculate that for objects with a large number of points, AVOD [18] relies
more on LiDAR, while for objects with a small number of points, the weight
of camera increases. We conduct two more specific experiments to prove the
speculation. Under the same setting that adding point clouds extracted from
one scene to the same position in another scene, the first experiment is adding
the high-confidence point clouds with hundreds of points and they still output
with high confidence scores (greater than 0.9), as shown in Fig. 2(a). The second

Generating Adversarial Point Clouds on Multi-modal Fusion 193

one is adding the high-confidence point clouds with points within two hundred
but they output with low confidence scores (less than 0.01), as shown in Fig. 2(b).

(a) With a large number of points (b) With a small number of points]
Fig. 2. Results of LiDAR weight comparison. Images of the upper and lower rows are
original scenes and attacked scenes. (a) adds the vehicle point clouds with 569 points
extracted from scene 134 to scene 454 and outputs with 0.99. (b) adds the vehicle point
clouds with 65 points extracted from scene 2 to scene 4 and output with 0.01.

From the above analysis, we can conclude that blindly applying the general
spoofing attack on LiDAR-based detectors to AVOD [18] is invalid, the detector
with multi-modal architecture is more robust against adversarial attack. How-
ever, we discover that AVOD can output high-confidence point cloud objects in
the case of (1) inputting real image data and fake point cloud data with a large
number of points or (2) inputting real image data and real point cloud data
with a small number of points. Between the two cases, theoretically, there are
objects with few points can be detected with high confidence, overcoming the
correction of images. What we do is to craft such fake point clouds to perform
an adversarial attack against MMF detection models.

4 Generating Adversarial Point Clouds

In this section, we present a novel method for generating adversarial point clouds
to attack MMF detectors, illustrated in Fig. 3. First we demonstrate the prob-
lem definition, then we introduce the perturbation rule of point clouds and the
objective function to be optimized, finally we elaborate on the overall attack
algorithm and optimization algorithm.

4.1 Problem Definition

The goal of our work is to generate adversarial point clouds with as few points
as possible to fool the MMF models into detecting a fake obstacle with high
confidence score in front of the victim. In the context of autonomous driving, as
the distance of fake obstacle more closer, the consequence of emergency braking

194 H. Wang et al.

MMF-based Detection Model \\\
\

Image Input Detection Output
Image Feature Map

. i
) |
! i
! |
' |
! !
i i
i
!]
Adversarial Pom(Cloud : | -
i
' /

Fusion Module

Detection Network f P
! Maximize
I H Confidence Score
—'-' !
1
|
/

Modified LiDAR Input Pomt Cloud Feature Map

Fig. 3. Overview of adversarial point clouds generation pipeline. We add adversarial
point cloud to LiDAR input while keeping the image input unchanged. They are pro-
cessed by MMF model and output detection results. We constantly perturb the points
in the direction of maxmizing the confidence score of fake object in detections to obtain
the optimal adversarial point cloud eventually.

is more dangerous, so the fake obstacle is supposed to be appear near front. As
the first work of attacking the LiDAR channel alone to attack the entire fusion
model, we expect to explore a feasible attack method theoretically and do not
consider the constraints of injecting fake point clouds into LiDAR sensors by
physical equipment (e.g. photodiode, delay component, infrared laser) in real
world. Besides, we target car as the category of adversarial point clouds instead
of pedestrian or cyclist for the reason that cars are more common in scenes.

4.2 Input Perturbation

Given an image I and a point cloud P, we keep I unchanged and perturb P.
Let P = {p1, p2, -+, pn} be an input set of N points where each point p;
is represented by a vector of coordinates p; = [p; 4, Piy, Diz] € R3, let 6; =
[0i2, iy, 0iz] € R3 be the perturbation vector for p;. We aim to shift points to
generate an adversarial point cloud P = {p1+01, pr+d1, -+, Pn+n}. In this
work, we extract the distant and occluded vehicle point clouds from the dataset
and transform them to the position in front of the victim as our initial fake point
clouds, at the same time we get the initial fake bound boxes. For each initial fake
vehicle point cloud P={p; |i=1, ---, n}, its bounding box is represented by
b=[ts, ty, t., I, w, h] (tz, ty, t. are the bottom center coordinates and I, w,
h are length, width, helght). We limit the perturbation of each point to the
bounding box as Eq. 1:

Generating Adversarial Point Clouds on Multi-modal Fusion 195

P = [pzz + 5i,a:7 Diy + 57,',y7 Di,z + §z,z]

l l
5t 02 € [tg — = —DPig, toz+ = —Dix

2 2
w w
51'»3/ € [ty - 5 — Piyys ty + 5 - pi,y:|
51’,2 € [tz — Pix; t,+h— pz’,z] (1)

4.3 Objective Function

To make the fake vehicle appear at a specified position in front of the victim,
there must be a corresponding bounding box of that vehicle output by detector
and its confidence score should be above the detection threshold. Inspired from
prior vanishing attack work [32] which suppresses all relevant bounding box
proposals, we come up with the opposite idea that increasing the confidence
score of the most probable bounding box which has the highest IoU with the
initial fake bounding box. Hence, our objective is to maximize the confidence of
the most relevant candidate:

Lagw = (1= ToU(b*, b)) log(Cy)

s.t. b = argmazx IoU(b, b*) (2)
beB

Where B is the set of all bounding boxes output by the detection model and
each bounding box b has a confidence score C'. IoU denotes the Intersection over
union operator, b* denotes the bounding box of initial adversarial point cloud
and b denotes the bounding box of the most relevant candidate.

4.4 Attack Method

Attack Algorithm. Based on the above, we propose an attack algorithm to
generate adversarial point clouds on MMF detector. As detailed in Algorithm 1,
given a scene, we transform an extracted distant or occluded point cloud to a
specified position in front of the victim as the initial fake object, the attack
iteratively searches for the perturbation of points to achieve a higher confidence
score. In each iteration, the raw image and the raw scene point cloud merged
with fake point cloud are as inputs and the model output the bounding boxes
and confidence scores of detected objects. We then identify the most relevant
candidate that has the largest IoU with initial fake bounding box. By disturbing
the points in picked bounding box constantly, we generate the adversarial point
cloud with a larger IoU with the initial bounding box and a higher confidence
score. The attack succeeds if the confidence score exceeds threshold, otherwise
enters the next iteration until the maximum number of iterations.

196 H. Wang et al.

Algorithm 1: Generating adversarial point clouds.

Input: Raw scene point cloud S, raw image I, object detector M, initial fake
point cloud P, initial fake b/ounding box b*, confidence threshold r.
Output: adversarial point cloud P, confidence C;;.

1 begin
2 P <P
3 iter =0
4 while iter < mazlter && C,, <r do
5 B— M(S+P', I
6 b — argmax IoU(b, b)
beB
7 P’ — max (1—IoU(b", b/))log(Cb/)
8 iter+ =1
9 end
10 return Pl7 Cy
11 end

Optimization Algorithm. We employ the genetic algorithm [5] to optimize
the objective function. In genetic algorithm, each individual in population rep-
resents a solution in the search space and fitness score measures how good it
is. Through the implementation of coding, selection, crossover, mutation and
other operations on the individuals for several iterations, the individual with the
highest fitness score is considered as the optimal solution to the problem. In our
case, a population of initial fake point clouds are evolved to maximize the fitness
score Lq4,- In each iteration, we select a new generation of population based
on roulette wheel selection [3], then preserve the candidate with the highest fit-
ness and cross other candidates according to the crossover rate to generate new
candidates, we then add gaussian noise to points of new candidate point clouds
sampled with a mutation rate. The algorithm ends when the optimal adversarial
point cloud is found or the maximum number of iterations is reached.

5 Experiments

In this section, we first describe our experiment setup, including the dataset and
target fusion model, the metrics used to evaluate our attacks, and the implemen-
tation details. Then we present results and discussions on (1) attack effectiveness,
(2) universal adversarial examples, (3) attack generality, and (4)transfer attack.

5.1 Experiment Setup

Dataset. We evaluate our attack on KITTI [14] dataset, a benchmark in
autonomous driving scenarios, which contains point clouds, images, calibration
files, labels for 3D object detection. Refer to [18], we divide the trainval set into a

Generating Adversarial Point Clouds on Multi-modal Fusion 197

training set of 3712 samples for training model and a validation set of 3769 sam-
ples for evaluation. Considering the fake objects are placed in front of victims,
we further remove scenes that may have conflicts with the original real near-
front objects and use the selected dataset for adversarial examples generation
and attack evaluation.

Target Model. We choose AVOD [18] as our target model, a typical two-stage
object detection architecture with a region proposal network (RPN) and a second
stage detection network. It uses feature extractors to generate feature maps from
point clouds and images which are then shared by two subnetworks. First the
feature maps are fed into RPN and fused via an element-wise mean operation
after cropping and resizing, and then generate top k proposals through fully
connected layers. Second projecting the proposals on feature maps and adopting
similar fusion operations in RPN stage to generate final detections, including
box regression, orientation estimation and category classification.

Metrics. We aim to generate the fake point cloud misleading the detector to
believe that there is a vehicle ahead. We calculate the average confidence score
(ACS) of adversarial point clouds with different numbers of points and distances
to access attack effectiveness. The larger the ACS, the better the attack.

ACS — > confidence score

of scenes

Besides, object detectors often set default threshold of confidence score to
filter out detected objects with low confidence. Our model considers a fake vehicle
is detected if there exists a bounding box output by the detector overlaps with
the initial bounding box and the confidence score is greater than 0.8. We use
attack success rate (ASR) to measure the percentage at which the fake vehicle
is successfully detected in scenes. The higher the ASR, the better the attack.

ASR — # of success attack

of scenes

Implementation Details. We follow the implementation of [18] to train the
target model for car class and conduct the evaluation of adversarial attacks
on V100. For performing attack in a single scenario, we randomly select 200
scenes from validation set to generate adversarial point clouds with different
numbers of points and different distances, then evaluate attack effectiveness. For
performing attack in multiple scenarios, we generate universal adversarial point
clouds on training set and evaluate on the validation set. In genetic algorithm,
the population size is set to 100, the crossover operator is set to 0.8 and the
mutation operator is set to 0.1, besides, we add a mutation coefficient of 0.01 to
perturb the coordinates of point clouds. We repeat experiments to reduce the
randomness introduced by genetic algorithm.

198 H. Wang et al.

5.2 Results and Discussion

Attack Effectiveness. In 200 scenes, for each scene we generate adversarial
point clouds with distances from 4m to 8 m by the step of 1 m and numbers of
points from 10 to 200 by the step of 10. As shown in Fig. 4(a), the ACS increases
as the number of points increases under all distances, and when the number of
points exceeds 30, the ACS is stable above 0.9 (0.98 at most) and the differences
in attack effects get smaller. At the closest distance of 4, the adversarial point
clouds with points of 10 and 20 perform better than other distances, reaching
ACS of 0.69 and 0.91 respectively. When the number of points is relatively small,
the closer the distance, the better the attack effect.

e et I"-E-E—T?-i!-!-—;e ! ’_--a----ese-i—w-é

» I 5
H foo I
Su Su

(a) ACS of 200 scenes (b) distance=4 (c) distance=5

B9 0 70 1 0 W @ T8 W & Mo mwdw @D W W0 W W T 5 Mm@ b @ @ ® B W 0 A TR W 1 0 2
it Fodpine Cotpine

(d) distance=6 (e) distance=7 (f) distance=8

Fig. 4. The attack effectiveness of our method. (a) shows the average confidence scores
of adversarial point clouds generated with different distances and number of points.
(b)—(f) show the attack stability at different distances.

In addition, Fig. 4(b)—(f) shows the attack stability of generated adversarial
point clouds at various distances. The data distribution is more concentrated as
the length of box is shorter in box plot, which indicates the confidence scores
of fake vehicles are closer and the attacks are more stable in our work. We
observe that it is consistent with the trend of ACS curve, under all distances, as
the number of points increases, the attack stability gets better. At the closest
distance of 4, the confidence scores of adversarial point clouds with very few
points (e.g. 10, 20, 30) are higher and closer than distance 5-8. Overall, the
close-range attack effect and attack ability is better, we speculate the reason is
that the model has better detection performance on nearby objects.

Generating Adversarial Point Clouds on Multi-modal Fusion 199

Universal Adversarial Examples. From the analysis of attack effectiveness,
we can discover that the adversarial point clouds generated at distance of 4m
perform best with the better attack effect and attack stability than other dis-
tances. Hence, at the optimal distance of 4, we generate universal adversarial
point clouds with 20 groups of points and evaluate on validation set. Table 1
shows that 18 groups with different numbers of points exceeding 30 have achieved
more than 95% ASR and around 0.95 ACS (caculated by successfully attacked
scenes), while the adversarial point clouds with 10 points and 20 points only
achieve ASR of 1.36% and 68.09%. Especially for 10 points, though it reaches
0.69 ACS (caculated by 200 scenes) in the first experiment, the confidence scores
of most adversarial point clouds are less than 0.8, resulting in low ASR. Besides,
with the number of points starting from 30, the ASR is basically unchanged,
fluctuating between 96% and 98%, we speculate that because the adversarial
point cloud with 30 points learned by our attack method is enough to express
the strong features that can be detected by fusion model. A high attack success
rate can be attained by fake point clouds with few points, which also proves the
power of our attack method.

Table 1. The attack success rates and average confidence scores (caculated by success-
fully attacked scenes) of universal adversarial point clouds generated on AVOD [18].

of points | 10 20 30 40 50 60 70 80 90 100
ASR 1.36% | 68.09% | 95.64% | 96.78% | 98.20% | 95.72% | 97.09% | 97.00% | 96.03% | 96.29%
ACS 0.93 0.94 0.95 0.96 0.98 0.93 0.97 0.94 0.94 0.93
of points | 110 120 130 140 150 160 170 180 190 200
ASR 97.47% | 96.56% | 97.79% | 96.65% | 96.65% | 96.56% | 97.47% | 96.84% | 96.75% | 97.98%
ACS 0.94 0.96 0.97 0.95 0.94 0.95 0.95 0.94 0.96 0.95

Figure 5(a) shows a comparison of the detection results before and after our
adversarial attack, the upper shows 2d and 3d detection bounding boxes on
images and the lower shows 3d detection bounding boxes in point clouds. We
can find a fake vehicle appears in front of the victim with the confidence score of
0.95, indicating the attack succeeds. Several universal adversarial point clouds
with different numbers of points are presented in Fig. 5(b).

Attack Generality. To make our study more general, we further implement
our attack on EPNet [16], a state-of-art MMF-based 3D object detection model
which has superior detection performance and ranks high on KITTT [14] bench-
mark. First of all, we conduct robustness exploration experiments on EPNet and
verify conclusions drew in Sect.3 are not only applicable to AVOD but also to
EPNet, which indicates it is feasible to craft fake point clouds with few points
to attack it. Considering our attack method is black-box which only needs to
combine our algorithm with the input and output of the models, it is easy to
apply our method to various models. We carry out single-scenario adversarial
attack at the farthest distance of 8, the attack effect is a lower bound compared

200 H. Wang et al.

) Universal adversarial examples

a) The detection results

Fig. 5. (a) The visualization of a successful attack in scene 1140, (b) several universal
adversarial point clouds with 20, 30, 60, 80, 120 and 200 points.

to closer distances. The results show our method has a better attack effect on
EPNet, with the number of points exceeding 30, the ACS of generated adversar-
ial point clouds is stable above 0.95, but with the point of 10 and 20, the ACS
is greater than 0.7 and 0.9 respectively, which can only be obtained on AVOD
at the optimal distance of 4 (shown in Fig.4(a)). From another perspective, a
fusion model with better detection performance is more vulnerable to adversarial
attack, probably because the model strengthens the ability of learning features
from objects with few points in order to improve the detection accuracy, which
makes it easier for adversaries to catch flaws in features to launch attacks. Over-
all, the defect of using few points to perform spoofing attack widely exsits in
MMF models and our method is general to generate adversarial point clouds
with good attack effect.

Transfer Attack. The adversarial examples generated for the same task are
transferable between different models. We utilize the universal adversarial point
clouds of 20 groups generated on AVOD [18] to attack EPNet [16]. Compared
to AVOD, the ASR of EPNet decreases about half, mainly fluctuating between
40% and 60%, the highest is 58.83% with 20 points and the lowest is 18.26% with
70 points. While both of them are trained in the 3D object detection task, there
are differences between their decision-making faces, the adversarial point clouds
generated on AVOD cannot all achieve good attack performance on EPNet. We
can discover that adversarial example with 10 points has better attack effect on
EPNet with ASR of 18.83% probably due to a better detection performance on
small objects with few points, which is consistent with our analysis in attack
generality. Overall, the transferability of our adversarial examples performs well
and can achieve an average attack success rate around 50%.

6 Conclusion

In this paper, we perform the first study to explore the adversarial attack against
LiDAR channel on a popular MMF model AVOD [18] and achieve the goal

Generating Adversarial Point Clouds on Multi-modal Fusion 201

of fooling the fusion model into detecting fake object ahead, which can cause
rear-end collision in AVs. We first reproduce the general spoofing attack on
LiDAR-based models and find that it cannot directly apply to MMF model due
to the correction by other input channel. We then propose a black box attack
method based on genetic algorithm to generate adversarial point clouds with
few points, avoiding to deal with the issue of non-differentiable stage in models
in gradient-based white-box attacks. We evaluate our attack effectiveness with
different combinations of points and distances on the KITTI [14] dataset and
generate universal adversarial point clouds, achieving attack success rate more
than 95% when the number of points exceed 30. We further explore the attack
generality and transferability of our generated adversarial examples on other
representative fusion model. In the future work, we need to consider more about
the physical realization in real world, and the perturbation of point clouds will
be limited more strictly.

Acknowledgement. This work is supported by the Strategic Priority Research Pro-
gram of Chinese Academy of Sciences, Grant No. XDC02010300.

References

1. Autoware. https://www.autoware.org/
Baidu apollo, http://apollo.auto

3. Roulette wheel selection algorithm. https://en.wikipedia.org/wiki/Fitness_proport
ionate_selection

4. Abdelfattah, M., Yuan, K., Wang, Z.J., Ward, R.: Adversarial attacks on camera-
lidar models for 3d car detection. arXiv preprint arXiv:2103.09448 (2021)

5. Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.J., Srivastava,
M.B.: Genattack: practical black-box attacks with gradient-free optimization. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1111—
1119 (2019)

6. Cao, Y., et al.: 3d adversarial object against msf-based perception in autonomous
driving. In: Proceedings of the 3rd Conference on Machine Learning and Systems
(2020)

7. Cao, Y., et al.: Adversarial sensor attack on lidar-based perception in autonomous
driving. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 22672281 (2019)

8. Cao, Y., Xiao, C., Yang, D., Fang, J., Yang, R., Liu, M., Li, B.: Adversarial objects
against lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418
(2019)

9. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39-57. IEEE (2017)

10. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1907-1915 (2017)

11. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classifi-
cation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1625-1634 (2018)

o

https://www.autoware.org/
http://apollo.auto
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://arxiv.org/abs/2103.09448
http://arxiv.org/abs/1907.05418

202

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

H. Wang et al.

Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object recon-
struction from a single image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 605-613 (2017)

Fang, J., Yang, R., Chen, Q.A., Liu, M., Li, B., et al.: Invisible for both camera
and lidar: Security of multi-sensor fusion based perception in autonomous driving
under physical-world attacks. arXiv preprint arXiv:2106.09249 (2021)

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3354-3361. IEEE (2012)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

Huang, T., Liu, Z., Chen, X., Bai, X.: EPNet: enhancing point features with image
semantics for 3D object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm,
J-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 35-52. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58555-6_3

Kim, T., Ghosh, J.: On single source robustness in deep fusion models. arXiv
preprint arXiv:1906.04691 (2019)

Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.L.: Joint 3D proposal
generation and object detection from view aggregation. In: 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1-8. IEEE
(2018)

Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast
encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12697-12705 (2019)
Liu, D., Yu, R., Su, H.: Adversarial point perturbations on 3d objects. arXiv
preprint arXiv:1908.06062 (2019)

Liu, D., Yu, R., Su, H.: Extending adversarial attacks and defenses to deep 3d
point cloud classifiers. In: 2019 IEEE International Conference on Image Processing
(ICIP), pp. 2279-2283. IEEE (2019)

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
Pang, S., Morris, D., Radha, H.: Clocs: camera-lidar object candidates fusion for
3d object detection. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10386-10393. IEEE (2020)

Park, W.: Crafting adversarial examples on 3d object detection sensor fusion mod-
els (2020)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 652-660 (2017)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet+-+: deep hierarchical feature learn-
ing on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 770-779 (2019)

Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Trans. Evol. Comput. 23(5), 828-841 (2019)

Sun, J., Cao, Y., Chen, Q.A., Mao, Z.M.: Towards robust lidar-based perception
in autonomous driving: general black-box adversarial sensor attack and counter-
measures. In: 29th {USENIX} Security Symposium ({USENIX} Security 20), pp.
877-894 (2020)

http://arxiv.org/abs/2106.09249
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-58555-6_3
http://arxiv.org/abs/1906.04691
http://arxiv.org/abs/1908.06062
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.02413

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Generating Adversarial Point Clouds on Multi-modal Fusion 203

Tsai, T., Yang, K., Ho, T.Y., Jin, Y.: Robust adversarial objects against deep
learning models. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 954-962 (2020)

Tu, J., et al.: Exploring adversarial robustness of multi-sensor perception systems
in self driving. arXiv preprint arXiv:2101.06784 (2021)

Tu, J., et al.: Physically realizable adversarial examples for lidar object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13716-13725 (2020)

Wang, S., Wu, T., Vorobeychik, Y.: Towards robust sensor fusion in visual percep-
tion. arXiv preprint arXiv:2006.13192 (2020)

Wen, Y., Lin, J., Chen, K., Jia, K.: Geometry-aware generation of adversarial and
cooperative point clouds (2019)

Wicker, M., Kwiatkowska, M.: Robustness of 3d deep learning in an adversarial
setting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11767-11775 (2019)

Xiang, C., Qi, C.R., Li, B.: Generating 3d adversarial point clouds. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9136-9144 (2019)

Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial exam-
ples for semantic segmentation and object detection. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1369-1378 (2017)

Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. In: Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. pp. 7652-7660 (2018)

Zhang, Q., Yang, J., Fang, R., Ni, B., Liu, J., Tian, Q.: Adversarial attack and
defense on point sets. arXiv preprint arXiv:1902.10899 (2019)

Zheng, T., Chen, C., Yuan, J., Li, B., Ren, K.: Pointcloud saliency maps. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
1598-1606 (2019)

http://arxiv.org/abs/2101.06784
http://arxiv.org/abs/2006.13192
http://arxiv.org/abs/1902.10899

l‘)

Check for
updates

Source Identification from In-Vehicle
CAN-FD Signaling: What Can We
Expect?

Yucheng Liu! and Xiangxue Li!»23(5)
! School of Software Engineering, East China Normal University, Shanghai, China
xx1i@cs.ecnu.edu.cn
2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China
3 Westone Cryptologic Research Center, Beijing, China

Abstract. Controller Area Network (CAN) is significantly deployed in
various industrial applications (including current in-vehicle network) due
to its high performance and reliability. Controller area network with
flexible data rate (CAN-FD) is supposed to be the next generation of in-
vehicle network to dispose of CAN limitations of data payload size and
bandwidth. The paper explores for the first time Electronic Control Unit
(ECU) identification on in-vehicle CAN-FD network from bus signaling
and the contributions are four-fold.

— Technically, we discuss the factors that might affect ECU recog-
nition (e.g., CAN-FD controller, CAN-FD transceiver, and voltage
regulator) and look into the signal ringing and its intensity where
dominant states along with rising edges (from recessive to dominant
states) suffice to fingerprint the ECUs. We can thereby design ECU
identification scheme on in-vehicle CAN-FD network.

— For a given network topology (in terms of the stub length and the
number of ECUs), we execute CAN-FD and CAN separately and one
can expect considerable performance for the two kinds of protocols
by using any signal characteristics (rising edges, dominant states,
falling edges, and recessive states). In particular, the recognition
rates by dominant states and rising edges of signals outperform sig-
nificantly those by any other combinations of signal characteristics.

— As a respond to the possible transition mechanism from CAN to
CAN-FD, we also allow a hybrid topology of CAN and CAN-FD,
namely, there exist on the network ECUs sending purely CAN
frames, ECUs sending purely CAN-FD frames, and ECUs sending
both CAN and CAN-FD frames, and our suggestion on dominant
states and rising edges shows robustness to source identification as
expected. This shows convincing evidence on the universal applica-
bility of our approach to forthcoming real vehicles set up by CAN-FD
network.

— The proposed approach can be easily extended to intrusion detec-
tion against attacks not only initiated by external devices but also
internal devices.

© Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 204-223, 2021.
https://doi.org/10.1007/978-3-030-86890-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86890-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-86890-1_12

Source Identification from In-Vehicle CAN-FD Signaling 205

We hope our results could be used as a step forward and a guidance
on securing the commercialization and batch production of in-vehicle
CAN-FD network in the near future.

Keywords: Controller Area Network - CAN-FD - ECU identification

1 Introduction

Controller area network (CAN) is one of the most commonly used bus com-
munication protocols between in-vehicle Electronic Control Units (ECU, simi-
lar to ordinary computer, consists of a microcontroller (MCU), some memory
(ROM/RAM), input/output interface (I/0), analog-to-digital converter (A/D),
and large-scale integrated circuits such as shaping and driving). It was introduced
by Robert Bosch GmBH in 1983. All ECUs inside the vehicles are connected to
each other through CAN bus. However, CAN protocol lacks security mecha-
nisms, such as authentication and encryption [5]. Indeed, an adversary might
easily eavesdrop on the bus, obtain all communication messages between ECUs
at will, and then initiate a replay attack [23]. He can even modify the obtained
messages which will be further injected into the CAN network in an attempt to
control some safety-critical functions. We do see various attacks against CAN
network recently [2,10,14,19,20]. In response to these attacks, researchers pro-
pose a series of countermeasures, represented by Intrusion Detection System
(IDS) and Message Authentication Code (MAC). The latter is not practical
however, as the length of the CAN frame data field is up to 8 bytes. And an
alternative method is to use truncated MACs [22,25]. This method needs to con-
stantly update the key, which will take up more computing resources. What’s
more, frequent key updates may cause malfunctions when the vehicle is moving.
Fortunately, some seminal works [5,15,21] can not only detect the presence of
malicious frames but also identify their sender ECUs. This is really essential for
fast forensic, isolation, security patch, etc.

Robert Bosch GmBH recommends CAN-FD (CAN with flexible data) [7] in
2012 to meet the requirements of modern vehicles and dispose of CAN limitations
of data payload size and bandwidth. Besides compatibility with CAN, CAN-
FD has the following advantages: the maximum length of the CAN-FD data
field is 64 bytes; it supports variable rates (namely, a frame can use different
transmission rates in different stages) and the maximum rate can reach 5Mbit/s
(the maximum rate of CAN is 1Mbit/s); it can refine the load of the existing
bus and increase the number of the nodes! on the bus.

Unfortunately, CAN-FD itself does not convey security protection either
(similar to CAN) and existing attacks on CAN might also be feasible on CAN-
FD. Take masquerade attack on CAN network [3] as an example. Initiating a
masquerade attack and not being detected by the system, an adversary needs to
stop the transmission of targeted ECU and imitate it to inject attack messages.

! As a slight abuse of terms, we use hereafter node and ECU indiscriminately.

206 Y. Liu and X. Li

The attack also works on in-vehicle CAN-FD network. Although an intrusion
detection system based on topology verification is proposed [26] to detect attacks
by using external intruding devices, it can neither detect masquerade attack nor
identify the sender of the attack messages. Our proposed mechanism explores for
the first time Electronic Control Unit (ECU) identification on in-vehicle CAN-
FD network from bus signaling.

2 Background and Related Work

2.1 Controller Area Network

CAN uses differential signals to tra