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Chapter 12
Enhancement of Stress Tolerance of Crop 
Plants by ZnO Nanoparticles

Martin Šebesta, Sindy Kurtinová, Marek Kolenčík, and Ramakanth Illa

Abstract Zinc oxide (ZnO) nanoparticles are among the most promising nanopar-
ticles used in precision agriculture. Since they are made of an essential element Zn, 
their potential applications are most vital in agricultural regions where the natural 
concentrations of bioavailable Zn are low, and crop plants suffer from the deficiency 
of this essential micronutrient. Also, a large number of genes requires Zn to protect 
cells from the detrimental effects of environmental stress to regulate and maintain 
their expression. ZnO nanoparticles are more tuneable in their properties, such as 
size, shape, dissolution rate, and surface properties, compared to conventional ionic 
formulas. Thus, they pose an effective way to supplement plants with Zn. Their 
nanoparticulate characteristics, such as photocatalysis, may provide additional ben-
eficial effects for crop plants. Precise application of nanoparticles may reduce 
chemical inputs to agricultural fields, helping with long-term agricultural sustain-
ability, environmental protection, and higher nutritional value of crops. In this chap-
ter, we describe the influence of ZnO nanoparticles on the stress tolerance of crop 
plants. Since their effect is dependent on their properties, we elaborated on the 
importance of size, shape, crystal structure, and nanoparticle surface coating. 
Different modes of application show varying effects on crops, and foliar application 
may have direct positive effects connected to the photocatalytic properties of ZnO 
nanoparticles. We provide a summary of the positive impacts of ZnO NP on crop 
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plants associated with the alleviation of biotic stresses (herbivores, pathogens) and 
abiotic stresses (heavy metals, heat, cold, drought, and salt). In mainly laboratory or 
pot studies, several beneficial effects of ZnO nanoparticles were identified. Future 
field experiments are needed to further our knowledge and adapt agricultural tech-
niques to changing local and global climatic conditions.

Keywords Zinc oxide · Agriculture · Nanoparticle · Stress alleviation · 
Nanofertilizer

12.1  Introduction

Engineered nanoparticles are increasingly used in many diverse human activities. 
The ability to adjust their properties through a change in their size, shape, crystal-
linity, and surface properties is highly beneficial for new technological applications. 
The small size of nanoparticles means that large fractions of atoms that build up the 
nanoparticles are on the surface. Nanoparticle’s surface to volume ratio dramati-
cally changes with their size, which affects their properties and smaller nanoparti-
cles exhibit forces typical for the atomic and molecular world, e.g. various quantum 
effects (Nel et al. 2006; González-Melendi et al. 2008; Nair et al. 2010; Gogos et al. 
2012; Strambeanu et  al. 2015; Mallakpour and Madani 2015; Rasmussen et  al. 
2018; Faraz et al. 2020). Nanomaterials are usually defined as materials with at least 
one dimension between 1 and 100 nm. They are subdivided into three types (1) 
nanosheets with one dimension below 100 nm, (2) nanofibres and nanotubes with 
two dimensions lower than 100 nm, and (3) nanoparticles with three dimensions 
between 1 and 100 nm (Wang et al. 2015). Due to their highly tunable properties, 
engineered nanoparticles are of high interest in various technological applications, 
including precision agriculture, where they may improve the health and yields of 
crops, even under suboptimal conditions of environmental stress.

Biotic and abiotic stress has a considerable influence on the growth of plants and 
agricultural production. Through millions of years of evolution, plants have devel-
oped various physiological responses that improve their ability to tolerate biotic and 
abiotic stresses (Almutairi 2019). It is, thus, essential to understand plants’ stress 
tolerance mechanisms. The response mechanisms start with fast recognition of the 
nature of the stress. Afterwards, a complex cascade of signals triggers the plant’s 
defences. Accumulation of reactive oxygen species (ROS), activation of gene net-
works, specific ion channels, and kinase cascades are involved in early stress 
response (Rejeb et al. 2014; Czarnocka and Karpiński 2018; Almutairi 2019). Also, 
the response leads to an elevated release of hormones such as abscisic acid (ABA), 
ethylene (Et), jasmonic acid (JA), and salicylic acid (SA) (Bari and Jones 2009; 
Davies 2010).

During the normal metabolism of oxygen, ROS are produced as a by-product of 
aerobic metabolism and are kept at low levels by cells’ antioxidant chemicals. 
Furthermore, ROS are used as signalling molecules. Although ROS are necessary 
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for basic biological processes such as cellular proliferation and differentiation, their 
elevated levels may have undesired effects. When under stress, ROS levels increase 
and impose oxidative stress in the cells. To cope with the increased levels of ROS, 
plants elevate the production of antioxidants through various defence systems 
(Allen 1995; Apel and Hirt 2004; Mittler 2017).

Plants activate multiple complex signalling pathways during different types of 
abiotic and biotic stresses. Signalling cascades induced by the sensing of stress trig-
ger and change expressions of specific genes used in stress defence. Proteins and 
enzymes participating in these pathways function as agents for ROS detoxification; 
they induce signalling cascades such as nitrogen-activated kinase and salt overly 
sensitive kinase; they play a role in transcriptional control, and alter water and ion 
uptake and transport (Blumwald 2000; Scandalios 2005; Saibo et  al. 2008; 
Choudhury et  al. 2013; Flowers and Colmer 2015; Jain et  al. 2018; Kosová 
et al. 2018).

In recent days, enhancing plant production through nanotechnology has shown 
promise as a new emerging strategy. Nanotechnology can be supplemental in alle-
viation of nutrition deficiencies, improvement of resistance to diseases and toler-
ance to hostile environments. Nanoparticle interaction with plants has been studied 
on various levels, including genetics, physiology, plant development, and changes 
in the morphology of plant organs, etc. Literature reports effects ranging from nega-
tive through neutral to positive, with some higher concentrations toxic to plants and 
lower concentrations having positives effects. Recently, nanoparticles have also 
been applied to mitigate the adverse effects of both biotic and abiotic stresses. 
Unlike conventional agricultural chemicals, the effectiveness of nanoparticles 
depends not only on their chemistry, dosage, repetition and time of application but 
also on nanoparticle size, shape, crystallinity, and surface properties (Misra et al. 
2016; Wang et al. 2016a; Faraz et al. 2020; Landa 2021). There is a trend in agricul-
ture to reduce bulk fertilizers in particle size to nanometer sizes to increase their 
efficiency. Liu and Lal (2015) proposed to categorise these nanofertilizers accord-
ing to plant nutrition into (1) macronutrient-nanofertilizers that incorporate ele-
ments such as P, K, N, Mg, and Ca; (2) micronutrient fertilizers incorporating Zn, 
Mn, Fe, Cu, Mo, etc.; (3) nanomaterials-enhanced fertilizers, such as nutrient- 
loaded zeolites with silica, carbon-coated Fe, polymers etc.; and (4) plant-growth 
enhancers with unclear mechanisms of action, e.g. TiO2 or carbon nanotubes.

Zinc is an element, a micronutrient, essential for most organisms living on the 
planet, including plants, fungi, animals, and humans. There is a wide range of stud-
ies concerned with the effects of zinc on the growth and proliferation of plants since 
it is an essential part of more than 300 enzymes in organisms. It is the only metal 
that is included in all six groups of enzymes, and as such, it is present in oxidore-
ductases, transferases, hydrolases, lyases, isomerases, and ligases (Alloway 2008, 
2009). Most of the processes in plants, such as photosynthesis and production of 
DNA and RNA, depend on zinc being present in some form. Therefore, amendment 
with zinc is essential, and it is used to support cereal, vegetable, and forage produc-
tion (Alloway 2008; Faraz et  al. 2020). In plants, zinc is required to metabolise 
carbohydrates, synthesise enzymes, maintain the integrity of cell membranes, 
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regulate auxin synthesis, and create pollen (Alloway 2008). It also regulates the 
expression of genes important in tolerance toward environmental stresses, such as 
high intensity of light or high temperature. Zinc deficiency in plants is expressed by 
abnormal growth of plant structures. During acute deficiency, visible signs include 
slowed growth, chlorosis of leaves, reduction of leaf area, and sterility. Quality of 
crops is threatened, including protein content, appearance, and size of the fruit or 
seeds. Tolerance towards heightened intensity of light, and some fungal infections 
is diminished. Under slight deficiency of zinc in soils, quality and quantity of pro-
duced crops is diminished without visible hinderance in growth of the plants 
(Alloway 2008, 2009). For humans and higher organisms, zinc is referred to as a 
“type 2” nutrient, meaning that its concentration in the blood does not decrease in 
proportion to its deficiency in the organism. Zinc deficiency results in slowed physi-
cal growth, and its secretion is lowered since the organism strives to retain it. Many 
children with this deficiency have stunted growth. The recommended daily intake of 
Zn is between 3 and 16 mg∙day−1, and this value depends on age, sex, diet and sev-
eral other factors. Roughly, one-third of the human population suffers from zinc 
deficiency in their diet. The relative size of the population afflicted is highly specific 
for each country and ranges from 4% to 73% (Alloway 2009).

Zinc oxide (ZnO) is an amphoteric oxide with low solubility in pure water. 
However, it is easily soluble in many acids. It crystallizes almost exclusively in the 
hexagonal wurtzite type structure known in the mineral classification system as 
zincite (Fig. 12.1). On rare occasions, it crystalises in cubic structure (Borysiewicz 
2019). In lattice, Zn2+ cation is coordinated four O2− anions in tetrahedron arrange-
ment (Fig.  12.1), and reciprocally, each anion of O2− can be thought of as a 

Fig. 12.1 Geometrical 
arrangement of atoms with 
tetrahedron coordination in 
unit cell of ZnO (Zn in 
grey, O in red) constructed 
and visualized using 
VESTA program in 
space-filling regime 
(Momma and Izumi 2011)
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tetrahedron coordinated with four cations of Zn2+. Zincite has sp3 hybridized bonds 
with almost equivalent covalent and ionic nature (Borysiewicz 2019). As such, ZnO 
is a wide gap semiconductor (Eg = 3.37 eV) (Klingshirn et al. 2010). ZnO NPs have 
many useful properties, such as high binding energy, high refractive index, high 
thermal conductivity, piezoelectric properties, high absorbance of UV light, and 
antibacterial properties and it is applied in a wide variety of uses and products 
(Moezzi et al. 2012). As a nanomaterial, ZnO exhibits a broad range of shapes, from 
flowerlike structures to nanorods and nanoparticles. And since it is easy to manipu-
late its shape and to dope it, ZnO nanomaterials have been used in, for example, 
rubber production, concrete composites, electronics, solar panels, cosmetics, medi-
cine, biosensors, food packaging and food products, and agriculture (Moezzi et al. 
2012; Sabir et al. 2014). ZnO nanomaterials have been produced in a volume of 
approximately 30 kilotons in 2014, with a predicted rise in production (Future 
Markets Inc 2016). ZnO nanoparticle (ZnO NP) input in the environment was pre-
dicted to be in the range of 0.01–0.03 μg∙kg−1∙y−1 for soils (unintentional release), 
and levels of ZnO NPs of 0.05–0.29 μg∙l−1 were predicted for fresh waters (Sun 
et al. 2014). Properties of ZnO NPs related to their UV protection, easily adjustable 
size, shape, and surface properties, and their antimicrobial and antifungal properties 
were shown to positively impact the growth and health of plants (Tarafdar et  al. 
2012; Raliya and Tarafdar 2013; Sabir et al. 2014; Raliya et al. 2015, 2016, 2018), 
and to help plants with coping with environmental stresses (Saxena et  al. 2016; 
Hussain et al. 2018; Rizwan et al. 2019a, c). Under appropriate concentrations, ZnO 
NPs were found to increase seed germination (García-López et al. 2018), growth 
(Singh et  al. 2019), photosynthesis (Faizan et  al. 2018), activity of antioxidant 
enzymes (Venkatachalam et al. 2017), production of chlorophyll (Reddy Pullagurala 
et  al. 2018a), proteins (Venkatachalam et  al. 2017; Salama et  al. 2019), oil, and 
seeds (Kolenčík et  al. 2019, 2020), and they increased uptake of micronutrients 
(Peralta-Videa et al. 2014). They were also found to alleviate abiotic stresses, e.g. 
drought (Kolenčík et al. 2019; Dimkpa et al. 2020a), heavy metals (Rizwan et al. 
2019c), salt (Torabian et al. 2016; Wan et al. 2020), and temperature (Fig. 12.2) 
(Hassan et al. 2018).

ZnO NPs play an important role in plant development, photosynthesis, and other 
critical physiological systems of plants. Also, ZnO NPs were applied under stress 
conditions and found to increase the tolerance to both biotic (herbivores and patho-
gens) and abiotic (heavy metals, heat, cold, drought, flooding, and salts). Up-to-date 
knowledge on the positive effects of ZnO NPs on (crop) plants is shortly summa-
rized. We discuss current knowledge gaps connected to the research on environmen-
tal stress alleviation and propose research areas that may further our understanding 
and help with best practices in applying ZnO NPs.
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12.2  Effect of ZnO Nanoparticles’ Properties on Biological 
Interaction in Soils and Colloids

One of the most important properties of ZnO NPs is their ability to be transported 
in soils and their interaction with soil constituents. In an acidic environment, ZnO 
NPs can create large aggregates and dissolve easily (partially or fully), and the 
behaviour of released Zn ions is the most important in plant bioavailability (Bian 
et al. 2011; Mohd Omar et al. 2014; Sirelkhatim et al. 2015; Šebesta et al. 2020a). 
In more alkaline environments, the dissolution decreases dramatically, and under 
some circumstances, ZnO NPs can be more easily transported compared to ionic Zn 
(Šebesta et al. 2020a), even though the binding to various soil constituents may be 
similar to both forms (Šebesta et al. 2020b). The most important soil constituents 
that interact with ZnO NPs are living and dead organic matter, oxyhydroxides of Al, 
Fe and Mn, CaCO3 and clay fraction (Fig. 12.3) (Bian et al. 2011; Zhao et al. 2012; 

Fig. 12.2 Effects of ZnO NPs reducing abiotic and biotic stress in plants
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Mohd Omar et al. 2014; Han et al. 2016; Polák et al. 2019; Šebesta et al. 2019, 
2020a). The soils pore water characteristics, such as ionic strength, concentration of 
Ca2+, SO4

2−, and different phosphates also play an important role, mainly in ZnO 
NPs’ transformation and aggregation (Sivry et al. 2014; Xu et al. 2016; Peng et al. 
2017). The behaviour of ZnO NPs was also dependent on the properties such as 
concentration (Yung et al. 2015; Šebesta et al. 2020a), particle size and surface area 
(Bian et al. 2011), and surface coating (Gelabert et al. 2013).

The size of ZnO NPs is important to several processes that happen in soils and 
during interaction with plants. The dissolution behaviour of ZnO NPs depends on 
their size, and smaller nanoparticles dissolve more readily (Meulenkamp 1998; 
Bian et  al. 2011; Chang et  al. 2012; Mudunkotuwa et  al. 2012). The size of the 
nanoparticles and their aggregates is also important when absorption by plants is 
considered, and smaller nanoparticles can be more readily absorbed since they do 
not need to dissolve (Dietz and Herth 2011; Molnárová et al. 2015). Transfer of 
nanoparticles is hindered by the pores of plant cell walls, and they most probably 
only allow a passage of particles smaller than 20 nm (Wang et al. 2016a) or 5 nm 
(Gogarten 1988) to the apoplast. Because of the changes in dissolution and ability 

Fig. 12.3 ZnO NPs and their interaction in the soil environment
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to penetrate deeper into plant tissues, nanoparticle size is also important in toxicity, 
including toxicity towards plants (Nair et al. 2009; Chang et al. 2012; Nemček et al. 
2020). Size of ZnO NPs was important in the test with fava bean (Vica fabia) where 
it was found that the toxicity is linked to a greater dissolution of NPs where 25 nm 
ZnO NPs released ca 30% more Zn2+ than the 70 nm ZnO NPs. The ROS generation 
was very similar between the two NPs under the conditions used in the experiment 
(Pedruzzi et al. 2020).

The ZnO nanomaterials have highly tunable shape and form one-dimensional, 
two-dimensional, and three-dimensional structures (Thorny Chanu and Upadhyaya 
2019). One dimensional ZnO structures are the most diverse and include belts, 
combs, helixes, nanorods, needles, ribbons, rings, springs, tubes, and wires (Pan 
et al. 2001; Kong et al. 2004; Liu et al. 2005; Huang et al. 2006; Chen et al. 2007; 
Wahab et  al. 2007; Frade et  al. 2012; Xu et  al. 2012; Nikoobakht et  al. 2013). 
Nanoplates/nanosheets and nanopellets belong to ZnO two-dimensional structures 
(José-Yacamán et al. 2005; Chiu et al. 2010). The three-dimensional structures are 
variously shaped with several different shapes such as coniferous urchin-like forms, 
dandelions, flowers, snowflakes, etc. (Liu et al. 2006; Bitenc and Crnjak Orel 2009; 
Polshettiwar et al. 2009). In a study comparing the effect of shape, Zhou and Keller 
(2010) found that spherical ZnO NPs had higher critical coagulation concentration 
than the mixture of ZnO NPs in the shape of rods and platelets. ZnO nanorods also 
dissolved more readily than the spherical ZnO NPs of similar volume, which is 
related to their uncompensated surface energies (Joo and Zhao 2017). Hexagonal 
ZnO NPs were shown to have a slightly higher positive effect on the growth of 
tomato plants compared to spherical particles (Pérez Velasco et al. 2020). In theory, 
the interaction of NPs with plant surfaces is related to (1) the chemistry and crystal-
linity of the nanoparticles; (2) nanoparticle surface in contact with the surrounding 
environment, and its shape, roughness, charge, and surface energy; and (3) the phys-
icochemical properties of the environment the nanoparticles interact with, such as 
chemistry, input energy, e.g. sunlight or other types radiation, and changes in tem-
perature (Konvičková et al. 2018; Holišová et al. 2019, 2021; Kolenčík et al. 2021).

Therefore, ZnO NPs are often surface modified to adjust their properties like 
aggregation and interaction with other constituents in the system. Nanoparticles 
with negative surface charge often behave more similarly to conservative tracers 
(such as Br−) in model porous media, whereas positively charged nanoparticles are 
retained to a much higher degree (Yecheskel et  al. 2016). Also, surface capping 
changed the toxicity of ZnO NPs toward E. coli bacteria and the cancer cell line, 
where starch-capped ZnO NPs had the lowest toxicity (Nair et al. 2009). The sur-
face coating was found to be an important factor affecting the toxicity of ZnO NPs, 
and different coatings either increased or decrease cell damage or stress (Le et al. 
2016). Beans (Phaseolus vulgaris) were exposed to bare and Z-COTE HP1® coated 
ZnO NPs. Coated NPs promoted more root growth and increased the concentration 
of nutritional elements (B, Mg, Mo, and S) compared to bare ZnO NPs (Medina- 
Velo et al. 2017; López-Moreno et al. 2018). Surface defects also increase the toxic-
ity of ZnO NPs (Persaud et al. 2020).
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In an experiment measuring oxidative stress response, ZnO NPs doped with Mn 
and Co showed increased response compared to pristine uncoated ZnO NPs. The Fe 
doped ZnO NPs showed a similar response when compared with pristine uncoated 
ZnO NPs (Le et  al. 2016). Se doped ZnO NPs exhibited decreased toxicity to 
Esheria coli even though they showed higher production of reactive oxygen species 
due to Se leaching from NPs in culture media (Dutta et al. 2014).

To create more benign ZnO NPs for agricultural application, a biologically 
induced synthesis with plant, fungi or microbial extracts was used in studies. There 
is some evidence that there may be a synergy of nanoparticle-sized effect together 
with residual effects of organic extracts that are bound to nanoparticles surfaces 
(Gebre and Sendeku 2019). For example, Chaudhuri and Malodia (2017) biosynthe-
sised ZnO NPs with leaf extract of Calotropis gigantea. They applied the created 
ZnO NPs on three plant species (Azadirachta indica, Alstonia pinnata, a Pongamia 
scholaris). All three species showed improvement in height after 6 months when 
compared to control. Biosynthesis is a new trend in the application of ZnO NPs in 
agriculture that may lead to better crop production with lower side effects.

12.3  Multiple Effects of Exposure Pathways

Several pathways of exposure are typical for the agricultural application of ZnO 
NPs. ZnO NPs were applied (1) on seeds to evaluate germination and early growth 
of seedling (Umavathi et al. 2020; Khan et al. 2021; Rai-Kalal and Jajoo 2021), (2) 
into the soil (or growth medium) to evaluate the root uptake and its toxicological 
and beneficial effects (Nemček et al. 2020), and lastly, (3) foliar application, that 
applies ZnO NPs directly on plants, mainly leaves, and may be good in reducing the 
number of nanoparticles needed to induce beneficial effects in plants (Kolenčík 
et al. 2020; Adrees et al. 2021).

12.3.1  Seed Application

Application of ZnO NPs on seeds was tested on various plants, and low concentra-
tions had a generally positive effect on germination, seed vigour index, and the 
photosynthesis of seedlings (Dileep Kumar et  al. 2020; Itroutwar et  al. 2020b; 
Maslobrod et al. 2020; Rafique et al. 2020; Rani et al. 2020; Rawashdeh et al. 2020; 
Younes et al. 2020; Awan et al. 2021; Khan et al. 2021). Submerging seeds in ZnO 
NPs suspensions for 1, 2, 3, or 18 hours had a positive effect at a range of concentra-
tions from 0.05 mg∙l−1 to 2000 mg∙l−1, and the concentrations that improved the 
germination the most were very plant species-specific (Itroutwar et  al. 2020b; 
Kasivelu et al. 2020; Awan et al. 2021; Rai-Kalal and Jajoo 2021). In Tymoszuk and 
Wojnarowicz (2020), Allium cepa seeds were grown on the modified Murashige and 
Skoog (MS) medium spiked with ZnO NP at concentrations of 50, 100, 200, 400, 
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800, 1600, and 3200 mg∙l−1 and the highest germination was recorded at 800 mg∙l−1. 
ZnO NP concentration of 3200  mg∙l−1 decreased the germination. Youssef and 
Elamawi (2020) found that concentrations of 50 mg∙l−1 of ZnO NPs were positively 
affecting germination of Vicia faba, while higher concentrations, higher than 
100 mg∙l−1, had a negative effect. Corn (Zea mays) was primed with 2, 4, 8, and 
16 mg∙l−1 of 16 to 20 nm ZnO NPs biosynthesized with Bacillus sp. for 24 h. Root 
length, shoot length, and protein concentration was increased after growth in pots, 
and the maximum increase was observed at 8 mg∙l−1 (Sabir et al. 2020). Generally, 
priming with higher concentrations of ZnO NPs has an inhibitory effect on germina-
tion and the early growth of plants, and lower concentrations have a positive impact. 
The positive effect of ZnO NPs was found to be higher than in their ionic counter-
parts, at least for lentil (Lens esculentum) and chick pea (Cicer arietinum) 
(Choudhary and Khandelwal 2020) and higher than bulk ZnO when applied on corn 
plants (Zea mays) (Esper Neto et al. 2020).

12.3.2  Soil Application

ZnO NPs can be applied to soils to ameliorate the Zn deficiency that is one of the 
most widespread deficiencies in plants, and it affects up to one-third of agricultural 
soils, mainly in tropical and subtropical regions (Alloway 2008, 2009). The germi-
nation of black mustard (Brassica nigra) in soils contaminated with high concentra-
tions of ZnO NPs (200, 400, and 600 mg∙kg−1) caused inhibition in seed germination 
and had a negative effect on the root length and height of plants. Also, phenolics and 
flavonoids, which play a vital role in the detoxification of ROS, were increased 
compared to control without applied ZnO NPs. However, an increase in leaf area 
was observed for 200 and 600  mg∙kg−1 (ur Rehman et  al. 2020). Similarly, an 
increase of leaf area and also the stem height, number of leaves, number of branches, 
and number of nodes per black mustard plant was observed in a study by Zafar et al. 
(2020) when 200, 400, and 600  mg∙kg−1 ZnO NPs were applied to soil, but a 
decrease in seed diameter and number of pods per plant was also observed. 
Application of ZnO NPs also resulted in a higher accumulation of Ca, Co, and Zn 
in seeds along with protein, glucosinolates and erucic acid (Zafar et al. 2020). When 
black mustard (Brassica nigra) was grown for 30 days in ZnO NPs enriched soil, 
concentrations below 400 mg∙kg−1 ZnO NPs had a positive effect on root length, 
and higher concentrations caused increased oxidative stress (Zafar et al. 2019). In 
an early growth experiment with barley (Hordeum vulgare), only high concentra-
tions of ZnO NPs (2000 mg Zn∙kg−1 as ZnO NP) had a negative effect on average 
fresh and dry weight and root and sprout length (Nemček et al. 2020). In a 35-day 
growth experiment with cilantro plants (Coriandrum sativum), 100, 200, and 
400 mg∙kg−1 of ZnO NPs were used, and concentration of 100 and 200 mg∙kg−1 
increased the concentration of chlorophyll by at least 50% and changed the 
carbinolic- based compounds. The concentration of 400 mg∙kg−1 of ZnO NPs had a 
negative effect and decreased lipid peroxidation by 70%. Application of ZnO NPs 
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to soils alone or in combination with organic matter did not influence soil chemical 
properties, however, they may influence microbial properties and may support bac-
terial growth over fungal growth (Aziz et al. 2019). Nanoparticles may enhance the 
nutrient mobilization in soils via influence on the soil microbial population and 
extracellular enzymes secretion such as urease or phosphatase activity in soils 
which play an important role in the regulation of plant available nitrogen and phos-
phorus (Olander and Vitousek 2000; Raliya and Tarafdar 2013; Raliya et al. 2016, 
2018). Nonetheless, there are indications that ZnO NPs may enhance microbial 
activity and increase their biomass that could lead to N immobilization in soils, and 
thus, decreasing its plant uptake (Aziz et al. 2019). Higher levels of chlorophyll, 
nitrogen and micronutrients such as zinc, magnesium, and potassium were observed 
when lettuce (Lactuca sativa) and carrot (Daucus carota subsp. sativus) plants were 
grown in commercial soil substrate spiked with 1, 5, 20, 100, and 1000 mg∙kg−1 
ZnO NPs, where the highest concentration had negative effects and the other con-
centrations showed mostly positive or neutral effects on both plants (Song and Kim 
2020). After 120 days of growing in soil, soybean (Glycine max cv. Kowsar) seed 
yield was evaluated in experiments with different concentrations of ZnO NPs with 
different sizes and morphologies and Zn2+ to compare ionic vs nanoparticle influ-
ence. All Zn compounds (ZnO NPs, and Zn2+) increased seed yield when applied at 
a concentration up to 160 mg Zn∙kg−1. At higher concentrations, ZnO NPs were 
toxic, with the highest toxicity elucidated by spherical 38 nm NPs and evidence 
suggested some nano-specific toxicological effect when compared with Zn2+ 
(Yusefi-Tanha et al. 2020). In experiments with either foliar or soil application of 
ZnO NPs, tomato plants (Solanum lycopersicum) were positively influenced by 
both application, i.e. their height, stem diameter and leaves, stem and root dry 
weight was increased, with little actual difference between the two applications 
(Pérez Velasco et al. 2020). Similarly, soil and foliar application led to similar Zn 
distribution of zinc in wheat grain (Doolette et al. 2020). Umar et al. (2020) found 
that foliar application of ZnO NPs on corn had the highest positive effect on the 
concentration of Zn in grains when compared to both soil application of ZnO NPs 
and more conventional Zn fertilizers and also ZnO NPs application promoted plant 
growth and seed yield.

12.3.3  Foliar Application

In general, uptake of nutrients via leaves, including uptake from nanoparticles and 
nutrient distribution in leaves, is still less well-known in comparison to nutrient 
translocation in root systems in the soil environment (Li et al. 2019). It depends on 
several factors such as concentration, particle size, the chemical composition of 
NPs, the timing and number of applications, plant species, etc. (Nair et al. 2010; 
Servin and White 2016; Wang et al. 2016a).

Currently, foliar application of ZnO NPs to plants has two distinct benefits: (1) 
decrease in amounts of agrochemicals used, and (2) gradual release of Zn from the 
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NPs (Prasad et al. 2014; Wang et al. 2016a; Li et al. 2019). In contrast, correspond-
ing conventional ionic Zn fertilizers are absorbed faster through leaves and are more 
readily metabolized in plants. Additionally, our research indicates (Kolenčík et al. 
2019, 2020) that in the case of ZnO NPs, similarly to TiO2 NPs, their nano-domain 
effect may contribute to elevated photosynthetic activity in plants via the protection 
of chloroplasts or their photocatalytic properties (Siddiqui et al. 2019; Rizwan et al. 
2019b). Sunlight exposition may also support photo-corrosion and dissolution of 
ZnO NPs (Ma et al. 2014), and the released ionic zinc is easily absorbed and utilized 
by the plant. However, there are still knowledge gaps when it comes to their applica-
tion in field conditions. In this context, their foliar application may be an effective 
measure in precision agriculture that aids in adaptation to climate change (Kolenčík 
et al. 2019, 2020).

There are three potential pathways for foliar absorption of ZnO NPs or Zn ions 
released from them: cuticular, stomatal, or through trichomes (Li et al. 2019). After 
the application of ZnO NPs on the sunflower, there was a qualitative change in 
leaves in the flower bud stage of the life cycle of the plants. Trichomes diversity, 
ratio, width, and length were change, and a new type of trichomes was observed – 
capitate glandular trichomes (Kolenčík et al. 2019). Leaf part with different struc-
tures and the semi-quantitative analysis of leaf surface chemistry is shown in 
Fig. 12.4.

Zinc released from ZnO NPs or conventionally applied zinc, such as ZnSO4, is 
transformed after the absorption to leaves via complexation with carboxylic groups 
(oxalate, pectine, citrate), phytate and cysteine, or it stays in Zn2+ form, with forms 
and their relative concentrations varying in different plants and plant stages (Li et al. 
2019; Kolenčík et al. 2019).

Foliar application of 10 mg∙l−1 ZnO NPs, 15–52 nm in size, applied twice, before 
and after flowering, improved grain weight, seed length, seed thickness, and seed in 

Fig. 12.4 (a) Sunflower leaf surface visualized by scanning electron microscopy with two types 
of trichomes – non-glandular trichomes (NGTs) and linear glandular trichomes (LGTs); (b) details 
of NGTs; semiquantitative analysis of element by energy-dispersive X-ray spectroscopy on surface 
of control (a) and ZnO NPs foliated leaves (b)
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rice (Oryza sativa) (Itroutwar et  al. 2020a). Foliar application of ZnO NPs also 
leads to transfer of Zn to grains, as was observed in the work of Doolette et  al. 
(2020), where 40–50 nm ZnO NPs were applied on wheat (Triticum aestivum). ZnO 
NP application at 750 mg∙l−1 led to a higher grain yield than in ZnCl2 application. 
However, the authors did not have an explanation for this phenomenon, and all other 
measured parameters did not show a better efficacy compared to the conventional 
application of Zn (ZnCl2 and Zn EDTA). Read et al. (2019) found that ZnEDTA had 
higher foliar uptake than ZnO NP in wheat (Triticum estivum), and already taken up 
ZnO NP and ZnEDTA were transported in a similar way to newly formed leaves. 
When applied on corn, ZnO NPs showed a higher promotion of growth and seed 
yield compared to more conventional fertilizers (Bala et al. 2019). Two application 
of low concentration of ZnO NPs at crucial points of foxtail millet (Setaria italica) 
growth positively affected several parameters necessary for crop production 
(Kolenčík et al. 2019). Foxtail millet plant grains had significantly higher oil and 
total nitrogen contents and a significantly lower crop water stress index (Kolenčík 
et  al. 2019). Two applications of ZnO NPs at low concentrations had a positive 
effect on head diameter, dry-seed head weight, yield and thousand seed weight of 
sunflower, and also on sunflower physiological responses (Helianthus annuus) 
(Kolenčík et al. 2020). When applied on sunflowers at 60 mg∙l−1 on day 25 and 45 
after sawing, ZnO NP decreased the uptake of Cr and Pb and increased the uptake 
of Fe and had an even better effect when applied at 30 mg∙l−1 in combination with 
rice straw biochar and cow manure biochar and additionally reduced Cu, Ni, and Cd 
concentrations in plants (Seleiman et al. 2020). Generally, the foliar application is 
preferred as less of the ZnO NP is needed overall, and the ZnO NP do not contami-
nate the soil to such a degree that it could be detrimental to the growth of other, 
more susceptible plant species grown later at the same field.

12.3.4  Effect of Applied Nanoparticle Concentration 
and Soil Properties

Despite multiple studies showing that ZnO NPs can have an influential role in the 
growth and development of plants, they also may have a detrimental effect on plants 
and the environment when applied at too high concentrations and by an inappropri-
ate method. Release of high concentrations of Zn ions and production of ROS due 
to ZnO NPs higher reactivity can inflict damage to organisms in contaminated envi-
ronment (Manke et al. 2013; Rajput et al. 2018). The toxic effects of ZnO NPs were 
studied on a large variety of organisms, including bacteria, fungi, plants, inverte-
brates and vertebrates, and their effect on soil health was also studied (Rajput et al. 
2018). Under natural sunlight, ZnO NPs became much more toxic than during labo-
ratory light and dark conditions to free-living nematode Caenorhabditis elegans and 
the increased toxicity was related to ROS generation (Ma et al. 2011). Seed soaking 
and exposure of roots to higher concentrations of ZnO NPs may lead to diminished 
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root growth (Yang et al. 2015), reduction of plant growth, and photosynthesis (Wang 
et al. 2016b), reduction in catalase and ascorbate peroxidase in roots (Mukherjee 
et al. 2014). Tripathi et al. (2017a) found a decrease in ascorbate peroxidase, gluta-
thione reductase, dehydroascorbate reductase, and monodehydroascorbate reduc-
tase, whereas ascorbic acid þ dehydroascorbic acid, and ascorbic acid increased 
when ZnO NPs were applied on wheat seedlings. The toxicity may come from the 
dissolution of Zn inside and/or outside roots and from damage caused by direct 
contact of roots with ZnO NPs (Lin and Xing 2008).

When applied at lower, appropriate concentrations, ZnO NPs may have a posi-
tive effect on plant growth. At higher dosages (>500 mg∙kg−1), ZnO NPs may often 
have a toxic effect on plants via the release of Zn ions and ROS production. While 
at lower concentrations (50 mg∙kg−1) or when applied on leaves or through seed 
coating or priming applications, they often have beneficial effects and are promising 
plant growth promoters, nanofertilizers, or nanopesticides. When studying impacts 
on plant growth, it is also advisable to ascertain that the ZnO NPs do not have an 
inhibitory effect on beneficial soil bacteria (Reddy Pullagurala et al. 2018b). The 
positive effects of ZnO NPs include an increase in shoot length, root length, fresh 
and dry biomass, protein content, an increase in other phytochemicals of agricul-
tural use and an increase in photosynthetic activity. Upon application of ZnO NPs, 
expression of genes is altered, and various effects on biochemistry, physiology, and 
plant morphology have been observed (Tripathi et  al. 2017b; Thorny Chanu and 
Upadhyaya 2019; Kolenčík et al. 2019, 2020; Faraz et al. 2020).

A different number of applications of ZnO NPs, two and four, were applied on 
pinto bean (Phaseolus vulgaris) cultivars, and the four applications (0.05%, 0.1%, 
or 0.15% w/v) showed an increase in plant height and internode length compared to 
two applications of ZnO NPs and also compared to two and four applications of 
ZnSO4 and chelated Zn at similar concentrations. Four applications of 0.05% ZnO 
NPs were more effective than two applications of 0.1% or 0.15% for several mea-
sured parameters (Mahdieh et al. 2018), hinting to possibility that a higher number 
of applications may be more beneficial for plants, even if the total concentration of 
the applied ZnO NPs is similar.

Soil factors influence the response of plants to metallic nanoparticles. Both 
chemical factors, such as pH, organic matter, and ionic strength, and biological fac-
tors such as plant root exudates, microbes, and microbial activities, heavily influ-
ence what effects nanoparticles have on the growth and health of plants (Dimkpa 
2018). One of the most important factors, soil pH, has a considerable influence on 
the effect of ZnO NPs on plants. More acidic pH leads to their dissolution, and their 
association with soil chemicals lead to similar behaviour compared to the applica-
tion of ionic Zn (Wang et al. 2013). Wheat was grown in both alkaline and acidic 
soil, and the soil-applied ZnO NPs had a positive effect in alkaline soil but a nega-
tive effect in acidic soil (Watson et al. 2015; Anderson et al. 2017). Similar effect 
was observed by García-Gómez et  al. (2018b) in nine plant crop species. This 
behaviour can be reverted by creating ZnO NP- alginate complexes that release Zn 
more slowly in acidic soils and thus can lower their toxicity and increase their use-
fulness (Martins et al. 2020). Similarly, soil enzymes produced by soil microbes 
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were adversely affected by ZnO NPs in acidic soil more than in calcareous soil 
(García-Gómez et al. 2018a), which can also negatively affect the growth and health 
of plants.

When ZnO NPs were applied on sewage sludge-amended soil, they enhanced 
root growth at a concentration of 50, 250, and 500 mg∙kg−1 compared to the soil 
with just sludge-amendment. The root growth enhancement at even a relatively high 
concentration may be due to a high organic matter content (Oleszczuk et al. 2019). 
Similar results were observed in collected manure-amended soil where higher con-
centrations of ZnO NPs (1000  mg∙kg−1) affected shoot weight negatively in 
unamended soil and positively in manure-amended soil (Moghaddasi et al. 2017).

12.4  Amelioration of Stress by ZnO NP

Plant stress is described as any unfavourable condition that affects the metabolism, 
growth or/and development of a plant. Plant stress can be caused by multiple fac-
tors, which are generally divided into two categories, biotic and abiotic stresses 
(Kranner et al. 2010). Biotic stresses are induced by living organisms like microor-
ganisms, insects, viruses or other plant species, and abiotic stresses are initiated by 
environmental factors, for example, drought, salinity, and temperature (Hakim et al. 
2018; Thakur et al. 2019). As a response to various types of stresses, plants have 
evolved immune systems and defence responses that increase their tolerance to 
environmental stress. Therefore, a broader study and understanding of plant toler-
ance mechanisms can benefit agriculture (Almutairi 2019).

The alleviation of environmental stress on crops by applying NPs has been a 
significant trend in the agricultural research of the last decade, as nanotechnology 
has been shown to be a promising tool for enhancing plant production by improving 
disease resistance and plant tolerance to a harsh environment. Various sources of 
stress, which are discussed in the following subchapters, can be mitigated by NPs 
(Almutairi 2019). This mitigation role of NPs depends on NPs’ size, shape and dos-
age, as some concentrations have been toxic for plants while lower concentrations 
have positive effects (Jha and Pudake 2016; Siddiqi and Husen 2017).

12.4.1  Biotic Stress

Biotic stresses, like herbivore grazing and pathogen infection, are essential factors 
affecting crop production. The attacker has to defeat many defence strategies that 
plants deploy against the intruder (Thordal-Christnsen 2003; Zhao et al. 2020). In 
the case of pathogen infection, it requires the interactions of a susceptible host, viru-
lent pathogen and conducive environment. Even though conventional pesticides can 
significantly increase agricultural production, they can also cause health and envi-
ronmental risks. Therefore, the application of various engineered metal NPs, 
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including ZnO NPs, was considered a more gentle way to protect plants from patho-
gen invasion or pest and insect attacks (Poschenrieder et al. 2006; Zhao et al. 2020).

12.4.1.1  Herbivores

Higher metal ion activity in the soil or on the plant surface may deter, kill or inhibit 
the development of herbivores. Especially for chewing herbivores, consuming pol-
luted leaves can lead to suffering from the detrimental effects of metals. Also, her-
bivores eating plant tissues with high metal concentrations can be affected by the 
toxicity or the evocation of an aversion response. Therefore insects can learn to 
avoid feeding on plants with higher concentrations of metals through a post- 
ingestive feedback mechanism (Eeva et al. 1998; Behmer et al. 2005; Poschenrieder 
et al. 2006). There are many studies (Noret et al. 2005; Stolpe et al. 2017) dealing 
with zinc applications against stress caused by herbivores. For example, the perfor-
mance of caterpillars, either chewing or sucking species, on Arabidopsis halleri 
(Brassicaceae) was reduced on plants grown on zinc-amended soil compared to 
plants grown on unamended soil (Stolpe et al. 2017). Therefore, we find it essential 
that ZnO-NPs, a form of particulate Zn, should also be studied. Its more gradual 
release in soils may be advantageous, and also foliar application may be more effec-
tive because, unlike ionic Zn that is readily absorbed by leaves, they may stay for a 
longer period of time on leaf surfaces and thus have a longer-lasting protective 
effect on the plants.

12.4.1.2  Pathogens

At least 25% of crop losses worldwide is due to plant parasites. Conventional syn-
thetic fungicides are considered to be the most effective for plant diseases (Pandey 
et al. 2018; Malandrakis et al. 2019). However, pathogens can become resistant to 
fungicides because of long-term exposure, and residues of fungicides are also dan-
gerous for human health and the environment (Zhang et al. 2015). NPs are promis-
ing in resolving this challenge in the future by providing a novel eco-friendly 
alternative to synthetic fungicides. ZnO NPs have been shown to be very effective 
antibacterial and antifungal agents against numerous species due to their unique 
physicochemical properties (Pandey et  al. 2018; Sun et  al. 2018; Malandrakis 
et al. 2019).

According to Malandrakis et al. (2019), ZnO NPs were able to inhibit in vitro 
mycelial growth of fungal strains in a dose-response manner. ZnO NPs were also 
more toxic at the spore germination level than at mycelial growth and more effective 
than the commercial fungicide containing Cu(OH)2. Hafez et al. (2020) tested the 
application of bio-agent Bacillus subtilis with ZnO NPs to control powdery mildew 
in cucumber plants caused by Podosphaera xanthii. The application reduced elec-
trolyte leakage, and the disease severity was correlated with the production of 
defence-related enzymes and early elevation of ROS levels. Total chlorophyll 
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content and yield production were increased, along with most morphological and 
physiological characteristics and improved fruit yield. Savi et  al. (2015) studied 
ZnO NPs treatment onto spikelets at the anthesis stage on wheat, inoculated with 
Fusarium graminearum. Results showed a reduction in the number of colonies of 
Fusarium graminearum in samples treated with ZnO NPs when compared to con-
trol. Deoxynivalenol (mycotoxin) formation in the grains was also reduced. The 
concentration of Zn remained within the internationally recommended levels for 
consumption, and the ZnO NPs treatment did not cause any damage to wheat grains. 
Biologically synthesized ZnO NPs using Parthenium hysterophorus reported maxi-
mum inhibition for Aspergillus niger and A. flavus. It was confirmed that smaller 
ZnO NPs have greater antifungal activity against fungal pathogens (Rajiv et  al. 
2013; Ingle et al. 2020). Still, more studies are needed to find the best ways of ZnO 
NPs application under field conditions and also to investigate their effects on a 
diverse range of pathogens.

12.4.2  Abiotic Stress

Abiotic stresses are estimated to be the primary factor of crop-production drops 
worldwide (Bajguz and Hayat 2009; Zhu 2016). ZnO NPs may enhance the defence 
mechanisms of plants against abiotic stresses by stimulating the activities of anti-
oxidant enzymes and bettering the accumulation of osmolytes, free amino acids, 
and nutrients (Torabian et al. 2016; Hassan et al. 2018; Rizwan et al. 2019a). In 
Table 12.1., we show some of the known effects ZnO NPs have on the amelioration 
of abiotic stresses.

12.4.2.1  Heavy Metals

Heavy metal stress has become a global phenomenon causing various toxic effects 
at high concentrations and, thus, growth inhibition of crop plants. Although some 
heavy metals act as nutrients at lower concentrations, their excess in plants can lead 
to oxidative stress. High concentrations of some heavy metals in soil/growth 
medium can also increase ROS generation, denaturation of cell structures, cell 
membranes, and biomolecules (Sharma et  al. 2012; Chibuike and Obiora 2014; 
Khan et al. 2017). For example, Cd can enter through roots and cause damage to the 
photosynthetic system, impairing plants growth and nutrient uptake and accumula-
tion. Further, Cd affects the redox homeostasis of the plant cells and enhances ROS 
production. Even though plants have developed a defence system, it fails at elevated 
Cd stress (Bashir et al. 2018; Rizwan et al. 2019c, a). To combat the heavy metal 
stress, NPs have been applied to soils, and they were found to be effective in allevi-
ating heavy metals stress in plants. They can easily penetrate into a contaminated 
zone due to their small size and large surface area and have a strong affinity to met-
als, where the metals make bonds with NPs, they are either adsorbed on their 
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Table 12.1 Impact of ZnO NPs on plants exposed to different abiotic stresses

Concentration 
of ZnO NPs 
(mg∙l−1) Plant species

Abiotic 
stress Impact References

25–100 Triticum 
aestivum

Heavy 
metals – 
Cd

Decreased concentrations of 
Cd in roots, shoots and gains; 
increased plant high, spike 
lenght and dry weight of 
shoots, roots, spikes and 
grains

Rizwan et al. 
(2019a)

75 Gossypium 
hirsutum

Heavy 
metals – 
Cd, Pb

Increased shoot, root growth 
and biomass under Cd, Pb 
stress; up-regulated 
chlorophyll a,b and 
carotenoids contents in leaves

Priyanka et al. 
(2021)

10–200 Oryza sativa Heavy 
metals – 
As

Decreased As concentrations 
in roots and shoots; increased 
germination rate, shoot and 
root weight, chlorophyll 
content and promoted 
biomass

Wu et al. (2020)

60 Helianthus 
annuus

Heavy 
metals – 
Cd, Pb, 
Cu, Cr

Reduced availability of Cd, 
Pb, Cu and Cr in soil and its 
content in plant biomass

Seleiman et al. 
(2020)

10 Triticum 
aestivum

Heat Enhanced heat tolerance by 
maintaining ROS production; 
reduced the permeability of 
the leaf cells’ plasma wall, 
which decreased lipid 
peroxidation and protect the 
cellular wall

Hassan et al. 
(2018)

50 Saccharum 
oddicinarum

Cold Lower reduction of 
chlorophyll a,b contents; 
increased carotenoids

Elsheery et al. 
(2020)

20–100 Triticum 
aestivum

Drought Boosted up leaf chlorophyll 
contents, decreased oxidative 
stress and enhanced the leaf 
superoxide dismutase and 
peroxidase activities

Adrees et al. 
(2021)

50 Glycine 
max;Sorghum 
bicolor

Drought Enhanced drought tolerance 
stress; improvement of shoot 
and root morphology

Linh et al. 
(2020), Dimkpa 
et al. (2019)

10–100 Solanum 
lycopersicum

Salts Increased shoot lenght, root 
lenght, biomass, leaf area, 
chlorophyll content and 
photosynthetic attributes; 
ameliorate the negative effect 
of salt stress

Faizan et al. 
(2021)

(continued)
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surfaces or chemically bound in NPs and are, thus, immobilized and are less bio-
available to plants. ZnO NPs also release Zn ions that compete with Cd, Cu or other 
ions in soil solutions and limit their uptake (Khan et al. 2017; Tripathi et al. 2015; 
Worms et al. 2012).

Hussain et al. (2018), Khan et al. (2019) and Rizwan et al. (2019a, c) tested the 
effect of ZnO NPs on wheat under Cd stress. Both results showed increased dry 
weights of shoot, roots, spikes, and grains. The concentration of Cd in roots, shoots 
and grains were significantly reduced with ZnO NPs treatment. Rizwan et  al. 
(2019a) further showed that ZnO NPs positively affected the photosynthesis of 
wheat and reduced the electrolyte leakage and superoxide dismutase and peroxidase 
activities in leaves of Cd-stressed wheat. Shah et al. (2021) showed that the com-
bined application of ZnO NPs and Bacillus fortis IAGS 223 modulated the activity 
of antioxidant enzymes besides upregulation of the biochemicals and growth param-
eters of Cd stressed plants. They also found a decreased amount of stress markers 
(H2O2 and MDA) and a reduction of Cd content in shoots. In rice, foliar application 
of ZnO NPs decreased Cd uptake, and lower Cd content was found in rice roots and 
shoots (Ali et al. 2019). However, contrary to the studies mentioned above, Zhang 
et al. (2019, 2020) discovered that Cd bioavailability increased in high ZnO NPs 
(500 mg∙kg−1) treatments.

Priyanka et al. (2021) tested the application of ZnO NPs (0–200 mg∙l−1) on the 
development of Cd and Pb tolerance mechanism in cotton seedlings. ZnO NPs 
applications significantly promoted shoot and root growth as well as biomass under 
Cd and Pb stress. It also up-regulated chlorophyll a,b and carotenoids contents in 
leaves under Cd and Pb stress, along with the accumulation of antioxidant defence 
enzymes (CAT, POX, APX, SOD) and MDA contents. This indicates that the addi-
tion of ZnO NPs protects cotton seedlings by alleviating Cd and Pb stress. Sharifan 
et al. (2020) showed similar results after the application of ZnO NPs (100 mg∙l−1) 
on different leafy greens (spinach, parsley and cilantro) under Cd and Pb stress. 
Results by Seleiman et al. (2020) showed positive effects after foliar applications of 
ZnO NPs (60 mg∙l−1), rice straw biochar and cow-manure biochar on sunflowers 
under Pb, Cr, Cu and Cd stress. The application of the combination treatment 
reduced the availability of Pb, Cr, Cu and Cd in the soil by 78.6, 115.3, 153.3, and 
178.5% in comparison to untreated plots, and it also reduced the Pb, Cr, Cu and Cd 
in plant biomass by 1.13, 5.19, 3.88, and 0.26 mg∙kg−1, respectively.

Table 12.1 (continued)

Concentration 
of ZnO NPs 
(mg∙l−1) Plant species

Abiotic 
stress Impact References

50; 5–10 Linum 
usitatissimum; 
Triticum 
aestivum

Salts Improved the growth, carbon 
and nutrient assimilation; 
increased the antioxidant 
enzymatic system and other 
physiochemical reactions

Singh et al. 
(2021), 
El-Bassiouny 
et al. (2020)
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Wu et al. (2020) described the role of ZnO NPs (10–200 mg∙l−1) in alleviating As 
stress in rice germination and early seedling growth. ZnO NPs increased the germi-
nation rate (2.3–8.9%), shoot weight (18.2–42.4%), root weight (5.2–23.9%), and 
chlorophyll content (3.5–40.1%), while elevated the SOD (2.2–22.8%) and CAT 
(7.2–60.7%) activities and reduced the MDA content (17.5–30.8%). The concentra-
tion of As was decreased by 8.4–72.3% in rice roots and 10.2–56.6% in rice shoots. 
ZnO NPs amendment increased As adsorption and promoted biomass of rice. 
Similarly, in the study by Wang et al. (2018), ZnO NPs reduced the accumulation of 
As(III) in rice roots and shoots when the As was applied as As(III) and As(V), and 
As(V) in rice roots. However, the concentration of As(V) in rice shoots was 
unaffected.

Interaction of heavy metals with ZnO NPs in plants still has gaps in knowledge, 
and, therefore, ZnO NPs application was studied in plants affected by Pb. Raghib 
et al. (2020) applied ZnO NPs, and ZnO NPs in combination with arbuscular mycor-
rhizal fungi. Both applications increased the growth and biochemical attributes of 
wheat and decreased the Pb uptake from contaminated soil. The combined formula 
of ZnO NPs and fungi has shown the best results, increasing growth parameters like 
plant height, fresh weight, dry weight, and total chlorophyll content. Also, the appli-
cation of ZnO NPs with fungi had a positive effect on plant metabolism and 
increased proline content, H2O2 content, the SOD and CAT enzymes’ activity, and 
increased lipid peroxidation content. The Pb concentration was reduced in both 
roots and shoots of wheat after applying ZnO NPs with fungi.

ZnO NPs have the potential to alleviate heavy metal stress in plants. However, 
more field studies are needed where the best mode of application is found. ZnO NPs 
also show promise in combined formulas with other treatments where they posi-
tively enhance the treatment effects.

12.4.2.2  Heat

Heat stress is defined as “the rise in temperature of both soil and air above the level 
of the threshold for a limited time such that permanent harm occurs to plants” 
(Lipiec et al. 2013). Generally, an impermanent phase when the temperature exceeds 
temperature tolerance by 10–15 °C is referred to as heat stress/shock, which reduces 
plant growth and crop productivity (Wahid 2007). Higher temperature also increases 
ROS production, and it causes oxidative stress and limits plant growth and yields. 
The chlorophyll content is also affected by heat stress, and low chlorophyll content 
is mainly present in leaves (Møller et al. 2007; Mathur et al. 2014; Faizan et al. 
2020b). This could be caused by inhibited chlorophyll biosynthesis or enhanced 
degradation of chlorophyll pigments. The damaged chlorophyll biosynthesis under 
heat stress is a consequence of the presence of many heat-sensitive enzymes in the 
chlorophyll biosynthesis pathway (Mathur et al. 2014). An increase in leaf tempera-
ture can also lead to a deactivation of the heat-sensitive enzyme Rubisco (the 
enzyme responsible for CO2 fixation during photosynthesis), initiating the 
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photorespiratory pathway and generating H2O2 (a by-product of the pathway) 
(Sharkey 2005; Allakhverdiev et al. 2008).

According to Hassan et al. (2018), the application of ZnO NPs enhanced heat 
tolerance in wheat by maintaining ROS production and the stability of biomem-
branes and proteins. The treatment of ZnO NPs on wheat also reduced the permea-
bility of the leaf cells’ plasma wall, resulting in a decrease in lipid peroxidation and 
protecting the cellular wall against heat stress. The mechanism of heat stress ame-
lioration by ZnO NPs is still poorly understood since we were able to find only one 
study that examined it. The heat tolerance may come from sufficient nutrition with 
Zn that increased levels of antioxidants, as was shown in chickpeas and winter 
wheat supplemented with ionic Zn (Peck and McDonald 2010; Ullah et al. 2019). 
However, Ag NPs also helped to increase heat tolerance in wheat (Iqbal et al. 2019) 
with a not well-understood process that may be linked to their nano-size. Therefore, 
ZnO NPs may be superior in protecting plants from heat stress compared to more 
conventional ionic zinc formulations.

12.4.2.3  Cold

Cold stress is abiotic stress, which can cause difficulties in plant growth and produc-
tion. It is caused by temperatures cool enough (0–15 °C) to damage plants without 
forming ice crystals in plant tissues, whereas freezing stress (<0 °C) results in the 
formation of ice crystal in plant tissues (Hasanuzzaman et al. 2013). Plants exposed 
to cold stress suffer from loss of fluidity of membranes, leakage of solutes, poor 
growth and germination, and reduced crop yield. It also causes inhibition in chloro-
phyll levels, CO2 assimilation, transpiration rate and degradation of Rubisco (Welti 
et al. 2002; Suzuki et al. 2008; Liu et al. 2012). Enhancement of carboxylation of 
Rubisco, the light absorption capacity of chloroplasts, electron transport rate, and 
inhibition of ROS generation have been described as alleviating effects of NPs on 
cold stress in plants (Gao et al. 2006; Giraldo et al. 2014; Khan et al. 2017; Ze et al. 
2011). Foliar application of ZnO NPs may mitigate ROS generation by increasing 
enzymatic activities of superoxide dismutase, catalase, and peroxidase, and, more 
generally, they may prevent photoinhibition (Elsheery et al. 2020).

Elsheery et al. (2020) tested a foliar application of ZnO NPs (50 mg∙l−1) on sug-
arcane in an open field experiment. Results showed that during a cold front, chloro-
phyll a and b contents were significantly reduced, but the rate of reduction was 
lower in seedlings treated with ZnO NPs than that of the control group. In contrast, 
carotenoids were increased during the cold front. These effects demonstrate that 
ZnO NPs can mitigate the negative impact of cold stress in sugarcane. Maslobrod 
et al. (2020) treated winter wheat seeds with water dispersions of ZnO NPs and a 
mixture of bismuth, copper, zinc oxide NPs. Both treatments increased seed thermal 
stability, seed germination energy and length of coleoptiles while being exposed to 
low temperature (+4 °C).
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12.4.2.4  Drought

Drought events are becoming more common as a result of anthropogenic influence 
on climate change that severely limits crop production. During these events, plants 
experience insufficient water uptake and, consequently, nutrient uptake that is 
related to a changed condition in a soil environment with limited amounts of capil-
lary water present. During drought, plant growth and development are affected 
(Faizan et al. 2020a, 2021). Drought seriously disturbs plant growth, reducing the 
rate of cell division, leaf expansion, stem elongation, and water use efficiency. 
Drought stress also impairs enzyme activities, results in loss of turgor, root prolif-
eration, plant water and nutrients. Likewise, diminished agricultural productivity 
and prolonged maturation of plants are caused by droughts (Poormohammad Kiani 
et al. 2007; Farooq et al. 2009; Faizan et al. 2020b). Plant macronutrients (N, P, K) 
have low uptake efficiencies (<50%) under normal soil moisture. These efficiencies 
are even lower during drought event, which further reduces fertilizer efficacy. 
Therefore, a reduction in grain yield and nutritional quality caused by drought stress 
can lead to food and nutrition insecurity (Baligar et al. 2001; Fischer et al. 2019). 
Among numerous techniques used to alleviate drought stress in crops, the applica-
tion of ZnO NPs is considered to be an effective treatment. ZnO NPs help protect 
chlorophyll and other pigments, reduce ROS generation, and provide plants with 
Zn, which is important for many enzymes related to drought stress response 
mechanisms.

Dimkpa et al. (2020a, b) studied wheat performance after application of ZnO 
NPs under drought condition. Results showed that drought significantly reduced 
chlorophyll levels (6%), but ZnO NPs alleviated some stress by increasing chloro-
phyll levels (16%) compared to control. Drought delayed (3 days) panicle emer-
gence, and ZnO NPs accelerated (5  days) panicle emergence under drought 
condition. Grain yield was unaffected by ZnO NPs under drought stress but 
increased (88%) under non-drought condition. Adrees et al. (2021) studied the foliar 
application of ZnO NPs (20, 50, and 100 mg∙l−1) on wheat under drought stress 
(35% of water holding capacity). The foliar exposure of ZnO NPs elevated leaf 
chlorophyll contents and also decreased oxidative stress, and enhanced the leaf 
superoxide dismutase and peroxidase activities. They further showed that ZnO NPs 
decreased Cd concentrations in grains under water deficit conditions by 35, 66, and 
81%, respectively. Furthermore, Linh et  al. (2020) demonstrated that ZnO NPs 
treatment effectively helped soybean plants at an early vegetative stage to adapt to 
drought stress, and (Dimkpa et  al. 2019) showed similar findings with sor-
ghum plants.

12.4.2.5  Flooding

Similarly to drought, flooding is also a source of major abiotic stress and can have 
adverse effects on plant growth and development, albeit they are very different. It 
affects soils by altering soils structure, depleting O2, accumulating CO2, and 
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inducing anaerobic decomposition of organic matter. Lack of O2 around plant roots 
can cause severe damage and affect physiological processes in plants (Kozlowski 
1997). Anaerobic respiration via ethanolic fermentation is considered to be an 
essential mechanism for plants to deal with the lack of O2. Switching from aerobic 
respiration to anaerobic fermentation under flooding stress seems to be an important 
mechanism that helps plants survive O2 deficiency (Drew 1997). Foliar application 
of Zn, especially after flooding, was shown to increase the growth of plants since Zn 
becomes more immobile during flood-related soil conditions (Hafeez et al. 2013). 
Therefore, ZnO NPs may pose an efficient way of supplying Zn to affected plants.

For example, in soybean, flooding damages plant growth mainly by damaging 
root length due to the loss of root tips in waterlogged soil and also reducing hypo-
cotyl pigmentation, which leads to low intracellular O2 levels and the synthesis of 
proteins related to anaerobic metabolic pathways (Russell et al. 1990; Huang et al. 
2005; Hashiguchi et al. 2009). To alleviate some aspects of flood stress, Mustafa 
et  al. (2015) exposed soybeans to various NPs, including ZnO NPs (5, 50, and 
500 mg∙l−1). After ZnO NP (50 mg∙l−1) treatment, soybean showed a lower fresh 
weight of plants under flood stress compared to control. Soybeans treated with 5 
and 500  mg∙l−1 ZnO NPs experienced a further decrease in the fresh weight of 
plants. Also, under treatment with 50 mg∙l−1 ZnO NPs, the length of root, including 
hypocotyl, was increased after 2 days of stress but then decreased during the remain-
ing days of the treatment period. Soybean treated with 5 and 500 mg∙l−1 of ZnO NPs 
showed a decreased length of root and hypocotyl compared to the flooding-stressed 
plants during the treatment period. The results of the experiments have shown that 
treating soybean with ZnO NPs before flooding did not alleviate the stress caused 
by flooding. However, this was a laboratory experiment, where 2 days-old soybeans 
were submerged in reverse osmosis water. For rice, there are known times of appli-
cation in field, when Zn treatment can have the highest positive effect even before 
flooding of the plants, with preplant incorporated, and delayed preemergence stages 
having the highest positive effect (Slaton et al. 2005). Therefore, we believe that 
studying the application of ZnO NPs may positively affect the growth of rice and 
other plants that may face flooding stress (Elshayb et al. 2021).

12.4.2.6  Salts

Crop production worldwide faces an increase in land area with heightened salinity 
as a result of the industrialization of agriculture, incorrect agricultural practices, and 
changing climate. Salt affected lands increased by >100 Mha between 1986 and 
2016 (Ivushkin et al. 2019). Stress from salinity affects plant growth and causes 
severe problems, mainly in arid and semi-arid lands (Hussain et  al. 2019). The 
increased amount of soil salts hinders germination, morpho-physiological traits and 
crop yield. It can lead to extensive accumulation of ions (Na+, Cl−) and inhibit K+ 
and Ca2+ uptake and result in ionic imbalance. Furthermore, salt causes the accumu-
lation of ROS in plant cells, creating oxidative and osmotic stress (Astaneh et al. 
2018; Isayenkov and Maathuis 2019). Osmotic stress causes the lower availability 
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to take up water, which leads to dwarfed growth, while oxidative stress inhibits 
plant transpiration and damages cells in the transpiring leaves (Munns 2005; 
Amirjani 2011).

The application of ZnO NPs could be beneficial for reducing the adverse effects 
of salt stress. ZnO NPs positively affected the growth ratings in salt-stressed plants 
because ZnO NPs treatment synthesizes the indole acetic acid (IAA) and thus acti-
vates cell division and enlargement (Ali and Mahmound 2013; Latef et al. 2016; 
Faizan et al. 2020b). It can also be beneficial for maintaining the structural integrity 
of biomembranes, improving protein synthesis, increasing shoot length, chloro-
phyll, nutrient content, antioxidant enzyme activity, photosynthetic rate, etc. (He 
et al. 2015; Landa et al. 2015; Torabian et al. 2016; Hussein and Abou-Baker 2018). 
Moreover, Soliman et al. (2015) showed that ZnO NPs reduce Na+ and Cl− contents 
and increase N, P, K+, Ca2+, Mg2+, Fe and Zn in Moringa peregrina.

Faizan et  al. (2021) studied the foliar application of ZnO NPs (10, 50, and 
100 mg∙l−1) in the presence/absence of NaCl (150 mM) on tomato plants. Results 
showed that foliar spray of ZnONPs significantly increased shoot length, root 
length, biomass, leaf area, chlorophyll content and photosynthetic attributes of 
tomato plants in the presence/absence of salt stress. The application of ZnONPs also 
ameliorate the negative effects of salt stress and enhanced protein content and anti-
oxidative enzyme activity under salt stress. Alabdallah and Alzahrani (2020) showed 
that ZnO NPs (10 mg∙l−1) treatment increased the salinity tolerance in okra plants. 
The folial application of ZnO NPs increased the contents of photosynthetic pig-
ments and the activity of antioxidant enzymes. ZnO NPs seed priming (5 and 
10 mg∙l−1) of wheat increased growth parameters such as photosynthetic pigments, 
indole-3-acetic acid, phenol contents, and organic antioxidant enzyme activities. 
The treatments also significantly decreased lipid peroxidation (El-Bassiouny et al. 
2020). Other studies (Gaafar et al. 2020; Singh et al. 2021) showed positive effects 
of ZnO NPs (50 mg∙l−1) under salt stress at soybean and Linum usitassimum, respec-
tively. Overall, these studies suggest that the application of ZnO NPs at the appro-
priate dosage can be beneficial for enhancing the plant’s toleration and antioxidant 
activity to decrease the damage caused by salt stress.

12.5  Conclusion and Future Outlook

Exposure to engineered NPs, including ZnO NPs, may have both negative or posi-
tive effects on plants and the environment. From an agricultural perspective, nano-
technology may mainly help with nutrient management that leads to more 
environmentally friendly agriculture, where applied nanomaterials have more tar-
geted effects, reduce the number of chemicals used thanks to a more controlled 
release of nutrients and potential benefits related to the nanostructure of applied 
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chemicals. It may help create more effective formulas with better plant responses 
against biotic and abiotic stresses during their life cycles. Such a limited, precise 
application of nanomaterials can have positive environmental impacts together with 
potential cost-saving measures for agriculture. However, there is also inherent risk 
connected to their unknown long-term application spanning several generations, 
detailed effects on the food chain, unclear impact on soil edaphon, and the quality 
of agricultural products as viewed by biogeochemical transport and transformations 
of NPs and their residues. Equally important is the absence of a more precise inter-
national legislative framework that determines levels of concentrations of NPs that 
are toxic and that determines which individual properties of NPs play the major role 
in their toxicity with standardised tests for not only toxicity in agricultural and 
model plants, but also for soil microorganisms and animals, including the impact on 
human health.

ZnO NPs have been shown to improve the growth of crops functioning as micro-
nutrient nano fertilizer, nano growth promoters or nano pesticides that also protect 
plants from abiotic and biotic stress. A wide variety of effects, including alteration 
of several biochemical, metabolic, and physiological processes, e.g. production of 
reactive oxygen species, photosynthesis, water status, root hydraulic conductance, 
stress signalling and hormonal pathways, and transport and distribution of solutes in 
plants were found for ZnO NPs. The direct knowledge of the processes governing 
ZnO NPs interaction with various species of crops is growing but is not exhaustive, 
although much can be inferred from the action of ionic Zn in plants. ZnO NPs have 
the potential to alleviate different types of abiotic and biotic stresses in plants. 
However, more research is needed to fully understand the interaction between dif-
ferent species of plants and ZnO NPs with corresponding macro-sized or ionic 
forms, where the molecular and transcriptional alterations at the level of the plant 
are still not to be fully understood. Also, metabolic and proteomic changes in differ-
ent plant organs need to be fully described. Mechanisms underlying the ability of 
ZnO NPs to alleviate abiotic stress in plants need to be characterised at the molecu-
lar and genetic levels and their actions compared to ionic forms of Zn to elucidate 
nano specific actions of ZnO NPs. Finally, more attention should be put on the 
development of strategic tools for ZnO NPs application in fields conditions in the 
context of climate change to further the knowledge gained from greenhouse and 
laboratory studies.
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