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Abstract We investigate a class of network games with strategic complements and
bounded strategy sets by using the variational inequality approach. In the case where
the Nash equilibrium of the game has some boundary components, we derive a
formula which connects the equilibrium to the Katz-Bonacich centrality measure,
thus generalizing the classical result for the interior solution case. Furthermore,
we prove that any component of the Nash equilibrium is less than or equal to the
corresponding component of the social optimal solution and numerically study the
price of anarchy for a small size test problem.

Keywords Network games · Nash equilibrium · Katz-Bonacich centrality
measure · Price of anarchy

1 Introduction

This paper deals with a class of Network Games (see, e.g., [10]), where each
player is identified with the node of a graph and players that can interact directly
are connected through edges of the graph. This kind of games have proven to be
very useful in modeling social and economic interactions, where the action of a
typical player is likely to be influenced by the actions taken by her/his friends
or colleagues. A feature of these models is the central role played by the graph
structure in influencing the social or economic interactions and shaping the resulting
equilibrium. As a consequence, the Nash equilibrium and the social optimal solution
depend on graph-algebraic quantities. In particular, in the case of interior solution
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a very interesting representation formula has been derived in the seminal paper by
Ballester et al. [1], which involves the so called Katz-Bonacich centrality measure.

In this note, we generalize this formula to the case where the solution has some
boundary components. To this end, we focus on the quadratic reference model
with strategic complements which, roughly speaking, describe social interactions
where the incentive for a player to take an action increases when the number of
her/his social contacts who take the action increases. Furthermore, by exploiting
the sequential best-response dynamics, we prove that the Nash equilibrium is
component-wise less than or equal to the social optimal solution. To obtain our
results, we reformulate our problem as an equivalent variational inequality. The
relationship between Nash equilibrium problems and variational inequalities has
been pioneered by Gabay and Moulin [8], but only recently some authors have
applied this methodology to investigate Network Games. In these regards, we refer
the interested reader to the beautiful paper by Parise and Ozdaglar [15], which
although comprehensive in many respects such as uniqueness and sensitivity of
equilibrium, does not focus on the Katz-Bonacich representation of the solution
or on the price of anarchy.

The paper is structured as follows. In Sect. 2 we first introduce the notation, the
basic definitions and the variational inequality approach. We then specialize to the
reference quadratic model and recall the classical Katz-Bonacich formula for the
interior solution case, where the strategy set of each player is R+. We also recall
the notions of social optimal solution, efficiency of a Nash equilibrium, and price of
anarchy. In Sect. 3, we assume that the strategy sets are bounded also from above and
derive a necessary condition that the solution satisfies when some of its components
lie on the boundary (Theorem 3). We interpret this condition in terms of the Katz-
Bonacich centrality measure. Moreover, we prove the relationship between the Nash
equilibrium and the social optimum (Theorem 4). Theorems 3 and 4 of this section
are, to the best of our knowledge, new and represent the main contribution of this
note, Sect. 4 is devoted to the numerical investigation of a test problem to illustrate
our findings. A short concluding section ends the paper.

2 Network Games

2.1 Game Formulation and Variational Inequality Approach

In Network Games players are represented by the nodes of an undirected graph
(V ,E), where V = {v1, . . . , vn} is the sets of nodes and E is the set of edges
formed by pairs of nodes (vi, vj ). Here, we consider undirected simple graphs. Two
nodes vi and vj are said to be adjacent if they are connected by the edge (vi , vj ).
The information about the adjacency of nodes can be stored in the adjacency matrix
G whose elements gij are equal to 1 if (vi , vj ) is an edge, 0 otherwise. G is thus
a symmetric and zero-diagonal matrix. Given a node v, the nodes connected to v
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with an edge are called the neighbors of v. A walk in the graph is a finite sequence
of the form vi0 , ej1, vi1 , ej2, . . . , ejk , vjk , which consists of alternating nodes and
edges of the graph, such that vit−1 and vit are end nodes of edge ejt . The length of
a walk is the number of its edges. Let us remark that it is allowed to visit a node
or go through an edge more than once. The indirect connections between any two
nodes in the graph are described by means of the powers of the adjacency matrix G.
Indeed, it can be proved that the element g

[k]
ij of Gk gives the number of walks of

length k between nodes vi and vj .
In the sequel, the set of players will be denoted by {1, 2, . . . , n} instead of

{v1, v2, . . . , vn}. We denote with Ai ⊂ R the action space of player i, while
A = A1 ×· · ·×An. For each a = (a1, . . . , an) , a−i = (a1, . . . , ai−1, ai+1, . . . , an)

and the notation a = (ai, a−i ) will be used when we want to distinguish the action
of player i from the action of all the other players. Each player i is endowed with a
payoff function ui : A → R that she/he wishes to maximize. The notation ui(a,G)

is often utilized when one wants to emphasize that the utility of player i also depends
on the actions taken by her/his neighbors in the graph.

The solution concept that we consider here is the Nash equilibrium of the game,
that is, we seek an element a∗ ∈ A such that for each i ∈ {1, . . . , n}:

ui(a
∗
i , a∗−i ) ≥ ui(ai, a

∗−i ), ∀ ai ∈ Ai. (1)

We now posit a further assumption on how variations of the actions of player i’s
neighbors affect her/his marginal utility.

Definition 1 The network game has the property of strategic complements if:

∂2ui

∂aj ∂ai

(a) > 0, ∀ (i, j) : gij = 1, ∀ a ∈ A.

For the subsequent development it is important to recall that if the ui are contin-
uously differentiable functions on A, the Nash equilibrium problem is equivalent to
the variational inequality V I (F,A): find a∗ ∈ A such that

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ A, (2)

where

[F(a)]� := −
(

∂u1

∂a1
(a), . . . ,

∂un

∂an

(a)

)
(3)

is also called the pseudo-gradient of the game. For an account of variational
inequalities the interested reader can refer to [7, 12, 14]. We recall here some useful
monotonicity properties.
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Definition 2 A map T : Rn → R
n is said to be monotone on A iff:

[T (x) − T (y)]�(x − y) ≥ 0, ∀ x, y ∈ A.

If the equality holds only when x = y, T is said to be strictly monotone.
T is said to be β-strongly monotone on A iff there exists β > 0 such that

[T (x) − T (y)]�(x − y) ≥ β‖x − y‖2, ∀ x, y ∈ A.

For linear operators on R
n the two concepts of strict and strong monotonicity

coincide and are equivalent to the positive definiteness of the corresponding matrix.
Conditions that ensure the unique solvability of a variational inequality problem

are given by the following theorem (see, e.g., [7, 14]).

Theorem 1 If K ⊂ R
n is a compact convex set and T : Rn → R

n is continuous on
K , then the variational inequality problem V I (F,K) admits at least one solution.
In the case K is unbounded, existence of a solution may be established under the
following coercivity condition:

lim‖x‖→+∞
[T (x) − T (x0)]�(x − x0)

‖x − x0‖ = +∞,

for x ∈ K and some x0 ∈ K .
Furthermore, if T is strictly monotone on K the solution is unique.

In the following subsection, we describe in detail the linear-quadratic reference
model with strategic complements.

2.2 The Linear-Quadratic Model

Let Ai = R+ for any i ∈ {1, . . . , n}, hence A = R
n+. The payoff of player i is given

by:

ui(a,G) = −1

2
a2
i + αai + φ

n∑
j=1

gij aiaj , α, φ > 0. (4)

In this simplified model α and φ take on the same value for all players, which then
only differ according to their position in the network. The last term describes the
interaction between neighbors, and since φ > 0 this interaction falls in the class of
strategic complements. The pseudo-gradient’s components of this game are easily
computed as:

Fi(a) = ai − α − φ

n∑
j=1

gij aj , i ∈ {1, . . . , n},
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which can be written in compact form as F(a) = (I − φG)a − α1, where
1 = (1, . . . , 1)� ∈ R

n. We will seek Nash equilibrium points by solving the
variational inequality:

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ R
n+. (5)

Since the constraint set is unbounded, to ensure solvability we require that F be
strongly monotone, which (implying coercivity, for linear operators) also guarantees
the uniqueness of the solution.

Lemma 1 (see, e.g. [10]) The matrix I − φG is positive definite iff φρ(G) < 1,
where ρ(G) is the spectral radius of G.

In the next lemma we recall a well known result about series of matrices.

Lemma 2 Let T be a square matrix and consider the series
∑∞

p=0 T p. The series
converges provided that limp→∞ T p = 0, which is equivalent to ρ(T ) < 1. In such
case the matrix I − T is non singular and we have (I − T )−1 = ∑∞

p=0 T p.

Theorem 2 (See e.g. [10]) If φρ(G) < 1, then the unique Nash equilibrium is

a∗ = α(I − φG)−11 = α

∞∑
p=0

φpGp1 . (6)

Remark 1 The expansion in (6) suggests an interesting interpretation. Indeed, the
(i, j) entry, g

[p]
ij , of the matrix Gp gives the number of walks of length p between

nodes i and j . Based on this observation, a measure of centrality on the network
was proposed by Katz and Bonacich [5]. Specifically, for any weight w ∈ R

n+, the
weighted vector of Katz-Bonacich is given by:

bw(G, φ) = M(G,φ)w = (I − φG)−1w =
∞∑

p=0

φpGpw. (7)

In the case where w = 1, the (non weighted) centrality measure of Katz-Bonacich
of node i is given by:

b1,i(G, φ) =
n∑

j=1

Mij (G, φ)

and counts the total number of walks in the graph, which start at node i, exponen-
tially damped by φ.
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Remark 2 The game under consideration also falls in the class of potential games
according to the definition introduced by Monderer and Shapley [13]. Indeed, a
potential function is given by:

P(a,G, φ) =
n∑

i=1

ui(a,G) − φ

2

n∑
i=1

n∑
j=1

gij aiaj .

Monderer and Shapley have proved that, in general, the solutions of the problem
maxa∈A P(a,G, φ) form a subset of the solution set of the Nash game. Because
under the condition φρ(G) < 1 both problems have a unique solution, it follows
that the two problems share the same solution.

Let us now define the social welfare function as:

W(a,G) =
n∑

i=1

ui(a,G) = −1

2
a�(I − 2φG)a + α1�a.

The value that W takes on at the Nash equilibrium a∗ can be easily computed as
W(a∗,G) = 1

2α2b1(G, φ)�b1(G, φ). The natural question arises of comparing
this value with the optimal value of W . Under the condition 2φρ(G) < 1 it turns
out that the maximum of W is reached at aso = αb1(G, 2φ) and W(aso,G) =
1
2α2b1(G, 2φ)�b1(G, 2φ). Thus, the Nash equilibrium is not efficient and it is
interesting to compute the ratio:

γ (G, φ) = W(a∗,G)

W(aso,G)
, (8)

which can be termed the price of anarchy (see, e.g., [16]).

3 Bounded Strategies

We now assume that the strategies of each player have an upper bound, i.e., the
strategy set Ai = [0, Li], with Li > 0, for any i ∈ {1, . . . , n}, and derive a
Katz-Bonacich type representation of the solution, in the case where exactly k

components take on their maximum value.

Theorem 3 Let ui be defined as in (4), φρ(G) < 1, Ai = [0, Li] for any i ∈
{1, . . . , n} and a∗ be the unique Nash equilibrium of the game. We then have that
a∗
i > 0 for any i ∈ {1, . . . , n}. Moreover, assume that exactly k components of a∗

take on their maximum value: a∗
i1

= Li1 , . . . , a
∗
ik

= Lik , and denote with ã∗ =
(ã∗

ik+1
, . . . , ã∗

in
) the subvector of the nonboundary components of a∗. We then get:

ã∗ = (In−k − φ G1)
−1w = bw(G1, φ), (9)
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where G1 is the submatrix obtained from G choosing the rows ik+1, . . . , in and
the columns ik+1, . . . , in; G2 is the submatrix obtained from G choosing the
rows ik+1, . . . , in and the columns i1, . . . , ik; w = α1n−k + φG2 L and L =
(Li1 , . . . , Lik ).

Proof The Nash equilibrium a∗of the game solves the variational inequality

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ A, (10)

where A = [0, L1]×· · ·×[0, Ln]. Let us assume that there exist l such that a∗
l = 0,

and choose in (10) a = (a∗
1 , . . . , a∗

l−1, Ll, a
∗
l+1, . . . , a

∗
n) ∈ A. With this choice, (10)

reads:

0 ≤ Fl(a
∗)Ll =

⎛
⎝−φ

n∑
j=1

glj a
∗
j − α

⎞
⎠ Ll < 0,

which yields the contradiction. Thus, a∗
i > 0 for any i = 1, . . . , n.

Let Ã denote the face of A obtained intersecting A with the hyperplanes: ai1 =
Li1 , . . . , aik = Lik . Moreover, let ã = (aik+1, . . . , ain ), ã∗ = (ã∗

ik+1
, . . . , ã∗

in
) and

F̃ : Rn−k → R
n−k such that F̃il (ã) is obtained by fixing ai1 = Li1 , . . . , aik = Lik

in Fil (a). We consider now the restriction of (10) to Ã, which reads:

n∑
l=k+1

F̃il (ã
∗)(ãil − ã∗

il
) ≥ 0, ∀ ã ∈ Ã. (11)

Since we are assuming that exactly k components of the solution a∗ reach their
upper bounds, it follows that ã∗ lies in the interior of Ã, hence F̃ (ã∗) = 0, that is
equivalent to

a∗
il

− φ

n∑
m=k+1

gil ima∗
im

= α + φ

k∑
m=1

gil imLim, l = k + 1, . . . , n, (12)

which yields:

(In−k − φG1)ã
∗ = α1n−k + φG2L. (13)

Because the matrix (In−k − φG1) is not singular, the thesis is proved. �
The following result shows a relationship between the Nash equilibrium and the

social optimum of the game.
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Theorem 4 Let ui be defined as in (4), φρ(G) < 1/2, and Ai = [0, Li] for any
i ∈ {1, . . . , n}. Then,

a∗
i ≤ aso

i ∀ i = 1, . . . , n,

where a∗ is the Nash equilibrium and aso is the social optimum of the game.

Proof Since φρ(G) < 1/2, there exists a unique Nash equilibrium a∗ and a
unique social optimum aso. Moreover, it follows from the KKT conditions that

aso satisfies the following system: aso
i = min

{
Li, α + 2φ

∑n
j=1 gij a

so
j

}
, i =

1, . . . , n. Given any strategy profile a = (ai, a−i ), the best response of player
i to rivals’ strategies a−i is given by Bi(a−i ) = arg maxai∈[0,Li ] ui(·, a−i ) =
min

{
Li, α + φ

∑n
j=1 gij aj

}
.

We now consider the sequential best response dynamics starting from the social
optimum aso, that is the sequence {ak} defined as follows:

a0 = aso, a1 =
(
B1(a

0−1), a0
2, a0

3, . . . , a0
n

)
,

a2 =
(
B1(a

0
−1), B2(a

1−2), a0
3, . . . , a0

n

)
,

. . .

an =
(
B1(a

0−1), B2(a
1−2), B3(a

2−3), . . . , Bn(a
n−1−n )

)
,

an+1 =
(
B1(a

n
−1), B2(a

1−2), . . . , Bn(a
n−1−n )

)
,

an+2 =
(
B1(a

n
−1), B2(a

n+1
−2 ), B3(a

2−3), . . . , Bn(a
n−1−n )

)
, . . . .

We note that

a1
1 = B1

(
a0−1

)
= min

⎧⎨
⎩L1, α + φ

n∑
j=1

g1j a0
j

⎫⎬
⎭ ≤ min

⎧⎨
⎩L1, α + 2φ

n∑
j=1

g1j a0
j

⎫⎬
⎭ = a0

1 ,

hence a1 ≤ a0. Moreover, we have

a2
2 = min

⎧⎨
⎩L2, α + φ

n∑
j=1

g2j a
1
j

⎫⎬
⎭ ≤ min

⎧⎨
⎩L2, α + 2φ

n∑
j=1

g2j a
0
j

⎫⎬
⎭ = a0

2 = a1
2,
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hence a2 ≤ a1. Similarly, we can prove that an ≤ an−1 ≤ · · · ≤ a1 ≤ a0.
Furthermore, we get

an+1
1 = min

⎧⎨
⎩L1, α + φ

n∑
j=1

g1j an
j

⎫⎬
⎭ ≤ min

⎧⎨
⎩L1, α + φ

n∑
j=1

g1j a0
j

⎫⎬
⎭ = B1

(
a0−1

)
= an

1 ,

hence an+1 ≤ an, and

an+2
2 = min

⎧⎨
⎩L2, α + φ

n∑
j=1

g2j a
n+1
j

⎫⎬
⎭ ≤ min

⎧⎨
⎩L2, α + φ

n∑
j=1

g2ja
1
j

⎫⎬
⎭ = an+1

2 ,

thus an+2 ≤ an+1. Following the same argument as before, we can prove that
ak+1 ≤ ak for any k ∈ N and hence, in particular, ak ≤ aso holds for any k.
Since the potential function P is strongly concave, the sequence {ak} converges to
the unique Nash equilibrium a∗ (see, e.g., [4, Proposition 3.9]), hence a∗ ≤ aso. �

4 Numerical Example

In this section, we show a numerical example for the linear-quadratic network game
described in Sect. 3.

Example 1 We consider the network shown in Fig. 1 (see also [3]) with eight nodes
(players). The spectral radius of the adjacency matrix G is ρ(G) � 3.1019. We set
parameters α = 10, φ = 0.45/ρ(G) and upper bounds Li = L = 18 for any player
i = 1, . . . , 8. Therefore, there exists a unique Nash equilibrium and a unique social
optimum. Table 1 shows the unconstrained Nash equilibrium (assuming L = +∞,
given by formula (6)), the constrained Nash equilibrium (assuming L = 18) and the
social optimum.

Figure 2 shows the price of anarchy γ (G, φ) of the Nash equilibrium for different
values of L and φ. The results suggest that (1) the price of anarchy is a non-
increasing function of L; (2) it is constant when either L is small enough (i.e., the
Nash equilibrium coincides with the social optimum) or greater than some threshold

Fig. 1 Network topology of
Example 1

1

2

3

4 5 6

7

8
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Table 1 Unconstrained Nash equilibrium, constrained Nash equilibrium (considering upper
bound L = 18) and social optimum for Example 1

Player Unconstrained NE Constrained NE Social optimum

1 18.2041 17.7661 18.0000

2 18.2041 17.7661 18.0000

3 18.2041 17.7661 18.0000

4 20.1431 18.0000 18.0000

5 15.3047 14.9868 18.0000

6 16.4227 16.3742 18.0000

7 14.4837 14.4755 18.0000

8 14.4837 14.4755 18.0000

0 10 20 30 40 50 60 70 80

L

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(G
,

)

Price of Anarchy

  = 0.1/ (G)
  = 0.2/ (G)
  = 0.3/ (G)
  = 0.4/ (G)

Fig. 2 Price of anarchy for different values of L and φ

(i.e., the Nash equilibrium and the social optimum are both interior to the feasible
region); (3) the larger the value of φ, the smaller the asymptotic value of γ (G, φ) is.

5 Conclusions and Further Research Perspectives

A future research direction is the use of the necessary condition for boundary
solutions to develop an algorithm for finding the Nash equilibrium. Moreover, the
introduction of uncertain data in the model could be done along the same lines as
in [11]. From the application viewpoint, our results could be used to further develop
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several models in social sciences and economy. For instance, in [2] criminal social
interactions were analyzed within the framework of a general quadratic model in
social networks; in [6], the influence of peers on educational networks has been
studied extensively using the approach described in this note; moreover, in [9] the
quadratic model was used to investigate the interaction between the social space
(i.e., the network) and the geographical space (i.e., the city).
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