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Abstract We propose a branch and bound (B&B) and a dynamic programming
algorithm for the Path Avoiding Forbidden Pairs Problem (PAFPP). Given a network
and a set of forbidden node pairs, the problem consists in finding the shortest path
from a source node s to a target node t , avoiding to traverse both nodes of any
of the forbidden pairs. The problem has been shown to be NP-complete. In this
work, we describe the problem, its mathematical model and we propose two exact
algorithms. We compare their performances against those of a commercial solver
solving instances for two different graph topologies: fully random graphs and grid
graphs.

Keywords Branch and bound · Dynamic programming · Constrained shortest
paths · Forbidden pairs

1 Introduction

In this work, we study the Path Avoiding Forbidden Pairs Problem (PAFPP). The
problem asks to find the shortest path between two nodes s and t in a given weighted
directed graph G = (V ,A) or recognize that such path does not exist. The shortest
path should not visit both nodes belonging to a set F ⊂ (V ×V ) of node pairs called
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forbidden pairs. Paths containing at most one vertex from each pair in F are called
F -paths.

The PAFPP has been introduced in [12, 15] to design test cases for automatic
software validation, where the nodes of the graph represent segments of code and
edges represent the control flow. The goal is to cover the graph with s − t paths
corresponding to different test cases, introducing forbidden pairs which identify the
mutually exclusive code segments.

A special case of PAFPP arises in bio-informatics, tackling the problem of
peptide sequencing via tandem mass spectrometry. Chen et al. [3] model the peptide
sequencing as a PAFPP on a directed acyclic graph.

PAFPP emerges in Ferone et al. [6] as a subproblem of the constrained shortest
path problem named Constrained Shortest Path Tour Problem (CSPTP). Authors
reduce the CSPTP to the PAFPP and solve it with a branch and bound strategy.

Lastly, Ceselli et al. [2] solve a rich Vehicle Routing Problem using Branch
and Price. Here the PAFPP structure emerges in the pricing problem modeling
compatibility constraints between customers.

Gabow et al. [9] proves the NP-hardness of PAFPP, which is polynomially
solvable under skew symmetry conditions [16]. Kolman and Pangrác [10] studies
the complexity of PAFPP under different assumptions, showing that the problem
remains NP-complete even if the graph is planar or presents an halving structure,
but it becomes polynomial when the graph has a hierarchical structure. These results
are extended in [11], proving that the PAFPP is NP-hard when the set of forbidden
pairs has an overlapping structure or is sorted. Finally, Blanco et al. [1] presents a
polyhedral study of the PAFPP.

The paper is organized as follows. In Sect. 2 we present the mathematical model
of the problem. In Sects. 3 and 4 we present the solution approaches and the
computational results, respectively. In Sect. 5 we conclude and discuss some future
work.

2 Mathematical Formulation

Let G = (V ,A) be a weighted directed graph, where V = {1, . . . , n} is the set of
nodes, andA = {(i, j) ∈ V ×V : i, j ∈ V ∧i �= j } is the set ofm arcs. Let C : A →
R

+
0 a function that assigns a non-negative cost cij to each arc (i, j) ∈ A. For each

node i ∈ V , let FS(i) = {j ∈ V : (i, j) ∈ A} and BS(i) = {j ∈ V : (j, i) ∈ A}
be the forward star and backward star of node i, respectively. Given a source node
s ∈ V and a destination node t ∈ V , the PAFPP can be modeled with the following
0 − 1 integer program:

min
∑

(i,j)∈A
cij xij (1a)

s.t.
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∑

j∈FS(i)

xij −
∑

j∈BS(i)
xji =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = s;
−1, i = t;
0, otherwise;

(1b)

∑

j∈BS(a)
xja +

∑

j∈BS(b)
xjb ≤ 1 ∀ (a, b) ∈ F (1c)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (1d)

The objective function (1a) minimizes the path length. Constraints (1b) model
the flow balance at each node. Constraints (1c) guarantee that two nodes belonging
to a forbidden pair are never visited simultaneously.

3 Solution Approaches

In this section, we describe two exact approaches to solve the PAFPP. In particular,
we present a branch and bound algorithm (B&B) in Sect. 3.1, and a dynamic
programming algorithm in Sect. 3.2.

3.1 Branch and Bound Approach

Observing the mathematical model (1a)–(1d), it is evident that relaxing the con-
straints (1c) we obtain the model of a Shortest Path Problem (SPP), which is
polynomially solvable (for example, with the Dijkstra’s algorithm [5]).

Therefore, we devise a B&B algorithm using a polynomial algorithm for the SPP
to compute a combinatorial bound and performing branching operations when the
optimal solution of the relaxation results infeasible for the PAFPP.

Let Gt be the graph associated to a generic iteration t of the B&B, let P t be the
optimal solution of the relaxed problem PAFPP t

R onGt and let UB be the value of
an incumbent feasible solution. If the value of P t is not less thanUB, then the graph
Gt does not contain any improving solution and P t can be disregarded. Instead, if
P t does not contain any forbidden pair, then it is also feasible for PAFPP defined
on G and it improves the incumbent solution. On the contrary, if P t contains both
nodes of any forbidden pair, two sub-problems are generated.

In particular, let (v,w) one of the forbidden pairs violated by P t , two graphsGt1

andGt2 are generated and associated to the branching nodes t1 and t2, respectively.
The graphs Gt1 and Gt2 are obtained removing from Gt the nodes v and w,
respectively. More formally, At1 = At \ {v} and At2 = At \ {w}.

Obviously, as in classic B&B framework, if the sub-problem of iteration t is not
feasible – i.e., it does not exist an s − t path due to the removed nodes—the node is
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not further branched. The incumbent best solution found is optimal and returned as
final solution.

3.2 Dynamic Programming for PAFPP

Dynamic programming have been extensively and successfully applied to con-
strained shortest path problems [4, 7]. Therefore, we solve PAFPP to optimality by a
bi-directional dynamic programming algorithm [13] implementing the Decremental
State Space Relaxation (DSSR) strategy [14].

A state associated with vertex i ∈ N represents a partial path from the source
node s to the node i. Different states can be associated with the same node and they
correspond to different partial paths.

The dynamic programming algorithm iteratively extends states until no further
extensions are possible. Among all feasible states reaching the destination node d
the one with minimal cost represent the optimal solution to PAFPP.

Each state is encoded in a label, in bi-directional dynamic programming called
forward and backward labels. A forward label associated with node i ∈ N is a tuple:

l
f
i = (i, ci , S, B), (2)

where i is the last node visited in the partial path, ci is the accumulated cost, S is
a binary vector that keep tracks of the visited nodes in the partial path and B is a
binary vector with size |B| = |F |. In vector B, bj ∈ B = 1 indicates that one of the
nodes belonging to the j th forbidden pair is visited along the partial path. Note that,
S does not keep any information about the order in which the vertices are visited.
Similarly, a backward label associated with node i ∈ N , corresponding to paths
from node i to destination node d , is a tuple:

lbi = (i, ci, S, B), (3)

where tuple’s elements have the same meaning as those of forward labels.
The dynamic programming algorithm extends all feasible forward and backward

labels to generate new forward and backward labels. The extension of a forward
label corresponds to appending an additional arc (i, j) to a path from s to i,
obtaining a path from s to j , while the extension of a backward label corresponds
to appending an additional arc (j, i) to a path from i to d , obtaining a path from j

to d .
The binary vector B is used to avoid visiting pair of nodes belonging to a

forbidden pair while vector S is used to avoid cycles. Anyway, as the cost matrix
is non-negative and triangular inequality holds, all partial paths with cycles are
suboptimal and can be safely ignored. When a label li = (i, ci , S, B) is extended
to a vertex j , a new label lj = (j, cj , S

′, B ′) is generated. The update rules of the
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vectors S and B are as follows:

S′
k =

{
Sk + 1, k = j ;
Sk, k �= j ; (4)

B ′
k =

{
Bk + 1, (a, b)k ∈ F, ak = j ∨ bk = j ;
Bk, otherwise.

(5)

A label li = (i, ci, S, B) is feasible if Sk ≤ 1 and Bf ≤ 1 for all k ∈ N and all
f ∈ F , respectively.

The effectiveness of dynamic programming depends on the number of generated
labels. In order to control the number of labels, dominance tests are performed. Let
l′ = (i, c′

i , S
′, B ′) and l′′ = (i, c′′

i , S
′′, B ′′) be two labels associated with node i. l′

dominates l′′ and label l′′ can be safely discarded only if

c′
i ≤ c′′

i ; (6)

B ′
f ≤ B ′′

f , ∀f ∈ F (7)

and at least one inequality is strict. Please note that only vector B participates in the
domination criterion.

In bi-directional dynamic programming forward and backward labels are joined
to produce complete paths from node s to node d . Let lfi = (i, c

f
i , S

f , Bf ) a
forward label and lbi = (i, cbi , S

b, Bb). The join is feasible if

S
f
k + Sbk ≤ 1, ∀k ∈ N; (8)

B
f
f + Sbf ≤ 1, ∀f ∈ F. (9)

The join condition ensures that the final path does not contain cycles nor visit both
nodes of a forbidden pairs. Even if the vector S is not included in domination
conditions, it is guaranteed that none of the optimal paths is eliminated. Indeed,
suppose that a join operation is prohibited because a node k is visited in both forward
and backward labels. As the cost matrix is positive and triangular inequality holds,
there must be non dominated forward and backward labels where node k is not
visited and the join is feasible and more profitable.

We reduce the number of labels by selecting a monotone resource and extend
labels for which the resource consumption is less than half of a given threshold T .
In PAFPP, the only available monotone resource is the accumulated cost. In order
to apply the bi-directional dynamic programming algorithm we compute an upper
bound to the optimal cost c̄∗ as the threshold T .

Decremental state space relaxation (DSSR) introduced by Righini and Salani
[14] aims at reducing the number of states to be explored by dynamic programming.
For PAFPP, the basic idea is that not all forbidden pairs are tracked in the vector B
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and are therefore not imposed in the domination criterion. If the optimal solution
visits both nodes of a forbidden pair, the corresponding pair is added to the vector
B and the process is iterated. We remark that at each iteration a lower bound to the
optimal solution is computed.

4 Computational Results

We present some preliminary results to compare the performances of DSSR and
B&B against those of a commercial solver (IBM CPLEX) directly solving the
model (1a)–(1d). A time limit of 10min has been used for each solution method.

The instances were randomly generated through an adaption of the generator
presented in [8] and can be divided in two classes: fully random and grid graphs.

The number m of edges in the random graphs has been selected to be
in {5 · n, 10 · n, 15 · n}, where n = |V |. The total number of forbidden
pairs for each instance is in {25 · n, 30 · n, 35 · n}. Since the grid graphs
are more sparse, the number of forbidden pairs in grid graphs ranges in
{�6.25 · n , �12.50 · n, �18.75 · n , �25 · n , �30 · n}.

Each combination of graph size characterizes a collection of similar instances,
denoted as {R1, . . . , R9,G1, . . . ,G3}. Each random (grid) collection contains 30
(50) different instances of the same type, 10 for each different number of forbidden
pairs. The characteristics of the data-set are summarized in Table 1.

The computational results obtained by CPLEX, B&B, and the dynamic program-
ming approach (DSSR) are reported in Table 2. For each instance type, we report
the time spent by the algorithms in solving instances of that type (avg. time), and
the number of instances of that type for which a proved optimal (O) solution has
been found.

The results highlight that in spite of their size the random graphs are much easier
to solve respect to the grid networks. This was an expected result, since random
graphs are denser respect to the grid graphs, it is therefore much easier to find an

Table 1 Instance parameters Fully random graphs Grid graphs

Problem Nodes Arcs Problem size

R1 1500 7500 G1 200 × 200

R2 1500 15,000 G2 200 × 400

R3 1500 22,500 G3 300 × 300

R4 2000 10,000

R5 2000 20,000

R6 2000 30,000

R7 2500 12,500

R8 2500 25,000

R9 2500 37,500
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Table 2 Experimental
results

CPLEX B&B DSSR

O Avg. time O Avg. time O Avg. time

G1 27 363.28 18 387.05 10 481.58

G2 28 382.40 30 314.45 14 452.67

G3 23 362.71 27 283.32 15 434.85

Average 26 369.46 25 328.27 13 456.37

R1 30 1.35 30 0.00 30 0.00

R2 30 2.89 30 0.00 30 0.01

R3 30 4.63 30 0.00 30 0.01

R4 30 1.97 30 0.00 30 0.01

R5 30 3.94 30 0.00 30 0.01

R6 30 6.46 30 0.00 30 0.01

R7 30 2.48 30 0.00 30 0.01

R8 30 5.32 30 0.01 30 0.01

R9 30 8.59 30 0.01 30 0.02

Average 30 4.18 30 0.00 30 0.01

alternative path that does not violates any forbidden pair. For random graphs, all
the algorithms are very fast (less than 5 s in average). Both B&B and DSSR get the
optimal solution for all the instances. It is worthy to note that all the instances were
generated to be non-trivial, i.e. the simple shortest path s − t contains at least one
forbidden pair.

On the other hand, the grid graphs are more challenging. In this case, CPLEX
misses the optimum in 54 out of 150 cases, B&B is not able to find the optimal
solution in 48 cases, and DSSR fails in 111 cases. This is caused by the sparsity of
the grid graphs that induces a lower number of feasible s − t paths.

Figure 1 illustrates the number of optimal solutions found with respect to the
ratio of forbidden pairs over the number of nodes in the network. The B&B and
CPLEX approaches show a decreasing trend: for an increasing number of forbidden
pairs, the instances become more challenging and, generally, the methods find less
optimal solutions. Instead, the DSSR does not seem to be strongly influenced by the
number of forbidden pairs as no clear trend is visible.

These are preliminary results, but they give valuable information.When instances
are not extremely challenging (Random), both B&B and DSSR perform well
presenting an high converge speed to the optimum. Meanwhile, on sparse graphs
B&B has similar performanceswith respect to CPLEX, but solving a higher number
of instances. DSSR is the worst approach on these problems. Nevertheless, we
believe that DSSR can be strongly improved with the use of an upper bound that
permits to prune many feasible labels.
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Fig. 1 Optimal solutions found on grid graphs with respect to the relative number of forbidden
pairs

5 Conclusions and Future Work

This paper presents the Path Avoiding Forbidden Pairs Problem (PAFPP). We
propose two exact algorithms to solve the problem to proven optimality: a branch
and bound (B&B) algorithm and a dynamic programming (DSSR) algorithm. Some
preliminary results are compare the performance of the methods against those
of a commercial solver. The results evidence that on Random instances the two
approaches are very performing. On the other hand, on sparse instances B&B seems
to be equivalent to CPLEX while DSSR needs to be improved.

As future research perspectives, we are sure to be able to obtain a better upper
bound to improve the performance of DSSR and we plan to better investigate the
instances’ properties that have an impact to the performance of the algorithms.
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