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Abstract Natural disasters may have devastating effects on communities and
affected areas. As a consequence, decision-makers have to be proactive and able
to develop efficient rescue plans to save lives and prevent further damages. In this
paper, we address the issue of planning the emergency evacuation of occupants
of a building after a disaster event like a landslide. In particular, we propose a
network model that minimizes both the travel time and the delay of evacuating.
We also introduce a measure of the physical difficulties of evacuees and a parameter
associated with the severity of the disaster. We then derive the variational inequality
formulation. In order to illustrate the modeling framework, we present a numerical
example.
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1 Introduction

Natural disasters related to ground movements, such as landslides, can be compli-
cated and unpredictable and, therefore, difficult to risk assess. Landslides can occur
in almost every country and can cause significant damage. Also, climate changes
may increase the risk: more heavy rain and melting of local permafrost in some
mountain areas and variations in ice temperature and local water level can increase
the risk of a landslide. Landslides are one of the most relevant geomorphological
hazards in a country, because of the high levels of people affected, destruction of
assets and disruption of economic and social activities.

Italy is one of the European countries most affected by landslides, with 620,808
landslides in an area of 23,700km2, which is equal to 7.9% of the national territory
(see Fig. 1). These data derive from the project of Inventario dei Fenomeni Franosi
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Fig. 1 Italian hydrogeological danger distribution

in Italy (IFFI Project) carried out by ISPRA (Superior Institute for Protection and
Environmental Research) and the Regions and Autonomous Provinces, according to
standardized and shared methods. About a third of the total landslides in Italy are
rapid kinematic phenomena (collapses, rapid flows of mud and debris), character-
ized by high speeds, up to a few meters per second, and by high destructiveness,
often with serious consequences in terms of loss of human lives. Other types of
movements (e.g. slow flows, complex landslides), characterized bymoderate or slow
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speeds, can cause significant damage to residential areas and linear communication
infrastructures.

The hydrogeological instability essentially includes two categories of events:
landslides and floods. To get an idea of the size of the problem, we remember
that since the beginning of the century there have been more than 4000 serious
hydrogeological instability events that have caused great damage to people, houses
and infrastructures, but, above all, they caused about 12,600 dead, missing and
injured people and the number of missing people exceeds 700 thousand.

Almost 4% of Italian buildings (over 550 thousand) are located in areas with high
and very high landslide danger and more than 9% (over 1 million) in flood areas.
So, it is very important to be prepared and to reduce the total time for evacuation of
a building in the case of a landslide or any other disaster.

Our aim is to propose an evacuation planning model that optimally assigns the
shortest and safest paths, in order to minimize the total evacuation time and save the
lives of the occupants. In particular, we propose a multicriteria evacuation model
where the population at risk is evacuated, following criteria such as the total travel
time and the total delay. We also introduce a measure of the physical difficulties of
evacuees and a parameter associated with the severity of the disaster. This allows our
model to be flexible and able to handle large-scale problems. In addition, it allows
for the applications to different disaster scenarios. The optimization model that we
develop is then formulated as a variational inequality (see [10, 12]), and an analysis
of associated Lagrange multipliers is provided (see [3–5, 15]).

The problem of evacuation plans has been deeply studied in the literature.
In [6], the authors apply network flow techniques to find good exit selections for

evacuees in an emergency evacuation and present two algorithms for computing exit
distributions using both classical flows and flows over time which are well known
from combinatorial optimization.

In [8], the authors present models and algorithms which can be applied to
evacuation problems related to building evacuation, but which are applicable also
to regional evacuation. For all the models time is the main parameter.

In [9], the authors present two different emergency evacuation models on the
basis of the maximum flow model (MFM) and the minimum-cost maximum flow
model (MC-MFM), and propose corresponding algorithms for the evacuation from
one source node to one designated destination (one-to-one evacuation). Then, they
extend the model from one source node to many designated destinations (one-to-
many evacuation).

In [11], the authors propose an evacuation model which combines a heuristic
algorithm and a network flow control, taking into account routes capacity con-
straints. They aim at minimizing the total evacuation time for all people.

In [17], a game-theoreticalmodel to study cooperative and competitive behaviors
of evacuating people during an emergency is proposed. The authors integrate a
game-theoretical model with a cellular automation model of evacuation dynamics,
and simulate the motions of crowds based on their competitive and cooperative
strategies.
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In this paper, for the first time, starting from a network model, we use the
variational inequality formulation to obtain a characterization of the optimization
problem consisting in minimizing the total evacuation time and, as far as we know,
this methodology is innovative compared to the existing ones.

Such a methodology and the related computational procedures have been widely
applied to solve real-world problems, such as static and dynamic traffic network
equilibrium problems, spatial price equilibrium problems, oligopolistic market equi-
librium problems, financial equilibrium problems, migration equilibrium problems,
as well as environmental network and ecology problems, supply chain network
equilibrium problems, cybersecurity networks, and even the Internet (see, for
instance, [1, 2, 7, 12, 13, 15, 16] and the references therein.)

We also emphasize that variational inequality theory has revealed to be a power-
ful instrument in order to study complex decision-making behavior on networks,
with the associated nodes, links, and induced flows. Therefore, characterizing
our problem as a variational inequality, we may have recourse to all the well-
established tools of the variational inequality theory, and ensure existence of
solutions, qualitative analysis, and computational results.

The structure of this paper is as follows. In Sect. 2, we present the evacuation
model and derive the variational inequality formulation. In Sect. 3, we provide a
numerical example. Finally, we present our conclusions in Sect. 4.

2 The Mathematical Model

We consider a network as the one depicted in Fig. 1, where there is a building
with I different rooms which are connected with J different stairs. Since different
rooms are likely to share a part of their path towards the stairs as well as the
existence of multiple floors leads to divide the stairs into pieces between the floors
so that different levels of congestion on each piece are taken into account, we are
considering a graphwith transit nodes between rooms and stairs (the meeting points)
and between stairs and exits (the lobbies). In turn, from the stairs it is possible to
reach H different exit points. Normally, people will choose the closest stairs or
exits, but, in case one of such points is particularly crowded or congested or blocked
due to the disaster, then the evacuees can also choose alternative exits. The links
between the first and the second level of nodes in the network represent all the
possible connections between the rooms of the building and the stairs, as well as the
links between the second and the third level of nodes in the network represent all the
possible connections between the stairs and the final exits of the building (Fig. 2).

We denote by pl
i the initial population in room Ai, i = 1, . . . , I of type l,

l = 1, . . . , L and by P =
L∑

l=1

n∑

i=1

pl
i the total population present in the building.

Indeed, in our model we distinguish different types of individuals, in relation to
their physical abilities. So, the apex l, l = 1, . . . , L represents the different types
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Fig. 2 Building network

of evacuated people. Moreover, let f l
ij and gl

jh be the flows of evacuees of type l in
a time unit from Ai to Sj and from Sj to Uh, for i = 1, . . . , I, j = 1, . . . , J, and
h = 1, . . . , H, respectively. Since in a building the stairs are usually narrow spaces,
we assume that uj is the maximum allowed capacity in Sj , j = 1, . . . , J. So, the
following condition has to be satisfied:

L∑

l=1

I∑

i=1

βl
ij f

l
ij ≤ uj , ∀j = 1, . . . , J, (1)

where βl
ij indicates the portion of people of type l that decide to evacuate from room

Ai using the stair Sj . Further, we denote by t lij the travel time spent by a person of
type l to go from Ai to Sj through one of the meeting points Mr, r = 1, . . . , R and
we assume it is a function of the flow of people from Ai to Sj :

t lij = t lij (f
l
ij ), i = 1, . . . , I, j = 1, . . . , J, l = 1, . . . , L.

Analogously, we denote by τ l
jh the travel time spent by a person of type l to go from

Sj to Uh through one of the lobbiesLb, b = 1, . . . , B and we assume it is a function
of the flow of people from Sj to Uh:

τ l
jh = τ l

jh(gl
jh), j = 1, . . . , J, h = 1, . . . , H, l = 1, . . . , L.

Now, we introduce the delay functions which involve time, associated with the links
from Ai to Sj and from Sj to Uh, respectively, and we assume they depend on the
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Table 1 Functions and parameters

Symbols Definitions

A = {Ai : i = 1, . . . , I} Set of rooms

M = {Mr : r = 1, . . . , R} Set of meeting points

S = {Sj : j = 1, . . . , J } Set of stairs

L = {Lb : b = 1, . . . , B} Set of lobbies

U = {Uh : h = 1, . . . , H } Set of exits

E = {l : l = 1, . . . , L} Set of types of people to be evacuated

pl
i Population of type l in node Ai

P =
L∑

l=1

I∑

i=1

pl
i

Population of any type to be evacuated

uj Maximum capacity of stair Sj

βl
ij Portion of people of type l evacuating from Ai through Sj

f l
ij Flow of people of type l on the link from Ai to Sj

gl
jh Flow of people of type l on the link from Sj to Uh

tlij (f
l
ij ) Travel time on the link from Ai to Sj for a person of type l

τ l
jh(g

l
jh) Travel time on the link from Sj to Uh for a person of type l

R1l
ij (f l

ij ) Delay function on the link from Ai to Sj for a person of type l

R2l
jh(gl

jh) Delay function on the link from Sj to Uh for a person of type l

αl ∈ [0, 1] Index measuring the physical difficulties of type l

σ ∈ [0, 1] Severity coefficient of the disaster

flows on the links, namely:

R1l
ij = R1l

ij (f l
ij ) and R2l

jh = R2l
jh(gl

jh), i = 1, . . . , I,

j = 1, . . . , J, h = 1, . . . , H, l = 1, . . . , L.

In addition, we consider two coefficients αl, σ ∈ [0, 1] representing the measure
of the physical difficulties for an evacuee of type l and the severity of the disaster,
respectively.

We group all the functions and parameters in Table 1.
The purpose of our model is to minimize the total evacuation time, denoted by

ET (f, g), given by the sum of the total travel times and the total delay. Hence, we
are interested in solving the following optimization problem:

minET (f, g) = min

⎧
⎨

⎩

L∑

l=1

⎡

⎣
I∑

i=1

J∑

j=1

t lij (f
l
ij )f l

ij +
(
1 + αl

) J∑

j=1

H∑

h=1

τ l
jh(g

l
jh)g

l
jh

+σ

I∑

i=1

J∑

j=1

R1l
ij (f l

ij )f
l
ij + σ

J∑

j=1

H∑

h=1

R2l
jh(gl

jh)g
l
jh

⎤

⎦

⎫
⎬

⎭ (2)



An Optimization Model for the Evacuation Time in the Presence of Delay 197

under (1) and the following constraints:

L∑

l=1

n∑

i=1

f l
ij ≥

L∑

l=1

k∑

h=1

gl
jh, ∀j = 1, . . . , J ; (3)

J∑

j=1

f l
ij ≤ pl

i, ∀i, ∀l; (4)

J∑

j=1

f l
ij ≥ .5pl

i, ∀i, ∀l; (5)

J∑

j=1

H∑

h=1

gl
jh ≥ .5pl

i, ∀l; (6)

f l
ij ≥ 0, ∀i, ∀j, ∀l; gl

jh ≥ 0, ∀j, ∀h, ∀l. (7)

Constraint (3) states that, for every index j , the sum of the flows of people from any
room Ai to Sj exceeds the sum of the flows of people of all types l from Sj to any
exitUh. Constraint (4) establishes that people moving on all the links cannot exceed
the total population on the building. With constraints (5) and (6) we guarantee that
at least 50% of persons evacue from every room and from the building, respectively.
Finally, constraints (7) are the nonengativity conditions of the flows.

Let us define the set of constraints as the feasible set K given by:

K =
{
(f, g) ∈ R

IJL+JHL : f l
ij ≥ 0, ∀i, ∀j, ∀l; gl

jh ≥ 0, ∀j, ∀h, ∀l;

L∑

l=1

I∑

i=1

βl
ij f l

ij − uj ≤ 0, ∀j;
L∑

l=1

k∑

h=1

gl
jh −

L∑

l=1

I∑

i=1

f l
ij ≤ 0, ∀j;

J∑

j=1

f l
ij − pl

i ≤ 0, ∀i, ∀l; .5pl
i −

J∑

j=1

f l
ij ≤ 0, ∀i, ∀l; .5pl

i −
J∑

j=1

H∑

h=1

gl
jh ≤ 0, ∀l

}

and assume that the travel time and delay functions multiplied by the respective
flows are continuously differentiable and convex. Then, since the set K is closed,
bounded, and convex, applying the classical theory on the variational inequalities
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(see, for instance, [10] or [12]), problem can be characterized by means of the
following variational inequality:

Find (f ∗, g∗) ∈ K such that:

I∑

i=1

J∑

j=1

L∑

l=1

[
∂t lij (f

l∗
ij )

∂f l
ij

f l∗
ij + t lij (f

l∗
ij ) + σ

(
∂R1l

ij (f l∗
ij )

∂f l
ij

f l∗
ij + R1l

ij (f l∗
ij )

)]
×

(
f l

ij − f l∗
ij

)

+
J∑

j=1

H∑

h=1

L∑

l=1

[
(1 + αl)

(
∂τ l

jh(g
l∗
jh)

∂gl
jh

gl∗
jh + τ l

jh(g
l∗
jh)

)
(8)

+ σ

(
∂R2l

jh(g
∗
jh)

∂gjh

gl∗
jh + R2l

jh(g
l∗
jh)

)]
×

(
gl

jh − gl∗
jh

)
≥ 0, ∀(f, g) ∈ K.

Now, taking into account the Lagrangemultipliers associated with the constraints
defining the feasible set K, and using the same technique as in [1, 2, 13, 16], we
obtain an important result.

We can consider the following Lagrange function:

L(f, g, γ, δ, η, ϑ, λ, μ, ν) = V (f, g) +
I∑

i=1

J∑

j=1

L∑

l=1

γ l
ij (−f l

ij ) +
J∑

j=1

H∑

h=1

L∑

l=1

δl
jh(−gl

jh)

+
J∑

j=1

ηj

(
I∑

i=1

L∑

l=1

βl
ij f

l
ij − uj

)
+

J∑

j=1

ϑj

(
L∑

l=1

H∑

h=1

gl
jh −

L∑

l=1

I∑

i=1

f l
ij

)

+
L∑

l=1

I∑

i=1

λl
i

⎛

⎝
J∑

j=1

f l
ij − pl

i

⎞

⎠ +
L∑

l=1

n∑

i=1

μl
i

⎛

⎝.5pl
i −

J∑

j=1

f l
ij

⎞

⎠ +
L∑

l=1

νl

⎛

⎝.5pl
i −

J∑

j=1

H∑

h=1

gl
jh

⎞

⎠

where V (f, g) is the left-hand side of (8) and f ∈ R
IJL, g ∈ R

JHL, γ ∈ R
IJL+ ,

δ ∈ R
JHL+ , η ∈ R

J+, ϑ ∈ R
J+, λ ∈ R

IL+ , μ ∈ R
IL+ , ν ∈ R

L+.

Then, the following result holds true.

Theorem 1 If (f ∗, g∗) ∈ K is a solution to variational inequality (8), then the
Lagrange multipliers γ̄ ∈ R

IJL+ , δ̄ ∈ R
JHL+ , η̄ ∈ R

J+, ϑ̄ ∈ R
J+, λ̄ ∈ R

IL+ , μ̄ ∈ R
IL+ ,

and ν̄ ∈ R
L+ do exist, and for all i, j, h, and l, the following conditions hold true:

γ̄ l
ij (−f ∗

ij ) = 0, δ̄l
jh(−g∗

jh) = 0,

η̄j

⎛

⎝
I∑

i=1

L∑

l=1

βl
ij f l∗

ij − uj

⎞

⎠ = 0, ϑ̄j

⎛

⎝
L∑

l=1

H∑

h=1

gl∗
jh −

L∑

l=1

I∑

i=1

f l∗
ij

⎞

⎠ = 0,

λ̄l
i

⎛

⎝
J∑

j=1

f l∗
ij − pl

i

⎞

⎠ = 0, μ̄l
i

⎛

⎝.5pl
i −

J∑

j=1

f ∗
ij

⎞

⎠ = 0, ν̄l

⎛

⎝.5pl
i −

J∑

j=1

H∑

h=1

gl∗
jh

⎞

⎠ = 0,
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∂tlij (f
l∗
ij )

∂f l
ij

f l∗
ij + t lij (f

l∗
ij ) + σ

(
∂R1l

ij (f l∗
ij )

∂f l
ij

f l∗
ij + R1l

ij (f l∗
ij )

)

−γ̄ l
ij + η̄j β

l
ij − ϑ̄j + λ̄l

i − μ̄l
i = 0,

(1 + αl)

(
∂τ l

jh(g
l∗
jh)

∂gl
jh

gl∗
jh + τ l

jh(g
l∗
jh)

)
+ σ

(
∂R2l

jh(g
∗
jh)

∂gjh

gl∗
jh + R2l

jh(gl∗
jh)

)

−δ̄l
jh + ϑ̄j − ν̄l = 0.

Moreover, the strong duality also holds true; namely:

V (f ∗, g∗) = min
K

V (f, g) = max
(γ ,δ,η,ϑ,λ,μ,ν)

inf
(f,g)

L(f, g, γ, δ, η, ϑ, λ,μ, ν).

3 Numerical Illustration

In order to validate our model, we now provide a small numerical example.
We consider a public building with a street-level floor and two floors above. We

assume that 100 persons are located in the second floor of the building and are
distributed in three different rooms. A landslide impacts the area of the building, so
that people have to evacuate, choosing one of the two existing stairs that leads to
three possible exits. We also suppose that there are two types of people, according
to their physical difficulties. The parameter values are:

(p1
i )i=1,...,3 = (10, 20, 20), (p2

i )i=1,...,3 = (15, 15, 20),

α1 = 0, α2 = 0.3, σ = 0.5, u1 = 15, u2 = 15, βl
ij = 0.35, ∀i, j, l.

The total travel time and the delay functions are reported in Tables 2 and 3.
We solved the resulting variational inequality applying the extragradient method

with constant step length as in [14] (see also [7]), implemented as M-script files of

Table 2 Travel times and delay functions for occupants of type 1

t1ij (fij ) τ 1jh(gjh) R11
ij (fij ) R21

jh(gjh)

2f 2
11 + f11 2g2

11 + 25g11 4f 2
11 + 15f11 2g2

11 + 25g11
0.5f 2

12 + 4f12 g2
12 + 5g12 f 2

12 + 4f12 g2
12 + 5g12

f 2
21 + 4f21 5g2

13 + 50g13 f 2
21 + 4f21 5g2

13 + 50g13
f 2
22 + 3f22 g2

21 + 2g21 f 2
22 + 3f22 g2

21 + 2g21
f 2
31 + 15f31 g2

22 + g22 f 2
31 + 15f31 g2

22 + g22

f 2
32 + 30f32 g2

23 + 5g23 f 2
32 + 30f32 g2

23 + 5g23
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Table 3 Travel times and delay functions for occupants of type 2

t2ij (fij ) τ 2jh(gjh) R12
ij (fij ) R22

jh(gjh)

4f 2
11 + 2f11 3g2

11 + 15g11 2f 2
11 + 25f11 3g2

11 + 15g11
f 2
12 + 5f12 2g2

12 + 50g12 4f 2
12 + 40f12 2g2

12 + 50g12
1.5f 2

21 + 12f21 8g2
13 + 5g13 4f 2

21 + 20f21 8g2
13 + 5g13

2f 2
22 + 5f22 2g2

21 + 10g21 6f 2
22 + 5f22 2g2

21 + 10g21
1.5f 2

31 + 20f31 g2
22 + 15g22 2f 2

31 + 32f31 g2
22 + 15g22

2f 2
32 + 30f32 g2

23 + 50g23 3f 2
32 + 22f32 g2

23 + 50g23

Fig. 3 Network topology and evacuation paths of the example

Table 4 Optimal flows on
the paths used for evacuation

Flows Optimal values

(f 1
11, f

2
11) (2.4927;0)

(f 1
12, f

2
12) (5.0037;5.0037)

(f 1
22, f

2
22) (10.0055;0)

(f 1
31, f

2
31) (5.8297;5.8297)

(f 1
32, f

2
32) (8.3407;0)

(g1
12, g

2
12) (4.5044;8.1333)

(g1
13, g

2
13) (4.5044;5.6222)

(g1
21, g

2
21) (1.9934;5.6222)

(g1
22, g

2
22) (9.4934;5.6222)

(g1
23, g

2
23) (4.5044;0)

MatLab. We note that our problem satisfies the assumptions needed to ensure the
existence of solutions as well as the convergence of the algorithm.

In Fig. 3, we represent the network topology of the building on the left, and
the optimal path distribution on the right. The optimal evacuation flows are
given in Table 4. The total evacuation time, namely the value of the objective
function ET (f ∗, g∗) (see objective function (2)) is 8.3833h. This value takes
into account that displacements and ground movements, due to the landslide, may
cause structural damages to the building (extensive cracks, distorsions in pillars
and columns, tilting of floors and walls, obstructed doors, etc.). This makes the
evacuation time increase. Finally, we note that all the people in the building are able
to evacuate.
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4 Conclusions

In this paper, we introduced an evacuation planningmodel that identifies the optimal
flows of people who must be evacuated from a building after a landslide. The
multicriteria objective of the problem was to minimize both the total travel time and
the total delay, which were influenced by the physical difficulties of evacuees and
the severity of the disaster. We then proposed a variational inequality formulation
of the model and provided its dual problem. In addition, we showed an alternative
formulation based on the Lagrange multipliers associated with the constraints. They
may have a crucial role in order to capture and predict the variation in the escape
speed. Finally, we provided a numerical example that emphasized how the model
developed in this paper can be used by policy-makers to plan emergency evacuation
after a natural disaster.

Future research may include extending this framework to assess sinergies among
individuals who could act as a group/coalition.

The results in this paper add to the growing literature of operations research for
management of evacuation plans.
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