
Integer Programming Reformulations
in Interval Linear Programming

Elif Garajová, Miroslav Rada, and Milan Hladík

Abstract Interval linear programming provides a mathematical model for opti-
mization problems affected by uncertainty, in which the uncertain data can be
independently perturbed within the given lower and upper bounds. Many tasks in
interval linear programming, such as describing the feasible set or computing the
range of optimal values, can be solved by the orthant decomposition method, which
reduces the interval problem to a set of linear-programming subproblems—one
linear program over each orthant of the solution space. In this paper, we explore
the possibility of utilizing the existing integer programming techniques in tackling
some of these difficult problems by deriving a mixed-integer linear programming
reformulation. Namely, we focus on the optimal value range problem, which is NP-
hard for general interval linear programs. For this problem, we compare the obtained
reformulation with the traditionally used orthant decomposition and also with the
non-linear absolute-value formulation that serves as a basis for both of the former
approaches.
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1 Introduction

Optimization under uncertainty plays a crucial role in modeling and solving real-
world problems with inexact input data. In this paper, we consider the approach of
interval linear programming [9, 17], which provides a suitable model for problems
with uncertain data that can be independently perturbed within the given lower and
upper bounds. Throughout the last years, interval programming has been used as an
uncertain model for various practical optimization problems, such as transportation
problems with interval data [1, 4] or portfolio optimization [2] to mention some.

Several difficult tasks in interval linear programming can be solved by decom-
posing the problem at hand into an exponential number of classical linear programs.
This is also the idea behind the frequently used orthant decomposition method,
which exploits the fact that the feasible set of an interval linear program becomes a
convex polyhedron when we restrict the solution space to a single orthant [7, 16].

Here, we propose and explore an alternative approach to solving such tasks by
utilizing the powerful techniques of integer programming. To illustrate the idea, we
derive a (mixed) integer programming reformulation for computing the best optimal
value of an interval linear program based on a non-linear absolute-value formulation
of the problem [8]. A similar approach can be beneficial in solving other related
problems, such as describing the set of all optimal solutions of an interval linear
program [5, 12]. We conduct a computational experiment to compare the absolute-
value formulation and the derived mixed-integer programming reformulation for the
optimal value range problem and show their efficiency against the traditional orthant
decomposition [17].

2 Interval Linear Programming

Let us first review some of the notions and notation used throughout the paper.
For a comprehensive introduction to interval linear programming see [9, 17] and
references therein.

Given a vector x ∈ R
n, we denote by diag(x) the diagonal matrix with entries

diag(x)ii = xi for i ∈ {1, . . . , n}. The inequality relations on the set of matrices and
vectors, as well as the absolute value operator |·|, are understood element-wise.

Interval Data Let the symbol IR denote the set of all closed real intervals. Given
two real matrices A,A ∈ R

m×n satisfying A ≤ A, we define an interval matrix
A ∈ IR

m×n as the set

A = [A,A] = {A ∈ R
m×n : A ≤ A ≤ A}.
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Alternatively, an interval matrix can also be determined by the center Ac and
radius A�, where

Ac = 1

2
(A + A), A� = 1

2
(A − A). (1)

An interval vector a ∈ IR
n can be defined analogously as an n × 1 interval matrix.

In the text, we denote all interval matrices and interval vectors by bold letters.

Interval Programming For an interval matrix A ∈ IR
m×n and interval vectors

b ∈ IR
m, c ∈ IR

n, we define an interval linear program (abbreviated as ILP) as the
set of all linear programs in the form

min cT x subject to Ax ≤ b, (2)

with A ∈ A, b ∈ b and c ∈ c. For short, we also write an interval linear program
determined by the triplet (A,b, c) as

min cT x subject to Ax ≤ b. (3)

A particular linear program (2) is called a scenario of the interval linear program (3).
For the sake of simplicity, the formulation of an interval linear program intro-

duced in (3) is not the most general one. Since the commonly used transformations
in linear programming are not always applicable in the interval framework due to
the so-called dependency problem (see e.g. [6]), different formulations of interval
linear programs may have different properties. However, the approach presented in
this paper can also be utilized for other types of interval linear programs in the same
manner.

Feasibility and Optimality Several different concepts of feasible and optimal
solutions of interval linear programs have been introduced in the literature. In this
paper, we adopt the notion of weak feasibility and optimality.

A vector x∗ ∈ R
n is called a weakly feasible solution of ILP (3), if it is a

feasible solution of some scenario, i.e. if Ax∗ ≤ b holds for some A ∈ A and
b ∈ b. In general, the set of all weakly feasible solutions of an ILP forms a non-
convex polyhedron, which is convex in each orthant [16]. By the Gerlach theorem
for interval systems of inequalities [7], a vector x ∈ R

n is a weakly feasible solution
of ILP (3) if and only if it solves the non-linear system

Acx ≤ A�|x| + b. (4)

Similarly, we say that a vector x∗ ∈ R
n is a weakly optimal solution of the ILP,

if it is an optimal solution of some scenario with A ∈ A, b ∈ b, c ∈ c. Unless stated
otherwise, we use the term “feasible/optimal solution” in the context of interval
programming to refer to weakly feasible and weakly optimal solutions, respectively.
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Optimal Values A common approach to computing optimal values of an interval
linear program is to find the best and the worst value, which is optimal for some
scenario of the program.

Let f (A, b, c) denote the optimal value of the linear program (2), setting
f (A, b, c) = −∞ for unbounded programs and f (A, b, c) = ∞ for infeasible
programs. Then, we define optimal value range of interval linear program (3) as the
interval [f , f ], where the best optimal value f and the worst optimal value f are

f (A,b, c) = min {f (A, b, c) : A ∈ A, b ∈ b, c ∈ c},
f (A,b, c) = max {f (A, b, c) : A ∈ A, b ∈ b, c ∈ c}.

The worst optimal value f of ILP (3) can be computed in polynomial time by
solving a linear program (see [3, 15]). On the other hand, computing the best optimal
value f of (3) is an NP-hard problem [17]. Since it might be difficult to compute
the value exactly, methods providing a sufficiently tight approximation are also of
interest [11, 13].

Orthant Decomposition As the set of all weakly feasible solutions of an interval
linear program becomes a convex polyhedron when we restrict the solution space
to a single orthant, we can utilize this property to solve various problems over the
feasible set. This idea leads to the often used orthant decomposition method, which
solves a given problem in interval programming by decomposing it into a set of
linear programming subproblems, one for each orthant of the solution space.

Orthant decomposition can also be used to obtain the best optimal value f of
ILP (3). Here, we can formulate a linear program to compute the minimum value
of the objective function over the feasible set in a given orthant and then take the
smallest of the computed values (see [17] for further details). An orthant of the
solution space R

n can be described as the set

{x ∈ R
n : diag(s)x ≥ 0}

for a particular sign vector s ∈ {±1}n. Therefore, we can compute f by solving the
linear program

minimize (cc − diag(s)c�)T x

subject to (Ac − A�diag(s))x ≤ b,

diag(s)x ≥ 0.

(5)
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for each s ∈ {±1}n. For a given vector s, denote by fs(A,b, c) the optimal value of
program (5). Then, we obtain the best optimal value as

f (A,b, c) = min
{
fs(A,b, c) : s ∈ {±1}n} .

This amounts to solving (at most) 2n linear programs to compute f , with n denoting
the number of variables of the ILP. Note that the number of orthants that have to be
explored can be lowered, if some of the variables are known to be sign-restricted
(non-negative or non-positive).

3 Integer Programming Reformulations

In this section, we build on the absolute-value characterization of the feasible set by
Gerlach stated in (4). We derive a mixed-integer linear programming reformulation
of the system in order to design an alternative method for computing the best optimal
value of an interval linear program.

The aim is to utilize the available techniques and efficient algorithms of integer
linear programming to tackle some of the difficult interval problems, such as the
problem of computing the optimal value range.

Absolute-Value Formulation Instead of using the orthant decomposition, we can
also restate the method for computing the best optimal value as an absolute-value
program [8], which is derived from the Gerlach theorem for describing the weakly
feasible set. By this result, we can compute f as the optimal value of the non-linear
program

minimize cT
c x − cT

�|x|
subject to Acx − A�|x| ≤ b.

(6)

We can now attempt to solve formulation (6) directly as a non-linear program, or we
can further linearize the program by modeling |x| via binary variables and additional
linear constraints as a mixed-integer linear program.

MIP Reformulation Now, we can use the absolute-value formulation (6) to derive
a mixed-integer linear program for computing the best optimal value f . To do this,
we apply one of the traditional ways to model absolute values in integer programs
using binary variables.

Here, we split the variable x into a positive and negative part as x = x+ − x−,
using the lower and upper bound on x and auxiliary binary variables yi . Then, we
model the absolute value |x| by introducing a new variable z = x+ + x−, leading to
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the formulation

minimize cT
c x − cT

�z

subject to Acx − A�z ≤ b,

x = x+ − x−,

z = x+ + x−,

0 ≤ x+
i ≤ |xi |yi, ∀i ∈ {1, . . . , n},

0 ≤ x−
i ≤ |xi |(1 − yi), ∀i ∈ {1, . . . , n},

y ∈ {0, 1}n.

(7)

Note that we can also reduce the number of variables in the model by simply
substituting the expressions in terms of x+ and x− for the variable x and its absolute
value z. Using the definition of the center and the radius of an interval matrix stated
in (1), we obtain the simplified mixed-integer linear program

minimize cT x+ − cT x−
subject to Ax+ − Ax− ≤ b,

0 ≤ x+
i ≤ |xi |yi, ∀i ∈ {1, . . . , n},

0 ≤ x−
i ≤ |xi |(1 − yi), ∀i ∈ {1, . . . , n},

y ∈ {0, 1}n.

(8)

Further Applications Apart from computing the optimal value range, integer pro-
gramming reformulations can also prove useful in solving other difficult problems
in interval linear programming. A description of many important characteristics and
properties of an interval linear program can be derived from the Gerlach and the
Oettli–Prager theorems [7, 16], which describe the weakly feasible set via a system
of absolute-value inequalities.

For example, the set of all weakly optimal solutions of ILP (3) can be described
by primal feasibility, dual feasibility and strong duality as the set of x-solutions of
the system

Ax ≤ b,

AT y = c, y ≤ 0,

cT x = bT y,

A ∈ A, b ∈ b, c ∈ c.

(9)

Note that this is a parametric system, since there are dependencies between the two
occurrences of the interval parameters that cannot be captured by a simple interval
linear system (e.g. the two occurrences of the matrix A ∈ A should represent the
same matrix in any considered scenario). However, we can relax these dependencies
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to obtain an interval linear system (see also [5, 10] and references therein), which
provides an outer approximation of the optimal solution set:

Ax ≤ b, AT y = c, y ≤ 0, cT x = bT y. (10)

Here, we assume that the two occurrences of the interval parameters A, b and c
are independent and in a particular scenario of the system, different values from
the respective interval matrices and vectors can be chosen for them. System (10)
is a classical interval linear system, so we can use the description of the weakly
feasible set provided by the Gerlach and the Oettli–Prager theorems, leading to the
absolute-value system

Acx ≤ A�|x| + b,

A
T
y ≤ c, AT y ≥ c, y ≤ 0,

|cT
c x − bT

c y| ≤ cT
�|x| − bT

�y.

(11)

For system (11), we can formulate a mixed-integer linear program in a similar
way as in the problem of computing the best optimal value. The program can
then be used to compute an interval enclosure of the optimal set by finding the
minimal/maximal value of each xi over (11). We can also apply various integer
programming relaxations and heuristics to derive more efficient approximation
techniques for the optimal set. A tight approximation of the optimal set is also
essential in solving the recently proposed outcome range problem [14], which
generalizes the optimal value range by introducing an additional linear outcome
function to the program.

4 Computational Experiment

We conducted a computational experiment to compare the derived integer program-
ming reformulation with the traditionally used orthant decomposition method and
the non-linear absolute-value formulation for the problem of finding the best optimal
value f of ILP (3). Since all of these techniques are used to compute the value f

exactly, the main criterion for comparison is the elapsed computation time.

Instances We compared the different programs for computing the best optimal
value on a set of (pseudo-)randomly generated feasible instances. Since the best
optimal value f can always be achieved for the upper bound b of the interval right-
hand-side vector b, we only generated interval data for the constraint matrix and the
objective vector. Thus, each instance is described by an interval matrix A ∈ IR

m×n,
a fixed right-hand-side vector b ∈ R

m and an interval objective vector c ∈ IR
n.
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All of the instances are in the inequality-constrained form (3) with bounded
variables satisfying x ∈ [−106, 106]. With a 0.1 probability a generated interval
coefficient includes both positive and negative values (i.e., 0 belongs to the interval),
otherwise the coefficient satisfies A� ∈ [0, 0.2|Ac|] and c� ∈ [0, |cc|]. Due to
the exponential nature of the considered problem, the number of variables and the
number of constraints in the generated instances was limited. We generated problem
instances of 31 sizes with

n ∈ {5, 10, 15, 20} and m ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}.

For each size, 20 problem instances were generated.

Methods and Implementation Three formulations of programs for computing the
exact best optimal value f were tested and compared in the experiment:

• the commonly used orthant decomposition method, solving in each orthant of the
solution space (determined by a sign vector s ∈ {±1}n) the linear program:

minimize (cc − diag(s)c�)T x

subject to (Ac − A�diag(s))x ≤ b,

diag(s)x ≥ 0,

• the non-linear absolute-value formulation based on the Gerlach theorem:

minimize cT
c x − cT

�|x|
subject to Acx − A�|x| ≤ b,

• and the derived mixed-integer linear programming reformulation:

minimize cT x+ − cT x−
subject to Ax+ − Ax− ≤ b,

0 ≤ x+
i ≤ |xi |yi, ∀i ∈ {1, . . . , n},

0 ≤ x−
i ≤ |xi |(1 − yi), ∀i ∈ {1, . . . , n},

y ∈ {0, 1}n.

All of the methods were implemented in Python 3.8 and Gurobi 9.1 solver was used
to solve the corresponding models. The non-linear formulation (6) was modeled
using the general constraints in Gurobi supporting absolute-value expressions.

Results We used the three methods to compute the best optimal value f for a total
of 500 instances of inequality-constrained interval linear programs. The experiment
was carried out on a computer with a 16 GB RAM and an Intel Core i7-8650U
processor. The results of the experiment are summarized in Tables 1 and 2, showing
the average computation time (in seconds) of each method on a set of instances of
a given problem size.
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Table 1 The average elapsed running time (in seconds) of the three methods on instances with the
best optimal value f attained at the boundary of the bounding box. The fastest running times are
indicated by bold values

n m # inst. Orthant decomposition MIP formulation Abs. value formulation

5 10 19 0.0027 0.0137 0.0060

5 20 4 0.0037 0.0155 0.0129

10 10 20 0.0728 0.0121 0.0059
10 20 20 0.1161 0.0150 0.0109
10 50 8 0.1964 0.0380 0.0310
15 10 20 2.4405 0.0129 0.0085
15 20 20 3.9577 0.0145 0.0135
15 50 20 8.8081 0.0309 0.0281
15 100 7 13.7356 0.1480 0.3445

20 10 20 83.5143 0.0148 0.0110
20 20 20 127.2103 0.0161 0.0155
20 50 20 321.7968 0.0353 0.0392

20 100 20 602.3350 0.1873 0.2387

20 200 1 961.1095 2.5959 5.9579

Table 1 presents the results of the experiment on problems, for which the best
optimal value was attained at the boundary of the bounding box. This is a subset
of the instances with a lower ratio of the number of constraints to the number
of variables. The resulting running times show that this class of problems can
be solved very efficiently through integer programming and through the absolute-
value formulation. This holds even for problems of larger size, where the orthant
decomposition approach may be too time-consuming. These results also indicate
that the alternative approaches may prove useful in designing methods for quickly
checking (weak) unboundedness of interval linear programs.

The results in Table 2 show the average running times of the three methods on
the general problems. While the orthant decomposition is faster for the smallest
problems with only 5 variables, we can observe the expected behavior on larger
instances, where mixed-integer programming and the absolute-value formulation
show their notable advantage in efficiency over exploring all orthants of the solution
space. Here, using the mixed-integer programming formulation seems to be the
fastest approach, with the absolute-value general constraints being slightly behind.
Although the computation becomes more time-consuming with the growing number
of variables and constraints, both of these approaches still present a significant
improvement over the straight-forward orthant decomposition.

5 Conclusion

We explored the applicability of integer programming methods for solving some of
the difficult problems in interval linear programming. Specifically, we considered
the NP-hard problem of computing the best value, which is optimal for some
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Table 2 The average elapsed running time (in seconds) of the three methods on general instances.
The fastest running times are indicated by bold values

n m # inst. Orthant decomposition MIP formulation Abs. value formulation

5 10 1 0.0027 0.0251 0.0078

5 20 16 0.0038 0.0340 0.0180

5 50 20 0.0058 0.0427 0.0374

5 100 20 0.0089 0.0545 0.0617

5 200 20 0.0155 0.0810 0.1381

5 500 20 0.0369 0.1346 0.2855

5 1000 20 0.0733 0.3015 0.5485

5 2000 20 0.1823 0.6925 1.3530

5 5000 20 0.5633 1.9077 3.0574

10 50 12 0.1941 0.0908 0.0905
10 100 20 0.3439 0.1556 0.1585

10 200 20 0.5932 0.2737 0.3468

10 500 20 1.4488 0.7055 1.1098

10 1000 20 2.9922 1.6090 2.6126

10 2000 20 6.2917 3.5878 6.6611

10 5000 20 18.1407 9.6666 22.3548

15 100 13 13.8732 2.6967 3.4412

15 200 20 24.1656 5.0071 7.1228

15 500 20 61.6706 13.1993 19.9268

15 1000 20 135.0868 31.7762 52.5820

15 2000 20 300.0724 75.4248 119.7592

20 200 19 967.2810 171.7611 248.0541

scenario of a given interval linear program. Based on an absolute-value formulation
of the problem, we derived a mixed-integer linear program to compute the best
optimal value. The conducted computational experiments show the significant
advantages of utilizing the existing integer programming solvers over the commonly
used orthant decomposition method, which explores all orthants of the solution
space.

Since many problems in interval optimization are difficult to solve exactly,
approximation methods are also of interest. Integer programming reformulations
open a new direction for deriving algorithms for tightly approximating the optimal
value range of an interval linear program. Other challenging problems may also be
considered, such as approximating the set of all optimal solutions or computing the
outcome range for a given function over the optimal set. These difficult problems can
benefit from utilizing the theoretical foundations, relaxation techniques and efficient
heuristics of integer programming.
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