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Preface

ODS2020, International Conference on “Optimization and Decision Science,”
organized by AIRO, the Italian Operations Research Society, was held online on
November 19, 2020, due to the pandemic event, with Springer’s support. In spite of
the difficult situation, 60 talks were presented and almost 200 people participated in
the conference.

In this volume, the reader will find the research papers submitted and accepted
for publication after a peer-review process.

These 20 papers offer new and original contributions from both methodological
and applied perspective, using models based on continuous and discrete optimiza-
tion, graph theory, and network optimization, solved by heuristics, metaheuristics,
and exact methods. A wide diversity of real-world applications is addressed. For this
reason, although the book is aimed primarily at researchers and PhD students of the
operations research community, the interdisciplinary content makes it interesting
for scholars and researchers from other disciplines, including artificial intelligence,
computer sciences, economics, mathematics, and engineering, as well as for practi-
tioners facing complex decision-making problems in the aforementioned areas.

The 20 accepted papers are organized into 4 topical parts, listed in alphabetical
order: Game Theory and Optimization; Healthcare; Scheduling and Planning; and
Transportation and Logistics. In each part, the papers are listed alphabetically by the
last name of the first author.

In the first part, Game Theory and Optimization, the reader will find the following
chapters:

Integer Programming Reformulations in Interval Linear Programming, by
Garajová et al. (2021) As known, interval linear programming provides a math-
ematical model for optimization problems affected by uncertainty, in which the
uncertain data can be independently perturbed within the given lower and upper
bounds. The authors explore the possibility of applying the existing integer pro-
gramming techniques in tackling some of the problems arising in these operations.

v



vi Preface

On the Optimal Generalization Error for Weighted Least Squares Under
Variable Individual Supervision Times, by Gnecco (2021) In this chapter, the
trade-off between the number of labeled examples in linear regression and their
precision of supervision is optimized, for the case where distinct examples can be
associated with one among M > 2 different supervision times, and weighted least
squares is used for learning.

On Braess’ Paradox and Average Quality of Service in Transportation Network
Cooperative Games, by Passacantando et al. (2021) In the theory of congestion
games, the Braess’ paradox shows that adding one resource to a network may
sometimes worsen, rather than improve, the overall network performance. Here the
paradox is investigated under a cooperative game theoretic setting, in contrast to the
non-cooperative one typically adopted in the literature.

Optimal Improvement of Communication Network Congestion via Nonlinear
Programming with Generalized Nash Equilibrium Constraints, by Passacan-
tando and Raciti (2021) The chapter considers a popular model of congestion
control in communication networks where each player/user sends their flow on a
path of the network, with a cost function consisting of pricing and utility terms.
The authors assume that the network system manager can invest a given amount
of resource to improve the network by enhancing the capacity of a subset of links.
The decision problem is modeled as a nonlinear knapsack problem with generalized
Nash equilibrium constraints, giving some preliminary numerical results.

A Note on Network Games with Strategic Complements and the Katz–
Bonacich Centrality Measure, by Raciti and Passacantando (2021) The
paper investigates a class of network games by using the variational inequality
approach. In the case where the Nash equilibrium of the game has some boundary
components, they derive a formula which connects the equilibrium to the Katz-
Bonacich centrality measure, thus generalizing the classical result for the interior
solution case.

In the second part, Healthcare, the reader will find the following chapters:

An Optimization Model for Managing Reagents and Swab Testing During the
COVID-19 Pandemic, by Colajanni et al. (2021) The authors affirm that COVID-
19 pathology is characterized also by asymptomatic patients who could considerably
spread the virus without being aware of it. Therefore, swab tests have to be used
to diagnose positive cases. The paper presents a multi-period resource allocation
model with the objective of maximizing the quantity of all analyzed swabs while
minimizing the time required to obtain the swabs result, the costs due to increase
the number of swabs analyzed per unit time, and the cost to transfer swabs between
laboratories.

Modelling and Solving Patient Admission and Hospital Stay Problems, by
Guido et al. (2021) Patient admission and patient-to-room assignment problems in
a well-defined planning horizon are considered. The proposed optimization model
is embedded in a matheuristic, tested by a set of benchmark instances characterized
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by real-world features. The experimental results show that the solution approach is
effective and allows to obtain optimal/sub-optimal solutions in short computational
times.

A Two-Stage Variational Inequality for Medical Supply in Emergency Man-
agement, by Scrimali and Fargetta (2021) The chapter proposes a stochastic
approach to optimizing competition between healthcare institutions for medical
supplies in emergency situations, caused by natural disasters. A scenario-based
stochastic programming model in a generalized Nash equilibrium framework is
proposed, providing the optimal amounts of medical supplies from warehouses to
hospitals, in order to minimize both the purchasing cost and the transportation costs.
A two-stage stochastic programming model is proposed, taking into account the
unmet demand at the first stage and the consequent penalty. An alternative two-stage
variational inequality formulation is also presented.

In the third part, Scheduling and Planning, the reader will find the following
chapters:

The Value of the Stochastic Solution in a Two-Stage Assembly-to-Order
Problem, by Brandimarte et al. (2012) The authors consider a simple assembly to
order problem, where components must be manufactured under demand uncertainty
and end items are assembled only after demand is realized. The problem can be cast
as a two-stage stochastic linear program with recourse. The chapter investigates
the conditions under which a stochastic programming approach yields significant
advantages over a straightforward deterministic model based on the expected value
of demand.

Robust Optimal Planning of Waste Sorting Operations, by Pinto et al. (2021)
This chapter investigates the operations of waste recycling centers where materials
are collected by a fleet of trucks and then sorted in order to be converted in secondary
raw materials. The chapter proposes a mixed integer linear programming model
for planning and scheduling the packaging waste recycling operations taking into
consideration the stochastic nature of waste arrivals. Experiments are performed on
instances taken from a real case in Italy and comparisons are made against different
planning strategies.

Solution Approaches for the Capacitated Scheduling Problem with Conflict
Jobs, by Tresoldi (2021) This chapter presents a new arc-based mathematical
formulation and a heuristic algorithm for the capacitated scheduling problem with
conflicting jobs. The effectiveness of the approach is tested through extensive
computational experiments.

In the fourth part, Transportation and Logistics, the reader will find:

A Decision Model for Enhancing Driving Security, by Baldi et al. (2021)
Intelligent Advance Driver Assistance Systems (ADAS) can improve vehicle control
performance and, thus, driver and passenger safety. In particular, identification
and prediction of driving intention are fundamental for avoiding collisions as
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they can provide useful information to drivers and vehicles in their vicinity. The
paper proposes a lane change prediction model based on machine learning able
to distinguish between left and right lane changes, a distinction that becomes
particularly important when driving in a highway. Models have been trained and
validated using a real dataset gathered online by using a high-tech demonstrator
vehicle provided by Fiat Research Center within the European Project DESERVE.
Two models based on Support Vector Machines and Random Forest are proposed.

A Two-Echelon Truck-and-Drone Distribution System: Formulation and
Heuristic Approach, by Boccia et al. (2021) The authors study a two-echelon
truck-and-drone distribution system where the first-echelon is composed by the
depot and truck parking places, whereas the second-echelon is composed by
the parking places and the final customers that are served by a fleet of drones.
Starting from previous works, different truck-and-drone delivery systems have been
proposed in literature, where the truck operates as a mobile depot for the drones.
In this chapter, a mixed integer linear programming formulation and a two-stage
heuristic that exploits the underlying structure of the problem is proposed. The
approach is tested and validate on a set of instances up to 50 customers.

A Heuristic Approach for the Human Migration Problem, by Cappello et al.
(2021) This chapter presents a network-based model for human migration in which
a utility function is maximized. The resulting nonlinear optimization problem is
characterized by a variational inequality formulation. Due to the high complexity
of this problem, in order to efficiently solve realistic instances, a heuristic method
is proposed. The presented algorithms are tested and compared over a number of
randomly generated instances

In-store Picking Strategies for Online Orders in Grocery Retail Logistics, by
Chou et al. (2021) Customers shifting from stationary to online grocery shopping
and the decreasing mobility of an ageing population pose major challenges for
the stationary grocery retailing sector. To fulfill the increasing demand for online
grocery shopping, traditional bricks-and-mortar retailers use existing store networks
to offer customers click-and-collect services. The current COVID-19 pandemic is
accelerating the transition to such a mixed offline/online model, and companies
are facing the need of a re-design of their business model. Currently, a majority
of the operations to service online demand consists of in-store picker-to-parts order
picking systems, where employees go around the shelves of the shop to pick up the
articles of online orders. The paper proposes optimization ideas and solutions for
these in-store operations. Experimental simulations on a real store with real online
orders are performed.

An Optimization Model for the Evacuation Time in the Presence of Delay, by
Daniele et al. (2021) The chapter addresses the issue of planning the emergency
evacuation of occupants of a building after a disaster event like a landslide. A
network model that minimizes both the travel time and the delay of evacuating is
proposed, introducing also a measure of the physical difficulties of evacuees and
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a parameter associated with the severity of the disaster. The variational inequality
formulation is derived and a numerical example is presented.

Additive Bounds for the Double Traveling Salesman Problem with Multiple
Stacks, by Diedolo and Righini (2021) The Double TSP with Multiple Stacks
is a challenging combinatorial optimization problem, asking for two Hamiltonian
cycles on two weighted graphs, a pick-up graph, and a delivery graph. The two
cycles originate from two given depots. They visit the vertices in an order that
allows a single vehicle to collect the pick-up items in a given number of stacks
and to deliver them according to a Last-In-First-Out policy for each stack. The paper
investigates the use of the additive bounding procedure, starting from the Held-Karp
lower bound, within a branch-and-bound algorithm. Computational results show
that this method can provide tighter bounds than the Double TSP relaxation.

Crowd-Shipping and Occasional Depots in the Last Mile Delivery, by Di Puglia
Pugliese et al. (2021) Crowd-shipping is a new delivery paradigm that is gaining
success in the last-mile and same-day delivery process. In crowd-shipping, the
deliveries are carried out by both regular company vehicles and some crowd-
drivers, named occasional drivers (ODs). ODs are ordinary people available to
make deliveries, for a small compensation. The paper considers a setting in which
a company not only has ODs available to make deliveries, but they may also use
the services of intermediate pickup and delivery points, named occasional depots.
In order to optimize the use of these depots, it considers two distinct groups of
ODs with different operative ranges. Occasional depots are activated only if it is
necessary or convenient, implying an “activation cost,” which is the main difference
with respect to the classical problem with transshipments nodes. These depots
should increase the flexibility of the system and they lead to a more efficient
managing of the uncertain availability of ODs. This chapter presents a mixed
integer linear programming model able to represent this framework. Computational
experiments to validate it on small size instances are carried out.

As editors of the volume, we thank the Program Committee, composed by the
AIRO Scientific Board, the invited lecturer, the authors, and the researchers who
spent their time for the review process, thus contributing to improve the quality of
the selected papers. Finally, we express gratitude to the Springer team for support
and cooperation in publishing this volume, bringing it to a nice form.

Branch and Bound and Dynamic Programming Approaches for the Path
Avoiding Forbidden Pairs Problem, by Ferone et al. (2021) The chapter pro-
poses a branch and bound and a dynamic programming algorithm for the Path
Avoiding Forbidden Pairs Problem. Given a network and a set of forbidden node
pairs, the problem consists in finding the shortest path from a source node s to a
target node t, avoiding to traverse both nodes of any of the forbidden pairs. The
problem has been shown to be NP-complete. The paper describes the problem,
its mathematical model and two exact algorithms, comparing their performances
against those of a commercial solver on instances with fully random graphs and
grid graphs.
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Revenue Management Approach for Passenger Transport Service: An Italian
case study, by Guerriero et al. (2021) The main aim of the revenue management
(RM) techniques is to sell the right product to the right customer, at the right time
and price, to optimize the sales. RM has been successfully applied in numerous
kinds of services. Recently, bus passenger transport has been deregulated and
liberalized, thus companies are free to vary their prices, timetable, and routes. The
use of RM could represent a key factor in a highly competitive market. The paper
considers the problem of a bus transport company which operates from a given
set of origins to a given set of destinations on a given time horizon. A dynamic
programming formulation and a linear approximation are proposed. The linear
approximation, representing the seat-allocation problem, is tested with reference to
an Italian bus company. The computational experiments reveal that the proposed
model could help the bus transport company to control the capacity levels, to
improve customer service and bus utilization, by maximizing the revenue.

Fisciano, Italy Raffaele Cerulli
Reggio Emilia, Italy Mauro Dell’Amico
Rende, Italy Francesca Guerriero
Roma, Italy Dario Pacciarelli
Naples, Italy Antonio Sforza



About This Book

This book collects selected contributions from the international conference “Opti-
mization and Decision Science” (ODS2020), which was held online on November
19, 2020, and organized by AIRO, the Italian Operations Research Society.

The book offers new and original contributions on optimization, decisions
science, and prescriptive analytics from both a methodological and applied per-
spective, using models and methods based on continuous and discrete optimization,
graph theory and network optimization, analytics, multiple criteria decision-making,
heuristics, metaheuristics, and exact methods.

In addition to more theoretical contributions, the book chapters describe models
and methods for addressing a wide diversity of real-world applications spanning
health, transportation, logistics, public sector, manufacturing, and emergency man-
agement.

Although the book is aimed primarily at researchers and PhD students in the
operations research community, the interdisciplinary content makes it interesting
for practitioners facing complex decision-making problems in the aforementioned
areas, as well as for scholars and researchers from other disciplines, including
artificial intelligence, computer sciences, economics, mathematics, and engineering.
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Integer Programming Reformulations
in Interval Linear Programming

Elif Garajová, Miroslav Rada, and Milan Hladík

Abstract Interval linear programming provides a mathematical model for opti-
mization problems affected by uncertainty, in which the uncertain data can be
independently perturbed within the given lower and upper bounds. Many tasks in
interval linear programming, such as describing the feasible set or computing the
range of optimal values, can be solved by the orthant decomposition method, which
reduces the interval problem to a set of linear-programming subproblems—one
linear program over each orthant of the solution space. In this paper, we explore
the possibility of utilizing the existing integer programming techniques in tackling
some of these difficult problems by deriving a mixed-integer linear programming
reformulation. Namely, we focus on the optimal value range problem, which is NP-
hard for general interval linear programs. For this problem, we compare the obtained
reformulation with the traditionally used orthant decomposition and also with the
non-linear absolute-value formulation that serves as a basis for both of the former
approaches.

Keywords Interval linear programming · Integer programming · Optimal value
range
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1 Introduction

Optimization under uncertainty plays a crucial role in modeling and solving real-
world problems with inexact input data. In this paper, we consider the approach of
interval linear programming [9, 17], which provides a suitable model for problems
with uncertain data that can be independently perturbed within the given lower and
upper bounds. Throughout the last years, interval programming has been used as an
uncertain model for various practical optimization problems, such as transportation
problems with interval data [1, 4] or portfolio optimization [2] to mention some.

Several difficult tasks in interval linear programming can be solved by decom-
posing the problem at hand into an exponential number of classical linear programs.
This is also the idea behind the frequently used orthant decomposition method,
which exploits the fact that the feasible set of an interval linear program becomes a
convex polyhedron when we restrict the solution space to a single orthant [7, 16].

Here, we propose and explore an alternative approach to solving such tasks by
utilizing the powerful techniques of integer programming. To illustrate the idea, we
derive a (mixed) integer programming reformulation for computing the best optimal
value of an interval linear program based on a non-linear absolute-value formulation
of the problem [8]. A similar approach can be beneficial in solving other related
problems, such as describing the set of all optimal solutions of an interval linear
program [5, 12]. We conduct a computational experiment to compare the absolute-
value formulation and the derived mixed-integer programming reformulation for the
optimal value range problem and show their efficiency against the traditional orthant
decomposition [17].

2 Interval Linear Programming

Let us first review some of the notions and notation used throughout the paper.
For a comprehensive introduction to interval linear programming see [9, 17] and
references therein.

Given a vector x ∈ R
n, we denote by diag(x) the diagonal matrix with entries

diag(x)ii = xi for i ∈ {1, . . . , n}. The inequality relations on the set of matrices and
vectors, as well as the absolute value operator |·|, are understood element-wise.

Interval Data Let the symbol IR denote the set of all closed real intervals. Given
two real matrices A,A ∈ R

m×n satisfying A ≤ A, we define an interval matrix
A ∈ IR

m×n as the set

A = [A,A] = {A ∈ R
m×n : A ≤ A ≤ A}.
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Alternatively, an interval matrix can also be determined by the center Ac and
radius A�, where

Ac = 1

2
(A + A), A� = 1

2
(A − A). (1)

An interval vector a ∈ IR
n can be defined analogously as an n × 1 interval matrix.

In the text, we denote all interval matrices and interval vectors by bold letters.

Interval Programming For an interval matrix A ∈ IR
m×n and interval vectors

b ∈ IR
m, c ∈ IR

n, we define an interval linear program (abbreviated as ILP) as the
set of all linear programs in the form

min cT x subject to Ax ≤ b, (2)

with A ∈ A, b ∈ b and c ∈ c. For short, we also write an interval linear program
determined by the triplet (A, b, c) as

min cT x subject to Ax ≤ b. (3)

A particular linear program (2) is called a scenario of the interval linear program (3).
For the sake of simplicity, the formulation of an interval linear program intro-

duced in (3) is not the most general one. Since the commonly used transformations
in linear programming are not always applicable in the interval framework due to
the so-called dependency problem (see e.g. [6]), different formulations of interval
linear programs may have different properties. However, the approach presented in
this paper can also be utilized for other types of interval linear programs in the same
manner.

Feasibility and Optimality Several different concepts of feasible and optimal
solutions of interval linear programs have been introduced in the literature. In this
paper, we adopt the notion of weak feasibility and optimality.

A vector x∗ ∈ R
n is called a weakly feasible solution of ILP (3), if it is a

feasible solution of some scenario, i.e. if Ax∗ ≤ b holds for some A ∈ A and
b ∈ b. In general, the set of all weakly feasible solutions of an ILP forms a non-
convex polyhedron, which is convex in each orthant [16]. By the Gerlach theorem
for interval systems of inequalities [7], a vector x ∈ R

n is a weakly feasible solution
of ILP (3) if and only if it solves the non-linear system

Acx ≤ A�|x| + b. (4)

Similarly, we say that a vector x∗ ∈ R
n is a weakly optimal solution of the ILP,

if it is an optimal solution of some scenario with A ∈ A, b ∈ b, c ∈ c. Unless stated
otherwise, we use the term “feasible/optimal solution” in the context of interval
programming to refer to weakly feasible and weakly optimal solutions, respectively.
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Optimal Values A common approach to computing optimal values of an interval
linear program is to find the best and the worst value, which is optimal for some
scenario of the program.

Let f (A, b, c) denote the optimal value of the linear program (2), setting
f (A, b, c) = −∞ for unbounded programs and f (A, b, c) = ∞ for infeasible
programs. Then, we define optimal value range of interval linear program (3) as the
interval [f , f ], where the best optimal value f and the worst optimal value f are

f (A, b, c) = min {f (A, b, c) : A ∈ A, b ∈ b, c ∈ c},
f (A, b, c) = max {f (A, b, c) : A ∈ A, b ∈ b, c ∈ c}.

The worst optimal value f of ILP (3) can be computed in polynomial time by
solving a linear program (see [3, 15]). On the other hand, computing the best optimal
value f of (3) is an NP-hard problem [17]. Since it might be difficult to compute
the value exactly, methods providing a sufficiently tight approximation are also of
interest [11, 13].

Orthant Decomposition As the set of all weakly feasible solutions of an interval
linear program becomes a convex polyhedron when we restrict the solution space
to a single orthant, we can utilize this property to solve various problems over the
feasible set. This idea leads to the often used orthant decomposition method, which
solves a given problem in interval programming by decomposing it into a set of
linear programming subproblems, one for each orthant of the solution space.

Orthant decomposition can also be used to obtain the best optimal value f of
ILP (3). Here, we can formulate a linear program to compute the minimum value
of the objective function over the feasible set in a given orthant and then take the
smallest of the computed values (see [17] for further details). An orthant of the
solution space R

n can be described as the set

{x ∈ R
n : diag(s)x ≥ 0}

for a particular sign vector s ∈ {±1}n. Therefore, we can compute f by solving the
linear program

minimize (cc − diag(s)c�)T x

subject to (Ac − A�diag(s))x ≤ b,

diag(s)x ≥ 0.

(5)
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for each s ∈ {±1}n. For a given vector s, denote by fs(A, b, c) the optimal value of
program (5). Then, we obtain the best optimal value as

f (A, b, c) = min
{
fs(A, b, c) : s ∈ {±1}n} .

This amounts to solving (at most) 2n linear programs to compute f , with n denoting
the number of variables of the ILP. Note that the number of orthants that have to be
explored can be lowered, if some of the variables are known to be sign-restricted
(non-negative or non-positive).

3 Integer Programming Reformulations

In this section, we build on the absolute-value characterization of the feasible set by
Gerlach stated in (4). We derive a mixed-integer linear programming reformulation
of the system in order to design an alternative method for computing the best optimal
value of an interval linear program.

The aim is to utilize the available techniques and efficient algorithms of integer
linear programming to tackle some of the difficult interval problems, such as the
problem of computing the optimal value range.

Absolute-Value Formulation Instead of using the orthant decomposition, we can
also restate the method for computing the best optimal value as an absolute-value
program [8], which is derived from the Gerlach theorem for describing the weakly
feasible set. By this result, we can compute f as the optimal value of the non-linear
program

minimize cT
c x − cT

�|x|
subject to Acx − A�|x| ≤ b.

(6)

We can now attempt to solve formulation (6) directly as a non-linear program, or we
can further linearize the program by modeling |x| via binary variables and additional
linear constraints as a mixed-integer linear program.

MIP Reformulation Now, we can use the absolute-value formulation (6) to derive
a mixed-integer linear program for computing the best optimal value f . To do this,
we apply one of the traditional ways to model absolute values in integer programs
using binary variables.

Here, we split the variable x into a positive and negative part as x = x+ − x−,
using the lower and upper bound on x and auxiliary binary variables yi . Then, we
model the absolute value |x| by introducing a new variable z = x+ + x−, leading to



8 E. Garajová et al.

the formulation

minimize cT
c x − cT

�z

subject to Acx − A�z ≤ b,

x = x+ − x−,

z = x+ + x−,

0 ≤ x+
i ≤ |xi |yi, ∀i ∈ {1, . . . , n},

0 ≤ x−
i ≤ |xi |(1 − yi), ∀i ∈ {1, . . . , n},

y ∈ {0, 1}n.

(7)

Note that we can also reduce the number of variables in the model by simply
substituting the expressions in terms of x+ and x− for the variable x and its absolute
value z. Using the definition of the center and the radius of an interval matrix stated
in (1), we obtain the simplified mixed-integer linear program

minimize cT x+ − cT x−
subject to Ax+ − Ax− ≤ b,

0 ≤ x+
i ≤ |xi |yi, ∀i ∈ {1, . . . , n},

0 ≤ x−
i ≤ |xi |(1 − yi), ∀i ∈ {1, . . . , n},

y ∈ {0, 1}n.

(8)

Further Applications Apart from computing the optimal value range, integer pro-
gramming reformulations can also prove useful in solving other difficult problems
in interval linear programming. A description of many important characteristics and
properties of an interval linear program can be derived from the Gerlach and the
Oettli–Prager theorems [7, 16], which describe the weakly feasible set via a system
of absolute-value inequalities.

For example, the set of all weakly optimal solutions of ILP (3) can be described
by primal feasibility, dual feasibility and strong duality as the set of x-solutions of
the system

Ax ≤ b,

AT y = c, y ≤ 0,

cT x = bT y,

A ∈ A, b ∈ b, c ∈ c.

(9)

Note that this is a parametric system, since there are dependencies between the two
occurrences of the interval parameters that cannot be captured by a simple interval
linear system (e.g. the two occurrences of the matrix A ∈ A should represent the
same matrix in any considered scenario). However, we can relax these dependencies
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to obtain an interval linear system (see also [5, 10] and references therein), which
provides an outer approximation of the optimal solution set:

Ax ≤ b, AT y = c, y ≤ 0, cT x = bT y. (10)

Here, we assume that the two occurrences of the interval parameters A, b and c
are independent and in a particular scenario of the system, different values from
the respective interval matrices and vectors can be chosen for them. System (10)
is a classical interval linear system, so we can use the description of the weakly
feasible set provided by the Gerlach and the Oettli–Prager theorems, leading to the
absolute-value system

Acx ≤ A�|x| + b,

A
T
y ≤ c, AT y ≥ c, y ≤ 0,

|cT
c x − bT

c y| ≤ cT
�|x| − bT

�y.

(11)

For system (11), we can formulate a mixed-integer linear program in a similar
way as in the problem of computing the best optimal value. The program can
then be used to compute an interval enclosure of the optimal set by finding the
minimal/maximal value of each xi over (11). We can also apply various integer
programming relaxations and heuristics to derive more efficient approximation
techniques for the optimal set. A tight approximation of the optimal set is also
essential in solving the recently proposed outcome range problem [14], which
generalizes the optimal value range by introducing an additional linear outcome
function to the program.

4 Computational Experiment

We conducted a computational experiment to compare the derived integer program-
ming reformulation with the traditionally used orthant decomposition method and
the non-linear absolute-value formulation for the problem of finding the best optimal
value f of ILP (3). Since all of these techniques are used to compute the value f

exactly, the main criterion for comparison is the elapsed computation time.

Instances We compared the different programs for computing the best optimal
value on a set of (pseudo-)randomly generated feasible instances. Since the best
optimal value f can always be achieved for the upper bound b of the interval right-
hand-side vector b, we only generated interval data for the constraint matrix and the
objective vector. Thus, each instance is described by an interval matrix A ∈ IR

m×n,
a fixed right-hand-side vector b ∈ R

m and an interval objective vector c ∈ IR
n.
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All of the instances are in the inequality-constrained form (3) with bounded
variables satisfying x ∈ [−106, 106]. With a 0.1 probability a generated interval
coefficient includes both positive and negative values (i.e., 0 belongs to the interval),
otherwise the coefficient satisfies A� ∈ [0, 0.2|Ac|] and c� ∈ [0, |cc|]. Due to
the exponential nature of the considered problem, the number of variables and the
number of constraints in the generated instances was limited. We generated problem
instances of 31 sizes with

n ∈ {5, 10, 15, 20} and m ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000}.

For each size, 20 problem instances were generated.

Methods and Implementation Three formulations of programs for computing the
exact best optimal value f were tested and compared in the experiment:

• the commonly used orthant decomposition method, solving in each orthant of the
solution space (determined by a sign vector s ∈ {±1}n) the linear program:

minimize (cc − diag(s)c�)T x

subject to (Ac − A�diag(s))x ≤ b,

diag(s)x ≥ 0,

• the non-linear absolute-value formulation based on the Gerlach theorem:

minimize cT
c x − cT

�|x|
subject to Acx − A�|x| ≤ b,

• and the derived mixed-integer linear programming reformulation:

minimize cT x+ − cT x−
subject to Ax+ − Ax− ≤ b,

0 ≤ x+
i ≤ |xi |yi, ∀i ∈ {1, . . . , n},

0 ≤ x−
i ≤ |xi |(1 − yi), ∀i ∈ {1, . . . , n},

y ∈ {0, 1}n.

All of the methods were implemented in Python 3.8 and Gurobi 9.1 solver was used
to solve the corresponding models. The non-linear formulation (6) was modeled
using the general constraints in Gurobi supporting absolute-value expressions.

Results We used the three methods to compute the best optimal value f for a total
of 500 instances of inequality-constrained interval linear programs. The experiment
was carried out on a computer with a 16 GB RAM and an Intel Core i7-8650U
processor. The results of the experiment are summarized in Tables 1 and 2, showing
the average computation time (in seconds) of each method on a set of instances of
a given problem size.
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Table 1 The average elapsed running time (in seconds) of the three methods on instances with the
best optimal value f attained at the boundary of the bounding box. The fastest running times are
indicated by bold values

n m # inst. Orthant decomposition MIP formulation Abs. value formulation

5 10 19 0.0027 0.0137 0.0060

5 20 4 0.0037 0.0155 0.0129

10 10 20 0.0728 0.0121 0.0059
10 20 20 0.1161 0.0150 0.0109
10 50 8 0.1964 0.0380 0.0310
15 10 20 2.4405 0.0129 0.0085
15 20 20 3.9577 0.0145 0.0135
15 50 20 8.8081 0.0309 0.0281
15 100 7 13.7356 0.1480 0.3445

20 10 20 83.5143 0.0148 0.0110
20 20 20 127.2103 0.0161 0.0155
20 50 20 321.7968 0.0353 0.0392

20 100 20 602.3350 0.1873 0.2387

20 200 1 961.1095 2.5959 5.9579

Table 1 presents the results of the experiment on problems, for which the best
optimal value was attained at the boundary of the bounding box. This is a subset
of the instances with a lower ratio of the number of constraints to the number
of variables. The resulting running times show that this class of problems can
be solved very efficiently through integer programming and through the absolute-
value formulation. This holds even for problems of larger size, where the orthant
decomposition approach may be too time-consuming. These results also indicate
that the alternative approaches may prove useful in designing methods for quickly
checking (weak) unboundedness of interval linear programs.

The results in Table 2 show the average running times of the three methods on
the general problems. While the orthant decomposition is faster for the smallest
problems with only 5 variables, we can observe the expected behavior on larger
instances, where mixed-integer programming and the absolute-value formulation
show their notable advantage in efficiency over exploring all orthants of the solution
space. Here, using the mixed-integer programming formulation seems to be the
fastest approach, with the absolute-value general constraints being slightly behind.
Although the computation becomes more time-consuming with the growing number
of variables and constraints, both of these approaches still present a significant
improvement over the straight-forward orthant decomposition.

5 Conclusion

We explored the applicability of integer programming methods for solving some of
the difficult problems in interval linear programming. Specifically, we considered
the NP-hard problem of computing the best value, which is optimal for some
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Table 2 The average elapsed running time (in seconds) of the three methods on general instances.
The fastest running times are indicated by bold values

n m # inst. Orthant decomposition MIP formulation Abs. value formulation

5 10 1 0.0027 0.0251 0.0078

5 20 16 0.0038 0.0340 0.0180

5 50 20 0.0058 0.0427 0.0374

5 100 20 0.0089 0.0545 0.0617

5 200 20 0.0155 0.0810 0.1381

5 500 20 0.0369 0.1346 0.2855

5 1000 20 0.0733 0.3015 0.5485

5 2000 20 0.1823 0.6925 1.3530

5 5000 20 0.5633 1.9077 3.0574

10 50 12 0.1941 0.0908 0.0905
10 100 20 0.3439 0.1556 0.1585

10 200 20 0.5932 0.2737 0.3468

10 500 20 1.4488 0.7055 1.1098

10 1000 20 2.9922 1.6090 2.6126

10 2000 20 6.2917 3.5878 6.6611

10 5000 20 18.1407 9.6666 22.3548

15 100 13 13.8732 2.6967 3.4412

15 200 20 24.1656 5.0071 7.1228

15 500 20 61.6706 13.1993 19.9268

15 1000 20 135.0868 31.7762 52.5820

15 2000 20 300.0724 75.4248 119.7592

20 200 19 967.2810 171.7611 248.0541

scenario of a given interval linear program. Based on an absolute-value formulation
of the problem, we derived a mixed-integer linear program to compute the best
optimal value. The conducted computational experiments show the significant
advantages of utilizing the existing integer programming solvers over the commonly
used orthant decomposition method, which explores all orthants of the solution
space.

Since many problems in interval optimization are difficult to solve exactly,
approximation methods are also of interest. Integer programming reformulations
open a new direction for deriving algorithms for tightly approximating the optimal
value range of an interval linear program. Other challenging problems may also be
considered, such as approximating the set of all optimal solutions or computing the
outcome range for a given function over the optimal set. These difficult problems can
benefit from utilizing the theoretical foundations, relaxation techniques and efficient
heuristics of integer programming.
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On the Optimal Generalization Error
for Weighted Least Squares Under
Variable Individual Supervision Times

Giorgio Gnecco

Abstract In this short paper, the trade-off between the number of labeled examples
in linear regression and their precision of supervision is investigated and optimized,
for the case in which distinct examples can be associated with one among M > 2
different supervision times, and weighted least squares is used for learning. The
analysis extends the one made in one section of Gnecco and Nutarelli, Optimization
Letters, 2019, https://doi.org/10.1007/s11590-019-01486-x, which was limited to
the case M = 2. The results show that, for the specific learning problem, there is
no advantage in applying weighted least squares instead of ordinary least squares as
the learning algorithm.

Keywords Optimal M-tuple of supervision times · Linear regression ·
Variance control · Weighted least squares · Large-sample approximation of the
generalization error

1 Introduction

Supervised machine learning [1, Chapter 2] and, in particular, in its context, Statis-
tical Learning Theory (SLT) [10], provide methods and algorithms aimed to make
a machine able to learn from experience. This is typically achieved by formulating
and optimizing a suitable cost which quantifies the trade-off between minimizing the
average prediction error on the so-called training set (i.e., a dataset made of labeled
feature vectors, which are used to train the machine), and guaranteeing a sufficiently
large generalization capability of the trained machine on input test examples, which
were not available to it during the learning phase.
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In this context, in some practical applications to fields such as engineering and
physics, it is possible to control to some extent the noise variance of the labels.
For instance, one could increase the cost (or time) associated with the supervision
of each input example, possibly reducing that variance (this would happen, e.g., if
more expensive measurement devices were used). In this situation, it is natural to
analyze—then, to optimize—the resulting trade-off between the training sample size
and its precision of supervision, with respect to a suitably-defined generalization
error related to the function approximation learned by the machine. Such a trade-off
was recently considered in [2], which investigated a modification of the classical
linear regression problem, characterized by the following feature: given a fixed
upper bound on the supervision time available for the supervision of the whole
training set, one has the possibility of varying the time (hence, the cost) dedicated to
the supervision of each training example, thus controlling the conditional variance
of the measured label given the feature vector. However, by doing this, also
the number of available supervised examples is influenced by the choice of the
supervision time per example. By combining the estimates of the model parameters
provided by the Ordinary Least Squares (OLS) regression algorithm with their
classical large-sample approximation [9, Section 13.4.2], it was shown in [2] that
the optimal choice of the supervision time per example strongly depends on the
(either constant, or increasing, or decreasing) “returns to scale” of the precision of
each supervision with respect to its cost.

In [3], the analysis made in [2] was refined and extended by considering also
the situation in which distinct training examples can be associated with one of
M = 2 possible supervision times per example, and one optimizes the fraction of
examples assigned to one of such supervision times, constrained by an upper bound
on the supervision time associated with the whole training set. For this situation, it
was shown therein that OLS and an alternative algorithm—Weighted Least Squares
(WLS)—which in principle is more suitable for this specific learning framework,1

generate the same results at optimality.
In this short paper, we extend this last finding from [3] to the case M > 2,

showing that a similar conclusion holds also in this situation. In more details, the
results of the present analysis show that, for the specific learning problem, there is no
advantage in applying WLS instead of OLS as the learning algorithm also in the case
M > 2. Indeed, the set of optimal distributions of fractions of supervised examples
associated with the various available supervision times contains the degenerate
distribution for which only one supervision time is used, and this corresponds to
homoskedastic measurement errors, for which WLS reduces to OLS. Differently
from [3], the present analysis requires the application of Jensen’s inequality and an

1 For the two respective problems analyzed in [2] and in the extended framework of [3], OLS and
WLS provide the best linear unbiased estimates of the vector of model parameters associated with
the linear regression model, according to the well-known Gauss-Markov theorem [9, Section 9.4].
This depends on the fact that the measurement noise is homoskedastic in the framework considered
in [2], whereas it is heteroskedastic in its extension considered in [3].
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investigation of the consequences of various necessary optimality conditions, valid
for the specific multivariate optimization problem under study.

The paper is structured as follows. Section 2 summarizes the results obtained in
[2] for the optimization of the trade-off between training sample size and precision
of supervision for the WLS case with M = 2. Section 3 extends them to the case
M > 2. Finally, Sect. 4 presents possible extensions of the analysis, including one
to another linear regression model.

2 Background

The following linear model for a static input-output relationship is considered:
y = β ′x, where x ∈ R

p×1 is a random feature vector with finite first and second

moments, β ∈ R
p×1 is an unknown parameter vector, and y ∈ R is the dependent

variable. In order to approximate the parameter vector β via a suitable estimate

β̂ ∈ R
p×1 learned from data, it is assumed here that only a noisy training set is

available, made of a finite number of supervised examples (xn, ỹn). Moreover, the
xn are independent and identically distributed as x, and ỹn is an approximation
of yn = β ′xn, modeled as ỹn = yn + εn,�Tn , where �Tn ∈ [�Tmin,�Tmax]
is a positive supervision time associated with the n-th example, and εn,�Tn is an
additive supervision noise, modeled as a random variable, independent from xn,
having mean 0 and variance σ 2

ε (�Tn) = C(�Tn)
−α (the dependence on �Tn has

been highlighted in the notation σ 2
ε (�Tn)). Here, α > 0 is a given constant, and

C > 0 is another given (dimensional) constant (having the dimension of �T α
n ).

For simplicity, the supervision times �Tn are assumed to be chosen a-priori (i.e.,
they do not depend on the realizations of the xn), and the number N of examples is
such that

∑N
n=1 �Tn ≤ T (being T > 0 an upper bound on the total supervision

time), and �Tmin + ∑N
n=1 �Tn > T (i.e., adding any other example makes the

previous constraint
∑N

n=1 �Tn ≤ T on the total supervision time be violated). As
a consequence, different choices of the supervision times �Tn can correspond to
different values of the number N of supervised examples.

Let XN ∈ R
N×p denote the training input data matrix, whose generic n-th row

is the transpose of xn, and ỹ
N

∈ R
N×1 the vector whose generic n-th element is

ỹn. Moreover, let x test denote a new test example, distributed as x but independent
from all the xn and all the measurement errors εn,�Tn , and let y test = β ′x test denote

its uncorrupted output, which one aims to predict. Finally, let êtest = β̂
′
xtest −

y test denote the prediction error on the new test example, and let Var
(
êtest

∣
∣XN

)
be

its conditional variance, conditioned on the input data matrix XN (seeing ỹ
N

as a
random vector, given XN ). In the following, we refer to that conditional variance as
the (conditional) generalization error of the learning machine.
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2.1 Optimal Generalization Error Under WLS with Two
Possible Individual Supervision Times

In this subsection, we provide a summary of the analysis made in [3, end of
Section 3] about the optimal generalization error for the model introduced above,
when WLS is applied and there are M = 2 possible individual supervision
times. In this framework, different supervised examples are associated with one
of two a-priori given different computational times for supervision, giving rise to
multiplicative heteroskedastic computational noise. More precisely, one assigns a
fraction λ ∈ [0, 1] of training examples2 to the supervision time �Tmin, and the
remaining fraction 1 − λ of training examples to the supervision time �Tmax. Then,
one optimizes the choice of λ (and as a consequence, also the choice of the total
number of training examples, for the given upper bound T on the total computational
time used for all the supervisions). In this case, according to Gauss-Markov theorem,
the best linear unbiased estimate of the parameter vector β is provided by WLS [9,
Section 18.4], which is a natural choice as the learning algorithm. The expression
of the resulting estimate is β̂

WLS
= (X′

N(λ)�
−1XN(λ))

−1X′
N(λ)�

−1ỹ
N(λ)

, where

N(λ) is the number of training examples expressed as a function of λ, � := Var
(
ε
)

is the covariance matrix of the zero-mean vector ε of measurement errors (which in
this case is diagonal, and has a fraction λ of its elements on the main diagonal
equal to σ 2

ε (�Tmin), and the remaining fraction 1 − λ of its elements on the
main diagonal equal to σ 2

ε (�Tmax)), and ỹ
N(λ)

denotes the vector of measures

ỹn (n = 1, . . . , N(λ)). In this situation, neglecting discretization issues,3 one
has the approximation N(λ) 	 T

λ�Tmin+(1−λ)�Tmax
, whereas the covariance matrix

of the estimate β
WLS

conditioned on the training input data matrix XN(λ) is

Var
(
β̂

WLS

∣
∣XN(λ)

)
= (X′

N(λ)
�−1XN(λ))

−1, and the variance of the prediction error

on a new test example conditioned on XN(λ) is

Var
(
êtest
WLS

∣
∣XN(λ)

) = Tr
(
E
{
x x′}Var

(
β̂

WLS

∣
∣XN(�T )

))
(1)

2 In [3, end of Section 3], such examples are chosen randomly from the ones available in the
training set. Since this choice does not actually depend on the specific realizations of the feature
vectors, there is no loss of generality in assuming that these examples are chosen, instead,
deterministically (e.g., that they form the fraction λ of first examples).
3 The analysis made in [3] for a related problem in which WLS is replaced by OLS and all the
supervised examples are associated with the same—although variable—supervision time shows
that, in that case, the approximation error associated with discretization goes to 0 when T tends to
+∞. So, it is natural to neglect that error also in the present framework.
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(being Tr and E, respectively, the trace and expectation operators). Exploiting the
large-sample approximation

X′
N(λ)�

−1XN(λ)

N(λ)
	
(

λ

σ 2
ε (�Tmin)

+ 1 − λ

σ 2
ε (�Tmax)

)
E
{
x x ′} , (2)

Eq. (1) has the large-sample approximation

Var
(
êtest
WLS

∣
∣XN(λ)

)
(λ) (3)

	 p

N(λ)
· 1

λ

σ 2
ε (�Tmin)

+ 1−λ

σ 2
ε (�Tmax)

= p

N(λ)
· σ 2

ε (�Tmin)σ
2
ε (�Tmax)

λσ 2
ε (�Tmax) + (1 − λ)σ 2

ε (�Tmin)

	 pσ 2
ε (�Tmin)σ

2
ε (�Tmax)

T
· λ�Tmin + (1 − λ)�Tmax

λσ 2
ε (�Tmax) + (1 − λ)σ 2

ε (�Tmin)

= pC(�Tmin)
−α(�Tmax)

−α

T
· λ�Tmin + (1 − λ)�Tmax

λ(�Tmax)−α + (1 − λ)(�Tmin)−α
, (4)

where the dependence on λ has been made explicit. Hence, the following optimiza-
tion problem is stated to find an optimal choice of the fraction λ:

minimize
λ

f (λ) := pC(�Tmin)−α(�Tmax)−α

T
· λ�Tmin + (1 − λ)�Tmax

λ(�Tmax)−α + (1 − λ)(�Tmin)
−α

s. t. 0 ≤ λ ≤ 1 . (5)

The optimization problem (5) can be easily solved, as its objective function is the
ratio of two linear functions in λ. When solving it for various choices of α, one gets
the following characterization of its optimal solutions:

(1) λ = 1 (i.e., all the training examples are associated with the same supervision
time �Tmin), if 0 < α < 1 (“decreasing returns of scale”);

(2) λ = 0 (i.e., all the training examples are associated with the same supervision
time �Tmax), if α > 1 (“increasing returns of scale”);

(3) any λ ∈ [0, 1], if α = 1 (“constant returns of scale”).

3 Extension to M > 2 Admissible Supervision Times per
Example

We now consider a similar setting as in Sect. 2, in which, however, one can assign,
for m = 1, . . . ,M , a fraction λm ∈ [0, 1] of training examples to the fixed
supervision time �T (m) ∈ [�Tmin,�Tmax] (of course, the constraint

∑M
m=1 λm = 1
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has to hold). Without loss of generality, it is assumed here �T (m1) < �T (m2) for
m1 < m2. Moreover, �T (1) = �Tmin and �T (M) = �Tmax. Then, as before,
one optimizes the choice of the fractions λm. In this case, the matrix � has, for
m = 1, . . . ,M , a fraction λm of its elements on the main diagonal equal to
σ 2

ε (�T (m)) = C(�T (m))−α , whereas the number of training examples N(λ) is
replaced by N({λm}Mm=1) 	 T∑M

m=1 λm�T (m)
. Finally, Eqs. (2.1), (1), (2) and (3) are

replaced, respectively, by

Var
(
β̂

WLS

∣
∣XN({λm}Mm=1)

)
= (X′

N({λm}Mm=1)
�−1XN({λm}Mm=1)

)−1 ,

Var
(
êtest
WLS

∣
∣XN({λm}Mm=1)

)
= Tr

(
E
{
x x ′}Var

(
β̂

WLS

∣
∣XN({λm}Mm=1)

))
,

X′
N({λm}Mm=1)

�−1XN({λm}Mm=1)

N({λm}Mm=1)
	

M∑

m=1

λm

σ 2
ε (�T (m))

E
{
x x ′} ,

Var
(
êtest
WLS

∣∣XN({λm}Mm=1)

)
({λm}Mm=1)) 	 p

N({λm}Mm=1)
· 1
∑M

m=1
λm

σ 2
ε (�T (m))

	 p

T
·
∑M

m=1 λm�T (m)

∑M
m=1

λm

σ 2
ε (�T (m))

.

Hence, the following optimization problem is stated to find an optimal choice of the
fractions λm:

minimize
{λm}Mm=1

f ({λm}Mm=1) := p

T
·
∑M

m=1 λm�T (m)

∑M
m=1

λm

C(�T (m))−α

s. t.
M∑

m=1

λm = 1 ,

λm ≥ 0, for m = 1, . . . ,M . (6)

We distinguish among the following three cases:

(a) 0 < α < 1. Interpreting the λm as probabilities of the realizations �T (m)

of a discrete random variable �T , the objective function of the optimization

problem (6) can be written as f ({λm}Mm=1) = pC
T

· E{�T }
E{(�T )α} , , i.e., as a positive

constant times the ratio between the expected value of �T and the expected
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value of the increasing concave function (�T )α. Using Jensen’s inequality for
concave functions, one gets

E{(�T )α} ≤ (E{�T })α , (7)

f ({λm}Mm=1) ≥ pC

T
· E{�T }
(E{�T })α = pC

T
(E{�T })1−α ≥ pC

T
(�Tmin)

1−α . (8)

Since, for λ1 = 1 and λm = 0 for m = 2, . . . ,M , one gets

f ({λm}Mm=1) = pC

T
(�Tmin)

1−α , (9)

one concludes from Eqs. (8) and (9) that this is an optimal solution of the
optimization problem (6). This is unique because the equality in Eq. (7) holds if
and only if the random variable �T is almost surely constant.

(b) α > 1. In this case, one can exploit the equivalence between the optimization
problem (6) and the following one:

minimize
t,{λm}Mm=1

t

s. t.
p

T

M∑

m=1

λm�T (m) = t

M∑

m=1

λm

C(�T (m))−α

M∑

m=1

λm = 1 ,

λm ≥ 0, for m = 1, . . . ,M .

Introducing the Lagrangian function

L(t, {λm}Mm=1, μ, ν, {ηm}Mm=1) := t + μ

⎛

⎝p

T

M∑

m=1

λm�T (m) − t

M∑

m=1

λm

C(�T (m))−α

⎞

⎠

+ν

⎛

⎝
M∑

m=1

λm − 1

⎞

⎠+
M∑

m=1

ηmλm ,
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one gets the following necessary conditions for optimality:4

∂L

∂t
= 1 − μ

M∑

m=1

λm

C(�T (m))−α
= 0 , (10)

∂L

∂λm

= μp

T
�T (m) − μt

C
· 1

(�T (m))−α
+ ν + ηm = 0 , for m = 1, . . . ,M ,

(11)

p

T

M∑

m=1

λm�T (m) = t

M∑

m=1

λm

C(�T (m))−α
, (12)

M∑

m=1

λm = 1 , (13)

λm ≥ 0 , for m = 1, . . . ,M , (14)

ηm ≤ 0 , for m = 1, . . . ,M , (15)

ηmλm = 0 , for m = 1, . . . ,M . (16)

By Eqs. (12) and (14), one has t ≥ 0, whereas Eqs. (10) and (14) imply μ >

0. Since, for each fixed pair of choices for t ≥ 0 and μ > 0, the function
gt,μ(�T (m)) := μp

T
�T (m) − μt

C
· 1

(�T (m))−α is strictly concave with respect

to �T (m), and ηm = 0 for every λm > 0 by Eq. (16), one concludes from
Eq. (11) that there exist at most two choices m̂1 and m̂2 for m for which λm > 0.
By Eq. (13), one gets λm̂2 = 1 − λm̂1 . Hence, the optimization problem (6) is
actually reduced to the case M = 2 investigated in Sect. 2.1. So, the minimum
objective value is actually obtained for m̂2 = M , λm̂1 = 0, and λm̂2 = 1, i.e.,
for the degenerate distribution with support on �Tmax.

(c) α = 1. In this case, the optimization problem (6) reduces to

minimize
{λm}Mm=1

p

T
·
∑M

m=1 λm�T (m)

1
C

∑M
m=1 λm�T (m)

= pC

T

s. t.
M∑

m=1

λm = 1 ,

λm ≥ 0, for m = 1, . . . ,M .

Hence, its objective function is constant, and any choice of the λm compatible
with its constraints is optimal.

4 One can easily check that the Mangasarian-Fromovitz’s [8] constraint qualifications hold for any
admissible solution to this problem.
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Table 1 Numerical results for the optimization problem (6)

Case Optimal value of f ({λm}Mm=1) Smallest (pseudo)random value of f ({λm}Mm=1)

α = 0.5 0.0100 0.0110

α = 1.5 0.0045 0.0046

α = 1 0.0100 0.0100

Concluding, similarly to the case of two admissible fractions, the following
optimal solutions are obtained to the optimization problem (6):

(1) λ1 = 1, and λm = 0 for m = 2, . . . ,M (i.e., all the training examples are
associated with the same supervision time �Tmin), if 0 < α < 1 (“decreasing
returns of scale”);

(2) λM = 1, and λm = 0 for m = 1, . . . ,M − 1 (i.e., all the training examples
are associated with the same supervision time �Tmax), if α > 1 (“increasing
returns of scale”);

(3) any set of fractions λm ∈ [0, 1] for which
∑M

m=1 λm = 1, if α = 1 (“constant
returns of scale”).

Since, in each of the three cases above, at least one optimal solution corresponds
to a homoskedastic model for the measurement noise (indeed, all the supervised
examples are associated with the same variance of the measurement noise), in that
situation WLS actually reduces to OLS. So, for the learning problem investigated in
the paper, there is actually no advantage in assuming from the beginning that WLS
is used as a learning algorithm instead of the simpler OLS algorithm.

As a final numerical check of optimality, for each of the three cases 0 < α < 1,
α > 1, and α = 1, the value of the objective function f ({λm}Mm=1) at any of the
optimal solutions to the problem (6) is compared with its smallest value obtained
on a set of P = 100,000 feasible vectors generated (pseudo)randomly as follows.
Each time, using the MATLAB command rand.m, one generates M (almost)
independent realizations λ̃r (r = 1, . . . ,M) of a random variable, uniformly

distributed on (0, 1). Then, one sets λm := λ̃m∑M
r=1 λ̃r

(m = 1, . . . ,M), to impose the

constraint
∑M

m=1 λm = 1. The parameters of the problem (6) are taken as follows:
p = 10, M = 5, �T (m) = 1, 2, 3, 4, 5 s, T = 1000 s, C = 1 sα. The choices
α = 0.5 and α = 1.5 are taken as representatives of the cases 0 < α < 1 and α > 1,
respectively. The numerical results, reported in Table 1, confirm the optimality of
the solutions found by the theoretical analysis.5

5 An alternative numerical check can be obtained by running a multi-start optimization algorithm
starting from several (pseudo)random initializations, then comparing the smallest value of the
objective function determined by the algorithm with the one assumed by the optimal solutions
provided by the theoretical analysis above.
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Remark 1 The optimization problem (6) can be extended to the following infinite-
dimensional version, formulated through Riemann-Stieltjes integrals:

minimize
�

f (�) := p

T
·
∫ �Tmax
�Tmin

td�(t)
∫ �Tmax
�Tmin

d�(t)
Ct−α

s. t. � is a cumulative distribution function on [�Tmin,�Tmax] . (17)

By a limiting argument (allowed by the definition of Riemann-Stieltjes integral), the
results of the analysis above extend directly to (17): e.g., for 0 < α < 1, the optimal
probability measure is concentrated on �Tmin.

4 Possible Developments

A first possible extension concerns the replacement of a large-sample approximation
in the analysis with a suitable bound from statistical learning theory (valid either for
WLS or for its version with truncated output), as done recently in [7]6 for the case
of OLS with homoskedastic measurement error. In this way, the analysis would hold
for any finite sample size. Such an extension looks feasible, being WLS equivalent
to OLS applied to suitably-transformed data. As a second possible development, the
analysis could be extended to the fixed effects panel data model [11]. This is a linear
regression model able to represent unobserved heterogeneity in the dataset, via
possibly different constants associated with distinct observational units. By making
the additional assumption that different measurement noises are independent and
that, for each observational unit, one can assign a fraction of supervised examples
to one among M given supervision times per example, an optimization problem
similar to the one considered in this paper could be formulated. Related optimization
problems (in which all the supervised examples are associated with the same—
though variable—supervision cost) were recently considered in [4–6], respectively
for the balanced case (same number of supervised examples for each observational
unit), the unbalanced case (different number), and the fixed effects generalized least
squares panel data model (in which the measurements errors associated with each
unit are temporally correlated).
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On Braess’ Paradox and Average Quality
of Service in Transportation Network
Cooperative Games

Mauro Passacantando, Giorgio Gnecco, Yuval Hadas,
and Marcello Sanguineti

Abstract In the theory of congestion games, the Braess’ paradox shows that adding
one resource to a network may sometimes worsen, rather than improve, the overall
network performance. Here the paradox is investigated under a cooperative game-
theoretic setting, in contrast to the non-cooperative one typically adopted in the
literature. A family of cooperative games on networks is considered, whose utility
function, defined in terms of a traffic assignment problem and the associated
Wardrop equilibrium, expresses the average quality of service perceived by the
network users.

Keywords Transportation networks · Transferable utility games · Braess’
paradox · Traffic assignment · User equilibrium · Quality of service

1 Introduction

In the theory of congestion games [12], Braess’ paradox [1] highlights why adding
one resource to a network may in some cases worsen, rather than improve, the
overall network performance. This phenomenon is typically explained through non-
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cooperative game theory, and is related to the concept of price of anarchy [5]: the
players (in this context, for example, the users of a road network), being driven
by the pursuit of maximizing their own individual interests, tend to reduce social
welfare (and sometimes, as an undesired consequence, they even fail to maximize
their own individual interests, when compared to the case in which they behave
in a more collaborative way). In case several resources are added to the network,
however, such a non-cooperative approach, which does not take into account every
potential interaction among the resources in all the possible contingent situations,
does not allow one to quantify the average marginal contribution (be it positive or
negative) of each resource to the overall network performance. This suggests the
investigation of a cooperative version of Braess’ paradox.

This work, which is in the same research direction as [16], studies Braess’
paradox in the context of cooperative games with transferable utility on a graph [20],
which can model, for example, transportation networks [6, 8]. The players can be
either nodes or arcs of the graph (in this paper, they are arcs). The utility function of
each such game is defined in terms of a suitable congestion measure over subgraphs
associated with subsets of these nodes/arcs. Such a measure is computed by solving
an instance of the classical user equilibrium problem via any traffic assignment
algorithm (see, e.g., [15]). Then, the Shapley value of a node (or arc) of the network
is used as a measure of its importance, in line with [8, 11]. Differently from the
latter works, the goal here is to identify situations for which the Shapley value of a
node/arc is negative (as a consequence of the specific choice of the utility function).
In this case, the insertion of such an element to the network has a negative average
marginal value. This indicates a degradation of the average network performance
following its insertion, therefore the inopportunity of such an addition.

The work complements the analysis of [16] in several directions. A different
choice of the utility function associated with the transportation network cooperative
game is considered, which is proportional to the average quality of service perceived
by its users. Moreover, a variation of the example in [16] is adopted for illustration
purposes. An additional “fictitious” arc is included in the directed graph modeling
the transportation network, in order to make the origin and destination nodes
connected, in all its subgraphs derived from all possible coalitions of arcs. A novel
numerical example is presented and additional computational issues are discussed.

The paper is structured as follows. Section 2 provides a background on cooper-
ative games with transferable utility, transportation networks cooperative games,
and Wardrop first principle, which is used to model the behavior of vehicles in
the network. Section 3 details the case of a utility function based on a Wardrop
equilibrium, which is proportional to the average quality of service perceived by the
network users. Section 4 provides an application to a toy example. Finally, Sect. 5
is a short discussion.
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2 Background

2.1 Cooperative Games with Transferable Utility

A cooperative game with transferable utility (TU game, see, e.g., [20]) is a pair
(N, v), where:

• N is a set of players, and any subset S ⊆ N is called a coalition;
• v : 2N → R is the utility (characteristic) function, with v(∅) = 0; v(S)

represents the utility that can be achieved jointly by all the players in S, without
any contribution from the players in N \ S.

In TU games, the utilities can be transferred from one player to another without
any loss.

The Shapley value [18] is the most important point-solution in cooperative game
theory, and corresponds to a suitable way of allocating the total utility in a “fair
way” among the players. For each player i ∈ N , it is defined as

Sh(i) =
∑

S⊆N

(|S| − 1)!(|N | − |S|)!
|N |! [v(S) − v(S \ {i})] .

It represents the average marginal contribution of each player across all possible
coalitions, according to a suitable probability distribution (i.e., when players,
starting from the empty coalition, enter the grand coalition randomly, in such a way
that all orders are equally likely). It is worth noting that, due to the interpretation
above, the Shapley value can be applied as a measure of players’ importance not
only in classical contexts in which the players are modeled as rational decision
makers, but also in other more general situations in which this does not occur, e.g.,
when players are features in supervised machine learning problems [2], genes in
microarray games [13], or joints in the analysis of motion capture datasets [10].

2.2 Transportation Network Cooperative Games

Consider a graph G = (V ,A), where

• V is the set of nodes;
• A ⊆ V × V is the set of arcs;
• W is the set of Origin-Destination pairs;
• dw is the traffic demand of the OD pair w, and d = (dw);
• Pw is the set of paths joining the elements of the OD pair w;
• xp is the flow on path p, and x = (xp);
• fa is the flow on arc a, and f = (fa);
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• ca(f ) is the (non-negative) cost on arc a associated with the flow vector f ;
• Cp(x) is the (non-negative) cost on path p, equal to the sum of the costs on the

arcs of the path p.

The set N of players is a given subset of arcs such that any OD pair can be
served in the subgraph (V ,A \ N). This is a subset of suitable arcs chosen a priori
because they are deemed to be important for the analysis of the specific network
under investigation. Specifically, for any OD pair w ∈ W there exists a path joining
the elements of w in the subgraph (V ,A \ N) obtained by removing all the arcs in
N from the arc set A (see Sect. 4 for an example).

2.3 Wardrop First Principle

We consider a transportation network whose arcs model one-way traffic roads and
their weights the associated travel costs (e.g., travel times translated to monetary
costs, combined with tolls, if present), which are functions of the respective arc
flows. The number of vehicles traveling is considered so large that each vehicle
contributes with an infinitesimally small amount of flow. According to Wardrop first
principle [21], a Wardrop equilibrium state is such that no vehicle can unilaterally
reduce its travel cost by shifting to another route. So, the resulting equilibrium
(called Wardrop equilibrium) models the realistic case in which all the drivers
behave in a selfish way. This equilibrium can be interpreted as a Nash equilibrium
in the case of an infinite number of infinitesimal players (the vehicles) [9].

For any coalition S ⊆ N , the subgraph associated to S is

G(S) := (V , (A \ N) ∪ S) .

A path flow x(S) in the subgraph G(S) is feasible if for any w ∈ W the demand dw

is satisfied by using paths belonging to the set Pw(S) of paths joining the OD pair
w in G(S).

A Wardrop equilibrium (or user equilibrium) in G(S) is defined as a feasible path
flow x̄(S) such that for any OD pair w ∈ W and any p ∈ Pw(S) one has

Cp(x̄(S))

{
= λw(S) if x̄p(S) > 0,

≥ λw(S) if x̄p(S) = 0,

where λw(S) is the “equilibrium disutility” for the OD pair w, and x̄p(S) is the
component of x̄(S) which is associated with the path p. It follows from the definition
of Wardrop equilibrium that, for any w ∈ W , one incurs the same cost Cp(x̄(S)) on
all the paths p ∈ Pw(S) for which x̄p(S) > 0, and such a cost is smaller than or
equal to the costs Cp(x̄(S)) on all the other paths p ∈ Pw(S) for which x̄p(S) = 0.
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The specific value of λw(S) is obtained a posteriori by imposing all the conditions
above.

It is known [4, 19] that x̄(S) is a Wardrop equilibrium if and only if it solves the
variational inequality

〈C(x̄(S)), x(S) − x̄(S)〉 ≥ 0, for any feasible path flow x(S).

3 Utility Function Based on User Equilibrium

Consider the following utility function:

vue(S) :=
∑

w∈W

∑

p∈Pw(S)

x̄p(S)

Cp(x̄p(S))
−
∑

w∈W

∑

p∈Pw(∅)

x̄p(∅)

Cp(x̄p(∅))
,

where x̄(S) and x̄(∅) are Wardrop equilibria in G(S) and G(∅), respectively. Notice
that, by the definition of the Wardrop equilibrium x̄(S), one has Cp(x̄p(S)) = λw(S)

for all the paths p ∈ Pw(S) with x̄p(S) > 0, so the denominators in the inner
summations above do not depend on p ∈ Pw(S). Such a utility function is well-
defined when the equilibrium costs of the traveled paths are unique, which occurs
when the arc costs are non-decreasing functions of the respective arc flows [3],
even under possibly non-unique equilibria (indeed, for all such equilibria, one has∑

p∈Pw(S) x̄p(S) = dw).
The utility function introduced above is inspired by a measure of network per-

formance versus efficiency for congested networks, which was considered in [14],
but not in a cooperative setting therein. Equivalently, the term x̄p(S)/Cp(x̄p(S))

in the utility function vue(S) represents the product between the flow x̄p(S) which
is served by path p ∈ Pw(S) in the Wardrop equilibrium x̄(S), and the “quality
of service” 1/Cp(x̄p(S)) perceived by its vehicles. In the present work the served
demand does not depend on S (indeed, even the empty coalition is able to serve
it—possibly inefficiently—by using the arcs belonging to A \N). Hence, the utility
function vue(S) is proportional to the improvement in the average quality of service
one gets when one moves from the empty coalition to the coalition S, i.e., when the
arcs in S are included in the transportation network.

Finally, it is worth remarking that the chosen utility function is not generally
monotone (i.e., it is not necessarily true that v(S) ≤ v(T ) for any S ⊆ T ⊆ N).
Hence, the Shapley value of some arcs may be negative and the Braess’ paradox
can occur (see Sect. 4). This follows from the interpretation of the Shapley value
as average marginal contribution of a player to the utility of a randomly generated
coalition.
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4 An Illustrative Example

Consider the following network with one OD pair w = (1, 4) with demand d .

1 4

2

3

q

r

s

t

u

z

There are four paths connecting the OD pair:
p1 = (q, s), p2 = (r, t), p3 = (q, u, t), p4 = z

We assume that the arc cost functions are defined as follows:

cq = 9fq, cr = fr +50, cs = fs+50, ct = 9ft , cu = fu+10, cz = 40d+50.

Hence, the path cost functions are:

C1(x) = 10x1 + 9x3 + 50, C2(x) = 10x2 + 9x3 + 50,

C3(x) = 9x1 + 9x2 + 19x3 + 10, C4(x) = 40d + 50.

The arc z represents an additional “fictitious” arc, not present in the topology of
the original Braess’ network, which has been included here in order to make all
the demand served, independently of the specific coalition S. Hence, we consider
a TU game where the set of players is N := A \ {z}. In such a way, being the
demand always served, negative Shapley values will arise only as a consequence of
a deterioration of the average quality of service perceived by the network users.

The user equilibrium x̄(S) and the disutility λ(S) for each coalition S ⊆ N have
the expressions reported in Table 1.

From the computational point of view, it can be observed that, if the flow fa

on an arc a ∈ S is equal to 0 in correspondence of the Wardrop equilibrium x̄(S)

for the subgraph G(S), then x̄(S) is a Wardrop equilibrium also for the subgraph
G(S \ {a}) obtained by removing the arc a from it. In Table 1 this occurs, e.g., for
S = {q, r, t}: indeed the arc q has 0 flow in G(S), because in that subgraph there is
no path that connects the OD pair and uses arc q . It occurs also for S = {q, r, t, u}
when d ≤ 4: the arc r is not used in such a case, because only the flow x3 on path
p3 = (q, u, t) is different from 0 in x̄(S). These arguments could help speeding up
the evaluation of the utility function (and, as a consequence, of the Shapley value)
for larger networks, and could be combined with empirical approximations of the
Shapley value based on a subset of sampled coalitions (as done in [7], for a different
and easier to compute utility function), or even based on approximate solutions of
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Table 1 User equilibrium x̄(S) and disutility λ(S) for each coalition S ⊆ N

Coalition S x̄(S) λ(S)

∅ (0, 0, 0, d) 40d + 50

{q}, {r}, {s} (0, 0, 0, d) 40d + 50

{t}, {u}
{q, r}, {q, t}
{q, u}, {r, s}
{r, u}, {s, t}
{s, u}, {t, u}
{q, r, u}
{r, s, u}
{s, t, u}
{q, s} (d, 0, 0, 0) 10d + 50

{q, r, s}
{q, s, u}
{q, s, t}
{q, r, s, u}
{r, t} (0, d, 0, 0) 10d + 50

{q, r, t}
{r, s, t}
{r, t, u}
{r, s, t, u}
{q, t, u} (0, 0, d, 0) 19d + 10

{q, r, s, t} (d/2, d/2, 0, 0) 5d + 50

{q, s, t, u}
⎧
⎨

⎩

(0, 0, d, 0) if d ≤ 4

( 10d−40
11 , 0, d+40

11 , 0) if d ≥ 4

⎧
⎨

⎩

19d + 10 if d ≤ 4

109d+510
11 if d ≥ 4

{q, r, t, u}
⎧
⎨

⎩

(0, 0, d, 0) if d ≤ 4

(0, 10d−40
11 , d+40

11 , 0) if d ≥ 4

⎧
⎨

⎩

19d + 10 if d ≤ 4

109d+510
11 if d ≥ 4

{q, r, s, t, u}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0, 0, d, 0) if d ≤ 4
(

5d−20
6 , 5d−20

6 , 40−4d
6 , 0

)
if d ∈ [4, 10]

( d
2 , d

2 , 0, 0) if d ≥ 10

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

19d + 10 if d ≤ 4

7d+230
3 if d ∈ [4, 10]

5d + 50 if d ≥ 10

the variational inequalities that define the Wardrop equilibrium x̄(S) for different
coalitions S.

Since there is a unique OD pair, the utility function vue has the following form:

vue(S) = d

λ(S)
− d

λ(∅)
.
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Moreover, it follows from Table 1 that the Shapley value of arc u is given by the
following explicit formula:

Sh(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
3(19d+10)

− d
30(40d+50)

− d
10(10d+50)

− d
5(5d+50)

if d ≤ 4,

d
30(19d+10)

+ 11d
10(109d+510)

+ 3d
5(7d+230)

− d
30(40d+50)

− d
10(10d+50)

− d
5(5d+50)

if d ∈ [4, 10],
d

30(19d+10)
+ 11d

10(109d+510)
− d

30(40d+50)
− d

10(10d+50)
if d ≥ 10.

The Shapley value of arc u is negative (i.e., a sort of cooperative version of Braess’
paradox occurs) for d ∈ (3.57, 7.67). This conclusion is similar to the one obtained
in [16], where a different utility function—still based on Wardrop equilibria—was
considered in the analysis. The Shapley values of the other arcs are positive for any
d > 0 and, because of the symmetry of the arc cost functions, arcs q and t have
the same Shapley value for any demand, and the same fact holds for arcs r and s.
Figure 1 shows the Shapley value of each arc as a function of the traffic demand.

However, it can be verified (using similar expressions for the user equilibria
and disutilities for each coalition as the ones reported in Table 1) that no negative
Shapley value occurs if the arc cost function of arc u is modified to cu = 10fu + 50
(as a consequence, e.g., of the introduction of a suitable congestion pricing scheme).
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Fig. 1 Shapley value of each arc as a function of the traffic demand
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It is also worth noting that, likewise in [16], no negative Shapley value is
obtained if, in the definition of the utility associated with each coalition S, the
Wardrop equilibrium x̄(S) is replaced by a flow vector x̂(S) maximizing the
expression

∑
w∈W

∑
p∈Pw(S)

x(S)
Cp(x(S))

over all flow vectors x(S) that are feasible

in G(S), and x̄(∅) is replaced by a vector x̂(∅) maximizing the expression∑
w∈W

∑
p∈Pw(∅)

x(∅)
Cp(x(∅))

over all flow vectors x(∅) that are feasible in G(∅). In
this case, indeed, the resulting system optimum utility function

vso(S) :=
∑

w∈W

∑

p∈Pw(S)

x̂p(S)

Cp(x̂p(S))
−
∑

w∈W

∑

p∈Pw(∅)

x̂p(∅)

Cp(x̂p(∅))

is monotone, so no negative Shapley value can occur, being the Shapley value
the average marginal utility of a player when it is inserted in a suitably randomly
generated coalition.

5 Discussion

A first future research direction of the work is aimed at further investigating the
use of congestion pricing as a way to deal with negative Shapley values. For
instance, in the case of the occurrence of negative Shapley values, one could be
interested in finding the minimal amount of change in the arc cost functions (induced
by congestion pricing) able to make all Shapley values non-negative. A second
possible extension consists in reducing the computational effort in the evaluation of
the Shapley values, making it possible to analyze realistic networks characterized
by a large number of arcs and various traffic demands. Indeed, in such cases,
closed forms expressions of the Shapley values could be not available, or their
exact evaluation could be computationally expensive. However, even a sufficiently
accurate approximate evaluation of the Shapley values would be enough to achieve
the final goal of detecting arcs with negative such values. A promising approach
in this direction appears to be the application of supervised machine learning
techniques [17] which, based on a suitable set of supervised training pairs—e.g.,
depending on the context, input/output pairs of the form (input vector of arc cost
functions ca(f ), output vector of Shapley values Sh(i)) or (input vector of traffic
demands d , output vector of Shapley values Sh(i))—could allow one to predict
the output vectors of Shapley values associated with test examples (not used in
the training phase), starting from the corresponding input vectors. Moreover, the
possibility of guaranteeing a good generalization capability of the resulting trained
machines could be investigated via a sensitivity analysis of Wardrop equilibria with
respect to a change in the vector of arc cost functions.
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Optimal Improvement of Communication
Network Congestion via Nonlinear
Programming with Generalized Nash
Equilibrium Constraints

Mauro Passacantando and Fabio Raciti

Abstract We consider a popular model of congestion control in communication
networks within the theory of generalized Nash equilibrium problems with shared
constraints, where each player is a user who has to send his/her flow over a path in
the network. The cost function of each player consists of two parts: a pricing and a
utility term. Within this framework we assume that the network system manager can
invest a given amount of money to improve the network by enhancing the capacity of
its links and, because of limited financial resources, has to make a choice as to which
of the links to improve. This choice is made with the help of a performance function
which is computed for each set of improvements under consideration and has the
property that, once the equilibrium has been reached, maximizes the aggregate
utility and minimizes the sum of delays at the links. We model this problem as
a nonlinear knapsack problem with generalized Nash equilibrium constraints and
show some preliminary numerical experiments.

Keywords Generalized Nash equilibrium · Congestion control · Investment
optimization

1 Introduction

Routing and congestion control problems have been two crucial aspects in the use of
the Internet from its beginning and have gained even more importance in the recent
years due to the huge increase of flows to be processed in this big data era. In this
respect, the use of game theory has proved to be a useful tool and a large number
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of papers have been devoted to model the above mentioned problems within the
cadre of Nash equilibrium problems (see, e.g., [1, 2, 11, 13]). In this note, we focus
on the congestion control framework put forward in [1], where each network user
is considered as a player endowed with a cost function which is the difference of
a pricing and a utility term. The pricing term has the role of congestion control,
while the utility term expresses the user satisfaction. The bandwidth is the main
resource of the system and players compete to send their flow from a given origin
to a certain destination node. Because users share some network links, the strategy
space of each player also depends on the variables of all the other players. Nash
games of this kind have been introduced a long time ago by Rosen in his influential
paper [12] and have been reformulated more recently by using the powerful tools
of variational inequalities (see, e.g., [3, 4, 8, 10]). In the recent literature, they are
termed as generalized Nash equilibrium problems (GNEPs) with shared constraints.

In this note, we adopt the model in [1] with some modifications in the pricing
part of the players’ cost functions, which give rise to multiple solutions of the game,
but to only one variational equilibrium, which is considered a particularly recom-
mended kind of equilibrium from the socio-economic standpoint (see, e.g., [3]). We
then consider the possibility that the system manager can make an investment in
order to improve the network performance by enhancing the capacity of the links.
However, because of budget constraints not all the capacities can be enhanced and
he/she has to make a decision as to which links is better to improve. The decision
process is made according to its impact on a network cost function associated to
each set of improvements, which has the role of maximizing the aggregate utility
while minimizing the total delay at the links. The computation of the network
cost function requires the knowledge of the variational Nash equilibrium in each
case. Once the set of variational equilibria is known, for all the scenarios under
consideration, we are then faced with a knapsack-type problem which, for instances
of reasonable dimensions, can be solved by classifying all the solutions according
to their corresponding relative variation of the above mentioned function.

The paper is structured as follows. In the following Sect. 2 we summarize
the congestion control model proposed in [1], along with our modifications, and
briefly recall some results about generalized Nash equilibrium problems with
shared constraints and the variational inequality approach. In Sect. 3 we present
our investment optimization model, while Sect. 4 is devoted to some illustrative
numerical experiments. We conclude the paper with a small section where we touch
on some possible extensions.

2 The Congestion Control Model and Its Variational
Inequality Formulation

Throughout the paper, vectors of Rn are thought of as rows but in matrix operations
they will be considered as columns and the superscript T will denote transposition.
We now describe the network topology which consists of a set of links L =
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{l1, . . . , lL} connecting the nodes in the set N = {n1, . . . , nN }. The set of network
users (players) is denoted by {1, . . . ,M}. A route R in the network is a set of
consecutive links and each user i wishes to send a flow xi between a given pair
Oi − Di of origin-destination nodes; x ∈ R

M is the (route) flow of the network and
the useful notation x = (xi, x−i ) will be used in the sequel when it is important to
distinguish the flow component of player i from all the others. We assume that the
routing problem has already been solved and that there is only one route Ri assigned
to user i. Each link l has a fixed capacity Cl > 0, so that user i cannot send a flow
greater than the minimum capacity of the links of his/her route, and we group these
capacities into a vector C ∈ R

L. To describe the link structure of each route, it is
useful to introduce the link-route matrix whose entries are given by:

Ali =
{

1, if link l belongs to route Ri,

0, otherwise.
(1)

Using the link-route matrix, the set of feasible flows can be written in compact form
as

X :=
{
x ∈ R

M : x ≥ 0, Ax ≤ C
}

.

Because users share some links, the possible amount of flow xi depends on the flows
sent by the other users and is bounded from above by the quantity

mi(x−i ) = min
l∈Ri

⎧
⎨

⎩
Cl −

M∑

j=1, j �=i

Aljxj

⎫
⎬

⎭
≥ 0.

In this model the cost function of each player i has the following structure:

Ji(x) = Pi(x) − Ui(xi), (2)

where Ui represents the utility function of player i which only depends on the flow
that he/she sends through the network, while Pi is a pricing term which represents
some kind of toll that user i pays to exploit the network resources and depends
on the flows of the players with common links to i. Players compete in a non-
cooperative manner, as it is assumed that they do not communicate, and act selfishly
to increase their flow. With these assumptions, the solution concept adopted is the
Nash equilibrium à la Rosen [12], which in the modern literature is known as
generalized Nash equilibrium (with shared constraints). More precisely, we say that
x∗ ∈ R

M is a generalized Nash equilibrium if for each i ∈ {1, . . . ,M}:

Ji(x
∗
i , x∗−i ) = min

0≤xi≤mi

(
x∗−i

) Ji(xi, x
∗−i ). (3)



42 M. Passacantando and F. Raciti

It is well known (see, e.g., [5]) that, under standard differentiability and convexity
assumptions, the above problem is equivalent to a quasivariational inequality and
that a particular subset of solutions (called variational equilibria) can be found by
solving the variational inequality V I (F,X), where X is the feasible set previously
defined and F is the so-called pseudogradient of the game, defined by:

F(x) = (∇x1J1(x), . . . ,∇xM JM(x)
)
. (4)

In this note we do not posit assumptions on general functions Ui and Pi , but instead
consider the specific functional form treated in [1], with a slight modification, and
show the existence of a unique variational equilibrium of the game. Due to our
modification, it is possible that some of the capacities are saturated at equilibrium
and the case that some users have zero flow at equilibrium is not ruled out. Moreover,
we provide examples where also non-variational equilibria are possible. In these
regards our results are in contrast with the ones in [1].

Specifically, the utility function Ui of player i is given by:

Ui(xi) = ui log(xi + 1), (5)

where ui is a parameter, while the route price function Pi of player i is the sum of
the price functions of the links associated to route Ri :

Pi(x) =
∑

l∈Ri

Pl

⎛

⎝
M∑

j=1

Aljxj

⎞

⎠ . (6)

Let us notice that Pl is modeled so as to only depend on the variables of players who
share the link l, namely:

Pl

⎛

⎝
M∑

j=1

Aljxj

⎞

⎠ = k

Cl −∑M
j=1 Aljxj + e

, (7)

where k > 0 is a network parameter, and e is a small positive number which we
introduce to allow capacity saturation, while obtaining a well behaved function. The
price function of player i is thus given by:

Pi(x) =
∑

l∈Ri

k

Cl −∑M
j=1 Aljxj + e

, (8)

and the resulting expression of the cost for player i is:

Ji(x) =
∑

l∈Ri

k

Cl −∑M
j=1 Aljxj + e

− ui log(xi + 1). (9)
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The following properties of the above functions are easy to check:

(1) Ui is twice continuously differentiable, non-decreasing and strongly concave
on any compact interval [0, b] (the last condition means that there exists τ > 0
such that ∂2Ui(xi)/∂x2

i ≤ −τ for any xi ∈ [0, b]);
(2) Pi is twice continuously differentiable, convex and Pi(·, x−i ) is non-decreasing.

These properties of Ui and Pi entail an important monotonicity property of the
pseudogradient F defined in (4), as the following theorem shows.

Theorem 1 Let Ui and Pi be given as in (5) and (8), then F is strongly monotone
on X, i.e., there exists α > 0 such that

(F (x) − F(y))�(x − y) ≥ α‖x − y‖2, ∀ x, y ∈ X.

Proof Similarly to [1], it can be shown that the Jacobian matrix of F is positive
definite on X, uniformly with respect to x, thus F is strongly monotone on X. ��

The unique solvability of V I (F,X) is based on standard arguments, as the
following theorem shows.

Theorem 2 There exists a unique variational equilibrium of the GNEP.

Proof The variational equilibria of the GNEP are the solutions of V I (F,X).
Existence of solutions of V I (F,X) follows from the continuity of F and the
compactness and convexity of X. The solution is unique because F is strongly
monotone on X. ��

We now introduce a function f which describes a global property of the game:

f (x) =
∑

l∈L
Pl

⎛

⎝
M∑

j=1

Aljxj

⎞

⎠−
M∑

i=1

Ui(xi), (10)

which represents the aggregate delay at the links minus the sum of the utilities of all
players. The function f turns out to be the potential of the GNEP, as the following
theorem shows.

Theorem 3 The unique variational equilibrium of the GNEP coincides with the
optimal solution of the system problem: min

x∈X
f (x).

Proof Since both f and X are convex, x̄ is a minimizer of f on X if and only if

∇f (x̄)�(y − x̄) ≥ 0, ∀y ∈ X.

Since ∇f = F , the expression above is nothing else that the variational inequality
V I (F,X) which gives the variational equilibrium. ��



44 M. Passacantando and F. Raciti

3 The Optimal Network Improvement Model

We now suppose that the network system manager has a budget B available to
improve the network performance. He/she can only increase the capacity of a subset
L̃ ⊆ L of links and knows that Il is the investment required to enhance the capacity
of link l by a given ratio γl . Since the available budget is generally not sufficient
to enhance the capacities of all the links of L̃, he/she has to decide which subset
of links to invest in, in order to improve as much as possible the system cost
f computed at the variational equilibrium of the game with new link capacities,
while satisfying the budget constraint. This problem can be formulated as an integer
nonlinear program.

To this end, we define a binary variable yl , for any l ∈ L̃, which takes on the
value 1 if the investment is actually carried out on link l, and 0 otherwise. A vector
y = (yl)l∈L̃ is feasible if the budget constraint

∑
l∈L̃ Ilyl ≤ B is satisfied. Given a

feasible vector y, the new capacity of each link l ∈ L̃ is equal to

C′
l (y) := γlClyl + (1 − yl)Cl,

i.e., C′
l (y) = γlCl if yl = 1 and C′

l (y) = Cl if yl = 0. The network manager aims
to maximize the percentage relative variation of the system cost defined as

ϕ(y) = 100 · f (x̄(0)) − f (x̄(y))

|f (x̄(0))| ,

where f is defined in (10), x̄(0) is the variational equilibrium of the GNEP before
the investment, while x̄(y) is the variational equilibrium of the GNEP on the
improved network according to y. Therefore, the proposed optimization model is

max ϕ(y)

subject to
∑

l∈L̃
Ilyl ≤ B,

yl ∈ {0, 1} l ∈ L̃.

(11)

The above model can be considered a generalized knapsack problem since the
computation of the nonlinear function ϕ at a given y requires to find the variational
equilibria of the GNEPs both for the original and the improved network.

We remark that, since the variational equilibria of the GNEPs are the minimizers
of f (see Theorem 3), problem (11) can be reformulated as the following mixed
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integer nonlinear program:

min
∑

l∈L̃

k

γlClyl + (1 − yl)Cl −
M∑

i=1
Alixi + e

+
∑

l∈L\L̃

k

Cl −
M∑

i=1
Alixi + e

−
M∑

i=1

ui log(xi + 1)

subject to
M∑

i=1

Alixi ≤ γlClyl + (1 − yl)Cl ∀ l ∈ L̃,

M∑

i=1

Alixi ≤ Cl ∀ l ∈ L \ L̃,

∑

l∈L̃
Ilyl ≤ B,

xi ≥ 0, ∀ i = 1, . . . ,M,

yl ∈ {0, 1} ∀ l ∈ L̃.

4 Numerical Tests

This section is devoted to some preliminary numerical experiments on two test
networks. The numerical computation of the solutions of the GNEPs was performed
by using Matlab 2018a and its optimization toolbox.

Example 1 We consider the network shown in Fig. 1 (see also [1]) with nine
nodes and nine links. The origin-destination pairs of the users and their routes are
described in Table 1.

Fig. 1 Network topology of
Example 1

n8 n5

n4

n6 n9

n7

n3n1 n2
l7 l6

l3 l4

l5

l1

l2

l9

l8
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Table 1 Origin-Destination
pairs and routes (sequence of
links) of the users in
Example 1

User Origin Destination Route

1 n8 n2 l2, l3, l6

2 n8 n7 l2, l5, l9

3 n4 n7 l1, l5, l9

4 n2 n7 l6, l4, l9

5 n9 n7 l8, l9

First, we show three instances of the considered GNEP where the variational
equilibrium (1) belongs to the interior of the feasible region X; (2) has some
components equal to 0; (3) saturates the capacity constraint of some links:

(1) If we set parameters e = 0.01, k = 1, ui = 10 for any i = 1, . . . , 5,
and Cl = 10 for any l ∈ L, then the variational equilibrium is x̄ =
(6.70, 2.02, 2.66, 2.03, 2.70) with the corresponding link flow equal to
(2.66, 8.72, 6.70, 2.03, 4.67, 8.73, 0, 2.70, 9.40), hence x̄ belongs to the
interior of X.

(2) If we set e = 0.01, k = 1, u1 = 0.01, ui = 10 for any i = 2, . . . , 5 and Cl = 10
for any l ∈ L, then the variational equilibrium is (0, 2.34, 2.34, 2.36, 2.38).

(3) If we set e = 0.1, k = 0.01, ui = 100 for any i = 1, . . . , 5,
and Cl = 10 for any l ∈ L, then the variational equilibrium is
(7.8429, 2.1571, 2.8429, 2.1571, 2.8430) and the corresponding link flow
is equal to (2.84, 10, 7.84, 2.16, 5.00, 10, 0, 2.84, 10), where the capacity
constraints of links l2, l6 and l9 are saturated.

Moreover, we notice that there can be (infinitely) many generalized Nash
equilibria unlike the unique variational one. For example, in the instance (3) a non-
variational equilibrium is (8.0944, 1.9056, 3.0944, 1.9056, 3.0944). It is a so-called
normalized equilibrium [12], which has been computed by solving the variational
inequality V I (F ′,X), where F ′

i = wiFi , for i = 1, . . . , 5, and the vector of weights
w = (1/3, 1/6, 1/6, 1/6, 1/6) (see [10]). Similarly, other (normalized) generalized
Nash equilibria can be obtained by appropriately modifying the vector w.

We now show some numerical results for the proposed optimal network improve-
ment model. We set e = 0.01, k = 1, ui = 10 for any i = 1, . . . , 5, and Cl = 10
for any l ∈ L. We assume that the available budget B = 20 ke, the set of links to
be maintained is L̃ = L, while the values of γl and Il are shown in Table 2.

Table 3 shows the ten best feasible solutions together with the percentage of total
cost improvement ϕ(y) and the corresponding investment I (y) = ∑

l∈L̃ Ilyl . It is
interesting noting that the fifth to tenth solutions have very similar values but the
tenth one needs a much lower investment than the others.

Table 2 Capacity
enhancement factors and
investments for links of
Example 1

Links l1 l2 l3 l4 l5 l6 l7 l8 l9

γl 1.2 1.5 1.1 1.6 1.3 1.4 1.1 1.7 1.3

Il (ke) 3 8 2 10 4 5 2 12 4
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Table 3 The ten best
feasible solutions for the
optimal network
improvement model in
Example 1

Ranking y ϕ(y) I (y)

1 (0,1,1,0,0,1,0,0,1) 17.7381 19

2 (1,1,0,0,0,1,0,0,1) 16.8796 20

3 (0,1,0,0,0,1,1,0,1) 16.8426 19

4 (0,1,0,0,0,1,0,0,1) 16.8285 17

5 (0,1,1,0,1,0,1,0,1) 13.2289 20

6 (0,1,1,0,1,0,0,0,1) 13.2148 18

7 (1,0,1,0,1,1,1,0,1) 13.1952 20

8 (1,0,1,0,1,1,0,0,1) 13.1811 18

9 (0,0,1,0,1,1,1,0,1) 13.1396 17

10 (0,0,1,0,1,1,0,0,1) 13.1255 15

Fig. 2 Network topology of
Example 2

n6 n7 n8 n9 n10

n1 n2 n3 n4 n5
l1 l2 l3 l4

l5 l6 l7 l8 l9

l10 l11 l12 l13

Table 4 Origin-Destination pairs and routes (sequence of links) of the users in Example 2

User Origin Destination Route User Origin Destination Route

1 n1 n5 l1, l2, l3, l4 6 n5 n1 l4, l3, l2, l1

2 n6 n10 l10, l11, l12, l13 7 n10 n6 l13, l12, l11, l10

3 n2 n10 l6, l11, l12, l13 8 n5 n8 l9, l13, l12

4 n8 n5 l7, l3, l4 9 n4 n6 l8, l12, l11, l10

5 n6 n5 l5, l1, l2, l3, l4 10 n8 n1 l7, l2, l1

Table 5 Capacity enhancement factors and investments for links of Example 2

Links l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13

γl 1.2 1.5 1.1 1.6 1.3 1.4 1.1 1.7 1.3 1.5 1.1 1.8 1.3

Il (ke) 3 8 2 10 4 5 2 12 4 8 2 13 4

Example 2 We now consider the network shown in Fig. 2 with 10 nodes and 13
links. The O-D pairs of the users and their routes are described in Table 4.

We now show some numerical results for the proposed optimal network improve-
ment model. We set e = 0.01, k = 1, ui = 10 for any i = 1, . . . , 10, and Cl = 10
for any l ∈ L. We assume that the available budget B = 20 ke, the set of links to
be maintained is L̃ = L, while the values of γl and Il are shown in Table 5.

Table 6 shows the ten best feasible solutions together with the value of ϕ and the
corresponding investment I .
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Table 6 The ten best
feasible solutions for the
optimal network
improvement model in
Example 2

Ranking y ϕ(y) I (y)

1 (0,0,0,0,0,0,0,0,0,0,1,1,1) 14.2823 19

2 (1,0,0,0,0,0,0,0,0,0,0,1,1) 13.3226 20

3 (0,0,1,0,0,0,0,0,0,0,0,1,1) 13.1370 19

4 (0,0,0,0,0,0,1,0,0,0,0,1,1) 12.7595 19

5 (0,0,0,0,0,0,0,0,0,0,0,1,1) 12.6185 17

6 (1,0,1,0,0,0,0,0,0,0,1,1,0) 11.0705 20

7 (1,0,0,0,0,0,1,0,0,0,1,1,0) 10.6949 20

8 (1,0,0,0,0,0,0,0,0,0,1,1,0) 10.5456 18

9 (0,0,1,0,0,0,1,0,0,0,1,1,0) 10.5079 19

10 (0,0,1,0,0,0,0,0,0,0,1,1,0) 10.3600 17

5 Conclusions and Future Directions

In this note we investigated a game theoretic model of congestion control in
communication networks which is widely used in the literature on this topic. After
introducing some modifications in the model, we studied an investment optimization
problem that the network system manager faces in order to improve the capacity of
links.

An interesting extension of this model could be considering the possibility
that some of the data are not deterministic but random. Since we used the
variational inequality approach to GNEP, the inclusion of such random data should
be performed within the framework of stochastic variational inequalities (see,
e.g., [6, 7, 9]).
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1. Alpcan, T., Başar, T.: A game-theoretic framework for congestion control in general topology
networks. In: Proceedings of the IEEE 41st Conference on Decision and Control Las Vegas,
December 10–13 (2002)
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A Note on Network Games with Strategic
Complements and the Katz-Bonacich
Centrality Measure

Mauro Passacantando and Fabio Raciti

Abstract We investigate a class of network games with strategic complements and
bounded strategy sets by using the variational inequality approach. In the case where
the Nash equilibrium of the game has some boundary components, we derive a
formula which connects the equilibrium to the Katz-Bonacich centrality measure,
thus generalizing the classical result for the interior solution case. Furthermore,
we prove that any component of the Nash equilibrium is less than or equal to the
corresponding component of the social optimal solution and numerically study the
price of anarchy for a small size test problem.

Keywords Network games · Nash equilibrium · Katz-Bonacich centrality
measure · Price of anarchy

1 Introduction

This paper deals with a class of Network Games (see, e.g., [10]), where each
player is identified with the node of a graph and players that can interact directly
are connected through edges of the graph. This kind of games have proven to be
very useful in modeling social and economic interactions, where the action of a
typical player is likely to be influenced by the actions taken by her/his friends
or colleagues. A feature of these models is the central role played by the graph
structure in influencing the social or economic interactions and shaping the resulting
equilibrium. As a consequence, the Nash equilibrium and the social optimal solution
depend on graph-algebraic quantities. In particular, in the case of interior solution
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a very interesting representation formula has been derived in the seminal paper by
Ballester et al. [1], which involves the so called Katz-Bonacich centrality measure.

In this note, we generalize this formula to the case where the solution has some
boundary components. To this end, we focus on the quadratic reference model
with strategic complements which, roughly speaking, describe social interactions
where the incentive for a player to take an action increases when the number of
her/his social contacts who take the action increases. Furthermore, by exploiting
the sequential best-response dynamics, we prove that the Nash equilibrium is
component-wise less than or equal to the social optimal solution. To obtain our
results, we reformulate our problem as an equivalent variational inequality. The
relationship between Nash equilibrium problems and variational inequalities has
been pioneered by Gabay and Moulin [8], but only recently some authors have
applied this methodology to investigate Network Games. In these regards, we refer
the interested reader to the beautiful paper by Parise and Ozdaglar [15], which
although comprehensive in many respects such as uniqueness and sensitivity of
equilibrium, does not focus on the Katz-Bonacich representation of the solution
or on the price of anarchy.

The paper is structured as follows. In Sect. 2 we first introduce the notation, the
basic definitions and the variational inequality approach. We then specialize to the
reference quadratic model and recall the classical Katz-Bonacich formula for the
interior solution case, where the strategy set of each player is R+. We also recall
the notions of social optimal solution, efficiency of a Nash equilibrium, and price of
anarchy. In Sect. 3, we assume that the strategy sets are bounded also from above and
derive a necessary condition that the solution satisfies when some of its components
lie on the boundary (Theorem 3). We interpret this condition in terms of the Katz-
Bonacich centrality measure. Moreover, we prove the relationship between the Nash
equilibrium and the social optimum (Theorem 4). Theorems 3 and 4 of this section
are, to the best of our knowledge, new and represent the main contribution of this
note, Sect. 4 is devoted to the numerical investigation of a test problem to illustrate
our findings. A short concluding section ends the paper.

2 Network Games

2.1 Game Formulation and Variational Inequality Approach

In Network Games players are represented by the nodes of an undirected graph
(V ,E), where V = {v1, . . . , vn} is the sets of nodes and E is the set of edges
formed by pairs of nodes (vi, vj ). Here, we consider undirected simple graphs. Two
nodes vi and vj are said to be adjacent if they are connected by the edge (vi , vj ).
The information about the adjacency of nodes can be stored in the adjacency matrix
G whose elements gij are equal to 1 if (vi , vj ) is an edge, 0 otherwise. G is thus
a symmetric and zero-diagonal matrix. Given a node v, the nodes connected to v
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with an edge are called the neighbors of v. A walk in the graph is a finite sequence
of the form vi0 , ej1, vi1 , ej2, . . . , ejk , vjk , which consists of alternating nodes and
edges of the graph, such that vit−1 and vit are end nodes of edge ejt . The length of
a walk is the number of its edges. Let us remark that it is allowed to visit a node
or go through an edge more than once. The indirect connections between any two
nodes in the graph are described by means of the powers of the adjacency matrix G.
Indeed, it can be proved that the element g

[k]
ij of Gk gives the number of walks of

length k between nodes vi and vj .
In the sequel, the set of players will be denoted by {1, 2, . . . , n} instead of

{v1, v2, . . . , vn}. We denote with Ai ⊂ R the action space of player i, while
A = A1×· · ·×An. For each a = (a1, . . . , an) , a−i = (a1, . . . , ai−1, ai+1, . . . , an)

and the notation a = (ai, a−i ) will be used when we want to distinguish the action
of player i from the action of all the other players. Each player i is endowed with a
payoff function ui : A → R that she/he wishes to maximize. The notation ui(a,G)

is often utilized when one wants to emphasize that the utility of player i also depends
on the actions taken by her/his neighbors in the graph.

The solution concept that we consider here is the Nash equilibrium of the game,
that is, we seek an element a∗ ∈ A such that for each i ∈ {1, . . . , n}:

ui(a
∗
i , a∗−i ) ≥ ui(ai, a

∗−i ), ∀ ai ∈ Ai. (1)

We now posit a further assumption on how variations of the actions of player i’s
neighbors affect her/his marginal utility.

Definition 1 The network game has the property of strategic complements if:

∂2ui

∂aj ∂ai

(a) > 0, ∀ (i, j) : gij = 1, ∀ a ∈ A.

For the subsequent development it is important to recall that if the ui are contin-
uously differentiable functions on A, the Nash equilibrium problem is equivalent to
the variational inequality V I (F,A): find a∗ ∈ A such that

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ A, (2)

where

[F(a)]� := −
(

∂u1

∂a1
(a), . . . ,

∂un

∂an

(a)

)
(3)

is also called the pseudo-gradient of the game. For an account of variational
inequalities the interested reader can refer to [7, 12, 14]. We recall here some useful
monotonicity properties.
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Definition 2 A map T : Rn → R
n is said to be monotone on A iff:

[T (x) − T (y)]�(x − y) ≥ 0, ∀ x, y ∈ A.

If the equality holds only when x = y, T is said to be strictly monotone.
T is said to be β-strongly monotone on A iff there exists β > 0 such that

[T (x) − T (y)]�(x − y) ≥ β‖x − y‖2, ∀ x, y ∈ A.

For linear operators on R
n the two concepts of strict and strong monotonicity

coincide and are equivalent to the positive definiteness of the corresponding matrix.
Conditions that ensure the unique solvability of a variational inequality problem

are given by the following theorem (see, e.g., [7, 14]).

Theorem 1 If K ⊂ R
n is a compact convex set and T : Rn → R

n is continuous on
K , then the variational inequality problem V I (F,K) admits at least one solution.
In the case K is unbounded, existence of a solution may be established under the
following coercivity condition:

lim‖x‖→+∞
[T (x) − T (x0)]�(x − x0)

‖x − x0‖ = +∞,

for x ∈ K and some x0 ∈ K .
Furthermore, if T is strictly monotone on K the solution is unique.

In the following subsection, we describe in detail the linear-quadratic reference
model with strategic complements.

2.2 The Linear-Quadratic Model

Let Ai = R+ for any i ∈ {1, . . . , n}, hence A = R
n+. The payoff of player i is given

by:

ui(a,G) = −1

2
a2
i + αai + φ

n∑

j=1

gij aiaj , α, φ > 0. (4)

In this simplified model α and φ take on the same value for all players, which then
only differ according to their position in the network. The last term describes the
interaction between neighbors, and since φ > 0 this interaction falls in the class of
strategic complements. The pseudo-gradient’s components of this game are easily
computed as:

Fi(a) = ai − α − φ

n∑

j=1

gij aj , i ∈ {1, . . . , n},
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which can be written in compact form as F(a) = (I − φG)a − α1, where
1 = (1, . . . , 1)� ∈ R

n. We will seek Nash equilibrium points by solving the
variational inequality:

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ R
n+. (5)

Since the constraint set is unbounded, to ensure solvability we require that F be
strongly monotone, which (implying coercivity, for linear operators) also guarantees
the uniqueness of the solution.

Lemma 1 (see, e.g. [10]) The matrix I − φG is positive definite iff φρ(G) < 1,
where ρ(G) is the spectral radius of G.

In the next lemma we recall a well known result about series of matrices.

Lemma 2 Let T be a square matrix and consider the series
∑∞

p=0 T p. The series
converges provided that limp→∞ T p = 0, which is equivalent to ρ(T ) < 1. In such
case the matrix I − T is non singular and we have (I − T )−1 =∑∞

p=0 T p.

Theorem 2 (See e.g. [10]) If φρ(G) < 1, then the unique Nash equilibrium is

a∗ = α(I − φG)−11 = α

∞∑

p=0

φpGp1 . (6)

Remark 1 The expansion in (6) suggests an interesting interpretation. Indeed, the
(i, j) entry, g

[p]
ij , of the matrix Gp gives the number of walks of length p between

nodes i and j . Based on this observation, a measure of centrality on the network
was proposed by Katz and Bonacich [5]. Specifically, for any weight w ∈ R

n+, the
weighted vector of Katz-Bonacich is given by:

bw(G, φ) = M(G,φ)w = (I − φG)−1w =
∞∑

p=0

φpGpw. (7)

In the case where w = 1, the (non weighted) centrality measure of Katz-Bonacich
of node i is given by:

b1,i(G, φ) =
n∑

j=1

Mij (G, φ)

and counts the total number of walks in the graph, which start at node i, exponen-
tially damped by φ.
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Remark 2 The game under consideration also falls in the class of potential games
according to the definition introduced by Monderer and Shapley [13]. Indeed, a
potential function is given by:

P(a,G, φ) =
n∑

i=1

ui(a,G) − φ

2

n∑

i=1

n∑

j=1

gij aiaj .

Monderer and Shapley have proved that, in general, the solutions of the problem
maxa∈A P(a,G, φ) form a subset of the solution set of the Nash game. Because
under the condition φρ(G) < 1 both problems have a unique solution, it follows
that the two problems share the same solution.

Let us now define the social welfare function as:

W(a,G) =
n∑

i=1

ui(a,G) = −1

2
a�(I − 2φG)a + α1�a.

The value that W takes on at the Nash equilibrium a∗ can be easily computed as
W(a∗,G) = 1

2α2b1(G, φ)�b1(G, φ). The natural question arises of comparing
this value with the optimal value of W . Under the condition 2φρ(G) < 1 it turns
out that the maximum of W is reached at aso = αb1(G, 2φ) and W(aso,G) =
1
2α2b1(G, 2φ)�b1(G, 2φ). Thus, the Nash equilibrium is not efficient and it is
interesting to compute the ratio:

γ (G, φ) = W(a∗,G)

W(aso,G)
, (8)

which can be termed the price of anarchy (see, e.g., [16]).

3 Bounded Strategies

We now assume that the strategies of each player have an upper bound, i.e., the
strategy set Ai = [0, Li], with Li > 0, for any i ∈ {1, . . . , n}, and derive a
Katz-Bonacich type representation of the solution, in the case where exactly k

components take on their maximum value.

Theorem 3 Let ui be defined as in (4), φρ(G) < 1, Ai = [0, Li] for any i ∈
{1, . . . , n} and a∗ be the unique Nash equilibrium of the game. We then have that
a∗
i > 0 for any i ∈ {1, . . . , n}. Moreover, assume that exactly k components of a∗

take on their maximum value: a∗
i1

= Li1 , . . . , a
∗
ik

= Lik , and denote with ã∗ =
(ã∗

ik+1
, . . . , ã∗

in
) the subvector of the nonboundary components of a∗. We then get:

ã∗ = (In−k − φ G1)
−1w = bw(G1, φ), (9)
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where G1 is the submatrix obtained from G choosing the rows ik+1, . . . , in and
the columns ik+1, . . . , in; G2 is the submatrix obtained from G choosing the
rows ik+1, . . . , in and the columns i1, . . . , ik; w = α1n−k + φG2 L and L =
(Li1 , . . . , Lik ).

Proof The Nash equilibrium a∗of the game solves the variational inequality

[F(a∗)]�(a − a∗) ≥ 0, ∀ a ∈ A, (10)

where A = [0, L1]×· · ·×[0, Ln]. Let us assume that there exist l such that a∗
l = 0,

and choose in (10) a = (a∗
1 , . . . , a∗

l−1, Ll, a
∗
l+1, . . . , a

∗
n) ∈ A. With this choice, (10)

reads:

0 ≤ Fl(a
∗)Ll =

⎛

⎝−φ

n∑

j=1

glj a
∗
j − α

⎞

⎠Ll < 0,

which yields the contradiction. Thus, a∗
i > 0 for any i = 1, . . . , n.

Let Ã denote the face of A obtained intersecting A with the hyperplanes: ai1 =
Li1 , . . . , aik = Lik . Moreover, let ã = (aik+1, . . . , ain ), ã∗ = (ã∗

ik+1
, . . . , ã∗

in
) and

F̃ : Rn−k → R
n−k such that F̃il (ã) is obtained by fixing ai1 = Li1 , . . . , aik = Lik

in Fil (a). We consider now the restriction of (10) to Ã, which reads:

n∑

l=k+1

F̃il (ã
∗)(ãil − ã∗

il
) ≥ 0, ∀ ã ∈ Ã. (11)

Since we are assuming that exactly k components of the solution a∗ reach their
upper bounds, it follows that ã∗ lies in the interior of Ã, hence F̃ (ã∗) = 0, that is
equivalent to

a∗
il
− φ

n∑

m=k+1

gil ima∗
im

= α + φ

k∑

m=1

gil imLim, l = k + 1, . . . , n, (12)

which yields:

(In−k − φG1)ã
∗ = α1n−k + φG2L. (13)

Because the matrix (In−k − φG1) is not singular, the thesis is proved. ��
The following result shows a relationship between the Nash equilibrium and the

social optimum of the game.
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Theorem 4 Let ui be defined as in (4), φρ(G) < 1/2, and Ai = [0, Li] for any
i ∈ {1, . . . , n}. Then,

a∗
i ≤ aso

i ∀ i = 1, . . . , n,

where a∗ is the Nash equilibrium and aso is the social optimum of the game.

Proof Since φρ(G) < 1/2, there exists a unique Nash equilibrium a∗ and a
unique social optimum aso. Moreover, it follows from the KKT conditions that

aso satisfies the following system: aso
i = min

{
Li, α + 2φ

∑n
j=1 gij a

so
j

}
, i =

1, . . . , n. Given any strategy profile a = (ai, a−i ), the best response of player
i to rivals’ strategies a−i is given by Bi(a−i ) = arg maxai∈[0,Li ] ui(·, a−i ) =
min

{
Li, α + φ

∑n
j=1 gij aj

}
.

We now consider the sequential best response dynamics starting from the social
optimum aso, that is the sequence {ak} defined as follows:

a0 = aso, a1 =
(
B1(a

0−1), a0
2, a0

3, . . . , a0
n

)
,

a2 =
(
B1(a

0
−1), B2(a

1−2), a0
3, . . . , a0

n

)
,

. . .

an =
(
B1(a

0−1), B2(a
1−2), B3(a

2−3), . . . , Bn(a
n−1−n )

)
,

an+1 =
(
B1(a

n
−1), B2(a

1−2), . . . , Bn(a
n−1−n )

)
,

an+2 =
(
B1(a

n
−1), B2(a

n+1
−2 ), B3(a

2−3), . . . , Bn(a
n−1−n )

)
, . . . .

We note that

a1
1 = B1

(
a0−1

)
= min

⎧
⎨

⎩
L1, α + φ

n∑

j=1

g1j a0
j

⎫
⎬

⎭
≤ min

⎧
⎨

⎩
L1, α + 2φ

n∑

j=1

g1j a0
j

⎫
⎬

⎭
= a0

1 ,

hence a1 ≤ a0. Moreover, we have

a2
2 = min

⎧
⎨

⎩
L2, α + φ

n∑

j=1

g2j a
1
j

⎫
⎬

⎭
≤ min

⎧
⎨

⎩
L2, α + 2φ

n∑

j=1

g2j a
0
j

⎫
⎬

⎭
= a0

2 = a1
2,
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hence a2 ≤ a1. Similarly, we can prove that an ≤ an−1 ≤ · · · ≤ a1 ≤ a0.
Furthermore, we get

an+1
1 = min

⎧
⎨

⎩
L1, α + φ

n∑

j=1

g1j an
j

⎫
⎬

⎭
≤ min

⎧
⎨

⎩
L1, α + φ

n∑

j=1

g1j a0
j

⎫
⎬

⎭
= B1

(
a0−1

)
= an

1 ,

hence an+1 ≤ an, and

an+2
2 = min

⎧
⎨

⎩
L2, α + φ

n∑

j=1

g2j a
n+1
j

⎫
⎬

⎭
≤ min

⎧
⎨

⎩
L2, α + φ

n∑

j=1

g2ja
1
j

⎫
⎬

⎭
= an+1

2 ,

thus an+2 ≤ an+1. Following the same argument as before, we can prove that
ak+1 ≤ ak for any k ∈ N and hence, in particular, ak ≤ aso holds for any k.
Since the potential function P is strongly concave, the sequence {ak} converges to
the unique Nash equilibrium a∗ (see, e.g., [4, Proposition 3.9]), hence a∗ ≤ aso. ��

4 Numerical Example

In this section, we show a numerical example for the linear-quadratic network game
described in Sect. 3.

Example 1 We consider the network shown in Fig. 1 (see also [3]) with eight nodes
(players). The spectral radius of the adjacency matrix G is ρ(G) 	 3.1019. We set
parameters α = 10, φ = 0.45/ρ(G) and upper bounds Li = L = 18 for any player
i = 1, . . . , 8. Therefore, there exists a unique Nash equilibrium and a unique social
optimum. Table 1 shows the unconstrained Nash equilibrium (assuming L = +∞,
given by formula (6)), the constrained Nash equilibrium (assuming L = 18) and the
social optimum.

Figure 2 shows the price of anarchy γ (G, φ) of the Nash equilibrium for different
values of L and φ. The results suggest that (1) the price of anarchy is a non-
increasing function of L; (2) it is constant when either L is small enough (i.e., the
Nash equilibrium coincides with the social optimum) or greater than some threshold

Fig. 1 Network topology of
Example 1

1

2

3

4 5 6

7

8
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Table 1 Unconstrained Nash equilibrium, constrained Nash equilibrium (considering upper
bound L = 18) and social optimum for Example 1

Player Unconstrained NE Constrained NE Social optimum

1 18.2041 17.7661 18.0000

2 18.2041 17.7661 18.0000

3 18.2041 17.7661 18.0000

4 20.1431 18.0000 18.0000

5 15.3047 14.9868 18.0000

6 16.4227 16.3742 18.0000

7 14.4837 14.4755 18.0000

8 14.4837 14.4755 18.0000
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1
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(G
,

)

Price of Anarchy

  = 0.1/ (G)
  = 0.2/ (G)
  = 0.3/ (G)
  = 0.4/ (G)

Fig. 2 Price of anarchy for different values of L and φ

(i.e., the Nash equilibrium and the social optimum are both interior to the feasible
region); (3) the larger the value of φ, the smaller the asymptotic value of γ (G, φ) is.

5 Conclusions and Further Research Perspectives

A future research direction is the use of the necessary condition for boundary
solutions to develop an algorithm for finding the Nash equilibrium. Moreover, the
introduction of uncertain data in the model could be done along the same lines as
in [11]. From the application viewpoint, our results could be used to further develop
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several models in social sciences and economy. For instance, in [2] criminal social
interactions were analyzed within the framework of a general quadratic model in
social networks; in [6], the influence of peers on educational networks has been
studied extensively using the approach described in this note; moreover, in [9] the
quadratic model was used to investigate the interaction between the social space
(i.e., the network) and the geographical space (i.e., the city).
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An Optimization Model for Managing
Reagents and Swab Testing During
the COVID-19 Pandemic

Gabriella Colajanni, Patrizia Daniele, and Veronica Biazzo

Abstract The ongoing COVID-19 pandemic, caused by Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), is having an irreversible effect on millions
of people around the world. This new pathology is characterized by symptomatic
patients who need hospital care, paucisymptomatic patients but also asymptomatic
patients who could considerably spread the virus without being aware of it;
therefore, the virus spreads very quickly and swab tests for viral presence are used to
diagnose positive cases. In this paper we present a multi-period resource allocation
model with the objective of simultaneously maximize the quantity of all analyzed
swabs while minimizing the time required to obtain the swabs result, the costs due
to increase the number of swabs analyzed per unit time and the cost to transfer
swabs between laboratories (when a laboratory receives more swab tests than it can
analyze).

Keywords COVID-19 · Multi-period model · Allocation problem

1 Introduction

In this paper we consider a model for emergency resource allocation in the event of
a viral pandemic with the main goal of minimizing the impact of such an event. A
severe viral pandemic or epidemic, particularly one with an high rate of contagion,
could have an extremely devastating impact on million people worldwide.

First reported in the city of Wuhan, China, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has spread rapidly
worldwide, leading the World Health Organization to declare a global pandemic
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of COVID-19 on the 11th of March. This rapid and extensive spread of infection
and the increasing pressure on hospital capacity have led to an official lockdown
in a lot of countries. These restrictive measures have generated, on the one side, a
slowdown in the spread of the infection, but on the other a considerable cost to the
economy (see [1]). Therefore, after many countries have lifted lockdown measures
and restrictions, it is necessary to avoid overloading the health service and the rapid
reappearance of infections that could cause further deaths. Moreover, although some
patients require intensive care, others have mild symptoms, but many others may
be asymptomatic (it is estimated they are 17.9%, see [10]). Thus, testing as many
people as possible is essential in order to limit the growth of infections (see [5])
identifying positive patients. In addition, the data show that there is a correlation
between the number of tested swabs and the number of new cases of COVID-19
positive people.

There exist different types of swab-tests, media, and kits can be used for COVID-
19 sample collection. There are currently two primary types of COVID-19 tests:
blood tests (or serology tests) that hunt for antibodies and diagnostic tests that look
for active coronavirus infection in mucus or saliva using a swab (which is inserted
into the throat and the nose). Some swab-tests, the antigen tests, look for a piece of
the coating of the virus (also called rapid tests, they are generally quick and cheap
but they are more prone to false negative results), and other tests, the Molecular
tests, detect nucleic acid (such as RNA) belonging to the coronavirus. RNA tests are
considered to be the ones that produce the most sensitive and highly accurate results
and they are often called RT-PCR tests, short for Real Time-Polymerase Chain
Reaction, the lab technique used to detect the virus’s genetic material. Running a
PCR test and reading its results requires specific equipment and chemicals (known
as reagents) that are often in short supply because of the high number of requests.

The situation of Covid-19 has been studied in the literature, also in the field of
optimization, but for different aspects (see, for example, [8, 9, 11, 12]). The objective
of this paper is to formulate a multi-period resource allocation problem that allows
us to plan where and when it is convenient to allocate reagents and whether to
transfer the swabs to be analyzed from one laboratory to another one (minimizing
the transfer costs). This planning model establishes the optimal number of swabs
that each laboratory has to analyze in order to maximize them (while minimizing
the result times), but also the amount of reagents to stock at each period and to
self-produce (if the laboratory is able to do it). Moreover, this multi-period problem
determines whether it is convenient for a laboratory to increase the service rate (the
number of analyzed swabs per time unit), minimizing the related costs associated
with it.

This paper is organized as follows. In Sect. 2 we present the mathematical model
relating to a supply chain in an epidemic or pandemic situation, consisting of
companies producing reagents and laboratories that analyze swabs received from
local testing centers or directly from people. Therefore, we derive the optimality
conditions given by the aim of maximizing the quantity of processed swabs while
minimizing the delay and the costs due to the increase in the service rate and the
transfer of swabs to other laboratories. In Sect. 3 we apply the model to some
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numerical examples in order to emphasize the highlights of the model. Section 4
is dedicated to the conclusions.

2 The Model for Optimal Management of Reagents
and Swab Testing

2.1 Problem Description

The supply chain network, consisting of companies or factories producing reagents,
laboratories (hospitals, local health centers, regional health care institute, Central
National Authority) which are authorized to process swabs collected from people at
specialized testing sites, is depicted in Fig. 1.

Each company a, a = 1, . . . , A, produces one or more types of reagents
r , r = 1, . . . , R, and sends them to the authorized laboratories denoted by
l = 1, . . . , L. Each laboratory receives reagents by productive companies (or
it can self-produce them) and analyzes one or more types of swabs denoted by
s = 1, . . . , S. People (healthy, asymptomatic, pre-symptomatic, symptomatic) are
tested in different locations (some test centers offer also a drive-through service or
special care units can go to the patient’s home) and then their swabs are sent to
authorized laboratories or people can go directly to the laboratory to be tested (free
of charge if requested by their doctor or pediatrician, for a fee otherwise). Therefore,
each laboratory receives a certain amount of swabs to be analyzed.

Usually, the nearest laboratory is chosen for swab analysis, in order to reduce
costs and time. In this paper, we suppose that in some cases it may be necessary to
send the swabs to be analyzed to other laboratories (even further away). This can

11 … 1 . . . 1 … … . . . 1 … /  

11 … 1 . . . 1 … … . . . 1 … /  

11 … 1 . . . 1 … … . . . 1 … /  

1 . . . . . .

Fig. 1 Network topology
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happen, for example, when, due to an epidemic outbreak, a laboratory receives too
many swabs to test.

Furthermore, in this paper we analyze the model in a discrete time horizon:
1, . . . , t, . . . , T .

2.2 Parameters and Variables

Now, we present the parameters of the model. Let:

• prsl be the amount of reagent r needed to process an s-type swab in the laboratory
l;

• E[qslt ] be the expected value of the quantity of swabs of the type s requested to
the laboratory l at time t;

• Mslt be the maximum number of s-type swabs that laboratory l is able to process
at time t ;

• Mlt be the maximum laboratory capacity, that is the maximum number of swabs
that laboratory l is able to process at time t due to machinery or workforce;

• cslt be the amount of laboratory capacity (machinery or workforce) needed to
process an s-type swab in the laboratory l at time t;

• MA
rlt be the maximum quantity of reagent r that the laboratory l can self-produce

at time t ;
• Qrat be the amount of reagent r produced by and available to the company a at

time t;
• Zrl be the maximum number of stocks of reagent r that the laboratory l is able

to maintain;
• μi

sl be the initial mean service rate, that is the number of type s swabs processed
per unit of time at the laboratory l;

• εsl be the cost due to the additional mean service rate at the laboratory l, for swab
type s;

• ϑ
sll̃

be the cost to transfer an s-type swab from laboratory l to l̃.

All variables are described in Table 1.

Table 1 Description of the variables

Variable name Description

xslt Quantity of swabs s analyzed in l at time t

xralt Quantity of reagent of type r sent by company a to laboratory l at time t

zrlt Quantity of reagent of type r that the laboratory l puts into storage at the end
of period t

xA
rlt Quantity of type r reagent self-produced by the laboratory l at time t

μA
sl The additional mean service rate related to the swabs s and the laboratory l

y
sll̃t

Quantity of swabs s transferred from laboratory l to l̃ at time t
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2.3 Objective Function

The objective function consists of four parts.
The first term maximizes the number of each type of swab analyzed in each

laboratory and for each period, which is the main objective of this work. The second
term aims at minimizing the delay, intended as the time required to obtain the
swab result. The third element of the objective function deals with minimizing the
cost due to the additional mean service rate, εsl(μ

A
sl), (when the latter is strictly

positive: μA
sl > 0), that is, the cost that the laboratory l has to pay to increase the

number of s-type swabs analyzed per unit time (for example the cost to buy new
machinery). Finally, the fourth and last part minimizes the cost to transfer swabs
from a laboratory to another one, ϑ

sll̃
(y

sll̃t
) (usually this happens in an outbreak

situation, when a laboratory receives more swab tests than it can analyze).
As mentioned above, in the second part of the objective function we take into

account the time required to obtain the swab result. Since it is independent of
our variables, we do not analyze the time preceding the arrival of the swab in
the laboratory, but we consider only the time from the moment the laboratory
receives the swab to when the result is obtained (positive or negative for Covid).
This period of time is characterized by a waiting period, due to the queue that has
been generated, and by the time required to process the swab. We consider an M/M/1
queue (see [2, 6, 13]), according to the Kendall’s notation (see [4]), that represents
the queue length in a system in which we assume:

• having a single server (the single laboratory that receives the swabs to analyze)
which serves customers one at a time from the front of the queue;

• there is only one waiting line;
• arriving requests follow each other according to a Poisson process and
• job service times have an exponential distribution.

We also assume that the buffer is of infinite size, so there is no limit on the
number of customers it can contain. We choose the “first in, first out” (FIFO) Service
Discipline (the swabs are analyzed in the order they arrived in).

The process describing the number of customers is Markovian. Since the
probability that the chain changes from state i to state j depends only on i and
j , it is an homogeneous Markov chain (see [14]).

We denote by λ the mean rate of arrivals (and, therefore, 1
λ

represents the mean
inter-arrival time) and by μ the mean service rate that is the mean number of swabs
processed per unit time (and, therefore, 1

μ
represents the mean service time).

The Little’s Law states that the average number of customers in a system, E[L],
equals the average arrival rate, λ, multiplied by the average time in the system, E[S]:

E[L] = λE[S].
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By applying the Little’s law (see [7] and [3]), we obtain that the intensity of traffic,
ρ, also called server utilization or occupation rate, is given by the ratio between the

mean arrival rate and the mean service rate: ρ = λ

μ
.

Furthermore, it is clear that the average time in the system is equal to the sum
between the average waiting time and the average service time: E[S] = E[W ] +
E[Z]. Therefore, the average time in the system is given by:

E[S] = 1

μ − λ
.

In this model, we aim at minimizing the average time in the system for all
laboratories and swab types. We consider the initial mean service rate added to
the variable μA

sl ∈ R
+
0 , the additional mean service rate, because the laboratory l

could obtain an increase in the service rate, for example by purchasing additional
machinery that allows to analyze more swabs per unit time (maybe even differently
by swab type). Instead, the mean rate of arrivals, λ, is given by the mean of the
swabs to be analyzed per unit time, that is, the expected value of the quantity of
swabs requested to the laboratory from which we subtract the quantity of swabs
transferred to other laboratories and we add the amount of swabs received from
other laboratories.

2.4 Mathematical Modeling

The problem formulation is as follows:

max

S∑

s=1

L∑

l=1

T∑

t=1

xslt − δ

S∑

s=1

L∑

l=1

1

μi
sl + μA

sl −

⎡

⎢⎢
⎢
⎣

1

T

T∑

t=1

⎛

⎜⎜
⎜
⎝
E[qslt ] −

L∑

l̃ �=l

l̃=1

ysll̃t +
L∑

l̃ �=l

l̃=1

ysl̃lt

⎞

⎟⎟
⎟
⎠

⎤

⎥⎥
⎥
⎦

−α

S∑

s=1

L∑

l=1

εsl (μ
A
sl) − β

S∑

s=1

L∑

l=1

L∑

l̃ �=l

l̃=1

T∑

t=1

ϑsll̃(ysll̃t ) (1)
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subject to

1

T

T∑

t=1

⎛

⎜
⎜
⎜
⎝
E[qslt ] −

L∑

l̃ �=l
l̃=1

y
sll̃t

+
L∑

l̃ �=l
l̃=1

y
sl̃lt

⎞

⎟
⎟
⎟
⎠

< μi
sl + μA

sl ∀s = 1, . . . , S, ∀l = 1, . . . , L,

(2)

S∑

s=1

prslxslt ≤
A∑

a=1

xralt + zrl(t−1) − zrlt + xA
rlt

∀r = 1, . . . , R, ∀l = 1, . . . , L, ∀t = 1, . . . , T , (3)

xA
rlt ≤ MA

rlt ∀r = 1, . . . , R, ∀l = 1, . . . , L, ∀t = 1, . . . , T , (4)

xslt ≤ Mslt + M
A
sl(μ

A
sl) ∀s = 1, . . . , S, ∀l = 1, . . . , L, ∀t = 1, . . . , T , (5)

S∑

s=1

csltxslt ≤ Mlt +
S∑

s=1

M
A
sl(μ

A
sl) ∀l = 1, . . . , L, ∀t = 1, . . . , T , (6)

xslt ≤ E[qslt ] +
L∑

l̃=1

(
y
sl̃lt

− y
sll̃t

)
∀s = 1, . . . , S, ∀l = 1, . . . , L, ∀t = 1, . . . , T ,

(7)

L∑

l=1

xralt ≤ Qrat ∀r = 1, . . . , R, ∀a = 1, . . . , A, ∀t = 1, . . . , T , (8)

zrlt ≤ Zrl ∀r = 1, . . . , R, ∀l = 1, . . . , L, ∀t = 1, . . . , T , (9)

xslt , xralt , zrlt , x
A
rlt , ysll̃t

∈ N ∀s = 1, . . . , S, ∀r = 1, . . . , R,

∀a = 1, . . . , A, ∀l, l̃ = 1, . . . , L, ∀t = 1, . . . , T , (10)

μA
sl ∈ R

+
0 ∀s = 1, . . . , S, ∀l = 1, . . . , L. (11)

The objective of the model is to simultaneously maximize the quantity of all
analyzed swabs while minimizing the delay, the costs due to the additional mean
service rate and the cost to transfer swabs between laboratories, multiplied by the
weights δ, α and β, respectively (see the objective function (1)).

Constraint (2) represents the stability condition for the queue; indeed, if, on
average, swabs arrivals occur faster than the analysis performed in laboratory (that
is, if the swabs to be processed arrive with a greater frequency than those whose
analysis has been completed), the queue will grow indefinitely and the system will
not have a stationary distribution. Therefore, it is necessary to request that the
intensity of traffic is strictly less than 1, ρ < 1, that is: λ < μ.
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Constraint (3) means that the amount of reagent r needed to process all kinds of
swabs in the laboratory l at time t is less than or equal to the quantity of reagent r

laboratory l receives by each company at time t , summed to the amount of reagent
r that laboratory l had placed into storage in the previous period minus what is put
in stock at the end of time t , to which we add the quantity of type r reagent that
laboratory l is able to self-produce at time t . We underline that, as mentioned above,
swab testing often requires not only one type of reagent but a mixture which varies
with the type of swab and with the laboratory; hence, constraint (3) must be verified
for each needed reagent, the number of s-type swabs that l can analyze depends on
the amount of the reagents available to use and, obviously, if in the laboratory l the
reagent r̃ is not necessary to process the s̃-type swab, then pr̃s̃l = 0.

Since the amount of reagent that a laboratory can self-produce at every time is not
infinite, constraint (4) establishes the upper bound for each reagent, each laboratory
and each time.

Constraints (5)–(6) represent the laboratory capacity that consists in the maxi-
mum quantity of swabs (of type s, for constraint (5)) that laboratory l is able to
analyze at time t . Such upper bound is defined by the workforce or machinery,
including additional ones (which increase the mean service rate). We observe that in
constraint (6) the variable is multiplied by a parameter cslt because each swab type
can require a different portion of the total laboratory capacity.

Constraint (7) guarantees that no more swabs are processed than required ones
(given by the expected value of initial requests to which we add the difference
between the swabs to analyze received from other laboratories and that sent to other
laboratories).

The inequality (7), in the case in which the swabs are equivalent for the
population (as in the case of vaccines), i.e. when the expected value of the quantity
of swabs requested from the laboratory l at time t is independent from the swab type
s (E[qlt ]), can be redefined as follows:

S∑

s=1

xslt ≤ E[qlt ] +
S∑

s=1

L∑

l̃=1

(
y
sl̃lt

− y
sll̃t

) ∀l = 1, . . . , L, ∀t = 1, . . . , T . (12)

Companies (or manufacturing industries and factories) can produce a limited
quantity of reagents per period. Therefore, the amount of reagent that company a

can send to all laboratories must be less than or equal to that produced, as stated by
constraint (8). Furthermore, the sale is often managed by national, regional or local
organizations; hence, laboratories do not receive reagents every day (at each period
t) but intermittently, as we will assume in Sect. 3, also in order to save on transport
costs, considering that the manufacturing companies are often very far from the
laboratories.

As mentioned previously, the reagents, or some types of them, require some par-
ticular maintenance conditions such as certain temperatures; therefore, constraint (9)
establishes that the quantity of reagent of type r that the laboratory l puts into storage
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at the end of each period t is less than or equal to the maximum number of stocks
of reagent that the laboratory can preserve.

The latest constraints define the domain of the variables of the problem.

3 Numerical Examples

In this section we apply the model to some numerical examples.
Since we want to report all the results for transparency purposes, we select

the size of problems as reported and the numerical data are constructed for easy
interpretation purposes.

To solve the examples we used Cplex on a laptop with an AMD compute cores
2C+3G processor, 8 GB RAM and we got the best solutions in just a few seconds.

3.1 Base Case with One Period of Time

Firstly, we consider the network consisting of: two companies, two reagents, one
laboratory, two swab types and we consider only one period of time.

We assume the following data are given:

Q111 = 7, Q121 = 5, Q211 = 5, Q221 = 2; p111 = 5, p121 = 1, p211 = 3, p221 = 2;
E[q111] = E[q211] = 2; MA

111 = MA
211 = 0; M111 = M211 = 10;

M
A

11 = M
A

21 = 5; M11 = 10; c111 = 0, 8, c211 = 0.2; Z11 = Z21 = 5;
δ = α = β = 1; μi

11 = μi
21 = 3; ε11 = ε21 = 1; ϑ111 = ϑ211 = 1; z110 = z210 = 0.

The optimal solutions are calculated by solving the optimization problem, the
calculations are performed using the Cplex program. We get the following optimal
solutions:

x111 = 1, x211 = 2; x1111 = 7, x1211 = 0, x2111 = 5, x2211 = 2;
zrlt = xA

rlt = μA
sl = ysll̃t = 0, ∀s, ∀r, ∀l, l̃, ∀t .

These optimal solutions clearly show that although 5 units of the first reagent are
still available, and although this quantity is enough to process additional swabs, the
optimal quantity of swabs that the laboratory can analyze (xslt) is limited by the
quantity of the second reagent.
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3.2 Case with More Periods of Time

Keeping the same structure of the network and data, now we consider a second
example where we suppose two periods of time.

In this case, we also assume:

Q111 = 10, Q121 = 8, Q211 = 8, Q221 = 2; Qra2 = 0, ∀r, ∀a;
E[q111] = 1, E[q211] = 2; E[q112] = 3, E[q212] = 3.

In this case (with more than one period of time), it is convenient to stock reagents
at the end of time t = 1, and use them at time t = 2: z111 = 13, z211 =
12, x1112 = x1212 = x2112 = x2212 = 0, also because, as noted in the previous
section, companies are often very far from laboratories and the sale is managed by
appropriate organizations, therefore, those reagents are not sent every period, but
intermittently.

3.3 Case of Epidemic Outbreak and Self-Produced Reagent

As mentioned above, swabs are generally sent at the nearest laboratory (or at the
local processing center).

A third example refers to the case when an epidemic outbreak occurs. In this case,
the local laboratory receives a number of swabs to be analyzed (usually increasing)
which is higher than those that it is able to process. We also introduce the case in
which a laboratory can self-produce a reagent.

Now, we consider the network consisting of: one company, two reagents, two
laboratories, one swab type and we consider two periods of time.

We indicate below the main data that have undergone a variation compared to the
previous examples:

Q111 = 40, Q112 = 35, Q211 = 20, Q212 = 25;p111 = 5, p112 = 0, p211 = 3, p212 = 5;
E[q111] = 5, E[q112] = 10; E[q121] = 1, E[q122] = 1;

MA
11t = MA

21t = 0; MA
12t = 0, MA

22t = 12; M
A

11 = M
A

12 = 10;
c111 = c112 = c121 = c122 = 1; Z11 = Z21 = Z12 = Z22 = 15;μi

11 = 6, μi
12 = 8.

In this case we get the optimal solutions according to which the first laboratory
(which is subject to a greater number of requests), sends a portion of swabs to
the second laboratory: y1122 = 4. Furthermore, we observe that in t = 1, the
second laboratory satisfies the processing requests of the swabs, using only the self-
produced reagent: x1121 = 0, x2121 = 0, xA

221 = 12; while in t = 2, it uses both the
reagent sent by the external manufacturer company and the reagent put into stock
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at the previous period (as well as the self-produced reagent): x2122 = 7, z221 =
7, xA

222 = 11.

3.4 Case of Extended Period of Epidemic Outbreak

The fourth example maintains the same structure and data as the previous example,
but we add a third time period. We indicate below the added data referring to the
period t = 3:

Q113 = 75, Q213 = 45; E[q113] = 15, E[q123] = 5.

In this case, the optimal solutions clearly show that it is more convenient, for
laboratory 1, to use additional mean service rate rather than transferring swabs to
the other laboratory: μA

11 = 4.1, ysll̃t = 0, ∀s, ∀l, l̃, ∀t .
Finally, we note that if the cost to raise the service rate, εsl(μ

A
sl), increases from

1 to 10, then, the optimal solution is obtained for:

μA
11 = μA

12 = 0; y1121 = 3, y1122 = 1, y1123 = 11.

4 Conclusion

COVID-19 is the ongoing disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), a new coronavirus. The virus spreads very quickly
and tests for viral presence are used to diagnose positive cases and to allow public
health authorities to trace and contain outbreaks. The shortage of reagents and
other supplies needed to perform the tests and analyze the swabs, together with
the incorrect management of them, has become the main issue for massive testing.
Therefore, in this paper we present a multi-period resource allocation model with
the main goal of minimizing the impact of a generic pandemic.

The model proposed in this paper allows decision makers to make the best
choice, that is, to determine the optimal quantities of: swabs to analyze in each
laboratory and at each time, reagents to send by each company to each laboratory
at each time, reagents that each laboratory has to put into storage at the end of
each period, reagents to self-produce by each laboratory at each time, swabs to
transfer between laboratories at each time and the additional mean service rate in
order to maximize the number of each type of swab analyzed while minimizing
the delay, the costs due to the additional mean service rate and the cost to transfer
swabs between laboratories. The experimentation shows that in case of extended
periods of time, it is convenient to stock reagents at the end of a time period, and
use them subsequently. Furthermore, if a laboratory is located near an area where
an outbreak occurs it is affordable to send a portion of swabs to other laboratories;
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but if the epidemic outbreak lasts for an extended period of time, then it might be
more convenient to use additional mean service rate rather than transferring swabs
to other laboratories (depending on the cost to raise the service rate). Finally, we
underline that a laboratory could satisfy the processing requests of the swabs, using
only the self-produced reagent (if the laboratory is able to do it), but if the quantity of
swabs requested to such a laboratory (including those sent from other laboratories)
increases significantly, the laboratory could use both the reagent sent by the external
manufacturer company and the reagent put into stock at the previous periods (as well
as the self-produced reagent).

We created the model in a context of reagents shortage, with the aim of
maximizing the number of swabs analyzed in the laboratories, but, by readapting
it appropriately, it could be useful for problems in different contexts, for example in
the management of mechanical ventilators, vaccines, and so on.

In a future work we intend to continue the study of this topic and, in particular,
we aim at analyzing the behavior of the decision makers at all levels of the network,
so as to obtain the optimality and equilibrium conditions, and, as a consequence, the
global solution for the entire network.

Acknowledgments The research was partially supported by the research project “Programma
ricerca di ateneo UNICT 2020–22 linea 2-OMNIA” of Catania. This support is gratefully
acknowledged.

References

1. Fernandes, N.: Economic effects of coronavirus outbreak (COVID-19) on the world economy.
Available at SSRN 3557504 (2020)

2. Gautam, N., Queueing theory. In: Operations Research and Management Science Handbook,
Operations Research Series, 20073432, pp. 1–2 (2007)

3. Keilson, J., Servi, L.D.: A distributional form of Little’s Law. Oper. Res. Lett. 7, 223–227
(1988)

4. Kendall, D.G.: Stochastic processes occurring in the theory of queues and their analysis by the
method of the imbedded Markov chain. Ann. Math. Stat. 338–354 (1953)

5. Lampariello, L., Sagratella, S.: Effectively managing diagnostic tests to monitor the COVID-19
outbreak in Italy. Technical Report, Optimization Online (2020)

6. Lee, A.M.: A problem of standards of service (Chapter 15). In: Applied Queueing Theory.
MacMillan, New York (1966)

7. Little J.D.C.: A proof of the queueing formula L = λW . Oper. Res. 9, 383–387 (1961)
8. Martínez-Álvarez, F., Asencio-Cortés, G., Torres, J.F., Gutiérrez-Avilés, D., Melgar-García,

L., Pérez-Chacón, R., Troncoso, A.: Coronavirus optimization algorithm: a bioinspired meta-
heuristic based on the COVID-19 propagation model. Big Data 8(4), 308–322 (2020)

9. Mehrotra, S., Rahimian, H., Barah, M., Luo, F., Schantz, K.: A model of supply-chain decisions
for resource sharing with an application to ventilator allocation to combat COVID-19. Naval
Res. Logist. (NRL) 67(5), 303–320 (2020)

10. Mizumoto, K., Kagaya, K., Zarebski, A., Chowell, G.: Estimating the asymptomatic proportion
of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship,
Yokohama, Japan. Eurosurveillance 25, 2000180 (2020)



An Optimization Model for Reagents and Swab Testing During the COVID-19. . . 77

11. Prem, K., Liu, Y., Russell, T.W., Kucharski, A.J., Eggo, R.M., Davies, N.: The effect of control
strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China:
a modelling study. Lancet Public Health 5, E261–70 (2020)

12. Rawson, T., Brewer, T., Veltcheva, D., Huntingford, C., Bonsall, M.B.: How and when to end
the COVID-19 lockdown: an optimization approach. Front. Public Health 8, 262 (2020)

13. Zonderland, M.E., Boucherie, R.J.: Queuing networks in health care systems. In: Handbook
of Healthcare System Scheduling, International Series in Operations Research & Management
Science. Springer, Boston (2012)

14. Zhou, Y.-P., Gans, N.: 99-40-B: A Single-Server Queue with Markov Modulated Service
Times. Financial Institutions Center, Wharton, UPenn (1999)



Modelling and Solving Patient Admission
and Hospital Stay Problems

Rosita Guido, Sara Ceschia, and Domenico Conforti

Abstract This paper considers patient admissions and patient-to-room assignment
problems, which are attracting increasing attention. These problems are challenging
and concern with the assignment of a set of patients to a set of rooms in a well-
defined planning horizon by satisfying several constraints. Hospitals usually face
this complex problem of planning admissions and assigning patients to rooms
manually, requiring long staff time and high costs. The aim of this paper is to model
and solve this problem efficiently. The proposed optimization model is embedded in
a matheuristic, which is tested to solve a set of benchmark instances characterized
by real-world features. The experimental results show that the solution approach is
effective and allows to obtain optimal/sub-optimal solutions in short computational
times.

Keywords Combinatorial optimization · Scheduling · Matheuristic · Patient
admission

1 Introduction

Hospitals have to face an increasing demand from an ageing population and
community health needs. The management of available and appropriate beds and
their occupancy levels in hospitals is an integral part of the economical and
ethical management of health care [1]. The bottleneck of patient allocation and the
availability of beds is one of the major problems within a hospital environment.
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Another important issue is to estimate the patient length of stay (LOS), which is the
number of consecutive nights that a patient stays in a department because it affects
further admissions. An efficient bed management function is highly dependent on
the established patient discharge process. Occupancy levels have to be held high to
ensure high utilization of hospital resources. There is thus a critical need to develop
more efficient approaches to manage the bed allocation issues affecting hospital
staff. This paper focuses on a very challenging task consisting of planning patient
admissions and assigning them to hospital rooms.

In the literature, hospital patient admission scheduling problems (PASPs) involve
two fundamental decisions: which patient to admit and on which day by taking
into account several constraints as bed availability. Zhang et al. [2] highlighted that
the first-come-first-served scheduling strategy, which is usually used in hospitals,
is not very efficient. Demeester et al. [3] introduced the patient bed assignment
problem (PBAP), as a combinatorial optimization problem, that aims at assigning a
set of patients to a suitable bed. Patients’ admission and discharge dates are known,
that is, patients’ LOS is well defined. This problem is NP-hard [4] and heuristic
approaches, like as simulated annealing [5], column generation [6], matheuristic
[7], and late acceptance hill-climbing [8], were developed to solve it. The problem
introduced by Ceschia and Schaerf [9] is a dynamic PASP under uncertainty (called
PASU), which is more complex than the PBAP. This novel problem introduces for
each patient a range of admission and discharge dates and some patients could
have fluctuations in lengths of stay because they could extend their LOS. The
main decisions concern which patient to admit on a day in the defined range,
and how to manage those patients with a risk of overstay. It has hard constraints
and soft constraints, which are penalized in the objective function if violated.
An optimization model for the online PASU problem was formulated and solved
on a set of 450 benchmark instances, with different sizes and complexity, by a
simulated annealing approach in [9]. Their results were improved, mainly on the
large instances, with an Adaptive Large Neighborhood Search approach in [10]. The
above papers considered the online PASU, that is, patients’ information is revealed
day by day. An optimization model for the offline version of the PASU problem was
proposed in [11], where penalty values different from the default ones were tested
in order to improve the overall quality of care. In parallel to [9], the PBAP problem
was extended in a dynamic context also in [12] modelling and solving it by Integer
Linear Programming. Finally, Zhu et al. [13] investigated the problem of designing
short-term strategies consistent with the dynamic problem’s long-term objective for
the PASU problem.

In this paper, we improve the optimization formulation of [11], we propose an
efficient matheuristic as a solution approach, and we test it on the small family of
the PASU benchmark instances. To evaluate the quality of the solutions, we compute
the optimality gap.
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2 Problem Statement and a Sparse Optimization Model

In this section, we briefly describe the PASU problem and present a new formulation
with a reduced number of variables and constraints that results in a sparse
optimization problem to be solved by the matheuristic.

Hospital departments have several levels of expertise (i.e., high, medium, null) in
treating a pathology. Rooms are located in departments, they have a fixed number of
beds that defines their capacity, they could have some equipment, and be subject
to age policies (e.g., geriatric departments) and to gender policies, that is, only
patients of a specific gender can be assigned to a given room, or patients with the
same gender of patients already staying in the room can be assigned to. The first
two policies are called restricted gender policy (RGP), whereas the last one is the
dependent gender policy (DGP). A set of patients is waiting to be admitted to the
hospital. For each patient is known the medical pathology, a set of equipment that
could be mandatory or preferred, age, gender, and LOS. Some patients could extend
their hospital stay. In order to improve patient requirements, transfers of patients
among rooms are allowed but not during overstayed periods. The problem has hard
and soft constraints, listed in Table 1. The soft constraints can be violated. Their
violations are penalized by a related cost coefficient in the objective function.

The PASU problem aims at admitting all patients during their fixed range of
admission dates and assigning them to suitable rooms by considering that, however,
there are concurrent requests for rooms. The objective function minimizes, as much
as possible, soft constraint violations.

2.1 A Sparse Optimization Model for Patient Admission
Scheduling Problems Under Uncertainty

In this section, we introduce the used notation and formulate a sparse optimization
model for the offline PASU problem. The number of variables and constraints is
strongly reduced with respect to the model formulation proposed in [11].

Let P,R, S,E,AP , be the set of patients, rooms, medical specialties, equip-
ment, and age policies, indexed by p, r, sp, e and j , respectively. Let Po ⊆ P , be
the set of patients with a risk of overstay; S̄r ⊆ S, be the set of medical specialties
that can be treated on room r; and GP = {1, 2, 3, 4} be the set of gender policies
indexed by gp. The elements 1 and 2 denote RGP; 3 denotes DGP, and 4 that there
is no gender policy; R̄D = {r ∈ R | gpr = 3} is the set of rooms with DGP.

The patient information and the suitably defined sets that allow to reduce the
overall number of constraints are reported in Table 2. The decision variables are
listed in Table 3.
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Table 1 Hard and soft constraints

Constraints Description

Hard constraints

H1—Room capacity The number of patients assigned to a room cannot exceed the
number of beds in the room

H2—Department specialism Patients are assigned to rooms where there is a level of
expertise in treating the patient’s pathology

H3—Mandatory equipment A patient has to be assigned to well equipped rooms if he/she
has mandatory equipment

H4—Patient’s age A patient can be assigned to a room only if there is
consistency with room-age policy

H5—Patient admission Each patient has to be admitted in a certain interval of
admission dates

H6—Hospital stay For each patient is known the LOS given as the number of
consecutive nights

H7—No transfers in overstay A patient with overstay risk has to stay in the last assigned
room even during an overstay period

Soft constraints

S1—Restricted gender policy The violation concerns male (female) patients assigned to a
room for only female (male) patients

S2—Department specialism Patients should be assigned to rooms with high level of
expertise. Assignments to rooms with a medium level of
expertise are penalised

S3—Room capacity preference Patients prefer to be assigned to rooms with a specific number
of beds (e.g., single, double). The bed capacity of the
assigned room should not be greater than the one preferred

S4—Preferred equipment Each patient should be assigned to a room with the equipment
preferred for the patient

S5—Dependent gender policy Male patients should not be assigned to rooms with DGP
where there are already female patients, and vice versa

S6—Transfers A patient can be transferred from a room to another one for
quality of care improvement

S7—Delay admission A patient should be admitted on the earliest admission date.
Patient admission date can be delayed up to the latest
admission date even if penalised

S8—Overcrowded rooms A room could be overcrowded only because patients that have
an overstay risk cannot be transferred in other rooms

The objective function (1) is the sum of five terms with penalty costs. By referring
to the soft constraints described in Table 1, the first term of the objective function
penalizes the sum of violations related to Constraints S1−S4. The overall violation is
penalized by the coefficient wpr . The further four terms of the objective function are
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Table 2 Patient’s characteristics and notation

ADp =
{
ap, . . . , a

′
p

}
Range of admission dates where ap is the earliest date
and a

′
p is the latest admission date

Lp Length of hospital stay given as consecutive nights

DDp =
{
zp, . . . , z

′
p

}
Range of discharge dates, where zp = ap + Lp is the
earliest discharge date and z

′
p = a

′
p + Lp is the latest

discharge date

Hp =
{
ap, . . . , z

′
p − 1

}
Period during which patient p has a hospital stay

spp ∈ S Patient’s specialty

Age apj = 1 if patient’s age is consistent with age policy
j ∈ AP , 0 otherwise

MEp ⊆ E Set of mandatory equipment

PEp ⊆ E Set of preferred equipment

Gender Male or female

nop ≥ 0 Estimated length of overstay

Ho
p =

{
zp, . . . , z

′
p + nop − 1

}
Range of discharge dates if p has a risk of overstay,
that is, nop > 0

PM(PF ) Set of male (female) patients

R̄p = {r ∈ R, j ∈ AP, e ∈ E : Set of rooms feasible for patient p. It is given as
intersection of the constraints on

spp /∈ S̄r , mepe ≤ eqre, aprj apj > 0} Patient’s specialty, mandatory equipment, and age
policy

R̄D
p = {r ∈ R̄p | gpr = 3

}
Subset of rooms with DGP and feasible for patient p

Table 3 Decision variables

xprd = 1 If patient p is assigned to room r ∈ R̄p on day d ∈ Hp, 0
otherwise

oprd = 1 If patient p ∈ P o is assigned to room r ∈ R̄p on day
d ∈ DDo

p , 0 otherwise

tpd = 1 If patient p is transferred on day d ∈ Hp , 0 otherwise

aprd = 1 If patient p is admitted on day d ∈ Adp to room r ∈ R̄p , 0
otherwise

brd = 1 If male and female patients are in room r on day d ∈ Hp ,
0 otherwise

delp ≥ 0 Delayed admission (in days) for patient p

ovrd ≥ 0 If room r is overcrowded on day d ∈ H
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violations of Constraints S5, S6, S7, S8 and they are penalised by wg,wt ,wdel, wo,
respectively.

min
∑

p∈P

∑

r∈R̄p

∑

d∈Hp

wprxprd +
∑

r∈R̄D

∑

d∈H

wgbrd +
∑

p∈P

d<z
′
p∑

d>ap

wt tpd +
∑

p∈P

(wdeldelp)

+
∑

r∈R

∑

d∈H

woovrd (1)

∑

d∈ADp

adpd = 1 ∀p ∈ P (2)

delp =
∑

d∈ADp

adpdd − ap ∀p ∈ P (3)

d+Lp−1∑

k=d

∑

r∈R̄p

xprk ≥ adpdLp ∀p ∈ P, d ∈ ADp (4)

∑

d∈Hp

∑

r∈R̄p

xprk = Lp ∀p ∈ P (5)

∑

r∈R̄p

xprd ≤ 1 ∀p ∈ P, d ∈ Hp (6)

Cr ≥
∑

p∈P |d∈Hp,r∈R̄p

xprd ∀r ∈ R, d ∈ H (7)

tpd ≥ xprd − xpr(d−1) − adpd p ∈ P, r ∈ R̄p, d ∈ ADp (8)

tpd ≥ xprd − xpr(d−1) p ∈ P, r ∈ R̄p, d ∈ ]a ′
p, z

′
p[ (9)

∑

d∈]ap,z
′
p[

tpd ≤ nt ∀p ∈ P (10)

adpd + xpr(d+Lp−1) ≤ 1 + ospr(d+Lp) ∀p ∈ Po, d ∈ ADp, r ∈ R̄p, d + Lp ≤ |H |
(11)

Cr + ovrd ≥
∑

p∈P |d∈Hp,r∈R̄p

xprd +
∑

p∈Po|d∈DDp,r∈R̄p

osprd ∀r ∈ R, d ∈ H

(12)

brd ≥ xprd + xp
′
rd − 1 d ∈ H,p ∈ PF |d∈Hp, p

′ ∈ PM|d∈Hp
′ , r ∈ R̄D

p ∩ R̄D

p
′

(13)
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Constraints (2) state that each patient has to be admitted in a certain interval
of admission dates. Constraints (3) compute a delayed admission with respect to
the early date, and Constraints (4)–(6) ensure that the overall stay will occur in a
certain number of consecutive Lp nights. Constraints (7) refer to the room capacity
constraints (see H1 in Table 1). Constraints (8)–(9) define if a patient is transferred
into another room and Constraints (10) limit the overall number of transfers per
patient to nt . Constraints (11) force that a patient will stay in the last room on the
overstay. Constraints (12) ensure that a room capacity is not violated during the
planning horizon H but a room could be overcrowded only if there are patients
who extend their LOS. Finally, Constraints (13) define if the DGP in violated in the
rooms r ∈ R̄D by setting to one the value of the related brd .

Hereafter, we refer to Model (1)–(13) together the decision variables listed in
Table 3 as ModPASU .

3 A Matheuristic Approach and Computational Results

The solution approach developed and implemented for solving the PASU problem
is based on the matheuristic FiNeMath, which was introduced in [7] for solving the
PBAP. FiNeMath showed good performance in terms of results and computational
times, as even confirmed if compared to further approaches as the exact one
presented in [14]. This matheuristic combines fix and relax heuristic, and fix and
optimize heuristic with the large neighborhood search heuristic [15]. Its framework
has two fundamental steps: the first step focuses on finding an initial feasible
solution of ModPASU ; the second step is devoted to construct a sequence of
subproblems, easier to solve than the whole original problem. An overview of
FiNeMath is showed in Fig. 1.

Fig. 1 Overview of the matheuristic approach
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This approach is a matheuristic because each subproblem is solved by a MIP
solver and is effective even because an incumbent solution is provided as initial
solution to start with. At each iteration, a local change is performed by a destroy
operator applied to the incumbent solution. The rest of the components of the
incumbent solution are added to the ModPASU as equality constraints.

The new version of FiNeMath here developed is Algorithm 1. At Phase 1,
constraints on DGP violation are removed and the patient admission dates are fixed
to the earliest in order to find an initial feasible solution in a short computational
time. We defined a set DO of three destroy operators, named DO1,DO2, and
DO3. DO1 is based on removing from the incumbent solution a percentage number
of patients randomly selected whereas DO2 on removing patients with a specific
gender; DO3 combines the above two destroy operators.

Algorithm 1 FiNeMath for PASU problem

Input: ModPASU , P (set of patients), DO, NIt , Tmax

Output: Phase 1: feasible schedule s0. Phase 2: final schedule

Phase 1
Initialisation: wg = 0
a

′
p ← ap ∀p ∈ P

Solve the MIP model
if infeasible then

Set a
′
p to its original value ∀p ∈ P

Solve the ModPASU

Phase

Phase 2
Initialisation: wg ← its value. T ime ← 0
a

′
p ← its original value ∀p ∈ P

i ← 1
while i <= NIt or T ime < Tmax do

Select one destroy operator in DO an apply it to the current solution
Add the rest of the patient-to-room-day assignements as equality constraints to
ModPASU

Solve the new ModPASU
i

i ← i + 1
end

Phase

3.1 Instances and Parameters Setting

We solved the small family of 150 instances,1 clustered as small-short, small-mid
and small-long sets, whose main characteristics are listed in Table 4.

1 The instances are available at https://bitbucket.org/satt/pasu/.

https://bitbucket.org/satt/pasu/
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Table 4 Main characteristics of the Small family of instances and FiNeMath timeout

Set of instances Departments Rooms Equipment Patients Specialities Days Tmax (s)

Small short (50) 4 8 4 50 3 14 1000

Small mid (50) 4 8 4 100 3 28 2000

Small long (50) 4 8 4 200 3 56 3000

We set the parameters of ModPASU to the default values reported in [9]: wpe =
20;wcr = 10;wsp = 20;wg = 50;wt = 2;wdel = 1; nt = 1.

As already observed in [7], the number of assignments added as constraints to
ModPASU influences improvements in the objective function value and computa-
tional times: a high percentage of fixed assignments decreases computational times
but often reduces objective function improvements. The percentage of destroyed
assignments is between 50% and 80%. Each subproblem is solved with a gap of
5%, which decreases up to 1% in the latest iterations. The stopping criteria are the
number of carried out iterations NIt = 29, and the maximum computational time
T max , which is family dependent, as reported in Table 4.

3.2 Computational Results and Discussion

In this subsection, we present the computational results related to 150 benchmark
instances of the small family. There are three families with 50 instances whose
main characteristics are in Table 4. Computational experiments were conducted
on a Server running Windows server R2 2012 with Intel Xeon E5-2695v3 14
CORE/64GB. FiNeMath was implemented in ILOG OPL and run with CPLEX
12.7.1, Academic License. The lower bound (LB) values were computed by solving
quickly (less than three minutes) ModPASU as a linear programming model with
continuous variables defined in [0, 1].

Per each set of instances, we report the results in terms of mean value in Table 5.
The second column shows the objective function value, and the following five
columns report the values of the weighted soft constraint violations. The next two
columns report the objective function values found in [9, 10], denoted as FC and
FL, respectively. The following three columns show the LB values, the percentage
gap F−LB

F
× 100 of F compared to the LB, and the average computational time in

seconds. The objective function values are close to the LB values, as a guaranty of
high quality of care for patients. The mean percentage gap ΔLB is between 2.32%
and 6.12%, and ΔLB is less than 2% for 42 out of the 150 tested instances. Finally,
we observe that: (1) the mean optimal value of the small-short set is F̄ ∗ = 2616.12
and that the average computational time is 150 s [11]; (2) some of the optimal
solutions of the small-mid family were found in 24 h in [9]. This result highlights
that FiNeMath is efficient because it reduced computational times, and effective
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because it found optimal solutions for all the 50 small short instances and near-
optimal solutions for the other 100 instances.

Finally, the FC and FL values are greater than F , as expected, because they refer
to the online PASU problem which is a dynamic version.

4 Conclusions

In this paper, we formulated a sparse optimization model for offline patient
admission planning and scheduling problems and proposed an efficient matheuristic
that keeps working in a small feasible region of the large search space. We tested
the model and the solution approach on 150 benchmark instances. The results
show that the matheuristic minimizes the gap between the found solutions and the
corresponding lower bound values found by the exact method.

The number of variables and constraints is strongly reduced with respect to the
optimization model formulated in [11]. Indeed, reducing the dimensionality of the
problem is critical to improving the performance of the matheuristic. We believe
that the proposed optimization model could be used as integrated in a decision
support system to help administrators of healthcare institutions to early identify
issues in the patients’ admission and hospitalization process. In addition, it can
be a useful tool for analyzing inefficient management and patient’s discomfort.
Consequently, alternative solutions, in terms of schedules, could be exploited for
organizing hospitalizations that can improve the effectiveness of medical treatments.

Future works are on enhancing the solution approach in order to solve in
reasonable computational times large instances and assuring a high quality of
solutions.
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A Two-Stage Variational Inequality
for Medical Supply in Emergency
Management

Georgia Fargetta and Laura Scrimali

Abstract In this paper, we study the competition of healthcare institutions for med-
ical supplies in emergencies caused by natural disasters. In particular, we develop
a two-stage stochastic programming model in a generalized Nash equilibrium
framework. It provides the optimal amount of medical supplies from warehouses to
hospitals, in order to minimize both the purchasing cost and the transportation costs.
For effective disaster planning, we allow for real-time information spreading and up-
to-date disaster evaluation. Thus, each institution deals with a two-stage stochastic
programming model that takes into account the unmet demand at the first stage,
and the consequent penalty. Then, the institutions simultaneously solve their own
stochastic optimization problems and reach a stable state governed by the stochastic
generalized Nash equilibrium concept. Moreover, we formulate the problem as a
two-stage variational inequality. We also present an alternative two-stage variational
inequality formulation using the Lagrangian relaxation approximation.

Keywords Disaster management · Stochastic programming · Variational
inequality

1 Introduction

In recent years, emergencies and natural disasters have significantly affected our
social and economic progress. Therefore, emergency management has become
one of the most important and challenging issues. Moreover, emergency resource
storage and distribution have led to strong competition for medical supplies among
healthcare institutions.
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In this paper, we investigate hospital competition for medical supplies as a
generalized Nash equilibrium problem, and propose a stochastic programming
model to describe the behaviour of each demand location. Thus, we are able to
obtain the optimal amount of medical items from warehouses to hospitals, in order
to minimize both the purchasing cost and the transportation costs. Following [20],
we consider real-time information spreading and up-to-date disaster evaluation.
Therefore, we provide a two-stage stochastic programming model based on disaster
scenarios that takes into account the unmet demand at the first stage, and the
consequent penalty, see [11]. In particular, in the first stage, hospitals receive the
early warning information about the emergency and decide the medical item pro-
curement planning; however, they are not aware of the real situation. Subsequently,
accurate real-time information is observed and the process reaches the second-
stage, where the decision relies on the first-stage solution and on the observed
scenario. Moreover, we introduce a penalty function for the unmet demand of
medical supplies in the second stage decision, see also [6]. The problem is then
formulated as a two-stage stochastic variational inequality (see [10]).

The importance of an efficient approach to emergency management and medical
supply planning has been investigated in several papers. For instance, in [15] the
authors construct a generalized Nash equilibrium model with stochastic demand
to analyse competition among organizations for medical supplies. The problem
is then formulated as a variational inequality, using the concept of variational
equilibrium. In [14], Nagurney et al. present a stochastic generalized Nash equi-
librium model for disaster relief. Each humanitarian organization solves a two-stage
stochastic optimization problem, and the model is formulated as a finite-dimensional
variational inequality. In [19], Nagurney and Salarpour introduce a variational
inequality formulation of a two-stage stochastic game theory model in order to
examine the behavior of national governments during Covid-19 pandemic and their
competition for essential medical supplies. In [11], the authors develop a stochastic
programming model to select the storage locations of medical supplies and require
inventory levels for each type of medical supply. The resulting model captures the
information updating making use of disaster scenarios. In [3], the authors present
an optimization model consisting of a dynamic supply chain network for personal
protective equipment, and study the related evolutionary variational inequality in
the presence of a delay function.

Recently, two-stage stochastic variational inequalities have been introduced,
where one seeks a decision vector before the stochastic variables are known, and
a decision vector after the scenario has been realized. In [2], the authors propose
a two-stage stochastic variational inequality model to deal with random variables
in variational inequalities, and formulate this model as a two-stage stochastic
programming with recourse. In [10], the authors investigate the transformation of
a general two-stage stochastic programming problem to a two-stage stochastic vari-
ational inequality. In [16], Rockafellar and Wets discuss the multistage stochastic
variational inequality. In [17], the authors develop progressive hedging methods for
solving multistage convex stochastic programming, see also [18].
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In this paper, we extend the model in [15] in two directions. First, we tackle the
medical item procurement planning problem as a two-stage stochastic programming
problem. Then, we describe the model as a generalized Nash equilibrium problem.
Our second improvement is the characterization as a two-stage variational inequal-
ity. This approach allows us to decompose the problem in two lower dimensional
variational inequalities, instead of solving a unique large-scale variational inequal-
ity. We also present an alternative formulation based on Lagrangian relaxation
approximation, that makes it possible to investigate the role of Lagrange multipliers
in the market behavior.

The structure of this paper is as follows. In Sect. 2, we introduce the two-stage
stochastic model. In Sect. 3, we model the competition among healthcare institutions
as a generalized Nash equilibrium problem, and provide a two-stage variational
inequality formulation. We also present an alternative two-stage variational inequal-
ity based on the Lagrangian relaxation approach. Finally, in Sect. 4, we draw our
conclusions and present further research issues.

2 Two-Stage Stochastic Model of the Competition
for Medical Supply

In this section, we present a two-stage stochastic model for the medical supply
competition. Let W denote the set of warehouses, with typical warehouse denoted
by w; let H denote the set of hospitals, with typical hospital denoted by h; let
K denote the set of medical supply type, with typical type denoted by k, and let
M denote the set of transportation modes, with typical mode denoted by m. We
consider a network representation as in Fig. 1. The links between the levels of the
network represent all the possible connections between warehouses and hospitals.
Multiple links between each warehouse and each hospital depict the possibility of
alternative modes of transportation. We note that the choice of the transportation

Warehouses
1

1
Hospitals

Fig. 1 The network representation
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mode is due to the distance between supply and demand locations. For example, for
long distances airplanes are preferred to transportation by truck or train. The choice
of the transportation mode may also depend on the type of medical item or on the
severity of the emergency.

We denote by Qk
w the amount of medical item of type k in warehouse w, and by

Qw =∑k∈K Qk
w the total amount of medical items in warehouse w.

Now, let xk
wh be the amount of medical item of type k from warehouse w to

hospital h, and let ρk
w be the unitary price of medical item k at warehouse w. Let

xwh denote the total amount delivered from warehouse w to hospital h, where

xwh =
∑

k∈K
xk
wh.

We further group the xwh into the WH -dimensional column vector x.
In addition, we introduce the transportation time tmwh from warehouse w to

hospital h with mode m and assume that it depends on the amount xwh, namely,
tmwh = tmwh(xwh).

Table 1 summarizes the relevant notations used in the model formulation.
We consider a pre-event policy, in which each demand location (hospital) seeks

to minimize the purchasing cost of medical items and the transportation time from
the first stage, and a recourse decision process to optimize the transportation costs
from the second stage, in response to each disaster scenario. Let (�,F, P ) be
a probability space, where the random parameter ω ∈ � represents the typical
disaster scenario. For each ω ∈ �, we denote by ξ : � → R

WHK+HK a finite
dimensional random vector and by Eξ the mathematical expectation with respect
to ξ . In order to formulate the two-stage stochastic model, we introduce two types
of decision variables. The first-stage decision variable xk

wh is used to represent the
quantity of medical supplies of type k from warehouse w to hospital h. The second-
stage decision variables are yk

wh(ω) and zk
h(ω). The variable yk

wh(ω) represents the
quantity of medical supplies of type k to be delivered from warehouse w to hospital
h under scenario ω. The variable zk

h(ω) is the unfulfilled demand at hospital h of
medical item k under scenario ω. We penalize the amount of unfulfilled demand
zk
h(ω) by function πk

h = πk
h(zk

h(ω), ω). From the perspective of demand locations,
xk
wh is chosen before a realization of ξ is revealed and later yk

wh(ω) and zk
h(ω) are

selected with known realization. Finally, we introduce the transportation cost cm
wh

from warehouse w to hospital h with mode m and assume that it depends on the
amount ywh(ω) =∑k∈K yk

wh(ω), namely, cm
wh = cm

wh(ywh(ω), ω).
Our aim is to obtain an efficient plan of medical item procurement of each

demand location in the first stage by the evaluation of adaptive plans in the second
stage.
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Table 1 The notation for the two-stage stochastic model

Symbols Definitions

W Set of warehouses, with typical warehouse denoted by w, card(W) = W

H Set of hospitals, with typical hospital denoted by h, card(H) = H

K Set of different medical items, with typical item denoted by k,
card(K) = K

M Set of transportation modes, with typical mode denoted by m,
card(M) = M

dk
h Demand of medical item k of hospital h in stage one

dk
h(ω) Demand of medical item k of hospital h in stage two under scenario ω

xk
wh Amount of medical item k from warehouse w to hospital h in stage one

xwh Amount of medical items delivered from warehouse w to hospital h in
stage one

x Amount of total medical items from all warehouses to all hospitals in stage
one

Qk
w The amount of the medical item k in warehouse w

Qw =∑k∈K Qk
w The total amount of the medical items in warehouse w

ek Maximum amount available of medical item k

ρk
w Unitary price of medical item k at warehouse w

tmwh(xwh) Transportation time from warehouse w to hospital h with mode m

ywh(ω) Amount of medical items to be delivered from warehouse w to hospital h

in stage two under scenario ω

zk
h(ω) Amount of unfulfilled demand at hospital h of medical supply item k under

scenario ω

cm
wh(ywh(ω), ω) Transportation cost from warehouse w to hospital h with mode m under

scenario ω

πk
h (zk

h(ω), ω) Penalty for unfulfilled demand at hospital h of medical supply item k

under scenario ω

2.1 First-Stage Problem

For each hospital h, we minimize the purchasing cost and the transportation time
of the first stage with the expected overall costs and the penalty for the prior plan.
Therefore, the first-stage problem is given by:

min
∑

w∈W

(∑

k∈K
ρk

wxk
wh +

∑

m∈M
tmwh(xwh)

)
+ Eξ (�h(x, ξ(ω))) (1)

subject to
∑

h∈H

∑

k∈K
xk
wh ≤ Qw, ∀w ∈ W, (2)
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∑

w∈W
xk
wh = dk

h, ∀k ∈ K, (3)

∑

w∈W
xk
wh ≤ ek, ∀k ∈ K, (4)

xk
wh ≥ 0, ∀w ∈ W, ∀k ∈ K. (5)

The objective function (1) minimizes the sum of the purchasing cost for early
supply plan, the transportation time, and the expected value of costs of hospital h in
the second stage with respect to disaster scenarios. Constraint (2) ensures that the
storage capacity of warehouse w is satisfied. It is a shared constraint and realizes
that hospitals compete for medical items available at the warehouses at a maximum
supply. Constraint (3) states that the amount of delivered medical items of type k has
to satisfy the requirement of hospital h; constraint (4) is the maximum availability
constraint of medical item k; constraint (5) is the non-negativity requirement on
variables. We require that dk

h ≤ ek, ∀h, k. Finally, we assume that tmwh(·) is
continuously differentiable and convex for all w,h,m.

2.2 Second-Stage Problem

The second stage is the evaluation of the first stage to obtain the optimal medical
supply procurement. In this stage, real-time disaster information is revealed, and
hospital h adapts his plan by taking recourse decisions.

For a given realization ω ∈ �, the second-stage problem of hospital h is given
as:

�h(x, ξ(ω)) = min
∑

w∈W

∑

m∈M
cm
wh(ywh(ω), ω) +

∑

k∈K
πk

h(zk
h(ω), ω) (6)

subject to
∑

h∈H

∑

k∈K

yk
wh(ω) ≤ Qw(ω) −

∑

h∈H

∑

k∈K
xk
wh, ∀w ∈ W,P-a.s., (7)

∑

w∈W
yk
wh(ω) + zk

h(ω) = dk
h(ω), ∀k ∈ K,P-a.s., (8)

∑

w∈W
yk
wh(ω) ≤ ek(ω), ∀k ∈ K,P-a.s., (9)

yk
wh(ω) ≥ 0, zk

h(ω) ≥ 0 ∀w ∈ W, ∀k ∈ K,P-a.s. (10)
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Thus, �h(x, ξ(ω)) is the optimal value of the second-stage problem (6)–
(10), where the constraints hold almost surely (P-a.s.). The objective function (6)
minimizes the total cost and the penalty for the unmet demand at the second
stage. Constraint (7) is the warehouse storage capacity which takes into account the
quantity of medical items already delivered. Constraint (8) is a balance constraint,
and states that the supply at the second stage plus the unmet demand should be
equal to the demand at the second stage. Constraint (9) is the maximum availability
constraint of medical supply of type k at the second stage. Finally, (10) is the
non-negativity constraint. We emphasize that the connection between stage-wise
decision variables x and y is captured by coupling constraint (7). It is the linking
factor between the first and second stage, and communicates the first-stage decisions
to the second one.

We assume that:

(a) cm
wh(·, ω), πk

h(·, ω), a.e. in �, are continuously differentiable and convex for all
w,h, k,m;

(b) for each u ∈ R
WH , cm

wh(u, ·) is measurable with respect to the random
parameter in � for all w,h,m;

(c) for each v ∈ R
HK , πk

h(v, ·) is measurable with respect to the random parameter
in � for all h, k;

(d) yk
wh : � → R and zk

h : � → R are measurable mappings for all w,h, k;
(e) dk

h : � → R is a measurable mapping for all h and all k.

Finally, we require that dk
h(ω) ≤ ek(ω), ∀h, k and for all scenario ω.

If the random parameter ω ∈ � follows a discrete distribution with finite support
� = {ω1, . . . , ωr } and probabilities p(ωr ) associated with each realization ωr , r ∈
R = {1, . . . , R}, then the two-stage problem of hospital h can be formulated as the
unique large scale problem:

min
∑

w∈W

(∑

k∈K
ρk

whxk
wh +

∑

m∈M
tmwh(xwh)

)

+
∑

r∈R
p(ωr )

( ∑

w∈W

∑

m∈M
cm
wh(ywh(ωr), ωr) +

∑

k∈K
πk

h(zk
h(ωr), ωr)

)
(11)

subject to
∑

h∈H

∑

k∈K
xk
wh ≤ Qw, ∀w ∈ W, (12)

∑

w∈W
xk
wh = dk

h, ∀k ∈ K, (13)

∑

w∈W
xk
wh ≤ ek, ∀k ∈ K, (14)
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∑

h∈H

∑

k∈K
yk
wh(ωr) ≤ Qw(ωr) −

∑

h∈H

∑

k∈K
xk
wh, ∀w ∈ W,∀r ∈ R, (15)

∑

w∈W
yk
wh(ωr) + zk

h(ωr) = dk
h(ωr), ∀k ∈ K,∀r ∈ R, (16)

∑

w∈W
yk
wh(ωr) ≤ ek(ωr), ∀k ∈ K,∀r ∈ R, (17)

xk
wh ≥ 0, ∀w ∈ W, ∀k ∈ K, (18)

yk
wh(ωr) ≥ 0, ∀w ∈ W, ∀k ∈ K,∀r ∈ R, (19)

zk
h(ωr) ≥ 0, ∀k ∈ K,∀r ∈ R. (20)

3 Stochastic Generalized Nash Equilibrium

Competition for medical supplies among hospitals can be studied also as a game.
The underlying equilibrium concept is then that of a stochastic generalized Nash
equilibrium (SGNE), namely, a Nash equilibrium when the functions are expected
value functions, and the players are subject to shared constraints.

We define the sets:

Sh =
{
xh = (xk

wh)w,k ∈ R
WK : (3) − (5) hold

}
,

X = {x = (xh)h ∈ R
H : x satisfies (2)},

Th =
{
(yh(ω), zh(ω)) =

(
(yk

wh(ω))w,k, (z
k
h(ω))k

)
∈ R

WK+K : (8) − (10) hold,P-a.s.
}
,

V = {(y(ω), z(ω)) = (yh(ω), zh(ω))h ∈ R
2H : (7) holds,P-a.s.}.

We also define S =∏h Sh and T =∏h Th.
We refer to the objective function (1) for h ∈ H as the function:

Jh(xh, x−h) =
∑

w∈W

(∑

k∈K
ρk

whxk
wh +

∑

m∈M
tmwh(xwh)

)
+ Eξ (�h(xh, x−h, ξ(ω))),

where x−h denotes the amount of medical items required by all hospitals except
for h.

Definition 1 A vector of medical items x∗ = (x∗
h, x∗−h) ∈ S ∩ X is a stochastic

generalized Nash equilibrium of the first-stage if for each h ∈ H

Jh(x
∗
h, x∗−h) ≤ Jh(xh, x

∗−h), ∀xh ∈ Sh,∀x ∈ X.
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Analogously, we can define the SGNE for the second stage. A solution to such a
problem can be found solving a quasi-variational inequality; see [7]. We point out
that this problem can also be solved in the form of a variational inequality, using
the concept of variational equilibrium; see [5, 9]. However, we note that it is not
possible to obtain a full characterization of the solutions of a SGNE problem as
solutions of a variational inequality. For this reason, recently, some authors focused
on the computation of non-variational equilibria; see [4, 12].

3.1 Two-Stage Variational Inequality Formulation

We now adopt a variational equilibrium approach to our SGNE problem. The two-
stage stochastic problem is then equivalent to a two-stage variational inequality (see
[8, 13] for theoretical aspects and applications on variational inequality theory).

We restrict our attention to the case of discrete probability distribution.

Theorem 1 The vector (x∗, y∗(ωr), z
∗(ωr)), ∀ωr , r ∈ R, is an optimal solution of

the medical item procurement planning if and only if:

1. the vector x∗ = (x∗
h, x∗−h) ∈ S ∩ X is a solution of the variational inequality

∑

w∈W

∑

h∈H

∑

k∈K

(
ρk

wh +
∑

m∈M

∂tmwh(x
∗
wh)

∂xk
wh

+
∑

r∈R
p(ωr )

∂�h(x∗, ξ(ωr ))

∂xk
wh

)
× (xk

wh − x∗k
wh) ≥ 0,

∀x ∈ S ∩ X; (21)

2. the vector (y∗(ωr), z
∗(ωr)) ∈ T ∩V , ∀ωr, r ∈ R, is a solution of the variational

inequality

∑

r∈R
p(ωr )

∑

w∈W

∑

h∈H

∑

k∈K

( ∑

m∈M

∂cm
wh

(y∗
wh

(ωr ), ωr)

∂yk
wh

(ωr )

)
× (yk

wh(ωr ) − y∗kwh(ωr ))

+
∑

r∈R
p(ωr )

∑

h∈H

∑

k∈K

∂πk
h
(z∗k

h
(ωr ), ωr )

∂zk
h
(ωr )

× (zk
h(ωr) − z∗kh (ωr )) ≥ 0,

∀(y(ωr ), z(ωr)) ∈ V ∩ T . (22)

In order to ensure the existence of solutions to (21), we note that the set S ∩ X

is compact and convex, and the operator that enters (21) is continuous. Thus, a
solution exists from the standard theory of variational inequalities; see [8]. A similar
reasoning ensures the existence of solutions to (22).
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3.2 Lagrangian Relaxation Approach

In the following, we provide an alternative two-stage variational inequality, that
leads to a lower bound to the optimal value of the initial model. We relax
constraints (2) and (7) into their respective objective functions by Lagrangian
relaxation approach (see [1, 10]). We associate a non-negative Lagrange multiplier
λw ≥ 0 to constraint (2), for each w ∈ W. We group all the Lagrange multipliers
into the vector λ ∈ R

W+ . Analogously, we associate a non-negative Lagrange
multiplier μw(ωr) ≥ 0 to constraint (7), for each w ∈ W and r ∈ R. We group
all the Lagrange multipliers into the vector μ(ωr) ∈ R

W+ , ∀r ∈ R. Thus, we find the
following two-stage variational inequality:

1. Find x∗ = (x∗
h, x∗−h) ∈ S and λ∗ ∈ R

W+ such that

∑

w∈W

∑

h∈H

∑

k∈K

(
ρk

wh +
∑

m∈M

∂tmwh(x
∗
wh)

∂xk
wh

+
∑

r∈R
p(ωr)

∂�h(x∗, ξ(ωr))

∂xk
wh

+ λw

)
× (xk

wh − x∗k
wh)

+
∑

w∈W

(
Qw −

∑

h∈H

∑

k∈K
x∗k
wh

)
× (λw − λ∗

w) ≥ 0, ∀x ∈ S, λ ∈ R
W+ . (23)

2. Find (y∗(ωr), z
∗(ωr)) ∈ T and μ∗(ωr ) ∈ R

W+ , ∀ωr, r ∈ R, such that

∑

r∈R
p(ωr )

∑

w∈W

∑

h∈H

∑

k∈K

∑

m∈M

(
∂cm

wh(y∗
wh(ωr ), ωr )

∂yk
wh(ωr )

+ μw(ωr)

)
× (yk

wh(ωr ) − y∗k
wh(ωr ))

+
∑

r∈R
p(ωr )

∑

h∈H

∑

k∈K

∂πk
h(z∗k

h (ωr ), ωr )

∂zk
h(ωr )

× (zk
h(ωr ) − z∗k

h (ωr ))

+
∑

r∈R
p(ωr )

∑

w∈W

(
Qw(ωr) −

∑

h∈H

∑

k∈K
(xk

wh + y∗k
wh(ωr ))

)
× (μw(ωr) − μ∗

w(ωr)) ≥ 0

∀(y(ωr ), z(ωr )) ∈ T , ∀μ(ωr) ∈ R
W+ . (24)

The operator in (23) can be obtained applying Karush-Kuhn-Tucker conditions
to the Lagrangian relaxation of the problem (1)–(5), with dual variable λw , for all
w ∈ W. Thus, the first term is the stationarity condition of each optimization prob-
lem (1)–(5); while the second term is the complementarity condition. Analogously,
we can construct the operator in (24).

We emphasize that variational inequalities (23)–(24) are expressed in terms of
Lagrange variables λw and μw(ωr), that have a fundamental role in regulating the
medical item procurement. In fact, λw is a control variable on the item availability
level; whereas μw(ωr) is a control variable on the second-stage warehouse storage
capacity. Therefore, the above formulation can be advantageous since allows us to
gain a deeper understanding of the market behavior.
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4 Conclusions

In this paper, we present a stochastic generalized Nash equilibrium model for
a medical supply network. Specifically, we consider a two-layer network that
consists of warehouses and hospitals with multiple medical items and multiple
transportation modes. Each hospital solves a two-stage stochastic optimization
problem: in the first stage, he seeks to minimize the purchasing cost of medical
items and the transportation time; in the second stage, he adopts a recourse decision
process to optimize the expected overall costs and the penalty, for the prior plan
for each possible disaster scenario. The hospitals simultaneously solve their own
stochastic optimization problems and reach a stable state given by the stochastic
generalized Nash equilibrium concept. The model is formulated as a two-stage
variational inequality. By Lagrangian relaxation approximation, an alternative two-
stage variational inequality based on the Lagrange multipliers is given. We highlight
that dual variables play a fundamental role in investigating the market behavior.

Further research issues are the study of the two-stage stochastic problem in
the case of general probability distribution with the associated infinite-dimensional
variational inequality, and a characterization of the second-stage equilibrium by
means of infinite-dimensional Lagrange duality tools. Partial results in these
directions have already been achieved.
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Part III
Scheduling and Planning



The Value of the Stochastic Solution
in a Two-Stage Assembly-to-Order
Problem

Paolo Brandimarte, Edoardo Fadda, and Alberto Gennaro

Abstract We consider a simple assembly to order problem, where components
must be manufactured under demand uncertainty and end items are assembled
only after demand is realized. The problem can be naturally cast as a two-stage
stochastic linear program with recourse, and possibly generalized to multiple
stages. We investigate the two-stage case not only because it make sense, e.g.,
in specific newsvendor-like applications, but also because it allows a thorough
investigation of relevant issues. In this paper we investigate the conditions under
which using a stochastic programming approach yields significant advantages over
a straightforward deterministic model based on the expected value of demand. The
analysis is carried out on the basis of a large number of out-of-sample scenarios,
assessing the so-called value of the stochastic solution. We study the impact of
problem features such as demand variability, skewness and multimodality, number
of specific components, profit margin, and capacity tightness. Furthermore, we
compare the behavior of standard two-stage stochastic programming against linear
decision rules.

Keywords Stochastic programming · Production planning · Linear decision rules

1 Introduction and Motivation

In production management, risk due to demand uncertainty can be hedged by
safety stocks or capacity buffers. Another possibility is risk pooling by common
components. Here we consider flat bills of materials, comprising only two levels:
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end items and components (modules). Even though demand for end items may be
highly variable, demand for common components (i.e., components that are used
in multiple end items) may be less variable, an idea that is exploited in Assembly-
To-Order (ATO) manufacturing environments. An ATO strategy is sensible when
the long lead time to manufacture or procure components makes a pure Make-
To-Order approach not feasible, and a pure Make-To-Stock approach is ruled
out by the large number of end item configurations that arise by combining
even a relatively small number of components. If final assembly is relatively
fast, we may produce components under demand uncertainty, while delaying final
assembly until customer orders are actually received. The strategy is common in the
automotive industry and is exploited by some computer manufacturers; see [10] for
an application to the HP DeskJet printer case.

1.1 Paper Positioning

There is a considerable amount of literature dealing with variations of classical
stochastic models for inventory management. In simple cases, one can obtain
analytical results and the idea has been applied to systems with assembly operations.
An alternative approach to planning within an ATO setting relies on stochastic pro-
gramming with recourse, two-stage or multistage. Indeed, the modeling flexibility
and the freedom in scenario generation allows to overcome some limitations of
classical stochastic inventory models.

An early reference based on stochastic programming is [9], which applies
scenario aggregation to small problem instances within a two-stage integer program-
ming framework, where the second stage is component allocation. They consider up
to 30 scenarios and no more than 5 end items and components. More recent papers
include, e.g., [5] and [6]. In the first paper, a multiperiod inventory control problem
is tackled within a two-stage framework. The first-stage problem aims at optimizing
the parameters of a base-stock policy. They deal with an inventory management
problem subject to deterministic lead times, rather than a capacitated manufacturing
problem. The second paper is similar in vein and uses specific properties of chained
bill of materials, where component requirements can only take values 0 or 1, to
carry out a mathematically elegant analysis. The structure of the Bill Of Materials
(BOM) differs in the two papers. In one case it is a W structure, where three types
of components, two common and one specific, are used to produce two end items.
In the other case it is an M structure, where two types of components are used
to produce three end items; one end item needs both components, whereas the
other two end items need one type of component. Given this simple structure, exact
solution procedures may be devised for Poisson demand. We stress the fact that,
although their problem involves multiple periods, the approach is two-stage, and
aims at finding control parameters for continuous review policies under compound
Poisson demand. In [12], emphasis is again on structural properties for problems
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with including a small number of items (two). In [4], emphasis is on solving ATO
planning problems involving integer variables.

The approach pursued in the present paper is completely different. We consider
production planning subject to capacity constraints, for cases including 200 items
and 150 components. Also the number of scenarios is larger, up to 300. In order
to do so with a limited computational effort, we consider two-stage continuous
LP models. Two-stage models are relevant in some settings akin to newsvendor
models. In fashion, a quite limited number of decision stages is involved, resulting
in newsvendor-like models [7], which may also be used to decompose multistage
problems [11, Chapter 5]. We do not deal with integer programming problems,
assuming that the involved volumes justify a continuous LP approach, which is
standard, e.g., in the lot-sizing literature. In view of a possible extension to truly
multistage cases (not just two-stage multiperiod ones) we also investigate the
application of decision rules in the vein of [8].

We do not strive for mathematical elegance or structural results, not because
they are not important, but because we have other priorities. The most important
point, indeed, is that we should not take for granted that the use of sophisticated
stochastic optimization models is warranted. To the contrary, [3] shows that a model
based on expected values of demand may perform remarkably well. This depends
not only on the problem structure, but also on the specific problem features. We
should investigate which factors contribute most to the value of using a stochastic
programming model, like demand variability, skewness, and multimodality, the
number of specific versus common components, profit margin, and manufacturing
capacity tightness. All of these issues are disregarded in the aforementioned papers,
which have a different aim. To accomplish the task we need to pursue an out-of-
sample analysis, in order to estimate the Value of the Stochastic Solution (VSS) [1]
under different problem settings. Such an out-of-sample analysis is quite demanding
in a multistage setting.

Plan of the Paper In Sect. 2 we describe possible decision models for the ATO
planning problem. In Sect. 3 we outline a few computational experiments to give a
feeling for the impact of problem features and the relative performance of alternative
decision models. Finally, in Sect. 4, we draw preliminary conclusions and describe
ongoing and future research.

2 The Decision Models

In this section we describe four different decision models:

• A two-stage stochastic LP model with recourse, which we will refer to as
Recourse Problem (RP).

• A simplified deterministic LP model where we ignore demand uncertainty and
use expected values of demand, which we will refer to as Expected Value
problem (EV).
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• A straightforward model based on Linear Decision Rules, referred to as LDR
problem.

• A refinement of the LDR model, based on Deflected Linear Decision Rules,
referred to as DLDR problem.

In order to state the decision models describing the ATO production planning
problem, let us introduce the following sets: the set of components I = {1, . . . , I },
the set of end items J = {1, . . . , J }, the set of production resources (machine
groups) M = {1, . . . ,M}, and the set S = {1, . . . , S} of scenarios that we use to
discretize the distribution of random demand. We denote by ds

j the demand for end
item j ∈ J in scenario s ∈ S; the probability of scenario s is denoted by πs . In the
following, we will consider Monte Carlo scenario sampling; hence, πs = 1/S and
scenarios are equiprobable, but this need not be the case.

Furthermore, let us introduce the following parameters:

• Ci , cost of component i ∈ I, and Pj , price of the end item j ∈ J;
• Lm availability (in terms of time) of machine group m ∈ M;
• Tim processing time for component i ∈ I on machine m ∈ M;
• Gij number of components of type i ∈ I needed to assemble one end item of

type j ∈ J; in manufacturing parlance, these numbers are called gozinto factors.
Since we deal with flat bills of materials, they are fully specified by the matrix of
gozinto factors.

Note that the limited capacity of machine groups refers only to the production of
components. In an ATO environment, final assembly should not be a bottleneck, so
we disregard resource constraints at the assembly level.

Finally, we need to introduce two sets of decision variables:

• the first-stage variables xi , the amount of component i that we produce;
• the second-stage variables ys

j , the amount of end item j assembled and sold in
scenario s, after observing actual demand.

We will experiment with a continuous linear program and not an integer one;
hence, the above variables are just required to be non-negative. We do so in order to
ease the computational burden, without affecting the conclusions significantly. This
is a common simplification, for instance, in the lot-sizing literature and it may be
justified when demand volume is large enough, since rounding effects are negligible.

Then, the resulting RP model is:

max −
∑

i∈I
Cixi +

∑

s∈S
πs

⎛

⎝
∑

j∈J
Pjy

s
j

⎞

⎠ (1)

s.t.
∑

i∈I
Timxi ≤ Lm ∀m ∈ M (2)

ys
j ≤ ds

j ∀j ∈ J, s ∈ S (3)
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∑

j∈J
Gij y

s
j ≤ xi ∀i ∈ I, s ∈ S (4)

ys
j , xi ≥ 0 ∀j ∈ J, s ∈ S, i ∈ I. (5)

The objective function of the problem is the expected net profit, expressed in (1) as
expected revenue at the second stage minus cost at the first stage. Constraints (2)
limit the machine availability; constraints (3) state that it is not possible to sell more
than demand, and constraints (4) preclude assembling items for which we lack the
necessary components, thereby linking the two decision stages. Constraints (5) are
the usual non-negativity conditions.

Since dealing with uncertainty potentially implies a considerable increase in
computational effort, it is important to compare the obtained performance against
the much simpler model in which uncertainty is ignored and it is assumed that the
expected demand d̄j will be realized. In this case, we assume that what is assembled
is also sold, and the assembly decision variable is just yj . The resulting EV model
is:

max −
∑

i∈I
Cixi +

∑

j∈J
Pjyj (6)

s.t. yj ≤ d̄j ∀j ∈ J (7)
∑

j∈J
Gij yj ≤ xi ∀i ∈ I, (8)

also subject to (2) and (5).
In principle, second-stage variables should be functions mapping random out-

comes to decisions. When dealing with continuous random variables, this means that
second-stage variables are actually infinite-dimensional objects. Discrete scenario
generation is one way to make the idea computationally viable, but it becomes
critical in a multistage setting due to the explosion of the scenario tree. Hence, a
possible alternative is to assume a simple functional form in mapping outcomes to
decisions. The simplest mapping is linear, which leads to a linear (affine) decision
rule approach [8], where we keep the first stage decisions xi and map deviations
of demand with respect to the expected values into assembly decisions. The linear
affine mapping is specified by the following parameters:

• ȳj is the number of end item j produced under a nominal condition, where
demand assumes its expected value;

• Hj,k is the rate at which the number of assembled end items j changes as a
function of a deviation in demand for item k.
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Then, the LDR model is obtained by replacing the scenario-dependent second-
stage variable ys

j by

ȳj +
∑

k∈J
Hjk

(
ds
k − d̄k

)
, (9)

which is constrained to be within the range [0, ds
j ]. The form of this affine rule looks

more complicated than in other applications, due to the interaction of different end
items through components. Actually, we should introduce a coefficient Hjk only
when end items j and k share a common component. Note that there is a potentially
large number of such coefficients, and that the model structure may be less amenable
to efficient interior point methods, resulting in a non-negligible CPU time for its
solution.

A further issue with an LDR approach is its rigidity, which may partially eased by
adopting deflected (or piece-wise) linear decision rules, which rely on asymmetric
deviations d+s

j = max(ds
j − d̄j , 0) and d−s

j = max(d̄j −ds
j , 0), s ∈ S, j ∈ J. Then,

we replace the second-stage decisions ys
j by

ȳj +
∑

k∈J

(
H+

jkd
+s
k + H−

jkd
−s
k

)
. (10)

The resulting DLDR decision model suffers from the same issues as the LDR
model. Nevertheless, it is worth investigating these approaches, given the potential
advantage in a multistage setting.

3 Numerical Experiments

In this section we outline some numerical results obtained by the different decision
models. Since space limitations preclude the description of a full-fledged exper-
imental design, we prefer to give some glimpse in order to get a feeling for the
problem and the impact of its features.

We generate bills of materials (BOMs) randomly, setting the number of families
and common and specific components. In Fig. 1 we illustrate the structure of BOMs
by a two-dimensional heat map, where colors are associated to the number of
components for each end item. We consider 150 end items and 200 components.
End items are listed on rows, and the matrix looks block-diagonal, where blocks
correspond to families. We clearly see the presence of common components in each
block. The bar chart below the heat map gives the number of produced components
(from the solution of the RP model), and there is a spike corresponding to common
components.

It is important to emphasize that, in the presence of several common components,
a simple model based on expected values of demand may perform fairly well.
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Fig. 1 Structure of BOMs

This also depends on the tightness of capacity constraints and the profit margins.
In order to get a clue, in Table 1 we compare the out-of-sample performance of
first-stage plans obtained by simpler models (expected value and deflected decision
rules) against the full-fledged recourse model. We solve the recourse model with
a suitable number of scenarios (more on this later), and then assess its out-of-
sample performance on 20,000 scenarios, where we solve the second stage problem
for a known demand and a given first-stage plan for component production. For
each problem setting, the optimization is run over 100 random instances. The
number reported is the percentage loss with respect to the RP model, measured
by (ORP − Oxx)/ORP where ORP is the average out-of-sample profit from the
RP model, and Oxx is the average out-of-sample profit from EV or DLDR. Hence,
when the number is larger than 100%, it means that the simpler model obtains a
negative profit on average.

Problem settings differ in terms of profit margin, capacity tightness, and number
of specific versus common components. In the first column, LM and MM refer to
the profit margin, which is either low or medium. More precisely, we consider the
average return from an end item, which is the range [0.05, 0.2] for low margins and
[0.2, 0.4] for medium margins. Low and medium margins are more troublesome
than high margins, in the sense that not accounting for uncertainty in these settings
has a larger impact. Capacity tightness is set to 0.8 and 1.3; this factor is used to
generate available capacity for each of five machine groups on the basis of expected
required capacity, which is just obtained by translating expected end item demand
to the corresponding machining time on each machine group. Demands for end
items are assumed independent and identically distributed, which is clearly not
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realistic, but allows us to better see the impact of the distribution. The distribution
can be symmetric (truncated normal or uniform), left-skewed (a shifted and scaled
beta distribution with parameters 1 and 4), right-skewed (a shifted and scaled beta
distribution with parameters 4 and 1), and a bimodal mixture of normals. In our
case we mix two normals N(100, 502) and N(1000, 3002), with 50% probability
each. Thus, the expected value of demand is 550 and, given the standard deviations
50 and 300, there is a limited overlap of tails. The intuition provided by the
newsvendor problem [2], where the optimal order quantity is given by a quantile
of the demand distribution, and the quantile depends on the problem economics,
suggests that replying on the expected demand (550) is going to be a disaster, unless
the economics are favorable.

It is important to realize that the results heavily depend on the problem features
and on how BOMs are generated, but some messages are clear from the table.

• There may be a significant loss by disregarding uncertainty, and there is a price
to be paid for rigidity of deflected linear rules. We do not report results for the
plain LDR model, which are poorer.

• The distribution has a huge impact and, in some problem settings, the perfor-
mance of EV is more than disappointing. For instance, in the beta (1,4) case,
there is a skew to the right, which implies that the EV model is optimistic and
produces too many components that are then scrapped. Component scrapping is
huge in the case of the bimodal, as expected demand is in the no man’s land
between the two normals, and the impact on profit is severe as the economics are
not favorable.

• This effect is more relevant at high capacity levels, where we are free to produce
more components, and hurts most in the case of low margins. In the limit, with
a very small capacity inducing a lot of lost sales, demand uncertainty would be
irrelevant, and a simple newsvendor model suggests that with high margin we
may afford scrapping unused components.

It is also worth noting that some disappointing results that we observe may occur
because of component scrapping, which also raises environmental concerns beyond
plain and simple expected profit. This is relevant in a two-stage setting; less so in a
multistage extension.

In order to get a feeling for the involved risk and the out-of-sample performance
of first-stage plans, we depict a histogram of out-of-sample profits in Fig. 2. In the
uniformly distributed case displayed on the left, it is quite clear that the EV model
may even result in negative profit, and that DLDR is outperformed by RP. We do
not show the EV model performance in the bimodal case displayed on the right, as
profit is quite negative. Here we use a hybrid of RP and DLDR, as 50% of end items
are dealt with by scenario dependent second stage variables and 50% are dealt with
by DLDR, but this is not quite relevant.

Another obvious question is how many scenarios are needed to capture demand
uncertainty adequately. To get a clue, we may solve the RP model for an increasing
the number of in-sample scenarios, and then plot the corresponding out-of-sample
average profit. Figure 3 shows that indeed average profit increases by adding
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Fig. 2 Comparing out-of-sample profits for different decision models for a uniform (picture on
the left) and a multimodal (picture on the right) distribution

Fig. 3 Impact of number of scenarios in the case of a uniform (picture on the left) and a
multimodal (picture on the right) distribution

scenarios, but there is a saturation effect with a limited number of scenarios. Again,
the precise behavior depends on the specific problem features, but this seems to
suggest that we do not necessarily need a huge number of scenarios to obtain
satisfactory results. Rather unsurprisingly, we need more scenarios in the case of
a multimodal distribution (displayed on the right) than in the case of a uniform
distribution (displayed on the left). The CPU time to solve these problem instances
is a few seconds, which may sound reassuring. However, this is not likely to carry
over to the multistage case, or when we introduce risk measures.

Given the perspective of an extension to multistage problems, we may also
wonder if we could reduce the number of scenarios by disregarding some end items
for which uncertainty is not quite relevant. For this subset of items, we could just use
the expected value of demand and sample demand for the remaining items. To define
the subset of items for which we consider demand uncertainty, we may rank end
items according to a given metric, and represent demand uncertainty only for the top
subset. We may consider two simple metrics, one (called margin) based on end item
profitability, and another one (called sc) based on a suitable measure of component
specificity, where the rationale is that items with more specific components are
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Fig. 4 Loss, with respect to full representation of uncertainty, of margin and sc scenario
generation policies

more critical. In Fig. 4 we plot the percentage loss of these two scenario generation
policies, for a varying percentage of stochastic end items, with respect to the
profit of a fully stochastic model. When the percentage is 0%, we essentially have
the EV model, whereas we have the RP model when the percentage is 100%.
This experiment shows again the huge impact of specific demand distributions.
Unfortunately, there is no evident “knee” in the plots, showing that accounting
for uncertainty is relevant (or that the simple policies are just ineffective). In the
two stage case, the issue is not quite relevant as a moderate number of scenarios is
effective, but the issue is open for the multistage case.

4 Conclusions and Current/Future Research

We have discussed simple models for two-stage production planning in an ATO
environment. Clearly, the results from synthetic instances must be taken with great
care, but it is clear that under some problem settings the cost of ignoring uncertainty
can be huge. Problem features, like demand variability, skew, and multimodality,
profit margin, and capacity tightness have a significant impact. Piecewise linear
decision rules do not seem to perform very well for this problem, but a rather
surprising fact is that a limited number of scenarios is enough to considerably
improve the results with respect to the EV model. Clearly, the ATO problem is
different from a financial optimization problem, as common components hedge
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against uncertainty and capacity limitations moderate the advantage of perfect
information. This finding should be tempered however.

• We did not consider correlations: we could have negative correlations inside
a product family (where demand substitution is to be expected) and positive
correlation between families (possibly because of market penetration of the firm
or general economic conditions).

• More scenarios would be needed if we want to introduce risk measures, like
conditional value-at-risk, which focus on bad tails.

• Scenario generation remains quite critical for multistage problems. Since linear
decision rules do not perform well in the two-stage case, maybe alternative strate-
gies should be considered, possibly based on approximate dynamic programming
and time-based decomposition.

• The two stage problem makes sense in a fashion setting, as we mentioned, where
not only risk measure should be considered, but also distributional ambiguity,
which we disregarded here.

All of these issues are the subject of our current research.
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Robust Optimal Planning of Waste
Sorting Operations

Diego Maria Pinto, Claudio Gentile, and Giuseppe Stecca

Abstract Waste management and circular economy objectives are worthwhile
and worldwide challenges concerning both the protection of the environment and
the conservation of natural resources with aim of zero waste. A considerable
attention has been directed over the last decade towards the optimization of planning
procedures related to waste management in order to empower circular economy
ambition. This work investigates the operations of waste recycling centers where
materials are collected by a fleet of trucks and then sorted in order to be converted
in secondary raw materials. The activity is characterized by low margins, difficulties
to track flows and uncertainties in supplies. In a previous work by Pinto and
Stecca a formulation has been proposed to address and optimize the sorting process.
However, special attention should be paid to the fact that waste streams processes are
affected by several uncertainties, such as the stochastic processes regarding waste
arrivals to sorting facilities. This work extends the above mentioned formulation by
introducing robustness to data uncertainties related to waste supplies. Accordingly,
the main aim of this study is to develop a mixed integer linear programming
model for planning and scheduling the packaging waste recycling operations taking
into consideration also the stochastic nature of waste arrivals. This is done by
introducing a protection function in each constraint according to the probabilistic
robust approach presented in (Bertsimas and Sim, Oper Res 52(1):35–53, 2004).
This approach ensures deterministic and probabilistic guarantees on constraints
satisfaction. The model supports other strategic decisions such as sizing of the
amount of processed waste and allocation of the optimal number of operators for
each shift of the waste sorting processes. Experiments are performed on instances
taken from a real case scenario in Italy and comparisons are made against different
planning strategies.
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1 Introduction

Performances of waste management systems have been improving thanks to a
noticeable commitment of decision makers and research efforts regarding the
optimization of each system component. As an example, a conventional operational
task addressed by research is about waste shipment and collection trucks route
optimization as in [3, 6]. In the meantime, similar optimization models have
been drastically reducing transportation costs enhancing the growth of the online
shopping of any sort of good. As a result, while logistic companies start serving
a new magnitude of customers, also a new dimension of packaging waste started
affecting the overall waste system. This leads to the need of a stronger technological
and strategic decision support to packaging waste facilities in order to lower all
the extra costs involved with the selective collection and sorting of this kind of
waste. Not only logistic companies but also every other kind of industry generates
a considerable amount of packaging waste. In Europe the Directive 2004/12/EC
on packaging and packaging waste laid down the European recycling and recovery
targets. In particular, official reporting on packaging waste for all EU Member States
was implemented in 2007 and since then Eurostat monitors also the developments of
this important statistics. Therefore, the need of meeting the recovery and recycling
targets imposed by EU law and the rising prices of raw materials used for packaging
have resulted in an increasing interest in the recovery of materials from the waste
streams. Moreover, the recycling industry is characterized by very low margins and
high percentage of operation and logistics costs. For this reason it is critical the
optimization of the process in order to turn it into an economically sustainable
business. Special attention should be paid to the fact that this objective is affected
by several uncertainties such as those arising in the waste streams processes.
In particular, waste arrivals to sorting facilities are stochastic processes. Indeed,
waste truck arrivals are subject to considerable variability that should be properly
addressed when modeling scenarios including waste streams. In [5] this subject has
been investigated. This work intends to expand the modeling power of the MILP
presented in [5] by introducing robustness to data uncertainties related to waste
supplies. Accordingly, the main research aim of this study is to develop a mixed
integer linear programming model for planning and scheduling the packaging waste
recycling operations taking into consideration also the stochastic nature of waste
arrivals. This is done by introducing a protection function in some constraints
according to the probabilistic robust approach presented in [2]. This approach
ensures deterministic and probabilistic guarantees on constraints satisfaction and
it does so in a straightforward framework. The model supports also other strategic
decisions such as sizing the amount of processed waste and allocating the optimal
number of operators for each shift of the waste sorting processes.
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The reminder of the paper is organized as follows: the literature review is
given in Sects. 1.1; Sect. 2 is dedicated to the problem description and the MILP
formulation; Sect. 3 presents the experimental results; Sect. 4 gives conclusions and
future research perspectives.

1.1 Literature Review

The range of scientific literature contributions to waste management is justified by
the variety of technological configurations and decision levels (mainly strategic and
operational). The main type of waste flows considered are municipal solid waste, as
a result the great majority of works are related to the management or the strategic
definition of municipal solid waste networks, such as in [7]. The conventional
operational task addressed by research is about collection trucks route optimization
and waste shipment [3, 6]. Besides them, a real case application is presented in [1].
A complete survey of both strategic and tactical issues in solid waste management
that have been addressed by operations research methods is presented in [4]. Within
the waste management paradigm, none of the previous works is close to the original
operational application of mathematical programming presented in [5]. This paper
intends to expand the value of the original work by extending the presented model
with the introduction of robustness to data uncertainties related to waste supplies.

2 Problem Definition and Modeling

In this section the main operational features covered by the nominal deterministic
model are described together with the formulation of its robust counterpart. We will
clarify how the model is able to cover the main strategic decisions of the process
while properly modeling the typical production dynamics of a reverse logistic
setting.

The production demand of the waste facility arises from the need to program and
size the sorting operations of waste in order to balance the availability of the buffer
of received material with the production and set-up costs of sorting operations and
storage costs of all the inter-operational buffers. Therefore, the simultaneity of the
scheduling problem and the lot sizing problem is highlighted.

It is important to notice that, in the considered industrial case, costs of storage are
not measurable directly. Indeed, it is impossible to compute the inventory costs as
proportional to the inventory value because there is no means to evaluate that value
before the material is sorted. At the same time the level of buffer storage can be
such as to constitute a criticality in terms of saturation of the storage capacity. This
is particularly evident when a specific level of stock is passed. Therefore, in [5] it
is considered appropriate to model this dynamic through a storage cost curve which
originally included a non-linearity from the exceeding of the critical stock level.
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The linearity of the model is indeed guaranteed using a piece-wise linear curve that
approximates the real cost curve. The indications about the threshold perceived by
the waste company in relation to the customer service level can also be considered.

In the following, we introduce a mixed integer linear programming (MILP)
model which defines the robust counterpart to the problem newly introduced in [5].
The basic notations that will be used in the MILP, such as parameters and indexes,
are the following:

• j ∈ {1, . . . , J }: index of the J sorting stages
• p ∈ {1, . . . , P }: index of the P time-shifts
• T : time horizon partitioned in time shifts with t ∈ {1, . . . , T } = T1 ∪ . . . ∪ TP

• C: hourly cost of each operator
• σt : working hours for time t determined by the corresponding shift p

• Ct = C ∗ σt : cost of each operator at time t

• fj : set-up cost of sorting stage j

• at : quantity of material in kg unloaded from trucks at time t

• αj : percentage of waste processed in stage j − 1, received in input by buffer j

• Sj : maximum inventory capacity of the sorting stage buffer j

• LCj : critical stock level threshold of buffer j

• ρj : fraction of material allowed to be left at buffer j at the end of time horizon
• Kj : single operator hourly production capacity [kg/h] of sorting stage j

• SKj,t = Kj ∗ σt : operator sorting capacity in sorting stage j , at time t

• M: maximum number of operators available in each time shift
• Ej : minimum number of operators to be employed in each time shift of stage j

• ∂hi
j : slope of the i-th part of linearization of the buffer j stock cost curve

The nominal deterministic model consider the following variables.

• xj,t ∈ Z
+: operators employed in the sorting stage j at time t

• uj,t ∈ R
+: processed quantity at stage j at time t

• yj,t ∈ {0, 1}: equal to 1 if stage j is activated at time t , 0 otherwise
• Ij,t = I

′
j,t + I

′′
j,t ≥ 0: stock level of material in buffer j at time t ; for each stage

j the corresponding I ′
j,t and I ′′

j,t represent the inventory level before and after
reaching the critical threshold respectively

• wj,t ∈ {0, 1}: equal to 1 if I
′′

j,t > 0, 0 otherwise. Indeed, these binary variables
are used to model the piece-wise linear functions of the buffer stock costs.

We consider the set of parameters at , t ∈ T , that are subject to uncertainty taking
values according to a symmetric distribution with mean equal to the nominal value
at in the interval [at − ât , at + ât ]. Indeed ât is the maximum deviation of at . In
order to meet the standard formulation of the nominal problem presented in [2],
where parameters subject to uncertainties belong to inequality constraints only, the
equality constraints of [5] regarding waste arrivals at are reformulated to turn them
into inequality constraints. This is performed considering, for each period t , the
sum of all the received and processed quantities of waste up to that period, as in
constraints (5)–(8) of the formulation presented in this section. According to the
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robust approach presented in [2], a parameter Γi is introduced for each constraint i

holding one or more uncertainty coefficients. Γi is not necessarily integer and takes
values in the interval [0, |Ji|] where Ji is the set of the coefficients of constraint i

being subject to uncertainty. The nominal problem presented in [5] presents only
one set of T constraints considering the coefficients at and these are the ones
reformulated as inequality constraints. Therefore we get Γ ∈ RT+, and because
of this reformulation |Jt | = t ∀t ∈ {1, . . . , T }. For each period t , Γt represents
the number of coefficients that we consider as allowed to vary within their interval,
ergo we consider nature behaving like only a subset of the coefficients will change
with respect to their nominal value. Indeed, as affirmed in [2], it is unlikely that all
|Jt | will change; so the idea of conservative robustness is to be protected against all
cases that up to �Γt� of these coefficients are allowed to change, and one coefficient
at changes by (Γt − �Γt�)ât . Note that when Γt = 0 ∀t ∈ {1, . . . , T } we get
the nominal deterministic scenario, while setting Γt = |Jt | = t ∀t ∈ {1, . . . , T }
represents solving the problem of the worst case scenario. It is clear then that
by varying Γ the level of robustness can be flexibly adjusted against the level of
conservatism of the solution. Considering the peculiar structure of the constraints
including at is important: because of the telescopic expansion of each set Jt as t

goes from 1 to T (i.e. |Jt+1| = |Jt | + 1), we consistently constraint Γt to be bigger
or equal to Γt−1.

In the following, we present all the additional variables and parameters that
are required to introduce the robustness protection functions presented in [2] and
formulate the robust counterpart of the model presented in [5]:

• εt ∈ R
+: extra variables multiplying at ∀t ∈ T . These variables are introduced

in order to have a variable multiplying the only set of parameters that are affected
by uncertainty. These are indeed constrained to be equal to 1 ∀t ∈ T .

• zt ∈ R
+: variable resulted of duality within Bertsimas and Sim robustness theory;

when multiplied by Γt provides its overall contribution to the protection function
of constraint t .

• pt,k ∈ R
+: variable resulted of duality within Bertsimas and Sim robustness

theory; provides its contribution to the protection function of constraint t with
respect to the specific coefficient ak .

• st ∈ R
+: variable resulted of duality and Bertsimas and Sim robustness theory;

multiplied by ât sets the lower bound of the protection function contribution in
each constraint t .

• Γt : parameter to adjust the level of robustness of each period t .

Considering a case study where J = 2 sorting stages, for the 1st sorting phase,
u1,t ≥ 0 and x1,t ∈ {0, 1} represent the quantity of material to be selected and
decision to activate the process respectively at time t . For the second sorting phase,
u2,t ≥ 0 and x2,t ∈ {0, 1} represent the quantity of material to be selected and
decision to activate the process respectively at time t . I1,t , I

′
1,t , I

′′
1,t ≥ 0 are the

inventory levels at 1st phase sorting buffer while I2,t , I
′
2,t , I

′′
2,t ≥ 0 are inventory

levels at second phase sorting buffer. As previously stated, w1 and w2 are used to
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model the piece-wise linear functions of the buffer stock costs. In detail w1 = 0
if I ′

1,t < LC, 1 if I ′
1,t = LC and I ′′

1,t > 0; similarly w2 = 0 if I ′
2,t < LC, 1 if

I ′
2,t = LC and I ′′

2,t > 0.
The model minimizes the sum of sorting and holding costs and is detailed as

following:

min Z =
∑

j∈J

∑

t∈T

Ctxj,t +
∑

j∈J

∑

t∈T

fj yj,t +
∑

j∈J

∑

t∈T

(
∂h1

j I
′
j,t + ∂h2

j I
′′
j,t

)
(1)

s.t.

Ej yj,t ≤ xj,t ≤ M yj,t ∀j ∈ J, t ∈ Tp, p ∈ P

(2)
∑

j∈J

xj,t ≤ M ∀t ∈ T

(3)

uj,t ≤ SKj,t xj,t ∀j ∈ J, t ∈ T

(4)

I1,0 +
t∑

k=1

akεk −
t∑

k=1

u1,k + ztΓt +
t∑

k=1

pt,k ≤ S1 ∀t ∈ T

(5)

I1,0 +
t∑

k=1

akεk −
t∑

k=1

u1,k ≥ 0 ∀t ∈ T

(6)

I1,0 +
T∑

k=1

akεk −
T∑

k=1

u1,k + zT ΓT +
T∑

k=1

pT,k ≤ ρ1 LC1 (7)

I1,t = I1,0 +
t∑

k=1

akεk −
t∑

k=1

u1,k + ztΓt +
t∑

k=1

pt,k ∀t ∈ T

(8)

Ij,t = Ij,t−1 − uj,t + αj uj−1,t ∀t ∈ T , j ∈ J \ 1
(9)

Ij,t = I
′

j,t + I
′′

j,t ∀j ∈ J, t ∈ T

(10)

LCj wj,t ≤ I
′

j,t ≤ LCj ∀j ∈ J, t ∈ T

(11)
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0 ≤ I
′′

j,t ≤ (Sj − LCj ) wj,t ∀j ∈ J, t ∈ T

(12)

Ij,T ≤ ρj LCj ∀j ∈ J \ 1
(13)

zt + pt,k ≥ ât st ∀t ∈ T , k ∈ {0, . . . , t}
(14)

− st ≤ εt ≤ st ∀t ∈ T

(15)

εt = 1 ∀t ∈ T

(16)

xj,t ∈ Z
+ ∀j ∈ J, t ∈ T

(17)

uj,t ∈ R
+ ∀j ∈ J, t ∈ T

(18)

yj,t ∈ {0, 1} ∀j ∈ J, t ∈ T

(19)

The objective function (1) defines the minimization of the sum of the three
cost terms, which are sorting, setup, and inventory costs respectively. Equations (2)
and (3) bounds the number of workers that can be assigned to each sorting station
and to each time shift. Constraints (4) limit the quantity sorted uj,t to the sorting
capacity dependent on the number of workers xj,t . The following constraint sets (5)–
(9) define and limit the inventories: constraint (5) defines the inventory for the
first buffer, considering the cumulative inbound material at up to period t , the
overall sorted material u1t up to period t , and the uncertainties protection function
made of the joint contribution of ztΓt and the sum of pt,k for k ∈ {1, . . . , t}.
Constraint (6) sets the lower bound of the inventory for each period and (7) imposes
the maximum unsorted material allowed to be left at the end of the planning
period for the first buffer, as constraint (13) does for all other subsequent buffers.
Equality constraint (8) allows the inventory of the main buffer (i.e. buffer no. 1)
to be considered in the corresponding piece-wise linear part of the cost function.
Constraint (9) defines the inventory for the other buffers corresponding to j > 1.
Indeed (9) outlines the waste flow across the sorting stages that follow one another:
each subsequent inter-operational buffer j receives by the previous sorting stage
j − 1 a quantity of waste equal to a αj percentage of the waste processed in stage
j − 1. Constraint sets (10), (11), and (12) define the piece-wise linear functions
for inventories; in these constraints, maximum capacity level Sj and the critical
stock level threshold LCj are connected with the inventory levels through the
variable wj,t . Constraints (14) and (15) resulted from duality in [2] robustness
theory; where (14) sets the lower bound of the protection function contribution in
constraints (5) and (7).
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3 Experimental Results

This section holds the main results from the studied scenarios described in the
following. All instances are created by a real-world case study from a waste sorting
plant located next to Rome, Italy. We solved each scenario by applying the Gurobi
9.0 solver to the MILP model. This has been performed in order to test the model
response to different levels of robustness (i.e. different Γ selection), the correspond-
ing price of robustness (i.e. the optimality reduction w.r.t the deterministic scenario)
with respect to different weeks of scheduling time horizons. Figure 1 provides a
first look at the model reaction to three different scenarios: deterministic case, an
intermediate level of protection and the worst case scenario. It is evident that in the
deterministic case the protection function value remain null for each period, almost
like the first buffer stock level. Indeed the production marginal cost is less than
the storage marginal cost resulting in the processing of waste as soon as arrives at
the sorting facility. This is the reason why considering constraint (8) the protection
function value equals for each period the first buffer stock level, and this applies
for each protection scenario. Therefore we can attribute a cost to the protection
function as the extra cost related to an higher level of stock in first buffer receiving
the uncertain amount of waste. The robustness performance and the corresponding
additional cost definitely depend on the protection strategy of choosing the vector
Γ ∈ RT+ s.t. Γt ≥ Γt−1∀t ∈ T . In Fig. 1 the intermediate protection relies on
a moderate still continuous increase of Γt . This approach represents a cumulative
sum of protection over the risk considered across the time horizon. Dealing with
robustness to reverse demand uncertainties in a scheduling problem setting is a
suggestion to consider the seasonality of the stochastic behaviour of the coefficients
when dealing with the strategy of choosing Γ ∈ RT+. In the considered real case

Fig. 1 Illustration of protection function and stock level evolution over three different uncertain-
ties protection scenarios
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Fig. 2 Using demand period for Γ selection strategy

Fig. 3 protection magnitude scenarios: from deterministic to worst case

application the parameters a have a 1 week period (i.e. tperiod = 12 when P = 2
working shift a day for six working days). Therefore a good approach is increasing
Γt for t ∈ {1, . . . , tperiod} and keeping the maximum Γperiod for the rest of the time
horizon. Figure 2 shows an example with a 3 weeks time horizon (i.e. T = 36).

The price of robustness (the optimality reduction w.r.t. the nominal deterministic
problem) is tested over twenty protection magnitudes with respect to different time
horizons from one to 4 weeks. All Γ selections linearly increase with different
slopes from minimum to maximum risk protections as shown in Fig. 3.

Results concerning the price of robustness are presented in Fig. 4. It is clear
that the evolution of the price paid for risk protection remains reasonable and its
evolution with respect to the protection scenarios strictly depend on the strategical
selection of Γ . Indeed a linear evolution of the price is obtained with a linear
expansion of Γ components.
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Fig. 4 Price of robustness results

4 Conclusions

We advanced a tuned version of the model presented in [5] with additional
complexity due to the introduction of robustness on the most critical parameters
values. The formulation keeps supporting all the original strategic decisions that
are critical in the business considered. This robust counterpart showed a good
adjustable protection capacity when used in a real-world application. Results
concerning the controllable price of robustness in the considered case study are
also encouraging. Indeed, for the company level of service, this economical and
controllable improvement is highly remarkable, taking into account the low margin
of the activity. Future works may consider to introduce more complexity in the
formulation, such as considering production capacity dependent on the size of
working teams.
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Solution Approaches for the Capacitated
Scheduling Problem with Conflict Jobs

Emanuele Tresoldi

Abstract In this paper we present a new arc-based mathematical formulation and
a heuristic algorithm for the capacitated scheduling problem with conflict jobs. The
effectiveness of our approaches is demonstrated through extensive computational
experiments. The results demonstrate that our formulation outperforms existing
models proposed in the literature.

Keywords Scheduling with conflicts · Parallel machines · Arc-Flow formulation

1 Introduction

The Capacitated Scheduling Problem with Conflicts Jobs (CSPCJ) requires to find
a feasible schedule, on a set of parallel identical machine without preemption, that
maximizes the total weighted value of jobs completed before a common deadline.
The schedule is subject to conflict constraints limiting the set of jobs that can
be processed concurrently. Using the standard three-field notation for scheduling
problems introduced in [4] the CSPCJ can then be classified as follows. The first
field is a single character identifying the type of machines considered, in CSPCJ is P

since it is defined on parallel identical machines. The second, describing constraints
on jobs, is dj = d . In the three field notation d identifies the due date requirements.
Given the set of jobs J each job j ∈ J has the same due date dj = d . The last
field describe the objective function. In CSPCJ is

∑
wjUj meaning that it requires

the minimization of a weighted sum function where wj is the weight of a job and
Uj is a unit function equal to 1 if job j is completed before d and 0 otherwise. The
complete problem can then be defined as P |dj = d|∑wjUj with the addition of
conflict constraints.
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CSPCJ shares many features with other well studied scheduling problems such
as the mutual exclusion scheduling [1], the parallel machine scheduling with conflict
graph [6], the scheduling with agreement graph [2], the flow shop scheduling with
conflict graph [12] and the open shop scheduling with conflict graph [11]. On all
these problems a set of jobs has to be scheduled on a set of parallel processors
subject to constraints limiting/forcing the concurrent execution of jobs. Two peculiar
features differentiate CSPCJ from all these problems: the objective function and the
machine capacity/common deadline for all jobs. Indeed, in the previously reported
problems the objective function is usually the makespan minimization and none of
them take into consideration the capacity of the machines or any common due time
for the jobs. It is worth noting that, in literature, there is another problem that is
identified by a very similar name: the scheduling with conflicts [7]. However, in this
case if two jobs are in conflict they cannot be scheduled on the same machine. The
structure of this problem is very different from the CSPCJ.

CSPCJ has received very little attention in literature; to the best of our knowledge
there is only one paper [5] that specifically deals with CSPCJ. In this paper
the authors introduce the problem, describe a real-world application in the field
of wireless network management, prove the NP-hardness of CSPCJ and identify
polynomially solvable special cases. Moreover, they provide two different Mixed-
Integer Linear Programming (MILP) models for CSPCJ. These models, called F1
and F2 by the authors, have been tested on a small set of limited size instances (up
to 16 jobs). The experimental results show the limitations of the proposed models.
In fact, neither F1 nor F2 is able to solve all instances and many cases show very
large optimality gap (up to 80%) after one hour of computation.

In order to find better solutions for CSPCJ, in this paper we introduce a new
mathematical formulation for the problem (Sect. 2.1) and a heuristic algorithm to
quickly provide good-quality feasible solutions (Sect. 3). To show the effectiveness
of our approaches we first compare them with the state of the art and then we
test them on large size instances (Sect. 4). Finally, we close the paper drawing our
conclusions (Sect. 5).

2 Mathematical Formulations

The CSPCJ can be formally defined as follows. A set J of n jobs J = {1 . . . n} and
a set I of parallel identical machines I = {1 . . .m} are given. Each job j ∈ J is
characterized by an integer processing time pj and an integer weight wj while all
jobs share a common deadline T . Moreover, given a set V ⊆ J of all jobs with at
least one conflict and a set E of all pairs of conflicting jobs the conflict requirements
are described by means of an undirected graph G(V,E). In details, an edge (j, h) ∈
E identifies two jobs j and h ∈ V that cannot be scheduled concurrently. The
processing of job j must start after the ending of job h or vice-versa. In other words,
j and h must be processed in disjoint time intervals. The goal of CSPCJ is to build a



Capacitated Scheduling Problem with Conflict Jobs 131

feasible schedule respecting all conflict constraints and maximizing the sum of the
weights of the jobs that are completed before the deadline.

2.1 Arc-Time Formulation

In this section we introduce a new formulation for CSPCJ inspired by arc-flow
models for different scheduling problems such as [9] and [8]. Our formulation,
however, is not a straight adaptation of arc-flow models presented in literature.
Indeed, since in the optimal solution of CSPCJ there may be a waiting period
between the processing of two consecutive jobs, in our model the problem is not
described as a flow. However, we sill have arcs in our formulation. They always
connects two points in time: the beginning and the end of the processing of a job.
For this reason we called this formulation arc-time formulation (AT).

Formulation AT is defined over the set T = {1, 2, . . . T } containing all time
instants in which the processing of a job can either start or end. It is worth noting
that, since all processing times are integer, this discretization does not affect the
optimality of the solutions found. This formulation requires, for each job j ∈ J,
the definition of two subsets. The first subset Ej ⊂ E containing all jobs conflicting
with j , the other Tj ⊂ T contains all time instants t such that t + pj ≤ T .

AT makes use of a single family of binary variables xt
j (∀j ∈ J, t ∈ Tj ) equal

to 1 if the processing of job j starts at t and 0 otherwise. They represent arcs from
time instants t to t + pj . Formulation AT then reads as follows:

max
∑

j∈J

∑

t∈Tj

wjx
t
j (1a)

∑

t∈Tj

xt
j ≤ 1 ∀j ∈ J (1b)

∑

j∈J

∑

t ′∈Tj :
t ′≤t<t ′+pj

xt ′
j ≤ |I | ∀t ∈ T (1c)

∑

t ′∈Tj :
t ′≤t<t ′+pj

|I |xt ′
j +

∑

h∈Ej

∑

t ′∈Th:
t ′≤t<t ′+ph

xt ′
h ≤ |I | ∀j ∈ J, t ∈ T (1d)

xt
j ∈ {0, 1} ∀j ∈ J, t ∈ T (1e)

The objective function (1a) calls for the maximization of the total weight of the
jobs completed within the deadline. Constraints (1b) ensure that a job cannot be
processed more than once. Inequalities (1c) model the concurrent allocation of
jobs to machines. It imposes that, in each time instant t ∈ T, the number of jobs
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that are actively processed is no larger than the number of available machines |I |.
Finally, the last family of constraints (1d) addresses the conflict requirements. These
constraints are violated if two conflicting jobs are processed in the same time instant
t ∈ T. It is worth noting that another way of imposing conflicts requirements in AT
is with inequalities:

∑

t ′∈Tj :
t ′≤t<t ′+pj

xt ′
j +

∑

t ′∈Th:
t ′≤t<t ′+ph

xt ′
h ≤ 1 ∀(j, h) ∈ E, t ∈ T (2)

These inequalities dominate (1d). However, we established in a preliminary testing
phase that, due to the cardinality of (2), constraints (1d) provide better computa-
tional performances.

The AT formulation includes, as in all arc-flow inspired models, a pseudo-
polynomial number of variables that depends on the cardinality of set J and
parameter T . Usually, in these models, different reduction and symmetry breaking
techniques are employed to discard redundant variables (see [3]). Unfortunately,
in AT no variable can be discarded. Indeed since CSPCJ includes conflicts and
potential waiting times none of the methods presented in the literature can be applied
to our model.

Additional Inequalities Let be Q̄ the set of all possible cliques in the conflict graph
G(V,E) and let Vq ⊂ V be the set of nodes defining clique q ∈ Q̄ then feasible
inequalities for AT are defined as follows:

∑

j∈Vq

xt
j ≤ 1 ∀q ∈ Q̄, t ∈ T (3)

A clique in the conflict graph represent a set of jobs that cannot run concurrently.
Therefore, at any time instant at most one of them can be processed.

3 Heuristic Algorithm

In this section we present a simple heuristic algorithm (HE) for CSPCJ, it combines
randomization, greedy construction and local search improvement. An overview of
the procedure is shown in Algorithm 1. The core of the algorithm is based on three
sub-procedures that iteratively build and improve the solution. These procedures
make use of several data-structures. In details, an |I| by T matrix of time instants
U representing the allocation of jobs to machines; e.g. Ut

i = j if job j is processed
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by machine i starting at time t . A ordered list of the jobs J̄ and a set S of triplets
(i, j, t) representing the solution (e.g. job j is allocated to machine i starting from
time instant t).

The core algorithm (rows 3 and 10) starts form an empty solution in which no job
is scheduled (rows 3 and 4) and, given the list of jobs randomly ordered J̄ (row 5),
builds a better solution iterating the three sub-procedures. At first it allocates jobs to
machines in a greedy fashion (row 7). When no other job can be scheduled a local
search procedure is executed trying to swap jobs in the solution with more profitable
jobs not already allocated (row 8). Finally the solution is compacted moving all jobs
as far as possible form the deadline (row 9). Each sub-procedure takes as input the
output of the previous one. Every time the solution is either improved or shrunk
these sub-procedures are repeated. The core algorithm is executed L times, every
time J̄ is ordered in a different way. At the end the best solution obtained is returned.

Algorithm 1 Heuristic procedure—overview

Input: I machines, J̄ jobs, U covering matrix, T deadline, p processing times, w weights,
G conflict graph, L max iterations.

Output: s∗ value best solution, S∗ triplets (i, j, t) defining best solution.
1 s∗ ← 0; S∗ ← ∅;
2 while l < L do
3 s ← 0; S ← ∅;
4 Ut

i ← ∅ ∀i ∈ I, t ∈ {1 . . . T };
5 J̄ ← shuffle(J̄ );
6 do
7 Bg, s, S,U ← greedyInsert(s, S,I, J̄ , U, T , p, q,G);
8 Bs, s, S,U ← localSearch(s, S,I, U, T , p, q,G);
9 Bc, S,U ← compact(S,U,G);

10 while Bg ∨ Bs ∨ Bc;
11 if s > s∗ then
12 s∗ ← s S∗ ← S;
13 l ← l + 1;
14 return s∗, S∗

The pseudo-code of the greedy insertion procedure is reported in Algorithm 2. This
procedure scans the matrix U looking for unused time instants (rows 2 and 3). Once
an available time instant t in a machine i is located (row 4), the procedure, following
the order of J̄ , try to insert new jobs into the solution. If the processing time of the
job fits into the available time instants (checkTime, row 6) and does not have any
conflict with pre-allocated jobs in the same time instants (checkConflicts, row 6)
then the job is allocated on machine i starting at time t . The matrix U and the
solution are updated (row 9) and the procedure continue scanning for other available
time instants.
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Algorithm 2 Heuristic procedure—greedy insertion

Input: s value ini. solution, S ini. solution, I machines, J̄ jobs, U matrix, T deadline, p process-
ing times, w weights, G conflict graph.

Output: Bg boolean, s∗ value solution, S∗ solution, U∗ matrix of solution.
1 s∗ ← s; S∗ ← S; U∗ ← U ; B ← FALSE;
2 for t ← 0 to T do
3 forall i ∈ I do
4 if U∗t ′

i = ∅ then
5 forall j ∈ J̄ �∈ S∗ do
6 if checkTime(t, i, j, U ) ∧ checkConflicts(t, j, U,G) then
7 for t ′ ← t to t + pj do
8 U∗t ′

i ← j ;
9 s∗ ← s∗ + wj ; S∗ ← S∗⋃(i, j, t); B ← T RUE;

10 break;
11 return B, s∗, S∗, U∗

The second sub-procedure is a local-search algorithm, the pseudo-code is shown
in Algorithm 3. This procedure starts form a feasible solution S∗ = S and tries to
exchange a job ∈ S∗ with a more profitable job �∈ S∗ following the order described
by J̄ . Two jobs j and j ′ can be exchanged if j ′ fits in the hole that would be created
by removing j (row 5) and if inserting j ′ in its place does not create any conflict
(row 6). The exchange is realized if either j ′ is more profitable than j or j ′ is as
profitable as j and the processing time of j ′ is shorter than the processing time of j

(row 4). Once an exchange is performed then the matrix U and the solution S∗ are
updated and the procedure moves to the next job ∈ S∗.

Algorithm 3 Heuristic procedure—local search

Input: s value ini. solution, S ini.l solution, I machines, J̄ jobs, U matrix, T deadline,
p processing times, w weights, G conflict graph.

Output: Bg boolean, s∗ value solution, S∗ solution, U∗ matrix of solution.
1 s∗ ← s; S∗ ← S; U∗ ← U ; B ← FALSE;
2 forall (i, j, t) ∈ S∗ do
3 forall j ′ ∈ J̄ �∈ S∗ do
4 if wj ′ > wj ∨ (wj ′ = wj ∧ pj ′ < pj ) then
5 t ′ ← checkHole(t, i, j, j ′, U );
6 if t ′ > 0 ∧ checkConflicts(t, j, U,G) then
7 for t ′ ← t to t + pj do
8 U∗t ′

i ← ∅;
9 for t ′ ← t̄ to t̄ + pj ′ do

10 U∗t ′
i ← j ′;

11 s∗ ← s∗ − wj + wj ′ ; S∗ ← S∗⋃(i, j ′, t ′) \ (i, j, t); B ← T RUE;
12 break;
13 return B, s∗, S∗, U∗

Finally, since the local search procedure can generate unnecessary holes (e.g.
exchanging a large job with a smaller one, conflicts changed, etc.) a third procedure
(compact) is used in order to compact the schedule as much as possible. In details,
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all jobs, following the order described by J̄ are moved as far away as possible from
the deadline (toward t = 1). This may involve the relocation of a job on a different
machine if a suitable set of time instants is available.

It is worth noting that the complete algorithm (Algorithm 1) is easily paralleliz-
able running each iteration on a separate process.

4 Experimental Evaluation

In order to assess the performances of our approaches we executed two different
experimental tests on two separate sets of instances. The first set is composed of
144 random instances generated to replicate the test-set described in [5]. They are
characterized by a number of jobs |J| = {12, 16}, a number of machines |I| =
{2, 4}, a deadline T = {15, 30, 60}, a ratio between the number of conflicts and
the number of jobs equal to C = {0.2, 0.5, 1} and two settings for the generation
of processing times: a random integer from �T/4 to �T/2 (setting 1) or from 1
to �T/2 (setting 2). For each combination of jobs, machines, deadline, conflict
ratio and processing time settings two instances with random weights ∈ {1 . . . 5}
are generated. This test set is used to compare the AT model (Sect. 2.1) and the
heuristic algorithm (Sect. 3) with the models F1 and F2 described in [5]. The second
set contains 3840 larger size instances generated with |J| = {24, 32, 48, 64}, |I| =
{2, 4, 6, 8}, T = {30, 60, 120, 180}, C = {0.2, 0.5, 1} and the same two setting for
processing times. This set has been generated to provide more challenging instances
and to test the limits of our approaches. Both datasets and additional small instances
are available on Open Science Framework [13].

All models (F1, F2 and AT) and the heuristic algorithm (HE) have been
implemented in C++. CPLEX 20.1 C++ API has been used for all three models.

We include in model AT additional inequalities (3). Before the model is solved
we look for maximal cliques in the conflict graph; all cliques found are then
converted into constraints as described in Sect. 2.1. This process is carried out using
the maximum clique algorithm described in [10], all additional constraints are then
added to AT as cuts.

The experiments were carried out on a 64-bit Windows machine, with Intel i7-
6700K processor clocked at 4.00 GHz and 16 GB RAM. CPLEX is set to default
configuration and up to 8 thread are used for parallel optimization. The heuristic
algorithm runs on a single thread instead. We set a time-limit of 3600 seconds for
every instance on all models while a limit of 100 iterations for HE has been imposed
(parameter L in Algorithm 1). The computational time for the maximum clique
algorithm is included in the time-limit.

Comparison with the State of the Art
To compare our approaches with the state of the art we run formulations F1, F2,
AT and our heuristic algorithm on the first data-set. The results of this comparison,
aggregated by jobs, machines, deadline and conflict ratio are shown in Table 1.
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Columns “Time” report the average computational time, over the four instances of
the same class, in seconds. Columns “Gap” show the average MIP gap after one
hour of computation, this gap is computed considering only instances that are not
solved to the optimality. For HE the gap is computed with respect to the optimal
solution. Columns “Op” contain the number of instances solved to the optimality in
each class.

The performances of F1 and F2 are in line with the results in [5]; neither F1 nor
F2 could find the optimal solution on all 144 instances. In details, formulation F2
is more efficient and is able to solve 134 instances while only 72 are solved by F1.
The average computational time is about 449 s for formulation F2 and 1862 second
for F1. On instances not solved to the optimality the average MIP gap for F1 is
20.01%, 46 instances report gap larger than 10%. With formulation F2 the MIP gap
at the end of the computation is about 7.66% and only two instances shows a gap
> 10%. However, F1 provides a better relaxation, at root node the F1 MIP gap is,
on average, about 25.78% while the F2 gap is 55.39% and on 32 instances (all with
2 machines) this results in F1 outperforming F2 by more than 70%.

Formulation AT outperforms both F1 and F2. Indeed AT is able to solve all
instances to the optimality in about 1 second. The linear relaxation of AT provides a
very small gap, on average about 0.34%, and no branching is required to achieve the
optimal solution. The maximum clique algorithm used to find additional inequalities
takes only a fraction of a second. Finally, the heuristic algorithm is very effective on
this set of small instances. It reached the optimal solution on all instances in about
a tenth of a second. Considered the performances showed by F1 and F2 we decided
not to test them on larger instances.

Results on Larger Instances
The second set of instances is used to test the efficiency of AT and HE on larger
problems. Average results, aggregated by |J| and T are reported in Table 2,
each class contains 240 instances. For AT, columns “GapR” and “OpR” show,
respectively, the average gap, for instances not solved, and the number of instances
solved at root node. Columns “GapF”, “OptF”, “BBN” and “Time” report, the final
gap, the number of instances solved within the time-limit, the number of branch-
and-bound nodes explored and the total computational time in seconds. For HE,
we report the average gap with respect to the best known solution “GapOp”, the
execution time “Time” and the number of instances in which the best known solution
solution has been reached “Op”.

Formulation AT is able to obtain the optimal solution for all instances but one, the
average computational time is 35 seconds. About 80% of the instances are solved at
the root node and the average MIP gap at the root node for the other ones is 1.64%. In
these instances, on average, 19487 nodes are explored before optimality is proven.
In the only instance not solved to the optimality the final MIP gap is 0.86%. The
maximum clique algorithm used to compute additional inequalities runs in less than
a second.
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Table 2 Results AT and HE on new instances

Instances AT HE

|J| T GapR OpR GapF BBN Time OpF GapOp Time Op

24 30 2.85 215 0.00 0.00 0.82 240 2.18 0.08 172

24 60 2.28 206 0.00 75.27 4.12 240 2.32 0.11 153

24 120 2.21 192 0.00 145.78 15.76 240 2.09 0.19 158

24 180 2.31 190 0.00 417.15 36.85 240 2.40 0.28 159

32 30 2.53 198 0.00 0.00 2.56 240 1.79 0.10 143

32 60 1.67 197 0.00 703.41 8.44 240 1.93 0.14 120

32 120 1.41 186 0.00 87.49 29.85 240 2.07 0.22 114

32 180 1.46 189 0.00 31.02 66.77 240 2.07 0.28 113

48 30 1.12 203 0.00 54.97 3.81 240 1.48 0.14 110

48 60 1.68 186 0.00 19.93 5.87 240 1.83 0.19 97

48 120 1.43 195 0.00 2087.18 43.24 240 1.91 0.27 92

48 180 1.28 192 0.00 67.46 98.28 240 1.98 0.35 92

64 30 0.43 216 0.00 0.00 2.84 240 1.57 0.17 96

64 60 1.50 179 0.00 31.80 9.58 240 1.88 0.22 82

64 120 1.28 197 0.00 729.35 59.19 240 1.83 0.33 76

64 180 1.16 184 0.86 258.58 183.14 239 1.85 0.42 73

Algorithm HE reaches the best known solution in 1851 instances (48%). The gap
from the best known solution in the other instances is on average 1.91%, only one
instance shows a gap larger than 10% (11.76%) and a total of 15 instances report
gaps larger than 5%. The overall average computational time is about 0.21 s.

5 Conclusions

The experimental results demonstrate the effectiveness of the proposed approaches.
In particular, the AT model proved to be vastly superior to F1 and F2. In order to
find the first instance not solved to the optimality we have to increase by four times
the number of jobs and by three times the deadline. Moreover, we demonstrated that
our simple heuristic algorithm is able to find very good solutions in a fraction of
a second. It is worth noting that given the parallelizable nature of the algorithm it
could be used to tackle much larger instances in a very short computational time.
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A Decision Model for Enhancing Driving
Security

Mauro Maria Baldi, Nicola Cilli, Enza Messina, and Fabio Tango

Abstract Driving is a complex activity which requires constant care and attention.
Intelligent Advance Driver Assistance Systems (ADAS) can improve vehicle control
performance and, thus, drivers and passengers safety. In particular, identification
and prediction of driving intention can provide prompt information to drivers
and vehicles in their vicinity that are fundamental for avoiding collisions. In this
paper, we propose a lane change prediction model based on machine learning
able to distinguish between left and right lane changes, a distinction that becomes
particularly important when driving in a highway. Models have been trained and
validated using a real dataset gathered online by using a high-tech demonstrator
vehicle provided by Centro Ricerche Fiat (i.e., Fiat Research Center). Data, which
refer to real driving conditions on a highway, have been collected by monitoring
different drivers showing different behaviors. We address the problem of unbalanced
data, typical of real data sets, and propose two prediction models based on Support
Vector Machines and Random Forests. The results of our computational experiments
show the validity of the approach with respect to state of the art models, both in
terms of prediction accuracy and prediction time.
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1 Introduction

Driving is a complex and dangerous activity because even a little distraction can
have serious consequences. According to recent studies [1], car is the predominant
mode of transport reaching in Europe a global percentage of use of 82.9%. Similar
studies [2] claim that in 2018 in the European Community 23,000 people died in
road accidents in contrast to 1666 significant railway accidents with a high impact of
transport safety. It is therefore of upmost importance to develope new technologies
for improving driving safety. In order to enhance the driving experience from a
safety point of view, the so-called Advance Driver Assistance Systems (ADAS) have
been developed [3]. Lane change is one of the most dangerous maneuvers and it is
precisely in this context that a decision model can be useful to improve safety in
carrying out this maneuver.

This paper is an extension of a work [4] rooted in the European project
DESERVE [5] in cooperation with Centro Ricerche Fiat (CRF) [6] (i.e., Fiat
Research Center) and whose goal is to increase driving security through the
development of an embedded ADAS. In contrast to the preliminary work in [4]
which showed the results over a preliminary (and small) dataset, in this paper we
present new results over the real dataset created during the DESERVE project.
This is an important contribution because most of the articles in the literature
present works either based on data obtained by simulation or on real data but
produced by considering only a small number of drivers. This is the case, for
example, of all those works based on the popular NGSIM dataset [7], concerning
a short section of two American highways located in the Los Angeles and San
Francisco areas, California, USA. Some limitations of this dataset have been
discussed by a number of researchers [8–10] that raised important issues rooted in
unrealistic relationships in the data. Relevant efforts have been made to correct these
flaws [11, 12]. Nevertheless, as Coifman and Li [13] state, “the NGSIM errors are
beyond anything that could be corrected strictly through cleaning or interpolation of
the reported NGSIM data”. Instead in this study, we consider data gathered online
from a considerable number of drivers. Driving tests of a number of drivers for a
reasonable long distance allowed the construction of a real dataset on which we
trained a decision model to predict a lane change maneuver. As the main maneuver
when driving is lane keeping, the resulting dataset is heavily unbalanced. Indeed,
although a driver can make a lot of overtaking, he or she will mainly be in a
condition of lane keeping. For this reason, we have also used the SMOTETomek
algorithm [14, 15] which allows to effectively deal with an unbalanced dataset,
favoring the separability of the classes.

When driving in a highway, the distinction between left and right lane change
becomes fundamental. In fact, as we noticed from our data, a right lane change
is usually a calmer maneuver than a left lane change. For this reason, we learned
models capable of recognising not only lane keeping and lane change maneuvers,
as most state of the art works do, but also able to distinguish between left lane
change before the passing phase and right lane change, occurring when returning to
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the original lane. Moreover, it is important to note that in order to assist the drivers,
ADAS systems should predict lane change maneuvers early enough to warn the
driver on time. In light of this principle, we computed the average prediction time
for a lane change, which ranges between 1 and 2 s. The classification accuracy of
our models ranges from 87% to 90%; a result perfectly in line with other works in
the literature.

The paper is organized as follows: in Sect. 2 we provide a literature review on
lane change maneuvers prediction. Section 3 introduces our case study in detail
from driving tests up to the preprocessing phase. Computational results are shown
in Sect. 4 and we conclude in Sect. 5.

2 Literature Review

A rich literature is available on machine learning approaches for lane change
detection. Some works are based on Hidden Markov Probabilistic Models [16–19].
In particular, dynamic belief networks, a general case of Hidden Markov Models,
have been proposed by Dagli et al. [20]. Despite probabilistic models, also Support
Vector Machines (SVM) have been employed at this purpose [18, 21–24]. Recently,
Li et al. [25] applied a generalization of SVM known as Support Vector Regression.
Cognitive models can be found in [26, 27], while McCall et al. [28] used sparse
Bayesian learning. Neural networks have been proposed in [22, 24, 29, 30], while
Trajectory planning methods of lane changes for urban scenarios can be found
in [31, 32]. Recently, an alternative approach to the labeling procedure in the
creation of the dataset has been investigated [33, 34]. Rákos et al. [35] implemented
a mixed procedure with Gaussian Classification, Support Vector Classification and
Neural Network Classifiers. Finally, Chen et al. [36] used a technique known as
LightGBM.

Among all the techniques available in the literature and briefly mentioned in this
section, we decided to use SVM [37] and Random Forests [38]. We chose SVM for
a number of reasons. First, as pointed out by Mandalia [21] and Li [23], they are
suited to address problems with temporal series and data coming from each driving
test form a temporal series. Second, some computational experiments proved that
SVM perform better than Hidden Markov Models [18]. Finally, SVM offer the
great advantage to map the original feature set over a higher-dimensional space.
This is very effective in terms of separability. This last point perfectly suits with
the preprocessing techniques described in Sect. 3. In particular, the SMOTETomek
algorithm [14, 15] outlined in Sect. 3 fosters separability by deleting those instances
in the dataset which would fall within a region with a different label. Instead,
Random Forests are trained by creating rules based on the concept of information
gain indicating the usefulness of each feature. Both approaches fit very well with
the SMOTETomek preprocessing we use, favoring greater separability. Therefore,
we believe that the use of the SMOTETomek technique in concert with the proposed
classifiers is a good combination for efficient predictions.
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3 Case Study

In this section, we show the development of our decision model in concert with
a case study. The fundamental idea is to train classifiers able to predict the next
maneuver online through the classification of data coming from sensors the machine
is equipped with. In order to accomplish this decision, it is important to train the
classifiers on a dataset that is representative of real driving conditions. During the
European project DESERVE such a dataset was collected thanks to the highly-
technological demonstrator vehicle provided by CRF (see Fig. 1).

This vehicle is able to provide a number of features through sensors at a sampling
time of 50 ms. In particular, the installed technology consists of: internal camera
able to measure head position and eye movements of the driver, external camera
able to capture the road and radar able to detect the next vehicle. Other features
are: lateral distance, curvature, brake pedal, gas pedal, yaw rate, vehicle speed,
lateral distance, steering angle, heading angle and engine speed. 43 volunteers drove
for about 1 h and a half on the demonstrator vehicle on the Italian A55 Torino-
Pinerolo highway (Fig. 1). Every driver performed around 20 overtaking maneuvers
for a total of more than 800 overtaking maneuvers. Raw data coming from sensors
produce, however, noisy measurements. Therefore, it cannot be used as immediate
input for training a classifier and so a preprocessing step is needed. Preprocessing
is a procedure used to reduce noise from measurements and prepare data for the
subsequent training procedure. A common solution is to compute a sequence of
feature statistics on sliding windows. Inspired by the approach used by Mandalia
and Salvucci [21], we used shifting time windows. In this approach, data from each
driver is considered as a time series. For each time series, a shifting time window is
used to compute the variance among its samples in order to address two drawbacks
regarding raw data. First of all it is useful to reduce sensors’ noise. Second, it is
helpful to manage fluctuations in data. In fact, only in an ideal situation a driver

Fig. 1 The demonstrator vehicle provided by Centro Ricerche Fiat (left) and a section of the Italia
A55 highway where driving tests took place (right)
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Fig. 2 Data swinging typical
of real driving

perfectly drives in straight line. In reality, driving is characterized by some small
oscillations (see Fig. 2). This phenomenon can be considerably reduced if variance
of features is used instead of raw data.

As we have already pointed out, the overall dataset is strongly unbalanced. This is
because a driver is mainly in the so-called lane keeping state, while he or she rarely
performs a lane change maneuver. Therefore, the cardinality of the instances labeled
as lane change is significantly lower than the cardinality of the instances labeled as
lane keeping. To solve this problem, we used the SMOTETomek algorithm [14, 15].
This algorithm combines oversampling and undersampling techniques. The former
addresses the problem of unbalanced datasets while the latter fosters separability
removing unwanted overlap between classes. This increases the space between two
classes, helping the classification process.

Preprocessing is also a procedure useful to detect the most significant features.
At this stage of our case study, we have decided not to consider data from cameras
in order to answer the question of whether it is possible to train an efficient classifier
with the data available from most vehicles. At the moment, in fact, most vehicles
do not have an internal or external camera. We therefore aim to train a decision-
making model that improves safety for all vehicles, not just the most equipped ones.
In the preprocessing phase, we also conducted an analysis of the most significant
features, which turned out to be: heading angle, curvature, vehicle speed, yaw rate,
steering angle and engine speed. This subset of features is in line with other works in
the literature. In particular, lateral distance and heading angle are two fundamental
features to predict a lane change. However, the cameras were a fundamental control
tool for the creation of the dataset.

4 Computational Results

In this section, we report the results of the computational tests performed on our
classifiers. These tests were performed on a workstation with a 2.3 GHz processor
and a 8 GB RAM using the sklearn package [39] of the Python programming lan-
guage. Training, validation and testing sets have been set respectively considering
50%, 20% and 30% of drivings. This partition corresponds to 990,930 instances for
the training set, 501,160 for the validation set and 464,257 for the test set, for a total
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Table 1 Performances of the
classifiers used

Labels Metrics SVM Random forest

2 Gini 72% 79%

Precision 82% 89.9%

Recall 81.3% 89.5%

F1-measure 82% 89.7%

Accuracy 83% 89.7%

3 Gini 72% 80%

Precision (micro) 82.1% 87.1%

Precision (macro) 81.8% 87.8%

Recall (micro) 81.5% 87.3%

Recall (macro) 82.1% 87.1%

F1-measure (micro) 81.4% 87.4%

F1-measure (macro) 81.6% 87.2%

Accuracy 83% 87.2%

of 1,956,347 instances. We used the validation set to calibrate the parameters of the
classifiers. For SVM, these are the kind of kernel, the penalty parameter and the
gamma parameter of the radial basis function (RBF) kernel. For Random Forests,
these are the number of decision trees, the maximum depth and the criterion used
(entropy or Gini). We used a grid search procedure to tune these parameters. The
best combination of parameters for SVM turned out to be a RBF kernel with penalty
parameter equal to 100 and gamma coefficient equal to 1. For Random Forests, we
found that the best combination of parameters is a Gini criterion with 100 decision
trees and a maximum depth of 30.

Table 1 shows the performance of the classifiers used with both two and three
labels.

We wish to point out that for the multiclass case we used both micro and macro
metrics. With two labels, precision is defined as the portion of positive and correct
identifications, i.e. PREC = T P

T P+FP
, where T P is the number of true positives and

FP is the number of false positives. With two labels, one class is assumed to be
positive and the other one is assumed to be negative. When more than two labels
are present, one label can in turn be considered as positive and the remaining ones
as negative. Let L denote the number of labels. In this way, one can compute T P(l)

and FP(l) which respectively are the number of true positives and false positives
when label l ∈ L is assumed as positive and the remaining labels as negative. Micro
precision is defined as

PREC (micro) = T Psum
T Psum + FPsum

=
∑

l∈L T P(l)
∑

l∈L T P(l) +∑l∈L FP(l)
, (1)
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Table 2 Prediction time for
the proposed classifiers

Labels Maneuver SVM Random forest

2 Lane change 1.07 s 2.19 s

3 Lane change left 0.88 s 1.15 s

Lane change right 0.95 s 1.57 s

while macro precision is computed as PREC (micro) = 1
L

∑
l∈L PREC(l), where

PREC(l) is the precision when label l ∈ L is assumed as positive label, i.e.,
PREC(l) = T P (l)

T P (l)+FP(l)
. Similar considerations can be done for recall and F1-

measure [40]. We can see that both classifiers show very good performances. SVM
shows an accuracy of 83% both in the case with two and three labels, while the
accuracy of the random forest slightly decreases from 89.7% to 87.2%. From these
results we can also infer that Random Forest performances are higher than SVM
ones. Nevertheless, SVM performances practically remain the same if a third label
is added, whilst Random Forest performances tend to decrease if the discrimination
between left and right lane change is introduced.

In addition to the classic figures of merit shown in Table 1, we also computed
the prediction time for a lane change. This is defined as the time before a lane
change during which a classifier succeeds in predicting the lane change maneuver.
The results are shown in Table 2.

Again, we can observe that Random Forest shows better performances than
SVM. However, the latter is more stable if three labels are introduced. Moreover,
we can observe an interesting pattern: on average the prediction time for the
right lane change is higher than the prediction time for the left lane change. This
behavior perfectly reflects what happens in reality, where, in general, left lane
change maneuvers are faster than right lane change maneuvers. In fact, left lane
changes tend to be more rapid because the driver has to look at the vehicles in the
next lane. Vice versa, right lane changes are a return maneuver and tend to be calmer.

Finally, in Tables 3 and 4, we propose a comparison with some works in the
literature. It is our concern to point out that a true comparison is technically not
possible because the datasets considered are different. In fact, some data come from
simulation, others from real roads, others with pieces of highways, and so a concrete
comparison is not really possible. Thus, the aim of these tables is to prove that our
results are in line with other works in the literature. Table 3 shows the case with
two labels (i.e., lane keeping and lane change), while Table 4 refers to the case with
three labels, namely lane keeping and left and right lane change. Please also note
that, concerning our results for the case with three labels, we reported the average
prediction time between left and right lane change, which is 0.915s for SVM and
1.36s for Random Forest. The literature on the subject is copious and therefore we
have just selected some of the most popular works.
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Table 3 Comparisons with other works in the literature using two labels

Author Method Kind of data Best accuracy Prediction time

Dagli et al. [20] Bayesian Network Simulator 80% 1.5 s

Salvucci [26] Mind-tracing Realistic highway 82% 1.1 s

simulation

Mandalia and SVM Real data 87% 0.3 s after lane

Salvucci [21] change starts

Dogan et al. [22] Neural network NISYS TRS unknown 1.5 s

Shou et al. [30] RNN NGSIM 75%. 8.05 s

Our work SVM Real highway data 83% 1.07 s

Random forest Real highway data 89.7% 2.19 s

Table 4 Comparisons with other works in the literature using three labels

Author Method Kind of data Best accuracy Prediction time

Li [23] SVM Simulator 63.3% 1.0447 s

Augustin et al. [33] Boosted decision tree Real-world 94% 1.67 s

Benterki et al. [24] ANN NGSIM 97.1% 2.33 s

Rákos et al. [35] NN and SVM NGSIM 86% Unknown

Our work SVM Real highway data 83% 0.915 s

Random forest Real highway data 87.2% 1.36 s

5 Conclusions

In this paper, we have introduced a decision model to improve safety while driving.
The main contributions of this work concern the real dataset consisting of 43 real
driving tests on highways and having carried out a study with both two and three
labels. The latter case allowed us to distinguish between left and right lane changes:
an important aspect for highway driving. The decision model is rooted in the
DESERVE European project to improve road safety through embedded Advanced
Driver Assistance Systems. This article is intended as a starting point for future
work. One possible development may be to consider features from internal and
external cameras or other labels of interest related to lane change maneuvers such as
complete overtakings or car followings. Another possible development planned is
the use of ensemble learning techniques rather than independent classifiers. We are
confident that the use of these techniques will lead to further improvements of the
proposed results, which are already very satisfactory and in line with those present
in the literature.



A Decision Model for Enhancing Driving Security 151

References

1. Eurostat Statistics Explained: Passenger transport statistics. https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=passenger_transport_statistics

2. Eurostat Statistics Explained: Passenger transport statistics. https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=transport

3. Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for
intelligent vehicles. Robomech 1 (2014). https://doi.org/10.1186/s40648-014-0001-z

4. Baldi, M.M., Perboli, G., Tadei, R.: Driver maneuvers inference through machine learning. In:
Machine Learning, Optimization, and Big Data, pp. 182–192. Springer, Berlin (2016)

5. The European Deserve project: https://www.deserve-project.eu/
6. Centro Ricerche Fiat: https://www.crf.it/en.
7. He, Z.: Research based on high-fidelity NGSIM vehicle trajectory datasets: a review (2017)
8. Thiemann, C., Treiber, M., Kesting, A.: Estimating acceleration and lane-changing dynamics

from next generation simulation trajectory data. Transp. Res. Rec. 2088(1), 90–101 (2008)
9. Hamdar, S., Mahmassani, H.: Driver car-following behavior: From discrete event process to

continuous set of episodes. In: Proceedings of the 87th Annual Meeting of the Transportation
Research Board (2008)

10. Duret, A., Buisson, C., Chiabaut, N.: Estimating individual speed-spacing relationship and
assessing ability of Newell’s car-following model to reproduce trajectories. Transp. Res. Rec.
2088(1), 188–197 (2008)

11. Punzo, V., Borzacchiello, M.T., Ciuffo, B.: On the assessment of vehicle trajectory data
accuracy and application to the next generation simulation (NGSIM) program data. Transp.
Res. C: Emer. Technol. 19(6), 1243–1262 (2011)

12. Montanino, M., Punzo, V.: Trajectory data reconstruction and simulation-based validation
against macroscopic traffic patterns. Transp. Res. B: Methodol. 80, 82–106 (2015)

13. Coifman, B., Li, L.: A critical evaluation of the next generation simulation (NGSIM) vehicle
trajectory dataset. Transp. Res. B: Methodol. 105, 362–377 (2017)

14. Batista, G.E.A.P.A., Bazzan, A.L.C., Monard, M.A.: Balancing training data for automated
annotation of keywords: case study. In: Proceeding of the Second Brazilian Workshop on
Bioinformatics, pp. 35–43 (2003)

15. Imbalanced-learn documentation. https://imbalanced-learn.org/stable/
16. Liu, A., Pentland, A.: Towards real-time recognition of driver intentions. In: Proceedings of

Conference on Intelligent Transportation Systems, pp. 236–241 (1997)
17. Kuge, N., Yamamura, T., Shimoyama, O., Liu, A.: A driver behavior recognition method based

on a driver model framework. In: SAE Technical Paper Series, pp. 2000-01-0349 (2000)
18. Mandalia, H.M.: Pattern recognition techniques to infer driver intentions. Ph.D. Thesis, Drexel

University, 2004
19. Oliver, N., Pentland, A.P.: Driver behavior recognition and prediction in a smartcar. In: Verly,

J.G. (ed.) Enhanced and Synthetic Vision 2000, vol. 4023, pp. 280–290. International Society
for Optics and Photonics, SPIE (2000)

20. Dagli, I., Brost, M., Breuel, G.: Action recognition and prediction for driver assistance systems
using dynamic belief networks. In: Carbonell, J.G., Siekmann, J., Kowalczyk, R., Müller, J.P.,
Tianfield, H., Unland, R. (ed.) Agent Technologies, Infrastructures, Tools, and Applications for
E-Services, pp. 179–194. Springer, Berlin (2003)

21. Mandalia, H.M., Salvucci, D.: Using support vector machines for lane-change detection. In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 49, pp. 1965–
1969. SAGE Publications, Los Angeles (2005)

22. Dogan, U., Edelbrunner, H., Iossifidis, I.: Towards a driver model: Preliminary study of lane
change behavior. In: 2008 11th International IEEE Conference on Intelligent Transportation
Systems, pp. 931–937. IEEE, Piscataway (2008)

23. Li, Z.: Prediction of vehicles’ trajectories based on driver behavior models. Master’s Thesis,
Delft University of Technology, 2014

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=passenger_transport_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=passenger_transport_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=transport
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=transport
https://doi.org/10.1186/s40648-014-0001-z
https://www.deserve-project.eu/
https://www.crf.it/en
https://imbalanced-learn.org/stable/


152 M. M. Baldi et al.

24. Benterki, A., Boukhnifer, M., Judalet, V., Choubeila, M.: Prediction of surrounding vehicles
lane change intention using machine learning. In: 2019 10th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), vol. 2, pp. 839–843 (2019)

25. Li, M., Li, Z., Xu, C., Liu, T.: Short-term prediction of safety and operation impacts of lane
changes in oscillations with empirical vehicle trajectories. Accid. Anal. Prevent. 135, 105345
(2020)

26. Salvucci, D.: Inferring driver intent: A case study in lane-change detection. In: Proceedings of
the Human Factors and Ergonomics Society Annual Meeting, vol. 48, pp. 2228–2231. SAGE
Publications, Los Angeles (2004)

27. Salvucci, D., Mandalia, H.M., Kuge, N., Yamamura, T.: Lane-change detection using a
computational driver model. Hum. Fact. 49(3), 532–542 (2007)

28. McCall, J.C., Wipf, D.P., Trivedi, M.M., Rao, B.D.: Lane change intent analysis using robust
operators and sparse Bayesian learning. IEEE Trans. Intell. Transp. Syst. 8(3), 431–440 (2007)

29. Han, T., Jing, J., Özgüner, Ü.: Driving intention recognition and lane change prediction on the
highway. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 957–962. IEEE, Piscataway
(2019)

30. Shou, Z., Wang, Z., Han, K., Liu, Y., Tiwari, P., Di, X.: Long-term prediction of lane change
maneuver through a multilayer perceptron. In: 2020 IEEE Intelligent Vehicles Symposium
(IV), pp. 246–252. IEEE, Piscataway (2020)

31. Li, A., Li, S., Shen, H., Huan, M., Miao, X., Li, X.: Motion trajectory planning method of lane
change for intelligent vehicle. J. Theor. Appl. Inform. Technol. 45(1), 297–302 (2012)

32. Chandru, R., Selvaraj, Y.: Motion planning for autonomous lane change manoeuvre with abort
ability. Master’s Thesis, Chalmers University of Technology, 2016

33. Augustin, D., Hofmann, M., Konigorski, U.: Motion pattern recognition for maneuver
detection and trajectory prediction on highways. In: 2018 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), pp. 1–8 (2018)

34. Augustin, D., Hofmann, M., Konigorski, U.: Prediction of highway lane changes based on
prototype trajectories. Forsch. Ingenieurwes. 83(2), 149–161 (2019)

35. Rákos, O., Aradi, S., Bécsi, T.: Lane change prediction using Gaussian classification, support
vector classification and neural network classifiers. Period. Polytech. Transp. Eng. 48(4), 327–
333 (2020)

36. Chen, T., Shi, X., Wong, Y.D., Yu, X.: Predicting lane-changing risk level based on vehicles’
space-series features: a pre-emptive learning approach. Transp. Res. C: Emer. Technol. 116,
102646 (2020)

37. Boser, E.B., Guyon, I.M., Vapnik, N.V.: A training algorithm for optimal margin classifiers.
In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92,
pp. 144–152. Association for Computing Machinery (1992)

38. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on
Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)

39. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

40. Murphy, K.P.: Machine Learning, a Probabilistic Perspective. MIT Press, Cambridge (2012)



A Two-Echelon Truck-and-Drone
Distribution System: Formulation
and Heuristic Approach

M. Boccia, A. Mancuso, A. Masone, A. Sforza, and C. Sterle

Abstract The integration of new distribution technologies in the delivery systems,
specifically drones, has been investigated by several companies to reduce the Last-
Mile Logistics costs. In this context, different truck-and-dronedelivery systems have
been proposed in literature, where the truck operates as a mobile depot for the
drones. In this work, we study a two-echelon truck-and-drone distribution system
where the first-echelon is composed of the depot and truck parking places, whereas
the second-echelon is composed of the parking places and the final customers that
are served by a fleet of drones. The truck parking places can be considered as
locations where the operator can deploy the fleet of drones and monitor their trips.
Moreover, we propose a mixed integer linear programming formulation and a two-
stage heuristic that exploits the underlying structure of the problem. The proposed
approaches are tested and validate on set of instances up to 50 customers.

Keywords Unmanned aerial vehicle · Location routing problem · Drone-truck
combined operations · Transportation planning

1 Introduction

Last mile logistics (LML), is probably the most inefficient and expensive phase of
a distribution process, because of the dynamic nature of the urban environment and
economic activities [9]. In [6], the major challenges, trends and innovative delivery
systems for LML are discussed, considering different aspects such as technological
and infrastructural issues, system design and management, and logistic costs. In
this context, the integration of Unmanned Aerial Vehicles (UAVs) in the LML
delivery systems received great attention by the scientific research community [16].
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The motivations behind this growing research interest can be mainly found in:
the continuous developments of drone technologies; the exploration of new drone
applications driven by large corporations such as Amazon, FedEx, and UPS [7];
the achievable sustainability targets (e.g. emissions and delivery completion time
reduction) which benefit of drone usage in LML [14]. This is also coherent with
the Green Transition promoted by the European Commission in the forthcoming
Horizon Europe 2021–2027 programme.

The most studied drone assisted logistic system consists of a single truck and a
single drone operating in tandem for the parcel delivery to the customers [1, 4, 5]. In
a nutshell, it performs as follows: a drone departs from a truck, delivers a parcel, and
returns to the truck without any human intervention; the truck can serve customers
along its route and operates as a mobile hub for the drone. The main benefit of this
system consists in the completion time reduction achievable through the vehicles
synchronization and workload parallelization.

However, current safety and aerial national regulations of several countries
impose restrictions on UAV civil usage in terms of weather conditions and asso-
ciated risks (e.g., collision and crashing, deliberate attack, payload theft). In this
context, one of the most common restriction is either that drones should fly in the
line of sight of a human operator or they could fly only within limited service area
[6].

To meet these requirements, different truck-and-drone delivery systems have
been proposed in literature, where the truck operates as a mobile depot [8, 13, 18].
More precisely, the truck stops at one or more location (referred to as station in the
following), where one or more drones are launched to perform the delivery last leg.
The truck performs no delivery operation and it has to collect all the launched drones
before moving from a location to the successive one. Thus, the synchronization
issue between the two kinds of vehicles can be neglected. In [8], the stations to be
visited by the truck have to be determined in a continuous space. Hence, the truck
is not constrained by the road network. The objective is to find the distribution plan
minimizing the completion time. The resulting optimization problem is solved by
a cluster first-route second heuristic, refined by a local search. A similar problem
considering a single drone is tackled in [13]. The authors develop a two stage
heuristic method which determines the stations by K-means algorithm and solves
the deriving traveling salesman problem (TSP) by a genetic algorithm. Finally, in
[18], the authors extend the problem studied in [8] considering the possibility that
a drone can make more than one trip. They present a Mixed Integer Non-Linear
Programming formulation and study the effect of different side constraints on the
achieved solutions.

In this work, we study a variant of the problem addressed in [8], where the truck
is constrained to move on a road network whose nodes represent potential stations
to be used. As explained above, these nodes represent truck parking places where
the operator can deploy the fleet of drones and monitor their trips ideally without
losing the line-of-sight. We propose a mixed integer linear programming (MILP)
formulation and a two stage heuristic method exploiting the underlying structure of
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the problem. The proposed approaches are tested and validate on a set of instances
up to 50 customers.

For the sake of the completeness, we highlight that the tackled problem falls in
the class of two-echelon location-routing problem (2E-LRP), where the first-echelon
is composed by the depot and stations, whereas the second-echelon is composed by
the stations and the final customers. Using the LRP notation proposed in [2], it can
be classified as a 3/T /R problem, i.e., a two-echelon location-routing problem, with
location decisions on the second layer, multiple node routes on the first-echelon
and direct routes on the second-echelon. In the following we refer to the tackled
problem as two-echelon truck-and-drone location-routing problem (2E-TD-LRP).
Most of the 2E-LRP literature deals with 3/R/T , 3/T /T , 3/R/T and 3/T /T

and the objective is the minimization of the overall transportation cost. Unlike, in
the tackled problem the aim is determining the distribution plan minimizing the
completion time of the delivery process. For this reason and for the sake of the
brevity we do not provide a review of 2E-LRP literature but we just address the
reader to [11] and [3].

The paper is organized as follows: in Sect. 2, a description of the 2E-TD-LRP
is provided; Sect. 3 is devoted to the presentation of the MILP formulation; Sect. 4
presents the proposed heuristic method; Sect. 5 shows the obtained computational
results; finally, conclusions and future perspectives are given in Sect. 6.

2 Problem Description

The 2E-TD-LRP is based on the following delivery conditions and operating
assumptions:

• The truck departs and returns to a single depot exactly once.
• Each station can be visited at most once by the truck.
• The truck has an infinite capacity and acts as a mobile depot for the fleet of

drones.
• Each customer must be served only once by a drone.
• Each drone can serve one customer per sortie. Thus, the number of customers

that can be served from a station is limited by the drone fleet size.
• A drone can be launched only at the stations when the truck is stationary.
• A drone has to be launched and collected at the same station.
• Drone flight time is limited because of the battery power (endurance).
• Each drone is supervised by the truck operator during the whole sortie.
• The truck can continue its route only if the whole fleet is on board.
• The travel time of the drones and the truck are different because of the different

speeds.
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On this basis, the 2E-TD-LRP entails three kinds of decisions:

• location decisions: selecting the stations to be used by the truck for parking;
• assignment decisions: determining the assignment of the customers to the

selected stations;
• routing decisions: definition of the truck tour visiting the selected stations.

The aim is the minimization of the delivery completion time that can be expressed
as the sum of truck traveling time and the maximum drone flight time in each node
station. Indeed, since the truck can continue its route only when all drones are back
on board and the fleet of drones serve customers in parallel, then the truck has to wait
until all the deployed drones have completed their deliveries. Therefore, in other
words, the truck waiting time in each station is given by the maximum delivery time
among all the drones serving a customer from the selected stations.

3 Problem Formulation

To introduce the MILP formulation for the 2E-TD-LRP, let us consider a symmetric
network G(V,A), where: V = {o ∪ N ∪ C} is the set of nodes composed by the
depot o (where the truck is initially located), the set N of station nodes and the set
C of the customers; A is the set of the arcs composing the network.

A cost tTij and a cost tDij are associated to each couple of nodes (i, j),∀i, j ∈ N

and (i, k),∀i ∈ N, j ∈ C, respectively. These costs indicate the time required to
move from node i to node j either by the truck or by the drone. The drone endurance
is expressed in terms of maximum travelling time indicated by the parameter tmax .
Moreover, let D = {1, ..,m} be the set of drones available on the truck.

On this basis, we introduce the following decision variables:

• yj ,∀j ∈ N, binary variable equal to 1 if the station node j is used for the drone
deliveries, 0 otherwise (location variable);

• xij ,∀i, j ∈ N, binary variable equal to 1 if the truck travels from the station node
i to station node j , 0 otherwise (routing variable);

• zd
ij ,∀i ∈ N \ {o}, j ∈ C, d ∈ D, binary variable equal to 1 if customer j is

served by drone d from station node i, 0 otherwise (assignment variable);
• wi,∀i ∈ N \ {o}, continuous variable equal to the truck waiting time for the

drone deliveries starting from the station node i.

Then, the 2E-TD-LRP can be modeled as follows:

Min
∑

i,j∈N

tTij xij +
∑

i∈N\{o}
wi (1)

s.t.

zd
jk ≤ yj ∀j ∈ N \ {o}, k ∈ C, d ∈ D (2)
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2tDjkz
d
jk ≤ tmax ∀j ∈ N \ {o}, k ∈ C, d ∈ D (3)

∑

d∈D

∑

k∈C

zd
jk ≤ m ∀j ∈ N \ {o} (4)

∑

j∈N\{o}

∑

d∈D

zd
jk = 1 ∀k ∈ C (5)

∑

k∈C

zd
jk ≤ 1 ∀j ∈ N \ {o}, d ∈ D (6)

wj ≥ 2tDjkz
d
jk ∀j ∈ N \ {o}, k ∈ C, d ∈ D (7)

∑

i∈N |i �=j

xij = yj ∀j ∈ N (8)

∑

j∈N |j �=i

xij =
∑

l∈N |l �=l

xjl ∀j ∈ N (9)

∑

i∈S

∑

j∈N\S
xij = yu + yv − 1 ∀S ⊆ N,u ∈ S, v ∈ N \ S (10)

yo = 1 (11)

xij , yj ∈ {0, 1} ∀i, j ∈ N (12)

zd
jk ∈ {0, 1} ∀j ∈ N \ {o}, k ∈ C, d ∈ D (13)

wi ≥ 0 ∀i ∈ N \ {o} (14)

The objective function (1) minimizes the delivery completion time expressed
as sum of the truck route duration and the truck waiting times in each station
node selected for the drone deliveries. Constraints (2) are consistency constraints
linking location and assignment variables. Constraints (3) impose a limit on the
flying time of the drones with respect to their endurance. Constraints (4) impose that
the maximum number of drones to be launched from a station node cannot exceed
the number of available nodes. Constraints (5) ensure that each customer has to
be served exactly once. Constraints (6) impose that each drone can be launched
only once from each station. Constraints (7) set the truck waiting time in each
station node. Constraints (8) guarantee that the truck route will visit all the selected
station nodes. The feasibility of the truck route in terms of flow conservation and
subtour elimination is ensured by constraints (9) and (10), respectively. Finally,
constraints (12)–(14) express the nature of the variables.
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4 A Two-Stage Solution Approach

It is widely known that LRPs belong to the class of NP-Hard problems as reported in
[11, 12]. Indeed, as expected, the proposed 2E-TD-LRP formulation can be hard to
solve using a MILP solver even for small instances. Therefore, we develop a solution
method that exploits the underlying structure of the problem, which can be naturally
decomposed in two sub-problems dealing with location and assignment decisions
and routing decisions, respectively. In particular, the first sub-problem consists in the
determination of the station nodes to be used and the resulting customer assignment
which satisfies drone fleet size constraints and minimizes drone delivery time. The
second sub-problem consists in the determination of the minimum length truck tour
visiting all the selected station nodes.

On the basis, we developed a two-stage solution approach that in the first-
stage selects the station nodes and determines the customer assignment through the
solution of a facility location problem (FLP) [17]. Then, the FLP solution is used as
input for the second-stage, where a TSP between the selected station nodes is solved.
Finally, the obtained solution is further optimized by a local search procedure which
modifies the selected station nodes at first-stage. The details of the proposed method
are discussed in the following.

First Stage: Station Node Selection and Customer Assignment
In FLPs, there are a set of potential locations for facilities with fixed costs
and capacities, and a set of customers with known demands of the goods to be
supplied. The unit transportation cost for goods supplied from the facilities to all
the customers is given. The aim is to determine the subset of facilities minimizing
the total transportation cost such that demand of all the customers can be satisfied
without violating the capacity constraints. Three of the most studied FLPs are: the
p-Center Problem (p-CP, [10]), the p-Median Problem (p-MP, [15]), and Simple
Plant Location Problem (SPLP, [19]). The first two problems impose that the
number of facilities to be located has to be equal to a pre-fixed value p. The p-
CP minimizes the maximum transportation cost between the customers and the
facilities, while the p-MP minimizes the sum of the overall transportation costs from
facilities to customers. On the other hand, the SPLP does not fix the number of plants
and minimizes the sum of location and transportation costs.

In our problem, the station nodes can be conceived as facilities. Each station node
has a capacity equal to the number of drones available on the truck (m), while all
the customers demands are equal to 1. The transportation cost from the facilities to
all the customers corresponds to the drone travelling time from the station nodes to
the customers. Moreover, unlike the FLPs, we have additional constraints related
to the drone endurance which prevent customer-to-station assignments out of the
drone operation range.

On this basis, it is clear that our sub-problem slightly differs from anyFLP known
in literature. Therefore, we considered three of the most studied FLPs with the aim
of identifying the most suitable one for our problem. To this aim, we developed
three versions of the proposed heuristic differing in the solved FLP in the first stage.
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Concerning the p-CP and the p-MP, since we do not know in advance the number
of station nodes to be selected, we defined a procedure to determine the p value.
Being Cj the subset of customers reachable by a drone launched from node station
j , the procedure may be schematized as follows:

1. Compute t∗j as the average drone transportation cost from node j to all the

reachable customers (t∗j =∑k∈Cj
tDij /|Cj |).

2. Compute t∗ as the average drone transportation cost (t∗ =∑j∈N t∗j /|N |).
3. Define p as the number of node stations j such that t∗j ≤ t∗.

Then, based on the notation defined in Sect. 3, the objective function considered
for the p-CP is:

Mini∈N\{o}wi (15)

while for the p-MP is:

Min
∑

i∈N\{o},j∈Ci,d∈D

2tij z
d
ij (16)

Concerning instead the SPLP, since we do not have a proper location cost for the
station nodes, we defined it as follows:

hj =
∑

i∈N

tTij /|N | − 1,∀j ∈ N \ {o} (17)

Therefore, we can express the SPLP objective function as follows:

Min
∑

i∈N\{o}
hiyi +

∑

i∈N\{o},j∈Ci,d∈D

2tij z
d
ij (18)

Second Stage: Truck Route Determination
The TSP consists in determining the minimum length tour connecting a set of
n cities. As explained above, in the 2E-TD-LRP the truck has to perform a tour
connecting the selected station nodes minimizing the travelling time. Thus, in the
second-stage of the proposed method, we solve a TSP over the set O

⋃{o}, where
O is the set of station nodes determined by the FLP solution in the firs-stage and
{o} is the depot.

Local Search for the Node Station Location
Preliminary results showed that on some instances, the number of station nodes
selected in the optimal solutions and the one determined in the first-stage of the
heuristic differs of few units (usually 1 or 2). Therefore, we developed a simple
local search (LS) that at each iteration increases by 1 the number of station nodes
in the heuristic solution. In particular, at the first iteration, being p∗ the number of
station nodes determined in the initial FLP solution, the LS solves the same FLP
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fixing the number of station nodes to p∗ + 1. Then, the truck route among the new
p∗+1 station nodes is built solving a TSP. The LS continues until it finds a solutions
with a better objective function value.

5 Computational Results

The proposed approaches have been implemented in Python 3.6 and linked with
MILP solver (FICO-Xpress optimizer 8.9). The FLP formulations are solved by the
MILP solver. On the other hand, we point out that we developed a branch-and-cut
algorithm to solve the proposed MILP formulation and the TSP formulations since
they present subtour elimination constraints that are exponential in number. The
computational experiments were carried out with a time limit of 3600 s on an Intel
Core I7-8700 CPU 3.20 GHz workstation with 16 Gb of RAM.

For our test bed, we generated 40 instances. In particular, we considered
two different size for the station node set (|N | = 10, 20). For each value of
|N |, we generated 10 instances with 30 customers and 5 instances with 40 and
50 customers, respectively. The depot, the station nodes and the customers are
randomly distributed across an 8-mile square area. The speed of the truck and of the
drones are equal to 25 miles/h and 35 miles/h, respectively. Further, we considered
the truck equipped with 10 drones on-board, each one with an endurance equal to
20 min.

In our experimentation, we tested the branch-and-cut (B&C) algorithm developed
to solve the MILP formulation and the three versions of the proposed two-stage
solution method obtained considering in the first stage the p-CP, p-MP, and SPLP,
respectively.

Tables 1 and 2 report the results of the B&C and the best results among
the three versions of the heuristic method (FLP+TSP+LS) on the instances with
|N | = 10 and |N | = 20, respectively. For each instance, the tables report in the first
column the instance id (ID). The following columns report for both approaches:
the delivery completion time in minutes (Ct), the corresponding percentage of
truck (T%) and drone (D%) travelling time, the solution running time in seconds
(Rt). The percentage of truck (drone) travelling time is computed as T % (D%) =
truck (drone) time / Ct ·100, where the truck and drone times are the first and the
second component of the MILP objective function, respectively.

All the instances have been solved to optimality within the imposed time limit.
In terms of delivery system performance, we can observe that on average

the truck and drone traveling times are approximately the 40% and 60% of the
completion time, respectively. This workload distribution confirms the benefit
arising from this hybrid delivery system in terms of emissions being drones less
polluting than trucks.
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Table 1 Results of the proposed approaches on the instances with |N | = 10

B&C FLP+TSP+LS

ID |C| Ct T % D% Rt Ct T % D% Rt Gap%

1 30 86 50.00 50.00 336 86 48.84 51.16 28.4 0.00

2 30 83 40.96 59.04 891 83 40.96 59.04 407 0.00

3 30 92 47.83 52.17 803 93 38.71 61.29 312 1.09

4 30 91 51.65 48.35 184 91 51.65 48.35 167 0.00

5 30 72 34.72 65.28 219 76 47.37 52.63 182 5.56

6 30 97 44.33 55.67 459 97 44.33 55.67 187 0.00

7 30 91 32.97 67.03 231 91 32.97 67.03 162 0.00

8 30 57 33.33 66.67 489 57 33.33 66.67 123 0.00

9 30 56 37.50 62.50 265 56 37.50 62.50 28 0.00

10 30 67 44.78 55.22 181 67 44.78 55.22 132 0.00

11 40 94 46.81 53.19 1431 94 46.81 53.19 155 0.00

12 40 73 41.10 58.90 148 73 41.10 58.90 129 0.00

13 40 63 39.68 60.32 196 63 39.68 60.32 181 0.00

14 40 91 38.46 61.54 308 94 45.74 54.26 210 3.30

15 40 91 36.26 63.74 441 91 36.26 63.74 201 0.00

16 50 91 41.76 58.24 409 91 41.76 58.24 190 0.00

17 50 70 37.14 62.86 698 74 48.65 51.35 256 5.71

18 50 71 53.52 46.48 274 71 53.52 46.48 182 0.00

19 50 77 41.56 58.44 361 79 49.37 50.63 250 2.60

20 50 88 53.41 46.59 251 88 53.41 46.59 136 0.00

Mean 80.05 42.39 57.61 428.75 80.75 43.84 56.16 180.92 0.91

In terms of solution approaches, we can observe from Table 1 that the proposed
heuristic is able to optimally solve 15 out of 20 instances with an average percentage
gap equal to 0.91. Moreover, the total running time of the heuristic is half the
running time of the B&C algorithm, even if it requires the solution of two MILP
formulations multiple times. The effectiveness of the heuristic method is further
confirmed by the results of Table 2. Indeed, the proposed heuristic approach is
able to solve 18 out of the 20 instances with |N | = 20 resulting in an average
percentage gap of 0.25. Moreover, the heuristic running times are one third of
the B&C algorithm proving a good scalability of the heuristic approach in terms
of computation of times. In particular, we observed that the solution of the FLP
represents, on average, the 30% of the heuristic running time.

Finally, we highlight that we cannot identify the best option among the three
tested FLPs in the first-stage for solving 2E-TD-LRP. Indeed, on average the three
versions of the heuristic showed similar performances on the tested instances.
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Table 2 Results of the proposed approaches on the instances with |N | = 20

B&C FLP+TSP+LS

ID |C| Ct T % D% Rt Ct T % D% Rt Gap%

1 30 120 40.83 59.17 322 121 49.59 50.41 156 0.83

2 30 113 47.79 52.21 946 113 47.79 52.21 164 0.00

3 30 83 36.14 63.86 847 83 36.14 63.86 126 0.00

4 30 90 52.22 47.78 335 90 52.22 47.78 171 0.00

5 30 96 50.00 50.00 532 96 50.00 50.00 158 0.00

6 30 93 31.18 68.82 945 93 31.18 68.82 228 0.00

7 30 87 22.99 77.01 878 87 35.63 64.37 201 0.00

8 30 74 33.78 66.22 391 74 33.78 66.22 175 0.00

9 30 81 43.21 56.79 312 81 43.21 56.79 256 0.00

10 30 89 47.19 52.81 844 89 47.19 52.81 102 0.00

11 40 97 30.93 69.07 547 97 30.93 69.07 198 0.00

12 40 75 48.00 52.00 655 75 48.00 52.00 273 0.00

13 40 72 40.28 59.72 574 75 50.67 49.33 165 4.17

14 40 72 34.72 65.28 803 72 34.72 65.28 119 0.00

15 40 90 47.78 52.22 975 90 47.78 52.22 202 0.00

16 50 128 49.22 50.78 642 128 49.22 50.78 178 0.00

17 50 94 39.36 60.64 849 94 39.36 60.64 192 0.00

18 50 84 33.33 66.67 776 84 33.33 66.67 181 0.00

19 50 98 42.86 57.14 446 98 42.86 57.14 265 0.00

20 50 94 40.43 59.57 910 94 40.43 59.57 287 0.00

Mean 91.50 40.61 59.39 676.45 91.70 42.20 57.80 189.85 0.25

6 Conclusions

In this work we studied a two-echelon truck-and-drone location-routing problem
2E-TD-LRP arising from the employment of an innovative delivery system com-
posed by a truck, that acts as a mobile depot, and a fleet of drones. The problem has
been modeled by a MILP formulation, solved through a B&C algorithm. Moreover,
we also developed a two-stage solution method exploiting the underlying structure
of the problem, consisting in an FLP and a TSP. Three variants of the proposed
heuristic, differing in the kind of FLP solved at the first-stage, have been proposed.
The computational results showed the applicability of the proposed methods.
Moreover, the comparable percentages of truck and drone travelling times with
respect to the overall delivery process time, show the benefits in terms of emission
reduction that can be achieved when using low-emission and environmental friendly
vehicles.

Future research perspectives may include extensions of the proposed approaches
dealing with: more single-truck/multiple-drone systems; drones with different
characteristics (i.e., endurance, speed); no-fly zones.
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A Heuristic Approach for the Human
Migration Problem

Giorgia Cappello, Patrizia Daniele, and Federico Perea

Abstract In this paper, we present a network-based model for human migration in
which a utility function is maximized. The resulting nonlinear optimization problem
is characterized by a variational inequality formulation. Due to the high complexity
of this problem, in order to efficiently solve realistic instances a heuristic method
is proposed. The presented algorithms are tested and compared over a number of
randomly generated instances.

Keywords Heuristics · Nonlinear programming · Variational inequality ·
Human migration network

1 Introduction

In 2019, international migrants worldwide comprise 3.5% of the global population,
compared to 2.8% in 2000 (see [15]). At the end of 2019 almost 80 million people
are forcibly displaced as a result of persecution, conflict, violence, human rights
violations or events seriously disturbing public order (see [16]).

Their vulnerabilities may be exacerbated in crisis situations, as nowadays it is
the case with the COVID-19 pandemic. This respiratory infectious disease emerged
in China and quickly spread around the world posing enormous health, social,
economic, environmental, and political challenges to the entire human population
(see [1, 4, 7]).
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Migration significantly contributes to economic and social development every-
where and is one of the main topics in the political debate worldwide (such as,
migration will be key to achieve the Agenda 2030 Sustainable Development Goals
(SDGs)).

The global pandemic has highlighted how important it is for the governments
to work on the introduction and development of migration management policies
arising from this global health crisis (see [13]).

In the last decades, some scientific literature has been devoted to this topic, and,
for brevity, only few of them are given below.

In [10], Nagurney proves that, in the case of linear utility functions and fixed
movement costs, the equilibrium conditions for the network equilibrium mode can
be reformulated as the solution to an equivalent quadratic programming problem. In
[5], Kalashnykov and Kalashnykova establish the equivalence of the equilibrium to
a solution of an appropriate variational inequality problem. In [2], Cappello and
Daniele present a multiclass migration model where the aim of each migration
class is to maximize the attractiveness of the origin country and prove that the
optimization model can be formulated in terms of a Nash equilibrium problem
and a variational inequality. In [12], the authors demonstrate that, through policy
interventions, in the form of subsidies, a system-optimum for a multiclass human
migration network can be achieved, despite the migrants behaving in a user-
optimized manner. The authors extend their work in [11], with the generalization
of the inclusion of capacities associated with the migrant classes and locations.

1.1 Our Contribution and Organization of the Paper

In this paper, we recall the system-optimized models of human migration in [2].
In the objective function, as in [3], we take into account the changes in the
utility functions of the multiple classes caused by the migratory flows and policies
adopted by governments. Further, in determining the optimal flows, we consider
the government policies a priori, thanks to a suitable coefficient influence vector
w. Our aim is to find a system-optimized solution, which is a social optimum, in
that an organization, such as the United Nations, maximizes the attractiveness of
the origin countries with respect to the destination one, for each migration class and
each pair of countries (or locations). Since the human migration model gives rise to a
variational inequality, the optimal solution can be found by using exact methods, for
example the projection method. However, sometimes, depending on the size of the
problem, computational times of the exact methods are very long and, therefore, it
is convenient to use a heuristic approach, which allows us to obtain good solutions,
in much faster time. Note that, typically, the determination of good approximate
solutions is enough in real applications (especially if referring to large problems).
This is essentially due to a number of factors: many of the parameters present in real
applications are estimates that can be affected by errors, for which it is not worth
waiting too long to have a solution whose value (or feasibility) is uncertain. In some
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cases, one is interested in having a possible solution for the problem in order to
evaluate quickly work scenarios (operational contexts, integration of optimization
algorithms in interactive decision support systems). In emergency situations, such
as the current Covid-19 pandemic, for the Governments to make decisions rapidly
it is crucial to have efficient solution methods. In the Government management of
the migration phenomenon it may be interesting to evaluate, in real time, migration
policies and the configurations of optimal migratory flows, while guaranteeing rights
and welfare in every nation.

The rest of the paper is organized as follows. In Sect. 2, we recall the network
based model and the associated variational inequality formulation. In Sect. 3, we
outline a heuristic approach to solve realistic instances of the optimization problem
proposed in this paper. The presented algorithm is tested and compared against an
exact one over a number of randomly generated instances in Sect. 4.

2 The Mathematical Model

In this section we present a multiclass migration network model, based on the model
by Cappello and Daniele (see [2]). We briefly describe the topology of the network
depicted in Fig. 1, which is composed by n nodes, that are countries (or locations)
where the different classes choose to start or end their migration, and m migration
classes that move (or not) from one node of the network to another. Let’s introduce
the node set N = {1, . . . , n}, the generic node is indexed by letters i and j and
migration class set M = {1, . . . ,m}, the generic migration class is indexed by letter
k. In each node i in the network there is an initial population for each migration
class k, denoted by p̄k

i , which is assumed known and deterministic.
Let us introduce the following variables:

• f k
ij ≥ 0 is the flow of migration class k out of node i and into node j in the

network. Let f = (f k
ij )i,j∈N; i �=j ; k∈M the flow vector.

• pk
i ≥ 0 is the population of migration class k at node i, after the migration flow.

Let p = (pk
i )i∈N; k∈M, the population vector.

Locations

→ Migration flow

Migration class

i

...

1

...

n

...... ...

j

...

1

...

n

...... ...

Fig. 1 Network structure of the multiclass human migration model
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The volume of population of each class k at each node i, after the migration takes
place, is given by the following flow conservation constraints:

pk
i = p̄k

i −
n∑

j=1
j �=i

f k
ij +

n∑

j=1
j �=i

f k
ji ∀ i, k. (1)

Besides, for each migration class k, the sum of the flows out of each node i must
not exceed the initial fixed population in i, that is,

n∑

j=1
j �=i

f k
ij ≤ p̄k

i , ∀ i. (2)

We denote the feasible set of (p, f ) vectors as follows:

K =
{
(p, f ) ∈ R

mn+mn(n−1)
+ : (1), (2) hold ∀ i, j, k, i �= j

}
. (3)

We now introduce the functions of the model (see [2] and [3] for more details on
economic interpretation of the following functions):

• uk
i (p) and vk

j (p) denote the origin and destination utility functions, which
capture the attractiveness from an economic and/or political and/or social point of
view of the origin node i and of the destination node j , respectively, as perceived
by a single individual of the migration class k.

• wk−
ij (p, f ) ≥ 0 and wk+

ij (p, f ) ≥ 0 are the influence coefficients for an
individual of migration class k and for each possible migration route from node i

to node j , which allow us to consider the migration policies implemented in the
aforementioned nodes as a consequence of the utility changes when individuals
of class k choose to migrate from node i towards node j , respectively.

• f k
ij wk+

ij (p, f )
∂vk

j (p)

∂pk
j

and −f k
ijw

k−
ij (p, f )

∂uk
i (p)

∂pk
i

represent the possible variation

of the utility functions due to a migratory movement in the network from location
i to location j by class k and the consequent policies adopted by the governments
in the nodes. Both variations are assumed to be concave.

• ck
ij (f ) are the movement cost functions from i to j for the population class k and

such costs are assumed to be convex and continuously differentiable.

For each migration class k, we define its net utility function, Uk(p, f ), as the sum of
the attractiveness in i (which is given by the sum of the utility in i and its expected
variation of utility function) to which both the attractiveness in j (which is given
by the sum of the utility in j and its expected variation of utility function) and
the transportation costs from location i to location j , are subtracted. Namely, the



A Heuristic Approach for the Human Migration Problem 169

following difference:

Uk(p, f ) =
n∑

i=1

n∑

j=1
j �=i

(
uk

i (p) − f k
ijw

k−
ij (p, f )

∂uk
i (p)

∂pk
i

− vk
j (p) − f k

ijw
k+
ij (p, f )

∂vk
j (p)

∂pk
j

− ck
ij (f )

)

(4)

for all k ∈ M , where (p, f ) ∈ K.

We also define the total utility function, U(p, f ), as follows

U(p, f ) =
m∑

k=1

Uk(p, f ), (5)

where (p, f ) ∈ K.
In our multiclass human migration network system-optimization problem, the

cognizant organization seeks to determine the optimal flows, as well as the optimal
populations at each node in the network, and for all the migration classes. Hence,
the optimization problem can be expressed as follows:

Maximize U(p, f ), (6)

where (p, f ) ∈ K.
Under the above assumptions, the objective function in (6) is concave and

continuously differentiable and so, using the classical variational theory (see [6] and
[9]), it is easy to prove that an optimal solution for (6), denoted by (p∗, f ∗) ∈ K,
satisfies the following variational inequality (VI):

Find (p∗, f ∗) ∈ K such that:

∂U(p∗, f ∗)
∂p

× (p − p∗)+ ∂U(p∗, f ∗)
∂f

× (f − f ∗) ≥ 0 ∀(p, f ) ∈ K. (7)

3 A Heuristic Approach

The complexity of the previous variational inequalities makes it too time consuming,
or even impossible, to solve realistic instances. Therefore, in this section we propose
a heuristic algorithm that allows us to find a good feasible solution in a reasonable
amount of time.

Our optimization problem consists of (6).



170 G. Cappello et al.

The heuristic approach we propose consists of the following steps:

Step 1. Initial population generation (P). For each component � =
1, . . . .,mn(n − 1) of the flow vector f , we generate nt matrices with
np rows and mn(n− 1) columns. In each matrix, each row represents one
flow vector. These nt matrices are generated in such a way that component
� is fixed for all rows (α in the pseudocode below). The other components
of each row are found randomly in such a way that (3) is satisfied.
Each row (each flow vector) is completed with the population vector p,
obtained from equalities (1).1 Each row of all the matrices is, now, a
(p, f ) vector. We evaluate each (p, f ) vector and we keep the vector
(p, f ) that maximizes the objective function, among all mn(n − 1) × nt

such (p, f ) vectors generated. We denote that vector as (p�, f�). We
repeat this process for all components � = 1, . . . ,mn(n − 1), and we
store all (p�, f�) vectors, which will constitute the initial population set,
denoted by P.

Step 2. Combination. We randomly select three population vectors, (pr1, f r1),

(pr2, f r2), (pr3, f r3) ∈ P. Then, we generate a new vector, (p̄, f̄ ), which
is a convex combination (pr2 , f r2) and (pr3, f r3), as follows:

(p̄, f̄ ) = F(pr2, f r2) + (1 − F)(pr3, f r3),

where F is a real number randomly generated in (0, 1). Note that, since
(p̄, f̄ ) is a convex combination of (pr2 , f r2), (pr3 , f r3) ∈ K, then
(p̄, f̄ ) ∈ K too.

Step 3. Selection. We evaluate the vector (p̄, f̄ ): if it has an objective function
value higher than (pr1, f r1), we include it in the population and remove
the vector (p, f ) with the minimum objective function value in the
population. Update P.

Step 4. Steps 2 and 3 are repeated for tu seconds. Afterwards, the best solution in
P is returned as the result.

Algorithm 1 shows a pseudocode of this heuristic.

4 Computational Experiments

In this section we assess the proposed algorithms over a benchmark of randomly
generated instances. Each instance is solved by both the heuristic and the Projection-
Contraction method (see [14]). Both algorithms were coded using Matlab and were
run on a PC with 4 GB RAM, Asus Intel (R) Core (TM) i5-3317U CPU@1.10 GHz.

1 From the flow conservation equations (1), we observe that the components of the population
vector p can be expressed in terms of the flow vector f .
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Algorithm 1 Pseudo code
1: procedure INITIAL POPULATION GENERATION

2: P = ∅
3: for � = 1 : mn(n − 1) do
4: for s = 1 : nt do
5: Generate α randomly s.t. (2) is satisfied
6: Generate randomly np flow vectors such that the �-th component is α and (2) is

satisfied.
7: Complete each of the np flow vectors f with the corresponding population vector

p, obtained from (1).
8: Select the vector (ps , fs) with the highest objective function value.

End For
9: Select the vector (p�, f�) with the highest objective function value among the nt

(ps , fs) vectors.
10: P = P ∪ {(p�, f�)}.

End For
11: procedure COMBINATION

12: while time < tu do
13: Select randomly three population vectors
14: (pr1 , f r1 ), (pr2 , f r2), (pr3 , f r3) ∈ P
15: F is randomly generated in (0, 1).
16: Generate a vector (p̄, f̄ ) = F ∗ (pr2 , f r2 ) + (1 − F) ∗ (pr3 , f r3)

17: procedure SELECTION

18: Evaluate the vector (p̄, f̄ )

19: if U(p̄, f̄ ) ≥ U(pr1 , f r1) then
20: P = P \ {(pw, f w)} (the worst element)
21: P = P ∪ {(p̄, f̄ )}

end
end

22: Return the vector with the highest objective function value

4.1 Instance Generation

We now explain how the benchmark of random instances has been generated.
We first define four different network configurations for our migration problem.
Afterwards, each of these four configurations will be replicated 50 times with
randomly generated data. So, in total we have 4 × 50 = 200 different instances.
The first 10 instances of each configuration will be used for calibrating the different
parameters of our heuristic algorithm, namely as test set, while the other 40
instances of each configuration will be used as evaluation set. In both the sets we
compare the performance of our heuristic with respect to the projection method.

4.1.1 Configurations

In this section we explain the four illustrative configurations used for our exper-
iments. All of them are obtained from the topology of the migration network
analysed in the illustrative numerical example shown in [2]. We consider a single
migration class (M = {1}), as in [2] and in [5] in which a realistic numerical
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1 2 3 4 5 6

21 3 4 5 6

Fig. 2 Configuration 1

1 2 3 4 5 6 7

21 3 4 5 6 7

Fig. 3 Configuration 2

1 2 3 4 5 6 7 8 9 10

21 3 4 5 6 7 8 9 10

Fig. 4 Configuration 3

1 2 3 4 5 6 7 8 9 10 11 12 13

21 3 4 5 6 7 8 9 10 11 12 13

Fig. 5 Configuration 4

example with a unique class moving within Mexico is analysed. In order to have
larger instances, we progressively increase the number of nodes in the migratory
network. We have chosen that the total number of nodes varies from 6 to 13, as
depicted in Figs. 2, 3, 4, and 5, respectively.
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4.1.2 Random Generation

Each configuration is replicated 50 times, by randomly generating their input data
as explained below. Since in all the configurations M only consists of one single
migration class, we omit the superscript notation.

For each configuration in Sect. 4.1.1, the origin and destination utility functions
and the transportation cost functions were chosen polynomial as follows:

ui(pi) = −coefi ∗ (pi)
2, vj (pj ) = coefj ∗ (pj )

2; ∀ i, j ∈ N,

cij (fij ) = coefij ∗ fij ; ∀ i, j ∈ N; i �= j,

where the coefficients were integer generated randomly as follows:

coefi ∈ {1, . . . , 15}, coefj ∈ {1, . . . , 15}, ∀i, j ∈ N;
coefij ∈ {400, . . . , 1000} ∀ i, j ∈ N, i �= j.

The initial populations of each node are randomly generated using an integer
uniform distribution as follows:

p̄i ∈ {3000000, . . . , 11000000}, ∀i ∈ N.

Regarding w±
ij (p, f ), we assume they are constant for all (p, f ) but different for

each i, j ∈ N , i �= j , with values randomly generated in [0, 1].

4.1.3 Calibration

In order to choose the optimal values for the parameters np and nt of the heuristic
algorithm, in this section we perform an analysis of experiments to find such optimal
values. Each parameter is tested over the following values:

• np ∈ {100, 150, 200, . . . , 1000}, having in total 19 different values.
• nt ∈ {150, 200, 250, 300, 350}, having in total 5 different values.

The lowest values tested for the parameters were chosen considering that, based
on initial experience, good solution quality was not obtained for any lower values.
The largest values tested for the parameters were chosen so that the CPU times
would not be too large.

As explained before, the first 10 instances of each configuration will constitute
the calibration set. Each of these instances has been run for every possible
combination of parameters. Therefore, in this calibration phase we accumulate a
total of 19 × 5 × 10 = 3800 experiments.

We analyse the results with a powerful statistical tool: the Analysis of Variance
(ANOVA) technique. The interested reader is referred to [8] for a complete review
on this tool. Both algorithm parameters (np, nt ) are considered as factors in a
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Fig. 6 Mean plot for np in
the ANOVA

full factorial experiment. The considered response variable is the Relative Percent
Deviation (RPD), defined for each instance and each combination of parameters as
follows:

RPD = 100
Zexact − Zcomb

Zexact

, (8)

where Zexact is the value of the solution obtained with the exact method, and Zcomb

is the value of the solution found by the heuristic with a particular combination of
parameter values tested.

The complete ANOVA results are not given for simplicity. However, we do show
the means plot and Tukey’s Honest Significant Difference (HSD) 95% confidence
intervals in Fig. 6 for parameter np, and in Fig. 7 for parameter nt .

We observe that, for np, the best results (lower RPD) are obtained for the
largest value of this parameter: np = 1000. We also observe that the differences
between this value and the other values are always statistically significant, as the
corresponding HSD intervals do not overlap, except for np = 950.

Regarding nt , we do not observe statistically significant differences between
the different values tested, as all HSD intervals do overlap. However, the best
combination of parameters in terms of average values is nt = 350.

In the ANOVA analysis we also observed that there is no significant interaction
between the two parameters tested.

Therefore, the chosen combination of parameters for our heuristic algorithm is
np = 1000, nt = 350. In the following section we compare our heuristic algorithm
with the exact method, using the aforementioned values for the two parameters in
the heuristic. All the results, about execution time and RPD value, are shown in the
next section.
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Fig. 7 Mean plot for nt in
the ANOVA

4.2 Evaluation

In this section we show the comparison between the heuristic algorithm, with the
parameters obtained in the calibration section, and the exact algorithm. For each
instance, we store the following data:

• i_b: the iteration in which the solution with the highest value of the objective
function is found;

• t_b: the time in which the best solution is found;
• tot_i: the total number of iterations that the algorithm performs for Steps 2–4;
• tot_t: the total execution time of the heuristic including Steps 1–4;

For all instances, steps 2–4 of the algorithm are repeated for 30 s.
We report here, for brevity, the average of the aforementioned data:

• Config_1: i_b = 3366.78, t_b = 0.17, tot_i = 608891.3, tot_t = 72.93
• Config_2: i_b = 216.06, t_b = 0.06, tot_i = 112865.9, tot_t = 90.60
• Config_3: i_b = 8875.46, t_b = 0.52, tot_i = 380406.9, tot_t = 150.03
• Config_4: i_b = 1062.16, t_b = 0.68, tot_i = 39022.76, tot_t = 244.98

The average is calculated between the values obtained from the first 10 instances
with the best combination of parameters (np, nt ) (defined in the previous section),
and the instances of the evaluation set.

We observe how, even if the heuristic runs for over a minute (72 s for the first
configuration, 90 for the second, 150 for the third, and 244 for the fourth), the best
solution is always found in less than a second, on average (0.17 seconds for the first
configuration, 0.06 for the second, 0.52 for the third configuration, and 0.68 for the
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fourth). This means that our heuristic finds good solutions (as will be proven next)
in very short computational times. We now compare the performance of the two
methods (heuristic algorithm and exact algorithms). In Table 1 we show a summary
of such a comparison.

For each instance and each configuration, we store the following data:

• T imeH : the execution time of the heuristic algorithm;
• T imeE: the execution time of the exact algorithm;
• RPD: the relative percent deviation between the values of the solutions obtained

by the heuristic method and by the exact method, computed using the formula (8)

We observe how the heuristic method finds solutions very close to the optimal in
quicker CPU times than the exact method. Besides, the heuristic method is expected
to be able to yield good feasible solutions in larger instances where the exact method
is not able to give a solution. Further, from Table 1 it is possible to remark that,
moving from Configuration 1 to Configuration 4, the RPD mean value gradually
increases, which is strictly connected to the time limit of 30 s in steps 2–4 of the
algorithm (1), for all instances, regardless the number of nodes of the configurations.

5 Conclusion

In this paper we have examined a network based human migration problem,
obtaining a nonlinear optimization model, since all the classes of population aim
at maximizing their own utility.

In order to solve real cases, we have applied a heuristic algorithm and compared
the solutions with the optimal ones obtained using the projection-contraction
method.

Extensive computational experiments have shown the efficiency of the proposed
algorithm since it allows us to find solutions very close to the optimal in quicker
CPU times than the exact method. Further, such an algorithm is expected to be able
to yield good feasible solutions in larger instances where the exact method is not
able to give a solution.

Future studies could be developed applying the same technique and with suitable
changes to other optimization models inspired by a pandemic, a natural disaster or
to new multiclass network models of human migration were policy interventions are
included, in line with the latest advances in literature.
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In-store Picking Strategies for Online
Orders in Grocery Retail Logistics

Xiaochen Chou, Dominic Loske, Matthias Klumpp,
Luca Maria Gambardella, and Roberto Montemanni

Abstract Customers shifting from stationary to online grocery shopping and
the decreasing mobility of an ageing population pose major challenges for the
stationary grocery retailing sector. To fulfill the increasing demand for online
grocery shopping, traditional bricks-and-mortar retailers use existing store networks
to offer customers click-and-collect services. The current COVID-19 pandemic is
substantially accelerating the transition to such a mixed offline/online model, and
companies like the one behind this study are facing the urgent need of a re-design of
their business model to cope with the change. Currently, a majority of the operations
to service online demand consists of in-store picker-to-parts order picking systems,
where employees go around the shelves of the shop to pick up the articles of online
orders. The optimization of such operations is entirely left to the experience of
the staff at the moment. Since in-store operations are a major cost-driver in retail
supply chains, this paper proposes optimization ideas and solutions for these in-store
operations. With experimental simulations run on a real store with real online orders,
we show that a simple optimization tool can improve the situation substantially. The
method is easy to apply and adaptable to stores with complex topologies.
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1 Introduction

The ongoing digital transformation, demographic change, and modifying customer
requirements are the major challenges for the European food retailing sector at the
beginning of the 2020s [3]. First, the digital transformation primarily affects the
relationship between the end-customer and the food retailer itself. Digitalization is
causing sales channels to differentiate and converge at the same time as customers
use different shopping options in parallel and expect a seamless shopping experience
across channels [13]. The transformation goes from the choice of sales channels to
different payment systems [2]. Second, on the one hand demographic change is
leading to a decreasing European population. On the other hand, and more relevant
for grocery retailers, the ageing population is less mobile, which raises the necessity
of expanding stationary retail store networks or investing in home delivery solutions.
Finally, the demographic change decreases the number of persons per household
and, consequently, product sizes and average number of items per purchase. Third,
increasing home consumption and governmental measures on social distancing
caused by the global COVID-19 pandemic pose one of the greatest changes in
customer behaviour that the retailing sector experienced during the last decades
[19, 22].

To meet these challenges, a majority of the grocery retailers are operating several
forms of online grocery businesses [11]. Exploring the design of omnichannel
operations, A classification proposed in paper [24] identifies three typologies [24]:
First, an integrated distribution center for online and offline orders that must enable
both bulk and single unit picking and delivery. Second, distribution centers are
exclusively utilized to fulfill online orders. Third, stationary grocery retailers use
their traditional brick-and-mortar structures for online order fulfillment, especially
on the store-level. In this work we consider the latter model, which requires
less monetary invested to be implemented and allows a quicker transition to a
mixed offline/online business model. In this context, stores can pick orders click-
and-collect operations, according to buy-online-pick-up-in-store (BOPS) concepts.
Online orders are picked by the store staff.

While buy-online-pick-up-in-store concepts are already well examined from
a marketing perspective, e.g., omnichannel promotions [18], customers’ product
choices [15], pricing strategies [16], and the impact of service quality [17], the
optimization of in-store logistics operations is hardly examined. From a retail
logistics perspective, manual picker-to-parts order picking systems in warehouses
have been identified as laborious and cost-intensive tasks [6] where human learning
[12], human perception [8], order batching [20], and storage assignment [1, 7]
has received considerable attention in the last years. While process and picking
automation in retail warehouses seem to be a promising concept for the future [4, 5],
in-store operations in grocery stores will continue to rely on the human workforce.

Although these picking operations are comparable to the picker-to-parts order
picking systems in traditional warehouses, differences regarding in-store layouts
(restricted sizes and areas) as well as huge variations of product placements on
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the store-level make in-store picking to a labor- and knowledge-intensive field that
has received little attention in recent years. On the other hand, in-store operations
are a major cost driver for retail supply chains [10]. And as the average number
of item per purchase decreases, in-store operations will become more detailed and
complex. Therefore, our research question is: How can in-store picking operations
in for buy-online-pick-up-in-store concepts of omnichannel retailing be optimized?
The remainder of this paper is structured as follows: In Sect. 2, we introduce an in-
store operational optimization based on the BOPS model considered. Experimental
simulation results in a real store are presented and discussed in Sect. 3. The
conclusions are drawn in Sect. 4.

2 In-store Operational Optimization

In the BOPS model considered, grocery retailers take the online orders made by
customers, and serve these orders as normal in-store orders. An employee of the
store goes through the shelves to pick up the articles selected by the online customer
in his/her order. A batch of orders from different customers can also be picked by
one employee at the same time. This business model is typical when a traditional
retailer has the desire to open to the online market, without however investing extra
money and manpower to change the modus-operandi of a well-established bricks-
and-mortar business. It is sustainable as long as the percentage of online orders
over the total ones does not exceed certain threshold. In such a context, an in-store
operational optimization approach of great interest emerges.

Given an online order, an employee has to collect all the articles through the
store. Most retailers, like the one under investigation, have currently developed no
optimization relative to this process. The employee in charge usually receives a list
in which the articles are presented in alphabetic order. In such a case, an experienced
employee normally takes advantage of the knowledge of the store topology and
self-organize a time- and distance-saving path through the store after a preliminary
exam of the list. In actual operations, the online orders pick-up tasks are often
assigned to part-time workers with marginal experiences. These less expert figures
tend to be unable to efficiently organize the pick-up task until they accumulate
some experience. Both scenarios however would strongly benefit from a simple
optimization tool that is able to sequence the orders in a way to minimize the travel
distance to fulfill the order within the time required to conclude the task.

The optimization tool works in the following way. Knowing the layout of the
store, the positions of the articles can be categorized by different zones. Each zone
has multiple articles in the same category, and by visiting each zone, the employee
collects all the articles on the list. Articles in a same category are normally in a same
zone, although it can happen that a same category spreads across contiguous zones.
With this information, optimizing the pick-up missions turns to visiting different
zones in the store only once. In such a scenario, finding the optimized sequence of
pick for an order boils down to a classic (open) traveling salesman problem (TSP,
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see [9, 23]), where the items to pick up (with the position of their own zones) map to
the cities, the entry point is the initial depot and the cash desks’ location is the final
depot. The problem is therefore modeled by a graph G = (V ,A) where V is the
set of nodes to visit, including the entry point, the articles to pick (associated with a
zone index), and the cash desks. A is the set of arcs which connect every couple of
nodes in V .

We define tij as the travel time between nodes (i, j) ∈ A, with the artificial
setting tαβ = 0, being α an artificial node representing the entrance of the store and
β an artificial node representing the cash desks’ location. Since each node represents
an article to pick (at a given zone), the travel time between articles in the same zone
is set to zero. The pick-up time for an article at zone j is directly added to the travel
times tij for each zone i. The entrance and the cash desks are always the first and last
nodes when we calculate with the list. In this way, the problem becomes a classic
TSP problem.

For the model we define a variable xij = 1 if the optimal path goes through the
arc from node i to node j , 0 otherwise. With these elements, we can adopt a classic
TSP formulation for our problem as follows:

min
∑

i∈V

∑

j∈V

tij xij (1)

∑

i∈V,i �=j

xij = 1 j ∈ V (2)

∑

j∈V,j �=i

xij = 1 i ∈ V (3)

∑

i∈Q

∑

j∈Q,j �=i

xij ≥ 1 ∀Q ⊆ V, |Q| ≥ 2 (4)

xij ∈ {0, 1} i, j ∈ V, i �= j (5)

where (1) implies the minimization of the overall travel time, (2) and (3) impose that
each node is considered is touched by the path, and (4) are the cutset form of the
subtour elimination constraints, and forbid solutions with subcycles. Constraints (5)
define the domain of the variables.

Similar application of the TSP to the retailer domain can be found in [21], where
a mobile app aiming at suggesting customers the shortest path within collaborating
shops from a given shopping list is described. Another study is presented in [14],
relating the path followed by customers (against the potential shortest path) and the
characteristics of the customers’ shopping behavior. Both applications are customer-
oriented design, while in this work we seek for in-store operational optimization for
the shops. The main difference is that an in-store customer may self-organize the
path in a partial optimized way knowing what he/she wants to buy (for example,
collecting all items in need when arriving at a certain zone) and has relatively low
requirement for efficiency. While an in-store employee under pick-up mission needs
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to go through the store in an effective and efficient way to collect all items from the
given shopping list. In such a situation, there will be great gains if the employee
receives an optimized list.

3 Experimental Simulation

The study is carried out in a real store in Germany. The layout of the store is
presented in Fig. 1, with numbers corresponding to areas/zones containing products
of different categories. Zone 1 includes the entrance and Zone 14 the cash desks,
that are the fixed starting point and destination in our model. The travel times match
the real-world travel times. A pick-up time per article of 5 s is considered for all
the zones (it is however technically possible to make it zone-dependent) and is
added to the travel time as explained in Sect. 2. In this section, we consider 25 real
online orders received by the store. The number of articles of each shopping lists
varies from 20 to 50, with average of approximately 34 and standard deviation of
approximately 7. In the simulation, we will compare the total time required to pick
up all the items when pickers receive shopping lists ordered in different ways.

Fig. 1 Layout of a real store with numbers corresponding to areas containing products of different
categories
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The original shopping lists are in alphabetic order. As explained in Sect. 2, for
an inexperienced employee, there will be a lot of back and forth moves with such
a list. In the simulation, we suppose that an inexperienced employee collects the
articles one by one following the order on the list, while an experienced employee
collects all the articles on the list relative to a certain zone once arrived at that zone.
In a third case, the employee (irrelevant of experienced or inexperienced) will be
given a fully optimized list following the optimal TSP solution (being out users the
employees, a visual map of with the path is judged superfluous and not provided,
although this could be possible). Since the travel times between different articles in
a same zone are considered as zero, and only pick-up times are taken into account, in
this third case the employee is suggested to collect all the articles on the list relative
to a certain zone once arrived at a that zone. To summarize, in the simulation the
employee receives the shopping list(s) ordered in three different ways:

1. in alphabetic order
2. grouped by category according to the alphabetic order, but without optimizing

the order of the categories
3. ordered according to the optimal solution of the TSP

Experimental simulations suggest that the gain of case 3 over 2 normally varies
from 0% to 29%, while the gain of case 3 over 1 can be as high as over 70% in some
extreme scenarios. Here we show two extreme cases as examples.

The first example we analyze in details is a shopping list containing articles all
from two zones very close to each other. After remapping the list in alphabetic order
to the numbers of zones, the shopping list contains 20 articles with nothing to be
collected at the entrance and cash desks: {(1), 10, 11, 11, 10, 11, 11, 11, 11, 10, 11,
11, 11, 10, 11, 11, 11, 11, 10, 10, 11, (14)}. It takes 281 s to finish the pick-up when
case 1 in considered. In case 2, the list is reordered as {(1), 10, . . . , 10, 11, . . . , 11,
(14)}, that saves 74 s of travel time moving back and forth between zone 10 and 11.
Case 3 overlaps with case 2 in such a list, thus no improvement is obtained.

The second example has more variants of articles located in different zones.
The alphabetic shopping list contains 23 articles with nothing to be collected at
the entrance and cash desk: {(1), 2, 10, 4, 6, 10, 6, 5, 2, 3, 2, 3, 3, 2, 7, 2, 2, 6, 2, 6,
3, 9, 8, 2, (14)}. It takes 828 s to finish the whole pick-up mission according to case
1. In case 2 the shopping list is transformed to {(1), 2, . . . , 2, 10, 10, 4, 6, . . . , 6, 5,
3, . . . , 3, 7, 9, 8, (14)} when handled by an experienced employee, who takes 350s
to complete the mission. Her/his travelling path is shown in Fig. 2. We can observe
that there are still some back and forth walking. In case 3, the employee receives the
shopping list ordered according to the optimal TSP solution:{(1), 2, . . . , 2, 3, . . . , 3,
4, 5, 6, . . . , 6, 7, 8, 9, 10, 10, (14)}. In this case it takes only 247s to complete the
pick-up task. Figure 3 shows the travel path of the employee, that is characterized
by a consistent direction for each move, leading to higher efficiency.

From the simulations carried out in this real store, we can observe that both
inexperienced (case 1) and experienced employee (case 2) can benefit from a
shopping list filled in according to the optimal TSP solution. It is worth noting that
the layout of this store is actually rather simple and direct. The in-store operations
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Fig. 2 Travelling path of a pick-up task completed by an experienced employee

optimization we proposed would provide an even strong benefit in stores with more
complex layouts. Besides, it is also possible to pick up multiple orders in parallel by
one employee with a proper trolley-platform, although this is more indicated for off-
peak hours. This operation would add more complexity if the employee is reading
some traditional shopping lists parallel, but the extra effort is negligible in case of
TSP-optimized lists, since an optimized merged list with indications of the order
number for each article could be easily produced.

4 Conclusions

In this work we propose an in-store operations optimization to increase the
efficiency of in-store pickers in a click-and-collect service system relying on
human workforce to collect articles from the shop. We discussed the benefit of
reordering shopping lists according to the optimal TSP solution, and we provided
some simulations in a real-world store. This illustrative example demonstrates the
potential of the approach. Even more remarkable improvements could be achieved
in stores with complex topology and pickers handling collection tasks in parallel.
With online shopping getting more and more prominent, also due to the COVID-
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Fig. 3 Travelling path of a pick-up task with a fully optimized list according to the optimal TSP
solution

19 pandemic, the potential time-save provided by the optimized solutions could
definitely make the difference.
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An Optimization Model for the
Evacuation Time in the Presence of Delay

Patrizia Daniele, Ornella Naselli, and Laura Scrimali

Abstract Natural disasters may have devastating effects on communities and
affected areas. As a consequence, decision-makers have to be proactive and able
to develop efficient rescue plans to save lives and prevent further damages. In this
paper, we address the issue of planning the emergency evacuation of occupants
of a building after a disaster event like a landslide. In particular, we propose a
network model that minimizes both the travel time and the delay of evacuating.
We also introduce a measure of the physical difficulties of evacuees and a parameter
associated with the severity of the disaster. We then derive the variational inequality
formulation. In order to illustrate the modeling framework, we present a numerical
example.

Keywords Evacuation plans · Variational inequality · Lagrange duality · Utility

1 Introduction

Natural disasters related to ground movements, such as landslides, can be compli-
cated and unpredictable and, therefore, difficult to risk assess. Landslides can occur
in almost every country and can cause significant damage. Also, climate changes
may increase the risk: more heavy rain and melting of local permafrost in some
mountain areas and variations in ice temperature and local water level can increase
the risk of a landslide. Landslides are one of the most relevant geomorphological
hazards in a country, because of the high levels of people affected, destruction of
assets and disruption of economic and social activities.

Italy is one of the European countries most affected by landslides, with 620,808
landslides in an area of 23,700 km2, which is equal to 7.9% of the national territory
(see Fig. 1). These data derive from the project of Inventario dei Fenomeni Franosi
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Fig. 1 Italian hydrogeological danger distribution

in Italy (IFFI Project) carried out by ISPRA (Superior Institute for Protection and
Environmental Research) and the Regions and Autonomous Provinces, according to
standardized and shared methods. About a third of the total landslides in Italy are
rapid kinematic phenomena (collapses, rapid flows of mud and debris), character-
ized by high speeds, up to a few meters per second, and by high destructiveness,
often with serious consequences in terms of loss of human lives. Other types of
movements (e.g. slow flows, complex landslides), characterized by moderate or slow
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speeds, can cause significant damage to residential areas and linear communication
infrastructures.

The hydrogeological instability essentially includes two categories of events:
landslides and floods. To get an idea of the size of the problem, we remember
that since the beginning of the century there have been more than 4000 serious
hydrogeological instability events that have caused great damage to people, houses
and infrastructures, but, above all, they caused about 12,600 dead, missing and
injured people and the number of missing people exceeds 700 thousand.

Almost 4% of Italian buildings (over 550 thousand) are located in areas with high
and very high landslide danger and more than 9% (over 1 million) in flood areas.
So, it is very important to be prepared and to reduce the total time for evacuation of
a building in the case of a landslide or any other disaster.

Our aim is to propose an evacuation planning model that optimally assigns the
shortest and safest paths, in order to minimize the total evacuation time and save the
lives of the occupants. In particular, we propose a multicriteria evacuation model
where the population at risk is evacuated, following criteria such as the total travel
time and the total delay. We also introduce a measure of the physical difficulties of
evacuees and a parameter associated with the severity of the disaster. This allows our
model to be flexible and able to handle large-scale problems. In addition, it allows
for the applications to different disaster scenarios. The optimization model that we
develop is then formulated as a variational inequality (see [10, 12]), and an analysis
of associated Lagrange multipliers is provided (see [3–5, 15]).

The problem of evacuation plans has been deeply studied in the literature.
In [6], the authors apply network flow techniques to find good exit selections for

evacuees in an emergency evacuation and present two algorithms for computing exit
distributions using both classical flows and flows over time which are well known
from combinatorial optimization.

In [8], the authors present models and algorithms which can be applied to
evacuation problems related to building evacuation, but which are applicable also
to regional evacuation. For all the models time is the main parameter.

In [9], the authors present two different emergency evacuation models on the
basis of the maximum flow model (MFM) and the minimum-cost maximum flow
model (MC-MFM), and propose corresponding algorithms for the evacuation from
one source node to one designated destination (one-to-one evacuation). Then, they
extend the model from one source node to many designated destinations (one-to-
many evacuation).

In [11], the authors propose an evacuation model which combines a heuristic
algorithm and a network flow control, taking into account routes capacity con-
straints. They aim at minimizing the total evacuation time for all people.

In [17], a game-theoretical model to study cooperative and competitive behaviors
of evacuating people during an emergency is proposed. The authors integrate a
game-theoretical model with a cellular automation model of evacuation dynamics,
and simulate the motions of crowds based on their competitive and cooperative
strategies.
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In this paper, for the first time, starting from a network model, we use the
variational inequality formulation to obtain a characterization of the optimization
problem consisting in minimizing the total evacuation time and, as far as we know,
this methodology is innovative compared to the existing ones.

Such a methodology and the related computational procedures have been widely
applied to solve real-world problems, such as static and dynamic traffic network
equilibrium problems, spatial price equilibrium problems, oligopolistic market equi-
librium problems, financial equilibrium problems, migration equilibrium problems,
as well as environmental network and ecology problems, supply chain network
equilibrium problems, cybersecurity networks, and even the Internet (see, for
instance, [1, 2, 7, 12, 13, 15, 16] and the references therein.)

We also emphasize that variational inequality theory has revealed to be a power-
ful instrument in order to study complex decision-making behavior on networks,
with the associated nodes, links, and induced flows. Therefore, characterizing
our problem as a variational inequality, we may have recourse to all the well-
established tools of the variational inequality theory, and ensure existence of
solutions, qualitative analysis, and computational results.

The structure of this paper is as follows. In Sect. 2, we present the evacuation
model and derive the variational inequality formulation. In Sect. 3, we provide a
numerical example. Finally, we present our conclusions in Sect. 4.

2 The Mathematical Model

We consider a network as the one depicted in Fig. 1, where there is a building
with I different rooms which are connected with J different stairs. Since different
rooms are likely to share a part of their path towards the stairs as well as the
existence of multiple floors leads to divide the stairs into pieces between the floors
so that different levels of congestion on each piece are taken into account, we are
considering a graph with transit nodes between rooms and stairs (the meeting points)
and between stairs and exits (the lobbies). In turn, from the stairs it is possible to
reach H different exit points. Normally, people will choose the closest stairs or
exits, but, in case one of such points is particularly crowded or congested or blocked
due to the disaster, then the evacuees can also choose alternative exits. The links
between the first and the second level of nodes in the network represent all the
possible connections between the rooms of the building and the stairs, as well as the
links between the second and the third level of nodes in the network represent all the
possible connections between the stairs and the final exits of the building (Fig. 2).

We denote by pl
i the initial population in room Ai, i = 1, . . . , I of type l,

l = 1, . . . , L and by P =
L∑

l=1

n∑

i=1

pl
i the total population present in the building.

Indeed, in our model we distinguish different types of individuals, in relation to
their physical abilities. So, the apex l, l = 1, . . . , L represents the different types
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of evacuated people. Moreover, let f l
ij and gl

jh be the flows of evacuees of type l in
a time unit from Ai to Sj and from Sj to Uh, for i = 1, . . . , I, j = 1, . . . , J, and
h = 1, . . . , H, respectively. Since in a building the stairs are usually narrow spaces,
we assume that uj is the maximum allowed capacity in Sj , j = 1, . . . , J. So, the
following condition has to be satisfied:

L∑

l=1

I∑

i=1

βl
ij f

l
ij ≤ uj , ∀j = 1, . . . , J, (1)

where βl
ij indicates the portion of people of type l that decide to evacuate from room

Ai using the stair Sj . Further, we denote by t lij the travel time spent by a person of
type l to go from Ai to Sj through one of the meeting points Mr, r = 1, . . . , R and
we assume it is a function of the flow of people from Ai to Sj :

t lij = t lij (f
l
ij ), i = 1, . . . , I, j = 1, . . . , J, l = 1, . . . , L.

Analogously, we denote by τ l
jh the travel time spent by a person of type l to go from

Sj to Uh through one of the lobbies Lb, b = 1, . . . , B and we assume it is a function
of the flow of people from Sj to Uh:

τ l
jh = τ l

jh(gl
jh), j = 1, . . . , J, h = 1, . . . , H, l = 1, . . . , L.

Now, we introduce the delay functions which involve time, associated with the links
from Ai to Sj and from Sj to Uh, respectively, and we assume they depend on the
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Table 1 Functions and parameters

Symbols Definitions

A = {Ai : i = 1, . . . , I} Set of rooms

M = {Mr : r = 1, . . . , R} Set of meeting points

S = {Sj : j = 1, . . . , J } Set of stairs

L = {Lb : b = 1, . . . , B} Set of lobbies

U = {Uh : h = 1, . . . , H } Set of exits

E = {l : l = 1, . . . , L} Set of types of people to be evacuated

pl
i Population of type l in node Ai

P =
L∑

l=1

I∑

i=1

pl
i

Population of any type to be evacuated

uj Maximum capacity of stair Sj

βl
ij Portion of people of type l evacuating from Ai through Sj

f l
ij Flow of people of type l on the link from Ai to Sj

gl
jh Flow of people of type l on the link from Sj to Uh

tlij (f
l
ij ) Travel time on the link from Ai to Sj for a person of type l

τ l
jh(g

l
jh) Travel time on the link from Sj to Uh for a person of type l

R1l
ij (f l

ij ) Delay function on the link from Ai to Sj for a person of type l

R2l
jh(gl

jh) Delay function on the link from Sj to Uh for a person of type l

αl ∈ [0, 1] Index measuring the physical difficulties of type l

σ ∈ [0, 1] Severity coefficient of the disaster

flows on the links, namely:

R1l
ij = R1l

ij (f l
ij ) and R2l

jh = R2l
jh(gl

jh), i = 1, . . . , I,

j = 1, . . . , J, h = 1, . . . , H, l = 1, . . . , L.

In addition, we consider two coefficients αl, σ ∈ [0, 1] representing the measure
of the physical difficulties for an evacuee of type l and the severity of the disaster,
respectively.

We group all the functions and parameters in Table 1.
The purpose of our model is to minimize the total evacuation time, denoted by

ET (f, g), given by the sum of the total travel times and the total delay. Hence, we
are interested in solving the following optimization problem:

min ET (f, g) = min

⎧
⎨

⎩

L∑

l=1

⎡

⎣
I∑

i=1

J∑

j=1

t lij (f
l
ij )f l

ij +
(

1 + αl
) J∑

j=1

H∑

h=1

τ l
jh(g

l
jh)g

l
jh

+σ

I∑

i=1

J∑

j=1

R1l
ij (f l

ij )f
l
ij + σ

J∑

j=1

H∑

h=1

R2l
jh(gl

jh)g
l
jh

⎤

⎦

⎫
⎬

⎭
(2)
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under (1) and the following constraints:

L∑

l=1

n∑

i=1

f l
ij ≥

L∑

l=1

k∑

h=1

gl
jh, ∀j = 1, . . . , J ; (3)

J∑

j=1

f l
ij ≤ pl

i, ∀i, ∀l; (4)

J∑

j=1

f l
ij ≥ .5pl

i, ∀i, ∀l; (5)

J∑

j=1

H∑

h=1

gl
jh ≥ .5pl

i, ∀l; (6)

f l
ij ≥ 0, ∀i, ∀j, ∀l; gl

jh ≥ 0, ∀j, ∀h, ∀l. (7)

Constraint (3) states that, for every index j , the sum of the flows of people from any
room Ai to Sj exceeds the sum of the flows of people of all types l from Sj to any
exit Uh. Constraint (4) establishes that people moving on all the links cannot exceed
the total population on the building. With constraints (5) and (6) we guarantee that
at least 50% of persons evacue from every room and from the building, respectively.
Finally, constraints (7) are the nonengativity conditions of the flows.

Let us define the set of constraints as the feasible set K given by:

K =
{
(f, g) ∈ R

IJL+JHL : f l
ij ≥ 0, ∀i, ∀j, ∀l; gl

jh ≥ 0, ∀j, ∀h, ∀l;

L∑

l=1

I∑

i=1

βl
ij f l

ij − uj ≤ 0, ∀j;
L∑

l=1

k∑

h=1

gl
jh −

L∑

l=1

I∑

i=1

f l
ij ≤ 0, ∀j;

J∑

j=1

f l
ij − pl

i ≤ 0, ∀i, ∀l; .5pl
i −

J∑

j=1

f l
ij ≤ 0, ∀i, ∀l; .5pl

i −
J∑

j=1

H∑

h=1

gl
jh ≤ 0, ∀l

}

and assume that the travel time and delay functions multiplied by the respective
flows are continuously differentiable and convex. Then, since the set K is closed,
bounded, and convex, applying the classical theory on the variational inequalities
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(see, for instance, [10] or [12]), problem can be characterized by means of the
following variational inequality:

Find (f ∗, g∗) ∈ K such that:

I∑

i=1

J∑

j=1

L∑

l=1

[
∂t lij (f

l∗
ij )

∂f l
ij

f l∗
ij + t lij (f

l∗
ij ) + σ

(
∂R1l

ij (f l∗
ij )

∂f l
ij

f l∗
ij + R1l

ij (f l∗
ij )

)]

×
(
f l

ij − f l∗
ij

)

+
J∑

j=1

H∑

h=1

L∑

l=1

[

(1 + αl)

(
∂τ l

jh(g
l∗
jh)

∂gl
jh

gl∗
jh + τ l

jh(g
l∗
jh)

)

(8)

+ σ

(
∂R2l

jh(g
∗
jh)

∂gjh

gl∗
jh + R2l

jh(g
l∗
jh)

)]

×
(
gl

jh − gl∗
jh

)
≥ 0, ∀(f, g) ∈ K.

Now, taking into account the Lagrange multipliers associated with the constraints
defining the feasible set K, and using the same technique as in [1, 2, 13, 16], we
obtain an important result.

We can consider the following Lagrange function:

L(f, g, γ, δ, η, ϑ, λ, μ, ν) = V (f, g) +
I∑

i=1

J∑

j=1

L∑

l=1

γ l
ij (−f l

ij ) +
J∑

j=1

H∑

h=1

L∑

l=1

δl
jh(−gl

jh)

+
J∑

j=1

ηj

(
I∑

i=1

L∑

l=1

βl
ij f

l
ij − uj

)

+
J∑

j=1

ϑj

(
L∑

l=1

H∑

h=1

gl
jh −

L∑

l=1

I∑

i=1

f l
ij

)

+
L∑

l=1

I∑

i=1

λl
i

⎛

⎝
J∑

j=1

f l
ij − pl

i

⎞

⎠+
L∑

l=1

n∑

i=1

μl
i

⎛

⎝.5pl
i −

J∑

j=1

f l
ij

⎞

⎠+
L∑

l=1

νl

⎛

⎝.5pl
i −

J∑

j=1

H∑

h=1

gl
jh

⎞

⎠

where V (f, g) is the left-hand side of (8) and f ∈ R
IJL, g ∈ R

JHL, γ ∈ R
IJL+ ,

δ ∈ R
JHL+ , η ∈ R

J+, ϑ ∈ R
J+, λ ∈ R

IL+ , μ ∈ R
IL+ , ν ∈ R

L+.

Then, the following result holds true.

Theorem 1 If (f ∗, g∗) ∈ K is a solution to variational inequality (8), then the
Lagrange multipliers γ̄ ∈ R

IJL+ , δ̄ ∈ R
JHL+ , η̄ ∈ R

J+, ϑ̄ ∈ R
J+, λ̄ ∈ R

IL+ , μ̄ ∈ R
IL+ ,

and ν̄ ∈ R
L+ do exist, and for all i, j, h, and l, the following conditions hold true:

γ̄ l
ij (−f ∗

ij ) = 0, δ̄l
jh(−g∗

jh) = 0,

η̄j

⎛

⎝
I∑

i=1

L∑

l=1

βl
ij f l∗

ij − uj

⎞

⎠ = 0, ϑ̄j

⎛

⎝
L∑

l=1

H∑

h=1

gl∗
jh −

L∑

l=1

I∑

i=1

f l∗
ij

⎞

⎠ = 0,

λ̄l
i

⎛

⎝
J∑

j=1

f l∗
ij − pl

i

⎞

⎠ = 0, μ̄l
i

⎛

⎝.5pl
i −

J∑

j=1

f ∗
ij

⎞

⎠ = 0, ν̄l

⎛

⎝.5pl
i −

J∑

j=1

H∑

h=1

gl∗
jh

⎞

⎠ = 0,
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∂tlij (f
l∗
ij )

∂f l
ij

f l∗
ij + t lij (f

l∗
ij ) + σ

(
∂R1l

ij (f l∗
ij )

∂f l
ij

f l∗
ij + R1l

ij (f l∗
ij )

)

−γ̄ l
ij + η̄j β

l
ij − ϑ̄j + λ̄l

i − μ̄l
i = 0,

(1 + αl)

(
∂τ l

jh(g
l∗
jh)

∂gl
jh

gl∗
jh + τ l

jh(g
l∗
jh)

)

+ σ

(
∂R2l

jh(g
∗
jh)

∂gjh

gl∗
jh + R2l

jh(gl∗
jh)

)

−δ̄l
jh + ϑ̄j − ν̄l = 0.

Moreover, the strong duality also holds true; namely:

V (f ∗, g∗) = min
K

V (f, g) = max
(γ ,δ,η,ϑ,λ,μ,ν)

inf
(f,g)

L(f, g, γ, δ, η, ϑ, λ,μ, ν).

3 Numerical Illustration

In order to validate our model, we now provide a small numerical example.
We consider a public building with a street-level floor and two floors above. We

assume that 100 persons are located in the second floor of the building and are
distributed in three different rooms. A landslide impacts the area of the building, so
that people have to evacuate, choosing one of the two existing stairs that leads to
three possible exits. We also suppose that there are two types of people, according
to their physical difficulties. The parameter values are:

(p1
i )i=1,...,3 = (10, 20, 20), (p2

i )i=1,...,3 = (15, 15, 20),

α1 = 0, α2 = 0.3, σ = 0.5, u1 = 15, u2 = 15, βl
ij = 0.35, ∀i, j, l.

The total travel time and the delay functions are reported in Tables 2 and 3.
We solved the resulting variational inequality applying the extragradient method

with constant step length as in [14] (see also [7]), implemented as M-script files of

Table 2 Travel times and delay functions for occupants of type 1

t1
ij (fij ) τ 1

jh(gjh) R11
ij (fij ) R21

jh(gjh)

2f 2
11 + f11 2g2

11 + 25g11 4f 2
11 + 15f11 2g2

11 + 25g11

0.5f 2
12 + 4f12 g2

12 + 5g12 f 2
12 + 4f12 g2

12 + 5g12

f 2
21 + 4f21 5g2

13 + 50g13 f 2
21 + 4f21 5g2

13 + 50g13

f 2
22 + 3f22 g2

21 + 2g21 f 2
22 + 3f22 g2

21 + 2g21

f 2
31 + 15f31 g2

22 + g22 f 2
31 + 15f31 g2

22 + g22

f 2
32 + 30f32 g2

23 + 5g23 f 2
32 + 30f32 g2

23 + 5g23
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Table 3 Travel times and delay functions for occupants of type 2

t2
ij (fij ) τ 2

jh(gjh) R12
ij (fij ) R22

jh(gjh)

4f 2
11 + 2f11 3g2

11 + 15g11 2f 2
11 + 25f11 3g2

11 + 15g11

f 2
12 + 5f12 2g2

12 + 50g12 4f 2
12 + 40f12 2g2

12 + 50g12

1.5f 2
21 + 12f21 8g2

13 + 5g13 4f 2
21 + 20f21 8g2

13 + 5g13

2f 2
22 + 5f22 2g2

21 + 10g21 6f 2
22 + 5f22 2g2

21 + 10g21

1.5f 2
31 + 20f31 g2

22 + 15g22 2f 2
31 + 32f31 g2

22 + 15g22

2f 2
32 + 30f32 g2

23 + 50g23 3f 2
32 + 22f32 g2

23 + 50g23

Fig. 3 Network topology and evacuation paths of the example

Table 4 Optimal flows on
the paths used for evacuation

Flows Optimal values

(f 1
11, f

2
11) (2.4927;0)

(f 1
12, f

2
12) (5.0037;5.0037)

(f 1
22, f

2
22) (10.0055;0)

(f 1
31, f

2
31) (5.8297;5.8297)

(f 1
32, f

2
32) (8.3407;0)

(g1
12, g

2
12) (4.5044;8.1333)

(g1
13, g

2
13) (4.5044;5.6222)

(g1
21, g

2
21) (1.9934;5.6222)

(g1
22, g

2
22) (9.4934;5.6222)

(g1
23, g

2
23) (4.5044;0)

MatLab. We note that our problem satisfies the assumptions needed to ensure the
existence of solutions as well as the convergence of the algorithm.

In Fig. 3, we represent the network topology of the building on the left, and
the optimal path distribution on the right. The optimal evacuation flows are
given in Table 4. The total evacuation time, namely the value of the objective
function ET (f ∗, g∗) (see objective function (2)) is 8.3833 h. This value takes
into account that displacements and ground movements, due to the landslide, may
cause structural damages to the building (extensive cracks, distorsions in pillars
and columns, tilting of floors and walls, obstructed doors, etc.). This makes the
evacuation time increase. Finally, we note that all the people in the building are able
to evacuate.
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4 Conclusions

In this paper, we introduced an evacuation planning model that identifies the optimal
flows of people who must be evacuated from a building after a landslide. The
multicriteria objective of the problem was to minimize both the total travel time and
the total delay, which were influenced by the physical difficulties of evacuees and
the severity of the disaster. We then proposed a variational inequality formulation
of the model and provided its dual problem. In addition, we showed an alternative
formulation based on the Lagrange multipliers associated with the constraints. They
may have a crucial role in order to capture and predict the variation in the escape
speed. Finally, we provided a numerical example that emphasized how the model
developed in this paper can be used by policy-makers to plan emergency evacuation
after a natural disaster.

Future research may include extending this framework to assess sinergies among
individuals who could act as a group/coalition.

The results in this paper add to the growing literature of operations research for
management of evacuation plans.
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Additive Bounds for the Double Traveling
Salesman Problem with Multiple Stacks

Luca Diedolo and Giovanni Righini

Abstract The Double TSP with Multiple Stacks is a challenging combinatorial
optimization problem, asking for two Hamiltonian cycles on two weighted graphs,
a pick-up graph and a delivery graph; the two cycles originate from two given
depots, one for each graph, and they visit the vertices in an order that allows a single
vehicle to collect the pick-up items in a given number of stacks and to deliver them
according to a Last-In-First-Out policy for each stack. We investigate the use of
the additive bounding procedure, starting from the Held-Karp lower bound, within
a branch-and-bound algorithm. Computational results show that this method often
provides tighter bounds than the Double TSP relaxation.

Keywords Traveling Salesman Problem · Held-Karp lower bound · Additive
bounding

1 The DTSPMS

The Double Traveling Salesman Problem with Multiple Stacks (DTSPMS) was been
first described by Petersen et al. [9] as a variant of the Pickup and Delivery Traveling
Salesman Problem (PDTSP).

The PDTSP is the problem where a single vehicle with potentially infinite
capacity must serve a set of pickup and delivery requests. Each request requires
to visit a given pickup vertex and a given delivery vertex in the graph. The objective
is to find the minimum cost Hamiltonian cycle, taking into account that the pickup
node must be visited before the delivery node for each pair.
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In the DTSPMS, instead, pickup vertices and delivery vertices must be visited
along two disjoint Hamiltonian cycles, each one starting and ending at a depot.
Therefore we are given a pickup graph and a delivery graph of the same size; for
each request the vehicle must visit a given pickup vertex in the pickup graph and a
given delivery vertex in the delivery graph. In the remainder we assign an index in
{1, . . . , n} to each request and to its corresponding pickup and delivery vertices.

Moreover, the vehicle loading compartment is divided into a specified number of
fixed height stacks, managed according to a Last-In-First-Out policy: while visiting
the pickup graph, items must be put on top of one of the stacks and while visiting
the delivery graph items can be delivered only when they are on top of their stack.

Besides heuristic approaches, such as those of Felipe et al. [6], Chagas et al.
[4] and Urrutia et al. [10], some exact algorithms have been developed, such as a
branch-and-bound by Carrabs et al. [2] for the problem with 2 stacks. Currently the
best known algorithm for computing exact solutions of the DTSPMS is a branch-
and-cut algorithm developed by Alba Martinez et al. [1], that could solve some
instances with up to 28 vertex pairs.

In this paper, as a first step to evaluate the strength of a new lower bounding
technique based on additive bounds, we consider a slightly relaxed version of the
problem, where the stacks have no fixed height, i.e. no capacity restrictions. The
same uncapacitated version was also investigated by Casazza et al. [3] to shed light
on some useful properties of the formulation.

The goal of our study is to investigate the potential usefulness and possible limita-
tions of additive bounds, proposed by Fischetti and Toth [7]. The additive bounding
technique is based on the availability of different lower bounding procedures for a
combinatorial optimization problem. Instead of running each of them and then take
the tightest lower bound obtained, one can sort the procedures and run each one on
the graphs where the weights are the reduced costs produced by the previous one.
The lower bounds computed by each procedure can be added up to produce a final
lower bound.

This idea can be exploited within a branch-and-bound algorithm to solve the
DTSPMS because the constraint set allows for different relaxations: in particular, we
initially compute a relaxation of the Hamiltonian cycle constraints on both graphs,
using the well-known Held and Karp method [8], so that reduced costs are also
provided. Then, we compute minimum repair costs for the incompatibilities that are
detected in the solution. This is done by computing a number of min cost shortest
paths.

2 Lower Bounding the DTSPMS

The additive bounding procedure, to be executed for each sub-problem in a branch-
and-bound tree, runs in three steps. In Step 1 (feasibility check) the two optimal
Hamiltonian cycles on the two graphs are computed; an incompatibility graph is
defined, to detect violations of the LIFO constraints. If no violations are detected,
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then the sub-problem is solved to optimality. Otherwise, steps 2 and 3 are executed.
In Step 2 (routing lower bound) a minimum cost 1-tree is computed for each graph
and the corresponding reduced costs of the edges are recorded. In Step 3 (repair
step) the minimum cost for repairing infeasibilities detected in Step 1 is computed,
providing a final valid lower bound.

2.1 Step 1: Feasibility Check

Given the restrictions due to previous branching decisions (some edges in either
graphs can be forbidden or fixed), the state-of-the-art TSP solver Concorde [5] is
run to compute the optimal Hamiltonian cycles on the two graphs. Further details on
how fixed and forbidden arcs are managed in this step are described in the subsection
devoted to branching.

Since the graphs in DTSPMS instances are small, the computing time taken
by Concorde is almost negligible. Then, the two solutions produced are analyzed.
Consider an arbitrary orientation of the two Hamiltonian cycles; consider two
distinct requests i and j . If vertices i and j appear in the same order along both
cycles, then their requests must be assigned to different stacks, owing to the LIFO
constraint. On the contrary, if they appear in a different order, then their requests
must be assigned to different stacks if the orientation of one of the two cycles is
reversed.

Hence, we define an incompatibility graph G = (V,S,R) with a vertex in V for
each request and two disjoint edge sets S and R: there is a straight edge [i, j ] ∈ S
if and only if i and j appear in the same order in both cycles and a reverse edge
[i, j ] ∈ R if and only if they appear in a different order. The incompatibility graph
is therefore complete and all its edges are either in S or in R.

Since s stacks are available on the vehicle, if G contains at least one clique of
straight edges (st-clique) and at least one clique of reverse edges (rv-clique) of
cardinality larger than s, then there is no orientation complying with the LIFO
constraints.

2.2 Step 2: Routing Lower Bound

The aim of this step is to produce tight lower bounds to the Double TSP (disre-
garding the LIFO constraints) with the additional information provided by reduced
costs. It is possible to do this efficiently owing to the well-known method due to
Held and Karp [8]. For each graph a minimum cost 1-tree is computed, spanning
all vertices with the exception of an arbitrarily selected vertex, indicated by d; then,
two minimum cost edges incident to d are also selected, forming a minimum cost
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spanning 1-tree. Edges incident to vertices with degree larger than two are penalized,
by increasing their cost by Lagrangean multipliers in a subgradient optimization
algorithm, illustrated in Algorithm 1, and the search for a minimum cost spanning
1-tree is iterated.

Algorithm 1 The subgradient optimization algorithm. Input: a weighted graph
(V,E) with a cost function c : E "→ Z and a small tolerance ε. Output: the best
valid lower bound found within MaxIter iterations or within MaxIterNoImpr

iterations without improvement with a step parameter smaller than ε
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The sum of the costs of the two 1-trees is a valid lower bound for the DTSPMS,
and it is indicated by LB1.

Reduced costs are separately computed for edges incident to d and for edges in
the minimum cost spanning tree:

• the reduced cost of each non-selected edge incident to d is the difference between
its original cost and the cost of the second cheapest selected edge incident to d;

• the reduced cost cij of any other non-selected edge [i, j ] is the difference
between its original cost cij and the maximum cost among the edges in the unique
cycle formed by edge [i, j ] and the minimum cost spanning tree.

2.3 Step 3: Repair

In the third and final step, incompatibilities are considered and the minimum cost to
repair each of them is computed. The aim of this step is to compute a lower bound
to the cost to be paid for repairing each clique pair made by an st-clique and an
rv-clique. In this step the edge weights on the graphs are the reduced costs c.

There are two ways to repair an incompatibility: the first one, called destructive
way, consists of destroying one of the two cliques by visiting its vertices in a
different order; the second one, called non-destructive way, consists of reversing
the order of the vertices of one of the two cliques with respect to the other. Both
ways must be evaluated in order to retrieve the final repair cost.

Example Assume s = 2 and the two cycles, arbitrarily oriented, contain the
sequences [1, 2, 3] and [4, 5, 6] in one graph and [1, 2, 3] and [6, 5, 4] in the other
graph. Then [1, 2, 3] is a straight clique of cardinality s + 1 and [4, 5, 6] is a reverse
clique of cardinality s + 1. The existence of this pair of cliques implies a violation
of the LIFO constraints. The violation can be repaired in several ways for each
graph: clique [1, 2, 3] can be destroyed in two distinct ways by rearranging its
vertices in the sequences [2, 1, 3] or [2, 3, 1]; clique [4, 5, 6] can be destroyed in
two distinct ways by rearranging its vertices in the sequences [5, 4, 6] or [5, 6, 4];
finally the cliques can be reversed with respect to each other in any cycle including
both [3, 2, 1] and [4, 5, 6]; this can be done in 20 different ways: [3, 2, 1, 4, 5, 6],
[3, 2, 4, 1, 5, 6], [3, 2, 4, 5, 1, 6], and so on. Therefore 24 configurations must be
examined on each graph.

In general, for each graph and for each clique pair of size k = s + 1, there are
2( k!

2 − 1) destructive repairs and (2k)!
(k!)2 non-destructive repairs to be evaluated. The

cost of each destructive repair is the minimum cost to visit k vertices according to a
prescribed sequence, while the cost of a non-destructive repair is the minimum cost
to visit 2k vertices according to a prescribed sequence.

These costs can be computed as the costs of shortest paths with forbidden
vertices. For instance the repair cost corresponding to sequence [2, 1, 3] is the
sum the costs of the following shortest paths: between 0 (the depot) and 2 without
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visiting any vertex in {1, 3}; between 2 and 1 without visiting any vertex in {0, 3};
between 1 and 3 without visiting any vertex in {0, 2}; between 3 and 0 without
visiting any vertex in {1, 2}. Hence each destructive repair requires k + 1 shortest
path computations and each non-destructive repair requires 2k + 1 shortest path
computations. However, the number of shortest paths to be considered is not given
by the product between the number of permutations to examine and the number of
shortest paths to evaluate in each permutation, because all permutations share the
same shortest paths, i.e. those connecting two vertices of a subset without visiting
the others. So, to evaluate all destructive repairs of a given clique on a given graph
k(k+1)

2 shortest paths must be computed; to evaluate all non-destructive repairs for a
given clique pair on a given graph (k + 1)2 + 1 shortest paths must be computed.

The number of vertex permutations to be examined and shortest paths to be
computed is slightly smaller, when the two cliques share a vertex. Therefore, to
speed up the bounding procedure, it is profitable to select a clique pair with this
property.

In order to possibly iterate the additive bounding procedure, reduced costs can
be computed by the shortest path algorithm (Dijkstra algorithm), so that they
can be used as edge costs in a subsequent repair step based on different clique
pair. However, in our experiments we observed that after repairing the violation
represented by the first clique pair, the resulting reduced costs are so close to zero
that it is almost never possible to achieve further improvements of the lower bound.
Therefore, it is a reasonable option to skip the computation of reduced costs in the
shortest path algorithm, to save time.

Heuristic Repair
The bounding procedure can also be accelerated by considering only some clique
pairs, pre-selected according to a heuristic criterion estimating how promising they
are in terms of the additive lower bound they can provide. Alternatively, one can
sort the clique pairs according to some heuristic criterion and stop as soon as a
strictly positive (or “large enough”) repair cost is found. In our tests, as a heuristic
criterion we devised the following: all cliques are listed; the destructive repair cost
is computed for each of them; then, the figure of merit associated with each clique
pair is the sum of the two corresponding destructive repair costs: the higher such
a total cost, the more promising the clique pair; then, all clique pairs are examined
until a strictly positive repair cost is found.

3 Experimental Results on Lower Bound Tightness

Our first set of experimental tests was driven by the following questions:

1. Are additive lower bounds tighter than the lower bound given by the two optimal
Hamiltonian cycles?

2. How is the trade-off between bound tightness and computing time when the
repair step is done in a heuristic way?
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Table 1 Lower bounds (best values are bolded) and computing time of the additive bounding
procedure. A time limit was fixed at 30 s

Instance DTSP ER HR ER time (s) HR time (s)

R00_10_2.dat 648 652 652 1.361 0.266

R01_10_2.dat 675 675 675 0.088 0.110

R02_10_2.dat 589 589 589 0.099 0.104

R03_10_2.dat 595 595 595 0.133 0.029

R00_12_2.dat 677 684 684 29.152 0.533

R01_12_2.dat 708 707 707 10.397 0.455

R02_12_2.dat 595 595 595 0.247 0.113

R03_12_2.dat 676 675 675 0.232 0.145

R00_12_3.dat 677 682 682 2.229 1.341

R01_12_3.dat 708 705 705 1.097 0.361

R02_12_3.dat 595 595 595 0.203 0.062

R03_12_3.dat 676 675 675 0.091 0.110

R00_14_2.dat 702 n/a 707 30.000 3.183

R01_14_2.dat 716 n/a 717 30.000 0.674

R02_14_2.dat 631 n/a 634 30.000 2.251

R03_14_2.dat 732 n/a 732 30.000 1.697

A subset of instances have been extracted from the pool of instances used by
Petersen et al. [9]. Table 1 reports the following outcomes:

• DTSP: the value of the double TSP lower bound;
• ER: the lower bound obtained with the exact (exhaustive) repair method;
• HR: the lower bound obtained with the heuristic repair method;
• ER time: the computing time to obtain the bound with exact repair;
• HR time: the computing time to obtain the bound with the heuristic repair.

The last four values in the ER column are marked as not available because the
time limit of 30 s was reached. They refer to the largest instances of the subset
(7×2) for which the exhaustive method could not provide a lower bound. However,
the heuristic method succeeded in providing it within the time limit.

The results show that the bound provided by the additive bounding procedure can
indeed improve upon the bound given by the double TSP, although the improvement
is in average very small. This is mainly due to the gap between the cost of an optimal
Hamiltonian cycle and the cost of the Held and Karp lower bound; this difference
must be compensated by the repair cost provided by the additive bounds.

This suggests not to run the additive bounding algorithm at every node in the
branch-and-bound tree, but only on nodes that are rather deep in the tree, where a
small improvement can be enough to close the gap between the upper and the lower
bound and the TSP instances are constrained (by branching decisions), so that the
Held and Karp lower bound tends to be close to the optimum.

Remarkably, in our tests heuristic repair provided the same lower bounds as exact
repair in a fraction of the computing time.
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4 Branch-and-Bound

In this section we describe a branch-and-bound algorithm based on the additive
bounding method.

4.1 Branching

We devised and tested two branching strategies: the first one is based on the structure
of the 1-trees and aims at gradually enforcing Hamiltonian cycle constraints, while
the second one is based on the incompatibility graph and aims at gradually enforcing
LIFO constraints. Both strategies operate by fixing or forbidding edges. Hence each
sub-problem in the branch-and-bound tree is characterized by a set of fixed edges
and a set of forbidden edges for each graph.

The effect of fixing or forbidding an edge is obtained by respectively subtracting
or adding a “large enough” constant M to the true edge cost.

4.1.1 Branching Policy 1

Branching policy 1 is applicable when at least one of the two 1-trees produced by
Held and Karp algorithm is not a cycle. Such a 1-tree certainly contains at least one
vertex with degree larger than 2. A branching vertex k is selected among them and
the two edges [k, u] and [k, v] belonging to the cycle of the 1-tree are identified.
Then three successor sub-problems are generated as follows:

1. [k, u] is forbidden;
2. [k, u] is fixed [k, v] is forbidden;
3. [k, u] and [k, v] are fixed and all the other edges incident to k are forbidden.

Among all the possible choices of k we select the vertex that maximizes the
number of non-cycle vertices in the subtree emanating from it.

4.1.2 Branching Policy 2

The final lower additive bound is the cost of a particular permutation among all
those that allow to repair an incompatibility represented by a pair of cliques. The
repair cost is the sum of some shortest path costs. We consider all the edges in these
shortest paths. At least one of them must have strictly positive reduced cost. Given
the list of these p positive reduced cost edges, the branching policy generates p + 1
sub-problems by fixing one of the edges and forbidding all edges preceding it in the
list; the last sub-problem has all the edges forbidden. Branching policy 2 is used
only when branching policy 1 is not applicable because both 1-trees are cycles.
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4.2 Lazy Bounding

Since the most time-consuming part of the branch-and-bound is bounding and in
particular computing the repair cost (Step 3), we devised some heuristic criteria to
decide whether to run the bounding algorithm or to branch immediately.

In a version of the algorithm, Step 3 is run only when the value UB−LB
UB

is below
a fixed threshold, where UB and LB indicate the best incumbent upper bound and
the lower bound provided by the 1-trees. In case the test does not succeed but the
1-trees are cycles, Step 3 is executed anyway to provide the information needed by
branching policy 2. We call this lazy bounding policy “gap repair”.

In another version of the algorithm, Step 3 is executed only when both 1-trees
computed in Step 2 are cycles. This is motivated by our experiments illustrated in
Sect. 3, that suggest that the lower bound increase tends to be almost useless if the 1-
tree is not close enough to the optimal Hamiltonian cycle. We call this lazy bounding
policy “cycle repair”.

5 Experimental Results

In our instances we used as an initial upper bound the best known value (from Alba
et al. [1]) and the branch-and-bound tree was explored according to a best-first-
search policy.

We compared the three versions of the branch-and-bound algorithm, identified as
“always repair”, “cycle repair” and “gap repair”. The results are shown in Table 2.
The threshold for “gap repair” was empirically set to 10%.

“Cycle repair” is the variant that performs best, because the condition for
running Step 3 is more restrictive and therefore the additive bounding procedure
is completely executed only when it is really able to beat the double cycle lower
bound. The difference in computing time in favor of “cycle repair” increases as the
size of the instance increases.

Instances larger than those reported could not be solved to proven optimality
within 1 h. Therefore the results are not reported here.

Table 2 Processing time of
the three variants of the
branch-and-bound algorithm

Instance Always repair Gap repair Cycle repair

R00_10_2.dat 35.995 36.224 33.501

R01_10_2.dat 30.220 17.059 29.093

R00_12_3.dat 47.031 47.981 46.290

R01_12_3.dat 91.229 71.845 49.648

R00_12_2.dat 334.122 337.566 297.780

R01_12_2.dat 295.556 304.860 246.236
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6 Conclusions

The additive bounding technique can be exploited to compute a lower bound tighter
than the one provided by the two optimal cycles for the DTSPMS, owing to its
ability of adding the cost to repair at least one of the LIFO constraints violations.

The additive lower bounding algorithm we have devised suffers for the combi-
natorial explosion in the number of permutations that must be evaluated to repair a
violation. It is effective not to pay this effort, especially for non-destructive repair
costs for all violations but only for one of them, heuristically selected. The same
idea can be further developed in order to limit also the computation of destructive
repair costs.

Lazy bounding is effective at substantially reducing the total computing time,
especially in its version “cycle repair”.

However, to solve larger instances of the DTSPMS it is certainly needed to
enrich the approach presented here with further algorithmic ideas to suitably select
the clique pairs in the lower bounding procedure and to keep the combinatorial
explosion of the number of permutations to consider under control.

After having validated the usefulness of additive bounding for the uncapacitated
DTSPMS, another important step that needs to be addressed is the inclusion of
capacity constraints.
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Crowd-Shipping and Occasional Depots
in the Last Mile Delivery

Luigi Di Puglia Pugliese, Francesca Guerriero, Giusy Macrina,
and Edoardo Scalzo

Abstract Crowd-shipping is a new delivery paradigm that is gaining success in
the last-mile and same-day delivery process. In crowd-shipping the deliveries are
carried out by both regular company vehicles and some crowd-drivers, named
occasional drivers (ODs). ODs are ordinary people available to make deliveries,
for a small compensation. We consider a setting in which a company not only has
ODs available to make deliveries, but they may also use the services of intermediate
pickup and delivery points, named occasional depots. In order to optimize the use
of these depots, we consider two distinct groups of ODs with different operative
ranges. Occasional depots are activated only if it is necessary or convenient; hence,
their activation implies an “activation cost”. These depots should increase the
flexibility of the system and they lead to a more efficient managing of the uncertain
availability of ODs. In this work we present a mixed integer linear programming
model to represent this framework. We carry out computational experiments to
validate it on small size instances.

Keywords Crowd-shipping · Vehicle routing problem · Occasional drivers ·
Occasional depots · Last mile delivery

1 Introduction

Among the online activities, online shopping is one of the most popular ones
worldwide. Always more often people buy online any kind of goods, and have
high expectations in delivery service (i.e., high speed, convenient time and place,
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low cost). Satisfying customers expectations become a key factor, because con-
sumers can easily shop from alternatives retailers. For this reason, finding good
strategies for managing same-day/last-mile delivery process (i.e., the transportation
of products from a transportation hub to the final delivery destination) is one of
the most important activity for the companies. In this context, the larger e-retailers
have started to explore unconventional last-mile delivery system to pursue effective
and efficient goals. Crowd-shipping is one among the innovative solutions proposed
by companies. The main concept of crowd-shipping is to apply the basics of
sharing economy to the delivery process, by delegating some deliveries to ordinary
people en route to their destination, named occasional drivers (ODs). ODs share
the empty space of their own vehicles (car, van, bike) for bringing goods to other
people, making some deviations from their ordinary route, for a small compensation.
Customers and ODs can register on a dedicated crowd-shipping online platform. By
logging on this platform, customers can send the request, check the tracking and
confirm the receiving, and ODs can accept the convenient requests, receive all the
information to perform the deliveries and finally gain the compensation.

In this work, we propose a crow-shipping delivery system with occasional depots.
A fleet of traditional carriers and two types of ODs, with different characteristics and
compensation, may perform multiple deliveries in an urban area and/or supply the
occasional depots. The main novelty of the proposed framework is the presence
of the occasional depots, which makes the deliveries more flexible, then, more
attractive for the occasional drivers. In addition, they allow the company to exploit
buildings that are already present in the urban area (e.g., shops, kiosks, post offices)
without investing in expensive construction/rent of big infrastructures; hence, to
assign more deliveries to the occasional drivers, reducing the overall costs. The rest
of the paper is structured as follows, in Sect. 2 we describe the state of the art, in
Sect. 3 we provide a mathematical programming model for the proposed problem,
Sect. 4 depicts the computational results and Sect. 5 summarizes the conclusions and
the future directions.

2 State of the Art

ODs are considered for the first time by Archetti et al. [1]. In this work, the
authors studied a vehicle routing problem (VRP) variant based on Walmart vision:
the fleet is composed not only of company drivers but also of ODs. They named
this problem VRP with ODs (VRPOD). In the scenario of this paper the ODs are
in-store customers willing to make a delivery for another customer on their way
home. Several authors extended the work of Archetti et al. [1]; Macrina et al. [5]
introduced time windows constraints, multiple deliveries for ODs and considered
also a system with a split delivery policy. Macrina et al. [8] proposed a variable
neighborhood search to solve the VRPOD variant with multiple deliveries and time
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windows studied by Macrina et al. [5]. Macrina and Guerriero [6] and Macrina et
al. [9] introduced a green variant of the VRPOD, while Dahle et al. [3] studied a
VRPOD variant with pickup and delivery. Macrina et al. [7] introduced the VRPOD
with transshipment nodes. Transshipment nodes are intermediate depots, nearer to
the urban area than the main depot. Hence, ODs can pickup goods from the main
depot as well as from the transshipment nodes, supplied by the traditional drivers.
The authors formulated the problem as a particular instance of two-echelon VRP.
Sampaio et al. [10] analyzed the potential benefits of using transfers to support
courier deliveries, in particular they highlighted the benefits of using this system
when pickup and delivery locations are far apart and the time windows of ODs
are tight. All the aforementioned works consider static variants of the VRPOD,
i.e., customer demands and ODs availability are known in advance. Recently, some
authors considered stochastic/on-line variants of the problem (see, e.g., Dayarian
and Savelsbergh [4] and Archetti et al. [2]).

In this paper, we propose a new variant of the VRPOD with occasional depots
(ODEs) and two groups of ODs with different functions and compensations. The
first group, named classical occasional drivers (CODs), is composed of ODs who are
willing to travel for a long range of action. The second group, named neighborhood
occasional drivers (NODs), is composed of ODs who are willing to make multiple
deliveries in a limited urban area. Hence, one of the main differences between CODs
and NODs is the “range of action”; i.e. the number of deviations they are willing
to perform. Since NODs have a short range of action and operate in the center
of the urban area, they could make deliveries also on foot, by electric vehicles or
by bikes. The ODEs can be served by either company drivers or by CODs, and
each customer can be served by either company driver or by a NOD. Compensation
policy is based on the deviation of the CODs from their route and the routing cost
of the NODs. The ODEs could be shops, existing lockers or storage room whose
owners don’t make the most of their storage capacity. Furthermore, these depots are
activated only if convenient, and their activation cost is very cheaper compared to
the real transshipment depots. Customers can be visited once, by either an NOD
or a company driver. We also suppose that each vehicle can perform a single trip
for visiting either customers or occasional depots. The main goal is to serve all
customers, overall minimizing costs. The presence of ODEs has four important
effects: a higher number of ODs is attracted; it allows a more efficient management
of the uncertainty of NODs; it does not involve a construction and management
cost; the possibility of activating intermediate depots scattered in the same urban
area is very advantageous for efficiently managing the daily customers demand.
In addition, the introduction of intermediate nodes, as shown in Macrina et al. [7]
and in Sampaio et al. [10], reduces the deviations required to ODs for making the
delivery, attracting more ODs. Moreover, the combination of intermediate depots
with two groups of ODs adequately rewarded allows to select the drivers closest to
the parcel delivery site.
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3 Problem Description

Let C be the set of customers, let K be the set of company drivers and let s0 denote
their origin and destination node. It is assumed that each driver may perform a single
trip. Let O1 be the set of available classical occasional drivers that can supply one or
more occasional depots from other occasional depots or from s0. Let O2 be the set of
available neighborhood occasional drivers that can pick up parcels from occasional
depots or from s0 and deliver to customers. Let T be the set of occasional depots
that can be served by either the company drivers or the classical occasional drivers.
We define the node set as N := s0 ∪ C ∪ T and D := K ∪ O1 ∪ O2.

Each node pair (i, j) has a positive cost cij and a travel time tij . Note that both
cij and tij satisfy the triangle inequality. Each customer has a single request. Each
d ∈ D has a maximum transport capacity Wd , a maximum number of detours �d

(i.e., number of deviations) and an origin node sd (where his/her trip start) and a
destination node td . Each i ∈ C ∪ O1 ∪ O2 ∪ T has a time windows [ei, li ].

Let xd
ij be a binary variable equal to 1 if and only if a driver d traverses the

arc (i, j), and let ydc
ij be a binary variable equal to 1 if and only if driver d carries

package of customer c from i to j . Moreover, σj is a binary variable equal to 1 if
and only the occasional depot j is used. Let αd

i be the arrival time of driver d at
node i and let βc

j be the available time of package of customer c at the occasional
depot j . Table 1 reports a summary of the notations.

Table 1 Sets, parameters and decision variables of the proposed model

Sets Parameters

s0 Central depot ρd Compensation factor

C Set of customers τ Activation cost for ODEs

K Set of company drivers M Large positive number

O1 Set of CODs Wd Maximum transport capacity for driver d ∈ D

O2 Set of NODs [ei , li ] Time windows of node i

T Set of ODEs �d Maximum number of detours for d ∈ O1 ∪O2

N N := s0 ∪ C ∪ T set of all nodes sd Origin node for driver d ∈ D

D D := K ∪O1 ∪O2 set of all drivers td Destination node for driver d ∈ D

cij Travel cost from node i to node j

tij Travel time from node i to node j

Variables
xd
ij Binary variable indicating if arc (i, j) is traversed by a driver c ∈ D

ydc
ij Binary variable indicating if driver d ∈ D carries package of customer c from i to j

σj Binary variable indicating if ODE j ∈ T is activated

αd
i Decision variable specifying the arrival time of the driver d ∈ D at node i

βc
j Decision variable specifying the time in which the package of customer c is available at

ODE j ∈ T
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The problem that aims at minimizing the total cost can be formulated as follows:

min
∑

d∈D

ρd

∑

i,j∈N

cij x
d
ij −

∑

d∈O1

ρd

∑

j∈s0∪T

csd td x
d
sdj + τ

∑

j∈T

σj (1)

s.t.

∑

i∈N∪{sd }
xd
ij ≤ 1 ∀d ∈ D, j ∈ T ∪ {s0, td } (2)

xd
ij = 0 ∀d ∈ O1, i ∈ N ∪ {sd}, j ∈ C (3)
∑

j∈N

xd
sdj ≤ 1 ∀d ∈ D (4)

∑

i∈N∪{sd }
xd
ij −

∑

i∈N∪{td }
xd
ji = 0 ∀d ∈ D, j ∈ N (5)

∑

i∈N∪{sd }

∑

j∈N

xd
ij ≤ �d ∀d ∈ O1 ∪ O2 (6)

∑

c∈C

ydc
ij ≤ Wd ∀d ∈ D, i, j ∈ N (7)

∑

d∈D

∑

j∈N\{s0}
ydc
s0j

= 1 ∀c ∈ C (8)

∑

d∈D

∑

i∈N\{s0}
ydc
is0

= 0 ∀c ∈ C (9)

∑

i∈N∪{sd }

∑

c∈C

ydc
ij = 0 ∀d ∈ O2, j ∈ T (10)

ydc
ij ≤ xd

ij ∀d ∈ D, c ∈ C, i ∈ N ∪ {sd}, j ∈ N ∪ {td} (11)
∑

d∈D

∑

i∈N

ydc
ij −

∑

d∈D

∑

i∈N

ydc
ji = 0 ∀c ∈ C, j ∈ N \ {c, s0} (12)

∑

i∈N

ydc
ij −

∑

i∈N

ydc
ji = 0 ∀c ∈ C, j ∈ C \ {c}, d ∈ D (13)

Mσj ≥
∑

d∈D

∑

c∈C

∑

i∈N\{s0}
ydc
ji ∀j ∈ T (14)

αd
i + tij − M(1 − xd

ij ) ≤ αd
j ∀d ∈ D, i ∈ N, j ∈ N ∪ {td } (15)

αd
i ≥ ed + tsd i − M

(
1 −

∑

j∈N

xd
ji

) ∀d ∈ D, i ∈ N (16)
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αd
td

≤ ld ∀d ∈ D (17)

ei ≤ αd
i ≤ li ∀d ∈ D, i ∈ N ∪ {td} (18)

αd
j − M

(
1 −

∑

i∈N

ydc
ij

) ≤ βc
j ∀d ∈ D, j ∈ T , c ∈ C (19)

βc
j ≤ αd

j + M
(
1 −

∑

i∈N\{s0}
ydc
ji

) ∀d ∈ D, j ∈ T , c ∈ C (20)

xd
ij ∈ {0, 1} ∀d ∈ D, i, j ∈ N ∪ {sd, td } (21)

ydc
ij ∈ {0, 1} ∀d ∈ D, c ∈ C, i, j ∈ N (22)

σj ∈ {0, 1} ∀j ∈ T (23)

αd
i ≥ 0 ∀d ∈ D, i ∈ N ∪ {td} (24)

βc
j ≥ 0 ∀c ∈ C, j ∈ T (25)

The objective function minimizes the total cost, which consists of the routing
cost of the company drivers, compensation cost of the occasional drivers, and the
activation cost of the occasional depots. Constraints (2)–(6) manage the flows of
the drivers. In particular, constraints (2) ensure that all the nodes in N are visited
at most once from driver d . Constraints (3) ensure that drivers in O1 does not
serve customers. Constraints (4) ensure that each occasional driver leaves his/her
origin node at most once, whereas constraints (5) ensure the flow conservation.
Finally, constraints (6) impose a maximum limit of deviations for occasional drivers.
Equations (7) are the capacity constraints. Constraints (8)–(13) manage the flows of
packages. In particular, constraints (8) ensure that each package come out of central
depot s0, instead constraints (9) ensure that no package may return to the central
depot. Constraints (10) ensure that the driver d ∈ O2 cannot supply an occasional
depot. Constraints (11) and (12) ensure that each package is delivered and delivered
to corresponding customer, respectively. Constraints (13) ensure that no customer
can be used as an occasional depot. Constraints (14) identify the occasional depots
used. Constraint (15)–(18) manage the time windows of all the nodes. In particular,
constraints (15) compute the arrival time at node j . Constraints (16)–(18) ensure
that each customer and each activated occasional depot is visited within its time
window. Constraints (19) compute the time at which the package of customer c is
available at the occasional depot j ; and constraints (20) ensure that the arrival time
of the driver d at j is greater than the available time of the package of customer c.
Constraints (21)–(25) define the variables domain.
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4 Computational Study

In this section, we present the results of our computational tests. The mathematical
model was coded in Java and solved to optimality using the commercial solver Cplex
12.10. The experiments were conducted using an 2.6 GHz Intel Core i7-3615Q
processor and 8 GB 1600 MHz DDR3 of RAM.

4.1 Generation of Instances

Starting from the VRPODTW instances of Macrina et al. [8], which are based
on the classical VRPTW Solomon instances, we generated small VRPODODTW
instances. In particular, we considered the sub-class of 10 customers. These
instances are composed of 3 company drivers, 10 customers and 3 ODs. We main-
tained unchanged the features of company drivers and customers. We transformed
the ODs into CODs, by considering their coordinates as origins and randomly
choosing their destinations, as well as NODs, ODEs and additional CODs are
randomly generated. In particular, due to the main characteristics of our framework,
we divided into several zones a rectangle that contains all the nodes for each
VRPODTW instance. Then, the additional CODs are generated considering the
defined zones, the other nodes are derived from the ODs of the original instance.

Let xm, xM, ym, yM be the minimum and maximum of the abscissas and
ordinates of the coordinates of all nodes of the original instance, respectively. We
divided the rectangle R := {(x, y) ∈ R

2 | x ∈ [xm, xM ], y ∈ [ym, yM ]} into q

equal parts, representing the q neighborhoods. In particular, let s and t be natural
numbers such that s · t = q and s− t is minimum with s ≥ t , then we define for each
i ∈ {1, . . . , q} the neighborhood Qi := {(x, y) ∈ R | x ∈ [ax, bx], y ∈ [ay, by]},
where:

• ax := sixM + (1 − si )xm, where si := i−1
s

− � i−1
s

�;
• bx := (si + 1

s
)xM + ( s+1

s
− si )xm;

• ay := tiyM + (1 − ti )ym, where ti := 1
t
� i−1

s
�;

• by := (ti + 1
t
)yM + ( t−1

t
− ti)ym.

We generated 108 VRPODODTW instances composed of q neighborhoods,
where q ∈ {2, 4, 6}. Moreover, the number of both NODs and ODEs is chosen
as a function of q , i.e., we generated instances with either q or 2q of each of them.
Their coordinates are randomly chosen considering a minimum distance r from the
central depot. In particular, r ∈ {0, r̄}, where r̄ = 1

6 min(xM − xm, yM − ym). In
addition, when the number of both NODs and CODs is exactly q , then each of them
is placed in each neighborhood, whereas when the number of both NODs and CODs
is 2q , then we place two NODs and two CODs in each neighborhood. The number
of CODs is chosen in the set {3, 6}.
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Table 2 Parameter setting CDs CODs NODs ODEs

ρc 1 0.7 0.6 –

τ – – – 5

Wc |C| 10 5 –

�c |C| 3 5 –

For the generated CODs and ODEs, we set the time window to [0, Tmax], where
Tmax is a parameter specified in the original instance. Instead, the time window
[ed, ld ] for a NOD d is generated as follows (see [2]). The first endpoint ed is
randomly chosen in the range [0, max(li − ei)/2], where [ei, li ] are the time
windows of the nodes i of the original instance; the second one (i.e., ld ) is randomly
generated in the range [(t̃ + ed + tds0), Tmax], where tds0 is the time spent by d

to go from its origin to the central depot s0. Whereas, t̃ is a random value in the
interval [mini∈Qd ts0i , maxi∈Qd ts0i], where Qd is the belonging neighborhood of
the origin node of d . Table 2 summarizes the parameter setting. For setting these
parameters, we previously carried out a sensitivity analysis considering several
combinations of driver compensation and activation cost of occasional depot. We
observed that fixing COD compensation and ODE activation cost, and increasing the
NOD compensation, more customers are served by company drivers and this implies
a significant increase in total cost. Instead, the increase in COD compensation
indicates a decrease in the number of occasional drivers and depots used. Thus,
it is not convenient to activate the occasional depots when they are supplied by the
company drivers only. We set the parameters accordingly.

We grouped the generated instances into four sets, named, A1, A2, B1 and B2.
The sets A1 and A2 contain the instances with q ∈ {2, 4, 6} and r = 0. The instances
belonging to A1 have q NODs and ODEs, whereas A2 contains instances with 2q

of each of them. Both A1 and A2 contains 3 CODs. The sets B1 and B2 contain the
instances with q = 6 and r ∈ {0, r̄}. The instances belonging to B1 are characterized
by r = r̄ , whereas B2 by r = 0. In both B1 and B2 the number of NODs and
ODEs is set to q , and the number of CODs is both 3 and 6. Table 3 summarizes
the characteristics of the instances belonging to each group, in terms of number of
available occasional drivers, company drivers (CDs), depots and parameter r .

Table 3 Drivers and ODEs
available

r q CDs CODs NODs ODEs

A1 0 2/4/6 3 3 q q

A2 0 2/4/6 3 3 2q 2q

B1 r̄ 6 3 3/6 q q

B2 0 6 3 3/6 q q
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4.2 Numerical Results

A summary of the results for the instances belonging A1 and A2 is shown in Table 4,
at varying the parameter q . In particular, 12 instances are considered for each value
of q . This table shows the average values related to the number of company drivers
and occasional drivers used (#CDs, #CODs, #NODs), the number of occasional
depots activated (#ODEs), the run time (in minutes), the total cost, i.e. the value
of the objective function (Cost), the routing cost of company drivers (CostCD),
the detour cost of classical occasional drivers (CostCOD), the routing cost of
neighborhood occasional drivers (CostNOD) and the activation cost for occasional
depots (CostODE).

As expected, from the analysis of the first two sets of instances, we observe
that the higher the number of neighborhoods, the higher the number of customers
served by the occasional drivers. As a consequence, the total cost decreases. In
particular, when the number of neighborhoods increases, we observe a decrease in
the number of company drivers used, a moderate increase in the number of activated
ODEs and routed CODs, and a considerable increase of NODs. This can be justified
by considering that, the higher the number of the neighborhoods, the higher the
number of available ODEs. This aspect allows CODs to perform deliveries with a
low deviation from their route.

An ODE is activated and used only if it is necessary and convenient, i.e., there
exists at last one NOD that requires to pickup from it. The number of NODs used
increases because the number of available and convenient ODEs increases, hence,
the cost related to compensation of these drivers decreases.

Comparing the results on A1 and A2, on average, we may observe a more evident
cost saving for the set A2. In fact, when increasing the number of neighborhoods,
the number of CODs and NODs used increases of about 81%, while focusing on A2
this number increases more than double. Table 4 shows that, when the number of
neighborhoods is increased, almost all costs, all drivers and occasional depots used
for the instances belonging to A2 are subject to a greater variation than that observed
for those belonging to A1, whereas CostNOD in A2 is subject to a smaller variation
than that in A1. This is justified by the decrease in the cost for each NOD. In fact,
the cost for each of them, on average, has a decrease of 32% and 41% for q = 6
with respect to q = 2, for the instances belonging to A1 and A2, respectively.

In addition, we observe an increase of 38% in A1 and 15% in A2 on average in
the cost for each COD for q = 6 with respect to q = 2. It follows that for q = 6, the
CODs take a longer deviation than that taken for q = 2. Whereas, we may observe
a decrease of the routing cost for the NODs. Overall, we have a reduction of the
total cost for increasing q , since the reduction of CostNOD suffice the increasing in
CostCOD .

The average numerical results related to the instances belonging to B1 and B2,
are reported in Table 5. The column u shows the number of available CODs. For
each value of u we considered 12 instances. The superscript near the number in the
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column #ODEs represents the total number of ODEs supplied from other ODEs,
in all the considered instances.

The results show, as expected, that increasing the number of CODs available
implies both a decrease in the total cost and an increase in the ODEs activated. This
behavior can be justified by considering two aspects. First of all, the presence of
a high number of CODs increases the possibility of finding convenient ODEs to
supply from the central depot. Secondly, the number of ODEs supplied from other
ODEs increases as indicated by the superscript numbers in the #ODEs column. The
latter is the most interesting behavior. Indeed, it is possible to find configurations
in which an ODE is served even if it is not convenient to activate it individually,
because it is cheaper than the NODs delivery to customers directly. The increase in
cost to supply a first ODE is compensated by the activation of a second one, which
is served starting from the first. In this case, the former is often used by both groups
of occasional drivers.

An interesting aspect that we may observe is that in B1 a higher number of
ODEs are used than that used for the instances belonging to B2. On the one hand,
comparing the results obtained for the instances belonging to B2 with those of B1,
we observe an increase of CODs who have to supply the activated depots. Therefore,
there is an increase in the total cost for both the routing of the CODs and the
activation of the ODEs. On the other hand, the number of NODs remains almost
unchanged but the cost for each of them increases, on average. This is justified by
the fact that the activated ODEs for B1 are closer to the NODs than the activated
ODEs for the instances belonging to B2. Comparing the results obtained for the
instances belonging to B1 and B2, we may conclude that the farther the NODs are
from the central depot, the more it is convenient to encourage the activation of ODEs
by increasing the number of CODs. Indeed, the savings on the total cost for the
instances belonging to B1 are more evident than those observed for the instances
of B2.

5 Conclusions

In this paper, we introduced a variant of the vehicle routing problem with occasional
drivers and time windows (VRPODTW) where occasional depots (ODEs) are
considered. These depots are either shops, existing lockers or small stores located
in the urban areas, that are activated only if it is necessary. The fleet of occasional
drivers (ODs) is composed of two main classes of drivers with different operations
and compensations: drivers belonging to the first one (CODs) carry parcels from the
central depot to the activated ODEs, whereas the second one (NODs) are dedicated
to serve the customers picking up the parcels from either the central depot or the
activated ODEs. It is allowed the CODs to transfer parcels among the ODEs.

We propose a mixed-integer programming model for the problem. We analyze
the behavior of the considered transportation system by solving the model on a set
of small-size instances generated starting from benchmarks for the VRPODTW.
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The results showed that the availability of ODEs allows cost savings. In addition,
the presence of both groups of occasional drivers induces an efficient and effective
organization of the delivery process. In particular, the routing cost for the NODs
decreases for increases number of activated ODEs. In addition, the presence of the
CODs allows the replenishment of the activated ODEs profitable. The cost paid to
activate the ODEs is sufficed by the efficient usage of both CODs and NODs. Hence,
we observe an overall reduction of the transportation cost.

For future work we intend to develop heuristics and exact approaches for the
proposed model and to extend the testing on large-size instances.
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Branch and Bound and Dynamic
Programming Approaches for the Path
Avoiding Forbidden Pairs Problem

Daniele Ferone, Paola Festa, and Matteo Salani

Abstract We propose a branch and bound (B&B) and a dynamic programming
algorithm for the Path Avoiding Forbidden Pairs Problem (PAFPP). Given a network
and a set of forbidden node pairs, the problem consists in finding the shortest path
from a source node s to a target node t , avoiding to traverse both nodes of any
of the forbidden pairs. The problem has been shown to be NP-complete. In this
work, we describe the problem, its mathematical model and we propose two exact
algorithms. We compare their performances against those of a commercial solver
solving instances for two different graph topologies: fully random graphs and grid
graphs.

Keywords Branch and bound · Dynamic programming · Constrained shortest
paths · Forbidden pairs

1 Introduction

In this work, we study the Path Avoiding Forbidden Pairs Problem (PAFPP). The
problem asks to find the shortest path between two nodes s and t in a given weighted
directed graph G = (V ,A) or recognize that such path does not exist. The shortest
path should not visit both nodes belonging to a set F ⊂ (V ×V ) of node pairs called
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forbidden pairs. Paths containing at most one vertex from each pair in F are called
F -paths.

The PAFPP has been introduced in [12, 15] to design test cases for automatic
software validation, where the nodes of the graph represent segments of code and
edges represent the control flow. The goal is to cover the graph with s − t paths
corresponding to different test cases, introducing forbidden pairs which identify the
mutually exclusive code segments.

A special case of PAFPP arises in bio-informatics, tackling the problem of
peptide sequencing via tandem mass spectrometry. Chen et al. [3] model the peptide
sequencing as a PAFPP on a directed acyclic graph.

PAFPP emerges in Ferone et al. [6] as a subproblem of the constrained shortest
path problem named Constrained Shortest Path Tour Problem (CSPTP). Authors
reduce the CSPTP to the PAFPP and solve it with a branch and bound strategy.

Lastly, Ceselli et al. [2] solve a rich Vehicle Routing Problem using Branch
and Price. Here the PAFPP structure emerges in the pricing problem modeling
compatibility constraints between customers.

Gabow et al. [9] proves the NP-hardness of PAFPP, which is polynomially
solvable under skew symmetry conditions [16]. Kolman and Pangrác [10] studies
the complexity of PAFPP under different assumptions, showing that the problem
remains NP-complete even if the graph is planar or presents an halving structure,
but it becomes polynomial when the graph has a hierarchical structure. These results
are extended in [11], proving that the PAFPP is NP-hard when the set of forbidden
pairs has an overlapping structure or is sorted. Finally, Blanco et al. [1] presents a
polyhedral study of the PAFPP.

The paper is organized as follows. In Sect. 2 we present the mathematical model
of the problem. In Sects. 3 and 4 we present the solution approaches and the
computational results, respectively. In Sect. 5 we conclude and discuss some future
work.

2 Mathematical Formulation

Let G = (V ,A) be a weighted directed graph, where V = {1, . . . , n} is the set of
nodes, and A = {(i, j) ∈ V ×V : i, j ∈ V ∧i �= j } is the set of m arcs. Let C : A →
R
+
0 a function that assigns a non-negative cost cij to each arc (i, j) ∈ A. For each

node i ∈ V , let FS(i) = {j ∈ V : (i, j) ∈ A} and BS(i) = {j ∈ V : (j, i) ∈ A}
be the forward star and backward star of node i, respectively. Given a source node
s ∈ V and a destination node t ∈ V , the PAFPP can be modeled with the following
0 − 1 integer program:

min
∑

(i,j)∈A

cij xij (1a)

s.t.
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∑

j∈FS(i)

xij −
∑

j∈BS(i)

xji =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = s;
−1, i = t;
0, otherwise;

(1b)

∑

j∈BS(a)

xja +
∑

j∈BS(b)

xjb ≤ 1 ∀ (a, b) ∈ F (1c)

xij ∈ {0, 1} ∀ (i, j) ∈ A. (1d)

The objective function (1a) minimizes the path length. Constraints (1b) model
the flow balance at each node. Constraints (1c) guarantee that two nodes belonging
to a forbidden pair are never visited simultaneously.

3 Solution Approaches

In this section, we describe two exact approaches to solve the PAFPP. In particular,
we present a branch and bound algorithm (B&B) in Sect. 3.1, and a dynamic
programming algorithm in Sect. 3.2.

3.1 Branch and Bound Approach

Observing the mathematical model (1a)–(1d), it is evident that relaxing the con-
straints (1c) we obtain the model of a Shortest Path Problem (SPP), which is
polynomially solvable (for example, with the Dijkstra’s algorithm [5]).

Therefore, we devise a B&B algorithm using a polynomial algorithm for the SPP
to compute a combinatorial bound and performing branching operations when the
optimal solution of the relaxation results infeasible for the PAFPP.

Let Gt be the graph associated to a generic iteration t of the B&B, let P t be the
optimal solution of the relaxed problem PAFPP t

R on Gt and let UB be the value of
an incumbent feasible solution. If the value of P t is not less than UB, then the graph
Gt does not contain any improving solution and P t can be disregarded. Instead, if
P t does not contain any forbidden pair, then it is also feasible for PAFPP defined
on G and it improves the incumbent solution. On the contrary, if P t contains both
nodes of any forbidden pair, two sub-problems are generated.

In particular, let (v,w) one of the forbidden pairs violated by P t , two graphs Gt1

and Gt2
are generated and associated to the branching nodes t1 and t2, respectively.

The graphs Gt1
and Gt2

are obtained removing from Gt the nodes v and w,
respectively. More formally, At1 = At \ {v} and At2 = At \ {w}.

Obviously, as in classic B&B framework, if the sub-problem of iteration t is not
feasible – i.e., it does not exist an s − t path due to the removed nodes—the node is
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not further branched. The incumbent best solution found is optimal and returned as
final solution.

3.2 Dynamic Programming for PAFPP

Dynamic programming have been extensively and successfully applied to con-
strained shortest path problems [4, 7]. Therefore, we solve PAFPP to optimality by a
bi-directional dynamic programming algorithm [13] implementing the Decremental
State Space Relaxation (DSSR) strategy [14].

A state associated with vertex i ∈ N represents a partial path from the source
node s to the node i. Different states can be associated with the same node and they
correspond to different partial paths.

The dynamic programming algorithm iteratively extends states until no further
extensions are possible. Among all feasible states reaching the destination node d

the one with minimal cost represent the optimal solution to PAFPP.
Each state is encoded in a label, in bi-directional dynamic programming called

forward and backward labels. A forward label associated with node i ∈ N is a tuple:

l
f
i = (i, ci , S, B), (2)

where i is the last node visited in the partial path, ci is the accumulated cost, S is
a binary vector that keep tracks of the visited nodes in the partial path and B is a
binary vector with size |B| = |F |. In vector B, bj ∈ B = 1 indicates that one of the
nodes belonging to the j th forbidden pair is visited along the partial path. Note that,
S does not keep any information about the order in which the vertices are visited.
Similarly, a backward label associated with node i ∈ N , corresponding to paths
from node i to destination node d , is a tuple:

lbi = (i, ci, S, B), (3)

where tuple’s elements have the same meaning as those of forward labels.
The dynamic programming algorithm extends all feasible forward and backward

labels to generate new forward and backward labels. The extension of a forward
label corresponds to appending an additional arc (i, j) to a path from s to i,
obtaining a path from s to j , while the extension of a backward label corresponds
to appending an additional arc (j, i) to a path from i to d , obtaining a path from j

to d .
The binary vector B is used to avoid visiting pair of nodes belonging to a

forbidden pair while vector S is used to avoid cycles. Anyway, as the cost matrix
is non-negative and triangular inequality holds, all partial paths with cycles are
suboptimal and can be safely ignored. When a label li = (i, ci , S, B) is extended
to a vertex j , a new label lj = (j, cj , S

′, B ′) is generated. The update rules of the
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vectors S and B are as follows:

S′
k =

{
Sk + 1, k = j ;
Sk, k �= j ; (4)

B ′
k =

{
Bk + 1, (a, b)k ∈ F, ak = j ∨ bk = j ;
Bk, otherwise.

(5)

A label li = (i, ci, S, B) is feasible if Sk ≤ 1 and Bf ≤ 1 for all k ∈ N and all
f ∈ F , respectively.

The effectiveness of dynamic programming depends on the number of generated
labels. In order to control the number of labels, dominance tests are performed. Let
l′ = (i, c′i , S′, B ′) and l′′ = (i, c′′i , S′′, B ′′) be two labels associated with node i. l′
dominates l′′ and label l′′ can be safely discarded only if

c′i ≤ c′′i ; (6)

B ′
f ≤ B ′′

f , ∀f ∈ F (7)

and at least one inequality is strict. Please note that only vector B participates in the
domination criterion.

In bi-directional dynamic programming forward and backward labels are joined
to produce complete paths from node s to node d . Let l

f
i = (i, c

f
i , Sf , Bf ) a

forward label and lbi = (i, cb
i , S

b, Bb). The join is feasible if

S
f
k + Sb

k ≤ 1, ∀k ∈ N; (8)

B
f
f + Sb

f ≤ 1, ∀f ∈ F. (9)

The join condition ensures that the final path does not contain cycles nor visit both
nodes of a forbidden pairs. Even if the vector S is not included in domination
conditions, it is guaranteed that none of the optimal paths is eliminated. Indeed,
suppose that a join operation is prohibited because a node k is visited in both forward
and backward labels. As the cost matrix is positive and triangular inequality holds,
there must be non dominated forward and backward labels where node k is not
visited and the join is feasible and more profitable.

We reduce the number of labels by selecting a monotone resource and extend
labels for which the resource consumption is less than half of a given threshold T .
In PAFPP, the only available monotone resource is the accumulated cost. In order
to apply the bi-directional dynamic programming algorithm we compute an upper
bound to the optimal cost c̄∗ as the threshold T .

Decremental state space relaxation (DSSR) introduced by Righini and Salani
[14] aims at reducing the number of states to be explored by dynamic programming.
For PAFPP, the basic idea is that not all forbidden pairs are tracked in the vector B
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and are therefore not imposed in the domination criterion. If the optimal solution
visits both nodes of a forbidden pair, the corresponding pair is added to the vector
B and the process is iterated. We remark that at each iteration a lower bound to the
optimal solution is computed.

4 Computational Results

We present some preliminary results to compare the performances of DSSR and
B&B against those of a commercial solver (IBM CPLEX) directly solving the
model (1a)–(1d). A time limit of 10 min has been used for each solution method.

The instances were randomly generated through an adaption of the generator
presented in [8] and can be divided in two classes: fully random and grid graphs.

The number m of edges in the random graphs has been selected to be
in {5 · n, 10 · n, 15 · n}, where n = |V |. The total number of forbidden
pairs for each instance is in {25 · n, 30 · n, 35 · n}. Since the grid graphs
are more sparse, the number of forbidden pairs in grid graphs ranges in
{�6.25 · n� , �12.50 · n�, �18.75 · n� , �25 · n� , �30 · n�}.

Each combination of graph size characterizes a collection of similar instances,
denoted as {R1, . . . , R9,G1, . . . ,G3}. Each random (grid) collection contains 30
(50) different instances of the same type, 10 for each different number of forbidden
pairs. The characteristics of the data-set are summarized in Table 1.

The computational results obtained by CPLEX, B&B, and the dynamic program-
ming approach (DSSR) are reported in Table 2. For each instance type, we report
the time spent by the algorithms in solving instances of that type (avg. time), and
the number of instances of that type for which a proved optimal (O) solution has
been found.

The results highlight that in spite of their size the random graphs are much easier
to solve respect to the grid networks. This was an expected result, since random
graphs are denser respect to the grid graphs, it is therefore much easier to find an

Table 1 Instance parameters Fully random graphs Grid graphs

Problem Nodes Arcs Problem size

R1 1500 7500 G1 200 × 200

R2 1500 15,000 G2 200 × 400

R3 1500 22,500 G3 300 × 300

R4 2000 10,000

R5 2000 20,000

R6 2000 30,000

R7 2500 12,500

R8 2500 25,000

R9 2500 37,500
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Table 2 Experimental
results

CPLEX B&B DSSR

O Avg. time O Avg. time O Avg. time

G1 27 363.28 18 387.05 10 481.58

G2 28 382.40 30 314.45 14 452.67

G3 23 362.71 27 283.32 15 434.85

Average 26 369.46 25 328.27 13 456.37

R1 30 1.35 30 0.00 30 0.00

R2 30 2.89 30 0.00 30 0.01

R3 30 4.63 30 0.00 30 0.01

R4 30 1.97 30 0.00 30 0.01

R5 30 3.94 30 0.00 30 0.01

R6 30 6.46 30 0.00 30 0.01

R7 30 2.48 30 0.00 30 0.01

R8 30 5.32 30 0.01 30 0.01

R9 30 8.59 30 0.01 30 0.02

Average 30 4.18 30 0.00 30 0.01

alternative path that does not violates any forbidden pair. For random graphs, all
the algorithms are very fast (less than 5 s in average). Both B&B and DSSR get the
optimal solution for all the instances. It is worthy to note that all the instances were
generated to be non-trivial, i.e. the simple shortest path s − t contains at least one
forbidden pair.

On the other hand, the grid graphs are more challenging. In this case, CPLEX
misses the optimum in 54 out of 150 cases, B&B is not able to find the optimal
solution in 48 cases, and DSSR fails in 111 cases. This is caused by the sparsity of
the grid graphs that induces a lower number of feasible s − t paths.

Figure 1 illustrates the number of optimal solutions found with respect to the
ratio of forbidden pairs over the number of nodes in the network. The B&B and
CPLEX approaches show a decreasing trend: for an increasing number of forbidden
pairs, the instances become more challenging and, generally, the methods find less
optimal solutions. Instead, the DSSR does not seem to be strongly influenced by the
number of forbidden pairs as no clear trend is visible.

These are preliminary results, but they give valuable information. When instances
are not extremely challenging (Random), both B&B and DSSR perform well
presenting an high converge speed to the optimum. Meanwhile, on sparse graphs
B&B has similar performances with respect to CPLEX, but solving a higher number
of instances. DSSR is the worst approach on these problems. Nevertheless, we
believe that DSSR can be strongly improved with the use of an upper bound that
permits to prune many feasible labels.
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Fig. 1 Optimal solutions found on grid graphs with respect to the relative number of forbidden
pairs

5 Conclusions and Future Work

This paper presents the Path Avoiding Forbidden Pairs Problem (PAFPP). We
propose two exact algorithms to solve the problem to proven optimality: a branch
and bound (B&B) algorithm and a dynamic programming (DSSR) algorithm. Some
preliminary results are compare the performance of the methods against those
of a commercial solver. The results evidence that on Random instances the two
approaches are very performing. On the other hand, on sparse instances B&B seems
to be equivalent to CPLEX while DSSR needs to be improved.

As future research perspectives, we are sure to be able to obtain a better upper
bound to improve the performance of DSSR and we plan to better investigate the
instances’ properties that have an impact to the performance of the algorithms.
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Revenue Management Approach for
Passenger Transport Service: An Italian
Case Study

Francesca Guerriero, Martina Luzzi, and Giusy Macrina

Abstract The main aim of the revenue management (RM) techniques is to sell the
right product to the right customer, at the right time and price, trying to anticipate
customers’ actions, hence, optimizing the sales. RM has been successfully applied
in numerous industries, such as airlines, hotels, car rentals, ferry lines, and cruise. In
this work, we focus on the passenger transport service. Even though, this industry
presents general characteristics to an effective and efficient implementation of a
RM process, RM in bus passenger transport has received limited attention. Recently
this sector has been deregulated and liberalized, thus bus companies are free to
vary their prices, timetable, routes, and services. Hence, the use of RM represents
a key factor for companies that must operate in a highly competitive market. We
consider the problem of a bus transport company which provides transport service
from a given set of origins to a given set of destinations, on a given time horizon.
We define a dynamic programming formulation and a linear approximation for
the problem under study. The proposed linear approximation, representing the
bus seat assignment problem), is tested empirically on the basis of an extensive
computational phase with reference to an Italian bus company. The computational
experiments reveal that the proposed model could help the bus transport company
to control the capacity levels, to improve customer service and bus utilization, by
maximizing the revenue.
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1 Introduction

The ever-increasing and continuous movement of people around the world for
various purposes (e.g., study, work, pleasure) and with different transport modes
(i.e., train, airplane, bus, car) has caused a widely expansion of passenger transport
service, both public and private. Since mobility is central to the whole of society,
offering very efficient and effective services to customers is a critical issue for all
the companies operating in this sector. Disruptive innovations in passenger transport
service can be treated in different ways. There are techniques based on business
model theories (i.e., Flixbus in the bus sector or Uber in the car one) and others
based on revenue management (RM) approaches, both are catalysing the research in
this field and are paving the way to new paradigms of business in passenger transport
[1].

In this paper we focus on the bus market. The bus demand has significantly
increased in recent years, and the revenue of the bus segment is projected to reach
24,034m US dollars in 2025 (www.statista.com). The regularization of the bus
transport sector strongly affected the growth of the bus market after 2005. The
main intent of the Transport Regulation Authority (ART) has been to regulate
the buses transport services periodically offered to people, for connecting more
than two regions. Before the legislative decree (n. 285/2005), that replaced the
previous law (28 September 1939, no. 1822), a particular line/service was provided
exclusively by one company and no other ones could offer the same service within a
radius of 30 km; hence, there was an exclusive service concession regime. After the
regularization and liberalization, a concession-based market has been introduced;
hence, a service could be provided by several companies and it is not longer
exclusive. After the liberalization, on the one hand companies have started to
propose their transport plans, showing a wide variety of service offers; on the other
one, the demand has started to growth, revealing the great potential of this sector.
The Italian market has opened up to other world-renowned competitors operating
in long-distance bus market, which have introduced new business models and low
cost prices. This resulted in a significant increase in the offer and a global lowering
of prices, as well as a substantial growth of quality in service. Meantime, the
national operators had to face off the increase in the number of competitors from
all over Europe. In this context, in order to gain both market share and revenue
maximization, the implementation of RM policies plays a crucial role. We address
the problem of assigning bus seats to different customers, with booking requests
arising dynamically and randomly with time, with the aim of maximizing the
expected revenue. A dynamic programming formulation is developed to represent
the problem under study. To handle the curse of dimensionality, we also propose
and empirically validate a linear programming approximation, that is a bus seat
allocation problem.

The rest of the paper is structured as follows: Sect. 2 describes the state-of-art on
RM and the seat allocation problem in the case of bus passengers transport service.
Section 3 presents a dynamic programming formulation for the seat allocation

www.statista.com
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problem, whereas a description of the proposed linear programming approximation
(i.e., the bus seat assignment problem) is provided in Sect. 4. Section 5 discusses
the computational experiments, and finally, Sect. 6 summarizes the conclusions and
provides the future directions.

2 Revenue Management and Seat Allocation Problem

In this section, we firstly review several works addressing the RM and its applica-
tions; secondly, we analyse the state of the art related to the seat allocation problem.

2.1 Revenue Management

The deregulation of U.S. airline industry was a key event in the development of RM
methodology. Before the approval of the Airline Deregulation Act in 1978, airlines
operated in a tightly regulated environment; controlled by governments and the U.S.
Civil Aviation Board (CAB) [14]. After the deregulation, the airlines were free to
vary their prices, timetables, routes and services, without requiring any authorization
from the CAB, with a consequently increase in competition.

In this new framework, the formulation of models aimed at optimally selling
a fixed and perishable inventory within a given time horizon, has become an
important issue. Nowadays, the main challenge is to define integrated RM systems
including increasingly sophisticated approaches in order to model, estimate and
forecast demand, as well as optimize subsequent management decisions with a
high level of automation. In [9] a review of the most recent RM applications is
provided. In particular, the authors classified and generalized the areas that have
received most attention in the following main categories: opaque products, flexible
products, upgrading, overbooking, penalisation and risk aversion. In the sale of
opaque products, some characteristics of the products are kept hidden until the sale
is completed (for example the seat on the plane or the name of the hotel), allowing
to attract more demand and implementing price discrimination to increase revenues
(see, [6]). Flexible products refer to the specific situation, in which, for each product,
a set of equivalent alternatives is available (see, [4]). Thus, the seller can assign
an alternative product to the purchaser close to the service time. This allows to
delay the decision of assigning a given element, characterizing the product, until the
levels of uncertainty are sufficiently low compared to the levels of future demand;
with a consequent optimization of the capacity utilization. Upgrading allows the
seller to satisfy the demand for a lower quality product with a higher quality one,
selected from a series of hierarchically ordered substitutes. Usually, an upgrade
is provided at no additional cost to the customer. Therefore, they differ from the
practice of upselling (or paid upgrades) that pushes the customers to buy high
quality products at a discounted price. Upgrading is often used in the car rental
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market (see, [5]). Overbooking is one of the oldest RM practice, widely used in
passenger air transport (see, [11]). It consists in selling more products (i.e., seats
in the passenger air transport) than the available capacity. A penalty has to be paid
if the customer’s demand is not satisfied. Personalization consists in proposing to
the customer a targeted offer based on his/her characteristics, collected through
particular analysis and data mining techniques (see, [17]). Finally, RM is also used
for making decisions that minimize certain risk measures.

2.2 Seat Allocation Problem

The application experience shows that RM is a valuable management method for
the enhancement of transport efficiency [15]. Since the quantity of resources (i.e.,
the seats) is limited, maximizing the revenue by optimizing the use of the capacity-
constrained resources is a major challenge for transport companies. Introducing RM
techniques in passengers transport sector could be a useful strategy to maximize
the revenues, by determining the optimal quantity of seats to be allocated. In the
airline industry this problem is also known as the booking limit control problem,
and it was widely studied in this application field (see, e.g., [3, 12]). Recently,
some contributions related to the use of RM techniques in the rail sector have
been published. Some authors assume a deterministic passenger demand (see, e.g.,
[10, 16]), other analyze a probabilistic demand (see, e.g., [2, 16]). Few studies
address the joint rail pricing and seat allocation problems (see, e.g., [7] and [8]).
Scarce attention has been devoted to the bus market. Even if the management of
seats in airline sector is very different than that of railway and bus, the allocation
problems studied with reference to the airline and railway sectors could be adapted
to handle the main features of the bus transport market. However, it is crucial
identifying the main differences among these three applications. The airline and
railway have more classes, characterized by different prices. In the bus transport
there is often a unique class of service instead. In addition, in airline each leg is
single (i.e., it has a unique boarding and a unique landing), this assumption is not
reasonable for railway and bus. In bus and railway applications, there are often more
stops along the same line, in other words we must control seat capacity by taking
into account multi time stage and capacity changes. Hence, a bus seat allocation
problem is a multi leg single fare problem that has the purpose of allocating the
demand of seats for a set of legs in order to maximize the overall revenue. The term
“single fare” denotes that every tickets for a seat, for a specific leg, on a specific
line, has an own price. A recent scientific contribution on seat allocation problem for
bus transport is [13], which proposes a methodology for optimizing the operational
integration of multiple bus lines, to address the spatial non-uniformity of passenger
demand. The authors applied five operational strategies: full-route operation, short
turn, limited stop, deadheading, and a mixture of either two or three of the latter
three strategies. They tested and compared their strategies on a real-case study,
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demonstrating that the effectiveness of combined strategies is higher than that of
any single strategy.

3 A Dynamic Programming Formulation for the Seat
Allocation Problem

We consider a passenger transport company that offers a transport service from a
given set of origins to a given set of destinations. The company sells a set of products
to several customers on a given time horizon. In the considered scenario, we define a
product as an origin-destination (OD) transport service, performed by a bus. At each
time of the planning horizon, the company has to decide how to manage the overall
capacity in the most profitable way, taking into account that complete information
on the future demand is not available.

Let I = {i1, . . . , in} denote the set of n origins and J = {j1, . . . , jm} the set
of m destinations. A generic product is denoted as the pair {(i, j) : j > i, i ∈
I, j ∈ J } and represents the OD transport service from the bus station i to the bus
station j . All the products are sorted in increasing order of the origin bus station and
stored in the set (IJ ), that is (IJ ) = (i1, j1), . . . , (i1, jm), (i2, j1), . . . , (in, jm).
The products offered by the company can be indexed as p = (1, . . . , |(IJ )|). We
assume that the company performs the transport service using a set of buses, each
of them characterized by a given seating capacity. The buses spread over K lines,
k = 1, . . .K and Ck represents the capacity of line k that is the seating capacity of
the bus, which runs on the line k. Each line k consists of a given number of stops
denoted as Sk + 1 including the starting and the terminal bus stations and Sk legs
between each two bus stations. All the products (i.e., OD transport service) produced
by each line k, k = 1, . . . ,K are stored in a sequence according to the incremental
order of j and i, that is (IJ )k = (1, 2)k, . . . , (1, Sk + 1)k, (2, 3), . . . , (Sk, Sk + 1).
After numbering all the products in (IJ )k from left to right, we can get the product
sequence indexed by the serial number pk = (1, . . . , |(IJ )k|).

Let Bk = bk
spk , s = 1, . . . , Sk, pk = 1 . . . , |(IJ )k| denote a binary matrix, each

element being equal to 1 if product pk generated by the line k uses leg s and zero
otherwise. Each column of matrix Bk contains all the information related to the legs
involved in the OD transport services provided by the line k. An example of matrix
Bk for a line with Sk = 4 stops and 6 products is reported in Fig. 1.

We assume that different lines can deliver the same OD transport service from i

to j , that is alternative products are available. Thus, in order to handle this specific

Fig. 1 Representation of the
matrix B, for a line with four
stops and six products

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

(1, 2) 1 1 1 0 0 0

(2, 3) 0 1 1 1 1 0

(3, 4) 0 0 1 0 1 1
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situation, a binary variable γ k
p is introduced to denote the relationship between

product p and line k. In particular, γ k
p = 1, if the transport service p can be delivered

by the line k, that is (i, j) ∈ (IJ )k , and zero otherwise.
Time is discrete, there are T booking periods indexed by t , which runs forward;

consequently, t = 1 is the first possible booking time.
At each time period t = 1, . . . , T of the booking horizon, the company has to

decide on accepting/denying the request of a customer asking for a product p, that
is an OD transport service.

The main goal is to maximize the total revenue coming from the accepted
requests on the booking horizon.

The capacity of the system depends on the number of available seats for each line
k = 1, . . .K and can be described by the following matrix:

X(t) =

⎛

⎜
⎜
⎝

x1
1 · · · xk

1 · · · xK
1)

...
. . .

...
. . .

...

x1
S1 · · · xk

Sk · · · xK
SK

⎞

⎟
⎟
⎠

whose generic column xk = (xk
1 , . . . , xk

Sk )
T represents the resource availability

(i.e., the number of available seats) for each leg s = 1, . . . , Sk of the line k.
It is assumed that, in each time-period t of the booking horizon, at most one

request for a transport service can arrive. Let λt
p denote the probability that, at time

t , one booking request for a product p is made.
It holds that λt

0 +
∑T

t=1
∑|(IJ )|

p=1 λt
ij = 1, where λt

0 represents the probability that
no booking request arrives at time t .

Let us introduce the boolean variables μtk
p , with μtk

p = 1 if and only if a
request for a product p is satisfied at time t with line k. Let Rp be the revenue
obtained by satisfying a request for a product p. The problem can be formulated as
a dynamic program by letting Vt(X) be the maximum expected revenue obtainable
from periods t, t + 1, . . . , T given that, at time t , the system capacity is X.

The Bellman equation for Vt(X) is reported in what follows:

Vt(X) =
|(IJ )|∑

p=1

λt
p max

μtk
p ∈{0,1}

{k: γ k
p=1}

[
Rpμtk

p + Vt+1(X̃)
]
+ λt

0Vt+1(X)

with boundary conditions:

Vt (0) = 0, ∀t;
VT+1(X) = 0, if xk

s ≥ 0 for all s = 1, . . . , Sk, for all k

Vt (X) = −∞, if xk
s < 0 for some s ∈ Sk, k
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We denoted by X̃ the matrix obtained by appropriately updating the system capacity.
It is worth noting that the update of the capacity is related to following event: at time
t a request for a product p occurs. The passenger transport company can accept or
deny the current request. If the request is accepted by using product pk of the line
k, we need to update the leg capacities by decreasing the seats availability on all the
legs involved in pk .

4 A Linear Programming Approximation: The Bus Seat
Assignment Problem

The proposed dynamic programming model is unlikely to be solved optimally due
to the curse of dimensionality. In what follows, we present a linear programming
approximation of the problem, that is the bus seat assignment problem (BSAP, for
short) that can be used to define several revenue management policies. Starting from
the dynamic programming problem, in the linear programming approximation, we
replace stochastic quantities by their mean values and we assume that capacity and
demand are continuous. Let be:

• d the random cumulative future demand at time t , and d̄ its mean. In particular,
dp is the aggregate number of requests for the product p;

• Rp the revenue associated with the product p;
• yk

p the number of products produced by the line k used to satisfy the demand for
the product p;

• γ k
p , p = 1, . . . , |(IJ )|, if the product p can be delivered by using the line k and

zero otherwise;
• bk

spk , s = 1, . . . , Sk, pk = 1 . . . , |(IJ )k| equal to 1 if the leg s is used in the

product pk and zero otherwise. bk
spk is an element of the matrix B introduced in

the previous section.
• the resource matrix X, whose generic column vector k, xk = (xk

1 , . . . , xk
Sk )

T ,
associated to the line k, k = 1, . . . ,K indicates the number of available seats for
each leg s = 1, . . . , Sk of the line k.

The total revenue achievable by the passenger transport company at time t , when
the system capacity is X can be determined by solving the following optimization
problem:

Max

|(IJ )|∑

p=1

Rp

∑

k∈K

γ k
pyk

p (1)

K∑

k=1

γ k
pyk

p ≤ d̄p p = 1, . . . , |(IJ )| (2)
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|(IJ )k|∑

pk=1

bk
spk

|(IJ )|∑

p=1

γ k
pyk

p ≤ xk
s k = 1, . . . ,K, s = 1, . . . , Sk (3)

yk
p ≥ 0, integer p = 1, . . . , |(IJ )|, k = 1, . . . ,K (4)

The objective function (1) represents the total revenue obtainable at time t when
the residual capacity of the system is X. Constraints (2) state that the demand for a
transport service p can be satisfied with all the products generated by all the lines
k, k = 1, . . . ,K , that can deliver the considered transport service. Equations (3)
control the seat availability for each line k = 1, . . . ,K , finally, constraints (4) define
the variables domain.

5 Computational Experiments

In this section, we present the computational results obtained by solving the model
described in Sect. 4, using AIMMS 4.75.3.6 and the commercial solver Cplex 10.1,
on an Intel Core i7-8565U CPU, 1.8 GHz, 8 GB of RAM.

Instances For our computational tests, we have considered a real Italian case study.
In particular, the instances used in this study are based on real data derived from
www.simetbus.it, the web site of the Simet S.p.A., a bus company operating in the
south of Italy. Each instance is characterized by a given number of lines, with a
capacity of 50 seats, and each line is composed of a given set of origin-destination
products or rides. A price is associated to each product. Lines, products and prices
are taken from the Simet on-line website. Table 1 shows the features of the instances.

We considered three lines and 55 cities (origin or destination) numbered in
ascending order. Lines are depicted on the columns. Each line is characterized by a
set of OD products. In particular, the first line has 17 OD products, reported on the
rows, with different origins but the same destination (i.e., 53). Line 2 is composed
of 69 OD products, while Line 3 of 57. Looking at Table 1 we may observe that
the lines have in common some rides. For example, the product 4–53 is present in
all the lines considered; hence, departing from the origin 4, it is possible to reach
the destination 53 by using all the three lines. The demand value for each ride is
estimated on the basis of a load factor, defined as the ratio between demand and
capacity of the line. In particular, assuming three values of load factor (1; 1.5; 1.8)
the demands are estimated multiplying the load factor and the capacity.

Numerical Results In our computational study, we compare two different seat
allocation strategies. In the former, we do not use the optimization model described
in Sect. 4, and the demand is allocated following a first in first out (FIFO) strategy;
hence, the requests are allocated following the arrival order. In the latter, the demand
is allocated on the basis of solution of the BSAP model. The collected results are

www.simetbus.it
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Table 2 Computational
results—Total revenue: BSAP
vs FIFO

Load factor BSAP [e] FIFO [e]

1 4659 4402

1.5 5258 4672

1.8 5361 4979

provided in Table 2, where the first column reports the load factor, the second one
the total revenues obtained by solving the BSAP model, and the third column shows
the revenue obtained using the FIFO strategy. All the revenues are expressed in e.

Looking at results depicted in Table 2, it is easy to notice that overall BSAP is the
most effective strategy. In fact, we may observe an increase in the revenue, compared
to the FIFO strategy, that is about the 5.8%, 12.5% and 7.7% when using a load
factor equal to 1, 1.5 and 1.8, respectively. In addition, solving the model does not
require high computational time, about 0.05 s on average. The BSAP model allows
to efficiently and effectively manage the seats assignment, allocating the products
with higher price, in order to maximize the total revenue. Indeed, the majority of
allocated seats are the most expensive ones. Hence, the strategy adopted is selling
less tickets but for the seats with the highest prices. To conclude, it is evident that the
application of the BSAP model, together with a revenue management policy based
on the dynamic determination of the price, could help the bus transport company to
achieve more suitable solutions in terms of revenue.

6 Conclusions and Future Work

In this paper, we considered the bus seat allocation problem to optimize the alloca-
tion of customers demand and maximize the overall revenue. In the computational
experiments, we made a comparison between the results obtained with and without
the application of the proposed model. The results highlighted that our model
provides more effective solutions than a common FIFO strategy. This model could
help the bus transport company to optimize the managing of resource-constrained
buses and, at the same time, maximizing the revenue. It is worth noting that the
bus seat assignment problem can be used as the baseline to define several revenue
management policies that can be applied and compared in future works, such as:
booking limits policy, bid price policy and opportunity cost policy. Furthermore, the
proposed model could represent a base for several interesting extensions. It is worth
noting that in our framework we considered a single line performed once per day,
thus, different departure times for the same destination are not taken into account.
Since the companies usually give the possibility to choose the departure time, an
interesting extension of this model could take into account this feature.



Revenue Management Approach for Passenger Transport Service: An Italian. . . 247

References

1. Ammirato, S., Felicetti, A.M., Linzalone, R., Volpentesta, A.P., Schiuma, G.: A systematic
literature review of revenue management in passenger transportation. Meas. Bus. Excell. 24(2),
223–242 (2020)

2. Ciancimino, A., Inzerillo, G., Lucidi, S., Palagi, L.: A mathematical programming approach
for the solution of the railway yield management problem. Transp. Sci. 33, 168–181 (1999)

3. Dror, M., Trudeau, P., Ladany S.P.: Network models for seat allocation on flights. Transp. Res.
B Methodol. 22(4), 239–250, 1988.

4. Gallego, G., Phillips, R.: Revenue management of flexible products. Manuf. Serv. Oper.
Manag. 6, 321–337 (2004)

5. Guerriero, F., Olivito, F.: Revenue models and policies for the car rental industry. J. Math.
Model. Algorithms Oper. Res. 13, 247–282 (2014)

6. Gönsch, J., Steinhardt, C.: Using dynamic programming decomposition for revenue manage-
ment with opaque products. Bus. Res. 6(1), 94–115 (2013)

7. Hetrakul, P., Cirillo, C.: A latent class choice based model system for railway optimal pricing
and seat allocation. Transp. Res. E Logist. Transp. Rev. 61, 68–83 (2014)

8. Hu, X., Shi, F., Xu, G., Qin, J.: Joint optimization of pricing and seat allocation with multistage
and discriminatory strategies in high-speed rail networks. Comput. Ind. Eng. 148, 106690
(2020)

9. Klein, R., Koch, S., Steinhardt, C., Strauss, A.K.: A review of revenue management: Recent
generalizations and advances in industry applications. Eur. J. Oper. Res. 284(2), 397–412
(2020)

10. Ongprasert, S.: Passenger behavior on revenue management systems of inter-city transporta-
tion. Technical report, Graduate School of Engineering. Kochi University of Technology,
Japan, 2006

11. Sierag, D.D., Koole, G.M., van der Mei, R.D., van der Rest, J.I., Zwart, B.: Revenue
management under customer choice behaviour with cancellations and overbooking. Eur. J.
Oper. Res. 246(1), 170–185 (2015)

12. Subramanian, J., Stidham, S., Lautenbacher, C.J.: Airline yield management with overbooking,
cancellations, and no-shows. Transp. Sci. 33(2), 147–167 (1999)

13. Tang, C., Ceder, A., Ge, Y.E., Wu, N.: Optimal operational strategies for multiple bus lines
considering passengers’ preferences. Transp. Res. Rec. 2674(5), 572–586 (2020)

14. Vinod, B.: Evolution of yield management in travel. Revenue Pricing Manag. 15, 203–211
(2016)

15. Wang, Y., Lan, B.X., Zhang, L.: A revenue management model for high-speed railway. In:
Ye, X.W., Ni, Y.Q. (eds.) Proceedings of the 1st International Workshop on High-Speed and
Intercity Railways, vol. 147, pp. 95–103. Springer (2012)

16. Wang, X., Wang, H., Zhang, X.: Stochastic seat allocation models for passenger rail
transportation under customer choice. Transp. Res. E Logist. Transp. Rev. 96, 95–112 (2016)

17. Wittman, M.D., Belobaba, P.P.: Dynamic availability of fare products with knowledge of
customer characteristics. J. Revenue Pricing Manag. 16(2), 201–217 (2017)


	Preface
	About This Book
	Contents
	About the Editors
	Part I Game Theory and Optimization
	Integer Programming Reformulations in Interval Linear Programming
	1 Introduction
	2 Interval Linear Programming
	3 Integer Programming Reformulations
	4 Computational Experiment
	5 Conclusion
	References

	On the Optimal Generalization Error for Weighted Least Squares Under Variable Individual Supervision Times
	1 Introduction
	2 Background
	2.1 Optimal Generalization Error Under WLS with Two Possible Individual Supervision Times

	3 Extension to M>2 Admissible Supervision Times per Example
	4 Possible Developments
	References

	On Braess' Paradox and Average Quality of Service in Transportation Network Cooperative Games
	1 Introduction
	2 Background
	2.1 Cooperative Games with Transferable Utility
	2.2 Transportation Network Cooperative Games
	2.3 Wardrop First Principle

	3 Utility Function Based on User Equilibrium
	4 An Illustrative Example
	5 Discussion
	References

	Optimal Improvement of Communication Network Congestion via Nonlinear Programming with Generalized Nash Equilibrium Constraints
	1 Introduction
	2 The Congestion Control Model and Its Variational Inequality Formulation
	3 The Optimal Network Improvement Model
	4 Numerical Tests
	5 Conclusions and Future Directions
	References

	A Note on Network Games with Strategic Complements and the Katz-Bonacich Centrality Measure
	1 Introduction
	2 Network Games
	2.1 Game Formulation and Variational Inequality Approach
	2.2 The Linear-Quadratic Model

	3 Bounded Strategies
	4 Numerical Example
	5 Conclusions and Further Research Perspectives
	References


	Part II Healthcare
	An Optimization Model for Managing Reagents and Swab Testing During the COVID-19 Pandemic
	1 Introduction
	2 The Model for Optimal Management of Reagents and Swab Testing
	2.1 Problem Description
	2.2 Parameters and Variables
	2.3 Objective Function
	2.4 Mathematical Modeling

	3 Numerical Examples
	3.1 Base Case with One Period of Time
	3.2 Case with More Periods of Time
	3.3 Case of Epidemic Outbreak and Self-Produced Reagent
	3.4 Case of Extended Period of Epidemic Outbreak

	4 Conclusion
	References

	Modelling and Solving Patient Admission and Hospital Stay Problems
	1 Introduction
	2 Problem Statement and a Sparse Optimization Model
	2.1 A Sparse Optimization Model for Patient Admission Scheduling Problems Under Uncertainty

	3 A Matheuristic Approach and Computational Results
	3.1 Instances and Parameters Setting
	3.2 Computational Results and Discussion

	4 Conclusions
	References

	A Two-Stage Variational Inequality for Medical Supply in Emergency Management
	1 Introduction
	2 Two-Stage Stochastic Model of the Competition for Medical Supply
	2.1 First-Stage Problem
	2.2 Second-Stage Problem

	3 Stochastic Generalized Nash Equilibrium
	3.1 Two-Stage Variational Inequality Formulation
	3.2 Lagrangian Relaxation Approach

	4 Conclusions
	References


	Part III Scheduling and Planning
	The Value of the Stochastic Solution in a Two-Stage Assembly-to-Order Problem
	1 Introduction and Motivation
	1.1 Paper Positioning

	2 The Decision Models
	3 Numerical Experiments
	4 Conclusions and Current/Future Research
	References

	Robust Optimal Planning of Waste Sorting Operations
	1 Introduction
	1.1 Literature Review

	2 Problem Definition and Modeling
	3 Experimental Results
	4 Conclusions
	References

	Solution Approaches for the Capacitated Scheduling Problem with Conflict Jobs
	1 Introduction
	2 Mathematical Formulations
	2.1 Arc-Time Formulation

	3 Heuristic Algorithm
	4 Experimental Evaluation
	5 Conclusions
	References


	Part IV Transportation and Logistics
	A decision Model for Enhancing Driving Security
	1 Introduction 
	2 Literature Review 
	3 Case Study 
	4 Computational Results
	5 Conclusions 
	References

	A Two-Echelon Truck-and-Drone Distribution System: Formulation and Heuristic Approach
	1 Introduction
	2 Problem Description
	3 Problem Formulation
	4 A Two-Stage Solution Approach
	5 Computational Results
	6 Conclusions
	References

	A Heuristic Approach for the Human Migration Problem
	1 Introduction
	1.1 Our Contribution and Organization of the Paper

	2 The Mathematical Model
	3 A Heuristic Approach
	4 Computational Experiments
	4.1 Instance Generation
	4.1.1 Configurations
	4.1.2 Random Generation
	4.1.3 Calibration

	4.2 Evaluation

	5 Conclusion
	References

	In-store Picking Strategies for Online Orders in Grocery RetailLogistics
	1 Introduction
	2 In-store Operational Optimization
	3 Experimental Simulation
	4 Conclusions
	References

	An Optimization Model for the Evacuation Time in the Presence of Delay
	1 Introduction
	2 The Mathematical Model
	3 Numerical Illustration
	4 Conclusions
	References

	Additive Bounds for the Double Traveling Salesman Problem with Multiple Stacks
	1 The DTSPMS
	2 Lower Bounding the DTSPMS
	2.1 Step 1: Feasibility Check
	2.2 Step 2: Routing Lower Bound
	2.3 Step 3: Repair

	3 Experimental Results on Lower Bound Tightness
	4 Branch-and-Bound
	4.1 Branching
	4.1.1 Branching Policy 1
	4.1.2 Branching Policy 2

	4.2 Lazy Bounding

	5 Experimental Results
	6 Conclusions
	References

	Crowd-Shipping and Occasional Depots in the Last Mile Delivery
	1 Introduction
	2 State of the Art
	3 Problem Description
	4 Computational Study
	4.1 Generation of Instances
	4.2 Numerical Results

	5 Conclusions
	References

	Branch and Bound and Dynamic Programming Approaches for the Path Avoiding Forbidden Pairs Problem
	1 Introduction
	2 Mathematical Formulation
	3 Solution Approaches
	3.1 Branch and Bound Approach
	3.2 Dynamic Programming for PAFPP

	4 Computational Results
	5 Conclusions and Future Work
	References

	Revenue Management Approach for Passenger Transport Service: An Italian Case Study
	1 Introduction
	2 Revenue Management and Seat Allocation Problem
	2.1 Revenue Management 
	2.2 Seat Allocation Problem

	3 A Dynamic Programming Formulation for the Seat Allocation Problem
	4 A Linear Programming Approximation: The Bus Seat Assignment Problem
	5 Computational Experiments
	6 Conclusions and Future Work
	References



