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Abstract. Computing a morph between two drawings of a graph is a
classical problem in computational geometry and graph drawing. While
this problem has been widely studied in the context of planar graphs, very
little is known about the existence of topology-preserving morphs for
pairs of non-planar graph drawings. We make a step towards this problem
by showing that a topology-preserving morph always exists for drawings
of a meaningful family of 1-planar graphs. While our proof is construc-
tive, the vertices may follow trajectories of unbounded complexity.

1 Introduction

Computing a morph between two drawings of the same graph is a classical prob-
lem that attracted considerable attention over the years, also in view of its numer-
ous applications in computer graphics and animations (refer to [1] for a short
overview). At high level, given two drawings Γa(G) and Γb(G) of the same graph
G, a morph between Γa(G) and Γb(G) is a continuously changing family of draw-
ings such that the initial one coincides with Γa(G) and the final one with Γb(G).
A standard assumption is that the two input drawings - as well as all intermediate
ones - are topologically equivalent, i.e., they define the same set of cells (see Sect. 2
for formal definitions). The main challenge is to design morphing algorithms that
maintain some additional geometric properties of the input drawings throughout
the transformation, such as planarity with straight-line edges (see, e.g., [1,16,25]),
convexity [6,34], orthogonality [12,26], and upwardness [20]. We point the reader
to [4,8,10,11] for additional related work.

In this context, the most prominent research direction focuses on morphs of
straight-line planar drawings: The topological equivalence condition implies that
all drawings in the morph have the same planar embedding; in addition, it is
also required that edges remain straight-line segments. Back in 1944, Cairns [16]
proved that such morphs always exist if the input graphs are plane triangulations.
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This implies that, for a fixed plane triangulation, the space of its straight-line pla-
nar drawings is connected. The main drawback of Cairns result is in the underly-
ing construction, which involves exponentially-many morphing steps. The exten-
sion of Cairns’ result to all plane graphs was initially done by Thomassen [34],
while later Floater and Gotsman [25], and Gotsman and Surazhsky [27,32] pro-
posed different approaches using trajectories of unbounded complexity. More
recently, Alamdari et al. [2] focused on the complexity of the morph. They
described the first morphing algorithm for planar straight-line drawings that
makes use of a polynomial number of steps, where in each step vertices move
at uniform speed along linear trajectories. In a subsequent paper [1], a linear
bound on the number of steps is shown, which is worst-case optimal.

Morphing non-planar drawings of graphs appears to be a more elusive prob-
lem. In particular, Angelini et al. [5] asked whether a morphing algorithm exists
for pairs of non-planar straight-line drawings such that the topology of the
crossings in the drawing is maintained throughout the morph. They stressed
that a solution to this problem is not known even if the vertex trajectories are
allowed to have arbitrary complexity. Note that the obvious idea of morphing the
“planarizations” of the drawings (i.e., the planar drawings obtained by treating
crossings as dummy vertices) does not trivially work. Namely, in order to guar-
antee that edges remain straight-line segments throughout the morph, one has to
ensure that opposite edges incident to dummy vertices maintain the same slope.
To the best of our knowledge, such requirement cannot be easily incorporated
into any of the already known morphing algorithms for planar graphs.

One way of simplifying the problem is to consider graphs that are non-
planar but still admit embeddings on surfaces of bounded genus. Chambers
et al. [17] proved the existence of morphs for pairs of crossing-free drawings
on the Euclidean flat torus (edges are still geodesics). Their technique is com-
plex and the authors concluded that an extension to higher genus surfaces is
fairly non-trivial.

We make a step towards settling the open problem in [5] by studying non-
planar drawings of graphs with forbidden edge-crossing patterns. Our focus is on
the family of 1-planar graphs, which naturally extends the notion of planarity by
allowing each edge to be crossed at most once (see [29] for a survey). Note that 1-
planar graphs form a well studied family of non-planar graphs with early results
dating back to the 60’s [9,31], while more recently they have gained considerable
attention in the rapidly growing literature about beyond planarity [23,28].
Our Contribution. We provide a set of sufficient conditions under which any
pair of 1-planar straight-line drawings admits a morph. At high-level, we require
that if two edges cross, then they can be enclosed in a quadrilateral region whose
boundary is uncrossed; although this region may contain further vertices in its
interior, we require that any edge connecting an end-vertex of the crossing edges
to a vertex inside the region is also uncrossed; refer to Fig. 1 for an illustration.
A drawing that satisfies these requirements is called kite-planar 1-planar (see
Definition 1). Our main result is summarized by the following theorem.
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Fig. 1. Two topologically-equivalent kite-planar 1-planar drawings of the same graph.

Theorem 1. There exists a morph between any pair of topologically-equivalent
kite-planar 1-planar drawings.

Theorem 1 implies that, for a fixed graph, the space of its topologically-equivalent
kite-planar 1-planar drawings is connected. The proof is constructive, although
the vertices may use trajectories of unbounded complexity. Concerning the def-
inition of kite-planar 1-planar drawings, it may be worth observing that, due
to a simple edge density argument, the graphs admitting such a drawing can-
not be embedded on any surface of bounded genus. Indeed, as shown in Sect. 6,
some well-known families of 1-planar graphs admit drawings that are kite-planar
1-planar and require arbitrary large genus to be embedded.
Paper Structure. Section 2 contains basic definitions and notation. Section 3 gives
an overview of the proof technique, which exploits a recursive construction. The
base case of the recursion is described in Sect. 4, while the recursive step is in
Sect. 5. Implications of our result in terms of classes of 1-planar drawings that
admit a morph are discussed in Sect. 6. Open problems are given in Sect. 7. For
space reasons, the proofs of the statements marked with (�) are omitted.

2 Preliminaries

Drawings. A straight-line drawing (or simply a drawing, for short) Γ (G) of
a graph G maps each vertex v of G to a distinct point pv of the plane and
each edge (u, v) of G to a straight-line segment connecting pu and pv without
passing through any other point representing a vertex of G. When this creates no
ambiguities, we will not distinguish between a vertex and the point representing
it in Γ (G), as well as between an edge and its segment. Note that, by definition,
two edges of a drawing share at most one point, which is either a common
endpoint or an interior point where the two edges properly cross. Drawing Γ (G)
partitions the plane into connected regions called cells. The boundary of a cell
consists of vertices, crossing points, and (parts of) edges. The external cell of
Γ (G) is its (only) unbounded cell. Two drawings Γa(G) and Γb(G) of the same
graph G are topologically equivalent if they define the same set of cells up to an
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orientation-preserving homeomorphism of the plane. An embedding of G is an
equivalence class of drawings that are pairwise topologically equivalent.

A drawing Γ (G) is planar if no two edges cross. In this case, the cells of
Γ (G) are called faces and their boundaries consist of just vertices and edges. A
graph is planar if it admits a planar drawing. A planar graph together with an
embedding defined by a planar drawing is a plane graph. A planar drawing is
strictly convex if all its faces are strictly convex polygons.

A graph is 1-planar if it admits a (not necessarily straight-line) 1-planar
drawing in which every edge crosses at most one other edge. A 1-planar graph
together with an embedding defined by a 1-planar drawing is a 1-plane graph. A
kite K in a 1-planar drawing Γ (G) is a 1-planar drawing of K4 in Γ (G) whose
external cell is a quadrilateral. The four edges on the boundary of the external
cell of K are called kite edges. The other two edges are the crossing edges of K
and are drawn inside the quadrilateral bounding K. Figure 1 shows three kites;
the kite (crossing) edges are fat blue (dashed-dotted red, resp.).

Given a vertex v of G and a kite K, the following exclusive cases can occur:
(i) v belongs to K, if it is a vertex of the K4 defining K, or (ii) v is inside K (or
K contains v) if v lies in the interior of the quadrilateral bounding K, or (iii) v
is outside K, otherwise. A kite is empty if it contains no vertex; otherwise, it is
non-empty. An edge (u, v) is a binding edge (dashed green in Fig. 1) if u belongs
to a non-empty kite K and v is inside K. We can now introduce kite-planar
1-planar drawings.

Definition 1. A straight-line drawing is kite-planar 1-planar, or 1-kite-planar
for short, if: (P.1) every edge is crossed at most once, (P.2) the four kite edges of
every kite are present and uncrossed, and (P.3) every binding edge is uncrossed.

Let Γ (G) be a 1-kite-planar drawing of G. We say that a vertex of G is of
level 0 if no kite contains it, while it is of level i > 0 if the maximum level of
the vertices belonging to a kite containing it is i − 1. In Fig. 1, the black (white)
vertices are of level 0 (level 1, resp.). The next property follows from P.3 of
Definition 1.

Property 1 (�). If two vertices belong to the same kite of a 1-kite-planar draw-
ing Γ (G), then they are of the same level.

Morphs. Let Γa(G) and Γb(G) be two topologically-equivalent drawings of the
same graph G. A morph between them is a continuously changing family of
pairwise topologically-equivalent drawings of G indexed by time t ∈ [0, 1], such
that the drawing at time t = 0 is Γa(G) and the drawing at time t = 1 is Γb(G).
Since edges are drawn as straight-line segments, a morph is uniquely specified
by the vertex trajectories. Also, during the course of the morph, a vertex may
coincide with neither another vertex nor an internal point of an edge.

3 Outline of the Proof of Theorem 1

In this section, we give an outline of the proof of Theorem 1, namely, that there
exists a morph between any two topologically-equivalent 1-kite-planar drawings
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Γa(G) and Γb(G) of a graph G. Recall that Γa(G) and Γb(G) define the same
embedding of G. Hence, G is necessarily a 1-plane graph.

Our proof is by means of a recursive construction. The underlying idea is
to compute a morph by keeping each kite boundary drawn as a strictly-convex
polygon, so that, in the course of the morph, the drawing of the corresponding
crossing edges will stay inside their boundary. The main challenge, however,
stems from the fact that a kite may not be empty. Therefore, our approach is
to remove the interior of each kite, recursively compute a morph that keeps the
convexity of the kite boundaries, and suitably reinsert (and morph) the removed
subdrawings. In the proof, we will use two key ingredients. The first one is a
result by Aronov et al. [7], which guarantees that one can compatibly triangulate
two topologically-equivalent planar drawings of a planar graph.

Theorem 2 (Aronov et al. [7]). Given two topologically-equivalent planar
drawings Γa(P ) and Γb(P ) of the same n-vertex planar graph P , it is possible to
augment Γa(P ) and Γb(P ) to two topologically-equivalent planar drawings Γa(P ′)
and Γb(P ′) of the same maximal planar graph P ′ such that Γa(P ) ⊆ Γa(P ′),
Γb(P ) ⊆ Γb(P ′), and the order of P ′ \ P is O(n2).

The second ingredient is a result by Angelini et al. [6], which allows us to
morph a pair of convex drawings by preserving the convexity of the faces. The
main properties of this result are summarized in the next theorem.

Theorem 3 (Angelini et al. [6]). Let 〈Γa(P ), Γb(P )〉 be a pair of topologically-
equivalent strictly-convex planar drawings of a graph P . There is a morph
between Γa(P ) and Γb(P ) in which every intermediate drawing is strictly con-
vex. If the outer face of G has only three vertices and each of them has the
same position in Γa(P ) and Γb(P ), then these three vertices do not move dur-
ing this morph.

We apply recursion on the maximum level � of a vertex of G. The base case
(� = 0) is described in Sect. 4, while the recursive case (� > 0) in Sect. 5.

4 Base Case

In the base case of the recursion, all the vertices of G are of level 0, which
implies that all the kites of G, if any, are empty. Let P be the graph obtained
by removing both crossing edges from each kite of G. Let 〈Γa(P ), Γb(P )〉 be
the restrictions of 〈Γa(G), Γb(G)〉 to P , respectively; see Fig. 2. By construction,
〈Γa(P ), Γb(P )〉 is a pair of planar and topologically-equivalent drawings, and P
is a plane subgraph of G. The kite edges of each kite K of G are uncrossed (by P.2
of Definition 1) and bound a quadrangular face fK in P , which we call marked.

Let P ′ and 〈Γa(P ′), Γb(P ′)〉 be the graph and the corresponding pair of planar
drawings obtained by applying Theorem 2 to 〈Γa(P ), Γb(P )〉, except for the
marked faces; see Fig. 2 for an illustration. This operation guarantees that every
face in both drawings is a triangle, if not marked, or a quadrangle, if marked.
We call a plane graph with such faces almost triangulated, and we next prove
that it is triconnected.
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Fig. 2. Illustration of the transitions Γa(G) → Γa(P ) → Γa(P
′); marked faces are gray.

Lemma 1. Every almost triangulated plane graph is triconnected.

Proof. Let P ′ be an almost triangulated plane graph derived from a 1-kite-planar
drawing of a 1-planar graph G. Suppose that P ′ contains a separation pair {u, v}.
Then there exist at least two faces f1 and f2 that are incident to both u and v
such that at least one, say f2, is not triangular, by simplicity, and hence is marked
with u and v not adjacent. Hence, the edge (u, v) exists in G and not in P ′.
Consequently, f1 cannot be a triangle, as otherwise it would contain edge (u, v)
on its boundary. On the other hand, if f1 is marked, then G contains another
copy of (u, v) drawn inside the kite that yielded f1, which is impossible since G is
simple. Hence, P ′ contains no separation pair. The absence of cutvertices stems
from the fact that each face is either a triangle or a quadrangle (if marked). ��

Since each kite contains two crossing edges in G, its boundary is
drawn strictly convex in both Γa(G) and Γb(G). Hence, Γa(P ′) and Γb(P ′) are
two strictly convex planar drawings of P ′. This property allows to apply Theo-
rem 3 to compute a morph of 〈Γa(P ′), Γb(P ′)〉 that maintains the strict convexity
of the drawing at any time instant. Since each marked face fK remains strictly
convex, adding back the two crossing edges of the corresponding kite K in P ′

yields a morph of a supergraph of G (and thus of G) in which these crossing
edges remain inside the boundary of K at any time instant. This concludes the
base case.

5 Recursive Case

In this section, we focus on the recursive step of the proof of Theorem 1, in which
the maximum level of a vertex in G is � > 0. Let Q be the graph obtained by
removing all the vertices of level � from G, and let 〈Γa(Q), Γb(Q)〉 be the restric-
tion of 〈Γa(G), Γb(G)〉 to Q. Clearly, the two drawings of Q are topologically
equivalent and the maximum level of a vertex is � − 1. Thus, we can recursively
compute a morph of 〈Γa(Q), Γb(Q)〉. In what follows, we describe how to incor-
porate the trajectories of the level-� vertices into the morph of 〈Γa(Q), Γb(Q)〉,
so to obtain the desired morph of 〈Γa(G), Γb(G)〉.
Setting Up the Morph. We begin by observing that, by Property 1, each
vertex of level � is contained in a kite whose vertices are all of level � − 1, which
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Fig. 3. Illustration of the half-disk D of � and their geometric properties.

implies that this kite is empty in Q (but not in G). Consider such a kite K,
and note that its two crossing edges define four triangular regions that remain
non-degenerate during the morph of 〈Γa(Q), Γb(Q)〉. We refer to each of these
four triangular regions as a piece of a kite. The natural idea of applying recursion
to every piece of a kite does not work, since the algorithm in [6] does not allow
prescribing the trajectories of the vertices of the outer face, which would be
required in the base case of this approach. Thus, we describe a more elaborated
approach.

Consider a piece of kite K and denote it by 	. The unique edge (u, v) of 	
that belongs to the boundary of K is called the base edge of 	. Since 	 remains
non-degenerate during the morph, there exists a half-disk D that, throughout
the whole morph, has the following properties (see also Fig. 3 for an illustration):

– half-disk D lies in 	 and is centered at the midpoint w of (u, v), and
– the length of its radius is positive and it does not change.

Let λ be the smallest length of the base edge (u, v) during the morph, let r be
the radius of D perpendicular to (u, v), and let w′ be the endpoint of r different
from w. Also, denote by t∗ any time instant of the morph when the length of
(u, v) equals λ, and let φ be the internal angle at w′ of the triangle formed by
u,w and w′ at time t∗. In particular, φ satisfies tan(φ) = λ

2 · 1
|r| .

Consider the graph H = G \ Q induced by the level-� vertices of G, and let
H� be the subgraph of H that lies inside 	. We proceed to compute a drawing
of H� that, intuitively, will be “small” enough to fit inside D and “skinny”
enough to avoid crossings with the binding edges that connect u or v to H�. To
ease the notation, from now on we will refer to H� as H.

To compute this drawing, we first augment H as well as its drawings in
〈Γa(G), Γb(G)〉, as follows. We add a dummy vertex d connected to u and to v,
which is drawn sufficiently close to the crossing point of the two diagonals of K
in both Γa(G) and Γb(G), so that the triangle formed by u, v, and d contains H.

As in the transition from P to P ′ in Sect. 4, we remove the crossing edges of
every (empty) kite of H ∪{u, v, d} and we mark the resulting quadrangular face.
Then we apply Theorem 2 to the resulting planar subgraph of H ∪ {u, v, d} and
to its drawings in 〈Γa(G), Γb(G)〉, except for its marked faces. This results in
an almost triangulated plane graph H ′ and in a pair of topologically-equivalent
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strictly convex drawings 〈Γa(H ′), Γb(H ′)〉 of H ′. The following observation is
directly implied by Property P.3 of Definition 1.

Observation 1. Every face incident to u or to v in H ′ is triangular.

Consider the plane graph obtained from H ′ by removing u and v, and let C be
the graph formed by the vertices and the edges of its outer face. In the following
lemma, we investigate some properties of C. The BC-tree T of a connected
graph G represents the decomposition of G into its biconnected components,
called blocks. Namely, T has a B-node for each block of G and a C-node for each
cutvertex of G, such that each B-node is connected to the C-nodes that are part
of its block.

Lemma 2 (�). The following properties of C hold: (i) C is outerplane and
connected. (ii) Each block of C is a cycle, possibly degenerated to a single edge.
(iii) Every cutvertex of C is connected to both u and v in H ′. (iv) The BC-tree
of C is a path. (v) Every non cutvertex of C is connected to exactly one of u
and v in H ′, with the exception of exactly two vertices (one of them is d) which
belong to the blocks of C corresponding to degree-1 B-nodes in the BC-tree of C.

In view of Properties (ii) and (iv) of Lemma 2, we refer to C as a chain
of cycles and to its blocks as cycles, even when degenerated to single edges.
Moreover, we denote by d′ the non cutvertex of C different from d that is incident
to both u and v, as specified in Property (v) of Lemma 2.

Making Each Chain of Cycles Skinny. In order to incorporate the level-
� vertices that lie inside 	 into the morph of 〈Γa(Q), Γb(Q)〉, we perform a
preliminary morph of Γa(H ′) to a strictly convex drawing Γ s

a (H ′) of H ′ that is
skinny, in the sense that it satisfies the following requirements with respect to
the disk D and the angle φ associated with the base edge (u, v) derived from the
morph of 〈Γa(Q), Γb(Q)〉 (see also Fig. 4 for an illustration).

R.1 Every cycle of C is drawn inside the disk D.
R.2 Every cycle of C is drawn strictly convex.
R.3 The cutvertices of C, as well as d and d′, lie on the radius r of D.
R.4 For every cycle of C and for every segment on its boundary, the smaller of

the two angles formed at the intersection of the line through r and the line
through the segment is smaller than φ.

The existence of such a drawing is proven in the following lemma by means
of a construction that exploits the properties of C given in Lemma 2.

Lemma 3. There exists a drawing Γ s
a (H ′) of H ′ that is strictly convex, skinny,

and topologically equivalent to Γa(H ′).

Proof. We prove the statement by construction. Initially, we place u and v in the
same positions as they are in Γa(H ′). Further, we place the cutvertices of the
chain of cycles C as well as d and d′ on the radius r in the order they appear in
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Fig. 4. Illustration of the requirements R.1–R.4 of a skinny drawing.

the chain to satisfy R.3. For each cycle c of C, we proceed as follows. Let x and
y be the two vertices of c that have already been placed on r. Let Tu

c and T v
c be

two isosceles triangles sharing the same base xy, such that the third vertex of
each of them lies inside D and on opposite sides of r and such that the internal
angles at x and at y are smaller than φ; refer to the colored triangles in Fig. 4.
We place the vertices of c that are incident only to u (only to v) equidistant
along a circular arc connecting x and y that lies completely inside Tu

c (inside
T v

c , respectively). By the definition of Tu
c and T v

c , and also by the fact that the
two circular arcs are drawn completely inside Tu

c and T v
c , it follows that R.1,

R.2, and R.4 are satisfied for the drawing of c.
To complete the drawing of Γ s

a (H ′), we describe how to draw the subgraph
H ′

c of H ′ that is contained inside or on the boundary of c such that every internal
face of H ′

c is strictly convex. Since H ′
c is drawn convex in Γa(H ′), it admits a

strictly convex drawing for any given strictly convex drawing of its outer face [18].
Thus, we can apply the algorithm in [18] to construct a strictly convex drawing
of H ′

c, whose outerface is the drawing of c satisfying R.1-R.4. Finally, we add the
edges incident to u and v that are contained inside 	 to the resulting drawing,
which does not introduce crossings due to R.4. This completes the construction
of Γ s

a (H ′). Since every cycle in C satisfies R.1–R.4 and since by Observation 1
all faces incident to u and v in H ′ are triangular, the drawing Γ s

a (H ′) is strictly
convex and skinny as desired. Since our construction and the algorithm in [18]
maintain the cyclic order of the edges around each vertex, we have that Γ s

a (H ′)
is topologically equivalent to Γa(H ′). This concludes the proof. ��

To describe the morph between Γa(H ′) and Γ s
a (H ′), we need some more

work. Since both drawings are strictly convex and topologically equivalent, the
preconditions of Theorem 3 are met. However, to ensure that this morph can
be done independently for each piece of a kite, we further need to guarantee
that vertices u and v do not move and that all vertices of H ′ remain inside
	 throughout the morph. As stated in Theorem 3, this can be achieved if the
(triangular) outer face is drawn the same in the two input drawings, which is not
necessarily the case for Γa(H ′) and Γ s

a (H ′) because of the position of d (recall
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Fig. 5. Computing the trajectories for the vertices of H ′ \ {u, v} based on the, already
computed, trajectories of u and v.

that u and v have the same position in Γa(H ′) and Γ s
a (H ′)). To this end, we

augment Γa(H ′) and Γ s
a (H ′) by adding a new vertex d∗ in the outer face of

H ′ and connect it to u, v, and d. Moreover, we place d∗ at the same position
inside 	 in both Γa(H ′) and Γ s

a (H ′) so that the triangle formed by u, v, and
d∗ contains all the other vertices of H ′ (in particular, d). The edge (d, d∗) can
always be drawn without crossings, as u, v, and d were the vertices on the outer
face of H ′ before. After this augmentation, we apply Theorem 3 to compute the
desired morph of 〈Γa(H ′), Γ s

a (H ′)〉, and then we remove d∗ from the drawings.

Performing the Global Morph. Applying the above procedure for each piece
of a kite yields a drawing Γa(G′) of the supergraph G′ of G that is the union of
Q and all the graphs H ′

� corresponding to every piece of a kite 	. Observe that
Γa(G′) is composed of Γa(Q) and the skinny drawing Γ s

a (H ′
�) of every graph

H ′
�. To perform the global morph, recall that the vertices of the subgraph Q of

G′ follow the same trajectories as in the morph between Γa(Q) and Γb(Q) (which
has been recursively computed). The level-� vertices of each subgraph H ′

� are
moved inside 	, which again ensures that this can be done independently for each
piece of a kite. In the following we describe the trajectories of one such subgraph.
We denote this subgraph as H ′ and adopt the same notation as before.

Since the trajectories of u and v are specified by the morph between Γa(Q)
and Γb(Q), we only describe the trajectories of H ′ \ {u, v}, i.e., the vertices
of level �; see Fig. 5 for an example. The drawing of H ′ \ {u, v} is a copy of
Γ s

a (H ′ \ {u, v}) rotated and translated so that the cutvertices of C as well as d
and d′ lie on the radius of D perpendicular to (u, v), and the distance between
w and d′ is the same as in Γ s

a (H ′). This ensures that the drawing of H ′ remains
skinny, planar (by R.4), and strictly convex at every time instant.

Let Γb(G′) be the drawing of G′ obtained so far. The next step of the morph
is to transform, for each subgraph H ′

�, the current skinny drawing Γ s
b (H ′

�)
in Γb(G′) to Γb(H ′

�). By construction, Γ s
b (H ′

�) and Γb(H ′
�) are topologically

equivalent and strictly convex. Similarly as for Γa(H ′
�), we insert vertex d∗ so

that the outer face of H ′
� is drawn the same in both Γ s

b (H ′
�) and Γb(H ′

�), which
allows to apply Theorem 3 independently for each H ′

�. The target drawing Γb(G)
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is obtained by removing the vertices and edges in G′ \ G and by reinserting the
crossed edges in the marked faces. This concludes the proof of Theorem 1.

6 Implications of Theorem 1

In this section, we discuss the applicability of Theorem 1 by presenting mean-
ingful families of 1-planar graphs that admit 1-kite-planar drawings.

An n-vertex 1-planar graph has at most 4n − 8 edges [13], and if it achieves
exactly this density, then it is called optimal. Moreover, any 1-planar drawing
of an optimal 1-planar graph G is such that the uncrossed edges induce a plane
triconnected quadrangulation P , while each pair of crossing edges of G is drawn
inside a corresponding face of P [33]. When restricting to straight-line drawable
1-planar graphs, this bound is reduced to 4n − 9 [21]. Similarly to the general
case, an optimal 1-planar straight-line drawing is one in which the uncrossed
edges induce a plane triconnected graph whose every inner face is a quadrangle,
while the outer face is a triangle [21]. As a consequence, we obtain that each kite
is empty and its kite edges are present and uncrossed. Therefore, any optimal
1-planar straight-line drawing is 1-kite-planar.

Another family of 1-planar graphs that recently attracted considerable atten-
tion is the one of IC-planar graphs [3,15,19,30], which admit 1-planar drawings
where the crossed edges induce a matching. Note that both the binding edges
and the kite edges that are part of an IC-planar drawing are uncrossed. It follows
that, if an IC-planar drawing is kite-augmented [14], i.e., it contains all kite edges,
then it is 1-kite-planar. Observe that kite-augmented graphs are also known as
locally maximal [24]. Overall, the following result is a corollary of Theorem 1.

Corollary 1. There exists a morph between any pair of topologically-equivalent
optimal 1-planar or kite-augmented IC-planar straight-line drawings.

We conclude this section with a remark. As already mentioned, Chambers
et al. [17] studied morphs of toroidal graphs and asked to generalize their result
to surfaces of higher genus. We note that, since an n-vertex graph embeddable
on a surface of genus g has at most 3n + 6(g − 1) edges, while n-vertex optimal
1-planar straight-line drawable graphs have 4n − 9 edges, it follows that the
latter do not admit an embedding (without edge crossings) on any surface of
bounded genus. Thus, a solution to the open problem by Chambers et al. would
not provide morphs of 1-kite-planar drawings.

7 Open Problems

We made a first step towards the problem of morphing pairs of non-planar draw-
ings. Besides the general open problem of morphing any two such drawings [5],
the main questions that stem from our research are as follows: (i) Is it possible
to compute morphs of 1-kite-planar drawings where the vertex trajectories have
bounded complexity? (ii) Regardless of the complexity, can we drop P.2 or P.3
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of Definition 1? Observe that dropping both would extend Theorem 1 to all 1-
planar drawings. (iii) On the other hand, as a relaxation of P.1, further families
of beyond-planar graphs [23] could be considered, for instance, does every pair
of RAC drawings [22] admit a morph?

References

1. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput.
46(2), 824–852 (2017)

2. Alamdari, S., et al.: Morphing planar graph drawings with a polynomial number
of steps. In: Khanna, S. (ed.) ACM-SIAM Symposium on Discrete Algorithms,
(SODA 2013). pp. 1656–1667. SIAM (2013)

3. Albertson, M.O.: Chromatic number, independence ratio, and crossing number.
Ars Math. Contemp. 1(1) (2008)

4. Angelini, P., Chaplick, S., Cornelsen, S., Lozzo, G.D., Roselli, V.: Morphing contact
representations of graphs. In: Symposium on Computational Geometry (SoCG
2019). LIPIcs, vol. 129, pp. 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019)

5. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli,
V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2014). LNCS, vol. 8572, pp. 126–137. Springer
(2014)

6. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Opti-
mal morphs of convex drawings. In: Arge, L., Pach, J. (eds.) Symposium on Com-
putational Geometry (SoCG 2015). LIPIcs, vol. 34, pp. 126–140. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2015)

7. Aronov, B., Seidel, R., Souvaine, D.: On compatible triangulations of simple poly-
gons. Comput. Geom. Theory Appl. 3(1), 27–35 (1993)

8. Arseneva, E., Bose, P., Cano, P., D’Angelo, A., Dujmovic, V., Frati, F., Langerman,
S., Tappini, A.: Pole dancing: 3D morphs for tree drawings. J. Graph Algorithms
Appl. 23(3), 579–602 (2019)

9. Avital, S., Hanani, H.: Graphs. Gilyonot Lematematika 3, 2–8 (1966)
10. Barrera-Cruz, F., et al.: How to morph a tree on a small grid. In: Friggstad, Z.,

Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 57–70.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 5

11. Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing Schnyder drawings of planar
triangulations. Discrete Comput. Geom. 61, 1–24 (2018)

12. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph
drawings. ACM Trans. Algorith. 9(4), 29:1–29:24 (2013)

13. Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfar-
benproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der
Universitaet Hamburg 53(1), 41–52 (1983)

14. Brandenburg, F.J.: Characterizing and recognizing 4-map graphs. Algorithmica
81(5), 1818–1843 (2019)

15. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montec-
chiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636,
1–16 (2016)

https://doi.org/10.1007/978-3-030-24766-9_5


282 P. Angelini et al.

16. Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Monthly
51(5), 247–252 (1944)

17. Chambers, E.W., Erickson, J., Lin, P., Parsa, S.: How to morph graphs on the torus.
In: ACM-SIAM Symposium on Discrete Algorithms (SODA 2021) (To appear
2021)

18. Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings
of planar graphs. Prog. Graph Theory 173, 153–173 (1984)
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