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Preface

The 47th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2021), organized by the University of Warsaw, was originally planned to take
place in Warsaw, Poland. However, due to the COVID-19 pandemic, the workshop
was finally organized as an online event held during June 23–25, 2021.

WG has a longstanding tradition. Since 1975, WG has taken place 24 times in
Germany, 5 times in The Netherlands, 3 times in France, twice in Austria, Czechia, and
the UK, and once in Greece, Israel, Italy, Norway, Slovakia, Spain, Switzerland, and
Turkey.

WG aims to merge theory and practice by demonstrating how concepts from graph
theory can be applied to various areas in computer science, or by extracting new
graph-theoretic problems from applications.

This volume contains the papers presented at the conference. Each paper was pre-
sented in two ways: as a short live talk and as pre-recorded long talk, published on the
conference YouTube channel. These videos, along with the recorded invited talks, can
be found there.

We received 73 submissions, all of which were carefully reviewed by the Program
Committee (PC) members and external reviewers. The PC selected 30 papers, which
gives an acceptance ratio of roughly 41%. The number of researchers who registered
for the conference was over 200, although most talks were attended by 60–70
participants.

The paper “Preprocessing to Reduce the Search Space: Antler Structures for
Feedback Vertex Set”, coauthored by Huib Donkers and Bart M. P. Jansen, was
selected as both the Best Paper and the Best Student Paper of WG 2021. The program
included three inspiring invited talks by Vida Dujmović (University of Ottawa) on
“Graph Product Structure Theory”, Wojciech Samotij (Tel Aviv University) “On a
method of enumerating independent sets”, and Édouard Bonnet (ENS Lyon) on
“Twin-width”. We also hosted a special session dedicated to the memory of Dieter
Kratsch, a valued member of the WG community, who passed away in October 2020.

The organization of the conference was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
program Grant Agreement 714704 (project CUTACOMBS).

Moreover, many individuals contributed to the success of WG 2021. In particular
our thanks go to:

– All authors who submitted their results to WG
– The reviewers whose expertise supported the selection process
– The members of the PC, who graciously gave their time and energy
– Springer-Verlag for supporting the Best Paper Awards



– The invited speakers and speakers of the special session
– The session chairs and all other participants

July 2021 Łukasz Kowalik
Michał Pilipczuk
Paweł Rzążewski
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Preprocessing to Reduce the Search
Space: Antler Structures for Feedback

Vertex Set

Huib Donkers(B) and Bart M. P. Jansen

Eindhoven University of Technology, Eindhoven, The Netherlands
{h.t.donkers,b.m.p.jansen}@tue.nl

Abstract. The goal of this paper is to open up a new research direction
aimed at understanding the power of preprocessing in speeding up algo-
rithms that solve NP-hard problems exactly. We explore this direction for
the classic Feedback Vertex Set problem on undirected graphs, lead-
ing to a new type of graph structure called antler decomposition, which
identifies vertices that belong to an optimal solution. It is an analogue
of the celebrated crown decomposition which has been used for Vertex
Cover. We develop the graph structure theory around such decompo-
sitions and develop fixed-parameter tractable algorithms to find them,
parameterized by the number of vertices for which they witness presence
in an optimal solution. This reduces the search space of fixed-parameter
tractable algorithms parameterized by the solution size that solve Feed-
back Vertex Set.

Keywords: Kernelization · Preprocessing · Feedback vertex set ·
Graph decomposition

1 Introduction

The goal of this paper is to open up a new research direction aimed at under-
standing the power of preprocessing in speeding up algorithms that solve NP-
hard problems exactly [25,30]. In a nutshell, this new direction can be summa-
rized as: how can an algorithm identify part of an optimal solution in an efficient
preprocessing phase? We explore this direction for the classic [36] Feedback
Vertex Set problem on undirected graphs, leading to a new graph structure
called antler which reveals vertices belonging to an optimal feedback vertex set.

We start by motivating the need for a new direction in the theoretical analy-
sis of preprocessing. The use of preprocessing, often via the repeated application

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 803421, ReduceSearch).
The original version of this chapter was previously published non-open access. A Cor-
rection to this chapter is available at https://doi.org/10.1007/978-3-030-86838-3 32

c© The Author(s) 2021, corrected publication 2023
�L. Kowalik et al. (Eds.): WG 2021, LNCS 12911, pp. 1–14, 2021.
https://doi.org/10.1007/978-3-030-86838-3 1
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of reduction rules, has long been known [3,4,41] to speed up the solution of
algorithmic tasks in practice. The introduction of the framework of parameter-
ized complexity [20] in the 1990s made it possible to also analyze the power
of preprocessing theoretically, through the notion of kernelization. It applies to
parameterized decision problems Π ⊆ Σ∗×N, in which every instance x ∈ Σ∗ has
an associated integer parameter k which captures one dimension of its complex-
ity. For Feedback Vertex Set, typical choices for the parameter include the
size of the desired solution or structural measures of the complexity of the input
graph. A kernelization for a parameterized problem Π is then a polynomial-time
algorithm that reduces any instance with parameter value k to an equivalent
instance, of the same problem, whose total size is bounded by f(k) for some
computable function f of the parameter alone. The function f is the size of the
kernelization.

A substantial theoretical framework has been built around the definition of
kernelization [16,21,26,28,30]. It includes deep techniques for obtaining kernel-
ization algorithms [11,27,37,40], as well as tools for ruling out the existence
of small kernelizations [12,18,22,29,31] under complexity-theoretic hypotheses.
This body of work gives a good theoretical understanding of polynomial-time
data compression for NP-hard problems.

However, we argue that these results on kernelization do not explain the
often exponential speed-ups (e.g. [3], [5, Table 6]) caused by applying effective
preprocessing steps to non-trivial algorithms. Why not? A kernelization algo-
rithm guarantees that the input size is reduced to a function of the parameter k;
but the running time of modern parameterized algorithms for NP-hard prob-
lems is not exponential in the total input size. Instead, fixed-parameter tractable
(FPT) algorithms have a running time that scales polynomially with the input
size, and which only depends exponentially on a problem parameter such as the
solution size or treewidth. Hence an exponential speed-up of such algorithms
cannot be explained by merely a decrease in input size, but only by a decrease
in the parameter !

We therefore propose the following novel research direction: to investigate
how preprocessing algorithms can decrease the parameter value (and hence
search space) of FPT algorithms, in a theoretically sound way. It is nontriv-
ial to phrase meaningful formal questions in this direction. To illustrate this
difficulty, note that strengthening the definition of kernelization to “a prepro-
cessing algorithm that is guaranteed to always output an equivalent instance
of the same problem with a strictly smaller parameter” is useless. Under minor
technical assumptions, such an algorithm would allow the problem to be solved
in polynomial time by repeatedly reducing the parameter, and solving the prob-
lem using an FPT or XP algorithm once the parameter value becomes constant.
Hence NP-hard problems do not admit such parameter-decreasing algorithms.
To formalize a meaningful line of inquiry, we take our inspiration from the Ver-
tex Cover problem, the fruit fly of parameterized algorithms.

A rich body of theoretical and applied algorithmic research has been devoted
to the exact solution of the Vertex Cover problem [5,23,32,33]. A standard
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2-way branching algorithm can test whether a graph G has a vertex cover of
size k in time O(2k(n + m)), which can be improved by more sophisticated
techniques [14]. The running time of the algorithm scales linearly with the input
size, and exponentially with the size k of the desired solution. This running time
suggests that to speed up the algorithm by a factor 1000, one either has to
decrease the input size by a factor 1000, or decrease k by log2(1000) ≈ 10.

It turns out that state-of-the-art preprocessing strategies for Vertex Cover
indeed often succeed in decreasing the size of the solution that the follow-up
algorithm has to find, by means of crown-reduction [2,15,24], or the intimately
related Nemhauser-Trotter reduction based on the linear-programming relax-
ation [39]. Recall that a vertex cover in a graph G is a set S ⊆ V (G) such that
each edge has at least one endpoint in S. Observe that if H ⊆ V (G) is a set of
vertices with the property that there exists a minimum vertex cover of G con-
taining all of H, then G has a vertex cover of size k if and only if G − H has a
vertex cover of size k − |H|. Therefore, if a preprocessing algorithm can identify
a set of vertices H which are guaranteed to belong to an optimal solution, then
it can effectively reduce the parameter of the problem by restricting to a search
for a solution of size k − |H| in G − S.

A crown decomposition (cf. [1,15,24], [16, §2.3], [28, §4]) of a graph G serves
exactly this purpose. It consists of two disjoint vertex sets (head, crown), such
that crown is a non-empty independent set whose neighborhood is contained
in head, and such that the graph G[head∪crown] has a matching M of size |head|.
As crown is an independent set, the matching M assigns to each vertex of head
a private neighbor in crown. It certifies that any vertex cover in G contains
at least |head| vertices from head ∪ crown, and as crown is an independent set
with NG(crown) ⊆ head, a simple exchange argument shows there is indeed an
optimal vertex cover in G containing all of head and none of crown. Since there
is a polynomial-time algorithm to find a crown decomposition if one exists [2,
Thm. 11–12], this yields the following preprocessing guarantee for Vertex
Cover: if the input instance (G, k) has a crown decomposition (head, crown),
then a polynomial-time algorithm can reduce the problem to an equivalent one
with parameter at most k − |head|, thereby giving a formal guarantee on reduc-
tion in the parameter based on the structure of the input.1

As the first step of our proposed research program into parameter reduction
(and thereby, search space reduction) by a preprocessing phase, we present a
graph decomposition for Feedback Vertex Set which can identify vertices S
that belong to an optimal solution; and which therefore facilitate a reduction
from finding a solution of size k in graph G, to finding a solution of size k − |S|
1 The effect of the crown reduction rule can also be theoretically explained by the fact

that interleaving basic 2-way branching with exhaustive crown reduction yields an
algorithm whose running time is only exponential in the gap between the size of a
minimum vertex cover and the cost of an optimal solution to its linear-programming
relaxation [38]. However, this type of result cannot be generalized to Feedback
Vertex Set since it is already NP-complete to determine whether there is a feedback
vertex set whose size matches the cost of the linear-programming relaxation (see the
full version [19]).
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in G − S. While there has been a significant amount of work on kernelization
for Feedback Vertex Set [10,13,34,35,42], the corresponding preprocessing
algorithms do not succeed in finding vertices that belong to an optimal solution,
other than those for which there is a self-loop or those which form the center
a flower (consisting of k + 1 otherwise vertex-disjoint cycles [10,13,42], or a
technical relaxation of this notion [34]). In particular, apart from the trivial self-
loop rule, earlier preprocessing algorithms can only conclude a vertex v belongs
to all optimal solutions (of a size k which must be given in advance) if they find
a suitable packing of cycles witnessing that solutions without v must have size
larger than k. In contrast, our argumentation will be based on local exchange
arguments, which can be applied independently of the global solution size k.

We therefore introduce a new graph decomposition for preprocessing Feed-
back Vertex Set. To motivate it, we distill the essential features of a crown
decomposition. Effectively, a crown decomposition of G certifies that G has
a minimum vertex cover containing all of head, because (i) any vertex cover
has to pick at least |head| vertices from head ∪ crown, as the matching M
certifies that vc(G[head ∪ crown]) ≥ |head|, while (ii) any minimum vertex
cover S′ in G − (head ∪ crown) yields a minimum vertex cover S′ ∪ head in G,
since NG(crown) ⊆ head and crown is an independent set. To obtain similar guar-
antees for Feedback Vertex Set, we need a decomposition to supply disjoint
vertex sets (head, antler) such that (i) any minimum feedback vertex set contains
at least |head| vertices from head∪ antler, and (ii) any minimum feedback vertex
set S′ in G−(head∪antler) yields a minimum feedback vertex set S′ ∪head in G.
To achieve (i), it suffices for G[head ∪ antler] to contain a set of |head| vertex-
disjoint cycles; to achieve (ii), it suffices for G[antler] to be acyclic, with each
tree T of the forest G[antler] connected to the remainder V (G) \ (head ∪ antler)
by at most one edge (implying that all cycles through antler intersect head).
We call such a decomposition a 1-antler. Here antler refers to the shape of the
forest G[antler], which no longer consists of isolated spikes of a crown (see Fig. 1
in the full version [19]). The prefix 1 indicates it is the simplest type of antler;
we present a generalization later. An antler is non-empty if head ∪ antler �= ∅,
and the width of the antler is defined to be |head|.

Unfortunately, assuming P �= NP there is no polynomial-time algorithm that
always outputs a non-empty 1-antler if one exists. We prove this in the full ver-
sion [19]. However, for the purpose of making a preprocessing algorithm that
reduces the search space, we can allow FPT time in a parameter such as |head|
to find a decomposition. Each fixed choice of |head| would then correspond to a
reduction rule which identifies a small (|head|-sized) part of an optimal feedback
vertex set, for which there is a simple certificate for it being part of an optimal
solution. Such a reduction rule can then be iterated in the preprocessing phase,
thereby potentially decreasing the target solution size (and search space) by an
arbitrarily large amount. Hence we consider the parameterized complexity of
testing whether a graph admits a non-empty 1-antler with |head| ≤ k, parame-
terized by k. On the one hand, we show this problem to be W[1]-hard in the full
version [19]. This hardness turns out to be a technicality based on the forced
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bound on |head|, though. We provide the following FPT algorithm which yields
a search-space reducing preprocessing step.

Theorem 1. There is an algorithm that runs in 2O(k5)·nO(1) time that, given an
undirected multigraph G on n vertices and integer k, either correctly determines
that G does not admit a non-empty 1-antler of width at most k, or outputs a
set S of at least k vertices such that there exists an optimal feedback vertex set
in G containing all vertices of S.

Hence if the input graph admits a non-empty 1-antler of width at most k,
the algorithm is guaranteed to find at least k vertices that belong to an optimal
feedback vertex set, thereby reducing the search space.

Based on this positive result, we go further and generalize our approach
beyond 1-antlers. For a 1-antler (head, antler) in G, the set of |head| vertex-
disjoint cycles in G[head ∪ antler] forms a very simple certificate that any feed-
back vertex set of G contains at least |head| vertices from head ∪ antler. We
can generalize our approach to identify part of an optimal solution, by allow-
ing more complex certificates of optimality. The following interpretation of a
1-antler is the basis of the generalization: for a 1-antler (head, antler) in G, there
is a subgraph G′ of G[head∪ antler] (formed by the |head| vertex-disjoint cycles)
such that V (G′) ⊇ head and head is an optimal feedback vertex set of G′; and
furthermore this subgraph G′ is simple because all its connected components,
being cycles, have a feedback vertex set of size 1. For an arbitrary integer z,
we therefore define a z-antler in an undirected multigraph graph G as a pair of
disjoint vertex sets (head, antler) such that (i) any minimum feedback vertex set
in G contains at least |head| vertices from head∪ antler, as witnessed by the fact
that G[head ∪ antler] has a subgraph G′ for which head is an optimal feedback
vertex set and with each component of G′ having a feedback vertex set of size
at most z; and (ii) the graph G[antler] is acyclic, with each tree T of the for-
est G[antler] connected to the remainder V (G) \ (head ∪ antler) by at most one
edge. (So condition (ii) is not changed compared to a 1-antler.) Our main result
is the following.

Theorem 2. There is an algorithm that runs in 2O(k5z2) ·nO(z) time that, given
an undirected multigraph G on n vertices and integers k ≥ z ≥ 0, either correctly
determines that G does not admit a non-empty z-antler of width at most k, or
outputs a set S of at least k vertices such that there exists an optimal feedback
vertex set in G containing all vertices of S.

In fact, we prove a slightly stronger statement. If a graph G can be reduced
to a graph G′ by iteratively removing z-antlers, each of width at most k, and the
sum of the widths of this sequence of antlers is t, then we can find in time f(k, z)·
nO(z) a subset of at least t vertices of G that belong to an optimal feedback vertex
set. This implies that if a complete solution to Feedback Vertex Set can be
assembled by iteratively combining O(1)-antlers of width at most k, then the
entire solution can be found in time f ′(k) · nO(1). Hence our work uncovers a
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new parameterization in terms of the complexity of the solution structure, rather
than its size, in which Feedback Vertex Set is fixed-parameter tractable.

Our algorithmic results are based on a combination of graph reduc-
tion and color coding. We use reduction steps inspired by the kernelization
algorithms [10,42] for Feedback Vertex Set to bound the size of antler in
the size of head. After such reduction steps, we use color coding [6] to help iden-
tify antler structures. A significant amount of effort goes into proving that the
reduction steps preserve antler structures and the optimal solution size.

2 Preliminaries

Due to space restrictions, proofs of statements marked � have been deferred to
the appendix. For any family of sets X1, . . . , X� indexed by {1, . . . , �} we define
for all 1 ≤ i ≤ � the following X<i :=

⋃
1≤j<i Xj , X>i :=

⋃
i<j≤� Xj , X≤i :=

Xi ∪ X<i and X≥i := Xi ∪ X>i. For a function f : A → B, let f−1 : B → 2A

denote the preimage function of f , that is f−1(a) = {b ∈ B | f(b) = a}.
All graphs considered in this paper are undirected multigraphs, which may

have loops. Based on the incidence representation of multigraphs we represent a
multigraph G by a vertex set V (G), an edge set E(G), and a function ι : E(G) →
2V (G) where ι(e) is the set of one or two vertices incident to e for all e ∈ E(G).
In the context of an algorithm with input graph G we use n = |V (G)| and m =
|E(G)|. We assume we can retrieve and update number of edges between two
vertices in constant time, hence we can ensure in O(n2) time that there are
at most two edges between any to vertices, meaning m ∈ O(n2). For a vertex
set X ⊆ V (G) let G[X] denote the subgraph of G induced by X. For a set
of vertices and edges Y ⊆ V (G) ∪ E(G) let G − Y denote the graph obtained
from G[V (G)\Y ] by removing all edges in Y . For a singleton set {v} we write G−
v instead of G − {v}. For two graphs G and H the graph G ∩ H is the graph
on vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H). For v ∈ V (G) the
open neighborhood of v in G is NG(v) := {u ∈ V (G) | ∃e ∈ E(G) : {u, v} =
ι(e)}. For X ⊆ V (G) let NG(X) :=

⋃
v∈X NG(v) \ X. The degree degG(v) of a

vertex v in G is the number of edge-endpoints incident to v, where a self-loop
contributes two endpoints. For two disjoint vertex sets X,Y ⊆ V (G) the number
of edges in G with one endpoint in X and another in Y is denoted by e(X,Y ).
To simplify the presentation, in expressions involving NG(..) and e(.., ..) we may
use a subgraph H as argument instead of the set V (H) that is formally needed.

3 Feedback Vertex Cuts and Antlers

In this section we present properties of antlers and related structures. A Feedback
Vertex Set (FVS) in a graph G is a vertex set X ⊆ V (G) such that G − S is
acyclic. The feedback vertex number of a graph G, denoted by fvs(G), is the
minimum size of a FVS in G. A Feedback Vertex Cut (FVC) in a graph G is
a pair of disjoint vertex sets (C,F ) such that C,F ⊆ V (G), G[F ] is a forest,
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and for each tree T in G[F ] we have e(T,G − (C ∪ F )) ≤ 1. The width of a
FVC (C,F ) is |C|, and (C,F ) is empty if |C ∪ F | = 0. The set C intersects any
cycle that contains a vertex from F , explaining the name Feedback Vertex Cut.

Observation 1. If (C,F ) is a FVC in G then any cycle in G containing a
vertex from F also contains a vertex from C. The set C is a FVS in G[C ∪ F ],
hence |C| ≥ fvs(G[C ∪ F ]).

Observation 2. If (C,F ) is a FVC in G then for any X ⊆ V (G) we have
that (C \X,F \X) is a FVC in G−X. Additionally, for any Y ⊆ E(G) we have
that (C,F ) is a FVC in G − Y .

We now present one of the main concepts for this work. An antler in a
graph G is a FVC (C,F ) in G such that |C| ≤ fvs(G[C ∪F ]). Then by Observa-
tion 1 the set C is a minimum FVS in G[C ∪ F ] and no cycle in G − C contains
a vertex from F . We observe:

Observation 3. If (C,F ) is an antler in G, then fvs(G) = |C|+fvs(G− (C ∪
F )).

For a graph G and vertex set C ⊆ V (G), a C-certificate is a subgraph H
of G such that C is a minimum FVS in H. We say a C-certificate has order z
if for each component H ′ of H we have fvs(H ′) = |C ∩ V (H ′)| ≤ z. For an
integer z ≥ 0, a z-antler in G is an antler (C,F ) in G such that G[C∪F ] contains
a C-certificate of order z. Note that a 0-antler has width 0.

Observation 4. If (C,F ) is a z-antler in G for some z ≥ 0, then for any
X ⊆ C, we have that (C \ X,F ) is a z-antler in G − X.

While antlers may intersect in non-trivial ways, the following proposition
relates the sizes of the cross-intersections.

Proposition 1 (�). If (C1, F1) and (C2, F2) are antlers in G, then |C1 ∩ F2| =
|C2 ∩ F1|.

Lemma 1 shows that what remains of a z-antler (C1, F1) when removing a
different antler (C2, F2), again forms a smaller z-antler. We will rely on this
lemma repeatedly to ensure that after having found and removed an incomplete
fragment of a width-k z-antler, the remainder of that antler persists as a z-antler
to be found later.

Lemma 1 (�). For any integer z ≥ 0, if a graph G has a z-antler (C1, F1)
and another antler (C2, F2), then (C1 \ (C2 ∪ F2), F1 \ (C2 ∪ F2)) is a z-antler
in G − (C2 ∪ F2).

Lemma 2 shows that we can consider consecutive removal of two z-antlers as
the removal of a single z-antler.

Lemma 2 (�). For any integer z ≥ 0, if a graph G has a z-antler (C1, F1)
and G − (C1 ∪ F1) has a z-antler (C2, F2) then (C1 ∪ C2, F1 ∪ F2) is a z-antler
in G.
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The last structural property of antlers, given in Lemma 3, derives a bound
on the number of trees of a forest G[F ] needed to witness that C is an optimal
FVS of G[C ∪ F ].

Lemma 3 (�). Let (C,F ) be a z-antler in a graph G for some z ≥ 0.
There exists an F ′ ⊆ F such that (C,F ′) is a z-antler in G and G[F ′] has
at most |C|

2 (z2 + 2z − 1) trees.

4 Finding Feedback Vertex Cuts

As described in Sect. 1, our algorithm to identify vertices in antlers uses color
coding. To allow a relatively small family of colorings to identify an entire antler
structure (C,F ) with |C| ≤ k, we need to bound |F | in terms of k as well. We
therefore use several graph reduction steps. In this section, we show that if there
is a width-k antler whose forest F is significantly larger than k, then we can
identify a reducible structure in the graph. To identify a reducible structure we
will also use color coding. In Sect. 5 we show how to reduce such a structure
while preserving antlers and optimal feedback vertex sets.

Define the function fr : N → N as fr(x) = 2x3+3x2−x. We say a FVC (C,F )
is reducible if |F | > fr(|C|), and (C,F ) is a single-tree FVC if G[F ] is connected.

Definition 1. A FVC (C,F ) is simple if |F | ≤ 2fr(|C|) and one of the following
holds: (a) G[F ] is connected, or (b) all trees in G[F ] have a common neighbor v
and there exists a single-tree FVC (C,F2) with v ∈ F2 \ F and F ⊆ F2.

In the full version [19] we show that if a graph G contains a single-tree
reducible FVC (C,F ), then G contains a simple reducible FVC (C,F ′). In turn,
such a simple reducible FVC can be found using color coding. A vertex coloring
of G is a function χ : V (G) → {Ċ, Ḟ}. We say a simple FVC (C,F ) is properly
colored by a coloring χ if F ⊆ χ−1(Ḟ) and C ∪ NG(F ) ⊆ χ−1(Ċ).

Lemma 4 (�). Given a graph G and coloring χ of G that properly colors a
simple reducible FVC (C,F ), a reducible FVC (C ′, F ′) can be found in O(n3)
time.

It can be shown that whether a FVC of width k is properly colored is
determined by at most 1 + k + 2fr(k) = O(k3) relevant vertices. By creat-
ing an (n,O(k3))-universal set for V (G) using [16, Theorem 5.20], we can obtain
in 2O(k3) · n log n time a set of 2O(k3) · log n colorings that contains a coloring
for each possible assignment of colors for these relevant vertices. By applying
Lemma 4 for each coloring we obtain the following lemma:

Lemma 5 (�). There exists an algorithm that, given a graph G and an inte-
ger k, outputs a (possibly empty) FVC (C,F ) in G. If G contains a reducible
single-tree FVC of width at most k then (C,F ) is reducible. The algorithm runs
in time 2O(k3) · n3 log n.
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5 Reducing Feedback Vertex Cuts

We apply reduction operations inspired by [10,42] on the subgraph G[C ∪ F ]
for a FVC (C,F ) in G. We give 5 reduction operations and show at least one is
applicable if |F | > fr(|C|). The operations reduce the number of vertices v ∈ F
with degG(v) < 3 or reduce e(C,F ). The following lemma shows that this is
sufficient to reduce the size of F .

Lemma 6 (�). Let G be a multigraph with minimum degree at least 3 and
let (C,F ) be a FVC in G. We have |F | ≤ e(C,F ).

Next, we give the reduction operations. These operations apply to a graph G
and yield a new graph G′ and vertex set S ⊆ V (G) \ V (G′). An operation with
output G′ and S is FVS-safe if for any minimum feedback vertex set S′ of G′,
the set S ∪S′ is a minimum feedback vertex set of G. An operation is antler-safe
if for all z ≥ 0 and any z-antler (C,F ) in G, there exists a z-antler (C ′, F ′) in G′

with C ′ ∪ F ′ = (C ∪ F ) ∩ V (G′) and |C ′| = |C| − |(C ∪ F ) ∩ S|.
Operation 1. If u, v ∈ V (G) are connected by more than two edges, remove all
but two of these edges to obtain G′ and take S := ∅.
Operation 2. If v ∈ V (G) has degree exactly 2 and no self-loop, obtain G′ by
removing v from G and adding an edge e with ι(e) = NG(v). Take S := ∅.

Operations 1 and 2 are well established and FVS-safe. Additionally Opera-
tion 1 can easily be seen to be antler-safe. To see that Operation 2 is antler-safe,
consider a z-antler (C,F ) in G for some z ≥ 0. If v �∈ C it is easily verified
that (C,F \ {v}) is a z-antler in G′. If v ∈ C pick a vertex u ∈ NG(v) ∩ F and
observe that ({u} ∪ C \ {v}, F \ {u}) is a z-antler in G′.

Operation 3. If (C,F ) is an antler in G, then G′ := G − (C ∪ F ) and S := C.

Operation 4. If (C,F ) is a FVC in G and for some v ∈ C the graph G[F ∪{v}]
contains a v-flower of order |C| + 1, then G′ := G − v and S := {v}.
Operation 5. If (C,F ) is a FVC in G, v ∈ C, and X ⊆ F such that G[F ∪
{v}]−X is acyclic, and if T is a tree in G[F ]−X containing a vertex w ∈ NG(v)
such that for each u ∈ NG(T ) \ {v} there are more than |C| other trees T ′ �= T
in G[F ] − X for which {u, v} ⊆ NG(T ′), then take S := ∅ and obtain G′ by
removing the unique edge between v and w, and adding double-edges between v
and u for all u ∈ NG(V (T )) \ {v}.

In the full version [19] we prove that the last three operations are both
FVS-safe and antler-safe. Finally we show that when we are given a reducible
FVC (C,F ) in G, then we can find and apply an operation in O(n2) time. With
a more careful analysis better running time bounds can be shown, but this does
not affect the final running time of the main algorithm.

Lemma 7 (�). Given a graph G and a reducible FVC (C,F ) in G, we can
find and apply an operation in O(n2) time.
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6 Finding and Removing Antlers

We will find antlers using color coding, using coloring functions of the
form χ : V (G) ∪ E(G) → {Ḟ, Ċ, Ṙ}. For all c ∈ {Ḟ, Ċ, Ṙ} let χ−1

V (c) = χ−1(c) ∩
V (G). For any integer z ≥ 0, a z-antler (C,F ) in a graph G is z-properly colored
by a coloring χ if all of the following hold: (i) F ⊆ χ−1

V (Ḟ), (ii) C ⊆ χ−1
V (Ċ),

(iii) NG(F )\C ⊆ χ−1
V (Ṙ), and (iv) G[C∪F ]−χ−1(Ṙ) is a C-certificate of order z.

Recall that χ−1(Ṙ) can contain edges as well as vertices so for any subgraph H
of G the graph H − χ−1(Ṙ) is obtained from H by removing both vertices and
edges. It can be seen that if (C,F ) is a z-antler, then there exists a coloring
that z-properly colors it. Consider for example a coloring where a vertex v is
colored Ċ (resp. Ḟ) if v ∈ C (resp. v ∈ F ), all other vertices are colored Ṙ, and
for some C-certificate H of order z in G[C ∪ F ] all edges in H have color Ḟ and
all other edges have color Ṙ.

Lemma 8 (�). A nO(z) time algorithm exists taking as input an integer z ≥ 0,
a graph G, and a coloring χ and producing as output a z-antler (C,F ) in G,
such that for any z-antler (Ĉ, F̂ ) that is z-properly colored by χ we have Ĉ ⊆ C
and F̂ ⊆ F .

If a graph G contains a reducible single-tree FVC of width at most k then
we can find and apply an operation by Lemma5 and 7. If G does not contain
such a FVC, but G does contain a non-empty z-antler (C,F ) of width at most k,
then using Lemma 3 we can prove that whether (C,F ) is z-properly colored is
determined by the color of at most 26k5z2 relevant vertices and edges. Using
two (n + m, 26k5z2)-universal sets, we can create a set of colorings that is guar-
anteed to contain a coloring that z-properly colors (C,F ). Using Lemma 8 we
find a non-empty z-antler and apply Operation 3. We obtain the following:

Lemma 9 (�). Given a graph G and integers k ≥ z ≥ 0. If G contains a non-
empty z-antler of width at most k we can find and apply an operation in 2O(k5z2) ·
nO(z) time.

Note that applying an operation reduces the number of vertices or increases
the number of double-edges. Hence by repeatedly using Lemma 9 to apply an
operation we obtain, after at most O(n2) iterations, a graph in which no oper-
ation applies. By Lemma 9 this graph does not contain a non-empty z-antler of
width at most k. Further analysis shows that this method reduces the solution
size at least as much as iteratively removing z-antlers of width at most k. This
is described in Theorem 3. By taking t = 1 we obtain Theorem 2.

Theorem 3 (�). Given as input a graph G and integers k ≥ z ≥ 0 we can
find in 2O(k5z2) · nO(z) time a vertex set S ⊆ V (G) such that

1. there is a minimum FVS in G containing all vertices of S, and
2. if C1, F1, . . . , Ct, Ft is a sequence of disjoint vertex sets with for all 1 ≤ i ≤ t

the pair (Ci, Fi) is a z-antler of width at most k in G−(C<i∪F<i), then |S| ≥
|C≤t|.
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As a corollary to this theorem, we obtain a new type of parameterized-
tractability result for Feedback Vertex Set. For an integer z, let the z-antler
complexity of fvs on G be the minimum number k for which there exists a
(potentially long) sequence C1, F1, . . . , Ct, Ft of disjoint vertex sets such that for
all 1 ≤ i ≤ t, the pair (Ci, Fi) is a z-antler of width at most k in G−(C<i ∪F<i),
and such that G− (C≤t ∪F≤t) is acyclic (implying that C≤t is a feedback vertex
set in G). If no such sequence exists, the z-antler complexity of G is +∞.

Intuitively, Corollary 1 states that optimal solutions can be found efficiently
when they are composed out of small pieces, each of which has a low-complexity
certificate for belonging to some optimal solution.

Corollary 1 (�). There is an algorithm that, given a graph G, returns an
optimal feedback vertex set in time f(k∗) · nO(z∗), where (k∗, z∗) is any pair of
integers such that the z∗-antler complexity of G is at most k∗.

To conclude, we reflect on the running time of Corollary 1 compared to run-
ning times of the form 2O(fvs(G)) · nO(1) obtained by FPT algorithms for the
parameterization by solution size. If we exhaustively apply Lemma7 with the
FVC (C, V (G) \ C), where C is obtained from a 2-approximation algorithm [9],
then this gives an antler-safe kernelization: it reduces the graph as long as
the graph is larger than fr(|C|). This opening step reduces the instance size
to O(fvs(G)3) without increasing the antler complexity. As observed before,
after applying O(n2) operations we obtain a graph in which no operations
can be applied. This leads to a running time of O(n4) of the kernelization.
Running Theorem3 to solve the reduced instance yields a total running time
of 2O(k5z2) fvs(G)O(z) + O(n4). This is asymptotically faster than 2O(fvs(G))

when z ≤ k = o( 7
√

fvs(G)) and fvs(G) = ω(log n), which captures the intuitive
idea sketched above that our algorithmic approach has an advantage when there
is an optimal solution that is large but composed of small pieces for which there
are low-complexity certificates.

7 Conclusion

We have taken the first steps of a research program to investigate how and when
a preprocessing phase can guarantee to identify parts of an optimal solution to
an NP-hard problem, thereby reducing the search space of the follow-up algo-
rithm. Aside from the technical results concerning antler structures for Feed-
back Vertex Set and their algorithmic properties, we consider the conceptual
message of this research program an important contribution of our theoretical
work on understanding the power of preprocessing and the structure of solutions
to NP-hard problems.

This line of investigation opens up a host of opportunities for future research.
For combinatorial problems such as Vertex Planarization, Odd Cycle
Transversal, and Directed Feedback Vertex Set, which kinds of sub-
structures in inputs allow parts of an optimal solution to be identified by an
efficient preprocessing phase? Is it possible to give preprocessing guarantees not
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in terms of the size of an optimal solution, but in terms of measures of the sta-
bility [7,8,17] of optimal solutions under small perturbations? Some questions
also remain open concerning the concrete technical results in the paper. Can the
running time of Theorem 2 be improved to f(k) · nO(1)? We conjecture that it
cannot, but have not been able to prove this.
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(eds.) 50 Years of Integer Programming 1958–2008. TTCSAES, pp. 219–241.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0 8

37. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools
for kernelization. In: Proceedings of 53rd FOCS, pp. 450–459 (2012). https://doi.
org/10.1109/FOCS.2012.46

38. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 15:1–15:31 (2014). https://doi.org/10.1145/2566616

39. Nemhauser, G., Trotter, L.: Vertex packings: structural properties and algorithms.
Math. Program. 8, 232–248 (1975). https://doi.org/10.1007/BF01580444

40. Pilipczuk, M., Pilipczuk, M., Sankowski, P., van Leeuwen, E.J.: Network sparsi-
fication for steiner problems on planar and bounded-genus graphs. ACM Trans.
Algorithms 14(4), 53:1–53:73 (2018). https://doi.org/10.1145/3239560

41. Quine, W.V.: The problem of simplifying truth functions. Am. Math. Mon. 59(8),
521–531 (1952)
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Abstract. In this paper, we show that Bandwidth is hard for the com-
plexity class W [t] for all t ∈ N, even for caterpillars with hair length at
most three. As intermediate problem, we introduce the Weighted Path
Emulation problem: given a vertex-weighted path PN and integer M ,
decide if there exists a mapping of the vertices of PN to a path PM , such
that adjacent vertices are mapped to adjacent or equal vertices, and such
that the total weight of the pre-image of a vertex from PM equals an inte-
ger c. We show that Weighted Path Emulation, with c as parameter,
is hard for W [t] for all t ∈ N, and is strongly NP-complete. We also show
that Directed Bandwidth is hard for W [t] for all t ∈ N, for directed
acyclic graphs whose underlying undirected graph is a caterpillar.

Keywords: Bandwidth · Parameterized complexity · Weighted path
emulation · W-hierarchy · Caterpillars

1 Introduction

The Bandwidth problem is one of the classic problems from algorithmic graph
theory. In this problem, we are given an undirected graph G = (V,E) and integer
k, and want to find a bijection from V to {1, 2, . . . , n}, with n = |V |, such that
for each edge {v, w} ∈ E: |f(v) − f(w)| ≤ k. The problem was proved to be
NP-complete in 1976 by Papadimitriou [21]. Later, several special cases were
proven to be NP-complete. In 1986, Monien [19] showed that Bandwidth stays
NP-complete when the input is restricted to caterpillars with hair length at most
three. A caterpillar is a tree where all vertices of degree at least three are on the
same path; the hairs are the paths attached to this central path, and have here
at most three vertices.

In this paper, we consider the parameterized complexity of this problem.
We consider the standard parameterization, i.e., we ask for the complexity of
Bandwidth as a function of n and k. This problem is long known to belong to
XP: already in 1980, Saxe [22] showed that Bandwidth can be solved in time
f(k) · nk+1 for some function f ; this was later improved to f(k) · nk [17].
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In 1994, Bodlaender et al. [5] reported that Bandwidth is W [t]-hard for
all positive integers t, even when we restrict the input to trees. However, the
proof of this fact was so far never published. In the current paper, we give the
proof of a somewhat stronger result: Bandwidth is W [t]-hard for all positive
integers t, even when we restrict the input to caterpillars with maximum hair
length three. A sketch of a proof that Bandwidth is W [t]-hard for all positive
integers t for general graphs appears in the monograph by Downey and Fellows
[10]. In recent years, Dregi and Lokshtanov [12] gave a proof that Bandwidth
is W [1]-hard for trees of pathwidth at most two, and showed that there does not
exist an algorithm for Bandwidth on such trees with running time of the form
f(k)no(k) assuming that the Exponential Time Hypothesis holds.

Our proof uses techniques from the NP-hardness proof for Bandwidth on
caterpillars by Monien [19]. In particular, one gadget in the proof is identical
to a gadget from Moniens proof. Also, the proof is inspired by ideas behind the
proof of the result reported in [5], and a proof for W [t]-hardness of a scheduling
problem for chains of jobs with delays, which was obtained by Bodlaender and
van der Wegen [7].

To obtain our main result, we obtain an intermediate result that is also inter-
esting on itself. We consider a variation of the notion of uniform emulation. The
notion of emulation was introduced by Fishburn and Finkel [15], to describe the
simulation of processor networks on smaller processor networks. An emulation
of a graph G = (V,E) on a graph H = (W,F ) is a function f : V → W , such
that for each edge {v, w} ∈ E, f(v) = f(w) or {f(v), f(w)} ∈ F , i.e., neigh-
boring vertices are mapped to the same or neighboring vertices. An emulation
is uniform when each vertex in H has the same number of vertices mapped
to it, i.e., there is a constant c, called the emulation factor, such that for all
w ∈ W : |f−1(w)| = c. An analysis of the complexity to decide whether for given
G and H, there exists a uniform emulation was made by Bodlaender and van
Leeuwen [8], and Bodlaender [2]. In particular, in [2], the complexity of deciding
if there is a uniform emulation on a path or cycle was studied. It was shown
that Uniform Emulation on a Path belongs to XP, parameterized by the
emulation factor c, belongs to XP for connected graphs and is NP-complete,
even for c = 4, when we allow that G is not connected. Bodlaender et al. [5]
claimed that Uniform Emulation on a Path is hard for W [t] for all positive
integers t. In this paper, we show a variation of this result, where the input
is a weighted path. We name the problem of finding an uniform emulation of a
weighted path to a path Weighted Path Emulation. It is straightforward to
modify the algorithm from [2] to weighted graphs. This shows that Weighted
Path Emulation belongs to XP, with the emulation factor as parameter.

There is a sharp distinction between the complexity of the Bandwidth prob-
lem for caterpillars with hairs of length at most two, and caterpillars with hairs
of length three (or larger). Assmann et al. [1] give a characterization of the
bandwidth for caterpillars whose hair length is at most two, and show that one
can compute a layout of optimal width in O(n log n) time. This contrasts with
the NP-hardness and fixed parameter intractability for caterpillars with hairs of
length three, by Monien [19] and this paper. For related results, see [18,20,23].
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Very recently, the results in the paper were strengthened, and it was shown
that Bandwidth for caterpillars of hair length at most three, and Weighted
Path Emulation are complete for a class of parameterized problems called
XNLP. For a brief discussion of these results, see Sect. 6.

This paper is organized as follows. In Sect. 2, we give a number of definitions.
In Sect. 3, we discuss hardness for the Weighted Path Emulation problem.
Section 4 gives the main result: hardness for the bandwidth of caterpillars with
hairs of length at most three. In Sect. 5, we discuss a variation of the proof, to
obtain that Directed Bandwidth is hard for W [t] for all positive integers t ∈
N, for directed acyclic graphs whose underlying undirected graph is a caterpillar
with hair length one. Some final remarks are made in Sect. 6. In this extended
abstract, we describe the intuition behind the proofs; the precise proofs can be
found in the version of the paper on arXiv [3].

2 Definitions

All graphs in this paper are considered to be simple and undirected. We assume
that the reader is familiar with standard notions from graph theory and fixed
parameter complexity (see e.g. [10,11,16]).

Pn denotes the path graph with n vertices. We denote the vertices of Pn by
the first n positive integers, 1, 2, . . . , n; the edges of Pn are the pairs {i, i + 1}
for 1 ≤ i < n.

A caterpillar is a tree such that there is a path that contains all vertices
of degree at least three. A caterpillar can be formed by taking a path PN (the
spine), and then attaching to vertices of PN zero or more paths. These latter
paths are called the hairs of the caterpillar.

A linear ordering of a graph G = (V,E) is a bijective function f : V →
{1, 2, . . . , n}. The bandwidth of a linear ordering f of G is max{v,w}∈E |f(v) −
f(w)|. The bandwidth of a graph is the minimum bandwidth over its linear
orderings.

Let G = (V,E) be an undirected graph, and w : V → Z+ be a function that
assigns to each vertex a positive integer weight. An emulation of G on a path
PM is a function f : V → {1, 2, . . . ,M}, such that for all edges {v, w} ∈ E,
|f(v) − f(w)| ≤ 1. An emulation f : V → {1, 2, . . . ,M} is said to be uniform, if
there is an integer c, such that for all i ∈ {1, 2, . . . ,M},

∑
v:f(v)=i w(v) = c. c is

called the emulation factor.
For a directed acyclic graph G = (V,A), the directed bandwidth of a topologi-

cal ordering of G is max(v,w)∈A f(w)− f(v); the directed bandwidth of a directed
acyclic graph G is the minimum directed bandwidth over all topological order-
ings of G.

If we have a directed graph G = (V,A), the underlying undirected graph of
G is the undirected graph G′ = (V,E), with E = {{v, w} | (v, w) ∈ A}; i.e., we
forget the direction of edges; if we obtain a pair of parallel edges, we take only
one.

We consider the following parameterized problems.
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Bandwidth
Given: An undirected graph G = (V,E), integer k.
Parameter: k.
Question: Is the bandwidth of G at most k?

Directed Bandwidth
Given: A directed acyclic graph G = (V,E), integer k.
Parameter: k.
Question: Is the directed bandwidth of G at most k?

Weighted Path Emulation
Given: Integers N , M , c, weight function w : {1, 2, . . . , N} → Z+, such that
∑N

i=1 w(i)/M = c ∈ Z+.
Parameter: c.
Question: Is there a uniform emulation f of PN with weight function w on
PM?

Note that in the problem statement above, c is the emulation factor, i.e., we
have for a solution f that for each j, 1 ≤ j ≤ M ,

∑
i:f(i)=j w(i) = c.

A Boolean formula is said to be t-normalized, if it is the conjunction of the
disjunction of the conjunction of . . . of literals, with t alternations of AND’s and
OR’s. So, a Boolean in Conjunctive Normal Form is 2-normalized. Downey and
Fellows [9] consider the following parameterized problem; this is the starting
point for our reductions.

Weighted t-Normalized Satisfiability
Given: A t-normalized Boolean formula F and a positive integer k ∈ Z+.
Parameter: k
Question: Can F be satisfied by setting exactly k variables to true?

Theorem 1 (Downey and Fellows [9]). Weighted t-Normalized Satis-
fiability is W [t]-complete.

3 Hardness of Weighted Path Emulation

Our first main result is the following; the proof can be found in the full paper [3].

Theorem 2. Weighted Path Emulation is W [t]-hard for all positive inte-
gers t.

Suppose we are given a t-normalized Boolean expression F over n variables,
say x1, . . . , xn, and integer k. We let t′ be the number of nested levels of dis-
junction. We consider the problem to satisfy F by making exactly k variables
true.

We will define a path PN with a weight function w : {1, . . . , N} → Z+, an
emulation factor c, and an integer M , such that PN has a uniform emulation
on a path PM if and only if F can be satisfied by setting exactly k variables to
true. Before giving the proof, we give a high level overview of some main ideas
of the proof.
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3.1 Intuition and Techniques

In this subsection, we give some ideas behind the construction. The precise
construction and formal proofs are given in the next subsection.

We assume we have given a t-normalized Boolean formula F . We transform
the formula to a weighted path PN , such that PN has a uniform emulation on
PM with c the emulation factor, if and only if F can be satisfied by setting
exactly k variables to true.

We can view F as a tree, with internal nodes marked with disjunction or
conjunction, and each leaf with a literal, then we alternatingly have a level in
the tree with disjunctions, and with conjunctions. We set t′ to be the number of
levels with disjunctions.

The path PN is formed by taking, in this order, the following: a part called
the ‘floor’, k ‘variable parts’, t′ ‘disjunction parts’, and a ‘filler path’. t′ is the
number of levels in the formula tree with disjunctions, and for each ‘level’ of
disjunction we have one disjunction part. E.g., if F is in conjunctive normal
form, then t′ = 1.

The floor has M vertices, each with a weight that is larger than c/2. Thus, we
cannot map two floor vertices to the same element of PM , and thus, can assume,
without loss of generality, that the ith floor vertex is mapped to i. The different
weights for floor vertices help to build the further gadgetry of the construction.

The variable and disjunction parts are forced to start at M , then move to
1, and then move (possibly with some ‘zigzagging’) back to M , where then the
next part starts. This is done by giving each part one vertex of large weight
that only can fit at vertex 1, and another vertex of even larger weight, that only
can fit at vertex M . These large weight vertices are called left and right turning
points. See Fig. 1 for an illustration of the construction.

Fig. 1. Impression of a first part of the construction. The ith floor vertex is mapped
to i; after this, the path then moves from M to 1 and back, with left turning points
(LTR) mapped to 1, and right turning points (RTP) mapped to M . The picture shows
the floor and first two variable parts.

We have k variable parts. Each models one variable that is set to true. We
start with a left turning point, M − 2 vertices of weight one, and a right turn-
ing point: this is to move back from M to 1. Then, we have n − 1 vertices of
weight one, M − 2n − 2 ‘heavy’ vertices, and again n − 1 vertices of weight one.
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The heavy vertices are mapped consecutively (except possibly at the first n and
last n positions); the weight one vertices before and after the heavy vertices
allows us to shift the sequence of heavy vertices in n ways—each different such
shift sets another variable to true. By using two different heavy weights, com-
bined with weight settings for floor vertices and vertices from disjunction parts,
we can check that all variable parts select a different variable to be true (which
is done at positions n + 2, . . . , 2n + 1), and that F is satisfied (which is done at
positions 2n + 2, . . . , M − n − 2).

We have for each level in the formula tree with disjunctions a disjunction
part. Thus, we have t′ disjunction parts. With help of ‘anchors’ (vertices of large
weight that can go only to one specific position), we can ensure that a subpart
for a disjunction has to be mapped to the part of the floor that corresponds with
this disjunction. Such a subpart consist of a path with weight one vertices, a path
with 3m(F ′) selecting vertices (which have larger weight), and another path with
weight one vertices. Now, each term in the disjunction has an associated interval
of size m(F ′) and between these intervals we have m(F ′) elements. Then, we
can show that the selecting vertices must cover entirely one of the intervals of
a term—this corresponds to that term being satisfied. See Fig. 2 below. Say
F ′ = F1 ∨F2 ∨F3. In the illustration we see the intervals assigned to F1, F2, and
F3, and the space between, before and after these. Each of the seven intervals
has size m(F ′). We can show that the 3m(F ′) selecting vertices must be mapped
to consecutive vertices between the left and right anchor of F ′, and thus these
cover the interval of each least one Fi entirely.

Fig. 2. Illustration: consecutive selecting vertices cover the interval of one term

Heavy vertices of variable parts come in two weights: cv and cc + cu. This is
used for checking that F is satisfied. As an example, consider a negative literal
¬xj in F . We have one specific position on PM , say i, that checks whether this
literal is satisfied, in case its satisfaction contributes to the satisfaction of F—
that case corresponds to having a selecting vertex mapped to i for each level of
disjunction. Now, the weight of the floor vertex mapped to i is such that when
this floor vertex and all selecting vertices are mapped to i, then we can only fit k
heavy vertices of weight cv here; if at least one of these heavy vertices has weight
cv + cu, then the total weight mapped to i exceeds c. If this happens, then this
heavy vertex belongs to a variable part which corresponds to setting xi to be



Bandwidth and Weighted Path Emulation 21

true; thus, this enforces that xi is false. A somewhat similar construction is used
for positive literals.

The last part of PN is the filler path. This is a long path with vertices of
weight one. This is used to ensure that the mapping becomes uniform: if the
total weight of vertices of floor, variable part, and disjunction parts vertices
mapped to i is zi, then we map c − zi (consecutive) vertices of the filler path to
i. See Fig. 3 for an illustration.

Fig. 3. Illustration of the mapping of the filler path. The black area represents the
weights of floor, variable part and disjunction part vertices mapped to the element
of PM

We need in the proof for Bandwidth actually a slightly different result (for
an easier proof), namely, we require that the first vertex of PN is mapped to M .
From the proof of Theorem 2 we also can conclude the next result.

Corollary 1. Weighted Path Emulation with f(1) = 1 and Weighted
Path Emulation with f(1) = M are W [t]-hard for all positive integers t.

We also have the following corollary; see also [3].

Corollary 2. Weighted Path Emulation is strongly NP-complete.

4 Hardness of Bandwidth of Caterpillars

The main result of this section is the following theorem. Many details of the
proof can be found in [3].

Theorem 3. Bandwidth is W [t]-hard for all positive integers t, when
restricted to caterpillars with hair length at most three.

To prove Theorem 3, we transform from the Weighted Path Emulation
with f(1) = M problem.

Let PN and PM be paths with weight function w : {1, . . . , N} → {1, . . . , c},
and c =

∑N
i=1 w(i)/M the emulation factor. Thus,

∑N
i=1 w(i) = cM . Recall that

we parameterized this problem by the value c.
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Assume that c > 6; otherwise, obtain an equivalent instance by multiplying
all weights by 7.

Let b = 12c + 6. Let k = 9bc + b. Note that k is even. We give a caterpillar
G = (V,E) with hair length at most three, with the property that PN has a
uniform emulation on PM , if and only if G has bandwidth at most k.

G is constructed in the following way:

– We have a left barrier: a vertex p0 which has 2k − 1 hairs of length one, and
is neighbor to p1.

– We have a path with 5M − 3 vertices, p1, . . . , p5M−3. As written above, p1 is
adjacent to p0. Each vertex of the form 5i − 2 or 5i (1 ≤ i ≤ M − 1) receives
2k − 2b hairs of length one. See Fig. 4. We call this part the floor.

– Adjacent to vertex p5M−3, we add the turning point from the proof of
Monien [19]. We have vertices va = p5M−3, vb, vc, vd, ve, vf , vg, which
are successive vertices on a path. I.e., we identify one vertex of the turning
point (va) with the last vertex of the floor p5M−3. To vc, we add 3

2 (k − 2)
hairs of length one; to vd, we add k hairs of length three, and to vf we add
3
2 (k − 2) hairs of length one. Note that this construction is identical to the
one by Monien [19]; vertex names are chosen to facilitate comparison with
Moniens proof. See Fig. 5.

– Add a path with 6N − 5 vertices, say y1, . . . y6n−5, with y1 adjacent to vg. To
each vertex of the form y6i−5, add 9b · w(i) hairs of length one. We call this
part the weighted path gadget.

– Note that the number of vertices that we defined so far and that is not part of
the turning point equals 2k+5M−3+2(M−1)(2k−2b)+6N−5+9b

∑N
i=1 wi =

5M + 4Mk − 2k − 4Mb + 4b + 9bcM . Let this number be α. One easily sees
that α ≤ (5M − 2)k − 1. Add a path with (5M − 2)k − 1 − α vertices and
make it adjacent to y6n. We call this the filler path.

Fig. 4. First part of the caterpillar

Let G be the remaining graph. Clearly, G is a caterpillar with hair length
at most three. It is interesting to note that the hair lengths larger than one are
only used for the turning point.

The correctness of the construction follows from the following lemma. The
proof can be found in the full paper [3].

Lemma 1. PN has a uniform emulation g on PM with emulation factor c with
f(1) = M , if and only if the bandwidth of G is at most k.
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Fig. 5. The Turning Point, after Monien [19]

Fig. 6. Initial part of the floor, with left barrier and two gaps

Some Intuition. We sketch some ideas behind the proof. Suppose we have a linear
ordering g of G with bandwidth at most k. We have a number of observations.

– p0 with hairs form a blockage (called the left barrier, in the sense that these
must either entirely at the left side or entirely at the right side of the linear
ordering.

– In the same way, the turning point forms a blockage; the proof of this is due
to Monien [19]. Without loss of generality, we can assume p0 is at the left
side, the turning point is at the right side.

– By considering the total number of vertices, we can show that the successive
vertices pi, pi+1 always have distance k − 1 or k, with g(pi+1) = g(pi) + k or
g(pi+1) = g(pi) + k − 1.

– Vertices p3, p5, p8 have ‘many’ hairs: these fills most of the nearby positions.
E.g., in intervals [g(p2), g(p3)], [g(p3), g(p4)], [g(p4), g(p5)], and [g(p5), g(p6)]
we have many hairs of the vertices pi, while the interval [g(p6), g(p7)] has not.
So, every fifth interval has ‘more space’, which we call a gap. See Fig. 6 for
the initial part of the floor with two gaps.

– Vertices of the form y6i−5 also have a large number of hairs. We must
have that most of these hairs must be mapped to intervals of the form
[g(p5j+1), g(p5j+2)]. In such a case, map the ith vertex of PN to the jth
vertex of PM . Let f be the resulting mapping

– An interval of the form [g(p5j+1), g(p5j+2)] (and the neighboring intervals,
after taking hairs of the floor into account) cannot fit 9b(c + 1) hairs of the
weighted path gadget. This implies that the total weight of all vertices mapped
by f to j is bounded by c; and, as we have M such intervals, must be exactly
c. This shows uniformity of the mapping f .

– As discussed, a vertex of the form y6i−5 has hairs mapped to an interval
[g(p5j+1), g(p5j+2)]. Thus, when we map i to j, y6i−5 is mapped to an integer
between g(p5j) and g(p5j+3). Then, y6i+1 is mapped to an integer between
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g(p5j−6) and g(p5j+9)—as there is a path with six edges from y6i−5 to y6i+1,
they can be mapped at most six intervals apart. This shows that there are
hairs of y6i+1 that are mapped to the interval [g(p5j−5), g(p5j−4)] or to the
interval [(g(p5j+1), g(p5j+2)] or to the interval [g(p5j+7), g(p5j+8)]. And thus,
vertex i + 1 from PN is mapped to j − 1, j or j + 1. This shows that the
mapping f is an emulation.

An illustration of the construction of a linear ordering, given a uniform emu-
lation is given in Fig. 7.

Fig. 7. Illustration of part of the construction. Shown are P4 with successive vertex
weights 2, 1, 2, 1; a uniform emulation on P3 with emulation factor 2; a layout of a
part of G.

As the construction of the caterpillar G can be done in polynomial time,
given M , N and w, the main result of this section now follows.

Theorem 4. Bandwidth for caterpillars with hair length at most three is W [t]-
hard for all t ∈ N.

5 Directed Bandwidth

A minor variation of the proof of Theorem 3 gives the following result. The
details can be found in the full paper [3].

Theorem 5. Directed Bandwidth is hard for W [t] for all positive integers
t, when restricted to directed acyclic graphs whose underlying undirected graph
is a caterpillar with hair length at most one.

6 Conclusions

In this paper, we showed that Bandwidth is hard for the complexity class
W [t] for all positive integers t ∈ N , even when the input graph is a caterpillar
with hairs of length at most three. The proof uses some techniques and gad-
gets from the NP-completeness proof of Bandwidth for this class of graphs by
Monien [19]. Monien also shows NP-completeness of Bandwidth for caterpillars
of maximum degree three (with arbitrary hair length). This raises the question
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whether Bandwidth for caterpillars with maximum degree three is W [t]-hard
for all t. We conjecture that this is the case; perhaps with a modification of our
proof such a result can be achieved?

The intermediate result of the W [t]-hardness of Weighted Path Emula-
tion is of independent interest. We used this result as a stepping stone for our
main result, but expect that the result may also be useful for proving hardness
for other problems as well.

It is unlikely that Bandwidth belongs to W [P ]. In [14], Fellows and Rosa-
mond describe an argument, due to Hallett, that gives the intuition behind
the conjecture that Bandwidth does not belong to W [P ]. From the works of
Bodlaender et al. [4] and Drucker [13], it follows that problems that are AND-
compositional do not have a polynomial kernel unless NP ⊆ coNP/poly. The
intuition behind this methodology is that such a polynomial kernel for an AND-
compositional problem would give an unlikely strong compression of informa-
tion. While Bandwidth is not in FPT, assuming W [t] �⊆ FPT , for some t,
and thus has no kernel (of any size), it is AND-compositional. If Bandwidth
would belong to W [P ], it would have a certificate of O(k log n) bits (namely, the
indices of the variables that are set to true), and it is unlikely that an AND-
compositional problem has such a small certificate. We thus can formulate the
following conjecture, due to Hallett.

Conjecture 1 (Hallett, see also [14]). Bandwidth does not belong to W [P ],
unless NP ⊆ coNP/poly.

Very recently, the author showed with Groenland, Nederlof and Swennen-
huis [6] that Weighted Path Emulation is complete for the class of problems
that can be solved with a non-deterministic algorithm that uses f(k)nc time and
f(k) log n space (f a computable function, c a constant). This class is known as
N [fpoly, f log] and denoted as XNLP in [6]. From the observation that the
transformation described in Sect. 4 can be carried out in logarithmic space, it
follows that Bandwidth for caterpillars with hair length at most three is also
XNLP-complete. We thus also have that Bandwidth does not belong to W [P ]
unless W [P ] ⊆ XNLP .

Finally, we conjecture that with modifications of the techniques from this
paper, it is possible to show for more problems hardness for the W [t]-classes.

Acknowledgements. I thank Michael Fellows and Michael Hallett for discussions
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Abstract. We introduce the parameter of block elimination distance
as a measure of how close a graph is to some particular graph class.
Formally, given a graph class G, the class B(G) contains all graphs whose
blocks belong to G and the class A(G) contains all graphs where the
removal of a vertex creates a graph in G. Given a hereditary graph class
G, we recursively define G(k) so that G(0) = B(G) and, if k ≥ 1, G(k) =
B(A(G(k−1))). The block elimination distance of a graph G to a graph
class G is the minimum k such that G ∈ G(k) and can be seen as an analog
of the elimination distance parameter, defined in [J. Bulian & A. Dawar.
Algorithmica, 75(2):363–382, 2016], with the difference that connectivity
is now replaced by biconnectivity. We show that, for every non-trivial
hereditary class G, the problem of deciding whether G ∈ G(k) is NP-
complete. We focus on the case where G is minor-closed and we study the
minor obstruction set of G(k) i.e., the minor-minimal graphs not in G(k).
We prove that the size of the obstructions of G(k) is upper bounded by
some explicit function of k and the maximum size of a minor obstruction
of G. This implies that the problem of deciding whether G ∈ G(k) is
constructively fixed parameter tractable, when parameterized by k. Our
results are based on a structural characterization of the obstructions
of B(G), relatively to the obstructions of G. Finally, we give two graph
operations that generate members of G(k) from members of G(k−1) and we
prove that this set of operations is complete for the class O of outerplanar
graphs. This yields the identification of all members O ∩ G(k), for every
k ∈ N and every non-trivial minor-closed graph class G.
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1 Introduction

Graph distance parameters are typically introduced as measures of “how close”
is a graph G to some given graph class G. One of the main motivating factors
behind introducing such distance parameters is the following. Let G be a graph
class on which a computational problem Π is tractable and let G(k) be the class
of graphs with distance at most k from G, for some notion of distance. Our
aim is to exploit the “small” distance of the graphs in G(k) from G in order to
extend the tractability of Π in the graph class G(k). This approach on dealing
with computational problems is known as parameterization by distance from
triviality [11]. Usually, a graph distance measure is defined by minimizing the
number of modification operations that can transform a graph G to a graph in G.

The most classic modification operation is the apex extension of a graph class
G, defined as A(G) = {G | ∃v ∈ V (G) G \ v ∈ G} and the associated param-
eter, the vertex-deletion distance of G to G, is defined as min{k | G ∈ Ak(G)}.
The vertex-deletion distance has been extensively studied. Other, popular vari-
ants of modification operations involve edge removals/additions/contractions or
combinations of them [4,8,10].

Elimination Distance. Bulian and Dawar in [5,6], introduced the elimination
distance of G to a class G as follows:

edG(G)=

⎧
⎪⎨

⎪⎩

0 G ∈ G
max{edG(C) | C ∈ cc(G)} if G �∈ G and is not connected
1 + min{edG(G \ v) | v ∈ V (G)} if G �∈ G and is connected

where by cc(G) we denote the connected components of G. Notice that the
definition edG , apart from vertex deletions, also involves the connected closure
operation, defined as C(G) = {G | ∀C ∈ cc(G), C ∈ G}. Observe that edG(G) = 0
iff G ∈ G ∪ C(G), while, for k > 0, edG(G) ≤ k iff G ∈ G′ ∪ C(G′), where G′ =
A({G | edG(G) ≤ k − 1}). Therefore, edG can be seen as as a tree counterpart of
the vertex-deletion operation where the “branching effect” is based on operation
C, that is, in each level of the recursion, the vertex deletion operation is applied to
each of the connected components of the current graph. A motivation of Bulian
and Dawar in [5] for introducing edG was the study of the Graph Isomorphism
Problem. Indeed, it is easy to see that there are constants cα and cκ such that if
Graph Isomorphism can be solved in O(nc) time in some graph class G, then
it can be solved in time O(nc+cα) (resp. O(nc+cκ)) in the graph class A(G) (resp.
C(G)) (see [7,12,13]). This implies that Graph Isomorphism can be solved in
nO(k) steps in the class of graphs where edG is bounded by k. In [5], Bulian and
Dawar improved this implication for the class Gd of graphs of maximum degree
at most d and proved that Graph Isomorphism can be solved in f(k) ·ncd time
in the class {G | edGd

(G) ≤ k} (here cd is a constant depending on d). In other
words, for every d, Graph Isomorphism is fixed parameter tractable (in short
FPT), when parameterized by edGd

.
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Computing the Elimination Distance. Typically, the algorithmic results on edG
apply for instantiations of G that are hereditary, i.e., the removal of a vertex
of a graph in G results to a graph that is again in G. Bulian and Dawar in [6]
examined the case where G is minor-closed. One may observe that containment
in G is equivalent to the exclusion of the graphs in the minor-obstruction set
of G, that is the set obs(G) of the minor-minimal graphs not in G. Also the
minor-closed property is invariant under the operations A and C, therefore the
class {G | edG(G) ≤ k} is also minor-closed. From the Robertson and Seymour’s
theorem, obs({G | edG(G) ≤ k}) is finite, and this implies, using the algorith-
mic results of [16,18], that for every minor-closed class G, deciding whether
edG(G) ≤ k is FPT (parameterized by k) by an algorithm that runs in f(k) · n2

time. While this approach is not constructive in general, Bulian and Dawar in [6]
proved that there is an algorithm that, with input obs(G) and k, outputs the
set obs({G | edG(G) ≤ k}). This makes the aforementioned f(k) · n2-time algo-
rithm constructive in the sense that the function f is computable. An explicit
estimation of this function f can be derived from the recent results in [20–22].
The computational complexity of edG was also studied for different instantia-
tions of G. In [17] Lindermayr, Siebertz, and Vigny considered the class Gd of
graphs of degree at most d. They proved that, given k, d, and a planar graph G,
deciding whether edGd

(G) ≤ k is FPT (parameterized by k and d) by designing
an f(k, d) · nO(1) time algorithm. Also, in [2] the same result was proved with-
out the planarity restriction. Moreover, in [2], more general hereditary classes
where considered: let F be some finite set of graphs and let GF be the class
of graphs excluding all graphs in F as induced subgraphs. It was proved in [2]
that for every such F the problem that, given some graph G and k, deciding
whether edGF (G) ≤ k is FPT (parameterized by k) by designing an f(k) · ncd

time algorithm, where cd is a constant depending on d (see also [3] for ear-
lier results). Approximately optimal decompositions for computing elimination
distance edG(G) for some specific graph classes G are given in a recent paper
[15].

Block Elimination Distance. We introduce a more general version of elimination
distance where the branching is guided by biconnectivity instead of connectiv-
ity. The recursive application of the vertex deletion operation is now done on
the blocks of the current graph instead of its components. That way, the block
elimination distance of a graph G to a graph class G is defined as

bedG(G)=

⎧
⎪⎨

⎪⎩

0 G ∈ G
max{bedG(C) | C ∈ bc(G)} if G �∈ G and is not biconnected
1 + min{bedG(G \ v) | v ∈ V (G)} if G �∈ G and is biconnected

where by bc(G) we denote the blocks of the graph G. We stress that the “branch-
ing effect” in the above definition is the biconnected closure operation, defined
as B(G) = {G | ∀B ∈ bc(G), B ∈ G}.

The above parameter is more general than edG in the sense that it upper
bounds edG but it is not upper bounded by any function of edG . For instance, if
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G is a connected graph whose blocks belong to G, it follows that bedG(G) = 0,
while edG(G) can be arbitrarily big. Moreover, bedG , can also serve as a measure
for the distance to triviality in the same way as edG . For instance, there is a
constant cβ such that if Graph Isomorphism can be solved in O(nc) time in
some graph class G, then it can be solved in time O(nc+cβ ) in the graph class
B(G) (using standard techniques, see e.g., [7,12,13]). This implies that Graph
Isomorphism can be solved in nO(k) steps in the class of graphs where bedG
is bounded by k. Clearly, all the problems studied so far on the elimination
distance have their counterpart for the block elimination distance and this is a
relevant line of research, as the new parameter is more general than its connected
counterpart.

Our Results. As a first step, we prove that if G is a non-trivial and hereditary
class, then deciding whether bedG(G) ≤ k is an NP-complete problem (Sect. 3).
For our proof we certify yes-instances by using an alternative definition of bedG
that is based on an (multi)-embedding of G in a rooted forest (Sect. 2). We next
focus our study on the case where G is minor-closed (and non-trivial). As the
operation B maintains minor-closedness, it follows that the class G(k) := {G |
bedG(G) ≤ k} is minor-closed for every k, therefore for every minor-closed G,
deciding whether G ∈ G(k) is FPT (parameterized by k). Following the research
line of [6], we make this result constructive by proving that it is possible to
bound the size of the obstructions of G(k) by some explicit function of k and
the maximum size of the obstructions of G. This bound is based on the results
of [1,21] (Sect. 4) and a structural characterization of obs(B(G)), in terms of
obs(G), implying that no obstruction of B(G) has size that is more than twice
the maximum size of an obstruction of G. In Sect. 5 we take a closer look of
the obstructions of G(k). We give two graph operations, called parallel join and
triangular gluing, that generate members of G(k) from members of G(k−1). This
yields that the number of obstructions of G(k) is at least doubly exponential on
k. Moreover, we prove that this set of operations is complete for the class O
of outerplanar graphs. This implies the complete identification of O ∩ G(k), for
every k ∈ N and every non-trivial minor-closed graph class G. This yields that
the number of obstructions of G(k) is at least doubly exponential on k. The paper
concludes in Sect. 6 with some further observations and open problems.

In this paper we omit most of the proofs of our results. The full version can
be accessed at [9].

2 Definitions and Preliminary Results

Basic Concepts on Graphs. All graphs considered in this paper are undirected,
finite, and without loops or multiple edges. We use V (G) and E(G) for the sets
of vertices and edges of G, respectively. For simplicity, an edge {x, y} of G is
denoted by xy or yx. We say that H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). Also, if S is a set of vertices we denote by G \ S the graph
obtained if we remove S from G. We denote by G[S] the subgraph of G induced
by the vertices from S, that is the graph G \ (V (G) \ S), and we say that the



32 Ö. Y. Diner et al.

graph H is an induced subgraph of a graph G if H = G[S] for some S ⊆ V (G).
We write G \ v instead of G \ {v} for a single vertex set. Given e ∈ E(G), we
denote G \ e = (V (G), E(G) \ {e}). If a vertex is not an endpoint of an edge,
then we call it isolated.

A graph G is connected (resp. biconnected) if for every u, v ∈ V (G), G con-
tains a path (resp. cycle) containing u and v. A (bi)connected component of
G is a maximally (bi)connected subgraph of G. We denote by cc(G) the set
of all connected components of G. A vertex x is a cut-vertex of a graph G if
|cc(G)| < |cc(G \ v)|. A bridge of a graph G is a connected subgraph on two
vertices x, y and the edge e = xy such that |cc(G)| < |cc(G \ e)|. A block of a
graph is either an isolated vertex of G, or is a bridge of G, or is a biconnected
component of G. We denote by bc(G) the set of all blocks of G. A graph G is a
block-graph if bc(G) = {G}.

Graph Classes. We use the term graph class (or simply class) for any set of
graphs (this set might be finite or infinite). We denote by E the class of the
edgeless graphs. We say that a graph class is non-trivial if it contains at least
one non-empty graph and does not contain all graphs. We say that a class G is
hereditary if every induced subgraph of a graph in G belongs also to G. Notice
that both operations A and B maintain the property of being non-trivial and
hereditary.

In this paper we consider only classes that are non-trivial and hereditary.
This implies that G ⊆ A(G). Notice that this assumption is necessary as {K1} �

A({K1}) = {K2} ({K1} is non-hereditary) and {K0} � A({K0}) = {K1} ({K0}
is not non-trivial). Also the hereditarity of G implies that G ⊆ B(G) and hered-
itarity is necessary for this as, for example, {P3} � B({P3}) = {K0}. However,
G ⊆ B(G) also holds for the two finite classes that are not non-trivial, i.e.,
B({}) = {K0} and B({K0}) = {K0}. We also exclude the class of all graphs as,
in this case, A and B do not generate new classes.

Observe also that for every non-trivial and hereditary class G, B(G) =
B(B(G)). This implies that bedG and bedB(G) are the same parameter.

An Alternative Definition. A rooted forest is a pair (F, R) where F is an acyclic
graph and R ⊆ V (F ) such that each connected component of F contains exactly
one vertex of R, its root. A vertex t ∈ V (F ) is a leaf of F if either it is an isolated
vertex in R or it is a non-isolated vertex adjacent to exactly one edge of F . We
use L(F, R) in order to denote the leaves of (F, R). Given t, t′ ∈ V (F ) we say that
t ≤F,R t′ if there is a path from t′ to some root in R that contains t. If neither
t ≤F,R t′ nor t′ ≤F,R t then we say that t and t′ are incomparable in (F, R). An
(F, R)-antichain is a non-empty set C of pairwise incomparable vertices of F .
An (F, R)-antichain is non-trivial if it contains at least two elements. The depth
of a rooted forest (F, R) is the maximum number of vertices in a path between
a leaf and the root of the connected component of F where this leaf belongs.
Let G be a non-trivial hereditary class and let G be a graph. Let (F, R, τ) be
a triple consisting of a rooted forest F whose root set is R and a function τ
mapping vertices of G to subsets of V (F ). Given a vertex set S ⊆ V (F ), we
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set τ−1(S) = {v ∈ V (G) | τ(v) ∩ S �= ∅}. Also, for every t ∈ V (F ), we define
Gt = G[τ−1({t′ ∈ V (F ) | t ≤F,R t′})]. A triple (F, R, τ) is a G-block tree layout
of G if the following hold:

(1) for every v ∈ V (G), τ(v) is an (F, R)-antichain,
(2) for every t ∈ V (F ), Gt is a block-graph,
(3) if t �∈ L(F, R), then |τ−1({t})| = 1 and Gt �∈ G or,
(4) if t ∈ L(F, R), then Gt ∈ G and
(5) for every non-trivial (F, R)-antichain C, the union of the graphs in {Gt | t ∈

C} is not biconnected.

The depth of the G-block tree layout (F, R, τ) is equal to the depth of the rooted
forest (F, R). We give the following alternative definition for bedG .
Lemma 1. If G is a non-trivial hereditary class and G is a graph, then the
minimum depth of a G-block tree layout of G is equal to bedG(G) − 1.

3 NP-completeness
We consider the following family of problems, each defined by some non-trivial
and hereditary graph class G. We say that a class G is polynomially decidable
if there exists an algorithm that, given an n-vertex graph G, decides whether
G ∈ G in polynomial, in n, time.

Block Elimination Distance to G (G-BED)
Instance: A graph G and a non-negative integer k.
Question: Is the block elimination distance of G to G at most k?

Lemma 2. For every polynomially decidable, non-trivial, and hereditary graph
class G, the problem G-BED is NP-complete.

The proof of the above result is a (multi) reduction from the problem Bal-
anced Complete Bipartite Subgraph (BCBS). It is based on the alternative
definition of block elimination distance (Lemma 1) and has two parts. The first
proves the NP-hardness of E-BED (recall that E is the class of edgeless graphs).
The second is a multi-reduction from E-BED to G-BED where the existence of
the main gadget is based on the following lemma.

Lemma 3. Let G be a non-trivial hereditary class. Then there exists a graph
Z with the following properties: (1) Z is a block-graph, (2) Z �∈ B(G) and, (3)
∀v ∈ V (Z), Z \ v ∈ B(G).

We stress that the proof of the above lemma is not constructive in the sense
that it does not give any way to construct Z. However, if the non-trivial and
hereditary class G is decidable, then Z is effectively computable and this makes
the proof of Lemma 2 constructive.
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4 Elimination Distance to Minor-Free Graph Classes

Minors and Obstructions. A graph H is a minor of a graph G if H can be
obtained by some subgraph of G after contracting edges. Given a set Q of graphs,
we denote by excl(Q) the class of all graphs excluding every graph in Q as a
minor and by obs(Q) the class of all minor-minimal graphs that do not belong
to Q. Clearly, for every class G, G = excl(obs(G)). Also, according to Robertson
and Seymour’s theorem [19], for every minor-closed class G, obs(G) is finite. We
call a class essential if it is a finite minor-antichain that is non-empty and does
not contain the graph K0 or the graph K1. Notice that G is trivial iff obs(G)
is essential. We call an essential class Z biconnected if all graphs in obs(Z)
are block-graphs. Given that Z is an essential graph class, we define s(Z) =
max{|V (G)| | G ∈ Z}.

The next result, can be seen as the biconnected analog of [6, Lemma 5],
where the structure of obs(C(excl(Z))) is studied. The connected closure opera-
tion in [6] allows for a less complicated proof, since also the structure of graphs
in obs(C(excl(Z))) is simpler. However, in Lemma 4 below we deal with the
biconnected closure operation and thus richer structural properties are revealed,
resulting also in a more technical proof.
Lemma 4. Let Z be a finite graph class. For every graph G ∈ obs(B(excl(Z)))
there is a graph H ∈ Z such that G can be transformed to H after a sequence of
at most |bc(H)| − 1 edge deletions and |bc(H)| − 1 edge contractions.

Proof (of Lemma 4 – sketch). Let G ∈ obs(B(excl(Z))). We assume that
|V (G)| ≥ 4, since otherwise the lemma holds trivially. Since G ∈ obs(B(excl(Z))),
G is biconnected and also, the fact that G /∈ B(excl(Z)) implies that there exists
a graph H ∈ Z that is a minor of G. Moreover, since G is a minor-minimal
biconnected graph with the latter property, it holds that no proper minor of G
is biconnected and contains H as a minor (this fact is essential for the arguments
of all the statements that we expose later). Let M be a (vertex-minimal and,
subject to this, edge-minimal) subgraph of G such that H is a contraction of M .
We prove that G can be transformed to M after a sequence of at most |bc(H)|−1
edge removals. This fact, combined with the following claim completes the proof
of the lemma.

Claim: M can be transformed to H after at most |bc(H)| − 1 edge contractions.

Proof of the Claim: For every v ∈ V (H), we set Xv be the set of the vertices of
M that have been contracted to v. We will prove that

∑
v∈V (H) |E(G[Xv])| ≤

|bc(H)| − 1, which implies the above Claim. For this we first prove that for
every vertex v ∈ V (H) that is not a cut-vertex of H, it holds that |Xv| = 1
and, next, we prove that for every cut-vertex v of H it holds that |E(G[Xv])| ≤
|cc(G \ Xv)| − 1. To conclude the proof of Claim, for every cut-vertex v of
H, we set blocks(H, v) to be the blocks of H that contain v. Observe that
|cc(G \ Xv)| ≤ |blocks(H, v)|. We set cv(H) to be the set of cut-vertices of
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H and we notice that
∑

v∈cv(H) |E(G[Xv])| ≤ ∑
v∈cv(H)(|cc(G \ Xv)| − 1) ≤

∑
v∈cv(H)(|blocks(H, v)| − 1). The fact that

∑
v∈cv(H)(|blocks(H, v)| − 1) ≤

|bc(H)| − 1 implies that
∑

v∈cv(H) |E(G[Xv])| ≤ |bc(H)| − 1. The latter together
with the fact that for every vertex v ∈ V (H) that is not a cut-vertex of H, it
holds that |Xv| = 1 completes the proof of Claim. �

Fig. 1. Example of a graph H (on the left) and a graph G ∈ obs(B(excl(H))) (on the
right) such that G can be transformed to H after exactly |bc(H)| − 1 edge deletions
and |bc(H)| − 1 edge contractions.

We stress that the bounds on the number of operations in Lemma 4 are tight in
the sense that, given a graph H, there is a graph G ∈ obs(B(excl({H}))) such
that G can be transformed to H after exactly |bc(H)| − 1 edge deletions and
|bc(H)| − 1 edge contractions. For example, in Fig. 1, the graph H has three
blocks (i.e., |bc(H)| = 3), the graph G is a graph in obs(B(excl({H}))), and to
transform G to H one has to remove the two grey edges and contract the two
red ones.

An algorithmic consequence of Lemma 4 and the results in [21] is the follow-
ing.
Lemma 5. There is an explicit function f : N → N and an algorithm that, given
a finite class Z, where s = s(Z), an n-vertex graph G, and an integer k, outputs
whether bedexcl(Z)(G) ≤ k in O(f(s, k) · n2) time. Moreover, if Z contains some
planar graph, then the dependence of the running time on n is linear.

Also, using Lemma 4 we can prove that, in the definition of bedG , the class
G can be chosen so that obs(G) is biconnected and, moreover, such a G has an
explicit obstruction characterization.

5 Outerplanar Obstructions for Block Elimination
Distance

In this section we study the set obs(G(k)) for distinct instantiations of k and G.
For a warm up, we mention here that obs(E(1)) = {K3} and, as a less trivial
example, .

Our objective is to generate obstructions of G(k+1) using obstructions of G(k).
For this, we define the following two operations. (See also Fig. 2.)
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Parallel join: Let G1 and G2 be graphs and let vi
1, vi

2 ∈ V (Gi), i ∈ [2]. We denote
by ||(G1, v1

1 , v1
2 , G2, v2

1 , v2
2) the graph obtained from the disjoint union of G1 and

G2 after we add the edges {v1
i , v2

i }, i ∈ [2] and we call it the parallel join of G1
and G2 on (v1

1 , v1
2) and (v2

1 , v2
2).

Triangular gluing: Let G1, G2, and G3 be graphs and let vi
1, vi

2 ∈ V (Gi), i ∈ [3].
We denote by (G1, v1

1 , v1
2 , G2, v2

1 , v2
2 , G3, v3

1 , v3
2) the graph obtained from the

disjoint union of G1, G2, and G3 after we identify the pairs v1
2 and v2

1 , v2
2 and

v3
1 , and v3

2 and v1
1 . We call this graph the triangular gluing of G1, G2, and G3

on (v1
1 , v1

2), (v2
1 , v2

2), and (v3
1 , v3

2).

Fig. 2. The parallel join and the triangular gluing operations.

Lemma 6. Let G be a non-trivial and minor-closed class and let k ∈
N. If G1, G2, G3 ∈ obs(G(k)) and vi

1, vi
2 ∈ V (Gi), i ∈ [3], then

||(G1, v1
1 , v1

2 , G2, v2
1 , v2

2) ∈ obs(G(k+1)) (provided that G �= E or k ≥ 1) and
(G1, v1

1 , v1
2 , G2, v2

1 , v2
2 , G3, v3

1 , v3
2) ∈ obs(G(k+1)).

Lemma 6 implies that the set
⋃

i≥0 obs(G(i)) is closed under the parallel join
and the triangular gluing operations. We denote by O the class of all outerplanar
graphs. We claim that O∩⋃

i≥1 obs(G(i)) is complete under these two operations.
In particular we prove the following:

Lemma 7. Let G be a non-trivial and minor-closed class. For every k ≥ 1 and
for every graph G ∈ obs(G(k+1)) ∩ O, there are

– either two graphs G1 and G2 of obs(G(k)) ∩ O and vi
1, vi

2 ∈ V (Gi), i ∈ [2],
such that G = ||(G1, v1

1 , v1
2 , G2, v2

1 , v2
2) or

– three graphs G1, G2 and G3 of obs(G(k)) ∩ O and vi
1, vi

2 ∈ V (Gi), i ∈ [3], such
that G = (G1, v1

1 , v1
2 , G2, v2

1 , v2
2 , G2, v3

1 , v3
2).

As obs(G(0)) = obs(B(G)), Lemma 4, Lemma 6, and Lemma 7 give a com-
plete characterization of O ∩ G(k), for every k ∈ N and every non-trivial minor-
closed graph class G. It is easy to verify that for every G, there are at least two
obstructions in obs(G(3)) that are generated by the triangular gluing operation.
Moreover, as the operation of trianglular gluing three graphs from a set of q
graphs results to q2 +

(
q
3
) ≥ q2 new graphs, our results imply that, for k ≥ 3,

|obs(G(k))| ≥ |obs(G(k−1))|2. It follows that, for every non-trivial minor-closed
class G, obs(G(k)) contains doubly exponentially many graphs.
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6 A Conjecture on the Universal Obstructions

Recently, Huynh et al. in [14] defined the parameter td2 as follows. A biconnected
centered coloring of a graph G is a vertex coloring of G such that for every
connected subgraph H of G that is a block-graph, some color is assigned to
exactly one vertex of H. Given a non-empty graph G, td2(G) is defined as the
minimum number of colors in a biconnected centered coloring of G. Using the
alternative definition of Sect. 2, it can easily be verified that, for every non-empty
graph G, td2(G) = bedE(G) + 1. We define the t-ladder as the (2 × t)-grid (i.e.,
the Cartesian product of K2 and a path on t-vertices) and we denote it by Lt. It
is easy to check that td2(Lt) = Ω(log(t)). One of the main results of [14] was that
there is a function f : N → N such that every graph excluding a t-ladder belongs
to E(f(t)). This implies that the t-ladder Lt is a universal minor obstruction for
bedE . This motivates us to make a conjecture on how the results of [14] should
be extended for every non-trivial minor-closed class G: Given a positive t, we
define LG,t as the class containing every graph that can be constructed by first
taking the disjoint union of two paths Pi, i ∈ [2], with vertices vi

1, . . . , vi
t (ordered

the way they appear in Pi) and t graphs G1, . . . , Gt from obs(B(G)) and then,
for i ∈ [t], identify v1

i and v2
i with two different vertices in Gi. It is easy to check

that if G ∈ LG,t, then bedG(G) = Ω(log t). We conjecture that LG,t is a universal
minor obstruction for bedG , i.e., there is a function f : N → N such that every
graph excluding all graphs in LG,t as a minor, has block elimination distance
to G bounded by f(t), i.e., excl(LG,t) ⊆ G(f(t)). Notice that the two operations
in Sect. 5 imply that, when restricted to outerplanar graphs, this conjecture is
correct for f(t) = O(t). However we do not believe that the linear upper bound
is maintained in the general case.
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Abstract. In this paper, we study two generalizations of Vertex
Cover and Edge Cover, namely Colorful Vertex Cover and Col-
orful Edge Cover. In the Colorful Vertex Cover problem, given
an n-vertex edge-colored graph G with colors from {1, . . . , ω} and cov-
erage requirements r1, r2, . . . , rω, the goal is to find a minimum-sized
set of vertices that are incident on at least ri edges of color i, for each
1 ≤ i ≤ ω, i.e., we need to cover at least ri edges of color i. Color-
ful Edge Cover is similar to Colorful Vertex Cover except here
we are given a vertex-colored graph and the goal is to cover at least ri

vertices of color i, for each 1 ≤ i ≤ ω, by a minimum-sized set of edges.
These problems have several applications in fair covering and hitting of
geometric set systems involving points and lines that are divided into
multiple groups. Here, “fairness” ensures that the coverage (resp. hit-
ting) requirement of every group is fully satisfied.

We obtain a (2+ε)-approximation for the Colorful Vertex Cover
problem in time nO(ω/ε), i.e., we obtain an O(1)-approximation in poly-
nomial time for constant number of colors. Next, for the Colorful Edge
Cover problem, we design an O(ωn3) time exact algorithm, via a chain
of reductions to a matching problem. For all intermediate problems in
this chain of reductions, we design polynomial time algorithms, which
might be of independent interest.

1 Introduction

Vertex Cover and Edge Cover are two classical graph problems which have
been studied for at least forty years [8]. Vertex Cover is known to be NP-
complete and admits a 2-approximation [8]. On the other hand, Edge Cover
can be solved in polynomial time using a connection to Maximum Matching
[8]. In this paper, we study the following two generalizations of these problems
on vertex- or edge-colored graphs.
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Colorful Vertex Cover
Input: A graph G with n vertices and m edges where every edge is colored
by a color from {1, 2, . . . , ω}, and coverage requirements r1, r2, . . . , rω.
Question: Find a minimum-sized set of vertices that are incident on at least
ri edges of color i, for each 1 ≤ i ≤ ω.

Colorful Edge Cover
Input: A graph G with n vertices and m edges where every vertex is colored
by a color from {1, 2, . . . , ω}, and coverage requirements r1, r2, . . . , rω.
Question: Find a minimum-sized set E′ of edges such that at least ri vertices
of color i are incident on the edges of E′, for each 1 ≤ i ≤ ω.

Bera et al. [3] designed an O(log ω)-approximation for Colorful Vertex
Cover. Indeed, they study a more general “weighted-version” called Partition
Vertex Cover. Moreover, they noted that an extension of the greedy algorithm
of Slav́ık [19] gives an O(log(

∑ω
t=1 rt)) approximation for this problem. On the

other hand, it is NP-hard to obtain an approximation guarantee asymptotically
better than O(log ω) [3]. Cohen et al. [5] studied a variant of Colorful Edge
Cover where all the requirements are 1 and the solution set of edges E′ must
form a matching. They gave a polynomial time algorithm for this problem.

Our motivation of studying Colorful Vertex Cover and Colorful
Edge Cover partly comes from a series of recent works that study the Fair
k-center problem1 [1,2,13]. In Fair k-center, given a set of n points in a
metric space where each point is colored by a color from {1, 2, . . . , ω}, coverage
requirements r1, r2, . . . , rω, and an integer k, the goal is to find k balls of min-
imum radius whose union contains at least rt points of color t, for 1 ≤ t ≤ ω.
O(1)-approximations are known for this problem when the number of colors ω is
a constant [1,13]. In particular, one can obtain a 4-approximation in nO(ω) time
[1] and a 3-approximation in nO(ω2) time [13].

We note that Fair k-center can also be seen as a covering problem where
the goal is to cover colored points by balls, albeit with some expansion. This
leads to the question of studying fair or colorful covering problems with other
geometric objects. In particular, suppose we are given a set of axis-parallel lines
along with a set of points in the plane. Then, one can similarly study fair variants
of the classical point-line covering and hitting problems. In the following, we
formally define two such problems.

Fair Covering of Points by Lines (FCPL)
Input: A set of axis-parallel lines L and a set P of n points in the plane,
where each point in P is colored by a color from {1, . . . , ω}, and coverage
requirements r1, . . . , rω.
Question: Find a minimum-sized subset L′ ⊆ L such that the lines in L′

together contain at least rt points of color t, for each 1 ≤ t ≤ ω.

1 The term “fair” stresses on the fact, in an abstract manner, that the resources should
be divided evenly among different groups.
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Fair Hitting of Lines by Points (FHLP)
Input: A set of axis-parallel lines L and a set P of n points in the plane, where
each line of L is colored by a color from {1, . . . , ω} with hitting requirements
r1, . . . , rω.
Question: Find a minimum-sized subset P ′ ⊆ P such that the points in P ′

intersect at least rt lines of color t, for each 1 ≤ t ≤ ω.

Note that, in case of axis-parallel lines, each point can intersect at most
two lines. For simplicity, suppose each input point intersects exactly two lines.
Then FCPL and FHLP are special cases of Colorful Vertex Cover and
Colorful Edge Cover, respectively. Indeed, given such a set of axis-parallel
lines and points in the plane, one can construct a graph where the vertices are
corresponding to the lines and edges are corresponding to the points. Then,
covering points by lines correspond to covering edges by vertices and hitting
lines by points correspond to covering vertices by edges in the new graph.

Similar to Colorful Vertex Cover, it is NP-hard to obtain a o(log ω)-
approximation for FCPL, even when the input consists of only horizontal lines.
Indeed, the following simple reduction from Set Cover is sufficient. (In Set
Cover, given a set system (X,S), where X is a set of n elements, and S is a
collection of subsets of X, the goal is to find a minimum size collection S′ ⊆ S
such that the union of the sets in S′ contains the elements of X.) For each set,
take a different horizontal line. For each element, place a copy (i.e., a point) of it
on each line corresponding to the sets which contain it. Also, for each element,
color all of its copies by a unique color. Set all the requirements to 1. Then, there
is a solution to Set Cover with k sets if and only if there is a solution to FCPL
with k lines. Moreover, FCPL is NP-hard even for a single color, by the following
reduction from Partial Vertex Cover in bipartite graphs, which is known
to be NP-hard [4]. (In this problem, given an undirected graph G = (V,E), and
two integers k1, k2 > 0, the goal is to decide if there a subset V ′ of V of size k1

that covers at least k2 edges.) Let (V1, V2) be the given bipartition of the vertices
and p be the number of edges need to be covered. Take a different horizontal line
for each vertex in V1, and a different vertical line for each vertex in V2. Place a
point on the intersection of two lines if the corresponding two vertices share an
edge. Set the requirements to p. Then, there is a solution to Partial Vertex
Cover with k vertices if and only if there is a solution to FCPL with k lines.
To the best of our knowledge, FHLP has not been studied before.

1.1 Our Results

In this work, we achieve (2+ ε)-approximations for Colorful Vertex Cover
and FCPL in time nO(ω/ε), this means that we obtain O(1)-approximations in
polynomial time for constant number of colors, matching the result for Fair
k-center. Our algorithms are based on LP rounding and construction of a
sparse LP. Sparsity of LPs was also used in the works on Fair k-center. How-
ever, our approach is very different. Indeed, our rounding scheme is uncompli-
cated, as in our case each element (e.g., point) can be covered by at most two
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objects (e.g., lines). In Sect. 2, first, we demonstrate our approach for FCPL, and
then describe its trivial extension to Colorful Vertex Cover. For Color-
ful Edge Cover and FHLP, we design O(ωn3) time exact algorithms, via a
chain of reductions to a matching problem studied by Cohen et al. [5] (Sect. 3).

1.2 Related Work

Point cover is a special case of FCPL with a single color where the goal is
to cover all points [11]. Hassin and Megiddo [11] introduced this problem and
gave a polynomial time algorithm. Gaur and Bhattacharya [9] showed that one
can also obtain such an algorithm using LP rounding. We refer the reader to
the following series of combinatorial as well as algorithmic works on the problem
involving arbitrary lines; [6,7,14–16,18].

Inamdar and Varadarajan [12] studied a generalization of Colorful Ver-
tex Cover, called Partition Set Cover (PSC). They gave an LP-rounding
based O(β+log ω) approximation, where β denotes the approximation guarantee
for a related Set Cover instance obtained by rounding the standard LP. See
also [3,10,12,19] for a comprehensive understanding of this problem.

2 A (2 + ε)-Approximation for FCPL and
COLORFUL VERTEX COVER

First, we describe an LP-rounding based additive approximation for FCPL, and
then show how to convert this to a multiplicative O(1)-approximation. Let L =
{�1, . . . , �m} and P = {p1, . . . , pn}. For 1 ≤ t ≤ ω, let Ct denote the color class
t, i.e., the set of points of color t. A line � is said to cover a point p if � contains
p. A solution S is said to cover a point p, if the lines in S contain p. Next, we
describe the natural ILP of FCPL. For each point pj , we have a 0/1 variable xj

that denotes whether pj is covered in the solution. For each line �i, there is a 0/1
variable yi that denotes whether �i is chosen in the solution. There are two main
constraints in the ILP other than the domain constraints. The first constraint
is the coverage constraint which ensures that from each color class t, at least rt

points are covered. The second constraint is the sanity constraint which ensures
that if a point pj is covered in the solution, then at least one line of L must be
in the solution that contains pj . The LP relaxation of the ILP is as follows.

minimize
∑

�i∈L
yi (FCPL-LP)

subject to
∑

j:pj∈Ct

xj ≥ rt ∀1 ≤ t ≤ ω (1)

∑

i:�i∈L,pj∈�i

yi ≥ xj ∀pj ∈ P (2)

0 ≤ xj , yi ≤ 1 ∀pj ∈ P, �i ∈ L (3)
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We denote any solution to FCPL-LP by (x, y). The cost of (x, y) is defined
as, cost(x, y) =

∑
�i∈L yi. Our rounding algorithm consists of two major steps.

First Step. In the first step, we compute a fractional optimal solution (x̄, ȳ)
using any LP solver and modify it to obtain another fractional solution which has
a special structure. Let OPTLP denote the cost of (x̄, ȳ) and OPT the optimal
cost. Also, let P1 and P2 be the disjoint subsets of points which are covered by
exactly one and two input lines, respectively.

Lemma 1. There is a solution (x̃, ỹ) to FCPL-LP with the following properties:
(i) cost(x̃, ỹ) ≤ 2·OPTLP . (ii) There is a function φ : P → L such that for
each point pj ∈ P2 and the axis-parallel lines �j1 and �j2 that contain it, either
φ(pj) = �j1 or φ(pj) = �j2 . For each point pj ∈ P1 and the line �j1 containing it,
φ(pj) = �j1 . Also, x̃j is equal to the ỹ value of φ(pj). (iii) (x̃, ỹ) can be obtained
in polynomial time.

Proof. We construct (x̃, ỹ) by modifying the solution (x̄, ȳ). First, we define a
function φ that assigns each point to a line. For each point pj ∈ P1 and the
line �j1 containing it, φ(pj) = �j1 . For each point pj ∈ P2, let �j1 and �j2 be
the respective horizontal and vertical lines that cover pj . We assign pj to �j1

or �j2 , whichever has the larger y-value in (x̄, ȳ). If both y-values are same, we
assign pj to one of the two arbitrarily. This completes the description of the
assignment φ. Next, we construct a new solution based on φ. For each point pj ,
we set its new x-value to the minimum of 1 and two times the y-value of φ(pj),
i.e., x̃j = min{1, 2ȳi′} where �i′ = φ(pj). For each line �i, we set its new y-value
to the minimum of 1 and two times of its old y-value, i.e., ỹi = min{1, 2ȳi}.
Note that x̃j ≥ min{1, ȳj1 + ȳj2} ≥ x̄j . Thus, it is not hard to see that the new
solution satisfies the coverage and sanity constraints. Moreover, cost(x̃, ỹ) is at
most two times the cost of (x̄, ȳ). Hence, Property (i) is satisfied. Property (ii)
is satisfied by construction. Lastly, as the modification takes polynomial time,
(x̃, ỹ) can also be obtained in polynomial time. �	

By the above lemma, we obtain a separated LP-solution where each point
gets its fractional coverage x̃j either from a horizontal or from a vertical line.
Based on this separation we write a sparse LP (containing only a few constraints)
for our instance and use the sparsity of this LP to obtain an integral solution.
Next, we describe the details.

Second Step. Consider the solution (x̃, ỹ) and the assignment φ in Lemma 1.
For each color 1 ≤ t ≤ ω and for each line �i ∈ L, let Ct,i be the set of points pj in
Ct such that φ(pj) = �i. Denote the size of Ct,i by nt,i. Lastly, let k =

∑
i:�i∈L ỹi.

We define the following LP that does not contain too many constraints.
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maximize
m∑

i=1

n1,izi (Sparse-LP)

subject to
m∑

i=1

nt,izi ≥ rt ∀2 ≤ t ≤ ω (4)

m∑

i=1

zi ≤ k (5)

0 ≤ zi ≤ 1 ∀1 ≤ i ≤ m (6)

Lemma 2. There is a solution to Sparse-LP whose objective function value is
at least r1.

Proof. For each line �i ∈ L, set zi = ỹi. Constraint 5 is trivially satisfied. Now,
fix any 1 ≤ t ≤ ω.

m∑

i=1

nt,izi =
m∑

i=1

nt,i · ỹi =
m∑

i=1

∑

pj∈Ct,i

ỹi (as nt,i = |Ct,i|)

=
m∑

i=1

∑

pj∈Ct,i

x̃j (from the definitions of Ct,i and φ)

=
∑

j:pj∈Ct

x̃j (as Ct,i is a partition of Ct)

≥ rt (by Constraint 1 of FCPL-LP)

Hence the lemma follows. �	
Next, we compute a fractional optimal solution ẑ to Sparse-LP using any LP

solver. The above lemma implies the value of this solution is at least r1. In the
following, we argue about some additional properties of this solution. For that
we need the following lemma (Lemma 2.1.4 in [17]).

Lemma 3 [17]. In any extreme point feasible solution (or equivalently, a basic
feasible solution) to a linear program, the number of linearly independent tight
constraints is equal to the number of variables.

The following lemma is an easy consequence of the above lemma.

Lemma 4. The number of fractional variables in ẑ is at most ω.

Proof. First, note that Sparse-LP has 2m+ω constraints and m variables. Now,
by Lemma 3, the number of linearly independent tight constraints in ẑ is m.
Consider the set S of 2m constraints 0 ≤ zi ≤ 1. As there are only ω more
constraints in the LP, there must be at least m − ω many linearly independent
constraints in S which are tight in ẑ. Note that the two constraints zi ≥ 0 and
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zi ≤ 1 cannot be tight simultaneously for any fixed i, as it would imply zi = 0
and zi = 1. Hence, it must be the case that at least m − ω variables are integral
in ẑ, and the lemma follows. �	

Based on the above lemma we compute an integral solution z∗ to Sparse-LP
by rounding the values of the at most ω fractional variables to 1. Note that
this integral solution satisfies all the constraints except Constraint 5. But, as we
round at most ω variables, it follows that

∑m
i=1 z∗

i ≤ k + ω. Thus, we obtain
a set Γ of at most k + ω lines in L that for each 1 ≤ t ≤ ω contain at least
rt points from Ct. Thus, Γ is a feasible solution for FCPL. By noting that k =
cost((x̃, ỹ)) ≤ 2OPTLP , we obtain the following theorem.

Theorem 1. There is a feasible solution to FCPL with cost at most 2OPT+ω
that can be computed in polynomial time.

Next, we show how to convert the above additive approximation to a multi-
plicative constant approximation, albeit with a time complexity that exponen-
tially depends on ω.

Theorem 2. For any ε > 0, there is a (2 + ε)-approximation for FCPL in
mO(ω/ε)nO(1) time.

Proof. Fix ε > 0. First, we enumerate all the solutions of size κ = 1, 2, . . . , ω/ε
in mO(ω/ε)nO(1) time. We stop the first time we obtain a feasible solution. Thus,
if we obtain a feasible solution at some step, it must be an optimal solution, and
we are done. Otherwise, the optimal cost OPT is more than ω/ε. In this case, we
use our additive approximation algorithm based on LP rounding. By Theorem
1, we obtain a feasible solution with cost at most 2OPT+ω < 2OPT+ε· OPT =
(2 + ε)· OPT. �	

Remarks. The above LP rounding based scheme is much more general in the
sense that it also yields a (2+ ε)-approximation for Colorful Vertex Cover
in nO(ω/ε)mO(1) time. The steps are similar to the ones for FCPL, as here each
edge gets covered by exactly two vertices. We can mimic the above mentioned
scheme by assigning each edge to the vertex whose variable value is larger lead-
ing to the situation where each edge gets its coverage value from exactly one
vertex. Thus, again we can write a sparse LP for the instance and achieve the
same guarantees. Similarly, this LP rounding based scheme achieves an (f + ε)-
approximation for Partition Set Cover in nO(ω/ε)mO(1) time, where each
element appears in at most f sets in the input. The idea is again similar: assign
each element to a unique set having the largest variable value. The f factor
comes from the fact that the variable value of each set is scaled up by f factor
to obtain the new LP solution where each element is (fractionally) covered by
exactly one set. This implies the general case of FCPL with arbitrary lines admits
an (f + ε)-approximation in mO(ω/ε)nO(1) time, where each point is contained
in at most f lines in the input.
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3 A Polynomial Time Algorithm for FHLP and
COLORFUL EDGE COVER

First, we argue that it is sufficient to obtain the algorithm for Colorful Edge
Cover, in order to obtain the algorithm for FHLP. Then, we design a polynomial
time algorithm for Colorful Edge Cover.

Consider any instance of FHLP. If there is an input point p that intersects or
hits exactly one line �, we add another line �′ to the instance orthogonal to � such
that �′ also intersects p. We can also ensure that this new line does not intersect
any other input point, potentially by a slight shifting of p. Also, we color all the
new lines added in this process by a new color C. Now, it is sufficient to solve
FHLP on the new instance by setting the requirement of the color C to 0. Hence,
without loss of generality, we can assume that in any instance of FHLP, each
point hits exactly two axis-parallel lines. Now, given an instance of FHLP, one
can construct a vertex-colored graph where the vertices are corresponding to the
lines and edges are corresponding to the points. Hence, we have the following
observation.

Observation 1. If Colorful Edge Cover can be solved in T (n, ω) time,
FHLP can be solved in T (2n, ω + 1) + O(n + m) time.

In the following, we design an algorithm for Colorful Edge Cover which
runs in O(ωn3) time. Hence, by the above observation, we have the following
theorem.

Theorem 3. FHLP can be solved in O(ωn3) time.

An edge e is said to cover a vertex v if e is incident on v. A set of edges E′

covers the set of vertices V ′ = {v | ∃e ∈ E′ such that e covers v}. In the rest
of this section, we design the algorithm for Colorful Edge Cover, which is
based on an algorithm for the following matching problem.

Budgeted Matching
Input: A graph G with n vertices and m edges where every vertex is colored
by a color from {1, 2, . . . , ω}, and coverage requirements r1, r2, . . . , rω.
Question: Find a minimum-sized matching which covers at least ri vertices
of color i for each 1 ≤ i ≤ ω.

We design a polynomial time algorithm for Budgeted Matching. But
before that, we have the following observation which establishes a connection
between Colorful Edge Cover and Budgeted Matching.

Lemma 5. If Budgeted Matching can be solved in time T (n, ω), then Col-
orful Edge Cover can be solved in time T (2n, ω + 1) + O(m + n).

Proof. Suppose we would like to solve Colorful Edge Cover on a given
instance I consisting of a vertex-colored graph G = (V,E) and a set of col-
ors {1, 2, . . . , ω}. WLOG, there is no isolated vertex in G. We construct a
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new instance I ′ of Budgeted Matching consisting of a vertex-colored graph
G′ = (V ′, E′) and a set of colors {1, 2, . . . , ω, C} as follows.

For each vertex v ∈ V , we add two vertices, v and an auxiliary vertex a(v),
to V ′. The color of v in G′ is same as the color of v in G and the color of a(v)
is C. E′ consists of all the edges in E and the edge (v, a(v)) for each v ∈ V .
For each color 1 ≤ i ≤ ω, the requirement ri in I ′ remains the same as in
I. The requirement corresponding to C is set to 0. Note that |V ′| = 2n and
|E′| = m + n = O(m).

Next, we show that I has a solution to Colorful Edge Cover with at
most k edges if and only if I ′ has a solution to Budgeted Matching with at
most k edges. First, assume that there is a set of edges E1 ⊆ E of size k which
is a solution to Colorful Edge Cover. We construct a matching M for I ′

from E1. First, note that if there is a path in E1 consisting of three edges, we
can always remove the middle edge from the solution without losing any vertex
coverage. Thus, WLOG, we can assume that E1 is a collection of star graphs.
Consider any such star S. We include any arbitrary edge (s, v) of S in M where
s is the central vertex of S. For any other edge (s, u) in S, we include (u, a(u))
in M . By construction, M is a matching in G′ of size at most k. Also, all the
requirements are trivially satisfied.

Now, suppose there is a matching M in G′ of size k which is a solution to
Budgeted Matching. We construct a solution E1 for I from M . For each edge
e ∈ M ∩E, include e in E1. For each edge e ∈ M ∩ (E′ \E), where e = (u, a(u)),
include any arbitrary edge (u, v) of E in E1 (that covers u). Note that such an
edge always exist, as there is no isolated vertex in G. Again, by construction, E1

is a feasible solution to I of size k.
We solve Budgeted Matching on I ′ to obtain a matching M of the min-

imum size, say k. We return the set of edges E1 as constructed above as the
solution to I. We claim that E1 is a solution to Colorful Edge Cover of the
minimum size. Suppose it is not. Suppose there is a solution E2 to Colorful
Edge Cover of size k′ < k. Then, by the above discussion, there is a solution
to Budgeted Matching of size at most k′ < k. But, this is a contradiction to
the assumption that M is a minimum size solution.

Finally, Budgeted Matching can be solved on I ′ in T (2n, ω+1) time, and
construction of G′ can be done in O(m + n) time. Hence, the lemma follows. �	

In the following, we design an algorithm for Budgeted Matching which
runs in O(ωn3) time. Hence, by the above lemma, we have the following theorem.

Theorem 4. Colorful Edge Cover can be solved in O(ωn3) time.

To solve Budgeted Matching, we show that it can be converted to a
problem where each color has unit requirement. Essentially we need the following
problem definition due to Cohen et al. [5].
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Tropical Matching
Input: A graph G with n1 vertices and m1 edges where every vertex is colored
by a color from {1, 2, . . . , ω}.
Question: Find a maximum-sized matching which covers at least one vertex
of color i for each 1 ≤ i ≤ ω.

We need the following theorem due to Cohen et al. [5].

Theorem 5. [5] Tropical Matching can be solved in O(n1m1) time.

The next lemma establishes the connection between Budgeted Matching
and Tropical Matching.

Fig. 1. A sample reduction from Budgeted Matching with budget [2, 1, 1, 1] for colors
1, 2, 3, 4 respectively to Tropical Matching

Lemma 6. If Tropical Matching can be solved in T (n1,m1) time, Bud-
geted Matching can be solved in T (αn, βωn2)+γωn2 time for some constants
α, β and γ.

Proof. Suppose we would like to solve Budgeted Matching on a given instance
I consisting of a vertex-colored graph G = (V,E) and a set of colors {1, 2, . . . , ω}.
Let n be the number of vertices in G. We construct a new instance It of Trop-
ical Matching consisting of a vertex-colored graph Gt = (Vt, Et) and a set of
colors {1, 2, . . . , n, C,D} as follows.

Let Cx be the set of vertices in G of color x and nx = |Cx| for 1 ≤ x ≤ ω.
Vt contains all the vertices in V and for each color 1 ≤ x ≤ ω, a set of nx − rx

vertices V x. Additionally, Vt contains two more auxiliary vertices ct and dt. Thus,
Vt = V ∪ (∪ω

x=1V
x) ∪ {ct, dt}. Et contains all the edges in E and for each color

1 ≤ x ≤ ω, a set of (nx − rx) × nx edges Ex = {(u, v) | u ∈ V x and v ∈ Cx}.
Additionally, the edge (ct, dt) is included in Et. Thus, Et = E ∪ (∪ω

x=1E
x) ∪

{(ct, dt)}. Each vertex u ∈ V in It gets a unique color j for some 1 ≤ j ≤ n.
Colors of ct and dt are C and D, respectively. Finally, colors of all vertices in
∪ω

x=1V
x are C. See Fig. 1 for an example construction. Note that |Vt| = O(n)

and |Et| = O(ωn2).
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Next, we show that I has a solution to Budgeted Matching with k edges
if and only if It has a solution to Tropical Matching with n − k + 1 edges.
First, assume that there is a matching M of size k in G which is a solution to
Budgeted Matching. We construct a new matching Mt for Gt. We include all
the edges in M and (ct, dt) in Mt. For each 1 ≤ x ≤ ω, let Ux be the set of vertices
in Cx which are not matched by M . We also include a matching between Ux and
V x of size |Ux| in Mt. Note that such a matching always exists, as |Ux| ≤ nx −rx

by the definition of M . Now, we argue that Mt is a valid solution to Tropical
Matching of size (n − k) + 1. First, note that Mt is a matching in Gt which
matches all the vertices in V . Thus, there is a matched vertex of color j for each
1 ≤ j ≤ n. Now, as (ct, dt) is also in Mt, there are matched vertices of colors C
and D as well. Thus, Mt is a feasible solution to Tropical Matching. Note
that the size of ∪ω

x=1Ux is exactly n − 2k, as k edges in M match exactly 2k
vertices in V . Thus, the size of Mt is k + 1 + (n − 2k) = (n − k) + 1.

Now, suppose there is a matching Mt of size (n − k) + 1 in Gt which is a
solution to Tropical Matching. We construct a matching M for G starting
from Mt. Indeed, M is the subset of edges in Mt which are contained in E. We
argue that M is a feasible solution to Budgeted Matching. Note that Mt must
match all the vertices in V , as each such vertex has a unique color which does
not appear in any other vertex. Consider any color x for 1 ≤ x ≤ ω. The edges
in Ex can match at most nx − rx vertices of Cx, as |V x| = nx − rx. Thus, there
exist at least rx edges in Mt ∩ E which match the vertices in Cx not matched by
the edges in Mt ∩ Ex. It follows that M matches at least rx vertices of Cx for
each 1 ≤ x ≤ ω, and hence it is a feasible solution to Budgeted Matching.
Next, we show that the size of M is exactly k. Let k1 and k2 be the number of
edges of Mt which are in ∪ω

x=1E
x and E, respectively. Note that (ct, dt) must be

included in Mt, as otherwise there will be no vertex of color D in Mt. It follows
that k1 + k2 = n − k, or n = k1 + k2 + k. Now, the k1 edges of Mt in ∪ω

x=1E
x

match k1 vertices of V , and the k2 edges of Mt in E match exactly 2k2 vertices of
V . As these k1 +k2 edges match all the vertices of V , k1 +2k2 = n = k1 +k2 +k.
It follows that k2 = k making the size of M exactly k.

We solve Tropical Matching on It to obtain a matching Mt of the max-
imum size, say s. We return the matching M = Mt ∩ E as the solution to I.
We claim that M is a solution to Budgeted Matching of the minimum size.
Suppose it is not. From the above discussion, we know that the size of M con-
structed this way, is n − s + 1. Suppose there is a solution M ′ to Budgeted
Matching of size z < n−s+1. Then, by the above discussion, there is a solution
to Tropical Matching of size n − z + 1 > n + 1 − n + s − 1 = s. But, this is
a contradiction to the assumption that Mt is a maximum size solution.

Finally, Tropical Matching can be solved on It in T (αn, βωn2) time
for some constants α, β, and construction of Gt can be done in γωn2 time for
some constant γ. Hence, Budgeted Matching can be solved on I in time
T (αn, βωn2) + γωn2. �	

From Theorem 5 and Lemma 6, we obtain the following theorem.

Theorem 6. Budgeted Matching can be solved in O(ωn3) time.



50 S. Bandyapadhyay et al.

Acknowledgements. The authors would like to thank Tanmay Inamdar and Kasturi
Varadarajan for helpful discussions. The authors are also thankful to the anonymous
reviewers. The research of the first author is partly funded by the European Research
Council (ERC) via grant LOPPRE, reference 819416.

References

1. Anegg, G., Angelidakis, H., Kurpisz, A., Zenklusen, R.: A technique for obtaining
true approximations for k -center with covering constraints. In: Bienstock, D., Zam-
belli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 52–65. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45771-6 5

2. Bandyapadhyay, S., Inamdar, T., Pai, S., Varadarajan, K.R.: A constant approxi-
mation for colorful k-center. In: 27th Annual European Symposium on Algorithms,
ESA 2019, volume 144 of LIPIcs, pp. 12:1–12:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

3. Bera, S.K., Gupta, S., Kumar, A., Roy, S.: Approximation algorithms for the par-
tition vertex cover problem. Theoret. Comput. Sci. 555, 2–8 (2014)

4. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: Partial vertex cover and
budgeted maximum coverage in bipartite graphs. SIAM J. Discret. Math. 31(3),
2172–2184 (2017)

5. Cohen, J., Manoussakis, Y., Phong, H., Tuza, Z.: Tropical matchings in vertex-
colored graphs. Electron. Notes Discrete Math. 62, 219–224 (2017)

6. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 68–
81. SIAM (2012)

7. Dell, H., Van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. Journal of the ACM (JACM) 61(4), 1–27
(2014)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman, New York (1979)

9. Gaur, D.R., Bhattacharya, B.: Covering points by axis parallel lines. In: Proceed-
ings 23rd European Workshop on Computational Geometry, pp. 42–45 (2007)

10. Har-Peled, S., Jones, M.: On separating points by lines. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, pp. 918–932. SIAM (2018)

11. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with
straight lines. Discret. Appl. Math. 30(1), 29–42 (1991)

12. Inamdar, T., Varadarajan, K.R.: On the partition set cover problem. CoRR
abs/1809.06506 (2018)

13. Jia, X., Sheth, K., Svensson, O.: Fair colorful k -center clustering. In: Bienstock, D.,
Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 209–222. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45771-6 17

14. Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight.
ACM Trans. Algorithms (TALG) 12(3), 1–16 (2016)

15. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
624–635. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 53

16. Langerman, S., Morin, P.: Covering things with things. Discrete Comput. Geome-
try 33(4), 717–729 (2005)

https://doi.org/10.1007/978-3-030-45771-6_5
https://doi.org/10.1007/978-3-030-45771-6_17
https://doi.org/10.1007/3-540-45022-X_53


On Fair Covering and Hitting Problems 51

17. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization,
vol. 46. Cambridge University Press, Cambridge (2011)

18. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.
Oper. Res. Lett. 1(5), 194–197 (1982)

19. Slavik, P.: Improved performance of the greedy algorithm for partial cover. Inf.
Process. Lett. 64(5), 251–254 (1997)



On the Parameterized Complexity
of the Connected Flow and Many

Visits TSP Problem

Isja Mannens1, Jesper Nederlof1 , Céline Swennenhuis2(B) ,
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Abstract. We study a variant of Min Cost Flow in which the flow
needs to be connected. Specifically, in the Connected Flow problem
one is given a directed graph G, along with a set of demand vertices
D ⊆ V (G) with demands dem : D → N, and costs and capacities for each
edge. The goal is to find a minimum cost flow that satisfies the demands,
respects the capacities and induces a (strongly) connected subgraph. This
generalizes previously studied problems like the (Many Visits) TSP.

We study the parameterized complexity of Connected Flow param-
eterized by |D|, the treewidth tw and by vertex cover size k of G and
provide:
1. NP-completeness already for the case |D| = 2 with only unit

demands and capacities and no edge costs, and fixed-parameter
tractability if there are no capacities,

2. a fixed-parameter tractable O�(kO(k)) time algorithm for the general
case, and a kernel of size polynomial in k for the special case of Many
Visits TSP,

3. a |V (G)|O(tw) time algorithm and a matching |V (G)|o(tw) time con-
ditional lower bound conditioned on the Exponential Time Hypoth-
esis.

To achieve some of our results, we significantly extend an approach by
Kowalik et al. [ESA’20].

1 Introduction

In the Connected Flow problem we are given a directed graph G = (V,E)
with costs and capacities on the edges and a set D ⊆ V such that each v ∈ D has
a fixed demand. We then ask for a minimum cost connected flow on the edges
that satisfies the demand for each v ∈ D, i.e. we look for a minimum cost flow

Supported by the project CRACKNP that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 853234) and by the Netherlands Organization
for Scientific Research under project no. 613.009.031b.

c© Springer Nature Switzerland AG 2021
�L. Kowalik et al. (Eds.): WG 2021, LNCS 12911, pp. 52–79, 2021.
https://doi.org/10.1007/978-3-030-86838-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86838-3_5&domain=pdf
http://orcid.org/0000-0003-1848-0076
http://orcid.org/0000-0001-9654-8094
https://doi.org/10.1007/978-3-030-86838-3_5


Parameterized Complexity of Connected Flow and Many-Visits TSP 53

conserving function f : E → N, such that the set of edges with strictly positive
flow f is connected and the total flow coming into v ∈ D is equal to its demand
(see below for a formal definition of the problem).

One arrives (almost) directly at the Connected Flow problem by adding
a natural connectivity constraint to the well known Min Cost Flow problem
(from now on abbreviated with simply ‘Flow’, see Appendix A for details).
But unfortunately, Connected Flow has the same fate as many other slight
generalizations of Flow: The additional requirement changes the complexity
of the problem from being solvable in polynomial time to being NP-complete
(see [9, Section A2.4] for more of such NP-complete generalizations).

The problem generalizes a number of problems, including the Many Vis-
its TSP (MVTSP)1. This problem has a variety of potential applications
in scheduling and computational geometry (see e.g. the discussion by Berger
et al. [1]), and its study from the exponential time perspective recently wit-
nessed several exciting results. In particular, Berger et al. [1] improved an old
nO(n) time algorithm by Cosmadakis and Papadimitriou [4] to O�(5n) time
and polynomial space, and recently the analysis of that algorithm was further
improved by Kowalik et al. [10] to O�(4n) time.

The Connected Flow problem also generalizes other problems studied in
parameterized complexity, such as the Eulerian Steiner Subgraph problem,
that was used in an algorithm for Hamiltonian Index by Philip et al. [11], or
the problem of finding 2 short edge disjoint paths in undirected graphs (whose
parameterized complexity was for example studied by Cai and Ye [3]).

Based on these connections with existing literature on in particular the
MVTSP, its appealing formulation, and it being a direct extension of the well-
studied Flow problem, we initiate the study of the parameterized complexity
of Connected Flow in this paper.

Our Contributions. We first study the (arguably) most natural parameteriza-
tion: the number of demand vertices for which we require a certain amount of
flow. We observe that the problem is NP-hard even for |D| = 2 by a reduction
from the problem of finding two vertex disjoint paths in a directed graph by
Fortune et al. [8]. The reduction heavily relies on the capacities and we show
that this is indeed what makes the problem hard: If all capacities are set to ∞,
the problem can be solved in O�(4|D|) time by combining a simple reduction
with the algorithm for MVTSP from Kowalik et al. [10].

Next we study a typically much larger parameterization, the size k of a vertex
cover of G. One of our main technical contributions is that Connected Flow
is fixed-parameter tractable, parameterized by k:

Theorem 1. There is an algorithm solving a given instance (G,D, dem, cost,
cap) of Connected Flow such that G has a vertex cover of size k in time
O�(kO(k)).
1 In this problem a minimum length tour is sought that satisfies each vertex a given

number of times. The generalization is by setting the demand of a vertex to the
number of times the tour is required to visit that vertex and using infinite capacities.
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Theorem 1 is interesting even for the special case of MVTSP as it generalizes
the O�(nn) time algorithm from Cosmadakis and Papadimitriou [4], though it
is a bit slower than the more recent algorithms from [1,10]. For this special case,
we even find a polynomial kernel:

Theorem 2. MVTSP admits a kernel polynomial in the size k of the vertex
cover of G.

The starting point of the proofs of both Theorem 1 and Theorem 2 is a strengthen-
ing of a non-trivial lemma from Kowalik et al. [10] which proves the existence of a
solution s′ that is ‘close’ to a solution r of the Flow problem instance obtained by
relaxing the connectivity requirement. Since such an r can be found in polynomial
time, it can be used to determine how the optimal solution roughly looks.

This is subsequently used by a dynamic programming algorithm that aims
to find such a solution close to r to establish Theorem 1; the restriction to
solutions being close to r crucially allows us to evaluate only O�(kO(k)) table
entries. Additionally this is used in the kernelization algorithm of Theorem 2 to
locate a set of O(k5) vertices such that only edges incident to vertices in this set
will have a different flow in r and s′.

The last parameter we consider is the treewidth, denoted by tw, of G, which
is a parameter that is widely used for many graph problems and that is smaller
than k. We show that, unfortunately, Connected Flow most likely cannot be
solved by a fixed-parameter tractable algorithm:

Theorem 3. Assuming the Exponential Time Hypothesis, MVTSP cannot be
solved in time f(tw)no(tw) for any computable function f(·).

Note that since MVTSP is a special case of Connected Flow this lower
bound extends to Connected Flow.

We also present a Dynamic Programming algorithm for Connected Flow
running in time nO(tw), matching the lower bound. For the special case of
MVTSP our algorithm runs in MO(tw) time, where M is the maximum demand
of a vertex (which can be assumed to be nO(1) by Kowalik et al. [10]).

Notation and Formal Problem Definitions. We let O�(·) omit factors polynomial
in the input size. We assume that all integers are represented in binary, so in
this paper the input size will be polynomial in the number of vertices of the
input graph and the logarithm of the maximum input integer. For a Boolean b
we define [b] to be 1 if b is true and 0 otherwise. For integers a and b we denote
[a, b] as the set of all integers i such that a � i � b. All graphs in this paper are
directed unless stated otherwise.

We use the notion of multisets, which are sets in which the same element may
appear multiple times. Formally, a multiset is an ordered pair (A,mA) consisting
of a set A and a multiplicity function mA : A → Z

+. We slightly abuse notation
and let mA(e) = 0 if e �∈ A. We can see flow f as a multiset of directed edges,
where each edge appears f(e) number of times. We then say that f(e) is the
multiplicity of e. Given a function f : E → N, we define Gf = (V ′, E′) as



Parameterized Complexity of Connected Flow and Many-Visits TSP 55

the multigraph where e ∈ E′ has multiplicity f(e) and V ′ is the set of vertices
incident to at least one e ∈ E′. We let E(Gf ) be equal to the multiset E′. We also
define supp(f) = {e ∈ E : f(e) > 0} as the support of f . The formal statement
of Connected Flow is as follows:

Connected Flow
Input: G = (V,E), D ⊆ V , dem : D → N, cost : E → N, cap : E → N∪{∞}
Task: Find a function f : E → N such that

– Gf is connected,
– for every v ∈ V we have

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u),

– for every v ∈ D we have
∑

(u,v)∈E f(u, v) = dem(v),
– for every e ∈ E : f(e) � cap(e),

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

Note that Gf in the above definition is Eulerian (every vertex has the same in
and out degree), so it is strongly connected if and only if it is weakly connected.
We define Flow as the Connected Flow problem without the connectivity
requirement, which can be solved in polynomial time2. MVTSP is a special
case of Connected Flow, where D = V and capacities are infinite. Formal
definitions of these problems can be found in Appendix A.

Organization. The remainder of this paper is organized as follows: In Sect. 2
we first introduce an extension of a lemma from Kowalik et al. [10] that shows
that we can transform an optimal solution to the Flow relaxation to include
a specific edge set from an optimal solution of the original Connected Flow
instance, without changing too many edges. This lemma is subsequently used
in Sect. 2.2 to prove Theorem 1 and in Sect. 2.3 to prove Theorem 2. In Sect. 3
we discuss the treewidth parameterization and in Sect. 4 we conclude the paper
with a discussion on further research opportunities.

In Appendix A we provide problem definitions for Flow and prove it is equiv-
alent to Min Cost Flow. In Appendix B we formally support the observations
that characterize the complexity of Connected Flow, parameterized by the
number of demand vertices |D| and in Appendix C we prove the lower bound
in Theorem 3 and the matching upper bound. Finally, Appendix D contains
missing proofs of claims from Sects. 2.1, 2.2 and 2.3.

2 Parameterization by Vertex Cover

In this section, we consider Connected Flow and MVTSP, parameterized by
the cardinality k of a vertex cover of the input graph. We first extend a lemma
from Kowalik et al. [10] to instances of Connected Flow. Then we use this
lemma to obtain a fixed-parameter tractable algorithm for Connected Flow
and a polynomial-sized kernel for MVTSP.
2 In Appendix A we show that Flow is equivalent to the Min Cost Flow problem,

which is polynomial-time solvable.
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2.1 Transforming the Flow Relaxation to Enforce Some Edges

Let s be an optimal solution of Connected Flow and let T ⊆ supp(s). We
prove that, given any optimal solution r for Flow, there is always a flow f
that is close to r and T ⊆ supp(f). Furthermore it has cost cost(f) � cost(s).
Note that if T connects all demand vertices to each other, this implies that f is
connected and thus an optimal solution of Connected Flow.

The basic idea and arguments are from Kowalik et al. [10], where a similar
theorem for MVTSP was proved. We adjusted their proof to the case with
capacities and where not all vertices have a demand. Furthermore, we noted
that we can restrict the tours C ∈ C in the proof to be inclusion-wise minimal,
which allows us to conclude a stronger inequality.

Lemma 1. Fix an input instance (G,D, dem, cost, cap) with G = (V,E). Let s
be an optimal solution of Connected Flow and let T ⊆ supp(s). For every
optimal solution r of Flow, there is a flow f with cost(f) � cost(s), with
f(e) > 0 for all e ∈ T and such that for every v ∈ V :

∑

u∈V

|r(u, v) − f(u, v)| � 2T |, and
∑

u∈V

|r(v, u) − f(v, u)| � 2T |.

Proof. We follow the structure of the proof of Lemma 3.2 from Kowalik et al. [10].
We build a flow f (not necessarily optimal for Flow), containing T and with mul-
tiplicities close to r. Recall that mB denotes the multiplicity function of the mul-
tiset B. We define the multisets of edges As, Ar and A such that for all e ∈ E:

– mAs
(e) = max{s(e) − r(e), 0},

– mAr
(e) = max{r(e) − s(e), 0}, and

– mA(e) = max{mAr
(e),mAs

(e)} = max{s(e) − r(e), r(e) − s(e)}.

Note that A is the symmetric difference of s and r, and therefore any e ∈ A,
is exactly either in Ar or in As, but never in both.

Let H be a tour (i.e. a closed walk) of undirected edges. We then say that
−→
H is

a cyclic orientation of H if it is an orientation of the edges in H such that
−→
H forms

a directed tour. A directed edge e that overlaps with H is in positive orientation
with respect to

−→
H if it has the same orientation, and negative otherwise. We now

define (s − r) directed tours, of which an example is shown in Fig. 1.

Definition 1. Let C = (e0, . . . , e�) ⊆ A be a set of edges such that its underlying
undirected edge set H is a tour. We then say that C is an (s − r) directed tour
if there is an orientation

−→
H of H such that:

– if e ∈ C is in positive orientation with respect to
−→
H , then e ∈ As,

– if e ∈ C is in negative orientation with respect to
−→
H , then e ∈ Ar,

– if two subsequent edges ei, ei+1 of C have the same orientation, then their
shared vertex, v, is not in D. This also holds for the edge pair (e�, e0).
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Fig. 1. Example of an (s − r) directed tour. Note that every time the tour visits a
vertex v ∈ D, the orientation changes. However if the tour visits a vertex v �∈ D, the
orientation might not change.

We give a construction such that A can be partitioned into a multiset of
(s−r) directed tours. We take (u, v) ∈ A arbitrarily as our first edge of our walk
and iteratively add edges until we find an (s − r) directed tour. We assume the
current edge (u, v) is in As (if the edge is in Ar, the arguments are similar). If
v ∈ D, then there exists (v, w) ∈ Ar, because v is visited dem(v) times by both
r and s. If v �∈ D, there exists either (v, w) ∈ Ar or (w, v) ∈ As because A is the
symmetric different of the flows r and s. We take this edge as the next edge in
our (s − r) directed tour. This way we can keep finding the next edges, until we
can take our first edge (u, v) as our next edge and we find an (s − r) directed
tour. We then remove this tour and inductively find the next until A is empty.

It follows that A can be partitioned into a multiset C of (s − r) directed
tours, i.e.

mA =
∑

C∈C
mC ,

where mC is the multiplicity function of (s − r) directed tour C.
We may assume that these (s − r) directed tours are inclusion-wise minimal,

i.e. for each (s − r) directed tour C ∈ C, no subset C ′ ⊂ C is an (s − r) directed
tour. Otherwise, C can be split into two disjoint (s − r) directed tours C ′ and
C\C ′.

Claim 1. For any v ∈ V and any inclusion-wise minimal C ∈ C:
∑

u∈V

[(u, v) ∈ C] � 2 and
∑

u∈V

[(v, u) ∈ C] � 2. (1)

The proof of the above claim can be found in Appendix D.
We denote T+ = E(T )\ supp(r) as the set of edges of T that are not yet

covered by r. Hence, if e ∈ T+, then e ∈ As and there is at least one C ∈ C
that contains e. We choose for each e ∈ T+ such an (s − r) directed tour Ce ∈ C
arbitrarily. Let C+ = {Ce : e ∈ T+} be the set of chosen (s − r) directed tours.
We define f as follows: for each u, v ∈ V we set

f(u, v) = r(u, v) + (−1)[(u,v)∈Ar]
∑

C∈C+

[(u, v) ∈ C]. (2)
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In other words, f is obtained from r by removing one copy of edges in C ∩ Ar

and adding one copy of edges in C ∩ As for all C ∈ C+.
Notice that |C+| � |T+| � |T |. By using (2) and subsequently (1), we get for

all v ∈ V :
∑

u∈V

|r(u, v) − f(u, v)| �
∑

u∈V

∑

C∈C+

[(u, v) ∈ C]

�
∑

C∈C+

2 � 2T |.

Similarly we can conclude for all v ∈ V that
∑

u∈V |r(v, u) − f(v, u)| � 2|T |.

Claim 2. For all e ∈ T , f(e) > 0 and f is a flow for the given instance.

The proof can be found in Appendix D.
We are left to prove that cost(f) � cost(s). For any C ∈ C define δ(C) =

cost(As∩C)−cost(Ar ∩C) as the cost of adding all edges in As∩C and removing
all edges in Ar ∩ C. Notice that δ(C) � 0 for all tours C ∈ C, as otherwise r
would not have been optimal since we could improve it by augmenting along
C. We note that

∑
C∈C+ δ(C) �

∑
C∈C δ(C) as C+ ⊆ C. Therefore: cost(f) =

cost(r) +
∑

C∈C+ δ(C) � cost(r) +
∑

C∈C δ(C) = cost(s). 
�

2.2 Fixed Parameter Tractable Algorithm

Now we use Lemma 1 to show that Connected Flow is fixed-parameter
tractable parameterized by the size of a vertex cover of G:

Theorem 1. There is an algorithm solving a given instance (G,D, dem, cost, cap)
of Connected Flow such that G has a vertex cover of size k in time
O�(kO(k)).

Proof. Let X be a vertex cover of size k of G = (V,E), let s be an arbitrary
optimal solution of Connected Flow and let X ′ ⊆ X be the set of vertices of
X that are visited at least once by s. We will guess this set X ′ as part of our
algorithm, i.e. go through all possible sets. Hence we do the following algorithm
for all X ′ such that (D ∩ X) ⊆ X ′ ⊆ X, which is at most 2k times.

For any X ′, we adjust G such that the vertex cover is an independent set
and all x ∈ X ′ are visited at least once in any solution as follows. We remove
any edge (xi, xj) ∈ E for xi, xj ∈ X ′ and replace this edge by adding a new
vertex y to V . This y has no demand and has edges (xi, y) and (y, xj), with
capacities equal to the old capacity cap(xi, xj) and cost(xi, y) = cost(xi, xj) and
cost(y, xj) = 0. This removes any edges between vertices in the set X ′, making
it an independent set. We note that X ′ is still a vertex cover of size k.

For all x ∈ X ′\D we add a vertex bx to V , with dem(bx) = 1 and we add
edges (x, bx) and (bx, x) both with 0 cost and a capacity of 1. As bx has a demand
of 1 and has only x as its neighbor, this ensures that x is visited at least once.

We remove all x ∈ X\X ′ from V and denote the resulting graph as G′ =
(V ′, E′). Note that if X ′ is guessed correctly, the optimal solution s of the original
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instance, is also optimal for this newly created instance (by adding flow over the
newly created edges between x and bx, and replacing any edge (xi, xj) by the
edges (xi, y) and (y, xj)). We compute a relaxed solution r for this newly created
instance, which can be done in polynomial time.

Let T be any directed tree of size at most 2k such that T ⊆ supp(s) and all
x ∈ X ′ are incident to at least one edge e ∈ T . We argue why such tree T exists.
Since s is connected and visits all x ∈ X ′, we can find a tree T ⊆ supp(s) that
covers all x ∈ X ′. If |T | > 2k, we remove all the leaves from T not in X ′. Since
V ′\X ′ is an independent set (as X ′ is a vertex cover), this means that the size
of T is bounded by 2k. Note that all x ∈ X ′ are still incident to an edge e ∈ T .

We apply Lemma 1, to s and T to find that there is a flow f such that
cost(f) � cost(s) and for every v ∈ V :

∑

u∈V ′
|r(u, v) − f(u, v)| � 4k, and

∑

u∈V ′
|r(v, u) − f(v, u)| � 4k. (3)

Since T ⊆ supp(f), f visits all the vertices in X ′ at least once. As X ′ is a
vertex cover, this means that f is a connected flow and hence an optimal solu-
tion of the instance of Connected Flow. We will use a dynamic programming
method to find solution f . Namely, we iteratively add vertices from the indepen-
dent set B = V ′\X ′ and keep track of the connectedness of our vertex cover X ′

with a partition π. We later will restrict the number of table entries we actually
compute with the help of Eq. (3).

Denote X ′ = {x1, . . . , xk′} and let B = {b1, . . . , bn}. For j ∈ [0, n] let Bj be
the set of the first j vertices of B, i.e. Bj = {b1, . . . , bj} and define Vj = X ′ ∪Bj .
For any f : (Vj)2 → N and v ∈ Vj define fout(v) =

∑
u∈Vj

f(v, u) and f in(v) =
∑

u∈Vj
f(u, v). Let cin = (cin1 , . . . , cink′) ∈ N

k′
and cout = (cout1 , . . . , coutk′ ) ∈ N

k′
be

two vectors of integers and let π be a partition of the vertices of X ′.
For j ∈ [0, n] we define the dynamic programming table entry Tj(π, cin, cout)

to be equal to the minimal cost of any partial solution f : (Vj)2 → N having
the specified in and out degrees (cin and cout) for vertices in X ′ and connecting
all vertices x ∈ S for each S ∈ π. More formally, Tj(π, cin, cout) is equal to
minf cost(f) over all f : (Vj)2 → N such that the following conditions hold:

1. for all blocks S of the partition π, the block is weakly connected in G′
f ,

2. for all xi ∈ X ′: fout(xi) = couti , f in(xi) = cini ,
3. for all v ∈ Bj : fout(v) = f in(v), and if v ∈ Bj ∩ D, then f in(v) = dem(v),
4. for all u, v ∈ Vj : f(u, v) � cap(u, v).

We set Tj(π, cin, cout) = ∞ if no such f exists.

Claim 3. Each table entry Tj(π, cin, cout) can be computed from all table entries
Tj−1.

We describe how to compute each table entry in the proof of Claim 3 in
Appendix D. We restrict this dynamic program using Eq. (3). As X ′ is an inde-
pendent set, there are only edges between x ∈ X ′ and b ∈ Bj . Therefore, there
exists a solution f such that for every x ∈ X ′ and j ∈ [0, n]:
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∑

b∈Bj

|r(b, x) − f(b, x)| � 4k, and
∑

b∈Bj

|r(x, b) − f(x, b)| � 4k (4)

We restrict the dynamic program to only compute table entries Tj respecting
Eq. (4), by requiring for all i ∈ [1, k′]:

couti ∈

⎡

⎣
∑

b∈Bj

r(xi, b) − 4k,
∑

b∈Bj

r(xi, b) + 4k

⎤

⎦ , and

cini ∈

⎡

⎣
∑

b∈Bj

r(b, xi) − 4k,
∑

b∈Bj

r(b, xi) + 4k

⎤

⎦ .

(5)

Note that the dynamic program is still correct with this added restriction, as∑
b∈Bj−1

|r(b, x) − f(b, x)| �
∑

b∈Bj
|r(b, x) − f(b, x)| � 4k, so any table entry

Tj respecting (5) can be computed from all table entries Tj−1 respecting (5).
The dynamic program returns the minimum value of Tn({X ′}, c, c) for all c

such that ci = dem(xi) for all xi ∈ D ∩X ′. This returns the value of a minimum
cost solution f for G′, respecting Eq. (4), if one exists. Let fX′ be solution the
dynamic program found in the iteration using X ′. Then min{fX′ : (D ∩ X) ⊆
X ′ ⊆ X} is equal to the minimum cost connected flow.

We count the number of different table entries Tj computed by the dynamic
program for fixed j. There are at most (8k)k possible values for both cin and
cout and at most kk different partitions π of X ′, so a total of kk · (8k)2k different
entries. To compute one table entry of Tj , we only need (the at most kk · (8k)2k)
table entries of Tj−1. Note that we compute this dynamic programming table
for each X ′ such that (D ∩X) ⊆ X ′ ⊆ X, that is at most 2k different X ′. Hence
the algorithm runs in time O�(kO(k)). 
�

2.3 Kernel for MANY VISITS TSP with O(k5) vertices

We now present how to find a kernel with O(k5) vertices for any instance of
MVTSP, where k is the size of a vertex cover of G. We do this by first finding
an optimal solution r to the relaxed Flow problem and then fixing the amount
of flow on some edges based on this r. We prove that there is an optimal solution
s of MVTSP such that for all except O(k5) vertices, all edges incident to these
vertices have exactly the same flow in r and s, as a consequence of Lemma 1.

Theorem 2. MVTSP admits a kernel polynomial in the size k of the minimum
vertex cover of G.

Proof. Fix an input instance on MVTSP. Let k be the number of vertices in
the vertex cover X = {x1, . . . , xk} of G and let n be the size of the independent
set B = V \X. Let r be an optimal solution of the instance of Flow obtained
by relaxing the connectivity constraint from in the given instance of MVTSP.

Define multisets
−→
F = (X × B) ∩ r (i.e. all edges in r going from vertices in

X to vertices in B) and
←−
F = (B × X) ∩ r.
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Claim 4. We may assume that for both
−→
F and

←−
F , their underlying undirected

edge sets do not contain cycles.

We describe how adjust r such that Claim 4 holds in Appendix D.
We partition B as follows: B = Y ∪

(⋃
i,j∈[1,k] Bij

)
, where for each b ∈ Bij :

r(xi, b) > 0, r(b, xj) > 0, and

r(xa, b) = 0 for all a �= i and r(b, xa) = 0 for all a �= j,

and Y = B\
(⋃

i,j∈[1,k] Bij

)
.

We argue that |Y | � k. Recall that mB denotes the multiplicity function of
a multiset B. Let F = supp(m←−

F
) ∪ supp(m−→

F
) (note that F is a set and not a

multiset). Then |F | �
∑

i,j∈[1,k] 2|Bij | + 3|Y | = 2n + |Y |, as any vertex v ∈ Bij

must be responsible for exactly 2 edges in F and each vertex in Y must add at
least 3 edges to F . Here we use that each vertex has a demand and therefore
must have at least one incoming and outgoing edge from r. As F is a union of
two forests on n + k vertices, we see that |F | � 2(n + k − 1). We conclude that
2(n + |Y |) � 2(n + k − 1), i.e. |Y | � k.

Let s be an optimal solution of the MVTSP instance, so s visits every vertex
at least once. Hence there exists a directed tree T ⊆ supp(s), covering all vertices
of X, of size at most 2k. This tree exists by similar arguments as in the proof of
Theorem 1. We apply Lemma 1 to s and T , to find that there exists an optimal
solution f to the given MVTSP instance such that

∑

v∈V

(|r(xi, v) − f(xi, v)| + |r(v, xi) − f(v, xi)|) � 8k ∀i ∈ [1, k]. (6)

We note that Gf is connected because T ⊆ supp(f) and T connects all the
vertices of the vertex cover. Equation (6) implies that at most 8k2 edges of

←−
F

and
−→
F are different in an optimal solution f of MVTSP that is close compared

to r.
For every i, j, � ∈ [1, k], we define

−→
Aij(�) as the set of 8k2 +2 vertices v ∈ Bij

with the smallest values of cost(x�, v) − cost(xi, v) (arbitrarily breaking ties if
needed). Intuitively, the vertices in

−→
Aij(�) are the vertices for which re-routing

the flow sent from xi to v to go from x� to v is the least expensive. Similarly we
define

←−
Aij(�) as a set of size 8k2 +2 containing vertices v ∈ Bij with the smallest

values of cost(v, x�) − cost(v, xj).
We also define a set Rij of ‘remainder vertices’ as follows:

Rij = Bij\

⎛

⎝

⎛

⎝
⋃

�∈[1,k]

←−
Aij(�)

⎞

⎠ ∪

⎛

⎝
⋃

�∈[1,k]

−→
Aij(�)

⎞

⎠

⎞

⎠ for all i, j ∈ [1, k].

Claim 5. There exists an optimal solution f ′ of the MVTSP instance such
that for all i, j ∈ [1, k], b ∈ Rij and x� ∈ X it holds that r(x�, b) = f ′(x�, b) and
r(b, x�) = f ′(b, x�).
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We build this f ′ iteratively from f , by removing any edge between b ∈ Rij

and x� that shouldn’t exist. The proof of this claim is deferred to Appendix D.
Therefore, we may assume that, in Gf ′ , the vertices in Rij are adjacent only

to xi and xj for all i, j ∈ [1, k]. This proves that the following reduction rule is
correct: contract all vertices in Rij into one vertex rij with edges only (xi, rij)
and (rij , xj) of cost zero and let the demand dem(rij) =

∑
v∈Rij

dem(v). Hence,
we require any solution to use the vertices in rij exactly the number of times that
we would traverse all the vertices of Rij . By applying this rule, we get a kernel
with the vertices from the sets X, Y ,

←−
Aij(�),

−→
Aij(�), and rij , which is of size

|X|+|Y |+
∑

i,j,�∈[1,k]

(∣
∣
∣
←−
Aij(�)

∣
∣
∣ +

∣
∣
∣
−→
Aij(�)

∣
∣
∣
)
+k2 � k+k+k3 ·(8k2+2)+k2 = O(k5).

To subsequently reduce all costs to be at most 2kO(1)
we can use a method from

Etscheid et al. [7] in a standard manner.
We check that one can construct this kernel in polynomial time. First, com-

pute a relaxed solution r and remove any cycles in
−→
F and

←−
F in polynomial time.

Next for each i, j, � ∈ [1, k], compute in polynomial time what the sets
−→
Aij(�)

and
←−
Aij(�) should be, by computing the values of cost(x�, v) − cost(xi, v) and

sorting. Finally we can contract all vertices in Rij into a vertex rij polynomial
time for all i, j ∈ [1, k]. 
�

3 Treewidth

When parameterized by treewidth, we get a tight classification of the problem by
heavily using (fairly standard) methodology from previous papers. In particular,
we have a dynamic programming algorithm which establishes the following result:

Theorem 4. Let M be an upper bound on the demands in the input graph G,
and suppose a tree decomposition of width tw of G is given. Then a Connected
Flow instance with G can be solved in time |V (G)|O(tw) and an MVTSP
instance with G can be solved in time min{|V (G)|,M}O(tw)|V (G)|O(1).

The algorithm builds a table with entries describing partial solutions. These
entries are indexed by the in and out degrees of vertices of bags in a tree decom-
position, as well as a partition of the bag which describes the connectivity. It
turns out that this running time is essentially optimal:

Theorem 5. Let M be an upper bound on the demands in a graph G. Then
MVTSP cannot be solved in time f(pw)min{|V (G)|,M}o(pw)|V (G)|O(1), unless
ETH fails.

Note that this theorem implies Theorem 3. We prove this upper bound using
a reduction from 3-CNF-SAT. The main idea is to encode assignments of sets
of variables as flow through a path, where the amount of flow encodes a partial
assignment of a group of variables. We then build so-called scanner gadgets which
detect whether a clause is satisfied. This reduction is based on ideas from Cygan
et al. [6]. Details are deferred to Appendix C.
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4 Conclusion and Further Research

We initiated the study of the parameterized complexity of the Connected
Flow problem and showed that the problem behaves very differently when
parameterized by the number of demand vertices, the size of the vertex cover of
the graph, or treewidth of the input graph.

While we essentially settled the complexity of the variants of the problem
parameterized by the number of demands or by the treewidth, we still leave the
following questions open for the vertex cover parameterization:

Can Connected Flow be solved in O�(cO(k)) time, with c a constant and
k the size of the vertex cover of the input graph? Such an algorithm would be
a strong generalization of the algorithms from [1,10]. While we believe our app-
roach from Theorem 1 makes significant progress towards solving this question
affirmatively, it seems that non-trivial ideas are required.

Does Connected Flow admit a kernel polynomial in k where k is the size
of the vertex cover if the input graph? It seems that especially the capacities can
make the problem a lot harder. It would be interesting to see if our arguments
for Theorem 2 can be extended to kernelize this more general problem as well.

A Problem Definitions

In this section we formally introduce and discuss a number of computational
problems that are relevant for this paper.

Formally, we define the Flow problem as follows.

Flow
Input: Given digraph G = (V,E), D ⊆ V , dem : D → N, cost : E → N,
cap : E → N ∪ {∞}
Task: Find a function f : E → N such that

– for every v ∈ V we have
∑

u∈V f(u, v) =
∑

u∈V f(v, u),
– for every v ∈ D we have

∑
u∈V f(u, v) = dem(v),

– for every e ∈ E : f(e) � cap(e),

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

From the definition it is clear that apart from the connectivity requirement,
it is indeed equivalent to Connected Flow.

We will use the following standard definition of Min Cost Flow.
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Min Cost Flow
Input: Digraph G = (V,E) with source node set S ⊆ V and sink nodes
T ⊆ V , cost : E → N, cap : E → N ∪ ∞
Task: Find a function f : E → N such that

– for every v ∈ V \ (T ∪ S) we have
∑

u∈V f(u, v) =
∑

u∈V f(v, u),
– for every e ∈ E : f(e) � cap(e),
– the value of

∑
v∈S

∑
u∈V f(v, u) is maximal,

and the value cost(f) =
∑

e∈E cost(e)f(e) is minimized.

Equivalence of Flow and Min Cost Flow. We argue that Flow is equivalent
to Min Cost Flow by simple reductions. First we reduce in the forward way.
For each d ∈ D, create vertices dout, din where dout is a source node with outgoing
flow dem(d) and din is a sink node with ingoing flow dem(d). For all other vertices
in V \D, create a node and connect to all its neighbors, where all outgoing edges
to a vertex in D go to din and all ingoing edges from a vertex in D connect to
dout.

For the other direction, let S be the set of source nodes and T be the set of
sink nodes of the Min Cost Max Flow problem. Then add one ‘big’ node x
to the graph, with demand equal to the outgoing flow from all the source nodes.
Then add (t, x) for all t ∈ T with cost(t, x) = 0, cap(t, x) = out(t). Furthermore
add (x, s) for all s ∈ S with cost(x, s) = 0, cap(x, s) = in(s).

Since Min Cost Flow is well-known to be solvable in polynomial time, we
can therefore conclude that Flow is solvable in polynomial time as well.

In Kowalik et al. [10], the Many Visit TSP (MVTSP) is defined as follows.

Many Visits TSP (MVTSP)
Input: Digraph G = (V,E), dem : V → N, cost : V 2 → N

Task: Find a minimal cost tour c, such that each v ∈ V is visited exactly
dem(v) times.

Note that MVTSP is a special case of Connected Flow, where D = V
and the capacities of all edges are infinite.

B Parameterization by Number of Demand Vertices

In this section we study the parameterized complexity of Connected Flow
with parameter |D|, the number of vertices with a demand. We first prove that
the problem is NP-hard, even for |D| = 2, by a reduction from the problem
of finding two vertex disjoint paths in a directed graph. Next we show that, if
cap(e) = ∞ for all e ∈ E, the problem can be reduced to an instance of MVTSP,
and hence solved in time O�(4|D|).

Theorem 6. Connected Flow with 2 demand vertices is NP-complete.



Parameterized Complexity of Connected Flow and Many-Visits TSP 65

Proof. We give a reduction from the problem of finding two vertex-disjoint paths
in a directed graph to Connected Flow with demand set D of size 2. The
directed vertex-disjoint paths problem has been shown to be NP-hard for fixed
k = 2 by Fortune et al. [8], so this reduction will prove our theorem for |D| = 2.
Note that the case of |D| > 2 is harder, since we can view |D| = 2 as a special
case, by adding isolated vertices with demand 0.

Given a graph G and pairs (s1, t1) and (s2, t2), we construct an instance
(G′,D, dem, cost, cap) of Connected Flow. Let V0 = V \{s1, s2, t1, t2}, we
define

V (G′) = {s1, s2, t1, t2} ∪ {vin : v ∈ V0} ∪ {vout : v ∈ V0}
We let D = {s1, s2} and set dem(s1) = dem(s2) = 1. We also define

E(G′) = {(vin, vout) : v ∈ V0}
∪ {(si, vin) : (si, v) ∈ E(G), i = 1, 2}
∪ {(vout, ti) : (v, ti) ∈ E(G), i = 1, 2}
∪ {(uout, vin) : u, v ∈ V0, (u, v) ∈ E(G)}
∪ {(t1, s2), (t2, s1)}.

We now set cost(u, v) = 0 and cap(u, v) = 1 for every (u, v) ∈ E(G′). We prove
that G has two vertex-disjoint paths (from s1 to t1 and from s2 to t2) if and
only if (G′,D, dem, cost, cap) has a connected flow of cost 0.

Let P1 and P2 be two vertex disjoint paths in G, from s1 to t1 and from s2

to t2 respectively. Intuitively we will simply walk through the same two paths in
G′ and then connect the end of one to the start of the other. More formally, we
construct a flow f in G′ as follows. Let P1 = s1, v

1, . . . , vl, t1, we set f(s1, v
1
in) =

f(vl
out, t1) = 1 as well as f(vi

in, v
i
out) = f(vi

out, v
i+1
in ) = 1 for all i ∈ [1, l]. We do

the same for P2. Finally we set f(t1, s2) = f(t2, s1) = 1 and set f to 0 for all
other edges. We note that all capacities have been respected and all demands
have been met. The resulting flow is connected, since the paths were connected
and f(t1, s2) = 1.

For the other direction, let f be a connected flow for (G′,D, dem, cost, cap).
Since dem(s1) = dem(s2) = 1 and s1 and s2 only have one incoming edge, we
have that f(t1, s2) = f(t2, s1) = 1. We argue that Gf −{(t1, s2), (t2, s1)} consists
of two vertex disjoint paths in G′, one from s1 to t1 and the other from s2 to t2.
First we note that for every vertex in G′, it has either in-degree 1 or out-degree
1 (or possibly both). This means that since we have cap(u, v) = 1 for every
(u, v) ∈ E(G′), every vertex in V (Gf ) has in- and out-degree 1 in Gf . Since Gf

is connected we find that Gf is a single cycle and thus Gf − {(t1, s2), (t2, s1)} is
the union of two vertex-disjoint paths. We now find two vertex-disjoint paths in
G by contracting the edges (vin, vout) in Gf − {(t1, s2), (t2, s1)}. 
�

Lemma 2. Given an instance (G,D, dem, cost, cap) of Connected Flow
where cap(e) = ∞ for all e ∈ E, we can construct an equivalent instance of
MVTSP on |D| vertices.
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Proof. We construct an equivalent instance (G′, dem, cost′) of MVTSP as fol-
lows. First we let V (G′) = D and for u, v ∈ D we let (u, v) ∈ E(G′) if and
only if there is a u − v path in G, disjoint from other vertices in D. We then
set cost(u, v) to be the total cost of the shortest such path. We keep dem(v) the
same.

We now show equivalence of the two instances. Let s′ : E(G′) → N be a valid
tour on (G′, dem, cost′). We construct a connected flow f on (G,D, dem, cost, cap)
by, for each (u, v) ∈ E(G′) adding s′(u, v) copies of the shortest D-disjoint u-
v-path in G to the flow. Note that the demands are met, since the demands in
both instances are the same. Also note that by definition the total cost of s′(u, v)
copies of the shortest D-disjoint u − v path is equal to s′(u, v) · cost′(u, v) and
thus the total cost of f is equal to that of s′. Finally we note that the capacities
are trivially met.

In the other direction, let f : E(G) → N be an optimal connected flow on
(G,D, dem, cost, cap). Note that Gf is connected and that every vertex in this
multigraph has equal in- and out-degrees. This means we can find some Eulerian
tour on Gf . We now construct an MVTSP tour s′ on G′ by adding the edge
(u, v) every time v is the first vertex with demand to appear after an appearance
of u in the Eulerian tour. Again it is easy to see that s′ is connected and that
the demands are met. The total cost of s′ is the same as f , namely if it is larger,
then there is some pair u, v ∈ D such that the cost of some path in the Eulerian
tour from u to v is less than cost′(u, v), which contradicts the definition of cost′.
If it were smaller, then there is some D-disjoint path in the Eulerian tour from
some u to some v which is longer than cost′(u, v). We can then find a cheaper
flow by replacing this path with the shortest path, contradicting the optimality
of f . 
�

Since MVTSP can be solved in O�(4n) time by Kowalik et al. [10], we get
as a direct consequence:

Theorem 7. Any instance instance (G,D, dem, cost, cap) of Connected
Flow where cap(e) = ∞ for all e ∈ E(G) can be solved in time O�(4|D|).

C Parameterisation by Treewidth

In this section we consider the complexity of Connected Flow, when param-
eterized by the treewidth tw of G. We first give a |V (G)|O(tw) time dynamic
programming algorithm for Connected Flow. Subsequently, we give a match-
ing conditional lower bound on the complexity of MVTSP parameterized by
the pathwidth of G. Since MVTSP is a special case of Connected Flow this
shows that our dynamic programming algorithm is in some sense optimal.

C.1 An XP Algorithm for CONNECTED FLOW

In this subsection we show the following:
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Theorem 4. Let M be an upper bound on the demands in the input graph G,
and suppose a tree decomposition of width tw of G is given. Then a Connected
Flow instance with G can be solved in time |V (G)|O(tw) and an MVTSP
instance with G can be solved in time min{|V (G)|,M}O(tw)|V (G)|O(1).

Proof. The algorithm is based on a standard dynamic programming approach;
we only describe the table entries and omit the recurrence to compute table
entries since it is standard. We assume we have a tree decomposition T =
({Xi}, R) on the given graph. For a given bag Xi, let π be a partition on Xi.
Furthermore let din = (dinv )v∈Xi

∈ N
Xi and dout = (doutv )v∈Xi

∈ N
Xi be two

vectors of integers, indexed by Xi. We define the dynamic programming table
entry T (Xi, π,din,dout) to be the cost of the cheapest partial solution on the
graph ‘below’ the bag Xi, among solutions whose connected components agree
with the partition π and whose in and out degrees agree with the vectors din and
dout. More formally, for r ∈ V (R) the root of the tree decomposition, we consider
a bag Xj to be below another bag Xi if one can reach j from i by a directed
path in the directed tree obtained from R by orienting every edge away from r.
We will denote this as Xj � Xi and define Yi = ∪Xj�Xi

Xj . For each bag Xi, a
partition π of Xi and sequences din and dout satisfying (i) 0 � dinv , doutv � dem(v)
for each v ∈ D and (ii) 0 � din(v), dout(v) � M |V (G)| for each v /∈ D, define
T (Xi, π,din,dout) = mins cost(s) over all s : Y 2

i → N such that the following
conditions hold:

1.
∑

u∈Yi
s(u, v) =

∑
u∈Yi

s(v, u) = dem(v) for all v ∈ D ∩ (Yi\Xi)
2.

∑
u∈Yi

s(u, v) = dinv for all v ∈ Xi

3.
∑

u∈Yi
s(v, u) = doutv for all v ∈ Xi

4. All blocks of the partition π are weakly connected in Gs.
5. s(u, v) � cap(u, v) for all (u, v) ∈ E(G[Yi])

We can compute the table starting at the leaves of R and work our way towards
the root.

Let us examine the necessary size of this dynamic programming table. First
we note that there are at most |V (G)|O(1) bags in the tree decomposition. Next
we consider the values dinv and doutv . Note that we can assume that an optimal
solution only visits any vertex without demand at most M |V (G)| times: Any
solution can be decomposed into a collection of paths between vertices with
demand. Each such path can be assumed to not visit any vertex more than once
(except possibly in the end points of the path) since the solution is of minimum
weight and all costs are non-negative. We find that each vertex gets visited at
most M |V (G)| times and thus we only need to consider M |V (G)| many values of
dinv and doutv . Thus the degree values of the partial solutions contribute a factor of
(M |V (G)|)O(tw) to the overall running time of the algorithm if the given instance
is a Connected Flow instance, and only MO(tw) if the given instance is an
MVTSP instance (in which all vertices are demand vertices).

We argue that we may assume that M = |V (G)|O(1). Together with the fact
that the number of possibilities for π is twO(tw) � |V (G)|O(tw), the claimed result
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for Connected Flow follows. We support this assumption using a variation
on the proof of Theorem 3.4 from Kowalik et al. [10]. Let r be some optimal
solution to Flow, then by applying Lemma 1 with T being some subtree of Gs

spanning all demand vertices, we find that there is some optimal solution s of
Connected Flow such that |r(u, v) − s(u, v)| � 2n at every edge (u, v).

We now construct a flow f from r by subtracting simple directed cycles
from r. Note that each time that we subtract such a cycle, the result is again
a flow. We start with f = r everywhere. Now if there is an edge (u, v) ∈ E for
which f(u, v) > max{r(u, v) − 2n − 1, 0}, we can find a simple directed cycle
C ∈ Gf , containing (u, v), as f is a flow and thus Gf is Eulerian. Then define
f ′(u, v) = f(u, v) − [(u, v) ∈ C]. Note that f ′ is again a flow. Set f = f ′.
We then repeat this process of subtracting simple directed cycles from f until
f(u, v) � max{r(u, v) − 2n − 1, 0} for every edge (u, v).

Note that 0 � s(u, v) − f(u, v) for all (u, v) ∈ E. Then define the instance
with dem′(v) = dem(v) −

∑
u∈V f(u, v) and cap′(u, v) = cap(u, v) − f(u, v) for

which s(u, v) − f(u, v) is an optimal connected flow. If dem′(v) � 2n2 + n we
are done. Otherwise let r′ be a relaxed solution for the new instance. Note
that there is some edge (u′, v′) for which r′(u′, v′) > 2n + 1 and thus we can
repeat the previous argument to find a non-zero flow f ′ such that f ′(u, v) �
max{r′(u, v)−2n−1, 0} on every edge and define a corresponding new instance.
Since each time we subtract a non-zero flow, after some number of repetitions
we find dem′(v) � 2n2 + n.

For the result for MVTSP, the above approach would give a running time
of min{|V (G)|,M}O(tw)twO(tw)|V (G)|O(1). However, the factor twO(tw) in the
running time needed to keep track of all partitions π can be reduced to 2O(tw)

via a standard application of the rank based approach (see e.g. [5, Section 11.2.2]
or [2,6]). 
�

C.2 Lower Bound

We now present a modified version of a reduction from 3-CNF-SAT to Hamil-
tonian Cycle parameterized by pathwidth from Cygan et al. [6]. We modify
it to be a reduction to MVTSP instead.

We will produce an instance of MVTSP that is symmetric in the sense that
the graph G is undirected, hence we denote edges as unordered pairs of vertices
(i.e. {u, v} = {v, u}). As a consequence, when c is a tour on G, then we say
c(u, v) = c(v, u). The general proof strategy is as follows. For a given 3-CNF-
SAT formula φ on n variables3 we will construct an equivalent MVTSP instance
(G, d). This graph will consist of n/s paths, for some value s, with each path
propagating some information encoding the value of s variables of φ. For each
clause of φ we will add a gadget which checks if the assignment satisfies the
clause. We then bound the size and the pathwidth of the constructed graph G.
This allows us to conclude a lower bound based on this reduction.

3 In this section, we will only use n to refer to the number of variables of a 3-CNF-SAT
instance.
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Gadgets. We start by borrowing the following gadget from Cygan et al. [6],
called a 2-label gadget (Fig. 2).

Fig. 2. A 2-label gadget.

The key feature of this gadget is that if all vertices in the gadget have demand
equal to 1, then if a solution tour enters the gadget at v3, it has to leave the
gadget at v9 and vice versa. A similar relation holds for v1 and v7. We will refer
to any edge connected to either v1 or v7 as having label 1 and any edge connected
to v3 or v9 as having label 2. We will use this gadget to construct a gadget that
can detect certain multisets of edges in a part of a graph. In this construction
we will chain 2-label gadgets together using label 1 edges. Whenever we do this,
we always connect the vertex v7 of one gadget to the vertex v1 in the next. To
keep things concise, in the rest of this section we will refer to any 2-label gadget
as if it were a single vertex.

This next gadget is also inspired by a construction from Cygan et al. [6].

Definition 2. A scanner gadget in an unweighted MVTSP instance (G, d) is
described by a tuple (X, a, b,F), where X ⊆ V , a, b ∈ V \X with dem(a) =
dem(b) = 1, F is a family of multisets of edges in4 E(X,X) and ∅ /∈ F . A tour
c of G is consistent with (X, a, b,F) if its restriction cE(X,X) is in F and if
c(a, b) > 0.

When refering to the gadget as a subgraph, we will use GF . We implement the
scanner gadget using the following construction, obtaining a different instance
(G′, dem′) of MVTSP.

– Remove the edges in E(X,X).
– Add an independent set I = {s1, . . . , s�} and edges {a, s1} and {s�, b}, for

� = |F|.
– Let F = {F1, . . . , F�}. For i = 1, . . . , � we do the following.

• Let Fi = {eq1
1 , . . . , eqz

z }, that is Fi contains qi copies of ei.
• Add a path Pi = {p1

i , . . . , p
ti
i } of 2-label gadgets, where ti = |Fi| =∑z

i=j qj . We connect the gadgets in a chain using label 1 edges.

4 Here E(X, X) are all edges with both endpoints in X and the restriction cY are all
edges in c in Y (keeping multiplicities).
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• Connect p1
i to si−1 and si using label 1 edges (green edges in Fig. 3) and

connect p
|Fi|
i to si and si+1 using label 1 edges (blue edges in Fig. 3).

• For all j = 1, . . . , z add label 2 edges from x pj′
i and from y to pj′

i for
ej = {x, y} and for qj different, previously unused values of j′ (red edges
in Fig. 3).

– We set the demand of all added vertices to 1.

Fig. 3. Example of the scanner gadget.

The function of the gadget is captured by the following lemma.

Lemma 3. There exists an tour on (G, dem) that is consistent with (X, a, b,F)
if and only if there exists a tour on (G′, dem′).

The proof will closely follow that in Cygan et al. [6].

Proof. Suppose we have a tour on (G, dem) which is consistent with a gadget
(X, a, b,F). Let Fi ∈ F be the restriction of the tour on E(X,X). Then the tour
on (G, dem) can be extended to a tour on (G′, dem′) by replacing the qj instances
of an edge {u, v} ∈ Fi with two edges {u, pj′

i } and {v, pj′
i } for qj different values

of j′. We also replace the edge {a, b} by the path

a, s1, P1, . . . , Pi−1, si, Pi+1, si+1, . . . , P�, s�, b.

Since the obtained tour visits all vertices in the gadget exactly once and since
the restriction of the adjusted tour connects the same pairs of vertices in X as
the restriction of the original tour, the obtained tour will be a solution for the
instance (G′, dem′).

For the other direction, suppose we have a tour c′ on (G′, dem′). Note that
by the nature of the 2-label gadgets any tour cannot cross from some si into X
through one of the 2-label gadgets in one of the paths Pi. Thus the tour can
only travel from outside the gadget to si, by going through a or b. Therefore the
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tour must include the edges {a, s1} and {s�, b}. Furthermore s1 and s� must be
connected by some path P ′ in the tour. Because I is an independent set, P ′ has
to jump back and forth between the Pi’s and the si’s and has to include every
si, since this is the only way to reach a vertex si with a tour.

This means that there will be exactly one path Pi0 which is not covered by
P ′. We can now obtain a tour c of (G, dem) by first setting c(u, v) = c′(u, v) for
{u, v} �= {a, b} for u or v not in X. We then include any edge in X a number of
times according to its multiplicity in Fi0 i.e. we set c(u, v) = Fi0(u, v). Finally
we set c(a, b) = 1. Note that since c(a, b) > 0 and Fi0 ∈ F , we find that c is
consistent with (X, a, b,F). 
�

The following lemma will allow us to implement the gadget without increasing
the pathwidth of the graph too much.

Lemma 4. The scanner gadget has pathwidth at most |X| + 21.

Proof. We define the bags of the decomposition as follows

Ba := X ∪ {a, s1}
Bi,j := X ∪ {si−1, si, si+1, p

j
i , p

j+1
i }

Bb := X ∪ {b, s�}.

We now have the following path decomposition of GF

Ba, B1,1, B1,2, . . . B1,t1 , B2,1, . . . B�,t�
, Bb.

It is easy to check that every vertex/edge is covered by some bag and that for every
vertex v the set of bags containing v form an interval in the decomposition. 
�

Construction. Suppose we are given a 3-CNF-SAT formula φ = C1 ∧ . . .
∧ Cm. We will construct an equivalent unweighted MVTSP instance Γφ using
scanner gadgets. We will interpret a tuple (q, j) ∈ {1, . . . , 2s} × {1, . . . , n/s} as
an assignment of x(j−1)s+1, . . . , xjs by first decomposing

q − 1 =
s∑

i=1

ci2i−1

and setting x(j−1)s+i as true if ci = 1 and false if ci = 0. We say a clause C is
satisfied by a set Q of such tuples, if j �= j′ for all (q, j), (q, j′) ∈ Q, and if the
partial assignment collectively given by the tuples satisfies C (Fig. 4).
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Fig. 4. Construction of the graph Γφ.

– We start by creating vertices li,1, . . . , li,n/s and ri,1, . . . , ri,n/s for i = 1, . . . ,m
and some constant s to be determined later5.

– We set the demand of l1,j to 2s + 1 for j = 1, . . . , n/s and add edges
{l1,j , l1,j+1} for j = 1, . . . , n/s − 1.

– We set the demand of every other li,j and every ri,j to 2s and add edges
{li,j , ri,j}, {ri,j , li+1,j} and {rm,j , l1,j} for i = 1, . . . ,m−1 and j = 1, . . . , n/s.

– We connect l1,1 to l1,n/s using a path a1, . . . , am+1.
– For i = 1, . . . ,m let xa, xb, xc be the variables appearing in Ci. We set j1 =

�a/s�, j2 = �b/s�, j3 = �c/s�. Let

X = {li,j1 , li,j2 , li,j3 , ri,j1 , ri,j2 , ri,j3}

and let FCi
be the set of all

F = {{li,j1 , ri,j1}q1 , {li,j2 , ri,j2}q2 , {li,j3 , ri,j3}q3 , }

such that Q = {(q1, j1), (q2, j2), (q3, j3)} satisfies Ci.
– For i = 1, . . . ,m we implement a scanner gadget GCi

using the tuple
(Xi, ai, ai+1,FCi

)

We prove the following useful facts about this graph.

Lemma 5. Γφ is a yes instance of MVTSP if and only if φ has a satisfying
assignment.
5 If n is not divisible by s, we may either add dummy variables until it is, or lower the

demand of li,n/s and ri,n/s.
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Proof. Let x1, . . . , xn be the variables used in the formula φ. Let χ1, . . . , χn

be some satisfying assignment. We first define the tour on the construction
before implementing the scanner gadgets, which we will refer to as Γ ′

φ, and
then use Lemma 3 to find the desired tour on Γφ. Set c(li,j , li+1,j) = c(l1,1, a1) =
c(am+1, l1,n/s) = c(ai, ai+1) = 1. We choose

c′(li,j , ri,j) = 1 +
s∑

k=1

2k−1χ(j−1)s+k

for i = 1, . . . ,m and j = 1, . . . , n/s. Due to the chosen demands we need to
choose

c′(ri,j , li+1,j) = 2s+1 − c′(li,j , ri,j)

for i = 1, . . . ,m and j = 1, . . . , n/s, where we interpret i modulo m, i.e. m+1 ≡ 1.
Note that c′ is connected and satisfies the demands on Γ ′

φ. Also note that since
χ is a satisfying assignment, c′ is consistent with all the scanner gadgets GCi

and thus by Lemma 3 we there is some valid tour c on Γφ.
Now suppose we find a valid tour c on Γφ. Then by Lemma 3 there exists a

tour c′ on Γ ′
φ consistent with each gadget GCi

. By definition of GCi
the values

of c′(li,j , ri,j) encode an assignment satisfying Ci for i = 1, . . . ,m. Since for
i � 2 the demands of li,j and ri,j equal 2s we have that c′(li,j , ri,j) = 2s+1 −
c′(ri,j , li+1,j) = c′(li+1,j , ri+1,j) and therefore the values of c′(l1,j , r1,j) encode an
assignment satisfying all clauses C1, . . . , Cm, which means we find an assignment
which satisfies φ. 
�
Lemma 6. Γφ has pathwidth at most 3n/s + 21.

Proof. We define the bags of the decomposition as follows. First we add

A = {l1,1, . . . , l1,n/s}

to every bag. Let W1, . . . ,Wli be a path decomposition of GCi
. We define bag

Xi,j as follows
Xi,j = A ∪ {li,k}n/s

k=1 ∪ {ri,k}n/s
k=1 ∪ Wj .

We then define Yi as {li+1,k}n/s
k=1 ∪ {ri,k}n/s

k=1 The final path decomposition then
becomes

X1,1, . . . , X1,l1 , Y1,X2,1, . . . , Xi,li , Yi,Xi+1,1, . . . , Xm,lm .

Note that all vertices and edges are covered by the decomposition. The set of
bags containing any of the vertices of A gives the whole decomposition. The set
of bags containing any li,j or ri,j for i � 2 gives the path Xi,1 . . . Xi,l1 with Yi

at the end for ri,j and Yi−1 at the beginning for li,j . Any vertex in the gadgets
gives a single set Xi,j . By Lemma 4 the width of this path decomposition is at
most6

3
n

s
+ 21.


�
6 We don’t include the term |X|, since X ⊆ {li,k}n/s

k=1 ∪ {ri,k}n/s
k=1.
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Now we use our reduction to prove the following lower bound:

Theorem 5. Let M be an upper bound on the demands in a graph G. Then
MVTSP cannot be solved in time f(pw)min{|V (G)|,M}o(pw)|V (G)|O(1), unless
ETH fails.

Proof. We start by proving the following claim.

Claim 6 |V (GCi
)| = O(23s) for i = 1, . . . ,m.

Proof of Claim. Note that FCi
is defined on at most three unique edges with

each edge being chosen at most 2s times7. Therefore we can represent FCi
by

tuples (z1, z2, z3) ∈ [2s]3. Since each tuple contributes a path of z1 + z2 + z3

vertices, we find that

|V (GCi
)| = 8 + |FCi

| +
∑

(z1,z2,z3)∈FCi

z1 + z2 + z3

� 23s+1 +
2s
∑

z1,z2=1

(

2s(z1 + z2) +
2s
∑

z3=1

z3

)

� 23s+1 +
2s
∑

z1,z2=1

(
2s(z1 + z2) + 2s+1

)

� 23s+1 +
2s
∑

z1=1

(
22sz1 + 22s+1 + 22s+1

)

� 23s+3.

�
Note that by Lemma 5, solving a 3-CNF-SAT instance φ reduces to solving

MVTSP on Γφ for some choice of s. We remark that

O(f(pw)min{|V (G)|,M}o(pw)|V (G)|O(1)) � O(f(pw)Mo(pw)|V (G)|O(1)).

It is therefore sufficient to show that there is no O(f(pw)Mo(pw)|V (G)|O(1)) time
algorithm for MVTSP, unless ETH fails.

Suppose we have a O
(
f(pw)Mo(pw)|V (G)|O(1)

)
time algorithm for MVTSP.

Let s = 4n/g(n) for some strictly increasing function g(n) = 2o(n) such that
f(g(n)) = 2o(n). Note that s = o(n) and pw � g(n) for large enough n. We
construct the instance Γφ as previously described. We first note that by Claim 6

|V (Γφ)| = 2m
n

s
+

m∑

i=1

|V (GCi
)| = O

(
m

(n

s
+ 23s

))

7 Due to the way we interpret the multiplicities as truth assignments (in particular
the ‘−1’) we know each edge gets chosen at least once.
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and by Lemma 6 we have that for any choice of s and large enough n, Γφ has
pathwidth at most 4n/s. By applying our hypothetical algorithm for MVTSP
to Γφ we now find an algorithm for 3-CNF-SAT running in time

O
(
f(pw)Mo(pw)|V (Γφ)|O(1)

)
= O

(
f(4n/s)(2s)o(n/s)

(
m

(n

s
+ 23s

))O(1)
)

= O
(

f(g(n)) · 2o(n) ·
(
m

(
g(n)/4 + 2o(n)

))O(1)
)

.

We may assume that m = 2o(n) by the sparsification lemma. Using this and the
fact that g(n) = 2o(n) we find

= O
(

2o(n) ·
(
2o(n)

)O(1)
)

= O
(
2o(n)

)
.

This contradicts ETH, completing our proof. 
�

D Proofs Deferred to Appendix

D.1 Proofs of Claims from Subsection 2.1

Claim 1. For any v ∈ V and any inclusion-wise minimal C ∈ C:
∑

u∈V

[(u, v) ∈ C] � 2 and
∑

u∈V

[(v, u) ∈ C] � 2. (1)

Proof. We only prove the first inequality. The second inequality can be proved
with an analogous argumentation. Assume not, i.e. assume there exists C ∈ C
and v ∈ V such that there exist x1, x2, x3 ∈ V with (xi, v) ∈ C for i = 1, 2, 3.
Each of these edges must be either in As or Ar. Assume without loss of generality
that (x1, v), (x2, v) ∈ As. (We will only need the fact that at least two of these
edges are either both in Ar or both in As. The case of at least two edges in Ar

has equivalent reasoning.) Both (x1, v) and (x2, v) can be paired with the edge it
traverses v with, i.e. its subsequent edge in the tour, as (x1, v), (x2, v) ∈ As are
positively oriented. Let e1, e2 be these subsequent edges. Then note that C can
be split into two smaller (s− r) directed tours C1 and C2, with C1 starting with
edge e1 and ending with (x2, v), and C2 starting with edge e2 and ending with
(x1, v). This contradicts the assumption that C was inclusion-wise minimal. 
�

Claim 2. For all e ∈ T , f(e) > 0 and f is a flow for the given instance.

Proof. We first show that for all e ∈ E:

min{r(e), s(e)} � f(e) � max{r(e), s(e)}.
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If e �∈ A, Eq. (2) implies that r(e) = f(e) = s(e). If e ∈ As, by definition
r(e) < s(e) and we can see from (2) that if the multiplicity of e changes, it is
because copies of e are added to r to form f (and none are removed). Because
mA(e) � s(e)− r(e), at most this many copies of e can be added to r to form f .
Hence r(e) � f(e) � r(e) + (s(e) − r(e)) = s(e). Similarly, if e ∈ Ar, r(e) > s(e)
and at most r(e) − s(e) copies of e are removed from r to form f .

Next we prove that f is an allowed solution to the given Flow instance.
Let C ∈ C+ and let e, e′ be two subsequent edges from C with common vertex
v. If e ∈ As and e′ ∈ Ar, then the in- and out-degrees of v do not change
while adding a copy of e and removing a copy of e′ (in Eq. (2)), because the
orientation of e and e′ is different. This is also true if e ∈ Ar and e′ ∈ As.
If e, e′ ∈ Ar, then both e and e′ have a copy removed in Eq. (2). Since the
orientation of e and e′ is the same, both the in- and out-degree of v go down by
one. We remark that this situation only happens if v �∈ D by definition of (s− r)
directed tours. Similarly, if e, e′ ∈ As, the in- and out-degree of v increases by
one. Since r was an allowed solution, this implies that the number of incoming-
and outgoing edges of v in f are equal, in other words, the flow is preserved.
Since for v ∈ D, the total incoming (and total outgoing) edges do not change, the
demands are satisfied by f . Furthermore, the capacity constraints are satisfied
since f(e) � max{r(e), s(e)} � cap(e).

We show that T ⊆ supp(f). Let e ∈ T+, then e ∈ As so copies of e are
added to r to form f in Eq. (2). Since e ∈ T+, at least one tour C ∈ C+ contains
e. Hence, f(e) > 0. If e ∈ T\T+, then r(e) > 0 because T+ = T\ supp(r) by
definition. We also see that s(e) > 0 because T ⊆ supp(s) by assumption. Using
our earlier result that min{r(e), s(e)} � f(e), we conclude that f(e) > 0. 
�

D.2 Proof of Claim 3 from Subsection 2.2

Claim 3. Each table entry Tj(π, cin, cout) can be computed from all table entries
Tj−1.

Proof. Compute table entries for j = 0 as follows. Set T0({{x1, }, . . . ,
{xk′}},0,0) to 0, and all other entries of T0 to ∞, as V0 = X ′ is an independent
set and so a flow of zero on every edge is the only possible flow.

Now assume j > 0. We compute the values of Tj(π, cin, cout) as the mini-
mum of the following value over all suitable hin

i = (hin
1 , . . . , hin

k′) ∈ N
k′

, hout
i =

(hout
1 , . . . , hout

k′ ) ∈ N
k′

, and all suitable partitions π′ of X ′:

Tj−1(π′, cin − hin, cout − hout) +
k′

∑

i=1

(
hin

i · cost(bj , xi) + hout
i · cost(xi, bj)

)
.

Here we interpret hin
i as the multiplicity of the edge (bj , xi) and hout

i as the
multiplicity of the edge (xi, bj). Therefore, we require hin

i � cap(bj , xi) and hout
i �

cap(xi, bj) so that the capacity constraints hold. Furthermore, we require that
the solution is flow preserving in bj , i.e.

∑k′

i=1 hin
i =

∑k′

i=1 hout
i and

∑k′

i=1 hin
i =
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dem(bj) if bj ∈ D. For π′ we require for all S ∈ π that either S ∈ π′ or there
exist S′

1, . . . S
′
� ∈ π′ such that S1 ∪ · · · ∪ S� = S and S′

1, . . . , S
′
� are all connected

to bj . This latter can be formalized by requiring that for each t ∈ [1, �], there is
an xi ∈ S′

t such that hin
i + hout

i > 0.
Notice that with this recurrence, the table entries are computed correctly as

only the vertex bj was added, compared to the table entries Tj−1. Therefore we
may assume that only the edges incident to bj were added to another solution
for some table entry in Tj−1. 
�

D.3 Proofs of Claims from Subsection 2.3

Claim 4. We may assume that for both
−→
F and

←−
F , their underlying undirected

edge sets do not contain cycles.

Proof. We change r such that for both
−→
F and

←−
F , their underlying undirected

edge sets do not contain cycles. Assume that there is an alternating cycle C ⊆ ←−
F ,

meaning that its underlying edge set is a cycle and (hence) the edges alternate
between being in positive and negative orientation. We can then create solutions
r′ and r′′ of Flow by alternatingly adding and removing edges from C. Note
that we can start by either adding or removing, giving us these two different
solutions r′ and r′′. Since the edges added to r to form r′ are exactly the edges
that were removed from r to form r′′, and vice versa, it holds that cost(r) −
cost(r′) = −(cost(r) − cost(r′′)). Since r is an optimal solution, we conclude
cost(r) = cost(r′) = cost(r′′). We can therefore choose either r′ or r′′ to replace
r, such that

←−
F now has one alternating cycle less without changing any of the

edges of r outside C. Hence we can iteratively remove the cycles from
←−
F and

−→
F

and obtain an optimal solution r to the Flow instance in which both
←−
F and

−→
F

are forests in polynomial time. 
�

Claim 5. There exists an optimal solution f ′ of the MVTSP instance such that
for all i, j ∈ [1, k], b ∈ Rij and x� ∈ X it holds that r(x�, b) = f ′(x�, b) and
r(b, x�) = f ′(b, x�).

Proof. We build this f ′ iteratively from f , by removing any edges (xi′ , b) and
(b, xj′) for i′ �= i and j′ �= j for each b ∈ Rij . In particular, this implies that
r(xi, b) = f ′(xi, b) and r(b, xj) = f ′(b, xj), as b then only has edges coming from
xi and to xj and since b has a fixed demand.

Throughout the process we retain optimality and connectivity for f ′. Fur-
thermore, after each step, the solutions r and f ′ differ at at most 8k2 edges. We
start by setting f ′ = f .

Let us consider b ∈ Rij and suppose that f ′(x�, b) > 0 for some � �= i. Note
that we can tackle the case where f ′(b, x�) > 0 for some � �= j with similar
steps. We remark that |−→Aij(�)| = 8k2 + 2 as Rij �= ∅. As at most 8k2 edges
are different between r and f ′, there are vertices v, w ∈ −→

Aij(�) such that all
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of the edges adjacent to v and w have the same multiplicities in r and f ′, i.e.
f ′(x, v) = r(x, v) and f ′(x,w) = r(x,w) for all x ∈ X.

Define flow f ′′ with at most the same costs as f ′ by removing one copy of
the edges (x�, b) and (xi, v) and adding one copy of the edges (xi, b) and (x�, v),
see Fig. 5. As b �∈ −→

Aij(�) and v ∈ −→
Aij(�), the cost of f ′′ is indeed at most the cost

of f ′ by definition of the set
−→
Aij(�).

We now argue that f ′′ is connected. As f ′ is a solution to MVTSP, it must
be connected. Since we removed (x�, b) and (xi, v) from f ′ to form f ′′, proving
that the pairs x�, b and xi, v are connected in f ′′ proves f ′′ to be connected. The
edges (xi, w), (w, xj) and (v, xj) in f ′′ connect xi and v. As a consequence, x�

and b are also connected, because of the edges (x�, v) and (xi, b).
We remark that the number of edges that differ between f ′′ and r has not

changed. Hence, we continue with setting f ′ = f ′′ and repeat until f ′ has the
required properties. 
�

Fig. 5. Adjusting flow f ′, depicted on the left, to get flow f ′′, depicted on the right.
The blue edges are replaced by the red edges, the rest of the solutions are equal. The
vertex w assures the new solution remains connected
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Abstract. For a hereditary graph class H, the H-elimination distance
of a graph G is the minimum number of rounds needed to reduce G to
a member of H by removing one vertex from each connected component
in each round. The H-treewidth of a graph G is the minimum, taken
over all vertex sets X for which each connected component of G − X
belongs to H, of the treewidth of the graph obtained from G by replac-
ing the neighborhood of each component of G−X by a clique and then
removing V (G) \ X. These parameterizations recently attracted inter-
est because they are simultaneously smaller than the graph-complexity
measures treedepth and treewidth, respectively, and the vertex-deletion
distance to H. For the class H of bipartite graphs, we present non-
uniform fixed-parameter tractable algorithms for testing whether the
H-elimination distance or H-treewidth of a graph is at most k. Along
the way, we also provide such algorithms for all graph classes H defined
by a finite set of forbidden induced subgraphs.

Keywords: Elimination distance · FPT · Odd cycle transversal

1 Introduction

Background. Assuming some structure on the input of a computational prob-
lem can greatly decrease its difficulty. For instance, it is well known that many
NP-hard graph problems can be solved efficiently on graphs of bounded treewidth
using dynamic programming over so-called tree decompositions [4]. The analysis
of computational problems in terms of the input size and an additional param-
eter such as treewidth is the main objective in the field of parameterized com-
plexity [10,11]. A parameter similar to treewidth is treedepth [26, §6.4]. It can be
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defined as the minimum number of rounds needed to get to the empty graph, where
in each round we can delete one vertex from each connected component (formal
definitions in the preliminaries). Some NP-hard graph problems become solvable
in polynomial time if the input graph is restricted to be in a certain class. For
instance the NP-hardVertexCover can be solved in polynomial time in chordal
graphs; those graphs without induced cycles of length at least four. A parameter
that naturally follows from this observation is the minimum cardinality of a set of
vertices whose deletion results in a graph contained in graph class H. Such a set is
called an H-deletion set. This parameter essentially indicates how far the problem
is from being a trivial case (cf. [18]). The size of a feedback vertex set [20,23] or
vertex cover number [13,14] of the graph are often used examples of such param-
eters, where H is the class of forests and edgeless graphs respectively.

Recently there has been a push [12,16,17] in obtaining parameterized algo-
rithm where the parameter is a hybrid of some overall structure of the graph,
like treewidth and treedepth, and some distance to triviality. One such example
introduced by Bulian and Dawar is H-elimination distance (edH) [6,7], which
can be defined as the minimum number of deletion rounds needed to obtain a
graph in H by removing one vertex from each connected component in each
round; recall that in the elimination-based definition of treedepth, the goal is
to eliminate the entire graph. Hence edH is never larger than the treedepth or
the (vertex-)deletion distance to H. Bulian and Dawar showed that edH can be
computed in FPT time when H is minor-closed [7].

A related hybrid variant of treewidth was introduced by Eiben et al. [12],
namely H-treewidth (twH). The H-treewidth of a graph can be defined as the
minimum treewidth of the torso graph of a vertex set whose removal ensures each
component belongs to H. This gives rise to tree decompositions in which each
bag has size at most k+1, apart for an arbitrarily large set of vertices that occurs
in no other bags and induces a subgraph from H. Similarly as before, twH(G)
is not larger than tw(G) or the deletion distance from G to H. For minor-closed
graph classes H it can be shown that graphs of H-treewidth at most k are minor-
closed and therefore characterized by a finite set of forbidden minors. This leads
to non-uniform algorithms to recognize graphs of H-treewidth at most k for
minor-closed H using the Graph Minor algorithm [29].

Apart from minor-closed families H, some isolated results are known about
FPT algorithms to compute edH and twH exactly, parameterized by the param-
eter value. In recent work, Agrawal and Ramanujan [2] give an FPT algorithm
to compute the elimination distance to a cluster graph, as part of a kernelization
result using the corresponding structural parameterization. Eiben et al. [12] show
that when H is the class of graphs of rankwidth at most c for some constant c, then
twH is FPT. Bulian and Dawar [6] considered the elimination distance to graphs
of bounded degree d and gave an FPT approximation algorithm. Lindermayr et al.
[24] showed that the elimination distance of a planar graph to a bounded-degree
graph can be computed in FPT time. Very recently, Agrawal et al. [1] obtained
non-uniform FPT algorithms for computing the elimination distance to any fam-
ily H defined by a finite number of forbidden induced subgraphs, thereby settling
the case of bounded-degree graphs as well.



82 B. M. P. Jansen and J. J. H. de Kroon

Results and Techniques. We show that twH and edH are non-uniformly fixed
parameter tractable parameterized by the solution value when H is the class
of bipartite graphs. As a side-product of our proof, we show that twH is non-
uniformly FPT when H is defined by a finite number of forbidden induced sub-
graphs, generalizing the results of Agrawal et al. [1] for edH. The non-uniformity
of our algorithms stems from the use of a meta-theorem by Lokshtanov et al.
[25, Theorem 23] which encapsulates the technique of recursive understanding.
This theorem essentially states that for any problem expressible in Counting
Monadic Second Order (CMSO) logic, the effort of classifying whether the prob-
lem is in FPT is reduced to inputs that are (s, c)-unbreakable (formally defined
later). The theorem allows us to use the technique of recursive understand-
ing in a black box manner, leading to a streamlined proof at the expense of
obtaining non-uniform algorithms. We believe that uniform algorithms can be
obtained using the same approach by implementing the recursive understanding
step from scratch and deriving an explicit bound on the sizes of representatives
for the canonical congruence for edH and twH on t-boundaried graphs. As the
running times would not be practical in any case, we did not pursue this route.

Our proof is independent of that of Agrawal et al. [1], but is based on an
older approach inspired by the earlier work of Ganian et al. [17] that contains
similar ideas. The key ingredient for our work is the insight that the approach
based on recursive understanding used by Ganian et al. [17] to compute a hybrid
parameterization for instances of constraint satisfaction problems, can be applied
more generally to aid in the computation of edH and twH. We can lift one of
their main lemmas to a more general setting, where it roughly shows that given
an (s(k), 2k)-unbreakable graph G and an H-deletion set X in G that is a subset
of some (unknown) structure that witnesses the value of twH or edH, we can
determine in FPT time whether such a witness exists. This allows edH and twH
to be computed in FPT time if we can efficiently find a deletion set with the
stated property. For families H defined by finitely many forbidden induced sub-
graphs, a simple bounded-depth branching algorithm suffices. Our main contri-
bution is for bipartite graphs, where we show that the relation between odd cycle
transversals and graph separators that lies at the heart of the iterative compres-
sion algorithm for OCT [27], can be combined with the fact that there are only
few minimal (u, v)-separators of size at most 2k in (s(k), 2k)-unbreakable graphs,
to obtain an H-deletion set with the crucial property described above.

Related Work. Hols et al. [19] used parameterizations based on elimination dis-
tance to obtain kernelization algorithms for Vertex Cover.

In recent work [22], a superset of the authors gave FPT algorithms to
approximate edH and twH for several classes H, including bipartite graphs
and all classes defined by a finite set of forbidden induced subgraphs. That
work employed completely different techniques than used here, and left open the
question whether the parameters can be computed exactly in FPT time.
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2 Preliminaries

We consider simple undirected graphs without self-loops. The vertex and edge set
of a graph G are denoted by V (G) and E(G) respectively. When the graph is clear
from context, we denote |V (G)| by n and |E(G)| by m. For each X ⊆ V (G), the
graph induced by X is denoted by G[X]. We denote G[V (G) \ X] by G − X, and
write G − v instead of G − {v}. The open and closed neighborhoods of v ∈ V (G)
are denoted NG(v) and NG[v] respectively. For X ⊆ V (G), NG[X] =

⋃
v∈X NG[v]

and NG(X) = NG[X] \ X. The subscript G is omitted if it is clear from context.
The graph obtained from G by contracting an edge e = {u, v} ∈ E(G) is the graph
obtained by deleting u and v and inserting a new vertex that is adjacent to all of
(NG(u)∪NG(v)) \ {u, v}. A graph H is a minor of G, if it can be obtained from a
subgraph of G by a number of edge contractions. A parameter is a function that
assigns an integer to each graph. A parameter f is minor-closed if f(H) ≤ f(G)
for each minor H of G. The connected components of G are denoted by cc(G). A
set Y ⊆ V (G) is an H-deletion set if G−Y ∈ H. A graph class H is hereditary if it
is closed under vertex deletion, that is, if G ∈ H, then for every induced subgraph
F of G it holds that F ∈ H. In this work we restrict ourselves to hereditary graph
classes. A proper c-coloring of a graph is a function f : V (G) → [c] such that for
every {u, v} ∈ E(G) it holds that f(u) �= f(v). A graph is bipartite if and only
if it has a proper 2-coloring. For sets X,Y ⊆ V (G), we say that S ⊆ V (G) is an
(X,Y )-separator if the graph G − S does not contain a vertex u ∈ X \ S and
v ∈ Y \ S in the same connected component. Whenever we refer to the size of a
graph, we mean the cardinality of its vertex set.

A parameterized problem Π is a subset Σ∗ × N for some finite alphabet Σ.
A parameterized problem is non-uniformly fixed-parameter tractable (FPT) if
there exists a fixed d such that for every fixed k ∈ N, there exists an algorithm
that determines whether (x, k) ∈ Π in O(|x|d) time. (Hence there is a different
algorithm for each value of k.)

Due to space limitations, proofs of statements marked by (�) are deferred
to the full version [21].

2.1 H-treewidth and H-elimination Distance

Definition 1 [17, Definition 4]. Let G be a graph and X ⊆ V (G). The torso
of X, denoted by TG(X), is the graph obtained by turning the neighborhood of
every connected component of G − X into a clique, followed by deleting all of
V (G) \ X.

Eiben et al. [12] use the term of collapsing V (G) \ X instead of the torso of
X. Since our algorithms try to identify X, the torso terminology is more natural.
The treewidth of a graph G is denoted by tw(G) (cf. [3], [10, §7.2]).

Definition 2 [12, Definition 3]. The H-treewidth of a graph G is the smallest
integer k such that there exists a set X ⊆ V (G) with tw(TG(X)) ≤ k and for
each connected component C ∈ cc(G − X) we have C ∈ H. We call X an twH
witness of width k.
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Definition 3 [6,7]. The H-elimination distance of G for a hereditary graph
class H, denoted by edH(G), is defined recursively. If G is disconnected,
then edH(G) = maxC∈cc(G) edH(C). If G is connected and belongs to H,
then edH(G) = 0. Otherwise, edH(G) = 1+minv∈V (G) edH(G−v). The treedepth
of a graph, denoted td(G), is equivalent to edH(G) where H only contains the
empty graph.

Note that the definition above is well defined when H is hereditary, since each
hereditary graph class contains the empty graph. We argue that H-elimination
distance has an equivalent definition similar to that of H-treewidth.

Proposition 1 (�). A graph has edH(G) ≤ k if and only if there exists X ⊆
V (G) such that td(TG(X)) ≤ k and C ∈ H for each C ∈ cc(G − X).

Similar to twH witnesses, we call X an edH witness of depth k. Since the torso
operation on X turns the neighborhood of each connected component of G − X
into a clique, the following note follows.

Note 1. If X is a twH witness of width k −1 (respectively edH witness of depth
k), then |N(C)| ≤ k for every C ∈ cc(G − X).

We are ready to introduce the main problem we try to solve.

H-treewidth (twH) / H-elimination distance (edH) Parameter: k
Input: A graph G, an integer k.
Question: Decide whether twH(G) ≤ k − 1 / edH(G) ≤ k.

Definition 4 [25]. Let G be a graph and s, c ∈ N. A partition (X,C, Y ) of V (G)
is an (s, c)-separation in G if:
– C is a separator, that is, no edge has one endpoint in X and one in Y ,
– |C| ≤ c, |X| ≥ s, and |Y | ≥ s.

A graph G is (s, c)-unbreakable if there is no (s, c)-separation in G.

The following proposition is similar to Lemma 21 of Ganian et al. [17].

Proposition 2 (�). Let G be an (s, c)-unbreakable graph for s, c ∈ N and H
be a graph class such that twH(G) ≤ k − 1 (resp. edH(G) ≤ k) and c ≥ k. Then
at least one of the following holds:
1. tw(G) ≤ s + k − 1 (resp. td(G) ≤ s + k − 1),
2. each twH (resp. edH) witness X of G satisfies the following:

– G − X has exactly one connected component C of size at least s, and
– |V (G) \ N [C]| < s and |X| ≤ s + k − 1.

The following lemma bounds the number of small connected vertex sets with
a small neighborhood. It was originally stated for connected sets of exactly b
vertices with an open neighborhood of exactly f vertices.

Lemma 1 [15, cf. Lemma 3.1]. Let G be a graph. For every v ∈ V (G) and
b, f ≥ 0, the number of connected vertex sets B ⊆ V (G) such that (a) v ∈ B,
(b) |B| ≤ b + 1, and (c) |N(B)| ≤ f is at most b · f · (

b+f
b

)
. Furthermore they

can be enumerated in O(n · b2 · f · (b + f) · (
b+f
b

)
) time using polynomial space.
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2.2 CMSO

We use the formalism of Counting Monadic Second Order Logic (CMSO) as
treated by Lokshtanov et al. [25]. For a more complete introduction we refer to
the book of Courcelle and Engelfriet [9].

Let H be a graph class. We say that containment in H is expressible in
CMSO if there exists a CMSO formula ϕH such that for any graph G it holds
that G |= ϕH if and only if G ∈ H.

Lemma 2 (�). There exist CMSO-formulas with the following properties:

1. For any graph H, there exists a formula ϕH−MINOR(X) such that for any
graph G and any X ⊆ V (G) it holds that (G,X) |= ϕH−MINOR(X) if and
only if H is a minor of G[X].

2. For any graph class H characterized by a finite set of forbidden induced
subgraphs, there exists a formula ϕH such that for any graph G it holds
that G |= ϕH if and only if graph G ∈ H.

3. There exists a formula ϕBIP such that for any graph G it holds that G |= ϕBIP

if and only if graph G is bipartite.
4. For each k ∈ N, for each graph class H such that containment in H is

CMSO expressible, and for each minor-closed parameter f , there exists a
formula ϕ(k,H,f)(X) such that for any graph G and any X ⊆ V (G) we
have (G,X) |= ϕ(k,H,f)(X) if and only if f(TG(X)) ≤ k and C ∈ H for
each C ∈ cc(G − X).

Since both treewidth and treedepth are minor-closed parameters, we note
the following from the lemma above.

Note 2. For each k ∈ N and graph class H such that containment in H is CMSO-
expressible, there exists a formula ϕ(k,H,tw) (respectively ϕ(k,H,td)) such that
(G, k) is a yes-instance of H-treewidth (respectively H-elimination dis-
tance) if and only if G |= ϕ(k,H,tw) (respectively G |= ϕ(k,H,td)).

CMSO formulas can have free variables. A graph together with an evaluation
of free variables is called a structure. We denote the problem of evaluating a
CMSO formula ϕ on a structure by CMSO[ϕ]. The following theorem is the main
tool used to achieve our algorithms, we apply it only to formulas without free
variables. As the formulation differs slightly from its original form, we provide a
proof in the full version.

Theorem 1 (�) [25, Theorem 23]. Let ϕ̂ be a CMSO formula. For all ĉ : N0 →
N0, there exists ŝ : N0 → N0 such that if CMSO[ϕ̂] parameterized by k is FPT on
(ŝ(k), ĉ(k))-unbreakable structures, then CMSO[ϕ̂] parameterized by k is FPT
on general structures.

3 Algorithms for Computing edH and twH

In this section we present our algorithms. In Sect. 3.1 we present a key lemma. In
Sect. 3.2 we use it to deal with H characterized by a finite number of forbidden
induced subgraphs, and in Sect. 3.3 we deal with bipartite graphs.
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3.1 Extracting Witnesses from Deletion Sets Contained in Them

Our strategy for solving H-treewidth and H-elimination distance is similar
to that of lemmas 9 and 10 of Ganian et al. [17] and is based on Proposition 2.
Given an (s(k), c(k))-unbreakable graph, either the treewidth of the graph is
bounded (1) and we can solve the problem directly using Courcelle’s Theorem,
or each witness is of bounded size and introduces some structure (2).

In the following lemma we assume we are in the latter case (hence the
tw(G) > s(k) + k condition) and are given some H-deletion set Y . We show
that given an (s(k), c(k))-unbreakable graph, in FPT time we can find a witness
X such that Y ⊆ X if such a witness exists.

Lemma 3. Consider some k ∈ N and c : N → N such that c(k) ≥ k. Let H be
a graph class such that containment in H is solvable in polynomial time. There
is an algorithm that runs in FPT time that, given an (s(k), c(k))-unbreakable
graph for any s : N → N with tw(G) > s(k) + k and an H-deletion set Y of size
at most s(k)+k, decides whether there is an twH(G) witness X of width at most
k − 1 (respectively edH(G) witness X of depth at most k) such that Y ⊆ X.

Proof. We refer to a witness as either being an twH witness of width at most k−1
or an edH witness of depth at most k. Given a set X ⊆ V (G), we can verify that
it is a witness by testing whether tw(TG(X)) ≤ k−1 (respectively td(TG(X)) ≤
k) in FPT time [3,28] and verifying that each connected component C ∈ cc(G−
X) is contained in H, which can be done in polynomial time by assumption.

We show that we can find a witness if it exists, by doing the above verification
for FPT many vertex subsets D ⊆ V (G), as follows.

1. For each y ∈ Y , let Cy be the set of connected vertex sets S with y ∈ S,
|S| ≤ s(k) and |N(S)| ≤ k. For each B ⊆ Y with |B| ≤ k, a choice tuple tB
contains an entry for each y ∈ Y \ B, where entry tB [y] is some set Cy ∈ Cy.

2. For each B ⊆ Y with |B| ≤ k and each choice tuple tB , if G − (Y ∪⋃
y∈Y \B N(tB [y])) has exactly one connected component C of size at least

s(k) and |V (G) \ N [C]| < s(k), apply the witness verification test to
D = Y ∪ ⋃

y∈Y \B N(tB [y]) ∪ Q for each Q ⊆ V (G) \ N [C].
3. Return the logical or of all witness verification tests.

We argue that the algorithm runs in FPT time. Note that as |Y | ≤ s(k) + k,
there are at most

(
s(k)+k

k

)
choices for B. Furthermore Cy can be computed in

FPT time using Lemma 1, hence the number of choice tuples is also FPT many.
For each choice for B and each choice tuple tB, there are at most 2s(k) choices
for Q. Since each vertex set can be verified to be a witness in FPT time, the
running time claim follows.

Finally we argue correctness of the algorithm. Since tw(G) > s(k) + k (and
also td(G) > s(k) + k as tw(G) ≤ td(G) − 1), by Proposition 2 any witness X
is of size at most s(k) + k − 1, the graph G − X has exactly one large connected
component C of size at least s(k), and |V (G) \ N [C]| < s(k).
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Suppose G has a witness that is a superset of Y . Fix some witness X of
minimal cardinality with Y ⊆ X and let C be the unique component of size at
least s(k) of G − X. Note that since C ∩ X = ∅, we have C ∩ Y = ∅.

Let B = N(C) ∩ Y . By Note 1 we have |N(C)| ≤ k, hence the branching
algorithm makes this choice for B at some point. For each y ∈ Y \B, let Cy be the
connected component of G−N [C] containing y. Since |V (G)\N [C]| < s(k) and
|N(C)| ≤ k, we have that |V (Cy)| < s(k) and |N(Cy)| ≤ k. Note that N(Cy) ⊆
N(C) ⊆ X. The branching algorithm at some point tries the choice tuple tB
where tB [y] = Cy for each y ∈ Y \B. Consider the set A = Y ∪⋃

y∈Y \B N(tB [y]).
Note that A ⊆ X by construction.

If N(C) ⊆ A, then the single large component of G − A of size at least s(k)
is exactly C. Since |V (G) \ N [C]| < s(k), it follows that X = A ∪ Q for some
Q ⊆ V (G) \ N [C]. It follows that the algorithm correctly identifies X in this
case.

The only remaining case is N(C) �⊆ A. We argue that this cannot happen
when witness X is of minimal cardinality. Suppose N(C) �⊆ A and let v ∈ N(C)\
A. Let Z = Y ∪ ⋃

y∈Y \B N [Cy] and note that we take the closed neighborhoods
of the components, instead of the open neighborhoods as in the definition of A.
Let C∗

v be the connected component of G − (C ∪ Z) that contains v. We argue
that X \ C∗

v is a witness. Note that C∗
v ∩ Y = ∅ by construction as Y ⊆ Z.

Because Y is an H-deletion set, it follows that for each connected component C ′

in G − (X \ C∗
v ) we have C ′ ∈ H. We argue that N(C∗

v ) ⊆ N [C]. Since C∗
v is a

connected component of G − (C ∪ Z) we have N(C∗
v ) ⊆ C ∪ Z, so it suffices to

show that N(C∗
v ) ∩ Z ⊆ N(C). Assume for a contradiction that C∗

v contains a
vertex v′ adjacent to some z ∈ Z \ N(C); note that v′ /∈ Z. If z ∈ Y , then z ∈
Y \N(C) = Y \B and the connected component Cz of G−N [C] is adjacent to v′,
implying v′ ∈ N [Cz] and therefore v′ ∈ Z; a contradiction. If z /∈ Y , then by
definition of Z we have z ∈ N [Cy] for some y ∈ Y \B. Since N(Cy) ⊆ N(C) this
implies z ∈ Cy. But then v′ /∈ C ∪Z is adjacent to a vertex of the component Cy

of G − N [C], so v′ ∈ Z by definition of Z; a contradiction. Since N(C∗
v ) ⊆ N [C]

and v is adjacent to at least one vertex in C as v ∈ N(C), it follows that C ∪C∗
v

is a connected component of G − (X \ C∗
v ) with N(C ∪ C∗

v ) ⊆ N(C). Therefore
TG(X \ C∗

v ) is an induced subgraph of TG(X). We conclude that X \ C∗
v ⊇ Y

is a witness. Since X was assumed to be of minimal cardinality, we arrive at a
contradiction and hence A ⊇ N(C). �

3.2 Classes H with Finitely Many Forbidden Induced Subgraphs

Theorem 2. Let H be a graph class characterized by a finite set of forbidden
induced subgraphs. Then H-treewidth and H-elimination distance are non-
uniformly fixed-parameter tractable.

Proof. By Lemma 2 containment in H is CMSO expressible, therefore by Note 2
there exists a formula ϕ(k,H,f) for each f ∈ {tw, td} such that an instance (G, k)
of H-treewidth (respectively H-elimination distance) is a yes-instance if
and only if G |= ϕ(k,H,f). Furthermore, containment in H is polynomial time
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solvable, as we can verify that a graph does not contain any of the finitely many
forbidden induced subgraphs.

We argue that both problems are in FPT when the input graph G is (s(k), k)-
unbreakable for any s : N → N. If tw(G) ≤ s(k) + k, we solve the problems
directly using Courcelle’s Theorem [8] using ϕ(k,H,f). Otherwise by Proposition 2
each witness X is of size at most s(k) + k − 1. We can enumerate all minimal
H-deletion sets Y of size at most s(k)+k−1 in FPT time by finding a forbidden
induced subgraph and branching in all finitely many ways of destroying it. Since
any witness X is an H-deletion set, for some Y ∈ Y we have Y ⊆ X. Hence
we solve the problem by calling Lemma 3 for each Y ∈ Y. Applying Theorem 1
concludes the proof. �

Using known characterizations by a finite number of forbidden induced sub-
graphs (cf. [5]) we obtain the following corollary to Theorem 2.

Corollary 1. Let H be set of graphs that are either (1) cliques, (2) claw-
free, (3) of degree at most d for fixed d, (4) cographs, or (5) split graphs. H-
treewidth and H-elimination distance are non-uniformly fixed-parameter
tractable.

3.3 Bipartite Graphs

We use shorthand bip to denote the class of bipartite graphs. The problem of
deleting k vertices to obtain a bipartite graph is better known as the Odd Cycle
Transversal (OCT) problem. The problem was shown to be FPT for the first
time by Reed et al. [27]. We use some of their ingredients to show the following.

Lemma 4. The bip-treewidth and bip-elimination distance problems are
non-uniformly fixed-parameter tractable.

Proof. By Lemma 2 containment in the class of bipartite graphs is CMSO
expressible, therefore by Note 2 there exists a formula ϕ(k,bip,f) for each
f ∈ {tw, td} such that an instance (G, k) of bip-treewidth (respectively bip-
elimination distance) is a yes-instance if and only if G |= ϕ(k,bip,f). We argue
that both problems are FPT in (s(k), 2k)-unbreakable graphs for any s : N → N.
Note that the theorem then follows by Theorem 1.

Let G be an (s(k), 2k)-unbreakable graph. As before, we use the term witness
to either refer to an twH witness of width at most k − 1 or an edH witness of
depth at most k, depending on the problem being solved. We first test whether
tw(G) ≤ s(k)+k, in FPT time [3]. If so, then we can solve the problems directly
using Courcelle’s Theorem [8] using ϕ(k,bip,f). Otherwise by Proposition 2 the
size of each witness in G is at most s(k)+k−1, and for each witness X there is a
unique connected component of G−X of at least s(k) vertices, henceforth called
the large component. We use a two-step process to find an odd cycle transversal
that is a subset of some witness (if a witness exists), so that we may invoke
Lemma 3 to find a witness.



FPT Algorithms to Compute Elimination Distance 89

For a witness X∗ in G and an odd cycle transversal W of G, we say that
a partition (WL,WI) of W is weakly consistent with X∗ if for the unique large
component C of G−X∗ we have that W ∩C = WL, |WL| ≤ k, and W ⊆ C ∪X∗.
An odd cycle transversal W is strongly consistent with X∗ if W ⊆ X∗.

The following claim encapsulates the connection between odd cycle transver-
sals and separators that forms the key of the iterative-compression algorithm for
OCT due to Reed, Smith, and Vetta [27].

Claim 1 (�). For each partitioned OCT W = (WL,WI) of G, for each partition
of WL = WL,1 ∪ WL,2 into two independent sets, for each proper 2-coloring c
of G − W , we have the following equivalence for each X ⊆ V (G) \ W : the
graph (G−WI)−X has a proper 2-coloring with WL,1 color 1 and WL,2 color 2
if and only if the set X separates A from R in the graph G − W , with:

A = (NG−WI
(WL,1) ∩ c−1(1)) ∪ (NG−WI

(WL,2) ∩ c−1(2))

R = (NG−WI
(WL,1) ∩ c−1(2)) ∪ (NG−WI

(WL,2) ∩ c−1(1)).

Observe that c−1(i) ⊆ V (G − W ) for each i ∈ [2], so that A ∪ R ⊆ V (G − W ),
and that the separator X is allowed to intersect A ∪ R.

The next two claims show that certain types of OCTs can be computed
efficiently in the (s(k), 2k)-unbreakable input graph G.

Claim 2 (�). There is an FPT algorithm that outputs a list of partitioned OCTs
in G with the guarantee that for each witness X, there is a partitioned OCT on
the list that is weakly consistent with X.

Claim 3. There is an FPT algorithm that, given a partitioned OCT that is
weakly consistent with some (unknown) witness X in G, outputs a list of OCTs
in G such that at least one is strongly consistent with X.

Proof. Let (WL,WI) be the given partitioned OCT, where WL ∪ WI = W .
If |W | > s(k) + k − 1, then no witness is strongly consistent with W by Propo-
sition 2, hence we may assume |W | ≤ s(k) + k − 1.

1. Initialize an empty list W. For each y ∈ V (G), let Cy be the set of connected
vertex sets S with y ∈ S, |S| ≤ s(k) and |N(S)| ≤ 2k. Let c∗ be an arbitrary
proper 2-coloring of G − W and let B∗

i = (c∗)−1(i) for each i ∈ [2].
2. For each partition (W1,W2) of WL, let B1 = N(W2)\W and B2 = N(W1)\W .

Let A = (B1 ∩ B∗
2) ∪ (B2 ∩ B∗

1) and R = (B1 ∩ B∗
1) ∪ (B2 ∩ B∗

2).
(a) For each choice Q ∈ {A,R} with |Q| ≤ s(k) + k, for each D ⊆ Q with

|D| ≤ k, choice tuple tQ,D has an entry for each y ∈ Q \ D, where entry
tQ,D[y] is some vertex set Cy ∈ Cy.

(b) For each choice Q ∈ {A,R} with |Q| ≤ s(k) + k, for each D ⊆
Q with |D| ≤ k, and for each choice tuple tQ,D, add (W ∪ D ∪⋃

y∈Q\D N(tQ,D[y])) \ WL to W in case it is an OCT.



90 B. M. P. Jansen and J. J. H. de Kroon

The resulting list W is given as the output of the algorithm. The running time fol-
lows from Lemma 1 and the fact that there are FPT many choices for (W1,W2),
D, and tuple tQ,D.

We argue the correctness of the algorithm. Note that each set in the output
list is an OCT by construction. Consider some witness X with (WL,WI) weakly
consistent with X and let C be the unique large component of G − X, which is
bipartite by definition of witness. Let Y = (W \ WL) ∪ N(C) ⊆ X, note that Y
is an OCT of G. Let c : V (G) \ Y → [2] be a proper 2-coloring of G − Y . For
some partition (W1,W2) of WL we have Wi ⊆ c−1(i) for each i ∈ [2]. Note that
since Y \ WI ⊆ N(C), we have that |Y \ WI | ≤ k.

By Claim 1, it follows that Y \ WI ⊆ N(C) separates A and R in G − W .
Note that Bi ⊆ N [C] for each i ∈ [2] since WL ⊆ C, therefore A ⊆ N [C] and
R ⊆ N [C]. Observe that WL ∪ N(C) is an (A,R)-separator of size at most 2k
in G. Therefore, since G is (s(k), 2k)-unbreakable, for at least one Q ∈ {A,R}
the vertex set reachable from Q \ (WL ∪ N(C)) in G − (WL ∪ N(C)) has size
at most s(k). Since A and R are disjoint from W ⊇ WL by definition, this
implies |Q| ≤ s(k) + k. Hence the algorithm tries this choice as |Q| ≤ s(k) + k is
satisfied. Let D = N(C)∩Q. For each y ∈ Q\D, let Cy be the connected compo-
nent of G− (N(C)∪WL) containing y. Note that |Cy| ≤ s(k) and |N(Cy)| ≤ 2k.
Let the choice tuple tQ,D be such that tQ,D[y] = Cy for each y ∈ Q \D. Observe
that (D ∪ ⋃

y∈Q\D N(tQ,D[y])) \ WL ⊆ N(C) is an (A,R)-separator in G − W .
Therefore (WI ∪D ∪⋃

y∈Q\D N(tQ,D[y])) \WL is an OCT by Claim 1 contained
in X, concluding the proof.

With the two claims above, we can solve the problem as follows. Compute a
list of partitions W using Claim 2 and use each W ∈ W as input to Claim 3.
Using the output U of Claim 3, call Lemma 3 for each U ∈ U . By the output
guarantee of the claims, for each witness X we call the lemma with U ⊆ X at
some point, thus solving the problem. �

4 Conclusion

We have shown that H-elimination distance and H-treewidth are non-uniformly
fixed-parameter tractable for H being the class of bipartite graphs, and when-
ever H is defined by a finite set of forbidden induced subgraphs. While the
algorithms presented here solve the decision variant of the problem, by self-
reduction they can be used to identify a witness if one exists. The main obser-
vation driving such a self-reduction is the following: if twH(G) ≤ k, then for an
arbitrary v ∈ V (G) there exists a twH(G)-witness that contains v if and only the
graph G′ obtained from G by inserting a minimal forbidden induced subgraph
into H and identifying one of its vertices with v, still satisfies twH(G′) ≤ k.
Hence an iterative process can identify all vertices of a witness in this way.

While we have focused on the established notions of twH and edH, the
ideas presented here can be generalized using minor-closed graph parameters f
other than treewidth and treedepth. As long as f can attain arbitrarily large
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values, implying its value on a clique grows with the size of the clique, and H
is characterized by a finite set of forbidden induced subgraphs, we believe our
approach can be generalized to answer questions of the form: does G have an
H-deletion set X for which f(TG(X)) ≤ k?
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Abstract. We show that given a StableMatching instance G as input,
we can find a largest collection of pairwise edge-disjoint stable matchings
of G in time linear in the input size. This extends two classical results:
1. The Gale-Shapley algorithm, which can find at most two (“extreme”)

pairwise edge-disjoint stable matchings of G in linear time, and
2. The polynomial-time algorithm for finding a largest collection

of pairwise edge-disjoint perfect matchings (without the stability
requirement) in a bipartite graph, obtained by combining König’s
characterization with Tutte’s f -factor algorithm.

Moreover, we also give an algorithm to enumerate all maximum-length
chains of disjoint stable matchings in the lattice of stable matchings of
a given instance. This algorithm takes time polynomial in the input size
for enumerating each chain. We also derive the expected number of such
chains in a random instance of Stable Matching.

Keywords: Stable matching · Disjoint matchings

1 Introduction

All our graphs are finite, undirected, and simple. We use V (G), E(G) to denote
the vertex and edge sets of a graph G, respectively. A matching in a graph G is
any subset M ⊆ E(G) of edges of G such that no two edges in M have a common
end-vertex. An input instance of the Stable Matching problem contains a
bipartite graph G with the vertex partition V (G) = M � W where the two
sides M,W are customarily called “the set of men” and “the set of women”,
respectively. Each woman has a strictly ordered preference list containing her
neighbors—a woman prefers to be matched with a man who comes earlier in
her list, than with one who comes later—and each man similarly has a strictly
ordered preference list containing all his neighbors.

Definition 1 (Blocking Pair). A man-woman pair (m,w) ∈ E is said to be
a blocking pair with respect to a matching M of G if both m and w prefer each
other over their matched partner in M .

Definition 2 (Stable Matching). A matching M of G is said to be stable if
there is no blocking pair in G with respect to M .
c© Springer Nature Switzerland AG 2021
�L. Kowalik et al. (Eds.): WG 2021, LNCS 12911, pp. 94–105, 2021.
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A matching M that is not stable is said to be unstable. The Stable Matching
instance consists of a bipartite graph G with vertex partition M � W and the
associated preference lists. The Stable Matching problem involves deciding if
G has a stable matching, and outputting one if it exists.

The Stable Matching problem models a number of real-world applica-
tions where two disjoint sets of entities—fresh graduates and intern positions;
students and hostel rooms; internet users and CDN servers; and so on—need to
be matched based on strict preferences. Gale and Shapley famously proved that
every instance of Stable Matching indeed has a stable matching, and that
one such matching can be found in linear time [3]. The Gale-Shapley algorithm
for Stable Matching follows a simple—almost simplistic—greedy strategy: in
turn, each unmatched man proposes to the most preferred woman who has not
rejected him so far, and each woman holds on to the best proposal (as per her
preference) that she has got so far. Gale and Shapley proved that this algorithm
invariably finds a stable matching, which is said to be a man-optimal stable
matching. Of course, the algorithm also works if the women do the proposing; a
stable matching found this way is said to be woman-optimal.

It is not difficult to come up with instances of Stable Matching where the
man-optimal and women-optimal stable matchings are identical, as also instances
where they differ. A rich theory about the combinatorial structure of stable
matchings has been developed over the years. In particular, it is known that the
set of all stable matchings of a Stable Matching instance forms a distributive
lattice under a certain natural partial order, and that the woman-optimal and
man-optimal stable matchings form the maximum and minimum elements of this
lattice. It follows that each instance has exactly one man-optimal stable matching
and one woman-optimal stable matching, and that if these two matchings are
identical, then the instance has exactly one stable matching in total.

The Gale-Shapley algorithm can thus do a restricted form of counting sta-
ble matchings: it can correctly report that an instance has exactly one stable
matching, or that it has at least two, in which case it can output two different sta-
ble matchings. The maximum number of stable matchings that an instance can
have has also received quite a bit of attention. Irving and Leather [6] discovered
a method for constructing instances with exponentially-many stable matchings;
these instances with n men and n women have Ω(2.28n) stable matchings. This
is the current best lower bound on the maximum number of stable matchings.
After a series of improvements, the current best upper bound on this number is
O(cn) for some constant c [8,15].

Our focus in this work is on finding a large collection of pairwise edge-disjoint
stable matchings:

Disjoint Stable Matchings
Input: A Stable Matching instance G and an integer k.
Task: Decide if G has at least k pairwise disjoint stable matchings, and
output such a collection of stable matchings if it exists.
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Finding such a collection of disjoint stable matchings is clearly useful in situ-
ations which involve repeated assignments. For instance, when assigning people
to tasks—drivers to bus routes, medical professionals to wards, cleaning staff to
locations—this helps in avoiding monotony without losing stability. As another
example, consider a business school program which has a series of projects on
which the students are supposed to work in teams of two. Using a different stable
matching from a disjoint collection to pair up students for each project will help
with their collaborative skills while still avoiding problems of instability.

Even in those cases where only one stable matching suffices—such as when
assigning medical students to hospitals once a year—a disjoint collection can
still be very useful. Given such a collection, an administrator in charge of decid-
ing the residencies can evaluate each stable matching based on other relevant
considerations—such as gender or racial diversity, or costs of relocation—to
choose an assignment which optimizes these other factors while still being stable.

Our main result is that Disjoint Stable Matchings can be solved in linear
time:

Theorem 1. There is an algorithm which takes an instance G of Stable
Matching, runs in time linear in the size of the input, and outputs a pair-
wise disjoint collection of stable matchings of G of the largest size.

This immediately yields:

Corollary 1. Disjoint Stable Matchings can be solved in linear time.

To the best of our knowledge there is no published work about finding disjoint
stable matchings. Finding disjoint matchings (without the stability requirement)
has received a lot of attention over the years, and a number of structural and
algorithmic results are known [1,12,14]; we mention just one, for perfect match-
ings in bipartite graphs.

Observe that a bipartite graph G has a perfect matching only if both sides
have the same size, say n. Also, any collection of pairwise disjoint perfect match-
ings of such a graph G can have size at most n. This is because deleting the edges
of one perfect matching from G decrements the degree of each vertex by exactly
one, and the maximum degree of G is not more than n. A graph is said to be
k-regular if each of its vertices has degree exactly k. König proved that a bipar-
tite graph G contains k pairwise edge-disjoint perfect matchings if and only if G
has a k-regular subgraph [10]. Tutte’s polynomial-time algorithm for finding the
so-called f -factors [18] can be used to find a k-regular subgraph of G. Putting
these together we get a polynomial-time algorithm for finding a largest collection
of edge-disjoint perfect matchings in bipartite graphs.

In stark contrast, checking if a non-bipartite graph has two disjoint perfect
matchings is already NP-hard even in 3-regular graphs [2,5].

Relation to Lattice Structure. It is known that the set of stable matchings in a
given instance forms a distributive lattice [9]. We show that there is always
a solution to Disjoint Stable Matchings that is a chain in this lattice.
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We give an algorithm to enumerate all the chains of disjoint stable matchings.
The algorithm takes time polynomial in the size of the input for outputting each
such chain. We also show that the number of such chains in a random instance
is at most quasi-polynomial with high probability.

2 Preliminaries

We recall the Gale-Shapley algorithm and the lattice structure of stable match-
ings here for the sake of completeness. The classical Gale-Shapley algorithm [4,
Fig. 1.3] solves the Stable Matching problem by a deferred acceptance mecha-
nism. Each man proposes the women on his list in decreasing order of preference
until some woman accepts his proposal. A woman w accepts a proposal from
a man m if either w is unmatched or she prefers m over her current partner.
The extended version of the Gale-Shapley algorithm [4, Fig. 1.7] reduces the
preference lists by eliminating certain pairs that do not belong to any stable
matching. By deleting a (man-woman) pair (m,w), we mean deleting m from
w’s preference list and w from that of m.

Lattice Structure of Stable Matchings. We need the following results about the
lattice structure of stable matchings [4]. For a given stable marriage instance, a
dominance relation on stable matchings is defined as follows:

Definition 3 (Dominance). A stable matching M is said to dominate a stable
matching M ′, written M � M ′, if every man has at least as good a partner in
M as he has in M ′; i.e., every man either prefers M to M ′ or is indifferent
between them.

Lemma 1 [4, Lemma 1.3.1]. For a given stable marriage instance, let M and
M ′ be two (distinct) stable matchings. If each man is given the better (or poorer)
of his partners in M and M ′ denoted as M ∧M ′ (denoted as M ∨M ′), then the
result is a stable matching that dominates (dominated by) both M and M ′.

With the help of the above lemmas, it is easy to see that the set of all stable
matchings forms a distributive lattice and the man-optimal matching and the
woman-optimal matching represent the minimum and maximum elements of the
lattice [4, Theorem 1.3.2]. Moreover, M ∧M ′ represents the greatest lower bound
and M ∨ M ′ represents least upper bound of M and M ′ in the lattice of all the
stable matchings.

3 Finding Disjoint Stable Matchings

In this section we describe and analyze our algorithm for finding a largest col-
lection of disjoint stable matchings in a given instance of Stable Matching.

Given a stable marriage instance, two matchings M1 and M2 are said to
be disjoint stable matchings if both M1 and M2 are stable and they do not
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share a common edge. Throughout this section, we denote the man-optimal and
woman-optimal stable matchings by Mo and Mz respectively.

The following lemma gives a necessary condition for the existence of two or
more disjoint stable matchings for a given marriage instance.

Lemma 2 [4, Section 1.2.2]. Let (m,w) be a pair in Mo ∩ Mz. Then (m,w) is
contained in every stable matching.

The algorithm first finds the man-optimal and woman-optimal stable match-
ings (Mo and Mz respectively) by executing GS-Extended. If these matchings
share an edge, the algorithm stops. Otherwise it modifies the instance by delet-
ing all the edges that appear in Mo. It then computes a man-optimal matching
M ′ of the new instance using GS-Extended. If M ′ is disjoint from the woman-
optimal matching Mz then it deletes the edges of M ′ from the instance. The
algorithm repeats this procedure as long as GS-Extended keeps returning a
stable matching which is disjoint from Mz. It stores all the Mz-disjoint match-
ings obtained during this process in a set S. We note that this is a stronger
version of the BreakMarriage algorithm of McVitie and Wilson [13].

Algorithm 1. Disjoint Stable Matchings
Input : A stable matching instance G
Output: A maximum size set S of disjoint stable matchings.

1: procedure Disjoint stable matchings(G)
2: S ← ∅

3: Mz ←StableMatching(G, woman-optimal) � Woman-proposing GS Algorithm

4: X ←GS-Extended(G) � This modifies preference lists

5: while X ∩ Mz = ∅ do
6: S ← S ∪ {X}
7: for every man m do
8: Delete the first woman w on m’s list � m’s partner in X

9: Delete the last man on w’s list � w’s partner in X

10: end for
11: X ←GS-Extended(G) � Get a new disjoint matching as X

12: end while
13: S ← S ∪ {X}

return S
14: end procedure

We first show that the matchings in the set S constructed by Algorithm 1
are stable. They are clearly disjoint by construction, since each step starts off
by deleting every matched pair in the matching computed in the previous step.

Lemma 3. All the matchings in the set S are stable matchings.
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Proof. For the sake of contradiction, let (m,w) be a blocking pair for a matching
Mi ∈ S. Then, m prefers w to pMi

(m), where pMi
(m) is the partner of m in Mi.

That is, w appears before pMi
(m) in m’s preference list. As m is matched to

pMi
(m) in the matching Mi, w would have been deleted from m’s preference list

before the call to GS-Extended that returned the matching Mi. This deletion can
happen in two ways. Either in one of the calls to the Extended GS algorithm,
or in one of the iterations of the for loop in line 7 of the algorithm. We know
that in both the cases, after the deletion of w from m’s preference list, w gets
a strictly better partner than m in the subsequent matching. Therefore, w does
not prefer m to pMi

(w). This contradicts our assumption. ��
Building on the notion of dominance from Definition 3, we say that M strictly

dominates M ′, denoted by M ≺ M ′, if M � M ′ and M ∩ M ′ = ∅. The strict
dominance relation imposes a partial order on the set of stable matchings in G.
We call a set of stable matchings a chain if it forms a chain under the (non-strict)
dominance relation of Definition 3. Let Mi be the matching included in S at the
end of iteration i of the algorithm, and let |S| = k.

Lemma 4. The stable matchings in the set S form a chain Mo = M1, . . . ,Mk.

Proof. Each iteration of the algorithm modifies the given instance by deleting the
edges of the matching constructed. Let the instance considered at the beginning
of iteration i be Gi. Thus G1 = G. Since Mi is constructed by executing the
extended Gale-Shapley algorithm on the instance Gi, it follows that Mi is the
man-optimal matching in Gi. Further, all the men get strictly better partners in
Mi compared to Mj , j > i and all the women get strictly worse partners in Mi

compared to Mj , for j > i. ��
We now show that among all the chains of disjoint stable matchings, the one

output by Algorithm 1 is a longest chain.

Lemma 5. Algorithm 1 outputs a longest chain of disjoint stable matchings.

Proof. Let C : Mo = M1 ≺ M2 ≺ · · · ≺ Mk be the chain of disjoint matchings
obtained by running Algorithm 1. For the sake of contradiction, let C ′′ : M ′

1 ≺
M ′

1 ≺ · · · ≺ M ′
� be a longest chain of disjoint matchings such that � > k.

We know that the matching M1 = Mo dominates every stable matching
[4, Theorem 1.2.2]. Matching M ′

1 cannot be disjoint with M1, as otherwise,
M1 ≺ M ′

1 ≺ M ′
2 ≺ · · · ≺ M ′

� would be a longer chain of disjoint stable matchings.
Therefore, M ′

1 shares some edges with M1. As M1 � M ′
1 ≺ M ′

2, we have M1 ≺
M ′

2. Therefore we can replace M ′
1 in M ′

1 ≺ M ′
2 ≺ · · · ≺ M ′

� with M1 to get
another chain of disjoint stable matchings M1 ≺ M ′

2 ≺ · · · ≺ M ′
� of length �.

We know that M2 dominates all the stable matchings which are disjoint with
M1. Matching M ′

2 cannot be disjoint with M2, as otherwise, we can get a longer
chain M1 ≺ M2 ≺ M ′

2 ≺ M ′
3 ≺ · · · ≺ M ′

�. Therefore, M ′
2 shares edges with M2.

As M2 � M ′
2 ≺ M ′

3, we have M2 ≺ M ′
3. Therefore we can replace M ′

2 with M2

to get another chain of disjoint stable matchings M1 ≺ M2 ≺ M ′
3 ≺ · · · ≺ M ′

� of
length �.
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In this way, we successively replace each M ′
i of the chain C ′′ with Mi from

the chain C to get the �-length chain M1 ≺ M2 ≺ . . . Mk ≺ M ′
k+1 ≺ · · · ≺ M ′

� of
disjoint stable matchings. But this implies that there exists a stable matching
M ′

k+1 which satisfies the strict relation Mk ≺ M ′
k+1, which is a contradiction

since Mk has non zero interection with the woman-optimal matching Mz . ��
We have shown that among all the chains of disjoint stable matchings, the one

output by Algorithm 1 is of maximum length. We still need to prove that there
is no larger set of disjoint stable matchings which is possibly not a chain. We
use the following result due to Teo and Sethuraman to show that any such set of
disjoint stable matchings has a corresponding chain of disjoint stable matchings.
Moreover, the length of this chain is same as the size of the set.

Theorem 2 [17]. Let S = {M1,M2, · · · ,Mk} be a set of stable matchings
for a particular stable matchings instance. For each man m, let Sm be the
sorted multiset {pM1(m), pM2(m), · · · , pMk

(m)}, sorted according to the pref-
erence order of m. For every i ∈ {1, 2, · · · , k} let M ′

i = {(m,w) | m ∈
M and w is the ith woman in Sm}. Then for each i ∈ {1, 2, · · · , k}, M ′

i is a
stable matching.

The following is an immediate corollary of Theorem 2:

Corollary 2. Let M1, . . . ,Mk and M ′
1, . . . ,M

′
k be as defined in Theorem 2. If

M1, . . . ,Mk are pairwise disjoint, then M ′
1, . . . ,M

′
k form a k-length chain of

disjoint stable matchings.

The following theorem now completes the correctness of Algorithm 1.

Theorem 3. For a given stable marriage instance, Algorithm 1 gives a maxi-
mum size set of disjoint stable matchings.

Proof. Let S = {M1 = Mo,M2, · · · ,Mk} be the set of disjoint stable
matchings output by Algorithm 1. For the sake of contradiction, Let S′ =
{M ′

1,M
′
2, · · · ,M ′

�} be a maximum size set of disjoint stable matchings such that
� > k. Then, from Corollary 2 of Theorem 2, we know that there exists an �-
length chain of disjoint stable matchings. This contradicts Lemma 5, that the
k < � matchings from S form a longest chain of disjoint stable matchings. ��

Time complexity: Each edge of G is visited exactly once during the course of
the algorithm. Hence the time complexity is O(m + n) where 2n is the number
of vertices in G and m is the number of edges in G. This completes the proof of
Theorem 1.

4 Enumerating All Max-Length Chains

Algorithm 1 gives one maximum-length chain of disjoint stable matchings. It is
an interesting question whether such a chain is unique.
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We now give an algorithm to enumerate all such chains. For the enumeration,
we exploit the lattice structure of stable matchings described in Sect. 2.

The #P -hardness of counting all the maximum-length chains can be easily
deduced from the #P -hardness of counting all the stable matchings in a given
instance [7]. For a given instance G, if we construct a new instance G′ by adding
a new man-woman pair (m,w) such that both prefer each other over all the
others, then every stable matching in G′ contains the pair (m,w). Hence the
length of a maximum-length chain of disjoint stable matchings is 1, and each
stable matching in the given instance is such a chain.

Algorithm 2 on page 9 describes the enumeration procedure. We need some
notation and definitions. Let A0 be the man-optimal matching. Define the set
A = {A0, A1, . . . Ak} such that for 1 ≤ i ≤ k, Ai =

∨{M |Ai−1 ≺ M}, that is, Ai

is the least upper bound of the set of all the stable matchings which are strictly
dominated by Ai−1 Similarly, let B0 be the woman-optimal stable matching.
Define the set B = {B0, B1, . . . , Bt} such that for 1 ≤ i ≤ t, Bi =

∧{M |Bi−1 �
M}, that is, Bi is the greatest lower bound of the set of all the stable matchings
which strictly dominate Bi−1. We note that A and B are the chains returned
by Algorithm 1 with man-proposing and woman-proposing versions respectively.
Since both are maximum-length chains of disjoint stable matchings, t = k.

Let X = {X0, · · · Xk} be a maximum-length chain of disjoint stable match-
ings i.e. X0 ≺ X1 ≺ · · · ≺ Xk. We note the following property of the matchings
in X.

Lemma 6. For 0 ≤ i ≤ k, Ai � Xi � Bk−i

Proof. By induction on i, we prove Ai � Xi for 0 ≤ i ≤ k. Proving Xi � Bk−i

is analogous.
As A0 is the man-optimal matching, A0 � X0. Assume for some i, Ai � Xi.
Hence Ai � Xi ≺ Xi+1. Therefore Xi+1 is strictly dominated by Ai. Since
Ai+1 is the greatest lower bound of all such stable matchings which are strictly
dominated by Ai, Ai+1 � Xi+1. ��
Corollary 3. For each i, Ai � Bk−i. Moreover, {X0, . . . , Xi−1,Xi, Bk−i−1,
. . . , B0} is also a maximum chain of disjoint stable matchings given that Aj �
Xj � Bk−j for 0 ≤ j ≤ i.

Outline of the Algorithm. An algorithm to enumerate all the stable matchings
in a given instance is known in the literature [4, Sect.3.5]. We use this result to
construct the sub-lattice L of all the stable matchings N which are in between
two matchings M and M ′ (i.e. M � N � M ′), where M,M ′ are any two stable
matchings such that M � M ′. To construct the sub-lattice L, we construct a
new instance as follows:

1. Delete every woman in m’s list better than his partner in M and worse than
his partner in M ′. Delete every man in w’s list better than her partner in M ′

and worse than her partner in M .
2. Update the preference list so that m is in w’s list iff w is in m’s list.
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In the new instance, M and M ′ are man-optimal and woman-optimal matchings
respectively. The set of stable matchings in this instance is precisely L, which
can be enumerated by the algorithm for enumeration of stable matchings.

In Algorithm 2, we first compute the sublattice L0 between A0 and Bk. Then
we recursively call Algorithm 2 for every X0 ∈ L. From Corollary 3 we know that
given a partial list X0,X1 . . . , Xi of disjoint stable matchings, we can find the
next matching in the chain. The algorithm first finds the man-optimal matching
Yi+1 after deleting Xi from the given instance. In Algorithm 2, this method is
referred to as NextBestDisjointMatching. Then it constructs the sub-lattice
αYi+1 between Yi+1 and Bk−(i+1). Now, for every stable matching M in αYi+1 , it
appends the input list as X0,X1 . . . , Xi,M and recursively calls itself to extend
each list further. The correctness of the algorithm can be seen from the fact that
it picks exactly one stable matching from each of the k sublattices, and they are
disjoint by construction.

Algorithm 2. Enumeration(X0,X1, · · · ,Xi)
Input: A stable matching instance G,

the output of a man-oriented version of Algorithm 1 A = {A0, A1, . . . , Ak},
the output of a woman-oriented version of Algorithm 1 B = {B0, B1, . . . , Bk} and
a list (X0, · · · , Xi) such that Aj � Xj � Bk−j for 0 ≤ j ≤ i

Output: Print all maximum size chains of disjoint stable matchings in G.

1: if (Xi ∩ B0 �= ∅) then
2: print (X0, X1, · · · , Xi)
3: return
4: end if
5: if Next[Xi] = ∅ then � Global Memoization
6: Next[Xi] ← NextBestDisjointMatching(Xi)
7: end if
8: Yi+1 ← Next[Xi]
9: if S[Yi+1] = ∅ then � Global Memoization

10: S[Yi+1] ← GetSubLatticeBetween(Yi+1,Bk−(i+1))
11: end if
12: for Xi+1 in S[Yi+1] do
13: Enumeration(X0, X1, · · · , Xi, Xi+1)
14: end for
15: return
16:
17: procedure NextBestDisjointMatching(M)
18: for every man m do
19: Delete the first woman w on m’s list � m’s partner in M
20: Delete the last man on w’s list � w’s partner in M
21: end for
22: return GaleShapley(M) � with modified preference list
23: end procedure
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Lemma 7. Algorithm 2 terminates in O(n3 + n2(|L| + |P |)) time, where P is
the set of maximum-length chains of disjoint stable matchings and L is the set
of all stable matchings featuring in the enumeration.

Proof. If we do not consider the time taken to perform line 6 and line 10, the
algorithm takes O(n) time for every longest chain of pairwise disjoint stable
matchings. Let L be the set of all stable matchings featuring in the enumera-
tion. Let P be the set of all solutions (longest chains of pairwise disjoint stable
matchings). Every execution of line 6 takes O(n2) time. Since we remember
NextBestDisjointMatching(Xi), we need to compute line 6 at most |L|
times. So, line 6 takes O(n2|L|) time.

Performing line 10 once takes O(n2|S[Yi+1]|) time. Hence, the total time
spent on line 10 is

O(n2
∑

Y =Next[X],
X∈L

|S[Y ]|)

Let the summation be equal to S. Every stable matching M featuring in S[Y ]
(Y = NextBestDisjointMatching(Xi)) features in the solution

(A0, A1, · · · ,X,M,Bk−i, · · · , B0)

Therefore, as the set mentioned above is unique given M ,S ≤ |P |+2n. Thus,
the total time complexity for line 6 to line 10 is O(n2|L| + n2|P | + n3). Printing
the output would take Max(|L|, |P |) time. ��

We analyze the number of maximum-length chains of disjoint stable match-
ings in a random stable matchings instance with complete lists.

Lemma 8. The probability of the number of maximum size chains of disjoint
stable matchings exceeding ( n

ln n )ln n is at most O( (ln n)2

n2 ).

Proof. Let S be the random variable denoting the number of stable matchings
in a random stable matching instance. Pittel [16] showed that E[S] = Θ(n ln n).
Thus, there exist non-negative reals m1,m2 such that m1n ln n ≤ E[S] ≤
m2n ln n for sufficiently large n. Further, Lennon and Pittel [11] established
that V ar(S) = σ2 = O((n ln n)2). Thus, for sufficiently large n, there exists a
non-negative real number c such that V ar(S) ≤ c2(n ln n)2.

Thus, for a parameter k, we have

Pr(S ≥ m1n ln n + kcn ln n) ≤ Pr(S ≥ m1n ln n

+ kcn ln n ∪ S ≤ m2n ln n − kcn ln n)
≤ Pr(|S − E[S]| ≥ kcn ln n)
≤ Pr(|S − E[S]| ≥ kσ)

≤ 1
k2

where the last inequality follows from Chebyshev’s inequality. Thus, if f(k) =
m1n ln n + kcn ln n, then Pr(S ≥ f(k)) ≤ 1

k2 .
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Let L0, L1, . . . , Lt−1 be the sub-lattices constructed in Algorithm 2 where
t − 1 = k. Let Si = |Li| for 0 ≤ i ≤ k. Let p = |P |, the number of maximum-
length chains of disjoint stable matchings in the given instance. We have p ≤
Πk

i=0Si ≤ (
∑t

i=0 Si

t )t, where the first inequality follows from Lemma 6 and the
last inequality follows from the AM-GM inequality. Since

∑k
i=0 Si ≤ S, p ≤ (S

t )t.
From the above discussions, Pr(p ≥ ( n

ln n )ln n) ≤ Pr((S
t )t ≥ ( n

ln n )ln n) ≤
Pr(S ≥ n2) + Pr(t ≥ ln n).

Observe that there exists a positive real m such that f( n
m ln n ) ≤ n2. Thus,

Pr(S ≥ n2) ≤ Pr(S ≥ f( n
m ln n )) ≤ m2(ln n)2

n2 . [Knuth et al. 90] establishes
that the probability of some person having more than lnn stable partners is
super-polynomially small. Clearly, no one can have less than t stable partners
since each person features alongide a distinct partner in each matching in a
maximum size chain of disjoint stable matchings. Hence, Pr(t ≥ ln n) is also
super-polynomially small.

Thus, Pr(p ≥ ( n
ln n )ln n) ≤ m2

1(ln n)2

n2 for some positive constant m1. Thus,

Pr(p ≥ ( n
ln n )ln n) ≤ O( (ln n)2

n2 ). ��
Corollary 4. Algorithm 2 terminates in O(n4 + n2 ln n+2) time with probability
1 as n −→ ∞.

Proof. As established in the previous lemma (notation carrying over from the
proof of the previou lemma), Pr(S ≥ n2) ≤ O( (ln n)2

n2 ) and Pr(p ≥ ( n
ln n )ln n) ≤

O( (ln n)2

n2 ) and hence, a simple union bound returns Pr(S ≥ n2∪p ≥ ( n
ln n )ln n) ≤

O( (ln n)2

n2 ).

Plugging in S = O(n2) and p = O( n
ln n )ln n) in the run-time of algorithm 1,

algorithm 1 terminates in O(n4 + n2 ln n+2) time with probability 1 − Ω( (ln n)2

n2 )
which tends to 1 as n −→ ∞. ��

5 Conclusion

We consider the classical Stable Matching problem and address the question
of finding a largest pairwise disjoint collection of solutions to this problem. We
show that such a collection can in fact be found in time linear in the input size.
The collection of stable matchings that our algorithm finds has the additional
property that they form a chain in the distributive lattice of stable matchings.
To the best of our knowledge this is the first work on finding pairwise disjoint
stable matchings, though this question has received much attention for bipartite
matchings without preferences.

A natural next question is what happens when we allow small intersections
between the stable matchings. In particular: is the problem of finding a col-
lection of k stable matchings such that no two of them share more than one
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edge, solvable in polynomial time? Or is this already NP-hard? Another inter-
esting problem is whether we can find a largest edge-disjoint collection of stable
matchings for the related Stable Roommates problem, in polynomial time.
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10. König, D.: Über graphen und ihre anwendung auf determinantentheorie und men-
genlehre. Mathematische Annalen 77(4), 453–465 (1916)

11. Lennon, G., Pittel, B.: On the likely number of solutions for the stable marriage
problem. Comb. Probab. Comput. 18(3), 371–421 (2009)

12. Lu, H., Wang, D.G.L.: The number of disjoint perfect matchings in semi-regular
graphs. Appl. Anal. Discrete Math. 11(1), 11–38 (2017)

13. McVitie, D.G., Wilson, L.B.: The stable marriage problem. Commun. ACM 14(7),
486–490 (1971)

14. Mkrtchyan, V.V., Musoyan, M.I., Tserunyan, A.V.: On edge-disjoint pairs of
matchings. Discrete Math. 308(23), 5823–5828 (2008)

15. Palmer, C., Pálvölgyi, D.: At most 4.47n stable matchings (2020). http://arxiv.
org/abs/2011.00915

16. Pittel, B.G.: The average number of stable matchings. SIAM J. Discret. Math.
2(4), 530–549 (1989)

17. Teo, C.-P., Sethuraman, J.: The geometry of fractional stable matchings and its
applications. Math. Oper. Res. 23(4), 874–891 (1998)

18. William Thomas Tutte: A short proof of the factor theorem for finite graphs. Can.
J. Math. 6, 347–352 (1954)

https://arxiv.org/abs/2009.04567
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1080/00029890.1962.11989827
https://doi.org/10.1137/0215048
https://doi.org/10.1145/3188745.3188848
https://doi.org/10.1145/3188745.3188848
http://arxiv.org/abs/2011.00915
http://arxiv.org/abs/2011.00915


Complementation in T-perfect Graphs

Yixin Cao and Shenghua Wang(B)

Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
shenghua.wang@connect.polyu.hk

Abstract. Inspired by applications of perfect graphs in combinatorial
optimization, Chvátal defined t-perfect graphs in 1970s. The long efforts
of characterizing t-perfect graphs started immediately, but embarrass-
ingly, even a working conjecture on it is still missing after nearly 50 years.
Unlike perfection, t-perfection is not closed under substitution or com-
plementation. A full characterization of t-perfection with respect to sub-
stitution has been obtained in the Ph.D. thesis of Benchetrit. Through
this work we attempt to understand t-perfection with respect to comple-
mentation. In particular, we show there are only five pairs of graphs such
that both the graphs and their complements are minimally t-imperfect.

1 Introduction

Partly motivated by Shannon’s work on communication theory, Berge proposed
the concept of perfect graphs, and the two perfect graph conjectures [3], both
settled now. Chvátal [9] and Padberg [19] independently showed that the inde-
pendent set polytope of a perfect graph (the convex hull of incidence vectors
of independent sets of the graph) is determined by non-negativity and clique
inequalities, and this is part of efforts trying to characterize the independent
set polytope of a graph [9,17–19]. Chvátal [9] went further to propose a class
of graphs directly defined by the properties of their independent set polytopes.
A graph is t-perfect if its independent set polytope can be fully described by
non-negativity, edge, and odd-cycle inequalities. These two classes of perfection
are incomparable: C5 is t-perfect but not perfect, while K4 is perfect but not
t-perfect. Similar as perfect graphs, the maximum independent set problem can
be solved in polynomial time in t-perfect graphs [15]; see also [11].

The progress toward understanding t-perfection has been embarrassingly
slow. While the original paper of Berge [2] on perfect graphs already contains
several important subclasses of perfect graphs, thus far, only few graph classes
are known to be t-perfect. Because of the absence of odd cycles, bipartite graphs
are trivial examples, and this can be generalized to almost bipartite graphs [12].
Another class is the series-parallel graphs [4]. Extending these two classes, Ger-
ards [13] showed that any graph contains no odd-K4 (a subdivision of K4 in
which every triangle of K4 becomes an odd cycle) is t-perfect.
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The strong perfect graph theorem states that a graph G is perfect if and only
if G does not contain any odd hole (an induced cycle of length at least four) or
its complement [8]. In other words, the minimally imperfect graphs (imperfect
graphs whose proper induced subgraphs are all perfect) are odd holes and their
complements. Naturally, we would like to know minimally t-imperfect graphs,
whose definition is more technical and is left to the next section. However, even
a working conjecture on them is still missing. Full success has only been achieved
on special graphs, e.g., claw-free graphs [7] and P5-free graphs [5]. In summary,
known minimally t-imperfect graphs include (3, 3)-partitionable graphs [6,10]
(Fig. 1), odd wheels [20], even Möbius ladders [21], and the complements of
some cycle powers (C7, C3

13, C4
13, C7

19).

Fig. 1. The (3, 3)-partitionable graphs (the notation will be introduced in Sect. 2).

A particularly nice property of perfect graphs is that they are closed under
complementation [16]. The key step of proving it is the Replication Lemma: The
class of perfect graphs is closed under (clique) substitution. As evidenced by K4, t-
perfection is closed under neither substitution nor complementation, and this may
partially explain the difficulty in characterizing t-perfect graphs. Benchetrit [1]
has fully characterized t-perfection with respect to substitution. The purpose of
this paper is to understand t-perfection with respect to complementation. In par-
ticular, we want to know whether there exist minimally t-imperfect graphs whose
complements are also minimally t-imperfect. Our main result is as follows.

Theorem 1. Let G be a minimally t-imperfect graph. The complement of G is
minimally t-imperfect if and only if G is a (3, 3)-partitionable graph.

We start from an easy observation that such a graph G contains a 5-hole.
Fixing a 5-hole C, we study the connection between C and other vertices. We
show that the order of G is at most ten, and G is of one of few simple patterns.
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A careful inspection of these patterns leads to the main result. As a byproduct,
we characterize all self-complementary t-perfect graphs that are not perfect.

Theorem 2. Let G be a self-complementary graph that is not perfect. Then G
is t-perfect if and only if G is one of the five graphs in Fig. 2.

Fig. 2. Self-complementary t-perfect graphs that contain a C5 (thick lines).

2 Core Graphs

We only consider undirected and simple graphs. Throughout the paper, we use n
to denote |V (G)|, the order of G. Let G[U ] denote the subgraph of G induced by
U , and let G − U = G[V (G)\U ], which is simplified as G − v if U comprises of a
single vertex v. A clique is a set of pairwise adjacent vertices, and an independent
set is a set of vertices that are pairwise nonadjacent. The complement G of a
graph G is defined on the same vertex set as G and two distinct vertices of G are
adjacent if and only if they are not adjacent in G. A graph is almost bipartite if
there is a vertex whose deletion leaves the graph bipartite.

For � ≥ 1, we use P� and K� to denote the path graph and complete graph,
respectively, on � vertices. For � ≥ 3, we use C� and W� to denote, respectively,
the �-cycle and the �-wheel, which is obtained from a C� by adding a new vertex
and making it adjacent to all vertices on the cycle; note that W3 is precisely
K4. For � ≥ 4, an induced �-cycle is also called an �-hole. An �-cycle, �-hole, or
�-wheel is odd if � is odd. For integers p, q ≥ 2, a graph G is (p, q)-partitionable
if n = pq + 1 and for every vertex v, the set V (G)\{v} can be partitioned into q
independent sets of order p and can be partitioned into p cliques of order q.

The independent set polytope of a graph G is the convex hull of the charac-
teristic vectors of all independent sets in G. For a graph G, let P (G) denote the
polytope defined by

0 ≤ xv ≤ 1 for every vertex v ∈ V (G),
xu + xv ≤ 1 for every edge uv ∈ E(G),

x(V (C)) ≤ (|V (C)| − 1)/2 for every induced odd cycle C in G.

Since the characteristic vector of every independent set of G is in P (G), the
independent set polytope of a graph G is contained in P (G), while the other
direction is not true in general. A graph G is t-perfect if P (G) is precisely the
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independent set polytope of G. It is not difficult to see that every vector in the
independent set polytope of G also satisfies the clique constraints

∑

v∈K

xv ≤ 1 for every clique K of G.

Since the vector ( 1
3 , 1

3 , 1
3 , 1

3 )T is in P (K4) but does not satisfy the clique con-
straint, K4 is not t-perfect.

A graph G is perfect if neither G nor G contains an odd hole [2,8]. The
independent set polytope of a perfect graph is determined by non-negativity
and clique inequalities [9,19]. If a perfect graph G contains no K4, then every
clique of G has order at most three, and hence any clique constraint in G is one
of the three in the definition of P (G).

Proposition 1. Every K4-free perfect graph is t-perfect.

It is easy to verify that t-perfection is preserved under vertex deletions: For
every v ∈ V (G), the polytope P (G− v) is the intersection of P (G) with the face
xv = 0. Moreover, t-perfection is also preserved under t-contractions at a vertex
v with N(v) being an independent set—contracting N(v) ∪ {v} into a single
vertex [14]. Any graph H that can be obtained from G by a sequence of vertex
deletions and t-contractions is a t-minor of G, and H is a proper t-minor of G
if H has fewer vertices than G. Therefore, t-perfection is closed under taking
t-minors. A graph is minimally t-imperfect if it is t-imperfect but all its proper
t-minors are t-perfect, e.g., K4.

We say that a graph G is a core graph if neither G nor its complement
contains a t-imperfect graph as a proper t-minor. By definition, any t-minor of
a core graph is also a core graph. Moreover, if G is a core graph, then G is either
t-perfect or minimally t-imperfect, and so is G; it is possible that G is t-perfect
while G is minimally t-imperfect, e.g., C7 and C7. However, there are t-perfect
graphs that are not core graphs, e.g., C9 and K5.

Proposition 2. A core graph of order at least five cannot contain a K4 or K4.

By Proposition 1, any {K4,K4}-free perfect graph is a core graph. Therefore,
we focus on core graphs that are not perfect. Such a graph cannot contain an
odd hole longer than seven or its complement as a proper induced subgraph.

Proposition 3. Let G be a core graph different from C7 and C7. Every odd hole
in G is a C5. Moreover, if G is t-imperfect, then G contains a C5.

Proof. For the first assertion, note that C7 is t-imperfect, so the only core graph
that contains C7 as an induced subgraph is C7 itself; and for k ≥ 4, the hole
C2k+1 contains a K4. For the second assertion, note that if G does not contain
a C5, then G is perfect, hence t-perfect by Propositions 1 and 2. ��

As shown in the following two propositions, 5-holes are pivotal in core graphs.
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Proposition 4. Let G be a core graph different from W5 and its complement.
If G contains a 5-hole C, then for every u ∈ V (G)\V (C), either

i) u has exactly two neighbors on C, and they are consecutive on C; or
ii) u has exactly three neighbors on C, and they are not consecutive on C.

Proof. We consider the subgraph G′ of G induced by u and the five vertices on
C. If u is adjacent to all vertices on C, then G′ is a W5. Since W5 is t-imperfect,
G = G′, a contradiction. If u is adjacent to four vertices or three consecutive
vertices on C, then K4 is a proper t-minor of G′, with t-contraction at a non-
neighbor of u on C. Noting that the complement of C is a C5, we end with the
same contradictions on G if u has zero or one neighbor on C, or its two neighbors
on C are not consecutive. ��
Proposition 5. In a core graph, every pair of consecutive vertices on a 5-hole
has at most one common neighbor.

Proof. Let G be a core graph, and let v1v2v3v4v5 be a 5-hole in G. Suppose for
contradiction that there are two vertices x, y ∈ N(v2)∩N(v3). By Proposition 4,
neither of x and y is adjacent to v1 or v4. But then dependent on whether they
are adjacent, x and y either form a K4 with {v2, v3}, or a K4 with {v1, v4}, both
contradicting Proposition 2. The same argument applies to other edges on the
5-cycle. ��

Propositions 4 and 5 together imply an upper bound on the order of core
graphs.

Corollary 1. If a core graph contains a C5, then it has at most ten vertices.

Let G be a core graph that contains a 5-hole, and we use the following nota-
tions for its vertices and edges, where the indices are always understood as mod-
ulo 5. We fix a 5-hole C and number its vertices as v1, . . . , v5 in order, and let
U = V (G)\V (C). According to Proposition 4, each vertex in U is adjacent to two
consecutive vertices on C. If a vertex in U is adjacent to vi and vi+1, i = 1, . . . , 5,
then we denote it as ui+3; by Proposition 5, this is well defined. The five edges on
C are all the edges among v1, . . . , v5. For each ui, the two edges uivi+2 and uivi+3

must exist in G. Apart from these 2|U |+5 edges, by Proposition 4, the other possi-
ble edges are among U or uivi, i = 1, . . . , 5; they are called potential edges. Shown
in Figs. 3(a, b) are two pattern graphs, from which we can obtain different partic-
ular graphs, with different materializations of potential edges. We use (1324) to
denote the graph of pattern Fig. 3(b) in which U induces a path, with edges u1u3,
u2u3, and u2u4. In case that G[U ] is not connected, we use ‖ to separate its com-
ponents, e.g., (14‖23) in Fig. 3(d). Moreover, we cap an index i with ◦ to denote
the presence of the edge uivi, e.g., (1̊3̊24) in Fig. 3(c).

Proposition 6 (�1). The following graphs are t-perfect: (12), (1‖̊2), (1̊2), (̊1‖̊2),
(̊1̊2), (1‖23), (̊31̊2), (̊1̊3‖̊2), (1‖̊24), (14̊2), (1‖̊2̊4), (1̊4̊2), (̊1‖̊2‖̊4), (̊1̊24), (̊1̊2̊4),
(1̊3̊4̊2), (1̊3̊42), (̊1̊3̊42), (̊1̊2̊43), (2̊314), (2̊3̊14), (23̊14), (1̊432), (̊1̊2̊4̊3̊1), (1̊2̊43),
(1̊3̊241), (1̊3̊24), (14‖23), (1̊4̊32), (1̊3‖̊24), and (̊241̊3).
1 Proofs of propositions marked with a � is deferred to the full version.
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Fig. 3. Two patterns (a, b) and two particular graphs (c, d) of the second pattern.
In the patterns, potential edges are depicted as thin green lines, while normal ones as
thick black lines; no other edges can exist. (Color figure online)

The following observations are easy consequences of Proposition 4. Here
i = 1, . . . , 5.

Obs.1) If both uivi and ui+1ui+2 are in E(G), then at least one of uiui+1 and
uiui+2 is in E(G); otherwise, vi+4 has four neighbors on the 5-cycle
uiviui+2ui+1vi+3. By symmetry, if both uivi and ui−1ui−2 are in E(G),
then at least one of uiui−2 and uiui−1 is in E(G).

Obs.2) If both uiui+1 and uiui+3 are in E(G), then at least one of uivi and
ui+1ui+3 is in E(G); otherwise, vi+3 has three consecutive neighbors on
the 5-cycle uiui+1vi+4viui+3. By symmetry, if both uiui−1 and uiui−3

are in E(G), then at least one of uivi and ui−1ui−3 is in E(G).
Obs.3) Suppose, all of ui−2ui−1, ui−1ui+1, and ui+1ui+2 are in E(G). If ui−1vi−1

or ui+1vi+1 is in E(G), then at least one of ui−1ui+2, ui−2ui+1, and
ui−2ui+2 is in E(G); otherwise, vi−1 or vi+1 has four neighbors on the
5-cycle ui−2ui−1ui+1ui+2vi.

Obs.4) If ui−1ui+1 ∈ E(G) and ui−1vi−1, ui+1vi+1 �∈ E(G), then ui+1ui+2,
ui−1ui−2 �∈ E(G), and uiui−1, uiui+1 ∈ E(G); otherwise, the neighbors
of ui−2, ui+2, or, respectively, ui on the cycle ui−1ui+1vi−1vivi+1 does
not satisfy Proposition 4.

Obs.5) If uiui+1 �∈ E(G) and at least one of ui and ui+1 is adjacent to ui+3,
then at most one of uivi and ui+1vi+1 can be in E(G); otherwise, ui+3

has three consecutive neighbors on the 5-cycle uivivi+1ui+1vi+3.
Obs.6) If ui+1vi+1 ∈ E(G) and none of ui+1ui+2, ui+2ui−2, and ui−1ui−2 is, then

ui+1ui−2, ui+2ui−1, and ui+1ui−1 cannot be all present in G; otherwise,
vi+1 has four neighbors on the 5-cycle ui−1ui+2viui−2ui+1. By symmetry,
if ui−1vi−1 is in E(G) and none of ui+1ui+2, ui+2ui−2, and ui−1ui−2 is
in E(G), then ui+1ui−2, ui+2ui−1, and ui+1ui−1 cannot be all in E(G).

All graphs of pattern Fig. 3(a) are summarized in Table 1 and Lemma 1.

Lemma 1. Let G be a core graph of order eight. At least one of G and G i) is
t-perfect; or ii) has a degree-2 vertex in U .

Proof. Note that if the degree of a vertex is five in G, then its degree in G is two.
According to Table 1, it suffices to show that graphs (̊1̊3‖̊2), (̊13‖̊2), (̊12̊3), (̊31̊2),
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Table 1. Graphs of pattern Fig. 3(a). The columns are for combinations of edges
among U ; the cases with only u2u3 and only {u1u3, u2u3} are omitted because they are
symmetric to respectively, u1u2 and {u1u2, u1u3}. The rows are possible combinations
of edges between U and C.

All {u1u2, u1u3} {u1u2, u2u3} {u1u2} {u1u3}
All d(u1) = 5 d(u1) = 5 d(u2) = 5 Obs.1 (i = 3) (̊1̊3‖̊2)
{u1v1, u2v2} d(u1) = 5 d(u1) = 5 d(u2) = 5 d(u3) = 2 (̊13‖̊2)
{u1v1, u3v3} d(u1) = 5 d(u1) = 5 (̊12̊3) Obs.1 (i = 3) d(u2) = 2

{u2v2, u3v3} d(u2) = 5 (̊31̊2) d(u2) = 5 Obs.1 (i = 3) ∼= (̊13‖̊2)
{u1v1} d(u1) = 5 d(u1) = 5 (̊123) d(u3) = 2 d(u2) = 2

{u2v2} d(u2) = 5 Obs.4 (i = 2) d(u2) = 5 d(u3) = 2 Obs.4 (i = 2)

{u3v3} d(u3) = 5 (̊312) ∼= (̊123) Obs.1 (i = 3) d(u2) = 2

None G ∼= (̊1‖̊2‖̊4) Obs.4 (i = 2) (123) d(u3) = 2 d(u2) = 2

(̊123), (̊312), (̊1‖̊2‖̊4), and (123) are t-perfect. We have seen in Proposition 6 that
(̊1‖̊2‖̊4), (̊31̊2), and (̊1̊3‖̊2) are t-perfect. The graph (̊13‖̊2) is t-perfect because
(̊13‖̊2) is isomorphic to (̊241̊3) − u1, and (̊241̊3) is t-perfect. On the other hand,
(̊312), (̊12̊3), (̊123), and (123) are isomorphic to, respectively, (1̊243̊51)−{u1, u2},
(1̊243̊51)−{u3, u4}, (1̊23451)−{u1, u5}, and (123451)−{u1, u5}, all t-perfect. ��

3 Degree-Bounded Core Graphs of Order Nine

By Propositions 4 and 5, every core graph of order nine is of the pattern in
Fig. 3(b). In this section, let G denote a core graph of order nine where the degree
of every vertex is between 3 and 5. (The reason of imposing degree constraints
will become clear shortly.) We consider whether edges uiui+1, i = 1, 2, 3 are
present in G.

Proposition 7. Let G be a degree-bounded core graph on nine vertices. If for
all i = 1, 2, 3, the edge uiui+1 is in E(G), then G is an induced subgraph of a
(3, 3)-partitionable graph.

Proof. We argue first that none of u1u4, u1u3, and u2u4 can be present in G;
i.e., u1u2u3u4 is an induced path in G. Suppose that u1u4 ∈ E(G), then by
Obs.4 (with i = 5), at least one of u4v4 and u1v1 is in E(G). We may assume
that u4v4 ∈ E(G), and the other case is symmetric. Since {u1, u4, u2, v4} is not
a clique, u2u4 /∈ E(G). By Obs.2 (with i = 1), u1v1 ∈ E(G), and then since
{u1, u3, u4, v1} is not a clique, u1u3 cannot be present. But then G − {v2, v3} is
isomorphic to C7, a contradiction. Thus, u1u4 /∈ E(G). By Obs.2 (with i = 2),
(noting u1u2 ∈ E(G),) the presence of u2u4 would imply the presence of u2v2,
but then d(u2) = 6. Thus, u2u4 /∈ E(G), and by a symmetric argument, u1u3 /∈
E(G).

Now that none of u1u4, u1u3, and u2u4 is present, we consider all possible
combinations of edges {uivi | i = 1, . . . , 4} ∩ E(G). If none of them is in E(G),
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then G is isomorphic to (123451) − u1. If all of them are in E(G), then G is
isomorphic to (̊1̊2̊3̊4̊5̊1)−u1. If only one uivi is in E(G), then G is isomorphic to
(̊12̊345̊1)−u3 or (123̊4̊51)−u4. If only one uivi is absent, then G is isomorphic to
(̊1̊2̊345̊1) − u4 or (1̊23̊4̊51) − u1. Otherwise, exact two of edges uivi are in E(G),
then G is isomorphic to one of (̊12̊345̊1) − u4, (̊1̊2̊345̊1) − u1, (̊12̊345̊1) − u2, and
(123̊4̊51) − u2. ��

In the rest, at least one of u1u2, u2u3, u3u4 is absent from G. In the second
case, we assume that both u1u2 and u2u3 are absent from G; see Fig. 4(b).

Fig. 4. Refined patterns on nine vertices, the potential edges in Fig. 3(b) but absent
here are emphasized by red dashed lines. (a) all the three edges u1u2, u2u3, and u3u4

are present; (b) both u1u2 and u2u3 are absent; (c) u2u3 is absent but both u1u2 and
u3u4 are present; (d) u1u2 is absent but u2u3 is present. (Color figure online)

Proposition 8 (�). Let G be a degree-bounded core graph on nine vertices. If
both u1u2 and u2u3 are absent from G, then G is isomorphic to one of (1̊3̊4̊2),
(1̊3̊42), (̊1̊3̊42), (1̊3‖̊24), and (̊241̊3).

It is symmetric to Proposition 8 if both u2u3 and u3u4 are absent. Next we
consider the situation that u2u3 is absent but both u1u2 and u3u4 are present;
see Fig. 4(c).

Proposition 9 (�). Let G be a degree-bounded core graph on nine vertices. If
both u1u2 and u3u4 are in E(G) but u2u3 is not, then G is isomorphic to one of
(1̊2̊43), (̊1̊2̊4̊3̊1), (̊1̊2̊43), (1̊243̊51) − u2, and (̊1̊243̊5̊1) − u5.

In the last case, u2u3 is in E(G), but at least one of u1u2 and u3u4 is not.
We may assume without loss of generality that u1u2 is absent; see Fig. 4(d).

Proposition 10 (�). Let G be a degree-bounded core graph on nine vertices. If
u2u3 is in E(G) but u1u2 is not, then G is isomorphic to one of (2̊314), (2̊3̊14),
(23̊14), (1̊432), (1̊3̊241), (1̊3̊24), (14‖23), (1̊4̊32), (̊1̊243̊5̊1) − u3, (1̊243̊51) − u3,
and (1̊243̊51) − u1.

We are now ready to summarize Propositions 7–10 and prove Theorem 2.

Corollary 2. All degree-bounded core graphs of order nine are t-perfect. Only
(̊12̊345̊1) − u2, (123̊4̊51) − u2, (1̊243̊51) − u1, (1̊3̊24), and (̊241̊3) of them are
self-complementary graphs.
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Proof (of Theorem 2). The sufficiency is quite obvious. It is easy to verify that
C5, (̊241̊3), (1̊3̊24), (1̊2̊34), (̊123̊4), and (̊132̊4) are self-complementary. Since all
of them contain a C5, they are not perfect. We have seen that (̊241̊3) and (1̊3̊24)
are t-perfect, while (1̊2̊34), (̊123̊4), and (̊132̊4) are isomorphic to (123̊4̊51) − u2,
(̊12̊345̊1) − u2, and (1̊243̊51) − u1 respectively, hence t-perfect as well.

For the necessity, suppose that G is a self-complementary t-perfect graph and
not perfect. Since both G and G are t-perfect, G is a core graph. By Corollary 1,
5 ≤ n ≤ 10. Since the order of a self-complementary graph is either 4k or 4k + 1
for some k ≥ 0, we can have n ∈ {5, 8, 9}. Since G is not perfect, it contains an
odd hole, and by Proposition 3, every odd hole in G is a 5-cycle. If n = 5, then
G is C5.

If n = 9, then G is of pattern Fig. 3(b). We argue that G is degree bounded.
Every vertex in C has degree at least three and at most five. Suppose that one
vertex u ∈ U has degree two, then it is not adjacent to any other vertex in U .
But then the degree of u in G is six; thus there is a degree-6 vertex, which has to
be in U . But then we have a vertex in U that is nonadjacent to others in U , and
another vertex in U that is adjacent to all of the others in U , a contradiction.
By Corollary 2, G is one of (̊123̊4), (̊241̊3), (̊132̊4), (1̊2̊34), and (1̊3̊24).

It remains to show that there is no graph of order 8 satisfying the conditions.
Let G be a core graph of order 8. We may assume that the indices for the three
vertices in U are not consecutive: If G is of pattern Fig. 3(a), then we can consider
its complement. (With different choices of 5-cycles, a core graph may be of more
than one patterns.) If there is a vertex x of degree 2, then x ∈ U , and the two
neighbors of x are adjacent. Then in G, every vertex in U has degree at least
three, which means x is mapped to a vertex y in C. However, if y has degree
two, then its two neighbors are not adjacent in G, a contradiction. Therefore,
the minimum degree is at least three, and since G is self-complementary, the
maximum degree is at most four. By Lemma 1, G can only be one of (̊1̊3‖̊2),
(̊13‖̊2), (̊12̊3), (̊31̊2), (̊123), (̊312), (̊1‖̊2‖̊4), and (123), but none of them is self-
complementary. ��

4 Proof of Theorem 1

It is known that the (3, 3)-partitionable graphs are minimally t-imperfect [6].
Thus, we only need to show the sufficiency in Theorem 1. We say that a clique
K of a connected graph G is a clique separator of G if G − K is not connected.

Lemma 2 ([9,14]). No minimally t-imperfect graph contains a clique separator.

Throughout this section, we assume that both G and its complement G are
minimally t-imperfect graphs. By Lemma 2, neither G nor G can have a clique
separator. Thus, for each vertex u ∈ U , we have

2 < d(u) < n − 3. (1)

If d(u) = n − 3, then u has two neighbors in G, which is a clique separator.
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Note that G is a core graph. By Proposition 3 and Corollary 1, the order of G
is between five and ten. Recall that every almost bipartite graph is t-perfect [12].
The only core graph of order five is C5. Both core graphs of order six, (1) and
(̊1), are almost bipartite, e.g., removing v3. There are 16 core graphs of order
seven, (12), (̊12), (1̊2), (̊1̊2), (1‖2), (̊1‖2), (1‖̊2), (̊1‖̊2), and their complements.
All the listed eight graphs become bipartite after removing v4, hence almost
bipartite. By Lemma 1 and the degree requirements (1), G cannot have order
eight either. Likewise, by Corollary 2, all core graphs of order nine satisfying (1)
are t-perfect. Therefore, we are only left with n = 10.

In the rest of this section, the order of G is ten. Our analysis is based on
whether (123451) is a (not necessarily induced) subgraph of G. Let us start with
the case that all the five edges uiui+1 for i = 1, . . . , 5 are in E(G); see Fig. 5(a).

Fig. 5. (a) All the edges uiui+1 for i = 1, . . . , 5 are present; (b) both u2u3 and u3u4

are absent; (c) u1u2 is absent, while only u2u3, u3u4, and u1u5 are present.

Proposition 11. If for all i = 1, . . . , 5, the edge uiui+1 is in E(G), then G is
one of the (3, 3)-partitionable graphs.

Proof. We first argue that U induces a cycle. Suppose for contradiction that
u1u3 is present. By Obs.4 (with i = 2), at least one of u1v1 and u3v3 is in
E(G). Since they are symmetric, we consider u1v1 ∈ E(G). Since {u1, u3, u4, v1}
is not a clique, u1u4 /∈ E(G). Then by Obs.2 (with i = 3), u3v3 ∈ E(G), and
since {u1, u3, u5, v3} is not a clique, u3u5 /∈ E(G). But then G − {v4, v5, u2} is
isomorphic to C7, and G is not minimally t-imperfect. Now that G[U ] is a C5,
dependent on the combination of edges uivi, i = 1, . . . , 5, we are in one of the
(3, 3)-partitionable graphs that contain (123451). ��

The next proposition states that there cannot be two consecutive missing
edges in U ; see Fig. 5(b).

Proposition 12 (�). For i = 1, . . . , 5, at least one of uiui−1, uiui+1 is in E(G).

In the remaining case, uiui+1 for some i = 1, . . . , 5 is absent, but both
ui+1ui+2 and uiui−1 are present. Moreover, by Proposition 12, at least one of
ui+2ui+3 and ui−1ui−2 is in E(G). See Fig. 5(d).
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Proposition 13. If there is an i = 1, . . . , 5 such that uiui+1 is not in E(G),
then G is one of the (3, 3)-graphs.

Proof. Without loss of generality, let i = 1. Then u1u2 /∈ E(G), u2u3 and u1u5

are in E(G), and at least one of u3u4 and u4u5 is in E(G). We show by contra-
diction that u3u4 and u4u5 cannot be both in E(G). In particular, we show that
none of u1v1, u2v2, u1u3, u2u5, and u3u5 is in E(G), and then u1v4u2u3v1v2u5

is a 7-cycle.

– If u3u5 is in E(G), then by Obs.4 (with i = 4), at least one of u3v3 and u5v5 is
in E(G). If u3v3 is in E(G) but u5v5 is not, then by Obs.2 (with i = 5), u1u3 ∈
E(G), which means d(u3) = 7, a contradiction. A symmetric argument applies
if u5v5 is in E(G) but u3v3 is not. Hence, both u3v3 and u5v5 are in E(G). As
a result, neither u1u3 nor u2u5 can be in E(G), as otherwise {u3, u1, u5, v3}
or, respectively, {u5, u2, u3, v5} forms a clique. However, the vertex v3 has
four neighbors on a 5-cycle u3u5u1v4u2. Therefore, u3u5 /∈ E(G).

– If u1v1 is in E(G), then by Obs.1 (with i = 1), u1u3 ∈ E(G). Note that
u1u4 /∈ E(G), as otherwise {u1, u3, u4, v1} forms a cliqued. By Obs.2 (with
i = 3), u3v3 ∈ E(G). But then G−{v4, v5, u2} is isomorphic to C7. Therefore,
u1v1 /∈ E(G). By a symmetric argument, u2v2 /∈ E(G).

– Now that none of u1v1, u2v2, and u3u5 is in E(G), from Obs.2 (with i = 1) it
can be inferred u1u3 /∈ E(G), and then by Obs.2 (with i = 2), u2u5 /∈ E(G).

Thus, at most one of u3u4 and u4u5 is in E(G). We may assume without loss
of generality that u3u4 is in E(G) and u4u5 is not; the other case is symmetric.

We argue that none of u1u3, u3u5, u1v1, and u5v5 can be in E(G). Suppose
that u1u3 is in E(G). By Obs.2 (with i = 1), at least one of u1v1 and u3u5 is
in E(G). If u3u5 ∈ E(G), then u3v3 /∈ E(G), as otherwise {u3, u1, u5, v3} forms
a clique. On the other hand, by Obs.4 (with i = 2), at least one of u1v1 and
u3v3 is in E(G). Therefore, we always have u1v1 ∈ E(G). Then u1u4 /∈ E(G), as
otherwise {u1, u3, u4, v1} forms a clique. By Obs.2 (with i = 3), u3v3 ∈ E(G),
which further implies u3u5 �∈ E(G) because d(u3) < 6. But then all of u1u5,
u1u3, u3u4, and u3v3 are in E(G) and none of u1u4, u3u5, and u4u5 is in E(G),
contradicting Obs.3 (with i = 2). Therefore, u1u3 /∈ E(G). By a symmetric
argument, we can conclude that u3u5 cannot be in E(G) either. Now that none
of u1u3, u3u5, u1u2, and u4u5 is in E(G), together with the fact that both u2u3

and u3u4 are in E(G), from Obs.1 (with i = 1 and i = 5), it can be inferred that
both u1v1 and u5v5 cannot be in E(G).

At least one of u4v4 and u1u4 is in E(G), as otherwise u1v4v5u3u4v2u5 is a
7-cycle. If u4v4 is in E(G), then Obs.1 (with i = 4) will force u1u4 in E(G) as
well. On the other hand, u1u4 is in E(G) and Obs.4 (with i = 5) will force u4v4

in E(G) as well. Therefore, both u4v4 and u1u4 are in E(G). Moreover, at least
one of u2v2 and u2u5 is in E(G), as otherwise u5v2v1u3u2v4u1 is a 7-cycle. By a
symmetric argument, both u2v2 and u2u5 are in E(G). Note that u2u4 cannot be
in E(G), as otherwise G−{v1, v5, u3} is isomorphic to C7. Dependent on whether
u3v3 is in E(G), the graph is isomorphic to either (1̊243̊51) or its complement. ��

The discussion on the order of G and Propositions 11–13 imply Theorem 1.
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9. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory Ser.
B 18, 138–154 (1975). https://doi.org/10.1016/0095-8956(75)90041-6
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Abstract. For a class G of graphs, the problem Subgraph Comple-
ment to G asks whether one can find a subset S of vertices of the input
graph G such that complementing the subgraph induced by S in G results
in a graph in G. We investigate the complexity of the problem when G
is H-free for H being a complete graph, a star, a path, or a cycle. We
obtain the following results:

– When H is a Kt (a complete graph on t vertices) for any fixed t ≥ 1,
the problem is solvable in polynomial-time. This applies even when
G is a subclass of Kt-free graphs recognizable in polynomial-time,
for example, the class of (t − 2)-degenerate graphs.

– When H is a K1,t (a star graph on t + 1 vertices), we obtain that
the problem is NP-complete for every t ≥ 5. This, along with known
results, leaves only two unresolved cases - K1,3 and K1,4.

– When H is a Pt (a path on t vertices), we obtain that the problem
is NP-complete for every t ≥ 7, leaving behind only two unresolved
cases - P5 and P6.

– When H is a Ct (a cycle on t vertices), we obtain that the problem
is NP-complete for every t ≥ 8, leaving behind four unresolved cases
- C4, C5, C6, and C7.

Further, we prove that these hard problems do not admit subexponential-
time algorithms (algorithms running in time 2o(|V (G)|)), assuming the
Exponential Time Hypothesis. A simple complementation argument
implies that results for G are applicable for G, thereby obtaining sim-
ilar results for H being the complement of a complete graph, a star, a
path, or a cycle. Our results generalize two main results and resolve one
open question by Fomin et al. (Algorithmica, 2020).
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1 Introduction

For a class G of graphs, a general graph modification problem can be defined as fol-
lows: Given a graph G, is there a set of modifications applying which on G results
in a graph in G? Based on the type and the number of modifications allowed, there
are various kinds of graph modification problems. Among them, the most stud-
ied problems are vertex deletion problems and edge modification problems. As
the names suggest, the allowed modifications in them are vertex deletions and
edge modifications (deletion, completion, or editing) respectively. In these types
of graph modification problems, the size of the set of modifications is bounded
by an additional integer input. For example, in the Cluster Editing problem,
given a graph G and an integer k, the task is to find whether there exists a set of
at most k pairs of vertices of G such that changing the adjacencies of the pairs in
G results in a cluster graph–that is, a vertex-disjoint union of cliques.

In this paper, we deal with a graph modification known as subgraph com-
plementation. In subgraph complementation problems, the objective is to check
whether the given graph G has a subset S of vertices such that complementing the
subgraph induced by S in G, results in a graph in G. Here, the adjacency of a pair
u, v of vertices is flipped only if both u and v are in S. The graph thus obtained,
denoted by G ⊕ S, is known as a subgraph complement of G. Unlike the ver-
tex/edge modification problems, the operation is allowed only once but there is no
restriction on the size of S. This operation is introduced by Kamiński et al. [13] as
an attempt to generalize different kinds of complementations such as graph com-
plementation and local complementation (replacing the closed neighborhood of a
vertex by its complement) in their study of the clique-width of a graph. Recently, a
systematic algorithmic study of this problem has been started by Fomin et al. [8].
They proved that the problem is polynomial-time solvable when the graph class
G is triangle-free graphs, or G is d-degenerate, or G is of bounded clique-width
and expressible in MSO1 (for example, P4-free graphs), or when G is the class of
split graphs. They also obtained a hardness result in which they proved that the
problem is NP-complete if G is the class of regular graphs.

We focus on subgraph complementation problems for G being H-free graphs.
For a graph H, in the problem Subgraph Complement to H-free graphs (SC
to H-free graphs), the task is to find whether there exists a subset S of vertices
of the input graph G such that G ⊕ S is H-free, i.e., G ⊕ S does not contain
any induced subgraph isomorphic to H. There are numerous algorithmic studies
on graph modification problems where the target graph class G is H-free [1–
5,7,9,10,12,17]. We add on to this list by studying H-free graphs with respect
to subgraph complementation. A class G of graphs is hereditary (on induced
subgraphs) if for every G ∈ G, every induced subgraph of G is in G. It is well
known that every hereditary class of graphs can be characterized by a set H of
forbidden induced subgraphs. Therefore, studying a graph modification problem
with target graph class H-free (i.e., |H| = 1) can be seen as a first step toward
understanding the complexity of the problem for hereditary properties.

We consider four classes of graphs H - complete graphs, stars, paths, and
cycles - and their complement classes. In all these cases, we obtain complete
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polynomial-time/NP-complete dichotomies, except for a few cases. The results
are summarized below:

– When H is a Kt (a complete graph on t vertices), for any fixed t ≥ 1, we obtain
that SC to H-free graphs can be solved in polynomial-time. We obtain this
result by generalizing the technique used in [8] for SC to triangle-free graphs
and using results on generalized split graphs from [14]. Our result applies to
any subclass of Kt-free graphs recognizable in polynomial-time. This result,
as far as the existence of polynomial-time algorithms is concerned, subsumes
two main results in [8] - the results when G is triangle-free and when G is
d-degenerate (d-degenerate graphs are Kd+2-free).

– When H is a K1,t (a star graph on t + 1 vertices), we obtain that SC to H-
free graphs is NP-complete for every fixed t ≥ 5. When t = 1 (i.e., H = K2),
the problem can be solved trivially - a graph G is a yes-instance of SC to
K2-free graphs if and only if G is a Ks ∪ tK1 (disjoint union of a clique and
isolated vertices), which can be recognized in polynomial-time. When t = 2
(i.e., H = P3), the problem admits a polynomial-time algorithm as the class
of P3-free graphs has bounded clique-width and can be expressed in MSO1 –
see Sect. 6 in [8]. Therefore, the only remaining cases to be solved among the
star graphs are K1,3 and K1,4.

– When H is a Pt (a path on t vertices), we obtain that SC to H-free graphs
is NP-complete for every fixed t ≥ 7. It is known from [8] that the problem
can be solved in polynomial-time for all t ≤ 4. Therefore, the only remaining
cases to be solved here are P5 and P6.

– When H is a Ct (a cycle on t vertices), we obtain that SC to H-free graphs
is NP-complete for every t ≥ 8. Therefore, the only remaining unknown cases
among cycles are C4, C5, C6, and C7.

– We prove that a graph G is a yes-instance of SC to G if and only if G is a
yes-instane of SC to G, where G is the set of complements of graphs in G.
This implies that SC to G can be solved in polynomial-time if and only if SC
to G can be solved in polynomial-time. This resolves an open question in [8].
Further, it implies that SC to H-free graphs is polynomially equivalent to SC
to H-free graphs. Therefore, all our results for H-free graphs are applicable
for H-free graphs as well.

– We observe that SC to G, for any polynomial-time recognizable class G of
graphs, can be solved in time 2O(|V (G)|) by checking whether every subset
S of vertices in the input graph G is a solution or not. We obtain that one
cannot hope for much better results for all the cases in which we prove the
NP-completeness. To be precise, we prove that, assuming the Exponential
Time Hypothesis, there exists no subexponential-time algorithm (algorithm
running in time 2o(|V (G)|)) for every problem for which we prove the NP-
completeness.

For the hardness results, we employ two types of reductions. One type, from
variants of SAT problems, is used to solve base cases - for example K1,5. The
other type of reductions acts as an inductive step - for example from SC to
K1,t-free graphs to SC to K1,t+1-free graphs. This scheme of obtaining hardness
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results was used to obtain a complete polynomial-time/NP-complete dichotomy
in [1], and a conditional kernelization complexity dichotomy in [16] for H-free
edge modification problems. We believe that our results and techniques will come
in handy for an eventual complexity dichotomy for SC to H-free graphs.

The paper is organized as follows: Preliminaries are given in Sect. 2, struc-
tural results are obtained in Sect. 3, polynomial-time algorithms are discussed
in Sect. 4, and the hardness results are proved in Sect. 5. All proofs have been
moved to a full version of this paper due to space constraints.

2 Preliminaries

A simple graph is a pair G = (V,E), where V is a set of vertices and E ⊆ (
V
2

)
is a

set of edges. For a graph G, we refer to its vertex set as V (G) and its edge set as
E(G). For a graph G and a set S ⊆ V (G), the induced subgraph G[S] is a graph
whose vertex set is S and whose edge set contains all the edges in E that have both
endpoints in S. For a vertex v ∈ V (G), the open neighborhood of v, denoted by
N(v), is the set of all the vertices adjacent to v, i.e., N(v) := {w | vw ∈ E(G)},
and the closed neighborhood of v, denoted by N [v], is defined as N(v) ∪ {v}. The
degree of a vertex v is the size of its open neighborhood. A vertex v is a degree-k
if v has degree k. By G − X, we denote the graph obtained from G by removing
the vertices in X, i.e., G − X = G[V (G) \ X]. A set X of vertices in a graph G
is said to be a module if every vertex in X has the same set of neighbors outside
of X. An empty graph is a graph without any edges and a null graph is a graph
without any vertices. Let H be any graph. Then a graph G is called H-free, if G
does not contain H as an induced subgraph. In a graph G, two sets of vertices are
said to be all-adjacent, if each vertex in one set is adjacent to every vertex in the
other set. Similarly, two sets of vertices are said to be nonadjacent, if there are
no edges between them. A complete graph, an empty graph, a star, a cycle, and
a path with t vertices are denoted by Kt, tK1,K1,t−1, Ct, and Pt respectively. By
It, we denote an independent set of size t. The center vertex of a star graph K1,t

(for any t ≥ 2), is the vertex having degree t. For a class G of graphs, by G, we
denote the class of complements of graphs in G. A graph property Π is nontrivial
if it is true for infinitely many graphs and false for infinitely many graphs. The
property is said to be trivial otherwise. The disjoint union of two graphs G1 and
G2, denoted by G1 ∪ G2, is the graph G such that V (G) = V (G1) ∪ V (G2) and
E(G) = E(G1)∪E(G2). The disjoint union of t copies of a graph G is denoted by
tG. The cross product H ×H ′ of two graphs H and H ′ is a graph G such that the
vertex set V (G) = V (H)×V (H ′) and two vertices (u, u′) and (v, v′) are adjacent
in G if and only if either u = v and u′ is adjacent to v′ in H ′, or u′ = v′ and u is
adjacent to v in H. A k-degenerate graph is an undirected graph in which every
subgraph has a vertex of degree at most k. For a graph G, the degeneracy of G is
the smallest value of k for which it is k-degenerate.

To generalize split graphs, Gyárfás [11] introduced the notion of (p, q)-split
graphs. For positive integers p, q, a graph is a (p, q)-split graph if its vertices can
be partitioned into two sets P and Q such that the clique number of G[P ] is at
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most p and the independence number of G[Q] is at most q, i.e., G[P ] is Kp+1-
free and G[Q] is (q + 1)K1-free. Clearly, a split graph is a (1, 1)-split graph.
Every such partition of the form (P,Q) will be called a (p, q)-split partition.
For integers p, q, by R(p, q) we denote the Ramsey number, i.e., R(p, q) is the
minimum integer n such that every graph G with at least n vertices has either
a clique of size p or an independent set of size q.

We say that boolean formula is a k-SAT formula if it is in conjunctive normal
form (CNF) and every clause contains exactly k literals of distinct variables. We
denote the n variables and m clauses of a k-SAT formula Φ by {X1, . . . , Xn},
and {C1, C2, . . . , Cm} respectively. For each variable Xi, we denote the positve
literal by xi and the negative literal by xi. Each clause Ci is a disjunction of
exactly k literals �i,1, �i,2, . . . �i,k, i.e., Ci = �i,1 ∨ �i,2 ∨ · · · ∨ �i,k. The problem
k-SAT≥k−2 is defined below.

k-SAT≥k−2: Given a boolean formula Φ with n variables and m clauses
in conjunctive normal form (CNF), where each clause contains exactly k
literals of distinct variables, find whether there exists a satisfying assignment
for Φ with at least k − 2 true literals per clause.

The Exponential-Time Hypothesis (ETH) along with the Sparsification
Lemma imply that 3-SAT cannot be solved in time 2o(n+m), where n is the num-
ber of variables and m is the number of clauses in the input formula. To show
that a graph problem does not admit an algorithm running in time 2o(|V (G)|)

(where G is the input graph), it is sufficient to give a polynomial-time reduc-
tion from 3-SAT such that the resultant graph has only O(n + m) vertices. We
can show the same by a reduction from another graph problem (which does not
admit a 2o(n) algorithm, where n is the number of vertices in the input graph),
such that the resultant instance has only at most O(n) vertices. Such reductions,
where the blow-up in the input size (with respect to an appropriate measure –
the number of vertices in our case) is only linear, are known as linear reduc-
tions. We refer to Chap. 14 of [6] for an exposition to these topics. Since all the
problems discussed in this paper are trivially in NP, we will not state the same
explicitly while proving the NP-completeness of the problems.

Proposition 1 (folklore). For every k ≥ 3, k-SAT≥k−2 is NP-Complete. Fur-
ther, the problem cannot be solved in time 2o(n+m), assuming the ETH.

A subgraph complement of a graph G is a graph G′ obtained from G, for any
S ⊆ V (G), by complementing the subgraph induced by S in G. More formally,
V (G′) = V (G) and two vertices u, v are adjacent in G′ if and only if at least one
of the following conditions hold true - (i) u and v are adjacent in G and either
u or v is not in S; (ii) u and v are nonadjacent in G and both u and v are in S.

Subgraph Complement to G (SC to G): Given a graph G, is there a
subgraph complement G′ of G such that G′ ∈ G?
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By G(1), we denote the class of graphs where each graph in it can be subgraph
complemented to a graph in G, i.e., G(1) = {G : ∃S ⊆ V (G) such that G⊕S ∈ G}.

3 Structural Results

For a graph H, let ΠH be the property defined as follows: A graph G has property
ΠH if there exists a set S ⊆ V (G) such that G ⊕ S is H-free. That is, the class
of graphs satisfying ΠH is the set of all yes-instances of SC to H-free graphs.
We prove that ΠH is nontrivial if and only if H has at least two vertices. This
result guarantees that the pursuit of obtaining optimal complexities of SC to
H-free graphs is meaningful for all nontrivial graphs H.

Lemma 1. For a graph H, the property ΠH is nontrivial if and only if H has
at least two vertices.

How is a subgraph complement of a graph G related to a subgraph comple-
ment of G with respect to the same subset S of vertices of the graphs? Lemma 2
answers this question.

Lemma 2. Let G be a graph and S ⊆ V (G). Then G ⊕ S = G ⊕ S.

Lemma 3. For a class G of graphs, G(1) = G(1)
.

Lemma 3 implies Corollary 1, which tells us that SC to G is polynomially
equivalent to SC to G. The first statement in Corollary 1 was an open problem
raised in [8], whereas the second statement implies that all results obtained in
this paper for H-free graphs are applicable for H-free graphs as well.

Corollary 1. For a class G of graphs, G(1) can be recognized in polynomial time
if and only if G(1)

can be recognized in polynomial time. In particular, SC to
H-free graphs is polynomial-time solvable if and only if SC to H-free graphs is
polynomial-time solvable.

4 Polynomial-Time Algorithms

In this section, we obtain a polynomial-time algorithm for SC to G, when G
is a subclass of Kt-free graphs, for any fixed integer t ≥ 1, such that G is rec-
ognizable in polynomial-time. To obtain this result, we generalize the technique
used for SC to triangle-free graphs in [8]. Assume that a graph G has a solution
S, i.e., G ⊕ S ∈ G. Further, assume that S has at least two vertices u and v.
Then, we prove that each of the sets N(u) ∩ N(v), N [u] ∩ N [v], N(u) \ N [v],
and N(v) \ N [u] induces a (p, q)-split graph (for p = q = t − 1), and for each
of them, S contains exactly the set Q of some (p, q)-split partition (P,Q) of
the corresponding induced subgraph. Then the algorithm boils down to recog-
nizing (p, q)-split graphs and enumerating all (p, q)-split partitions of them in
polynomial-time. All the tools required for this task has already been obtained
in [14], see the full version [15] for the proofs.
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Proposition 2 ([14,15]). Let G be a (p, q)-split graph. Let (P,Q) and (P ′, Q′)
be two (p, q)-split partitions of G. Then |P ∩ Q′| ≤ R(p + 1, q + 1) − 1 and
|P ′ ∩ Q| ≤ R(p + 1, q + 1) − 1.

Proposition 2 implies that two distinct (p, q)-partitions of a (p, q)-split graph
cannot differ too much. This helps us to enumerate all (p, q)-split partitions
in polynomial-time, given one of them. Proposition 3 says that there is a
polynomial-time algorithm which recognizes a (p, q)-split graph and gives a (p, q)-
split partition of the same.

Proposition 3 ([14,15]). For any fixed constants p and q, there is an algo-
rithm which takes a graph G (with n vertices) as an input, runs in time
O(n2R(p+1,q+1)+p+q+4), and decides whether G is a (p, q)-split graph. Further-
more, if G is a (p, q)-split graph, then the algorithm outputs a (p, q)-split partition
of G.

The running time in Proposition 3 is not explicitly given in [14,15], but can be
easily derived from the proof given in [15]. The proof of the following lemma is
very similar to that of Proposition 3.

Lemma 4. Let G be a (p, q)-split graph with n vertices. Then there are at most
n2R(p+1,q+1) (p, q)-split partitions of G. Given a (p, q)-split partition (P,Q) of
G, all (p, q)-split partitions of G can be computed in polynomial-time, specifically
in time O(n2R(p+1,q+1)+p+q+3).

Proposition 3 and Lemma 4 directly imply Corollary 2.

Corollary 2. For any fixed constants p ≥ 1 and q ≥ 1, there is an algo-
rithm which takes a graph G (with n vertices) as an input, runs in time
O(n2R(p+1,q+1)+p+q+4), and decides whether G is a (p, q)-split graph. Further-
more, if G is a (p, q)-split graph, then the algorithm outputs all (p, q)-split par-
titions of G.

Let G be a yes-instance of SC to G, where G is a subclass of Kt-free graphs
recognizable in polynomial-time. Assume that G is not a trivial yes-instance. Let
S ⊆ V (G) be such that G ⊕ S ∈ G. Clearly, |S| ≥ 2. Let u, v be two vertices in
S. With respect to S, u, v, we partition the vertices in V (G) \ {u, v} into eight
sets as given below. This is depicted in Fig. 1.

(i) Suv = S ∩ N(u) ∩ N(v)
(ii) Suv = S ∩ N [u] ∩ N [v]
(iii) Suv = S ∩ (N(u) \ N [v])
(iv) Suv = S ∩ (N(v) \ N [u])

(v) Tuv = (N(u) ∩ N(v)) \ S
(vi) Tuv = (N [u] ∩ N [v]) \ S
(vii) Tuv = (N(u) \ N [v]) \ S
(viii) Tuv = (N(v) \ N [u]) \ S

Clearly, S = Suv∪Suv∪Suv∪Suv∪{u, v}, and V (G)\S = Tuv∪Tuv∪Tuv∪Tuv.

Lemma 5. Let G be a yes-instance of SC to G, where G is a subclass of Kt-
free graphs, for any fixed integer t ≥ 2. Let S ⊆ V (G) be such that |S| ≥ 2 and
G ⊕ S ∈ G. Let u and v be any two vertices in S. Then the following statements
hold true:
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Fig. 1. Partitioning of vertices of a yes-instance G of SC to G, based on a solution S
and two vertices u, v in S. The bold lines represent the adjacency of vertices u and v.

(i) N(u) ∩ N(v) induces a (t − 1, t − 1)-split graph with a (t − 1, t − 1)-split
partition (Tuv, Suv);

(ii) N [u] ∩ N [v] induces a (t − 1, t − 1)-split graph with a (t − 1, t − 1)-split
partition (Tuv, Suv);

(iii) N(u) \ N [v] induces a (t − 1, t − 1)-split graph with a (t − 1, t − 1)-split
partition (Tuv, Suv);

(iv) N(v) \ N [u] induces a (t − 1, t − 1)-split graph with a (t − 1, t − 1)-split
partition (Tuv, Suv);

Algorithm for SC to G, where G is a subclass of Kt-free graphs
Input: A graph G
Output: If G is a yes-instance of SC to G, then returns a set S ⊆ V (G)
such that G ⊕ S ∈ G; returns ‘None’ otherwise.
Step 0 : If G ∈ G, then return ∅.
Step 1 : For every unordered pair of vertices {u, v} in G:

(i) If any of N(u)∩N(v), N [u]∩N [v], N(u)\N [v], N(v)\N [u] does not
induce a (t − 1, t − 1)-split graph, then continue (with Step 1).

(ii) Compute Luv, the list of all (p, q)-split partitions of N(u) ∩ N(v).
(iii) Compute Luv, the list of all (p, q)-split partitions of N [u] ∩ N(v).
(iv) Compute Luv, the list of all (p, q)-split partitions of N(u) \ N [v].
(v) Compute Luv, the list of all (p, q)-split partitions of N(v) \ N [v].
(vi) For every (Pa, Qa) in Luv, for every (Pb, Qb) in Luv, for every (Pc, Qc)

in Luv, and for every (Pd, Qd) in Luv:
(a) Let S = Qa ∪ Qb ∪ Qc ∪ Qd ∪ {u, v}
(b) If G ⊕ S ∈ G, then return S.

Step 2 : Return ‘None’

Theorem 1. For any fixed t ≥ 1, let G be a subclass of Kt-free graphs such that
there is a recognition algorithm for G running in time O(f(n)), for some poly-
nomial function f . Then SC to G can be solved in polynomial-time, specifically
in time O(f(n) · (n8R(t,t)+4)). In particular, SC to Kt-free graphs can be solved
in polynomial-time, specifically in time O(n8R(t,t)+t+4).
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Since graphs of bounded degeneracy have bounded clique number and can
be recognized in polynomial-time, Theorem 1 implies that SC to d-degenerate
graphs can be solved in polynomial-time, a result obtained in [8].

5 Hardness Results

In this section, we prove hardness results for SC to H-free graphs when H is
a star, a path, or a cycle. Specifically, we prove that, if H is a star with at
least six vertices, or a path with at least seven vertices, or a cycle with at least
eight vertices, the problem is NP-complete. For all these hard cases, we prove
something stronger: these hard problems cannot be solved in time 2o(|V (G)|),
assuming the ETH.

The proofs are by induction on the number of vertices in H. For base cases, we
give reductions from variants of k-SAT problem (for example, from 4-SAT≥2

to SC to K1,5-free graphs). For the inductive step, we give reductions from
problems of the same kind (for example, from SC to K1,t-free graphs to SC to
K1,t+1-free graphs).

Construction 1 will be used for an inductive reduction for SC to K1,t-free
graphs.

Construction 1. Let (G′, t) be the input to the construction, where G′ is a
graph and t ≥ 1 is an integer. For every vertex u of G′, introduce (t+2) vertices
denoted by the set Wu, which includes a special vertex u′. Each of these sets
induces a clique (Kt+2). Further, every vertex u ∈ V (G′) is adjacent to every
vertex in Wu except u′. Let the resultant graph be G and let W , which induces a
cluster graph, be the union of all newly introduced vertices.

An example of the construction is shown in Fig. 2.

Lemma 6. Let G′ and G be the classes of K1,t-free graphs and K1,t+1-free graphs
respectively for any t ≥ 2. If SC to G′ is NP-complete, then so is SC to G.
Further, if SC to G′ cannot be solved in time 2o(|V (G)|), then so is SC to G.

Now, to utilize Lemma 6, we need a hardness result when H = K1,t for some
t ≥ 2, the smaller the t, the better the implications will be. We obtain such a
result for t = 5 using Construction 2.

Construction 2. Let Φ be the input to the construction, where Φ, with n vari-
ables and m clauses, is a 4-SAT formula. We construct G = (V,E) in the
following way:

– For each variable Xi in Φ, introduce two vertices - one vertex, denoted by
ui, for the positive literal xi and one vertex, denoted by u′

i, for the negative
literal xi. The vertex ui is adjacent to u′

i. Further, for each variable Xi intro-
duce four sets Ui,1, Ui,2, Ui,3 and Ui,4 of five vertices each. Each of these
sets induces a K5. The vertices ui and u′

i are all-adjacent to Ui,1. Further,
Ui,1 is all-adjacent to Ui,2, Ui,3 and Ui,4. Thus, the total number of vertices
corresponding to a variable of Φ is 22.
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Fig. 2. An example of Construction 1 for t = 4. The lines connecting a circle and a
rectangle indicate that the vertex corresponding to the circle is adjacent to all vertices
in the rectangle.

– For each clause Ci of the form �i,1 ∨ �i,2 ∨ �i,3 ∨ �i,4 introduce a set Vi of five
vertices each which induces a K5. All the vertices of each Vi together form a
big clique, denoted by V ′, of size 5·m. Let the four vertices introduced (in the
previous step) for the literals �i,1, �i,2, �i,3, and �i,4 be denoted by yi,1, yi,2, yi,3
and yi,4 respectively. We note that, if �i,1 = xj, then yi,1 = uj, and if �i,1 = xj,
then yi,1 = u′

j. Similarly, let the four vertices introduced for the negation of
these literals be denoted by zi,1, zi,2, zi,3, and zi,4 respectively. We note that,
if �i,1 = xj, then zi,1 = u′

j, and if �i,1 = xj, then zi,1 = uj. Further, every
vertex in Vi is adjacent to the vertices yi,1, yi,2, yi,3 and yi,4.

This completes the construction (refer Fig. 3).

For convenience, we call each set Vi introduced in the construction a clause
set with each of them containing five vertices. For each variable Xi, the vertices
ui and u′

i are called literal vertices. The union of all literal vertices is denoted by
U . Further, for each variable Xi, the sets Ui,s (for 1 ≤ r ≤ 4) are called hanging
sets and the union of which is denoted by Uh

i . By Uh, we denote the union of
all Uh

i s. The vertices in the hanging sets are called hanging vertices.
Construction 2 will be used for a reduction from 4-SAT≥2 to SC to K1,5-

free graphs. Whenever we introduce a K5 in the construction, the objective is to
forbid a solution S to have all the vertices of that K5. If all the five vertices in a
K5 is in S, then those vertices along with a vertex adjacent to them (but not in
S) or a vertex nonadjacent to them (but in S) form a K1,5 in G ⊕ S, where G is
the output of the construction. This makes sure that both ui and u′

i are not in S
together (otherwise, they form a K1,5 along with their hanging vertices not in S –
note that each hanging set forms a K5). Further, for every Ci, at least two literal
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Fig. 3. An example of Construction 2 for the formula φ = C1 ∧ C2 ∧ C3 where C1=
x1 ∨ x2 ∨ x3 ∨ x4, C2 = x1 ∨ x2 ∨ x3 ∨ x5, and C3 = x1 ∨ x2 ∨ x4 ∨ x5. Each rectangle
represents a K5. The lines connecting two rectangles indicate that each vertex in one
rectangle is adjacent to all vertices in the other rectangle. Lines connecting a rectangle
and a vertex have a similar meaning.

vertices corresponding to the literals in Ci must be in S, otherwise there will be
K1,5 where the center vertex is a vertex from Vi. These observations help us to get
a valid truth assignment which satisfies the formula Φ, an instance of 4-SAT≥2.

Theorem 2. SC to K1,5-free graphs is NP-complete. Further, the problem can-
not be solved in time 2o(|V (G)|), assuming the ETH.

Theorem 3 is a direct implication of Lemma 6 and Theorem 2.

Theorem 3. Let t ≥ 5 be any integer. Then SC to K1,t-free graphs is NP-
complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless the
ETH fails.

The following two theorems can be proved in a similar fashion.

Theorem 4. Let t ≥ 7 be any integer. Then SC to Pt-free graphs is NP-
complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless the
ETH fails.

Theorem 5. Let t ≥ 8 be any integer. Then SC to Ct-free graphs is NP-
complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless the
ETH fails.
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Abstract. An odd cycle transversal (oct, for short) in a graph is a set
of vertices whose deletion will leave a graph without any odd cycles. The
Odd Cycle Transversal (OCT) problem takes an undirected graph
G and a non-negative integer k as input, and the objective is to test if
G has an oct of size at most k. The directed counterpart of the problem,
Directed Odd Cycle Transversal (DOCT), where the input is a
digraph and k, is defined analogously. When parameterized by k, OCT
is known to be FPT [Reed et al., Oper. Res. Lett., 2004] whereas DOCT
was recently shown to be W[1]-hard [Lokshtanov et al., SODA, 2020].

A mixed graph is a graph that contains both directed and undirected
edges. In this paper, we study the Mixed Odd Cycle Transversal
(MOCT) problem, i.e., OCT on mixed graphs. And we show that MOCT
admits a fixed-parameter tractable algorithm when parameterized by
k+�, where � is the number of directed edges in the input mixed graph. In
the course of designing our algorithm for MOCT, we also design a fixed-
parameter tractable algorithm for a variant of the well-known Multiway
Cut problem, which might be of independent interest.

1 Introduction

A mixed graph is a graph that contains both directed and undirected edges.
For convenience, we call directed edges arcs and undirected edges simply edges.

Lawqueen Kanesh is supported in part by NRF Fellowship for AI grant [R-252-000-
B14-281] and by Defense Service Organization, Singapore. Saket Saurabh is supported
by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. 819416), and Swarnajayanti
Fellowship (no. DST/SJF/MSA01/2017-18). Jayakrishnan Madathil is supported by
the Chennai Mathematical Institute and the Infosys Foundation. Part of this work was
done while Jayakrishnan Madathil was at the Indian Institute of Technology Gand-
hinagar, supported by an IITGN-Early Career Fellowship. The authors would like to
thank Komal Muluk for several helpful discussions on the MOCT problem, as well as
for several suggestions that improved the presentation of this article.

c© Springer Nature Switzerland AG 2021
�L. Kowalik et al. (Eds.): WG 2021, LNCS 12911, pp. 130–142, 2021.
https://doi.org/10.1007/978-3-030-86838-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86838-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-86838-3_10


Odd Cycle Transversal in Mixed Graphs 131

An odd cycle transversal (oct, for short) in a mixed/undirected/directed graph
is a set of vertices whose deletion will leave a graph without any odd cycles. In
this paper, we study the Mixed Odd Cycle Transversal (MOCT) problem,
where we are given a mixed graph G and an integer k, and the goal is to test if
G has an oct of size at most k. The problem is formally defined below.

Mixed Odd Cycle Transversal (MOCT) Parameter: k + �
Input: An n-vertex mixed graph G with � arcs and a non-negative integer k.
Question: Does G have an oct of size at most k?

We show that MOCT admits a fixed-parameter tractable algorithm when
parameterized by k+ �, where � is the number of arcs in the input graph. Specif-
ically, we prove the following theorem. (Due to space constraints, the proofs of
statements marked with a � have been omitted.)

Theorem 1 (�). MOCT admits an algorithm that runs in time (2� +
k)2�+k2O(k5)nO(1).

When parameterized by the solution size k, the Odd Cycle Transversal
problem is known to be FPT on undirected graphs [10–12,15,20] and W[1]-hard
on digraphs [17]. Notice that for the algorithm in Theorem 1, if the number
of arcs � ≤ k, then the algorithm runs in time 2poly(k)nO(1). Otherwise k ≤ �,
and thus the dependence of the algorithm’s runtime on � is �O(�), and for values
of � up to O(log n/ log log n), the algorithm runs in time 2O(k5)nO(1). That is,
MOCT is fixed-parameter tractable, when parameterized by k alone, as long as
the number of arcs in the input mixed graph is O(log n/ log log n).

In the course of proving Theorem 1, we also design an FPT algorithm for a
variant of the well-known Multiway Cut problem, which we call Bipartition
Multiway Cut For Sets (BMC For Sets). Consider an undirected graph
G. For a pair of disjoint vertex subsets X,S ⊆ V (G), RG(X,S) denotes the set of
vertices in G that are reachable from X in the subgraph G−S, i.e., RG(X,S) =
{v ∈ V (G) | there exists a path in G−S from x to v for some x ∈ X}. If S = ∅,
we simply write RG(X) instead of RG(X, ∅). We formally define the BMC For
Sets problem as follows.

Bipartition Multiway Cut For Sets (BMC For Sets) Parameter: k
Input: An undirected n-vertex graph G, pairwise disjoint vertex sets
W1, . . . ,Wp such that G − W is bipartite, where W =

⋃p
i=1 Wi, and a non-

negative integer k.
Question: Does there exist a set of vertices S ⊆ V (G)\W such that |S| ≤ k,
for every i ∈ [p], G[RG(Wi, S)] is bipartite and for every distinct i, j ∈ [p],
there is no path from a vertex in Wi to a vertex in Wj in G − S?

We show that BMC For Sets is fixed-parameter tractable, when parame-
terized by the solution size k. Specifically, we prove the following theorem.
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Theorem 2 (�). BMC For Sets admits an algorithm running in time
2O(k5)nO(1).

We use the algorithm in Theorem 2 as a sub-routine to prove Theorem 1. In
particular, we show that solving MOCT amounts to solving (2�+k)(2�+k) many
instances of BMC For Sets, where � is the number of arcs in the input mixed
graph. We first briefly discuss the results that motivated our study of MOCT
and BMC For Sets before laying out an overview of our strategy for proving
Theorems 1 and 2.

The MOCT problem has three widely-studied antecedents in the literature—
the Odd Cycle Transversal (OCT) problem as well as its directed coun-
terpart, the Directed Odd Cycle Transversal (DOCT) problem, and the
Directed Feedback Vertex Set (DFVS) problem. In OCT (resp. DOCT)
the input consists of an undirected graph (resp. digraph) G and an integer k,
and the objective is to decide if G has an odd cycle transversal of size at most
k. And in DFVS, the input consists of a digraph D and an integer k, and the
objective is to decide if D has a feedback vertex set of size at most k. A feedback
vertex set of a (mixed/undirected/directed) graph is a set of vertices whose dele-
tion will render the graph acyclic. Observe that MOCT generalises both OCT
and DOCT, as both undirected and directed graphs are mixed graphs. As is
the case with several problems in the realm of parameterized complexity, when
parameterized by k, the undirected variant of the problem, i.e., OCT, is fixed-
parameter tractable [10–12,15,20], whereas the directed variant, i.e., DOCT,
is W[1]-hard [17]. But unlike DOCT, DFVS is FPT [5]. And it was observed
in [17] that DFVS reduces to DOCT, and thus MOCT generalises DFVS as
well. In fact, the parameterized complexity (with k as the parameter) of OCT,
DFVS and DOCT were deemed to be major open problems, until they were
settled respectively in 2003, 2008 and 2020 [5,17,20].

The W[1]-hardness of DOCT forecloses the possibility of a fixed-parameter
tractable algorithm forMOCT, parameterized by k alone, unless FPT=W[1]. But
this jump in complexity from the undirected variant to the directed variant of the
problem does raise the following question: To what extent does the presence of arcs
impede the tractability of the problem? For example, does the problem become
fixed-parameter tractable if there are only at most o(n) arcs in the input graph? We
show that this is indeed the case when the input graph has only O(log n/ log log n)
arcs. In what follows, (G, k) is an instance of MOCT, where G is a mixed graph
with n vertices and � arcs. Observe that if � = 1, i.e., if G has only one arc, then
every cycle in the underlying undirected graph of G is a cycle in G and vice versa.
Thus, we can forget the orientation of the unique arc in G, and simply treat (G, k)
as an instance of the (undirected)OCT problem. But note that this argument does
not work even when � = 2. For example, consider the mixed graph G on 3 vertices
x, y and z with an edge xy and arcs (x, z) and (y, z). Note that G is odd cycle-free,
whereas the underlying undirected graph of G is not.

When parameterized by k alone, the FVS problem is FPT on all three types of
graphs—directed, undirected and mixed [1–3,5–7,9,13,14], whereas OCT is FPT
on undirected graphs [17,20] and W[1]-hard on digraphs. As mentioned earlier,
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the parameterized complexity of DFVS was deemed a major open problem until
its resolution by Chen et al. [5], who showed that the problem is FPT. This result
was soon followed by the work of Bonsma and Lokshtanov [1], who studied the
MFVS problem, i.e., FVS on mixed graphs. The inquiry of Bonsma and Loksh-
tanov [1] into the complexity of MFVS was prompted by the following reason:
while a number of problems reduces to their directed variants from the undirected
variants simply by replacing the edges by a pair of directed arcs, this obvious strat-
egy does not work for FVS. In fact, replacing every edge of an undirected graph G
by arcs in opposing directions would create several spurious directed 2-cycles. And
thus, as noted by Bonsma and Lokshtanov, “every feedback vertex set of the result-
ing [directed] graph is a vertex cover of G and vice versa.” Thus, they observed that
“FVS problems on undirected and directed graphs are different problems; one is
not a generalization of the other.” And they sought to “bridge the gap between the
parameterized algorithms forFeedbackVertex Set by giving one algorithm that
works for both,” and gave a fixed-parameterized algorithm for MFVS.

Reed et al. [20] introduced the technique of iterative compression and used it
to demonstrate that, OCT, at its core, is a cut problem—hitting all odd cycles in
a graph, in fact, amounts to hitting all paths between two appropriately defined
vertex subsets. Chen et al. [5] applied iterative compression, and showed that
solving DFVS amounts to solving a cut problem as well, for which they used the
idea of important separators [18]. The concept of important separators was first
introduced by Marx [18] to solve the Multiway Cut problem, a generalisation
of the classic s−t cut problem. In Multiway Cut, the input consists of a graph
G, a set of vertices T ⊆ V (G) and a non-negative integer k, and the task is to
determine if there exists a set of vertices S ⊆ V (G) such that |S| ≤ k and for
every distinct t, t′ ∈ T , there is no t− t′ path in G−S. The vertices in the set T
are called terminals. When |T | = 2, Multiway Cut is equivalent to the classic
s− t cut problem. Marx showed that Multiway Cut admits an algorithm run-
ning in time 2O(k3)nO(1), which has been improved to 4knO(1) [4], and later to
2knO(1) [8]. Lokshtanov and Ramanujan [16] studied a parity constrained version
of Multiway Cut called Parity Multiway Cut (PMWC), in which there
are two sets of terminals, Te and To, and for every v ∈ Te and for every w ∈ To,
only even paths between v and (Te ∪ To)\ {v}, and only odd paths between w
and (Te ∪ To)\ {w} need to be disconnected. Note that PMWC with Te = To

is precisely the Multiway Cut problem. Lokshtanov and Ramanujan showed
that PMWC admits an algorithm that runs in time 22O(k)

nO(1) time, which was
subsequently improved to 2O(k3)nO(1) [19]. These works [16,19] stand out, not
just on account of their resolving a nontrivial generalisation of Multiway Cut,
but because of their adaptation of important separators to reach the results. In
particular, Ramanujan [19] augmented the definition of important separators to
accommodate certain structural restrictions on the reachability sets of terminals,
refined the notion of a separator’s being dominated by another separator, and
thus provided a template based on important separators for designing algorithms
for “cut problems.” In this paper, we adapt the techniques in [16,19] to design
our algorithms for MOCT and BMC For Sets. Finally, Lokshtanov et al. [17]
studied the parameterized complexity of DOCT, parameterized by the solution
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size, and showed that the problem is W[1]-hard. But on the positive side, they
showed that DOCT admits a factor-2 FPT approximation algorithm that runs
in time 2O(k2)nO(1). They also showed that under the Parameterized Inapprox-
imability Hypothesis, and assuming that W[1] �= FPT, there exists an ε > 0 such
that DOCT does not admit a (1 + ε)-factor approximation algorithm.

Overview of Our Results: As in the case of OCT and DFVS, we show that
solving MOCT amounts to solving (multiple instances of) a cut problem. Unsur-
prisingly, to design our algorithm for MOCT, we borrow and adapt ideas and
techniques from the three results mentioned above—the algorithms for OCT,
Multiway Cut and Parity Multiway Cut. Specifically, we make use of the
following three ingredients from these results.

1. “Compression” from the algorithm of Reed et al. [20] for OCT. That is, start
with a larger solution, and then use the structure imposed by that larger
solution to obtain a smaller solution of the required size.

2. Important separators and the accompanying “Pushing Lemma”—the idea
that while looking for an X − Y separator, push the separator as far away
from X as possible—from the works of Marx et al. [18] and Cygan et al. [8]

3. The ideas of augmenting the definition of important separators and using a
set of 2kO(1)

vertices that intersects the separator that we are looking for from
the work of Ramanujan [19].

We must note that while we have all these previous results mentioned above
at our disposal, there does not seem to be a straightforward reduction from
MOCT or any appropriate annotated variant of MOCT to any of the problems
discussed above. A non-trivial application of a combination of techniques has
thus become necessary to derive our result. Observe that if we were to imitate
the strategy for OCT to design an algorithm for MOCT, we would hit a snag
as soon as we start, for the simple reason that odd cycle-free mixed graphs (and
odd cycle-free digraphs, for that matter) lack the extremely useful structural
characterisation that odd cycle-free undirected graphs have: An undirected graph
is odd cycle-free if and only if it is bipartite. Note that this property does not
hold for mixed graphs. For example, a mixed graph G on three vertices x, y
and z with an edge xy and arcs (y, z) and (x, z) has no odd cycles, but is not
bipartite. We say that a mixed graph is bipartite if its underlying undirected
graph is bipartite. Nonetheless, we can make do with the following weaker claim
that applies to mixed graphs (and digraphs).

Lemma 1 (�). A strongly connected mixed graph is odd cycle-free if and only
if it is bipartite.

In light of Lemma 1, it might be tempting to try the following approach:
Decompose the given mixed graph into strongly connected components, and then
apply the algorithm for OCT on each component. Note that this approach would
fail too for it is not necessary to make each strongly connected component bipar-
tite to make the graph odd cycle-free; it might just be enough to destroy the strong
connectivity of each component to make the graph odd cycle-free. For example,
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Fig. 1. An example of a mixed graph that is strongly connected, has an oct of size 1,
but any minimum-sized oct of the underlying undirected graph has size 2.

consider the mixed graph G, defined by V (G) = {xi, yi, zi | i ∈ [2]}, E(G) =
{xiyi | i ∈ [2]} and A(G) = {(xi, zi), (yi, zi) | i ∈ [2]} ∪ {(z1, x2), (z2, x1)}. (See
Fig. 1.) Note that G is strongly connected. To make G odd cycle-free, we only need
to delete 1 vertex (any one of the vertices x1, x2, z1, z2 will do), whereas to make G
bipartite, we need to delete 2 vertices because {x1, y1, z1} and {x2, y2, z2} induce
two vertex-disjoint triangles in the underlying undirected graph of G.

Outline for Our Algorithm: Our algorithm for MOCT has two main steps.
Let (G, k) be the given instance of MOCT where |A(G)| = �. In the first step,
we reduce (G, k) to at most (2� + k)2�+k many instances of the BMC For
Sets problem such that (G, k) is a yes-instance if and only if at least one of the
(2� + k)2�+k instances of BMC For Sets is a yes-instance. And in the second
step we solve BMC For Sets on each of the (2� + k)2�+k instances.

Consider an instance (G, {W1,W2, . . . ,Wp}, k) of the BMC For Sets prob-
lem. Let T1 = W1 and T2 =

⋃p
i=2 Wi. Observe first that the solution Z that

we are looking for must contain a minimal T1 − T2 separator, say, Z1 ⊆ Z, as
the Wis need to be disconnected from each other. This idea is the same as in
the Multiway Cut problem. But in addition, we want RG(Wi, Z) to induce a
bipartite graph. Therefore, it is not enough to enumerate all important T1 − T2

separators and branch on them. And to deal with this, we use the augmented
definition due to Ramanujan [19] of the domination of a separator by another
separator: For two T1 − T2 separators S1 and Z1, we say that S1 well-dominates
Z1 if (i) |S1| ≤ |Z1|, (ii) R(T1, S1) ⊃ R(T1, Z1) and (iii) the minimum size of an
oct for G[R(T1, S1)] does not exceed the minimum size of an oct for G[R(T1, Z1)].
Thus, if S1 and Z1 are two T1 − T2 separators of size at most k, and S1 well-
dominates Z1, then we might as well pick S1. And if S1 is minimal and there
exists no other separator that well-dominates S1, then we say that S1 is well-
domination maximal. But unlike in the case of important separators, we cannot
enumerate all well-domination maximal separators of size k. Instead we use a
result from [19], which says that given G,T1, T2 and k, we can either construct
a set, J(T1, T2, k) ⊆ V (G) \ (T1 ∪ T2), of size at most 2O(k3) that intersects all
well-domination maximal T1 − T2 separators of size at most k, or conclude that
no well-domination maximal T1-T2 separator of size at most k exists. Thus, the
set J(T1, T2, k) must intersect the solution that we are looking for, and there-
fore, we branch on all subsets of J(T1, T2, k) of size at most k, which leads to an
algorithm with the claimed runtime.
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2 Preliminaries

For a natural number n, we use [n] to denote the set {1, 2, . . . , n}. For a mixed
graph G, V (G) denotes the vertex set of G. And A(G) and E(G) respectively
denote the arc set and edge set of G. By an arc we mean a directed edge, and
by an edge we mean an undirected edge. Cycles, odd cycles and strongly con-
nected components in mixed graphs are defined analogously to their respective
counterparts in digraphs. For a mixed graph G, by the underlying undirected
graph of G, we mean the undirected graph obtained from G by removing the
orientations of the arcs in G.

Reed et al. [20] showed that OCT admits an algorithm that runs in time
2O(k)nO(1). In fact, their algorithm can be adapted to output an oct of size at
most k, if it exists. Now, consider the following variant of OCT: We are given
G, a set of vertices B ⊆ V (G) and k as input, and the goal is to check if G has
an oct S ⊆ V (G) such that |S| ≤ k and S ∩ B = ∅. (An instance with B = ∅ is
precisely the OCT problem.) To solve this variant of the problem, notice that
we can make B “undeletable” by adding k extra copies of B to G, and then
use the algorithm of Reed et al. [20] on the modified graph. We record this fact
below.

Lemma 2 (�). There is an algorithm that, given an n-vertex undirected graph
G, a set B ⊆ V (G) and a non-negative integer k as input, runs in time
2O(k)nO(1), and correctly decides if G has an oct S ⊆ V (G) such that |S| ≤ k
and S ∩ B = ∅. Moreover, the algorithm outputs such an oct S, if it exists.

3 Solving Mixed Odd Cycle Transversal

In this section, assuming that Theorem 2 holds, we show that MOCT admits
an FPT algorithm, and thus prove Theorem 1. Recall that in the Mixed Odd
Cycle Transversal (MOCT) problem, given a mixed graph G with � arcs
and an integer k, the question is to decide whether G has an oct of size at most
k. To design our FPT algorithm, we use the “compression” idea from the classic
iterative compression technique (see, e.g., [6, Chapter 4]). The ingredients for
iterative compression are a large solution (if it exists) and a disjoint-variant of
the problem that compresses the large solution to a solution of a desired size.
To begin with, we find an oct of graph G − V (A(G)) of size at most k using
the algorithm for OCT by Reed et al. on the instance (G − V (A(G)), k) [20]. If
an oct of size k does not exist for the instance, then it directly implies that the
instance (G, k) of MOCT is also a no-instance as G − V (A(G)) is a subgraph
of G.

Next, as is common in algorithms based on iterative compression, instead of
designing an algorithm for MOCT, we design an algorithm for a disjoint-variant
of MOCT. We call this disjoint-variant Disjoint-Mixed OCT (D-MOCT, for
short). In D-MOCT, together with the mixed graph G and an integer k, we are
also given a set W ⊆ V (G) of size at most k+2� such that G[W ] is bipartite and
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contains all the arcs in G (i.e., for every arc (u, v) ∈ A(G), we have u, v ∈ W ),
and G − W is (undirected and) bipartite, and the question is whether G has an
oct S ⊆ V (G) \ W of size at most k. We prove the following lemma.

Lemma 3 (�). Let (G,W, k) be an instance of D-MOCT. There exists an algo-
rithm for D-MOCT running in time (2� + k)(2�+k) · ψ(k, n), where ψ(k, n) is
the running time of an algorithm for Bipartition Multiway Cut For Sets.

Equipped with the above lemma, we can prove Theorem 1. We now show
that by a simple procedure we can further reduce D-MOCT to k + 2� many
instances of the Bipartition Multiway Cut For Sets problem. Given an
instance (G,W, k) of D-MOCT, if (G,W, k) is a yes-instance of D-MOCT,
then we show that there exists a partition {W1, . . . ,Wp} of W such that it is
sufficient to solve BMC For Sets on instance (G∗, (W1, . . . ,Wp), k) where G∗

is a subgraph of the underlying undirected graph of G. If we manage to show
the existence of such a “good” partition, then as |W | ≤ k +2�, we can guess this
partition by going over all possible (k + 2�)k+2� partitions of W . We formalise
this idea in the following lemma, which can then be used to prove Lemma 3.

Lemma 4 (�). Let (G,W, k) be an instance of D-MOCT. If there exists an
odd cycle transversal S ⊆ V (G) \ W of size at most k of G, then there exists an
ordered partition {W1, . . . ,Wp} of W such that the following holds:

1. For every i ∈ [p], Wi is contained in a unique strongly connected component
C of G − S.

2. For every i ∈ [p], the underlying undirected graph of G[R(Wi, S)] is bipartite.
3. For every i, j ∈ [p], i �= j, Wi and Wj are contained in different strongly

connected components of G − S.
4. For each arc (u, v) in G−S, there exist i, j ∈ [p] such that i ≤ j, u ∈ Wi and

v ∈ Wj.

4 Solving BMC for Sets

In this section, we design an algorithm for BMC for Sets that runs in time
2O(k5)nO(1). All graphs considered in this section are undirected. We start with
a few definitions and preliminary results that we will be using to design our
algorithm.

Notation and Terminology: Consider a graph G. We use oct(G) to denote
the size of a minimum-sized oct of G. Let X∗, S ⊆ V (G) be disjoint sets. Recall
that by RG(X∗, S), we denote the set of vertices of G that are reachable from
X∗ in the graph G − S. We drop the subscript G if the graph is clear from the
context. Let X,Y ⊆ V (G) be two disjoint sets. We say that S ⊆ V (G) \ (X ∪Y )
is an X − Y separator in G if there is no path from X to Y in G − S, i.e., if
RG(X,S) ∩ Y = φ. If no proper subset of S is an X − Y separator, then we say
that S is inclusion wise minimal (or minimal, for short). Also, we use λG(X,Y )
to denote the cardinality of a minimum-sized X-Y separator. With a slight abuse
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of terminology, for pairwise disjoint vertex subsets W1,W2, . . . ,Wp ⊆ V (G), we
say that S ⊆ V (G) is a {W1,W2, . . . ,Wp} separator if S is a Wi − Wj separator
for every distinct i, j ∈ [p]. Let X,Y ⊆ V (G) be two disjoint sets, and let S1

and S2 be two X − Y separators. We say that S1 dominates S2 with respect to
X if S1 is minimal, |S1| ≤ |S2| and R(X,S1) ⊃ R(X,S2). And we say that S1

well-dominates S2 if S1 dominates S2 and oct(G[R(X,S1)]) ≤ oct(G[R(X,S2)]).
If the set X is clear from the context, then we just say that S1 dominates (or
well-dominates) S2.

Definition 1. Let G be a graph, and let X,Y ⊆ V (G) be disjoint sets. An X-Y
separator S ⊆ V (G)\ (X ∪Y ) is said to be well-domination maximal if no other
X − Y separator well-dominates S.

Lemma 5 (Pushing lemma for Multiway Cut [16]). Consider a graph G
and pairwise-disjoint vertex subsets W1,W2, . . . ,Wp ⊆ V (G). Let S ⊆ V (G) be
a {W1,W2, . . . ,Wp} separator and S1 ⊆ S be any minimal W1 − W ′ separa-
tor, where W ′ =

⋃p
i=2 Wi. Then, for any W1 − W ′ separator S′

1 ⊆ V (G) that
dominates S1, S′ = (S \ S1) ∪ S′

1 is also a {W1,W2, . . . ,Wp} separator.

Lemma 6 (�). Consider an instance (G, {W1, . . . ,Wp}, k) of BMC For Sets.
Suppose that S ⊆ V (G) \ ⋃p

i=1 Wi is a solution for this instance. Let S1 ⊆ S be
a minimal W1-W ′ separator, where W ′ =

⋃p
i=2 Wi, and let S2 = R(W1, S1) ∩ S.

Then S2 is an oct for G[R(W1, S1)].

Lemma 7 (Pushing lemma for BMC For Sets). Consider an instance
(G, {W1, . . . ,Wp}, k) of BMC for Sets. Suppose that S ⊆ V (G) \ ⋃p

i=1 Wi is
a solution for this instance. Let S1 ⊆ S be a minimal W1 − W ′ separator, where
W ′ =

⋃p
i=2 Wi, and let S2 = S ∩ R(W1, S1). Then, for any minimal W1 − W ′

separator S′
1 such that S′

1 well-dominates S1, and for any minimum-sized oct S′
2

for G[R(W1, S
′
1)], the set S′ = (S\(S1 ∪ S2)) ∪ (S′

1 ∪ S′
2) is also a solution for

the BMC for Sets instance (G, {W1, . . . ,Wp}, k).

Proof. To prove that S′ is a solution for the instance (G, {W1, . . . ,Wp}, k) of
BMC for Sets, we have to prove that (i) |S′| ≤ k, (ii) S′ is a {W1,W2, . . . ,Wp}
separator and (iii) R(Wi, S

′) is bipartite for every i ∈ [p]. The fact that S′

is a separator for {W1, . . . ,Wp} follows directly from Lemma 5. By the def-
inition of well-domination, we have |S′

1| ≤ |S1|. By Lemma 6, S2 is an oct
for G[R(W1, S1)]. And by the definition of well-domination, we have |S′

2| =
oct(G[R(W1, S

′
1)]) ≤ oct(G[R(W1, S1)]) ≤ |S2|. Since S1 ∩S2 = ∅, and S′

1 ∩S′
2 =

∅, we get |S′
1 ∪ S′

2| = |S′
1| + |S′

2| ≤ |S1| + |S2| = |S1 ∪ S2|. We thus get that
|S′| = |(S\(S1 ∪ S2)) ∪ (S′

1 ∪ S′
2)| ≤ |S|. And since S is a solution we have

|S| ≤ k, which implies that |S′| ≤ k. Also, since S′ contains S′
2, which is an oct

for G[R(W1, S
′
1)] and R(W1, S

′
1) ⊇ R(W1, S

′), we also get that G[R(W1, S
′)] is

bipartite. All that remains to be shown is that R(Wi, S
′) is bipartite for each i

with 2 ≤ i ≤ p. To prove that, we first prove the following claims.

Claim 1. For every i ∈ [p] \ {1}, S′
1 is a (S1\S′

1) − Wi separator.
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Proof. Fix i ∈ [p]\{1}. Assume that the claim is not true for i. Then there exists
a path, say P , in G − S′

1, from s to w for some s ∈ S1\S′
1 and some w ∈ Wi. As

S1 is a minimal W1 − W ′ separator, there exists a path from W1 to W ′, say P ′,
that intersects S1 only in s. Let P ′′ denote the W1 − s subpath of P ′. Consider
a vertex x ∈ V (P ′′) \ {s}. Note that we have x ∈ R(W1, S1). Now, since S′

1

dominates S1, we have R(W1, S1) ⊂ R(W1, S
′
1), and therefore, x ∈ R(W1, S

′
1).

Now, since s ∈ S1\S′
1, we also have s /∈ S′

1. That is, no vertex of the path P ′′

belongs to S′
1, or in other words, P ′′ is a path in G − S′

1. Thus, both P and P ′′

are paths in G−S′
1, and the vertex s is common to both of them. Then the path

P ′′ followed by the path P is a path in G − S′
1 from W1 to Wi ⊆ W ′, which

contradicts the assumption that S′
1 is a W1 − W ′ separator. �

Claim 2. For every i ∈ [p] \ {1}, R(Wi, S
′
1) ⊆ R(Wi, S1).

Proof. Fix i ∈ [p] \ {1}. Consider z ∈ R(Wi, S
′
1). Then there exists a path in

G−S′
1, say Q, from w′ to z for some w′ ∈ Wi. Now, assume that z /∈ R(Wi, S1).

Then, S1 must intersect the path Q. Let u ∈ V (Q) ∩ S1. Let Qu,w′ denote the
u − w subpath of Q. Then, Qu,w′ is an (S1 \ S′

1) − Wi path in G − S′
1. But this

implies that S′
1 is not an (S1 \S′

1)−Wi separator, a contradiction to Claim 1. �
Claim 3 For every i ∈ [p] \ {1}, R(Wi, S

′) ⊆ R(Wi, S).

Proof. Fix i ∈ [p]\{1}. Assume that the claim is not true for i. Then there exists
w′′ ∈ R(Wi, S

′) such that w′′ /∈ R(Wi, S). Since w′′ ∈ R(Wi, S
′), there exists a

Wi − {w′′} path, say Q′, in G − S′. And since w′′ /∈ R(Wi, S), S must intersect
the path Q′. Let u′ ∈ V (Q′)∩S. Thus, u′ ∈ S but u′ /∈ S′. But then u′ /∈ (S \S1)
as S \S1 ⊆ S′. Therefore, u′ ∈ S1, which implies that u′ /∈ R(Wi, S1). Now, note
that u′ ∈ R(Wi, S

′), as u′ ∈ V (Q′) ⊆ R(Wi, S
′). Therefore, u′ ∈ R(Wi, S

′
1)

as well, because S′ ⊇ S′
1, and therefore, R(Wi, S

′) ⊆ R(Wi, S
′
1). We thus have

u′ ∈ R(Wi, S
′
1) but u′ /∈ R(Wi, S1), which contradicts Claim 2. �

Claim 3, along with the fact that R(Wi, S) is bipartite, immediately implies
that R(Wi, S

′) is bipartite for every i ∈ [p] \ {1}. This completes the proof of
Lemma 7. �

Consider an instance (G, {W1,W2, . . . ,Wp} , k) of BMC for Sets. Lemma 7
tells us that if (G, {W1,W2, . . . ,Wt} , k) is a yes-instance of BMC for Sets,
then this instance has a solution that contains a well-domination maximal W1 −
W ′ separator. And the following result due to Lokshtanov and Ramanujan [16]
says that we can find a sufficiently small set of vertices that intersects the well-
domination maximal separator that we are looking for.

Lemma 8 [16,19]. There is an algorithm that, given a graph G, disjoint ver-
tex subsets X,Y ⊆ V (G) and a non-negative integer k as input, runs in time
2O(k3)nO(1), and either returns a set J(X,Y, k) ⊆ V (G) \ (X ∪ Y ) of size 2O(k3)

such that J(X,Y, k) intersects all well-domination maximal X-Y separators of
size at most k, or correctly reports that no well-domination maximal X-Y sepa-
rator of size at most k exists.
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4.1 Algorithm for BMC For Sets

We design a branching algorithm for BMC For Sets using Lemmas 7 and 8,
and thus prove Theorem 2. Before proceeding to the algorithm, we introduce the
following reduction rule, which removes the Wis that are already unreachable
from all the other Wjs and RG(Wi)s induce bipartite subgraphs.

Reduction Rule 1. Let (G, {W1, . . . ,Wp}, k) be an instance of BMC For
Sets. If there exists i ∈ [p] such that λG(Wi,Wj) = 0 for every j ∈ [p]\ {i}
and RG(Wi) is bipartite, then delete RG(Wi) from G.

We are now ready to describe our algorithm, which we call Algo-BMCS.

Description of the Algorithm Algo-BMCS. We are given an instance of BMC
For Sets (G, {W1, . . . ,Wp}, k) as input, where G is an n-vertex graph and k is
a non-negative integer. We do as follows.
Step 1. Proceed only if k ≥ 0. If λG(Wi,Wj) = 0 for every distinct i, j ∈ [p]
and R(Wi) is bipartite for every i ∈ [p], then return that (G, {W1, . . . ,Wp}, k)
is a yes-instance and terminate.
Step 2. Apply Reduction Rule 1 exhaustively.
Step 3. Compute λG(W1,W

′), where W ′ =
⋃p

i=2 Wi. If λG(W1,W
′) = 0, then

for each k1, where 0 ≤ k1 ≤ k, use the algorithm in Lemma 2, to check if
oct(G[R(W1)]) ≤ k1. Proceed only if oct(G[R(W1)]) ≤ k1 for some k1 ≤ k.
Let k′ = min{k1 | oct(G[R(W1)]) ≤ k1}. Call Algo-BMCS on the instance (G −
R(W1), {W2,W3, . . . ,Wp}, k − k′).
Step 4. Proceed only if λG(W1,W

′) > 0, where W ′ =
⋃p

i=2 Wi. Call the algo-
rithm in Lemma 8 on the input (G,W1,W

′, k). Proceed only if the algorithm
in Lemma 8 returns a set J(W1,W

′, k) ⊆ V (G)\(W1 ∪ W ′) of size at most
2O(k3). For each L ⊆ J(W1,W

′, k) such that |L| ≤ k, do as follows: Construct
the instance (G − L, {W1,W2, . . . ,Wp} , k − |L|) of BMC For Sets, and call
Algo-BMCS on this instance.
Step 5. Return that (G, {W1, . . . ,Wp}, k) is a no-instance, and terminate.

5 Conclusion

We show that MOCT admits an FPT algorithm with runtime (2� +
k)2�+k2O(k5)nO(1). An immediate question is to what extent can the dependence
of the runtime on � be improved. For example, can it be shown that MOCT

admits an algorithm with runtime 2O(�)2kO(1)
nO(1) so that as long as the number

of arcs � is at most log n, the algorithm runs in time 2kO(1)
nO(1)? Notice that

any improvement in our algorithm for BMC For Sets will immediately imply
a faster algorithm for MOCT. So, it would be interesting to see if the 2O(k5)

factor in the algorithm for BMC For Sets can be improved.
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Abstract. We introduce and study Weighted Min (s, t)-Cut Pre-
vention, where we are given a graph G = (V, E) with vertices s and t
and an edge cost function and the aim is to choose an edge set D of
total cost at most d such that G has no (s, t)-edge cut of capacity at
most a that is disjoint from D. We show that Weighted Min (s, t)-Cut
Prevention is NP-hard even on subcubcic graphs when all edges have
capacity and cost one and provide a comprehensive study of the parame-
terized complexity of the problem. We show, for example W[1]-hardness
with respect to d and an FPT algorithm for a.

1 Introduction

Network interdiction is a large class of optimization problems with direct appli-
cations in operations research [5,6,16–18]. In these problems one player wants
to achieve a certain goal (for example finding a short path between two given
vertices s and t), and another player wants to modify the network to prevent
this. Given the enormous importance of the max-flow/min-cut problem it comes
as no surprise that two-player games where an attacker wants to decrease the
maximum (s, t)-flow of a network by deleting edges have been considered [5,17].
We study an inverse problem: an attacker wants to find an (s, t)-cut of capacity
at most a and a defender wants to protect edges in order to increase the capacity
of any minimum (s, t)-cut in G to at least a + 1. The formal problem definition
reads as follows.

Weighted Min (s, t)-Cut Prevention (WMCP)
Input: A graph G = (V,E), two vertices s, t ∈ V , an edge cost function c :
E → N, a capacity function ω : E → N, and integers d and a.
Question: Is there a set D ⊆ E with c(D) :=

∑
e∈D c(e) ≤ d such that

for every (s, t)-cut A ⊆ (E \ D) in G we have ω(A) :=
∑

e∈A ω(e) > a?

The special case where we have only unit capacities and unit costs is referred
to as Min (s, t)-Cut Prevention (MCP). A related problem called Minimum
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Table 1. Parameter overview for WMCP and MCP. We write NP-h if the problem is
NP-hard even if the corresponding parameter is a constant.

a d Δ d + Δ vc pw + fvs

WMCP FPT W[1]-h NP-h W[1]-h
if Δ = 3

Weakly NP-h
Theorem7

Weakly NP-h
Theorem7

W[1]-h W[1]-h

Theorem5 Lemma3 Theorem1 Theorem1 Theorem8 Theorem8

MCP FPT W[1]-h NP-h FPT FPT W[1]-h

Theorem5 Lemma3 Theorem3 Theorem3 Theorem6 Theorem9

st-Cut Interdiction has been studied recently [1]; in this problem the graph
is directed and an interdictor may freely choose the amount of increase in edge
capacities. In our formulation, the defender may only decide to fully protect an
edge or to leave it unprocted. To the best of our knowledge, this formulation of
WMCP has not been considered so far. We study the classical complexity of
WMCP and its parameterized complexity with respect to a, d, and important
structural parameterizations of the input graph G.

Related Work. Many interdiction problems have been studied from a (param-
eterized) complexity perspective: In Matching Interdiction [18], one wants
to remove vertices or edges to decrease the weight of a maximum-weight match-
ing. In the Most Vital Edges in MST problem, one aims to remove edges to
decrease the weight of any maximum spanning tree. In Shortest-Path Inter-
diction [12], also known as Shortest Path Most Vital Edges [3,9] and
Minimum Length-Bounded Cut [2], one wants to remove edges to increase
the length of a shortest (s, t)-path above a certain threshold. All of these prob-
lems are NP-hard and the study of their classical and parameterized complexity
has received a lot of attention [3,9,10,18].

Our Results. An overview of our results is given in Table 1. We show that
WMCP and MCP are NP-hard even on subcubic graphs. This motivates a
parameterized complexity study with respect to the natural parameters defender
budged d and attacker budget a and with respect to structural parameters of
the input graph G. Here, we consider the structural parameters treewidth tw(G)
and vertex cover number vc(G) of G as well as pathwidth pw(G) and feed-
back vertex set number fvs(G) of G. Our main results are as follows. MCP and
WMCP are W[1]-hard with respect to the defender budget d and FPT with
respect to the attacker budget a. MCP and WMCP are W[1]-hard with respect
to the combined parameter pathwidth of G plus feedback vertex set number of G
and thus also W[1]-hard with respect to the treewidth of G. The hardness for
these parameters motivates a study of the vertex cover number vc(G). We show
that MCP is FPT with respect to vc(G), whereas WMCP is weakly NP-hard
even for vc(G) = 2 and W[1]-hard with respect to vc(G) even when all capac-
ities and costs are encoded in unary. Finally, we provide a polynomial kernel
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for WMCP parameterized by vc(G)+ a and complement this result by showing
that MCP and WMCP do not admit polynomial kernels with respect to the
large combined parameter d+a+tw(G)+lp(G)+Δ(G) where lp(G) denotes the
length of a longest path in G and Δ(G) denotes the maximum degree. Overall,
our results give a comprehensive complexity overview of WMCP and MCP.

The proofs of statements marked with a (*) are deferred to a full version1.

2 Preliminaries

For integers i and j with i ≤ j, we define [i, j] := {k ∈ N | i ≤ k ≤ j}.
An (undirected) graph G = (V,E) consists of a set of vertices V and a set

of edges E ⊆
(
V
2

)
. Throughout this work, let n := |V |, m := |E|, and |G| :=

|V |+|E|. For vertex sets S ⊆ V and T ⊆ V we denote with EG(S, T ) := {{s, t} ∈
E | s ∈ S, t ∈ T} the edges between S and T . Moreover, we define EG(S) :=
EG(S, S) and EG(v, S) := EG({v}, S) for v ∈ V . For a vertex set S ⊆ V we
denote with G[S] := (S,EG(S)) the induced subgraph of S in G. Moreover, for
an edge set D ⊆ E, let G − D := (V,E \ D) the graph obtained by deleting D.
For a vertex v ∈ V , we denote with NG(v) := {w ∈ V | {v, w} ∈ E} the open
neighborhood of v in G. Analogously, for a vertex set S ⊆ V , we define NG(S) :=⋃

v∈S NG(v) \ S. If G is clear from the context, we may omit the subscript. A
sequence of distinct vertices P = (v0, . . . , vk) is a path or (v0, vk)-path of length k
in G if {vi−1, vi} ∈ E for all i ∈ [1, k]. Let s and t be distinct vertices of V . An
edge set A ⊆ E is an (s, t) (edge)-cut in G if there is no (s, t)-path in G − A.
A graph G = (V,E) is connected if there is an (a, b)-path in G for each pair of
distinct vertices a, b ∈ V .

Two instances I and I ′ of the same decision problem L are equivalent if I is
a yes-instance of L if and only if I ′ is a yes-instance of L. A reduction rule for a
decision problem L is an algorithm A that transforms any instance I of L into
another instance A(I) of L. We call A safe, if for each instance I of L, I and A(I)
are equivalent instances of L. A reduction rule A is exhaustively applied for an
instance I if A(I) = I.

For details on parameterized complexity and the definitions of all graph
parameters considered in this work, we refer to the standard monograph [7].

Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of any of the above prob-
lems (in the case of MCP, c(e) := ω(e) := 1 for all e ∈ E). We call an edge
set D ⊆ E a solution of I if every (s, t)-cut A ⊆ E \D has capacity at least a+1
according to ω. A solution D of I is called a minimum solution of I, if there is
no solution D′ of I with c(D′) < c(D).

Basic Observations. We assume that G is connected and that c(e) ≤ d + 1
and ω(e) ≤ a + 1 for each edge e ∈ E, as otherwise we can decrease these
weights accordingly. Furthermore, we can assume that d ≤ c(E) and a ≤ ω(E).

1 https://arxiv.org/abs/2107.04482.

https://arxiv.org/abs/2107.04482
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Fact 1. Let G = (V,E) be a graph, let ω : E → N be a capacity function,
and let D ⊆ E. Then, in nO(1) time we can compute an (s, t)-cut A ⊆ E \ D
with ω(A) ≤ a or report that no such (s, t)-cut exists.

Lemma 1 (*). Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP.
Then, one can compute in (n + a + d)O(1) time an equivalent instance I ′ =
(G′, s′, t′, d, a) of MCP.

The next definition will be a useful tool in several proofs in this work.

Definition 1. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP,
and let e = {u,w} ∈ E. The merge of u and w in I is the instance I ′ obtained
from I by removing u and w from G and adding a new vertex v{u,w} which is
adjacent to N({u,w}). The cost and capacity for each edge in E ∩ E′ are set to
the corresponding cost and capacity in E, and for each x ∈ N({u,w}),

– c′({v{u,w}, x}) = min{c(e′) | e′ ∈ E(x, {u,w})}, and
– ω′({v{u,w}, x}) =

∑
e′∈E(x,{u,w}) ω(e′).

Rule 1. If G contains an edge e∗ = {u∗, w∗} ∈ E which is not contained in any
inclusion-minimal (s, t)-cut of capacity at most a in G, then merge u∗ and w∗.

Lemma 2. (*). Rule 1 is safe and can be applied exhaustively in nO(1) time.

3 NP-hardness and Parameterization by the Defender
Budget d

In this section we prove that MCP is NP-hard and we analyze parameterization
by d and Δ(G). In particular, we provide a complexity dichotomy for Δ(G).

Lemma 3. WMCP is NP-complete and W[1]-hard when parameterized by d
even if G is bipartite, ω(e) = 1, and c(e) ∈ O(|G|) for all e ∈ E.

Proof. We describe a parameterized reduction from a variant of Independent
Set which is known to be W[1]-hard when parameterized by k [7,8].

Regular-Independent Set
Input: An r-regular graph G = (V,E) for some integer r and an integer k.
Question: Is there an independent set S ⊆ V of size at least k in G?

Let I := (G = (V,E), k) be an instance of Regular-Independent Set.
We describe how to construct an instance I ′ := (G′ = (V ′, E′), s, t, c, ω, d, a)
of WMCP in polynomial time such that I is a yes-instance of Regular-
Independent Set if and only if I ′ is a yes-instance of WMCP.

We start with an empty graph G′ and add all vertices of V to G′. For each
vertex v ∈ V we also add an additional vertex v′. Furthermore, for each edge e ∈
E we add a vertex we, and two new vertices s and t to G′. Moreover, we add
the edges {s, v}, {v, v′} and {v′, t} to G′ for each vertex v ∈ V . Next, we add
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the edges {u,we}, {v, we}, and {we, t} to G′ for each edge e = {u, v} ∈ E.
Now, we set ω(e′) := 1 for all e′ ∈ E′. Furthermore, for each e′ ∈ E′, we
set c(e′) := 1 if s ∈ e′ and c(e′) := k + 1 otherwise. Finally, we set d := k
and a := n+kr−1 where n := |V |. This completes the construction of I ′. Observe
that G′ is bipartite with one partite set being {t} ∪ V . Note that only the edges
incident with s can be protected, since all other edges have cost exactly d + 1.

Next, we show that I is a yes-instance of Regular-Independent Set if
and only if I ′ is a yes-instance of WMCP.

(⇒) Let S ⊆ V be an independent set of G of size exactly k = d. We
set D′ := {{s, v} | v ∈ S}. Note that D′ has cost exactly d. It remains to show
that D′ is a solution of I ′. To this end, we provide a+1 many paths whose edge
sets may only intersect in D′.

Note that for each vertex v ∈ V \S we have a path (s, v, v′, t). These are n−k
many. Next, consider a vertex v ∈ S. Observe that (s, v, v′, t) and {(s, v, we, t) |
e ∈ E, v ∈ e} are r + 1 paths only sharing the edge {s, v} ∈ D′. Since |S| =
k and G is r-regular, these are kr + k many paths. Moreover, since S is an
independent set no two vertices u, v ∈ S have a common neighbor we in G′

for e = {u, v}. Hence, there are n−k+kr+k = n+kr = a+1 many (s, t)-paths
in G′ whose edge sets only intersect in D′.

(⇐) Suppose that I ′ is a yes-instance of WMCP. Let D′ be a solution with
cost at most d of I ′. Recall that c(e) = d + 1 for each edge e′ ∈ E′ with s /∈ e′.
Hence, D′ ⊆ {{s, v} | v ∈ V }. If |D′| < d, then we add exactly d − |D′| many
edges of the form {s, v} which are not already contained in D′ to D′. Note that D′

remains a solution of I ′. Thus, in the following we can assume that |D′| = d = k.
Let S := {v | {s, v} ∈ D′}. We prove that S is an independent set in G.

Assume towards a contradiction that S is no independent set in G and let e∗

be an edge of G[S]. In the following, we construct an (s, t)-cut A ⊆ (E′ \ D′)
in G′ of size at most a. Let AV \S := {{s, v} | v /∈ S}, AS := {{v, v′} | v ∈ S},
and AE := {{v, we} ∈ E′ | v ∈ S, e 
= e∗}. We show that A := AV \S ∪AS ∪AE ∪
{{we∗ , t}} is an (s, t)-cut of size at most a in G′. Note that |AV \S | + |AS | = n.
Moreover, since |S| = k and each vertex v ∈ V has degree exactly r in G, |AE | ≤
kr − 2. Hence, A has capacity at most n + kr − 1 = a since ω(e′) = 1 for
each e′ ∈ E′. It remains to show that A is an (s, t)-cut in G′. Let G∗ := G′ − A.
Note that NG∗(s) = S and NG∗(v) = {s} for each v ∈ S \ e∗. Moreover, note
that NG∗(v) = {s, we∗} for each v ∈ e∗ and NG∗(we∗) = e∗. Hence, A is an (s, t)-
cut in G′ with capacity at most a. A contradiction.

Consequently, S is an independent set of size k in G and, therefore, I is a
yes-instance of Regular-Independent Set. ��

By applying Lemma 1, we can extend the hardness results to MCP.

Corollary 1. MCP is NP-complete and W[1]-hard when parameterized by d,
even on bipartite graphs.

Next, we provide a complexity dichotomy for the classical complexity with
respect to the maximum degree of the graph.
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Theorem 1 (*). WMCP can be solved in polynomial time on graphs of max-
imum degree two. WMCP is NP-hard and W[1]-hard when parameterized by d
even on subcubic graphs and even if c(e) = 1 and ω(e) ∈ O(|G|) for all e ∈ E.

We provide a simple search tree algorithm for a+d. If the graph has an (s, t)-
cut of capacity at most a we branch on the at most a possibilities to protect one
of the edges of this (s, t)-cut. The depth of this search tree is bounded by d since
each choice decreases the defender budget by at least one.

Theorem 2 (*).WMCP can be solved in ad · nO(1) time.

Next, we strengthen the NP-hardness of WMCP on subcubic graphs to
MCP. Furthermore, we show that a is bounded by a function only depending
on d + Δ(G) implying fixed-parameter tractability for d + Δ(G).

Theorem 3 (*). MCP is NP-complete even on subcubic graphs. Furthermore,
MCP can be solved in ((d/2 + 1) · Δ(G))d · nO(1) time.

4 Parameterization by the Attacker Budget

In this section, we show that WMCP admits an FPT-algorithm for the parame-
ter a. To this end, we first provide an algorithm with a running time of af(tw(G))·n
for some computable function f , where tw(G) denotes the treewidth of the
graph. Afterwards, we show that for every instance of WMCP we can obtain
an equivalent instance I ′ of WMCP in polynomial time, where every edge is
contained in an inclusion-minimal (s, t)-cut of size at most a in I ′. Due to pre-
vious results [11,15], the graph of I ′ then has treewidth at most g(a) for some
computable function g. In combination with the algorithm for a and tw(G), we
thus obtain the stated FPT-algorithm for the parameter a.

The algorithm with a running time of af(tw(G)) · n relies on dynamic pro-
gramming over a tree decomposition. Essentially, what the attacker can achieve
in the current subgraph is to disconnect specific parts of the bag and thus obtain
a cheap partition. Roughly speaking, the algorithm computes the minimum cost
for an edge set D such that each choice of the attacker to obtain any partition
disjoint from D is expensive. Hence, before we describe the algorithm, we first
introduce some notations for partitions.

Let X be a set. We denote with B(X) the collection of all partitions of X.
Let P ∈ B(X) be a partition of X and let v ∈ X. Then, we define with P − v :=
{R \ {v} | R ∈ P} \ {∅} the partition of X \ {v} after removing v from P .
Analogously, for every w 
∈ X we define P + w := {P ′ ∈ B(X ∪ {w}) | P ′ − w =
P}. Note that B(X \ {v}) = {P − v | P ∈ B(X)} and B(X ∪ {w}) = {P + w |
P ∈ B(X)}. Moreover, we denote with P (v) the unique set of P containing v
for a partition P of X and an element v ∈ X.

Let (T := (V,A, r), β) be a tree decomposition of a graph G. For a node x ∈
V, we define with Vx the union of all bags β(y), where y is reachable from x
in T , Gx := G[Vx], and Ex := EG(Vx).
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Let P be a partition of β(x), then we call an edge set A ⊆ Ex a partition-cut
for P in Gx if v and w are in different connected components in Gx−A for every
pair of distinct vertices {v, w} of β(x) with P (v) 
= P (w). Note that all edges
between distinct sets of P are contained in every partition-cut for P in Gx.

Theorem 4. Let tw(G) denote the treewidth of G. Then, WMCP can be solved
in atw(G)O(tw(G)) · n + m time.

Proof. Let I = (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP. In the
following, we assume that there is no edge {s, t} ∈ E since if c({s, t}) ≤ d,
then {{s, t}} is a valid solution with cost at most d and, thus, I is a trivial yes-
instance of WMCP. Otherwise, this edge is contained in every (s, t)-cut and,
thus, we can simply remove the edge from the graph and reduce a by ω({s, t}).

We describe a dynamic programming algorithm on a tree decomposition.
First, we compute a nice tree decomposition (T = (V,A, r), β′) of G − {s, t}
with |V| ≤ 4n such that the bag of the root and the bag of each leaf is the
empty set in twO(tw3) · n + m time [4,14]. Next, we set β(x) := β′(x) ∪ {s, t} for
each x ∈ V. Note that (T , β) is a tree decomposition of width at most tw + 2
for G. Recall that for a node x ∈ V, the vertex set Vx is the union of all bags β(y),
where y is reachable from x in T , Gx := G[Vx], and Ex := EG(Vx).

The dynamic programming table T has entries of type T [x, fx,Dx] with x ∈
V, fx : B(β(x)) → [0, a + 1], and Dx ⊆ E(β(x)). Each entry stores the min-
imal cost of an edge set D ⊆ Ex with Dx := D ∩ E(β(x)) such that for
every P ∈ B(β(x)) the capacity of every partition-cut A ⊆ Ex \ D of P in Gx is
at least fx(P ).

For each entry of T , we will sketch the proof of the correctness of its recur-
rence; the formal correctness proof is omitted.

We start to fill the table T by setting for each leaf node � of T :

T [�, f�, ∅] :=

{
0 if f�({{s}, {t}}) = f�({{s, t}}) = 0,

∞ otherwise.
.

Recall that β(�) = {s, t} and that we assumed that there is no edge between s
and t in G. Hence, G� contains no edges and, thus, the empty set is a partition-
cut for both {{s}, {t}} and {{s, t}}, and has capacity zero.

To compute the remaining entries T [x, fx,Dx], we distinguish between the
three types of non-leaf nodes.

Forget Node: Let x be a forget node with child node y and let v be the unique
vertex in β(y) \ β(x). Then we compute the table entries for x by:

T [x, fx,Dx] := min
Ev⊆E(v,β(x))

T [y, fy,Dx ∪ Ev]

where fy(P ) := fx(P − v) for each P ∈ B(β(y)).
The idea behind the definition of fy(P ) is that every partition cut for P in Gy

must be as expensive as the partition cut of the unique partition of β(x) that
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agrees with P on β(x). By the fact that Gx = Gy, it follows that for each parti-
tion P ∈ B(β(x)), an edge set A ⊆ Ex is a partition-cut for P in Gx if and only
if A is also a partition-cut for some P ′ ∈ P + v in Gx. Since we are looking for
the minimal costs of an edge set D ⊆ Ex such that every partition-cut disjoint
from D for P − v in Gx has capacity at least fx(P − v), it is thus necessary and
sufficient that every partition-cut for P in Gy has capacity at least fx(P − v).

Introduce Node: Let x be an introduce node with child node y and let v be
the unique vertex in β(x) \ β(y). Then we compute the table entries for x by:

T [x, fx,Dx] := T [y, fy,Dx ∩ E(β(y))] + c(Dx \ E(β(y)))

where fy(P ) := max({0} ∪ {fx(P ′) − ω(AP ′) | P ′ ∈ (P + v),Dx ∩ AP ′ = ∅}) for
each P ∈ B(β(y)) and AP ′ := E(v, β(y) \ P ′(v)).

The idea behind the definition of fy(P ) is that, since every partition in P +v
agrees with P in β(y), every partition cut for P in Gy must be sufficiently
large to ensure that every partition cut for any partition in P + v is as least
as expensive as desired. Since we are looking for the minimum cost of an edge
set D ⊆ Ex which intersects with E(β(x)) in exactly the set Dx, the cost of D is
exactly c(D ∩E(β(y)))+ c(Dx \E(β(y))). Let P ′ ∈ B(β(x)). Note that AP ′ is a
subset of every partition-cut for P ′ in Gx. Hence, if Dx∩AP ′ = ∅, then fy(P ′−v)
has to be at least fx(P ′) − ω(AP ′). Otherwise, if Dx ∩ AP ′ 
= ∅, then there is no
partition-cut for P ′ in Gx disjoint from D.

Join Node: Let x be a join node with child nodes y and z. Then we compute
the table entries for x by:

T [x, fx,Dx] := min
fy:B(β(y))→[0,a+1]

T [y, fy,Dx] + T [z, fz,Dx] − c(Dx)

where the mapping fz is given by

fz(P ) := max (0,min (a + 1, fx(P ) − fy(P ) + ω(E(β(x)) \ E(P ))))

with E(P ) := ∪R∈P E(R) for each P ∈ B(β(z)).
The idea behind the definition of fz(P ) is that the no partition cut for P

in Gz is more expensive than the sum of any combination of partition cuts for P
in Gy and Gz minus the capacity of the cut-edges in the current bag. Recall
that we are looking for the minimum cost of an edge set D ⊆ Ex such that for
each partition P ∈ B(β(x)), every partition-cut for P in Gx disjoint from D has
capacity at least fx(P ). Since Ey ∩ Ez = E(β(x)) it follows that the cost of D
is c(Sy) + c(Sz) − c(Dx), where Sy := Ey ∩ D and Sz := Ez ∩ D. Moreover, note
that for every partition P ∈ B(β(x)), every partition-cut Aα ⊆ Eα for P in Gα

has to contain all edges of E(β(x)) \ E(P ), where α ∈ {x, y, z}. Thus, we have
to guarantee that fy(P ) + fz(P ) − ω(E(β(x)) \ E(P )) ≥ fx(P ), fy(P ) > fx(P ),
or fz(P ) > fx(P ).

Then, there is a solution D of cost at most d of I if and only if T [r, fr, ∅] ≤ d,
where r is the root of T , fr({{s, t}}) = 0 and fr({{s}, {t}}) = a + 1. Moreover,



Preventing Small (s, t)-Cuts by Protecting Edges 151

the corresponding set D can be found via traceback. The analysis of the running
time is deferred to the full version. ��

Next, we show that we can use Theorem 4 to obtain an FPT-algorithm
for WMCP when parameterized by a. To this end, we first obtain the following
corollary which follows from a result of Gutin et al. [11, Lemma 12].

Corollary 2. Let G = (V,E) be a graph, let s and t be distinct vertices of G, and
let a be an integer. If every edge e ∈ E is contained in an inclusion-minimal (s, t)-
cut of size at most a, then tw(G) ≤ g(a) for some computable function g.

Hence, to obtain an FPT-algorithm for WMCP with the parameter a, we
only have to find an equivalent instance in polynomial time where each edge
is contained in some inclusion-minimal (s, t)-cut of size at most a. Since each
edge in an instance of WMCP has capacity at least one, by applying Rule 1
exhaustively we obtain an equivalent instance of WMCP where each edge is
contained in some inclusion-minimal (s, t)-cut of size at most a. Hence, we obtain
the following by combining Lemma 2, Corollary 2, and Theorem 4.

Theorem 5. WMCP is FPT when parameterized by a.

5 Parameterization by Vertex Cover Number

We investigate the parameterization by the vertex cover number vc(G). Observ-
ing that for MCP the number of protected edges d is at most 2vc(G) in nontrivial
instances, eventually leads to the following FPT result.

Theorem 6 (*). MCP can be solved in 2O(vc(G)2) · nO(1) time.

Theorem 4 implies that WMCP can be solved in pseudopolynomial time on
graphs with a constant treewidth and therefore on graphs with a constant vertex
cover number. With the next two theorems we show that significant improve-
ments of this result are presumably impossible.

Theorem 7 (*). WMCP is weakly NP-hard even if vc(G) is two.

Theorem 8. WMCP is W[1]-hard when parameterized by vc(G) even if c(e)+
ω(e) ∈ nO(1) and G is a biclique.

Proof. We describe a parameterized reduction from Bin Packing which is W[1]-
hard when parameterized by k even if the size of each item is polynomial in the
input size [13].

Bin Packing
Input: A set U of items, a size-function f : U → N, and integers B and k.
Question: Is there a k-partition (U1, . . . , Uk) of U with

∑
u∈Ui

f(u) = B
for all i ∈ [1, k]?
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Fig. 1. An example of the construction from the proof of Theorem 8 for a Bin Packing
instance with f(u1) = f(u4) = 4, f(u2) = 1, f(u3) = 3, B = 4, and k = 3. The thick
edges represent a minimum solution D. The edge-labels represent all edge capacities
that are bigger than one. Observe that every (s, t)-cut avoiding D contains dashed
edges that have a capacity sum of at least 12λ.

Let I := (U, f,B, k) be an instance of Bin Packing where the size of each
item is polynomial in the input size. We can assume without loss of generality
that

∑
u∈U f(u) = Bk, as, otherwise, I is a trivial no-instance of Bin Packing.

Moreover, we assume B ≥ k since instances with B < k can be solved in f(k) ·
|I|O(1) time. We construct an equivalent instance I ′ := (G = (V,E), s, t, c, ω, d, a)
of WMCP where G has a vertex cover of size k + 1. The graph G is a biclique
with bipartition ({s}∪B, {t}∪U) where B := {b1, . . . , bk}. We set d := |U |, and

c(e) :=

{
1 if e ∈ {{u, b} | u ∈ U, b ∈ B}, and
d + 1 otherwise.

Let λ := 2B · |U |, we set

ω(e) :=

⎧
⎪⎨

⎪⎩

λ · f(u) if e = {s, u} with u ∈ U,

λ · B if e = {t, b} with b ∈ B, and
1 otherwise.

Finally, we set a := |U | · k + λ(Bk − 1). This completes the construction of I ′.
Figure 1 shows an example of the construction. Note that {s} ∪ B is a vertex
cover of G of size k + 1. It remains to show that I is a yes-instance of Bin
Packing if and only if I ′ is a yes-instance of WMCP.

(⇒) Suppose that I is a yes-instance of Bin Packing. Then, there is a k-
partition (U1, . . . , Uk) of U , such that

∑
u∈Ui

f(u) = B for all i ∈ [1, k]. We
set D := {{u, bi} | i ∈ [1, k], u ∈ Ui}. Note that c(D) = d. We next show that D
is a solution.

Let A ⊆ E \ D be an (s, t)-cut in G and let i ∈ [1, k]. Since for each u ∈
Ui, D contains the edge {u, bi}, the (s, t)-path Pu := (s, u, bi, t) can only be cut
if {s, u} ∈ A or {bi, t} ∈ A. Consequently, {{s, u} | u ∈ Ui} ⊆ A or {bi, t} ∈ A.
Recall that

∑
u∈Ui

f(u) = B. Hence,
∑

u∈Ui
ω({s, u}) =

∑
u∈Ui

λf(u) = λB =
ω({bi, t}). Since Pu and Pw are edge-disjoint if u and w are in distinct parts of
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the k-partition, we obtain that ω(A) ≥ kλB > a and, thus, I ′ is a yes-instance
of WMCP.

(⇐) Suppose that I ′ is a yes-instance of WMCP. Then, there is a solu-
tion D ⊆ E with c(D) ≤ d. By construction, D ⊆ E(U,B), since all other edges
have cost d + 1.

Note that for each u ∈ U , there is some b ∈ B, such that {u, b} ∈ D, as,
otherwise A := {{s, t}} ∪ {{s, u′} | u′ ∈ U \ {u}} ∪ {{u, b′} | b′ ∈ B}} is an (s, t)-
cut in G with capacity λ(Bk − f(u)) + k + 1 < a. Since |D| ≤ d, we obtain that
for each u ∈ U , there is exactly one b ∈ B, such that {u, b} ∈ D.

We set Ui := {u ∈ U | {u, bi} ∈ D} for all i ∈ [1, k]. By the above, we
obtain that (U1, . . . , Uk) is a k-partition of U . We show that

∑
u∈Ui

f(u) = B
for all i ∈ [1, k].

Assume towards a contradiction that
∑

u∈Ui
f(u) 
= B for some i ∈ [1, k].

This is the case if and only if there is some j ∈ [1, k] with
∑

u∈Uj
f(u) < B. We

set A := {{s, t}}∪{{s, u} | u ∈ Uj}∪{{b, t} | b ∈ B \{bj}}∪ (E(U,B)\D). Note
that ω(A) = 1+λ(

∑
u∈Uj

f(u))+λB(k−1)+|U |·(k−1) ≤ λ(B−1)+λB(k−1)+
|U |·k = λ(Bk−1)+|U |·k = a, since

∑
u∈Uj

f(u) < B. It remains to show that A

is an (s, t)-cut in G. Observe that NG−A(t) = bj . Since NG−A(bj) = {t} ∪ Uj

and NG−A(u) = {bj} for each u ∈ Uj , we conclude that A is indeed an (s, t)-cut
in G. This contradicts the fact that there is no (s, t)-cut disjoint to D in G of
capacity at most a. As a consequence,

∑
u∈Ui

f(u) = B for all i ∈ [1, k] and,
thus, I is a yes-instance of Bin Packing. ��

We use Theorem 8 to show W[1]-hardness of MCP when parameterized
by pw(G)+fvs(G) and thus also when parameterized by tw(G). As a consequence
the parameter vc(G) in the running time stated in Theorem 6 can presumably
not be replaced by pw(G) + fvs(G).

Theorem 9 (*). MCP is W[1]-hard when parameterized by pw(G) + fvs(G).

6 On Problem Kernelization

On the positive side, we show that WMCP admits a polynomial kernel when
parameterized by vc(G)+ a. The main tool for this kernelization is the merge of
vertices according to Definition 1.

Let J := (G = (V,E), s, t, c, ω, d, a) be an instance of WMCP. We first
provide two simple reduction rules that remove degree-one vertices.

Rule 2. If s has exactly one neighbor w and ω({s, w}) ≤ a, then delete s,
set s := w, and decrease d by c({s, w}). Analogously, if t has exactly on neigh-
bor v and ω({t, v}) ≤ a, then delete t, set t := v, and decrease d by c({t, v}).

Rule 3. If there exists a degree-one vertex v 
∈ {s, t}, then delete v.

The next reduction rule is the main idea behind the problem kernelization.
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Rule 4. If there are vertices u, v ∈ V such that a minimum (u, v)-cut has capac-
ity at least a + 1, then merge u and v.

The proof of the safeness of the Rules 2–4 is deferred to the full version. We
now assume that J is reduced regarding Rules 2–4. Now we show the following.

Theorem 10 (*). WMCP admits a polynomial problem kernel with 2vc(G) ·a
edges when parameterized by vc(G) + a.

Corollary 3 (*). MCP admits a polynomial kernel with 4vc(G) · a2 edges.

On the negative side, we provide an OR-composition to exclude a polynomial
kernel for the combination of almost all considered parameters.

Theorem 11 (*). Both MCP and WMCP do not admit a polynomial kernel
when parameterized by d + a + lp(G) + Δ(G) + td(G), unless NP ⊆ coNP/poly,
where td(G) denotes the tree-depth of G.
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Abstract. Given a class of graphs G and a graph G = (V,E), the aim of
the G-completion problem is to find a set of at most k non-edges whose
addition in G results in a graph that belongs to G. Completion to chordal
or to natural subclasses of chordal graphs cover a broad range of clas-
sical NP-Complete problems, that have been extensively studied. When
G coincides with the class of chordal graphs, the problem is the well-
known Minimum Fill-In problem. Other notable examples include com-
pletion to proper interval, threshold or trivially perfect graphs. Afore-
mentioned problems are known to admit polynomial kernels, and it has
been conjectured that completion to subclasses of chordal graphs fur-
ther characterized by a finite number of forbidden induced subgraphs
admits polynomial kernels. We investigate this line of research by con-
sidering completion to an important subclass of chordal graphs, namely
chordal distance-hereditary graphs. Chordal distance-hereditary graphs
are a natural generalization of trivially perfect graphs and have been
extensively studied from the structural viewpoint. However, to the best
of our knowledge, completion to chordal distance-hereditary graphs has
not received attention so far. We thus initiate the first algorithmic study
of this problem, and prove its NP-Completeness and that it admits a
kernel with O(k4) vertices. To that aim, we rely on several known char-
acterizations of chordal distance-hereditary graphs. In particular, such
graphs admit a tree-like decomposition, so-called clique laminar tree.
Unlike all aforementioned subclasses of chordal graphs, this decompo-
sition does not correspond to a partition of the vertex set at hand. To
circumvent this, we propose an approach based on the notion of clique
(minimal) separator decomposition and a new characterization of chordal
distance-hereditary graphs that might be of independent interest.

Keywords: Parameterized complexity · Kernelization algorithms ·
Chordal graphs · Distance-hereditary graphs

1 Introduction

Given a class of graphs G and a graph G = (V,E), the aim of the parameterized
G-completion problem is to find a set of at most k non-edges whose addition
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in G results in a graph that belongs to G. Completion problems cover a broad
range of NP-Complete problems [15,18,19,28,31,36] and have been extensively
studied in the last decades. When G coincides with the class of chordal graphs,
this is the well-known Minimum Fill-In problem [18,36]. Minimum Fill-
In has been tackled from the parameterized complexity viewpoint by Kaplan
et al. [24] who gave both parameterized and kernelization algorithms. Following
this line of research, many completion problems towards subclasses of chordal
graphs have been studied [4–6,13,14,21]. The motivation for the study of such
completion problems mainly comes from practical applications, covering a wide
range of fields such as bioinformatics, database management or artificial intelli-
gence (see for instance [6]). Notable examples include completion to 3-leaf power,
threshold or trivially perfect graphs, which are known to admit polynomial ker-
nels [4,14,21]. In this work we consider an important subclass of chordal graphs,
namely chordal distance-hereditary graphs [8,25]. These graphs do not contain
any induced cycle of length at least 4 (or hole) and are moreover distance-
hereditary: the distances in every connected induced subgraph are the same as in
the original graph. Such graphs are a natural generalization of chordal cographs
(i.e. trivially perfect graphs) and contain all the aforementioned classes. More-
over, they are known to admit a laminar structure [35], i.e. a tree-like decompo-
sition that captures the subset relation on nonempty intersections of maximal
cliques. Chordal distance-hereditary graphs have been extensively investigated
from the structural viewpoint [2,7,9,22,23,25,32,33]. However, to the best of our
knowledge, completion to chordal distance-hereditary graphs has not received
any attention so far. We thus initiate the algorithmic study of this problem,
mainly from the parameterized complexity viewpoint.

Parameterized Complexity. A parameterized problem Π is a problem whose input
is a pair (I, k), where k ∈ N is called parameter. A parameterized problem Π is
fixed-parameter tractable whenever any instance (I, k) of Π can be decided in time
f(k) × p(|I|), where f is a computable function and p is a polynomial in the input
size. A kernelization algorithm (kernel for short) for a parameterized problem Π
is an algorithm that given any instance (I, k) of Π outputs in polynomial time
an equivalent instance (I ′, g(k)) such that |I ′| � h(k) and g(k) � h(k) for some
function h. A kernel is said to be polynomial whenever h is a polynomial. It is well
known that a parameterized problem Π is FPT if and only if it admits a kernel
(see e.g. [17]). Formally, we consider the following problem:

Chordal Distance-Hereditary Completion
• Input: A graph G = (V,E), k ∈ N

• Question: Does there exist a set F ⊆ (V × V ) of size at most k such
that H = (V,E ∪ F ) is chordal distance-hereditary?

Chordal distance-hereditary graphs are also known as ptolemaic graphs in the
literature [25]. For the sake of readability, we will henceforth mainly refer to such
graphs as ptolemaic graphs and consider the Ptolemaic Completion problem.
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Related Work. Cai [10] provided a dichotomy result for parameterized com-
plexity of more general graph modification problems. Whenever the target
graph class G can be characterized by finitely many obstructions (i.e. forbid-
den induced subgraphs), the corresponding modification problem (including G-
completion) is fixed-parameter tractable. While several polynomial kernels
are known for graph modification problems [4,5,12,14,20,21], there exist such
problems that do not admit polynomial kernels [11,20,26]. When G is charac-
terized by a single obstruction, several recent results towards a dichotomy have
been obtained [1,11,30]. We refer the reader to [12,17,27] for recent surveys on
the subject. Regarding (sub)classes of chordal graphs, Kaplan et al. [24] con-
sidered completion problems to chordal and proper interval graphs, providing
a quadratic vertex- kernel for the former problem. Guo [21] provided several
kernelization algorithms for completion problems towards split, threshold and
trivially perfect graphs. A recent result of Drange and Pilipczuk extended the
latter to the Trivially Perfect Editing problem [14]. Other examples of
such kernels are the ones for 3-Leaf Power Completion [4] and Proper
Interval Completion [5]. Bessy and Perez [5] conjectured that completion
problems to subclasses of chordal graphs further characterized by a finite number
of obstructions admit polynomial kernels. In all the aforementioned problems,
the kernelization algorithms rely on the finite set of obstructions and on tree-like
decompositions of the graph classes at hand that provide a partition of the ver-
tex set which is exploited by reduction rules. However, the laminar structure of
ptolemaic graphs is defined on intersections of maximal cliques and hence does
not provide such a partition. This implies that standard techniques (such as the
notion of branches [4,5]) cannot be applied directly.

Our Results. We prove that Ptolemaic Completion is NP-Complete and
admits a kernel with O(k4) vertices. Our method is inspired by the notion of
clique (minimal) separator decomposition introduced by Tarjan [34]. This allows
us to detect and reduce parts of the instance that are properly connected to the
rest of the graph. This process can actually be reproduced on most previously
mentioned kernelization algorithms for completion problems to subclasses of
chordal graphs. This might bring new insights towards the design of kernelization
algorithms for completion problems to other subclasses of chordal graphs.

Outline. We begin with preliminary definitions and results about ptolemaic
graphs (Sect. 2). We then provide structural properties and a new decompo-
sition theorem for such graphs (Sect. 3). We next describe the main structures
that will be used (Sect. 4). Finally, we give our set of reduction rules (Sect. 5)
and we conclude by bounding the size of a reduced instance (Sect. 6).

2 Preliminaries

We consider simple undirected graphs G = (V,E) where V denotes the vertex
set and E the edge set of G. We will sometimes use V (G) and E(G) to clarify the
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context. Given a vertex u ∈ V , NG(u) denotes the (open) neighborhood of u in G,
that is NG(u) = {v ∈ V : uv ∈ E}. The distance between two vertices u and v is
the length of a shortest path from u to v. We similarly define N i

G(u), i � 2, as the
set of vertices at distance at most i from u in G. The closed neighborhood of u is
defined as NG[u] = NG(u) ∪ {u}. Two vertices u and v are true twins whenever
NG[u] = NG[v] and false twins NG(u) = NG(v) (uv /∈ E in this case). Given a
subset S ⊆ V of vertices, NG(S) is the set ∪v∈S(NG(v) \ S). Similarly, N i

G(S),
i � 2, is the set ∪v∈S(N i

G(v)\S). We moreover consider the closed neighborhoods
NG[S] and N i

G[S] as natural extensions of the previous definitions. The frontier
of S is defined as δG(S) = {v ∈ S : N(v) ∩ (V \ S) �= ∅}. We omit the mention
to graph G whenever the context is clear. The subgraph G[S] = (S,ES) induced
by S is defined as ES = {uv ∈ E : u ∈ S, v ∈ S}. For the sake of readability,
given a subset S ⊆ V we define G \ S as G[V \ S]. A subset of vertices C ⊆ V
is a connected component of G if G[C] is a maximal connected subgraph of G.
We will sometimes refer to G[C] as C. A semi-split of G is a subset C ⊆ V such
that the edges between δG(C) and V \C induce a non-empty complete bipartite
graph. Let G = (V,E) be a connected graph. A set S ⊆ V is a separator of G if
G \S has more connected components than G. Given two vertices u and v of G,
the separator S is a uv-separator if u and v lie in distinct connected components
of G \ S. Moreover, S is a minimal uv-separator if no proper subset of S is a
uv-separator. Finally, a separator S is minimal if there exists a pair {u, v} such
that S is a minimal uv-separator.

Ptolemaic Graphs. We use a forbidden induced subgraph characterization of
ptolemaic graphs [23] as well as a tree decomposition defined on intersections of
maximal cliques [29,35]. Hereafter, the gem is the graph on 5 vertices with an
induced P4 = {p1, p2, p3, p4} and a universal vertex t.

Theorem 1 [2,23]. The following conditions are equivalent:

(i) G is chordal distance-hereditary (or ptolemaic).
(ii) G does not contain any hole nor gem as an induced subgraph.
(iii) Given two maximal cliques P,Q of G such that P ∩Q �= ∅, P ∩Q separates

P \ Q and Q \ P in G.
(iv) G can be obtained from a single vertex by repeating the following operations:

adding a degree-one vertex, a true twin to some vertex u or a false twin to
some vertex v, in which case NG(v) must be a clique.

An instance (G = (V,E), k) of Ptolemaic Completion is a YES-instance
whenever there exists a set F ⊆ (V ×V ) of size at most k such that H = (V,E∪F )
is ptolemaic. The set F is called a k-completion of G (into a ptolemaic graph),
and we will denote the resulting graph H = G+F . A completion refers to any set
F ⊆ (V ×V ) such that H = G+F is ptolemaic. Moreover, an optimal completion
is a minimum-sized completion of G. A vertex is affected by a completion F
whenever it is contained in some pair of F .

Lemma 1. Ptolemaic Completion is NP-Complete.
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Clique Laminar Tree of Ptolemaic Graphs. We now describe a canonical tree
representation for ptolemaic graphs due to Uehara and Uno [35].

Definition 1 ((Strong) Laminar family). Let U be a universe and F ⊆ 2|U |

a family of subsets of U . The family F is laminar if and only if for all A,B ∈ F ,
A and B are either disjoint or comparable by inclusion, i.e. either A ∩ B = ∅,
A ⊆ B or B ⊆ A holds. We say that F is a strong laminar family whenever
there exists a set A ∈ F that contains all other sets of F .

Let U be a universe of n elements, and F ⊆ 2|U | a family of subsets of U . Let
�DF = (V,A) be a directed graph where V contains a vertex x for every set X ∈ F
and there is an arc from x to y in A if and only if Y � X (sets corresponding
to y and x, respectively) and there does not exist Z ∈ F such that Y � Z � X.
The digraph �DF is called the transitive reduction digraph of F . We use DF to
denote the underlying undirected graph. Moreover, if F is defined as a collection
of subsets of vertices of a graph G = (V,E), we refer to the vertices of �DF as bags
in order to avoid confusion with vertices of G. The notation t will henceforth
denote a bag, while Vt will stand for the vertices of G contained in the set of F
corresponding to t. Given a ptolemaic graph G = (V,E), let M(G) be the set
of maximal cliques of G and C(G) be the set of nonempty intersections of some
maximal cliques of G. Notice in particular that C(G) contains the set M(G).
Let L(G) = C(G)\M(G) be the set of all nonempty intersections of at least two
distinct maximal cliques of G. Any family F of sets of L(G) that are contained
in a same maximal clique of M(G) is a laminar family [29,35]. This leads to the
following characterization.

Theorem 2 [29,35]. A graph G = (V,E) is ptolemaic if and only if DC(G) is
a tree.

We say that �DC(G) is the clique laminar tree of G (see Fig. 1), it may also refer
to DC(G), the notation will always clarify this point. For the sake of readability,
we will use �TG (resp. TG) to denote �DC(G) (resp. DC(G)).

Fig. 1. A ptolemaic graph together with its laminar tree [35].
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3 Structural Properties of Ptolemaic Graphs

In this section, we provide a complete characterization of ptolemaic graphs in
terms of laminar family and semi-splits (Theorem 3). This result was partially
known to exist [16,29,35], but we present a stronger statement. The following
observation will be useful when considering decomposition of ptolemaic graphs.

Observation 1. Let G = (V,E) be a chordal graph, S ⊆ V a clique of G and
{C1, · · · , C�}, with � ≥ 1, the set of connected components of G \ S. Then for
every 1 � i � �, G[δ(Ci)] is connected.

As we shall see Theorem 3, ptolemaic graphs can be characterized in terms of
decomposition around complete subgraphs. To that aim, given a clique S ⊆ V ,
one needs to consider the set of neighborhoods of each connected component
G \ S w.r.t. S. This leads to the following definition.

Definition 2 (Footprint and trace). Let G = (V,E) be a graph, S ⊆ V
a clique of G and {C1, . . . , C�} the set of connected components of G \ S. The
footprint of Ci, 1 � i � �, is defined as the family of sets:

ΦG
S (Ci) = {N(v) ∩ S : v ∈ δ(Ci)} ∪ {N(δ(Ci)) ∩ S}

The set N(δ(Ci)) ∩ S is called the trace of component Ci, and denoted τG
S (Ci).

The main difference between these two notions is that the trace of a given
component represents the neighborhood of the whole component in S, while the
footprint considers in addition the neighborhoods of every vertex of the frontier
of the component. In both notations we omit the reference to the clique S or the
graph G whenever the context is clear. Notice that {τ (Ci)} = Φ(Ci) whenever Ci

is a semi-split. We illustrate Definition 2 on Fig. 1 with S = {12, 13, 14, 15, 16}.
Notice that the only components of G \ S containing at least two vertices are
C1 = {3, 5, 11} and C2 = {4, 6}. Hence for any component C containing one
vertex, we have ΦG

S (C) = {τG
C (S)}. A similar observation holds for component C2

since vertices 4 and 6 are true twins in G. Finally, we have τG
S (C1) = N(11)∩S =

{12, 13, 14, 15, 16} while ΦG
S (C1) = {{12, 13}, {12, 13, 14, 15, 16}}.

Definition 3 (Overlap and 	 notation). Let U be a universe and A,B two
subsets of U . The sets A and B overlap, denoted A 	 B, whenever A and B are
neither disjoint nor comparable by inclusion. Two families A,B ⊆ 2|U | of subsets
of U overlap, denoted A 	 B, if there exist A ∈ A and B ∈ B such that A 	 B.

For the sake of readability, we will abuse this notation for a set A and a
family B, that is A 	 B rather than {A} 	 B.

Theorem 3. Let G = (V,E) be a graph, S ⊆ V a clique of G and C the set of
connected components of G \ S. The graph G is ptolemaic if and only if there is
an order {C1, . . . , C�} on the components of C such that:
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(i) G[S ∪ Ci] is ptolemaic for every 1 � i � �
(ii)

⋃
1�i�� ΦS(Ci) is a laminar family

(iii) Ci is a semi-split of G for every 1 � i � � − 1
(iv) if C� is not a semi-split then:

– there exists v ∈ C� such that N(v) ∩ S = τ (C�) = S and
– no set Γ ∈ Φ(C�) satisfies Γ � τ (Ci), 1 � i � � − 1.

Corollary 1. Let G = (V,E) be a graph, and S ⊆ V a clique minimal sepa-
rator or a maximal clique of G. Let C = {C1, . . . , C�} be the set of connected
components of G \ S. The graph G is ptolemaic iff the conditions (i) and (ii)
of Theorem 3 hold, and condition (iii) of Theorem 3 holds for every 1 � i � �
(i.e. condition (iv) of Theorem 3 does not occur).

4 Decomposing the Instance

We first give some known and new results about completions into chordal distance-
hereditary graphs. The soundness of the following result comes from the fact that
such graphs are hereditary and closed under true twin addition (Theorem 1 (iv)).

Lemma 2 [4]. Let G be an hereditary class of graphs closed under true twin
addition. For every graph G = (V,E), there exists an optimal completion F into
a graph of G such that for any two maximal sets of true twins M and M ′ either
(M × M ′) ⊆ F or (M × M ′) ∩ F = ∅.
Lemma 3. Let G be a graph and S a clique of G = (V,E) such that any con-
nected component C of G \ S is a semi-split. Then, there exists an optimal
completion F of G, with H = G + F , such that every connected component C ′

of H \ S is a semi-split.

Corollary 2. Let G = (V,E) be a graph and S ⊆ V a clique of G. Let S′ ⊆ S
be such that for every connected component C of G \ S the following holds:

(i) S′ and ΦS(C) do not overlap and
(ii) if C is not a semi-split, then no set Γ ∈ ΦS(C) satisfies Γ � S′.

Then there exists an optimal completion F of G such that for any connected
component C ′ of H \ S, with H = G + F , the following conditions hold:

(i) S′ and ΦH
S (C ′) do not overlap and

(ii) if C ′ is not a semi-split, then no set Γ ∈ ΦH
S (C ′) satisfies Γ � S′.

4.1 Clams and Tentacles

We now introduce the main structures that will be considered by our kerneliza-
tion algorithm. We consider parts of the graph that are properly connected to
the rest of the graph (in terms of overlap, Definition 3).
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Definition 4 (Clam). Let G = (V,E) be a graph, S ⊆ V a clique separator
of G and C = {C1, . . . , Cp}, with p ≥ 1, a maximal collection of connected
components of G \ S such that:

(i) G[S ∪ Ci] is ptolemaic, 1 � i � p
(ii) Ci is a semi-split of G, 1 � i � p
(iii) τ(Ci) = τ(Cj) for every 1 � i < j � p

The collection C is called an S-clam of G.

Let G = (V,E) be a graph, S ⊆ V a clique separator of G and C =
{C1, . . . , Cp} an S-clam of G. We let V (C) = ∪p

i=1Ci, and δ(C) = ∪p
i=1δ(Ci).

The set δ(C) is called the frontier of the S-clam C. We first prove that there
always exists an optimal completion that affects only (and uniformly) the fron-
tier of a given clam.

Lemma 4. Let G = (V,E) be a graph, S ⊆ V a clique separator of G and
C = {C1, . . . , Cp} an S-clam of G. Any inclusion-minimal completion F of G
into a ptolemaic graph satisfies the two following properties:

(i) if F contains a pair {u, v} where u ∈ V (C) then u ∈ δ(C) and v ∈ V \ V (C)
(ii) if F contains a pair {u, v}, where u ∈ δ(C) and v ∈ V \V (C), then F contains

all pairs {u′, v} with u′ ∈ δ(C).

We now give a reduction rule to deal with clams. This is needed to define
properly the other structures considered by our kernelization algorithm. As we
shall see, using Lemma 4 on clique minimal separators will ease the polynomial-
time application of our reduction rules.

Rule 1 (Clams). Let S ⊆ V be a clique minimal separator of G and
C = {C1, . . . , Cp} an S-clam of G. Replace V (C) by a clique CS of size
min (k + 1, |δ(C)|) with edges (CS , N(δ(C)) ∩ S).

Lemma 5. Rule 1 is sound.

In the remaining of this section, we assume that the instance at hand is
reduced under Rule 1. In particular, this means that any clam of the given
instance contains exactly one connected component. In order to avoid confusion,
we henceforth refer to such clams as tentacles.

Definition 5 (Tentacle). Let (G = (V,E), k) be an instance of Ptolemaic
Completion reduced under Rule 1 and S ⊆ V be a clique separator of G. Let C
be an S-clam. Since G is reduced under Rule 1, C contains exactly one connected
component C. This component is called an S-tentacle of G.

We now refine the notion of tentacles by considering different types of such
structures according to hypotheses of Corollary 2.
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Definition 6. Let (G = (V,E), k) be an instance of Ptolemaic Completion
reduced under Rule 1, S ⊆ V a clique separator of G and C an S-tentacle of G.
If there does not exist a component C ′ of G \ (S ∪ C) such that τ (C) 	 τ (C ′)
then C is a:

(i) type-α S-tentacle if for every component C ′′ of G \ (S ∪ C) that is not a
semi-split, no set Γ ∈ Φ(C ′′) satisfies Γ � τ (C).

(ii) type-β S-tentacle if there exists a component C ′′ of G \ (S ∪C) that is not
a semi-split and a set Γ ∈ Φ(C ′′) such that Γ � τ (C).

Otherwise C is a type-γ S-tentacle.

5 Reducing the Instance

We now provide the set of reduction rules that will constitute our kernelization
algorithm. For the sake of readability, we assume in the remaining of this section
that we are given an instance (G = (V,E), k) of Ptolemaic Completion.

Rule 2. Let C ⊆ V be a subset of vertices such that G[C] is a ptolemaic con-
nected component of G. Remove C from G.

Rule 3. Let {X1, . . . , Xp}, p > k, be a set of distinct induced cycles of length
4 having a non-edge {u, v} in common. Add the pair {u, v} to the solution and
decrease k by 1.

The soundness of the following rule comes from Lemma 2 since ptolemaic
graphs are hereditary and closed under true twin addition (Theorem 1 (iv)).

Rule 4. Let C ⊆ V be a maximal set of true twins of G such that |C| > k + 1.
Remove |C| − (k + 1) arbitrary vertices in C from G.

Definition 7 (Gem-breaker). Let G = (V,E) be a graph and X =
{t, p1, p2, p3, p4} an induced gem of G. Each of the two pairs {p1, p3} and {p2, p4}
is called a gem-breaker of X.

Definition 8 (Gem-sunflower). A collection X = {X1, . . . , Xp} of induced
gems with Xi ⊆ V , 1 � i � p, is a gem-sunflower if p > k and:

(i) there exist u, v ∈ ∩p
i=1Xi such that {u, v} is a gem-breaker of each Xi, and

(ii) Xi and Xj do not share a gem-breaker {u′, v′} �= {u, v}, 1 � i < j � p.

The gem-breaker {u, v} is called the center of X .

Rule 5. Let X = {X1, . . . , Xp} be a gem-sunflower. Add the center of X to the
solution and decrease k by 1.

Lemma 6. Rules 2 to 5 are sound and can be applied in polynomial time.



Completion to Chordal Distance-Hereditary Graphs 165

5.1 Fishing and Eating the Seafood

We now turn our attention to reduction rules that consider structures defined
in Sect. 4.1. In the remaining of this section we assume that we are given an
instance (G = (V,E), k) of Ptolemaic Completion reduced under Rule 1.

Rule 6 (Type-α tentacles). Let S � V be a clique minimal separator of G,
and C ∈ G \ S be a type-α S-tentacle of G. Remove C from G.

Rule 7 (Type-β tentacles). Let S ⊆ V be a clique minimal separator of G
and C = {C1, . . . , Cp}, p � 2k + 1, be a set of type-β S-tentacles. If there exist a
non semi-split component C ′ of G \ S and a set Γ ∈ Φ(C ′) with Γ � τ (Ci) for
every 1 � i � p, then add all pairs of (δ(C ′) × τ (C ′)) \ E to the solution and
decrease k accordingly.

Rule 8. Let S ⊆ V be a clique minimal separator of G such that:

1. S separates G into exactly two connected components C1 and C2 and
2. G[N2

G[S]] is ptolemaic and
3. ∀i ∈ {1, 2}, there exist a clique minimal separator Si ⊆ Ci \ N2

G(S) of G[Ci]
and a connected component C ′

i of G[Ci] \ Si such that N2
G(S) ∩ Ci ⊆ C ′

i and
C ′

i is an Si-clam of G[Ci].

Then, remove S from G.

Lemma 7. Rules 6 to 8 are sound.

We now state that above reductions rules can be applied in polynomial time.
We rely on the following result.

Theorem 4 [3,34]. Given a graph G = (V,E), a clique minimal separator
decomposition can be obtained in O(nm) time. Moreover, all clique minimal
separators are used in the decomposition.

We would like to mention that our objective here is to prove that all reduction
rules can be applied in polynomial time. In particular, we do not give the explicit
running time of our algorithms nor try to optimize them.

Lemma 8. Rules 1, 6, 7 and 8 can be applied in polynomial time.

6 Bounding the Size of Reduced Instances

We are now ready to bound the size of reduced instances (G = (V,E), k) of
Ptolemaic Completion. We need the following results.

Lemma 9. Let (G = (V,E), k) be a YES-instance of Ptolemaic Comple-
tion reduced under Rule 1 and Rules 5 to 7. Let S � V be a clique separator of
G and C = {C1, . . . , C�} the connected components of G \ S. Then |C| = O(k2).



166 C. Crespelle et al.

Lemma 10. Let G = (V,E) be a connected ptolemaic graph without true twins.
Let �TG be its clique laminar tree with

∣
∣
∣V (�TG)

∣
∣
∣ = p. Then |V (G)| � p.

Theorem 5. Ptolemaic Completion admits a kernel with O(k4) vertices.

Proof (sketch). We say that an instance (G = (V,E), k) of Ptolemaic Com-
pletion is reduced whenever none of the described reduction rules can be applied
to G. Let (G = (V,E), k) be a reduced YES-instance of Ptolemaic Com-
pletion, and F a k-completion of G. Let {C1, . . . , Cc} denote the connected
components of G. We work on the ptolemaic graph H = G + F with connected
components {H1, . . . , Hc}. Since G is reduced under Rule 2, we know that c � k.
We assume that F = ∪c

i=1Fi with Hi = G[Ci] + Fi and |Fi| = ki for 1 � i � c.
By Theorem 2, let �TH be the clique laminar forest of H, and �THi

be the clique
laminar tree of Hi, 1 � i � c. Let Fi be the set of all filled bags of �THi

, that is
Fi = {t ∈ V (�THi

) : ∃ {u, v} ∈ F, {u, v} ⊆ Vt} and F = ∪c
i=1Fi.

Claim 1. For every 1 � i � c, |Fi| � ki · (6k − 1). Hence |F| � 6k2 − k.

Tentacles. Let Ti denote a minimal tree spanning vertices of Fi in THi
, 1 � i � c.

Let Si be the set of maximal subtrees of THi
\ V (Ti). We will count the bags of

Si together with Ai, the set of bags of Ti \ Fi containing at least one affected
vertex.

Claim 2. |V (Si) ∪ Ai| = O(ki · k2) with V (Si) the set of bags of subtrees in Si.

Let R�3
i be the set of bags of Ti \ Fi having degree at least 3 in Ti. One can

see that
∣
∣
∣R�3

i

∣
∣
∣ � ki. Finally, let P be a path of Ti \ (Fi ∪ R≥3

i ∪ Ai). Since G

is reduced under Rule 8, one can see that |V (P )| � 15 where V (P ) denotes the
bags of P . To conclude the proof, notice that by construction, any bag of �TH is
either in F , or in the set Vi = V (Ti)\Fi of bags of the minimal tree Ti spanning
Fi or in a maximal subtree of THi

\ V (Ti) for some 1 � i � c. We thus obtain:

∣
∣
∣V (�TH)

∣
∣
∣ =

∣
∣
∣F

⋃
(∪c

i=1V (Si))
⋃

(∪c
i=1Vi)

∣
∣
∣ � O(k2) +

c∑

i=1

O(ki · k2)

+
c∑

i=1

(ki + O(ki · k2) + 15ki)

In turn, since
∑c

i=1 ki = k, we have
∣
∣
∣V (�TH)

∣
∣
∣ ∈ O(k3). By Lemma 10 and Rule 4,

we thus conclude that G contains O(k4) vertices. Since all reduction rules can
be applied in polynomial time (Lemmata 6 and 8), the result follows. �
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Abstract. In this article, we describe algorithms and techniques used
in the method ExTREEm for the treedepth decomposition problem.
ExTREEm won the heuristic track of the 5th Parameterized Algorithms
and Computational Experiments Challenge (PACE 2020). It searches
for a minimum-height treedepth decomposition of a graph via comput-
ing graph separators. Among concepts that are incorporated into the
approach, we can distinguish a new objective function for evaluating
separators, preprocessing based on finding treedepth decompositions in
cactus subgraphs and on identification of graphlets, five algorithms for
finding separators, a separator minimization method for a refinement of
found separators, and a refinement of an obtained treedepth decompo-
sition by merging techniques of tree rotations. This approach enables us
to quickly obtain low-depth decompositions of very large graphs.

Keywords: Treedepth decomposition · Elimination tree · Separator

1 Introduction

In this paper, we provide a description of algorithms of the method ExTREEm,
which is a heuristic approach to the treedepth decomposition problem. The goal
of the problem is to find a treedepth decomposition for a given graph with a
height as small as possible. A treedepth decomposition of a connected graph
G = (V,E) is a rooted tree T = (V,ET ) such that every edge of G connects
a pair of nodes that have an ancestor-descendant relationship in T . A treedepth of
a connected graph is a minimum possible height of its treedepth decomposition.
There are many equivalent notions to treedepth. The most commonly used ones
include the notion of elimination tree of a graph and corresponding elimination
height [14], ordered coloring, vertex ranking [10] and centered coloring [13].

There are many fields where the treedepth decomposition is applicable. One
of them is parallel factorization of sparse matrices using the Cholesky factoriza-
tion method [7]. Elimination trees are also used in routing algorithms such as
the Customizable Contraction Hierarchies algorithm [5], where finding good bal-
anced separators and nested dissection orders is of utmost practical importance,
especially when operating on graphs with millions of vertices. Such routing algo-
rithms are used in many navigating systems, as well as in the field of computer
c© Springer Nature Switzerland AG 2021
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games, where shortest paths in a given map graph need to be computed many
times each second. The treedepth notion is also relevant for theoretical reasons,
e.g. in the design of fixed-parameter-tractable algorithms [8].

It was shown that the decision variant of the treedepth problem is NP-
complete. There are classes of graphs for which the treedepth problem is solv-
able in polynomial time; e.g., it is possible for trees [12] and interval graphs [1].
In general, the construction of a minimum height elimination tree for a large
graph in reasonable time seems to be very unlikely. Therefore, instead of exact
algorithms, heuristics are used to create good decompositions. ExTREEm was
designed for such optimization variant of the problem. It enables us to quickly
find good treedepth decompositions even for very large graphs.

2 Preliminaries

Before we proceed to the description of algorithms, let us fix some natural nota-
tions and definitions. For a given connected graph G = (V,E), we denote by
T (G) its treedepth decomposition, by h(T ) we denote height of tree T , and by
root(T ) we denote the root of T . We denote by G\S an induced graph G[V \S],
and by C(G,S) the set of connected components of G \ S. For a ∈ V we define
N(a) = {v ∈ V : {a, v} ∈ E}, and for A ⊂ V we take N(A) =

⋃

v∈A

N(v).

To indicate that a neighborhood is considered in graph H (and not in G), we
use notations NH(a) and NH(A), respectively. We denote by sizen(G) (or |V |)
the number of nodes in G and by sizee(G) (or |E|) the number of edges in G.
For a, b ∈ V we denote by d(a, b) the distance between nodes a and b. For
sets A,B ⊂ V we denote by d(A,B) the distance between sets A and B,
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}. A subset S ⊂ V such that G \ S
is disconnected is called a separator. If additionally, for every C ∈ C(G,S),
the condition size(C) ≤ b · size(G) holds, where size(C) is either sizen(C)
or sizee(C), then we say that separator S is b-balanced. By balanced we mean
b-balanced, where b is a fixed parameter. Given two sets A,B ⊂ V we denote
GA,B = (A ∪ B, {{a, b} ⊂ E : a ∈ A, b ∈ B}).

3 Algorithms

In ExTREEm we search for a treedepth decomposition using a nested dissec-
tion approach1. The algorithm works in iterations, each iteration is executed
independently of the others and with modified parameters. We refer to those
iterations as main iterations. In each main iteration we apply some preprocess-
ing to a given graph G. Then, we use a set of different heuristics to create a set of
separators of G. Each of five best (according to a certain criterion) candidates is
further refined. After selecting the best one after the refinement, we recursively
obtain treedepth decompositions for components in C(G,S). Finally, we merge

1 ExTREEm is available at https://doi.org/10.5281/zenodo.3873126.

https://doi.org/10.5281/zenodo.3873126
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separator S and the decompositions we found into an elimination tree T (G).
At the end we apply some additional improvements to T (G), trying to further
minimize height of the treedepth decomposition.

3.1 Separator Evaluation

There are a few commonly used objective functions used to evaluate separators
(see e.g. [3,9]). We propose a new approach to evaluate separators, based on the
estimated height of the whole elimination tree.

To assess the quality of a separator S, we need to know values mn(G,S)
and me(G,S) denoting, respectively, the maximum number of nodes and the
maximum number of edges of a graph from C(G,S). Now, let us define

scoren(S) = |S| · 1 − β�− log |V |
log β �

1 − β
, where β =

mn(G,S)
|V | .

We analogously define scoree(S) by taking β = me(G,S)
|E| . Objectives scoren

and scoree are used to quickly estimate a total height of the elimination tree,
assuming that all subgraphs considered in recursive calls will have roughly the
same ratio |S|

sizen(G) , respectively |S|
sizee(G) . Now, we can define the final objective

function used to evaluate the quality of separators:

score(S) = θ · scoren(S) + (1 − θ) · scoree(S),

where θ ∈ [0, 1] is a parameter.
For given two balanced (b-balanced) or two unbalanced separators S1 and

S2, we say that S1 is better than S2 if score(S1) < score(S2). Additionally,
a balanced separator is always better than an unbalanced one. The balance
parameter b is modified in every main iteration. Greater values are used to
enable the objective score to find tiny separators that disjoin relatively small
subgraphs from the rest of the graph (as it happens, e.g., in road graphs, see [9]),
whereas smaller values are used mainly to find separators with better balance
at the topmost levels of the decomposition.

More details about objective functions scoren(S) and scoree(S) can be found
in Appendix A.

3.2 Preprocessing

The preprocessing phase works in two steps. The first step consists in detecting
some cactus-subgraphs of a given graph G. This is achieved by repetitively per-
forming a vertex contraction operation (see [5]) on a node of degree at most 2,
unless its neighbors are already connected by an edge. For each such cactus
component, we find a treedepth decomposition using recursively the Articula-
tion Point Separator Creator method (see Sect. 3.3). By G1 we denote graph G
after the first preprocessing step.
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The second step of the preprocessing has two substeps. In the first one we
find an independent set I3 of an induced graph G1[{v ∈ V : deg(v) = 3}] and
perform vertex contraction on each v ∈ I3. In the second substep, we find a max-
imum independent set I4 of nodes that are “center nodes” of induced subgraphs
of G1 isomorphic to some graphlet from the set {Gi : i ∈ {22, 24, 26, 27, 28, 29}}
(according to the numeration from Fig. 2 of [19]). All nodes in the set I4 have
degree 4 and the neighborhood of each of those nodes induces a connected sub-
graph. We proceed with set I4 in the same way as with I3. By G2 we denote
graph G after the second preprocessing step. After finding recursively a decom-
position of G2, each node v ∈ I4 is attached to the deepest of its neighbors (in
G1), then we analogously proceed with set I3.

Let us now examine how the preprocessing influences the height of a final
treedepth decomposition T (G). For each removed cactus subgraph, we attach
the root of its corresponding decomposition to the lowest of its neighbors in G.
This way, for each cactus C, the value h(T (G1)) after attaching T (C) increases
by exactly max{0, h(T (C)) − h(T (G1)) + max

v∈N(C)\C
dT (v, root(G1))}. Since the

treedepth decomposition of a cactus graph is of size O(log |V |), for most cac-
tus subgraphs it simply does not cause any increase. Attaching nodes from I3

can increase h(T (G2)) by at most one. The same holds for I4. Hence, we have
h(T (G1)) ≤ h(T (G2)) + 2.

Finding decompositions of detected cacti is done in O(|V | · log |V | time, while
the second preprocessing step works in time O(|E| + |V | · log |V |). The overall
complexity of the preprocessing phase is O(|E| + |V | · log |V |).

3.3 Separator Creation

After the preprocessing, we generate a set of separator candidates using several
heuristics. From that set we select five best ones (with respect to their value of
the objective score) that are further subjected to a refinement process called
minimization. As a final separator we take the best one after the minimization.

Articulation Point Separator Creator. In this method, we find separators
that contain only articulation points (cut vertices) of the graph G. At the begin-
ning, we find a set A of articulation points of G using Tarjan’s algorithm [4] for
finding biconnected components. We want to find, for each articulation point
v ∈ A, values mn(G, {v}) and me(G, {v}). To do this, during the depth-first
search we additionally keep track of the number of visited nodes and edges.
Whenever we are processing node v and backtracking from node u such that u
and v do not belong to the same biconnected component, we are able to count
the number of nodes and edges in the component C ∈ C(G, {v}) that contains u.
Hence, for each a ∈ A, we can find values sizen and sizee for every component
in C(G, {a}). It is now easy to obtain values mn(G, {v}) and me(G, {v}).

This method of creating separators is used mainly during the preprocessing
phase, where its complexity is O(|V | · log |V |) for creating a treedepth decompo-
sition for each of the processed cactus-subgraphs.
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BFS Separator Creator. Here, we create separators basing on the known
fact that set Dl(B) = {v ∈ V : d(v, u) = l, u ∈ B}, for a given set B ⊂ V , is
a separator in graph G. We propose a modification to this algorithm that makes
it useful in practice, especially in the context of the BFS Separator Minimizer
(see Sect. 3.4), where the algorithm’s running time is crucial.

Given a set B ⊂ V , we run the standard breadth-first search with source-

nodes set B. Let L = max
v∈V \B

d(B, {v}) and let Gi = G[V \ (
i−1⋃

j=0

Dj(B))], for

1 ≤ i ≤ L. We divide nodes in Di(B) into blocks, two nodes belong to the
same block if they belong to the same connected component of Gi. Now, for
each such block X we find the minimum vertex cover of a graph GX,Di+1∩NGi

(X)

using Kőnig’s theorem and algorithm of Hopcroft and Karp for finding maximum
matching in a bipartite graph (see [15]). In order to perform the whole procedure
quickly, we process sets Di(B) in the reverse order (from L to 1), dynamically
keeping track of the sizen and sizee values of components in graph Gi. We
consider all found vertex covers and all blocks as different separator candidates.

We run the described procedure multiple times, for small random subsets
B ⊂ V . During each iteration we solve multiple instances of finding a vertex
cover of a bipartite graph. By observing that each edge can occur in at most one
such bipartite graph, we obtain the bound O(|E| · |V | 1

2 ) on the running time.

Component Expansion Separator Creator. The method described in this
subsection is an improvement of another known approach. It consists in fixing
some initial set of nodes B, then iteratively expanding set B by adding to it
a node from N(B) \ B. We select each time a node with the tightest connection
to B. In case of a tie, a node with fewer neighbors outside B is preferred. We
store a sequence ord = (v0, v1, . . . vn) of nodes added to B. We call that sequence
an expansion order. Creating an expansion order for a given initial set B works
in time O(|E| · log |V |), as the information about node candidates is updated
using a binary heap.

Let us denote Pi =
i⋃

j=0

{vi}. For a given expansion order (v0, v1, . . . vn), we

consider separators of the form Si = {vj ∈ Pi : |N(vj) \ Pi| > 0}. In order to
do this quickly, we process nodes from ord in the reverse order and dynamically
keep track of all necessary information required to calculate sizes of components
in graphs G \ Pi. By processing the nodes from ord in the original order, we
find those information for components in graphs G[Pi]. We are therefore able to
quickly find values mn(G,Si) and me(G,Si) for all 0 < i < n.

It often happens that found separators are not minimal. To avoid those sit-
uations, we want to rearrange nodes in ord in such a way that, when iterating
over i from 1 to n − 1, if |C(G,Pi−1)| < |C(G,Pi)| then all nodes from smaller
components will occur in ord before nodes that are in larger components.

To obtain time complexity better than O(|E| · |V |), we create an auxiliary
graph H. We initially set H = (V, ∅), then we process nodes vi in the reverse
order, dynamically keeping track of the number of nodes and edges in graphs G\Pi.



174 S. Swat and M. Kasprzak

For each i we consider the set of representatives of connected components in G\Pi

in which vi has a neighbor, then we sort those representatives by ascending order of
the corresponding values sizee. Finally, considering representatives r in this order,
we add a directed edge (vi, vj) to graph H, where j > i is the smallest integer such
that vj and r belong to the same connected component in G\Pi. After process-
ing all nodes, we run a depth-first search on H, starting from v0 and processing
neighbors in the order of adding them to H. We obtain the rearranged sequence
ord by listing nodes in the order in which they were visited during the traversal.
We observed that the use of optimized orders for generating separators Si almost
always results in a huge decrease of the value score(Si).

To create the auxiliary graph H, we need to keep track of component sizes
and their representatives. We additionally need, for each 0 < i < n, to sort a set
of designated representatives. Fortunately, for given index i only one of found
representatives can occur again for another index j < i, as the components are
merged. Hence, creating a rearranged, optimized order takes time O(|E|·log |V |).
The overall running time thus remains O(|E| · log |V |).

FlowCutter Separator Creator. We use our own implementation of a slightly
modified version of the FlowCutter algorithm (see [9]). At the beginning, we
create a set L, by initializing it with a random node and iteratively adding to L
a random node v that lies furthest to L. We stop adding nodes when |L| = 50.

As the initial source node and target node for the FlowCutter iteration we
take a random pair of nodes from L. Additionally, we enable expansion of the
larger of the source-reachable and target-reachable sets only if both grow to size
at least |V |

10 . When the final cut is found, we consider four different expansion
orders based on the order of adding graph nodes to sources and targets. For each
order we find separators using the Component Expansion Separator Creator. We
also consider as a separator candidate a vertex cover of a bipartite graph GX,Y ,
where X and Y denote final sets of sources and targets.

It is necessary to mention here, that we do not use FlowCutter Separator
Creator if score(S) is large for the the best separator found by other methods.
In those cases graphs seem not to have balanced separators of small size and the
algorithm’s running time O(c · |E|), where c is the size of the most balanced cut,
is too expensive.

Flow Separator Creator. We consider sets of the form B = N(N(N(u))) and
E = N(N(N(v))), where u, v are randomly selected nodes. We find a maximum
set of node-disjoint paths that begin in B and end in E. This is done by running
a unit-flow algorithm with unit capacity constraints imposed on nodes. As a
separator we consider the union of all paths and refine that separator using
Greedy Minimizer (see Sect. 3.4). It is worth noting that separators created using
this method are much worse than those from FlowCutter Separator Creator, but
this algorithm works pessimistically in time O(|E| · min(|V | 2

3 , |E| 1
2 )), has much

smaller constant factor and works well in the context of Flow Minimizer (see
Sect. 3.4), where sets B and E are not created for random u and v.
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3.4 Separator Minimization

After creating separator candidates, we proceed to the refinement step. For each
candidate S we try to minimize the value of score(S) using iteratively the fol-
lowing methods, most of which are based on a usage of separator creators with
specific initial settings:

1. Vertex Cover Minimizer - in this minimization technique we find a vertex cover
of a bipartite graph GS,N(S)∩Cd

, where Cd is a subset containing a minimal
number of largest components of C(G,S) whose total sum is at least |V \S|

4 .
The algorithm works in time O(|E| · |V | 1

2 ).
2. BFS Minimizer and Component Expansion Minimizer - we find separators

using BFS Separator Creator and Component Expansion Separator Creator,
respectively, with the initial source set containing all nodes from S.

3. Greedy Minimizer - we greedily remove nodes from S, each time selecting
a node v which minimizes sizee(C), where C is a component obtained by
merging v and its adjacent components from C(G,S). It is done by operating
on an auxiliary weighted bipartite graph with bipartition (A,B), where set
A represents nodes in S, nodes in set B represent connected components of
C(G,S), and weights represent the number of edges between corresponding
node and component. By using a binary heap to quickly update size values
and removing lazily nodes from the auxiliary graph when a node from S is
removed, we achieve running time O(|E| + |S|2 · log |V |).

4. FlowCutter Minimizer and Flow Minimizer - we find separators using Flow-
Cutter Separator Creator and Flow Separator Creator, respectively. In the
first variant, as the initial set of sources we take any subset B ⊂ Cd with
size |B| = |Cd|

2 and with the property that there does not exist any v /∈ B
with d({v}, S) > d(B,S) (Cd is taken in the same way as in Vertex Cover
Minimizer). We analogously create the initial set of targets, but we take
nodes from V \ (S ∪ Cd). In the second variant, we consider initial sets of the
form {v ∈ X : d({v}, S) = t}, where X is Cd or V \ (S ∪ Cd), respectively,
and t is a small value (usually between 2 and 4). Algorithms work in time
O(|E| + |S| · |V |), but with greatly reduced constant factor.

3.5 Attaching Subtrees

After finding decompositions for all components in C(G,S) = {C1, . . . , Ck}, we
need to merge the results to obtain T (G). To do that, we sort all trees T (Ci) by
their depths in the nonincreasing order. Then, we create a sequence S′ (starting
with S′ = ∅) by iteratively adding to S′ nodes from (S ∩ N(Ci)) \ S′. As the
tree T (G) we initially take the tree (path) represented by sequence S′, with the
root set to its first element. We attach each tree T (Ci) to the last node from
sequence S′ that occurs in N(Ci). By using counting sort for sorting heights of
trees and considering only edges with an end in S, the whole procedure works
in time O(|V | + M), where M is the number of edges in a graph G[S ∪ N(S)].
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3.6 Tree Improvements

In the literature, there were proposed few techniques aiming at the reducing
height of the elimination tree and basing on tree rotations. In this section we
describe two structural improvements. The first one is a variation of a rotation-
based algorithm described in [11] that enables us to implement it very easily.
The second algorithm is, to the best of our knowledge, a new approach to the
reduction of the height of an elimination tree via tree rotations.

Let us fix some additional notations. In this section, by T we mean tree T (G).
For v ∈ V we denote by Tv the subtree of T with root in v. By depthT (v) we
denote the depth of node v in tree T . By the block of v ∈ V in a tree T (G) we
mean a maximal path in T (G) which contains v, such that each node on that
path, apart from the deepest one, has at most one son.

Block Pivots. Let us fix any block B of tree T (G) and let S be a path from
root(T ) to the topmost node in B. We consider S as a separator in graph G.
Treedepth decompositions Ti = T (Ci) are already constructed for each compo-
nent Ci ∈ C(G,S), 1 ≤ i ≤ k, they form connected components of T \S. We now
rearrange nodes in S using algorithm 3.5 for separator S and trees Ti. We repeat
the algorithm for several blocks B on the longest root-leaf path.

Hall-Set Pivots. The algorithm based on block pivots always needs to rear-
range order of a given, contiguous sequence of initial nodes on a root-leaf path in
tree T . In the following method, we propose a rotation-based technique without
that constraint, which works exceptionally well for graphs that do not contain
balanced separators of small size.

Let us fix any block B in T (G) that lies on a longest root-leaf path P and
let v be the topmost node in that block. Let U(v) be a set of nodes on path
P from the root to the parent of v and D(v) be a set containing the remain-
ing nodes on path P . We now consider a maximum matching M in a bipartite
graph GU(v),N(U(v))∩R, where R = Tv \ D(v). If matching M does not satu-
rate set U(v), then there exists in graph G a set HM ⊂ U(v) with property
|HM | > |N(HM ) ∩ R|. In our algorithm, from all sets HM violating Hall’s con-
dition for the existence of a matching saturating set U(v), we select the one
with maximum size. Set HM contains all nodes u ∈ U(v) to which there exists
in GU(v),N(U(v))∩R an M -alternating path starting in an unsaturated node from
U(v). We now remove from tree Tv all nodes belonging to the set N(HM ). For
each node s with par(s) ∈ N(HM ) ∩ Tv we set par(s) to the deepest ancestor
of s in P \ (HM ∪ N(HM )). Let us now consider set S = U(v) ∪ N(HM ) and
a set of treedepth decompositions T (Ci) for Ci ∈ T \S. Using Algorithm 3.5, we
obtain a new treedepth decomposition T ′(G).

In the transformation, we removed from path P at least |HM | nodes and
there are at most |N(HM ) ∩ R| < |HM | new nodes in T ′ that became ances-
tors of a node from Tv. It follows that for each node w ∈ Tv we have
depthT ′(w) < depthT (w). Let us mention here, that it not necessarily means that
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h(T ′) < h(T ), as for some other node l ∈ T we may have depthT ′(l) ≥ h(T ).
From our observations, however, the Hall-set pivot technique works very well on
graphs for which the ratio h(T (G))

|V | is large.
Running the algorithm for a single block B is dominated by the factor of

finding a maximum matching in a graph GU(v),N(U(v))∩R, which takes time
O(|E| · |h(T )| 1

2 ). The selection of the block B is not unimportant. We therefore
consider all blocks B on path P in a leaf-to-root manner. If, at some moment,
for the i-th considered block Bi we obtain a tree T ′ with h(T ′) < h(T ), we
terminate the algorithm and run it again for T ′. If, however, valid set HM does
not exist or h(T ′) ≥ h(T ), we check the next block Bi+1 above Bi. We can now
initialize next matching Mi+1 with all edges from previous matching Mi that
have an endpoint in HMi

\ Bi+1. Such initialization resulted in a considerable
performance improvement. It is also worth mentioning that when a node p ∈ U
becomes saturated in a matching Mi, then it becomes saturated in all further
matchings Mj (j > i), until it leaves U . We therefore terminate processing blocks
as soon as the whole set U is saturated.

4 Results

A thorough comparison of ExTREEm and other methods was made within the
heuristic track of the contest PACE 2020: 5th Parameterized Algorithms and
Computational Experiments Challenge. There, 55 heuristic methods were sub-
mitted and tested on 200 instances differing in size and properties. ExTREEm
won this contest. Here, we focus on a subset of these instances, large graphs.
More information about the contest and short descriptions of several solvers can
be found in [20].

Other Methods. To the comparison we selected four other best heuristics from
the contest2. They are: FlowCutter [16] (2nd in the contest), Sallow [18] (3rd),
Tweed-Plus [17] (4th), and Fluid [2] (5th).

FlowCutter is based on the previously mentioned algorithm of the same name
from 2016 for finding separators of a graph [9]. Present version of FlowCutter is
additionally supported by two approaches: iterative node contraction and label
propagation. Sallow is another method that incorporates the ideas of FlowCut-
ter from 2016, supplemented with greedy heuristics. The order in which vertices
are processed in greedy heuristics is based on different criteria and is updated
on the fly. Tweed-Plus creates and next improves an elimination tree with two
known methods: nested dissection and the minimum-degree ordering algorithm.
In each of its phases, if a graph is small enough, the computations are repeated
many times with different results due to randomisation. Fluid realizes four sep-
arate strategies and selects as a result the best found solution. Two strategies
iteratively select a vertex with a best score, two others iteratively search for
separators and remove them. The score-based strategies compute an elimination
2 https://pacechallenge.org/2020/results/#heuristic-track.

https://pacechallenge.org/2020/results/#heuristic-track
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order, later used in the tree construction, many times with randomness involved.
The separator-based strategies use a greedy approach or the asynchronous fluid
communities algorithm.

Data Set. From among public instances of PACE 2020 for the heuristic track3,
we chose graphs of more than 1000 vertices. They represent a wide range of
graph kinds; the most important groups according to their origin are biological
and social networks, road graphs and graphs generated according to different
rules. These 66 instances include from 1013 to 1.32 million vertices and have the
average vertex degree from 2 to 148, their presumable heights of the minimum
treedepth decompositions vary from 3 to several thousands. All the instances are
simple connected graphs.

Comparison. For the purposes of the comparison, the smallest value of the
criterion function obtained for a graph in the contest by any of the 55 heuristics
is assumed as the optimum value for this graph. We partitioned the data set
into groups from the point of view of a few parameters: graph order, optimum
tree height, average vertex degree, fraction of vertices with degree at least three.
This way it is easy to notice how compared methods deal with smaller groups
of similar instances. The groups are presented in Table 1.

Table 1. Partition of the set of 66 instances into groups by different parameters. In
a row, the cardinality of a subset of instances is followed by the parameter by which
the subset has been determined and the range of its values.

Group of instances Cardinality Parameter Range of values

A 22 Graph order 〈1000; 7000)

B 24 〈7000; 50000)

C 20 〈50000; 1.32 mln)

D 23 Optimum tree height 〈1; 100)

E 20 〈100; 300)

F 23 〈300; 78500)

G 24 Average vertex degree 〈2; 3)

H 22 〈3; 8)

I 20 〈8; 150)

J 21 Fraction of V with degree ≥ 3 〈13%; 77%)

K 24 〈77%; 88%)

L 21 〈88%; 100%〉

During the PACE 2020 challenge, every heuristic had the limit of 30 min for
returning a solution for an instance. Thus, the results are comparable in this
3 https://pacechallenge.org/files/pace2020-heur-public.tgz.

https://pacechallenge.org/files/pace2020-heur-public.tgz
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sense. Figure 1 presents the average quality of solutions obtained by the five
best methods for the particular groups of instances and for all 66 instances. The
quality is calculated as a ratio of the assumed optimum value of the criterion
function to the value returned by a given method.

A B C D E F G H I J K L All
70%

80%

90%

100%

ExTREEm
FlowCu�er
Sallow
Tweed-Plus
Fluid

Fig. 1. The comparison of the PACE 2020 results for particular groups of large
instances. Every marker stands for an average result of a given heuristic for the data
set. Y axis shows how close to the optimum the results are.

ExTREEm generated solutions of the best quality (on average) for 9 out
of 12 groups of instances A–L and for all large instances as well. For all the
instances, ExTREEm achieved the ratio 98.34%, FlowCutter took the second
rank with 96.18%, and Sallow was the next with 95.11%. The partitioning of the
data set on the basis of graph order led to the same hierarchy. Groups D, H,
and L were best solved by FlowCutter, ExTREEm took the second (H) or the
third position (D, L). It means that a little harder for our method, in comparison
to the others, were instances with a resulting tree of a small height or instances
with a small fraction of vertices having only one or two neighbors.

5 Conclusions

We proposed the new method for the treedepth decomposition problem, which
proved its efficiency in a wide comparison with top and current other algorithms.
As ExTREEm very well solves large graphs, it may be useful in practical applica-
tions involving wide and complex networks, for example in industry of computer
games or navigating systems. On the other hand, the method also deals well
with smaller graphs. The public instances of PACE 2020 with less than 1000
vertices were solved by ExTREEm with the quality equal to 99%. Therefore,
the applicability of ExTREEm is even wider.
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Appendix A

Let us define

scoren(S) = |S| · 1 − β�− log |V |
log β �

1 − β
, where β =

mn(G,S)
|V | ,

scoree(S) = |S| · 1 − γ�− log |E|
log γ �

1 − γ
, where γ =

me(G,S)
|E| .

We now show why the proposed objective functions scoren(S) and scoree(S)
estimate the height of a treedepth decomposition. We specify only the case of
scoren(S), arguments for scoree(S) are analogous.

Let S be a separator of a graph G = (V,E), α = |S|
|V | , β = mn(G,S)

|V | , and let
EH(G,α, β) be a function that estimates the height of a sought decomposition
T (G). It is calculated on the basis of values α and β, that is on information that
we can obtain knowing only graph G and separator S. For each C ∈ C(G,S)
the decomposition T (C) will be attached to some node from the set S ∩ N(C)
(see Sect. 3.5), therefore we use the following estimation:

EH(G,α, β) ≤ |S| + max
C∈C(G,S)

h(T (C)) = α · |V | + max
C∈C(G,S)

h(T (C))

Assuming that in each recursive call the values of parameters α and β do
not change, we can replace h(T (C)) with EH(C,α, β) to obtain the following
assessment:

EH(G,α, β) ≤ α · |V | + max
C∈C(G,S)

h(T (C))

≈ α · |V | + max
C∈C(G,S)

EH(C,α, β)

≈ α · |V | + α · β · |V | + max
C′∈C(C,S′)

EH(C ′, α, β)

≈ α · |V | + α · β · |V | + α · β2 · |V | + . . .

≈
�logβ−1 |V |�

∑

i=0

α · |V | · βi = α · |V | ·
�− log |V |

log β �
∑

i=0

βi

≈ |S| · 1 − β�− log |V |
log β �

1 − β

Let us note here that the formulas for the objective functions can be further
simplified via the estimation β�logβ−1 |V |� ≈ βlogβ−1 |V | = 1

|V | . We found, how-
ever, test cases where the replacement made a difference to the evaluation of
separators.
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Abstract. In a graph, a perfect matching cut is an edge cut that is a per-
fect matching. perfect matching cut (pmc) is the problem of deciding
whether a given graph has a perfect matching cut, and is known to be NP-
complete.We revisit the problem and show that pmc remainsNP-complete
when restricted to bipartite graphs of maximum degree 3 and arbitrarily
large girth. Complementing this hardness result, we give two graph classes
in which pmc is polynomial time solvable. The first one includes claw-free
graphs and graphs without an induced path on five vertices, the second
one properly contains all chordal graphs. Assuming the Exponential Time
Hypothesis, we show there is no O∗(2o(n))-time algorithm for pmc even
when restricted to n-vertex bipartite graphs, and also show that pmc can
be solved in O∗(1.2721n) time by means of an exact branching algorithm.

1 Introduction

In a graph G = (V,E), a cut is a partition V = X ∪ Y of the vertex set into
disjoint, non-empty sets X and Y . The set of all edges in G having an endvertex
in X and the other endvertex in Y , written E(X,Y ), is called the edge cut of the
cut (X,Y ). A matching cut is an edge cut that is a (possibly empty) matching.
Another way to define matching cuts is as follows; see [8,12]: a cut (X,Y ) is a
matching cut if and only if each vertex in X has at most one neighbor in Y and
each vertex in Y has at most one neighbor in X. matching cut (mc) is the
problem of deciding if a given graph admits a matching cut and this problem
has received much attention lately; see [7,10] for recent results.

An interesting special case, where the edge cut E(X,Y ) is a perfect matching,
was considered in [13]. The authors proved that pmc, the problem of deciding if a
given graph admits an edge cut that is a perfect matching, is NP-complete. A per-
fect matching cut (X,Y ) can be described as a (σ, ρ) 2-partitioning problem [22],
as every vertex in X must have exactly one neighbor in Y and every vertex in Y
must have exactly one neighbor in X. By results of [6,22,23] it can therefore be
solved in FPT time when parameterized by treewidth or cliquewidth (to mention
only the two most famous width parameters) and in XP time when parameterized
by mim-width (maximum induced matching-width) of a given decomposition of
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the graph. For several classes of graphs, like interval and permutation, a decom-
position of bounded mim-width can be computed in polynomial-time [3], thus the
problem is polynomial on such classes.

In this paper, we revisit the pmc problem. Our results are:

– While mc is polynomial time solvable when restricted to graphs of maximum
degree 3 and its computational complexity is still open for graphs with large
girth, we prove that pmc isNP-complete in the class of bipartite graphs of max-
imum degree 3 and arbitrarily large girth. Further, we show that pmc cannot
be solved in O∗(2o(n)) time for n-vertex bipartite graphs and cannot be solved
in O∗(2o(

√
n)) time for bipartite graphs with maximum degree 3 and arbitrarily

girth.
– We provide the first exact algorithm to solve pmc on n-vertex graphs, of

runtime O∗(1.2721n). Note that the fastest algorithm for mc has runtime
O∗(1.3280n) and is based on the current-fastest algorithm for 3-sat [17].

– We give two graph classes of unbounded mim-width in which pmc is solvable in
polynomial time. The first class contains all claw-free graphs and graphs with-
out an induced path on 5 vertices, the second class contains all chordal graphs.

Related Work. The computational complexity of mc was first considered by
Chvátal in [8], who proved that mc is NP-complete for graphs with maximum
degree 4 and polynomial time solvable for graphs with maximum degree at
most 3. Hardness results were obtained for further restricted graph classes such as
bipartite graphs, planar graphs and graphs of bounded diameter (see [4,19,21]).
Further graph classes in which mc is polynomial time solvable were identi-
fied, such as graphs of bounded tree-width, claw-free, hole-free and Ore-graphs
(see [4,7,21]). FPT algorithms and kernelization for mc with respect to vari-
ous parameters has been discussed in [1,2,10,11,17,18]. The current-best exact
algorithm solving mc has a running time of O∗(1.3280n) where n is the vertex
number of the input graph [17]. Faster exact algorithms can be obtained for
the case when the minimum degree is large [7]. The recent paper [10] addresses
enumeration aspects of matching cuts.

Very recently, a related notion has been discussed in [5]. In this paper, the
authors consider perfect matchings M ⊆ E of a graph G = (V,E) such that G \
M = (V,E \M) is disconnected, which they call perfect matching-cuts. To avoid
confusion, we call such a perfect matching a disconnected perfect matching. Note
that, by definition, every perfect matching cut is a disconnected perfect matching
but a disconnected perfect matching need not be a perfect matching cut. Indeed,
all perfect matchings of the cycle on 4k + 2 vertices are disconnected perfect
matchings and none of them is a perfect matching cut. In [5], the authors showed,
among others, that recognizing graphs having a disconnected perfect matching
is NP-complete even when restricted to graphs with maximum degree 4, and left
open the case of maximum degree 3. It is not clear whether our hardness result
on degree-3 graphs can be modified to obtain a hardness result of recognizing
degree-3 graphs having a disconnected perfect matching.
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Notation and Terminology. Let G = (V,E) be a graph with vertex set V (G) = V
and edge set E(G) = E. The neighborhood of a vertex v in G, denoted by NG(v),
is the set of all vertices in G adjacent to v; if the context is clear, we simply write
N(v). Let deg(v) := |N(v)| be the degree of the vertex v, and N [v] := N(v)∪{v}
be the closed neighborhood of v. For a subset F ⊆ V , G[F ] is the subgraph of
G induced by F , and G − F stands for G[V \ F ]. We write NF (v) and NF [v] for
N(v) ∩ F and N [v] ∩ F , respectively, and call the vertices in N(v) ∩ F the F -
neighbors of v. The girth of G is the length of a shortest cycle in G, assuming G
contains a cycle. The path on n vertices is denoted by Pn, the complete bipartite
graph with one color class of size p and the other of size q is denoted by Kp,q;
K1,3 is also called a claw.

When an algorithm branches on the current instance of size n into r sub-
problems of sizes at most n − t1, n − t2, . . . , n − tr, then (t1, t2, . . . , tr) is
called the branching vector of this branching, and the unique positive root of
xn − xn−t1 − xn−t2 − · · · − xn−tr = 0, denoted by τ(t1, t2, . . . , tr), is called its
branching factor. The running time of a branching algorithm is O∗(αn), where
α = maxi αi and αi is the branching factor of branching rule i, and the max-
imum is taken over all branching rules. Throughout the paper we use the O∗

notation which suppresses polynomial factors. We refer to [9] for more details
on exact branching algorithms.

Algorithmic lower bounds in this paper are conditional, based on the Expo-
nential Time Hypothesis (ETH) [14]. The ETH states that there is no O∗(2o(n))-
time algorithm for 3-sat where n is the variable number of the input 3-cnf for-
mula. It is known that the hard case for 3-sat already consists of formulas with
O(n) clauses [15]. Thus, assuming ETH, there is no O∗(2o(m))-time algorithm
for 3-sat where m is the clause number of the input formula.

Observe that a graph has a perfect matching cut if and only if each of its
connected components has a perfect matching cut. Thus, we may assume that
all graphs in this paper are connected.

Due to space restriction, most proofs are given in the full version [20].

2 Hardness Results

In this section, we give two polynomial time reductions from positive nae 3-
sat to pmc. Recall that an instance for positive nae 3-sat is a 3-cnf formula
F = C1 ∧ C2 ∧ · · · ∧ Cm over n variables x1, x2, . . . , xn, in which each clause Cj

consists of three distinct variables. The problem asks whether there is a truth
assignment of the variables such that every clause in F has one true and one
false variable. Such an assignment is called nae assignment.

It is well-known that there is a polynomial reduction from 3-sat to positive
nae 3-sat where the variable number of the reduced formula is linear in the
clause number of the original formula. Hence, the ETH implies that there is
no subexponential time algorithm for positive nae 3-sat in the number of
variables.
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Theorem 1. Assuming ETH, pmc cannot be solved in subexponential time in
the vertex number, even when restricted to bipartite graphs.

Proof. We give a polynomial reduction from positive nae 3-sat to pmc
restricted to bipartite graphs. Given a 3-cnf formula F , construct a graph G as
follows.

Fig. 1. The graph G(Cj).

For each clause Cj = {cj1, cj2, cj3}, let G(Cj) be
the cube with clause vertices labeled cj1, cj2, cj3,
respectively, as depicted in Fig. 1. For each variable
xi, we introduce a variable vertex xi and a dummy
vertex x′

i adjacent only to xi. Finally, we connect a
variable vertex xi to a clause vertex in G(Cj) if and
only if Cj contains the variable xi, i.e., xi = cjk for
some k ∈ {1, 2, 3}.

Observe that G is bipartite and has the following property: no perfect match-
ing M of G (in particular, no perfect matching cut) contains an edge between
a clause vertex and a variable vertex. Thus, for every perfect matching cut
M = E(X,Y ) of G, the restriction Mj = E(Xj , Yj) on G(Cj) is a perfect match-
ing cut of G(Cj). Moreover, G(Cj) has the following property: it has exactly
three perfect matching cuts, and in any perfect matching cut of G(Cj) not all
clause vertices belong to the same part. Conversely, any bipartition of Cj can
be extended (in a unique way) to a perfect matching cut Mj of G(Cj). See also
Fig. 2.

Fig. 2. The three perfect matching cuts of G(Cj); black vertices in X, gray vertices
in Y .

We are now ready to see that F has a nae assignment if and only if G has a
perfect matching cut: First, if there is a nae assignment for F then put all true
variable vertices into X, all false variable vertices into Y , and extend X and Y
(in a unique way) to a perfect matching cut of G; note that x′

i and xi have to
belong to different parts. Second, if (X,Y ) is a perfect matching cut of G then
defining xi be true if xi ∈ X and false if xi ∈ Y we obtain a nae assignment
for F .

Observe that G has N = O(n+m) vertices. Hence the reduction implies that,
assuming ETH, pmc has no subexponential time algorithm in vertex number N ,
even when restricted to bipartite graphs. ��

We now describe how to avoid vertices of degree 4 and larger (the clause
and variable vertices) in the previous reduction to obtain a bipartite graph with
maximum degree 3 and large girth.
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Theorem 2. Let g > 0 be a given integer. pmc remains NP-complete when
restricted to bipartite graphs of maximum degree three and girth at least g.

Proof. Let h ≥ 0 be a fixed integer, which will be more concrete later.
Clause gadget: we subdivide every edge of the cube with 4h+4 new vertices,

fix a vertex cj of degree 3 and label the three neighbors of cj with cj1, cj2 and
cj3, respectively. We denote the obtained graph again by G(Cj) and call the
labeled vertices the clause vertices.

Variable gadget: for each variable xi we introduce m variable vertices xj
i one

for each clause Cj , 1 ≤ j ≤ m, as follows. (We assume that the formula F
consists of m ≥ 3 clauses.) First, take a cycle with m vertices x1

i , x2
i , . . . , xm

i

and edges x1
ix

2
i , x2

ix
3
i , . . . , xm−1

i xm
i and x1

ix
m
i . Then subdivide every edge with

4h+3 new vertices to obtain the graph G(xi). Thus, G(xi) is a cycle on 4m(h+1)
vertices.

Now the graph G is obtained by connecting the variable vertex xj
i in G(xi)

to a clause vertex in G(Cj) by an edge whenever xi appears in clause Cj , i.e.,
xi = cjk for some k ∈ {1, 2, 3}. It follows from construction, that G is bipartite,
has maximum degree 3 and girth at least min{4m(h + 1), 8(h + 2)}. As in the
proof of Theorem 1, we can argue that F has a nae assignment if and only if G
has a perfect matching cut. Finally, given g > 0, let h ≥ 0 be an integer at least
max{ g

4m − 1, g
8 − 2}. Then G has girth at least min{4m(h + 1), 8(h + 2)} ≥ g.

The details are given in the full version. ��
Note that the graph G in the proof of Theorem 2 has N = O(m+nm) vertices,

where n and m are the variable number and clause number, respectively, of the
formula F . Since we may assume that F has m = O(n) clauses, G has N = O(n2)
vertices. Hence we obtain the following.

Theorem 3. Assuming ETH, there is no O∗(2o(
√
n))-time algorithm for pmc

even when restricted to n-vertex bipartite graphs with maximum degree 3 and
arbitrarily large girth.

3 An Exact Exponential Algorithm

Recall that, assuming ETH, there is no O∗(2o(n))-time algorithm for pmc on n-
vertex (bipartite) graphs. The main result in this section is an algorithm solving
pmc in O∗(1.2721n) time.

Our algorithm follows the idea of known branching algorithms formc [7,17,18].
We adapt basic reduction rules for matching cuts to perfect matching cuts, and add
new reduction and branching rules for perfect matching cuts.

If the input graph G = (V,E) has a perfect matching cut (X,Y ), then some
edge has an endvertex a in X and the other endvertex b in Y . The branching
algorithm will be executed for all possible edges ab ∈ E, hence O(m) times. To
do this set A := {a}, B := {b}, and F := V \ {a, b} and call the branching
algorithm. At each stage of the algorithm, A and B will be extended or it will
be determined that there is no perfect matching cut separating A and B, that
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is a perfect matching cut (X,Y ) with A ⊆ X and B ⊆ Y . We describe our
algorithm by a list of reduction and branching rules given in preference order,
i.e., in an execution of the algorithm on any instance of a subproblem one always
applies the first rule applicable to the instance, which could be a reduction or
a branching rule. A reduction rule produces one subproblem while a branching
rule results in at least two subproblems, with different extensions of A and B.
Note that G has a perfect matching cut that separates A from B if and only if in
at least one recursive branch, extensions A′ of A and B′ of B are obtained such
that G has a perfect matching cut that separates A′ from B′. Typically a rule
assigns one or more free vertices, vertices of F , either to A or to B and removes
them from F , that is, we always have F = V \ (A ∪ B).

Reduction Rule 1

– If a vertex in A has two B-neighbors, or a vertex in B has two A-neighbors
then STOP: “G has no matching cut separating A, B”.

– If v ∈ F , |N(v)∩A| ≥ 2 and |N(v)∩B| ≥ 2 then STOP: “G has no matching
cut separating A, B”.

– If there is an edge xy in G such that x ∈ A and y ∈ B and N(x)∩N(y)∩F �= ∅
then STOP: “G has no matching cut separating A, B”.

– If a vertex in A and a vertex in B have three or more common neighbors in
F then STOP: “G has no matching cut separating A, B”.

– If a vertex in A (respectively in B) has no neighbor in B ∪ F (respectively in
A ∪ F ) then STOP: “G has no perfect matching cut separating A, B”.

– If there are x ∈ A and y ∈ B such that N(x) ∩ F = N(y) ∩ F = {v} then
STOP: “G has no perfect matching cut separating A, B”.

Reduction Rule 2

– If v ∈ F has at least 2 A-neighbors (respectively B-neighbors) then A :=
A ∪ {v} (respectively B := B ∪ {v}).

– If v ∈ F with |N(v)∩N(z)∩F | ≥ 3 for some z ∈ A (respectively z ∈ B) then
A := A∪{v}∪(N(v)∩N(z)∩F ) (respectively B := B∪{v}∪(N(v)∩N(z)∩F )).

Reduction Rule 3. If x ∈ A (respectively y ∈ B) has two adjacent F -neighbors
u, v then A := A ∪ {u, v} (respectively B := B ∪ {u, v}).

Reduction Rule 4. If there is an edge xy in G such that x ∈ A and y ∈ B
then add N(x) ∩ F to A, and add N(y) ∩ F to B.

Reduction Rule 5 below is given in [17] and remains correct for perfect matching
cuts.

Reduction Rule 5. If there are vertices u, v ∈ F such that N(u) = N(v) =
{x, y} with x ∈ A, y ∈ B, then A := A ∪ {u}, B := B ∪ {v}.
The remaining reduction rules work for perfect matching cuts but not for match-
ing cuts in general.

Reduction Rule 6. If x ∈ A (respectively y ∈ B) has exactly one neighbor
v ∈ F then B := B ∪ {v} (respectively A := A ∪ {v}).
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Reduction Rule 7. Let z ∈ A (respectively z ∈ B) and let v ∈ N(z) ∩ F .

– If deg(v) = 1 then B := B ∪ {v} (respectively A := A ∪ {v}).
– If deg(v) = 2 and w ∈ F is other neighbor of v then B := B∪{w} (respectively

A := A ∪ {w}).

Reduction Rule 8. Let x ∈ A and y ∈ B with |N(x) ∩ N(y) ∩ F | = 2. If
|N(x)∩F | ≥ 3 or |N(y)∩F | ≥ 3 then A := A∪N(x)\N(y), B := B∪N(y)\N(x).

We now describe the branching rules. All branching rules are based on the
fact: if some vertex in A has no neighbor in B, it must have a neighbor in F
that must go to Y , and if some vertex in B has no neighbor in A, it must have
a neighbor in F that must go to X.

To determine the branching vectors which correspond to our branching rules,
we set the size of an instance (G,A,B) as its number of free vertices, i.e., |V (G)|−
|A| − |B|. Vertices in A ∪ B having exactly two neighbors in F will be covered
by the first four branching rules.

Branching Rule 1. Let x ∈ A and y ∈ B with N(x) ∩ N(y) ∩ F = {u, v}.
By Reduction Rule 8, N(x) ∩ F = N(y) ∩ F = {u, v}. We branch into two
subproblems.

– First, add N [u] ∩ F to A. Then N [v] ∩ F has to be added to B.
– Second, add N [u] ∩ F to B. Then N [v] ∩ F has to be added to A.

The branching factor of Branching Rule 1 is at most τ(3, 3) < 1.2560.

Branching Rule 2. Let x ∈ A with N(x) ∩ F = {u, v} and N(u) ∩ B = {y1},
N(v) ∩ B = {y2}. We branch into 2 subproblems.

– First, add u to B. Then v has to be added to A and N2 := N(y2) ∩ F \ {v}
has to be added to B.

– Second, add v to B. Then u has to be added to A and N1 := N(y1) ∩ F \ {u}
has to be added to B.

Symmetrically for y ∈ B with N(y) ∩ F = {u, v} and N(u) ∩ A = {x1}, N(v) ∩
A = {x2}.
The branching factor is at most τ(3, 3) < 1.2560.

Branching Rule 3. Let x ∈ A with N(x) ∩ F = {u, v} and N(u) ∩ B = ∅,
N(v) ∩ B = {y}. We branch into two subproblems.

– First, add u to B. Then v has to be added to A and N := N(u) ∩ F has to be
added to B.

– Second, add v to B. Then u has to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u, v} and N(u) ∩ A = ∅, and
N(v) ∩ A = {x}.
The branching factor of Branching Rule 3 is at most τ(4, 2) < 1.2721.
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Branching Rule 4. Let x ∈ A with N(x) ∩ F = {u1, u2, . . . , ur}, r ≥ 2, and
N(ui)∩B = ∅, 1 ≤ i ≤ r. We branch into r subproblems. For each 1 ≤ i ≤ r, the
instance of the i-th subproblem is obtained by adding ui to B. Then N(x)∩F\{ui}
has to be added to A and Ni := N(ui) ∩ F has to be added to B.
Symmetrically for y ∈ B with N(y)∩F = {v1, v2, . . . , vr} and vi has no neighbor
in A, 1 ≤ i ≤ r.

The branching factor of Branching Rule 4 is at most τ(r + 2, r + 2, . . . , r + 2) =
r+2
√

r < 1.2600.
Branching Rules 1 and 4 together with the remaining branching rules cover

vertices in A ∪ B having at least three neighbors in F . Branching Rule 5 deals
with the case z ∈ A (respectively z ∈ B) in which at least two vertices in N(z)∩F
have neighbors in B (respectively in A).

Branching Rule 5. Let x ∈ A with N(x) ∩ F = {u1, . . . , up, v1, v2, . . . , vq},
p ≥ 0, q ≥ 2, such that N(ui) ∩ B = ∅, 1 ≤ i ≤ p and N(vj) ∩ B = {yj},
1 ≤ j ≤ q. We branch into r = p + q subproblems.

– For each 1 ≤ i ≤ p, the instance of the i-th subproblem is obtained by adding ui

to B. Then N(x)∩F \{ui} has to be added to A and all Nj := N(yj)∩F \{vj},
1 ≤ j ≤ q, have to be added to B.

– For each 1 ≤ j ≤ q, the instance of the p + j-th subproblem is obtained by
adding vj to B. Then N(x) ∩ F \ {vj} has to be added to A and all Nk :=
N(yj) ∩ F \ {vj}, 1 ≤ k ≤ q, k �= j, have to be added to B.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, . . . , up, v1, v2, . . . , vq}, p ≥ 0,
q ≥ 2 such that N(ui) ∩ A = ∅, 1 ≤ i ≤ p and N(vj) ∩ A = {xj}, 1 ≤ j ≤ q.

The branching factor is at most τ(r+2q, . . . , r+2q, r+2(q−1), . . . , r+2(q−1)) <
τ(r + 2, . . . , r + 2) = r+2

√
r < 1.2600.

The last two branching rules deal with the case z ∈ A (respectively z ∈ B) in
which exactly one vertex in N(z) ∩ F has a unique neighbor in B (respectively
in A).

Branching Rule 6. Let x ∈ A with N(x)∩F = {u1, u2, . . . , ur, v}, r ≥ 2, such
that N(ui) ∩ B = ∅, 1 ≤ i ≤ r, and N(v) ∩ B = {y}. Write N(y) ∩ F \ {v} =
{v1, . . . , vs}, s ≥ 2. Assume that some ui has two neighbors in {v1, . . . , vs}. We
branch into 2 subproblems.

– First, add v to A. Then {v1, . . . , vs} and ui have to be added to B, and
{u1, . . . , ur} \ {ui} has to be added to A.

– Second, add v to B. Then {u1, . . . , ur} has to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, u2, . . . , ur, v} such that N(ui) ∩
A = ∅, 1 ≤ i ≤ r, and N(v) ∩ A = {x} and some ui has two neighbors in
N(x) ∩ F \ {v}.
The branching vector of Branching Rule 6 is τ(r+s+1, r+1) ≤ τ(5, 3) < 1.1939.
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Branching Rule 7. Let x ∈ A with N(x)∩F = {u1, u2, . . . , ur, v}, r ≥ 2, such
that N(ui) ∩ B = ∅, 1 ≤ i ≤ r, and N(v) ∩ B = {y}. Write N(y) ∩ F \ {v} =
{v1, . . . , vs}, s ≥ 2. We branch into r + s subproblems.

– For each 1 ≤ i ≤ r, the instance of the i-th subproblem is obtained by adding
ui to B. Then {u1, . . . , ur}\{ui} and v have to be added to A, Ni := N(ui)∩F
and {v1, . . . , vs} have to be added to B.

– For each 1 ≤ j ≤ s, the instance of the r + j-th subproblem is obtained
by adding vj to A. Then {v1, . . . , vs} \ {vj} and v have to be added to B,
Mj := N(vj) ∩ F and {u1, . . . , ur} have to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, u2, . . . , ur, v} such that N(ui) ∩
A = ∅, 1 ≤ i ≤ r, and N(v) ∩ A = {x}.
The branching factor is at most τ(r+s+2, . . . , r+s+2) = r+s+2

√
r + s < 1.2600.

The description of all branching rules is completed. Among all branching
rules, Branching Rule 3 has the largest branching factor of 1.2721. Consequently,
the running time of our algorithm is O∗(1.2721n).

If all reduction and branching rules are not longer applicable, then no vertex
in A∪B has a neighbor in F . Hence, by connectedness of G, F = ∅. Therefore, G
has a perfect matching cut separating A and B if and only if (A,B) is a perfect
matching cut. In summary, we obtain:

Theorem 4. There is an algorithm for pmc running in O∗(1.2721n) time.

4 Two Polynomial Solvable Cases

In this section, we provide two graph classes in which pmc is solvable in poly-
nomial time. Both classes are well motivated by the hardness results.

Excluding a (Small) Tree of Maximum Degree Three. Let H be a fixed graph. A
graph G is H-free if G contains no induced subgraph isomorphic to H. Theorem 2
implies that pmc remains NP-complete on H-free graphs whenever H has a
vertex of degree larger than three or has a cycle. This suggests studying the
computational complexity of pmc restricted to H-free graphs for a fixed forest H
with maximum degree at most three.

Fig. 3. The tree T .

As the first step in this direction, we show that pmc
is solvable in polynomial time for H-free graphs, where H
is the tree T with 6 vertices obtained from the claw K1,3

by subdividing two edges each with one new vertex; see
Fig. 3. In particular, pmc is polynomial time solvable for
K1,3-free graphs but hard for K1,4-free graphs (by Theorem 2).

Given a connected T -free graph G = (V,E), our algorithm works as follows.
Fix an edge ab ∈ E and decide if G has a perfect matching cut M = E(X,Y )
separating A = {a} and B = {b}. We use the notations and reduction rules from
Sect. 3. In addition, we need one new reduction rule; recall that F = V \ (A∪B).
This additional reduction rule is correct for matching cuts in general and is
already used in [7].



The Perfect Matching Cut Problem Revisited 191

Reduction Rule 9. If there are vertices u, v ∈ F with a common neighbor in A
(respectively in B) and |N(u)∩N(v)∩F | ≥ 2, then A := A∪{u, v} (respectively
B := B ∪ {u, v}).

Now, we apply the Reduction Rules 1–9 exhaustively. If F = V \ (A ∪ B)
is empty, then G has a perfect matching cut separating A and B if and only if
(A,B) is a perfect matching cut of G.

In case F �= ∅ it can be shown that G has no perfect matching cut sepa-
rating A and B, or G contains the tree T as an induced subgraph. So, after
at most |E| rounds, each for a candidate ab ∈ E and in polynomial time, our
algorithm will find out whether G has a perfect matching cut at all. In summary,
we obtain:

Theorem 5. pmc is solvable in polynomial time for T -free graphs.

Interval, Chordal and Pseudo-chordal Graphs. Recall that a graph has girth
at least g if and only if it has no induced cycles of length less than g. Thus,
Theorem 2 implies that pmc remains hard when restricted to graphs without
short induced cycles. This suggests studying pmc restricted to graphs without
long induced cycles, i.e., k-chordal graphs. Here, given an integer k ≥ 3, a graph
is k-chordal if it has no induced cycles of length larger than k; the 3-chordal
graphs are known as chordal graphs.

We will show that pmc can be solved in polynomial time when restricted to
what we call pseudo-chordal graphs, that contain the class of 3-chordal graphs
and thus known to have unbounded mim-width [16].

We begin with a concise characterization of interval graphs having perfect
matching cuts, to yield a polynomial-time algorithm deciding if an interval graph
has a perfect matching cut which is much simpler than what we get by the mim-
width approach [6].

Fact 1. Let G have a vertex set U ⊆ V (G) such that G[U ] is connected with
every edge of G[U ] belonging to a triangle. Then if (X,Y ) is a perfect matching
cut of G we must have U ⊆ X or U ⊆ Y .

This since otherwise we must have a triangle K and two vertices u, v with
u ∈ K ∩ X and v ∈ K ∩ Y having a common neighbor in K so this cannot be a
perfect matching cut.

If an interval graph G has a cycle then it has a 3-clique. By Fact 1 these 3
vertices would have to belong to the same side of the cut, and each would need to
have a unique neighbor on the other side of the cut. But then those 3 neighbors
would form an asteroidal triple, contradicting that G was an interval graph.
Thus an interval graph which is not a tree does not have a perfect matching cut.
A tree T is an interval graph if and only if it does not have the subdivided claw
as a subgraph. It is not hard to verify the following.

Fact 2. An interval graph has a perfect matching cut if and only if it is a cater-
pillar with basic path x1, . . . , xk such that any xi for 1 < i < k has either zero
or one leaf, and any maximal sub-path of x1, . . . , xk with zero leaves contains an
even number of vertices.
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We will show a polynomial-time algorithm for what we call pseudo-chordal
graphs. The maximal 2-connected subgraphs of a graph are called its blocks,
and a block is non-trivial if it contains at least 3 vertices.

A graph is pseudo-chordal if, for every non-trivial block B, every edge of B
belongs to a triangle. Note that chordal graphs are pseudo-chordal, but pseudo-
chordal graphs may contain induced cycles of any length.

Theorem 6. There is a polynomial-time algorithm deciding if a pseudo-chordal
graph G has a perfect matching cut.

Proof. We first compute the blocks of G and let D be the subgraph of G formed
by the edges of non-trivial blocks of G. Let D1,D2, . . . , Dk be the connected
components of D. Note that by collapsing each Di into a supernode we can
treat the graph G as having a tree structure T (related to the block structure)
with one node for each v ∈ V (G) \ V (D), and a supernode for each Di. See
Fig. 4. Note that since G is pseudo-chordal then by Fact 1 all the vertices in
a fixed supernode Di must be on the same side in any perfect matching cut
of G. Our algorithm will pick a root R of T and proceed by bottom-up dynamic
programming on the rooted tree T . The details are given in the full version. ��

Fig. 4. A pseudo-chordal graph and perfect matching cut given by (X,Y ) with X being
black vertices. Note the tree structure composed of (i) those vertices that do not belong
to a clique of size 3 and (ii) the four supernodes D1, D2, D3, D4.

5 Conclusion

We have shown that pmc remains NP-complete when restricted to bipartite
graphs of maximum degree 3 and arbitrarily large girth. This implies that pmc
remains NP-complete when restricted to H-free graphs where H is any fixed
graph having a vertex of degree at least 4 or a cycle. This suggests the following
problem for further research: Let F be a fixed forest with maximum degree
at most 3. What is the computational complexity of pmc restricted to F -free
graphs? We have proved a first polynomial case where F is a certain 6-vertex tree,
including claw-free graphs and graphs without an induced 5-path. Our hardness
result also suggests studying pmc restricted to graphs without long induced
cycles: What is the computational complexity of pmc on k-chordal graphs? It
follows from our results that pmc is polynomially solvable for 3-chordal graphs.
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We have also given an exact branching algorithm for pmc running in
O∗(1.2721n) time. It is natural to ask whether the running time of the branch-
ing algorithm can be improved. Finally, as for matching cuts, also for perfect
matching cuts it would be interesting to study counting and enumeration as well
as FPT and kernelization algorithms.
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Abstract. Roughly speaking, gerrymandering is the systematic manip-
ulation of the boundaries of electoral districts to make a specific (polit-
ical) party win as many districts as possible. While typically studied
from a geographical point of view, addressing social network structures,
the investigation of gerrymandering over graphs was recently initiated
by Cohen-Zemach et al. [AAMAS 2018]. Settling three open questions of
Ito et al. [AAMAS 2019, TCS 2021], we classify the computational com-
plexity of the NP-hard problem Gerrymandering over Graphs when
restricted to paths and trees. Our results, which are mostly of negative
nature (that is, worst-case hardness), in particular yield two complexity
dichotomies for trees. For instance, the problem is polynomial-time solv-
able for two parties but becomes weakly NP-hard for three. Moreover,
we show that the problem remains NP-hard even when the input graph
is a path.

1 Introduction

How to influence an election? One answer to this is gerrymandering [4,8,14].
Gerrymandering is the systematic manipulation of the boundaries of electoral
districts in favor of a particular party. It has been studied in the political sci-
ences for decades [13]. In recent years, various models of gerrymandering were
investigated from an algorithmic and computational perspective. For instance,
Lewenberg et al. [11] and Eiben et al. [6] studied the (parameterized) compu-
tational complexity of gerrymandering assuming that the voters are points in
a two-dimensional space and the task is to place k polling stations where each
voter is assigned to the polling station closest to her. Cohen-Zemach et al. [5]
introduced a version of gerrymandering over graphs (which may be seen as mod-
els of social networks) where the question is whether a given candidate can win
at least � districts. This leads to the question whether there is a partition of
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the graph into k connected subgraphs such that at least � of these are won by a
designated candidate; herein, k and � are part of the input of the computational
problem. Cohen-Zemach showed that this version is NP-complete even when
restricted to planar graphs. Following up on their pioneering work, Ito et al. [10]
performed a refined complexity analysis, particularly taking into account the
special graph structures of cliques, paths, and trees. Indeed, their formal model
is slightly different from the one of Cohen-Zemach et al. [5] and their work will
be our main point of reference. Notably, both studies focus on the perhaps sim-
plest voting rule, Plurality. In parallel and independently of our work, Gupta
et al. [9] developed algorithms and complexity results for gerrymandering over
graphs, where their main focus was on paths.

We mention in passing that earlier work also studied the special case of
gerrymandering on grid graphs. More specifically, Apollonio et al. [1] analyzed
gerrymandering in grid graphs where each district in the solution has to be of
(roughly) the same size. Focusing on two candidates (equivalently, two parties),
they evaluated the margin of votes between the two equally supported candi-
dates. Later, Borodin et al. [3] also considered gerrymandering on grid graphs
with two parties (expressed by colors red and blue), but here each vertex repre-
sents a polling station and thus is partially “red” and partially “blue” colored.
They provided a worst-case analysis for a two-party situation in terms of the
total fraction of votes the party responsible for the gerrymandering process gets.
They also confirmed their findings with experiments.

To formally define our central computational problem, we continue with a
few definitions. For a vertex-colored graph and for each color r, let Sr be the
set of r-colored vertices. A vertex-weighted graph is q-colored if for each color r
it holds that

∑
v∈Sq

w(v) ≥ ∑
v∈Sr

w(v). A vertex-weighted graph is uniquely q-
colored if

∑
v∈Sq

w(v) >
∑

v∈Sr
w(v) for each color r �= q. Analogously, we say

that a set of vertices is q-colored if they induce a connected q-colored graph.
Thus, we arrive at the central problem of this work, going back to Ito et al. [10].

Gerrymandering over Graphs

Input: An undirected, connected graph G = (V,E), a weight func-
tion w : V → N, a set C of colors, a target color p ∈ C, a coloring
function col : V → C, and an integer k.

Question: Can V be partitioned into exactly k subsets V = {V1, . . . , Vk} such
that each Vi ∈ V, i ∈ [k], induces a connected subgraph in G and
the number of uniquely p-colored induced subgraphs exceeds the
number of r-colored induced subgraphs for each r ∈ C \ {p}?

Figure 1 presents a simple example of Gerrymandering over Graphs.
We remark that all our results except for Theorem 1 (that is, the NP-hardness
on paths) also transfer to the slightly different model of Cohen-Zemach et al.
[5].1

1 In fact, we conjecture that the gerrymandering problem of Cohen-Zemach et al. [5]
is polynomial-time solvable on paths.
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Fig. 1. An example input instance for Gerrymandering over Graphs with two
colors (black and white) where black is the target color and where the numbers next
to the vertices illustrate the vertex weights. For k = 2, a solution for this instance
is V = {{u, v, w}, {x, y, z}} as each of these two parts induces a uniquely black-colored
connected subgraph.

We also use an equivalent interpretation of solutions for Gerrymandering
over Graphs. Since each part Vi ∈ V has to induce a connected subgraph, in the
spirit of edge deletion problems from algorithmic graph theory, we also represent
solutions by a set of edges such that removing these yields the disjoint union
of subgraphs induced by each part Vi ∈ V. In Fig. 1, removing the edges {w, x}
and {w, y} yields a solution for k = 2.

Finally, regarding notation, for a color q we use wq(v) := w(v) if v is of color q
and wq(v) = 0 if v has another color. Further, we use w(V ′) :=

∑
v∈V ′ w(v)

and wq(V ′) :=
∑

v∈V ′ wq(v).

Known and New Results. As mentioned before, we essentially build upon the
work of Ito et al. [10], in particular studying exactly the same computational
problem. We only focus on the case of path and tree graphs as input, whereas
they additionally studied cliques. For cliques, they showed NP-hardness already
for k = 2 and two colors. On the positive side, they provided for cliques a pseudo-
polynomial-time algorithm for k = 2 and a polynomial-time algorithm for each
fixed k ≥ 3. Moving to paths and trees, besides some positive algorithmic and
hardness results, Ito et al. [10] particularly left three open problems:

1. Existence of a polynomial-time algorithm for paths when |C| is not fixed.
2. Existence of a polynomial-time algorithm for trees when |C| is a constant.
3. Existence of a polynomial-time algorithm for trees of diameter exactly three.

Indeed, they called the first two questions the “main open problems” of their
paper. We settle all three questions, the first two in the negative by showing
NP-hardness. See Table 1 for an overview on some old and our new results.
Notably, our new results (partially together with the previous results of Ito et
al. [10]) reveal two sharp complexity dichotomies for trees. For up to two colors,
the problem is polynomial-time solvable, whereas it gets NP-hard with three or
more colors. Moreover, it is polynomial-time solvable for trees with diameter at
most three but NP-hard for trees with diameter at least four.

Gupta et al. [9] also studied the model of Ito et al. [10] and showed (parame-
terized) exponential-time algorithms for general graphs. Moreover, they proved
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Table 1. Results overview. The diameter of a graph is denoted by diam.

Restriction Complexity Reference

Paths No NP-hard Theorem 1

Constant |C| Polynomial time [10, Theorem 6]

Trees Constant |C| Pseudo-polynomial time [10, Theorem 7]

|C| = 2 Polynomial time Proposition 1

|C| ≥ 3 Weakly NP-hard Theorem 2

diam = 2 Polynomial time [10, Theorem 5]

diam = 3 Polynomial time Proposition 2

diam ≥ 4 NP-hard [10, Theorem 3]

(independently from us) that Gerrymandering over Graphs remains NP-
hard on paths. Notably, their corresponding reduction does not result in unit
weights (as our reduction does).

2 NP-Hardness on Paths

Ito et al. [10] showed that Gerrymandering over Graphs on paths can
be solved in polynomial time for fixed |C|. They left open the question of
polynomial-time solvability on paths when |C| is unbounded. Negatively answer-
ing their question, we show that Gerrymandering over Graphs remains
NP-hard on paths.

Theorem 1. Gerrymandering over Graphs restricted to paths is NP-hard
even if all vertices have unit weight.

Proof. We reduce from Clique on regular graphs, an NP-hard problem [12].
Let (G, �) be an instance of Clique, where G is d-regular for some integer d,
and � is the sought solution size. We first construct an equivalent instance I of
Gerrymandering over Graphs where the graph consists of disjoint paths.
We then modify the construction to obtain an instance J on one connected path.

All vertices in the following constructions have weight one. Let n and m
be the number of vertices and edges in G, respectively, and let N := 4n2. We
introduce a path Pv on 4N − 1 vertices for each vertex v ∈ V and a path P ′

e on
four vertices for each edge e ∈ E. Moreover, we introduce an independent set S
of 2N − (n − �) + 1 vertices. We denote by G′ = (V ′, E′) the disjoint union of
all Pv for v ∈ V , all P ′

e for e ∈ E, and S. Note that G′ has z := 2N + � + m + 1
connected components.

We introduce colors p, q, r, a unique color cv for each v ∈ V . Additionally, we
introduce a set D of colors, where for each color c ∈ D, there will be only a single
vertex of color c in the resulting graph. The target color is p. We color N + 1
vertices of S with color p and N − (n − �) vertices of S with color q. For each
vertex v ∈ V , we color the vertices in Pv as follows.
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Fig. 2. An example of a gadget for a vertex v. Black and white vertices represent q-
colored and cv-colored vertices, respectively, and each other vertex has a distinct color.

– The first N − 1 vertices receive color q,
– for each i ∈ [N ], the (N − 1 + 3i)-th vertex receives color cv, and
– each remaining vertex receives a (distinct) color from D.

An illustration of the path Pv is shown in Fig. 2. For each edge e = {u, v} ∈ E,
we color the two inner vertices of P ′

e with color r and the endpoints with colors cu

and cv, respectively. Finally, we set k := (n − �) · 3N + d� +
(

�
2

)
+ z. We call the

resulting instance I.
First, we show that if G contains a clique K of size �, then the constructed

instance I is a yes-instance. We will specify the set E′′ of exactly k−z edges such
that the connected components of G′′ = (V ′, E′ \ E′′) correspond to a solution.
Note that each removal of an edge increases the number of connected components
by exactly one.

– For each vertex v ∈ V \ K, the edge set E′′ contains all 3N edges in Pv that
are not between two q-colored vertices. There are (n − �) · 3N such edges.

– For each vertex v ∈ K and each edge e = {u, v}, the edge set E′′ contains
the edge incident to the cv-colored vertex in P ′

e. There are d� such edges as
each vertex in the input graph has d neighbors.

– For each edge e where both endpoints are contained in K, the edge set E′′

contains the edge between the two inner (r-colored) vertices in P ′
e. There

are
(

�
2

)
such edges.

Thus, E′′ contains (n − �) · 3N + d� +
(

�
2

)
= k − z edges in total, leaving k

connected components in the graph G′′.
Next, we examine the color of each connected component in G′′. First, note

that there are N + 1 connected components that are uniquely p-colored. We
now show that for each color c other than p there are at most N connected
components which are c-colored.

– For color q, observe that there are N − (n − �) isolated vertices of color q
in S and for each vertex v ∈ V \ K there is exactly one q-colored connected
component contained in Pv and for every vertex v ∈ K there is no q-colored
connected component in Pv. Hence, there are N − (n − �) + (n − �) = N
connected components that are q-colored.

– For color r, note that there are 2m < N vertices of color r. Thus, there are
less than N connected components that are r-colored.

– For each color cv with v ∈ V \K, there are N connected components in Pv that
are cv-colored. All other vertices of color cv are contained in P ′

e for some e ∈ E
and those belong to r-colored component by construction. Hence, there are N
connected components that are cv-colored.
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– For each color cv with v ∈ K, the whole path Pv remains one connected
component which is cv-colored. All other vertices of color cv are contained
in P ′

e for some e ∈ E and since N > m, there are at most N connected
components that are cv-colored.

Thus, if G contains a clique of size �, then the constructed instance I is a yes-
instance.

Conversely, we show that if I has a solution V, then there is a clique of size �
in G. Let E′′ be a set of exactly k−z edges in G′ such that the connected compo-
nents of G′′ = (V ′, E′ \ E′′) correspond to V. Let J be the set of vertices v ∈ V
such that Pv contains an edge of E′′ and let K := V \ J . For each vertex v ∈ J ,
let nq

v and nc
v be the number of connected components of Pv − E′′ which are q-

colored and cv-colored, respectively. Our goal is to show that K forms a clique
of size � in G. To this end, we derive an upper bound on the size of E′′ in terms
of nq

v, nc
v, and |J |:

1. For each vertex v ∈ J , there are at most nq
v − 1 edges in Pv of E′′ whose

endpoints have color q. Since S contains N + 1 isolated vertices of color p
and N − (n − �) isolated vertices of color q, it holds that

∑
v∈J nq

v ≤ n − �.
Thus, E′′ contains at most

∑
v∈J(nq

v − 1) = n − � − |J | edges in Pv both of
whose endpoints have color q.

2. For each vertex v ∈ J , the edge set E′′ contains at most 3nc
v edges in Pv

where at least one endpoint does not have color q.
3. For each vertex v ∈ J , the edge set E′′ contains at most N −nc

v edges incident
to a vertex of color cv in a P ′

e for some edge e ∈ E.
4. For each vertex v ∈ K, there are exactly d edges incident to a vertex of

color cv that are contained in a P ′
e for some edge e ∈ E. Thus, E′′ contains

at most d · |K| = d · (n − |J |) such edges.
5. Finally, we consider edges between inner vertices of P ′

e for e ∈ E. Observe
that if such an edge e = {u, v} is contained in E′′, then G′′ has one cu-colored
component and one cv-colored component. Thus, |E′′| contains at most

(|K|
2

)

+

(
∑

v∈J

N − nc
v

)

=
(

n − |J |
2

)

+
∑

v∈J

N − nc
v

such edges.

Summing over these edges yields that E′′ contains at most

(n − � − |J |) +

(
∑

v∈J

3nc
v

)

+

(
∑

v∈J

N − nc
v

)

+ d · (n − |J |) +
(

n − |J |
2

)

+

(
∑

v∈J

N − nc
v

)

≤ (n − � − |J |) + 3N · |J | + d · (n − |J |) +
(

n − |J |
2

)
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edges. Here, the inequality is due to the fact that nc
v ≤ N . Thus, |E′′| ≤ f(|J |),

where

f(x) := (n − � − x) + 3N · x + d · (n − x) +
(

n − x

2

)

.

Next, we show that |J | ≤ n − �. Recall that G has N + 1 isolated vertices of
color p and N − (n − �) isolated vertices of color q. Since the path Pv contains
at least one q-colored part for every vertex v ∈ J , we obtain |J | ≤ n − �.

Notice that f(x) is monotonically increasing for x ≥ 0 and that from this
follows that k − z = |E′′| ≤ f(|J |) ≤ f(n − �). Note that f(n − �) = k − z by the
definition of f . Consequently, we have f(|J |) = f(n − �) and hence |J | = n − �.
Finally, note that for any solution where |J | = n−�, we cannot remove any edges
between two vertices of color q (as this would result in at least N + 1 connected
components that are q-colored). Hence, nq

v = 1 for each v ∈ V and thus summing
up all edges in E′′ (except for those between two vertices of color q) yields

|E′′| ≤
(

∑

v∈J

2N + nc
v

)

+ d� +
(

�

2

)

≤ (n − 3�) · 3N + d� +
(

�

2

)

= k − z.

Here the second inequality follows from the fact nc
v ≤ N for each vertex v ∈ J .

Since E′′ has to contain k − z edges, we obtain nc
v = N for each vertex v ∈ J .

Hence, there are exactly
(

�
2

)
edges in E′′ between two vertices of color r in P ′

e

for edges e ∈ E. Note that for each such edge e ∈ E it has to hold that both
endpoints of e are in K as otherwise there are N + 1 connected components
in G′′ of color cv (where v ∈ J is an endpoint of e). Thus, there are � vertices
in K that share

(
�
2

)
edges between them, that is, K induces a clique of size �.

Finally, we show how to construct an equivalent instance J of Gerryman-
dering over Graphs on one path. To do so, we simply connect G′ with paths
on M := 4nN + 3m vertices. More precisely, we do the following. We fix an
arbitrary ordering of the connected components of G′. For every consecutive
connected components P and P ′, we introduce an path Q of M vertices each
with a distinct color from D. We then add an edges between the last vertex of P
and the first vertex of Q and an edge between the last vertex of Q and the first
vertex of P ′. Let H be the resulting graph. Recall that G′ consists of z paths.
So H contains (z − 1)M additional vertices. To conclude the construction of J ,
we set the partition size k′ := k + (z − 1)M .

We now proceed to show the equivalence between I and J . If I is a yes-
instance, then we obtain a solution of J by removing the edges added to H. That
is, the partition V ′ = V ∪{{v} | v ∈ VH} is a solution of J , where V is a solution
of I and VH is the set of vertices introduced in the construction of H. Conversely,
suppose that J admits a solution V ′. Let F be the set of k′−1 = k+(z−1)M −1
edges of H such that V ′ is the connected components of the graph obtained by
deleting F from H. Since M is sufficiently large, F contains at least one edge of
each path of M vertices between the connected components of G′. It follows that
any pair of vertices that are in different connected components in G′ belong to
different parts of V ′. We can then show that F contains at most k − z edges of
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G′ as described above. In fact, F contains exactly k − z edges of G′ and all the
edges introduced when constructing H: Since we added (z − 1)(M + 1) edges,
F contains |F | − (z − 1)(M + 1) = k − z edges of G′. Consequently, V ′ contains
exactly k subsets consisting of vertices in G′, which form a solution of I. �	

In the above reduction, we use an unbounded number of colors. This appears
to be inevitable since Gerrymandering over Graphs is polynomial-time
solvable on paths for any constant |C| [10]. We wonder whether there are other
graph classes for which Gerrymandering over Graphs can be solved in
polynomial time when |C| is constant. Caterpillars form a possible candidate.

3 Complexity on Trees

In this section, we investigate trees. We first address the special case of three
colors (NP-hard), then two colors (polynomial-time solvable), and finally we
show polynomial-time solvability for diameter-three trees.

Ito et al. [10] developed a pseudo-polynomial-time algorithm for Gerry-
mandering over Graphs on trees for constant |C|, which led them to ask
whether it is also polynomial-time solvable for fixed |C|. Notably, Gupta et al.
[9] asked whether a generalized version of Gerrymandering over Graphs on
trees is fixed-parameter tractable with respect to |C|. We show that Gerryman-
dering over Graphs on trees is weakly NP-hard even if |C| = 3, answering
both aforementioned questions in the negative. Afterwards, we will show the
polynomial-time solvability for |C| = 2, yielding a tight classification.

Theorem 2. Gerrymandering over Graphs restricted to trees is weakly
NP-hard even if |C| = 3.

Proof. We reduce from Partition, which is known to be weakly NP-hard [7].
Given a multi-set A of n non-negative integers a1, a2, . . . , an, the task is to find
a subset B ⊆ A of exactly n/2 integers whose sum is s/2, where s :=

∑
a∈A a.

We can assume that s is a multiple of n (otherwise we multiply each element
of A by n). Let N := s + 1 and let M be some natural number greater than
N · 2n(n + 1) + s/2 + 1. For the construction, we use a set C = {p, q, r} of three
colors, where p is the target color. We start with a star with a center vertex z
and a set L of n/2 leaves. We color each vertex in the star with color p. We
assign the weights w(z) := Mn + s/2 + 1 to the center z and w(�) := 1 for each
leaf � ∈ L. For each ai ∈ A, we do the following.

– We introduce two vertices xq
i and yq

i of color q and two vertices xr
i and yr

i of
color r. Let Xi := {xq

i , x
r
i }, Yi := {yq

i , yr
i }, and Zi := Xi ∪ Yi.

– We add four edges {z, xq
i }, {z, yq

i }, {xq
i , x

r
i }, and {yq

i , yr
i }.

– We define the weights for each vertex in Zi as

w(xq
i ) := M + N · 2i + ai, w(xr

i ) := M − N · 2i,

w(yr
i ) := M + N · 2i − ai +

2s

n
, and w(yq

i ) := M − N · 2i.
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Fig. 3. An illustration of the construction in the proof of Theorem 2. White represents
vertices of color p, black represents vertices of color q, and gray represents vertices of
color r.

Observe that the weights are integral since s is divisible by n. In addition,
observe that Xi is q-colored and that Yi is r-colored.

The constructed graph G = (V,E) is illustrated in Fig. 3. It is clearly a tree.
To conclude the construction of the Gerrymandering over Graphs

instance, we set k := 3n/2 + 1.
We next show that the construction is correct. Suppose that there is a sub-

set I ⊆ [n] of exactly n/2 indices such that
∑

i∈I ai = s/2. Then, the partition

V = {V ′} ∪ {{�} | � ∈ L}} ∪ {Xi | i ∈ [n] \ I} ∪ {Yi | i ∈ [n] \ I},

where V ′ := {z} ∪ {v ∈ Xi ∪ Yi | i ∈ I} is a solution for the constructed
instance of Gerrymandering over Graphs. First, observe that V ′ is p-
colored as wp(V ′) = Mn + s/2 + 1 and wq(V ′) = wr(V ′) = Mn + s/2. Second,
observe that the singleton {�} is p-colored for each leaf � ∈ L, and hence V
has n/2 + 1 parts which are p-colored. Since Xi is q-colored and Yi is r-
colored for each i ∈ [n], exactly n − |I| = n/2 subsets of V are q-colored and
exactly n − |I| = n/2 subsets of V are r-colored. Thus, V is indeed a solution.

Conversely, suppose that there is a solution V. We show that the Partition
instance is a yes-instance. Note that there are at least k/|C| = (3n/2+1)/3 > n/2
parts in V which are uniquely p-colored. Since there are exactly n/2 + 1 vertices
of color p, each vertex of color p is contained in a distinct part in V. In particular,
this means that {�} ∈ V for each leaf � ∈ L.

Let Vz ∈ V denote the subset containing the center z, and let nq and nr

denote the number of vertices of color q and r in Vz, respectively. As each vertex
of color q or r has weight at least M −N ·2n, we have wq(Vz) ≥ (M − N · 2n) · nq

and wr(Vz) ≥ (M − N · 2n) · nr. Since Vz is uniquely p-colored, we have

max{wq(Vz), wr(Vz)} < wp(Vz) = w(z) = Mn + s/2 + 1 and

max{nq, nr} <
Mn + s/2 + 1
M − N · 2n

= n +
N · 2nn + s/2 + 1

M − N · 2n
< n + 1.

Here, the last inequality follows since M > N · 2n(n + 1) + s/2 + 1. Thus, it
holds that |Vz| contains at most nq + nr + 1 ≤ 2n + 1 vertices.

Let V ′ := V \ ({Vz} ∪ {{�} | � ∈ L}) be the collection of parts of V
not containing any vertices of color p. Notice that |V| = k = 3n/2 + 1 and
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that |V ′| = |V| − (n/2 + 1) = n. Now, consider some V ′ ∈ V ′. We have V ′ ⊆ Xi

or V ′ ⊆ Yi for some i ∈ [n] by construction. Since |Xi| = |Yi| = 2 for all i ∈ [n],
we have |V ′| ≤ 2 and thus

∣
∣
⋃

V ′∈V′ V ′∣∣ ≤ 2n. Moreover, since there are n/2 +
1 + 4n = 9n/2 + 1 vertices in G, we have

∣
∣
⋃

V ′∈V′ V ′∣∣ = |V | − |Vz| − |L| ≥ 2n.
Hence, |⋃V ′∈V′ V ′| = 2n and thus, for each part V ′ ∈ V ′, it holds that |V ′| = 2
yielding V ′ = Xi or V ′ = Yi for some i ∈ [n]. Let Ix := {i ∈ [n] | Xi ∈ V ′}
and Iy := {i ∈ [n] | Yi ∈ V ′}. Since all Xi are q-colored and all Yi are r-colored,
we have |Ix| ≤ n/2 and |Iy| ≤ n/2. Then, since |Ix| + |Iy| = |V ′| = n, we
obtain |Ix| = |Iy| = n/2.

Let Jx := [n] \ Ix and Jy := [n] \ Iy. The total weights of vertices of color q
and r in Vz are

wq(Vz) =
∑

j∈Jx

w(xq
j) +

∑

j∈Jy

w(yq
j ) = Mn +

∑

j∈Jx

aj + N

⎛

⎝
∑

j∈Jx

2i −
∑

j∈Jy

2j

⎞

⎠ and

(1)

wr(Vz) =
∑

j∈Jx

w(xr
j) +

∑

j∈Jy

w(yr
j ) = Mn + s −

∑

j∈Jy

aj + N

⎛

⎝
∑

j∈Jy

2j −
∑

j∈Jx

2j

⎞

⎠ ,

(2)

respectively. Now, assume for the sake of contradiction that Jx �= Jy. Then,
there exists an index jmax := max{(Jx \ Jy) ∪ (Jy \ Jx)}. If jmax ∈ Jx, then each
element in Jy \ Jx is smaller than jmax, and hence

∑

j∈Jx

2j −
∑

j∈Jy

2j =
∑

j∈Jx\Jy

2j −
∑

j∈Jy\Jx

2i ≥ 2jmax −
∑

j∈[jmax−1]

2j = 2. (3)

Combining Inequalities 1 and 3 yields

wq(Vz) ≥ Mn +
∑

j∈Jx

aj + 2N ≥ Mn + 2N > wp(Vz),

which is a contradiction to Vz being uniquely p-colored. We analogously obtain
a contradiction for jmax ∈ Jy and thus it holds that Jx = Jy. Observe that
for J := Jx = Jy Inequality 1 implies wq(Vz) = Mn +

∑
j∈J aj and Inequality 2

implies wr(Vz) = Mn + s − ∑
j∈J aj .

Since wq(Vz) < wp(Vz) and wr(Vz) < wp(Vz), we obtain

wq(Vz) = wr(Vz) = Mn + s/2

and thus
∑

j∈J aj = s/2. Consequently, J is a solution to the original instance
of Partition. �	

We continue with a complexity analysis for the case |C| = 2. Note that Ger-
rymandering over Graphs on trees is pseudo-polynomial-time solvable for
any constant |C| (and thereby for |C| = 2) [10]. To complement this result and
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also Theorem 2, we next show that for |C| = 2 there is a polynomial-time algo-
rithm for trees, adapting a pseudo-polynomial-time algorithm of Ito et al. [10,
Theorem 7]. We thus obtain a dichotomy with respect to |C|. As in Ito et al. [10,
Theorem 7], we employ a dynamic programming approach. More specifically, we
store the maximum winning margin of the target color p over the other color
in the district containing v for each vertex v, each possible number k′ ≤ k of
districts in the subtree rooted in v, and each possible number �′ ≤ k′ of districts
won by p in this subtree. The key difference from the algorithm of Ito et al. [10]
is that we only store the maximum winning margin. Due to lack of space, the
proof of this and the next proposition are deferred to the full version [2].

Proposition 1. For |C| = 2, Gerrymandering over Graphs restricted to
trees can be solved in O(n3) time.

Finally, we bridge the gap for trees of fixed diameter by generalizing the
known polynomial-time algorithm for trees of diameter two [10] to trees of diam-
eter three. NP-hardness on trees of diameter four was shown by Ito et al. [10].

Proposition 2. For diameter-three trees, Gerrymandering over Graphs
can be solved in O(|C|2 · n5) time.

The key observation is that a tree of diameter three can be obtained from
two stars by adding an edge between their centers. Our algorithm then adapts
a polynomial-time algorithm for stars [10]. Proposition 2 yields a complex-
ity dichotomy for trees with respect to the diameter parameter. Clearly, our
polynomial-time solvability is mainly of classification nature; it remains a future
task to lower the degree in the polynomial of the running time.

4 Conclusion

Answering open questions of Ito et al. [10] and Gupta et al. [9] in the negative,
we presented an NP-hardness result on paths and a weak NP-hardness result on
trees. Now, one may claim that the computational complexity of Gerryman-
dering over Graphs restricted to paths and trees is well-understood. The
results indicate that, through the lens of worst-case complexity analysis, Ger-
rymandering over Graphs is extremely hard. Indeed, from our and previous
findings, one can also deduce negative results in terms of parameterized com-
plexity analysis, that is NP-hardness for constant values of each (single) of the
following graph parameters: vertex cover number, maximum leaf number, and
vertex deletion number to cliques. In parameterized complexity theory, these are
among the “weakest” parameters.

As previous work, we focused on the Plurality voting rule, leaving open to
study Gerrymandering over Graphs also for other voting rules. Moreover,
we focused on theoretical results. Since worst-case intractability is clearly no
shield against susceptibility of real-world instances to gerrymandering, follow-
ing the example of Cohen-Zemach et al. [5] it may be promising to investigate
empirical issues.
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Abstract. We study the computational complexity of Feedback Ver-
tex Set on subclasses of Hamiltonian graphs. In particular, we consider
Hamiltonian graphs that are regular or are planar and regular. More-
over, we study the less known class of p-Hamiltonian-ordered graphs,
which are graphs that admit for any p-tuple of vertices a Hamiltonian
cycle visiting them in the order given by the tuple. We prove that Feed-
back Vertex Set remains NP-hard in these restricted cases, even if a
Hamiltonian cycle is additionally given as part of the input.

Keywords: Planar graphs · Regular graphs · Connected graphs ·
Ordered graphs · Hamiltonian-ordered graphs

1 Introduction

Hamiltonian graphs are graphs admitting a cycle that visits every vertex (exactly
once). We study the computational complexity of the following classic NP-
complete [9] problem on subclasses of Hamiltonian graphs.

Problem 1. Feedback Vertex Set (FVS)

Input: An undirected graph G = (V,E) and an integer k ∈ N0.
Question: Is there U ⊆ V with |U | ≤ k such that G − U is acyclic?

We additionally restrict Hamiltonian graphs to be planar (can be drawn on the
two-dimensional plane with no two edges crossing except at their endpoints) or
regular (every vertex has the same degree). In particular, we study the classes
of 4-regular planar Hamiltonian graphs and of 5-regular planar Hamiltonian
graphs (recall that there is no 6-regular planar graph). Moreover, we consider
the class of p-Hamiltonian-ordered graphs [13]. These Hamiltonian graphs admit
for each p-tuple (x1, . . . , xp) of vertices a Hamiltonian cycle that visits the ver-
tices x1, . . . , xp in this order. The class of p-Hamiltonian-ordered graphs form a
subclass of p-ordered Hamiltonian graphs, the latter being Hamiltonian graphs
that for any p-tuple (x1, . . . , xp) admit a cycle that visits x1, . . . , xp in this order.
The class of p-ordered Hamiltonian graphs form a subclass of (p − 1)-connected
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Fig. 1. Overview of our results. In each box, the lowest level describes the computa-
tional complexity (NP-hard versus polynomial-time) of Feedback Vertex Set on
the graph class described by the two upper layers. An arrow from a box A to a box B
describes that A’s graph class is included in B’s graph class. All shown NP-hardness
results hold true even if a Hamiltonian cycle is provided as part of the input.

Hamiltonian graphs (graphs in which every pair of vertices is connected via (p−1)
internally vertex-disjoint paths). Finally, for Feedback Vertex Set on these
subclasses of Hamiltonian graphs, we also study the more restricted case when
a Hamiltonian cycle is additionally provided in the input (recall that computing
a Hamiltonian cycle is NP-complete in general [9]).

Related Work. Independent Set remains NP-complete on 3- and 4-regular
Hamiltonian graphs [7], which enabled to prove NP-hardness for a tempo-
ral graph problem with two layers [8]. 3-Coloring remains NP-complete on
4- and 5-regular planar graphs [3], and on 4-regular Hamiltonian graphs [6].
Feedback Vertex Set remains NP-complete on planar graphs of maxi-
mum degree four [15] and on line graphs of planar cubic bipartite graphs [12],
and is polynomial-time solvable on maximum degree-three [16] and 3-regular
graphs [10], chordal graphs, permutation graphs, split graphs [5].

Our Contributions. Figure 1 gives an overview of our results. We prove that
Feedback Vertex Set is NP-hard on 4- and 5-regular planar Hamiltonian
graphs as well as on p-regular Hamiltonian graphs for every p ≥ 4. Moreover,
we prove that Feedback Vertex Set is NP-hard on p-Hamiltonian-ordered
graphs for every p ≥ 3, which implies NP-hardness on p-ordered Hamilto-
nian graphs and further NP-hardness on (p − 1)-connected Hamiltonian graphs.
Finally, all our NP-hardness results still hold true if a Hamiltonian cycle is addi-
tionally provided as part of the input.
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Fig. 2. Our graph tool box with (a) the graph R, (b) the graph L, (c) the graph D,
and (d) the graph Yp. For each graph, a Hamiltonian path (blue) as well as a minimum
feedback vertex set (orange) are depicted. (Color figure online)

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero,
respectively. We use basic notations from graph theory [1,4]. Details and proofs
(marked with �) are deferred to a full version.

Graph Theory. For two graphs G,H, we denote by G∗H the graph with vertex
set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {{v, w} | v ∈ V (G), w ∈ V (H)}.
We denote by Kn the complete graph on n ∈ N vertices. We denote by Cn the
cycle on n ∈ N vertices. The neighborhood NG(v) of a vertex v ∈ V in G is the
vertex set {w ∈ V | {v, w} ∈ E}. Let v, w be two distinct vertices in G = (V,E).
The graph obtained by identifying v with w has vertex set (V \ {v, w}) ∪ {vw},
where vw is a new vertex, and edge set (E \{e ∈ E | {v, w}∩e 	= ∅})∪{{vw, x} |
x ∈ (NG(v) ∪ NG(w)) \ {v, w}}.

Hamiltonian Graphs and Subclasses. A graph G is p-ordered if for every
sequence v1, . . . , vp of distinct vertices of G there exists a cycle C in G
that encounters the vertices v1, . . . , vp in this order. A graph G is called p-
Hamiltonian-ordered if for every sequence v1, . . . , vp of distinct vertices of G
there exists a Hamiltonian cycle C that encounters the vertices v1, . . . , vp in this
order. Clearly:

Fact 1. Every p-Hamiltonian-ordered graph is p-ordered Hamiltonian.

Graph Tool Box. We use several graphs as gadgets for our NP-hardness reduc-
tions that we collect in this “graph tool box” (see Fig. 2).
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The Graph R (see Fig. 2(a)): Let R denote the graph obtained from a C4 ∗ K1

by adding two vertices x′ and y′ and making each adjacent with exactly two
neighboring vertices of degree three such that all vertices except for x′ and y′

have degree four. Add vertex x and make it adjacent with x′, and add vertex y
and make it adjacent with y′. Finally, make x′ adjacent with y′.

We have the following simple yet useful observation on a C4 ∗ K1:

Observation 1. The graph C4 ∗ K1 admits no feedback vertex set of size one
yet one of size two.

The Graph L (see Fig. 2(b)): Let L denote the graph obtained as follows. Take
two disjoint C4 ∗K1s. Let {v, w} be an edge of one C4 ∗K1 with both v, w being
of degree three, and {v′, w′} analogously from the other C4∗K1. Make v adjacent
with v′ and w adjacent with w′. Let {x′, x′′} and {y′, y′′} denote the two edges
with vertices of degree three. Add a vertex x and make it adjacent with x′, x′′,
and add a vertex y and make it adjacent with y′, y′′.

The Graph D (see Fig. 2(c)): Let D denote the graph obtained as follows.
Take a C6, say with vertex set {c0, . . . , c5} and edge set {{ci, ci+1 mod 6} |
i ∈ {0, . . . , 5}}. Add a K3, say with vertex set {v1, v2, v3}. Make v1 adjacent
with c0, c1, c5, v2 adjacent with c1, c2, c3, and v3 adjacent with c3, c4, c5. Add a
vertex z and make it adjacent with c2, c3, c4. Add vertices x and x′, and make x′

adjacent with x, z, c0, c1, c2. Finally, add vertices y and y′, and make y′ adjacent
with y, z, c0, c4, c5.

The Graphs Yp (see Fig. 2(d)): Let p ∈ N with p ≥ 3. Let Yp denote the graph
obtained as follows. Take two disjoint A := Kp and B := Kp. Add a perfect
matching between the vertices of A and B. Next, add two vertices x, x′ and
make x′ adjacent to all vertices in V (A)∪{x}. Finally, add two vertices y, y′ and
make y′ adjacent to all vertices in V (B) ∪ {y}.
Definition 1 (Insertion). Let G be a graph and u, v ∈ V (G). An H-insertion
at u, v with H ∈ {R,L,D} ∪ ⋃

p≥3{Yp} results in the graph obtained from G by
adding a copy of H to G and identifying x with u and y with v.

3 Planar Regular Hamiltonian Graphs

In this section, we prove that Feedback Vertex Set remains NP-hard on 4-
regular planar Hamiltonian graphs and on 5-regular planar Hamiltonian graphs,
in both cases even if a Hamiltonian cycle is provided. We first prove that FVS
is NP-hard on 4-regular planar graphs (Sect. 3.1), then make the graph Hamil-
tonian (Sect. 3.2), and finally make the graph 5-regular (Sect. 3.3).

3.1 4-Regular Planar

Feedback Vertex Set is NP-hard even on connected planar graphs of maxi-
mum degree four [14,15]. We strengthen this with the following.
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Theorem 1 (�). Feedback Vertex Set is NP-hard on connected 4-regular
planar graphs.

We point out that a result of Munaro [12] implies that FVS remains NP-hard
on 4-regular planar graphs. We give an alternative proof.

We can delete degree-zero and -one vertices from a graph, and obtain an
equivalent instance. Next, we deal first with degree-two vertices to prove that
FVS is NP-hard on planar graphs of minimum degree three and maximum degree
four (Proposition 1), and then deal with the remaining vertices of degree three.

Degree-Two Vertices. We start by making each degree-two vertex a degree-
four vertex to obtain the following.

Proposition 1 (�). Feedback Vertex Set is NP-hard on connected planar
graphs of minimum degree three and maximum degree four.

To prove Proposition 1, we will perform an R-insertion at v, v on each degree-two
vertex v. We have the following crucial observation on R.

Lemma 1 (�). Graph R is planar, admits a Hamiltonian x-y path, and has
no feedback vertex set of size at most two, yet one of size three containing x′

or y′, but none of size three containing x or y.

An immediate consequence of Lemma 1 is the following.

Observation 2. Let I = (G, k) be an instance of Feedback Vertex Set and
let u, v ∈ V (G). Let G′ be the graph obtained from an R-insertion at u, v and
let k′ := k +3. Then I is a yes-instance if and only if (G′, k′) is a yes-instance
of Feedback Vertex Set.

We are set to prove Proposition 1 (�).

Degree-Three Vertices. Next, we deal with degree-three vertices. We will
employ the following specific straight-line embedding of our graph on a grid.

Theorem 2 ([2]). For any planar graph with n vertices one can compute
in O(n) time a straight-line embedding on the (2n − 4) by (n − 2) grid.

We start with an embedding. Let p(v) = (i, j) ∈ {1, . . . , 2n − 4} × {1, . . . , n − 2}
be the coordinate of vertex v in the grid-embedding. We aim for connecting
the remaining degree-three vertices in a pairwise manner (note that there is
an even number of these). To this end, we construct chains of Rs connecting
two degree-three vertices. To ensure polynomial running time and planarity of
the construction, we need to identify the pairs of degree-three vertices which
we want to connect such that the “R-chains” are pairwise non-crossing and
vertex-disjoint. To this end, we apply a “left-to-right bottom-to-top” approach
as follows (see Fig. 3 for an illustration). We iterate over vertices from left to right
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Fig. 3. Illustration to how we connect pairs of degree-three vertices. Round vertices
correspond to the vertices in our graph, where filled round vertices are the vertices we
want to connect. Diamond-shaped vertices correspond to the points in the grid shifted
by 1/3± ε horizontally and 1/2 vertically. Thick lines depict the pairwise connections.

by coordinates, that is, by (i, ·) for increasing i. Thereby, for each i, we iterate
over (i, j) with increasing j. Once two vertices of degree three are discovered,
we connect them in a “down-first out-most”-manner with an “R-chain”. As we
thereby possibly introduce edge crossings, we need to dissolve them as follows.

Definition 2. Let G be a graph embedded in the two-dimensional plane such
that at most two edges cross at one point. Let e1, e2 be two edges crossing at
point (i, j). Dissolving the crossing is doing the following: subdivide edge e1

(denote the vertex v1) and edge e2 (denote the vertex v2), identify v1 with v2

(denote the vertex v), and embed v at point (i, j).

The way we dissolve crossings immediately gives the following.

Observation 3. Every vertex resulting from a dissolution has degree four and
dissolving all edge-crossings yields a planar graph.

We will add and embed edges between disjoint pairs of degree-three vertices,
dissolve each newly formed crossing, and replace edges introduced by the disso-
lution by R-insertions on its endpoints. Formally:

Definition 3. Let 0 < ε < 1/3. R-connecting vertex v with v′, where p(v) =
(i, j) and p(v′) = (i′, j′), is doing the following:

1. Add and embed a new edge f = {v, v′} as follows:
if i = i′: It goes from (i, j) to (i − 1

3 − ε, j + 1
2 ) to (i′ − 1

3 − ε, j′ − 1
2 ) and

finally to (i′, j′).
if i 	= i′: It goes from (i, j) to (i+ 1

3 − ε, j − 1
2 ) to (i+ 1

3 − ε, j′ − 1
2 ) to (i′ −

1
3 + ε, j′ − 1

2 ) and finally to (i′, j′).
2. Dissolve every crossing. and let f1, . . . , f� denote the edges in which edge f is

dissolved.
3. Replace each edge fi, i ∈ {1, . . . , �}, with an R-insertion on its endpoints.
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Algorithm 1: Computing an equivalent instance (G′, k′) with G′ being
4-regular planar from (G, k) with G being of minimum degree three and
maximum degree four embedded with straight-lines on the (2n−4×n−2)-
grid, where n denotes the number of vertices of G.
1 d ← 0; a ← ∅; G′ ← G;
2 for x from 1 to 2n − 4 do // x-coordinates

3 for y from 1 to n − 2 do // y-coordinates

4 if p−1(x, y) = v is a degree-three vertex then
5 if a = ∅ then
6 a ← v;
7 else
8 R-connect a with v in G′ (denote the obtained graph again

by G′) and let d′ denote the number of R-insertions;
9 d ← d + d′; a ← ∅;

10 return (G′, k + 3d)

As a technical remark, we choose ε in Definition 3 such that no existing slope
is resampled. Note that in our embedding (Theorem 2) the number of slopes is
finite. Thus, we can R-connect any two vertices in polynomial time.

We employ Algorithm 1 to construct our instance (G′, k′) (see Fig. 4 for an
illustration). The following invariant immediately holds for Algorithm 1 by our
“left-to-right bottom-to-top” approach in an embedding given by Theorem 2.

Observation 4. When Algorithm 1 detects two degree-three vertices v (first)
and v′ (second) with p(v) = (i, j) and p(v′) = (i′, j′) to connect, then there is no
degree-three vertex w, p(w) = (x, y), with

if i = i′: x = i and j < y < j′;
if i 	= i′: (i) i < x < i′, (ii) x = i and y > j, or (iii) x = i′ and y < j′.

It follows that every two R-connections will be non-crossing and vertex-disjoint.

Proposition 2 (�). Let I = (G, k) be an instance of Feedback Vertex
Set with G being planar and of minimum degree three and maximum degree four.
Then one can compute an equivalent instance I ′ = (G′, k′) with k′ ∈ O(|V (G)|2)
and G′ having O(|V (G)|2) vertices and edges, and being 4-regular planar.

We are set to prove Theorem 1 (�).

3.2 4-Regular Planar Hamiltonian

In Sect. 3.1, we proved that Feedback Vertex Set is NP-hard on 4-regular
planar graphs. We next give a polynomial-time many-one reduction to an equiv-
alent instance with a 4-regular planar Hamiltonian graph.
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Fig. 4. Illustration to the proof of Proposition 2. (a) An example graph G (excerpt)
embedded on a grid where filled vertices correspond to vertices to connect (vertices of
degree three). (b) The connecting paths constructed in the grid. (c) Embedding the
edges in G. (d) Dissolving the edge-crossings and replacing edges by R-insertions.

Theorem 3 (�). Feedback Vertex Set on 4-regular planar Hamiltonian
graphs is NP-hard, even if a Hamiltonian cycle is provided.

We will follow the idea of Fleischner and Sabidussi [6]: We first compute a 2-
factor, that is, a spanning 2-regular subgraph, in polynomial time, and then
iteratively connect cycles from the 2-factor by L-insertions to obtain a Hamilto-
nian cycle. Note that L contains two vertex-disjoint C4 ∗ K1s, hence admits no
feedback vertex set of size three and no feedback vertex set of size four contain-
ing x or y (Observation 1). Yet, L admits feedback vertex sets each of size four
disconnecting x and y (see Fig. 2).

Lemma 2. Graph L is planar, admits a Hamiltonian x-y path, has no feedback
vertex set of size three, but one of size four disconnecting x and y, and none of
size four containing one of x or y.

Lemma 2 immediately implies the following.

Observation 5. Let I = (G, k) be an instance of Feedback Vertex Set
and let u, v ∈ V (G). Let G′ be the graph obtained from G by an L-insertion
at u, v and let k′ := k + 4. Then I is a yes-instance if and only if (G′, k′) is a
yes-instance of Feedback Vertex Set.
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Fig. 5. Illustration to the proof of Lemma 3. Hamiltonian cycles C and C′ of G (after
doubly subdividing an edge to obtain v, w) and G′ (after doubly subdividing an edge
to obtain v′, w′) are depicted on the left and right in magenta and cyan, respectively.
Hamiltonian cycle C∗ obtained after L-insertions at v, v′ and w, w′ is depicted in blue.
(Color figure online)

We represent a 2-factor by its components Q = {Q1, . . . , Qq}, where Qi is a cycle
for every i ∈ {1, . . . , q}. Every 4-regular graph admits a 2-factor computable in
polynomial time [6,11]. We first compute a 2-factor Q = {Q1, . . . , Qq} of G,
and then iteratively make L-insertions at vertices obtained from subdivisions to
merge cycles from Q until |Q| = 1. We defer the details and rest of the proof to
a full version (�).

3.3 5-Regular Planar Hamiltonian

In this section, we prove thatFeedbackVertexSet is alsoNP-hard on 5-regular
planar Hamiltonian graphs with provided Hamiltonian cycle. To this end, we start
from a 4-regular planar Hamiltonian graph and then make it 5-regular by a D-
insertion at every second edge of a Hamiltonian cycle. Hence, we need to ensure the
4-regular Hamiltonian graph to have an even number of vertices. To this end, we
take two disjoint copies of the input graph and connect them via two L-insertions
at vertices obtained from subdivisions (see Fig. 5 for an illustration).

Lemma 3 (�). Feedback Vertex Set is NP-hard on 4-regular planar
Hamiltonian graphs with an even number of vertices, even if a Hamiltonian cycle
is provided.

Using Lemma 3, we will prove next the following main result of this section.

Theorem 4 (�). Feedback Vertex Set is NP-hard on 5-regular planar
Hamiltonian graphs even if a Hamiltonian cycle is given.

We will perform a series of D-insertions (see Fig. 6 for an illustration). Hence,
we discuss the following in advance.

Lemma 4 (�). Graph D is planar, admits a Hamiltonian x-y path, and has
no feedback vertex set of size at most five yet one of size six containing x′ or y′

but none of size six containing x or y.

We are set to prove Theorem 4 (�).
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Fig. 6. Illustration to the proof of Theorem 4. The magenta path depicts the Hamil-
tonian cycle before the D-insertions, and the blue path depicts the Hamiltonian cycle
after the D-insertions. (Color figure online)

4 Regular Hamiltonian Graphs

In this section, we prove that Feedback Vertex Set remains NP-hard on
p-regular Hamiltonian graphs for every p ≥ 4.

Theorem 5 (�). For every p ≥ 4, Feedback Vertex Set on p-regular
Hamiltonian graphs is NP-hard, even if a Hamiltonian cycle is provided.

We have seen that Feedback Vertex Set is NP-hard on 5-regular graphs,
even if a Hamiltonian cycle C is provided. Every 5-regular graph has an even
number of vertices. Thus, we find a perfect matching M on C. We will make
a Yp-insertion on every pair of vertices from M .

Lemma 5 (�). Graph Yp admits a Hamiltonian path with endpoints x and y
and admits no feedback vertex set of size at most 2(p+1)−5 yet one of size 2(p+
1) − 4 containing x′ or y′.

From Lemma 5 we immediately get the following.

Observation 6. Let I = (G, k) be an instance of Feedback Vertex Set and
let v, w ∈ V (G) be two distinct vertices. Let G′ be the graph obtained from G by
the Yp-insertion at v, w, and let k′ := k+2(p+1)−4. Then, I is a yes-instance
if and only if (G′, k′) is a yes-instance of Feedback Vertex Set.

We are set to prove Theorem 5 (�).

5 Ordered and Connected Hamiltonian Graphs

For every cycle, and for every three vertices on it, we can shift the start of the
cycle and its orientation to encounter the three vertices in any order. Thus, we
get the following.

Observation 7. Every Hamiltonian graph is 3-Hamiltonian-ordered.
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We start from here and prove inductively the following.

Theorem 6 (�). For every p ≥ 3, Feedback Vertex Set on p-Hamiltoni-
an-ordered graphs is NP-hard, even if a Hamiltonian cycle is provided.

Construction 1. Let I = (G, k,C) with G = (V,E) be an input instance
of Feedback Vertex Set with Hamiltonian cycle C of G. Let n := |V |. We
construct an instance I ′ := (G′, k′, C ′) with k′ := 3n+k as follows. Let H := K3n.
Construct G′ := G ∗ H. Moreover, add two new vertices x, y to G′ and make x
adjacent to all vertices in V (H)∪{y} and y adjacent to all vertices in V (H)∪{x}.
Extend C through V (H) ∪ {x, y} to obtain C ′. �
Observation 8 (�). Let instance I ′ = (G′, k′, C ′) be obtained from an input
instance I = (G, k,C) of Feedback Vertex Set using Construction 1. If G
is p-Hamiltonian-ordered for 3 ≤ p ≤ n, then G′ is (p+1)-Hamiltonian-ordered.

Our proof of Observation 8 employs the following.

Fact 2 ([13]). Let G = (V,E) be a graph with |V | ≥ 3 and let p ∈ {3, . . . , n}.
If deg(v) + deg(w) ≥ |V | + 2p − 6 for every non-adjacent v, w ∈ V , then G
is p-Hamiltonian-ordered.

Lemma 6 (�). Let I ′ = (G′, k′, C ′) be the instance obtained from an input
instance I = (G, k,C) of Feedback Vertex Set using Construction 1. Then,
I is a yes-instance if and only if I ′ is a yes-instance.

We are set to prove Theorem 6 (�).
Recall that every p-Hamiltonian-ordered graph is trivially also p-ordered

Hamiltonian. In addition, the following holds true.

Fact 3 ([13]). If a graph is p-ordered for any p ≥ 3, then it is (p−1)-connected.

Hence, we get the following.

Corollary 1. Feedback Vertex Set is NP-hard on p-ordered and (p − 1)-
connected Hamiltonian graphs, p ≥ 3, even if a Hamiltonian cycle is provided.

6 Conclusion

Feedback Vertex Set remains NP-hard on quite restricted cases even if
the graph is additionally Hamiltonian and a Hamiltonian cycle is provided.
Which problems are NP-hard on Hamiltonian graphs and become non-trivially
tractable if a Hamiltonian cycle is provided? Which problems become non-
trivially tractable on p-Hamiltonian-ordered graphs? As to the class of p-Hamil-
tonian-ordered graphs, we are not aware of a computational complexity study
on this class next to ours. Further, it is interesting to study Feedback Ver-
tex Set on the intersections of the classes of regular graphs, planar graphs,
p-Hamiltonian-ordered graphs, and p-ordered Hamiltonian graphs.
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Abstract. In static graphs, the betweenness centrality of a graph vertex
measures how many times this vertex is part of a shortest path between
any two graph vertices. Betweenness centrality is efficiently computable
and it is a fundamental tool in network science. Continuing and extend-
ing previous work, we study the efficient computability of betweenness
centrality in temporal graphs (graphs with fixed vertex set but time-
varying arc sets). Unlike in the static case, there are numerous natural
notions of being a “shortest” temporal path (walk). Depending on which
notion is used, it was already observed that the problem is #P-hard in
some cases while polynomial-time solvable in others. In this conceptual
work, we contribute towards classifying what a “shortest path (walk)
concept” has to fulfill in order to gain polynomial-time computability of
temporal betweenness centrality.

Keywords: Temporal graphs · Temporal paths and walks · Network
science · Network centrality measures · Counting complexity

1 Introduction

Network science is a central pillar of data science. It relies on spotting and ana-
lyzing important network (graph) properties. Betweenness centrality, introduced
by Freeman [14] and made a practical tool of high relevance by Brandes [9], is
a key instrument in this area, in particular in the context of social network
analysis. Informally, the betweenness centrality of a graph vertex v correlates to
the probability that v is visited by a randomly chosen shortest path. With the
advent of investigating dynamically changing network structures and, thus, the
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growing interest in temporal graphs, studying concepts of temporal betweenness
centrality and their algorithmic complexity became very popular over the recent
years [1,3,11,16,17,19,24–27].

The temporal graphs we are considering have fixed vertex set and edge set(s)
that change over discrete time steps.A temporal path in such a graph has to respect
time, that is, the path has to traverse edges at non-decreasing time steps. The study
of temporal betweenness centrality is significantly richer than in static graphs since
in temporal graphs the term “shortest path” may have numerous different but nat-
ural interpretations. Indeed, the shortest transfer from a start vertex to a target
vertex may even be a walk (and not just a path) and there is also an intensive study
on shortest-path and shortest-walk computations in temporal graphs [8,10,12,28].
We refrain from going into the details here but refer to our predecessor work [11] for
a more extensive discussion. What is important to note, however, is that the com-
plexity of temporal betweenness centrality computation, which essentially boils
down to a counting problem, crucially depends on the concept used. More specifi-
cally, the complexity may vary from polynomial-time solvable (with different poly-
nomial degrees) to#P-hard.To systematically investigate this issue and to develop
a better understanding of when one has to expect such a huge jump in computa-
tional complexity is the main motivation of our work.

The by far closest reference point for our work is a previous paper from our
group [11]. It also surveys the literature roughly till the year 2020. Since then,
Simard et al. [24] studied a continuous-time scenario and betweenness based on
shortest paths, while we focus on discrete time. Our work has a significantly
stronger conceptual objective than Buß et al. [11] had. So our classification
results comprise the results there. They are based on coining the concept of
prefix-compatible temporal walks. These walks can be counted in polynomial
time and thus the corresponding temporal betweenness centrality value can be
computed in polynomial time. To this end, we provide simple (still tunable)
polynomial-time algorithms that apply to a whole class of temporal betweenness
centrality problems. Moreover, we indicate that slightly relaxing from prefix-
compatibility typically already yields #P-hardness. Due to space constraints,
detailed proofs (marked with a �) are deferred to a full version [22].

2 Preliminaries

The fundamental concept we use in this work is a temporal graphs. A directed
temporal graph G is a triple (V, E , T ) such that V is a set of vertices, E ⊆
{(u, v, t) | u, v ∈ V, u �= v, t ∈ [T ]} is a set of time arcs, and T ∈ N, where
[T ] := {1, . . . , T} is a set of time steps; see Fig. 1 for an illustration.

Throughout this work, let n := |V | and M := |E|. We call V × [T ] the set of
(possible) vertex appearances. We consider directed temporal graphs as temporal
paths and walks are implicitly directed because of the ascending time labels. We
call a time arc e = (v, w, t) also the transition from v to w at time step t. We
call v the starting point and w the endpoint of the transition. Using this, we can
now define temporal walks and temporal paths; see Fig. 1 for an illustration.
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Fig. 1. Our running example for a temporal graph G with 9 vertices and 13 time-
arcs (the outgoing arc from vertex v denotes two time-arcs at time steps 6 and 9).
The number(s) on the arcs denote the time steps. Left: highlighted are the unique
shortest s-z-path (top path in green) in G and a fastest s-z-walk (bottom walk in blue,
v and its successor appear twice in the walk). Right: three foremost s-z-paths in G are
highlighted (G has two more foremost s-z-walks; for visibility not highlighted). (Color
figure online)

Definition 1 (Temporal Walk). A temporal walk W is an ordered sequence
of transitions (e1, . . . , ek) ∈ Ek such that for each i ∈ [k − 1] the endpoint of ei

is the starting point of ei+1 and ti ≤ ti+1, where ti and ti+1 are the time labels
of transitions ei and ei+1, respectively. The length of W is length(W ) := k.

Let W = (e1, . . . , ek) be a temporal walk. We call W a temporal s-z-walk if
e1 = (s, v, t) and ek = (w, z, t′) for some v, w and some t, t′ and we call W
a temporal s-(z, t′)-walk if e1 = (s, v, t) and ek = (w, z, t′) for some v, w and
some t.

A temporal walk may visit the same vertex more than once. In contrast
to that, a temporal path visits each vertex at most once. This is analogous to
static graphs. In contrast to the static setting, there are several canonical notions
of “optimal” temporal walks. The three most important ones [10] are shortest
temporal walks, which are temporal walks between two vertices that uses a
minimum number of time arcs, fastest temporal walks, which are temporal walks
between two vertices with a minimum difference between the time steps of the
first and last transition used by the walk, and foremost temporal walks, which
are temporal walks between two vertices with a minimum time step on their last
transition (see Fig. 1 for an illustration). The corresponding optimal temporal
paths are defined analogously. We remark that in the case of “shortest”, every
shortest temporal walk is in fact a temporal path, similarly to the static case.1

However, for “fastest” and “foremost” temporal walks this is generally not the
case.

For readability, we use the notation v
t→ w instead of the triple (v, w, t). If a

temporal walk W contains the transition v
t→ w, then we say that W visits (or

goes through) vertex appearance (w, t) (in Fig. 1 (left) the blue walk visits (v, 5)

and (v, 8)). Let P = v0
t1→ v1

t2→ . . .
t�−1→ v�−1

t�→ v� be a temporal path. For any
0 ≤ i < j ≤ �, we write (if i = 0, then we define the following for t0 = 0):

1 In fact, all optimal temporal path concepts (we are aware of) where path counting
and computing the betweenness centrality can be done in polynomial time have this
property, ensuring that optimal walks are indeed paths.
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P [(vi, ti), (vj , tj)] := vi
ti+1→ vi+1

ti+2→ . . .
tj→ vj ,

P [•, (vj , tj)] := v0
t1→ v1

t2→ . . .
tj→ vj ,

P [(vi, ti), •] := vi
ti+1→ vi+1

ti+2→ . . .
t�→ v�.

We use an analogous notation for temporal walks. Note that for a non-strict
temporal walk W the above notation may not be well-defined since the same
vertex appearance (v, t) may appear more than once in W . In this case we
define W [(vi, ti), (vj , tj)] to be the subwalk of W from the first appearance of

u
ti→ vi for any u to the last appearance of u

tj→ vj for any u. The cases of
P [•, (vj , tj)] and P [(vi, ti), •] are handled analogously. Furthermore, we use ⊕
to denote concatenations of temporal walks, that is, let W,W ′ be two temporal
walks such that W ends in v and W ′ starts in v. Let t be the time label on the
last transition of W and t′ the label on the first transition of W ′. Then if t′ ≥ t ,
we denote with W ⊕ W ′ the concatenation of W and W ′.

Given a temporal graph G, we denote by walks(G) the set of all temporal
walks in G. Subsequently, we will need to consider the successors (or dually,
the predecessors) of each vertex appearance on temporal walks in some W ⊆
walks(G).

Definition 2 (Direct predecessor set, direct successor set). Let G =
(V, E , T ) be a temporal graph and W ⊆ walks(G) be a subset of its temporal walks.
Fix a source vertex s ∈ V . Let Ws ⊆ W be the set of temporal walks in W that
start in s. Now let (w, t′) ∈ V × [T ] be any vertex appearance. Then PreW

s (w, t′)
is the set of all direct predecessors of (w, t′) on temporal walks in Ws. Formally,

PreW
s (w, t′) :=

{
(v, t) ∈ V × [T ] | ∃W ∈ Ws : u

t→ v
t′
→ w ∈ W

}

∪
{

(s, 0) | ∃W ∈ Ws : s
t′
→ w ∈ W

}
.

The set SuccW
s (v, t) of successors of a vertex appearance (v, t) is the “inverse”

of the predecessor relation, formally,

SuccW
s (v, t) :=

{
(w, t′) | (v, t) ∈ PreW

s (w, t′)
}

.

Clearly, the direct predecessor sets induce a relation over vertex appearances.
We use this to define the following directed graph. We remark that this graph
is similar to a so-called static expansion [18,28,29] that is tailored to a specific
source vertex.

Definition 3 (Predecessor graph). Let G = (V, E , T ) be a temporal graph
and W ⊆ walks(G) be a subset of its temporal walks. Fix a source vertex s ∈ V .
Then G

Pre
s := (U,A) is the predecessor graph (of s, with respect to W), where

U := {(s, 0)} ∪ {(w, t′) | PreW
s (w, t′) �= ∅}, and

A := {((v, t), (w, t′)) | (v, t) ∈ PreW
s (w, t′)}.
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We next introduce some notation and definitions for temporal walk counting
and temporal betweenness.

Definition 4. Let G = (V, E , T ) be a temporal graph and W ⊆ walks(G) be a
subset of its temporal walks. Let s, v, z ∈ V and t ∈ [T ]. Then,

– σW
sz is the number of temporal s-z-walks in W that start in s and end in z.

– σW
sz (v) is the number of temporal s-z-walks in W that go through the vertex v.

Furthermore, σW
sz (z) = σW

sz (s) = σW
sz and σW

ss (s) = σW
ss ;

– σW
sz (v, t) is the number of temporal s-z-walks in W that go through the vertex

appearance (v, t). Furthermore, σW
sz (s, 0) = σW

sz (s) = σW
sz and σW

sz (s, t′) = 0
for all t′ ∈ [T ].

Based on this definition we can define the notions of dependency of vertices
on other vertices, similar to how it was done by Brandes [9] in the static case.
We remark that the notions for the temporal setting introduced in the following
are very similar to the ones used by Buß et al. [11]. We give them again here for
completeness and since we adapt them for general sets of temporal walks.

Definition 5 (Pair dependency, cumulative dependency). Let G be a
temporal graph and W ⊆ walks(G) be a subset of its temporal walks. Then,

δW
sz (v) :=

{
0, if σW

sz = 0,
σW

sz (v)
σW

sz
, otherwise;

δW
s• (v) :=

∑
z∈V

δW
sz (v)

are the pair dependency of s and z on v and the cumulative dependency of s
on v, respectively.

In other words, δW
sz (v) is the fraction of temporal s-z-walks that go through v.

Intuitively, the higher this fraction is, the more important v is to the connectivity
of s and z in the graph. Furthermore, δW

s• (v) is the cumulative dependency of s
on v for all possible destinations. These notions can be used to define temporal
betweenness centrality, which intuitively captures how all other vertices depend
on v for their connectivity.

Definition 6 (Temporal betweenness centrality). Let G be a temporal
graph and W ⊆ walks(G) be a subset of its temporal walks. Then, for any ver-
tex v ∈ V ,

CW
B (v) :=

∑
s �=v �=z

δW
sz (v) and ĈW

B (v) :=
∑

s,z∈V

δW
sz (v)

are the temporal betweenness centrality CW
B (v) of v and total temporal between-

ness centrality ĈW
B (v) of v (with respect to W).

If the set of walks W in question is clear from the context, then we omit the W.
The main reason behind mainly using total temporal betweenness centrality
instead of the standard temporal betweenness in the following is that it simplifies
some of our proofs as it works well with our definition of cumulative dependency:

Observation 1. For any vertex v ∈ V , ĈW
B (v) =

∑
s∈V δW

s• (v).

Due to space constraints, we defer some further concepts to a full version.
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3 Prefix-Compatibility

In this section, our goal is to find an easy-to-understand-and-use property
for optimality concepts for temporal walks and paths that is sufficient for
polynomial-time solvability of (1) counting optimal temporal walks and (2) com-
puting the temporal betweenness with respect to that optimality concept for
temporal walks. We call this property “prefix-compatibility”. Intuitively, a class
of temporal walks is prefix-compatible if prefixes of optimal temporal walks are
also optimal (“prefix-optimality”) and prefixes of optimal temporal walks can
be exchanged (“prefix-exchangeability”). To formally define optimality concepts
for temporal walks, we use cost functions.

Definition 7 (Cost function). Let W be the set of all temporal walks in a
temporal graph G. A function of the form c : W → R ∪ {∞} is a cost function.

We remark that for this work we assume that the cost function can be com-
puted in constant time, which turns out to be a valid assumption for many opti-
mality concepts. When considering cost functions that need polynomial time to
be evaluated, this polynomial factor would form an extra multiplicative term in
our running time results.

Let c be a cost function and let G = (V, E , T ) be a temporal graph. Fix a
source s ∈ V . Then, for every vertex appearance (v, t) ∈ V ×[T ] we define c∗

s(v, t)
to be the minimum value of c assumed over all temporal s-(v, t)-walks. That is, we
have c∗

s(v, t) = mins-(v,t)-walk W {c(W )}. If the minimum is not defined or there is
no temporal s-(v, t)-walk, then let c∗

s(v, t) := ∞. Similarly, we define the optimal
c-values for the vertices v ∈ V as c∗

s(v) := mint∈[T ]{c∗
s(v, t)}. We call a temporal

s-(v, t)-walk W c-optimal if we have c(W ) = c∗
s(v, t) < ∞. Similarly, we call

a temporal s-v-walk W c-optimal if we have c(W ) = c∗
s(v) < ∞. Observe that

this notion of c-optimal walks is very general and allows to capture essentially
all natural walk concepts, see Fig. 2 for some examples.

We can now define the set of walks in a temporal graph that is optimal with
respect to some cost function c in a straightforward way:

Definition 8 (Induced set of optimal temporal walks). Let c be a cost
function and let G = (V, E , T ) be a temporal graph. For s, z ∈ V , let Wsz be the
set of all temporal s-z-walks in G. Then

W(c) :=
⋃

s,z∈V

{W ∈ Wsz | c(W ) < ∞ ∧ c(W ) = c∗
s(z)}

is the induced set of optimal temporal walks (of c).

From now on, we introduce the two properties for cost functions that we need
to obtain prefix-compatibility; in Fig. 3 we illustrate that (restless) fastest paths
do not satisfy one of these. We start with “prefix-optimality”, which intuitively
states that prefixes of optimal temporal walks are also optimal.
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Fig. 2. Examples for c-optimal walks for various c. Left: the top (green) s-z-path is
the shortest s-z-walk, that is, c(W ) is the number of time arcs in the walk W . The
blue walk and the red path are the two fastest s-z-walks in the graph; here c(W )
is the difference of the time steps of the first and last time arc in the walk W . Right:
highlighted is the only 2-restless s-z-walk, that is, the difference between the time steps
of two consecutive time arcs is at most two [8,12]. This could be encoded in c as follows:
for a walk W = (e1, . . . , ek) we have c(W ) = 1 if t(ei) + 2 ≥ t(ei+1) for all i ∈ [k − 1]
and c(W ) = ∞ otherwise. Notably, in general it is NP-hard to decide whether such a
2-restless s-z-path exists [12], but for walks even the optimization variants (shortest,
fastest, . . .) are polynomial-time solvable (Color figure online) [8].

Fig. 3. Counter examples showing that (restless) fastest paths neither satisfy prefix-
optimality nor prefix-exchangeability. Inhere, three time steps (indicated by bold num-
bers) are updated in our standard temporal graph. Left: the blue path (starting at time
step 2) is the unique fastest 3-restless (cf. Fig. 2) s-z-path with travel time 8 − 2 = 6;
it is not prefix-optimal as the red path is a faster s-(v, 5)-path (travel time 5 − 2 = 3
vs. 5 − 3 = 2). Right: the blue path (starting at time step 2) is the fastest s-z-path
with travel time 8−2 = 6; it is not prefix-exchangeable as the red path is also a fastest
s-(v, 5)-path but the corresponding prefix cannot be replaced with the red path as the
resulting walk would not be a path. (Color figure online)

Definition 9 (Prefix-optimality). Let c be a cost function and let W(c) be a
set of optimal temporal walks in a temporal graph G that is induced by c. Then,
c is prefix-optimal if for every temporal walk W ∈ W(c) and for every vertex
appearance (v, t) ∈ W it holds that c(W [•, (v, t)]) = c∗

s(v, t).

Note that we do not require that the prefixes be optimal temporal walks to a
vertex, so the temporal walk c(W [•, (v, t)]) is not required to be in the induced
set of optimal temporal walks W(c). If c is clear from the context and there is
no danger of confusion, then we drop the superscript (c).

The second property we introduce is “prefix-exchangeability”. It intuitively
states that a prefix of an optimal temporal walk can be exchanged by certain
other temporal walks.

Definition 10 (Prefix-exchangeability). Let c be a cost function and
let W(c) be a set of optimal temporal walks in a temporal graph G that is induced
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by c. Then, c is prefix-exchangeable if for every vertex appearance (v, t) ∈ V ×[T ]
such that there exist s, z ∈ V for which there is a temporal s-z-walk W ∈ W(c)

going through (v, t) and for every temporal s-(v, t)-walk W ′ with c(W ′) = c∗
s(v, t)

it holds that W ′ ⊕ W [(v, t), •] ∈ W(c), that is, c(W ′ ⊕ W [(v, t), •]) = c∗
s(z).

In other words, if there is an optimal temporal s-z-walk W going through (v, t),
then all c-optimal temporal s-(v, t)-walks can be substituted for the first part
of W to get a c-optimal temporal s-z-walk.

It is convenient to combine the two main properties into one.

Definition 11 (Prefix-compatibility). Let c be a cost function. Then c is
prefix-compatible if it is both prefix-optimal and prefix-exchangeable.

3.1 Examples of Prefix-Compatible Cost Functions

We exemplarily show that five well-known optimality concepts for temporal
paths and walks [8,10,28] can be expressed by prefix-compatible cost functions.
The optimality concepts we consider here are foremost temporal walks and short-
est temporal paths. We further consider shortest fastest temporal paths, which are
temporal paths that are shortest among all fastest temporal paths and shortest
restless temporal walks [8], which are the shortest temporal walks among all tem-
poral walks where the difference of the time labels of two consecutive transitions
is bounded by some constant. Lastly, we consider strict prefix-foremost temporal
paths [28]. A temporal path is strict prefix-foremost if it is foremost and every
prefix is also foremost and all transitions have increasing time labels.

Proposition 1 (�). The cost functions describing the following optimality con-
cepts are prefix-compatible:

– foremost temporal walk,
– shortest temporal path,
– shortest fastest temporal path,
– shortest restless temporal walks, and
– strict prefix-foremost temporal path.

We remark that e.g. “shortest fastest” temporal path have to the best of
our knowledge not been considered yet for temporal betweenness computation
while being a very natural optimality criterion. Furthermore, many other natural
optimality concepts can be shown to be prefix-compatible in a similar way to
our examples.

Since we aim for a very general framework, it is not surprising that our run-
ning times for temporal betweenness computation can be improved for specific
optimality concepts by tailored algorithms. As we will show in Theorems 2 and 3,
we can count c-optimal temporal walks and compute the temporal betweenness
centrality with respect to optimal walks for prefix-compatible cost functions c
in O(n2MT 2) time. However, for example for strict prefix-foremost paths and
shortest temporal paths, the corresponding temporal betweenness computation
can be done in O(nM log M) and O(n3T 2) time, respectively [11]. Also the space
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requirements can be improved for specific optimality concepts [11]. We remark
that the well-known techniques for static graphs [6,9,13] can mostly be trans-
ferred to the temporal setting in straightforward ways.

3.2 Necessity of Prefix-Optimality and Prefix-Exchangeability

We now briefly motivate why we need a cost function c to be both prefix-optimal
and prefix-exchangeable in order to be able to count c-optimal temporal walks
in polynomial time. We do this by giving examples of cost functions which have
only one of the two properties and where the corresponding problem of counting
c-optimal temporal walks is #P-hard. Note that this implies that the correspond-
ing temporal betweenness computation problem is also #P-hard [11]. We remark
that this does not imply that prefix-optimality and prefix-exchangeability cannot
be replaced by some weaker requirements.

First, if we leave out prefix-exchangeability, then we obtain hardness.

Proposition 2 (�). There exists a prefix-optimal cost function c for which
counting the number of c-optimal temporal walks is #P-hard.

Second, if we leave out prefix-optimality, then we also obtain hardness.

Proposition 3 (�). There exists a prefix-exchangeable cost function c for which
counting the number of c-optimal temporal walks is #P-hard.

4 Counting Walks

In this section, complementing the hardness shown in Sect. 3.2, we extend clas-
sic algorithms for path and walk counting to our setting. This will provide a
polynomial-time algorithm for counting optimal walks with respect to a prefix-
compatible cost function.

The general idea is roughly as follows: First, compute the static predecessor
graph G

Pre
s (c) with respect to c (see Definition 3) using a slightly modified

version of the classic Bellman-Ford algorithm [6,13]. Second, count the walks in
this static graph G

Pre
s (c) with known approaches; the results correspond to the

number of c-optimal walks in the temporal input graph.
We start with statements explaining the connection between G

Pre
s (c) and the

number of walks in the temporal input graph. Here, an important corner case is
that there might be infinitely many c-optimal walks.

Definition 12 (Finiteness). Let c be a cost function for a temporal graph G.
Then, c is finite on G if the induced set W(c) of optimal temporal walks of c has
finite cardinality.

As stated next, finiteness of the cost function c coincides with the predecessor
graph G

Pre
s (c) containing directed cycles and is, thus, easy to detect.

Lemma 1 (�). Let c be a prefix-compatible cost function. Then c is finite if and
only if the predecessor graph G

Pre
s (c) is acyclic.
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Assuming that we can efficiently compute G
Pre
s (c), Lemma 1 allows us to

detect and deal wit the cases of infinitely many c-optimal walks. Moreover, if c

is finite, then G
Pre
s (c) is a DAG and, hence, counting walks is easy. Hence, we

arrive at the following statement.

Lemma 2. Let c be a prefix-compatible cost function and G
Pre
s (c) a predecessor

graph for a temporal graph G and a vertex s in G. Given G
Pre
s (c), the num-

ber of c-optimal temporal walks between from s to any vertex v and any vertex
appearance (v, t) in G can be computed in O(|GPre

s (c)|) time.

Proof (Sketch). First, run Kosaraju’s algorithm [2] on the graph to compute
in linear time the strongly connected components (SCCs) in G

Pre
s (c) while also

keeping track of their size. Mark every SCC of size > 1 with ∞. Then, run a BFS
over the SCCs starting in all nodes marked ∞ and label all the nodes reached
during the BFS with ∞. Now, for every vertex appearance (v, t) belonging to
an SCC marked with ∞, we set the number of temporal s-(v, t)-walks as ∞ and
then remove it from G

Pre
s (c). The correctness of this step follows from the proof

of Lemma 1.
Let G′ be the remaining graph. Clearly, G′ is a DAG. We next show that

counting paths to a vertex in G′ will exactly correspond to counting c-optimal
temporal walks to a vertex appearance corresponding to that vertex:

We shall prove the statement above by induction on the vertices of G′, taken
in the topological ordering. First, (s, 0) must clearly be the first vertex in that
ordering. Obviously, there is only one c-optimal path to (s, 0), so the computed
value will be correct here.

Now, consider a vertex vi corresponding to some appearance (v, t). By def-
inition, all its direct predecessors vj come before vi in the topological ordering
in the graph. Since vj ∈ PreW

s (vi), by prefix-exchangeability, every c-optimal
walk to vj can be extended to a c-optimal walk to vi. Conversely, by prefix-
optimality, we are also not missing any c-optimal walks to (v, t). Hence, the
computed number of paths to vi will also be correct.

To compute the number of c-optimal temporal walks to a vertex v ∈
V we can first find c∗

s(v) = mint∈[T ] c
∗
s(v, t), and then compute σW

sv =∑
t|c∗

s(v,t)=c∗
s(v) σW

s(v,t). This path counting in a DAG is clearly doable in time

linear in the size of G
Pre
s (c). ��

To employ Lemma 2, we need to compute G
Pre
s (c). To this end, we run a slight

variation of the classical Bellman-Ford algorithm. This leads to the following
lemma. Recall that we assume here that c can be evaluated in O(1) time.

Lemma 3 (�). Let c be a prefix-compatible cost function for a temporal graph G.
Let s be a vertex in G. Then the predecessor graph G

Pre
s (c) can be computed

in O(nMT 2) time.

Applying Lemmas 2 and 3 starting from each vertex yields the following.
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Theorem 2 (Walk counting). Let c be a prefix-compatible cost function for a
temporal graph G = (V, E , T ). Then the number of c-optimal temporal walks from
each vertex s ∈ V to any vertex appearance (v, t) can be computed in O(n2MT 2)
time.

5 Computing Temporal Betweenness

In this section, we discuss how to compute temporal betweenness centrality effi-
ciently for optimal temporal walks defined by a prefix-compatible cost function.
In order to do this, we adapt the machinery of showing a recursive relation of the
temporal dependencies [11] to our generalized setting. Due to space constraints,
we refer to a full version for details. Together with the fact that we can compute
the walk-counts in polynomial time (Theorem 2), we can use a Brandes-like [9]
approach to compute the temporal betweenness values in polynomial time.

Lemma 4 (�). Let c be a finite prefix-compatible cost function for a temporal
graph G = (V, E , T ). Given G

Pre
s (c) for each s ∈ V , the temporal betweenness

centrality of all vertices in G can be computed in O(
∑

s∈V |GPre
s (c)|+nM) time.

Using the running time bound from Lemma 3 together with Lemma 4, we
immediately get our main result of this work.

Theorem 3 (General betweenness computation). Let c be a finite prefix-
compatible cost function. Then the betweenness centrality of all vertices can be
computed in O(n2MT 2) time.

Combining Proposition 1 and Theorem 3 yields the following result.

Corollary 1. The betweenness centrality of all vertices in a temporal graph can
be computed in O(n2MT 2) time with respect to:

– foremost temporal walk,
– shortest temporal path,
– shortest fastest temporal path,
– shortest restless temporal walks, and
– strict prefix-foremost temporal path.

We remark that, while foremost temporal walk, shortest temporal path, and
strict prefix-foremost temporal path were known from previous work [1,11,19],
this is a new classification for shortest fastest temporal paths and shortest restless
temporal walks.

6 Conclusion

The very nature of this work is conceptual. It goes without saying that to
achieve improved efficiency, exploiting specific properties of the various tem-
poral path and walk concepts may clearly allow for further improved polynomial
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running times. As to future research, we wonder whether our concept of prefix-
compatibility may finally lead to a full characterization of polynomial-time com-
putable temporal betweenness centrality values. As to the computationally hard
cases (but not only them), for high efficiency in practice, one might also explore
the possibilities of efficient data reductions or approximation algorithms. This
proved useful in the static graphs case, with respect to data reduction [5,7,20,23]
as well as with respect to approximation [4,15,21].
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Abstract. Finding a homomorphism from some hypergraph Q (or some
relational structure) to another hypergraph D is a fundamental prob-
lem in computer science. We show that an answer to this problem
can be maintained under single-edge changes of Q, as long as it stays
acyclic, in the DynFO framework of Patnaik and Immerman that uses
updates expressed in first-order logic. If additionally also changes of D
are allowed, we show that it is unlikely that existence of homomorphisms
can be maintained in DynFO.
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1 Introduction

Many important computational problems can be phrased as the question “is
there a homomorphism from Q to D?”, where Q and D are hypergraphs, or more
generally, relational structures. Examples include evaluation and minimisation
of conjunctive queries [4] and solving constraint satisfaction problems, see [10].

The problem Hom – is there a homomorphism from Q to D? – is NP-complete
in its general form. In the static setting it is well understood which restrictions on
Q or D render the problem tractable [5,14,16]. A particular restriction of great
importance in databases is to demand that Q is acyclic [1]. This restriction of
Hom, we call it the Acyclic Hypergraph Homomorphism problem AHH, can
be solved in polynomial time by Yannakakis’ algorithm [25] and is complete for
the complexity class LOGCFL [12], the class of problems that can be reduced in
logarithmic space to a context-free language.

We are interested in a dynamic setting where the input of a problem is sub-
ject to changes. The complexity-theoretic framework DynFO for such a dynamic
setting was introduced by Patnaik and Immerman [20] and it is closely related to
a setting of Dong, Su and Topor [8]. In this setting, a relational input structure
is subject to a sequence of changes, which are usually insertions of single tuples
into a relation, or deletions of single tuples from a relation. After each change,
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additionally stored auxiliary relations are updated as specified by first-order
update formulas. The class DynFO contains all problems for which the update
formulas can maintain the answer for the changing input.

With few exceptions, for example in parts of [19], research in the DynFO
framework takes a data complexity viewpoint: all context-free languages [11]
and all problems definable in monadic second-order logic MSO [7] are in DynFO
if the context-free language or the MSO-definable problem is fixed and not part
of the input. Every fixed conjunctive query is trivially in DynFO, as such a query
can be expressed in first-order logic and updates defined by first-order formulas
can just compute the result from scratch after every change; however, there are
also non-trivial maintenance results for fixed conjunctive queries for subclasses of
DynFO [11,26]. The complexity results for Hom and AHH of [12,25] are however
from a combined complexity perspective: both Q and D are part of the input.

Contributions. In this paper we study the combined complexity of AHH in
the dynamic setting. As inputs we allow hypergraphs and general relational
structures over some fixed schema τ .

As our main positive result, we show that AHH(τ) is in DynFO for every
schema τ , if Q is subject to insertions and deletions of hyperedges but stays
acyclic, and D may initially be arbitrary but is not changed afterwards. A main
building block for this result is a proof that a join tree for Q can be maintained
in DynFO in such a way that after a single change to Q the maintained join tree
only changes by a constant number of edges. We show that given a join tree for
Q we can maintain the answer to AHH(τ) under changes of single edges of the
join tree. The main result follows by compositionality properties of DynFO.

We also give a hardness result for the case that also D is subject to changes.
If AHH(τ) is in DynFO for every schema τ under changes of Q and D, then all
LOGCFL-problems are in (a variant of) DynFO, which we believe not to be the
case. So, this result is a strong indicator that maintenance under changes of D is
not possible in DynFO. Note that this result does not follow immediately from the
fact that AHH is LOGCFL-complete: the NL-complete problem of reachability in
directed graphs is in DynFO [6] as well as a PTIME-complete problem [20], and
these results do not imply that all NL-problems and even all PTIME-problems
are in DynFO, as this class is not known to be closed under the usual classes of
reductions.

Further Related Work. In databases, Incremental View Maintenance is con-
cerned with updating the result of a database query after a change of the input,
see [15] for an overview. Koch [17] shows that a set of queries that include con-
junctive queries can be maintained incrementally by low-complexity updates. A
system for maintaining the result of Datalog-like queries under changes of the
data and the queries is described in [13].

Organisation. We introduce preliminaries and the DynFO framework in Sect. 2.
Section 3 contains the maintenance result for AHH under changes of Q, the
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hardness result for changes of D is presented in Sect. 4. We conclude in Sect. 5.
Proof details omitted due to space constraints can be found in [23].

2 Preliminaries and Setting

We introduce some concepts and notation that we need throughout the paper.
See also [21] for an overview of Dynamic Complexity. We assume familiarity with
first-order logic FO, and refer to [18] for basics of Finite Model Theory.

A (purely relational) schema τ consists of a finite set of relation symbols with
a corresponding arity. A structure D over schema τ with finite domain D has,
for every k-ary relation symbol R ∈ τ , a relation RD ⊆ Dk. We assume that all
structures come with a linear order ≤ on their domain D, which allows us to
identify D with {1, . . . , n}, for n = |D|. We also assume that first-order formulas
have access to this linear order and to compatible relations + and × encoding
addition and multiplication on {1, . . . , n}.

The Dynamic Complexity Framework. In the dynamic complexity framework as
introduced by Patnaik and Immerman [20], the goal of a dynamic program is to
answer a standing query to an input structure I under changes. To do so, the
program stores and updates an auxiliary structure A, which is over the same
domain as I. This structure consists of a set of auxiliary relations.

The set of admissible changes to the input structure is specified by a set Δ of
change operations. We mostly consider the change operations insR and delR for
a relation R of the input structure. A change δ(ā) consists of a change operation
δ ∈ Δ and a tuple ā over the domain of I. The change insR(ā) inserts the tuple ā
into the relation R and the change delR(ā) deletes ā from R.

For every change operation δ ∈ Δ and every auxiliary relation S, a dynamic
program has a first-order update rule that specifies how S is updated after a
change over δ. Such a rule is of the form on change δ(p̄) update S(x̄) as
ϕS

δ (p̄; x̄), where the update formula ϕS
δ is a first-order formula over the combined

schema of I and A. After a change δ(ā) is applied, the relation S is updated to
{b̄ | (I,A) |= ϕS

δ (ā; b̄)}.
We say that a dynamic program P maintains a query Q under changes

from Δ if a dedicated auxiliary relation Ans contains the answer to Q for the
current input structure after each sequence of changes over Δ. The class DynFO
contains all queries that can be maintained by dynamic programs with first-order
update rules, starting from initially empty input and auxiliary relations. We also
say that Q can be maintained in DynFO under Δ changes.

In this paper we are interested in scenarios where only parts of the input
are subject to changes. To have a meaningful setting we then have to allow
non-empty initial input relations. We then say that a query can be maintained
in DynFO starting from non-empty inputs. Sometimes we then also allow the
auxiliary relations to be initialised within some complexity bound. We say that
a query Q is in DynFO with C initialisation, for a complexity class C, if there is a
C-algorithm A such that Q can be maintained in DynFO if for an initial input I0

the initial auxiliary relations are set to the result of A applied to I0.
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The reductions usually used in dynamic complexity are bounded first-order
reductions [20]. A reduction f is bounded if there is a global constant c such
that if the structure D′ is obtained from the structure D by inserting or deleting
one tuple, then f(D′) can be obtained from f(D) by inserting and/or deleting
at most c tuples. We will not directly employ these reductions here, but we will
use the simple proof idea to show that DynFO is closed under these reductions
(see [20]): if a query Q can be maintained by a dynamic program P under
insertions and deletions of single tuples, then there is also a dynamic program
that can maintain Q under insertions and deletions of up to c tuples, for any
constant c. That dynamic program can be obtained by nesting c copies of the
update formulas of P.

Hypergraphs and Homomorphisms. We use the term hypergraph in a very broad
sense. For this paper, a hypergraph H is just a relational structure over a purely
relational schema τ = {E1, . . . , Em}, that is, a structure H = (V, E1, . . . , Em),
where the domain V is a set of nodes and the relations E1, . . . , Em are sets
of (labelled) hyperedges. This definition implies that the maximal size of any
hyperedge, that is, the maximal arity of a relation Ei, is a constant that only
depends on τ . Sometimes we ignore the labels and denote H as a tuple (V, E),
where E = E1 ∪ · · · ∪ Em is the set of all hyperedges.

A spanning forest of an undirected graph G = (V,E) is defined in the usual
way. We encode a spanning forest as a structure (V, F, P ) where F is the set of
spanning edges and P is a ternary relation that describes paths in the spanning
forest. A tuple (s, t, u) ∈ P indicates that (1) s and t are in the same connected
component of the spanning forest and (2) the unique path from s to t in the
spanning forest is via the node u. Patnaik and Immerman [20] have shown that
spanning forests with this encoding can be maintained in DynFO under insertions
and deletions of single edges [20, Theorem 4.1].

A join forest J(H) of a hypergraph H = (V, E1, . . . , Em) is a forest whose
nodes are the hyperedges of H, such that if two hyperedges e, e′ have a node
v ∈ V in common, then they are in the same connected component of J(H) and
all nodes on the unique path from e to e′ in J(H) are hyperedges of H that also
include v. We encode a join forest using relations Fij and Pijk with the same
intended meaning as for spanning forests, where i, j, k ∈ {1, . . . , m}. The arity
of Fij is the sum of the arities of Ei and Ej , a tuple (e, e′) ∈ Fij indicates that
J(H) has an edge between the hyperedges e ∈ Ei and e′ ∈ Ej . The use of Pijk

is analogous.
We define that a hypergraph is acyclic if it has a join forest. This definition

coincides with the notion of α-acyclicity introduced by Fagin [9]. See also [12,
Section 2.2] for a detailed discussion of this notion.

A homomorphism from a hypergraph H = (V, EH
1 , . . . , EH

m) to a hypergraph
H′ = (V ′, EH′

1 , . . . , EH′
m ) is a map h : V → V ′ that preserves the hyperedge

relations. So, for all relations Ei and all tuples (v1, . . . , v�) over V, where � is the
arity of Ei, if (v1, . . . , v�) ∈ EH

i is a hyperedge of H, then (h(v1), . . . , h(v�)) ∈
EH′

i is a hyperedge of H′.
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The main problem we study is the Acyclic Hypergraph Homomorphism prob-
lem AHH(τ), where τ is a fixed schema. It asks, for two given hypergraphs Q
and D over schema τ (where Q is acyclic), also called query hypergraph and data
hypergraph respectively, whether there is a homomorphism from Q to D.

3 Maintenance Under Changes of the Query Hypergraph

The goal of this section is to show that AHH can be maintained under changes
of the query hypergraph Q, as long as it stays acyclic. We also show that a
DynFO program can recognise that a change would make Q cyclic. So, we do not
need to assume that only changes occur that preserve acyclicity, if we allow the
program to “deny” all other changes.

We introduce some notation of [12]. The weighted hyperedge graph wg(H)
of a hypergraph H is the undirected weighted graph wg(H) = (V,E,w) whose
nodes V are the hyperedges of H and the set E contains an undirected edge (e, e′)
if e, e′ are different hyperedges of H that have at least one node in common. The
weight w((e, e′)) of such an edge is the number of nodes that e and e′ have in
common.

The weight w(H) of a hypergraph H is the sum over the degrees of the
non-isolated nodes of H, where each degree is decremented by one. So, if for
H = (V, E1, . . . , Em) the set Vni ⊆ V contains all nodes of H that appear in at
least one hyperedge, then w(H) =

∑
v∈Vni

(deg(v) − 1).
The following lemma provides the basis for our approach. It was originally

proven in [2], we follow the presentation of [12, Proposition 3.5].

Lemma 1 ([2], see also [12]). Let H be a hypergraph.

(a) The hypergraph H is acyclic if and only if the weight w(H) of H is equal to
the weight w(msf(wg(H))) of a maximal-weight spanning forest of wg(H).

(b) If H is acyclic, then msf(wg(H)) is a join forest of H.

Using this lemma, we prove that a dynamic program can maintain acyclicity
of hypergraphs, as well as a join forest that only changes moderately when the
input hypergraph is changed.

Theorem 2. Let τ = {E1, . . . , Em} be a fixed schema. The following can be
maintained in DynFO under insertions and deletions of single hyperedges:

(a) whether a hypergraph over τ is acyclic, and
(b) a join forest for an acyclic hypergraph H over τ , as long as H stays acyclic.

Moreover, there is a global constant cτ such that if J(H) is the maintained
join forest for H and J(H)′ is the maintained join forest after a single hyper-
edge is inserted or deleted, then J(H) and J(H)′ differ by at most cτ edges.

The proof follows the idea that is brought forth by Lemma1: we show that
a maximal-weight spanning forest of wg(H) and its weight can be maintained.
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This weight is compared with the weight of H, which is easy to maintain. If the
weights are equal, then H is acyclic and the spanning forest is a join forest.

Already Patnaik and Immerman [20] describe how a spanning forest of an
undirected graph can be maintained under changes of single edges, and their
procedure [20, Theorem 4.1] can easily be extended towards maximal-weight
spanning forests. However, we face the problem that inserting and deleting hyper-
edges of H implies insertions and deletions of nodes of wg(H). While a spanning
forest can easily be maintained in DynFO under node insertions, it is an open
problem to maintain a spanning forest under node deletions: if the spanning for-
est is a star and its center node is deleted, then it seems that a spanning forest
of the remaining graph needs to be defined from scratch, which is not possible
using FO formulas. We circumvent this problem and show that we can maintain
a spanning forest where the degree of every node is bounded by a constant.

Proof Sketch. We show how a maximal-weight spanning forest of wg(H) and
the weight w(H) can be maintained; the result then follows using Lemma1.

We start with the weight w(H). If a hyperedge e is inserted, then the weight
of the hypergraph increases by the number of nodes it contains that were not
isolated before the insertion. Similarly, if e is deleted, then the weight decreases
by the number of nodes it contains that do not become isolated. This update
can easily be expressed by first-order formulas.

Now we consider maintaining a maximal-weight spanning forest of wg(H).
Let amax be the maximal arity of a relation in τ . Any hyperedge of H =

(V, E1, . . . , Em) can only include at most amax many nodes and there are at most
r

def= 2amax − 1 many different non-empty sets of nodes that a fixed hyperedge
can have in common with any other hyperedge. We can show how to maintain a
maximal-weight spanning forest of wg(H) where each node has degree at most
2r. More specifically, for any node e of wg(H) (which is a hyperedge of H)
and each non-empty set A of nodes appearing in e, the maintained spanning
forest contains at most two edges (e, e1), (e, e2) such that the set of nodes that e
has in common with e1 and e2, respectively, is exactly A. We call this property
Invariant (�). The details are omitted here. ��

We now present the main maintenance result of this paper.

Theorem 3. Let τ = {E1, . . . , Em} be a fixed schema. The problem AHH(τ)
can be maintained in DynFO, starting from an arbitrary initial hypergraph D
and an initially empty hypergraph Q, under insertions and deletions of single
hyperedges of Q, as long as this hypergraph stays acyclic.

The proof uses the idea of Yannakakis’ algorithm [25] for evaluating a con-
junctive query. This algorithm processes a join tree for a query Q in a bottom-up
fashion. In a first step, for each node Ei(x̄) of the join tree (which is a hyperedge
of Q) all assignments ȳ for its variables are stored such that Ei(ȳ) exists in the
data hypergraph D. Then, bottom-up, each inner node removes all of its variable
assignments that are not consistent with the assignments of its children. So, an
assignment ȳ for a node Ei(x̄) is removed if there is a child Ej(x̄′) of Ei(x̄) such
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that no stored assignment ȳ′ of that child agrees with ȳ on the common variables
of x̄ and x̄′. All remaining stored assignments for Ei(x̄) can be extended to a
homomorphism for the subhypergraph of Q that consists of the hyperedges that
are in the subtree of the join tree rooted at Ei(x̄). A homomorphism from Q to
D exists if after the join tree is processed the root has remaining assignments.

Proof. Let Q be an acyclic hypergraph over some schema τ and let D be a
hypergraph over the same schema. Also, let J(Q) be a join forest of Q.

We adapt a technique that was used by Gelade, Marquardt and
Schwentick [11] to show that regular tree languages can be maintained in a
subclass of DynFO. For each triple Ei, Ej , Ek of symbols from τ we maintain an
auxiliary relation Hijk(r̄, x̄1, x̄2, ȳ1, ȳ2) with the following intended meaning. A
tuple (r̄, x̄1, x̄2, ȳ1, ȳ2) is in Hijk if

(1) the hyperedges Ei(r̄), Ej(x̄1) and Ek(x̄2) are present in Q and in the same
connected component C of J(Q),

(2) when we consider Ei(r̄) to be the root of C then Ej(x̄1) is a descendant of
Ei(r̄) and Ek(x̄2) is a descendant of Ej(x̄1), and

(3) if we assume that there is a homomorphism h2 of the subtree of C rooted
at Ek(x̄2) into D such that h2(x̄2) = ȳ2, then it follows that there also is
a homomorphism h1 of the subtree of C rooted at Ej(x̄1) into D such that
h1(x̄1) = ȳ1.

Phrased differently, (r̄, x̄1, x̄2, ȳ1, ȳ2) ∈ Hijk means that the hyperedges in
J(Q) which, considering Ei(r̄) to be the root, are in the subtree of Ej(x̄1) but
not in the subtree of Ek(x̄2), can be mapped into D by a homomorphism that
maps the elements x̄1 to ȳ1 and the elements x̄2 to ȳ2.

If (r̄, x̄1, x̄2, ȳ1, ȳ2) ∈ Hijk holds we say that ȳ1 is a valid partial assignment
for Ej(x̄1) down to (Ek(x̄2), ȳ2).

Notice that from these relations one can first-order define relations
H ′

ij(r̄, x̄, ȳ) with the intended meaning that (r̄, x̄, ȳ) ∈ H ′
ij if

(1) the hyperedges Ei(r̄) and Ej(x̄) are in the same connected component C of
J(Q), and

(2) when we consider Ei(r̄) to be the root of C then there is a homomorphism
h of the subtree of C rooted at Ej(x̄) into D such that h(x̄) = ȳ.

For this, a first-order formula existentially quantifies a hyperedge Ek(x̄2) and a
tuple ȳ2 of elements, and checks that Ek(x̄2) is a leaf of the component C with
root Ei(r̄), that the hyperedge Ek(ȳ2) exists in D and that (r̄, x̄, x̄2, ȳ, ȳ2) ∈ Hijk

holds. Whether a node is a leaf in a join tree can be expressed using the join
tree’s paths relations Pijk, all other conditions are clearly first-order expressible.
We assume in the following that these relations are available. If (r̄, x̄, ȳ) ∈ H ′

ij

holds we say that ȳ is a valid partial assignment for Ej(x̄).
We argue next that if we can maintain these auxiliary relations under inser-

tions and deletions of single edges of the join forest, then the statement of the
theorem follows.
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Notice that from the auxiliary relations a first-order formula can express
whether a homomorphism from Q to D exists. To check this, a formula needs to
express that for every connected component of J(Q) there is a homomorphism
from this component to D. This is the case if for each hyperedge Ei(r̄) of Q
there is a tuple ȳ such that (r̄, r̄, ȳ) is in H ′

ii.
It remains to argue that it is sufficient to maintain the auxiliary relations

under changes of single edges of the join forest. From Theorem2 we know that a
join forest J(Q) for Q can be maintained in DynFO under insertions and deletions
of single hyperedges, as long as it stays acyclic. Moreover, after each edge change,
the maintained join forest only differs in a constant number of edges from its
previous version. If we have a dynamic program that is able to process single
edge changes of the join forest, then by nesting its update formulas c times we
can obtain a dynamic program P ′ that is able to process c edge changes at once.
In summary, a dynamic program P for AHH maintains a join forest as described
by Theorem 2 and after every change of a hyperedge it uses P ′ to update the
auxiliary relations and to decide whether a homomorphism exists.

The relations Hijk can be maintained by first-order formulas under insertions
and deletions of single edges of the join forest. The details are omitted here. ��

4 Hardness Under Changes of the Data Hypergraph

We have seen in the previous section that one can maintain the existence of
homomorphisms in DynFO if only the query hypergraph Q may change and the
data hypergraph D remains the same. The dynamic program we constructed for
the proof of Theorem3 can not directly cope with changes of D. This is because
Q might contain several hyperedges Ei(x̄1), . . . , Ei(x̄m) over a single relation Ei:
if a change of D occurs, then the number of nodes in the join tree for which we
have to take this change into account when updating partial valid assignments
is a priori unbounded. If we disallow multiple hyperedges over the same relation
in Q, then we can actually allow a change to replace an arbitrary number of
D-hyperedges, as long as each change only affects a single relation of D. Such a
restriction of Q translates to self-join free acyclic conjunctive queries.

Corollary 4. Let τ = {E1, . . . , Em} be a fixed schema. As long as Q remains
acyclic and contains at most one hyperedge Ei(x̄) for each relation Ei ∈ τ , the
problem AHH(τ) can be maintained in DynFO under insertions and deletions
of single hyperedges of Q and under arbitrary changes of a single relation of D.

In the remainder of this section, we will see that if Q might be an arbitrary
acyclic hypergraph, then a maintenance result for AHH(τ) under changes of D
is unlikely, even if in turn Q is not allowed to change.

Gottlob et al. [12] show that it is LOGCFL-complete to decide whether from a
given acyclic hypergraph Q there is a homomorphism into a hypergraph D. The
complexity class LOGCFL contains all problems that can be reduced in logarith-
mic space to a context-free language. This class is contained in AC1, contains NL
and is equivalent to logspace-uniform SAC1 [22], the class of problems decidable
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by logspace-uniform families of semi-unbounded Boolean circuits of polynomial
size and logarithmic depth. A semi-unbounded Boolean circuit consists of or-
gates with unbounded fan-in and and-gates with fan-in 2. There are no negation
gates, but for each input gate xi there is an additional input gate ¬xi that carries
the negated value of xi.

In their article, Gottlob et al. [12] show that there is a schema τ such that
every SAC1 problem can be reduced in logarithmic space to AHH(τ). We slightly
adapt their construction and show that the hardness result also holds for bounded
logspace reductions. Furthermore, if a reduction f maps an instance x to an
instance f(x), then the change to f(x) induced by a change to x is first-order
definable.

Theorem 5 (adapted from [12, Theorem 4.8]).

(a) There is a schema τ that contains at most binary relations such that AHH(τ)
is hard for LOGCFL under logspace reductions.

(b) Let L ∈ LOGCFL. There is a logspace reduction fL from L to AHH(τ) that
satisfies the following properties. Assume that x, x′ are instances of L with
|x| = |x′| and let (Q,D) = fL(x) and (Q′,D′) = fL(x′). Then:
(i) Q = Q′,
(ii) if x and x′ differ only in one bit, then D′ differs from D by at most c

hyperedges, for a global constant c, and
(iii) D′ is first-order definable from D, x and x′.

Proof. Let L be a problem from LOGCFL. As LOGCFL = logspace-uniform SAC1,
there is a logspace-uniform family (Cn)n∈N of circuits that decides L, where a
circuit Cn has size at most nk for some k ∈ N, logarithmic depth in n, and the
fan-in of every and-gate is bounded by 2. Without loss of generality, see [12,
Lemma 4.6], we can assume that Cn also has the following normal form:

(1) the circuit consists of layers of gates, and the gates of layer i receive all their
inputs from gates at layer i − 1,

(2) all layers either only contain or-gates or only contain and-gates,
(3) the first layer after the inputs consists of or-gates,
(4) if layer i is a layer of or-gates, then layer i + 1 only consists of and-gates,

and vice versa, and
(5) the output gate is an and-gate.

A circuit of this form accepts its input if and only if a proof tree can be homo-
morphically mapped into it. A proof tree Tn for a circuit Cn in normal form has
the same depth as Cn and an and-gate as its root. Each and-gate of the proof
tree has two or-gates as its children, and each or-gate has one child, which is
a gate labelled with the constant 1 for an or-gate at the lowest layer, and an
and-gate for all other or-gates. Note that a proof tree is acyclic.

If there is a homomorphism that maps each constant 1 of the proof tree to
an input gate of the circuit that is set to 1, each and-gate of the proof tree to an
and-gate of the circuit, and for each and-gate of the proof tree its two children to
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different or-gates in the circuit, then all gates of the circuit that are in the image
of the homomorphism evaluate to 1 for the current input. Therefore, the output
gate also evaluates to 1, and the circuit accepts its input. It is also clear that if
the circuit accepts its input, then there is a homomorphism from the proof tree
into the circuit.

We encode circuits and proof trees over the schema τ = {0,1,or,and-left,
and-right}. Each gate g is encoded by a tuple enc(g) of k elements. If g is an
and-gate with children g1, g2, then this is encoded by tuples (enc(g),enc(g1)) ∈
and-left and (enc(g),enc(g2)) ∈ and-right. If g is an or-gate and g′ is one
of its children, then this is encoded by the tuple (enc(g),enc(g′)) ∈ or. The
relations 0 and 1 are used to encode constants and assignments of input gates
in the obvious way.

We use the two relations and-left,and-right to ensure that a homomor-
phism from a proof tree to a circuit maps the two children of an and-gate to two
different or-gates.

From the proof of [12, Theorem 4.8] it follows that from an input x of L with
|x| = n the corresponding circuit Cn(x), which results from Cn by assigning
constants to its inputs gates as specified by x, and the corresponding proof
tree Tn can be computed in logarithmic space. In conclusion, this proves that
the function fL that maps x to (Tn, Cn(x)) is a logspace reduction from L
to AHH(τ), and therefore that AHH(τ) is hard for LOGCFL under logspace
reductions.

We now proceed to prove part (b) of the theorem statement. Consider two
input instances x, x′ for L with |x| = |x′| = n. Both x and x′ are inputs of
the circuit Cn, so the same proof tree is constructed for them by fL, yielding
part (b)(i). The only differences in the images of fL are the assignments of
constants to the input gates of Cn. If x and x′ only differ in one bit, say, the
first bit that is represented by the input gate g1, then we have enc(g1) ∈ 0
and enc(¬g1) ∈ 1 for one input, and enc(g1) ∈ 1 and enc(¬g1) ∈ 0 for the
other input. So, the encodings of the circuit only differ by 4 tuples, which implies
part (b)(ii). Towards part (b)(iii), we can ensure that these tuples are first-order
definable by using an appropriate encoding enc of the gates, for example by
encoding the i-th input gate by the i-th tuple in the lexicographic ordering of
k-tuples over the domain. ��

Building on the hardness result of Theorem5, we can show that if AHH(τ)
can be maintained in DynFO under changes of D, then all LOGCFL-problems
are in DynFO if we allow a PTIME initialisation. This would be a breakthrough
result, as there are already problems in uniform AC0[2] (problems decidable by
uniform circuits with polynomial size, constant depth and not-, and-, or- and
modulo 2-gates with arbitrary fan-in), a much smaller complexity class, that we
do not know how to maintain in DynFO [24].

Theorem 6. If for arbitrary schema τ the problem AHH(τ) can be maintained
in DynFO under insertions and deletions of single hyperedges from Q and D, as
long as Q stays acyclic, then every problem L ∈ LOGCFL can be maintained in
DynFO with PTIME initialisation under insertions and deletions of single tuples.
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The same even holds under the condition that AHH(τ) can only be main-
tained under changes of single hyperedges of D, but starting from an arbitrary
initial acyclic hypergraph Q, even if a PTIME initialisation of the auxiliary rela-
tions is allowed. So, we can take this theorem as a strong indicator that AHH
might not be in DynFO under changes of D.

Proof. Let L ∈ LOGCFL be arbitrary. Let τ be the schema and fL the reduction
guaranteed to exist by Theorem 5 such that fL is a reduction from L to AHH(τ).
Let P be a dynamic program that maintains AHH(τ) under insertions and
deletions of single hyperedges. We construct a dynamic program P ′ with PTIME
initialisation that maintains L.

For an initially empty input structure I over a domain of size n, the initiali-
sation first constructs the corresponding SAC1-circuit Cn(I), with the input bits
set as given by I, and the proof tree Tn and stores them in auxiliary relations.
This is possible in LOGSPACE ⊆ PTIME. Then, using polynomial time, it sim-
ulates P for a sequence of insertions that lead to Cn(I) and Tn from initially
empty hypergraphs and stores the produced auxiliary relations.

When a change of I occurs, P ′ identifies the constantly many changes of
Cn(I) that are induced by the change, which is possible in first-order logic
thanks to Theorem 5, and simulates P for these changes. ��

5 Conclusion and Further Work

In this paper we studied under which conditions the problem AHH can be main-
tained in DynFO. Our main result is that this problem is in DynFO under changes
of single hyperedges of the query hypergraph Q, on the condition that it remains
acyclic. This result directly implies that the result of acyclic Boolean conjunction
queries can be maintained in DynFO. As the corresponding dynamic program,
see the proof of Theorem 3, also maintains partial assignments of existing homo-
morphisms, this can straightforwardly be extended also to non-Boolean acyclic
conjunctive queries. We have also seen that it is unlikely that AHH is in DynFO
under changes of the data hypergraph D.

In the static setting, the homomorphism problem is not only tractable for
acyclic hypergraphs Q, but for a larger class of graphs [5] which includes the
class of graphs with bounded treewidth, see [12]. It is therefore interesting whether
our DynFO maintenance result can also be extended to allow for cyclic hyper-
graphs Q, in particular to allow hypergraphs of treewidth at most k, for some k.
Results of this form would probably require an analogous result to Theorem2,
so, that a tree decomposition of some width f(k) can be maintained for every
hypergraph with treewidth at most k, and that any change of the hypergraph
leads to a maintained tree decomposition that can be obtained from its previous
version by a constant number of changes.

Outside the DynFO framework, maintenance of tree decompositions for
graphs with treewidth k = 2, that is, series-parallel graphs, is considered in [3],
but a change of the graph may affect a logarithmic number of nodes of the tree
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decomposition. Preliminary unpublished results show (using different techniques
than [3]) that for graphs with treewidth 2 a tree decomposition can be main-
tained also in DynFO, but it is so far unclear whether they can be maintained
such that only a constant-size part changes after a change of the graph.
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Abstract. The quadratic shortest path problem (QSPP) in a directed
graph asks for a directed path from a given source vertex to a given sink
vertex, so that the sum of the interaction costs over all pairs of arcs on
the path is minimized. We consider special cases of the QSPP that are
linearizable as a shortest path problem in the sense of Bookhold. If the
QSPP on a directed graph is linearizable under all possible choices of the
arc interaction costs, the graph is called universally linearizable.

We provide various combinatorial characterizations of universally lin-
earizable graphs that are centered around the structure of source-to-sink
paths and around certain forbidden subgraphs. Our characterizations
lead to fast and simple recognition algorithms for universally linearizable
graphs. Furthermore, we establish the intractability of deciding whether
a concrete instance of the QSPP (with a given graph and given arc inter-
action costs) is linearizable.

1 Introduction

An instance of the Shortest Path Problem (SPP) consists of a directed graph
G = (V,A) together with a source vertex s ∈ V , a sink vertex t ∈ V , and
weights w(a) ∈ R≥0 for the arcs a ∈ A. For a simple directed s-t-path P that
traverses the arcs a1, a2, . . . , ap in that order, its SPP-weight is given by

SPP(P,w) :=
p∑

i=1

w(ai). (1)

The Quadratic Shortest Path Problem (QSPP) takes as input a directed graph
G = (V,A) together with a source s ∈ V and a sink t ∈ V . Every pair of arcs
a, a′ ∈ A comes with an interaction cost q(a, a′) ∈ R≥0; we assume throughout
that q(a, a′) = q(a′, a) holds for all a, a′ ∈ A. For a simple directed s-t-path P
that traverses the arcs a1, a2, . . . , ap in that order, its QSPP-cost is given by

QSPP(P, q) :=
p∑

i=1

p∑

j=1

q(ai, aj). (2)
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Fig. 1. The grid G2,n consists of two horizontal layers with n vertices. All horizontal
arcs are oriented from west to east and all vertical arcs from south to north.

The goal in the SPP and in the QSPP is to determine a simple directed s-t-path
P that minimizes the respective objective values (1) and (2). While the SPP is
polynomially solvable, the QSPP is NP-hard and extremely difficult to solve; see
for instance Rostami et al. [18], and Hu and Sotirov [11–13].

Linearizations. An instance of the QSPP is called linearizable, if there exist arc
weights w : A → R≥0 for the SPP on the same directed graph G such that

QSPP(P, q) = SPP(P,w) for all simple directed s-t-paths P. (3)

If we manage to find a linearization of a QSPP instance, we can of course solve
the QSPP instance by simply solving the linearized instance of the SPP instead.
Hu and Sotirov [11,12] were the first to study linearizations of the QSPP. Among
other results, they show in [12] that for an acyclic directed graph G with given
arc interaction costs, linearizability of the instance can be decided in polyno-
mial time. Furthermore [11] proves that on the grid G2,n the QSPP is always
linearizable, independently of the concrete arc interaction costs in the instance;
see Fig. 1 for an illustration.

Linearizations of non-linear problems form a widely used standard tool in
continuous optimization and numerical analysis. On the discrete side, the lin-
earization of hard combinatorial optimization problems by easy combinatorial
optimization problems goes back to the seminal work of Bookhold [1], who lin-
earized the NP-hard Quadratic Assignment Problem (QAP) via the polyno-
mially solvable linear assignment problem. Kabadi and Punnen [14,15] gave a
polynomial time algorithm for recognizing linearizable instances of the QAP in
Koopmans-Beckmann form. Furthermore, [15] presented a purely combinatorial
characterization of all linearizable QAP instances with symmetric cost matri-
ces. Further results on linearizations of the QAP have been derived by Erdoğan
[5], Erdoğan and Tansel [6,7], and Çela, Deineko and Woeginger [2]. Ćustić and
Punnen [3] investigate linearizable instances of the quadratic minimum spanning
tree problem, Punnen, Walter and Woods [16] study linearizable instances of the
quadratic travelling salesman problem, and De Meijer and Sotirov [4] analyze
linearizations of the quadratic cycle cover problem.

Contribution and Organization of This Paper. We call a directed graph G uni-
versally linearizable (with respect to the QSPP), if every instance of the QSPP
on the input graph G is linearizable, for every choice of arc interaction costs
q. This concept is motivated by the work of Hu and Sotirov [11], who showed
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Fig. 2. Another universally linearizable graph.

that the grid G2,n depicted in Fig. 1 is universally linearizable. We provide two
further examples, a positive one and a negative one: The graph in Fig. 2 is uni-
versally linearizable. The 3 × 3 grid G3,3 (with all horizontal arcs oriented from
west to east and all vertical arcs oriented from south to north) is not universally
linearizable. The reader may try to settle these statements as a puzzle, or derive
them from Theorem 1 in Sect. 3 or from Theorem 2 in Sect. 4.

Which directed graphs are universally linearizable? Section 3 introduces a
structural property of the set of s-t-paths that concisely characterizes the uni-
versally linearizable graphs. This characterization implies that universally lin-
earizable graphs cannot contain directed cycles (unless these directed cycles do
contain some phony type of arcs that do not belong to any s-t-path and that
hence are irrelevant for the QSPP). For this reason, Sect. 4 then takes a closer
look at acyclic graphs, and presents a forbidden subgraph characterization of
acyclic universally linearizable graphs that is centered around so-called 12121-
subgraphs. Section 5 uses our characterizations to construct fast and simple poly-
nomial time recognition algorithms for universally linearizable graphs, and an
even faster and even simpler linear time recognition algorithms for acyclic uni-
versally linearizable graphs.

Section 6 discusses two closely related decision problems. Problem LINEARI-
ZABLE-QSPP asks whether a given instance of the QSPP (specified by the graph
and the arc interaction costs) is linearizable. Problem VALID-LINEARIZATION
asks whether a given weight function w forms a linearization of a given instance of
the QSPP. Hu and Sotirov [12] have shown that both problems are polynomially
solvable in the special case where the underlying directed graph G is acyclic. We
show that both problems are coNP-complete in the general case with arbitrary
directed graphs that are allowed to contain directed cycles. The coNP-certificate
for LINEARIZABLE-QSPP is not straightforward to get.

2 Technical Preliminaries

For a simple directed path P that visits the vertices v1, v2, . . . , vp in this order
and for two indices i and j with i ≤ j, we denote by P [vi, vj ] the sub-path of P
that starts in vertex vi and ends in vj . We often consider vertices v as degenerate
paths P [v, v] without arcs, and we consider arcs (u, v) as paths P [u, v] on two
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vertices. For paths P = P [v1, v2] and Q = Q[v2, v3], we denote by P · Q (or PQ
for short) the path from v1 to v3 that results from merging P and Q together at
their common vertex v2. For paths P = P [v1, v2] and Q = Q[v3, v4] and an arc
(v2, v3) ∈ A, we denote by P − Q the path P · (v2, v3) · Q from v1 to v4.

For SPP and QSPP instances, we will always assume that the graph G =
(V,A) has a unique source s ∈ V and a unique sink t ∈ V . By Pst we denote
the set of all simple directed s-t-paths in G. If an arc a ∈ A is not traversed by
any path in Pst, this arc is irrelevant for SPP and QSPP and in particular is
irrelevant for the linearizability of a QSPP instance. Hence we will sometimes
assume that every arc in A lies on at least one simple s-t-path, and we will say
that graphs with that property are Pst-covered.

3 The Characterization via Private Arcs

In this section, we provide a combinatorial characterization of universally lin-
earizable directed graphs for the QSPP. For a path P ∈ Pst, we say that an arc
a ∈ P is a private arc if no other path Q ∈ Pst with Q �= P traverses this arc a.

Theorem 1. For a digraph G = (V,A), the following statements are equivalent:

(U) Graph G is universally linearizable.
(P) Every path in Pst possesses a private arc.

Proof. First we show (P) ⇒ (U). Let P1, . . . , Pk be an enumeration of the paths
in Pst, and let ai ∈ A denote a private arc of path Pi for i = 1, . . . , k. For a QSPP
instance on G with arc interaction costs q : A × A → R≥0, we define arc weights
w : A → R≥0 by setting w(ai) := QSPP(Pi, q) for i = 1, . . . , k and w(a) := 0 for
all remaining arcs a ∈ A. These weights w yield the desired linearization.

Now let us turn to the proof of (U) ⇒ (P). Consider some fixed path P ∈ Pst

that traverses the arcs a1, a2, . . . , ap in that order. For any pair of indices x and
y with 1 ≤ x �= y ≤ p, we define a corresponding QSPP instance Ix,y by
setting the arc interaction costs q(ax, ay) = q(ay, ax) = 1, and setting all other
interaction costs to zero. Note that in the resulting instance Ix,y of QSPP, the
cost of any path Q ∈ Pst either equals 2 (if Q traverses both arcs ax and ay) or
equals 0 (if Q skips ax or ay). Since the graph G is universally linearizable, the
constructed instance Ix,y is linearizable as an SPP instance with some weight
function w : A → R≥0. Since QSPP(P, q) = 2 and SPP(P,w) = 2, at least one
of the arc weights w(ai) with 1 ≤ i ≤ p is strictly positive; the smallest such
index i is denoted by i(x, y).

Now consider an arbitrary path Q ∈ Pst that traverses the arc ai(x,y).
As SPP(Q,w) ≥ w(ai(x,y)) > 0 holds in the SPP instance, we conclude that
QSPP(Q, q) > 0 and that Q hence traverses both arcs ax and ay. Let us summa-
rize our findings so far: For any two indices x and y with 1 ≤ x �= y ≤ p, there
exists an index i(x, y), such that every path Q ∈ Pst that traverses arc ai(x,y)

must also traverse the arcs ax and ay. In other words, the traversal of arc ai(x,y)

enforces the traversal of arc ax (and the traversal of arc ay); we denote this
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situation by the binary relation ai(x,y) � ax (and by ai(x,y) � ay). The reflexive
and transitive closure of the relation � on the arc set AP := {a1, . . . , ap} is
denoted by �∗.

In the last step of the proof, we consider an arc az ∈ AP that maximizes the
number of arcs aj ∈ AP with az �∗aj . Suppose for the sake of contradiction
that there is some arc ak ∈ AP with az ��∗ak. But then the existence of arc
ai(z,k) contradicts our choice of arc az, as all aj ∈ AP with az �∗aj satisfy
ai(z,k) � az �∗aj , and as furthermore ai(z,k) � ak holds. We conclude that
whenever a path Q ∈ Pst contains the arc az, then the path must actually
contain all the arcs in AP and hence coincide with path P . This implies that arc
az is a private arc for path P , as desired. �	

Theorem 1 indicates that universal linearizability imposes heavy constraints
on the combinatorial structure of a graph. The following lemma shows that these
constraints even prevent the occurrence of directed cycles.

Lemma 1. Let G = (V,A) be a Pst-covered digraph that has a directed cycle.
Then G is not universally linearizable and violates the private arc property (P).

Proof. Let C be a directed cycle in graph G, and let P be a path in Pst that
has the largest possible number of arcs in common with the cycle C. Let y ∈ V
denote the last vertex on path P that also belongs to cycle C; note that y �= t.
Let (y, yQ) ∈ A be the unique arc on C going out of y. As the graph G is Pst-
covered, there exists another path Q ∈ Pst that traverses the arc (y, yQ). Let x
be the last vertex on path P (and also the last vertex on path Q) that satisfies

P [s, x] = Q[s, x]. (4)

Suppose for the sake of contradiction that x = y. Then P [s, y] = Q[s, y], so that
path Q contains all the arcs on C that are covered by path P and additionally
contains the arc (y, yQ) on C. As this contradicts our maximizing choice of path
P , we conclude x �= y. Furthermore we get that vertex x precedes vertex y on
path P as well as on path Q. Let xP be the successor of x on P , and let xQ be
the successor of x on Q; clearly xP �= xQ.

We let z be the last vertex on P [y, t] that also belongs to Q[xQ, y]; this vertex
z is well-defined, as vertex y does belong to both paths. We let zP denote the
successor of z on path P ; this vertex zP is well-defined, as z ∈ Q[xQ, y] and y �= t
imply z �= t. Similarly, we let zQ denote the successor of z on path Q; clearly
zP �= zQ. We introduce the directed path R that is pasted together from three
sub-paths of P and Q via the arcs (x, xQ) and (z, zP ) in the following way:

R := P [s, x] − Q[xQ, z] − P [zP , t] (5)

As P [s, x] = Q[s, x] by (4) and as P and Q are simple paths, the first sub-path
P [s, x] in R is vertex-disjoint from its second sub-path Q[xQ, z] and also from
its third sub-path P [zP , t]. By our choice of vertex z, also the second and third
sub-path of R are vertex-disjoint. All in all, this yields R ∈ Pst. Since path
R traverses the arc (x, xQ), whereas path P traverses the arc (x, xP ), we get
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R �= P . Since path R traverses the arc (z, zP ), whereas path Q traverses the arc
(z, zQ), we get R �= Q. As every arc of path R ∈ Pst is also traversed by path
P �= R or by path Q �= R, path R has no private arc. As graph G violates the
private arc property (P), Theorem 1 yields that it is not universally linearizable.
�	

4 The Characterization via Forbidden Subgraphs

In this section, we analyze certain subgraphs that form obstructions to universal
linearizability. A 12121-subgraph of graph G is a subgraph that is built around
the source s, the sink t, four further vertices x1, x2, y1, y2, and seven simple
directed paths P ′, X1, X2, P ′′, Y1, Y2, P ′′′ in G; see Fig. 3 for an illustration.
The three paths P ′, P ′′, P ′′′ respectively connect vertex s to vertex x1, vertex x2

to vertex y1, and vertex y2 to vertex t. The two paths X1 and X2 each connect
x1 to x2, and the two paths Y1 and Y2 each connect y1 to y2. The seven paths
have no further vertices in common, and they are arc-disjoint. We require that
x1 �= x2 and y1 �= y2, but we do allow that vertex s coincides with x1, that
vertex x2 coincides with y1, and that vertex y2 coincides with t.

Fig. 3. A 12121-subgraph with the six vertices s, x1, x2, y1, y2, and t and the seven
paths P ′, X1, X2, P

′′, Y1, Y2, and P ′′′.

Lemma 2. Let G = (V,A) be a directed graph. If every path in Pst possesses a
private arc, then G does not contain any 12121-subgraph. �	

The graph depicted in Fig. 4 demonstrates that the converse of Lemma 2 does
not hold true in general. This graph contains only four simple directed s-t-paths:
P1 = sv1t, P2 = sv2t, P3 = sv1v2t, and P4 = sv2v1t. It is easily verified that the
graph does not contain any 12121-subgraph. Finally, as path P1 shares its first
arc (s, v1) with P3 and as it shares its second arc (v1, t) with P4, this path does
not possess any private arc. Summarizing, the absence of the 12121-subgraph
does not guarantee the private arc property (P).

As the trouble-making graph in Fig. 4 is Pst-covered and does contain a
directed cycle, its violation of the private arc property could also have been
concluded from Lemma 1. As it turns out, there are only two types of Pst-
covered graphs without 12121-subgraph: One type does contain a directed cycle,
and is not universally linearizable by Lemma 1. The other type is acyclic, and
is universally linearizable by Theorem 1 and the following Lemma 3.
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Fig. 4. A graph without 12121-subgraph that violates the private arc property (P).

Lemma 3. Let G = (V,A) be an acyclic directed graph. If G does not contain
any 12121-subgraph, then every path in Pst possesses a private arc.

Proof. Consider some fixed path P ∈ Pst that traverses the vertices v1, v2, . . . , vp

in that order (where v1 = s and vp = t). For integers α and β with 1 ≤ α < β ≤ p,
we say that the closed interval [α, β] on the real line is nice, if there exists a simple
directed path Q[vα, vβ ] that leads from vertex vα to vertex vβ , that does not
have any arc in common with path P , and whose inner vertices do not belong to
path P . Suppose for the sake of contradiction that there exist two nice intervals
[α, β] and [γ, δ] with β ≤ γ. Since graph G is acyclic, the two underlying paths
Q[vα, vβ ] and Q[vγ , vδ] are arc-disjoint and do not share any inner vertices. Then
G contains a 12121-subgraph with x1 = vα, x2 = vβ , y1 = vγ , and y2 = vδ; the
seven paths in the 12121-subgraph are the five subpaths that result from cutting
path P at the vertices vα, vβ , vγ , vδ together with the two paths Q[vα, vβ ] and
Q[vγ , vδ]. This contradiction yields that any two nice intervals [α, β] and [γ, δ]
must intersect properly in an interval of length at least 1.

Now let Q �= P be another path in Pst that shares some common vertex or
some common arc with path P . As graph G is acyclic, path Q will traverse its
common vertices and arcs with P in exactly the same order as P . Let x be the
largest index for which the prefix paths P [s, vx] and Q[s, vx] coincide, and let
y be the smallest index for which the suffix paths P [vy, t] and Q[vy, t] coincide.
Note that the sub-path Q[vx, vy] does only share its start-vertex and end-vertex
with P , whereas its inner vertices and its arcs are disjoint from P (as any further
overlap or intersection between paths P and Q would yield two nice intervals
that do not intersect properly). We associate the nice interval I(Q) := [x, y] with
path Q.

Finally let Q ⊆ Pst denote the set of all paths Q ∈ Pst that share some arc
with path P (if there is no such path Q, then every arc on P is private and
we are done). By the above discussion, for any two paths Q1 and Q2 in Q the
two associated nice intervals I(Q1) and I(Q2) do intersect properly. Then the
one-dimensional version of Helly’s theorem [10] yields that the intersection of all
the intervals I(Q) with Q ∈ Q is non-empty and forms an interval [x∗, y∗] of
length at least 1. As the arc (vx∗ , vx∗+1) lies in every interval I(Q) with Q ∈ Q,
this arc does not belong to any path Q ∈ Q and thus constitutes the desired
private arc for path P . �	
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If an acyclic digraph is universally linearizable, every vertex v ∈ V − {s, t}
has at least one in-going and at least one out-going arc (as s and t are the unique
source and sink). We classify the vertices in V −{s, t} into four subsets: vertices
in V11 have in-degree 1 and out-degree 1; vertices in V12 have in-degree 1 and
out-degree at least 2; vertices in V21 have in-degree at least 2 and out-degree 1;
vertices in V22 have both in-degree and out-degree at least 2.
Lemma 4. An acyclic graph G = (V,A) with unique source and unique sink is
universally linearizable, if and only if it satisfies the following two conditions:
(D1) The vertex set V22 is empty.
(D2) No directed path connects a vertex in V21 to a vertex in V12. �	

Lemma 4 leads to yet another, extremely simple combinatorial characteriza-
tion of universally linearizable acyclic graphs G = (V,A). Let us consider a path
P ∈ Pst on the vertices v1, v2, . . . , vp in that order (where v1 = s and vp = t).
By condition (D2), on path P every vertex in V12 precedes every vertex in V21.
Hence by (D1) and (D2), there exists an arc (vk, vk+1) with 1 ≤ k ≤ p−1, whose
removal divides path P into a prefix path on vertices v1, . . . , vk ∈ {s}∪V11 ∪V12

and into a suffix path on vertices vk+1, . . . , vp ∈ {t}∪V11∪V21. The first arc with
that property on P is denoted a∗(P ). It is easily seen that a∗(P ) is a private arc
for path P . Now let us remove the private arc a∗(P ) from every path P ∈ Pst.
The remaining graph consists of a component with vertices from {s} ∪ V11 ∪ V12

that are reachable from the source s, and of another component with vertices
from {t} ∪ V11 ∪ V21 from which the sink t can be reached. This yields that an
acyclic universally linearizable graph G is structured into three parts as follows.
– There is an out-tree T+ whose root is s, and whose inner vertices are the

vertices in V12 together with some subset of the vertices in V11.
– There is an in-tree T− whose root is t, and whose inner vertices are the

vertices in V21 together with the remaining vertices in V11.
– Finally there are the arcs a∗(P ) with P ∈ Pst. Each of these arcs connects a

vertex in the out-tree T+ to a vertex in the in-tree T−.

With this knowledge, it is straightforward to see that the acyclic graph shown in
Fig. 2 is indeed universally linearizable: The out-tree T+ is induced by the three
vertices s, v1, v2, and the in-tree T− is induced by the three vertices v3, v4, t. The
remaining four arcs connect T+ to T−, and hence form the private arcs of the
paths in Pst.

Theorem 2. For a directed acyclic graph G = (V,A) with unique source and
unique sink, the following five statements are pairwise equivalent:
(U) Graph G is universally linearizable.
(P) Every path in Pst possesses a private arc.
(F) Graph G does not contain any 12121-subgraph.
(D) There is no directed path that leads from a vertex with in-degree at

least 2 to a vertex with out-degree at least 2.
(T) Graph G consists of an out-tree rooted at s, an in-tree rooted at t, and

of several arcs that connect the out-tree to the in-tree.
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Fig. 5. The decision problems discussed in Sect. 6.

5 The Recognition of Universally Linearizable Graphs

In this section we present fast, polynomial time recognition algorithms for uni-
versally linearizable graphs. Since the algorithmic side of Pst-covered graphs is
not well-understood, we will not a priori assume that the graphs considered in
this section are Pst-covered.

Lemma 5. For a given acyclic directed graph G = (V,A) with unique source
and unique sink, it can be decided in linear time O(|V | + |A|) whether G is
universally linearizable. �	
Theorem 3. For a given (not necessarily Pst-covered) directed graph G =
(V,A) with unique source and unique sink, it can be decided in polynomial time
O(|V | · |A|2) whether G is universally linearizable. �	

6 The Recognition of Linearizable QSPP Instances

Hu and Sotirov [12] have shown that the decision problems VALID-LINEARI-
ZATION and LINEARIZABLE-QSPP in Fig. 5 both are polynomially solvable, if
the underlying directed graph G is acyclic. The following (purely combinatorial)
proposition can be extracted and deduced from the algorithmic arguments in
[12], by combining them with the techniques of our Sect. 4. For subsets S, T ⊆ A
of the arc set we denote q(S, T ) =

∑
s∈S

∑
t∈T q(s, t).

Proposition 1. For an acyclic directed graph G = (V,A) with s, t ∈ V and
for arc interaction costs q : A × A → R≥0, the following two statements are
equivalent.
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(L1) The QSPP instance G and q is linearizable.
(L2) In every 12121-subgraph of G, the subpaths X1,X2, Y1, Y2 satisfy the

equation q(X1, Y1) + q(X2, Y2) = q(X1, Y2) + q(X2, Y1). �	
We will show that the problems VALID-LINEARIZATION and LINEA-

RIZABLE-QSPP both are coNP-complete in arbitrary (not necessarily acyclic)
directed graphs. Note that the combinatorial characterization in Proposition 1
yields a coNP-certificate for the (polynomially solvable) special case of prob-
lem LINEARIZABLE-QSPP on acyclic graphs: Any NO-instance contains a
12121-subgraph whose subpaths X1,X2, Y1, Y2 violate the equation in (L2).
Unfortunately this coNP-certificate does not generalize to graphs with cycles,
as the following example demonstrates. Consider the graph on six vertices
s, t, x1, x2, x3, y in Fig. 6, and define arc interaction costs as follows: The inter-
action cost of the two arcs (x1, y) and (y, x2) is 1; the interaction cost of the
two arcs (x2, y) and (y, x3) is 1; and the interaction cost of the two arcs (x3, y)
and (y, x1) is 1; all other arc interaction costs are 0. As the graph does not con-
tain any 12121-subgraph, the QSPP instance trivially satisfies condition (L2)
in Proposition 1. However, this instance is not linearizable and hence violates
condition (L1): The three paths P1 = sx1yx2t, P2 = sx2yx3t, P3 = sx3yx1t
together traverse each of the twelve arcs exactly once, and the three paths
Q1 = sx1yx3t, Q2 = sx2yx1t, Q3 = sx3yx2t together also traverse each of the
twelve arcs exactly once. Therefore any linear weight function w : A → R≥0

will satisfy
∑3

i=1 SPP(Pi, w) =
∑3

i=1 SPP(Qi, w), which badly collides with∑3
i=1 QSPP(Pi, q) = 6 and

∑3
i=1 QSPP(Qi, q) = 0. The following lemma con-

structs a coNP-certificate for LINEARIZABLE-QSPP based on a different idea.

Fig. 6. Proposition 1 does not generalize to graphs with cycles.

Lemma 6. The problems VALID-LINEARIZATION and LINEARIZABLE-
QSPP are contained in the complexity class coNP.
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Proof. Every NO-instance of VALID-LINEARIZATION contains some path P
that violates the condition QSPP(P, q) = SPP(P,w) in (3). This path P is
the coNP-certificate: The path can be described with polynomially many bits,
and its violation of (3) is easily verified in polynomial time. Hence VALID-
LINEARIZATION is contained in coNP.

Next let us consider a NO-instance of LINEARIZABLE-QSPP. This means
that the following system of linear equations and inequalities with real variables
wa for the arcs a ∈ A is infeasible:

∑

a∈P

wa = QSPP(P, q) for every path P ∈ Pst (6)

wa ≥ 0 for every arc a ∈ A (7)

By Farkas’ lemma [8], the infeasibility of (6)–(7) is equivalent to the feasibility
of the following dual system with real variables xP for the paths P ∈ Pst:

∑

P∈Pst

QSPP(P, q) · xP < 0 (8)

∑

P : a∈P

xP ≥ 0 for every arc a ∈ A (9)

Now fix some feasible solution x∗ for (8)–(9), let P+ denote the set of all paths
P ∈ Pst with x∗

P ≥ 0, and let P− denote the set of all paths P ∈ Pst with
x∗

P < 0. We introduce the following additional constraints:
∑

P∈P+

xP −
∑

P∈P−
xP ≤ 1 (10)

xP ≥ 0 for every path P ∈ P+ (11)

xP ≤ 0 for every path P ∈ P− (12)

As the constraints (10)–(12) enforce |xP | ≤ 1 for every path P , the underlying
feasible region is bounded. Furthermore it is easy to see that the feasibility of
the system (8)–(9) implies the feasibility of the system (8)–(12). In particular,
the system (8)–(12) possesses a feasible solution x∗∗ that satisfies the strict
inequality (8), and that furthermore is a corner vertex of the polytope defined
by (9)–(12). As we are working in |Pst|-dimensional space, the corner vertex x∗∗

satisfies |Pst| of the constraints (9)–(12) with equality; this implies that at most
|A| + 1 of the coordinates in x∗∗ are non-zero.

Now our coNP-certificate for LINEARIZABLE-QSPP simply lists all the
paths P ∈ Pst with x∗∗

P �= 0. As the certificate consists of at most |A| + 1 paths
that each contain at most |A| arcs, the size of the certificate is polynomially
bounded in the instance size. The certificate is verified in polynomial time as
follows: We consider the restriction of the system (6)–(7) to the paths P in the
certificate. As this restricted system has a polynomial number of variables and a
polynomial number of constraints, it can be solved (and found to be infeasible)
in polynomial time by linear programming. Hence LINEARIZABLE-QSPP is
indeed contained in coNP. �	
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The hardness reductions are done from TWO-VERTEX-DISJOINT-PATHS,
and will be presented in the full version of the paper.

Theorem 4. The problems VALID-LINEARIZATION and LINEARIZABLE-
QSPP are coNP-complete. �	
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Abstract. The width k of a directed acyclic graph (DAG) G = (V,E)
equals the largest number of pairwise non-reachable vertices. Comput-
ing the width dates back to Dilworth’s and Fulkerson’s results in the
1950s, and is doable in quadratic time in the worst case. Since k can
be small in practical applications, research has also studied algorithms
whose complexity is parameterized on k. Despite these efforts, it is still
open whether there exists a linear-time O(f(k)(|V |+|E|)) parameterized
algorithm computing the width. We answer this question affirmatively
by presenting an O(k24k|V | + k2k|E|) time algorithm, based on a new
notion of frontier antichains. As we process the vertices in a topological
order, all frontier antichains can be maintained with the help of sev-
eral combinatorial properties, paying only f(k) along the way. The fact
that the width can be computed by a single f(k)-sweep of the DAG
is a new surprising insight into this classical problem. Our algorithm
also allows deciding whether the DAG has width at most w in time
O(f(min(w, k))(|V | + |E|)).

Keywords: Directed acyclic graph · Maximum antichain · DAG
width · Posets · Parameterized algorithms · Reachability queries

1 Introduction

An antichain in a directed acyclic graph (DAG) G = (V,E) is a set of vertices
that are pairwise non-reachable. The size k of a maximum-size antichain is also
called the width of G. By Dilworth’s theorem [9], the width of G also equals the
minimum number of paths needed to cover all the vertices of G. As such, it can
be computed with minimum path cover algorithms e.g., in time O(
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a reduction to maximum matching [13,17] (where E∗ is the set of edges in the
transitive closure of G, and we assume that it is already computed), or in time
O(|V ||E|) by another reduction to minimum flows [2,23].

Computing the width of a given DAG has applications in various fields. For
example, in distributed computing, it is important to analyze if a distributed
program can run so that no more than w processes have mutual access to some
resource; this relies on testing whether a particular DAG inferred from of the
program trace has width k ≤ w [18,25]; in bioinformatics, the problems of Per-
fect Phylogeny Haplotype [3], and of Perfect Path Phylogeny Haplotyping [16]
are solved by recognizing special DAGs of width at most two; in evolutionary
computation, the so-called dimension of a game between co-evolving agents [19]
equals the width of a DAG defined from a minimum coordinate system of the
game. For several practical applications, the width of the DAG may be small, for
example, in [22] the DAG comes from a so-called pan-genome encoding genetic
variation in a population: this has hundreds of millions of vertices, but yet it has
a small width. Furthermore, there exist fixed-parameter tractable (FPT) algo-
rithms for several problems on DAGs, which are parameterized by the width
of the DAG (see examples in scheduling [8,26] and computational logic [5,14]),
therefore, efficiently recognizing graphs of small width becomes vital for their
application. It is thus natural to ask whether there exists a faster algorithm
computing the width k of a DAG, when k is small. This question is also related
to the line of research “FPT inside P” [15] of finding natural parameterizations
for problems already in P (see also e.g., [1,12,21]).

Along this line, Felsner et al. [11] present the first algorithm parameter-
ized on k, working for the special case of transitive DAGs, and running in time
O(k|V |2). They also show how to recognize transitive DAGs of width 2 and 3
in time O(|V |), and of width 4 in time O(|V | log |V |). The next parameterized
algorithms for general DAGs are due to Chen and Chen: the first runs in time
O(|V |2 + k

√
k|V |) [6], and the second one in time O(

√|V ||E| + k
√

k|V |) [7].
Recently, Mäkinen et al. [22] obtained a faster one for sparse graphs, running in
time O(k|E| log |V |).

Despite these efforts, the time complexity of computing the width of a DAG
parameterized on k is not fully settled, since all existing algorithms have either
a superlinear dependence on |E|, or a quadratic dependence on |V |, in the worst
case. We present here the first algorithm running in time O(f(k)(|V | + |E|)),
where f(k) is a function depending only on k. Thus, for constant k, this is the
first algorithm to run in linear time. Moreover, if an integer w is also given
in input, we can decide whether k ≤ w in time O(f(min(w, k))(|V | + |E|)).
Specifically, our main result is the following theorem:

Theorem 1. Given a DAG G = (V,E) of width k, we can compute a maximum
antichain of it in time O(k24k|V | + k2k|E|).
Note that k corresponds to a property of the input graph that is unknown for
the algorithm.
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Approach. The main idea behind Theorem 1 is to traverse the graph in a topo-
logical order and have an antichain structure sweeping the vertices of the graph,
while performing only f(k) work per step. As such, it can also be viewed as an
online algorithm receiving in every step a sink vertex and its incoming edges1.

As a first attempt to obtain such a “sweeping” algorithm, one can think of
maintaining only the (unique) right-most maximum antichain (recall that all
maximum antichains form a lattice [10])2. However, it is difficult to update this
antichain in time f(k) since inherently we need to perform graph traversals. As
a second attempt, one could maintain more structure at every step (in addi-
tion to the right-most maximum antichain), while still staying within the f(k)
budget. Along this line, for transitive DAGs Felsner et al. [11] propose to main-
tain a tower of right-most maximum antichains of decreasing size. That is, take
the right-most maximum antichain of G, then consider the subgraph strictly
reached by this antichain. Then take the right-most maximum antichain of this
subgraph, and repeat. One thus obtains a tower of at most k antichains. Felsner
et al. manage to maintain this structure based on an exhaustive combinato-
rial approach for k = 2, 3, 4, with the former two cases leading to O(|V |) time
algorithms, and the latter leading to an O(|V | log |V |) time algorithm. They also
state that “the case k = 5 already seems to require an unpleasantly involved case
analysis” [11, p. 359]. Moreover, the transitivity of the DAG is crucial in this
approach, since reachability between two vertices is equivalent to the existence
of an edge between them.

In order to break both of these barriers, we need a different and richer struc-
ture to maintain. As such, in Sect. 2 we introduce the notion of frontier antichain.
A frontier antichain is one such that there is no other antichain of the same size
and “to the right” of it (i.e., no one that dominates it, see Definition 2). Thus,
the largest frontier antichain is also the (unique) right-most maximum antichain,
and gives the width of G. Furthermore, since any antichain can take at most one
vertex from any path in a path cover, there are at most O(2k) frontier antichains
(Lemma 3).

In Sect. 3 we prove several combinatorial properties for maintaining all fron-
tier antichains when a new vertex v in the topological order is added. We show
that a frontier antichain of the new graph is either of the form A ∪ {v}, where
A is a frontier antichain of the old graph (Lemmas 4 and 6), or it is an old fron-
tier antichain that is not dominated by a new frontier antichain (Lemmas 2 and
5). Thus, it suffices to check domination only between all old and new frontier
antichains. However, since domination involves checking reachability (and the
DAG is not assumed to be transitive), this might require O(|V |+|E|) time, which
we want to avoid. As such, in Sect. 4 we prove another key ingredient, namely

1 Note that this notion of online algorithm is different from the “on-line chain par-
tition” problem [4], where irrevocable decisions opt to be competitive against an
optimal solution.

2 Formally, we call right-most maximum antichain to the top element in the lattice of
maximum antichains. If the graph is drawn with edges from left to right this element
visually corresponds to the right-most maximum antichain.
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that it is sufficient to know which vertices in the current frontier antichains
reach v (Theorem 3). If we maintain this information for every added vertex
(O(k2k) per vertex and edge3, Theorem 2) we can answer the queries required to
test domination. Finally, in Sect. 5, we combine these pieces into the main result
if this paper, Algorithm 4.

Notation and Preliminaries. We say that a graph S = (VS , ES) is a subgraph of
G if VS ⊆ V and ES ⊆ E. If V ′ ⊆ V , then G[V ′] is the subgraph of G induced
by V ′, defined as G[V ′] = (V ′, EV ′), where EV ′ = {(u, v) ∈ E : u, v ∈ V ′}. A
path P is a sequence of different vertices v1, . . . , v� of G such that (vi, vi+1) ∈ E,
for all i ∈ {1, . . . , � − 1}. We say that a path P is proper if � ≥ 2. A path cover
P is a set of paths such that every vertex belongs to some path of P. A cycle
is a proper path allowed to start and end at the same vertex. A directed acyclic
graph (DAG) is a graph that does not contain cycles. For a DAG G = (V,E)
we can find in O(|V | + |E|) time [20,24] an order of its vertices v1, . . . , v|V | such
that for every edge (vi, vj), i < j, we call such an order a topological order. We
say that v is reachable from u, or equivalently, that u reaches v, if there exists a
path starting at u and ending at v. The problem of efficiently answering whether
u reaches v is known as reachability queries, and if the queries are answered in
constant time, constant-time reachability queries. An antichain A is a set of
vertices such that for each u, v ∈ A u �= v u, does not reach v. We say that
A reaches a vertex v if there exists u ∈ A such that u reaches v. Dilworth’s
theorem [9] states that the maximum size of an antichain equals the minimum
size of a path cover in a DAG, this size is known as the width of the DAG
and denoted by k. A partially ordered set (poset) is a set P and a partial order
(reflexive, transitive and antisymmetric binary relation) over P . If P is finite,
then there exists at least one maximal (minimal) element, and every element in
the poset is comparable to some maximal (minimal) element [27]. A maximal
(minimal) element of a poset is an element that is not smaller (greater) than
any other element.

2 Frontier Antichains

We start by introducing the concept of frontier antichains and show a bound on
the number of frontier antichains present in a DAG.

Definition 1 (Antichain domination). Let A and B be antichains of the
same size. We say that B dominates A if for all b ∈ B, A reaches b.

Note that antichains can only dominate other antichains of the same size,
since antichains of different size are, by definition, incomparable. Algorithm1
shows a function determining whether an antichain dominates another. The fol-
lowing lemma shows that the set of antichains of G with the domination relation
form a partial order.
3 As a purely combinatorial inquiry, we leave open the question of whether the union

of all frontier antichains of a given DAG has size O(poly(k)) (instead of O(k2k)).
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Algorithm 1: Function dominates(B,A,S) checks if an antichain B dom-
inates an antichain A (Definition 1), assuming that the structure S can
compute reachability from vertices of A to vertices of B. If reaches(A, v,S)
takes O(|A|) time (see Algorithm 2), then this function takes O(|A||B|) =
O(k2) time.
Function dominates(B,A,S):

isDominated ← |A| = |B| // true if A is dominated by B
for v ∈ B do

if not reaches(A, v,S) then // see Algorithm 2

isDominated ← false

return isDominated

Fig. 1. A DAG and all its frontier antichains of size 1, 2 and 4, as colored sets. The
sub-indices represent a topological order. The unique maximum-size frontier antichain
is {v1, v2, v3, v4}, and is also the right-most maximum antichain. There are 2 frontier
antichains of size 2, {v1, v2} and {v6, v7}. The frontier antichains of size 1 are {v6} and
{v7}, and those of size 3 (not highlighted) are {v1, v2, v7}, {v1, v3, v4} and {v2, v3, v4}.

Lemma 1. The antichains of G related with domination (Definition 1) form a
partial order.

Proof. Clearly, domination is reflexive and transitive (inherited by the transi-
tivity of reachability between vertices). We argue that it is also antisymmetric:
suppose A and B are antichains such that A dominates B and B dominates A.
Suppose by contradiction that there exists b ∈ B\A. Since B dominates A, there
exists a ∈ A such that a reaches b (note a �= b). Since A dominates B, there
exists b′ ∈ B such that b′ reaches a. Thus, there is a proper path from b′ to a to
b in G. If b′ = b, this implies a cycle exists in a DAG, a contradiction. If b′ �= b,
this implies B is not an antichain, a contradiction. Thus, B\A = ∅ and A = B,
since |A| = |B|. Thus, domination is also antisymmetric. 
�
Definition 2 (Frontier antichains). Frontier antichains are the maximal
elements of the domination partial order i.e., those antichains that are not dom-
inated by any other antichain.
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Figure 1 shows frontier antichains of an example graph. Since frontier
antichains are maximal elements of the domination relation we have the fol-
lowing observation.

Lemma 2. Let A be a non-frontier antichain of G. Then, there exists a frontier
antichain dominating A.

Now we show that the number of such antichains only grows with k, thus
there is no problem for our complexity bound to maintain them all. The following
lemma shows that there are at most 2k frontier antichains. The main idea is that
there cannot be more than one frontier antichain whose vertices belong to the
same set of paths in a minimum path cover of G.

Lemma 3. If G = (V,E) is a DAG of width k, then G has at most 2k frontier
antichains.

Proof. By Dilworth’s theorem [9], there exists a path cover of G of size k, P =
{P1, . . . , Pk}. Since any antichain can take at most one vertex from each of those
paths, we show that for every size-� subset of paths of P, there is at most one
frontier antichain of size � whose vertices come from those paths, and thus there
are at most 2k frontier antichains. Without loss of generality consider the subset
of paths P1, . . . , P�, and suppose by contradiction that there are two frontier
antichains A and B, A �= B, |A| = |B| = �, whose vertices come from P1, . . . , P�.
Let us label the vertices in these antichains by the path they belong to. Namely,
A = {a1, . . . , a�}, B = {b1, . . . , b�}, with ai and bi in Pi for all i ∈ {1, . . . , �}. We
define the following set of vertices:

M := {mi := (bi, if ai reaches bi, and ai otherwise) | i ∈ {1, . . . , �}} .

First, note that if mi = ai, then bi reaches ai, because ai and bi appear on
the same path Pi. Next, note that M is an antichain of size �. Otherwise, if
there exists mi that reaches mj (i �= j), then without loss of generality, suppose
that mi = ai and mj = bj . Since mi = ai, we have that bi reaches ai, and
thus it reaches bj , which contradicts B being an antichain. Second, note that
M �= A, since otherwise A would dominate B. Finally, M dominates A, since
for all mi ∈ M there exists ai ∈ A such that ai reaches mi. 
�

3 Maintaining Frontier Antichains

Our algorithm will process the vertices in topological order v1, . . . , v|V |, and
maintain all frontier antichains (Definition 2) of the current subgraph Gi :=
G[{v1, . . . , vi}] (we say that G0 = (∅, ∅)). The following property allows us to
upper bound the width of each of these induced subgraphs by the width k of the
original graph.

Property 1. Let G = (V,E) be a DAG of width k, and v1, . . . , v|V | a topological
order of its vertices. Then, for all i, j ∈ {1, . . . , |V |}, i ≤ j, the width of Gi,j :=
G[{vi, . . . , vj}] is at most k.
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Proof. We first show that the intersection of any path of G with the vertices of
Gi,j is a path in Gi,j . Consider a path P , and remove from it all the vertices
from V \{vi, . . . , vj}. Thus, we obtain a (possibly empty) sequence Pi,j of vertices
from {vi, . . . , vj}. We say that Pi,j is the intersection of P with Gi,j . Since G is a
DAG, Pi,j is a sequence of consecutive vertices in P (otherwise, if it is not empty,
we would have a vertex of smaller (bigger) topological index that is reached by
vi (reaches vj)), and therefore a path in G. Since Pi,j only contains vertices from
{vi, . . . , vj} and Gi,j is an induced subgraph, Pi,j is a path also in Gi,j .

By Dilworth’s theorem [9], there exists a path cover of G of size k, P =
{P1, . . . , Pk}. The intersection of each of those paths with Gi,j forms a path
cover of Gi,j , whose size is at least the width of Gi,j . 
�

We say that an antichain is Gi-frontier if it is a frontier antichain in the graph
Gi. The following lemmas will show us how these frontier antichains evolve when
processing the vertices of the graph i.e., when passing from Gi−1 to Gi.

Lemma 4 (Type 1). For every i ∈ {1, . . . , |V |}, let A be a Gi-frontier
antichain with vi ∈ A. Then A\{vi} is a Gi−1-frontier antichain.

Proof. Otherwise, there would exist another antichain B dominating A\{vi} in
Gi−1. Consider B ∪ {vi}, which is an antichain (otherwise B would reach vi, a
contradiction, since B dominates A\{vi}, and A is an antichain). Finally, note
that B ∪ {vi} dominates A in Gi, which is a contradiction since A is Gi-frontier
antichain. 
�
Lemma 5 (Type 2). For every i ∈ {1, . . . , |V |}, let A be a Gi-frontier
antichain with vi �∈ A. Then A is a Gi−1-frontier antichain.

Proof. Otherwise, there would exist another antichain B dominating A in Gi−1,
and also in Gi, which is a contradiction. 
�

Looking at these two lemmas, we establish two types of Gi-frontier antichains:
the ones containing vi, called of type 1, and the ones that are also Gi−1-frontier
antichains, called of type 2. We handle these two cases separately. First, we find
all type-1 frontier antichains, then all of type 2.

Type-1 Gi-frontier antichains are made up of one Gi−1-frontier antichain and
vertex vi. A first requirement for a Gi−1-frontier antichain, A, to be a subset of
a type-1 Gi-frontier antichain is that A does not reach vi. We now show that
this is enough to ensure that A ∪ {vi} is a Gi-frontier antichain.

Lemma 6. For every i ∈ {1, . . . , |V |}, let A be a Gi−1-frontier antichain not
reaching vi. Then A ∪ {vi} is a Gi-frontier antichain.

Proof. If A = ∅, then A ∪ {vi} = {vi} is frontier antichain, because vi is a
sink of Gi. Otherwise A �= ∅ and, by contradiction, take another antichain B
dominating A ∪ {vi} in Gi. Suppose that vi ∈ B, then for all b ∈ B there exists
a ∈ A∪{vi} such that a reaches b, but since vi is a sink of Gi, for all b ∈ B\{vi}
there exists a ∈ A such that a reaches b i.e., B\{vi} dominates A in Gi−1, which
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is a contradiction. If vi �∈ B, then every vertex of B is reached by a vertex of A
(it cannot be reached by vi since it is a sink in Gi), and therefore take any subset
of B of size |A| different from A, which would dominate A, a contradiction. 
�

We use this lemma to find all type-1 Gi-frontier antichains by testing reacha-
bility from Gi−1-frontier antichains to vi, with O(k2k) total reachability queries.

Type-2 Gi-frontier antichains are Gi−1-frontier antichains that are not dom-
inated by any antichain in Gi containing vi (this is sufficient since they are
frontier in Gi−1). Moreover, by Lemma 2, if a Gi−1-frontier antichain is domi-
nated in Gi, then it is dominated by a Gi-frontier antichain. Therefore, type-2
Gi-frontier antichains are Gi−1-frontier antichains that are not dominated by
any type-1 Gi-frontier antichain. For every Gi−1-frontier antichain A we check if
there exists a type-1 Gi-frontier antichain dominating A. We can do this in total
O(k24k) reachability queries from vertices in Gi−1-frontier antichains to vertices
in Gi−1-frontier antichains and vi.

Both type-1 and type-2 Gi-frontier antichains need answering reachability
queries efficiently among vertices in Gi−1-frontier antichains and vi. Next, we
show how to maintain constant-time reachability queries among these vertices
in O(k2k) time per vertex and edge.

4 Reachability Between Frontier Antichains

To complete our algorithm, we aim to maintain reachability queries among all
vertices in Gi−1-frontier antichains and vi. For this we rely on properties of the
support of the frontier antichains, as detailed next.

Definition 3 (Support). For every i ∈ {0, . . . , |V |}, we define the support Si

of Gi as the set of all vertices belonging to some Gi-frontier antichain, that is,

Si :=
⋃

A : Gi-frontier antichain

A.

Note that since G0 = (∅, ∅), then S0 = ∅, and Lemma 3 implies |Si| = O(k2k).
Also, vi ∈ Si, since {vi} is a Gi-frontier antichain. In Fig. 1, the vertex v5 belongs
to the support of S5, but it does not belong to S7, because there is no frontier
antichain containing it. Another interesting fact is that if a vertex exits the
support in some step, then it cannot re-enter. This is formalized as follows.

Lemma 7. Let v ∈ {v1, . . . , vi}. If v �∈ Si, then v �∈ Sj for all j ∈ {i, . . . , |V |}.
Proof. By induction on j. The base case j = i is the hypothesis itself. Now,
suppose that v �∈ Sj for some j ∈ {i, . . . , |V | − 1}, and suppose by contradiction
that v ∈ Sj+1. Then v ∈ A, for some Gj+1-frontier antichain A. If vj+1 �∈ A, then
by Lemma 5, A is a Gj-frontier antichain, and v ∈ Sj , which is a contradiction.
But if vj+1 ∈ A, then by Lemma 4, A\{vj+1} is a Gj-frontier antichain, and
v ∈ A\{vj+1} ⊆ Sj , a contradiction. 
�
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Algorithm 2: Function reaches(A, vt,S), with S = (S0, . . . , Si−1) for
some i ≥ t, and A ∪ {vt} ⊆ Si−1 ∪ {vi}. It checks if A reaches vt. It
assumes that for all the vertices u ∈ St−1, St−1.u.reaches indicates if u
reaches vt. Reachability in Si−1 ∪{vi} is reduced to reachability from Sj−1

to vj for all j ∈ {1, . . . , i}, according to Theorem 2. This function takes
O(|A|) = O(k) time.
Function reaches(A, vt,S = (S0, . . . , Si−1)):

isReached ← false // true if vt is reached from some vertex in A
for vs ∈ A do

if vs = vt or (s < t and St−1.vs.reaches) then
isReached ← true

return isReached

Lemma 8. Let vi ∈ {v1, . . . , vj}. If vi ∈ Sj, then vi ∈ St for all t ∈ {i, . . . , j}.
Proof. If this is not true, we have that there exists some t ∈ {i + 1, . . . , j − 1}
such that vi �∈ St, which is a contradiction with vi ∈ Sj and Lemma 7. 
�

We now state that it is sufficient to support reachability queries from every
Sj−1 to vj to answer queries among vertices in Si−1 and vi. Then, we show how
to maintain these reachability relations in O(k2k) time per vertex and edge.

Theorem 2. If we know reachability from Sj−1 to vj for all j ∈ [1...i], then we
can answer reachability queries among vertices in Si−1 ∪ {vi}.
Proof. Let vs, vt ∈ Si−1 ∪ {vi}. We can answer whether vs reaches vt by doing
the following. If s ≥ t it is not possible that vs reaches vt unless they are the
same vertex. In the other case, s < t, since vs ∈ Si−1, by Lemma 8, vs ∈ St−1,
and then we can use reachability from St−1 to vt to answer this query. 
�

Algorithm 2 shows a function deciding whether an antichain reaches a vertex,
using the technique explained in Theorem2. This function is used to implement
Algorithm 1, and our final solution in Algorithm4.

We will compute reachability from Sj−1 to vj for all j ∈ {1, . . . , i} incremen-
tally when processing the vertices in topological order. That is, we assume that
we have computed reachability from Sj−1 to vj for all j ∈ {1, . . . , i − 1} and we
want to compute reachability from Si−1 to vi.

For this we do the following. Initially, we set reachability from u to vi to false
for all u ∈ Si−1. Then, for every edge (vj , vi), if vj ∈ Si−1 we set reachability
from vj to vi to true, and for each u ∈ Si−1 ∩ Sj−1 such that u reaches vj

(known since u ∈ Sj−1) we set reachability from u to vi to true. Note that we
can compute the intersection Si−1 ∩ Sj−1 in O(|Si−1|) = O(k2k) time. For each
vp ∈ Si−1 we decide whether vp ∈ Sj−1 by testing if p ≤ j − 1, which is correct
by Lemma 8.



266 M. Cáceres et al.

Algorithm 3: Function updateReachability computes reachability from
vertices in Si−1 to vi. It assumes that Si−1 ∈ S, for all j ∈ {1, . . . , i − 1},
Sj−1 ∈ S, and for all the vertices u ∈ Sj−1, Sj−1.u.reaches indicates if u
reaches vj . This function takes O(k2k(|N−(vi)| + 1)) time.

Function updateReachability(vi,S = (S0, . . . , Si−1)):
for u ∈ Si−1 do

Si−1.u.reaches ← false // true if u reaches vi

for vj ∈ N−(vi) do
if vj ∈ Si−1 then // Direct (by one edge) reachability

Si−1.vj .reaches ← true

for u ∈ Si−1 ∩ Sj−1 do // More than one edge reachability

if Sj−1.u.reaches then
Si−1.u.reaches ← true

Algorithm 3 shows a function that computes the reachability from Si−1 to vi,
according to what was explained in this section. The correctness of this procedure
is guaranteed by the following theorem.

Theorem 3. Algorithm3 computes reachability from Si−1 to vi.

Proof. Clearly, what the algorithm sets to true is correct. Suppose by contra-
diction that there exists y ∈ Si−1 reaching vi such that reachability from y to vi

was not set to true. Since y reaches vi, the in-neighborhood of vi is not empty.
Since y was not set to true, in particular, y �∈ N−(vi), thus it reaches vi through
a path whose last vertex previous to vi is vj ∈ N−(vi). Again, since y was not
set to true, y �∈ Si−1 ∩ Sj−1, thus y �∈ Sj−1. But then, by Lemma 7 we have
y �∈ Si−1, a contradiction, unless y �∈ Gj−1 i.e., y is after vj in topological order,
which is a contradiction since y reaches vj . 
�

5 A Linear-Time Parameterized Algorithm

We now have all the ingredients to prove the main theorem.

Theorem 1. Given a DAG G = (V,E) of width k, we can compute a maximum
antichain of it in time O(k24k|V | + k2k|E|).
Proof. We process the vertices in topological order. After processing vi, we will
have computed all Gi-frontier antichains (including the right-most maximum
antichain of Gi), and constant-time reachability queries from Sj−1 to vj , for
all j ∈ {1, . . . , i}. Suppose we have this for i − 1.4 First, we obtain constant-
time reachability queries from Si−1 to vi, using the procedure from Theorem 3
4 Since G0 = (∅, ∅) and S0 = ∅, there are no frontier antichains for the base case of

the algorithm.
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Algorithm 4: Our parameterized algorithm computing the right-most
maximum antichain of a DAG G = (V,E) in time O(k24k|V | + k2k|E|).
R ← ∅, F0 ← {∅}, S ← (S0 = ∅)
for vi ∈ v1, . . . , v|V | in topological order do

updateReachability(vi,S)
Fi ← {∅} // Fi stores Gi-frontiers

for antichain A ∈ Fi−1 do // Compute type-1 Gi-frontiers

if not reaches(A, vi,S) then
Fi.add(A ∪ {vi}) // A ∪ {vi} is a type-1 Gi-frontier

if |A ∪ {vi}| > |R| then R ← A ∪ {vi}

T1 ← Fi // Contains type-1 Gi-frontiers

for antichain A ∈ Fi−1 do // Compute type-2 Gi-frontiers

isType2 ← true // true if A is a type-2 Gi-frontier

for antichain B ∈ T1 do
if dominates(B,A,S) then isType2 ← false

if isType2 then Fi.add(A)

S.add
(
Si ←

⋃
A∈Fi

A
)

return R

(Algorithm 3), spending O(k2k) time, and O(k2k) time per edge incoming to vi.
For the entire algorithm, this adds up to O(k2k(|V | + |E|)).

By Lemma 6, we obtain all type-1 Gi-frontier antichains by taking every
Gi−1-frontier antichain A, and testing if A reaches vi using the reduction from
Theorem 2 (Algorithm 2). This takes O(k2k) time, O(k2k|V |) in total.

We compute type-2 Gi-frontier antichains by taking every Gi−1-frontier
antichain A and searching if there exists a type-1 Gi-frontier antichain B domi-
nating A in time O(k24k) (O(k2) constant-time reachability queries to test dom-
ination between a pair of antichains, O(4k) such pairs), O(k24k|V |) in total. The
total complexity of the algorithm is O(k24k|V | + k2k|E|). 
�

Algorithm 4 shows the pseudocode of the final solution explained in Theo-
rem 1. It maintains reachability from the corresponding support to the newly
added vertex using Algorithm 3. Type-1 frontier antichains are found by using
Algorithm 2, and type-2 frontier antichains are confirmed using Algorithm1.

Finally, if we are interested in recognizing whether G has width at most
an additional input integer w we can adapt our algorithm to run in time
O(f(min(w, k)) (|V | + |E|)) instead.

Remark 1. Given an additional input integer w we can determine whether k ≤ w
in time O(w′24w′ |V | + w′2w′ |E|) (w′ = min(w, k)) by stopping the computation
of Algorithm 4 as soon as we find an antichain of size w + 1. If the algorithm
does not stop by this reason, it means that k ≤ w, and the opposite otherwise.
In both cases maximum size of an observed antichain is not greater than w′ +1,
obtaining the desired running time.



268 M. Cáceres et al.

References

1. Abboud, A., Williams, V.V., Wang, J.: Approximation and fixed parameter sub-
quadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
377–391. SIAM (2016)

2. Bang-Jensen, J., Gutin, G.: Digraphs Theory, Algorithms and Applications, 1st
edn. Springer, Berlin (2000)

3. Bonizzoni, P.: A linear-time algorithm for the perfect phylogeny haplotype prob-
lem. Algorithmica 48(3), 267–285 (2007). https://doi.org/10.1007/s00453-007-
0094-3

4. Bosek, B., Felsner, S., Kloch, K., Krawczyk, T., Matecki, G., Micek, P.: On-line
chain partitions of orders: a survey. Order 29(1), 49–73 (2012). https://doi.org/
10.1007/s11083-011-9197-1

5. Bova, S., Ganian, R., Szeider, S.: Model checking existential logic on partially
ordered sets. ACM Trans. Comput. Log. (TOCL) 17(2), 1–35 (2015)

6. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries.
In: 2008 IEEE 24th International Conference on Data Engineering, pp. 893–902.
IEEE (2008)

7. Chen, Y., Chen, Y.: On the graph decomposition. In: 2014 IEEE Fourth Interna-
tional Conference on Big Data and Cloud Computing, pp. 777–784. IEEE (2014)

8. Colbourn, C.J., Pulleyblank, W.R.: Minimizing setups in ordered sets of fixed
width. Order 1(3), 225–229 (1985). https://doi.org/10.1007/BF00383598

9. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
51(1), 161–166 (1950). http://www.jstor.org/stable/1969503

10. Dilworth, R.P.: Some combinatorial problems on partially ordered sets. In: Bogart,
K.P., Freese, R., Kung, J.P.S. (eds.) The Dilworth Theorems. CM, pp. 13–18.
Springer, Boston (1990). https://doi.org/10.1007/978-1-4899-3558-8 2

11. Felsner, S., Raghavan, V., Spinrad, J.: Recognition algorithms for orders of small
width and graphs of small Dilworth number. Order 20(4), 351–364 (2003). https://
doi.org/10.1023/B:ORDE.0000034609.99940.fb

12. Fomin, F.V., Lokshtanov, D., Pilipczuk, M., Saurabh, S., Wrochna, M.: Fully
polynomial-time parameterized computations for graphs and matrices of low
treewidth. In: Klein, P.N. (ed.) Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, 16–19 January 2017, pp. 1419–1432. SIAM (2017). https://doi.org/10.
1137/1.9781611974782.92

13. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered
sets. Proc. Am. Math. Soc. 7, 701–702 (1956)
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Abstract. Computing a morph between two drawings of a graph is a
classical problem in computational geometry and graph drawing. While
this problem has been widely studied in the context of planar graphs, very
little is known about the existence of topology-preserving morphs for
pairs of non-planar graph drawings. We make a step towards this problem
by showing that a topology-preserving morph always exists for drawings
of a meaningful family of 1-planar graphs. While our proof is construc-
tive, the vertices may follow trajectories of unbounded complexity.

1 Introduction

Computing a morph between two drawings of the same graph is a classical prob-
lem that attracted considerable attention over the years, also in view of its numer-
ous applications in computer graphics and animations (refer to [1] for a short
overview). At high level, given two drawings Γa(G) and Γb(G) of the same graph
G, a morph between Γa(G) and Γb(G) is a continuously changing family of draw-
ings such that the initial one coincides with Γa(G) and the final one with Γb(G).
A standard assumption is that the two input drawings - as well as all intermediate
ones - are topologically equivalent, i.e., they define the same set of cells (see Sect. 2
for formal definitions). The main challenge is to design morphing algorithms that
maintain some additional geometric properties of the input drawings throughout
the transformation, such as planarity with straight-line edges (see, e.g., [1,16,25]),
convexity [6,34], orthogonality [12,26], and upwardness [20]. We point the reader
to [4,8,10,11] for additional related work.

In this context, the most prominent research direction focuses on morphs of
straight-line planar drawings: The topological equivalence condition implies that
all drawings in the morph have the same planar embedding; in addition, it is
also required that edges remain straight-line segments. Back in 1944, Cairns [16]
proved that such morphs always exist if the input graphs are plane triangulations.
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This implies that, for a fixed plane triangulation, the space of its straight-line pla-
nar drawings is connected. The main drawback of Cairns result is in the underly-
ing construction, which involves exponentially-many morphing steps. The exten-
sion of Cairns’ result to all plane graphs was initially done by Thomassen [34],
while later Floater and Gotsman [25], and Gotsman and Surazhsky [27,32] pro-
posed different approaches using trajectories of unbounded complexity. More
recently, Alamdari et al. [2] focused on the complexity of the morph. They
described the first morphing algorithm for planar straight-line drawings that
makes use of a polynomial number of steps, where in each step vertices move
at uniform speed along linear trajectories. In a subsequent paper [1], a linear
bound on the number of steps is shown, which is worst-case optimal.

Morphing non-planar drawings of graphs appears to be a more elusive prob-
lem. In particular, Angelini et al. [5] asked whether a morphing algorithm exists
for pairs of non-planar straight-line drawings such that the topology of the
crossings in the drawing is maintained throughout the morph. They stressed
that a solution to this problem is not known even if the vertex trajectories are
allowed to have arbitrary complexity. Note that the obvious idea of morphing the
“planarizations” of the drawings (i.e., the planar drawings obtained by treating
crossings as dummy vertices) does not trivially work. Namely, in order to guar-
antee that edges remain straight-line segments throughout the morph, one has to
ensure that opposite edges incident to dummy vertices maintain the same slope.
To the best of our knowledge, such requirement cannot be easily incorporated
into any of the already known morphing algorithms for planar graphs.

One way of simplifying the problem is to consider graphs that are non-
planar but still admit embeddings on surfaces of bounded genus. Chambers
et al. [17] proved the existence of morphs for pairs of crossing-free drawings
on the Euclidean flat torus (edges are still geodesics). Their technique is com-
plex and the authors concluded that an extension to higher genus surfaces is
fairly non-trivial.

We make a step towards settling the open problem in [5] by studying non-
planar drawings of graphs with forbidden edge-crossing patterns. Our focus is on
the family of 1-planar graphs, which naturally extends the notion of planarity by
allowing each edge to be crossed at most once (see [29] for a survey). Note that 1-
planar graphs form a well studied family of non-planar graphs with early results
dating back to the 60’s [9,31], while more recently they have gained considerable
attention in the rapidly growing literature about beyond planarity [23,28].
Our Contribution. We provide a set of sufficient conditions under which any
pair of 1-planar straight-line drawings admits a morph. At high-level, we require
that if two edges cross, then they can be enclosed in a quadrilateral region whose
boundary is uncrossed; although this region may contain further vertices in its
interior, we require that any edge connecting an end-vertex of the crossing edges
to a vertex inside the region is also uncrossed; refer to Fig. 1 for an illustration.
A drawing that satisfies these requirements is called kite-planar 1-planar (see
Definition 1). Our main result is summarized by the following theorem.
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Fig. 1. Two topologically-equivalent kite-planar 1-planar drawings of the same graph.

Theorem 1. There exists a morph between any pair of topologically-equivalent
kite-planar 1-planar drawings.

Theorem 1 implies that, for a fixed graph, the space of its topologically-equivalent
kite-planar 1-planar drawings is connected. The proof is constructive, although
the vertices may use trajectories of unbounded complexity. Concerning the def-
inition of kite-planar 1-planar drawings, it may be worth observing that, due
to a simple edge density argument, the graphs admitting such a drawing can-
not be embedded on any surface of bounded genus. Indeed, as shown in Sect. 6,
some well-known families of 1-planar graphs admit drawings that are kite-planar
1-planar and require arbitrary large genus to be embedded.
Paper Structure. Section 2 contains basic definitions and notation. Section 3 gives
an overview of the proof technique, which exploits a recursive construction. The
base case of the recursion is described in Sect. 4, while the recursive step is in
Sect. 5. Implications of our result in terms of classes of 1-planar drawings that
admit a morph are discussed in Sect. 6. Open problems are given in Sect. 7. For
space reasons, the proofs of the statements marked with (�) are omitted.

2 Preliminaries

Drawings. A straight-line drawing (or simply a drawing, for short) Γ (G) of
a graph G maps each vertex v of G to a distinct point pv of the plane and
each edge (u, v) of G to a straight-line segment connecting pu and pv without
passing through any other point representing a vertex of G. When this creates no
ambiguities, we will not distinguish between a vertex and the point representing
it in Γ (G), as well as between an edge and its segment. Note that, by definition,
two edges of a drawing share at most one point, which is either a common
endpoint or an interior point where the two edges properly cross. Drawing Γ (G)
partitions the plane into connected regions called cells. The boundary of a cell
consists of vertices, crossing points, and (parts of) edges. The external cell of
Γ (G) is its (only) unbounded cell. Two drawings Γa(G) and Γb(G) of the same
graph G are topologically equivalent if they define the same set of cells up to an
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orientation-preserving homeomorphism of the plane. An embedding of G is an
equivalence class of drawings that are pairwise topologically equivalent.

A drawing Γ (G) is planar if no two edges cross. In this case, the cells of
Γ (G) are called faces and their boundaries consist of just vertices and edges. A
graph is planar if it admits a planar drawing. A planar graph together with an
embedding defined by a planar drawing is a plane graph. A planar drawing is
strictly convex if all its faces are strictly convex polygons.

A graph is 1-planar if it admits a (not necessarily straight-line) 1-planar
drawing in which every edge crosses at most one other edge. A 1-planar graph
together with an embedding defined by a 1-planar drawing is a 1-plane graph. A
kite K in a 1-planar drawing Γ (G) is a 1-planar drawing of K4 in Γ (G) whose
external cell is a quadrilateral. The four edges on the boundary of the external
cell of K are called kite edges. The other two edges are the crossing edges of K
and are drawn inside the quadrilateral bounding K. Figure 1 shows three kites;
the kite (crossing) edges are fat blue (dashed-dotted red, resp.).

Given a vertex v of G and a kite K, the following exclusive cases can occur:
(i) v belongs to K, if it is a vertex of the K4 defining K, or (ii) v is inside K (or
K contains v) if v lies in the interior of the quadrilateral bounding K, or (iii) v
is outside K, otherwise. A kite is empty if it contains no vertex; otherwise, it is
non-empty. An edge (u, v) is a binding edge (dashed green in Fig. 1) if u belongs
to a non-empty kite K and v is inside K. We can now introduce kite-planar
1-planar drawings.

Definition 1. A straight-line drawing is kite-planar 1-planar, or 1-kite-planar
for short, if: (P.1) every edge is crossed at most once, (P.2) the four kite edges of
every kite are present and uncrossed, and (P.3) every binding edge is uncrossed.

Let Γ (G) be a 1-kite-planar drawing of G. We say that a vertex of G is of
level 0 if no kite contains it, while it is of level i > 0 if the maximum level of
the vertices belonging to a kite containing it is i − 1. In Fig. 1, the black (white)
vertices are of level 0 (level 1, resp.). The next property follows from P.3 of
Definition 1.

Property 1 (�). If two vertices belong to the same kite of a 1-kite-planar draw-
ing Γ (G), then they are of the same level.

Morphs. Let Γa(G) and Γb(G) be two topologically-equivalent drawings of the
same graph G. A morph between them is a continuously changing family of
pairwise topologically-equivalent drawings of G indexed by time t ∈ [0, 1], such
that the drawing at time t = 0 is Γa(G) and the drawing at time t = 1 is Γb(G).
Since edges are drawn as straight-line segments, a morph is uniquely specified
by the vertex trajectories. Also, during the course of the morph, a vertex may
coincide with neither another vertex nor an internal point of an edge.

3 Outline of the Proof of Theorem 1

In this section, we give an outline of the proof of Theorem 1, namely, that there
exists a morph between any two topologically-equivalent 1-kite-planar drawings
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Γa(G) and Γb(G) of a graph G. Recall that Γa(G) and Γb(G) define the same
embedding of G. Hence, G is necessarily a 1-plane graph.

Our proof is by means of a recursive construction. The underlying idea is
to compute a morph by keeping each kite boundary drawn as a strictly-convex
polygon, so that, in the course of the morph, the drawing of the corresponding
crossing edges will stay inside their boundary. The main challenge, however,
stems from the fact that a kite may not be empty. Therefore, our approach is
to remove the interior of each kite, recursively compute a morph that keeps the
convexity of the kite boundaries, and suitably reinsert (and morph) the removed
subdrawings. In the proof, we will use two key ingredients. The first one is a
result by Aronov et al. [7], which guarantees that one can compatibly triangulate
two topologically-equivalent planar drawings of a planar graph.

Theorem 2 (Aronov et al. [7]). Given two topologically-equivalent planar
drawings Γa(P ) and Γb(P ) of the same n-vertex planar graph P , it is possible to
augment Γa(P ) and Γb(P ) to two topologically-equivalent planar drawings Γa(P ′)
and Γb(P ′) of the same maximal planar graph P ′ such that Γa(P ) ⊆ Γa(P ′),
Γb(P ) ⊆ Γb(P ′), and the order of P ′ \ P is O(n2).

The second ingredient is a result by Angelini et al. [6], which allows us to
morph a pair of convex drawings by preserving the convexity of the faces. The
main properties of this result are summarized in the next theorem.

Theorem 3 (Angelini et al. [6]). Let 〈Γa(P ), Γb(P )〉 be a pair of topologically-
equivalent strictly-convex planar drawings of a graph P . There is a morph
between Γa(P ) and Γb(P ) in which every intermediate drawing is strictly con-
vex. If the outer face of G has only three vertices and each of them has the
same position in Γa(P ) and Γb(P ), then these three vertices do not move dur-
ing this morph.

We apply recursion on the maximum level � of a vertex of G. The base case
(� = 0) is described in Sect. 4, while the recursive case (� > 0) in Sect. 5.

4 Base Case

In the base case of the recursion, all the vertices of G are of level 0, which
implies that all the kites of G, if any, are empty. Let P be the graph obtained
by removing both crossing edges from each kite of G. Let 〈Γa(P ), Γb(P )〉 be
the restrictions of 〈Γa(G), Γb(G)〉 to P , respectively; see Fig. 2. By construction,
〈Γa(P ), Γb(P )〉 is a pair of planar and topologically-equivalent drawings, and P
is a plane subgraph of G. The kite edges of each kite K of G are uncrossed (by P.2
of Definition 1) and bound a quadrangular face fK in P , which we call marked.

Let P ′ and 〈Γa(P ′), Γb(P ′)〉 be the graph and the corresponding pair of planar
drawings obtained by applying Theorem 2 to 〈Γa(P ), Γb(P )〉, except for the
marked faces; see Fig. 2 for an illustration. This operation guarantees that every
face in both drawings is a triangle, if not marked, or a quadrangle, if marked.
We call a plane graph with such faces almost triangulated, and we next prove
that it is triconnected.
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Fig. 2. Illustration of the transitions Γa(G) → Γa(P ) → Γa(P
′); marked faces are gray.

Lemma 1. Every almost triangulated plane graph is triconnected.

Proof. Let P ′ be an almost triangulated plane graph derived from a 1-kite-planar
drawing of a 1-planar graph G. Suppose that P ′ contains a separation pair {u, v}.
Then there exist at least two faces f1 and f2 that are incident to both u and v
such that at least one, say f2, is not triangular, by simplicity, and hence is marked
with u and v not adjacent. Hence, the edge (u, v) exists in G and not in P ′.
Consequently, f1 cannot be a triangle, as otherwise it would contain edge (u, v)
on its boundary. On the other hand, if f1 is marked, then G contains another
copy of (u, v) drawn inside the kite that yielded f1, which is impossible since G is
simple. Hence, P ′ contains no separation pair. The absence of cutvertices stems
from the fact that each face is either a triangle or a quadrangle (if marked). ��

Since each kite contains two crossing edges in G, its boundary is
drawn strictly convex in both Γa(G) and Γb(G). Hence, Γa(P ′) and Γb(P ′) are
two strictly convex planar drawings of P ′. This property allows to apply Theo-
rem 3 to compute a morph of 〈Γa(P ′), Γb(P ′)〉 that maintains the strict convexity
of the drawing at any time instant. Since each marked face fK remains strictly
convex, adding back the two crossing edges of the corresponding kite K in P ′

yields a morph of a supergraph of G (and thus of G) in which these crossing
edges remain inside the boundary of K at any time instant. This concludes the
base case.

5 Recursive Case

In this section, we focus on the recursive step of the proof of Theorem 1, in which
the maximum level of a vertex in G is � > 0. Let Q be the graph obtained by
removing all the vertices of level � from G, and let 〈Γa(Q), Γb(Q)〉 be the restric-
tion of 〈Γa(G), Γb(G)〉 to Q. Clearly, the two drawings of Q are topologically
equivalent and the maximum level of a vertex is � − 1. Thus, we can recursively
compute a morph of 〈Γa(Q), Γb(Q)〉. In what follows, we describe how to incor-
porate the trajectories of the level-� vertices into the morph of 〈Γa(Q), Γb(Q)〉,
so to obtain the desired morph of 〈Γa(G), Γb(G)〉.
Setting Up the Morph. We begin by observing that, by Property 1, each
vertex of level � is contained in a kite whose vertices are all of level � − 1, which
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Fig. 3. Illustration of the half-disk D of � and their geometric properties.

implies that this kite is empty in Q (but not in G). Consider such a kite K,
and note that its two crossing edges define four triangular regions that remain
non-degenerate during the morph of 〈Γa(Q), Γb(Q)〉. We refer to each of these
four triangular regions as a piece of a kite. The natural idea of applying recursion
to every piece of a kite does not work, since the algorithm in [6] does not allow
prescribing the trajectories of the vertices of the outer face, which would be
required in the base case of this approach. Thus, we describe a more elaborated
approach.

Consider a piece of kite K and denote it by 	. The unique edge (u, v) of 	
that belongs to the boundary of K is called the base edge of 	. Since 	 remains
non-degenerate during the morph, there exists a half-disk D that, throughout
the whole morph, has the following properties (see also Fig. 3 for an illustration):

– half-disk D lies in 	 and is centered at the midpoint w of (u, v), and
– the length of its radius is positive and it does not change.

Let λ be the smallest length of the base edge (u, v) during the morph, let r be
the radius of D perpendicular to (u, v), and let w′ be the endpoint of r different
from w. Also, denote by t∗ any time instant of the morph when the length of
(u, v) equals λ, and let φ be the internal angle at w′ of the triangle formed by
u,w and w′ at time t∗. In particular, φ satisfies tan(φ) = λ

2 · 1
|r| .

Consider the graph H = G \ Q induced by the level-� vertices of G, and let
H� be the subgraph of H that lies inside 	. We proceed to compute a drawing
of H� that, intuitively, will be “small” enough to fit inside D and “skinny”
enough to avoid crossings with the binding edges that connect u or v to H�. To
ease the notation, from now on we will refer to H� as H.

To compute this drawing, we first augment H as well as its drawings in
〈Γa(G), Γb(G)〉, as follows. We add a dummy vertex d connected to u and to v,
which is drawn sufficiently close to the crossing point of the two diagonals of K
in both Γa(G) and Γb(G), so that the triangle formed by u, v, and d contains H.

As in the transition from P to P ′ in Sect. 4, we remove the crossing edges of
every (empty) kite of H ∪{u, v, d} and we mark the resulting quadrangular face.
Then we apply Theorem 2 to the resulting planar subgraph of H ∪ {u, v, d} and
to its drawings in 〈Γa(G), Γb(G)〉, except for its marked faces. This results in
an almost triangulated plane graph H ′ and in a pair of topologically-equivalent
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strictly convex drawings 〈Γa(H ′), Γb(H ′)〉 of H ′. The following observation is
directly implied by Property P.3 of Definition 1.

Observation 1. Every face incident to u or to v in H ′ is triangular.

Consider the plane graph obtained from H ′ by removing u and v, and let C be
the graph formed by the vertices and the edges of its outer face. In the following
lemma, we investigate some properties of C. The BC-tree T of a connected
graph G represents the decomposition of G into its biconnected components,
called blocks. Namely, T has a B-node for each block of G and a C-node for each
cutvertex of G, such that each B-node is connected to the C-nodes that are part
of its block.

Lemma 2 (�). The following properties of C hold: (i) C is outerplane and
connected. (ii) Each block of C is a cycle, possibly degenerated to a single edge.
(iii) Every cutvertex of C is connected to both u and v in H ′. (iv) The BC-tree
of C is a path. (v) Every non cutvertex of C is connected to exactly one of u
and v in H ′, with the exception of exactly two vertices (one of them is d) which
belong to the blocks of C corresponding to degree-1 B-nodes in the BC-tree of C.

In view of Properties (ii) and (iv) of Lemma 2, we refer to C as a chain
of cycles and to its blocks as cycles, even when degenerated to single edges.
Moreover, we denote by d′ the non cutvertex of C different from d that is incident
to both u and v, as specified in Property (v) of Lemma 2.

Making Each Chain of Cycles Skinny. In order to incorporate the level-
� vertices that lie inside 	 into the morph of 〈Γa(Q), Γb(Q)〉, we perform a
preliminary morph of Γa(H ′) to a strictly convex drawing Γ s

a (H ′) of H ′ that is
skinny, in the sense that it satisfies the following requirements with respect to
the disk D and the angle φ associated with the base edge (u, v) derived from the
morph of 〈Γa(Q), Γb(Q)〉 (see also Fig. 4 for an illustration).

R.1 Every cycle of C is drawn inside the disk D.
R.2 Every cycle of C is drawn strictly convex.
R.3 The cutvertices of C, as well as d and d′, lie on the radius r of D.
R.4 For every cycle of C and for every segment on its boundary, the smaller of

the two angles formed at the intersection of the line through r and the line
through the segment is smaller than φ.

The existence of such a drawing is proven in the following lemma by means
of a construction that exploits the properties of C given in Lemma 2.

Lemma 3. There exists a drawing Γ s
a (H ′) of H ′ that is strictly convex, skinny,

and topologically equivalent to Γa(H ′).

Proof. We prove the statement by construction. Initially, we place u and v in the
same positions as they are in Γa(H ′). Further, we place the cutvertices of the
chain of cycles C as well as d and d′ on the radius r in the order they appear in
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Fig. 4. Illustration of the requirements R.1–R.4 of a skinny drawing.

the chain to satisfy R.3. For each cycle c of C, we proceed as follows. Let x and
y be the two vertices of c that have already been placed on r. Let Tu

c and T v
c be

two isosceles triangles sharing the same base xy, such that the third vertex of
each of them lies inside D and on opposite sides of r and such that the internal
angles at x and at y are smaller than φ; refer to the colored triangles in Fig. 4.
We place the vertices of c that are incident only to u (only to v) equidistant
along a circular arc connecting x and y that lies completely inside Tu

c (inside
T v

c , respectively). By the definition of Tu
c and T v

c , and also by the fact that the
two circular arcs are drawn completely inside Tu

c and T v
c , it follows that R.1,

R.2, and R.4 are satisfied for the drawing of c.
To complete the drawing of Γ s

a (H ′), we describe how to draw the subgraph
H ′

c of H ′ that is contained inside or on the boundary of c such that every internal
face of H ′

c is strictly convex. Since H ′
c is drawn convex in Γa(H ′), it admits a

strictly convex drawing for any given strictly convex drawing of its outer face [18].
Thus, we can apply the algorithm in [18] to construct a strictly convex drawing
of H ′

c, whose outerface is the drawing of c satisfying R.1-R.4. Finally, we add the
edges incident to u and v that are contained inside 	 to the resulting drawing,
which does not introduce crossings due to R.4. This completes the construction
of Γ s

a (H ′). Since every cycle in C satisfies R.1–R.4 and since by Observation 1
all faces incident to u and v in H ′ are triangular, the drawing Γ s

a (H ′) is strictly
convex and skinny as desired. Since our construction and the algorithm in [18]
maintain the cyclic order of the edges around each vertex, we have that Γ s

a (H ′)
is topologically equivalent to Γa(H ′). This concludes the proof. ��

To describe the morph between Γa(H ′) and Γ s
a (H ′), we need some more

work. Since both drawings are strictly convex and topologically equivalent, the
preconditions of Theorem 3 are met. However, to ensure that this morph can
be done independently for each piece of a kite, we further need to guarantee
that vertices u and v do not move and that all vertices of H ′ remain inside
	 throughout the morph. As stated in Theorem 3, this can be achieved if the
(triangular) outer face is drawn the same in the two input drawings, which is not
necessarily the case for Γa(H ′) and Γ s

a (H ′) because of the position of d (recall
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Fig. 5. Computing the trajectories for the vertices of H ′ \ {u, v} based on the, already
computed, trajectories of u and v.

that u and v have the same position in Γa(H ′) and Γ s
a (H ′)). To this end, we

augment Γa(H ′) and Γ s
a (H ′) by adding a new vertex d∗ in the outer face of

H ′ and connect it to u, v, and d. Moreover, we place d∗ at the same position
inside 	 in both Γa(H ′) and Γ s

a (H ′) so that the triangle formed by u, v, and
d∗ contains all the other vertices of H ′ (in particular, d). The edge (d, d∗) can
always be drawn without crossings, as u, v, and d were the vertices on the outer
face of H ′ before. After this augmentation, we apply Theorem 3 to compute the
desired morph of 〈Γa(H ′), Γ s

a (H ′)〉, and then we remove d∗ from the drawings.

Performing the Global Morph. Applying the above procedure for each piece
of a kite yields a drawing Γa(G′) of the supergraph G′ of G that is the union of
Q and all the graphs H ′

� corresponding to every piece of a kite 	. Observe that
Γa(G′) is composed of Γa(Q) and the skinny drawing Γ s

a (H ′
�) of every graph

H ′
�. To perform the global morph, recall that the vertices of the subgraph Q of

G′ follow the same trajectories as in the morph between Γa(Q) and Γb(Q) (which
has been recursively computed). The level-� vertices of each subgraph H ′

� are
moved inside 	, which again ensures that this can be done independently for each
piece of a kite. In the following we describe the trajectories of one such subgraph.
We denote this subgraph as H ′ and adopt the same notation as before.

Since the trajectories of u and v are specified by the morph between Γa(Q)
and Γb(Q), we only describe the trajectories of H ′ \ {u, v}, i.e., the vertices
of level �; see Fig. 5 for an example. The drawing of H ′ \ {u, v} is a copy of
Γ s

a (H ′ \ {u, v}) rotated and translated so that the cutvertices of C as well as d
and d′ lie on the radius of D perpendicular to (u, v), and the distance between
w and d′ is the same as in Γ s

a (H ′). This ensures that the drawing of H ′ remains
skinny, planar (by R.4), and strictly convex at every time instant.

Let Γb(G′) be the drawing of G′ obtained so far. The next step of the morph
is to transform, for each subgraph H ′

�, the current skinny drawing Γ s
b (H ′

�)
in Γb(G′) to Γb(H ′

�). By construction, Γ s
b (H ′

�) and Γb(H ′
�) are topologically

equivalent and strictly convex. Similarly as for Γa(H ′
�), we insert vertex d∗ so

that the outer face of H ′
� is drawn the same in both Γ s

b (H ′
�) and Γb(H ′

�), which
allows to apply Theorem 3 independently for each H ′

�. The target drawing Γb(G)
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is obtained by removing the vertices and edges in G′ \ G and by reinserting the
crossed edges in the marked faces. This concludes the proof of Theorem 1.

6 Implications of Theorem 1

In this section, we discuss the applicability of Theorem 1 by presenting mean-
ingful families of 1-planar graphs that admit 1-kite-planar drawings.

An n-vertex 1-planar graph has at most 4n − 8 edges [13], and if it achieves
exactly this density, then it is called optimal. Moreover, any 1-planar drawing
of an optimal 1-planar graph G is such that the uncrossed edges induce a plane
triconnected quadrangulation P , while each pair of crossing edges of G is drawn
inside a corresponding face of P [33]. When restricting to straight-line drawable
1-planar graphs, this bound is reduced to 4n − 9 [21]. Similarly to the general
case, an optimal 1-planar straight-line drawing is one in which the uncrossed
edges induce a plane triconnected graph whose every inner face is a quadrangle,
while the outer face is a triangle [21]. As a consequence, we obtain that each kite
is empty and its kite edges are present and uncrossed. Therefore, any optimal
1-planar straight-line drawing is 1-kite-planar.

Another family of 1-planar graphs that recently attracted considerable atten-
tion is the one of IC-planar graphs [3,15,19,30], which admit 1-planar drawings
where the crossed edges induce a matching. Note that both the binding edges
and the kite edges that are part of an IC-planar drawing are uncrossed. It follows
that, if an IC-planar drawing is kite-augmented [14], i.e., it contains all kite edges,
then it is 1-kite-planar. Observe that kite-augmented graphs are also known as
locally maximal [24]. Overall, the following result is a corollary of Theorem 1.

Corollary 1. There exists a morph between any pair of topologically-equivalent
optimal 1-planar or kite-augmented IC-planar straight-line drawings.

We conclude this section with a remark. As already mentioned, Chambers
et al. [17] studied morphs of toroidal graphs and asked to generalize their result
to surfaces of higher genus. We note that, since an n-vertex graph embeddable
on a surface of genus g has at most 3n + 6(g − 1) edges, while n-vertex optimal
1-planar straight-line drawable graphs have 4n − 9 edges, it follows that the
latter do not admit an embedding (without edge crossings) on any surface of
bounded genus. Thus, a solution to the open problem by Chambers et al. would
not provide morphs of 1-kite-planar drawings.

7 Open Problems

We made a first step towards the problem of morphing pairs of non-planar draw-
ings. Besides the general open problem of morphing any two such drawings [5],
the main questions that stem from our research are as follows: (i) Is it possible
to compute morphs of 1-kite-planar drawings where the vertex trajectories have
bounded complexity? (ii) Regardless of the complexity, can we drop P.2 or P.3
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of Definition 1? Observe that dropping both would extend Theorem 1 to all 1-
planar drawings. (iii) On the other hand, as a relaxation of P.1, further families
of beyond-planar graphs [23] could be considered, for instance, does every pair
of RAC drawings [22] admit a morph?
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Abstract. Consider the following hat guessing game. A bear sits on
each vertex of a graph G, and a demon puts on each bear a hat colored
by one of h colors. Each bear sees only the hat colors of his neighbors.
Based on this information only, each bear has to guess g colors and he
guesses correctly if his hat color is included in his guesses. The bears win
if at least one bear guesses correctly for any hat arrangement.

We introduce a new parameter—fractional hat chromatic number µ̂,
arising from the hat guessing game. The parameter µ̂ is related to the
hat chromatic number which has been studied before. We present a sur-
prising connection between the hat guessing game and the independence
polynomial of graphs. This connection allows us to compute the frac-
tional hat chromatic number of chordal graphs in polynomial time, to
bound fractional hat chromatic number by a function of maximum degree
of G, and to compute the exact value of µ̂ of cliques, paths, and cycles.

Keywords: Hat guessing game · Independence polynomial · Chordal
graphs

1 Introduction

In this paper, we study a variant of a hat guessing game. In these types of games,
there are some entities—players, pirates, sages, or, as in our case, bears. A bear
sits on each vertex of graph G. There is some adversary (a demon in our case)
that puts a colored hat on the head of each bear. A bear on a vertex v sees
only the hats of bears on the neighboring vertices of v but he does not know the
color of his own hat. Now to defeat the demon, the bears should guess correctly
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the color of their hats. However, the bears can only discuss their strategy before
they are given the hats. After they get them, no communication is allowed, each
bear can only guess his hat color. The variants of the game differ in the bears’
winning condition.

The first variant was introduced by Ebert [8]. In this version, each bear gets a
red or blue hat (chosen uniformly and independently) and they can either guess
a color or pass. The bears see each other, i.e. they stay on vertices of a clique.
They win if at least one bear guesses his color correctly and no bear guesses a
wrong color. The question is what is the highest probability that the bears win
achievable by some strategy. Soon, the game became quite popular and it was
even mentioned in NY Times [26].

Winkler [29] studied a variant where the bears cannot pass and the objective
is how many of them guess correctly their hat color. A generalization of this
variant for more than two colors was studied by Feige [11] and Aggarwal [1].
Butler et al. [6] studied a variant where the bears are sitting on vertices of a
general graph, not only a clique. For a survey of various hat guessing games, we
refer to theses of Farnik [10] or Krzywkowski [23].

In this paper, we study a variant of the game introduced by Farnik [10], where
each bear has to guess and they win if at least one bear guesses correctly. He
introduced a hat guessing number HG of a graph G (also named as hat chromatic
number and denoted μ in later works) which is defined as the maximum h such
that bears win the game with h hat colors. We study a variant where each bear
can guess multiple times and we consider that a bear guesses correctly if the
color of his hat is included in his guesses. We introduce a parameter fractional
hat chromatic number μ̂ of a graph G, which we define as the supremum of h

g
such that each bear has g guesses and they win the game with h hat colors.

Albeit the hat guessing game looks like a recreational puzzle, connections
to more “serious” areas of mathematics and computer science were shown—
like coding theory [9,19], network coding [14,25], auctions [1], finite dynamical
systems [12], and circuits [30]. In this paper, we exhibit a connection between the
hat guessing game and the independence polynomial of graphs, which is our main
result. This connection allows us to compute the optimal strategy of bears (and
thus the value of μ̂) of an arbitrary chordal graph in polynomial time. We also
prove that the fractional hat chromatic number μ̂ is asymptotically equal, up to
a logarithmic factor, to the maximum degree of a graph. Finally, we compute
the exact value of μ̂ of graphs from some classes, like paths, cycles, and cliques.

We would like to point out that the existence of the algorithm computing μ̂ of
a chordal graph is far from obvious. Butler et al. [6] asked how hard is to compute
μ(G) and the optimal strategy for the bears. Note that a trivial non-deterministic
algorithm for computing the optimal strategy (or just the value of μ(G) or μ̂(G))
needs exponential time because a strategy of a bear on v is a function of hat
colors of bears on neighbors of v (we formally define the strategy in Sect. 2). It is
not clear if the existence of a strategy for bears would imply a strategy for bears
where each bear computes his guesses by some efficiently computable function
(like linear, computable by a polynomial circuit, etc.). This would allow us to
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put the problem of computing μ into some level of the polynomial hierarchy, as
noted by Butler et al. [6]. However, we are not aware of any hardness results
for the hat guessing games. The maximum degree bound for μ̂ does not imply
an exact efficient algorithm computing μ̂(G) as well. This phenomenon can be
illustrated by the edge chromatic number χ′ of graphs. By Vizing’s theorem [7,
Chapter 5], it holds for any graph G that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1. However,
it is NP-hard to distinguish between these two cases [18].

Organization of the Paper. We finish this section with a summary of results
about the variant of the hat guessing game we are studying. In the next section,
we present notions used in this paper and we define formally the hat guessing
game. In Sect. 3, we formally define the fractional hat chromatic number μ̂ and
compare it to μ. In Sect. 4, we generalize some previous results to the multi-guess
setting. We use these tools to prove our main result in Sect. 5 including the poly-
time algorithm that computes μ̂ for chordal graphs. The maximum degree bound
for μ̂ and computation of exact values of paths and cycles are provided in Sect. 6.

1.1 Related Works

As mentioned above, Farnik [10] introduced a hat chromatic number μ(G) of a
graph G as the maximum number of colors h such that the bears win the hat
guessing game with h colors and played on G. He proved that μ(G) ≤ O

(
Δ(G)

)

where Δ(G) is the maximum degree of G.
Since then, the parameter μ(G) was extensively studied. The parameter μ

for multipartite graphs was studied by Gadouleau and Georgiu [13] and by Alon
et al. [2]. Szczechla [28] proved that μ of cycles is equal to 3 if and only if the
length of the cycle is 4 or it is divisible by 3 (otherwise it is 2). Bosek et al. [5]
gave bounds of μ for some graphs, like trees and cliques. They also provided
some connections between μ(G) and other parameters like chromatic number
and degeneracy. They conjectured that μ(G) is bounded by some function of
the degeneracy d(G) of the graph G. They showed that such function has to
be at least exponential as they presented a graph G of μ(G) ≥ 2d(G). This
result was improved by He and Li [16] who showed there is a graph G such that
μ(G) ≥ 22

d(G)−1
. Since μ̂(G) is upper-bounded O

(
Δ(G)

)
[10] it holds that μ̂

can not be bounded by any function of degeneracy as there are graph classes
of unbounded maximum degree and bounded degeneracy (e.g. trees or planar
graphs). Recently, Kokhas et al. [21,22] studied a non-uniform version of the
game, i.e., for each bear, there could be a different number of colors of the hat.
They considered cliques and almost cliques. They also provided a technique to
build a strategy for a graph G whenever G is made up by combining G1 and
G2 with known strategies. We generalize some of their results and use them as
“basic blocks” for our main result.

2 Preliminaries

We use standard notions of the graph theory. For an introduction to this topic,
we refer to the book by Diestel [7]. We denote a clique as Kn, a cycle as Cn, and
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a path as Pn, each on n vertices. The maximum degree of a graph G is denoted
by Δ(G), where we shorten it to Δ if the graph G is clear from the context. The
neighbors of a vertex v are denoted by N(v). We use N+(v) to denote the closed
neighborhood of v, i.e. N+(v) = N(v) ∪ {v}. For a set U of vertices of a graph
G, we denote G \ U a graph induced by vertices V (G) \ U , i.e., a graph arising
from G by removing the vertices in U .

A hat guessing game is a triple H = (G,h, g) where

– G = (V,E) is an undirected graph, called the visibility graph,
– h ∈ N is a hatness that determines the number of different possible hat colors

for each bear, and
– g ∈ N is a guessing number that determines the number of guesses each bear

is allowed to make.

The rules of the game are defined as follows. On each vertex of G sits a bear.
The demon puts a hat on the head of each bear. Each hat has one of h colors. We
would like to point out, that it is allowed that bears on adjacent vertices get a
hat of the same color. The only information the bear on a vertex v knows are the
colors of hats put on bears sitting on neighbors of v. Based on this information
only, the bear has to guess a set of g colors according to a deterministic strategy
agreed to in advance. We say bear guesses correctly if he included the color of
his hat in his guesses. The bears win if at least one bear guesses correctly.

Formally, we associate the colors with natural numbers and say that each
bear can receive a hat colored by a color from the set S = [h] = {0, . . . , h − 1}.
A hats arrangement is a function ϕ : V → S. A strategy of a bear on v is a
function Γv : S|N(v)| → (

S
g

)
, and a strategy for H is a collection of strategies for

all vertices, i.e. (Γv)v∈V . We say that a strategy is winning if for any possible
hats arrangement ϕ : V → S there exists at least one vertex v such that ϕ(v)
is contained in the image of Γv on ϕ, i.e., ϕ(v) ∈ Γv

(
(ϕ(u))u∈N(v)

)
. Finally, the

game H is winning if there exists a winning strategy of the bears.
As a classical example, we describe a winning strategy for the hat guessing

game (K3, 3, 1). Let us denote the vertices of K3 by v0, v1 and v2 and fix a hats
arrangement ϕ. For every i ∈ [3], the bear on the vertex vi assumes that the
sum

∑
j∈[3] ϕ(vj) is equal to i modulo 3 and computes its guess accordingly. It

follows that for any hat arrangement ϕ there is always exactly one bear that
guesses correctly, namely the bear on the vertex vi for i =

∑
j ϕ(vj) (mod 3).

Some of our results are stated for a non-uniform variant of the hat guessing
game. A non-uniform game is a triple

(
G = (V,E),h,g

)
where h = (hv)v∈V and

g = (gv)v∈V are vectors of natural numbers indexed by the vertices of G and a
bear on v gets a hat of one of hv colors and is allowed to guess exactly gv colors.
Other rules are the same as in the standard hat guessing game. To distinguish
between the uniform and non-uniform games, we always use plain letters h and
g for the hatness and the guessing number, respectively, and bold letters (e.g.
h,g) for vectors indexed by the vertices of G.
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3 Fractional Hat Chromatic Number

From the hat guessing games, we can derive parameters of the underlying visi-
bility graph G. Namely, the hat chromatic number μ(G) is the maximum integer
h for which the hat guessing game (G,h, 1) is winning, i.e., each bear gets a
hat colored by one of h colors and each bear has only one guess—we call such
game a single-guessing game. In this paper, we study a parameter fractional hat
chromatic number μ̂(G) arising from the hat multi-guessing game and defined
as

μ̂(G) = sup
{

h

g

∣
∣
∣
∣ (G,h, g) is a winning game

}

Observe that μ(G) ≤ μ̂(G). Farnik [10] and Bosek et al. [5] also study multi-
guessing games. They considered a parameter μg(G) that is the maximum num-
ber of colors h such that the bears win the game (G,h, g). The difference between
μg and μ̂ is the following. If μg(G) ≥ k, then the bears win the game (G, k, g)
and μ̂ ≥ k

g . If μ̂(G) ≥ p
q , then there are h, g ∈ N such that p

q = h
g and the bears

win the game (G,h, g). However, it does not imply that the bears would win the
game (G, p, q). It is easy to prove that if the bears win the game (G,h, g) then
they win the game (G, kh, kg) for any constant k ∈ N (see the full version [4]
for the details). The opposite implication does not hold– we discuss a counterex-
ample at the end of this section. Unfortunately, this property prevents us from
using our algorithm, which computes μ̂, to compute also μ of chordal graphs.

Moreover, by definition, the parameter μ̂ does not even have to be a rational
number. In such a case, for each p, q ∈ N, it holds that

– If p
q < μ̂(G) then there are h, g ∈ N such that p

q = h
g and the bears win the

game (G,h, g).
– If p

q > μ̂(G) then the demon wins the game (G, p, q).

For example, the fractional hat chromatic number μ̂(P3) of the path P3 is irra-
tional. We discuss path P3 the full version [4]. In the case of an irrational μ̂(G),
our algorithm computing the value of μ̂ of chordal graphs outputs an estimate
of μ̂(G) with arbitrary precision. The next lemma state that the multi-guessing
game is in some sense monotone. The proof is in the full version [4].

Lemma 1. Let
(
G = (V,E), h, g

)
be a winning hat guessing game. Let r′ be a

rational number such that r′ ≤ h/g. Then, there exist numbers h′, g′ ∈ N such
that h′/g′ = r′ and the hat guessing game (G,h′, g′) is winning.

It is straight-forward to prove a generalization of Lemma 1 for non-uniform
games. However, for simplicity, we state it only for the uniform games. By the
proof of the previous lemma, we know that we can use a strategy for (G,h, g) to
create a strategy for a game (G, k · h, k · g + �) for arbitrary k, � ∈ N. A question
is if we can do it in general: Can we derive a winning strategy if we decrease
the fraction h/g, but the hatness h and the guessing number g are changed
arbitrarily? It is true for cliques. We show in Sect. 4 that the bears win the game
(Kn, h, g) if and only if h/g ≤ n. However, it is not true in general. For example,
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for n large enough it holds that μ̂(Pn) ≥ 3, as we show in Sect. 6 that μ̂(Pn)
converges to 4 when n goes to infinity. However, Butler et al. [6] proved that
μ(T ) = 2 for any tree T . Thus, the bears lose the game (Pn, 3, 1).

4 Basic Blocks

In this section, we generalize some results of Kokhas et al. [21,22] about cliques
and strategies for graph products, which we use for proving our main result.
The single-guessing version of the next theorem (without the algorithmic conse-
quences) was proved by Kokhas et al. [21,22]. The proof of the following theorem
is stated in the full version [4].

Theorem 1. Bears win a game
(
Kn = (V,E),h,g

)
if and only if

∑

v∈V

gv
hv

≥ 1.

Moreover, if there is a winning strategy, then there is a winning strategy (Γv)v∈V

such that each Γv can be described by two linear inequalities whose coefficients
can be computed in linear time.

By Theorem 1, we can conclude the following corollary.

Corollary 1. For each n ∈ N, it holds that μ̂(Kn) = n.

Further, we generalize a result of Kokhas and Latyshev [21]. In particular,
we provide a new way to combine two hat guessing games on graphs G1 and G2

into a hat guessing game on graph obtained by gluing G1 and G2 together in a
specific way.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, let S ⊆ V1 be a set of vertices
inducing a clique in G1, and let v ∈ V2 be an arbitrary vertex of G2. The clique
join of graphs G1 and G2 with respect to S and v is the graph G = (V,E) such
that V = V1 ∪ V2 \ {v}; and E contains all the edges of E1, all the edges of E2

that do not contain v, and an edge between every w ∈ S and every neighbor
of v in G2. See Fig. 1 for an example of a clique join and the application of the
following lemma.

Lemma 2. Let H1 =
(
G1 = (V1, E1),h1,g1

)
and H2 =

(
G2 = (V2, E2),h2,g2

)

be two hat guessing games and let S ⊆ V1 be a set inducing a clique in G1 and
v ∈ V2. Set G to be the clique join of graphs G1 and G2 with respect to S and v.
If the bears win the games H1 and H2, then they also win the game H = (G,h,g)
where

hu =

⎧
⎪⎨

⎪⎩

h1
u u ∈ V1 \ S

h2
u u ∈ V2 \ {v}

h1
u · h2

v u ∈ S, and
gu =

⎧
⎪⎨

⎪⎩

g1u u ∈ V1 \ S

g2u u ∈ V2 \ {v}
g1u · g2v u ∈ S.
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Proof Idea. For every bear u ∈ S, we interpret his color as a tuple (c1u, c2u) where
c1u ∈ [h1

u] and c2u ∈ [h2
v]. The bears in G1 \S or G2 \{v} use the strategies for H1

or H2, respectively. The bears in S combine the winning strategies for H1 and
H2. The full proof is in the full version [4]. �

We remark that Lemma 2 generalizes Theorem 3.1 and Theorem 3.5 of [21]
not only by introducing multiple guesses but also by allowing for more general
ways to glue two graphs together. Thus, it provides new constructions of winning
games even for single-guessing games.

Fig. 1. Applying Lemma 2 on winning hat guessing games (C4, 3, 1) (see [28]) and
(K3, 3, 1), we obtain a winning hat guessing game (G,h, 1) where G is the result of
identifying an edge in C4 and K4, and h is given in the picture.

5 Independence Polynomial

The multivariate independence polynomial of a graph G = (V,E) on variables
x = (xv)v∈V is

PG(x) =
∑

I⊆V
I independent set

∏

v∈I

xv.

First, we describe informally the connection between the multi-guessing game
and the independence polynomial. Consider the game (G,h, g) and fix a strategy
of bears. Suppose that the demon put on the head of each bear a hat of random
color (chosen uniformly and independently). Let Av be an event that the bear
on the vertex v guesses correctly. Then, the probability of Av is exactly g/h.
Moreover, for any independent set I holds that Av is independent on all events
Aw for w ∈ I, w �= v. Thus, we can use the inclusion-exclusion principle to
compute the probability that Av occurs for at least one v ∈ I, i.e., at least one
bear sitting on some vertex of I guesses correctly.

Assume that no two bears on adjacent vertices guess correctly their hat colors
at once; it turns out that if we plug −g/h into all variables of the non-constant
terms of −PG, then we get exactly the fraction of all hat arrangements on which
the bears win. The non-constant terms of PG correspond (up to sign) to the
terms of the formula from the inclusion-exclusion principle. Because of that, we
have to plug −g/h into the polynomial PG.
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To avoid confusion with the negative fraction −g/h, we define signed inde-
pendence polynomial as ZG(x) = PG(−x), i.e.,

ZG(x) =
∑

I⊆V
I independent set

(−1)|I| ∏

v∈I

xv.

We also introduce the monovariate signed independence polynomial UG(x)
obtained by plugging x for each variable xv of ZG.

Note that the constant term of any independence polynomial PG(x) equals
to 1, arising from taking I = ∅ in the sum from the definition of PG. When
UG(g/h) = 0 and no two adjacent bears guess correctly at the same time, then
the bears win the game (G,h, g) because the fraction of all hat arrangements,
on which at least one bear guesses correctly, is exactly 1, however, the proof is
far from trivial.

Slightly abusing the notation, we use ZG′(x) to denote the independence
polynomial of an induced subgraph G′ with variables x restricted to the vertices
of G′. The independence polynomial PG can be expanded according to a vertex
v ∈ V in the following way.

PG(x) = PG\{v}(x) + xvPG\N+(v)(x)

The analogous expansions hold for the polynomials ZG and UG as well. This
expansion follows from the fact that for any independent set I of G, it holds
that either v is not in I (the first term of the expansion), or v is in I but in
that case, no neighbor of v is in I (the second term). The formal proof of this
expansion of PG was provided by Hoede and Li [17].

For a graph G, we let R(G) denote the set of all vectors r ∈ [0,∞)V such
that ZG(w) > 0 for all 0 ≤ w ≤ r, where the comparison is done entry-wise. For
the monovariate independence polynomial UG, an analogous set to R(G) would
be exactly the real interval [0, r) where r is the smallest positive root of UG.
(Note that ZG(0) = 1 and UG(0) = 1.)

Our first connection of the independence polynomial to the hat guessing
game comes in the shape of a sufficient condition for bears to lose. Consider the
following beautiful connection between Lovász Local Lemma and independence
polynomial due to Scott and Sokal [27].

Theorem 2 ([27] Theorem 4.1). Let G = (V,E) be a graph and let (Av)v∈V

be a family of events on some probability space such that for every v, the event
Av is independent of {Aw | w �∈ N+(v)}. Suppose that p ∈ [0, 1]V is a vector of
real numbers such that for each v we have P (Av) ≤ pv and p ∈ R(G). Then

P
( ⋂

v∈V

Āv

) ≥ ZG(p) > 0.

The full proofs omitted in this section are stated in the full version [4].

Proposition 1. A hat guessing game H = (G = (V,E),h,g) is losing whenever
r ∈ R(G) where r = (gv/hv)v∈V .
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Proof Idea. We let the demon assign a hat to each bear uniformly at random and
independently from the other bears. Let Av be the event that the bear on the ver-
tex v guesses correctly. Applying Theorem 2 to G and the events Av, we conclude
that the bears lose (no event Av occurs) with a non-zero probability. �

A strategy for a hat guessing game H is perfect if it is winning and in every
hat arrangement, no two bears that guess correctly are on adjacent vertices.
We remark that perfect strategies exist, for example the strategy for a single-
guessing game on a clique Kn and exactly n colors [20], or for a multi-guessing
game on a clique Kn and h/g = n (Corollary 1). The following proposition shows
that a perfect strategy can occur only when r = (gv/hv)v∈V lies in some sense
just outside of R(G).

Proposition 2. If there is a perfect strategy for the hat guessing game (G,h,g)
then for r = (gv/hv)v∈V we have that ZG(r) = 0 and ZG(w) ≥ 0 for every
0 ≤ w ≤ r.

Proof Idea. We fix a perfect strategy and show that if we plug the vector r into
ZG then the non-constant terms of ZG compute exactly the negative fraction
of hat arrangements for which at least one bear guesses his hat color correctly.
We point out that the assumption of the perfect strategy is crucial and this step
would not be true without this assumption. Since the constant term of ZG is
always equal to 1, it follows that ZG(r) = 0.

Scott and Sokal [27, Corollary 2.20] proved that ZG(w) ≥ 0 for every 0 ≤
w ≤ r if and only if r lies in the closure of R(G). Therefore, Proposition 2
further implies that if a perfect strategy for game (G,h,g) exists, then r =
(gv/hv)v∈V lies in the closure of R(G). And since r cannot lie inside R(G) due
to Proposition 1, it must belong to the boundary of the set R(G).

The natural question is what happens outside of the closure of R(G). We
proceed to answer this question for chordal graphs.

A graph G is chordal if every cycle of length at least 4 has a chord. For our
purposes, it is more convenient to work with a different equivalent definition of
chordal graphs. For a graph G = (V,E), a clique tree of G is a tree T whose
vertex set is precisely the subsets of V that induce maximal cliques in G and for
each v ∈ V the vertices of T containing v induces a connected subtree. Gavril [15]
showed that G is chordal if and only if there exists a clique tree of G.

Theorem 3. Let G = (V,E) be a chordal graph and let r = (rv)v∈V be a vector
of rational numbers from the interval [0, 1]. If r �∈ R(G) then there are vectors
g,h ∈ N

V such that gv/hv ≤ rv for every v ∈ V and the hat guessing game
(G,h,g) is winning.

Proof Idea. The proof is done by induction over the vertices of a clique tree T
of G. We take a leaf of T , which represents a clique C of G. If the vector r is
such that the bears win on C by Theorem 1, then we are done. Otherwise, let
G′ be a graph arising from G by removing vertices that are only in C and no
other maximal clique. We define new vectors g1,g2,g1, and h2 arising from g
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and h in such a way that the bears would win the game H1 = (C,h1,g1) by
Theorem 1 and the game H2 = (G′,h2,h1) by induction hypothesis. We use the
winning strategies for H1 and H2 and combine them into a winning strategy for
the game (G,h,g) using Lemma 2. See Fig. 2 for an illustration of the proof. �

Fig. 2. Application of Theorem 1 on a chordal graph G with vector r ∈ R(G). In each
step, we highlight the clique S and vertex w that are used for Lemma 2 to inductively
build a strategy for G from strategies on cliques given by Theorem 1.

Theorem 3 applied for the uniform polynomial UG immediately gives us the
following corollary.

Corollary 2. For any chordal graph G, the fractional hat chromatic number
μ̂(G) is equal to 1/r where r is the smallest positive root of UG(x).

Proof. Theorem 3 implies that μ̂(G) ≥ 1/r. For the other direction, let (wi)i∈N be
a sequence of rational numbers such that wi < r for every i and limi→∞ wi = r.
Set wi = (wi)v∈V . Scott and Sokal [27, Thereom 2.10] prove that r ∈ R(G) if
and only if there is a path in [0,∞)V connecting 0 and r such that ZG(p) > 0 for
any p on the path. Taking the path {λwi | λ ∈ [0, 1]}, we see that ZG(λwi) =
UG(λ · wi) > 0 and thus wi ∈ R(G) for every i. Therefore by Proposition 1,
the hat guessing game (G,h, g) is losing for any h, g such that g/h = wi and
μ̂(G) ≤ 1/wi for every i. It follows that μ̂(G) ≤ 1/r. �

We would like to remark that the proof of Theorem 3 (and also Theorem 1)
is constructive in the sense that given a graph G and a vector r it either greedily
finds vectors g,h ∈ N

V such that gv/hv ≤ rv together with a succinct represen-
tation of a winning strategy on (G,h,g) or it reaches a contradiction if r ∈ R(G).
Moreover, it is easy to see that it can be implemented to run in polynomial time
if the clique tree of G is provided. Combining it with the well-known fact that
a clique tree of a chordal graph can be obtained in polynomial time (see Blair
and Peyton [3]) we get the following corollary.

Corollary 3. There is a polynomial-time algorithm that for a chordal graph
G = (V,E) and vector r decides whether r ∈ R(G). Moreover, if r �∈ R(G) it
outputs vectors h,g ∈ N

V such that gv/hv ≤ rv for every v ∈ V , together with
a polynomial-size representation of a winning strategy for the hat guessing game
(G,h,g).
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This result is consistent with the fact that chordal graphs are in general well-
behaved with respect to Lovász Local Lemma—Pegden [24] showed that for
a chordal graph G, we can decide in polynomial time whether a given vector r
belongs to R(G). We finish this section by presenting an algorithm that computes
hat chromatic number of chordal graphs.

Theorem 4. There is an algorithm A such that given a chordal graph G as an
input, it approximates μ̂(G) up to an additive error 1/2k. The running time of
A is 2k · poly(n), where n is the number of vertices of G. Moreover, if μ̂(G) is
rational, then the algorithm A outputs the exact value of μ̂(G).

Proof Idea. We start with an interval I0 = [0, 1]. We repeatedly use the algo-
rithm given by Corollary 3 to produce intervals Ij such that 1/μ̂(G) is in Ij .
We gradually decrease the length of the intervals Ij until it is small enough to
determine μ̂(G) with the sought precision 1/2k. �

6 Applications

In this section, we present applications of the relation between the hat guessing
game and independence polynomials which was presented in the previous section.

First, we prove that μ̂(G) is asymptotically equal to Δ(G) up to a logarithmic
factor. Since the bears can use a strategy for trees on a star with a central vertex
of degree Δ(G) (which is always a subgraph of any graph G), we deduce a lower
bound stated as Proposition 3. The formal proof is in the full version [4].

Proposition 3. The fractional hat chromatic number of any graph G = (V,E)
is at least Ω(Δ/ logΔ).

Farnik [10] proved that μg(G) ∈ O
(
g ·Δ(G)

)
, from which we can deduce that

μ̂(G) ∈ O
(
Δ(G)

)
. It gives with Proposition 3 the following corollary that μ̂(G)

is almost linear in Δ(G).

Corollary 4. For any graph G, it holds that μ̂(G) ∈ Ω(Δ/ logΔ) and μ̂(G) ∈
O(Δ).

It follows from Corollary 4, that μ̂(Pn) and μ̂(Cn) are some constants. In
the full version [4] we prove the following proposition that the fractional hat
chromatic number of paths and cycles goes to 4 with their increasing length.

Proposition 4. limn→∞ μ̂(Pn) = limn→∞ μ̂(Cn) = 4

We remark that Proposition 4 follows also from the results of Scott and
Sokal [27] as they proved that the small positive roots of UPn

and UCn
go to

1/4 when n goes to infinity. However, their proof is purely algebraic whereas we
provide a combinatorial proof.
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Abstract. We introduce the largest connected subgraph game played on
an undirected graph G. Each round, Alice colours an uncoloured vertex
of G red, and then, Bob colours one blue. Once every vertex is coloured,
Alice (Bob, resp.) wins if there is a red (blue, resp.) connected subgraph
whose order is greater than that of any blue (red, resp.) connected sub-
graph. If neither player wins, it is a draw. We prove that Alice can ensure
Bob never wins, and define a class of graphs (reflection graphs) in which
the game is a draw. We show that the game is PSPACE-complete in
bipartite graphs of diameter 5, and that recognising reflection graphs
is GI-hard. We prove that the game is a draw in paths if and only if
the path has even order or at least 11 vertices, and that Alice wins in
cycles if and only if the cycle is of odd order. We also give an algorithm
computing the outcome of the game in cographs in linear time.

Keywords: Games on graphs · Scoring games · Connection games ·
PSPACE-complete

1 Introduction

Games where players strive to make connected structures are connection games.
Several of these games are well-known, like the game of Hex, introduced by Hein
in 1942, and independently by Nash in 1948 [9]. Hex is played by two players on a
hexagon-tiled board with two of its opposing sides coloured red and the other two
blue. Each round, the first player colours an uncoloured tile red, and then, the
second player colours one blue. The player that connects the two sides with his
colour wins. Another famous connection game is the Shannon switching game,
invented by Shannon in the 1950s [10]. In this game, the first player wants to
connect two marked vertices in a graph, and the second player wants to prevent
this. The players take turns selecting edges of the graph, and the first player wins
if there is a path consisting of only his edges between the two marked vertices.
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A variant where the players select vertices (and obtain their incident edges) also
exists. However, not all connection games involve connecting sides of a board or
two vertices in a graph. For example, in Havannah, a board game invented by
Freeling in 1981, the players may also win by forming closed loops, with the board
and the rules similar to Hex. Connection games tend to be difficult complexity-
wise, which is a main reason they are played and studied. For example, Reisch
proved that generalised Hex is PSPACE-complete [14], Even and Tarjan proved
that the Shannon switching game on vertices (players select vertices, not edges)
is PSPACE-complete [8], and Bonnet et al. proved that (generalised) Havannah
is PSPACE-complete [3]. That being said, the Shannon switching game on edges
is polynomial-time solvable [5]. For more on connection games, see [3,4].

Games in which the player with the largest score wins are scoring games. The
score in these games is measured in a unit called points. Players may gain points
in a myriad of ways depending on the rules of the game, i.e., in the orthogonal
colouring game [1], each player gets a point for each coloured vertex in their copy
of the graph, and a player’s final score is their total number of points. Recently,
the papers [11,12] started to build a general theory around scoring games, and
there have been many papers on different scoring games, such as [7,13,16]. In
this paper, we introduce the following 2-player game linking connection and
scoring games on graphs. For any graph G, the largest connected subgraph game
is played between Alice and Bob. Initially, no vertices are coloured. Each round,
Alice first colours an uncoloured vertex of G red, and then, Bob colours an
uncoloured vertex blue. Each vertex can only be coloured once and its colour
cannot be modified. The game ends when every vertex in G is coloured. If there
is a connected red (blue, resp.) subgraph whose order (number of vertices) is
strictly greater than the order of any connected blue (red, resp.) subgraph, then
Alice (Bob, resp.) wins. If the order of the largest connected red subgraph equals
the order of the largest connected blue subgraph, then the game is a draw.

Notations and first results for the game are given in Sect. 2, i.e., we show that
Alice can ensure that Bob never wins, that the game is a draw in a class of graphs
we call reflection graphs, and that recognising these graphs is GI-hard. In Sect. 3,
we prove that the game is PSPACE-complete in bipartite graphs of diameter 5.
We then study the game in some graph classes, with the resolution of the game
for paths and cycles in Sect. 4, and a linear-time algorithm for solving the game
in cographs in Sect. 5. These graph classes interestingly illustrate different types
of strategies for Alice and Bob. Lastly, we finish with open questions in Sect. 6.

2 Notations and First Results

In this section, we define notations and give preliminary results for the game.
For any graph G, if Alice (Bob, resp.) has a winning strategy in the largest
connected subgraph game, then G is A-win (B-win, resp.). If neither Alice nor
Bob has a winning strategy in the largest connected subgraph game, i.e., it is a
draw if both players use optimal strategies, then G is AB-draw. Since it is never
a disadvantage to play an extra turn, by the classic strategy stealing argument:
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Theorem 1 [2]. There does not exist a graph G that is B-win.

Since there are no B-win graphs, the next natural question to ask is whether
there are A-win (AB-draw, resp.) graphs. There are an infinite number of A-win
graphs as any star is A-win (Alice first colours the universal vertex). This also
shows that there are an infinite number of graphs for which the order of the
largest connected red subgraph is arbitrarily bigger than that of the blue one.
There are also an infinite number of AB-draw graphs, since any graph of even
order with two universal vertices is AB-draw. In Sect. 4, we show that any path
of order at least 10 is AB-draw, and hence, that there are an infinite number
of graphs of odd order that are AB-draw. We can actually define a much richer
class of AB-draw graphs. A reflection graph is any graph G, whose vertices can
be partitioned into two sets U = {u1, . . . , un} and V = {v1, . . . , vn} such that:

1. there is an isomorphism between the subgraph induced by U and the subgraph
induced by V , where vi is the image of ui, for all 1 ≤ i ≤ n;

2. for any two vertices ui ∈ U and vj ∈ V , if uivj ∈ E(G), then ujvi ∈ E(G).

Theorem 2 [2]. Any reflection graph G is AB-draw.

Indeed, a drawing strategy for Bob is to colour vi (ui, resp.) when Alice
colours ui (vi, resp.). Any even-order graph that is a path, cycle, or Cartesian
product of two graphs, is a reflection graph. We prove that recognising reflection
graphs is not in P unless the Graph Isomorphism problem is:

Theorem 3 [2]. Given a graph G, deciding if G is a reflection graph is GI-hard.

3 Complexity

In this section, we show that the largest connected subgraph game is PSPACE-
complete, even in bipartite graphs of small diameter. Our reduction is via POS
CNF, which was shown to be PSPACE-complete in [15], and is as follows:

POS CNF: 2-player game whose input is a set of variables X = {x1, . . . , xn}
and a conjunctive normal form (CNF) formula φ made up of clauses C1, . . . , Cm

comprised of variables from X in their positive form. In each round, the first
player, Alice, sets a variable (that is not yet set) to true, and then, the second
player, Bob, sets a variable (that is not yet set) to false. Once each variable has
been assigned a truth value, Alice wins if φ is true, and Bob wins if φ is false.

Theorem 4. Given a graph G, deciding if G is A-win is PSPACE-complete,
even if G is bipartite and has a diameter of 5.

Proof. As there are �|V (G)|/2� rounds and at most |V (G)| possible moves for
a player in a round, the problem is in PSPACE. To prove it is PSPACE-hard,
we give a reduction from POS CNF. By adding a dummy variable, POS CNF
remains PSPACE-hard if the number of variables n is odd. From an instance φ
of POS CNF where n is odd, we construct, in polynomial time, an instance G
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Fig. 1. An example of the construction of the graph G in the proof of Theorem 4,
where, among other variables, the clause C1 contains the variable x1, the clause C2

contains the variables x1 and x2, and the clause Cm contains the variables x2 and xn.

of the largest connected subgraph game such that Alice wins in φ if and only if
G is A-win. Let x1, . . . , xn be the variables and C1, . . . , Cm be the clauses in φ.
The construction of G is as follows (see Fig. 1): for each variable xi (1 ≤ i ≤ n),
there is a vertex xi, and for each clause Cj (1 ≤ j ≤ m), there are 6 vertices
C1

j , . . . , C6
j . For all 1 ≤ i ≤ n and 1 ≤ j ≤ m, if the variable xi appears in the

clause Cj , then there is the edge xiC
q
j for all 1 ≤ q ≤ 6. There are the vertices

u, v1, v2, w1, w2, and y1, . . . , yn+6m−2, and the edges w1v1, v1u, uv2, and v2w2,
and, for all 1 ≤ i ≤ n, there is the edge uxi, and, for all 1 ≤ � ≤ n + 6m − 2,
there are the edges w1y� and w2y�. To simplify the proof, let P be the subgraph
of G induced by the vertices xi (1 ≤ i ≤ n) and Cq

j (1 ≤ q ≤ 6 and 1 ≤ j ≤ m),
and let Q be the subgraph of G induced by the vertices V (G) \ (V (P ) ∪ {u}).

First, we prove that, if Alice wins in φ, then G is A-win. We give a winning
strategy for Alice. In what follows, whenever Alice cannot follow her strategy, she
colours an arbitrary vertex and resumes her strategy for the subsequent rounds.
Alice first colours u. Now, Bob can only construct connected blue subgraphs in
P or Q since u separates them. For all 1 ≤ j ≤ m, whenever Bob colours a
vertex in {C1

j , . . . , C6
j }, then Alice also colours a vertex in {C1

j , . . . , C6
j }, so in

what follows, we assume that Bob does not colour such a vertex. There are two
cases depending on Bob’s next move.

Case 1: Bob colours a vertex in Q. Then, Alice colours the vertex xi correspond-
ing to the variable xi she would set to true in her winning strategy in φ. Now,
whenever Bob colours a vertex xp (1 ≤ p ≤ n and p �= i), Alice assumes Bob set
the variable xp to false in φ and colours the vertex in {x1, . . . , xn} correspond-
ing to her winning strategy in φ. Otherwise, whenever Bob colours a vertex in
Q, Alice colours a vertex in Q. By this strategy, Alice ensures a connected red
subgraph of order at least �n/2�+3m+1 as she colours half the variable vertices
(rounded up), half the clause vertices, and u, and since she followed a winning
strategy in φ, this subgraph is connected. Moreover, she ensures that any con-
nected blue subgraph in P is of order at most �n/2	+3m, and hence, Bob must
build his largest connected blue subgraph in Q to manage a draw. Also note that,
if Alice colours v1 or v2 she wins, since then she ensures a connected red sub-
graph of order at least �n/2�+3m+2, while she ensures that any connected blue
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subgraph in Q is of order at most �(n+6m−2+3−2)/2	+2 = �(n−1)/2	+3m+2.
Thus, Bob must have coloured v1 and v2 in the first two rounds. Now, Alice
colours w2, and she wins since she ensures that any connected blue subgraph in
Q is of order at most �(n + 6m − 2 + 2 − 2)/2	 + 2 = �n/2	 + 3m + 1.

Case 2: Bob colours a vertex in {x1, . . . , xn}. Then, Alice colours w2. This forces
Bob to colour v2, as otherwise, Alice will colour v2 in the next round and win
with the following strategy: whenever Bob colours a vertex

– in {w1, v1}, then Alice colours the other vertex in {w1, v1};
– y�, then Alice colours a vertex yk (� �= k);
– xi (1 ≤ i ≤ n), then Alice colours a vertex xp (1 ≤ p ≤ n and i �= p).

In this way, Alice guarantees a connected red subgraph of order at least
�(n + 6m − 2 + n − 3)/2� + 3 = n + 3m + 1 without counting any of the vertices
Cq

j (1 ≤ q ≤ 6, 1 ≤ j ≤ m). Regarding Bob, any connected blue subgraph in P
has at most �(n−3)/2	+3+3m = �(n−1)/2	+3m+2 vertices, and any connected
blue subgraph in Q has at most �(n+6m−2+2−3)/2	+3 = �(n−1)/2	+3m+2
vertices. Hence, Alice wins in this case, and thus, we can assume Bob colours
v2. Now, Alice colours w1 and Bob is forced to colour v1 for the same reasons
as above. Alice now colours y1 and then she follows the strategy just previously
described above (as in the case where Bob did not colour v2). In this way, Alice
ensures a connected red subgraph of order at least �(n+6m−2+2−2)/2�+2 =
�n/2� + 3m + 1 in Q. Regarding Bob, any connected blue subgraph in P has at
most �(n − 2)/2	 + 2 + 3m = �n/2	 + 3m + 1 vertices, and any connected blue
subgraph in Q has at most one vertex. Hence, Alice wins in this case as well
(recall that n is odd), and this concludes the proof of the first direction.

Now, we prove that if Bob wins in φ, then G is AB-draw. We give a drawing
strategy for Bob. In what follows, whenever Bob cannot follow his strategy, he
colours an arbitrary vertex and resumes his strategy for the subsequent moves
of Alice. Part of Bob’s strategy is as follows: whenever Alice colours a vertex

– in {C1
j , . . . , C6

j } for 1 ≤ j ≤ m, then Bob colours a vertex in {C1
j , . . . , C6

j };
– xi for 1 ≤ i ≤ n, then Bob assumes Alice set xi to true in φ and colours the

vertex in {x1, . . . , xn} corresponding to his winning strategy in φ.

So, we just need to give a strategy for Bob in Q′, the subgraph of G induced
by V (Q)∪{u}. W.l.o.g., we may assume that the first vertex Alice colours in Q′

is not v2 nor w2. Bob colours w2. If the first two vertices Alice colours in Q′ are:

– w1 and v1, then Bob colours u. Now, Alice must colour v2, as otherwise, Bob
wins as in the proof of the first direction where Alice wins if she manages to
colour w2, v2, and u. Then, Bob colours yk for some 1 ≤ k ≤ n + 6m − 2.
Now, whenever Alice colours a vertex y� (1 ≤ � ≤ n + 6m − 2), then Bob
colours a vertex yk (1 ≤ k ≤ n + 6m − 2 and � �= k);

– w1 and v2, then Bob colours y� for some 1 ≤ � ≤ n + 6m − 2. Now, whenever
Alice colours a vertex in {v1, u}, then Bob colours the other vertex in {v1, u}.
Otherwise, whenever Alice colours a vertex y� (1 ≤ � ≤ n + 6m − 2), then
Bob colours a vertex yk (1 ≤ k ≤ n + 6m − 2 and � �= k);
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– w1 and u, then Bob colours v1. Now, whenever Alice colours a vertex in
{y1, . . . , yn+6m−2, v2}, Bob colours another vertex in {y1, . . . , yn+6m−2, v2};

– w1 and yk for some 1 ≤ k ≤ n + 6m − 2, then Bob colours v2. Now, Alice
must colour u, as otherwise, Bob wins as in the proof of the first direction
where Alice wins if she manages to colour w2, v2, and u. Then, Bob colours
v1. Now, whenever Alice colours a vertex y� (1 ≤ � ≤ n + 6m − 2), then Bob
colours a vertex yp (1 ≤ p ≤ n + 6m − 2 and � �= p);

– any other combination, then Bob colours w1. Now, whenever Alice colours a
vertex in {y1, . . . , yn+6m−2, v1, v2, u}, then Bob colours a different vertex in
{y1, . . . , yn+6m−2, v1, v2} (note that u is not included here).

In the first two cases above, there is a connected blue subgraph in Q of order
at least �(n+6m−2+1−2)/2	+2 = �(n−1)/2	+3m+1. In the third case above,
there is a connected blue subgraph in Q of order at least �(n+6m−2+1)/2	+1 =
�(n−1)/2	+3m+1. In the fourth case above, there is a connected blue subgraph
in Q of order at least �(n + 6m − 2 + 2 − 3)/2	 + 2 = �(n − 1)/2	 + 3m + 1. In
the last case above, there is a connected blue subgraph in Q of order at least
�(n + 6m − 2 + 4 − 4)/2	 + 2 = �n/2	 + 3m + 1 = �(n − 1)/2	 + 3m + 1 (since
n is odd). To summarise, in each of the cases, Bob has ensured that there is a
connected blue subgraph in Q of order at least �(n − 1)/2	 + 3m + 1.

Regarding Alice, in the first two cases above, any connected red subgraph in
Q is of order at most �(n + 6m − 2 + 2 − 3)/2� + 2 = �(n − 1)/2� + 3m + 1.
In the third case above, any connected red subgraph in Q is of order at most
�(n + 6m − 2 + 1 − 1)/2� + 1 = �n/2� + 3m = �(n − 1)/2� + 3m + 1 (since
n is odd). In the fourth case above, any connected red subgraph in Q is of
order at most �(n + 6m − 2 + 1 − 2)/2� + 2 = �(n − 1)/2� + 3m + 1. In the
last case above, any connected red subgraph in Q is of order at most 1. Thus,
in each of the cases, Bob ensured that any connected red subgraph in Q is of
order at most �(n − 1)/2� + 3m + 1 = �(n − 1)/2	 + 3m + 1 (since n is odd).
Hence, for Alice to win, she must have a connected red subgraph of order at
least �(n−1)/2	+3m+2 in P ′, the subgraph of G induced by V (P )∪{u, v1, v2}
(since, by Bob’s strategy, it can never be that u, v1, and w1 (u, v2, and w2, resp.)
are all red). Since Bob follows a winning strategy in φ whenever Alice colours a
vertex in {x1, . . . , xn}, there is a j for which no vertex in C1

j , . . . , C6
j is adjacent

to a red vertex. Thus, any connected red subgraph in P ′ has order at most
�(n+6m−6)/2�+3 = �n/2�+3m = �(n−1)/2	+3m+1 (since n is odd). Thus,
in G, there is a connected blue subgraph of order at least �(n − 1)/2	 + 3m + 1
and any connected red subgraph has order at most �(n−1)/2	+3m+1, so Alice
does not win in any of the cases. This ends the proof of the second direction. 
�

4 Paths and Cycles

In this section, we deal with the case of n-vertex paths Pn = (v1, . . . , vn) and
cycles Cn = (v1, . . . , vn). We begin with two lemmas for specific cases in paths,
which we use in the proofs for paths and cycles of odd order. In the following
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proofs in this section, we often divide the main path Pn into two subpaths Q and
Q′, and say that Alice “follows” Bob, that is, when Bob plays in Q (in Q′, resp.),
Alice then plays in Q (in Q′, resp.). The way Alice answers to Bob’s moves in
Q (in Q′, resp.) is given in the proofs and depends on the different cases. Note
that, when following this strategy, Alice may be unable to colour a desired vertex
(because Q, resp., Q′, has no uncoloured vertex anymore, or because the desired
vertex is already red). In this case, Alice colours an arbitrary uncoloured vertex
of Pn. The same applies for when we say that Bob “follows” Alice.

Lemma 1 [2]. For all n ≥ 1, for the path Pn, Bob has a strategy that ensures
that the largest connected red subgraph is of order at most 2, even if one of the
path’s vertices of degree 1 is initially coloured red and it is Alice’s turn.

Lemma 2 [2]. Let x ≥ 1 and n ≥ x. For any path Pn with x vertices initially
coloured blue, let y be the maximum order of an initial connected blue subgraph.

– if y = x and, either the blue subgraph contains no ends of Pn or x = 1, then,
if Alice starts, she has a strategy ensuring that Bob cannot create a connected
blue subgraph of order more than x + 1;

– otherwise, if Alice starts, she has a strategy ensuring that Bob cannot create
a connected blue subgraph of order more than x.

Theorem 5. For all n ≥ 1, the path Pn is A-win if and only if n ∈ {1, 3, 5, 7, 9}.
Proof. By Theorem 1, we must prove that Pn is A-win if n ∈ {1, 3, 5, 7, 9}, and
Pn is AB-draw otherwise. By Theorem 2, Pn is AB-draw if n is even. If n ≤ 9
is odd, by a case analysis, Alice has a winning strategy that first colours the
center of Pn. So, let us assume that n ≥ 11 is odd. We orient the path from left
to right (from v1 to vn), so we can use the notions of left and right. We now give
a drawing strategy for Bob when n ≥ 11. Let vj (1 ≤ j ≤ n) be the first vertex
coloured by Alice. Since n ≥ 11, there are at least 5 vertices to the left or right of
vj , say to the left of vj , i.e., 5 ≤ j ≤ n. Bob colours vj−1. Let Q = (v1, . . . , vj−1)
and Q′ = (vj , . . . , vn). Now, Bob “follows” Alice, that is, when Alice plays in
Q (Q′, resp.), Bob then plays in Q (Q′, resp.), and both games are considered
independently (since vj−1 is blue and vj is red). Considering Q′ as a path with
one of its ends initially coloured red, and applying Lemma 1 to it, Bob can ensure
that Alice cannot create a connected red subgraph of order more than 2 in Q′.
Let v� be the first vertex that Alice colours in Q. We distinguish two cases:

Case 1: � �= j − 2. Bob colours vj−2. Now, whenever Alice plays in Q, while it
is possible, Bob colours a neighbour of the connected blue subgraph containing
vj−1 and vj−2. If it is not possible anymore, either the connected blue subgraph
is of order �(j − 1)/2� ≥ 2 (in which case the largest connected red subgraph in
Q is of order �(j − 1)/2	 and so, the game is a draw) or it is of order 2 ≤ x <
(j − 1)/2 and it is Bob’s turn. In the latter case, the connected blue subgraph
in Q consists of the vertices vj−x, . . . , vj−1, and vj−x−1 is red since Bob cannot
colour a neighbour of the connected blue subgraph. Let R = (v1, . . . , vj−x−1)
and note that there are exactly x red vertices in R including vj−x−1 (one of its
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ends). Then, applying Lemma 2 to R (but with Bob as the first player), Bob has
a strategy ensuring that Alice cannot create a connected red subgraph of order
more than x in R. Hence, the game in Pn ends in a draw in this case.

Case 2: � = j−2. Bob colours vj−4. If Alice colours vj−3, then Bob colours vj−5,
and vice versa, and this ensures a connected blue subgraph of order at least 2.
Otherwise, if Alice colours a vertex vt with 1 ≤ t ≤ j −6, then Bob colours vt+1,
unless vt+1 is already coloured, in which case, Bob colours vt−1. In the latter case,
Bob can ensure a draw since he can ensure that Alice cannot create a connected
red subgraph of order more than 2 in R∗ = (v1, . . . , vt−1) by Lemma 1. So,
assume we are in the former case. Let R = (v1, . . . , vt) and R′ = (vt+1, . . . , vj−5).
From now on, Bob “follows” Alice (unless Alice colours vj−5, in which case, Bob
colours vj−3), that is, when Alice plays in R (in R′, resp.), Bob then plays
in R (in R′, resp.), and both games are considered independently (since vt is
coloured red and vt+1 is coloured blue). Considering R as a path with one of
its ends initially coloured red, and applying Lemma 1 to it, Bob has a strategy
ensuring that Alice cannot create a connected red subgraph of order more than
2 in R. Bob plays in R′ assuming that vj−5 is already coloured red, and applying
Lemma 1 to it, Bob has a strategy ensuring that Alice cannot create a connected
red subgraph of order more than 2 in R′. It is easy to see that, in this case, the
largest connected blue (red, resp.) subgraph is of order 2 (at most 2, resp.). 
�

Now, we address the largest connected subgraph game in cycles. We start
with a lemma for a specific case in paths, which we use in the proof for cycles.

Lemma 3 [2]. Let x ≥ 3, n ≥ x + 1, and n − x be odd. For any path Pn with x
vertices, including both ends, initially blue, if Alice starts, then she can ensure
that no connected blue subgraph of order more than x − 1 is created in Pn.

Theorem 6. For all n ≥ 3, the cycle Cn is A-win if and only if n is odd.

Proof. If n is even, then Cn is a reflection graph, and thus, is AB-draw by The-
orem 2. So let n be odd. We describe a winning strategy for Alice. If n ≤ 5, the
result is obvious, so let us assume that n > 5. First, let us assume (indepen-
dently of how this configuration appears) that after x ≥ 3 rounds, the vertices
v1, . . . , vx are red, the vertices vn and vx+1 are blue, and any x−2 other vertices
in {vx+2, . . . , vn−1} are blue. Note that it is Alice’s turn. By Lemma 3, Alice
may ensure that Bob cannot create a connected blue subgraph of order at least
x in the subgraph induced by (vx+1, . . . , vn). Thus, in this case, Alice wins.

Now, let Alice first colour the vertex v1. If Bob does not colour a neighbour of
v1 (say Bob colours vj with 3 < j < n, since n ≥ 5 and odd), then, on her second
turn, Alice colours v2. Then, while it is possible, Alice colours a neighbour of the
connected red subgraph. When it is not possible anymore, either the connected
red subgraph is of order �n/2� or it is of order at least 3 and we are in the
situation of the above paragraph. In both cases, Alice wins.

Therefore, after Alice colours her first vertex (call it v2), Bob must colour
some neighbour of it (say v1). By induction on the number t ≥ 1 of rounds,
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let us assume that the game reaches, after t rounds, a configuration where, for
every 1 ≤ i ≤ t, vertices v2i−1 are coloured blue and vertices v2i are coloured
red. If t = �n/2	, then Alice finally colours vn (recall that n is odd) and wins.
Otherwise, let Alice colour v2t+2. If Bob then colours v2t+1, then we are back to
the previous situation for t′ = t+1. Then, eventually, Alice wins by induction on
n−2t. If Bob does not colour v2t+1, then Alice colours v2t+1 and then continues
to grow the connected red subgraph containing v2t+1 while possible. When it is
not possible anymore, note that removing (or contracting) the vertices v2 to v2t,
we are back to the situation of the first paragraph of this proof (with a connected
red subgraph of order at least 3) and, therefore, Alice wins. 
�

5 Cographs

For paths and cycles, optimal play depended on positional play with respect to
the previously coloured vertices since the graphs are sparse, making it easy for the
players to stop the expansion of the opponent’s largest connected subgraph. As
a consequence, in such cases, players must stop growing their largest connected
subgraph, and start growing a new one. Such a strategy is likely to be less viable
in denser graphs, in which the game tends to turn into a different one, where the
players grow a single connected subgraph each, that they have to keep “alive”
for as long as possible. We illustrate this with the case of cographs, which leads
us to introduce a few more notations (see A∗ below) to describe a linear-time
algorithm deciding the outcome of the game in such instances.

A graph G is a cograph if it is P4-free, i.e., it does not contain P4 as an
induced subgraph. The class of cographs can be defined recursively as follows.
The single-vertex graph K1 is a cograph. Let G1 and G2 be two cographs. Then,
the disjoint union G1 + G2 is a cograph. Moreover, the join G1 ⊕ G2, obtained
from G1 + G2 by adding all the possible edges between the vertices of G1 and
G2, is a cograph. Recall that a decomposition, i.e., a sequence of disjoint unions
and joins from single vertices, of a cograph can be computed in linear time [6].

To simplify notation in Theorem 7 and its proof, let A∗ be the set of graphs
such that there exists a strategy for Alice that ensures a connected red subgraph
of order �|V (G)|/2�, regardless of Bob’s strategy. I.e., A∗ is the set of graphs in
which Alice has a strategy to ensure a single connected red subgraph.

Theorem 7. Let G be a cograph. There exists a linear-time algorithm that
decides whether G is A-win or AB-draw, and whether G ∈ A∗ or not.

Proof. The proof is by induction on n = |V (G)|. More precisely, we describe a
recursive algorithm. If n = 1, then G is clearly A-win and G ∈ A∗.

Let us assume that n > 1. There are two cases to be considered. Either
G = G1 ⊕ G2 for some cographs G1 and G2, or G = G1 + G2 + . . . , Gm, where,
for every 1 ≤ i ≤ m (m ≥ 2), Gi is either a single vertex or is a cograph
obtained from the join of two other cographs. For every 1 ≤ i ≤ m, let us
assume by induction that it can be computed in time linear in |V (Gi)|, whether
Gi is A-win or AB-draw and whether Gi ∈ A∗ or not. Let us show how to decide
if G is A-win or AB-draw, and whether G ∈ A∗ or not, in constant time.
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1. Let us first assume that G = G1 ⊕ G2. We prove that (see [2]):
(a) If n is odd, then G is A-win and G ∈ A∗.
(b) If |V (G1)|, |V (G2)| ≥ 2 and n is even, then G is AB-draw and G ∈ A∗.
(c) If |V (G1)| = 1 and n is even, there are two cases to consider:

i. If G2 /∈ A∗, then G is A-win and G ∈ A∗.
ii. If G2 ∈ A∗, then G is AB-draw and G ∈ A∗.

2. Now, let us assume that G = G1 + . . . + Gm where, for all 1 ≤ i ≤ m
(m ≥ 2), Gi is either a single vertex or the join G′

i ⊕ G′′
i of two cographs G′

i

and G′′
i with |V (G′

i)| ≥ |V (G′′
i )|. Let ni = |V (Gi)| for all 1 ≤ i ≤ m, and

let n1 ≥ · · · ≥ nm. To simplify the proof to follow, first note that, if n1 = 1,
then G is AB-draw (since n2 = 1 as m ≥ 2) and G ∈ A∗ if and only if
G = G1 +G2. Second, if n2 = 1, then the result of the game in G is the same
as in G1, which is known, by Case 1, since G1 is a join. Moreover, in this case,
G ∈ A∗ if and only if n1 is odd and G = G1 +G2. Hence, we may assume that
n1 > 1 and n2 > 1. Lastly, in what follows, for any of the winning strategies
described for Alice, whenever Bob colours a vertex in Gj for 3 ≤ j ≤ m,
Alice also colours a vertex in Gj on her next turn. The same holds for any
of the drawing strategies for Bob (with Bob and Alice reversed), except for
Case 2(e)ii, for which the same only holds for 4 ≤ j ≤ m. This guarantees
that a player never has a connected subgraph of order more than �nj/2� in
Gj for 3 ≤ j ≤ m (4 ≤ j ≤ m for Case 2(e)ii). Alice (Bob, resp.) always has
a connected red (blue, resp.) subgraph of order at least �n1/2� in all of her
winning (his drawing, resp.) strategies below. Hence, for all the cases except
Case 2(e)ii, we can assume that G = G1 + G2, and for Case 2(e)ii, we can
assume that G = G1 + G2 + G3. In what follows, if a player cannot follow
their strategy in a round, unless otherwise stated, they colour an arbitrary
vertex and then resume their strategy for the subsequent rounds.
There are 5 cases to consider. Since we assume that n1 > 1 and n2 > 1, both
G′′

1 and G′′
2 exist. In Case 2(e)iii, the statement involves n3, so if m = 2, then

n3 = 0. Also, since n2 > 1 and Bob has a strategy where, for all 1 ≤ i ≤ m,
he colours at least �ni/2	 vertices of Gi, then G /∈ A∗ in each case. Thus, we
just need to show the outcome of the game on G for each case.
(a) If n1 = n2, then G is AB-draw.

Assume, w.l.o.g., that Alice first colours a vertex in G1. Bob colours a
vertex in G′′

2 . Now, whenever Alice colours a vertex in G1 (G2, resp.),
Bob colours a vertex in G1 (G2, resp.). In particular, if Bob is to colour
a vertex in G2, then he colours one in G′

2 if he can, and if not, then
he colours one in G′′

2 , and, if that is not possible, he colours one in G1.
Similarly, if Bob is to colour a vertex in G1 but cannot, then he colours
one in G′

2 first if possible, and if not, then he colours one in G′′
2 . If n1

is odd, then Bob’s strategy ensures a connected blue subgraph of order
n2−1

2 + 1 = n1−1
2 + 1 in G2 and that the largest connected red subgraph

in G is of order at most n1−1
2 + 1. If n1 is even and Alice colours the

last vertex in G1, then Bob’s strategy ensures a connected blue subgraph
of order �n2−1

2 � + 1 = �n1−1
2 � + 1 in G2 and that the largest connected
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red subgraph in G is of order at most �n1−1
2 � + 1. If Alice coloured the

last vertex in G2 instead, then Bob ensures a connected blue subgraph of
order �n2−2

2 �+1 = n1
2 in G2 and that the largest connected red subgraph

in G is of order at most n1
2 . Hence, G is AB-draw.

(b) If n1 > n2 and n1 is odd, then G is A-win.
Alice first colours a vertex in G1. Then, whenever Bob colours a vertex
in G1 (G2, resp.), Alice colours a vertex in G1 (G2, resp.). By Case 1(a),
Alice has a winning strategy in G1 ensuring a connected red subgraph
of order at least �n1

2 �. By Case 1, Alice ensures that any connected blue
subgraph in G2 is of order at most �n2

2 � < �n1
2 �. Hence, G is A-win.

(c) If n1 > n2, n1 is even, and |V (G′′
1)| ≥ 2, then G is AB-draw.

Whenever Alice colours a vertex in G1 (G2, resp.), Bob also colours a
vertex in G1 (G2, resp.). By Case 1(b), Bob has a drawing strategy in
G1 ensuring a connected blue subgraph of order at least n1

2 . By Case 1,
Bob ensures that any connected red subgraph in G2 is of order at most
�n2

2 � ≤ n1
2 . Hence, G is AB-draw.

(d) If n1 > n2, n1 is even, |V (G′′
1)| = 1, and G′

1 ∈ A∗, then G is AB-draw.
Whenever Alice colours a vertex in G1 (G2, resp.), Bob also colours a
vertex in G1 (G2, resp.). By Case 1(c)ii, Bob has a drawing strategy in
G1 ensuring a connected blue subgraph of order at least n1

2 . By Case 1,
Bob ensures that any connected red subgraph in G2 is of order at most
�n2

2 � ≤ n1
2 . Hence, G is AB-draw.

(e) If n1 > n2, n1 is even, |V (G′′
1)| = 1, and G′

1 /∈ A∗, then:
i. If n1 > n2 + 1, then G is A-win.

Alice first colours a vertex in G1. Then, whenever Bob colours a ver-
tex in G1 (G2, resp.), Alice colours a vertex in G1 (G2, resp.). By
Case 1(c)i, Alice ensures a connected red subgraph of order at least
n1
2 in G1, and that any connected blue subgraph in G1 is of order less

than n1
2 . By Case 1, Alice ensures that any connected blue subgraph

in G2 is of order at most �n2
2 � < n1

2 . Hence, G is A-win.
ii. If n1 = n2 + 1 = n3 + 1, then G is AB-draw.

Whenever Alice colours a vertex in G1, Bob colours a vertex in G1. By
Case 1, this ensures that n1

2 of the vertices in G1 are red and n1
2 are

blue. The first time that Alice colours a vertex v ∈ V (G2) ∪ V (G3),
assume, w.l.o.g., that v ∈ V (G2). Bob then colours a vertex in G′′

3 .
Then, whenever Alice colours a vertex in G2 (G3, resp.), Bob colours
a vertex in G2 (G3, resp.). In particular, if Bob is to colour a vertex in
G3, then he colours one in G′

3 first if possible, if not, then he colours
a vertex in G′′

3 , and, if that is not possible, he colours a vertex in
G2. As in Case 2(a), Bob ensures a connected blue subgraph of order
�n3

2 � = n1
2 in G3 and that any connected red subgraph in G2 is of

order at most �n2
2 � = n1

2 . Hence, G is AB-draw.
iii. If n1 = n2 + 1 and n2 > n3, then G is A-win.

Alice first colours the vertex in G′′
1 . Then, Alice colours vertices in G1

as long as she can. By Case 1(c)i, she ensures that any connected blue
subgraph in G1 is of order less than n1

2 . If it is Alice’s turn, there is
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a connected red subgraph of order n1 − k in G1 for some 0 ≤ k ≤ n1
2 ,

and it is the first round in which she can no longer colour vertices
in G1, then Bob coloured k vertices in G1 and n1 − 2k vertices in
G2. Then, any connected blue subgraph in G2 is of order at most
�n2−n1+2k−1

2 � + n1 − 2k = n1 − k − 1 < n1 − k. Hence, G is A-win.

We get the result as a decomposition of a cograph is computed in linear time. 
�

6 Further Work

It would be interesting to study the game in other graph classes such as trees
and interval graphs. Also, since grids of even order are AB-draw by Theorem 2,
it would be intriguing to look at grids of odd order. Just as reflection graphs are
a large class of graphs that are AB-draw, another direction would be to find a
diverse class of graphs that are A-win. Any graph G ∈ A∗ of odd order is A-win,
and so, perhaps a class of dense graphs of odd order would be a prime candidate.

References

1. Andres, S.D., Huggan, M., Mc Inerney, F., Nowakowski, R.J.: The orthogonal
colouring game. Theoret. Comput. Sci. 795, 312–325 (2019)

2. Bensmail, J., Fioravantes, F., Mc Inerney, F., Nisse, N.: The largest connected
subgraph game. Research report (2021). https://hal.inria.fr/hal-03137305

3. Bonnet, E., Jamain, F., Saffidine, A.: On the complexity of connection games.
Theoret. Comput. Sci. 644, 2–28 (2016)

4. Browne, C.: Connection Games: Variations on a Theme. AK Peters (2005)
5. Bruno, J., Weinberg, L.: A constructive graph-theoretic solution of the Shannon

switching game. IEEE Trans. Circuit Theory 17(1), 74–81 (1970)
6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.

SIAM J. Comput. 14(4), 926–934 (1985)
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For never was a story of more woe than
this of Juliet and her Romeo.

— William Shakespeare, Romeo and Juliet

Abstract. We introduce the rendezvous game with adversaries. In this
game, two players, Facilitator and Divider, play against each other on
a graph. Facilitator has two agents, and Divider has a team of k agents
located in some vertices of the graph. They take turns in moving their
agents to adjacent vertices (or staying put). Facilitator wins if his agents
meet in some vertex of the graph. The goal of Divider is to prevent the
rendezvous of Facilitator’s agents. Our interest is to decide whether Facil-
itator can win. It appears that, in general, the problem is PSPACE-hard
and, when parameterized by k, co-W[2]-hard. Moreover, even the game’s
variant where we ask whether Facilitator can ensure the meeting of his
agents within τ steps is co-NP-complete already for τ = 2. On the other
hand, for chordal and P5-free graphs, we prove that the problem is solv-
able in polynomial time. These algorithms exploit an interesting relation
of the game and minimum vertex cuts in certain graph classes. Finally,
we show that the problem is fixed-parameter tractable parameterized by
both the graph’s neighborhood diversity and τ .

Keywords: Rendezvous games · Dynamic separators · Complexity

1 Introduction

We introduce the Rendezvous Game with Adversaries on graphs. In our game,
a team of dividers tries to prevent two passionate lovers, say Romeo and Juliet,
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from meeting each other. We are interested in the minimum size of the team
of dividers sufficient to obstruct their romantic encounter. In the static setting,
when dividers do not move, this is just the problem of computing the minimum
vertex cut between the pair of vertices occupied by Romeo and Juliet. But in the
dynamic variant, when dividers are allowed to change their position, the team’s
size can be significantly smaller than the size of the minimum cut. In fact, this
gives rise to a new interactive form of connectivity that is much more challenging
both from the combinatorial and the algorithmic point of view.

Our rendezvous game rules are very similar to the rules of the classical Cops-
and-Robber game of Nowakowski-Winkler and Quillioit [23,24], see also the
book of Bonato and Nowakowski [4]. The difference is that in the Cops-and-
Robber game, a team of k cops tries to capture a robber in a graph, while in
our game, the group of k dividers tries to keep the two lovers separated.

A bit more formally. The game is played on a finite undirected connected
graph G by two players: Facilitator and Divider. Facilitator has two agents R
and J that are initially placed in designated vertices s and t of G. Divider has
a team of k ≥ 1 agents D1, . . . , Dk that are initially placed in some vertices of
V (G) \ {s, t} selected by Divider. Several divider agents can occupy the same
vertex. Then the players make their moves by turn, starting with Facilitator. At
every move, each player moves some of his agents to adjacent vertices or keeps
them in their old positions. No agent can be moved to a vertex that is currently
occupied by adversary agents. Both players have complete information about
G and the positions of all the agents. Facilitator aims to ensure that R and J
meet; that is, they are in the same vertex. The task of Divider is to prevent
the rendezvous of R and J by maintaining D1, . . . , Dk in positions that block
the possibility to meet. Facilitator wins if R and J meet, and Divider wins if he
succeed in preventing the meeting of R and J forever.

We define the following problem:

Input: A graph G with two given vertices s and t, and a positive
integer k.

Task: Decide whether Facilitator can win on G starting from s
and t against Divider with k agents.

Rendezvous

Another variant of the game is when the number of moves of the players is at
most a given integer parameter τ. Then Facilitator wins if R and J meet within
the first τ moves, and Divider wins otherwise. We call this problem Rendezvous
in Time. We also consider the version of the problem where τ is a fixed constant.
This generates a family of problems, one for each different value of τ, and we
refer to each of them as the τ -Rendezvous in Time problem.

Our Results. We start with combinatorial results. If s = t or if s and t
are adjacent, then Facilitator wins by a trivial strategy. However, if s and t
are distinct nonadjacent vertices, then Divider wins provided that he has suffi-
ciently many agents. For example, the agents can be placed in the vertices of an
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(s, t)-separator and stay there. Then R and J never meet. We call the minimum
number k of the agents of Divider that is sufficient for his winning, the (s, t)-
dynamic separation number and denote it by dG(s, t). We put dG(s, t) = +∞ for
s = t or when s and t are adjacent. The dynamic separation number can be seen
as a dynamic analog of the minimum size λG(s, t) of a vertex (s, t)-separator in
G. (The minimum number of vertices whose removal leaves s and t in different
connected components.) Then Rendezvous can be restated as the problem of
deciding whether dG(s, t) > k.

Thefirst natural question is:What is the relation between dG(s, t) andλG(s, t)?
Clearly, dG(s, t) ≤ λG(s, t). We show that dG(s, t) = 1 if and only if λG(s, t) = 1.
If dG(s, t) ≥ 2, then we construct examples demonstrating that the difference
λG(s, t) − dG(s, t) can be arbitrary even for sparse graphs. Interestingly, there
are graph classes where both parameters are equal. In particular, we show that
λG(s, t) = dG(s, t) holds for P5-free graphs and chordal graphs. This also yields a
polynomial time algorithm computing dG(s, t) on these classes of graphs.

Then we turn to the computational complexity of Rendezvous and Ren-
dezvous in Time on general graphs. Both problems can be solved it nO(k) time
by using a backtracking technique. We show that this running time is asymptot-
ically tight by proving that they are both co-W[2]-hard when parameterized by
k (we prove that it is W[2]-hard to decide whether dG(s, t) ≤ k) and cannot be
solved in f(k) · no(k) time for any function f of k, unless ETH fails. Moreover,
τ -Rendezvous in Time is W[2]-hard, for every τ ≥ 2. If τ is a constant, then τ -
Rendezvous in Time is in co-NP and our co-W[2]-hardness proof implies that
τ -Rendezvous in Time is co-NP-complete for every τ ≥ 2. For the general case,
the problems are even harder as we prove that Rendezvous and Rendezvous
in Time are both PSPACE-hard.

Finally, we initiate the study of the complexity of the problems under structural
parameterization of the input graphs. We show thatRendezvous in Time is FPT
when parameterized by the neighborhood diversity of the input graph and τ.

Related Work. The classical rendezvous game introduced by Alpern [2] is
played by two agents that are placed in some unfamiliar area and whose task is
to develop strategies that maximize the probability that they meet. We refer to
the book of Alpern and Gal [3] for detailed study of the subject. Deterministic
rendezvous problem was studied by Ta-Shma and Zwick [26].

Rendezvous is closely related to the Cops-and-Robber game. The game
was defined (for one cop) by Winkler and Nowakowski [23] and Quilliot [24] who
also characterized graphs for which one cop can catch the robber. Aigner and
Fromme [1] initiated the study of the problem with several cops. The minimum
number of cops that are required to capture the robber is called the cop number of
a graph. This problem was studied intensively and we refer to the book of Bon-
ato and Nowakowski [4] for further references. Kinnersley [19] established that
the problem is EXPTIME-complete. The Cops-and-Robber game can be seen
as a special case of search games played on graphs, surveys [5,12] provide further
references on search and pursuit-evasion games on graphs. A related variant of
Cops-and-Robber game is the guarding game studied in [9,10,22,25]. Here the



Rendezvous Games with Adversaries on Graphs 311

set of cops is trying to prevent the robber from entering a specified subgraph in
a graph.

Due to space constraints the majority of the proofs are omitted in this
extended abstract. The details are available in [11].

2 Preliminaries

Graphs. All graphs considered in this paper are finite undirected graphs without
loops or multiple edges, unless it is said explicitly that we consider directed
graphs. We follow the standard graph theoretic notation and terminology (see,
e.g., [7]). For each of the graph problems considered in this paper, we let n =
|V (G)| and m = |E(G)| denote the number of vertices and edges, respectively,
of the input graph G if it does not create confusion. For a graph G and a subset
X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced by X.
For a set of vertices S, G−S denotes the graph obtained by deleting the vertices
of S, that is, G − S = G[V (G) \ S]; for a vertex v, we write G − v instead of
G − {v}. For a vertex v, we denote by NG(v) the (open) neighborhood of v, i.e.,
the set of vertices that are adjacent to v in G. For two nonadjacent vertices s and
t, a set of vertices S ⊆ V (G)\{s, t} is an (s, t)-separator if s and t are in distinct
connected components of G − S. We use λG(s, t) to denote the minimum size of
an (s, t)-separator of G; λG(s, t) = +∞ if s = t or s and t are adjacent. A path
is a connected graph with at leat one and most two vertices (called end-vertices)
of degree at most one whose remaining vertices (called internal) have degrees
two. We say that a path with end-vertices u and v is an (u,v)-path. The length of
a path P, denoted by �(P ), is the number of its edges. The distance distG(u, v)
between two vertices u and v of G in the length of a shortest (u, v)-path. We use
v1 · · · vk to denote the path with the vertices v1, . . . , vk and the edges vi−1vi for
i ∈ {2, . . . , k}. A cycle is a connected graph with all the vertices of degree two.
The length �(C) of a cycle C is the number of edges of C.

Parameterized Complexity. We obtain a number of results about the param-
eterized complexity of Rendezvous and Rendezvous in Time. We refer to the
recent book of Cygan et al. [6] for the introduction to the area. Here we just
remind that an instanse of the parameterized version Πp of a decision problem
Π is a pair (I, k), where I is an instance of Π and k is an integer param-
eter associated with I. It is said that Πp is fixed-parameter tractable (FPT)
if it can be solved in time f(k)|I|O(1) for a computable function f(k) of the
parameter k. The Parameterized Complexity theory also provides tools that
allow to show that a parameterized problem cannot be solved in FPT time
(up to some reasonable complexity assumptions). For this, Downey and Fellows
(see [8]) introduced a hierarchy of parameterized complexity classes, namely
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP, and the basic conjecture is that all inclu-
sions in the hierarchy are proper. The usual way to show that it is unlikely
that a parameterized problem admits an FPT algorithm is to show that it is
W[1] or W[2]-hard using a parameterized reduction from a known hard problem
in the corresponding class. The most common tool for establishing fine-grained
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complexity lower bound for parameterized problems is the Exponential Time
Hypothesis (ETH) proposed by Impagliazzo, Paturi, and Zane [16,17]. This is
the conjecture stating that there is ε > 0 such that 3-Satisfiability cannot be
solved in O∗(2εn) time on formulas with n variables.

We conclude this section by giving some easy observations about complexity
of the considered games. As it is common for various games on graphs (see, e.g.,
the book of Bonato and Nowakowski [4] about Cops-and-Robber games), our
Rendezvous Game with Adversaries can be resolved by backtracking.

Theorem 1 (∗).1 Rendezvous and Rendezvous in Time can be solved in
nO(k) time.

If the number of steps τ is bounded by a constant, then the number of
possible moves of Facilitator in the first τ steps is polynomial. This implies that
a winning strategy of Divider can be given by a certificate of polynomial size
encoding the responses of Divider on each move of Facilitator. Thus, we can
observe the following.

Observation 1 (∗). For every fixed constant τ, the problem τ -Rendezvous in
Time is in co-NP.

3 Dynamic Separation vs. Separators

In this section we investigate relations between dG(s, t) and λG(s, t). Given a
connected graph G and two vertices s and t, it is straightforward to see that
dG(s, t) ≤ λG(s, t). Indeed, if S ⊆ V (G) \ {s, t} is an (s, t)-separator of size
k = λG(s, t), then Divider with k agents can put then in the vertices of S in the
beginning of the game. Then he can use the trivial strategy that keeps the agents
D1, . . . , Dk in their positions. However, dG(s, t) and λG(s, t) can be far apart. Still,
dG(s, t) = 1 if and only if λG(s, t) = 1, and this is the first result of the section.

Theorem 2. Let G be a connected graph and let s, t ∈ V (G). Then dG(s, t) = 1
if and only if λG(s, t) = 1.

Proof. As we already observed, dG(s, t) ≤ λG(s, t). Hence, if λG(s, t) = 1, then
dG(s, t) = 1. This means that it is sufficient to show that if dG(s, t) = 1, then
λG(s, t) = 1. We prove this by contradiction. Assume that λG(s, t) ≥ 2. We show
that Facilitator has a winning strategy when starting from s and t on G against
Divider with one agent.

Let C be a cycle in G. For every two distinct vertices u and v of C, C has
two internally vertex disjoint (u, v)-paths P1 and P2 in C. We say that C has a
(u, v)-shortcut if there is a (u, v)-path P in G − (V (C) \ {u, v}) that is shorter
than P1 and P2. That is, �(P ) < �(P1) and �(P ) < �(P2). We say that C has a
shortcut if there are distinct u, v ∈ V (C) that have a (u, v)-shortcut.

We claim the following.
1 The proofs of the statements labeled by (∗) are omitted.
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Claim 1. If R and J occupy vertices of a cycle C of G that has a shortcut, then
Facilitator has a strategy such that in at most �(C) steps R and J are moved
into vertices of a cycle C ′ with �(C ′) < �(C).

Proof (of Claim 1). Suppose that R and J occupy vertices x and y of C, respec-
tively. Assume that a path P is a (u, v)-shortcut for some distinct u, v ∈ V (G).
Denote by P1 and P2, respectively, the internally vertex disjoint (u, v)-paths in
C. Let C1 be the cycle of G composed by P1 and P, and let C2 be the cycle com-
posed by P2 and P. Because P is a shortcut for C, we have that �(C1) < �(C)
and �(C2) < �(C). If x, y ∈ V (P1), then x, y ∈ V (C1) and the claim holds triv-
ially, since R and J are already on cycle C1 with �(C1) < �(C). Symmetrically,
if x, y ∈ V (P2), then the claim holds. Assume that this is not the case. Then x
and y are internal vertices of P1 and P2 belonging to distinct paths. We assume
without loss of generality that x is an internal vertex of P1 and y is an internal
vertex of P2.

Facilitator uses the following strategy. In each step, R is moved along P1

toward u, unless the next vertex is occupied by D1. In the last case, R stays in
the current position. Similarly, J moves toward v in P2 whenever this is possible
and stays in the current position if the way is blocked. Notice that, since the
unique agent D1 of Divider occupies a unique vertex in each step, at least one of
the agents R or J moves to an adjacent vertex. Therefore, either R reaches u or
J reaches v in at most �(C) steps. If R is in u, then R and J are in the vertices
of C2 and �(C2) < �(C). Symmetrically, if J reaches v, then R and J reach C1

with �(C1) < �(C). �

Next, we show that Facilitator can win if R and J are in a cycle without
shortcuts and D1 is in the same cycle.

Claim 2. If R and J occupy vertices of a cycle C of G without a shortcut, and
the unique agent D1 of Divider is in a vertex of C as well, then Facilitator has
a winning strategy with at most �(C)/2 steps.

Proof (of Claim 2). Suppose that R and J occupy vertices x and y of C, respec-
tively, and that D1 occupies z ∈ V (C). Denote by P the unique (x, y)-path
in C − z. Facilitator uses the following strategy. In every step, R and J move
towards each other along P except if they appear to occupy adjacent vertices. In
the last case, R stays and J moves to the vertex occupied by R. We show that
this strategy is a feasible winning strategy.

The proof is by induction on the length of P. The claim is trivial when
�(P ) ≤ 2. Assume that �(P ) ≥ 3 and the claim holds for all positions x′, y′ and
z′ of R, J and D1, respectively, if the length of the (x′, y′)-path in C − z′ is at
most �(P ) − 1.

In the first step, R and J move to the neighbors x′ and y′ of x and y,
respectively, in P. If D1 moves to a vertex z′ ∈ V (C), then we apply the inductive
assumption and, since the length of the (x′, y′)-subpath P ′ is �(P ) − 2 and
z′ /∈ V (P ′), obtain that the strategy of Facilitator is winning. Assume that by
the first move Divider removes D1 from C. If D1 does not return to a vertex
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of C in �(P )/2 steps, Facilitator wins. Hence for some h ≤ �(P )/2, at the h-th
move, D1 steps back on a vertex z′ ∈ V (C).

Fig. 1. The position placement after h steps (up to symmetry).

By the assumption, cycle C has no shortcuts. In particular, there is no (z, z′)-
shortcut. This implies, that the length of one of the two (z, z′)-paths in C is at
most h. Observe that in h steps, R and J reach vertices x′′ and y′′ that are
at the distance h in P from x and y, respectively. Therefore (see Fig. 1), the
(x′′, y′′)-subpath P ′′ of P does not contain z′. Since �(P ′′) < �(P ), we can apply
the inductive assumption. This proves that the Facilitator’s strategy is a feasible
winning strategy and the claim holds.

Notice that the total number of steps is ��(P )/2	 ≤ �(C)/2. This completes
the proof. �

Now we are ready to complete the proof of the theorem. If s = t or s and t are
adjacent, then Facilitator has a straightforward winning strategy. Assume that
s and t are distinct and nonadjacent. Since λG(s, t) ≥ 2, by Menger’s theorem
(see, e.g., [7]), there are two internally vertex disjoint (s, t)-paths P1 and P2. The
union of these two paths forms cycle C. If the agent D1 of Divider occupies a
vertex of C ′, then Facilitator has a winning strategy by Claim 2. If D1 is outside
C ′, then Facilitator moves R and J along C ′ towards each other. Then either R
and J meet or D1 steps on C ′ at some moment. In this case, Facilitator switches
to the strategy from Claim 2 that guarantees him to win. 
�

We observed that dG(s, t) ≤ λG(s, t) and, by Theorem 2, dG(s, t) = 1 if and
only if λG(s, t) = 1. However, if dG(s, t) ≥ 2, then the difference betweem λG(s, t)
and dG(s, t) may be arbitrary. To see this, consider the following example for
p ≥ 2.

– Construct a set U = {u1, . . . , up} of pairwise adjacent vertices.
– Add a vertex s and join s with each vertex ui ∈ U by a path sxiui.
– Add a vertex t and join t with each vertex ui ∈ U by a path tyiui.
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Denote the obtained graph by G (see the left part of Fig. 2). Observe that
λG(s, t) = p. We show that dG(s, t) = 2 by demonstrating a winning strategy for
Divider with two agents D1 and D2. Initially, D1 and D2 are placed in arbitrary
vertices of the clique U. Then D1 “shadows” R and D2 “shadows” J in U in the
following sense. If R moves to xi for some i ∈ {1, . . . , p}, Divider responds by
moving D1 to ui. Symmetrically, if R moves to yj for some j ∈ {1, . . . , p}, then
D2 is moved to uj . It is easy to verify that if Divider follows this strategy, then
neither R no J can enter U. Therefore, Divider wins. Since p can be arbitrary,
we have that λG(s, t) − dG(s, t) = p − 2 can be arbitrary large.

Fig. 2. The construction of G and H for p = 4.

The family of graphs G for p ≥ 2 in the above example is a family of dense
graph, because G contains a clique with p vertices. However, exploiting the same
idea as for G, we can show that there are sparse graphs with the same property.
For this, we considered the following more complicated example.

– Construct a path P = u1 · · · up on p vertices.
– Add a vertex s and join s with each vertex ui ∈ V (P ) by an (s, ui)-path Pi

of length h = �p/2 + 1.
– Add a vertex t and join t with each vertex ui ∈ V (P ) by an (t, ui)-path P ′

j

of length h = �p/2 + 1.

Denote the obtained graph by H (see the right part of Fig. 2). Clearly, λH(s, t) =
p. We claim that dH(s, t) = p. The idea behind the winning strategy for Divider
with two agents D1 and D2 is similar to the one from the first example: D1

“shadows” R and D2 “shadows” J on P. Let w = u�p/2�. Initially, D1 and D2

are placed in w. Then D1 is moved as follows. If R moves to/stays in s, then
D1 moves to/stays in w. If R is moved into an internal vertex x of Pi for some
i ∈ {1, . . . , p}, then Divider responds my moving D1 toward ui or keeping D1

in the current position maintaining the following condition: D1 is in a vertex uj

at minimum distance from w such that the distance between x and ui in Pi is
more than the distance between uj and ui in P. The construction of the strategy
for D2 is symmetric. It is easy to see that the described strategy for Divider is
feasible, and the strategy allows neither R no J to enter a vertex of P. Therefore,
dH(s, t) = 2.
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Notice that the graph H for each p ≥ 2 is planar and it can be seen that the
treewidth of H is at most 3 (we refer to [6,7] for the formal treewidth definition),
that is, graphs H are, indeed, sparse.

Our examples indicate that λG(s, t) may differ from dG(s, t) if G has suffi-
ciently long induced paths and cycles. We observe that λG(s, t) = dG(s, t) if G
belongs to graph classes that have no graphs of this type. A graph G is P5-free
if G has no induced subgraph isomorphic to the path with 5 vertices. A graph
G is chordal if G does not contain induced cycles on at least 4 vertices, that is,
if C is a cycle in G of length at least 4, then there is a chord, i.e., an edge of G
with end-vertices in two nonconsecutive vertices of C.

Proposition 1 (∗). If G is a connected P5-free (chordal, respectively) graph,
then for every s, t ∈ V (G), dG(s, t) = λG(s, t).

The chordality of a graph is biggest smallest size of a induced cycle in it.
Clearly, chordal graphs are the graphs of chordality three. It is natural to ask
whether for graphs of bigger chordality the difference betweem λG(s, t) and
dG(s, t) may be arbitrary. In the example we gave after the Proof of Claim 2,
we have seen that, for the graph G (depicted in the left part of Fig. 2), it holds
that λG(s, t)−dG(s, t) = p− 2 and is easy to see that any such G has chordality
five. Notice that this graph G can be further enhanced so to obtain chordality
four: just add a clique between the vertices in {x1, . . . , xp} and a clique between
the vertices in {y1, . . . , yp}. This indicates a sharp transition of dG away from
λG when graphs are not chordal any more.

Since λG(s, t) can be computed in polynomial time by the standard maximum
flow algorithms (see, e.g., the recent textbook [27]), we obtain the following
corollary.

Corollary 1. Rendezvous can be solved in polynomial time on the classes of
P5-free and chordal graphs.

4 Hardness of Rendezvous Game with Adversaries

In this section, we discuss algorithmic lower bounds for Rendezvous and Ren-
dezvous in Time.

We proved in Theorem 1 that Rendezvous and Rendezvous in Time can
be solved in nO(k). We show that it is unlikely that the dependance on k can
be improved. For this, we show that both problems are co-W[2]-hard (i.e., it is
W[2]-hard to decide whether the input is a no-instance; in fact, we show that
it is W[2]-hard to decide whether dG(s, t) ≤ k) and, therefore, cannot be solved
in time f(k) · nO(1) for any computable function f(k), unless FPT = W[2]; the
result for Rendezvous in Time holds also for τ -Rendezvous in Time when
τ ≥ 2. Our proof also implies that neither Rendezvous nor τ -Rendezvous in
Time, for τ ≥ 2, cannot be solved in time f(k) · no(k) unless ETH fails.

Observe that Rendezvous in Time can be solved in polynomial time if
τ = 1, because of the following straightforward observation.
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Observation 2. Facilitator can win in Rendezvous Game with Adversaries
game in one step on G starting from s and t against Divider with k agents
if and only if one of the following holds: (i) s = t, (ii) s and t are adjacent, or
(iii) |NG(s) ∩ NG(t)| > k.

However, if τ ≥ 2, τ -Rendezvous in Time becomes hard.

Theorem 3 (∗). Rendezvous and τ -Rendezvous in Time for every constant
τ ≥ 2 are co-W[2]-hard when parameterized by k. Moreover, these problems
cannot be solved in time f(k) · no(k) unless ETH fails.

We prove Theorem 3 by a polynomial reduction from Set Cover. Since
Set Cover is NP-complete (see [15]), we obtain the following corollary using
Observation 1.

Corollary 2. τ -Rendezvous in Time is co-NP-complete for every fixed con-
stant τ ≥ 2.

Using the reduction from the proof of Theorem 3, we can conclude that Ren-
dezvous and τ -Rendezvous in Time, for τ ≥ 2, are co-NP-hard. However, the
general problems are harder. By a reduction from the Quantified Boolean
Formula in Conjunctive Normal Form problem with alternating quanti-
fiers that is well-known to be PSPACE-complete (see, e.g., [15]), we show that
our games are PSPACE-hard.

Theorem 4 (∗). Rendezvous and Rendezvous in Time are PSPACE-hard.

5 RENDEZVOUS IN TIME for Graphs of Bounded
Neighborhood Diversity

In this section, we show that Rendezvous in Time is FPT when parameterized
by τ and the neighborhood diversity of the input graph.

The notion of neighborhood diversity was introduced by Lampis in [20]. It is
convenient for us to define this notion in terms of modules. Let G be a graph.
A set of vertices U ⊆ V (G) is a module if for every v ∈ V (G) \ U, either
NG(v) ∩ U = ∅ or U ⊆ NG(v). It is said that is a module U is a clique module
if U is a clique, and U is an independent module if U is an independent set. We
say that a partition {U1, . . . , U�} of V (G) into clique and independent modules
is a neighborhood decomposition. The neighborhood diversity of a graph G is the
minimum � such that G has a neighborhood decomposition with � modules; we
use nd(G) to denote the neighborhood diversity of G. The value of nd(G) and
the corresponding partition of V (G) into clique and independent modules can
be computed in polynomial (linear) time [20].

Theorem 5. Rendezvous in Time can be solved in 2�O(τ) ·nO(1) time on graphs
of neighborhood diversity �.
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The theorem is proved by giving an FPT Turing reduction of Rendezvous
in Time to Integer Linear Programming Feasibility such that each con-
structed instance has �O(τ) variables and the bit-size �O(τ) · log n. Then we
apply the celebrated results of Lenstra [21] (see also [13,18] for further improve-
ments) about Integer Linear Programming Feasibility parameterized by
the number of variables to solve the problem.

6 Conclusion

We initiated the study of the Rendezvous Game with Adversaries on graphs.
We proved that in several cases, the dynamic separation number dG(s, t), the
minimum number of agents needed for Divider to win against Facilitator, could
be equal to the minimum size λG(s, t) of an (s, t)-separator in G. In particular,
this equality holds on for P5-free and chordal graphs. In general, the difference
λG(s, t)−dG(s, t) could be arbitrary large. Are there other natural graph classes
with this property? Is it is possible to characterize hereditary graph classes for
which the equality holds?

Further, we investigated the computational complexity of Rendezvous and
Rendezvous in Time. Both problems can be solved it nO(k) time. However,
they are co-W[2]-hard when parameterized by k and cannot be solved in no(k)

time unless FPT = W[1]. In fact, τ -Rendezvous in Time is co-W[2]-hard for
every τ ≥ 2. We also proved that Rendezvous and Rendezvous in Time are
PSPACE-hard. We conjecture that these twoproblems are EXPTIME-complete.

Finally, we initiated the study of the complexity of Rendezvous and Ren-
dezvous in Time under structural parameterization of the input graphs. We
proved that Rendezvous in Time is FPT when parameterized by the neigh-
borhood diversity of the input graph and τ. Can this result be generalized for
the parameterization by modular width (see, e.g., [14] for the definition and the
discussion of this parameterization) and τ? Is Rendezvous in Time FPT when
parameterized by the neighborhood diversity only? The same question is open
for Rendezvous. We believe that this problem is interesting even for the more
restrictive parameterization by the vertex cover number. Another question is
about Rendezvous and Rendezvous in Time parameterized by the treewidth
of a graph. Are the problems FPT or XP for this parameterization? Notice that
if the initial positions s and t are not is the same bag of a tree decomposition of
width w, then the upper bound for the dynamic separation number by λG(s, t)
together with Theorem 1 imply that the problems can be solved it time nO(w).
Can the problems be solved in this time if s and t are in the same bag?
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Abstract. A subgraph H of a graph G is called a retract of G if it is the
image of some idempotent endomorphism of G. We say that H is an abso-
lute retract of some graph class C if it is a retract of any G ∈ C of which
it is an isochromatic and isometric subgraph. In this paper, we study the
complexity of computing the diameter within the absolute retracts of var-
ious hereditary graph classes. First, we show how to compute the diam-
eter within absolute retracts of bipartite graphs in randomized Õ(m

√
n)

time. Even on the proper subclass of cube-free modular graphs it is,
to our best knowledge, the first subquadratic-time algorithm for diame-
ter computation. For the special case of chordal bipartite graphs, it can
be improved to linear time, and the algorithm even computes all the
eccentricities. Then, we generalize these results to the absolute retracts
of k-chromatic graphs, for every k ≥ 3. Finally, we study the diameter
problem within the absolute retracts of planar graphs and split graphs.

Keywords: Absolute retract · Chordal bipartite graphs · Split
graphs · Planar graphs · Diameter computation

1 Introduction

One of the most basic graph properties is the diameter of a graph (maximum
number of edges on a shortest path). It is a rough estimate of the maximum
delay in order to send a message in a communication network [32], but it also
got used in the literature for various other purposes [2,74]. The complexity of
computing the diameter has received tremendous attention in the Graph Theory
community [1,14,18,20,24–26,29–31,34,41,43–45,47,49,65]. Indeed, while this
can be done in O(nm) time for any n-vertex m-edge graph, via a simple reduc-
tion to breadth-first search, breaking this quadratic barrier (in the size n+m of
the input) happens to be a challenging task. In fact, under plausible complex-
ity assumptions such as the Strong Exponential-Time Hypothesis (SETH), the
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optimal running time for computing the diameter is essentially in O(nm)—up to
sub-polynomial factors [71]. This negative result holds even if we restrict our-
selves to bipartite graphs or split graphs [1,13]. However, on the positive side,
several recent works have identified important graph classes for which we can
achieve for the diameter problem O(m2−ε) time, or even better O(mn1−ε) time,
for some ε > 0. Next, we focus on a few such classes that are most relevant to our
work. Specifically, we call G = (V,E) a Helly graph if every family of pairwise
intersecting balls of G (of arbitrary radius and center) have a nonempty common
intersection. The Helly graphs are a broad generalization of many better-known
graph classes in Structural Graph Theory, such as: trees, interval graphs, strongly
chordal graphs and dually chordal graphs [4]. Furthermore, a celebrated theorem
in Metric Graph Theory is that every graph is an isometric (distance-preserving)
subgraph of some Helly graph [40,57]. Other properties of Helly graphs were also
thoroughly investigated in prior works [7,8,10,23,35–38,63,69,70]. In particular,
as far as we are concerned here, there is a randomized Õ(m

√
n)-time algorithm

in order to compute the diameter within n-vertex m-edge Helly graphs [43].
Recall that an endomorphism of a graph G is an edge-preserving mapping

of G to itself. A retraction is an idempotent endomorphism. If H is the image
of G by some retraction (in particular, H is a subgraph of G) then, we call
H a retract of G. The notion of retract has applications in some discrete facil-
ity location problems [56], and it is useful in characterizing some important
graph classes. For instance, the median graphs are exactly the retracts of hyper-
cubes [3]. We here focus on the relation between retracts and Helly graphs, that
is as follows (for other classes related to the Helly graphs and considered recently,
see [15,21,28,39,42,45]). For some class C of reflexive graphs (i.e., with a loop at
every vertex), let us define the absolute retracts of C as those H such that, when-
ever H is an isometric subgraph of some G ∈ C, H is a retract of G. Absolute
retracts find their root in Geometry, where they got studied for various metric
spaces [60]. In the special case of the class of all reflexive graphs, the absolute
retracts are exactly the Helly (reflexive) graphs [55]. Motivated by this char-
acterization of Helly graphs, and the results obtained in [43] for the diameter
problem on this graph class, we here consider the following notion of absolute
retracts, for irreflexive graphs. – Unless stated otherwise, all graphs considered
in this paper are irreflexive. – Namely, let us first recall that a subgraph H of a
graph G is isochromatic if it has the same chromatic number as G. Then, given
a class of (irreflexive) graphs C, the absolute retracts of C are those H such that,
whenever H is an isometric and isochromatic subgraph of some G ∈ C, H is
a retract of G. We refer the reader to [5,6,9,54,56,59,61,64,66–68], where this
notion got studied for various graph classes.

Our Results. In this paper, we prove new structural and algorithmic properties
of the absolute retracts of various hereditary graph classes, such as: bipartite
graphs, k-chromatic graphs (for any k ≥ 3), split graphs and planar graphs. Our
focus is about the diameter problem on these graph classes but, on our way, we
uncover several nice properties of the shortest-path distribution of their absolute
retracts, that may be of independent interest.
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First, in Sect. 2, we consider the absolute retracts of bipartite graphs and
some important subclasses of the latter. Recall that the diameter of a bipar-
tite graph can unlikely be computed in subquadratic time. We prove that the
diameter of absolute bipartite retracts can be computed in Õ(m

√
n) time (The-

orem 2). For that, we observe that in the square of such graph G, its two partite
sets induce Helly graphs. This result complements the known relations between
Helly graphs and absolute retracts of bipartite graphs [6]. Then, roughly, we
show how to compute the diameter of G from the diameter of both Helly graphs
(actually, from the knowledge of the peripheral vertices in these graphs, i.e., their
vertices with maximal eccentricity). Absolute bipartite retracts properly contain
all cube-free modular graphs, and so, the cube-free median graphs and chordal
bipartite graphs [5]. Therefore, as a byproduct of our Theorem 2, we get the first
truly subquadratic-time algorithm for computing the diameter within the cube-
free modular graphs. However, the structure of absolute bipartite retracts is far
more complex than cube-free modular graphs: in fact, every bipartite graph is
an isometric subgraph of some absolute bipartite retract [66].

Recently [39], we announced an O(m
√

n)-time algorithm in order to compute
all the eccentricities in a Helly graph. However, extending this result to the
absolute retracts of bipartite graphs appears to be a more challenging task. We
manage to do so for the subclass of chordal bipartite graphs, for which we achieve
a linear-time algorithm in order to compute all the eccentricities. For that, we
use the stronger result that in the square of such graph, its two partite sets
induce strongly chordal graphs.

In Sect. 3, we generalize our above framework to the absolute retracts of k-
chromatic graphs, for any k ≥ 3. Notice that we are not aware of any prior work
showing the usefulness of (efficiently computable) proper colorings for faster
diameter computation. Our positive results in Sects. 2 and 3 rely on some Helly-
type properties of the graph classes considered. We complement those with a
hardness result in Sect. 4, that hints that the weaker property of being an abso-
lute retract of some well-structured graph class is not sufficient on its own for
faster diameter computation. Specifically, we prove that under SETH, there is
no O(mn1−ε)-time algorithm for the diameter problem, for any ε > 0, on the
class of absolute retracts of split graphs. This negative result follows from an
elegant characterization of this subclass of split graphs in [59].

Finally, in Sect. 5, we consider the absolute planar retracts. While there now
exist several truly subquadratic-time algorithms for the diameter problem on all
planar graphs [20,45,49] the existence of a quasi linear-time algorithm for this
problem has remained so far elusive, and it is sometimes conjectured that no
such algorithm exists [20]. We give evidence that finding such algorithm for the
absolute retracts of planar graphs is already a hard problem on its own. Specifi-
cally, we prove that every planar graph is an isometric subgraph of some absolute
retract of planar graphs. This result mirrors the aforementioned property that
every graph isometrically embeds in a Helly graph [40,57].
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Let us mention that all graph classes considered here are polynomial-time
recognizable. For all that, we do not need to execute these recognition algorithms
before we can compute the diameter of these graphs.

Notations. We mostly follow the graph terminology from [12,33]. All graphs
considered are finite, simple, unweighted and connected. For a graph G = (V,E),
let the (open) neighbourhood of a vertex v be defined as NG(v) = {u ∈ V | uv ∈
E} and its closed neighbourhood as NG[v] = NG(v)∪{v}. Similarly, for a vertex-
subset S ⊆ V , let NG(S) =

⋃
v∈S NG(v) \ S, and let NG[S] = NG(S) ∪ S. The

distance between two vertices u, v ∈ V equals the minimum number of edges
on a uv-path, and it is denoted dG(u, v). Let IG(u, v) = {w ∈ V | dG(u, v) =
dG(u,w)+dG(w, v)}. The ball of center v and radius r is defined as Nr

G[v] = {u ∈
V | dG(u, v) ≤ r}. Furthermore, let the eccentricity of a vertex v be defined as
eG(v) = maxu∈V dG(u, v). The diameter and the radius of a graph G are defined
as diam(G) = maxv∈V eG(v) and rad(G) = minv∈V eG(v), respectively. A vertex
v ∈ V is called central if eG(v) = rad(G), and peripheral if eG(v) = diam(G).
We introduce additional terminology where it is needed throughout the paper.

2 Bipartite Graphs

The study of the absolute retracts of bipartite graphs dates back from Hell [53],
and since then many characterizations of this graph class were proposed [5].
This section is devoted to the diameter problem on this graph class. In Sect. 2.1,
we propose a randomized Õ(m

√
n)-time algorithm for this problem. Then, we

consider the chordal bipartite graphs in Sect. 2.2, that have been proved in [5] to
be a subclass of the absolute retracts of bipartite graphs. For the chordal bipartite
graphs, we present a deterministic linear-time algorithm in order to compute
all the eccentricities. Before going further, let us introduce a few additional
terminology. For a connected bipartite graph G, we denote its two partite sets
by V0 and V1. A half-ball is the intersection of a ball with one of the two partite
sets of G. Finally, for i ∈ {0, 1}, let Hi be the graph with vertex-set Vi and an
edge between every two vertices with a common neighbour in G.

2.1 Faster Diameter Computation

We start with the following characterization of the absolute bipartite retracts:

Theorem 1 ([5]). G = (V,E) is an absolute retract of bipartite graphs if and
only if the collection of half-balls of G satisfies the Helly property.

This above Theorem 1 leads us to the following simple observation about the
internal structure of the absolute retracts of bipartite graphs:

Lemma 1. If G = (V0 ∪ V1, E) is an absolute retract of bipartite graphs then
both H0 and H1 are Helly graphs.
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Next, we prove that in order to compute diam(G), with G an absolute retract
of bipartite graphs, it is sufficient to compute the peripheral vertices of the Helly
graphs H0 and H1.

Lemma 2. If G = (V0 ∪ V1, E) is an absolute bipartite retract such that
diam(H0) ≤ diam(H1) then, diam(G) ∈ {2diam(H1), 2diam(H1) + 1}. More-
over, if diam(G) ≥ 3 then we have diam(G) = 2diam(H1) + 1 if and only if:

– diam(H1) = 1;
– or diam(H0) = diam(H1) and, for some i ∈ {0, 1}, there exists a peripheral

vertex of Hi whose all neighbours in G are peripheral vertices of H1−i.

The remaining of Sect. 2.1 is devoted to the computation of all the peripheral
vertices in both Helly graphs H0 and H1. While there exists a truly subquadratic-
time algorithm for computing the diameter of a Helly graph [43], we observe that
in general, we cannot compute H0 and H1 in truly subquadratic time from G.
Next, we adapt [43, Theorem 2], for the Helly graphs, to our needs.

Lemma 3. If G = (V0 ∪ V1, E) is an absolute bipartite retract then, for any k,
we can compute in O(km) time the set of vertices of eccentricity at most k in
H0 (resp., in H1).

Proof (Sketch). By symmetry, we only need to prove the result for H0. Let
U = {v ∈ V0 | eH0(v) ≤ k} be the set to be computed. We consider the more
general problem of computing, for any t, a partition Pt = (At

1, A
t
2, . . . , A

t
pt

) of
V0, in an arbitrary number pt of subsets, subject to the following constraints:

– For every 1 ≤ i ≤ pt, let Ct
i :=

⋂
v∈At

i
N t

G[v]. Let Bt
i := Ct

i ∩ V0 if t is even
and let Bt

i := Ct
i ∩ V1 if t is odd (for short, Bt

i = Ct
i ∩ Vt (mod 2)). We impose

the sets Bt
i to be nonempty and pairwise disjoint.

Indeed, under these two conditions above, we have U 	= ∅ if and only if, for any
partition P2k as described above, p2k = 1. Furthermore if it is the case then
U = B2k

1 . To construct the desired partition, we proceed by induction over t. If
t = 0 then, let V0 = {v1, v2, . . . , vp0}. We just set P0 = ({v0}, {v1}, . . . , {vp0})
(each set is a singleton), and for every 1 ≤ i ≤ p0 let B0

i = A0
i = {vi}. Else,

we construct Pt from Pt−1. Specifically, for every 1 ≤ i ≤ pt−1, we let W t
i :=

NG(Bt−1
i ). Then, starting from j := 0 and F := Pt−1, we proceed as follows until

we have F = ∅. We pick a vertex u s.t. #{i | At−1
i ∈ F , u ∈ W t

i } is maximized
(the maximality of u ensures that all sets Bt

i will be pairwise disjoint). Then, we
set At

j :=
⋃{At−1

i | At−1
i ∈ F , u ∈ W t

i } and Bt
j :=

⋂{W t
i | At−1

i ∈ F , u ∈ W t
i }.

We add the new subset At
j to Pt, we remove all the subsets At−1

i , u ∈ W t
i from

F , then we set j := j+1. Overall, by using standard lists and pointer structures,
each inductive step takes O(n + m) time.

The base case of our above induction is trivially correct. In order to prove
correctness of our inductive step, we use Theorem 1 in order to prove that for
each 1 ≤ i ≤ pt we get W t

i = Vt (mod 2) ∩
(⋂

v∈At−1
i

N t
G[v]

)
. Doing so, for each
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subset At
j created at step t, we have Bt

j = Vt (mod 2)∩
(⋂

v∈At
j
N t

G[v]
)
, as desired.

Finally, observe that all the subsets Bt
j are nonempty since they at least contain

the vertex u ∈ Vt (mod 2) that is selected in order to create At
j . ��

We use Lemma 3 when the diameters of H0 and H1 are in O(
√

n). For larger
values of diameters, we use a randomized procedure.

Lemma 4 (Theorem 3 in [43]). For a Helly graph H s.t. diam(H) > 3k =
ω(log |V (H)|), one can compute with high probability its diameter and all the
peripheral vertices in Õ(|E(H)| · |V (H)|/k) time.

It is important to note that, in the algorithmic procedure of Lemma 4, we
just need to perform a BFS from randomly selected vertices. As any BFS in H0

or H1 can be simulated with a BFS in G, we can implement this procedure in
order to compute diam(Hi), for i ∈ {0, 1}, in Õ(mn/diam(Hi)) time with high
probability. Combined with Lemma 3, we get:

Theorem 2. If G = (V0 ∪ V1, E) is an absolute retract of bipartite graphs then,
with high probability, we can compute diam(G) in Õ(m

√
n) time.

We suspect that Theorem 2 can be derandomized by using a recent technique
from [39, Theorem 3]. This is left for future work.

2.2 Chordal Bipartite Graphs

We improve Theorem 2 for the special case of chordal bipartite graphs. Recall
(amongst many characterizations) that a bipartite graph is chordal bipartite if
and only if every induced cycle has length four [51]. It was proved in [5] that
every chordal bipartite graph is an absolute retract of bipartite graphs.

Theorem 3. If G = (V,E) is chordal bipartite then we can compute all the
eccentricities (and so, the diameter) in linear time.

We subdivide our proof of Theorem 3 into four main steps.

The Chordal Structure of the Partite Sets. A graph is chordal if it has no induced
cycle of length more than three. It is strongly chordal if it is chordal and it does
not contain any n-sun (n ≥ 3) as an induced subgraph [46]. We use the following
characterization of the half-sets of chordal bipartite graphs:

Lemma 5 ([62]). If G = (V0 ∪ V1, E) is chordal bipartite, then H0 and H1 are
strongly chordal graphs.

Computation of a Clique-Tree. The same as in Sect. 2.1, in general we cannot
compute H0 and H1 from G in subquadratic time. In order to overcome this
issue, we use a more compact representation of the latter. Specifically, for a
graph H = (V,E), a clique-tree is a tree T whose nodes are the maximal cliques
of H and such that, for every v ∈ V , the maximal cliques of H containing
v induce a connected subtree Tv of T . It is well-known that H is chordal if
and only if it has a clique-tree [19,48,73]. By using standard results on dual
hypertrees [11,72], we obtain that:
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Lemma 6. If G = (V0 ∪ V1, E) is chordal bipartite then, we can compute a
clique-tree for H0 and H1 in linear time.

Computation of all the Eccentricities in the Partite Sets. Next, we propose a
new algorithm in order to compute all the eccentricities of a strongly chordal
graph H, being given a clique-tree. There already exist linear-time algorithms
for computing all the eccentricities of a strongly chordal graph, being given by
its adjacency list [17,39,43]. However, in general these algorithms do not run
in time linear in the size of a clique-tree. We often use in our proof the clique-
vertex incidence graph of H, i.e., the bipartite graph IH whose partite sets are
the vertices and the maximal cliques of H, and such that there is an edge between
every vertex of H and every maximal clique of H containing it.

Let us first recall the following result about Helly graphs:

Lemma 7 ([35]). If H is Helly then, for every vertex v we have eH(v) =
dH(v, C(H)) + rad(H), where C(H) denotes the set of central vertices of H.

Hence, by Lemma 7, we are left computing C(H). It starts with computing
one central vertex. Define, for every vertex v and vertex-subset C, dH(v, C) =
minc∈C dH(v, c). Following [27], we call a set C gated if, for every v /∈ C, there
exists a vertex v∗ ∈ N

dH(v,C)−1
H [v] ∩ (

⋂{NH(c) | c ∈ C, dH(v, c) = dH(v, C)})
(such vertex v∗ is called a gate of v).

Lemma 8 ([22]). Every clique in a chordal graph is a gated set.

Lemma 9 ([43]). If T is a clique-tree of a chordal graph H then, for every
clique C of H, for every v /∈ C we can compute dH(v, C) and a corresponding
gate v∗ in total O(w(T )) time, where w(T ) denotes the sum of cardinalities of
all the maximal cliques of H.

For every u, v ∈ V and k ≤ dH(u, v), the set LH(u, k, v) = {x ∈ IH(u, v) |
dH(u, x) = k} is called a slice. We also need the following result:

Lemma 10 ([22]). Every slice in a chordal graph is a clique.

Now, consider the procedure described in Algorithm 1.

Lemma 11 (special case of Theorem 5 in [43]). Algorithm 1 outputs a
central vertex of H.

By using dynamic programming on a clique-tree in order to compute, for
each candidate vertex c ∈ C, its number of neighbours in S, we get:

Lemma 12. If T is a clique-tree of a strongly chordal graph H then, we can
implement Algorithm 1 in order to run in O(w(T )) time, where w(T ) denotes
the sum of cardinalities of all the maximal cliques of H.

We need one more result about the center of strongly chordal graphs:

Lemma 13 ([35,36]). If H is strongly chordal then, its center C(H) induces a
strongly chordal graph of radius ≤ 1.
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Algorithm 1. Computation of a central vertex.
Require: A strongly chordal graph H.
1: v ← an arbitrary vertex of H
2: u ← a furthest vertex from v, i.e., dH(u, v) = eH(v)
3: w ← a furthest vertex from u, i.e., dH(u, w) = eH(u)
4: for all r ∈ {�eH(u)/2� , �(eH(u) + 1)/2� , 1 + �eH(u)/2�} do
5: Set C := L(w, r, u) //C is a clique by Lemma 10
6: for all v /∈ C do
7: Compute dH(v, C) and a corresponding gate v∗ //whose existence follows from

Lemma 8
8: Set S := {v∗ | dH(v, C) = r} //gates of vertices at max. distance from C
9: for all c ∈ C do

10: if S ⊆ NH(c) then
11: return c

By Lemma 13, given a central vertex c of H, we can compute C(H) by local
search in the neighbourhood at distance two around c. For doing that efficiently,
we also need the following nice characterization of strongly chordal graphs. Recall
that the clique-vertex incidence graph of H is a bipartite graph whose partite
sets are the vertices and the maximal cliques of H, respectively; there is an edge
between every vertex and every maximal clique in which this vertex is contained.

Lemma 14 ([16,46]). H is strongly chordal if and only if its clique-vertex inci-
dence graph IH is chordal bipartite.

By Lemma 14, we can apply the techniques of Sect. 2.1 to the clique-vertex
incidence graph of any strongly chordal H. In particular, by combining Lemma 3
with the dynamic programming technique of Lemma 12, we obtain:

Proposition 1. If T is a clique-tree of a strongly chordal graph H = (V,E)
then, we can compute its center C(H) in O(w(T )) time.

Computation of all the eccentricities in G. Before proving Theorem 3, we need
a final ingredient. Let us first generalize Lemma 2 as follows.

Lemma 15. If G = (V0 ∪ V1, E) is an absolute retract of bipartite graphs then,
the following holds for every i ∈ {0, 1} and v ∈ Vi:

– If eHi
(v) ≤ rad(H1−i) − 1 then, eG(v) = 2eHi

(v) + 1 = 2rad(H1−i) − 1.
– If eHi

(v) = rad(H1−i) then, eG(v) = 2rad(H1−i) if and only if NG(v) ⊆
C(H1−i) and, for every u ∈ V1−i, we have dH1−i

(u,NG(v)) ≤ rad(H1−i) − 1
(otherwise, eG(v) = 2rad(H1−i) + 1).

– If eHi
(v) ≥ rad(H1−i) + 1 then, eG(v) = 2eHi

(v) if and only if we have
eH1−i

(u) < eHi
(v) for some u ∈ NG(v) (otherwise, eG(v) = 2eHi

(v) + 1).

Of the three cases in the above Lemma 15, the real algorithmic challenge is
the case eHi

(v) = rad(H1−i), for some i ∈ {0, 1}. We solve this case by using
similar techniques as for Proposition 1, which concludes the proof of Theorem 3.
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3 k-Chromatic Graphs

Recall that a proper k-coloring of G = (V,E) is any mapping c : V →
{1, 2, . . . , k} such that c(u) 	= c(v) for every edge uv ∈ E. The chromatic num-
ber of G is the least k such that it has a proper k-coloring, and a k-chromatic
graph is a graph whose chromatic number is equal to k. We study the diameter
problem within the absolute retracts of k-chromatic graphs, for every k ≥ 3.

Our approach requires such graphs to be equipped with a proper k-coloring.
While this is a classic NP-hard problem for every k ≥ 3 [58], it can be done
in polynomial time for absolute retracts of k-chromatic graphs [9]. By using a
standard greedy coloring approach, we first improve this result as follows:

Proposition 2. There is a linear-time algorithm such that, for every k ≥ 3,
if the input G is an absolute retract of k-chromatic graphs, then it computes a
proper k-coloring of G.

In the remainder of the section, we always assume the input graph G to be
given with a proper k-coloring. We sometimes use the fact that, for an absolute
retract, such proper k-coloring is unique up to permuting the colour classes [68].
Now, let us recall the following characterization of absolute retracts:

Theorem 4 ([68]). Let k ≥ 3. The graph G = (V,E) is an absolute retract of
k-chromatic graphs if and only if for any proper k-coloring c, every peripheral
vertex v is adjacent to all vertices u with c(u) 	= c(v), or it is covered1 and G \ v
is an absolute retract of k-chromatic graphs.

A special case of Theorem 4 leads to a linear-time algorithm in order to decide
whether an absolute k-chromatic retract has diameter at most two. For those
graphs with diameter at least three, we propose a generalization of Lemma 2.
Specifically, for each colour i, let Vi := {v ∈ V | c(v) = i} be called a colour
class. For every v ∈ Vi, ei(v) := max{dG(u, v) | u ∈ Vi}. A vertex v ∈ Vi is
i-peripheral if it maximizes ei(v). Finally, let di := max{ei(v) | v ∈ Vi}.

Lemma 16. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, and let c be a corresponding proper k-coloring. Then, max1≤i≤k di ≤
diam(G) ≤ 1+max1≤i≤k di. Moreover, if diam(G) ≥ 3, then we have diam(G) =
1 + max1≤i≤k di if and only if:

– either max1≤i≤k di = 2;
– or, for some i 	= j s.t. di = dj is maximized, there is some i-peripheral vertex

whose all neighbours coloured j are j-peripheral.

We end up sketching the computation, for each colour i, of the value di and
of the i-peripheral vertices. Our strategy is as follows. First, we prove that we
can reduce our study to the case k = 3. This is done by using another, more
algorithmic, characterization of absolute retracts [9].

1 A vertex v is covered by another vertex w if NG(v) ⊆ NG(w) (a covered vertex is
called embeddable in [68]).
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Lemma 17. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, and let c be a corresponding proper k-coloring. For every distinct
colours i1, i2, i3, the subgraph H := G[Vi1 ∪ Vi2 ∪ Vi3 ] is isometric. Moreover, H
is an absolute retract of 3-chromatic graphs.

Next, we deal with the case when di is sufficiently small. For that, we
extend the techniques of Lemma 3 to the absolute 3-chromatic retracts. Cor-
rectness of our approach follows from the following property of these graphs:
if v1, v2, . . . , vt are vertices coloured i then, for any r ≥ 2 and any colour j,
the balls Nr

G[v1], Nr
G[v2], . . . , Nr

G[vt] intersect in colour j if and only if they also
intersect in colour i.

Lemma 18. Let G = (V,E) be an absolute retract of 3-chromatic graphs, and
let c be a corresponding proper 3-coloring. For each colour i and D ≥ 2, we can
compute in O(Dm) time the set Ui := {v ∈ Vi | ei(u) ≤ D}.

Finally, we address the case when di is large. A function is called unimodal if
every local minimum is also a global minimum. It is known that the eccentricity
function of a Helly graph is unimodal [35], and this property got used in [39]
in order to compute all the eccentricities in this graph class in subquadratic
time. We prove that a similar, but weaker property holds for each colour class
of absolute retracts:

Lemma 19. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, and let c be a corresponding proper k-coloring. For each colour i
and any u ∈ Vi s.t. ei(u) ≥ (di+5)/2 ≥ 7, there exists a u′ ∈ Vi s.t. dG(u, u′) = 2
and ei(u′) = ei(u) − 2.

We apply this almost-unimodality property to the computation of the di’s:

Lemma 20. Let G = (V,E) be an absolute retract of k-chromatic graphs for
some k ≥ 3, let c be a corresponding proper k-coloring, and let i be such that
di ≥ 8D + 5 = ω(log n). Then, with high probability, we can compute in total
Õ(mn/D) time the value di and the i-peripheral vertices.

By combining Lemmas 17–20, we get:

Theorem 5. If G = (V,E) is an absolute k-chromatic retract, for some k ≥ 3,
then we can compute its diameter with high probability in Õ(m

√
n) time.

4 Split Graphs

Recall that G = (V,E) is a split graph if its vertex-set V can be partitioned into
a clique K and a stable set S. Such partition, that may not be unique, can be
computed in linear time [50]. In contrast to Sects. 2 and 3, we prove that:

Theorem 6. For any ε > 0, there exists a c(ε) s.t., under SETH, we cannot
compute the diameter in O(n2−ε) time on the absolute retracts of split graphs of
order n and clique-number at most c(ε) log n.



The Diameter Problem on Absolute Retracts 331

Proof (Sketch). The result holds for general split graphs [13]. Let G = (K+S,E)
be any split graph. In order to decide whether diam(G) ≤ 2 or diam(G) = 3, we
may remove first all vertices v s.t. NG(v) = K \ v (i.e., because eG(v) ≤ 2 and v
is simplicial). By applying this above pruning rule until it can no more be done,
we get a split graph G′ with a unique partition K ′ +S′ [50]. All such graphs are
absolute split retracts [59]. ��

5 Planar Graphs

Our last (non-algorithmic) section is about the absolute retracts of planar graphs

Theorem 7 ([54]). A planar graph G is an absolute retract of planar graphs if
and only if it is maximal planar and, in an embedding of G in the plane, any
triangle bounding a face of G belongs to a subgraph of G isomorphic to K4.

To our best knowledge, there has been no relation uncovered between the
absolute retracts of planar graphs and other important planar graph subclasses.
We make a first step in this direction. Specifically, we prove the following two
results.

Proposition 3. Every planar 3-tree is an absolute retract of planar graphs.

Theorem 8. Every connected planar graph is an isometric subgraph of some
absolute planar retract. In particular, there are absolute retracts of planar graphs
with arbitrarily large treewidth.

We stress that the proof of Theorem 8 is constructive, and that it leads to
a polynomial-time algorithm in order to construct an absolute planar retract
in which the input planar graph G isometrically embeds. In contrast to our
result, the smallest Helly graph in which a graph G isometrically embeds may
be exponential in its size [52].

The existence of an almost linear-time algorithm for computing the diame-
ter of planar graphs is an important open problem. We see our Theorem 8 as
evidence that answering to this problem for the absolute planar retracts would
be already an important intermediate step toward a full resolution.
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Abstract. We examine the effect of bounding the diameter for well-
studied variants of the Colouring problem. A colouring is acyclic, star,
or injective if any two colour classes induce a forest, star forest or dis-
joint union of vertices and edges, respectively. The corresponding deci-
sion problems are Acyclic Colouring, Star Colouring and Injec-
tive Colouring. The last problem is also known as L(1, 1)-Labelling
and we also consider the framework of L(a, b)-Labelling. We prove a
number of (almost-)complete complexity classifications, in particular, for
Acyclic 3-Colouring, Star 3-Colouring and L(1, 2)-Labelling.

1 Introduction

A natural way of increasing our understanding of NP-complete graph problems
is to restrict the input. The diameter of a graph G is the maximum distance
between any two vertices of G. We look at graph classes of bounded diameter,
that is, with diameter at most d for some constant d. Such a graph class is closed
under vertex deletion (hereditary) only if d = 1. Many graph problems stay NP-
complete even if d = 2. The reason usually is that from a general instance we can
obtain an instance of diameter 2 by adding a dominating vertex. For example,
in this way, Clique, Independent Set and Colouring all stay NP-complete
for graphs of diameter 2. The latter problem is to decide if for a graph G and
integer k, there is a mapping c : V (G) → {1, . . . , k} with c(u) �= c(v) for each
uv ∈ E(G). If k is fixed, i.e., not part of the input, we write k-Colouring.

Let d ≥ 2 and k ≥ 3. It is readily seen that k-Colouring for graphs of
diameter at most d is NP-complete for every (d, k) /∈ {(2, 3), (3, 3)}. Mertzios
and Spirakis [18] gave a highly non-trivial NP-hardness proof for the case (3, 3).
The case (2, 3) is a notorious open problem, see, for example, [2,8,16–19].
The ith colour class in a graph G = (V,E) with a colouring c is the set
Vi = {u ∈ V | c(u) = i}. For i �= j, let Gi,j be the (bipartite) subgraph of
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G induced by Vi ∪ Vj . If every Gi,j is a forest, then c is an acyclic colouring.
If every Gi,j is P4-free, i.e., a disjoint union of stars, then c is a star colouring.
If every Gi,j is P3-free, i.e., a disjoint union of vertices and edges, then c is an
injective colouring. The three decision problems are Acyclic Colouring, Star
Colouring and Injective Colouring, respectively; for the last problem it is
sometimes allowed for adjacent vertices to be coloured alike (see, e.g., [12–14])
but we do not permit this: as can be observed from the aforementioned defini-
tions, all colourings considered in this paper are proper. If k is fixed we write
Acyclic k-Colouring, Star k-Colouring and Injective k-Colouring.

Injective colourings are also known as distance-2 colourings and as L(1, 1)-
labelings. Namely, a colouring of a graph G is injective if the neighbours of
every vertex of G are coloured differently, i.e., also vertices of distance 2 from
each other must be coloured differently. The distance constrained labelling prob-
lem L(a1, . . . , ap)-Labelling is to decide if a graph G has an L(a1, . . . , ap)-(k-
)labelling, i.e., a mapping c : V (G) → {1, . . . , k} for some k ≥ 1, such that
for every two vertices u and v and every integer 1 ≤ i ≤ p: if G contains
a path of length i between u and v, then |c(u) − c(v)| ≥ ai; see also [9] (if
a1 ≥ a2 ≥ . . . ≥ ap, the condition is equivalent to “if u and v are of distance i”).

The above problems are NP-complete, even for very restricted graph classes,
see the survey [9] and very recent papers, such as [4,5,15,20]. We consider graph
classes of bounded diameter. In contrast to many other problems, bounding
the diameter does help for colouring variants. For instance, the problem Near
Bipartiteness is to determine if a graph has a 3-colouring such that (only) two
colour classes induce a forest. This problem, on graphs of diameter at most d, is
polynomial-time solvable if d ≤ 2 [21] and NP-complete if d ≥ 3 [6]. Or consider
the L(a1, . . . , ap)-Labelling problem. The degree of every vertex of a graph G
with an L(a1, . . . , ap)-k-labelling is at most k. Hence, |V (G)| ≤ 1 + k + . . .+ kd,
where d is the diameter of G, and we can make the following observation.

Proposition 1. Let a1, . . . , ap, d ≥ 1. Then, for every k ≥ 1, L(a1, . . . , ap)-k-
Labelling is constant-time solvable for graphs of diameter at most d.

This led us to the question: How much does bounding the diameter help for
obtaining polynomial-time algorithms for well-known graph colouring variants?

Our Results. By using a very recent NP-completeness result on Acyclic 3-
Colouring for graphs of diameter at most 4 [7] we obtain the following two
almost-complete dichotomies; note that the case where k ≤ 2 is trivial.

Theorem 1. Let d ≥ 1 and k ≥ 3. Then Acyclic k-Colouring on graphs of
diameter at most d is

– polynomial-time solvable if d ≤ 2, k = 3 and NP-complete if d ≥ 4, k = 3.
– polynomial-time solvable if d = 1, k ≥ 4 and NP-complete if d ≥ 2, k ≥ 4.

Theorem 2. Let d ≥ 1 and k ≥ 3. Then Star k-Colouring on graphs of
diameter at most d is

– polynomial-time solvable if d ≤ 3, k = 3 and NP-complete if d ≥ 8, k = 3.
– polynomial-time solvable if d = 1, k ≥ 4 and NP-complete if d ≥ 2, k ≥ 4.
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Finally, we consider L(a, b)-Labelling for the most studied values of (a, b),
namely when 1 ≤ a ≤ b ≤ 2. We now assume that k is part of the input, due
to Proposition 1. Every two non-adjacent vertices in a graph G of diameter 2
have a common neighbour. Hence, an (1, 1)-labelling of G colours each vertex
uniquely, and L(1, 1)-Labelling, on graph of diameter d ≤ 2, is trivial. The
problem is NP-complete if d = 3, as it is NP-complete for the subclass of split
graphs [3]. Griggs and Yeh [11] proved that L(2, 1)-Labelling is NP-complete
for graphs of diameter 2 via a relation with Hamiltonian Path. We also connect
the remaining case (a, b) = (1, 2) to Hamiltonian Path in order to prove NP-
completeness in Sect. 4. To summarize, we obtained the following dichotomy:

Theorem 3. Let a, b ∈ {1, 2} and d ≥ 1. Then L(a, b)-Labelling on graphs of
diameter at most d is

– polynomial-time solvable if a = b and d ≤ 2, or d = 1.
– NP-complete if either a = b and d ≥ 3, or a �= b and d ≥ 2.

Future Work. It would be interesting to close the gaps in Theorems 1 and 2,
but this seems challenging. The NP-hardness construction of Mertzios and Spi-
rakis [18] for 3-Colouring of graphs of diameter 3 does lead to NP-hardness
for Near Bipartiteness for graphs of diameter 3 [6]. However, it cannot be
used for Acyclic 3-Colouring and Star 3-Colouring.

2 The Proof of Theorem 1

We show the following result (proof omitted) and also recall a very recent result.

Lemma 1. Acyclic 3-Colouring is polynomial-time solvable for graphs of
diameter at most 2.

Lemma 2 [7]. Acyclic 3-Colouring is NP-complete on triangle-free 2-
degenerate graphs of diameter at most 4.

The Proof of Theorem 1. The first statement follows from Lemmas 1 and 2.
For the second statement, the case d = 1 is trivial, and for the case d ≥ 2,
k ≥ 4 we reduce from Acyclic 3-Colouring: to an instance G of Acyclic
k-Colouring, we add a clique of k − 3 vertices, which we make adjacent to
every vertex of G.

3 The Proof of Theorem 2

A list assignment of a graph G is a function L that gives each vertex u ∈ V (G) a
list of admissible colours L(u) ⊆ {1, 2, . . .}. A colouring c respects L if c(u) ∈ L(u)
for every u ∈ V. If |L(u)| ≤ 2 for each u ∈ V , then L is a 2-list assignment. The
2-List Colouring problem is the corresponding decision problem.
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Theorem 4 [10]. The 2-List Colouring problem is solvable in time O(n+m)
on graphs with n vertices and m edges.

We will use Theorem 4 in the proof of Lemma 6, which is the main result of
the section. In order to do this, we must first be able to modify an instance of
Star 3-Colouring into an equivalent instance of 3-Colouring. We can do
this as follows. Let G = (V,E) be a graph. We construct a supergraph Gs of G
as follows. For each edge e = uv of G we add a vertex zuv that we make adjacent
to both u and v. We also add an edge between two vertices zuv and zu′v′ if and
only if u, v, u′, v′ are four distinct vertices such that G has at least one edge
with one end-vertex in {u, v} and the other one in {u′, v′}. We say that Gs is
the edge-extension of G. Observe that we constructed Gs in O(m2) time. It is
readily seen that G has a star 3-colouring if and only if Gs has a 3-colouring.

Now suppose G has a 2-list assignment L. We extend L to a list assignment Ls

of Gs. We first set Ls(u) = L(u) for every u ∈ V (G). Initially, we set Ls(ze) =
{1, 2, 3} for each edge e ∈ E(G). We now adjust a list Ls(ze) as follows. Let
e = uv. If L(u) = L(v) or L(u) has size 1, then we set Ls(zuv) = {1, 2, 3} \L(u).
If L(v) has size 1, then we set Ls(zuv) = {1, 2, 3} \L(v). If zu′v′ is adjacent to a
vertex zuv with |L′(zuv)| = 1, then we set Ls(zu′v′) = {1, 2, 3}\L′(zuv). We apply
the rules exhaustively. We call the resulting list assignment Ls of Gs the edge-
extension of L. We say that an edge uv of G is unsuitable if |L(u)| = |L(v)| = 2
but L(u) �= L(v), whereas uv is list-reducing if |L(u)| = |L(v)| = 1 and L(u) �=
L(v). Note that in Gs, we may have |Ls(ze)| = 3 if e is unsuitable, whereas
|Ls(ze)| = 1 if e is list-reducing. We say that an end-vertex u of an unsuitable
edge e is a fixer for e if u is adjacent to an end-vertex of a list-reducing edge u′v′

(note that {u, v} ∩ {u′, v′} = ∅). We make the following observation.

Lemma 3. Let G be a graph on m edges with a 2-list assignment L. Then we can
construct in O(m2) time the edge-extension Gs of G and the edge-extension Ls

of L. Moreover, G has a star 3-colouring that respects L if and only if Gs has
a 3-colouring that respects Ls. Furthermore, Ls is a 2-list assignment of Gs if
every unsuitable edge uv of G has a fixer.

Let dG(u) be the degree of a vertex u in G. We omit the proofs of two lemmas.

Lemma 4. Let G be a graph of diameter at most 3. If G has a star 3-colouring,
then

1. for every 4-cycle v0v1v2v3v0 of G, dG(v0) = dG(v2) = 2 or dG(v1) = dG(v3) =
2, and

2. there is no 5-cycle in G.

Lemma 5. Let G be a graph of diameter at most 3 that has two vertices u and
v with at least three common neighbours. Let w ∈ N(u) ∩ N(v). Then G has a
star 3-colouring if and only if G − w has a star 3-colouring. Moreover, G − w
has diameter at most 3 as well.

Two non-adjacent vertices in a graph G that have the same neighbourhood are
false twins of G. We are now ready to give our algorithm.
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Lemma 6. Star 3-Colouring is polynomial-time solvable for graphs of diam-
eter at most 3.

Proof. Let G be a graph of diameter 3. We may assume without loss of generality
that G is connected. We first determine in O(nm2) time all 4-cycles and all 5-
cycles in G. If G has a 4-cycle with two adjacent vertices of degree at least 3
in G or if G has a 5-cycle, then G is not star 3-colourable by Lemma 4. We
continue by assuming that G satisfies the two properties of Lemma 4. We reduce
G by applying Lemma 5 exhaustively. Let G′ be the resulting graph, which has
diameter at most 3 (by Lemma 5). We can determine in O(n) time all vertices
of degree 2 in G. For each vertex of degree 2 we can compute in O(n) time all
its false twins. Hence, we found G′ in O(n2) time. As we only removed vertices,
G′ also satisfies the two properties of Lemma 4.

If G′ has maximum degree at most 4, then |V (G′)| ≤ 53, as G′ has diameter
at most 3. We check in constant time if |V (G′)| ≤ 53 and if so, whether G′ has
a star 3-colouring. Otherwise, we found a vertex v of degree at least 5 in G′.

Let Ni be the set of vertices of distance i from v. Then, N1 = N(v) and as
G′ has diameter at most 3, V (G′) = {v}∪N1 ∪N2 ∪N3. We assume without loss
of generality that if G′ has a star 3-colouring c, then c(v) = 1. We will examine
the following situations: c gives each vertex in N1 colour 3; or c gives at least
one vertex of N1 colour 2 and at least three vertices of N1 colour 3. As v has
degree at least 5, at least one of colours 2, 3 must occur three times on N(v),
and we may assume without loss of generality that this colour is 3. Hence, G′

has a star 3-colouring if and only if one of these two cases holds.

Fig. 1. The pair (G′, L′) in Case 1.

Case 1. Check if G′ has a star 3-colouring that gives every vertex of N1 colour 3.
As |N1| ≥ 5, such a star 3-colouring c must assign each vertex of N2 colour 2.
This means that every vertex of N3 gets colour 1 or 3. Hence, we obtained,
in O(n) time, a 2-list assignment L′ of G′. We construct the pair (G′

s, L
′
s). By

Lemma 3 this take O(m2) time. As every list either has size 1 or is equal to
{1, 3}, we find that the edge-extension L′

s of L′ is a 2-list assignment of G′
s. By

Lemma 3, it remains to solve 2-List-Colouring on (G′
s, L

′
s). We can do this

in O(m2) time using Theorem 4 as the size of G′
s is O(m2). Hence, the total

running time for dealing with Case 1 is O(m2). See also Fig. 1.
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Case 2. Check if G′ has a star 3-colouring that gives at least one vertex of N1

colour 2 and at least three vertices of N1 colour 3.
We set L′(v) = {1}. This gives us the property: P0. N0 = {v} and L′(v) = {1}.
We now select four arbitrary vertices of N(v). We consider all possible colourings
of these four vertices with colours 2 and 3, where we assume without loss of
generality that colour 3 is used on these four vertices at least as many times as
colour 2. For the case where colour 2 is not used we consider each of the O(n)
options of colouring another vertex from N(v) with colour 2. For the cases where
colour 3 is used exactly twice, we consider each of the O(n) options of colouring
another vertex from N(v) with colour 3. Hence, the total number of options is
O(n), and in each option we have a neighbour x of v with colour 2 and a set
W = {w1, w2, w3} of three distinct neighbours of v with colour 3. That is, we
set L′(x) = {2} and L′(wi) = {3} for 1 ≤ i ≤ 3.

For each set {x} ∪ W we do as follows. We first check if W is indepen-
dent; otherwise we discard the option. If W is independent, then initially we set
L′(u) = {1, 2, 3} for each u /∈ {x, v} ∪ W . We now show that we can reduce the
list of every such vertex u by at least 1. As an implicit step, we will discard the
instance (G′, L′) if one of the lists has become empty. In doing this we will use
the following Propagation Rule:

Whenever a vertex has only one colour in its list, we remove that colour from
the list of each of its neighbours.

By the Propagation Rule, we obtain the following property, in which we updated
the set W :

P1. N1 can be partitioned into sets W,X, Y with |W | ≥ 3, |X| ≥ 1 and |Y | ≥ 0,
such that no vertex of Y is adjacent to any vertex of X ∪ W , and moreover,
X is an independent set with x ∈ X and W is an independent set with
{w1, w2, w3} ⊆ W , such that

– every vertex w ∈ W has list L′(w) = {3},
– every vertex x ∈ X has list L′(x) = {2}, and
– every vertex y ∈ Y has list L′(y) = {2, 3}.

Note that by the Propagation Rule, we removed colour 3 from the list of every
neighbour of a vertex of W in N2. We now also remove colour 1 from the list of
every neighbour of a vertex of W in N2; the reason for this is that if a neighbour
y of, say, w1 is coloured 1, then the vertices y, w1, v, w2 form a bichromatic P4.
Hence, any neighbour of every vertex in W in N2 has list {2}.

Now consider a vertex z ∈ N2 that still has a list of size 3. Then z is not
adjacent to any vertex in N1 with a singleton list (as otherwise we applied the
Propagation Rule), but by definition z still has a neighbour z′ in N1. This means
that z′ ∈ Y and thus z′ has list {2, 3}. Hence, z cannot be coloured 1: if z′ gets
colour 2, the vertices x, v, z′, z will form a bichromatic P4, and if z′ gets colour 3,
the vertices w1, v, z

′, z will form a bichromatic P4. Hence, we may remove colour 1
from L′(z), so L′(z) will have size at most 2.
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We make some more observations. First, we recall that every neighbour of a
vertex in W in N2 has list {2}, and every vertex in X has list {2} as well. Hence,
no vertex in N2 has both a neighbour in W and a neighbour in X; otherwise this
vertex would have an empty list by the Propagation Rule and we would have
discarded this option.

Due to the above, we can partition N2 into sets W ∗, X∗, and Y ∗ such that
the vertices of W ∗ are the neighbours of W and the vertices of X∗ are the
neighbours of X, whereas Y ∗ = N2 \ (X∗ ∪ W ∗). Consequently, the neighbours
in N1 of every vertex of Y ∗ belong to Y .

Recall that G′ has no 5-cycles. Hence, there is no edge between vertices from
two different sets of {W ∗,X∗, Y ∗}. Furthermore, every vertex w∗ ∈ W ∗ has
list L′(w∗) = {2}, every vertex x∗ ∈ X∗ has list L′(x∗) = {1, 3}, and every
vertex y∗ ∈ Y ∗ has list L′(y∗) = {2, 3}. If a vertex y ∈ Y has a neighbour
w∗ ∈ W ∗, then vww∗yv is a 4-cycle where w ∈ W is a neighbour of w∗. Recall
that G′ satisfies the properties of Lemma 4. As v has degree at least 5 in G′,
this means that y has degree 2 in G′. Hence, v and w∗ are the only neighbours
of y. In particular, we find that every vertex in Y with a neighbour in W ∗ has
no neighbour in X∗ ∪ Y ∗.

We now apply the Propagation Rule again. As a consequence, we update the
lists of the vertices in Y ∪ N3, the sets Y and W in P1. The latter is because
some vertices might have moved from Y to W ; in particular it now holds that
no vertex in W ∗ is adjacent to any vertex in Y .

We summarize the above in the following property:

P2. N2 can be partitioned into sets W ∗, X∗ and Y ∗, such that
– every vertex w∗ ∈ W ∗ has list L′(w∗) = {2} and all its neighbours in N1

belong to W ,
– every vertex x∗ ∈ X∗ has list L′(x∗) ⊆ {1, 3} and at least one of its

neighbours in N1 belong to X and none of them belong to W ,
– every vertex y∗ ∈ Y ∗ has list L′(y∗) ⊆ {2, 3} and all its neighbours in N1

belong to Y , and
– there is no edge between vertices from two different sets of {W ∗,X∗, Y ∗}.

We now consider N3. We let T1 be the set consisting of all vertices in N3 that
have at least two neighbours in W ∗. We let T2 be the set consisting of all vertices
in N3 that have exactly one neighbour in W ∗. Moreover, we let S1 be the set of
vertices of N3 \ (T1 ∪T2) that have at least one neighbour in T1. We let S2 be the
set of vertices of N3 \ (T1 ∪ T2) that have no neighbours in T1 but at least two
neighbours in T2. If for a vertex s ∈ N3, there is a vertex w ∈ W and a 4-path
from s to w whose internal vertices are in X and X∗, then we let s ∈ R.

We note that the sets S1, S2, T1 and T2 are pairwise disjoint by definition,
whereas the set R may intersect with S1 ∪ S2 ∪ T1 ∪ T2. We now show that
N3 = R ∪ S1 ∪ S2 ∪ T1 ∪ T2. For contradiction, assume that s is a vertex of N3

that does not belong to any of the five sets R,S1, S2, T1, T2. As s /∈ T1 ∪ T2, we
find that the distance from s to every vertex of W is at least 3. Then, as G′ has
diameter 3, there exists a 4-path Pi from s to each wi ∈ W (by P1 we can write
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W ∗ = {w1, . . . , wa} for some a ≥ 3). Every Pi must be of one of the following
forms: s − N2 − N1 − wi or s − N2 − N2 − wi or s − N3 − N2 − wi.

First assume there is some Pi that is of the form s − N2 − N1 − wi, that is,
Pi = szz′wi for some z ∈ N2 and z′ ∈ N1. As z′ is a neighbour of both wi and v,
we find that z′ ∈ X and z′ ∈ X�, and consequently, s ∈ R, a contradiction.

Now assume that there exists some Pi that is of the form s−N2 −N2 −wi,
that is, Pi = szz′wi for some z and z′ in N2. By definition, z must have a
neighbour in N1. As G′ has no 5-cycle, this is only possible if z is adjacent to
wi. However, now s is no longer of distance 3 from wi in G′, a contradiction.

Finally, assume that no path from s to any wi is of one of the two forms
above. Hence, every Pi is of the form s − N3 − N2 − wi. We write Pi = stiw

∗
i wi

where ti ∈ T1 ∪ T2 and w∗
i ∈ W ∗. We consider the paths P1, P2, P3, which

exist as |W | ≥ 3. As s /∈ S1, we find that ti /∈ T1. Moreover, as s /∈ S2, we
find that t1 = t2 = t3, and so w∗

1 = w∗
2 = w∗

3 . In particular, the latter implies
that w∗

1 is adjacent to w1, w2 and w3 and thus has degree at least 3. Recall that
G′ satisfies Property 1 of Lemma 4. As w∗

1 and v each have degree at least 3
in G′, this means that each wi must only be adjacent to v and w∗

1 . However,
then w1, w2 and w3 are three false twins of degree 2 in G′, and by construction
of G′ we would have removed one of them, a contradiction. We conclude that
N3 = R ∪ S1 ∪ S2 ∪ T1 ∪ T2.

We now reduce the lists of the vertices in N3. Let s ∈ N3. If s ∈ T1 ∪ T2

(that is, s is adjacent to a vertex w∗ ∈ W ∗) then, as L′(w∗) = {2}, we find that
L′(s) ⊆ {1, 3}. If s ∈ T1, then we can reduce the list of s as follows. By the
definition of T1, s is adjacent to a second vertex w′ �= w∗ in W ∗. By P2, we
find that w′ has a neighbour w ∈ W . We find that L′(w∗) = L(w′) = {2} and
L(w) = {3}. Then s cannot be assigned colour 3, as otherwise w∗, s, w′, w would
form a bichromatic P4. Hence, we can reduce the list of s from {1, 3} to {1}.

Now suppose that s ∈ S1. Then, by the definitions of the sets S1 and T1 and
P2, there exists a path P = stw∗w where t ∈ T1, w∗ ∈ W ∗ and w ∈ W . We
deduced above that t has list L′(t) = {1}. Consequently, we can delete colour 1
from the list of s by the Propagation Rule, so L′(s) ⊆ {2, 3}. Now suppose that
s ∈ S2. Then, by the definition of S2 and P2, there exist two paths P1 = st1w

∗
1w1

and P2 = st2w
∗
2w2 where t1, t2 ∈ T2, w∗

1 , w
∗
2 ∈ W ∗, w1, w2 ∈ W , and t1 �= t2. We

claim that s cannot be assigned colour 2. For contradiction, suppose that s has
colour 2. Then t1, which has list {1, 3}, must receive colour 1, as otherwise t1 will
have colour 3 and s, t1, w

∗
1 , w1 is a bichromatic P4 (recall that w∗

1 and w1 can only
be coloured with colours 2 and 3, respectively). For the same reason, t2 must get
colour 1 as well. However, now w∗

1 , t1, s, t2 is a bichromatic P4, a contradiction.
Hence, we can remove colour 2 from L′(s). Afterwards, L′(s) ⊆ {1, 3}.

Finally, suppose that s ∈ R. By the definition of R, there is some path
Pi = sx∗x′w where x∗ ∈ X∗, x′ ∈ X, and w ∈ W . By P1 and P2, respectively,
it holds that L′(x′) = {2} and L′(x∗) ⊆ {1, 3}. Hence, s cannot be coloured 2: if
x∗ gets colour 1, the vertices v, x′, x∗, s will form a bichromatic P4, and if x∗ gets
colour 3, the vertices w1, x

′, x∗, s will form a bichromatic P4. In other words, we
may remove colour 2 from L′(s), so L′(s) ⊆ {1, 3}.
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Fig. 2. An example of a pair (G′, L′) in Case 2a. The colours crossed out show the
difference between the general situation in Case 2 and what we show holds in Case 2a.

As N3 = R ∪ S1 ∪ S2 ∪ T1 ∪ T2, we obtained the following property:

P3. N3 only consists of vertices whose lists are a subset of {1, 3} or {2, 3}, and
N3 can be split into sets R,S1, S2, T1, T2, such that S1, S2, T1 and T2 are
pairwise disjoint, and

– every vertex r ∈ R has list L′(r) ⊆ {1, 3} and there is a 4-path from r to
a vertex in W that has its two internal vertices in X∗ and X, respectively,

– every vertex t ∈ T1 has list L′(t) = {1} and has at least two neighbours
in W ∗,

– every vertex t ∈ T2 has list L′(t) ⊆ {1, 3} and has exactly one neighbour
in W ∗,

– every vertex s ∈ S1 has list L′(s) ⊆ {2, 3}, has no neighbours in W ∗ but
is adjacent to at least one vertex in T1, and

– every vertex s ∈ S2 has list L′(s) ⊆ {1, 3} and has no neighbours in
T1 ∪ W ∗ but at least two neighbours in T2.

Hence, we constructed a set L′ of 2-list assignments of G′, such that L′ is of size
O(n) and G′ has a star 3-colouring if and only if G′ has a star 3-colouring that
respects L′ for some L′ ∈ L′. Moreover, we can find each L′ ∈ L in O(m + n)
time by a bread-first search for detecting the 4-paths. For each L′ ∈ L, we do
as follows. We still need to construct the edge-extension G′

s of G′. However, the
edge-extension L′

s of L′ might not be a 2-list assignment. The reason is that G′

may have an edge ss′ for some vertex s ∈ N2 with L′(s) = {2, 3} and some
vertex s′ ∈ N3 with L′(s′) = {1, 3} such that L′

s(zss′) = {1, 2, 3}. We distinguish
between two cases; see also Fig. 2 and Fig. 3.
Case 2a. Check if G′ has a star 3-colouring that gives x colour 2 and every
other vertex of N1 colour 3.
We only consider this case if |X| = 1. We give every vertex in Y list {3}. Then,
by the Propagation Rule, we can delete colour 3 from every list of a vertex in
Y ∗. We construct G′

s and L′
s in O(m2) time by Lemma 3. Then L′

s is a 2-list
assignment of G′

s. This can be seen as follows. Let e = ss′ be an unsuitable
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Fig. 3. An example of a pair (G′, L′) in Case 2b. The colours crossed out show the
difference between the general situation in Case 2 and what we show holds in Case 2b.

edge of G′. As G′ has no vertices with list {1, 2}, we find that L′(s) = {2, 3}
and L′(s′) = {1, 3}. Then s must be in S1. By definition, it follows that there
exist vertices t ∈ T1 and w∗ ∈ W ∗ such that st and tw∗ are edges of G′. As
L′(t) = {1} and L′(w∗) = {2}, the edge tw∗ is list-reducing. Hence, s is a fixer
for the edge ss′. The claim now follows from Lemma 3, and by the same lemma,
it remains to check if G′

s has a 3-colouring that respects L′
s. We can do the latter

in O(m2) time by Theorem 4.
Case 2b. Check if G′ has a star 3-colouring that gives at least one other vertex
of N1, besides x, colour 2.
If |X| ≥ 2, then we found a vertex of N1 \{x} that gets colour 2. If X = {x}, we
will not try to find this vertex; for our algorithm its existence will suffice. By P2,
every x∗ ∈ X∗ has list L(x∗) ⊆ {1, 3} and a neighbour x′ ∈ X with L′(x′) = {2}.
By the Case 2b assumption, there is at least one other vertex x′′ in N1 that gets
colour 2. Then x∗ cannot be coloured 1, as otherwise x′′, v, x′, x∗ would form a
bichromatic P4. Hence, we remove colour 1 from the list of every vertex of X∗

so that afterwards L(x∗) = {3} for every x∗ ∈ X∗. We remove colour 3 from the
list of every neighbour of a vertex of X∗. As L′ is a 2-list assignment that does
not assign any vertex of G′ the list {1, 2}, afterwards every neighbour of every
vertex of X∗ in N3 has list {1} or {2}. Moreover, X∗ is an independent set (as
otherwise we discard (G′, L′)). No vertex of W ∗ ∪ Y ∗ is adjacent to any vertex
in X∗ (by P2). Hence, every vertex in X∗ has no neighbours in N2.

We now prove that no vertex in S2 can receive colour 3. For contradiction,
assume that c is a star 3-colouring of G that respects L′ and that assigns a vertex
s ∈ S2 colour c(s) = 3. As G′ has diameter 3, there is a path P from s to x ∈ X
of length at most 3. Then P is of the form s − N2 − x or s − N3 − N2 − x or
s − N2 − N2 − x or s − N2 − N1 − x. If P is of the form s − N2 − x, then s has
a neighbour in X∗, which has list {3}. Hence, as s received colour 3, this is not
possible. We show that the other three cases are not possible either.
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First suppose that P is of the form s−N3 −N2 −x, say P = szx∗x for some
z ∈ N3 and x∗ ∈ N2. As no vertex of W ∗ ∪ Y ∗ is adjacent to any vertex in X,
we find that x∗ ∈ X∗. This means that z must receive colour 1, as otherwise
the vertices x, x∗, z, s would form a bichromatic P4. As s ∈ S2, we find that s
has two neighbours t1 and t2 in T2. Both t1 and t2 have list {1, 3}, so they must
receive colour 1. At least one of them, say t1, is not equal to z. However, now x∗,
z, s, t1 form a bichromatic P4, a contradiction. Hence, this case cannot happen.

Now suppose that P is of the form s−N2 −N2 −x, say P = szx∗x for some
z, x∗ ∈ N2. As no vertex of W ∗ ∪ Y ∗ is adjacent to any vertex in X, x∗ ∈ X∗.
However, no vertex in X∗ has a neighbour in N2. Hence, this case cannot happen.

Finally, suppose that P is of the form s − N2 − N1 − x, say P = sw∗wx for
some w∗ ∈ N2 and w ∈ N1. As X is independent and no vertex of Y is adjacent
to a vertex of X, we find that w ∈ W and thus w∗ ∈ W ∗. However, this is not
possible, as s ∈ S2 is not adjacent to any vertex in W ∗ by definition. Hence,
this case cannot happen either, so we have proven the claim. So, we can remove
colour 3 from the list of every vertex s ∈ S2. Hence, L′(s) = {1} for every s ∈ S2.

We construct G′
s and L′

s in O(m2) time by Lemma 3. We claim that L′
s

is a 2-list assignment of G′
s. This can be seen as follows. Let e = ab be an

unsuitable edge of G′. As G′ has no vertices with list {1, 2}, we may assume that
L′(a) = {1, 3} and L′(b) = {2, 3}. As every vertex in R is adjacent to a vertex in
X∗ with list {3}, no vertex in R has list {1, 3}. We just deduced that no vertex
in S2 has list {1, 3} either. Hence, the only vertices with list {1, 3} belong to T2,
so a ∈ T2. Then, by definition, we find that a has a neighbour w ∈ W ∗, which
has a neighbour w ∈ W . As w∗ has list {2} and w has list {3}, the edge w∗w
is list-reducing. Hence, a is a fixer for the edge ab. The claim now follows from
Lemma 3, and by the same lemma, it remains to check if G′

s has a 3-colouring
that respects L′

s. We can do the latter in O(m2) time by Theorem 4.
This concludes the description of our algorithm. The correctness of our algorithm
follows from the correctness of the branching steps. Its running time is O(nm2),
as there are O(n) branches, and we deal with each branch in O(m2) time. ��
We also need an observation on a known construction [1] (proof omitted).

Lemma 7. Star 3-Colouring is NP-complete on graphs of diameter at
most 8.

The Proof of Theorem 2. The first statement follows from Lemmas 6 and 7. For
the second statement, the case d = 1 is trivial, and for the case d ≥ 2, k ≥ 4 we
reduce from Star 3-Colouring: to an instance G of Star k-Colouring, we
add a clique of k − 3 vertices, which we make adjacent to every vertex of G.

4 L(1, 2)-Labelling for Graphs of Diameter 2

We show that an n-graph G of diameter 2 has an L(1, 2)-n-labelling if and only
if G has a Hamiltonian path, no edge of which is contained in a triangle, and
that the latter problem is NP-complete (proofs omitted). This yields:
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Theorem 5. L(1, 2)-Labelling is NP-complete for graphs of diameter at
most 2.
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Abstract. We study the graphs formed from instances of the stable
matching problem by connecting pairs of elements with an edge when
there exists a stable matching in which they are matched. Our results
include the NP-completeness of recognizing these graphs, a recognition
algorithm that is singly exponential in the number of edges of the given
graph, and an algorithm whose time is linear in the number of vertices
of the graph but exponential in a polynomial of its carving width.

1 Introduction

A stable matching instance consists of two sets of elements to be matched (e.g.,
medical students and medical residencies), with each element in one set hav-
ing linearly-ordered preferences for elements of the other set. Somewhat more
generally, an element may have a partial preference list, preferring to remain
unmatched over being matched to the omitted elements. A matching is stable
when no matched element prefers being unmatched to its assigned match, and
no pair of elements both prefer being matched to each other over their assigned
outcomes. A stable matching always exists and can be found in time linear in
the input size by the Gale–Shapley algorithm [7].

A given instance of stable matching may have many stable matchings, form-
ing a distributive lattice in which the matching found by the Gale–Shapley algo-
rithm is the top element. Although this lattice may consist of exponentially many
matchings [12], it has a concise description as a partially ordered set of alternat-
ing cycles, called rotations, which can be constructed in polynomial time [11].
A given pair of elements participates in at least one stable matching if and only
if it is either part of the top stable matching found by the Gale–Shapley algo-
rithm, or part of one of these rotations. Therefore, from a given instance of stable
matching, we may construct in polynomial time a bipartite graph, the graph of
pairs that can be matched to each other in at least one stable matching.

This naturally raises many questions. Can we reverse this process, determine
whether a given graph comes from an instance of stable matching in this way,
and construct a stable matching instance that has the given graph as its stably
matchable pairs? What structural properties do these graphs have? For instance,
by the rural hospitals theorem [16,19] we know that every stable matching has
the same set of matched elements; in graph-theoretic terms, this means that
removing the isolated vertices from the graph of stably matchable pairs (the ele-
ments that cannot be stably matched) leaves a balanced bipartite graph (one with
c© Springer Nature Switzerland AG 2021
�L. Kowalik et al. (Eds.): WG 2021, LNCS 12911, pp. 349–360, 2021.
https://doi.org/10.1007/978-3-030-86838-3_27
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Fig. 1. Gadgets and their connections for a reduction from NAE3SAT to recognizing
the graphs of stably matchable pairs.

equal numbers of vertices on each side of the bipartition), and this graph is a
matching-covered graph meaning that each edge participates in a perfect matching.
Matching-covered balanced bipartite graphs can be recognized efficiently, in the
same asymptotic time as finding a single perfect matching [18,20]. Are these nec-
essary conditions sufficient? Is every matching-covered balanced bipartite graph
the graph of stably matchable pairs of some stable matching instance?

New Results. In this paper we provide algorithms for recognizing the graphs of
stably matchable pairs, more efficiently than a brute-force search through all
(n/2)!n preference systems on the given graph. Our main results are algorithms
that can test whether an arbitrary graph is a graph of stably matchable pairs,
either in time singly exponential in the number of edges, or in time that is fixed-
parameter tractable in the carving width of the given graph. For space reasons
we have omitted many additional results on these graphs, which can be found
in the full preprint version of this paper [6]. These results include:

– Figure 1 sketches an NP-completeness reduction from NAE3SAT to recog-
nizing graphs of stably-matchable pairs. The full version provides a stronger
reduction proving this problem NP-complete for subcubic planar graphs.

– We investigate the graphs of stably matchable pairs that belong to special
classes of graphs, showing in particular that all regular bipartite graphs are
such graphs. Every bipartite graph is an induced subgraph of a regular bipar-
tite graph, implying that graphs of stably matchable pairs have no forbidden
induced subgraphs. We prove that, for subcubic graphs to be graphs of stably
matchable pairs, it is necessary that the induced subgraphs of their degree-one
and degree-three vertices have perfect matchings, and sufficient that in addi-
tion their induced subgraph of degree-two vertices have a perfect matching.
We prove that outerplanar bipartite graphs are graphs of stably matchable
pairs if and only if they have no articulation vertex, and that realizability is
preserved by Cartesian products. We characterize the rectangular grid graphs
that are graphs of stably matchable pairs.
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– Extending prior work of Gusfield, Irving, Leather, and Saks [9], we study
the distributive lattices of stable matchings associated with graphs of stably
matchable pairs, and we examine how the structure of the graph affects the
structure of the lattice. We prove that every finite distributive lattice is the
lattice of stable matchings of an instance whose graph is subcubic. We prove
that the lattices of stable matchings associated with subcubic outerplanar and
subcubic series-parallel graphs are exactly the lattices of closures of oriented
forests, and that the lattices of stable matchings associated with planar graphs
are exactly the lattices of closures of oriented string graphs.

Related Work. The graphs of stably matchable pairs for random instances with
uniformly-random preferences have been investigated by Knuth, Motwani, and
Patel, who proved that with n elements on each side the number of edges in
these graphs is Θ(n log n) with high probability [14], and by Pittel, Shepp, and
Veklerov, who bounded the numbers of vertices with degree d in these graphs,
for constant d, with high probability [17]. In contrast to these results, random
instances for which the elements on one side have preference lists of bounded
size produce graphs in which almost all vertices have degree one [10].

2 Preliminaries

We summarize below known and standard results on the structure of the system
of stable matchings of a given stable matching instance. For convenience we
will follow the convention that the elements being matched are students si and
residencies rj . For surveys of the stable matching problem see [8,13,15].

Stable matchings for given preferences may be partially ordered, with M ≤
M ′ in this order when every student prefers M to M ′ (or has the same match in
both and is indifferent), or equivalently when every residency prefers M ′ to M or
is indifferent. This order forms a distributive lattice, in which the join (least upper
bound) M ∨ M ′ of matchings M and M ′ gives every residency its more-preferred
match from M and M ′ and gives every student their least-preferred match from
M and M ′. Symmetrically, the meet (greatest lower bound) M ∧ M ′ gives every
residency its least-preferred match and gives every student their most-preferred
match. Joins and meets are associative and can be extended in the obvious way
from pairs of stable matchings to arbitrary sets of stable matchings.

If two stable matchings M and M ′ are adjacent in the distributive lattice (they
are comparable, say as M ≤ M ′, and no third matching M ′′ is between them
with M ≤ M ′′ ≤ M ′) then their symmetric difference is a rotation, a cycle of
matched pairs that alternates between pairs of M and of M ′. Within a rotation,
pairs alternate between upper edges (pairs in M ′) and lower edges (pairs in M),
with stable matchings that differ by the same rotation having the same upper and
lower edges. Define an extended rotation to be either a rotation or one of the two
stable matchings � and ⊥ (the top and bottom elements of the distributed lattice
of stable matchings), with every pair in � a lower edge, and with every pair in ⊥
an upper edge. Then every pair that can be stably matched is a lower edge in one
extended rotation and an upper edge in one extended rotation.
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Fig. 2. A rotation system realizing a 4 × 5 grid as a graph of stably matchable pairs.
The two matchings at left are the matchings �,⊥ of this realization, its cycles are the
colored regions in the center of the figure, and their partial order is at right.

We define a rotation system for given sets of students and residencies to be
a partially ordered collection C of cycles that alternate between students and
residencies, together with two matchings � and ⊥ from students to residencies,
such that each pair (si, rj) belongs to either zero or two members of C ∪{�,⊥},
and such that each cycle alternates between upper edges (belonging to � or
to an element above the cycle in the partial order) and lower edges (belonging
to ⊥ or to an element below the cycle in the partial order). An example is
depicted in Fig. 2. We call the elements of C rotations and the elements of
C ∪ {�,⊥} extended rotations. Every stable matching instance can be described
in polynomial time by a rotation system, and the graph of stably matchable
pairs equals the graph of pairs participating in extended rotations. Conversely:

Lemma 1. Every rotation system describes the collection of stable matchings for
a system of partial preferences. If in addition the rotation system has the property
that there are either no unmatched students, or no unmatched residencies, then it
describes the collection of stable matchings for a system of complete preferences.

See the full version of the paper for the proof.

3 Singly-Exponential Algorithm

Our singly exponential time and space bounds will depend on the following
analysis of matching-related structures in graphs. The following lemma concerns
a general bound for structures consisting of a perfect matching and something
else disjoint from the matching. The “something else” (another matching, a
spanning tree, an edge-coloring, or some other structure) enters the notation of
the lemma in the following way. If T is a type of structure associated with a
graph, we define countT (G) to be the number of different choices of a structure
of type T in a graph G, and we define

baseT = lim sup
m→∞

max
G,|E(G)|=m

countT (G)1/m.
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Intuitively, this means that a graph with m edges has O(basemT ) structures of
type T . We consider only structures for which this definition gives a finite nonzero
value to baseT . Finally, we define matchT (G) to be the number of ways that one
can form a structure in G consisting of a perfect matching M together with a
structure of type T in the disjoint subgraph G \ M .

Lemma 2. With the notation above, for a graph G with m edges, matchT (G) =
O(cmM ), where cM is at most 1 + baseT and can be upper-bounded as

cM ≤ max
{(

ibase2i−2
T

)1/(2i−1) | 1 ≤ i
}

.

Proof. The 1 + baseT bound follows from the binomial theorem, and the more
precise bound comes from a recurrence-based analysis of a degree-based back-
tracking enumeration algorithm, where i is the worst-case degree encountered
by the algorithm. We defer details to the full version of the paper. �	

In cases where the structures of type T can be efficiently enumerated the proof
of the lemma can be made into an algorithm whose running time is obtained
by replacing the bound on the number of structures by the time to enumerate
them.

Lemma 3. A graph with m edges has at most cm0 perfect matchings, where

c0 = 61/9 ≈ 1.22028.

Proof. This follows from a result of Alon and Friedman [1] bounding the number
of perfect matchings in a graph with degree sequence di to be at most

∏
(di)1/2di .

See the full versions for details. �	
Lemma 4. In a graph with m edges, the number of structures consisting of a
perfect matching and an arbitrary subset of the remaining edges is O(cm1 ), and
the number of structures consisting of two perfect matchings (not necessarily
disjoint) and an arbitrary subset of the remaining edges is O(cm2 ), where

c1 = 12801/9 ≈ 2.21435

and
c2 = (4c0(1 + c0)6)1/7 ≈ 2.48475.

Proof. The bound on c1 follows from Lemma 2, counting matchings plus a struc-
ture T consisting of an arbitrary set of edges, for which baseT = 2. Calculation
shows that the maximum value for the upper bound in the lemma is achieved
at i = 5, giving the value shown.

The bound on c2 follows by using the minimum-degree algorithm from the
proof of Lemma 2 to choose a matching and disjoint set of edges, and applying
Lemma 3 to bound the number of matchings in the edges that were not chosen
in the disjoint set of edges. See the full version for details. �	
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Theorem 1. We can test whether a given graph G with m edges and n vertices
is a graph of stably matchable pairs in space O

(
min{cm1 , (n/2)!2m−n/2})

and time
O

(
min{mcm2 , (n/2)!22m−n/2})

, where c1 and c2 are the numbers from Lemma 4.

Proof. We will search for a sequence of perfect matchings, differing from one
to the next in the sequence by a single rotation, that together cover all edges
of G and such that each edge of G is rotated into a matching at most once
and rotated out of a matching at most once. If such a sequence exists, we can
produce a rotation system that has the first matching in the sequence as its
bottom matching, the last matching in the sequence as its top matching, and
the rotations of the sequence as the rotations of the rotation system, partially
ordered consistently with the sequence order.

We search for this sequence as a path in a graph Γ whose vertices are pairs
(M,S) where M is a perfect matching and S is any subset of the unmatched
edges. (This is essentially a dynamic programming algorithm but we find it
more convenient to describe it as a graph search.) In our search, we will use
M to represent the matching at the current endpoint of a partial sequence of
matchings of G, and S to represent the edges that have already been covered
by matchings earlier in the partial sequence. We make an edge in Γ from vertex
(M,S) to vertex (M ′, S′) when matchings M and M ′ differ by a single rotation,
when M ′ ∩S = ∅, and when S′ = S ∪ (M \M ′). With this definition, paths in Γ
automatically correspond to sequences of matchings that never re-use any edges:
an edge, once used, gets added to S and its presence there and the requirement
that S be disjoint from M ′ prevent later matchings in the sequence from re-using
it. Therefore, the sequences we seek are exactly the paths from any vertex of the
form (M, ∅) to any other vertex of the form (M ′, E(G)\M ′). We can find such a
path by breadth first or depth first search of Γ , starting from the vertices (M, ∅)
and terminating whenever a vertex of the form (M ′, E(G) \ M ′) is reached.

By Lemma 4, Γ has O(cm1 ) vertices and O(cm2 ) edges. It remains to describe
how to construct Γ and search it in a space-efficient way, bearing in mind that we
do not want to use the amount of memory it would require to store all the edges
of Γ . We have enough memory that (by the assumption that machine words are
large enough to store a single memory address) we can store a single matching
M or a single set of edges S in a single word, and perform set operations like
unions and intersections of these sets in constant time per operation. We will
index the vertices of Γ by consecutive integers in the range from 0 to |V (Γ )|−1.
Based on these indexes, we store the following information:

– An array A1, addressed by vertex index, of the pairs (Mi, Si) of structures
associated with vertex i.

– An array A2, addressed by vertex index, of the predecessor of vertex i in the
first path to reach that vertex found by the search, or a special flag value to
indicate that it has not yet been reached.

– An array A3 of indexes of vertices on the current frontier of the search,
arranged either as a stack for depth first search or a queue for breadth first
search.
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– An array A4 of Boolean values indexed by sets of edges, true when that set
of edges is a simple cycle and false otherwise.

– An array A5 of lists indexed by sets S of edges, listing the matchings M
disjoint from S in sorted order, together with the vertex index for (M,S) for
each matching.

Array A4 takes space 2m to store, and the remaining arrays (including the total
length of the lists in A5 take space O(cm1 ). Initializing A1 can be accomplished in
linear time using the structure enumeration algorithm of the proof of Lemma 4.
Array A2 is easily initialized to contain only flag values, and A3 is initialized
to list all vertices of the form (M, ∅). Initializing A4 can be done by a naive
algorithm that tests each set for being a cycle, in time O(m2m), smaller than
our stated time and space bounds. A5 can be initialized by using A1 to count
how many matchings are associated with each disjoint set in order to allocate
storage for the lists within A5, using a second pass over A1 to place matchings
into lists, and then sorting each list.

Each step of the search of Γ is obtained by removing a vertex (M,S) of Γ from
the search frontier A3, terminating the algorithm if M ∪ S = E(G), otherwise
looping through the neighbors of (M,S) in Γ , and for each previously-unreached
neighbor setting its predecessor in A2 and adding it to the frontier A3. It remains
to describe how to find the outgoing neighbors of a vertex (M,S) of Γ , since
these are not explicitly represented by the data structures described above (and
storing them explicitly would use too much space). We do this simply by using
A5 to find all of the matchings M ′ disjoint from S, performing set operations
on M and M ′ to find their symmetric difference, and using A4 to check that
this symmetric difference is a simple cycle. When it is, we have found a neighbor
(M ′, S′) of (M,S) in Γ , with S′ = S ∪ (M \ M ′). We can find the vertex index
of this neighbor by a binary search in the list for S′ of A5. The bottleneck of the
algorithm is performing these binary searches; each takes time O(m) and the
number of searches performed is O(cm2 ).

The space and time bounds O((n/2)!2m−n/2) and O((n/2)!22m−n/2) are bet-
ter for dense graphs. They follow from the same algorithm, after a preprocessing
stage that eliminates vertices of degree less than two, using a more naive analysis
in which we count pairs of a matching and a disjoint set, or two matchings and
a disjoint set, by bounding the number of matchings by (n/2)! and the number
of disjoint sets by two to the power of the number of unmatched edges. �	

4 Parameterized by Carving Width

In this section we parameterize the recognition of graphs of stably matchable pairs
by carving width. The precise definition of carving width involves hierarchical clus-
terings of the vertices of a graph so that each cluster boundary is crossed by a small
number of edges, but we do not need the details for this section; instead, it suffices
to know that for graphs of treewidth w and maximum degree d, the carving width
is bounded below by Ω(max(w, d)) and bounded above O(wd) [5]. Therefore, we
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can equivalently think of the graphs of small carving width as being graphs that
simultaneously have small treewidth and small maximum degree.

Our parameterized algorithm for recognizing graphs of stably matchable pairs
uses dynamic programming on a tree decomposition, a tree whose nodes are
associated with sets of vertices called bags, with every graph edge having both
endpoints in at least one bag and every vertex belonging to bags that form a
connected subtree. The width of the decomposition is one less than the number of
vertices in its largest bag, and the treewidth of the graph is the minimum width
of a tree decomposition. It will be convenient to use a nice tree decomposition,
in which the tree of bags is rooted and each bag has one of three types [4]:

– An introduce node is either a leaf node whose bag contains a single vertex, or
a node with exactly one child whose bag is formed by adding one vertex to
its child’s bag.

– A forget node is a node with exactly one child whose bag is formed by remov-
ing one vertex from its child’s bag.

– A join node has exactly two children, with the bags of it and its children all
being equal.

Each vertex can be introduced in many introduce nodes, but forgotten only from
one, which must be the parent of the common ancestor of the introduce nodes. It
will be convenient to introduce one more type of node, an edge node, associated
bijectively with a specific edge in the given graph whose endpoints belong to
the bag of the edge node. In this way, each node of the tree decomposition can
be associated with a unique subgraph of the given graph, the subgraph whose
edges and vertices are associated with the given node and its descendants. By
introducing additional forget nodes we may assume without loss of generality
that the root of the tree has an empty bag; its associate is the whole graph. We
describe a tree decomposition that meets these minor modifications to the usual
definition of a nice tree decomposition as a good tree decomposition.

Minimum-width tree decompositions can be found in time linear in the num-
ber of vertices of an input graph but exponential in the cube of the width [2]; it is
also possible to find an approximate tree decomposition whose width is within a
constant factor of minimum, in time linear in the number of vertices of the input
graph and single-exponential in the width [3]. An arbitrary tree decomposition
can be transformed into a nice tree decomposition of the same width, blowing
up the number of nodes by a factor polynomial in the width, in time linear in
the number of vertices of the graph and polynomial in the width [4]. Adding
edge nodes between the highest node whose bag contains both endpoints of each
edge and the forget nodes above them introduces a number of nodes which is
again linear in vertices and polynomial in width, within the same time bounds.

Our dynamic programming algorithm will consider two different kinds of
partial information about a rotation system for the given graph, restricted to
the subgraph associated with a node of a good tree decomposition, which we
call a rotation subsystem and a rotation state. A rotation subsystem completely
describes the part of a rotation system within the subgraph associated with
a node, while a rotation state describes only the parts of the rotation system
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involving the vertices of the current bag. A rotation subsystem and a rotation
state are compatible when the rotation state is obtained from the rotation sub-
system by forgetting the information about vertices that are not in the bag. For
a given node x of the tree decomposition, let Gx denote the subgraph associ-
ated with that node, Bx denote the set of vertices of the bag associated with
that node, Fx = V (Gx) \ Bx denote the set of forgotten vertices, and Gx[Bx]
denote the part of Gx having both endpoints in Bx. More specifically, a rotation
subsystem for a node x consists of the following information:

– Top and bottom matchings �∩Gx and ⊥∩Gx in which all vertices of Fx are
matched, but vertices of Bx may or may not be matched.

– A collection of rotations, an abstract partially ordered set whose elements
will represent the subset of rotations of the rotation system that include at
least one edge of Gx.

– A collection of pieces of rotations, intersections of rotations with Gx. Each
piece is either a full cycle, or a path whose endpoints both belong to Bx. Each
two pieces of the same rotation must be disjoint. A rotation can either have
a full cycle as its piece or one or more paths as pieces, but not both.

Each edge in the subgraph associated with a node must be part of two elements
(either pieces or � or ⊥), and be upper in one and lower in the other (as deter-
mined by the partial order of the rotations). Each piece must alternate between
upper and lower edges. We do not require that this structure can be extended
to a full rotation system, in general; however, we have:

Observation 1. A rotation subsystem at the root node of a good tree decompo-
sition coincides with a rotation system for the given graph.

We define a rotation state at a node of the tree decomposition to consist of the
following information, corresponding to the information in a rotation subsystem
but restricted to bag vertices. Then a rotation state for x consists of:

– Top and bottom matchings � and ⊥ in Gx[Bx], together with two bits of
information for each remaining bag node specifying whether it has a match
in � ∩ Gx or ⊥ ∩ Gx.

– A collection of rotations, an abstract partially ordered set whose elements will
represent the subset of rotations of the rotation system that either include
at least one edge of Gx or at least one piece that is a path with an endpoint
in Bx. Because of the assumption that the input graph has low degree, the
number of rotations in this collection will also be low.

– A collection of pieces of rotations. For each piece we store the rotation that
it is part of, the edges of the piece that belong to Gx[Bx], and the endpoints
of the piece in Bx, but not the edges in the rest of Gx. At each endpoint in
Bx, we store whether the edge of the piece that is incident to that endpoint
is an upper or lower edge in its rotation.

We require that each edge of Gx[Bx] belong to two elements (pieces, �, or ⊥),
upper in one and lower in the other, and that two edges of Gx[Bx] that are
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consecutive within a piece they alternate between upper and lower. We do not
require that this structure can be extended to a rotation subsystem for the same
node of the tree decomposition, but we call it valid when it can be so extended.

Our algorithm constructs a tree decomposition and works bottom up cal-
culating each node’s set of valid rotation states. It uses the following lemmas,
which describe the valid rotation states for each type of node in our decomposi-
tion, and allow each set to be computed in time exponential in a polynomial of
the carving width, independent of the overall graph size. See the full version for
their proofs.

Lemma 5. In a tree decomposition of width w for a graph of degree d, the
number of possible rotation states is at most exponential in O((wd)2).

Lemma 6. At an introduce node x of the tree decomposition, with child y, a
state S is valid if and only if the vertex v that is introduced at x does not take
part in any pieces of rotations, v is marked as not matched in �∩Gx and ⊥∩Gx,
and the state S′ formed by removing v from S is valid for y.

Lemma 7. At a forget node x of the tree decomposition, with child y, a state S
is valid if and only if the vertex v that is forgotten at x does not take part in any
pieces of rotations, and there exists a valid state S′ formed from S by adding v
to S, marking it as matched in both � ∩ Gy and ⊥ ∩ Gy, and possibly adding an
edge incident to v in Gy[By] to � or ⊥.

Lemma 8. At an edge node x which introduces edge uv as the only edge of graph
Gx, a state S is valid if and only if one of the following three conditions is met:

– Edge uv is included in �, vertices u and v are marked as matched in � and
unmatched in ⊥, and there are no rotations or pieces of rotations.

– Edge uv is included in ⊥, vertices u and v are marked as matched in � and
unmatched in ⊥, and there are no rotations or pieces of rotations.

– Edge uv is not included in � or ⊥, vertices u and v are marked as unmatched
in both � and ⊥, and there is a single rotation having a single piece, consisting
of this edge, marked as either upper or lower.

Lemma 9. At an edge node x with child y which introduces edge uv to a non-
empty subgraph Gy, a state S is valid if and only if it would be valid for a join
node x′ with the same bag as x whose two children are y and an edge node
introducing uv as the only edge in its subgraph.

Lemma 10. At a join node x with children y and z, a rotation state S is valid
if and only if there exist valid states S′ for y and S′′ for z such that:

– The matchings ⊥ and � in S are disjoint unions of the corresponding match-
ings in S′ and S′′, and the sets of matched vertices in ⊥ and � in S are
disjoint unions of the corresponding sets of matched vertices in S′ and S′′.

– The rotations in S are a union (not necessarily disjoint) of the rotations in
S′ and S′′, with the partial order on these rotations in S′ and S′′ equalling
the restriction to those subsets of the partial order on rotations in S.
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– Each piece of a rotation in S is formed as a concatenation of one or more
pieces of rotations in S′ and S′′, all pieces of rotations in S′ and S′′ are used
to form pieces of rotations in this way, and at each point of concatenation the
two concatenated pieces alternate between an upper edge and a lower edge.

Theorem 2. We can test whether a graph G with n vertices and carving width
w is a graph of stably matchable pairs in time O(n) · exp O(w4).

Proof. We can find a good tree-decomposition of width O(w) with O(wn) edge
nodes and join nodes and n forget nodes in the stated time bound. Removing
the forget nodes and join nodes partitions the decomposition into subtrees each
having O(w) introduce nodes, so there are O(w2n) introduce nodes total.

Because G has carving width w, its treewidth and maximum degree are
O(w), so by Lemma 5 the number of states at each node of this decomposition
is exponential in O(w4). By the lemmas above, we can compute the set of valid
states at each node by examining each valid state at the child node (when there
is one child) or each pair of valid states at the two children (when there are two
children), in time polynomial in w per state or pair of states. The total time per
node is bounded by this polynomial multiplied by the square of the number of
states, which remains exponential in O(w4). �	

5 Conclusions and Open Problems

We have investigated the graphs of stably matchable pairs of stable matching
instances, with results including the characterization of special classes of these
graphs, characterization of the lattices of stable matchings corresponding to these
classes of graphs, the NP-completeness of recognizing graphs of stably matchable
pairs in general, and exact algorithms for recognizing these graphs that run in
singly exponential or fixed-parameter tractable time.

It is open whether our algorithm for carving width can be extended to
treewidth for graphs of unbounded degree. As a first step, what is the complexity
of recognizing series-parallel graphs of stably matchable pairs? Another problem
concerns the analysis of numbers of combinations of matchings and subsets of
edges in Lemma 4, which we used to analyze our exponential-time recognition
algorithm. This analysis seems unlikely to be tight; can it be improved?
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Abstract. An additive +β spanner of a graph G is a subgraph which
preserves distances up to an additive +β error. Additive spanners are
well-studied in unweighted graphs but have only recently received atten-
tion in weighted graphs [Elkin et al. 2019 and 2020, Ahmed et al. 2020].
This paper makes two new contributions to the theory of weighted addi-
tive spanners.

For weighted graphs, [Ahmed et al. 2020] provided constructions of
sparse spanners with global error β = cW , where W is the maximum
edge weight in G and c is constant. We improve these to local error by
giving spanners with additive error +cW (s, t) for each vertex pair (s, t),
where W (s, t) is the maximum edge weight along the shortest s–t path
in G. These include pairwise +(2+ε)W (·, ·) and +(6+ε)W (·, ·) spanners
over vertex pairs P ⊆ V × V on Oε(n|P|1/3) and Oε(n|P|1/4) edges for
all ε > 0, which extend previously known unweighted results up to ε
dependence, as well as an all-pairs +4W (·, ·) spanner on ˜O(n7/5) edges.

Besides sparsity, another natural way to measure the quality of a
spanner in weighted graphs is by its lightness, defined as the total edge
weight of the spanner divided by the weight of an MST of G. We provide
a +εW (·, ·) spanner with Oε(n) lightness, and a +(4 + ε)W (·, ·) span-
ner with Oε(n

2/3) lightness. These are the first known additive spanners
with nontrivial lightness guarantees. All of the above spanners can be
constructed in polynomial time.

1 Introduction

Given an undirected graph G(V,E), a spanner is a subgraph H which approx-
imately preserves distances in G up to some error. Spanners are an important
primitive in the literature on network design and shortest path algorithms, with
applications in motion planning in robotics [10,16,29,33], asynchronous proto-
col design [31], approximate shortest path algorithms [17], and much more; see
survey [4]. One general goal in research on spanners is to minimize the size of
the spanner (measured by the number of edges |E(H)|), given some error by
which distances can be distorted. For weighted graphs, another desirable goal is
c© Springer Nature Switzerland AG 2021
�L. Kowalik et al. (Eds.): WG 2021, LNCS 12911, pp. 361–373, 2021.
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to minimize the lightness, defined as the total weight of the spanner divided by
the weight of a minimum spanning tree (MST) of G.

Spanners were introduced in the 1980s by Peleg and Schäffer [30], who first
considered multiplicative error. A subgraph H is a (multiplicative) α-spanner
of G(V,E) if dH(s, t) ≤ α · dG(s, t) for all vertices s, t ∈ V , where dG(s, t)
is the distance between s and t in G. Since H is a subgraph, we also have
dG(s, t) ≤ dH(s, t) by definition, so the distances in H approximate those of G
within a multiplicative factor of k, sometimes called the stretch factor. Althöfer
et al. [7] showed that all n-vertex graphs have multiplicative (2k − 1)-spanners
on O(n1+1/k) edges with O(n/k) lightness, and this edge bound is the best pos-
sible assuming the girth conjecture by Erdős [22] from extremal combinatorics.
Meanwhile, this initial lightness bound has been repeatedly improved in follow-
up work, and the optimal bound still remains open [12,14,20,23,28].

Multiplicative spanners are extremely well applied in computer science. How-
ever, they are typically applied to very large graphs where it may be undesirable
to take on errors that scale with the (possibly very large) distances in the input
graph. A more desirable error is additive error which does not depend on the
original graph distances at all:

Definition 1 (Additive +β spanner). Given a graph G(V,E) and β ≥ 0, a
subgraph H is a +β spanner of G if

dG(s, t) ≤ dH(s, t) ≤ dG(s, t) + β (1)

for all vertices s, t ∈ V .

A pairwise +β spanner is a subgraph H for which (1) only needs to hold for
specific vertex pairs P ⊆ V × V given on input, and a subsetwise spanner is a
pairwise spanner with P = S × S for some S ⊆ V (if P = V × V , these are
sometimes called all-pairs spanners, for clarity). It is known that all unweighted
graphs G(V,E) with |V | = n have (all-pairs) +2 spanners on O(n3/2) edges
[6,27], +4 spanners on ˜O(n7/5) edges [13], and +6 spanners on O(n4/3) edges
[8,27,34]. On the negative side, for all ε > 0 there exist graphs which have no
+β spanner on O(n4/3−ε) edges even for arbitrarily large constant β [1]. This
presents a barrier to using additive spanners in applications where a very sparse
subgraph, say on O(n1.001) edges, is needed. However, the lower bound construc-
tion in [1] is rather pathological; tradeoffs do continue for certain natural classes
of graphs with good girth or expansion properties [8], and recent experimental
work [5] showed that tradeoffs seem to continue for graphs constructed from
common random graph models.

A more serious barrier preventing the applicability of additive spanners
is that classic constructions only apply to unweighted graphs, while many
naturally-occurring metrics are not expressible by a unit-weight graph. To obtain
additive spanners of weighted graphs G = (V,E,w) where w : E → R

+, the
error term +β needs to scale somehow with the edge weights of the input
graph. Prior work [2] has considered global error of type β = cW , where W =
maxe∈E w(e) is the maximum edge weight in the input graph and c is a constant.
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However, a more desirable paradigm studied by Elkin, Gitlitz, and Neiman [18,
19] is to consider local error in terms of the maximum edge weight along a
shortest s–t path:

Definition 2 (Local +cW (·, ·) spanner). Given a graph G(V,E), subgraph H
is a (local) +cW (·, ·) spanner if dH(s, t) ≤ dG(s, t) + cW (s, t) for all s, t ∈ V ,
where W (s, t) is the maximum edge weight along a shortest path π(s, t) in G.1

It is often the case that W (s, t) � W for many vertex pairs (s, t) in which a
+cW (·, ·) spanner has much less additive error for such vertex pairs. Additionally,
a +cW (·, ·) spanner is also a multiplicative (c + 1)-spanner, whereas a +cW
spanner can have unbounded multiplicative stretch. This relationship between
additive and multiplicative stretch is thematic in the area [8,21].

Sparse Local Additive Spanners. Weighted additive spanners were first studied
by Elkin et al. [18], who gave a local +2W (·, ·) spanner with O(n3/2) edges, as
well as a “mixed” spanner with a similar error type. Ahmed, Bodwin, Sahneh,
Kobourov, and Spence [2] gave a comprehensive study of weighted additive span-
ners, including a global +4W spanner with ˜O(n7/5) edges and +8W spanner
with O(n4/3) edges, analogous to the previously-known unweighted construc-
tions. The +6 unweighted error vs. +8W global weighted error left a gap to be
closed; this was mostly closed in a recent follow-up work of Elkin et al. [19], who
gave a local all-pairs +(6+ ε)W (·, ·) spanner on Oε(n4/3) edges2 by generalizing
the +6 spanner by Knudsen [27], and a subsetwise +(2 + ε)W (·, ·) spanner on
Oε(n

√|S|) edges [19] (following a similar +2 subsetwise spanner in unweighted
graphs by Elkin (unpublished), later published in [15,32]). Our first contribu-
tion is the improvement of several remaining known constructions of weighted
additive spanners from global to local error.

Theorem 1. Let ε > 0. Then every weighted graph G and set P ⊆ V × V of
vertex pairs has:

1. a deterministic pairwise +(2 + ε)W (·, ·) spanner on Oε(n|P|1/3) edges,
2. a deterministic pairwise +(6 + ε)W (·, ·) spanner on Oε(n|P|1/4) edges,
3. a pairwise +2W (·, ·) spanner on O(n|P|1/3) edges,
4. a pairwise +4W (·, ·) spanner on O(n|P|2/7) edges, and
5. an all-pairs +4W (·, ·) spanner on ˜O(n7/5) edges.

The first two pairwise constructions are deterministic unlike the random-
ized constructions from [4]. Unweighted versions of these results were proved
in [24,25], and weighted versions with global error but without ε dependence
were proved in [2]. This theorem is the first to provide versions with local
error. Together with [18,19], the above results complete the task of convert-
ing unweighted additive spanners to weighted additive spanners with local error;
see Tables 1 and 2.
1 If there are multiple shortest s–t paths, then we break ties consistently so that

subpaths of shortest paths are also shortest paths.
2 We use Oε(f(n)) as shorthand for O(poly( 1

ε
)f(n)).
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Table 1. All-pairs additive spanner constructions for unweighted and weighted graphs.

Unweighted Weighted

+β Size Ref. +β Size Ref.

+2 O(n3/2) [6,8,15,27] +2W (·, ·) O(n3/2) [18]

+4 ˜O(n7/5) [13] +4W (·, ·) ˜O(n7/5) [this paper]

+6 O(n4/3) [8,27] +(6 + ε)W (·, ·) Oε(n
4/3) [19]

+no(1) Ω(n4/3−ε) [1]

Table 2. Pairwise and subsetwise (purely) additive spanner constructions for
unweighted and weighted graphs.

Unweighted Weighted

Type +β Size Ref. +β Size Ref.

Subset +2 O(n
√|S|) [15] +(2 + ε)W (·, ·) Oε(n

√|S|) [19]

Pairwise +2 O(n|P|1/3) [11,25] +2W (·, ·) O(n|P|1/3) [this paper]

Pairwise +4 O(n|P|2/7) [9,24] +4W (·, ·) O(n|P|2/7) [3]

Pairwise +6 O(n|P|1/4) [24] +(6 + ε)W (·, ·) Oε(n|P|1/4) [this paper]

Lightweight Local Additive Spanners. All aforementioned results are in terms
of the number of edges |E(H)| of the spanner. If minimizing the total edge
weight is more desirable than constructing a sparse spanner, a natural problem
is to construct lightweight spanners. Given a connected graph G = (V,E) with
positive edge weights w : E → R

+, the lightness of a subgraph H is defined by

lightness(H) :=
w(H)

w(MST(G))
(2)

where w(H) and w(MST(G)) are the sum of edge weights in H and an MST of G,
respectively. Section 4 highlights why none of the aforementioned sparse spanners
have good lightness guarantees. Our second contribution is the following:

Theorem 2. Let ε > 0. Then every weighted graph G has:

1. a deterministic all-pairs +εW (·, ·) spanner with Oε(n) lightness, and
2. a deterministic all-pairs +(4 + ε)W (·, ·) spanner with Oε(n2/3) lightness.

To the best of our knowledge, these are the first nontrivial lightness results
known for additive spanners. For comparison on the first result, it is easy to show
that every graph G has an all-pairs distance preserver H with lightness(H) =
O(n2). It follows from the seminal work of Khuller, Raghavachari, and Young
[26] on shallow-light trees that every graph G has a subgraph H that preserves
distances up to a (1 + ε) multiplicative factor, with lightness Oε(n). Our first
result implies that the same lightness bound (up to the specifics of the ε depen-
dence) can be achieved with additive error. Theorem 2.1 strictly strengthens
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this consequence of [26], since local +εW (·, ·) error implies multiplicative (1+ ε)
stretch as previously mentioned. Additionally, Theorem 2.1 is tight, in the sense
that an unweighted complete graph Kn has lightness Θ(n) and no nontrivial
+εW (·, ·) spanner. Table 3 summarizes these lightness results compared with
those in unweighted graphs.

Table 3. Lightweight all-pairs additive spanners in unweighted and weighted graphs.

Unweighted Weighted

+β Lightness +β Lightness Ref.

0 O(n) +εW (·, ·) Oε(n) [this paper]

+2 O(n1/2) ?

+4 ˜O(n2/5) +(4 + ε)W (·, ·) Oε(n
2/3) [this paper]

+6 O(n1/3) ?

The lightweight spanners are based on a new initialization technique which
we call d-lightweight initialization, in which an initial set of lightweight edges is
added to the spanner starting from the MST of the input graph. Nearly all of
the above spanners have a common theme in the construction and analysis: add
to H an initial set of edges oblivious to the distances in the graph, then add
shortest paths for any vertex pairs which do not satisfy inequality (1). The size
or lightness bounds are then analyzed by determining how many pairs of nearby
vertices there are whose distances sufficiently improve upon adding a shortest
path; this method was also used by Elkin et al. [19]. Note that such improve-
ments in unweighted graphs must be by at least 1; in weighted graphs, distances
may improve by arbitrarily small amount which leads to the ε dependence. We
remark that the above spanner results hold if we assign each vertex pair (u, v)
a shortest path π(u, v) which minimizes the maximum edge weight. We leave
as open questions the lightness bounds for +2W and +6W spanners (with or
without ε dependence), whether the lightness for the +(4 + ε)W (·, ·) spanner
can be improved to ˜O(n2/5), and whether we can construct additive spanners in
weighted graphs which are simultaneously sparse and lightweight.

2 Preliminaries

Most additive spanner constructions begin with either a clustering [8,15,24] or
initialization phase [2,19,27], where an initial set of edges is added to the spanner
oblivious to distances or vertex pairs P in the graph. Experimental results [5]
suggest that initialization is preferred over clustering in terms of runtime and
spanner size, and all constructions in this paper are initialization-based. Given a
weighted graph G and d ≥ 0, a d-light initialization of G is a subgraph obtained
by selecting the d lightest edges incident to every vertex, or all edges if the degree
is less than d. We exploit the following lemma from [2]:
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Lemma 1 ([2]). Let H be a d-light initialization of a weighted graph G, and
let π(s, t) be a shortest path in G. If there are � edges of π(s, t) absent from H,
then there is a set N of d�

6 = Ω(d�) vertices, where each vertex in N is adjacent
to a vertex on π(s, t), connected via an edge of weight at most W (s, t).

We refer to vertices in N as the d-light neighbors of π(s, t). The fact that
d-light neighbors are connected to π(s, t) via light edges of weight ≤ W (s, t) was
not explicitly stated in [2] but follows directly from the proof, as N is constructed
by taking the d lightest edges incident to vertices on π(s, t) which are incident to
a missing edge of weight at most W (s, t). After d-light initialization, additional
shortest paths are added to H in order to “satisfy” the remaining unsatisfied
vertex pairs3. We will use the standard method of +β spanner completion, where
we iterate over each vertex pair (s, t) in nondecreasing order of maximum weight
W (s, t) (then by nondecreasing distance dG(s, t) in case of a tie) and add π(s, t)
to the spanner if (s, t) is unsatisfied.

3 Sparse Local Additive Spanners

Instead of +cW additive error considered in [2], we consider +cW (·, ·) local error.

3.1 Pairwise +(2 + ε)W (·, ·) and +(6 + ε)W (·, ·) Spanners

For the pairwise +(2 + ε)W (·, ·) and +(6 + ε)W (·, ·) spanners (Theorem 1.1-2),
we describe a deterministic construction. The analysis behind the edge bounds
uses a set-off and improving strategy also used in [19]. The constructions involve
one additional step of adding a certain number of edges along every vertex pair’s
shortest path before spanner completion.

Let �, d ≥ 0 be parameters which are defined later. Let H be a d-light initial-
ization. Then for each vertex pair (s, t) ∈ P, consider the shortest path π(s, t) in
G and add the first � missing edges and the last � missing edges to H (if π(s, t)
is missing at most 2� edges, all missing edges from π(s, t) are added to H). We
remark that if (s, t) is already satisfied, we can skip this step for the pair (s, t).

After this phase, we perform +(2+ ε)W (·, ·) or +(6+ ε)W (·, ·) spanner com-
pletion as described in Sect. 2. This construction clearly outputs a valid pairwise
spanner, and O(nd + �|P|) edges are added in the “distance-oblivious” phase
before spanner completion. It remains to determine the number of edges added
in spanner completion.

Let (s, t) ∈ P be a vertex pair for which π(s, t) is added to H during spanner
completion. Observe that after d-light initialization, the first � missing edges
and the last � missing edges from π(s, t) do not overlap; otherwise no remaining
edges from π(s, t) would have been added to H. Let u1v1, . . . , u�v� denote the
first � missing edges on π(s, t) which are added after d-light initialization, and
let u′

1v
′
1, . . . , u′

�v
′
� denote the last � missing edges, where ui (or u′

i) is closer to
s than vi (or v′

i); see Fig. 1 for illustration.
3 A vertex pair (s, t) is satisfied if the spanner inequality (1) holds for that pair, and
unsatisfied otherwise.
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Fig. 1. Illustration of Lemma 2 (left) and Lemma 3 (right) with � = 2. Note that
s = u1 and t = v′

2 in this example. By adding π(s, t), at least one of the pairs’ (a, x)

or (x, b) distance improves by at least εW (s,t)
2

. Note that a, x, b are not necessarily
distinct.

We will refer to the set {u1, . . . , u�} as the prefix and the set {v′
1, . . . , v

′
�}

as the suffix. Consider the shortest paths π(s, v�) and π(u′
1, t). By Lemma 1,

there are Ω(d�) d-light neighbors which are adjacent to a vertex in the prefix
and suffix, respectively, connected by an edge of weight at most W (s, t).

Consider the subpath π(v�, u
′
1); suppose z ≥ 1 edges of π(s, t) are added

during spanner completion. By Lemma 1 again, there are Ω(dz) d-light neigh-
bors which are adjacent to a vertex on π(v�, u

′
1). In the following lemmas,

denote by H0 and H1 the spanner immediately before and after π(s, t) is added,
respectively.

Lemma 2. Let (s, t) ∈ P be such that π(s, t) is added to H during +(2 +
ε)W (·, ·) spanner completion. Let a and b be vertices in the prefix and suffix
respectively. Let x be a d-light neighbor of the path π(v�, u

′
1). Then both of the

following hold:

1. dH1(a, x) ≤ dG(a, x) + 2W (s, t) and dH1(b, x) ≤ dG(b, x) + 2W (s, t)
2. dH0(a, x) − dH1(a, x) > εW (s,t)

2 or dH0(b, x) − dH1(b, x) > εW (s,t)
2 .

For the pairwise +(6+ε)W (·, ·) spanner, we consider arbitrary d-light neigh-
bors a and b of the prefix and suffix, and similarly consider vertex pairs (a, x),
(b, x) whose distances sufficiently improve:

Lemma 3. Let (s, t) ∈ P be such that π(s, t) is added to H during +(6 +
ε)W (·, ·) spanner completion. Let a and b be d-light neighbors adjacent to ver-
tices ui and v′

j in the prefix and suffix, respectively. Let x be a d-light neighbor
of the path π(v�, u

′
1). Then both of the following hold:

1. dH1(a, x) ≤ dG(a, x) + 4W (s, t) and dH1(x, b) ≤ dG(x, b) + 4W (s, t)
2. dH0(a, x) − dH1(a, x) > εW (s,t)

2 or dH0(x, b) − dH1(x, b) > εW (s,t)
2 .

Proofs omitted due to space are provided in the arXiv version of this paper [3].

Lemma 4. By setting d = |P|1/3 and � = n/|P|2/3, the pairwise +(2+ε)W (·, ·)
construction outputs a subgraph H with |E(H)| = Oε

(

n|P|1/3
)

.

Proof. In the distance-oblivious phase, we add O(nd+ �|P|) = O(n|P|1/3) edges
to H. A vertex pair (v, x) is set-off if it is the first time that dH(v, x) ≤ dG(v, x)+
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(2 + ε)W (s, t) and is improved if its distance in H decreases by at least εW (s,t)
2 .

Suppose adding π(s, t) during +(2 + ε)W (·, ·) spanner completion adds z ≥ 1
additional edges. Let x be a d-light neighbor of π(v�, u

′
1) and let a, b be vertices

in the prefix and suffix. By Lemma 1, there are Ω(dz) vertices x adjacent to
π(v�u

′
1). By Lemma 2, both of the pairs (a, x), (b, x) are set-off if not already,

and at least one of the pairs is improved upon adding π(s, t). Since there are
Ω(�) choices for a or b, this gives Ω(dz × �) = Ω(nz/|P|1/3) improvements upon
adding z edges to H.

Once a pair (v, x) is set-off, it can only be improved O(1
ε ) times; this follows

since pairs are ordered by their maximum weight, so any improvement is by
at least εW (s,t)

2 . If Z total edges are added during spanner completion, then
the number of improvements is Ω(d�Z). There are O(n2) vertex pairs and once
set-off, each vertex pair is improved O

(

1
ε

)

times, in which we have Ω(d�Z) =

O
(

n2

ε

)

. Since d = |P|1/3 and � = n/|P|2/3, we obtain Z = O
(

1
εn|P|1/3

)

.

Altogether we obtain |E(H)| = O
(

1
εn|P|1/3

)

. �	

Lemma 5. By setting d = |P|1/4 and � = n/|P|3/4, the pairwise +(6+ε)W (·, ·)
construction outputs a subgraph H with |E(H)| = Oε(n|P|1/4).

The proof is nearly identical to that of Lemma 4 except that a and b are d-light
neighbors instead of prefix and suffix vertices. Lemmas 4 and 5 imply Theo-
rem 1.1 and 1.2 respectively. Further, by setting W = 1 and ε = 0.5, these
results imply pairwise +2 and +6 spanners of size O(n|P|1/3) and O(n|P|1/4) in
unweighted graphs (as a +2.5 spanner of an unweighted graph is also a +2
spanner). These edge bounds match those of existing pairwise +2 spanners
[11,25] and pairwise +6 spanners [24].

3.2 Pairwise +2W (·, ·) and +4W (·, ·) Spanners

We address Theorem 1.3 and 1.4: every weighted graph has a pairwise +2W (·, ·)
spanner and +4W (·, ·) spanner on O(n|P|1/3) edges and O(n|P|2/7) edges respec-
tively. This removes the ε dependence from Theorem 1.1 and uses local error
instead of global W error as in [2]. First, we need the following simple lemma:

Lemma 6. Let H be a d-light initialization, and let s, t ∈ V . Let x be a d-light
neighbor of π(s, t) connected to a vertex y ∈ π(s, t) in H. Consider a shortest
path tree in G rooted at x. Then the distance from s to t in this tree is at most
dG(s, t) + 2W (s, t).

This is proven by the triangle inequality and the fact that w(xy) ≤ W (s, t).
The remainder of Theorem 1.3 and 1.4 is similar to the pairwise +2W and +4W
spanners in [2] except we use the fact that d-light neighbors are connected by an
edge of weight ≤ W (s, t). The +4W (·, ·) pairwise spanner can also be used to
show existence of an all-pairs +4W (·, ·) spanner of size ˜O(n7/5) (Theorem 1.5).
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4 Lightweight Local Additive Spanners

In this section, we prove Theorem 2 by constructing lightweight additive span-
ners. The previous spanner algorithms based on d-light initialization can pro-
duce spanners with poor lightness: Let G be obtained by considering Kn

2 ,n2
with

all edges of weight W , then adding two paths of weight 0 connecting the ver-
tices within each bipartition. Then w(MST(G)) = W , while d-light initialization
already adds Ω(Wnd) weight to the spanner H, or Ω(nd) lightness.

In order to construct lightweight additive +β spanners, we introduce a new
initialization technique called d-lightweight initialization, which adds edges of
total weight at most d for each vertex, starting from the MST of G. We first
perform the following simple modifications to the input graph G in order:

1. Scale the edge weights of G linearly so that the weight of the MST is n
2 .

2. Remove all edges of weight ≥ n from G.

Note that step 1 also scales W (s, t) for vertex pairs (s, t), but the validity of an
additive spanner or spanner path is invariant to scaling. Step 2 does not change
the shortest path metric or the maximum edge weights W (s, t); since the MST
has weight n

2 , this implies W (s, t) ≤ dG(s, t) ≤ n
2 for all vertex pairs (s, t).

Given G and d ≥ 0, the d-lightweight initialization is a subgraph H defined
as follows: let H be an MST of G. If d > 0, then for each vertex v ∈ V , consider
all incident edges to v which have not already been added to H, in nondecreasing
order of weight. Add these incident edges one by one to H until the next edge
causes the total edge weight added corresponding to v to be greater than d.
This subgraph H has O(n + nd) total edge weight, and O(1 + d) lightness. Note
that 0-lightweight initialization is simply the MST of G. After d-lightweight
initialization, perform +β spanner completion as before (Sect. 2).

4.1 Lightweight Initialization and Neighborhoods of Shortest Paths

In order to prove the desired lightness bounds, we consider a subdivided graph
G′ obtained as follows: for each MST edge e of MST(G), subdivide e into 
w(e)�
edges of weight w(e)

�w(e)� . Recall that w(MST(G)) = n
2 , so this adds O(n) vertices,

all of which are on MST edges. We do not modify the maximum edge weights
W (s, t) for each pair (s, t) ∈ V (G), even if such edges are subdivided in G′. We
remark that the MST of G′ also has weight n

2 , and all MST edges have weight
at most 1.

Lemma 7. Let e = uv be an edge in E(G′) which is not contained in the d-
lightweight initialization H. Then there are Ω(d1/2) vertices x in G′ such that
dH(u, x) ≤ w(e). Moreover, if ε′ ∈ (0, 1], there are Ω(ε′w(e)) vertices x such
that dH(u, x) ≤ ε′w(e).

We now describe a lightweight analogue of Lemma 1:
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Lemma 8. Let H be a d-lightweight initialization, let π(s, t) be a shortest s–t
path in G′, let z be the total weight of the edges in π(s, t) which are absent in
H, and let ε′ ∈ (0, 1]. Then there is a set N of at least ε′z

10 = Ω(ε′z) vertices in
G′ which are of distance at most ε′W (s, t) in H from some vertex in π(s, t).

4.2 Proof of Theorem 2

Using Lemmas 7 and 8, we can analyze the lightness of the above spanner con-
structions by considering the number of vertex pairs in the subdivided graph G′

whose distances sufficiently improve upon adding π(s, t), where s, t ∈ V (G).

Lemma 9. Let (s, t) ∈ V (G) be a vertex pair such that π(s, t) is added during
+εW (·, ·) spanner completion. Let x ∈ N be a vertex in G′ which is of distance
≤ ε

4W (s, t) from some vertex u in π(s, t) in H. Let H0 and H1 denote the
spanner before and after π(s, t) is added. Then both of the following hold:

1. dH1(s, x) ≤ dG′(s, x) + ε
2W (s, t) and dH1(t, x) ≤ dG′(t, x) + ε

2W (s, t)
2. dH0(s, x) − dH1(s, x) ≥ ε

4W (s, t) or dH0(t, x) − dH1(t, x) ≥ ε
4W (s, t).

Similar to Lemma 2, statement 1. holds by the triangle inequality, and 2. can
be proven by contradiction: if neither inequality was true, then dH0(s, t) ≤
dG(s, t) + εW (s, t), contradicting that π(s, t) was added during spanner com-
pletion (Fig. 2).

Fig. 2. Illustration of Lemma 9. By adding π(s, t) to H during +εW (·, ·) spanner
completion, both pairs (s, x) and (t, x) are satisfied, and at least one of the pairs’
distances improves by at least ε

4
W (s, t).

Proof (Theorem 2.1). By Lemma 8 with ε′ = ε
4 , there are Ω(εz) vertices x ∈

V (G′) which are of distance ≤ ε
4W (s, t) from some vertex in π(s, t), so adding

path π(s, t) of weight z improves Ω(εz) vertex pairs. If Z is the total weight added
during +εW (·, ·) spanner completion, then there are Ω(εZ) improvements.

Once a vertex pair is set-off, it is only improved a constant number of times
(since any such pair (s, x) or (t, x), once set-off, has error ε

2W (s, t), and any
improvement is by Ω(εW (s, t))). Then by considering the number of improve-
ments, we obtain Ω(εZ) = O(n2) =⇒ Z = O( 1

εn2). This result does not depend
on d-lightweight initialization, so set d = 0. The total weight of the spanner H
is O( 1

εn2); since w(MST(G)) = n
2 , we obtain lightness(H) = Oε(n) as desired. �	
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Lemma 10. Let (u, v) ∈ V (G) be a vertex pair such that π(u, v) is added during
+(4 + ε)W (·, ·) spanner completion. Let a and b be d-lightweight neighbors of s
and t in G′, respectively, such that dH0(x, a) ≤ W (s, t) and dH0(y, b) ≤ W (s, t).
Let x ∈ N be a vertex in G′ which is of distance ≤ ε

4W (s, t) from some vertex y
in π(s, t). Then both of the following hold:

1. dH1(a, x) ≤ dG′(a, x)+(2+ε)W (s, t) and dH1(b, x) ≤ dG′(b, x)+(2+ε)W (s, t)
2. dH0(a, x) − dH1(a, x) ≥ ε

4W (s, t) or dH0(b, x) − dH1(b, x) ≥ ε
4W (s, t).

Again, this is proved using the same methods as in Lemmas 2, 3, and 9; see
Fig. 3.

Fig. 3. Illustration of Lemma 10. By adding π(s, t) to H during +(4+ε)W (·, ·) spanner
completion, both pairs (a, x) and (b, x) are satisfied, and at least one of the pairs’
distances improves by at least ε

4
W (s, t).

Proof (Theorem 2.2). Let (s, t) be a vertex pair for which π(s, t) is added during
+(4 + ε)W (·, ·) spanner completion. Again, by Lemma 8 with ε′ = ε

4 , there are
Ω(εz) choices for x which are of distance ≤ ε

4W (s, t) from some vertex in π(u, v).
Similar to [19], we observe that the first edge (say st1) in π(s, t) (starting from

s) is absent in H0 immediately before π(s, t) is added. Suppose otherwise st1 ∈
E(H0), then consider the pair (t1, t). Since +(4 + ε)W (·, ·) spanner completion
considers all vertex pairs in nondecreasing W (s, t) and then by distance dG(s, t),
the pair (t1, t) is already satisfied before considering (s, t). Then dH0(s, t) ≤
w(st1)+dH0(t1, t) ≤ w(st1)+[dG(t1, t)+(4+ε)W (s, t)] ≤ dG(s, t)+(4+ε)W (s, t),
contradicting that π(s, t) was added to H. Symmetrically, the last edge in π(s, t)
is absent in H0.

By Lemma 7 and the above observation, we can establish there are Ω(d1/2)
choices for a and b. Then for every choice of x, a, b, adding π(s, t) sets off the
pairs (a, x), (b, x) if not already, and improves at least one pair’s distance by at
least ε

4W (s, t). By Lemma 8, this gives Ω(εd1/2z) improvements upon adding z
total edge weight in π(s, t).

If Z is the total weight added during +(4 + ε)W (·, ·) spanner completion,
then

Ω(εd1/2Z) = O

(

n2

ε

)

=⇒ Z = Oε

(

n2

d1/2

)

.

By setting d := n2/3, we obtain that the total weight of the spanner H is
Oε(n5/3); since w(MST(G)) = n

2 , this implies lightness(H) = Oε(n2/3) as
desired. �	
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Abstract. We consider the multi-broadcast problem in arbitrary con-
nected radio networks consisting of n nodes. There are k designated
source nodes for some fixed k ∈ {1, . . . , n}, and each source node has
a piece of information that it wants to share with all nodes in the
network. We set out to determine the shortest possible labels so that
multi-broadcast can be solved deterministically in the labeled radio net-
work by some deterministic distributed algorithm. First, we show that
every radio network G with maximum degree Δ can be labeled using
O(min{log k, log Δ})-bit labels in such a way that multi-broadcast with
k sources can be accomplished. This bound is tight for certain network
topologies (e.g., complete graphs), but there are networks where signifi-
cantly shorter labels are sufficient, e.g., we show how to construct a tree
with maximum degree Θ(

√
n) in which gossiping (i.e., multi-broadcast

with n sources) can be solved after labeling each node with O(1) bits.
For all trees, we provide a labeling scheme and algorithm that will solve
gossiping, and, we prove an impossibility result that demonstrates that
our labeling scheme is optimal for gossiping in each tree. In particular,
we prove that Θ(log D(G))-bit labels are necessary and sufficient in each
tree G, where D(G) denotes the distinguishing number of G.

1 Introduction

Information dissemination is one of the fundamental goals for network algo-
rithms. One important primitive is known as k-broadcast: in a network of n
nodes, there are k source nodes that each have some initial piece of information
that they wish to share with all other nodes in the network.

We consider k-broadcast in synchronous radio networks, which is a particular
model of wireless networks. More specifically, in a synchronous radio network,
time proceeds in rounds, and each node in the network makes a decision in each
round whether it will listen, or, transmit a message. In any round, a node receives
a message if it listens and exactly one of its neighbours transmits. Otherwise, the
node receives nothing, for one of three reasons: it is not listening, or, none of its
neighbours are transmitting, or, two or more of its neighbours are transmitting
(this case is known as a collision, which models radio signal interference).

The possibility of collisions introduces an interesting challenge, as many
simultaneous transmissions can prevent information from spreading in the net-
work. In order to solve k-broadcast (as well as many other problems) there needs
c© Springer Nature Switzerland AG 2021
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to be some way of breaking symmetry in the behaviour of the nodes, and one way
this can be accomplished is by having each node use an assigned label during its
execution. In fact, using assigned labels is necessary: it is impossible to determin-
istically solve 1-broadcast in a 4-cycle with unlabeled nodes (or identical labels)
since, after the source node transmits its source message, its two neighbours will
behave identically in all future rounds (i.e., both transmit or both listen), which
means that the remaining node will never receive the source message. For this
reason, many deterministic solutions to communication tasks in radio networks
are designed for networks where each node has a unique identifier. In such net-
works, k-broadcast is always solvable using a simple round-robin algorithm: each
node uses its unique identifier to ensure that it transmits in a round by itself,
which avoids all transmission collisions, and this is repeated until all information
has reached all nodes. So, we see that at least one-bit labels are required, and
O(log n)-bit labels are sufficient. This leads us to ask: what is the shortest label
size that allows us to solve k-broadcast in radio networks using a deterministic
algorithm? A result by Ellen, Gorain, Miller, and Pelc [20] demonstrates that
2-bit labels are necessary and sufficient in the special case of 1-broadcast. In this
paper, we set out to answer this question more generally.

1.1 The Model and Problem

We consider networks modeled as simple undirected connected graphs with an
arbitrary number of nodes n. For any fixed integer k ∈ {1, . . . , n}, there are k
nodes s1, . . . , sk that are designated as sources. For each i ∈ {1, . . . , k}, source
node si initially has a source message μi.

Execution proceeds in synchronous rounds: each node has a local clock and all
local clocks run at the same speed. Each node has a radio that it can use to send
or receive transmissions. In each round, each node must choose one radio mode:
transmit or listen. In transmit mode, a node sends an identical transmission to
all of its neighbours in the network. We place no restrictions on the contents of
the transmission, e.g., it can contain information other than source messages. In
listen mode, a node is silent and may receive transmissions. More specifically,
in each round t at each node v: (1) if v is in transmit mode in round t, then v
does not hear anything in round t; (2) if v is in listen mode in round t, and v
has no neighbours in transmit mode in round t, then v does not hear anything
in round t; (3) if v is in listen mode in round t, and v has exactly one neighbour
w in transmit mode in round t, then v receives the message contained in the
transmission by w; (4) if v is in listen mode in round t, and v has two or more
neighbours in transmit mode in round t, then v does not hear anything in round t.
This final case is often referred to as a collision, and we assume that nodes have
no way of detecting when a collision occurs.

The k-broadcast problem is solved when each node in the network possesses
all of the source messages. Two well-known special cases of this problem are when
k = 1 (called broadcast) and k = n (called gossiping). A variant of this problem,
called acknowledged k-broadcast, requires that, at termination, all source nodes
know that all nodes possess all of the source messages.
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A labeling scheme for a network G = (V,E) is any function λ from the set
V of nodes into the set of finite binary strings. This function λ has complete
information about G: the node set, the edge set, and the set of k designated
sources. The string λ(v) is called the label of the node v. Labels assigned by a
labeling scheme are not necessarily distinct. The length of a labeling scheme is
the maximum label length taken over all network nodes.

Suppose that each network G has been labeled by some labeling scheme. We
consider solving the k-broadcast task using a deterministic distributed algorithm.
In particular, each node initially knows its own label, and, for each i ∈ {1, . . . , k},
the source node si possesses its source message μi. In each round t, each node
makes a decision whether it will transmit or listen in round t, and, if it decides to
transmit, it decides on a finite binary string that it will send in its transmission
during round t. These decisions are based only on the current history of the
node, that is: the label of the node, the node’s source message (if it has one),
and the sequence of messages received by the node before round t.

Our goal is to answer the following question: what is the minimum possible
length of a labeling scheme λ such that there exists a deterministic distributed
algorithm that solves k-broadcast in networks labeled with λ?

1.2 Our Results

In Sect. 2, we show that every radio network G with maximum degree Δ can
be labeled using O(min{log k, log Δ})-bit labels in such a way that k-broadcast
can be solved by a deterministic distributed algorithm, and we explicitly provide
such an algorithm. In Sect. 2.4, we demonstrate that this bound is tight, in the
sense that there exist networks such that every labeling scheme sufficient for
k-broadcast requires Ω(min{log k, log Δ})-bit labels. However, in Sect. 2.5, we
demonstrate that these bounds are not tight in every network: there exist trees
on n nodes with maximum degree Θ(

√
n) in which n-broadcast (gossiping) can

be solved after labeling each node with O(1) bits. This inspires the question: can
we prove tight bounds that hold in every graph?

Restricting to trees, in Sect. 3, we provide a labeling scheme and an accom-
panying deterministic distributed algorithm that solves gossiping, and we prove
that the length of the labeling scheme is optimal for every tree. In particular, we
prove that Θ(log D(G))-bit labels are necessary and sufficient for solving gossip-
ing in each tree G, where D(G) denotes the distinguishing number of G, i.e., the
smallest integer c such that G has a node labeling using {1, . . . , c} that is not
preserved by any non-trivial graph automorphism. This result also applies more
generally to k-broadcast in trees with k ∈ {2, . . . , n} sources in the case where
the k sources are not known when the labeling scheme is applied. From previous
work about the distinguishing number of trees [36], our bound can range any-
where from Θ(1) to Θ(log n) depending on the tree, although it is known that
the distinguishing number of any tree is bounded above by Δ.

Due to lack of space, some details and proofs have been omitted. They will
appear in the full version of the paper.



Labeling Schemes for Deterministic Radio Multi-broadcast 377

1.3 Related Work

Information dissemination tasks are well-studied in radio network models in
the case where each node has been pre-assigned a unique identifier. One set of
results concerns centralized algorithms, i.e., each node has complete knowledge of
the network. In this case, much is known about efficient deterministic solutions
for broadcast [2,6,7,17,22,27,34], gossiping [28,29], and multi-broadcast [35].
Another direction of research concerns distributed algorithms, i.e., each node
initially only knows its own identifier. Again, there has been much progress in
devising efficient algorithms for broadcast [8,9,13,15], gossiping [12,13,23,25,
26], and multi-broadcast [10,11,14,24,35].

In contrast to pre-assigned identifiers, there is much previous work related to
solving tasks more efficiently after choosing labels for the nodes of the network,
or for mobile agents moving in the network (see related surveys [3,16,21,32]). We
restrict attention to previous work concerning tasks in radio networks. In [30],
the authors proved that Θ(log log Δ)-bit labels are necessary and sufficient for
topology recognition in tree radio networks. When nodes have collision detectors,
the authors of [31] proved that Θ(log log Δ)-bit labels are necessary and sufficient
for computing the size of any radio network, while O(1)-bit labels are sufficient
for computing the diameter. In [33], the authors considered the set of radio
networks where broadcast is possible in O(1) rounds when all nodes know the
complete network topology, and they prove that broadcast is possible in such
networks if and only if the sum of the lengths of all labels is Θ(n).

Most relevant to our work are results involving labeling schemes for infor-
mation dissemination tasks. In [19], the authors showed that broadcast could be
achieved in any radio network after applying a labeling scheme with length 2.
The worst-case number of rounds used by their algorithm was Θ(n). In [18],
the authors once again showed that O(1)-bit labels were sufficient for solving
broadcast in any radio network, but they provided faster algorithms: a non-
constructive proof that an O(ε log n + log2 n)-round algorithm exists, and an
explicit algorithm that completes within O(ε log2 n) rounds (where ε denotes the
source eccentricity). In [5], the authors considered broadcast in level-separable
radio networks: they proved that 1-bit labels were sufficient, and provided an
accompanying algorithm using at most 2ε rounds. In [4], the authors considered
arbitrary radio networks, but instead studied the convergecast task: each node
has an initial message, and all of these must eventually reach a designated sink
node. They provide a labeling scheme using O(log n)-bit labels, and an accom-
panying convergecast algorithm that uses O(n) rounds. They prove matching
lower bounds for certain network topologies.

2 k-Broadcast in Arbitrary Graphs

2.1 Labeling Schemes and Algorithms for Acknowledged Broadcast

We recall some results from [19,20] about solving acknowledged broadcast, and
use them to define a new algorithm that will be used later in our work.
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Acknowledged Broadcast [20]. Given an arbitrary network G with a des-
ignated start node sG, there is a labeling scheme λack that labels each node
of G using three bits called join, stay, and ack. There is a deterministic dis-
tributed algorithm Back that executes on the labeled version of G that solves
acknowledged broadcast: the designated start node sG possesses a message μ, the
message μ is eventually received by all other nodes in G, and after this occurs,
the node sG eventually receives a message containing the string “ack”. In fact,
the algorithm Back can be viewed as two algorithms performed consecutively.
First, a subroutine B is initiated by sG, and this algorithm performs the broad-
cast of μ that eventually reaches all nodes, and, in the process, establishes a
global clock (i.e., all nodes have synchronized their local clock value to be equal
to sG’s local clock at the end of B). Then, a subroutine ACK is initiated by
a node z that sends the “ack” message that is eventually received by sG. The
“ack” travels one hop per round along the same path that μ traveled from sG to
z, but in reverse order, so the time to complete ACK is bounded above by the
time to complete B. In [20], the unique node z that initiates ACK is designated
by the labeling scheme using the label 001, and z was chosen due to it being the
last node to receive μ during the execution of B. This choice of z is important
for the correctness, as it ensures that the execution of B is finished so that ACK
can run on its own (which prevents transmissions from the two subroutines from
interfering with one another). However, we note that any node could initiate
ACK, as long as it does so after the execution of B is finished. We will use this
fact below to create a modified version of Back that will work in the case where
we want to designate the initiator of the ACK subroutine. Another useful obser-
vation is that the labeling scheme λack never sets the join, stay, and ack bits
all to 1 at any node. We will use this fact later to designate a special node in
the network as a “coordinator” by setting these three bits to 1, and this will not
affect the original labeling or the behaviour of Back.

Bounded Acknowledged Broadcast [19]. Using the same labeling scheme
λack as above, there is a modification of Back so that it satisfies the following
property: all nodes know an upper bound m on how many rounds it took to
complete the broadcast of μ, and, there is a common round tdone = 3m in which
all nodes know that the broadcast of the message μ has been completed. We
denote this version of the algorithm by Bbounded.

Acknowledged Broadcast with Designated Acknowledger. Using the
same labeling scheme λack as above, and assuming that all nodes know an upper
bound m on the number of rounds that elapse during the execution of B (which
could be learned by first executing Bbounded, for example), we describe a modi-
fication of Back so that the acknowledgement process begins from a designated
node zdes that knows that it must initiate the ACK algorithm (e.g., it could be
given a special label to indicate this). The algorithm consists of first executing B,
which performs the broadcast of μ starting at sG, then, in round m+1, the node
zdes initiates the ACK algorithm. This algorithm works and completes within
2m rounds, since: the execution of B is finished by round m (so all nodes know
μ by round m), the execution of ACK takes at most an additional m rounds,
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and, there is no interference between the B and ACK subroutines. We denote
this version of the algorithm by Back:des.

2.2 Labeling Scheme λkB for k-Broadcast

In this section, we provide a labeling scheme λkB that will be used by our k-
broadcast algorithm KB (described in Sect. 2.3). At a high level, the algorithm
KB works in two steps: first, the k source messages are collected at a coordi-
nator node (arbitrarily chosen by the labeling scheme), then, the coordinator
broadcasts all the source messages to the entire network.

The number of bits used by our scheme is O(min{log k, log Δ}). To achieve
this upper bound, two different labeling strategies are used, depending on the
relationship between k and Δ. The labeling scheme has complete information
about the network and the k designated sources, which it uses when choosing
which labeling strategy to employ, and it uses a single bit in the labels to signal
to the k-broadcast algorithm which strategy was used. Suppose that we are
provided with a network G with k designated source nodes s1, . . . , sk. We assign
a label to each node v in G, and the label at each node v consists of 5 components:
a strat bit, a join bit, a stay bit, an ack bit, and a binary string sched. The
labeling scheme assigns values to the components as follows. Choose an arbitrary
node r ∈ G. This node will act as the coordinator. Apply the labeling scheme
λack (see Sect. 2.1) to G with designated start node sG = r. This will set the
join, stay, and ack bits at each node v. For the coordinator node r, set join =
stay = ack = 1. There are two cases based on k and Δ. If k ≤ Δ, then: Set
strat to 0 at each node v. For each source node si with i ∈ {1, . . . , k}, set sched
at si to be the binary representation of i. For each node v �∈ {s1, . . . , sk}, set
sched at v to the value 0. Otherwise, if k > Δ, then: Set strat to 1 at each node
v. Compute a distance-two colouring of the graph G. Let c be the number of
colours used. For each node v, set sched at v to be the �log2(c + 1)�-bit binary
representation of the colour assigned to v in the distance-two colouring of G.

2.3 Algorithm KB for k-Broadcast

In this section, we describe our k-broadcast algorithm KB that is executed
after the network nodes have been labeled using λkB from Sect. 2.2. The algo-
rithm’s execution consists of three subroutines performed consecutively: Initial-
ize, Aggregate, and Inform. These subroutines make use of the algorithms
Back, Bbounded, and Back:des described in Sect. 2.1.

The Initialize subroutine consists of executing Bbounded. The start node is
the coordinator r (the unique node with join, stay, and ack bits all set to 1),
and the broadcast message is “init”. At the conclusion of the execution, all
nodes know an upper bound m on the number of rounds that elapsed during the
broadcast of the “init” message, and, they all received this value before round
tdone = 3m. In round 3m, all nodes terminate the subroutine.

The Aggregate subroutine is designed to collect all the source messages at
the coordinator r. There are two possible algorithms, and the nodes will run one
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of these two algorithms depending on the value of the strat bit that was set by
the labeling scheme λkB (and this value is the same at all nodes). We present
these two algorithms separately below.

If the strat bit is 0, the nodes run Individual-Collect, in which the source
messages are gathered at r one at a time. More specifically, the execution pro-
ceeds in phases, each consisting of exactly 2m rounds. For each i ≥ 1, at the
start of the ith phase, the coordinator r initiates the Back:des algorithm with a
broadcast message containing the value of i. In the (m + 1)th round of the ith

phase, the unique node that has its sched bits set to the binary of representation
of i initiates the acknowledgement process, i.e., it will act as zdes. By the defini-
tion of λkB , note that zdes = si. In its transmitted “ack” message, zdes includes
its source message μi. Eventually, there will be a phase j in which the coordina-
tor r does not receive an “ack” message, and, in phase j + 1, the coordinator r
initiates the Back algorithm with broadcast message “done”. Upon receiving the
“done” message, each node terminates the Individual-Collect subroutine at
the end of the current phase.

If the strat bit is 1, the nodes run RoundRobin-Collect, in which a round-
robin schedule is repeated until all source messages have reached r. More specif-
ically, each node computes numColours using the calculation 2|sched| − 1, where
|sched| represents the number of bits in the sched part of its label. Then, the
execution consists of m phases, each consisting of exactly numColours rounds.
In the ith round of each phase, a node transmits if and only if its sched bits are
equal to the binary representation of i, and, if it transmits, its message is equal
to the subset of source messages {μ1, . . . , μk} that it knows. At the end of the
mth phase, each node terminates the RoundRobin-Collect subroutine.

The Inform subroutine consists of executing Bbounded. The start node is
the coordinator r, and the broadcast message is equal to the subset of source
messages {μ1, . . . , μk} that r knows. All nodes terminate this subroutine at the
same time, and they all know that k-broadcast has been completed.

Theorem 1. Consider any n-node unlabeled network G with maximum degree
Δ, and, for any k ∈ {1, . . . , n}, consider any designated source nodes s1, . . . , sk

with source messages {μ1, . . . , μk}. By applying the labeling scheme λkB and then
executing algorithm KB, all nodes possess the complete set of source messages
{μ1, . . . , μk}. The length of λkB is O(min{log k, log Δ}).

2.4 Existential Lower Bound

In this section, we prove that in any complete graph Kn, any labeling scheme
that is sufficient for solving k-broadcast has length at least Ω(min{log k, log Δ}).
This matches the O(min{log k, log Δ}) worst-case upper bound guaranteed by
Theorem 1, which means that the upper bound cannot be improved in general.

The idea behind the proof is to show that each source must be labeled differ-
ently by any labeling scheme: otherwise, using an indistinguishability argument,
we prove that two sources with the same label will behave the same way in
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every round, which prevents any other node from receiving their source mes-
sages (either due to both being silent, or both transmitting and causing colli-
sions everywhere). Since any labeling scheme using at least k different labels has
length at least Ω(log k), and k ≤ n = Δ + 1 in the complete graph, the result
follows.

Theorem 2. Consider any integer n > 1, any k ∈ {1, . . . , n} and any label-
ing scheme λ. If there exists a deterministic distributed algorithm that solves
k-broadcast on the complete graph Kn labeled by λ, then the length of λ is at
least Ω(min{log k, log Δ}).

2.5 An Example of Better Labeling

For infinitely many values of n, we construct a tree Tn on n nodes with maxi-
mum degree Δ ∈ Θ(

√
n) such that, after labeling each node with O(1) bits, n-

broadcast can be solved by a deterministic distributed algorithm. The length of
the labeling scheme is significantly smaller than the upper and lower bounds from
Theorems 1 and 2, which for Tn would give Θ(min{log k, log Δ}) = Θ(log n).

Let n be any triangular number greater than 1, i.e., there exists a positive
integer x ≥ 2 such that n = x(x + 1)/2. The tree Tn consists of: a node r, and,
for each i ∈ {2, . . . , x}, a node �i and a path of length i with endpoints �i and
r. Note that node r has degree x − 1 ∈ Θ(

√
n), each node in {�2, . . . , �x} has

degree 1, and all other nodes have degree 2.
We label each node of Tn with 2 bits: node r is given the label 11, each node

in {�2, . . . , �x−1} is given the label 01, the node �x is given the label 10, and all
other nodes are given the label 00. To solve n-broadcast, the idea is to initiate
a broadcast from node r to send an “init” message that gets forwarded along
the paths towards each leaf �2, . . . , �x, and, when each leaf receives the “init”
message, it sends a “gather” message back towards r. Each time a node forwards
a “gather” message, it appends its own source message. Since the paths have dis-
tinct lengths, the “gather” messages along each path arrive back at r at different
times, which prevents collisions at r. When �x sends its “gather” message, it also
includes the string “last”. After r receives “last”, it initiates a broadcast of a
message containing all the source messages it knows. Of all the leaf-to-r paths,
the one involving leaf �x is the longest, which means that the “gather” message
containing “last” is the last one that r receives, and this guarantees that r has
all of the source messages before initiating the final broadcast.

3 Gossiping in Trees

We first review some relevant definitions about arbitrary graphs G = (V,E).

Definition 1. A bijection φ : V → V is called an automorphism of G if, for
every u, v ∈ V , we have that {u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E. An
automorphism φ is non-trivial if there exists v ∈ V such that φ(v) �= v. For a
fixed graph G, the set of all its automorphisms is denoted by Aut(G).
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Definition 2 (Albertson and Collins [1]). A labeling ρ : V → {1, . . . , c} is
called c-distinguishing if, for every non-trivial φ ∈ Aut(G), there exists v ∈ V
such that ρ(v) �= ρ(φ(v)). The distinguishing number of G, denoted by D(G), is
the smallest integer c such that G has a labeling that is c-distinguishing.

3.1 Lower Bound

We prove that any labeling scheme that is sufficient for gossiping to be solved
in a tree G must use labels of size Ω(log D(G)). In fact, the proof of this lower
bound also works in the case of k-broadcast for each k ∈ {2, . . . , n−1}, however,
only under the additional condition that the source nodes are not known when
the labeling scheme is applied. First, we prove a structural result about any
non-trivial automorphism φ of a tree.

Lemma 1. For any tree G and any non-trivial automorphism φ ∈ Aut(G),
consider any node x such that x �= φ(x). Let � ≥ 1 be the length of the path
with endpoints x and φ(x). Let v1 = x and let v�+1 = φ(x), and denote by
(v1, . . . , v�+1) the sequence of nodes along the path. For each i ∈ {0, . . . , 
�/2�},
we have that v�+1−i = φ(v1+i).

To prove the desired lower bound, we show that any labeling scheme λ that
allows gossiping to be solved in a tree G is also a distinguishing labeling of G.
The proof is by contradiction: assume there is a non-trivial automorphism φ
that preserves λ, take any node x such that x �= φ(x), and consider the path
P between x and φ(x) in G. By Lemma 1, there are two nodes u,w in P that
are adjacent or have a common neighbour in P such that w = φ(u). We prove
that they perform the same action (both transmit or both listen) in each round
in the execution of any algorithm. This prevents the source message at x from
reaching φ(x), which contradicts that gossiping can be solved.

Theorem 3. Consider any labeling scheme λ and any deterministic distributed
algorithm A. If A solves the gossiping task when executed by the nodes of λ(G)
for some tree G, then the length of λ is Ω(log D(G)).

3.2 Upper Bound

We present a O(log D(G))-bit labeling scheme and a deterministic distributed
gossiping algorithm that runs on the labeled network.

The Labeling Scheme λgossip. The label at each node v consists of: a join
bit, a stay bit, an ack bit, a term bit, and a binary string sched. These values
are assigned as follows. Choose an arbitrary ‘coordinator’ node r ∈ G. Apply
the labeling scheme λack (see Sect. 2.1) to G with designated start node sG = r.
This will set the join, stay, and ack bits at each node v. For the coordinator
node r, set join = stay = ack = 1. For some D(G)-distinguishing labeling f of
the nodes of G, set the sched bits at each node v to be the binary representation
of f(v). The term bit is set to 1 at exactly one node: the node whose source
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message is last to arrive at the coordinator r during the Aggregate subroutine
(as described at the end of Sect. 3.2). The term bit is 0 all other nodes.

The Gossiping Algorithm (GOSSIP). Assume that the tree’s nodes have
been labeled using labeling scheme λgossip . The algorithm’s execution consists of
three subroutines performed consecutively: Initialize, Aggregate, and Inform.

The first stage of the algorithm, Initialize, consists of executing Bbounded

starting at r with message “init”. As G is a tree, no collisions occur during the
execution of Bbounded, so the round number in which a node v first receives “init”
allows the node to compute its exact distance from r (which we will denote by
d(v)). For the same reason, the value of m computed by Bbounded is equal to the
exact height of the tree rooted at r, since this is exactly how many rounds it took
for the initial broadcast to complete. The third stage of the algorithm, Inform,
consists of executing Back starting at r, and the broadcast message is equal to the
set of source messages that r knows. The second stage of the algorithm, mainly
consisting of the Aggregate subroutine, is the most interesting. The remainder
of this section is dedicated to its description.

The main idea is for each node w in the tree rooted at r to compute an encod-
ing enc(w) of the subtree rooted at itself, and then use this encoding to compute
a transmission delay value that it will use to avoid transmission collisions when
sending information to its parent. In rounds in which w decides to transmit, it
always includes in its transmitted message: the source messages it knows, its
enc(w) value, and its exact distance d(w) to the coordinator (so that any recipi-
ent of its message can distinguish whether it is a parent or a child of w). Suppose
that a node w has received messages from some (possibly empty) subset of its
children (if it has any). Denote these children as v1, . . . , v�, ordered arbitrarily.
Then w computes its own encoding as enc(w) = 2f(w) · 3d(w) · ∏�

j=1 p
enc(vj)
j+2 ,

where pj+2 denotes the (j + 2)th smallest prime number. For any two nodes a, b
with a common ancestor c, we are able to show that this encoding ensures that
enc(a), enc(b), enc(c) are all different. At a high level: enc(c) is different since
d(c) is different from d(a), d(b), and, we can prove that enc(a) �= enc(b) either
because f(a) �= f(b), or, the subtrees rooted at a and b are non-isomorphic
(which must be the case if f(a) = f(b), since f is a distinguishing labeling).

Each node w computes a transmission delay value τ(w) = penc(w) (again,
using pi to denote the ith-smallest prime number) and it transmits every τ(w)
rounds. Using the fact that siblings a, b and any common ancestor c will have dif-
ferent enc(a), enc(b), enc(c), it follows that all siblings and their common ances-
tors have mutually co-prime transmission delay values. This implies that each
sibling will eventually succeed in transmitting its knowledge to its parent in G.

One challenge is that a node w may not have complete information, since the
values enc(w) and τ(w) are computed in each round using only the information
that w has received before the current round (and its own label). There might
be a long delay before w has heard from a certain child x, or, w may hear from
a child x multiple times with different encoding values. To deal with this issue:
we overwrite a previously saved encoding e if a received enc(x) is a multiple of
e, and otherwise we append enc(x) to our list of saved encodings from children.
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We are able to carefully prove that each node w eventually receives a message
from each of its children and has complete information about its entire subtree,
and from that point on, the transmission delays will diverge and allow w and all
of its siblings to successfully transmit a message to their parent without collision.

Another challenge is that nodes must know when to stop the second stage of
the algorithm. There are two challenges: (1) How does the coordinator know
when it possesses the complete set of source messages so that it can begin
the Inform stage? (2) How do we make sure that all of the other nodes have
stopped executing Aggregate so that they will be listening when the Inform
stage begins? To address the first challenge, the labeling scheme simulates the
Aggregate subroutine described above, and makes note of the last source mes-
sage μlast to arrive at the coordinator r. The labeling scheme uses one bit called
term, which it sets to 1 at the node slast that started with source message
μlast, and sets to 0 at all other nodes. Then, during the actual execution of the
algorithm, the node with term bit set to 1 will include with its source message
the string “last”. When r receives a message containing “last”, it knows that it
possesses all of the source messages. To address the second challenge, we intro-
duce a new set of rounds that are interleaved with the rounds of Aggregate. In
particular, in odd-numbered rounds of the second stage, the Aggregate subrou-
tine is executed as described above, and initially, in even-numbered rounds, all
nodes listen. Eventually, the coordinator r receives the “last” message in some
round t (which is an odd-numbered round, as this occurs during the execution
of Aggregate). Then, in round t + 1, coordinator r transmits a message con-
taining “finish”. Whenever a node receives a “finish” message for the first time,
it stops executing Aggregate immediately, and it transmits a “finish” message
two rounds later (in the next even-numbered round). As the height of the tree
is m, it follows that all nodes have terminated Aggregate by round t + 2m − 1
and the last “finish” message is sent by round t+2m+1. Thus, the coordinator
can safely begin the Inform stage of the algorithm in round t + 2m + 2.

Theorem 4. Consider any n-node unlabeled tree G, and suppose that each node
has an initial source message. By applying the O(log D(G))-bit labeling scheme
λgossip and then executing algorithm GOSSIP, all nodes possess the complete
set of source messages.

4 Future Work

We focused on the optimal length of labeling schemes that can be used for multi-
broadcast. We would like to generalize our results about trees, and we wonder
if the optimal label length is related to the distinguishing number for more
general graphs. Interesting open problems remain about optimizing the round
complexity and message size of the multi-broadcast algorithms, and determining
tradeoffs between these quantities versus the length of the labeling scheme.

Acknowledgments. Avery Miller acknowledges the support of NSERC, Discovery
Grant RGPIN-2017-05936.
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Abstract. The 3-coloring of hereditary graph classes has been a deeply-
researched problem in the last decade. A hereditary graph class is char-
acterized by a (possibly infinite) list of minimal forbidden induced sub-
graphs H1, H2, . . .; the graphs in the class are called (H1, H2, . . .)-free.
The complexity of 3-coloring is far from being understood, even for
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1 Introduction

Graph coloring is a notoriously known and well-studied concept in both graph
theory and theoretical computer science. A k-coloring of a graph G = (V, E) is
defined as a mapping c : V → {1, . . . , k} which is proper, i.e., it assigns distinct
colors to u, v ∈ V if uv ∈ E. The k-coloring problem asks whether a given
graph admits a k-coloring. For any k ≥ 3, the k-coloring is a well-known NP-
complete problem [27]. We also define a more general list-k-coloring where each
vertex v has a list P (v) of allowed colors such that P (v) ⊆ {1, . . . , k}. In that
case, the coloring function c, in addition to being proper, has to respect the lists,
that is, c(v) ∈ P (v) for every vertex v.

A graph class is hereditary if it is closed under vertex deletion. It follows that
a graph class G is hereditary if and only if G can be characterized by a unique
(not necessarily finite) set HG of minimal forbidden induced subgraphs. Special
attention was given to hereditary graph classes where HG contains only one or
only a very few elements. In such cases, when {H} = HG , or {H1, H2, . . .} = HG ,
we say that G ∈ G is H-free, or (H1, H2, . . .)-free, respectively. We let Pt denote
the path on t vertices, and C� the cycle on � vertices. We let H denote the
complement of a graph H. For two graphs H1 and H2, we let H1 + H2 denote
their disjoint union. We write kH for the disjoint union of k copies of a graph H.

In recent years, a lot of attention has been paid to determining the complexity
of k-coloring of H-free graphs. Classical results imply that for every k ≥ 3,
k-coloring of H-free graphs is NP-complete if H contains a cycle [14] or an
induced claw [23,30]. Hence, it remains to consider the cases where H is a linear
forest, i.e., a disjoint union of paths. The situation around complexity of (list)
k-coloring on Pt-free graphs where k ≥ 4 has been resolved completely. The cases
k = 4, t ≥ 7 and k ≥ 5, t ≥ 6 are NP-complete [24] while cases for k ≥ 1, t = 5 are
polynomial-time solvable [22]. In fact, k-coloring is polynomial-time solvable on
sP1 + P5-free graphs for any s ≥ 0 [13]. The borderline case where k = 4, t = 6
has been settled recently. There the 4-coloring problem (even the precoloring
extension problem with 4 colors) is polynomial-time solvable [33] while the list
4-coloring problem is NP-complete [18].

Now, we move our focus towards the complexity of the 3-coloring problem,
which was less well understood, in spite of the amount of the research interest
it received in the past years. However, a considerable progress has been made in
2020; a quasi-polynomial algorithm running in time nO(log2(n)) on n-vertex Pt-
free graphs (t is a constant) was shown by Pilipczuk et al. [31] (extending results
in [15]). In the realms of polynomiality, Bonomo et al. [1] found a polynomial-
time algorithm for P7-free graphs. Klimošová et al. [28] completed the classifica-
tion of 3-coloring of H-free graphs, for any H on up to 7 vertices. These results
were subsequently extended to P6 + rP3-free graphs, for any r ≥ 0 [5]. There
are only two remaining graphs on at most 8 vertices, namely P8 and 2P4, for
which the complexity of 3-coloring is still unknown. Algorithms for subclasses of
Pt-free graphs which avoid one or more additional induced subgraphs, usually
cycles, have been studied. They might be a first step in the attempt to settle the
case of Pt-free graphs. This turned out to be the case for 3-coloring of P7-free
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graphs (as can be seen from preprints [2,7,8] leading to [1]) and 4-coloring of P6-
free graphs [6]. Note that the problem of 4-coloring is NP-complete even when
some (Pt, C�)-free graphs are considered when t ≥ 7. Hell and Huang [21] and
Huang et al. [25] settled many NP-complete cases of this type. These results, in
combination with the polynomiality of P6-free case, leave open only the following
cases: (P7, C7)-, (P8, C7)-, and (Pt, C3)-free graphs, for 7 ≤ t ≤ 21.

Chudnovsky and Stacho [11] studied the problem of 3-coloring of P8-free
graphs which additionally avoid induced cycles of two distinct lengths; specifi-
cally, they consider graphs that are (P8, C3, C4)-, (P8, C3, C5)-, and (P8, C4, C5)-
free. For the first two cases, they show that all such graphs are 3-colorable. For
the last one, they provide a complete list of 3-critical graphs, i.e., the graphs with
no 3-coloring such that all their proper induced subgraphs are 3-colorable. Inde-
pendently, using a computer search, Goedgebeur and Schaudt [16] showed that
there are only finitely many 3-critical (P8, C4)-free graphs. In fact, 3-coloring is
polynomial-time solvable on (Pt, C4)-free graphs for any t ≥ 1 [19].

The situation concerning 2P4 or P8 is still far from being determined when
two forbidden induced subgraphs are considered; in particular, it is not known
whether (P8, C3)-, (P8, C5)-, (2P4, C3)-, or (2P4, C5)-free graphs can be 3-colored
in polynomial time1. This is in contrast with the algorithm for (P7, C3)-free
graphs [3] which is considerably simpler than the one for P7-free graphs [1].
Recently, Rojas and Stein [32] approached the problem by showing that for any
odd t ≥ 9, there exists a polynomial-time algorithm that solves the 3-coloring
problem in Pt-free graphs of odd girth at least t − 2. In particular, their result
implies that 3-coloring is polynomial-time solvable for (P9, C3, C5)-free graphs.

Freshly, a similar question was resolved in the case where, instead of a cycle,
a 1-subdivision of K1,s (a star with s leaves), denoted as SDK1,s, is considered.
Chudnovsky, Spirkl, and Zhong have shown that the class of (SDK1,s, Pt)-free
graphs is list-3-colorable in polynomial time for any s, t ≥ 1 [10]. For other
related results and history of the problem, please consult a recent survey [17].

In this paper, we resolve one of the remaining open problems mentioned
above, which considers 2P4-free graphs, as we will describe a polynomial-time
algorithm for 3-coloring of (2P4, C5)-free graphs. To the best of our knowledge,
this is a first attempt to attack the 3-coloring of 2P4-free graphs.

Theorem 1. The 3-coloring problem is polynomial-time solvable on (2P4, C5)-
free graphs.

To prove our result, we will make use of some relatively standard techniques.
Let ω(G) be the size of the largest clique of graph G. We use a seminal result
of Grötschel, Lovász, and Schrijver [20] that shows the k-coloring problem on
perfect graphs, i.e., graphs where each induced subgraph G′ is ω(G′)-colorable,
can be solved in polynomial time. Perfect graphs are characterized by the strong
perfect graph theorem [9] as the graphs that have neither odd-length induced
cycles nor complement of odd-length induced cycles on at least five vertices.
1 First two cases were explicitly mentioned as open in [17] and [32], the latter two
cases are open to the best of our knowledge.
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As K4 and C7 graphs are not 3-colorable, we can assume that our graph
is (2P4, C5, C7, K4)-free. As K4 ⊆ C� whenever � ≥ 8 and 2P4 ⊆ C� whenever
� ≥ 10, it follows that either the graph is perfect, or it contains C7 or C9. In
the first case, we are done by the aforementioned polynomial-time algorithm.
For the latter cases, we divide the analysis into two further subcases. First,
we suppose that the graph is (2P4, C5, C7, C7, K4)-free and therefore it must
contain C9. We first analyze this case then we suppose that graph contains C7
for the rest of the proof. We will exploit the fact that once we find an induced P4,
the vertices that are not adjacent to it must induce a P4-free graph (also known
as cograph). Such graphs were among the first H-free graphs studied, and have
many nice properties, e.g., any greedy coloring gives a proper coloring using the
least number of colors [4]. We will make use of a slightly stronger statement that
handles the list-3-coloring problem.

Theorem 2 ([17]). The list-3-coloring problem on P4-free graphs can be solved
in polynomial time.

The 3-coloring algorithm that we develop to prove Theorem 1 cannot be
directly extended to solve the more general list-3-coloring problem, since it uses
the 3-coloring algorithm for perfect graphs to deal with graphs avoiding C7 and
C9. However, apart from this one case, the algorithm works with the more gen-
eral setting of list-3-coloring. In fact, we use reductions of lists as one of our base
techniques. After several branching steps with polynomially many branches and
suitable structural reductions of the original graph G, the algorithm will trans-
form a 3-coloring instance of a (2P4, C5)-free graph G to a set of polynomially
many heavily structured list-3-coloring instances. These structured instances can
then be encoded by a 2-SAT formula, whose satisfiability is solvable in linear
time [29].

2 Proof of Theorem 1

We are given a (2P4, C5)-free graph G = (V, E), and our goal is to determine
whether it is 3-colorable. We will present an algorithm that solves this problem
in polynomial time. The algorithm begins by checking that the graph is C7-free,
and that the neighborhood of each vertex induces a bipartite graph, rejecting
the instance if the check fails. Note that this check ensures, in particular, that
G is K4-free.

The algorithm then partitions the graph into connected components, solving
the 3-coloring problem for each component separately. From now on, we assume
that the graph G = (V, E) is connected, C7-free, and each of its vertices has a
bipartite neighborhood. The basic idea of the algorithm is to choose an initial
subgraph N0 of bounded size, try all possible proper 3-colorings of N0, and
analyze how the precoloring of N0 affects the possible colorings of the remaining
vertices. We let N1 denote the vertices in V \ N0 which are adjacent to at least
one vertex of N0, and we let N2 be the set V \(N0 ∪N1). We will use the notation
N(x) for the set of neighbors of x in G, and Ni(x) for Ni ∩ N(x).
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Our algorithm will iteratively color the vertices of G. We will assume that
throughout the algorithm, each vertex v has a list P (v) ⊆ {1, 2, 3} of available
colors. We call P (v) the palette of v. The goal is then to find a proper coloring
of G in which each vertex is colored by one of its available colors. The problem
of deciding the existence of such coloring is known as the list-3-coloring problem,
and is a generalization of the 3-coloring problem. Whenever a vertex x of G is
colored by a color c in the course of the algorithm, we immediately remove c
from the palette of x’s neighbors. Additionally, if the vertex x is not in N0, it is
then deleted. The vertices in N0 are kept in G even after they are colored. We
then update the list-3-coloring instance using the following basic reductions:

– If a vertex y has only one color c′ left in P (y), we color it by the color c′ and
remove c′ from the palettes of its neighbors. If y 	∈ N0, we then delete y.

– If P (y) is empty for a vertex y, the instance of list-3-coloring is rejected.
– If, for a vertex y 	∈ N0, the size of P (y) is greater than the degree of y, we

delete y.
– Diamond consistency rule: If y and y′ are a pair of nonadjacent vertices such

that P (y) 	= P (y′), and if N(y) ∩ N(y′) is not an independent set, then any
valid 3-coloring of G must assign the same color to y and y′; we therefore
replace both P (y) and P (y′) with P (y) ∩ P (y′).

– Neighborhood domination rule: If y and y′ are a pair of nonadjacent vertices
such that N(y) ⊆ N(y′) and P (y′) ⊆ P (y), and if y is not in N0, we delete y.

– If G has a connected component in which every vertex has at most two avail-
able colors, we determine whether the component is colorable by reducing
the problem to an instance of 2-SAT. If the component can be colored, we
remove it from G and continue, otherwise we reject the whole instance.

– If a connected component of G is P4-free, we solve the list-3-coloring problem
for this component by Theorem 2. If the component is colorable we remove
it, otherwise we reject the whole instance G.

It is clear that the rules are correct in the sense that the instance of list-
3-coloring produced by a basic reduction is list-3-colorable if and only if the
original instance was list-3-colorable. It is also clear that we may determine in
polynomial time whether an instance of list-3-coloring (with fixed N0) permits an
application of a basic reduction, and perform the basic reduction, if available.
Throughout the algorithm, we apply the basic reductions greedily as long as
possible, until we reach a situation where none of them is applicable.

The basic reductions by themselves are not sufficient to solve the 3-coloring
problem for G. Our algorithm will sometimes also need to perform branching, i.e.,
explore several alternative ways to color a vertex or a set of vertices. Formally,
this means that the algorithm reduces a given instance G of list-3-coloring to
an equivalent set of instances {G1, . . . , Gk}; here saying that a list-3-coloring
instance G is equivalent to a set {G1, . . . , Gk} of instances means that G has a
solution if and only if at least one of G1, . . . , Gk has a solution.

In the beginning of the algorithm, we attach to each vertex v of G the
list P (v) = {1, 2, 3} of available colors, thereby formally transforming it to
an instance of list-3-coloring. The algorithm will then try all possible proper
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3-colorings of N0, and for each such coloring, apply basic reductions as long as
any basic reduction is applicable. If this fails to color all the vertices, more com-
plicated reduction steps and further branching will be performed, to be described
later. Overall, the algorithm will ensure that the initial instance G is eventually
reduced to a set of at most polynomially many smaller instances, each of which
can be transformed to an equivalent instance of 2-SAT, which then can be solved
efficiently.

The case when G is C7-free can be handled in a simple way.

Proposition 1 (♣)2. The 3-coloring problem for a (2P4, C5, C7)-free graph G
can be solved in polynomial time.

From now on, we assume that the graph G contains an induced C7. We choose
one such C7 as N0, and define N1 and N2 accordingly.

More Complicated Reductions. Apart from the basic reductions described
previously, which we will apply whenever opportunity arises, we will also use
more complicated reductions, to be applied in specific situations.

Cut Reduction. Suppose G = (V, E) is a connected instance of list-3-coloring.
Let X ⊆ V be a vertex cut of G, let C be a union of one or more connected
components of G − X, and let CX be the subgraph of G induced by C ∪ X.
Suppose further that the following conditions hold.

– C has at least two vertices.
– X is an independent set in G.
– All the vertices in X have the same palette, which has size 2.
– For any two vertices x, x′ in X, we have N(x) ∩ C = N(x′) ∩ C.
– The graph CX is P4-free.

Assume without loss of generality that all the vertices of X have palette equal
to {1, 2}. Let us say that a coloring c : X → {1, 2} of X is feasible for C, if it
can be extended into a proper 3-coloring of the list-3-coloring instance CX . Note
that the feasibility of a given coloring can be determined in polynomial time by
Theorem 2, because CX is a cograph.

We distinguish three types of possible colorings of X: the all-1 coloring colors
all the vertices of X by the color 1, the all-2 coloring colors all the vertices of
X by color 2, and a mixed coloring is a coloring that uses both available colors
on X. Observe that if X admits at least one mixed coloring feasible for C, then
every (not necessarily mixed) coloring of X by colors 1 and 2 is feasible for C.
This is because when we extend a mixed coloring of X to a coloring of CX , all
the vertices y ∈ C must receive the color 3. If such a coloring of C exists, we can
combine it with any coloring of X by colors 1 and 2.

The cut reduction of X and C is an operation which reduces G to a smaller,
equivalent list-3-coloring instance, determined as follows. We choose an arbitrary
mixed coloring c of X, and check whether it is feasible for C. If it is feasible, we
2 Due to space limitations, we defer some proofs to the full version of our paper [26].
We mark the respective statements by (♣).
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reduce the instance G to G − C, leaving the palettes of the remaining vertices
unchanged. The new instance is equivalent to the original one, since any proper
list-3-coloring of G − C can be extended to a coloring of G, because all the
colorings of X are feasible for C.

If the mixed coloring c is not feasible for C, we know that no mixed coloring
is feasible. We then test the all-1 and the all-2 coloring for feasibility. If both are
feasible, we reduce the instance G by replacing C with a single new vertex v,
with palette P (v) = {1, 2}, and connecting v to all the vertices of X. Note that
the reduced instance is an induced subgraph of the original one. It is easy to see
that the reduced instance is equivalent to the original one.

If only one coloring of X is feasible for C, we delete C, color the vertices of
X using the unique feasible coloring, and delete the corresponding color from
the palettes of the neighbors of X in G − C. If no coloring of X is feasible for
C, we declare that G is not list-3-colorable.

Neighborhood Collapse. Let G be an instance of list-3-coloring, and let v be a
vertex of G. Suppose that N(v) induces in G a connected bipartite graph with
nonempty partite classes X and Y . Suppose furthermore that all the vertices of
X have the same palette PX , and all the vertices in Y have the same palette PY .
The neighborhood collapse of the vertex v is the operation that replaces X and
Y by a pair of new vertices x and y, adjacent to each other and to v, with the
property that any vertex of G − Y adjacent to at least one vertex in X will be
made adjacent to x, and similarly every vertex adjacent to Y in G − X will be
adjacent to y. We then set P (x) = PX and P (y) = PY .

It is clear that the collapsed instance is equivalent to the original one. How-
ever, since the new instance is not necessarily an induced subgraph of the origi-
nal one, it might happen, e.g., that a collapse performed in a C5-free graph will
introduce a copy of C5 in the collapsed instance. In our algorithm, we will only
perform collapses at a stage when C5-freeness will no longer be needed.

On the other hand, 2P4-freeness is preserved by collapses, as we now show.

Lemma 2 (♣). Let G be a 2P4-free instance of list-3-coloring in which a neigh-
borhood collapse of a vertex v may be performed, and let G∗ be the graph obtained
by the collapse. Then G∗ is 2P4-free.

Graphs Containing C7. We now turn to the most complicated part of our
coloring algorithm, which solves the 3-coloring problem for a (2P4, C5)-free graph
G that contains an induced C7. We let N0 be an induced copy of C7 in this graph,
and define N1 and N2 accordingly.

We let v1, v2, . . . , v7 denote the vertices of N0, in the order in which they
appear on the cycle N0. We evaluate their indices modulo 7, so that, e.g., v8 = v1.

Fix a proper coloring of N0, and apply the basic reductions to G until no
basic reduction is applicable. We now analyze the structure of G at this stage of
the algorithm. We again let N0(x) denote the set of neighbors of x in N0.

Lemma 3 (♣). After fixing the coloring of N0 and applying all available basic
reductions, the graph G has the following properties.
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– Each vertex x of N1 satisfies either N0(x) = {vi} for some i, or N0(x) =
{vi, vi+2} for some i.

– Each induced copy of P4 in G has at most two vertices in N2.
– G is connected.

Lemma 3 is the last part of the proof that makes use of the C5-freeness of G.
From now on, we will not need to use the fact that G is C5-free. In particular,
we will allow ourselves reduction operations, such as the neighborhood collapse,
which do not preserve C5-freeness.

We will assume, without mentioning explicitly, that after performing any
modification of the list-3-coloring instance G, we always apply basic reductions
until no more basic reductions are available.

In the rest of the proof, we use the term top component to refer to a connected
component of N2. Observe that every top component is P4-free and therefore
has a dominating set of size at most 2 [12]. We say that a top component is
relevant, if it contains a vertex z with |P (z)| = 3. Note that if G has no relevant
top component, then all its vertices have at most two available colors, and the
coloring problem can be solved by a single basic reduction. We will say that a
vertex x of N1 is relevant if x is adjacent to a vertex belonging to a relevant
top component. Let x ∈ N1 be a vertex, and let C be a top component. We say
that x is a partial neighbor of C, if x is adjacent to at least one but not all the
vertices of C. We say that x is a full neighbor of C, if it is adjacent to every
vertex of C.

Lemma 4 (♣). Suppose x ∈ N1 is a partial neighbor of a top component C.
Then x is not a neighbor of any other top component. Moreover, |N0(x)| = 2.

We will now reduce G to a set of polynomially many instances in which the
set of relevant vertices has special form. We first eliminate the relevant vertices
that have only one neighbor in N0. Let Ri be the set of relevant vertices that
are adjacent to vi and not adjacent to any other vertex of N0.

Lemma 5 (♣). For any i ∈ {1, . . . , 7}, we can reduce G to an equivalent set of
at most two instances, both of which satisfy Ri = ∅.

From now on, we deal with instances of G where every relevant vertex has
exactly two neighbors in N0. Let Si be the set of relevant vertices adjacent to vi.

Lemma 6 (♣). For any i ∈ {1, . . . , 7}, we can reduce G to an equivalent set of
polynomially many instances, each of which satisfies Si = ∅ or Si+3 = ∅.

From now on, assume that we deal with an instance G in which for every
i, one of the two sets Si and Si+3 is empty. Unless the instance is already
completely solved, there must be at least one relevant vertex. Assume without
loss of generality that G has a relevant vertex adjacent to v1 and v3. It follows
that S1 and S3 are nonempty, and hence S4, S5, S6 and S7 are empty. Moreover,
as any relevant vertex is adjacent to a pair of vertices of the form {vi, vi+2}, it
follows that S2 is empty as well. In particular, every relevant vertex x satisfies
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N0(x) = {v1, v3}. It follows that all the relevant vertices have the same palette
of size 2; assume without loss of generality that this palette is {1, 2}.

We will now focus on describing the structure of the subgraph of G induced
by the relevant vertices and the relevant top components adjacent to them.
Let R denote the set of relevant vertices. Note that the subgraph of G induced
by R ∪ N2 does not contain P4, otherwise we could use the path v4v5v6v7 to
get a 2P4 in G. Note also that if two relevant vertices x and y are adjacent,
then any common neighbor of x and y must be colored by color 3, thanks to the
diamond consistency rule. We thus know that adjacent relevant vertices have no
common neighbors outside N0. We may also assume that the graph induced by
the relevant vertices is bipartite, otherwise G would clearly not be 3-colorable.

Lemma 7 (♣). Suppose that x and y are two adjacent relevant vertices. Let us
write X ′ = N2(x) and Y ′ = N2(y). Then there are disjoint sets X, Y ⊆ R, with
x ∈ X and y ∈ Y , satisfying these properties:

1. Every vertex in X ∪ Y ′ is adjacent to every vertex in Y ∪ X ′.
2. X and Y are independent sets of G.
3. The vertices in X ′ ∪ Y ′ are only adjacent to vertices in X ∪ Y ∪ X ′ ∪ Y ′; in

particular, X ′ ∪ Y ′ induce a top component.

Suppose G[R] contains at least one edge xy, and let X, Y, X ′, Y ′ be as in the
previous lemma. Note that there are only two possible ways to color G[X ∪ Y ]
– either X is colored 1 and Y is colored 2, or vice versa. We can check in
polynomial time which of these two colorings can be extended to a valid coloring
of G[X ∪ Y ∪ X ′ ∪ Y ′]. If neither of the two colorings extends, we reject G, if
only one of the two coloring extends, we color X ∪ Y accordingly, and if both
colorings extend, we remove the vertices X ′ ∪ Y ′ from G, resulting in a smaller
equivalent instance, in which X ∪ Y are no longer relevant. Repeating this for
every component of G[R] that contains at least one edge, we eventually reduce
the problem to an instance in which the relevant vertices form an independent
set. From now on, we assume R is independent in G. For a vertex x ∈ R, let
C2(x) denote the set of top components that contain at least one neighbor of x.

Lemma 8 (♣). For any two relevant vertices x and y, we either have C2(x) =
C2(y), or C2(x) and C2(y) are disjoint.

Let us say that two relevant vertices x and y are equivalent if C2(x) = C2(y).
As the next step in our algorithm, we will process the equivalence classes one by
one, with the aim to reduce the instance G to an equivalent instance in which
each relevant vertex is adjacent to a single top component.

Let x ∈ R be a vertex such that |C2(x)| ≥ 2, and let Rx be the equivalence
class containing x. By Lemma 4, each vertex in Rx is a full neighbor of any
component in C2(x), and by Lemma 8, no vertex outside of Rx may be adjacent
to a relevant top component in C2(x). Thus, Rx is a vertex cut separating the
relevant top components in C2(x) from the rest of G. We may therefore apply
the cut reduction through the vertex cut Rx to reduce G to a smaller instance
in which the vertices of Rx are no longer relevant.



On 3-Coloring of (2P4,C5)-Free Graphs 397

We repeat the cut reductions until there is no relevant vertex adjacent to
more than one top component. From now on, we deal with instances in which
each relevant vertex is adjacent to a unique top component; note that this top
component is necessarily relevant.

Lemma 9 (♣). Let x be a relevant vertex, let C be the top component adjacent
to x, let Rx be the equivalence class of x, and let y ∈ Rx ∪ C be a vertex not
adjacent to x. Then y is adjacent to at least one vertex in N2(x). Moreover, if
N2(x) induces a disconnected subgraph of G, then y is adjacent to all the vertices
of N2(x).

Fix now a relevant top component C and let R be set of relevant vertices in
N1 adjacent to C. Fix a vertex x ∈ R so that N2(x) is as large as possible. Let
Rx be the equivalence class containing x. We distinguish several possibilities,
based on the structure of N2(x).
N2(x) is Disconnected. Suppose first that N2(x) induces in G a disconnected
subgraph. By Lemma 9, any vertex in Rx is adjacent to all vertices in N2(x). By
our choice of x, this implies that for any x′ ∈ Rx we have N2(x′) = N2(x). We
may therefore apply the cut reduction for the cut Rx that separates C from the
rest of G, to obtain a smaller instance in which the vertices of Rx are no longer
relevant.
N2(x) is Connected, with ≥3 Vertices. Now suppose that N2(x) induces a con-
nected graph, and that N2(x) has at least three vertices. We now verify that
N2(x) induces a complete bipartite graph, otherwise C contains P4 or G is not
3-colorable. Let Y and Z be the two partite classes of N2(x). Note that any
two vertices y, y′ in Y have the same neighbors in G: indeed if u were a vertex
adjacent to y but not to y′, then uyxy′ would induce a copy of P4. By the same
argument, all the vertices in Z have the same neighbors in G as well. Diamond
consistency enforces that all the vertices in Y have the same palette, and sim-
ilarly for Z. We may then invoke neighborhood domination to delete from Y
all vertices except a single vertex y, and do the same with Z, reducing G to an
equivalent instance in which N2(x) consists of a single edge.
N2(x) is a Single Vertex. Suppose that N2(x) consists of a single vertex y. If y is
the only vertex of C, then y must have the palette {1, 2, 3}, otherwise C would
not be a relevant component. In such case, we may simply color y with color 3
and delete it, as this does not restrict the possible colorings of G − y in any way.
If, on the other hand, C has more than one vertex, it follows from Lemma 9 that
all the vertices of Rx are adjacent to y, and by the choice of x, every vertex in
Rx is adjacent to y as its only neighbor in C. We may then apply cut reduction
for the cut Rx. In all cases, we obtain a smaller equivalent instance, in which
the vertices in Rx are no longer relevant.
N2(x) is a Single Edge. The last case to consider deals with the situation when
N2(x) contains exactly two adjacent vertices u and v. Assume that degG(u) ≥
degG(v). Recall that the set R of relevant vertices is independent. Note that for
any vertex x′ ∈ Rx, N2(x′) is connected, otherwise Lemma 9 implies that N2(x′)
is contained in N2(x), contradicting N2(x) being a single edge.
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We first claim that any vertex y ∈ Rx ∪ (C −u) adjacent to v is also adjacent
to u. Suppose this is not the case. Then, since degG(u) ≥ degG(v), there must
also be a vertex z ∈ Rx ∪ (C − v) adjacent to u but not to v. If yz is an edge,
then zyvx is a copy of P4, and if yz is not an edge, then zuvy is a copy of P4.
In both cases we have a contradiction, establishing the claim. Note that the claim,
together with Lemma 9, implies that u is adjacent to all the other vertices of
Rx ∪ C.

Next, we show that if C contains a vertex adjacent to both u and v, then we
may reduce G to a smaller equivalent instance. Suppose y ∈ C is adjacent to u
and v. Then P (y) = P (x) = {1, 2} by diamond consistency. We now claim that y
has no other neighbors in G beyond u and v. Suppose that z 	∈ {u, v} is a neighbor
of y. Then z cannot be adjacent to v, since uvyz would form a K4. Therefore
zyvx is a copy of P4, a contradiction. We conclude that N(y) = {u, v} ⊆ N(x),
and since P (y) = P (x), we may delete y due to neighborhood domination.

From now on, we assume that u and v have no common neighbor in C.
Recall that u is adjacent to all the other vertices in C ∪ Rx. We now reduce
G to an instance where C − u is an independent set. We already know that
v is isolated in C − u by the previous paragraph. Suppose that C − u has a
component D with more than one vertex. If D has a vertex v′ adjacent to a
vertex x′ ∈ Rx, we can repeat the reasoning of the previous paragraph with x′

and v′ in the place of x and v, showing that u and v′ cannot have any common
neighbor in C, contradicting the assumption that D has more than one vertex.
We can thus conclude that D is not adjacent to any vertex in Rx. Then u is a
cut-vertex separating D from the rest of G. We may test which colorings of u
can be extended into D (since D is P4-free, this can be done efficiently), then
restrict the palette of u to only the feasible colors, and then delete D.

We are now left with a situation when C is a star with center u, and every
vertex of Rx is adjacent to u and to at most one vertex of C − u. If there is a
vertex w ∈ C − u adjacent to more than one vertex in Rx, it means that the
neighborhood of w is a connected bipartite graph (a star with center u) to which
we may apply neighborhood collapse.

Suppose now that every vertex w ∈ C − u has only one neighbor in Rx (if w
had no neighbor in Rx, it would have degree 1 and we could remove it). If w’s
palette has 3 colors, we can remove it, so we may assume that every vertex in
C − u has a palette of size 2. Then u’s palette must have 3 colors, otherwise C
would not be a relevant component. If a vertex in C − u has palette {1, 2}, then
u must be colored 3 and then Rx is no longer relevant.

It remains to consider the case when each vertex of C − u has the palette
{1, 3} or {2, 3}. Let W1 and W2 be the sets of vertices of C − u having palette
{1, 3} and {2, 3}, respectively. Let X1 and X2 be the sets of vertices of Rx that
are adjacent to a vertex in W1 and W2, respectively. Let X0 be the set of vertices
in Rx that have no neighbor in C − u. Let us consider the possible colorings of
C ∪ Rx. If u is colored by 3, then the whole set W1 is colored by 1, W2 is colored
by 2, hence X1 is colored by 2 and X2 by 1, while the vertices in X0 can be
colored arbitrarily by 1 or 2. On the other hand, if u receives a color α 	= 3, then
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all the vertices in Rx receive the color β ∈ {1, 2} \ {α}, and the vertices in C − u
can be colored by 3. The set Rx therefore admits three types of feasible colorings:
the all-1 coloring, the all-2 coloring, and any coloring where the set X1 is colored
by 2 and X2 by 1. This set of colorings can be equivalently characterized by the
following properties:

– If a vertex in X1 is colored by 1, then the whole Rx receives 1.
– If a vertex in X2 is colored by 2, then the whole Rx is colored by 2.
– All the colors in X1 are equal and all the colors in X2 are equal.

The above properties can be encoded by a 2-SAT formula whose variables cor-
respond to vertices of Rx. �
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