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Preface

This book contains an overview of synthesis, characterization, and applications of
nanomaterials specially focused on the environmental context. Based on an exten-
sive state-of-the-art literature survey and the results obtained by our research group
during the past years, this book presents novel techniques and special applications
of classical and modern nanomaterials.

This book is aimed at students, researchers, and engineers who seek general scien-
tific knowledge about nanomaterials with an application-oriented environmental
research topic.

The following chapters present the general aspects of synthesis and charac-
terization of different nanomaterials applied to environmental research: spinel
cobalt ferrites (Chapter “Synthesis, Properties, and Applications of Spinel Cobalt
Ferrites”); wastewater treatment (Chapter “Wastewater Treatment Using Nanoma-
terials”); photochromism and photocatalysis (Chapter “Photochromic Nanomate-
rials with Photocatalytic Application”); carbon nanotubes for gas sensing (Chapter
“Carbon Nanotubes for Gas Sensing”); renewable energy applications (Chapter
“Titanium Dioxide Nanomaterials for Renewable Energy Applications”); catalysts
for biomass gasification (Chapter “Nanostructured Catalysts for Biomass Gasifica-
tion”); bio-oil from biomass pyrolysis (Chapter “Nanomaterials to Improve Bio-Oil
from Biomass Pyrolysis: State-Of-Art and Challenges”); iron-based materials for
Fenton reaction (Chapter “Iron-Based Nanomaterials for Fenton Reaction”); fuel
production (Chapter “Nanomaterials for Fuel Production”); light-harvesting and
water splitting techniques (Chapter “Photoelectrochemical Performance of Doped
and Undoped TiO2 Nanotubes for Light-Harvesting andWater Splitting Techniques:
Systematic Review and Meta-Analysis”); CNT/TiO2 hybrid materials (Chapter
“CNT/TiO2 Hybrid Nanostructured Materials: Synthesis, Properties and Appli-
cations”); zero-valent iron (Chapter “Nanostructured Zero-Valent Iron: From
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Synthesis to Application”); nanosensors in forensic sciences (Chapter “Nanosen-
sors in Forensic Sciences”); and perovskite nanomaterials (Chapter “Perovskite
Nanomaterials: Properties and Applications”).

Porto Alegre, Brazil
July 2021

Annelise Kopp Alves
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Synthesis, Properties, and Applications
of Spinel Cobalt Ferrites

Luis Eduardo Caldeira

Abstract Materials composed of metal oxide nanoparticles have been the subject
of much interest due to their unique properties. Among them, spinel cobalt ferrite
(CoFe2O4) stands out, a well-known magnetic material with excellent structural
and magnetic properties. However, despite the efforts, there is still much uncer-
tainty regarding the effects of different synthesis methods and the most diverse
parameters on the properties of cobalt ferrite nanoparticles (CFNPs). This chapter
presents the essential aspects of these materials. The main synthesis methods are
described. Furthermore, the structural and magnetic properties are detailed. Finally,
an overview of the wide range of applications of CFNPs is presented, ranging from
the industrial area, both in traditional fields and in new technologies, to employment
in biomedicine.

Keywords Nanoparticles · Spinel · Cobalt ferrite · CoFe2O4

Abbreviation

CFNPs cobalt ferrite nanoparticles

1 Introduction

Ferrites are non-metallic and magnetic materials widely studied today. They are
considered ancient materials due to their applications [1]. Thesematerials are formed
by iron oxide (Fe2O3) as themain constituent and one ormore transitionmetals—like
manganese, iron, cobalt, nickel, and copper. One of themain characteristics thatmake
them stand out among other magnetic materials is the simultaneous presentation of
ferromagnetic or ferrimagnetic properties and insulating characteristics [2].
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2 L. E. Caldeira

Magnetite—iron oxide II and III or Fe3O4—anon-metallic solid found in nature, is
a ferrite that exhibits magnetic behavior. This mineral is the oldest magnetic material
known to our civilization, possibly used before iron [3]. Centuries later, the first
primary technical application ofmagnetite occurred in themanufacture of compasses.
From that period to the present day, several scientific advances in discovering similar
materials in nature. Thus, there was an outbreak of ferrite production of synthetic
form aimed at maximizing the physical and magnetic properties.

Ferrites are classified as ceramic materials. They have dark gray or black
coloring—usually in powder, thin-film, or solid pressed, which is very hard and
brittle [4]. Several factors can modify and improve the properties of ferrites. Prepa-
ration methods, synthesis parameters, stoichiometric proportions of the precursors,
the precursors themselves, and their characteristics, among others, are some of these
factors [5, 6]. The methods of preparing ferrites, presented below, significantly
influence the structural properties, directly affecting them in their microstructural
and morphological aspects [7]. Furthermore, the metallic cation selection intensely
contributes to an excellent response to properties due to each of these ions [8].
Therefore, the correct selection of the synthesis of ferrites and the cation to be incor-
porated, be it divalent or trivalent, is essential for obtaining ferrites with excellent
final properties.

Particularly, cobalt ferrite (CoFe2O4) has attracted significant interest from
researchers due to its promising results in different characterizations [9]. The great
asset of this type of ferrite certainly comes from itsmagnetic behavior associatedwith
high chemical stability and good thermal and structural properties [10]. In terms of
magnetization, in addition to presenting exciting results of remanence and saturation,
cobalt ferrite has high coercivity, something that differs from other types of ferrite
[11, 12]. Furthermore, concerning the material structure, this ferrite has a crystalline,
homogeneous, and with a high degree of purity microstructure [13].

The applications of cobalt ferrites nanoparticles (CFNPs) will be presented at the
end of this chapter. Nevertheless, it worth notice that there is considerable growth in
the applications of these materials, ranging from use in the processing of electronic
signals [14] to insertion in the field of biomedicine [15, 16]. The wide range of
shapes and sizes, the continuous advance in research to improve properties, and
manufacturing cost–benefit make ferrites attractive materials for conventional and
innovative applications.

2 Synthesis Methods

Cobalt ferrite nanoparticles (CFNPs) can be obtained through different synthesis
methods. In terms of purity, morphology, and stability, the high quality of the prod-
ucts is directly related to the synthesis selection [17]. In general, nanoparticle prepa-
ration techniques are categorized into two approaches [18, 19], as shown in Fig. 1.
The “bottom-up” approach provides the widest variety of methods in which the
formation of nanoparticles takes place through the chemical combination of ions.
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Fig. 1 Typical synthesis methods for CFNPs for the bottom-up and top-down approaches

The methods that operate in this way and produce cobalt ferrites nanoparticles are
coprecipitation, thermal decomposition, sol–gel, hydrothermal, solvothermal, flame
spray pyrolysis, vapor decomposition, microemulsion, sonochemical, polyol, and
microwave-assisted.

In a “top-down” approach, nanoparticles are obtained by spraying the materials.
Cobalt ferrites can be obtained, in this approach, by mechanical milling and pulsed
laser ablation methods. The “bottom-up” methods have been preferred, mainly due
to the formation of nanoparticles with high homogeneity and also the use of low
treatment temperatures.Many of these synthesismethods are reported in the literature
[20–27], both in experimental and review articles. The main aspects of the most used
techniques will be presented.

2.1 Coprecipitation

The coprecipitation method can be named one of the most used techniques for
producing cobalt ferrite nanoparticles. It is a simple and easy synthesis to be
performed and presents uniform nanoparticles in morphology and size [28]. In a
coprecipitation method, the divalent (Co2+) and trivalent (Fe3+) metallic ions—this,
in general, in the form of soluble salts—are mixed under agitation in an aqueous
solution in a molar ratio of 1:2, respectively. The experiment is typically carried out
in an alkaline medium. This method requires strict pH control through an adjustment
with a solution of ammonium or sodium hydroxide being added to the mixture. An
adequate pH is essential for obtaining high-quality nanoparticles. The solution is then
subjected to an agitation that does not necessarily require the use of thermal energy.
However, in general, CFNPs obtained by coprecipitation have a low crystallinity. In
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this case, the application of heat in a subsequent thermal treatment or even during
mixing becomes interesting to obtain cobalt ferrite nanoparticles with a better degree
of crystallinity [29, 30].

2.2 Sol–gel

Sol–gel synthesis is one of the simplest, easy-to-perform, and low-cost methods for
obtaining CFNPs. In addition to these characteristics, this route allows the definition
of several synthesis parameters, such as stoichiometry, size, shape, and degree of
agglomeration, in addition to having a significant contribution from the structural
properties of ferrites [31, 32]. The process parameters used in a sol–gel synthesis
have been reported in the literature as being of great importance in the arrangement
of cations in the spinel structure of cobalt ferrites [33].

There is not just one path to carry out a sol–gel synthesis. The citrate–nitrate
method stands out due to its simplicity and versatility regarding the sol–gel methods
used to produce cobalt ferrites. The process involves combining inorganic nitrates
with citric acid (C6H8O7), an organic compound. Some parameters such as reaction
temperature and ambient humidity can vary from synthesis to synthesis. Excessive
or insufficient drying times and a very high or very low treatment temperature can
modify the structure of the produced ferrites [34]. For example, in spinel nanopar-
ticles, additional heat treatment with a more comprehensive condensation is neces-
sary to obtain higher crystallinity structures [35]. This subsequent treatment at a
higher temperature can be directly related to improvements in the final quality of the
products.

2.3 Hydrothermal

The hydrothermal synthesis consists of dissolutions carried out separately and in
the mixture of divalent (Co2+) and trivalent (Fe3+) transition metal salts, in a molar
ratio of 1:2, respectively. This mixture is set into continuous vigorous stirring so
that the solution is homogenized. During stirring, organic solvents such as ethylene
glycol or ethanol are added. The next step consists of heating under high pressure
in an autoclave. Heating parameters such as temperature and heating time must
be defined according to the desired properties and characteristics of the CFNPs.
One of the advantages of the hydrothermal technique is the possibility of the large-
scale production of nanoparticles. Reasonable dimensional control, shape, and size
distribution—can also be achieved with this technique. Such control is reached by
mixing solvents and controlling reaction parameters such as temperature, time, and
pressure [36, 37].



Synthesis, Properties, and Applications of Spinel Cobalt Ferrites 5

2.4 Thermal Decomposition

Synthesis by thermal decomposition is known as a method in which the system is
perfectly under control. In this technique, cobalt ferrite nanoparticles are obtained
through the thermal decomposition of organometallic precursors in the presence of
organic solvents and surfactants. The particle size of materials synthesized with this
method is much smaller than that of particles synthesized by other conventional
methods, such as the coprecipitation method [38]. It is one of the most employable
methods in the industry, due to its simplicity of execution and because of the possi-
bility of large-scale production, with morphology, size, and quality control. Such
highlights also arise due to the permission to control synthesis parameters, such as
temperature and ratio between precursors [21, 39].

2.5 Solvothermal

CFNPs can also be obtained by solvothermal synthesis, in which aqueous or non-
aqueous solvents are used. This technique stands out due to the facile, environmen-
tally, and economically alternative approach to prepare ferrite nanomaterials [40].
Several experimental factors can be fitted in this synthesis. These include reaction
temperature and time, solvent, surfactant, and precursor materials. The solvothermal
method is considered a synthesis with a low-cost and straightforward reaction that
allows products with desirable dimensions and easy control [41].

3 General Properties of CFNPs

There is a growth in researches related to more advanced techniques for the synthesis
of cobalt ferrites. At the same time, there is a considerable advance in property char-
acterization techniques for the most diverse applications. Thus, studies in the cobalt
ferrite nanoparticles field gained a significant boost. Among the variables studied,
it is possible to highlight the different processing methods and their parameters,
variations in stoichiometry, and additives. These variables are the main parameters
evaluated in nanoparticles of spinel cobalt ferrites.

The synthesis of magnetic materials, especially cobalt ferrites, has been of interest
for a long time. Researches indicate that the conditions of preparation, processing and
methods of obtaining these materials contribute to determining their physical, struc-
tural, morphological, and magnetic properties [42, 43]. In the following subsections,
the essential topics of the structure and magnetism of CFNPs will be presented.
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3.1 Structure

Cobalt ferrite belongs to the spinel space group (MFe2O4)—where M refers to the
transition metal, in our case, the cobalt (Co)—due to its crystalline structure [44].
Most ferrites crystallize in the structures of this group. Bragg and Nishikawa inde-
pendently reported, for the first time, a crystal structure of the spinel group [45,
46]. This structure belongs to the space group Fd3m, no. 227 of the International
Crystallography Tables [47].

In a spinel structure, whatever it may be, the oxygen anions O2− are accom-
modated, forming a face-centered cubic structure (fcc). There are two interstitial
positions: the tetrahedral and octahedral sites, surrounded by four and six oxygen
ions, respectively. The crystal structures of the normal and inverse spinels can be
seen in Fig. 2, represented by fcc lattices of the MgAl2O4 and MgGa2O4 minerals,
respectively.

The allocation of cations between the tetrahedral and octahedral interstitial posi-
tions is directly related to the classification of the spinel structure, which can be
of the normal, inverse, or mixed type [48]. The obtaining of ferrites with superior
properties and increasingly diverse applications are due to different synthesis cations
[49]. There is a correlation between the preferential distributions of each metallic
cation in interstitial sites, which lead to improvements in the final properties of
spinel ferrites [50]. A crystal structure with normal spinel is composed of divalent
cations (A2+) occupying tetrahedral positions and trivalent cations (B3+) occupying
octahedral positions. This spinel can be represented as (A2+)tet(B2

3+)octO4 [51].

Fig. 2 Normal and inverse spinel structures. Solid black lines represent the unit cell. Octahedral
and tetrahedral sites are also identified by the coordination polyhedra in both cases. (Adapted and
reprinted with permission from Pilania et al. [52])
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In an inverted spinel structure, divalent cations (A2+) occupy octahedral positions,
and trivalent cations (B3+) occupy both tetrahedral and octahedral positions. Thus, the
inverted spinel arrangement can be represented as (B3+)tet(A2+B3+)octO4. However,
there is a natural preference for some cations for tetrahedral or octahedral positions,
dependingon the ferrite transitionmetal. This definition can thus cause an inversion of
the structure of the spinel. Furthermore, differentmethods of synthesis and fabrication
of ferrites can alter the structure of the spinel [53].

Several ferrites have an intermediate structure to those presented. It is the case of
a mixed spinel, with a chemical formula known as (A1-x

2+Bx
3+)tet(Ax

2+B2-x
3+)octO4,

with x defining the degree of inversion of the spinel. Most ferrites have some degree
of inversion. However, some exhibit a spinel with a strong tendency to a normal
structure (x ≈ 0) and others to an inverted structure (x ≈ 1). Intermediate values at
0 and 1 represent ferrites with a mixed spinel structure [54].

In general, cobalt ferrite exhibits a mixed crystalline structure, i.e., it has crys-
tallization characteristics of both normal spinel and inverted spinel. Both divalent
(Co2+) and trivalent (Fe3+) metal ions fill such sites. The chemical formula of this
structure is knownas (Co1-x2+Fex3+)tet(Cox2+Fe2-x3+)octO4,where x is the spinel inver-
sion degree. It is known that there is a predominant tendency for inverse spinel, with
an x value close to 1 [55]. The antiparallel alignment of spins between the cations
present in the tetrahedral and octahedral sites causes the important ferrimagnetism
presented by cobalt ferrites [56]. For this reason, the occupation of these interstitial
positions is crucial in determining the material’s magnetic properties. This charac-
teristic, allied with a strong magnetocrystalline anisotropy presentation, is among
the decisive factors for choosing this type of ferrite among other spinels for the most
diverse applications [57].

3.2 Magnetic Behavior

In general, magnetic domains have dimensions of microscopic order. Each domain
can be represented by a single magnetization vector, which symbolizes the sum of all
magnetic moments per unit of volume. A grain of a polycrystalline material usually
consists of more than one domain, which is generally separated from the others by
walls. Defects such as dislocations and vacancies probably generate these domain
walls in their vicinity and originate in the grain boundaries. In external magnetic
fields, the walls can leave their positions and be moved in the material. The change in
magnetization direction from a domain to its neighbor occurs gradually, indicating a
correlation of several factors—such as energy, crystallographic and geometric—with
the domain wall thickness [58, 59].

In a geometric approach, the larger the particle size, the greater the probability
of forming several magnetic domains—or multidomains—since there is a higher
incidence of defects [60]. On the other hand, the smaller the particle size, as in
the case of nanoparticles, there is a significant drop in energy stability through the
formation of domains, with the formation of a single domain configuration [61].
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Fig. 3 Dependence of the coercivity on the size of a magnetic nanoparticle. (Reprinted with
permission from Witte et al. [64])

When there is this formation, the particle is considered to be magnetized throughout
its volume. There is a limit to which the particle size must be increased to adopt
this single-domain configuration. If this size is reduced below a critical value, the
particle ceases to present a stable monodomain appearance to a superparamagnetic
characteristicwithout amagnetic field. It occurs due to the change froman orientation
state to a relaxed state due to the thermal energy overcoming the anisotropy barrier
[62].

There is, then, a direct relationship between the size of a particle and its magnetic
behavior, which can be divided into three regimes: multidomain, single domain, or
superparamagnetic. Figure 3 shows the dependence of the coercivity on the size of a
magnetic nanoparticle. In multidomain nanoparticles, the magnetic moment vectors
do not necessarily point in the same direction. However, they do point to random
directions with different magnitudes, which is why they end up partially canceling
themselves. There is a maximum coercivity value when the particle size is reduced
until it has only a single magnetic domain in its volume (particle size named as DC).
Particle size values bigger than DC refer to a multidomain regime, just as a reduction
in size leads to a drop in coercivity. When this coercivity vanishes—at a particle size
DSP—the particle magnetically presents itself as superparamagnetic [63].

In practical terms, each material, depending on its composition, morphology, and
structural organization, has particular dimensions that define its magnetic behavior
concerning domains. There is a critical particle size that limits the material from
being in a multidomain or monodomain region. Alternatively, it limits to define
if it presents itself as superparamagnetic or ferrimagnetic. It is correct to say that
structural, chemical, and physical properties, which are attractive in practical terms,
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are directly linked to the preparation of nanoparticles with adequate dimensions and
methods of preparation.

Depending on how liquid magnetic moments are oriented in the domains,
magnetism can divide materials into different categories: diamagnetic, paramag-
netic, ferromagnetic, antiferromagnetic, and ferrimagnetic. Nanoparticles of spinel
cobalt ferrites present a ferrimagnetism behavior. In ferrimagnetic compounds, the
resulting momentum originates from incomplete cancellation between the ions. This
resulting moment would be smaller than the resulting moment of materials that, by
chance, present ferromagnetic behavior. However, when these materials are spinel
ferrites, in particular cobalt ferrites, there is a simultaneous behavior of ferrimag-
netism with an insulating response [65]. These two properties combined make this
material interesting for innovative applications, ranging from the industrial and tech-
nological to the medical area [66]. Applications of this class of materials will be
covered later in this chapter.

Two essential variables when analyzing magnetic behavior are related to magne-
tization (M) and magnetic field (H). Magnetization (M) refers to the vector sum of
all magnetizations of all domains of a material. The intensity of each vector is by
the volumetric fraction of each domain. A change in shape and dimension of the
domains occurs when there is an application of a magnetic field (H). It happens due
to the movement of its walls [63].

Magnetic hysteresis can be evaluated using M versus H curves. The irreversible
magnetizations of a sample are measured due to applying positive and negative
cycles of magnetic fields. Figure 4 shows an example of a typical hysteresis curve
for magnetic materials such as ferrites. Initially, an initial magnetization appears

Fig. 4 Magnetization (M) curve versus magnetic field (H) with the parameters of coercivity (Hc),
saturation (Ms), and remanence (Mr) representing a hysteresis cycle of a magnetic material
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(dashed line) as a magnetic field (H) is applied until it reaches a saturation point.
The domains are all aligned and oriented in the direction of the field. After reaching
this point, the structure changes irreversibly. The curve enters a loop in which the
previous points will no longer be repeated in the analysis.

The saturation magnetization (Ms), the remanent magnetization (Mr), and the
coercive field (Hc) are essential parameters to be extracted from this curve, as they
characterize the magnetic behavior of a given material. The saturation magnetiza-
tion (Ms)—or just saturation—is the maximum value that magnetization (M) can
reach regardless of the applied field. This value is reached when the maximum
magnetic moments of the material align with the external field. Remanent magneti-
zation (Mr)—or remanence—is the magnetization exhibited by the material in the
absence of an external field. After the curve enters a loop, the material does not
recover a demagnetized state without a field. The remanence is the value corre-
sponding to the magnetization remaining in the material when a field is removed.
The intensity of the external magnetic field necessary to completely demagnetize a
sample, that is, to completely nullify its net magnetism after it has been brought to
saturation (Ms), refers to the coercivity or coercive field (Hc) [59].

Ferromagnetic or ferrimagnetic materials, such as cobalt ferrites, can be classified
into two categories because of their difficulty in demagnetizing. The shape of the
curves, especially the area within a hysteresis cycle, plays an important role in this
classification. This area represents the loss of magnetic energy for each volumetric
unit of the sample for each magnetization-demagnetization cycle. Due to the size
of this area within the hysteresis curve, magnetic materials can be divided into soft
or hard. In soft material cycles, domain walls move quickly, relatively low energy
losses occur.

Consequently, small hysteresis cycles are generated. In this case, materials have
low coercivity and quickly lose their magnetization. On the other hand, the domain
walls move with more difficulty in hard materials, requiring more intense magnetic
fields (high coercivities) for the complete demagnetization of the sample. Thus,
higher hysteresis loops appear. For the latter case, magnetization is said to be
permanent [62]. In general, with hard or soft magnetism—with strong or weak
intensities—most ferrites have a magnetism that is easy to reverse.

4 Applications

Much of the research related to ferrite took place after the 1950s, thanks to expanding
technology in different fields. Ferrites are considered better magnetic materials
compared to pure metals due to their high resistivity [67], low production cost [68],
easy manufacturing, and superior magnetizing properties [69]. More specifically,
cobalt ferrites have been standing out as a material with great potential for many
applications. These applications range from the industrial area [70], both in traditional
fields and new technologies, to employment in the medical field [71]. Cobalt ferrites
are widely used in permanent magnets [72], recording media [73], transformers
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[74], inductors [75], energy conversion [76], magnetic fluids [77], high-performance
devices interference suppression [78], among many others.

According to the areas mentioned above, applications in the industrial field can be
used in magnetic sensors used for temperature control, such as microwave absorbent
materials, permanent magnets, electronic components, and storage devices, high-
density recording, magnetic recording media, rotation filters, catalysts, chemical
sensors, amongothers [70, 78]. In themedical field, cobalt ferrites have great potential
for contrast enhancers in magnetic resonance images, enabling the observation of
metastatic cancer cells. In addition, they can be used as biosensors in localized drug
delivery, hyperthermia treatments, and tissue repair [71].

New research points to the great prominence of CFNPs as anode material in
lithium-ion batteries, replacing graphite. In terms of specific capacity, cobalt ferrite
shows an increase of up to three times compared to thematerial used today, something
exciting when the use of high-capacity batteries becomes more and more necessary
and indispensable [79].

This chapter brought up the concepts of cobalt ferrite nanoparticles, with details
of the available synthesis methods. In addition, the general properties of CFNPswere
detailed, in particular the structural and magnetic behavior. Finally, a wide range of
applications was presented. The topics discussed allowed a complete understanding
of CoFe2O4 nanoparticles, showing that these materials hold great promise for future
applications as advanced magnetic materials.

References

1. Ziarkowska, W., Nowicki, M., Charubin, T.: Magnetic Moment Measurement Stand 178–185
(2020). https://doi.org/10.1007/978-3-030-29993-4_23.

2. Lüders, U., Bibes, M., Bouzehouane, K., Jacquet, E., Contour, J.-P., Fusil, S., Bobo, J.-F.,
Fontcuberta, J., Barthélémy, A., Fert, A.: Spin filtering through ferrimagnetic NiFe2O4 tunnel
barriers. Appl. Phys. Lett. 88, 82505 (2006). https://doi.org/10.1063/1.2172647

3. Fairweather, A., Roberts, F.F., Welch, A.J.E.: Ferrites. Rep. Prog. Phys. 15, 306 (1952). https://
doi.org/10.1088/0034-4885/15/1/306

4. Sugimoto, M.: The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999).
https://doi.org/10.1111/j.1551-2916.1999.tb20058.x

5. Jauhar, S., Kaur, J., Goyal, A., Singhal, S.: Tuning the properties of cobalt ferrite: a road towards
diverse applications. RSCAdv. 6, 97694–97719 (2016). https://doi.org/10.1039/C6RA21224G

6. Sharifi Dehsari, H., Asadi, K.: Impact of stoichiometry and size on the magnetic properties of
cobalt ferrite nanoparticles. J. Phys. Chem. C. 122, 29106–29121 (2018). https://doi.org/10.
1021/acs.jpcc.8b09276

7. Jacob, B., Kumar, A., Pant, R., Singh, S., Mohammed, E.M.: Influence of preparation method
on structural and magnetic properties of nickel ferrite nanoparticles. Bull. Mater. Sci. 34,
1345–1350 (2011). https://doi.org/10.1007/s12034-011-0326-7

8. Bakhshi, H., Vahdati, N., Sedghi, A., Mozharivskyj, Y.: Comparison of the effect of nickel
and cobalt cations addition on the structural and magnetic properties of manganese-zinc ferrite
nanoparticles. J.Magn.Magn.Mater.474, 56–62 (2019). https://doi.org/10.1016/j.jmmm.2018.
10.146

https://doi.org/10.1007/978-3-030-29993-4_23
https://doi.org/10.1063/1.2172647
https://doi.org/10.1088/0034-4885/15/1/306
https://doi.org/10.1111/j.1551-2916.1999.tb20058.x
https://doi.org/10.1039/C6RA21224G
https://doi.org/10.1021/acs.jpcc.8b09276
https://doi.org/10.1007/s12034-011-0326-7
https://doi.org/10.1016/j.jmmm.2018.10.146


12 L. E. Caldeira

9. Gul, I.H.,Maqsood, A.: Structural, magnetic and electrical properties of cobalt ferrites prepared
by the sol–gel route. J. Alloys Compd. 465, 227–231 (2008). https://doi.org/10.1016/j.jallcom.
2007.11.006

10. Ajroudi, L., Mliki, N., Bessais, L., Madigou, V., Villain, S., Leroux, C.: Magnetic, electric and
thermal properties of cobalt ferrite nanoparticles. Mater. Res. Bull. 59, 49–58 (2014). https://
doi.org/10.1016/j.materresbull.2014.06.029

11. Chagas, E., Ponce, A., Prado, R., Silva, G., Bettini, J., Baggio-Saitovitch, E.: Thermal effect
on magnetic parameters of high-coercivity cobalt ferrite. J. Appl. Phys. 116, 0333901 (2014).
https://doi.org/10.1063/1.4890033

12. Pillai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil
microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996). https://doi.org/10.1016/S0304-
8853(96)00280-6

13. Sajjia, M., Oubaha, M., Hasanuzzaman, M., Olabi, A.G.: Developments of cobalt ferrite
nanoparticles prepared by the sol-gel process. Ceram. Int. 40, 1147–1154 (2014). https://doi.
org/10.1016/j.ceramint.2013.06.116

14. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi,
P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and
applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009). https://doi.
org/10.1016/j.jmmm.2009.01.004

15. Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y.: Magnetic nanoparticles: surface effects and
properties related to biomedicine applications. Int. J.Mol. Sci. 14, 21266–21305 (2013). https://
doi.org/10.3390/ijms141121266

16. Roca, A.G., Costo, R., Rebolledo, A.F., Veintemillas-Verdaguer, S., Tartaj, P., González-
Carreño, T., Morales, M.P., Serna, C.J.: Progress in the preparation of magnetic nanoparticles
for applications in biomedicine. J. Phys. D. Appl. Phys. 42, 224002 (2009). https://doi.org/10.
1088/0022-3727/42/22/224002
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Wastewater Treatment Using
Nanomaterials

Allan Ramone de Araujo Scharnberg and Fabrício Ravanello

Abstract Wastewater treatment efficiency is paramount in seeking a more sustain-
able future. However, due to exponential population growth and accelerated indus-
trial development in the last century, it has been increasingly challenging to maintain
drinking water resources available to the population. Among several tertiary wastew-
ater treatment technologies, this chapter focus on Adsorption and Photocatalysis
processes. The recent advances achieved mainly for nanomaterials development,
both adsorbents, and photocatalysts, are addressed. According to the overall litera-
ture, both photodegradation and adsorption presented remarkable results related to
wastewater treatment. The results achieved by photodegradation and adsorption tech-
nics show that it is possible to mineralize toxic compounds or even recover several
types of toxic materials from aqueous effluents without the need for an excessively
complex system.

Keywords Wastewater · Adsorption · Photocatalysis · Magnetic nanoparticles

1 Introduction

Water is probably the unique natural resource related to human civilization, from
agricultural and industrial development to cultural values ingrained in our societies.
Water is also fundamental to all known kinds of life. Therefore, humankind must
sustain this resource available for future generations.

Since the last century, mainly due to exponential population growth and acceler-
ated industrial development, it has been increasingly challenging tomaintain drinking
water resources available to the population. Liu et al. [1] pinpoints that, each year,
3.2 million people worldwide die because of water-related issues (unsafe water,
inadequate hygiene, and poor sanitation).

Chemicals from industrial discharge and agricultural input materials are the
primary water contamination sources. Besides the organic effluent generated by the
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sewage of urban areas, many hazardous wastes as textile dyes, resins, pharmaceu-
tical wastes, mining effluents, pesticides, herbicides, and phenolic compounds can
pollute water [2]. Thus, due to its undesirable health and environmental effects, water
pollution is one of the main international political concerns.

Wastewater treatment technologies are usually arranged as primary, secondary,
and tertiary treatment steps. Primary treatment (screening, comminution, grit
removal, and sedimentation) removes materials that float or that are readily settled by
gravity. Secondary treatment (biological processes) removes soluble organic matter
and suspended solids. Tertiary treatment (advanced treatment technologies) can
produce high-quality effluent for discharge or reuse [3]. Each kind of wastewater
and discharge legislation will require specific advanced treatment.

Therefore, tertiary treatment techniques can be designed to remove specific pollu-
tants that escape the secondary treatment step, as Emergent Contaminants (ECs),
which present recalcitrant nature and/or toxicity to the microorganisms, for example
[4]. Rout et al. [4] point to the main employed tertiary treatment technics: oxida-
tion processes (ozonation, UV treatment, chlorination, photocatalysis) and sorption
(activated carbon, biochar, carbon nanotubes, clay minerals).

From this perspective, this chapter focus on two important tertiary wastew-
ater treatment technologies: Adsorption and Photocatalysis. The recent advances
achievedmainly for nanomaterials development, both adsorbents, andphotocatalysts,
are addressed.

2 Wastewater Treatment Technologies Applying
Nanomaterials

2.1 Adsorption

Water pollution is a recurrent problemon a global scale. The toxicity of some contam-
inants found in the water bodies is dangerous for human health and the environment.
Thus, its removal efficiency involves complexmechanisms to achieve high efficiency.
At the same time, the increase in the possible reuse of suchmaterialswidely applied in
industry is an important parameter that enables themaintenance of a sustainable envi-
ronment [5]. Other important parameters to be considered in such a project are low
cost and easy operation. At the same time, it is known that metal-based nanomaterials
have an excellent capacity to absorb toxic heavymetals fromwater [6]. Also, iron is a
significant source of raw material for iron oxide synthesis, i.e., Fe3O4 nanoparticles
(a low-cost material). From this point of view, the adsorption technique currently
meets such requirements [5, 7–9]. The adsorption mechanism’s basis is related to
the type of molecular forces acting over the surface atoms of the adsorbent material.
Since the adsorbent has a porous structure, the solute is collected and concentrated
over the porous surface through intermolecular forces, most commonly electrostatic
interaction [10, 11], chemisorption [11, 12], or physisorption.
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Following the idea of sustainable thinking, Xue et al. [13] produced a novel
adsorbent applying humic acid (HA) and Fe3O4 nanoparticles as a composite (HA-
O/Fe3O4), which presented significant results of Adsorption.Magnetic nanoparticles
are well-knownmaterials with remarkable adsorption capacity. However, its stability
is compromised over acid media, for example, when applied in a solution with heavy
metal ions like Pb (II), Cu (II), Cd (II), and Ni (II). In order to increase its stability,
an association with humic acid was tested by forming a colloid. Figure 1 illustrates
the increased adsorption capacity and stability of Fe3O4 with surface-adsorbed HA.
As shown in the diagram, the material can be collected with an image due to the
magnetic nature of the composite and reused, maintaining its effectiveness for 4
cycles, as seen in Fig. 2.

Fig. 1 Template of the adsorption process from application to reuse. Reprinted from Xue et al.
[13]. Copyright 2021, with permission from Elsevier

Fig. 2 Overall results on removal efficiency of HA-O/Fe3O4.. Reprinted from Xue et al. [13].
Copyright 2021, with permission from Elsevier
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Table 1 Maximum adsorption capacity (mg g−1)

Adsorbent q max (mg g−1) Reference

Pb(II) Cu(II) Cd(II) Ni(II)

HA-O/Fe3O4 111.10 76.90 71.42 33.33 [13]

Fe3O4 29.0 - 18.60 11.30 [13–15]

The primary adsorption mechanism is formed by condensed aromatic rings
and oxygen functional groups randomly distributed. The presence of carboxyl and
phenolic groups sets the mechanism as electrostatic Adsorption [13]. Table 1 shows
the adsorption capacity of HA-O/Fe3O4, comparing the results without the presence
of HA.

The literature reports the effective Adsorption of another toxic material U(VI),
using Fe3O4 nanoparticles [16–18]. Zhang et al. [18] synthesized iron oxide coated
with humic acid derived from lignite (LHA-coated Fe3O4) as a pathway to preventing
aggregation due to themagnetic nature of the nanoparticles. In this study, amaximum
adsorption capacity of 68.7 mg g−1 was obtained. In this case, lignite was used to
prevent. Pan et al. [19] obtained an enhancement of maximum Adsorption applying
different types of organic acids, thus preventing the aggregation and reaching
103 mg g−1.

2.2 Photocatalysis

2.2.1 Introduction

This section presents a review of the photocatalysis technique applied to wastewater
treatment. The involved mechanisms are presented focusing on the desirable semi-
conductors features to enhance the process efficiency, mainly the semiconductor
bandgap energy (Eg) related to the sunlight absorption capacity and, hence, photo-
catalytic efficiency. Subsequently, the recent advances achieved in nanostructured
photocatalyst research are presented.

2.2.2 Photocatalysis Mechanism

Photosynthesis is the primarily responsible energy entry into the biosphere. Through
this process, life transforms sunlight into chemical energy and thus sustains the entire
global flora. However, the natural photosynthesis mechanism is not yet fully under-
stood. Therefore, developing an artificial system capable of directly using sunlight,
as photosynthesis does, would be an excellent achievement for the whole scientific
community [20].
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The idea of using solar energy was initially presented in 1912 as “The photochem-
istry of the future” by Ciamician [21]. Meanwhile, in 1972, an important discovery
was made in this field: “Electrochemical photolysis of water at a semiconductor
electrode” by Honda and Fujishima [22]. This publication was noticeable as the
beginning of a new era in heterogeneous photocatalysis, reporting the discovery of
photocatalytic water oxidation on a TiO2 electrode under UV light. Since then, exten-
sive research on apparatus and semiconductormaterials was performed to understand
the fundamental mechanisms and enhance photocatalytic efficiency [2].

Nowadays, heterogeneous photocatalysis is a well-known Advanced Oxidative
Process (AOP),which consists of hydroxyl free radicals generation, highly oxidizing,
capable of mineralizing organic pollutants to non-toxic forms, such as CO2 and H2O.
The great advantage of AOPs is that pollutants are destroyed (mineralized) instead
of transferred from one phase to another, which makes them an effective alternative
for effluent treatment [23].

Therefore, heterogeneous photocatalysis is catalysis driven by light. It involves
redox reactions induced by radiation on the surface of mineral semiconductors, used
as catalysts. These semiconducting catalysts must present charge transport charac-
teristics, light absorption properties, and an electronic structure characterized by an
empty conduction band and a filled valence band [24].

As reported by Kisch [25], the process starts on a semiconductor photocatalyst
when a photoexcited electron is promoted from the filled valence band (VB) to its
empty conduction band (CB). When the incident photon energy (hv) is equal to
or greater than the semiconductor bandgap, it happens. Thus, an electron/hole pair
(e−

cb + h+vb) is formed. The e−
cb is adsorbed by O2 forming O2°−. The oxidation

process starts when electron holes (h+vb) split the water molecule. Interacting with
H+ generated ion, O2°− create hydroperoxyl radicals (HO2°), as shown in Eqs. 1–4.

Photocatalyst + light = Photocatalyst
(
e−
cb + h−

vb

)
(1)

Photocatalyst
(
e−
cb

) + O2 = Photocatalyst + Oo−
2 (2)

Photocatalyst
(
h+
vb

) + H2O = Photocatalyst + H+ + OH− (3)

Oo−
2 + H+ = HOo

2 (4)

Hydroperoxyl radicals have scavenging properties, adsorbing electrons. This is
very important to prevent electron/hole pair recombination. The generated holes
have a high potential to oxidize organic matter and combine with all reactive oxygen
species (ROS), as demonstrated by Eqs. 5–7.

HOo
2 + HOo

2 = H2O2 + O2 (5)

H2O2 + Oo−
2 = OH◦ + OH− + O2 (6)
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h+
vb + ROS + organic pollutant = degradation products (7)

Figure 3 illustrates the photocatalytic mechanism of organic pollutants degrada-
tion, simplified as follows: wastewater → photocatalyst/O2/hv > Eg → degradation
metabolites → CO2 + H2O + mineral acid [20].

The semiconductor material is the most important part of this system. Some
photocatalyst desired properties are: high photoactive; the possibility of using visible
and/or near-UV light; chemically and biologically inertness; cost-effective; non-
toxic and stable toward photo corrosion [2]. An electron–hole pair is created when
the incident photon (hv) presents energy equal to or higher than the semiconductor
bandgap (Eg). As electron–hole pairs are required to start the photocatalytic process,
low bandgap energy is critical for an efficient photocatalyst [27, 28].

As shown inFig. 4, part of solar irradiation is dispersedor absorbed as it reaches the
atmosphere. Chemical substances absorb specific wavelengths, altering the amount
of light of those frequencies that reach the earth’s surface [29]. ASTM G-173 [30]
quantify the energy amount that hits the surface in each wavelength (W m−2 nm−1).
Therefore, the photocatalyst band gap energy (Eg, eV) can be related to its equivalent
wavelength value (λg), which is the minimum required energy for semiconductor
activation related to the solar spectrum (Eg = 1240/λg). Thus, it is possible to estimate
the maximum wavelength that still contains enough energy to generate electron/hole
pairs in the semiconductor. Hence, estimate the percentage of the solar spectrum that
it can use, i.e., its solar energy usage capacity [31].

Therefore, semiconductors with low bandgap energy can be more efficient. In
addition, the smaller the bandgap of the material, the greater the number of photons

Fig. 3 Organic pollutants photocatalytic degradation mechanism. Adapted and reprinted from
Kumar et al. [26]. Copyright 2017, with permission from Elsevier
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Fig. 4 Solar irradiance (W m−2) as a function of wavelength (200–2000 nm) before atmospheric
filter (AM 0) and at sea level (AM 1.5). Arranged using data from ASTM standard G-173–03 Top
X presents each wavelength equivalent band gap energy (Eg). Reproduced with permission of [30]

with the specific energy to activate it [32]. For example, titanium dioxide (TiO2) was
the first and is one of themost studied photocatalysts due to its high chemical stability,
relatively low cost, and highly oxidizing photogenerated holes [24]. However, the
TiO2 band gap is 3–3.2 eV [23], thus requiring wavelengths shorter than 384 nm
for electron/hole photogeneration, availing less than 7% of the solar spectrum and
generating extra costs with UV lamp need.

Several materials and their various combinations have been studied as a photocat-
alyst, themost common being: TiO2, CdS, ZnO,WO3, ZnS, BiO3, to use visible solar
irradiation GaAs, and Fe2O3 [33]. Recently, significant new materials and combi-
nations such as mixed nanostructured oxide semiconductors based on bismuth [27,
34], and MnO2 based photocatalysts [35] have been developed.

Somemethods for improving semiconductor photocatalytic activity are composite
systems, metal ion dopants, nonmetal doping, and dye sensitization [2]. Recently,
a significant effort has been made in the nanostructured materials area to synthe-
size photocatalysts in the nanoscale (1–100 nm) that can present improved catalysts
features, as shown in the next topic.

2.2.3 Nanostructured Photocatalysts

Saravanan et al. [2] report that, in comparisonwith bulkmaterials, nanomaterials have
a large surface area and a small size, which can provide better efficiency in superficial
reactions, as photocatalysis. A higher catalytic activity can be accomplished because
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nanocatalysts present much more surface atoms than bulk materials, increasing their
surface/volume ratio, hence the number of active sites and interfacial charge carriers.
In addition, photocatalytic redox reaction also occurs on the photocatalysts surface,
so the bigger surface area of nanostructured photocatalysts can meaningly enhance
the photocatalytic wastewater treatment efficiency.

Despite its high bandgap energy (~3.2 eV), titanium dioxide (TiO2) was the first
and is the most employed and studied photocatalyst semiconductor, mainly due
to its stability in extreme situations, extraordinary photocatalytic productivity, and
even suitable band edge capabilities [36]. D’Amato et al. [37] studied modified
TiO2 nanoparticles surface with ascorbic acid. The obtained nanophotocatalyst (55–
80 nm) showed a bandgap energy (Eg) reduction to 2.87neV and presented good
results when applied in photodegradation of Alizarin Red S in water solutions, even
under visible light, which cannot be performed employing the commercial catalyst.
Assayehegn et al. [38] studied the effect of nitrogen-doped titania (N/TiO2) nanoma-
terials to photodegrade Methylene Blue under visible light irradiation. The obtained
nanophotocatalyst (1:1 N/Ti, 42%Anatase, 58%Rutile, 14–18 nm, 2.91 eV) showed
photodegradation kinetics of 0.033min−1 (17 times faster than undoped TiO2) and an
efficiency up to 97%. The improvementwas attributed to the higher surface area, light
absorption capacity, and lower bandgap energy achieved by the synergistic effect of
N-doping.

Using scattered photocatalysts in solution is the most efficient way as its whole
area can react while receiving irradiation. However, there are some concerns about
using dispersed nanoparticles in photocatalysis, mainly that it requires a recovery
step to separate the catalyst from treated water after the photodegradation process.
For example, Scharnberg et al. [23] evaluated Rhodamine B (RhB) degradation using
TiO2 nanoparticles (15 nm; 60 m−2 g−1) supported by a dip-coating process under
porous ceramics previously produced incorporating glass and organic wastes [39].
Although the nanoparticle’s reactive area has been reduced, satisfactory results were
obtained, and the photocatalyst could be easily taken from treated water with the
ceramic plates. It was even possible to reuse the nanocatalyst.

In the same way, Rangel et al. [40] studied a foam glass decorated with zinc
oxide (ZnO) nanoparticles (3.18 eV; 75 nm) in Rhodamine B photodegradation. The
results were satisfactory and similar to those obtained using nanostructured ZnO
suspension. Still, the use of a support for the semiconductor facilitated its recovery
and eliminated a filtration step.

Another alternative for catalyst recovery was introduced by the development of
magnetic nanophotocatalysts (MNPCs). These semiconductors separation can be
easily performed applying an external magnetic field, what can provide a more effi-
cient and even environmentally friendly photocatalysiswastewater treatment process.
Gómez-Pastora et al. [41] list synthesis routes, catalytic performance, and magnetic
recovery step of several MNPCs. Magnetic photocatalysts present a composite core–
shell structure, attaching semiconductors and magnetic nanomaterials. The core
provides its magnetic behavior and is composed of magnetic elements, usually
iron, nickel, cobalt, and oxides (Fe3O4, U-Fe2O3, CoFe2O4, Ni3Fe). The shell is
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composed of photocatalytic materials. TiO2 is the coating material most widely
studied; however, ZnO, AgBr, BiOCl, and others are applied as well [41].

Fisli et al. [42] prepared Fe3O4/TiO2 nanocomposites by heteroagglomeration.
The magnetic nanophotocatalyst (100 nm; 63.5 m2g−1) presented superparamag-
netic characteristics (21.5 emu g−1). Due to iron oxide in composite (non-active),
the photocatalytic activity (92%) was lower than using pure TiO2. However, the
compositewas easily recoveredbyapplying an externalmagneticfield in a slurry-type
reactor. Rezaei-Vahidian et al. [43] evaluated the degradation of P-Nitrophenol (PNP)
by photocatalysis employing magnetic titania nanoparticles (Fe3O4@SiO2@TiO2),
with 22 nm, as shown in Fig. 5. The results showed a degradation rate of up to 90 and
69% of PNP mineralization. The nanophotocatalyst was recovered from the treated
solution using a magnetic field and recycled five times. Recycling presented a low
decline in degradation efficiency (90 to 82%). The decline was attributed to the loss
of a small part of the photocatalyst in each run.

Beyond the improvements achieved with the study of traditional nanostruc-
tured photocatalysts, significant advances using new semiconductor nanomaterials
have been accomplished. Bencina et al. [44] synthesized Bi–Fe–Nb–O pyrochlore
nanoparticles (40nm)by coprecipitationmethod.The semiconductor (Fig. 6) exhibits
narrow bandgap energy (1.9 eV), hence an intense visible light absorption and high
visible-light photocatalytic activity. Using 0.1 g of nanoparticles, 75 ml of methyl
orange (14 mg.L−1) was photodegrade in 4 h under visible light. However, prelim-
inary, the semiconductor suspension in pure water did not induce the reaction. An
alternative found was adding peroxide hydrogen to the solution that can interact
with the photoinduced electrons and preventing charge recombination, allowing the
photogenerated electron holes to be available to react.

Carbon-based nanomaterials compose another family of promising photocata-
lysts, mainly due to their large surface area, abundance, and relatively low cost. The

Fig. 5 Transmission
Electron Microscopy (TEM)
image of
Fe3O4@SiO2@TiO2
nanoparticles. Reprinted
with permission from
Rezaei-Vahidian et al. [43].
Copyright 2017 Elsevier
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Fig. 6 Scanning Electron
Microscopy (SEM) image of
Bi-Fe-Nb–O nanoparticles
and methyl orange
photodegradation as a
function of time. Reprinted
with permission from
Bencina et al. [44].
Copyright 2014 The Royal
Society of Chemistry

most studied carbonaceous photocatalysts include Carbon Quantum Dots (CQDs),
smaller than 10 nm; Carbon Nanotubes (CNTs), which can have its proprieties
enhanced by doping photocatalysts; Graphene Oxide (GO) and Reduced Graphene
Oxide (RGO), with reduced bandgap energy due to their high light absorption
capacity; and Activated Carbon (AC), with large surface area and porosity [45].
Graphitic carbon nitride (g-C3N4) is considered one of the most promising photocat-
alysts being investigated, even relatively recent (2009), due to its good stability, easy
method of preparation, and easy band gap handling. Much progress has been made
on g-C3N4-based photocatalysts. Cao et al. [46] report methods of nanostructured
pristine g-C3N4 synthesis, the preparation of g-C3N4-based semiconductor compos-
ites (g-C3N4/TiO2; g-C3N4/ZnO; g-C3N4/WO3; g-C3N4/Fe2O3; etc.), and versatile
bandgap engineering through atomic level doping (Cu2+, Fe3+, Mn3+, Ni3+, Co3+).

Wang et al. [47] studied g-C3N4/Bi2WO6 nanosheets (60 nm) to degrade Methy-
lene Blue throw photocatalysis. The results showed a photocatalytic activity 68.9%
higher than using pureBi2WO6.The enhancementwas attributed to the rapid photoin-
duced charge separation on the composite surface. In addition, the photogenerated
electron-holes on the catalyst could be transferred to the highest occupied molecular
orbital of C3N4, reducing the recombination effect. Ghanbari et al. [48] evaluated
Copper Iodide decorated g-C3N4 nanosheets (CuI/g-C3N4) to photocatalytic organic
pollutant removal under visible light. With a bandgap of 2.8 eV, the nanocomposite
showed higher photocatalytic performance than the pure C3N4 andCuI and presented
satisfactory results degrading various organic dyes. Besides, CuI/g-C3N4 nanosheets
could be successfully reused without loss of photocatalytic activity.

Niobium-based photocatalysts have received attention due to their desirable cata-
lyst features like non-toxicity, good stability, facile recycling, and availability. Dos
Santos et al. [49] pinpoints Nb2O5 nanoparticles as potential photocatalysts in
wastewater treatment due to their innocuous character. Complete decolorization of a
methyl orange solution (15 mg L−1) was achieved in only 40 min of treatment. After
several cycles, Nb2O5 nanoparticles presented the same efficiency rate. Dai et al. [50]
developed a nano-fibriform C-modified niobium pentoxide (F–C/Nb2O5), forming
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Fig. 7 Field Emission Scanning Electron Microscopy (FESEM) image of a Nb2O5 annealed in
air and b N-Nb2O5 annealed in NH3. Reprinted with permission from Hu and Liu [51]. Copyright
2017 Elsevier

a three-dimensional nanorod structure (30 nm) by vacuum induced self-assembly
method. The nanophotocatalyst exhibited a surface area of 52 m2g−1 and a bandgap
of 3.01 eV, able to operate under visible light. Rhodamine B (pH < 3) degradation
results showed an efficiency 2.4 higher than ordinary C/Nb2O5 under visible light,
even after cycling five times.

Hu and Liu [51] developed nitrogen-doped niobium pentoxide nanobelt quasi-
arrays (N-Nb2O5) by hydrothermal reaction followed by annealing in NH3 atmo-
sphere on metal Nb foil. The doped nanocatalyst (Fig. 7) presented bandgap energy
of 2.4 eV, while the conventional Nb2O5 is 3.4 eV. Furthermore, its structure is quasi
1D, hence provides a large surface area, light irradiation, and contact with pollutant
molecules, showing high photocatalytic performance. Furthermore, while conven-
tional Nb2O5 nanobelt presented a weak photocatalytic activity under visible light
photodegrading Methyl Blue (10%), the N-Nb2O5 samples presented a significant
enhancement (40%). This phenomenon is explained by the middle gap formed by
the doped N atoms, which accelerates the electrons/holes pairs production under
visible light, which is impossible using conventional Nb2O5 (3.4 eV). Thus, N-
Nb2O5 nanobelt was considered a promising candidate for wastewater treatment
under visible light.

The development of a functional and effective photocatalytic wastewater treat-
ment system without requiring external energy (under visible light) will represent an
excellent achievement for society. As described so far, much advance has been made
in nanophotocatalysts research. However, to overthrow the bottleneck imposed by
light absorption capacity, it is paramount to develop a photocatalyst that joins features
as good stability under a wide range of pH; non-toxic; easily available; not expen-
sive; low bandgap energy; low electron–hole recombination rate, and the possibility
of reuse.
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3 Conclusions

According to the overall results, both photodegradation and Adsorption presented
remarkable results related to water treatment reported in the literature. It can be seen
that the two techniques are in agreement with sustainable development. There is
a constant concern and increasing attention of the scientific community due to the
mechanism’s effectiveness. The results achieved by photodegradation and adsorp-
tion technics show that it is possible to mineralize toxic compounds or even recover
several types of toxic materials from aqueous effluents without the need for an exces-
sively complex system. The synthesis of magnetic nanoparticles is a widespread and
studied process, making it extremely precise, thus ensuring its high applicability.
Photocatalysts have been investigated at least since 1972. However, in the scope
of both areas, some studies focused on toxicity and adsorption mechanism under-
standing are still required to ensure the most suitable way of using these technologies
on an industrial scale.
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Photochromic Nanomaterials
with Photocatalytic Application

Luana Góes Soares and Annelise Kopp Alves

Abstract Heterogeneous photocatalysis is part of Advanced Oxidative Processes
(POA’s), using semiconductors as catalysts, usually TiO2. The activation of this
semiconductor occurs when exposed to solar or artificial radiation. It is extensively
used for the most diverse applications due to its effectiveness in decomposing pollu-
tants in water, air, bacteria, cancer cells, and in the degradation of toxic organic
compounds. However, the absorption capacity occurs preferentially in the UV region
of the electromagnetic spectrum, and only 3–4% of the solar spectrum can be used
to activate it for photocatalysis. Aiming to expand the region of sunlight absorption,
several studies have already been carried out, and one of the alternatives is the doping
of TiO2 with transition metals, such as WO3. Within this context, the use of TiO2

nanofibers synthesized by electrospinning and doped with WO3 as photocatalysts is
inserted.Because theypresent a greater photoactivity, as theyhave a high surface area,
they prevent the recombination of the electron/gap pair and reduce the rearrange-
ment speed. It is believed that there is a synchrony between the photochromic and
photocatalytic properties of titanium and tungsten oxide nanofibers, which directly
contribute to the photocatalytic efficiency of the materials, allowing the transfer of
charges between TiO2 and WO3.
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POA’s Advanced oxidative processes
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1 Introduction

Physical, chemical, biological, and hybrid techniques can be used to synthesize
different types of nanomaterials, which are in the form of colloids, agglomerates,
powders, tubes, rods, wires, thin films, among others. The technique to be used varies
depending on the material of interest and the type of nanomaterial [1].

The characterization of optical properties in nanomaterials depends on how these
materials interact when light is incident. Because when light falls on a material,
one or more optical phenomena can occur, and they are: reflection, transmission,
and absorption. Other factors that affect a material’s optical response are the photon
energy, or wavelength of light, the technique to be used to obtain the material in
question and the type of substrate to be used [2].

It is also worth remembering that many optical properties, such as those that
initiate color activity, are related to electronic absorption and emission processes
due to impurities and other punctual defects [3].

Photochromismwas first observed in 1963 in tungsten oxide. This effect becomes
visible when a material is subjected to some type of electromagnetic radiation,
which can be UV, visible light, or infrared. Photochromic alterations are reversible
and vary according to the chemical environment, the irradiation conditions under
which the material is submitted, the characteristics and composition of the material.
Morphology and crystallinity, for example, are properties that will directly influence
the photochromic alteration capacity of the material in question [2, 4].

The application of photochromic materials occurs in the most diverse branches of
the industry. It includes contact lenses and eyeglasses, in sensors, in smartwindows, in
high-density memory devices, non-emitting displays, photoswitches, etc. To explain
photochromism, several mechanisms are recommended; the most recognized are the
formation of color centers by O2 vacancies, double insertion of ions and electrons,
and small-polaron [5].

Although tungsten oxide is the transitionmetal with the largest optical absorbance
variations, other metal oxides have also been used to analyze this effect, such as
molybdenum, vanadium, and titanium oxides [2].

Generally, for the perception of this phenomenon, oxides in the form of powders
and thin films are used when irradiated in vacuum, in air, in alcohols and alde-
hydes, or in a hydrogen atmosphere, which can be crystalline, amorphous oxides,
or oxides of different compositions [2]. To measure color differences, colorimeters
or spectrophotometers are used. These types of equipment have sensors responsible
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for determining the reflected or transmitted light and analyze the optical properties
of materials by associating them with one of the existing color systems, usually the
CIELab [6, 7].

The synthesis, photochromic characterization, and application of nanofibers in
heterogeneous photocatalysis will be covered in this chapter.

2 TiO2

Titanium dioxide (TiO2) has three allotropic crystalline forms: anatase (tetragonal),
rutile (tetragonal), and brookite (orthorhombic) [9]. The anatase and rutile forms are
most frequently used in photocatalytic applications. The main differences between
the TiO2 polymorphs are the lengths and the angles of the Ti–O bonds, and how
the TiO6 octahedra are arranged in the formation of the crystallographic network.
Figure 1 shows the three crystal structures under which TiO2 appears.

TiO2 has been used in both environmental and commercial applications. Some
examples include water remediation, photocatalysis, rechargeable batteries, super-
capacitors, sensor devices, as an opacifying agent in paints, plastics, textiles, and
cosmetics, as coatings, antibacterial agent, for self-cleaning surfaces, H2 produc-
tion from water, in food additives, such as an ultraviolet absorber, among others.
It is generally chosen to be used in the aforementioned applications because it has
the following characteristics: low toxicity, insoluble in water, photostable, can be
immobilized on solids, it has high stability and low cost [8].

Even with a high bandgap value (3.0–3.2 eV), TiO2 is a semiconductor exten-
sively used in heterogeneous photocatalysis. However, there are some restrictions
encountered when using it: recombination of the generated electron–hole pair, the
high speed of rearrangement of H2 and O2 in water, and the absorption capacity of
TiO2 occur preferentially in the UV region of the electromagnetic spectrum, thus,
only 3–4% of the solar spectrum can be used to activate the TiO2 for photocatalysis
[8].

Aiming at solving these restrictions, several studies have already been carried
out, and some alternatives are: the doping of TiO2 with non-metallic elements and
transition metals (WO3, Mo, Mn, Fe, Ni, Co, etc.), and the synthesis of nanostruc-
tures: nanotubes, nanowires, nanorods, nanobelts, nanofibers, among others [10, 11].
Figures 2, 3 and 4 show images of different TiO2 nanostructures.

3 TiO2 Nanofibers

Fibers are one-dimensional nanostructures, widely used in the most diverse appli-
cations, as they have properties such as flexibility, optical properties, and the ability
to interact with other areas of science, in addition to exhibiting properties superior
to those of their respective micrometric fibers. Furthermore, they also demonstrate
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Fig. 1 Polymorphic structures of TiO2 a rutile, b anatase and c brookite. Reproduced with
permission from Ref. [8]
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Fig. 2 SEM images of nanoparticles and nanoflowers with different compositions. Reproduced
with permission of Sharma et al. [12]

Fig. 3 a EDX mapping CNTs and ZnO NPs, b YZO NPs and NFs, c CNT-ZnO NPs and NFs.
Reproduced with permission of Sharma et al. [12]
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Fig. 4 SEM images of electrospun fibers of a CdS/TiO2 on PVP; bV2O5/TiO2 on PVP; c Ag-TiO2
nanotubes on PVP; d core-sheath TiO2-SiO2 on PVA; e hollow TiO2 on PVP; f SiO2-TiO2 calcined
at 700 °C; g TiO2 on PMMA; h TiO2 on PAN; i graphene oxide wrapped TiO2 on PVP. Reproduced
with permission of Pasini et al. [11]

greater photoactivity when used in catalytic reactions; for example, the reaction rate
increases as the diameter of the catalyst fibers decreases since active sites are also
linked to the increase in their surface area. In this way, it is feasible to increase the
system’s reactivity without causing adversities, such as agglomeration/aggregation
of particles [13, 14].
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Fibers can be formed through solutions that contain inorganic, non-metallic oxides
or non-oxides, with a polycrystalline, semi-crystalline, or amorphous structure.
Ceramic fibers are mostly intended for applications that require oxidative stability
and high resistance at high temperatures, such as in structural materials for ceramic
(CMC) and metallic (CMM) composites [13, 14].

Ceramic oxides and non-oxides that can be used are: SiO2, Al2O3, BaTiO3, TiO2,
ZrO2, CuO, ZnO, NiO, mullite, hydroxyapatite, ferrites (Co, Ni), NiZnFe2O4, rare-
earth ferrites (Yb, Gd, Sm, La), NiO–SnO2, CeO2.Y2O3, WO3, SiC and others
[13–15].

In this context, most of the works published in the last ten years report the electro-
spinning method as the main technique for obtaining fibers/nanofibers from different
types of materials.

Pasini et al. [11] describe in their work a review involving the synthesis of TiO2

nanofibers by electrospinning to be used as semiconductors in heterogeneous photo-
catalysis. These nanofibers will be used in wastewater treatment. The photocatalytic
tests were carried out by monitoring the degradation of dyes such as CR, MB, MO,
RB5 and RhB at a concentration of 10 to 20 mg L−1. Under ultraviolet light (50–
800W) at variable times (60–240 min). In general, nanofibers showed good stability
and could be reused in at least three more cyclic experiments. The best results were
obtained in pharmaceutical degradation, where removal reached 80%. Degradation
of other organic contaminants has reached; 70% for phenol, 50% for 4-nitrophenol,
and 50% for paraquat herbicide, respectively.

Çinar et al. [16] describe in his work the synthesis of CuO-TiO2 p-n heterostruc-
tures. Theymanufactured CuO particles hydrothermally and by electrospinning TiO2

fibers for application in the photocatalytic degradation of water pollutants, such as
methylene blue and 4-nitrophenol. The results of the photocatalytic tests indicated
that the degradation efficiency was influenced by the amount of CuO particles in
the samples. Among all the compositions studied, samples with 1.25 and 0.5% by
weight ofCuOexhibited greater photoactivity underUV illumination, about 3.3 times
greater than pure TiO2. Under visible illumination, approximately 3.75 times higher
compared to pure TiO2, respectively. The photoactivity improves compared to pure
fibers, a consequence of the fiber/particle architecture, the ability to capture light,
and the efficiency in charge separation, provided by the staggered band structure and
p-n junctions of the heterostructured samples. According to these authors [15, 16],
the results obtained are promising, as the nanofibers synthesized by electrospinning
showed photocatalytic efficiency in the degradation of wastewater pollutants.

4 WO3

WO3 is an n-type semiconductor with several polymorphic forms: triclinic, mono-
clinic, hexagonal, orthorhombic, and tetragonal. Tungsten can also be found in
the form of tungstates. Several semiconductor materials have been used to study
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photochromism; some examples include GaAs, WO3, TiO2, CdSe, and ZnO, among
others [17].

When studying the photochromic effect, WO3 presents of all chromogenic the
greatest variations in optical absorbance, which makes this oxide the most used for
research [2, 4]. Many researchers have studied alterations in the structure and stoi-
chiometry of hexagonal and monoclinic tungsten oxide in the oxidized or reduced
form, where it was observed that the oxidized form had a greater photocatalytic
activity than the reduced form [18]. Characteristics such as surface area, crystallite
size and morphology are some parameters that affect the photochromic properties
of the material [18, 19]. Some of its applications include photocatalytic processes,
gas sensors, electrochromic devices, solar cells, among others [19–21]. They can be
applied in powder or immobilized [18]. Several methods are suggested to synthe-
size WO3, such as chemical vapor deposition, sol–gel, electrospinning, sputtering,
electron beam, thermal evaporation, among others [18, 19].

Tungsten trioxide nanomaterials comprise nanowires, nanotubes, nanofibers,
nanorods, and nanofilms, which provide excellent morphology for electro-functional
devices. The synthesis of theseWO3 nanostructures has shownpromising results such
as high density with diameters around 300 nm, electrochemical efficiency close to
2.0 mA/cm2, good photoactivity, and remarkable morphology in the most diverse
applications [19].

The first information about color changes in materials was described in 1953
when it was discovered that WO3 is bluish in the presence of 0.1 M H2SO4. But
only in 1969, studies involving photochromism inWO3 gained visibility. Since then,
almost all studies in this area have been carried out on films containing WO3 and,
less frequently, films made from other oxides, such as V2O5 and TiO2 [2].

The works carried out by the authors below confirm the use of WO3 in
photochromic and photocatalytic characterizations because regardless of the tech-
nique used for its synthesis and the type of sample obtained, the optical effectiveness
and photocatalytic activity increase.

In their work, Pan et al. [22] report the synthesis of WO3 films prepared on TiO2

substrates, obtained through a sodium tungsten precursor, using the hydrothermal
method. The results showed that the increase in the concentrations of precursors
increases the optical absorption capacity, improving their photochromic properties.

Soares et al. [23] describe in their work the obtainment of thin films containing
TiO2, TiO2/WO3, and TiO2/Na2WO4.2H2O fibers, where their optical and photo-
catalytic properties were correlated by the occurrence of phenomena similar. As a
result, tungsten-doped TiO2 thin films demonstrated increased photocatalytic effi-
ciency in the degradation of 125 mL of a 20 ppm solution of the methyl orange
dye. Furthermore, they simultaneously exhibited the greatest photochromic effects,
as these samples demonstrated the highest reflectance values when the incidence
of light. A consequence of an existing synchronization between the chemical and
physical properties of TiO2 and WO3.

The synthesis, characterization, properties, and photocatalytic application of
TiO2 and TiO2/WO3 nanofibers by electrospinning will be covered in this chapter.
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Also emphasizing the correlation between photochromism and heterogeneous
photocatalysis.

5 Preparation, Synthesis, and Characterization of TiO2
and TiO2/WO3 Nanofibers

5.1 Electrospinning

A method for obtaining nanofibers was proposed by Alves et al. [24]. The synthesis
of nanofibers through this technique consists primarily in the preparation of solutions
containing the precursors of TiO2 and tungsten (H2WO4). Once the preparation is
complete, a plastic syringe is loaded with 5 mL of each precursor solution. Then
a stainless steel hypodermic (capillary) needle (1 mm in diameter) is connected to
the high voltage source. A rotating cylindrical collector, where the nanofibers are
deposited, is covered with a sheet of aluminum foil and is located at a distance of
12 cm from the capillary tip. A voltage of 13.5 kV is used between the capillary and
the collector. An infusion pump performs the flow control of each precursor solution
(1.8 mL/h). Nanofibers were collected every 30 min for 4 h for each formulation.
After the synthesis of the nanofibers, an electric oven is used to perform the heat
treatment on the samples. The temperatures used vary between 650 and 800 °C, with
a 1 h tide level and a heating rate of 1.4 °C/min.

5.2 Morphology

The surfaces of the TiO2 and TiO2/WO3 samples synthesized by electrospinning are
shown in Fig. 5. The SEM images (Fig. 5a, b) showed the formation of continuous
nanofibers, with a similar microstructure. Its appearance resembles thin, long, and
scruffy sticks. Considering the TEM images in Fig. 5c, d, the TiO2 nanofibers seem to
be constituted by an agglomerate of interconnected particles. TiO2/WO3 nanofibers,
on the other hand, demonstrate that they have several interconnected grains in their
structure, with sizes larger than those observed for TiO2 nanofibers. This suggests
that during heat treatment, the higher the calcination temperature, the smaller the
diameter of the nanofibers and the larger the size of the grains that make them up.
The diameter of the TiO2 nanofibers ranged between 330 and 150 nm (Table 1).
The TiO2/WO3 nanofibers had a diameter that ranged between 600 and 280 nm. The
increase observed in the diameter of TiO2/WO3 nanofibers when compared to TiO2

samples is possibly due to the presence of agglomerates containing crystals of WO3.
Similar images and observations were also obtained by Nguyen et al. [25] when they
synthesized nanofibers by the electrospinning process.
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Fig. 5 SEM a, b and TEM c, d images of TiO2 and TiO2/WO3 nanofibers synthesized by
electrospinning

Table 1 Diameter and
surface area of nanofibers
synthesized by
electrospinning

Nanofibers (°C) Diameter (nm) Surface área (m2/g)

TiO2—650 330 26.6

TiO2—700 230 29.8

TiO2—750 210 33.6

TiO2—800 150 40.8

TiO2/WO3—650 600 45.6

TiO2/WO3—700 450 57.2

TiO2/WO3—750 320 60.5

TiO2/WO3—800 280 88.5

5.3 Crystallinity and Phases Present in Nanofibers

Table 2 shows the crystallite size of the TiO2 and TiO2WO3 nanofibers that were
calculated from X-ray diffraction and with the help of the WinFit® software.
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Table 2 Crystallite size
values of TiO2 and
TiO2/WO3 nanofibers
synthesized by
electrospinning

Nanofibers (°C) Crystallite size (nm)

TiO2—650 16.45

TiO2—700 12.76

TiO2—750 9.38

TiO2—800 5.65

TiO2/WO3—650 43.0

TiO2/WO3—700 41.8

TiO2/WO3—750 38.2

TiO2/WO3—800 35.0

TiO2/WO3 nanofibers (650 °C) had the largest crystallite size (43 nm). In all formu-
lations, the crystallite size was gradually reduced as the heat treatment temperature
to which the nanofibers were subjected increased. The samples containing tungsten
had crystallite size above 20 nm, probably due to the presence of WO3.

Figure 6a, b shows the XRD of TiO2 and TiO2/WO3 nanofibers. For the TiO2

samples treated up to a temperature of 700 °C, only the presence of the crystalline
phase anatase (JCPDS 01-078-2486) was identified, with the first characteristic peak
at 2θ= 25.271°. In samples submitted to temperatures above 750 °C, the anatase and
rutile phases were identified (JCPDS 01-077-0442), the latter with the first character-
istic peak at approximately 2θ = 27.294°. This phase transformation of TiO2 occurs
as a consequence of the increase in the sintering temperature. TiO2/WO3 nanofibers
treated up to a temperature of 650 °C exhibited the anatase and brookite phases for
TiO2 (JCPDS 01-075-1582), with characteristic peaks at 2θ = 25.271° and 25.425°,
respectively. In addition to the anatase and brookite phases, nanofibers treated from
700 °C exhibited the rutile phase (JCPDS 01-077-0442) for TiO2, the latter with the
first characteristic peak at 2θ = 27.294°. WO3 showed peaks characteristic of the
orthorhombic phase (JCPDS 00-032-1393), with the initial value at approximately
2θ= 23°. Similar result was reported by Nguyen et al. [25]. They observed intensive
peaks for WO3 at 2θ = 23.04 compatible with the orthorhombic phase.

5.4 Photocatalytic Activity

Various dyes such as; Rhodamine B, methyl orange, and methylene blue, among
others, are frequently used in photocatalytic tests. Methyl orange is an anionic,
synthetic dye, belonging to the azo group, has −N = N− bonds in its structure. It
was often chosen for monitoring photodegradation tests as it provides high stability
to the photochemical and degradation processes [26].

The photodegradation test takes place in a photocatalytic reactor. By following
the decolorization of 125 mL of a 20 ppm solution of the methyl orange dye with
time (intervals of 15 min), the photocatalytic efficiency of TiO2-P25 and nanofibers
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Fig. 6 X-ray diffractograms of a TiO2 and b TiO2/WO3 nanofibers synthesized by electrospinning
and heat trated at different temperatures

TiO2 and TiO2/WO3 is obtained by following the color change. Before starting
the photocatalytic tests, the nanofibers were dispersed in the dye solution using an
ultrasound, in the dark, for 20 min for initial adsorption of the dye on the surface of
the samples.

Among the results obtained, TiO2/WO3 nanofibers (800 °C) were the most effi-
cient in the degradation of the methyl orange dye. They showed 90% degradation in
90 min of exposure to UV-A radiation, that is, they did not need 135 min of expo-
sure to UV-A radiation to degrade the dye. These results suggest the existence of a
relationship between temperature and surface area. For, samples sintered at higher
temperatures (800 °C) had a greater surface area (88.5 m2/g) when compared to
TiO2 nanofibers (800 °C), which had a surface area of 40.8 m2/g. Another factor
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that contributed to the performance of this sample is the presence of the tungsten
precursor (H2WO4), which, associated with the bandgap reduction, increased the
number of O2 vacancies in the TiO2 crystal structure. Thus, it is possible to state
that the joint action of these factors gave TiO2 phase stability structure, responsible
for the increase in photoactivity and conductivity for the oxygen ion. The rise in
the heat treatment temperature allowed the O2 vacancies to acquire the mobility
needed to move to a disordered state in the anionic sub-network [28]. Some of these
results were also observed by Bharti et al. [29] they observed that the best results
were obtained by samples that had an increase in the number of O2 vacancies and
a reduction in the bandgap. They concluded that the association of these factors
produces samples with good optical properties, making them promising candidates
for electrode applications [29].

6 Optical Properties

Optical properties refer to the reaction that a material expresses when subjected to
electromagnetic radiation,more specifically, visible light [30]. Transmission, absorp-
tion, and reflection phenomena are associated with colorimetry and occur when light
falls on the surface of a material.

Transparent materials are capable of transmitting light with little absorption and
reflection. On the other hand, translucent materials transmit light in a diffuse way,
dispersed inside the material. And finally, opaque materials do not allow visible
light to be transmitted. For example, metals are opaque along the visible spectrum,
electrical insulators can be transparent, and semiconductors are transparent or opaque
[30].

6.1 Bandgap Energy

For example, various optical properties, those that give rise to color, are brought
about by electronic absorption and emission processes. The absorption of a photon
can occur with the promotion of an electron from Bv to Bc. For this to happen in
semiconductor materials, it is necessary that the electron excited in the Bv has an
energy value greater than or equal to the bandgap, being able to surpass it. Thus,
generating a hole in Bv and an electron in Bc [3, 30].

Materials that have a bandgap value greater than 3.1 eV cannot absorb visible
light. Therefore, for materials to absorb a part of the visible spectrum and exhibit a
colored appearance, they must have bandgap values between 1.8 and 3.1 eV [30].

The bandgap for nanofibers synthesized by electrospinning is presented in Table
3. The values confirm its photochromic and photocatalytic application, as in both
processes, it is necessary to have photon absorption with energy greater than the
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Table 3 Bandgap energy of
TiO2 and TiO2/WO3
nanofibers synthesized by
electrospinning

Nanofibers Bandgap (eV)

TiO2—650 °C 3.04

TiO2 2.93

TiO2 2.85

TiO2 2.82

TiO2/WO3—650 °C 2.58

TiO2/WO3—700 °C 2.57

TiO2/WO3—750 °C 2.56

TiO2/WO3—800 °C 2.54

bandgap. They are also important to differentiate semiconductor oxides from insula-
tors, as this is done based on the occupation of the energy bands. Note that the reduc-
tion in the nanofiber bandgap occurs as the heat treatment temperature increases.
This increase in temperature favors the optical properties of the material and the
surface effects (O2 vacancies) on the distribution of electronic levels, it also allows
the TiO2/WO3 nanofibers to have an inhibition of the recombination of the charges
of the electron/hole pair allowing the transfer of charges between the two oxides
(TiO2 and WO3), increasing the light absorption capacity [28, 30].

6.2 Photochromism

This effect causes reversible changes in materials, and becomes visible when an
object is subjected to some type of electromagnetic radiation, which can be UV,
visible light or infrared [31]. It is observed through colorimetric tests associated with
a color system, usually the CIELab. The equipment used to measure photochromism
are colorimeters and spectrophotometers. Themechanism used to describe this effect
is based on the formation of color centers, through the generation of O2 vacancies.
Because, in almost all oxygen ion conductors, propagation occurs through consecu-
tive jumps of oxygen ions in vacant positions of the crystal structure. Which makes
this a very important parameter to obtain high conductivity. The concentration of
O2 vacancies, which can be native (intrinsic conductors) or inserted through partial
substitutions (extrinsic conductors), determine the atomic lattice positions [28]. The
generation of O2 vacancies plays an influential role in determining absorbance,
reflectance, transmittance and photocatalytic properties.

Photochromism in TiO2 and TiO2/WO3 nanofibers is observed through the soft-
ware that comes with the spectrophotometer. The measuring range covers the entire
visible spectrum (400–700 nm). The software records the colorimetric coordinates
for each sample through the CIE-Lab system, where according to the negative or
positive values of the coordinates a* (variation between green and red) and b* (vari-
ation between yellow and blue) the different colors in the nanofibers are expressed.
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In this system, luminescence values (%L) are also registered, that is, the amount
of light that is seen in a certain color, and �L*. Luminescence (%L) close to 0%,
characterizes the absence of reflected light (black), and if it is close to 100%, it char-
acterizes the total reflection of light (white). The values of �L* inform us about the
differences existing between the shades in lighter or darker. Positive (+) values of
�L* indicate the lightest color and negative (−) values of �L* indicate the darkest
color [31].

All nanofibers exhibited photochromism, as they reversibly changed color when
subjected to colorimetric tests. They preferentially absorbed the blue color of the
electromagnetic spectrum, returning to the initial white color after the end of the
analysis.

6.3 Absorbance

All nanofibers synthesized by electrospinning are white before and after colorimetric
tests. During the colorimetric test, the TiO2 nanofibers had maximum absorbance in
the dark-blue region, influenced by positive values of a* (red color) and negative
values of b* (blue color). Negative values of �L* define the dark hue of TiO2

nanofibers. TiO2/WO3 nanofibers had maximum absorbance in the light blue color
region, influenced by negative values of a* (green color) and negative values of b*
(blue color). Positive L* values determine the light hue of TiO2/WO3 nanofibers.
The maximum absorbance of TiO2 and TiO2/WO3 nanofibers occurs in the blue
color region. Predictably, because both precursor solutions have a yellow coloration,
differing only by their hue. In colorimetric analyses, the maximum absorbance is
contacted in the complementary staining region. And in the case of both nanofibers,
the complementary color to yellow is blue. The TiO2 and TiO2/WO3 nanofibers had
a good amount of light perceived, according to the luminescence values (%L) shown
in Table 4.

Table 4 Results of absorbance tests performed on nanofibers synthesized by electrospinning

Nanofibers (°C) a* b* Hue difference (clear/dark) �L* Absorbed color %L

TiO2 650 +1.47 −12.51 −35.99 Dark-blue 83.33

TiO2 700 +3.29 −2.68 −57.43 Dark-blue 61.42

TiO2 750 +7.16 −10.44 −24.32 Dark-blue 92.14

TiO2 800 +4.14 −8.21 −42.86 Dark-blue 86.76

TiO2/WO3 650 −3.13 −1.45 +66.91 Clear-blue 59.73

TiO2/WO3 700 −4.42 −10.37 +58.91 Clear-blue 96.26

TiO2/WO3 750 −3.48 −11.46 +75.41 Clear-blue 84.69

TiO2/WO3 800 −5.18 −5.99 +56.68 Clear-blue 85.47
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6.4 Transmittance

The color of a solution is defined by the color of transmitted light. In other words,
both precursor solutions for the synthesis of nanofibers by electrospinning are yellow
because they transmit yellow light, differing only in hue. A solution is white when it
transmits light of all colors and blackwhen it absorbs light of all colors. The vividness
of the color of a solution is strongly related to the concentration of molecules capable
of absorbing light. The light-absorbing capacitywill be greater themore concentrated
the solution [32].

6.5 Reflectance

TiO2 and TiO2/WO3 nanofibers absorbed blue light from the electromagnetic spec-
trum. The absorption/reflection process occurred when the light was focused on
the white nanofibers. During the colorimetric test, when light is irradiated, the
color reflected by the nanofibers reflect the complementary color region to the light
absorbed (yellow to blue) in both types of nanofibers. Much of the light absorbed
on the surface of the samples is re-emitted in the form of visible light, as a reflected
light [30].

The reflectance of the nanofibers was observed in a range that comprised the
entire visible spectrum, between 400 and 700 nm. Before and after the colori-
metric test, all nanofibers were white, that is, they reflected all colors. During the
colorimetric test they have shown a light reflectance between 65.3 and 79.9% for
TiO2 nanofibers, and between 82.73 and 99.99% for TiO2/WO3 nanofibers. TiO2

nanofibers were compared with standard TiO2-P25 Evonik, in order to compare the
light reflection capacity of the synthesized TiO2 nanofibers. The nanofibers showed
a high reflectance difference. Initially, at 400 nm TiO2-P25 and TiO2 and TiO2/WO3

nanofibers reflected 57.73%, 65.32%, and 82.73% of the incident light, respectively.
And at 700 nm TiO2-P25 and TiO2 and TiO2/WO3 nanofibers reached the maximum
incident light reflection of 57.73%, 79.90%, and 99.9% respectively.

Table 5 shows that the nanofiber reflectance values are influenced by the different
heat treatment temperatures to which the samples are subjected.

7 Photocatalytic Application of TiO2 and TiO2/WO3
Nanofibers

Photolysis of water was first introduced in 1969. The system used TiO2 as a photo-
catalyst under irradiation (500 W xenon lamps). From this moment on, photoelec-
trochemical processes have been extensively studied and gained prominence in the
70’s with Fujishima and Honda; in 1980 with the photocatalytic production of H2;
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Table 5 Reflectance values
obtained by TiO2-P25 and by
nanofibers synthesized at
different temperatures

Nanofiber % Reflectance

TiO2-P25 57.73

TiO2 650 °C 65.32

TiO2 700 °C 68.19

TiO2 750 °C 75.89

TiO2 800 °C 79.90

TiO2/WO3 650 °C 82.73

TiO2/WO3 700 °C 90.89

TiO2/WO3 750 °C 93.19

TiO2/WO3 800 °C 99.99

in 1990 with photocatalysis and hydrophilicity in TiO2 films and, nanoengineering,
nanotechnology, and TiO2 catalysis in the year 2000 [8, 33]. Figure 7 shows the
mechanism involved in the photocatalytic degradation processes.

Figure 8a, b shows the effectiveness of TiO2-P25, TiO2 and TiO2/WO3 nanofibers
in the degradation of 125 mL of a 20 ppm solution of methyl orange dye during
120 min of exposure to UVA light (λ = 365 nm).

All synthesized nanofibers were effective to decompose the methyl orange dye
under UVA irradiation. For TiO2 nanofibers, the most photoactive were those that
received heat treatment at 650 °C, degrading around 40% of the dye in 120 min.
Nanofibers treated at 700 °C and the commercial TiO2-P25 degraded around 30%
of the dye in this same period of time. The nanofibers treated at 750 and 800 °C
degraded around 20% and 10%, respectively, of the dye In these same conditions.
When heat treated above 700 °C, a decline in degradation capacity is observed.

Fig. 7 A schematic diagram showing the mechanism of photocatalytic degradation processes.
Reproduced with permission from Ling, et al. [34]
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Fig. 8 Photocatalytic performance of TiO2-P25 and synthesized nanofibers in degradation tests

Probably because the formation of the rutile phase, which among the polymorphic
phases of TiO2 is the one with the lowest photoactivity [31].

The addition of tungsten to the TiO2/WO3 samples increased the degradation
capacity of treated nanofibers at temperatures of 700 °C, 750 °C and 800 °C, to
approximately 36%, 50% and 90%, respectively. Some factors like the reduction
of the bandgap from 3.04 to 2.89 eV, the inhibition of the recombination of the
electron/hole pair [(e−)/(h+)], which allowed the transfer of charges between TiO2

and WO3, and the formation of point defects (O2 vacancies), contributed to this
observation. With the increase in the heat treatment temperature, the O2 vacancies
are able to move quickly, causing a disorganization in the network, thus improving
the photoactivity and process efficiency [31].
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8 Existing Synergism Between Photochromism
and Heterogeneous Photocatalysis

Based on the results obtained, it is believed that there is a synchrony between the
photochromic and photocatalytic processes, due to phenomena that occur at the same
time and that are necessary to achieve success in both:

(a) Existence of a specific wavelength, which must be equal to or less than that
determined by the Planck equation, which will provide the energy that will
excite the electrons ofmaterial in the case of photocatalysis and reflect a certain
color in the case of photochromism [35];

(b) Migration of electrons from the valence band to the conduction band, gener-
ating positive electron holes in the valence band, when irradiated with light at
an energy level higher than the band gap of the samples, which will degrade
the dye and reflect/absorb light and, change the color of the material [35].
In photochromism, electrons from the valence band, occupied only by the 2p
orbitals of the O, are promoted to the conduction band, occupied by the 5d
orbitals of the W, forming electron/hole pairs (e/h+). The W6+ sites capture
electrons that are promoted to the conduction band, causing the reduction of
ions. The holes, on the other hand, are capable of dissociatingH2Omolecules or
organicmolecules [5]. The reflection/absorption of lightmodifies thematerial’s
color, generating positively charged O2 holes, which capture the photoexcited
electrons [4, 5].

(c) Generation of O2 vacancies. In almost all oxygen ion conductors, conduction
occurs through consecutive jumps of these ions. The presence of the tungsten,
and the reduction in the bandgap, increased the number of O2 vacancies in
the TiO2 crystal structure. With the increase in temperature, the O2 vacancies
managed to move disorganizedly, giving the TiO2 stability of the structural
phase, responsible for the increase in conductivity [28].

9 Conclusions

The use of nanofibers synthesized by electrospinning as semiconductors in heteroge-
neous photocatalysis was a promising alternative for the most diverse applications.
The TiO2/WO3 nanofibers treated at 800 °C showed the best results in the degrada-
tion of the methyl orange dye (90%), due to the presence of WO3, which prevented
the recombination of the electron/hole pair [(e−)/(h+)], providing the transfer of
charges between the two oxides (TiO2 and WO3), with a smaller bandgap and the
formation of a greater number of O2 vacancies. The latter is also responsible for
the highest reflectance values (99.99%) for this sample. The observed results point
to the existence of synergism between photochromism and photocatalysis, as they
simultaneously modify the color of the sample, generate extra electronic holes in the
band structure, besides degradete the dye.
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Carbon Nanotubes for Gas Sensing

Claudir Gabriel Kaufmann Jr , Rubia Young Sun Zampiva ,
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Abstract Carbon nanotubes (CNTs) are one of the most exciting and challenging
research domains in nanotechnology. CNTs present a large surface area, excellent
electron transfer, and the ability to be combined with various materials without
losing their graphitic structure. Due to these properties, CNTs are considered very
promising for application in the gas sensing field. Although the nanotubes can be
applied directly as sensors, combining different materials (e.g., metal, oxides, poly-
mers) might improve the sensors’ sensitivity and selectivity toward specific gases.
This chapter presents an overview of the production and application of gas sensing
devices based on CNTs. The use of single-wall CNTs (SWCNTs) and multi-wall
CNTs (MWCNTs) over the years to fabricate such devices are described in detail.
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1 Introduction

At the beginning of the 1990s, nanoscience emerged as a revolutionary field. In the
following decades, with the technological evolution in the area, nanoscience came
to be called nanotechnology [1]. Nanotechnology is understood as the manipulation
of nanoscale structures in the order of atomic and molecular size. The nanoscale is
defined as the billionth part of themeter (10−9 m) [1, 2]. The possibility of controlling
materials on a nanometric scale has allowed the development of new technologies
in various areas of knowledge and their application in the industrial field. Among
them; Renewable energy [3–6], biomedicine [7, 8], electronic [9, 10], batteries [11],
magnetic storage devices [12], sensors [13], electrochemistry [14, 15], aerospace
[16], cosmetics [17] and environmental [18–20].

Carbon nanotubes (CNTs) [21] have a prominent place in the nanotechnological
field due to their intrinsical magnetic, optical, mechanical, chemical, and electrical
properties [1, 20]. Among them, the electrical properties have been of interest in
different areas, such as microelectronics, energy generation and storage, gas sensors,
gas adsorbers, supercapacitors, electrochemistry, catalysis, and environmental appli-
cations [18, 19]. CNTs present a large surface area, excellent electron transfer, and
the ability to be manipulated with other conductive materials and polymers to form
chemically active sites [22].

Nowadays, with the advancement and optimization of the techniques to synthesize
these nanostructures, elevated quantities of high-qualityCNTs can be easily produced
[23]. Such improvement has captured the industry’s attention, and the use of CNTs
to produce different devices has been investigated. Significant growing interest is
observed in the gas sensing field, as shown in Fig. 1. More than 2.437 papers were
published in 2020 presenting the production/application of CNTs for gas sensing.
The CNTs can be used directly or combined with other materials such as metal
and oxide nanoparticles, polymers, etc. According to the combined material, the
CNTs can become highly sensitive and selective towards specific gas compositions
[23]. The “2019 Gas Sensors Market Size, Share, System and Industry Analysis and
Market Forecast to 2024 report” published by Markets and MarketsTM estimated a
projected growth of the gas sensors market size from USD 1.0 billion in 2019 to
USD 1.4 billion by 2024 [24].

This chapter presents an overview of the production and application of gas sensing
devices based on CNTs. The use of single-wall CNTs (SWCNTs) and multi-wall
CNTs (MWCNTs) over the years to produce such devices are described in detail.

2 CNTs

CNTs are structures formed by sheets of graphene rolled into tubeswith a nanometer-
scale diameter [1]. The carbon sheets are formed by oriented hexagonal crystalline
arrays consisting of single and double bonds with sp2 hybridization. Due to this
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Fig. 1 Number of publications per year presenting the term “Carbon nanotubes for gas sensing”
on the Science Direct website (11/06/2021)

conformation, CNTs can be considered crystals rather than molecular species [25],
presenting the physical properties of crystalline solids, e.g., high-electrical and
thermal conductivity and elevated mechanical resistance [14]. CNTs are usually
produced in two distinct structural versions, single-wall CNTs (SWCNTs) andmulti-
walls (MWCNTs) (Fig. 2). The SWCNT may be understood as a structure formed
from a single coiled graphite layer. The ends of which can be closed by halves of
fullerenes or opened. MWCNTs, on the other hand, are formed by several SWCNTs

Fig. 2 Representation of MWCNTs a and SWCNTs b
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Fig. 3 CNT structures according to chirality. From left to right: Armchair, Zig-zag, and Chiral.
Reproduced from Deh and Lee [26] Copyright 2016, with permission from Elsevier

in concentric shapes similar to a coaxial cable [14]. CNTs can present diameters in
the range of 1–1000 nm and several micrometers in length.

The structural orientation of theCNTswalls can be controlled. CNTswith zig-zag,
armchair, and chiral (Fig. 3) orientations can be produced, adjusting the synthesis
parameters of the chosen technique. The CNTs’ physicochemical properties are
directly influenced by the direction of the wall vectors and the chiral angle. For
example, armchair CNTs are metallic, while zig-zag and chiral are semiconductors
[14, 25].

3 CNTs Synthesis Routes

The production of CNTs has been extensively investigated for over 3 decades, and
even today, there is still room for work aimed at improving the synthesis parameters
[15, 19, 20]. However, it is almost a consensus in academia and industry that the best
techniques for producing CNTs are chemical vapor deposition (CVD) and electric
arc discharge (EA) [19, 20].

3.1 Chemical Vapor Deposition (CVD)

CVD allows the controlled production of a variety of carbon nanostructures. This
method produces CNTs by depositing gaseous and volatile carbon sources such as
methane, ethylene, and acetylene [14]. The process requires the use of catalysts for
the growth of nanotubes. Generally, the catalysts used are transition metals like Fe,
Co, and Ni, in the form of nanoparticles [12, 27, 28]. The growth of CNTs in this
synthesis route occurs when a precursor gas of carbon atoms (e.g., hexane, acetylene,
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Fig. 4 Schematic drawing of a CVD reactor. Reproduced from Kaufmann [14] Copyright 2019,
with permission from Springer

ethylene) is decomposed at temperatures between 750 and 950 °C; the C atoms are
deposited on the catalyst particles, starting the in situ nucleation of the CNTs (Fig. 4).

The main advantage of CVD over EA is that CVD allows the variation and metic-
ulous control of various parameters during the synthesis process. Parameters such as
gas flow, type of catalyst, temperature, the physical state of precursors, etc. Param-
eters such as temperature, catalyst composition and crystallinity, gas composition
and flow, and substrate composition have a decisive influence on the type of CNTs
produced, the quality of the tubes, and their macro-orientation [19].

3.2 Electric Arc Discharge (EA)

EA is extensively used to produce several types of carbon nanostructures such as
nano-onions, nano-horns, graphene, and CNTs [15, 20]. For example, commercial
SWCNTs are usually synthesized by this technique. The production ofCNTsbyEA is
based on an electric discharge generated by two carbon electrodes in a steel chamber
containing an inert gas (usually helium). The precursor, often mineral graphite, is
sublimated at the positive electrode (anode), depositing the synthesized nanomate-
rials at the negative electrode (cathode) and on the chamber walls. The EA in an
aqueous medium (Fig. 5) is a more straightforward and low-cost variation of the
conventional EA method, with no need for sealed chambers, vacuum, or gas flow
[20].



60 C. Gabriel Kaufmann et al.

Fig. 5 Schematic drawing of a CVD reactor. Reproduced from Kaufmann [20] Copyright 2020,
with permission from Wiley

4 CNTs Structural Characterization Methods

4.1 Raman Spectroscopy

The Raman effect was discovered by Indian physicist Chandrasekhar Raman and is
based on the scattering that photons cause when they collide with molecules in a
sample. This technique demonstrates the nature of molecular bonds and the degree
of disorder of crystal lattices, through which we can define some electronic, optical,
and mechanical properties of a variety of materials [19, 25]. Raman spectrometry is
considered the main technique for the physical–chemical characterization of CNTs.
TheRaman spectrum identifies the number of tube layers, defects, chirality, structural
crystallinity, and purity degree [19].

Figure 6 presents a classic Raman spectrum for MWCNTs. The D, G, and G’
characteristic bands for multi-wall carbon nanotubes (MWCNTs) at 1342, 1572, and
2738 cm−1, respectively. The higher the G’ band intensity compared to the D and
G bands, the higher the MWCNTs purity, which means less amorphous carbon and
defects. The degree of purity of the samples is determined by the intensity ratio of
the D and G bands (ID/IG) obtained in the Raman spectra. This ratio indicates the
degree of carbon graphitization, which is the conversion degree from amorphous,
semi-ordered, or free carbon into three-dimensionally ordered graphitic structures.
The lower the ratio, the higher the graphitization degree, and the higher the quality
of the MWCNTs [19, 20].
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Fig. 6 Raman spectrum for MWCNTs

4.2 Scanning Electron Microscopy (SEM) and Transmission
Electron Microscopy (TEM)

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
are the main techniques used for the morphological characterization of CNTs. SEM
works with a beam that sweeps the sample and causes the sample to emit electrons
(secondary electrons). The process is carried out by applying a potential difference
(in the order of 0.5–30 kV). The beams that hit the sample and return are gathered and
analyzed by a receptor, thus assembling an image, as presented in Figs. 7a, b [20].
On the other hand, TEM works with the emission of high kinetic energy electron
beams in a vacuum. The beams hit an ultra-thin layer of the sample, producing flat
images with a very high magnification capacity, Fig. 7c, d. Through this technique,
it is possible to verify the CNTs’ external and internal diameter, the number of walls,
the presence of structural defects, the distribution of the catalyst in the sample, the
purity degree, etc.

5 CNTs for Gas Sensing

The detection and control of gases are crucial in several fields such as environmental
monitoring, breath analyzers for medical diagnosis; chemical and polymer manufac-
turing; and natural and toxic gas detection [24]. In industry, gas sensors are needed to
detect harmful and/or toxic gases in real-time. For this application, devicesmade from
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Fig. 7 SEM images showing the tangled MWCNTs in a and b. TEM images presenting the size
and morphology of MWCNTs walls structure c and d. Reproduced from Kaufmann [20] Copyright
2020, with permission from Wiley

materials with good sensitivity and selectivity to specific gases are required [23, 24].
Nanomaterials are presented as a real revolution for the development of gas detection
devices due to their exceedingly high surface-area to mass or volume ratios which
might confer elevated sensitivity due to many available molecular binding sites [29].
In addition, nanomaterials can detect minimal gas concentrations (parts per million
-ppm or billion -ppb depending on the composition) thanks to the properties listed
above.

CNTs present excellent electrical properties at room temperature due to their
superconductive nature [22]. Furthermore, this nanomaterial has elevatedmechanical
properties, with high Young’s modulus (E) (0.1–1.7 TPa) [30] and tensile strength
(100–200 GPA) [31]. The electrical properties of CNTs are easily influenced by
interactions with a variety of atoms and molecules. This characteristic allows their
use as gas sensors. The interactions of some gasmolecules with the CNTs surface and
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Fig. 8 Schematic representation of the influence of specific gas molecules on the electrical
conductivity of CNTs

functionalizations can increase or decrease the electrical conductivity of the tubes.
By detecting and measuring these variations, one can determine the presence of a
specific gas (Fig. 8). Due to the elevated surface area of the tubes, concentrations of
ppm or even ppb can be detected [22, 24].

CNTs can be combined with metal, metal oxides, and polymers to improve the
sensibility and the selectivity of the tubes towards specific gases such as NOx, COx,
H2S, NH3, SO2, among others [22, 32]. Charge transfer and chemical doping are
usually responsible for the high sensitivity of CNTs towards gases. When electron-
donating molecules such as NH3 and electron acceptor molecules such as NO2

interact with conducting CNTs, the electron concentration of the bulk conductor
changes, thereby changing the conductance of the nanotubes [23].

It is possible to find in the literature a variety of publications using SWCNTs as
well as MWCNTs for the fabrication of gas sensors. Different types of functional-
izations, mixing processes, and decorations were proposed to increase nanotubes’
sensibility, selectivity, and catalytic activity toward toxic gasses [22–24]. Some of
these publications are presented in detail in the following sections.

5.1 SWCNTs Gas Sensor

SWCNT gas sensors are developed to detect the most different types of gases such
as nitrogen dioxide (NO2), nitrogen monoxide (NO), ammonia (NH3), hydrogen
sulfide (H2S), hydrogen peroxide (H2O2), monoxide of carbon (CO), carbon dioxide
(CO2), chlorine (Cl), trinitrotoluene (TNT) and Hydrogen (H2), among others. All
these gases are harmful to humans in very low concentrations, e.g., H2S has consid-
erable health effects at concentrations of 10 parts per million (ppm), and it is lethal
at 500 ppm [22, 33]. Besides the toxicity, gases such as H2 and derivates from trini-
trotoluene (TNT) commonly found in the industry of fuel and explosives can easily
cause accidents involving explosions [22]. In the literature,most of the present studies
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referring to SWCNTs sensors are related to detecting NOx and NH3 due to their large
emission in the environment [22]. Industrial waste products and emissions at various
levels are the primary sources of NOx and NH3 [34, 35].

In 2013, Li et al. produced a compound (Ni(NiO)/ SWCNTs) to detect NO
gas. SWCNTs were synthesized by EA and purified by an acid treatment. The
purified SWCNTs were dispersed in a solution containing sodium dodecylben-
zene sulfonate (SDBS) and Ni(NO3)2. A nickel electrode (anode) and an aluminum
electrode (cathode) were coated with the produced solution by electrodeposition,
forming a thin film. The electrical resistancemeasurements of the sensorwere carried
out at room temperature. Different concentrations of NO, NH3, H2, and CO were
tested, and the system detected only NO. This result indicates a high selectivity of
Ni(NiO)/SWCNTs towards NO. The system’s conductivity decreased upon exposing
the sensor to NOgas since theNOmolecules behaved as electron acceptors where the
electrons could be transferred from the Ni(NiO)/s-SWCNTs to NO. The best result
found for this sensor was a resistivity variation of ~5% with the detection limits of
NO at 97 ppb [36].

Woo Choi et al. [37], produced a sensor for NO2 detection with platinum (Pt)-
decorated SWCNTs. The Pt decorated SWCNTs were synthesized using a spray
method and sequential thermal treatment.Comparative testswere carried out between
pure SWCNTs and the Pt decorated ones. The parameters used were 2 ppm of NO2

at different temperatures (25–150 °C) during 180 s. At 100 °C, both sensors showed
their best sensitivity. SWCNTs decorated with Pt at this presented an improvement
of about 63% compared to pure SWCNTs.

Furthermore, the selectivity of the Pt decorated SWCNTs was investigated by
measuring the sensing performance toward different gases such as NO, C6H6, C7H8,
C3H6O,CO, andNH3 at room temperature. Pt decoratedSWCNTspresented elevated
selectivity toNOandNO2 and an electrical response∼5 times higher than that of pure
SWCNTs. Based on these results, the authors concluded that Pt decorated SWCNT
is a promising material for high-efficiency NO2 sensing [37].

In 2014, Asad and Sheikh proposed a surface acoustic wave (SAW) based gas
sensor for H2S detection. SAW sensors operate based on wave modulation due to
exposure to changes in physical and chemical phenomena [38]. This type of sensor
is applied in various fields; in devices for detecting blood pressure, temperature,
atmospheric pressure, gases, among others. For the sensor production, SWCNTs
were acid-treated to form carboxylic functionalizations on their surface. Carboxyl
functionalized SWCNTs were then mixed with copper sulfate (CuSO4) in water to
decorate the tubes with copper. Then, Cu-SWNTs were drop-coated onto a LiNbO3

piezoelectric substrate previously treated with a solution of poly-diallyl dimethylam-
moniumchloride (PDDA). The producedSAWsensor sensitivity and selectivitywere
evaluated by frequency changes using an HP8751 Network Analyzer. The minimum
concentration detected by the Cu-SWNTs system was around 5 ppm. In 2016, the
authors published a second paper [35] in which SWCNTs were conjugated to CuO
nanoflowers through a hydrothermal route. The synthesized material was inserted
in a conventional Radio Frequency Identification (RFID) system to produce a gas
sensor with no need for a battery. The method presented highly selectivity towards
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H2S at very low concentrations (100 ppb). SWCNTs conjugated CuO nanoflowers
indicated a great potential to be applied in the production of commercial gas sensors
for H2S detection.

Wang et al. [40], showed for the first time the production of SWCNTs functional-
izedwith tetra-α-iso-pentyloxyphthalocyanine copper (CuPcTIP) and tetra-α-(2,2,4-
trimethyl-3-pentyloxy) metal phthalocyanines (CuPcTTMP). The CuPc derivates
were anchored on the surface of SWCNTsbyπ–π interactions. SWCNT/CuPcTTMP
and SWCNT/CuPcTIP sensors were produced as thin films and were analyzed under
a constant flow of 80 ppm of different gases. Both sensors presented selectivity
towards NH3, with a sensitivity around 23.28% to SWCNT/CuPcTTMP and 30.10%
to SWCNT/CuPcTIP. As for the other gases tested (CO2, CH4, H2, and CO), the
sensitivity was less than 1% at 80 ppm. Furthermore, both sensors demonstrate good
repeatability and no visible degradation after consecutive measurements [40].

In 2019, Lone et al. investigated the efficiency of sensors based on pure and
ordered (vertically aligned forest-VA) SWCNTs and disordered (randomorientation-
RO) SWCNTs to detect NH3. VA-SWCNTs and RO-SWCNTs were produced by
plasma-enhanced CVD (PECVD) on a Fe-coated Si substrate. The growth of RO-
SWCNTs can be obtained with any selected parameter. In contrast, the growth of
VA-SWCNTs requires the proper optimization of the growth parameters like growth,
temperature, gas source, among others. For the sensingmeasurements, Au electrodes
were deposited with a simple brush technique having a minimum gap of 2 mm
following the heat treatment to convert the electrode solution to metallic form. To
evaluate the detection capacity, the two sensors were subjected to a constant flow of
NH3 with 20–40 ppm concentrations at a temperature of 40 °C. The VA-SWCNT
sensor presented a lower sensitivity than RO-SWCNTs towards NH3. Aligned forests
have a smaller surface area than disorderedCNTs due to their high density, explaining
the obtained result. The best results forRO-SWCNTsandVA-SWCNTs towardsNH3
detection were 200–250% and 80–100%. A full recovery (90–100%) was observed
for RO-SWCNT, while 80–90% recovery was found for VA-SWCNT. Both sensors
presented a potential for application in the production of commercialNH3 gas sensors
[41].

Recently, Gupta et al. [35] investigated the selectivity and electric conductivity
of SnO2 decorated SWCNTs towards NH3 e NO2. The authors correlated the depen-
dence of the electrical properties on gas concentration, and after analyzing the data
using an electrical sensor, they produced a Langmuir model. The Langmuir adsorp-
tion isotherm and other adsorption isotherms describe the equilibriumbetween adsor-
bate and adsorbent systems for SW and MWCNTs [38]. Pure SWCNTs and SnO2

decorated SWCNTs were used in this study. SnO2 nanoparticles were obtained by
the reduction of SnCl2.2H2O in ammonia solution. The SWCNTs were dispersed
in DMF and were decorated with the addition of SnO2 nanoparticles in the solu-
tion. To finalize, the solution was vacuum filtered to separate the solid product. The
SnO2 decorated SWCNTs were annealed at 400 °C in the presence of N2 for 10 min.
The sensor was mounted on a Printed circuit board header with gold electrodes and
exposed toNO2 andNH3 in a gas cell at 2–20 ppm concentrations. For both gases, the
decorated SWCNTs showed greater selectivity than the sensor with pure SWCNTs.
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Theoretical studieswere carried out to obtain theLangmuir constants kL (ppm)−1 and
α (�m)−1 for the produced sensors. Comparing the obtained results, it was possible to
observe an increase in the value of the constants of the decorated nanotubes compared
to the pure ones for both NO2 and NH3. The SWCNTs surface decoration with SnO2

nanoparticles improved the SWCNTs adsorption kinetic energy [35].

5.2 MWCNTs Gas Sensor

MWCNT based gas sensors are designed to detect the same types of gases as
SWCNTs. MWCNTs sensors are qualified to measure gasses at a very small concen-
tration (e.g., ~0.1 ppm of NO2). BothMWCTS and SWCNTs present elevated sensi-
tivity at high temperatures (100–250 °C), reaching a resistivity variation, in the pres-
ence of NO2, of 79.8% (150 °C) for SWCNTs and 59.6% (200 °C) for MWCNTs
[43]. The main advantage ofMWCNTs over SWCNTs is their cost-effective produc-
tion. Elevated quantities of high-quality MWCNTS can be produced using low-cost
processes [19]. This aspect makes MWCNTS very interesting for the development
of commercial gas detection devices. The disadvantage of using MWCNTs over
SWCNT is that at low temperatures (<100 °C), the sensor can present long recovery
times (~2 h). At higher temperatures, between 100 and 200 °C, the recovery time of
MWCNTs is similar to SWCNTs [22].

Espinosa et al. [32] described the production of gas sensors based on MWCNTs
decorated with Au or Ag nanoclusters. The nanotubes were functionalized in oxygen
R.F. plasma and decorated using electron beamevaporation. The decorated nanotubes
were deposited over micro-hotplate substrates that included interdigitated electrodes
and a micro-heater. The sensitivity of the sensors was evaluated by variating the
gases composition and concentration: NO2 (500 ppb, 1.5 and 6.5 ppm), CO (10
and 50 ppm), CH3CH2OH (5, 10 and 50 ppm), and C2H4 (5, 10, and 50 ppm). Au-
decoratedMWCNT could detect NO2 even at room temperature, with responsiveness
up to 6% at 500 ppb. At 6.5 ppm of NO2, the responsiveness rose to 12%. Although
Ag-decorated MWCNT also responded to NO2, Au-decorated MWCNT sensors
showed better results. Both Au and Ag decorated MWCNTs presented very low
sensitivity to CO, ethanol, and ethylene, indicating a high selectivity of Au decorated
MWCNTs towards NO2. The produced Au sensor is capable of detecting NO2 in
concentrations of 500 ppb (room temperature). Before this publication, a 500 ppb
sensitivity was found only at high temperatures (150 °C) [32].

Yan et al. have recently [44] developed an MWCNTs based sensor
by electrophoretically depositing the nanotubes onto porous silicon, forming
MWCNTs/porous silicon (PS) composite. Chemiresistive gas sensors were fabri-
cated using the produced composite. For building a gas sensor, two Pt square elec-
trodes were deposited on the top of the MWCNTs/PS sample using a magnetron
sputtering system. The sensing activity for the produced gas detector was investi-
gated in the presence of NO2. The working temperature was optimized by analyzing
the dynamic gas-sensing responses of MWCNTs/PS to 1 ppm NO2 at different
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temperatures (25–150 °C). The resistance value of the sensor largely decreases
with increasing temperature. The best result was found for CNTs/PS with an elec-
trophoretic deposition time of 5 min, presenting 8.5% (resistivity) and fast response-
recovery times (~37 and ~ 34 s) at room temperature (~25 °C) towards 1 ppm
NO2. The MWCNTs/PS composite is an interesting material for application in NO2

detection at room temperature [44].
In 2021, Bang et al. produced gas sensors based on Cu2O/CuO decorated

MWCNTs. Cu layers with different thicknesses of 3, 6, and 9 nm were coated on
MWCNTs using sputtering for different times of 1, 2, and 3 min at 25 °C, respec-
tively, followed by annealing at 500 °C to produce isolated Cu2O/CuO. The gas
selectivity analysis was carried out with concentrations in the range of 1–50 ppm
at a temperature of 150 °C. The gases C3H6O, NH3, C2H5OH, CO, C7H8, C6H6,
and H2S were tested. For H2S, which was the main target of the study, tests were
also carried out variating the temperature: 50, 100, 150, and 200 °C. Cu2O/CuO
decorated MWCNTs sensors work as electron receivers in the presence of H2S, thus
increasing their resistivity. The sensing tests indicated 6 nm as the best coating thick-
ness for Cu2O/CuO. With this parameter defined, tests were performed varying the
temperature, and the sensor presented the best results at 150 °C, reaching a variation
resistivity of 1613% for 5 ppm of H2S. The response towards H2S was much higher
than for the other gases, also indicating excellent selectivity. In particular, it showed
a gas response of 1244% to 1 ppm H2S at 150 °C, with a response time of 219 and
a recovery time of 77 s. According to the authors, the produced MWCNTs sensor
decorated with Cu2O/CuO (6 nm) is superior to other H2S sensors found in literature
due to the capability of detecting H2S at low concentrations (1 ppm) and relatively
low temperature (150 °C) [45].

Liang et al. [46] fabricated sensors for the detection of NH3. 2,9,16,23-
tetrakis(2,2,3,3-tetrafluoropropoxy) metal (II) phthalocyanine/MWCNT hybrids
(TFPMPc/MWCNT, M = Co, Zn, Cu, Pb, Pd, and Ni) were prepared by using
a solution self-assembly method based on π–π stacking interactions. To prepare
gas sensors composed of TFPMPc/MWCNT hybrids, interdigitated electrodes were
fabricated by a standard lithography process on polished ceramic substrates of
alumina. Sensors were analyzed for NH3 at concentrations of 0.1–200 ppm at room
temperature. Sensing tests were also performed for NO and NO2 with concentrations
up to 10,000 ppm. The produced sensors presented insignificant responses for NO
and NO2 even in very high concentrations, indicating the elevated selectivity of the
produced sensors towardsNH3. The best result was found for the TFPCoPc/MWCNT
sensor, which presented a sensitivity of 26% to 50 ppm NH3 with a limit of detec-
tion of 60 ppb. This sensor showed a fast response and recovery time. The sensor’s
sensitivity decreased according to the metal in the composition: Co > Zn > Cu > Pb
> Pd ∼= Ni. The interactions between NH3 and metallic ions vary depending on the
ion composition [46].

Marimuthu et al. have currently [13] presented a study comparing two sensors
towards NH3 detection; Flake-like NiCo2O4/MWCNTs and NiCo2O4. NiCo2O4

nanoparticles were synthesized by the hydrothermal method. NiCo2O4/MWCNTs
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flake-like nanostructured composite was produced bymixingNiCo2O4 and function-
alizedMWCNTs. The produced powderswere dispersed in deionizedwater andwere
dropped onto Fluorine doped Tin Oxide (FTO) substrate with two copper tapes on
the extremities. The authors analyzed the frequency difference with the LCR meter
device (LCR-SM6023) in the presence of 100 ppm NH3 at room temperature. Both
NiCo2O4 and NiCo2O4/MWCNTs sensors demonstrated good sensitivity to NH3

gas. However, NiCo2O4/MWCNTs had a better response than NiCo2O4 concerning
sensitivity, but its reproducibility and recovery were much lower. According to the
study, NiCo2O4 and NiCo2O4/MWCNTs are promising materials for gas monitoring
[13].

6 Conclusions

CNTs have been proven effective for the fabrication of gas sensors. The nanotubes
can be used directly or combined with other materials such as metal and oxide
nanoparticles, polymers, etc. According to the linkedmaterial, the CNTs can become
highly sensitive and selective towards specific compositions. CNTs based detectors
with elevated sensitivity (e.g., ~100 ppb to H2S) and selectivity (e.g., 1000% to
H2S at 1 ppm) have been produced in the last few years. However, different aspects
such as the response-recovery times and the reproducibility of the results should be
improved to produce efficient systems for gas detection. Besides, there are a variety
of combinations between CNTs and other materials that were not investigated yet.
These new combinations can lead to significant advances in the field, enhancing the
performance of the current commercial systems for gas sensing.
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Abstract Titanium dioxide has attracted much attention from several researchers
due to its excellent physicochemical properties. TiO2 is an eco-friendly material
that has low cost, high chemical stability, and low toxicity. In this chapter, the main
properties of TiO2 and its nanostructures are discussed, as well as the applications of
these nanostructures in the generation of renewable energies to replace fossil fuels.
We start with an introduction that explains why TiO2 is suitable for renewable energy
technology applications. Next, some renewable energy technologies where TiO2 has
been successfully studied and applied are reviewed. Examples of these technologies
include supercapacitors, solar cells, hydrogen production, lithium-ion batteries, and
sensors. For each of these applications, we highlight their current challenges and
discuss how TiO2 nanomaterials can improve the performance of the devices.
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TNT Tunneling Nanotubes
PED Photoelectrochemical

1 Introduction

Theglobal energydemand is increasing every daydue to the exponential growthof the
population. Currently, fossil fuels are still the primary energy source, causing envi-
ronmental impacts and climate change [1]. Thus, the development of new renewable
and sustainable energy sources becomes necessary.

In this context, it is possible to highlight the energy of hydrogen, capable of
producing electricity with pure water as a by-product [2, 3]. The big problem is
in the limited availability of hydrogen and high cost [4]. Hydrogen extraction from
water molecules is an excellent productionmethod because water is abundant and the
process does not produce harmful by-products [5, 6]. However, the division of water
molecules requires a high energy (approximately 237.46 kJ/mol ofGibbs energy) [7].
Energy from renewable sources, such as solar energy, can electrolyze thesemolecules
[8].

Solar energy has several advantages over other energy sources, such as: producing
lower CO2 emissions, not producingwaste products in the energy generation process,
and being an inexhaustible source. Several countries have preferred solar energy
as an alternative energy source and many studies have been done to improve the
efficiency of solar cells available on the market. Currently, most solar cells are based
on silicon; however, their processing requires large amounts of energy and their
efficiency decreases at higher temperatures. The presence of these concerns has
stimulated researchers to investigate the new materials for photovoltaic applications
[9].

The importance of using sensors, especially gases, is also emphasized. There is a
growing concern about the safe use, storage and transport of gases since, after certain
levels of concentration, some can become flammable and explosive in the air, even
though they are colorless and odorless. Gases such as H2 need real-time monitoring
so that there is an early warning in the event of a leak [10].

TiO2 has been widely used in the areas of solar cells, supercapacitors, lithium-ion
batteries, photocatalysis, gas sensor and biosensor (Fig. 1) due to its low cost, high
chemical stability, low toxicity and respect for the environment [11]. TiO2 has a
wide bandgap of about 3.2 eV and, therefore, excellent photocatalytic activity under
ultraviolet light illumination [12]; however, this value is equivalent to less than 5%
of the total sunlight. In addition, photogenerated electron gap pairs can recombine
quickly, leading to low quantum efficiency [13]. Some strategies to overcome this
problem are discussed throughout this chapter.
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Fig. 1 Scheme of the applications of TiO2 in different fields. (Reprinted with permission of [14])

2 Titanium Dioxide (TiO2)

Titanium dioxide has unique properties and characteristics that make it ideal for
countless applications. It is widely used as a photocatalyst because of its high oxid-
ability and its activity under the ultraviolet spectrum [15, 16]; in oral consumption
products such as food (E171 additive), toothpaste and medicines due to its stability
and low toxicity [13]; in the degradation of pollutants and bacteria thanks to its
insolubility in aqueous medium [17]; and in the generation of hydrogen gas by water
splitting [18]. Titanium dioxide also has attributes such as high electrical resistance
(resistivity of 10−14�.cm−1) [19], high durability and hardness [20], and excellent
transmittance in the visible region of the spectrum.

Titanium dioxide (TiO2) belongs to the transition metal oxide family. It can be
found in eight different crystalline forms TiO2-B, TiO2-R, TiO2-H, TiO2-II, TiO2-
III, rutile, anatase and brookite [22, 23]. Figure 2 presents the most studied crystal
structures: (a) rutile, (b) anatase and (c) brookite. The anatase and rutile phases have
been extensively researched due to their higher photoactivity. However, they have a
band gap energy of 3.2 eV (387 nm) and 3.0 eV (413 nm), respectively, absorbing only
UV light (less than 5% of total solar energy). Furthermore, the recombination rate of
the e+ /h- pairs is fast, which reduces the quantum efficiency [13]. To overcome this
problem, it is not uncommon to use techniques to increase photocatalytic activity: (i)
TiO2 nanostructures, (ii) Doping and (iii) Composites with carbonaceous materials.
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Fig. 2 TiO2 crystal structures: rutile a, anatase b and brookite c. (Reprinted with permission of
[21])

(i) TiO2nanostructures
Regarding TiO2 nanostructures, 0D nanoparticles have excellent performance
as photocatalysts, adsorbents and sensors due to their large surface area and
easy fabrication [24]. However, the inherent disadvantages, such as the fast
recombination of electrons and gaps, slow transfer of charge carriers and high
recycling cost, limit their photocatalytic efficiency. Recently, one-dimensional
(nanotube, nanofibers, nanobands, etc.), two-dimensional (nanofilms) and
three-dimensional (nanospheres) structures have shown improvement in
electron-gap separation, rapid transfer of charge carriers and increased active
surface area compared to TiO2 nanoparticles, causing an increase in catalytic
activity [25]. Figure 3 displays several TiO2 morphologies reported in the
literature.

Comparing the aforementioned structures, there is a special highlight for nanotubes
as they present excellent structural parameters such as a large surface area, increasing
efficiency in electron transport and, consequently, enhanced catalytic activity [12].

(ii) Doping
The doping of TiO2 nanostructures can occur with non-metallic elements,
such as Boron (B), Carbon (C), Nitrogen (N) and Sulfur (S), as well as with
transitionmetals such asManganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni)
and Molybdenum (Mo). These materials combine the electrical and optical
properties of TiO2 with magnetic properties. The presence of dopants can also
cause the displacement of energy from the TiO2 band gap to other regions of
the electromagnetic spectrum [12].
The doping of TiO2 nanotubes has recently aroused great interest due to the
various possibilities of applications. Some authors, such as Peighambardouts
et al. [27], studied the photocatalytic activity of non-doped, N-doped and self-
doped (blue) TiO2 nanotubes. For those dopedwithN (Fig. 4), it was suggested
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Fig. 3 Different TiO2 morphologies: a nanotubes, b nanowires, c nanorods, d nanoribbons,
e nanofibers, f nanosheets, g nanoparticles, and h mesoporous microsphere. (Reprinted with
permission of [26])

to prepare the TiO2 nanotubes by anodization (Voltage: 60 V; Time: 4 h; Elec-
trolyte: ethylene glycol/NH4F/H2O), and then immerse the samples in a 1 M
solution of NH3.H2O for 8, 15, 20 and 25 h. In order to manufacture the self-
doped TiO2 nanotubes, the reductive electrochemical doping was performed
in a system of three electrodes in the 0.5 M Na2SO4 support electrolyte at a
potential of −1.4 V for 10 min of polarization. The results showed that the
degradation rate is increased by up to 65% through nitrogen doping.
Similarly, Yuan et al. [28] proposed TiO2 doping in two stages. Initially, TiO2

nanotubeswere preparedby anodization (Voltage: 60V;Time: 6h;Electrolyte:
ethylene glycol/NH4F/H2O) and, sequentially, the nanotubes were immersed
in a 1 M NH4OH solution.
Doping can be performed in a post-treatment after the anodization process, as
in the work of Gao et al. [29]. The authors synthesized the TiO2 nanotubes by



78 C. Sippel et al.

Fig. 4 FESEM images of N-doped TiO2 nanotubes anodized for 4 h and doped in a NH3 solution
at immersing times of a 8, b 15, c 20, and d 25 h. (Reprinted with permission of [27])

anodization (Voltage: 19.9 V; Time: 2 h, magnetic rotation of 700 rpm; Elec-
trolyte: glycerol/H2O/NH4F) and subsequently, Boron doped Graphene was
deposited on the TiO2 substrate usingChemical VaporDeposition (CVD). The
development of Boron-Graphene/TiO2 nanostructures increased the conduc-
tivity of TiO2 nanotubes. Lithium-ion capacitors prepared with these elec-
trodes showed high energy density (221.8 Wh·kg−1 to 5.98 kW·kg−1), high
power density (35.1 kW·kg−1 to 102.4 Wh·kg−1) and excellent cycling
stability (91.3% retention after 10,000 cycles). In addition, these structures
were produced by anodizing, annealing and CVD processes, each with high
operability and good repeatability, allowing industrial production. They can
be used for a wide range of other energy and environment-related systems,
such as batteries, fuel cells, catalysis and water treatment.
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(iii) Composites with carbonaceous materials

The development of carbon nanostructure composites is another emerging area.
TiO2 composites based on graphene, fullerene and carbon nanotubes have been
shown to improve photocatalytic and photoelectrochemical properties [30–33]. The
combination of carbon nanotubes with TiO2 can promote the separation of electron-
gap charges generated in irradiation, and the presence of C-O-Ti bonds reduces the
band gap, increasing the absorption wavelength [31].

3 Applications

TiO2 can be used in numerous applications for energy generation and storage due
to its excellent properties that differentiate it from most elements. The following
sections will discuss some of the main applications of TiO2 for energy generation
and/or storage.

3.1 Supercapacitors

Supercapacitors are devices capable of managing high energy rates compared to
batteries. Although supercapacitors provide hundreds to many thousands of times
more power in the same volume due to their fast surface reactions [14], they are not
able to store the same amount of charge as batteries, generally being 3−30 times
smaller [34, 35]. This makes supercapacitors suitable for applications where energy
“explosions” are required, but a high energy storage capacity is not required [36].

Another great advantage of supercapacitors is their life cycle. These devices can
withstand millions of cycles thanks to their charge storage mechanism, which does
not involve irreversible chemical reactions, storing charges physically on the surface
of the electrodes in a double electrical layer. This makes it possible to exceed the
life cycle of the batteries, which are, at best, capable of withstanding a few thousand
cycles [34]. The main disadvantage related to the charge storage mechanism is the
operating voltage of a supercapacitor cell, which must be kept low in order to avoid
the chemical decomposition of the electrolytes [34]. There is also a disadvantage
in relation to recycling, as it presents problems similar to batteries: difficulty in
separating the different materials and high process cost, being, sometimes, more
advantageous to create the device from “zero”.

A supercapacitor cell comprises two electrodes with a separator between them
(Fig. 5). The separator is soaked in an electrolyte and prevents electrical contact
between the electrodes. The separating material must be ion-permeable, to allow
ionic charge transfer, while having high electrical resistance, high ionic conductance
and low thickness to obtain the best performance [37]. The potential for breakage of
the electrolyte in one of the electrodes limits the attainable cell voltage, while the
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Fig. 5 Symmetric supercapacitor schematic diagram. (Reprinted with permission of [34])

equivalent series resistance (ESR) of the cell will depend heavily on the conductivity
of the electrolyte.

In addition to the several advantages of titanium dioxide already presented, nano-
metric TiO2 particles can shorten the ion diffusion length, and reduce the ionic
resistance to diffusion and resistance to charge transfer of the supercapacitors [14].

Jiang et al. [38] reported a study with N doped TiO2 microspheres, prepared
by a hydrothermal process, for high performance supercapacitors. This structured
microsphere can provide a large specific surface area and an appropriate pore size,
which leads to electrolyte infiltration. The nitrogen doping improved the intrinsic
electrical properties of TiO2. Su et al. [39] proposed a similar methodology using N-
doped TiO2 nanobands, through a hydrothermal process (Fig. 6). The results showed
that the TiO2 morphology affected the degree of nitrogen doping. The optimized
N-TiO2–3 electrode showed the maximum areal capacitance, which is much higher
than that of the seeding sample. This provides a general method to improve the actual
capacitance of nanomaterials by adjusting the concentration of seed solution.

Huang et al. found that the characteristics of TiO2 nanoparticles are further
enhanced when doped with Ag for use in supercapacitors [40]. Rajangam et al.
showed that the silver ions increased the conductivity, as well as the capacitance of
the supercapacitor [41].
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Fig. 6 The morphology of a TiO2-3 and b N-TiO2-3 electrodes. (Reprinted with permission of
[39])

3.2 Solar Cells

In 1 h, the earth receives enough energy from the sun to supply its energy needs for
almost 1 year, around 5000 times the amount of energy from other energy sources.
Among renewable energy resources, solar energy proves to be the source of choice
due to its source and energy source [42].

In terms of cost–benefit, excellent efficiency and ease of manufacture, a dye-
sensitized solar cell (DSSC), which is a subclass of thin-film solar cells, has proven
to be one of themost promising alternatives to silicon solar cells, which are expensive
devices due to their complicated production process [43]. A schematic representation
of DSSCs is illustrated in Fig. 7.

The system is constituted by four main components [44]:

(i) a photoanode composed of a layer of mesoporous oxide (usually TiO2)
deposited on a transparent conductive glass substrate;

(ii) a dye sensitizer monolayer covalently attached to the surface of the TiO2 layer
to collect light and generate electrons excited by photons;

(iii) an electrolyte containing a redox pair (typically I−/I3−) in an organic solvent
to collect electrons in the counter electrode and effect the dye regeneration;

(iv) and a counter electrode made of a platinum-coated conductive glass substrate
[45].

One of the main components of solar cells is the photoanode, which greatly
affects the total efficiency of light conversion. The matrix of TiO2 nanotubes, a
material with unique properties, has been used in studies with photovoltaic devices
for presenting characteristics such as highly ordered nanotube structure, acceler-
ating electron transport, and an ordered surface that increases the absorption of the
sensitizer [46, 47].
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Fig. 7 Arrangement of component and working principle of DSSCs. (Reprinted with permission
of [9])

O’Ragan et al. [48] first developed this sensitized solar cell using a TiO2 particle
filmas the photoanode.Many efforts have been devoted to improving the light conver-
sion of DSSC cells due to the numerous advantages such as its low cost, easy manu-
facturing and high efficiency. TiO2 materials have been shown to be a potential
alternative to conventional solid-state solar cells [49].

MaduraiRamakrishnan et al. [50] synthesizedTiO2 nanotubes by the solvothermal
method employing nanoparticles as starting material (Fig. 8). They were trans-
formed into nanotubes in the presence of concentrated NaOH. The surface area
of the nanotubes was considered to be larger compared to the initial nanoparti-
cles. Dye-sensitized solar cells (DSSC) were prepared using the TiO2 nanostruc-
tures as photoanodes and their conversion efficiencies were analyzed. The maximum
efficiency obtained was 7.2%.

Yun et al. [51] studied the effect of light absorption (LS) on dye-sensitized cells
(DSSC) using TiO2 nanotubes with different lengths. The results showed that the
TNT matrix, with greater length and larger tube diameter, improved the photoelec-
trochemical property (PEC) by generating a larger photocurrent and, in addition,
provided a larger surface area to yield more dye load. The improved PEC property
and the dye loading by the longer nanotube matrix (22 μm) led to a noticeable rate
of increase in energy conversion efficiency of 0.7–1.88% (168% increase) after LS
treatment 60 min, which was more prominent compared to enhancing DSSCs using
mesoporous TiO2 films. The morphology of TiO2 nanotubes in photoanodes has
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Fig. 8 Schematic diagram of the growth mechanism of TiO2 nanotubes and DSSC device
performance. (Reprinted with permission of [50])

more space, facilitating the cationic exchange in the electrolytic system, favoring the
injection of electrons and reducing their recombination.

The doping of semiconductors allows the modification of their properties. In
the work presented by Nguyen et al. [52] TiO2 nanotubes were synthesized by the
hydrothermalmethod assisted bymicrowave and dopedwith different concentrations
of Chromium (Cr). The results showed that TiO2 nanotubes doped with Cr had a
reduction in the recombination rate of the photogenerated charge carriers, leading to
a longer electron life. The DSSC based on Cr-TNT containing an atomic percentage
of 7.5% of Cr/Ti demonstrated the best efficiency in converting sunlight among the
prepared samples.

Liu et al. [53] synthesized TiO2 nanotubes by the hydrothermal method and
subsequently, the nanotubes were modified by Silver (Ag) nanoparticles by in-situ
photodeposition reaction. Results showed that Ag nanoparticles photodeposited on
the surface of TiO2 nanotubes improved the performance of the solar cell, increasing
the absorption of light and facilitating the separation and electron-gap transfer. The
photoanode of this work showed the best photoelectric conversion efficiency with
the fill factor (FF) of 53.63% and the efficiency (η) of 7.2%.

3.3 Hydrogen Production

With the rapid increase in population and industrial activities, renewable energy
sources are increasingly being targeted as energy alternatives to reduce CO2 emis-
sions and climate damage [54]. One of the most investigated renewable energies
today is hydrogen energy.
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The process of obtaining hydrogen can occur through five different routes:
thermal, electrolytic, photolytic, bioprocess and combined. The photoelectrochem-
ical process (photoelectrochemical water splitting) is a combined form of electro-
chemical and photolytic processes, with low environmental impact [55]. Currently,
the most used process is the thermal one. In this case, the steam usually reacts with a
hydrocarbon-type fuel, producing hydrogen. The fuels utilized are various, ranging
from diesel to natural gas and biogas, for example. In this type of generation, there
are carbon emissions. According to the Office of Energy Efficiency and Renewable
Energy, 95% of all hydrogen produced comes from natural gas [56].

Hydrogen extraction from water molecules is an excellent production method
because water is abundant and the process does not produce harmful by-products [5,
6]. However, the division of water molecules requires a high energy (approximately
237.46 kJ.mol−1 of Gibbs energy) [7]. Energy from renewable sources, such as solar
energy, can be used to electrolyze these molecules [8].

Several methodologies have been developed for water splitting, such as photo-
electrochemical, photocatalytic, radiolysis, photobiological and thermal decomposi-
tion. In photoelectrochemical and photocatalytic processes, it is possible to use solar
radiation, making them simple, efficient, clean and low-cost methods [57].

The concept of water decomposition using the photoelectrochemical method was
first reported by Fujishima and Honda [58]. The photoelectrochemical cell consists
of a semiconductor photo-anode, where oxygen is released, and a photo-cathode
(platinum), where hydrogen is produced. A voltage is applied in order to direct the
photogenerated electrons from the anode to the cathode [57].

Several materials have been used as an anode, such as TiO2, ZnO, CdSe, CdS,
GaP, SrTiO3, Nb2O5, WO3 and Fe2O3. Among the materials used, TiO2 is one of the
most studied and was the first material described as a photochemical catalyst for the
fission of the water molecule.

The approaches that have been applied to improve the photocatalytic activity of
TiO2 include increasing the active surface area [58], reducing the wide bandgap
[59], and improving the processes of charge separation and electron transfer [60].
The active surface area is generally increased by the surface modification of various
types of nanostructures, such as nanoparticles (NPs) [61, 62], nanorods (NRs) [63],
nanofibers (NFs) [64] and nanotubes (NTs) [65].

Among TiO2 structures, NTs have the largest surface area, which allows light
and reagents to diffuse over the entire tubular depth. Photocatalytic products, that is,
electrons, holes and ions, can be transported through the large area of the tube wall
[54]. In addition, TiO2 NTs have a bandgap of approximately 3.00 eV, which is the
lowest among the various types of nanostructures [66].

Venturini et al. [67] synthesized TiO2 nanotubes doped with cobalt (Co-TiO2)
by electrochemical anodization process. A similar approach was adopted by
Guaglianoni et al. [68] to obtain iron-doped TiO2 nanotubes (Fe-TiO2). The inser-
tion of the metal ions in TiO2 was carried out directly during the anodizing process,
reducing the synthesis steps and consequently the costs involved in producing the
material. Figure 9a–b presents the morphology of the synthesized structures. Linear



Titanium Dioxide Nanomaterials for Renewable Energy Applications 85

Fig. 9 SEM images of a the top view of the Co-TiO2 nanotubes and b the lateral view of the Fe-
TiO2 nanotubes. Current density curves comparing the photoelectrochemical behavior of the TiO2
pure nanotubes with the doped nanotubes with c cobalt (Co-TiO2) and d iron (Fe-TiO2). (Reprinted
with permission of [67, 68])

voltammetry tests evaluated the photoelectrochemical behavior of the produced elec-
trodes. It can be seen in Fig. 9c–d that the doped TiO2 nanotubes, both with Co and
Fe, showed a substantial increase in light conversion efficiency when compared to
the pure TiO2 catalyst. The current density values for the Co-TiO2 and Fe-TiO2

nanotubes were 3.6 × 10−4 A.cm−2 (at 1.0 V versus Ag/AgCl) and 1.9 × 10−4

A.cm−2 (at 0.75 V vs Ag/AgCl), respectively. The doped samples had a generated
photocurrent 2.5 times greater than the pure TiO2. Since the photocurrent is directly
related to the evolution of hydrogen gas within the system, the results indicate that
these materials are promising candidates for application as photoactive materials for
hydrogen production.

TiO2 nanoparticles treated with different pH solution during hydrothermal
synthesis were employed for H2 production via water splitting [69]. The samples
treated at higher pH presented better performance than the commercial TiO2 (P25).
For instance, the nanoparticles obtained with neutral pH (particle size = 11.3 nm;
surface area = 144.6 m2g−1) produced the largest amount of H2, approximately
110 μmol.g−1 h−1. The authors attributed this result to the presence of HO− groups
physisorbed on the catalyst surface, that trapped the holes and transferred the charges
between the semiconductor and the electrolyte.
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3.4 Lithium-Ion Batteries

Due to better performance and reduced production costs, lithium-ion batteries have
been gaining more and more space. Nowadays, they are used in various electronic
equipment, such as cell phones, notebooks, pacemakers, digital cameras, electronic
toys, among others, dominating the segment of portable rechargeable batteries [70].
In addition to the applications mentioned above, it is projected to be used on a large
scale in electric vehicles, which are less aggressive to the environment, and may
increase the trade in lithium-ion batteries [70].

The constant exchange of electronic equipment for more modern and convenient
ones by consumers has caused an increase in their disposal, increasing the number
of batteries in landfills. In developing countries, most batteries are still disposed of
in household waste and are subsequently sent to landfills. In 2004, about 45% of the
batteries of the EU countries ended up in landfills or were incinerated, while only
17%were sent for treatment.Worldwide, 700million lithium-ion batteries have been
discarded irregularly. In 2006, about 500 tons of these batteries were discarded in
Brazil alone [71, 72].

Generally, a lithium-ion battery is formed by a cathode, anode and a separator,
immersed in the liquid electrolyte and sealed in stainless steel, aluminum case or
plastic bag. The anode contains graphite powder as an active material, which is
mixed with a binder, usually PVDF, and coated in a copper foil current collector. On
the other hand, the cathode can comprise different types of activematerials, including
lithium metal oxides or phosphides, such as LiCoO2 (LCO) [73], LiMn2O4 (LMO)
[74] LiNixCoyMnzO2 (LNCM) [75], LiNixCoyAlzO2 (LNCA) [76] and LiFePO4

(LFP) [77], which are coated in an Al current collector with carbon black as the
conductive agent and PVDF as the binder.

Several studies have been conducted using TiO2 in lithium-ion batteries due to its
various economic and environmental advantages in the preparation of electrodes. It is
important to note that TiO2 is a low voltage and fast insertion host for Li and the TiO2

structure can remain stable during the extraction/insertion process, making TiO2 a
material with great anode potential in Li-ion batteries of high potency, avoiding the
formation of the passivation layer on contact with the electrolyte [78]. However,
TiO2 also has some disadvantages, such as poor performance per cycle because of its
low electron transport capacity. Therefore, many efforts are being made to overcome
these issues [14]. Guo et al. [79] prepared TiO2-RuO2 mesoporous nanocomposites
to be used as an anode in Li-ion batteries in order to improve the poor performance
of the cycle.

In recent years, several researchers are developing graphene to combinewithTiO2,
since together they can improve the structure capacity and cycle performance of TiO2

in lithium-ion batteries [80].Huo et al. [81] depositedmesoporousTiO2 nanoparticles
on the surface of a sulfur/nitrogen doped graphene oxide foam (SNG). As an anode
material for lithium-ion batteries, SNG/TiO2 (Fig. 10) exhibited excellent reversible
discharge capacity (444mAh.g−1, 0.1A.g−1) and good rate capability (217mAh.g−1,
2.0 A.g−1).



Titanium Dioxide Nanomaterials for Renewable Energy Applications 87

Fig. 10 a SEMand bTEM images of the SNG/TiO2 anodes for application in lithium-ion batteries.
(Reprinted with permission of [81])

Guo et al. [82] proposed the synthesis of a hybrid mesoporous TiO2/graphene film
using a one-step thermal steam method without the need for an additional annealing
process. The resulting material showed a better light harvest and greater charge
generation and separation efficiency, showing greater advantages than pure TiO2

synthesized by a traditional solvothermal method.
One of the big problems with batteries is found in the difficulty of recycling

and separation of materials. Currently, the main material recovered from lithium-ion
batteries is aluminum. However, this process is much more complex for lithium or
graphite. The large consumption of energy makes recycling so expensive that it is
generally cheaper to buy raw materials from the mines. In addition, an infrastructure
must be created to collect old electric car batteries to reuse them in a regulated
recycling process [72].

In this context, studies have also shown that TiO2 can be used as a facilitator
in the recycling process of lithium-ion batteries [83]. Mazurek et al. [84] presented
a process for separating lithium and cobalt (II) ions from aqueous solution using
hybridmaterial TiO2/ZrO2 enrichedwith lanthanum.The experimental data collected
showed a high selectivity of the synthesized hybrid material in relation to cobalt (II)
ions in the presence of lithium ions.

3.5 Sensors

In a world where technological advancement requires accurate information from
countless categories, sensors are becoming increasingly important. They have been
widely used in industrial, aerospace, marine exploration, environmental protection,
resource research, medical diagnostics and bioengineering [85].

The use of sensors, especially gases, is essential because there is a growing concern
about safe use, storage and transport since, after certain levels of concentration, some
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can becomeflammable and explosive in the air, even if they lack color and odor.Gases
such as H2, previously mentioned in the hydrogen production section, need real-time
monitoring to detect early warning in case of leakage [10].

Nanostructuredmaterials candetect andmonitor gases at high temperatures. Semi-
conductor materials based on titanium dioxide have been gaining ground due to their
excellent properties [86]. The literature presents multiple sensors based on TiO2

nanoparticles to detect different gases: CO [87, 88], ethanol [89], toluene [90], NO2

[91], O2 [88], CO2 [92], SO2 [93], NH3 [94], H2S [95], among others.
Hsu et al. [87] developed a CO sensor using TiO2/La0.8Sr0.2Co0.5Ni0.5O3

(LSCNO) perovskite. The experimental results showed that the TiO2/LSCNOhetero-
junction structure had a PN junction rectifier and is a better CO sensor at 200 °C for
a CO concentration of 400 ppm. The response of the CO sensors was 38.41%, with
good recovery and reproducibility.

The detection properties of TiO2 films were examined at different concentrations
of ethanol in the liquid phase by a simple procedure developed by Singh et al. [89].
The sensitivity of the sensor found was 0.052 mA.M−1.cm−2 for ethanol. Thus,
the degradation rate and the subsequent chemical detection properties of the TiO2

nanoarchitecture are of immense importance for the functions of the TiO2 structure
as a photocatalyst and chemical sensor.

Seekaew et al. [90] presented a highly sensitive gas sensor to detect toluene at
room temperature based on 3D nanotubes of titanium dioxide, graphene and carbon
nanotubes (3D TiO2/G-CNT). The structure was manufactured by chemical vapor
deposition and sparking methods. The mechanisms of toluene detection of the 3D
TiO2/G-CNT structure were proposed based on the formation of metal–semicon-
ductor Schottky junctions between metal structures of 3D graphene-CNT and n-type
semiconductor TiO2 nanoparticles due to the adsorption of toluene molecules via
low-temperature reduction reactions or direct charge transfer process.

Ramgir et al. [91] developed a highly selective NO2 sensor based on TiO2/ZnO
heterostructure nanowires (NWs) (Fig. 11). The sensor film is made by modifying
the surface of ZnO NWs with Ti (~30 nm) and subsequent annealing at 350 °C. XPS
studies indicated that Ti is present in the form of TiO2 on the surface. In addition, the

Fig. 11 a–b SEM images of the NO2 sensor based on TiO2/ZnO nanowires . (Reprinted with
permission of [91])
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detection of NO2 was achieved with a faster response kinetics, in which the response
and recovery times of 65 and 98 s, respectively, were obtained. Interestingly, the
response parameters were considered independent of the NO2 concentration; that is,
no significant variation in the response/recovery times was observed for different gas
concentrations. The results indicated that the TiO2/ZnO NW heterostructure film is
highly sensitive and selective for NO2.

In the study developed by Frank et al. [88] TiO2/La2O3 and TiO2/CuO-La2O3

sensors were fabricated. The concept of sensor orthogonality was developed, which
is a quantitative measure of how well the set of sensors can discriminate between the
two gases of interest. This model was then used to extract the concentrations of CO
and O2 in a mixture of gases in the ranges of 2–10% O2 and 250–1000 ppm of CO.
The prediction capacity was considered reasonable in certain concentration ranges
and was determined by the orthogonality of the sensor responses.

The monitoring of the CO2 level, especially in closed spaces, is increasingly
necessary in technological applications or human activities.Most data in the literature
reveal CO2 detection materials with high sensitivity above 300 °C, but Mardare
et al. [92] investigated the CO2 gas detection abilities close to room temperature
and atmospheric pressure, using thin TiO2 films doped with Cr. The increase in the
percentage of Cr3+ increased the power of interaction with the adsorbed species (O2

and/or CO2).
Thangamani et al. [93]. recently reported the preparation of polyvinyl formal

(PVF)/titaniumdioxide (TiO2) nanocomposite films. The results obtained in different
analyzes confirmed that the TiO2 NPs were finely dispersed in the PVF matrix and
that there is good compatibility between the polymeric matrix and the nanocarrier.
The chemo resistive sensormade frompure TiO2 NPs exhibits amaximum sensitivity
of 50.25% at 370 °C, while the PVF/TiO2 nanocomposite sensor showed improved
sensitivity: 83.75% at a relatively low operating temperature of 150 °C towards
600 ppm sulfur dioxide (SO2). The PVF/TiO2 nanocomposite film sensors manufac-
tured on the work have the advantages of low energy consumption, cost-effectiveness
and differentiated detection skills for SO2 detection that enables potential applica-
tions. Thus, the experimental results showed excellent behavior in relation to the
detection of SO2 gas to control industrial processes and environmental monitoring
applications.

Pan et al. [94] synthesized Pd-TiO2 films by the technique of flame stabilization
on rotating surface (FSRS) with different proportions of Pd doping. It was found that
the TiO2 particles prepared by the FSRS technique have diameters ranging from 9
to 17 nm and are of the anatase type. TiO2 films doped with Pd remained porous
anatase and the Pd element was well dispersed in the TiO2 film. The detection test
results demonstrated that the TiO2 film nanosensors responded quickly to the change
in the concentration of CO, while slightly slowly to the change in the concentration
of NH3. Pd doping remarkably improved the response sensitivity of the TiO2 sensor
for CO detection, and to some extent for NH3.

Tong et al. [95] obtained a film of autonomous arrangement of TiO2 nanotubes
(TiNT) by a one-step anodizing method. The results of the characterization with
SEM, TEM, XRD and EDX indicated that the main compound in the TiNT matrix
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film was titania with anatase phase, and the average inner diameter of the nanotube
was about 110 nm with a wall thickness of 16 nm and a layer thickness of 3.8 μm.
Subsequently, the detection properties for H2S of the TiNT-based gas sensor were
investigated. The results showed that operating at 300 °C, the gas sensor had not only
excellent reversibility, selectivity and stability, but also good linearity between the
sensor response and theH2S concentration. The excellent gas detection properties and
the easy fabrication of the TiNT-based gas sensor have presented potential industrial
applications in the future.

4 Conclusion

Due to the rapid technological development and the significant population expansion,
there is an increasing search for alternative energy sources that can meet the energy
demand and reduce the environmental problems caused by the use of non-renewable
energy. Titanium dioxide has been widely used in the fields of solar cell, photocatal-
ysis, gas sensor and batteries due to its low cost, high chemical stability and respect
for the environment. In particular, TiO2 nanostructures have gained much attention
among researchers, as these nanomaterials improve the separation of charge carriers,
increasing quantum efficiency, and, in addition, they can be explored in various
morphologies, such as nanorods, nanotubes, nanofibers, nanowires, among others.
TiO2 nanostructures can also be combined with several other components and mate-
rials, such as graphene, making their applications in energy generation and storage
promising.
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Nanostructured Catalysts for Biomass
Gasification

Márcia Cristina dos Santos, Tania Maria Basegio,
Luís António da Cruz Tarelho, and Carlos Pérez Bergmann

Abstract This chapter presents studies on nanostructured catalysts used in biomass
gasification processes. Initially, an overview of gasification is presented, as well as
the characteristics of the process and equipment. Some studies from the literature
are discussed, with examples of nanocatalysts used to remove tar in gasification. The
synthesis processes, characterizations, and efficiencies of these catalysts are shown.

Keywords Nanocatalysts · Catalysts nanostructured · Biomass · Gasification · Tar
removal

Abbreviations

PAH Polycyclic aromatic hydrocarbon
SCWG Supercritical water gasification

1 Introduction

Gasification is a process that consists of the thermochemical conversion of biomass
into a combustible gaseous product through the supply of a gasification agent. This
gasification agent is a gaseous compound, which can be atmospheric air, oxygen,
water vapor, and mixtures of the above. Gasification is recognized as a process
with numerous environmental and social advantages since it is an alternative for
the valorization of waste (biomass), obtaining a renewable fuel that can be used to
replace fossil fuels in selected applications [1].
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The gaseous compounds generated by the gasification process depend on several
factors, such as characteristics of the biomass used and operational conditions of
the process (temperature, equivalence ratio, type of reactor). From this process, a
mixture of gases is obtained, which include carbon dioxide, water, carbon monoxide,
hydrogen, light hydrocarbons, as well as ash and slag. The feedstock and gasification
agent together with the process conditions that minimize the formation of tar need
to be optimized in order to generate a gas rich in hydrogen and carbon monoxide,
and with good calorific value.

Tar consists of a mixture of heavy hydrocarbons generated in the process. In
addition, to reduce the calorific value of the gas obtained, the tar can also cause
problems of clogging, fouling and pollutant emissions during the use of the gas in
combustion systems [2].

Tar is among the most relevant drawbacks found during biomass gasification.
The elimination of this technological barrier is the focus of many studies, which
comprise primary or secondary measures (see Fig. 1). Primary measures consist of
processes carried out inside the gasification reactor (alteration of operating param-
eters, use of catalysts, changes in the reactor design), while secondary measures
are performed downstream the gasification reactor, and can include gas scrubbing
or catalytic processes. In general, studies with catalysts are focused on obtaining
suitable materials capable of destroying the tar, and for which can be minimized
the deactivated by carbon deposition, contamination and microstructural changes, in
addition to problems related to erosion [1].

For a catalyst to have good potential for tar destruction, a relevant property is
a high specific surface area, to provide a large contact surface for the reaction of
transforming the tar into light hydrocarbons, H2 and CO. In addition, it must have
low cost, low-pressure drop, ease of obtaining and operation, and resistance to the
temperatures of the process, which, in general, are around 800–1200 °C [4].

The gasification process can be developed in distinct types of reactors, and the
most common include the fixed bed (e.g., downdraft, updraft, cross-draft), fluidized
beds (e.g., bubbling fluidized bed and circulating fluidized bed) and entrained flow
reactor [5].

Fig. 1 Schemeof primary and secondarymeasures for tar reduction and removal (Reprinted adapted
with permission [3])
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The gasifier capacity range and the amount of tar produced vary by each type of
gasifier configuration. In general, downdraft fixed bed gasifiers are used in smaller
scale applications, and produce a good syngas quality with low tar content (around
0.1 g·m3). In contrast, updraft fixed bed gasifiers are not attractive due to the high
tar levels generated (10 to 100 g·m3). Fluidized bed gasifiers can be used in large
installations and for processes with high daily quantities, generating an intermediate
amount of tar (from 1 to 10 g·m3) [4].

2 Tar Compounds in Biomass Gasification

As seen previously, the formation of tar is a limiting factor for the gasification process,
which makes the study of its removal or reduction so important. Tar is a black, sticky,
and viscous liquid, formed by a complex mixture of aromatic hydrocarbons that
condense in the cooler areas of the gasifier [3].

The formation of tar as a byproduct of the gasification process decreases the effi-
ciency of the process and limits the subsequent applications of the obtained products
[6], in addition to causing clogging and incrustations in the gasifier.

The formed tar can be classified as primary, secondary, and tertiary, depending
on the process conditions in which it is formed. Primary tar is produced at lower
temperatures, from 200 to 500 °C, and contains significant amounts of oxygen. At
temperatures above 500 °C, the components start to become heavier molecules called
secondary and tertiary tar, which are formed by the recombination of fragments of
the primary tar, with the removal of oxygen [2, 3].

The composition of the tar depends on several factors, as mentioned before.
Figure 2 shows an example of a typical composition of biomass tar.

There are several factors that can reduce the formation of tar. According to a study
by Rabou et al. [2], a higher moisture content of the feedstock, an increase in the
gas residence time in hot areas of the gasifier, a higher temperature and the addition
of olivine or dolomite to the reactor bed are factors that decrease the amount of tar
produced during the gasification process.

Once formed, the tar can be removed in post gasification, either by physical
removal or by cracking. Physical removal consists of using filters, cyclones, electro-
static precipitators, particulate scrubbers or alkaline salts, and is similar to removing
dust particles from a flue gas. The choice of the physical method to be used will
depend on the concentration and size distribution of the incoming particles (which
is difficult to measure), in addition to the tolerance of residual particles for the
subsequent application of the gas [3].

Cracking removal can be thermal or catalytic, and consists, respectively, of heating
the tar to high temperatures (around 1200 °C) or exposing it to catalysts at lower
temperatures (approximately 800 °C). Rabou et al. [2] tested the thermal cracking
of tar on laboratory scale and analyzed the effect of different temperatures and
different residence times of the gas in the reactor, observing a high reduction in
the concentration of tar for higher temperatures and residence times (Fig. 3).
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Fig. 2 Typical tar composition (Reprinted with permission [7])

Fig. 3 Effect of temperature and residence time on the tar removal by thermal cracking (Reprinted
adapted with permission [2])

3 Catalysts for Tar Destruction in Biomass Gasification

The catalytic processes for removing tar occur by the addition of a catalyst to break the
bonds of the tar macromolecules. When compared to thermal cracking, this process
has the advantage of causing reactions to occur at lower temperatures [6].

The development of catalysts that have ideal characteristics for the process has
been carried out, and this includes materials that are stable at high temperatures, do
not undergo deactivation by coke and H2S poisoning, have adequate resistance to
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Table 1 Examples of materials used as catalysts in gasification processes

Material References

Dolomite (CaMg(CO3)2) [8]

Olivine ((Mg, Fe)2SiO4) [8]

Bed bottom particles resulting from the combustion of forest biomass [1]

Char particles derived from the wood pellets gasification process [1]

Synthetic fayalite (Fe2SiO4) [1]

Alkali-feldspar ore (general formula (K, Na) AlSi3O8) [9]

Natural ilmenite (FeTiO3) [10]

Concrete [11]

Iron and nickel-based catalysts [12]

Calcium oxide-based catalysts [13]

friction, are easily regenerated, have good activity and high efficiency in tar cracking,
are not environmentally toxic, in addition to commercially available and at low cost
[7].

Some examples of materials used as catalysts in gasification processes that were
already described in the literature are displayed in Table 1.

Other type of catalyst with improved functionalities include the nanomaterials,
and this subject will be analyzed in the following sections.

3.1 Modified Char-Supported Ni–Fe Catalyst

Lin et al. [6] studied the synthesis of a modified char-supported Ni–Fe catalyst, and
obtained a high reduction in the amount of PAH in the tar, due to the good activity
of this metallic alloy in the cleavage of the macromolecules present.

The synthesis of this catalyst was carried out via hydrothermal carbonization.
FeCl3 and NiCl2 solutions were mixed in different proportions, stirred with sawdust
and taken to a hydrothermal autoclave reactor for hydrothermal carbonization (reac-
tion temperature of 200 °C and time of 4 h). The resulting product was cooled,
filtered, dried, and calcined in a tubular oven at 700 °C for 1 h in an N2 atmosphere,
thus obtaining the catalyst.

The presence of metal chlorides in the char during the thermal treatment carried
out, caused the formation of a porous carbon structure in the nucleus, and a dense
layer of carbon nanofibers of different morphologies. In addition, it was observed
that the Ni–Fe alloy was well dispersed in the carbonmatrix. It was possible to notice
that the Ni/Fe molar ratio directly influenced the length and diameter of the carbon
nanofibers formed, and the increase in this ratio made the fibers longer, sparser and
with a smaller diameter.
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Fig. 4 Tar yield (mg·g−1 biomass) and tar conversion efficiency, with the names of the catalysts
referring to the concentration of Ni2+ and Fe3+ (in mol·L−1) used in the preparation of the material,
at different catalytic cracking temperatures a 600 °C, b 650 °C, c 700 °C and d 750 °C (Reprinted
with permission [6])

The efficiency of catalytic cracking with modified char-supported Ni–Fe catalyst
is shown in Fig. 4, with tests at different temperatures. An increase in temperature,
even without using a catalyst, leads to a decrease in the amount of tar, which can be
explained by the cleavage of macromolecule bonds due to thermal cracking. With
the presence of catalysts, the best conversion efficiency of 95.46% was obtained,
at a temperature of 700 °C, with a catalyst prepared with a solution of char and a
concentration of 0.15 mol·L−1 of Ni2+ and 0.15 mol·L−1 of Fe3+. The best perfor-
mance of this catalyst is due to the hierarchical pore structures with a larger surface
area (460.61 m2·g−1), when compared to others with different Ni–Fe molar ratios.

3.2 Graphene-Supported Metal Nanoparticles Catalysts

Samiee-Zafarghandi et al. [14] studied the use of various graphene-supported metal
nanoparticles as catalysts in supercritical water gasification (SCWG) processes. This
process consists of a technology that uses wet biomass to produce gases with good
calorific value (H2 and CH4). The supercritical conditions of the water reduce the
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dielectric constant, increase the dissolution capacity of organic compounds and
generate an adequate medium for the occurrence of free radical reactions, which
is still maximized with the use of catalysts and with the increase of the temperature.

Powdered graphite oxide obtained by the Hummers method [15], was subjected to
ultrasound and the resulting dispersionwas kept under agitation. Separately, solutions
of metals (Cu, Ni, Co, Cr and Mn) were prepared from metallic nitrates (20% by
weight), and added slowly to the dispersion of graphene. Afterward, urea was added
as a precipitant, and the systemwas heated to 80 °C and stirred for 2 h. Then, cooling,
washing with water and ethanol, centrifugation and finally vacuum drying at 300 °C
for 2 h to dry the catalyst and to reduce the graphite oxide. The average sizes of
metallic particles deposited on the graphite oxide surface obtained were 38.4, 37.4,
27.7, 25.0, and 21.8 nm for Cu, Cr, Mn, Co, and Ni, respectively.

The effects of the obtained catalysts, their quantities and the process temperature
were tested in the SCWG process of chlorella sp. Microalgae, and the results are
shown in Fig. 5.

The best results obtained were for the graphene-supported nickel nanoparti-
cles catalyst, which decreased the formation of tar and solid phase, in addition to
increasing the production of H2. TheMn catalyst, on the other hand, demonstrated to
have weak activity for the SCWG process. The increase in the amount of Ni catalyst
increased the production of H2 and the conversion of biomass, generating a fewer
number of byproducts. Regarding the temperature, with its increase, the amount of
tar produced is reduced.

Fig. 5 Byproducts quantification obtained in the SCWG process under different conditions a effect
of catalyst type, b effect of catalyst loading and c effect of temperature (Reprinted with permission
[14])
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3.3 Nanostructured Ni-Co/Si-P Catalyst

Kannaiyan et al. [16] investigated the synthesis and performance of a low-cost and
environmentally friendly bimetallic nanocatalyst based on Ni-Co/Si-P for applying
in gasification processes to mitigate the production of tar.

Nickel-based catalysts are widely used in tar cracking, as they have a strong
ability to break the C–C bond of tar compounds, while cobalt carries electrons of the
unpaired “f” sublevel, through which it chemically adsorbs oxygen, and can be used
for oxidation. These two metals were supported on a silicophosphate base.

The studied catalyst was synthesized using the deposition–precipitation method,
described by Kannaiyan [16], from Ni(NO3)2.6H2O and Co(NO3)3.6H2O with a
molar ratio of 0.15 and 0.05, respectively. After the process of precipitation of metal
ions as hydroxides in the particles of silicophosphates, the sample was filtered, dried
in a hot air oven at 120 °C for 2 h and underwent a heat treatment of calcination in
a muffle for 6 h, with a rate of heating of 20 °C·min−1. The resulting sample was
pulverized and pelletized. According to catalyst characterization, it was observed
that the material had an average particle size of 10 nm and a specific surface area of
128 m2·g−1.

After experiments using this catalyst in the gasification process, an increase in the
calorific value of the gas produced was obtained, in addition to a 99% tar removal
efficiency, at a temperature of 800 °C. The temperature influence was tested, with
800 °C showing the best result in tar cracking, when compared to the other temper-
atures tested (700, 750, 775, 800 and 825 °C). The use of the catalyst also resulted
in an increase in the composition of H2 and CO, and a decrease in the composition
of CO2 and CH4.

3.4 Nanoarchitectured Ni5TiO7 Catalyst

Nickel-based catalysts have high initial activity for tar removal, as shown in the
previous examples.However, they have the disadvantage of being deactivated quickly
by depositing coke [17]. Alkali metal catalysts are easily deactivated by sintering.
Whenusingmore noblemetal catalysts, such asRh,more promising results of activity
and stability are obtained, but they have a higher cost.

Jiang et al. [17] proposed synthesizing and using a nanoarchitectured Ni5TiO7

catalyst for tar removal in gasification processes. A titanium supporting material
was plasma electrolytically oxidized, forming a porous TiO2 layer on the surface.
Afterward, NiO and CuOX crystals were formed by impregnation in a solution of
nickel and copper salts and a heating step at 500 °C in air. Then, the Ni5TiO7 needles
were growing by in situ annealing in atmosphere of air and temperatures between 650
and 950 °C. It is believed that the CuOX crystals limited the connection area between
NiO and TiO2, controlling the diameter of the microcrystals formed later. After
analysis, it was noticed a strongly reduced portion of CuOX, attributed to thermal



Nanostructured Catalysts for Biomass Gasification 105

Fig. 6 SEM image of
synthesized crystals
(Reprinted with permission
[17])

diffusion. The material obtained showed needle-shaped nanocrystals (Fig. 6), with a
length of approximately 10 µm and diameters varying between tens of nanometers
and 200 nm. The growth of these nanocrystals started at temperatures around 650 °C
and had a higher growth rate between 750 and 800 °C.

Regarding the tar destruction, the catalyst’s efficiency in cracking naphthalene
(C10H8) was tested and compared to that of a commercial Ni-based catalyst G117
(Sudchemie AG, Munich, Germany). At a temperature of 650 °C, there was a naph-
thalene conversion of 60%, at 700 °C it was 90% (approximately three times higher
than that of the commercial catalyst), and at 750 °C an almost complete conver-
sion of naphthalene was achieved. In addition, the tested material showed high
long-term stability, high efficiency and characteristics suitable for operations at high
temperatures in biomass gasification processes.

4 Conclusion

Gasification as an energy generation process is a promising and eco-friendly alterna-
tive. One of the main drawbacks of this process is the formation of tar, which limits
the use of the produced gas in several applications. In this context, the development
of catalysts to promote tar destruction has been of major relevance. From the anal-
ysis made on the subject, it can be concluded that the specific surface area is among
the most relevant properties of the catalyst, by strongly influencing the efficiency
of a catalyst, which ends up favoring the use of nanostructured compounds for this
application. Studies demonstrated that nickel-based catalysts have a high activity
for this purpose, are easily available and low cost, when compared to noble metal
catalysts. However, they can be quickly deactivated by coke deposition. Therefore,
the search for a cheap and efficient catalyst for removing tar still presents many
challenges and further needs of research and development, to make gasification an
energy conversion process even more commercially feasible.
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Nanomaterials to Improve Bio-Oil
from Biomass Pyrolysis: State-Of-Art
and Challenges

Tailane Hauschild, Luís António da Cruz Tarelho, Carlos Pérez Bergmann,
and Tania Maria Basegio

Abstract Catalytic pyrolysis is a thermochemical conversion process that has
emerged as a suitable technology for converting biomass into energy vectors. Among
the energy vectors, the production of bio-oil stands out, which can represent an inter-
mediate product of great value for industry, in particular for biorefineries, where
it can be integrated in co-processing for the synthesis of liquid fuels, or in the
synthesis of others chemical products of commercial interest. However, the feasi-
bility of biomass pyrolysis is conditioned by the limited efficiency and quality of the
bio-oils obtained, especially by the formation of corrosive oxygen compounds and
the high water content. Therefore, it is essential to explore pyrolysis technologies
and catalytic pyrolysis concepts, with low cost catalysts, in order to increase oil yield
and suppress the formation of undesirable compounds. Thus, the development and
application of different catalytic materials have been explored with the objective
of promoting the improvement of yield and quality of bio-oil. Among the methods
applied, the catalytic cracking of biomass pyrolysis vapors stands out. The influence
of catalysts on the composition and yield of pyrolysis products, particularly bio-
oil, is directly related to the characteristics of the catalytic materials. For example,
specific surface area, number of active sites, pore size, particle size are among the
characteristics that most influence the performance of the material catalytic activity.
Therefore, particular attention is focused onmaterials with improved properties, such
as nanomaterials. In this context, this chapter presents a review on the development
and application of several classes of materials in catalytic pyrolysis processes and
technology, their properties and its influence on the bio-oil production and character-
istics, with particular emphasis on nanomaterials. Relevant aspects on challenges and
future perspectives in the development and application of nanomaterials as catalysts
in pyrolysis processes are also addressed.
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Abbreviations

ACBS Aesculus chinesis Bunge Seed
BBNs Biochar-based nanocatalysts
BTX Benzene, tuluene, xylene
CFB Circulating fluidized bed
DSC Diferential Scanning Calometry
ENSYN Ensyn Technologies, Inc.
FeHC@hydrochar Ferro rice husk hydrochar
FeHC+WI@hydrochar Ferro rice husk hydrochar wet impregnation
FeWI@biochar Ferro wet impregnation biochar
FP Fast pyrolysis
GC–MS Gas chromatography–mass spectrometry
HTC Hydrothermal carbonization
HDO Hydrodeoxygenation
IP Intermediate pyrolysis
Nm Nanometer
NREL National Renewable Energy Laboratory
SP Slow pyrolysis
TEM Transmission electron microscopy
TG-FTIR Fourier transform infrared spectroscopy
XRD X-ray diffraction
wt Weight

1 Introduction

Pyrolysis is a thermochemical conversion process that has emerged as suitable for
converting biomass into energy vectors (e.g. biochar and bio-oil) or organic products
(e.g., biochar for adsorbents, bio-oil for chemical bio-based products) [1–5]. Its
properties depend on operating conditions [6], feedstock and technology used [2, 7].

In the pyrolysis process, the main components of lignocellulosic biomass (lignin,
hemicellulose and cellulose) are thermally decomposed [1]. The decomposition of
hemicellulose and cellulose occurs at temperatures between 220 and 400 °C, while
lignin is more difficult to decompose, occurring in a wide temperature range from
160 to 900 °C. Therefore, pyrolysis of biomass with high lignin content can lead to
a high fraction of solids (biochar) in the products [8].

The pyrolysis process can be divided into three major classes, following the oper-
ating conditions, namely, the heating rate: slowpyrolysis (SP), intermediate pyrolysis
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(IP) and fast pyrolysis (FP) [1, 2, 9, 10]. The SP is used to produce biochar or char-
coal using low heating rates (0.1–0.8 °C/s) [1] and long residence times of gases
(5–30 min) in a temperature range within 300–550 °C [11]. Otherwise, in FP the
main product is oil, and the process is characterised by the use of high heating rates
(103–105 °C/s), moderate temperatures (500–650 °C), and small fuel particles sizes
(recommended in range 1–2 mm) in order to increase the rate of heat transfer and to
minimise the occurrence of secondary reactions [12], and also short gas residence
time to (below 2 s) to minimise secondary reactions [12].

Regarding pyrolysis technologies, the semi-continuous and continuous reactors
are themost suitablewhen the objective is to produce bio-oils. Themain technologies
available and their respective liquid yields are: bubbling fluidized bed reactors (BFB)
with liquids yields in range 60–70%wt, circulating fluidized bed (CFB) with liquids
yields in range 70–75%wt, auger reactor with liquids yields in range 30–9%wt [2].
The complex design of the BFB and CFB, the high demand for gas fluidization and
the complex operation have restricted these technologies to be used in large-scale
bio-oil production, and makes these processes expensive [13].

On the other hand, in general, the auger reactor is a compact system that presents
excellent reproducibility and stability of operation. The disadvantage is that the auger
reactor also requires a continuous flow of inert gas, and the process temperature
remains around 400 °C. Because most moving parts are in the hot zone, large-
scale heat transfer is not suitable, so auger reactors are best suited for distributed or
decentralized processing schemes [2, 14].

Bio-oil generated from different pyrolysis technologies represents an important
intermediate product that can have a high added-value, e.g., to be integrated as a raw
material in conventional refineries for the synthesis of liquid fuels (e.g., gasoline,
diesel) [3, 9, 15].

However, the direct use of bio-oil is challenging because of its low quality as fuel
coupled with its undesirable attributes such as highwater and oxygen content, acidity
and chemical instability during storage and transport [15, 16]. In addition, bio-oils
are more viscous and have a lower calorific value compared to crude oil [17].

When comparing the characteristics between bio-oil and crude oil, the most
marked difference between the two oils is the elemental composition, with bio-oil
containing between 28 and 40%wt of oxygen, while petroleum has less of 1%wt of
oxygen [18, 19]. This high oxygen concentration influences also other characteris-
tics such as the oil’s homogeneity, polarity, calorific value, viscosity, and acidity. For
example, the high concentration of oxygen in bio-oil causes a reduction in energy
density by up to 50%, and limits its mixing with hydrocarbon fuels [20].

Furthermore, the complex composition of bio-oil, characterized by compounds of
very different molar mass, e.g., ranging from 18 to 5000 g/mol or more [21], implies
bio-oils having a wide range of boiling point. Consequently, the slow heating rate
during distillation can promote polymerization of some reactive components, causing
the boiling of the bio-oil to start from below 100 °C and to remain at around 250–
280 °C, leaving between 35 and 40%wt of a solid residue. This wide range of boiling
points also hinders the use of bio-oils in conditions for which complete evaporation
occurs before combustion [19].
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Regarding the high water concentration (15–30%wt) present in bio-oils, this char-
acteristic reduces the calorific value and combustion temperature of bio-oils. The
water in bio-oil comes from the moisture in the biomass or it can be the product of
dehydration during the pyrolysis reactions and even during storage. Shihadeh and
Hochgreb [22] compared bio-oils produced by NREL (National Renewable Energy
Laboratory, US) with bio-oils produced by ENSYN (Ensyn Technologies, Inc., CA)
and concluded that additional thermal cracking contributed to improve chemical
and vaporization characteristics of biooils. The NREL bio-oil showed better perfor-
mance and better ignition due to the lower water fraction and lower molecular weight
compounds on its composition.

From literature data, it is evident that the quality of bio-oils is lower than that
of petroleum-based fuels. Therefore, some techniques for refining bio-oil have been
developed to promote its improvement as an energy vector.

2 Techniques to Improve the Quality of Bio-Oil

Among the different bio-oil upgrading techniques available are included: (i) pyrolysis
under a reactive atmosphere (using several main components of the pyrolysis gas,
namelly, CO2, CO, CH4 e H2 [23], (ii) addition of solvents (e.g., methanol, ethanol,
isopropanol) added directly to the liquid product of pyrolysis [24], conversion of
acidic bio-oil compounds into esters over acid catalysts [25], hydrodeoxygenation
(HDO) [26], catalytic fast pyrolysis [27], co-pyrolysis of biomass and plastic solid
wastes [28], biomass liquefaction, catalytic hydrogenation and catalytic cracking
[29, 30].

Among the upgrading methods, major efforts have been employed in the catalytic
cracking of pyrolysis vapours [19], where acidic or basic solid catalysts are used at
moderate temperatures and atmospheric pressure [20], making this method more
economical, e.g., in relation to HDO, which is a catalytic hydrotreatment with
hydrogen under high pressure (in the range of 30–140 bar) or in the presence of
hydrogen donor solvents [31].

In the scope of catalytic pyrolysis, the catalytic cracking of pyrolysis vapours
occurs by directly deoxygenated when passing through a catalytic bed under atmo-
spheric pressure and in a temperature range between 350 and 650 °C [20]. With
catalytic cracking of uncondensed vapours using suitable catalysts, catalytic fast
pyrolysis can convert low quality pyrolysis vapours into high quality bio-oils.
Catalytic pyrolysis has the advantage of being a simplified process and avoids the
condensation and re-evaporation of the pyrolysis oil [32]. Thus, some studies have
been developed to promote deoxygenation reactions during fast pyrolysis to produce
a bio-oil with low oxygen concentration [33, 34].

Cracking of the pyrolysis gases can be carried out in in-situ or ex-situ configu-
rations (see Fig. 1). In the in-situ process, the catalyst is placed inside the reactor,
together with the biomass, most often forming a layer over the biomass. In the ex-situ
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Fig. 1 Configuration of ex-situ and in situ catalysts fast pyrolysis. Reprinted with permission from
Chen et al. [27]

process, the catalyst is used in a secondary reactor or even within the biomass pyrol-
ysis reactor itself, however, the biomass and the catalyst are physically separated [35,
36].

Hu e Gholizadeh [9] observed favourable catalytic cracking conditions of the
pyrolysis volatiles during the ex-situ process. The results indicated that compared
to the in-situ process, the ex-situ configuration removes the producing of a bio-oil
with lower oxygen content. Furthermore, the in-situ cracking process has disadvan-
tages such as difficulty in recovering the catalyst after use; deposition of impurities
and inorganic compounds, and deposition of carbonaceous material on the catalyst
surface [36].

Furthermore, during catalytic fast pyrolysis, the process has lower energy
consumption and shorter reaction time than the thermal fast pyrolysis process [37].
However, even though efforts to ensure higher energy efficiency of the pyrolysis
process have positive results, one of the major challenges of catalytic fast pyrolysis
has been to improve the quality of bio-oil, particularly in terms of calorific value. One
of the main methods to increase the calorific value of bio-oil is to reduce its content
in oxygenated compounds. In this context, different catalytic materials have been
used to obtaining a low concentration of oxygen in the bio-oil. The development and
application of catalysts in the pyrolysis process to improve bio-oil characteristics is
discussed in the following sections.

3 Materials Used in Catalytic Pyrolysis

The introduction of catalysts in the biomass pyrolysis process seems to improve the
performance of the process from the perspective of producing bio-oils with better
quality. Different catalysts have been used in the cracking of pyrolysis vapours in
order to promote dehydration, decarbonylation and cracking of organic molecules,
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reduce the oxygen content of the bio-oil, convert large organicmolecules into smaller
molecules, and improve the quality of the bio- oil in terms of calorific value [41, 48].

Among the catalysts that have been applied, there are materials based on zeolites
[41, 81, 82], functionalized zeolites [82, 83], metal oxides such as alumina (Al2O3)
and silica-alumina (SiO2-Al2O3) [81], and molecular sieves [84].

Zeolite-based catalysts are extensively applied, particularly for their high selec-
tivity in the cracking of high molecular weight hydrocarbons (C14-C17) and dehy-
dration reactions. Zeolites are a class of aluminosilicate (Al2O3/SiO2) with homoge-
neous pores, which are presented in different three-dimensional structures. Zeolite
structures are classified into three main categories according to their pore size [7],
comprising catalysts based on microporous zeolites (e.g., ZK-5 and SAPO-34), the
zeolites with medium pore size (e.g., Ferrierite, ZSM-23, MCM-22, SSZ-20, ZSM-
11, ZSM-5, IM-5, TNU-9), and zeolites with large pore size (p.e, SSZ-55, Beta
zeolite, Y zeolite) [38].

The complex structure and pore size of zeolites allows catalysts to perform as
molecular sieves and to have specific selectivity for each molecule size. In addition
to the pore size, the acidic sites of the zeolite-based catalysts influence the chemical
composition of the bio-oil produced by catalytic pyrolysis of biomass. For example,
the concentration of acidic sites promotes the formation of aromatic compounds in
the bio-oil, and this has been explained as resulting from the Brønsted acidic sites,
on the other hand the Lewis acidic sites produce alkanes [39].

The acid sites are controlled by the Al/Si ratio as it increases, but the surface
protons of the Brønsted acidic site will complete the Al octet, making these acidic
Brønsted sites weaker. Zheng et al. [40] observed that ZSM-5 (Si/Al = 25) with
average crystal size (200 nm) showed an optimal proportion of Brønsted acidic
sites compared to Lewis acidic sites and therefore exhibited better performance in
aromatics production (24.5 mol%-carbon) during in-situ fast catalytic pyrolysis of
pine wood.

The pore dimensions of solid catalysts have direct influence on the diffusion
properties of the reactive gas species resulting from the biomass pyrolysis process.
For example, due to the limited pore size of ZSM-5 (5,5–5,6 Å), this zeolite has a
specific selectivity for monoaromatics, especially for benzene, toluene and xylene
(BTX) [41]. As a result of their average pore sizes and internal pore space, only small
molecule compounds are able to diffuse into the pores resulting in products with
half of the size of trimethylbenzene [42]. Resulting from this catalytic performance,
closely linked to its crystallographic structure, ZSM-5 is considered themost effective
catalyst for the production of hydrocarbons during biomass pyrolysis [38].

However, the limiting of larger molecules, such as levoglucosan, into narrow pore
openings can lead to polymerization on the outer surface. Therefore, this polymeriza-
tion can also limit the diffusion of the formed monoaromatics, leading to reactions in
the pores to form polyaromatics and even lead to coking, consequently reducing the
formation of the target products [41]. For example, for catalytic pyrolysis of cellu-
lose, Wang, Kim and Brown [43] refer an efficiency of only 28.8% in converting
the carbon from cellulose in aromatic structures, and an efficiency of up to 30.6%



Nanomaterials to Improve Bio-Oil from Biomass … 115

in converting the cellulose carbon into coke, although an efficiency of 66.7% was
theoretically expected for the conversion of cellulose carbon into aromatic structures.

In addition to the coking problem, most of the zeolite materials employed are
sensitive to water at elevated temperatures and the resulting dealumination causes
irreversible deactivation [41]. Thus, many efforts have been made to improve the
structure of the ZSM-5 zeolite, considered the most efficient among all zeolites [7].
The influence of pore size and active sites, including modifications of the structures
of the ZSM-5 zeolites, in catalyst performance has been addressed in several studies,
some of them shown in Table 1.

Due to their redox properties and/or acid–base properties, metal oxides have been
widely used in catalytic fast pyrolysis of biomass. Several metal oxides, including
acidic metal oxides (e.g., SiO2 and Al2O3), base metal oxides (e.g., MgO and CaO),
transition metal oxides (e.g., ZnO, CuO, Fe2O3, TiO2, ZrO2, MnO2 and CeO2),
complex metal oxides (e.g., Fe/CaO and Cu/Al2O3) were investigated as catalysts or
catalysts supports for improving bio-oil quality [48].

In general, Al2O3 is the most investigated acid metal oxide for catalytic fast
pyrolysis of biomass, it promotes dehydration reactions and therefore leads to an
increase in water content [85]. For example, Stefanidis et al. [86] found that the
addition of Al2O3 with a surface area of 93 m2/g significantly reduced the oxygen
content of the bio-oil from 41.68 to 24.00%wt., promoting an increase in the yield
of water from 21.38 to 29.08%wt.

Due to the low costs and results that indicate an improvement in the quality of bio-
oil, basic metal oxides have been also widely studied [27]. Results from a study using
Fourier transform infrared spectroscopy (TG-FTIR) to investigate the influence of
CaO on corncob pyrolysis showed that CaO promoted the formation of hydrocarbons
through catalytic reactions [48].

The effect of CaO on biomass pyrolysis can be a particularly complex process.
Chen et al. [49] evaluated the addition of different proportions of CaO/biomass
(cotton stem) in a fixed bed reactor and found that CaO could act as a reactant,
an absorbent and a catalyst at CaO/biomass mass ratios of <0.2, >0.2 and >0.4,
respectively. When acting as a catalyst, the best performance was at temperatures
above 600 °C, promoting an increase in the concentration of furan and hydrocarbon,
and a decrease in the concentration of esters and anhydrosugars in the bio-oil. In
another example of CaO acting as a catalyst, where the CaO/biomass mass ratio of 5
was applied in a fluidized bed reactor, the oxygen content in the bio-oil was reduced
from 39%wt. to 31%wt. at expenses of a slight decrease (5.3%wt) on the bio-oil
production [50].

Analogous toCaO, theMgO improves the quality of the bio-oil in terms of removal
of oxygenated groups, hydrocarbon compounds distribution and increase in calorific
value, although a slight decrease on bio-oil production can be observed. Pütün [51]
reported a decrease from 9.56 to 4.90%wt. in the concentration of oxygen in the
bio-oil, and an increase from 1.83 to 2.39 in the molar ratio H/C, during catalytic
pyrolysis of cottonseed at 550 °C and applying MgO as catalyst.

On the other hand, modified metal oxides are effective catalysts for deoxygena-
tion. For example, doping CaO with Fe(III) increases the catalytic effects, reducing
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oxygenated compounds (acids, aldehydes and ketones) while increasing the produc-
tion of furans and hydrocarbons [52, 53]. The Fe (III)/CaO catalytic activities are
attributed to the synergistic effect between the CaO support and the Fe, and the
Ca2Fe2O5 phase formed in the catalysts can protect the CaO support and inhibit the
sintering of Fe during the catalytic reaction [48].

The Al2O3 modified with Cu (5%wt. Cu/Al2O3) by means of the co-precipitation
method and applied in the catalytic fast pyrolysis of biomass (tomato waste) resulted
in a relatively higher bio-oil yield (30.31%wt) and in a lower oxygen concentration
(16.74%wt.) in the bio-oil, when compared to the 35.33%wt oxygen concentration
in the bio-oil produced by thermal pyrolysis [54].

Transition metal oxides such as ZnO, CuO, Fe2O3, TiO2 and ZrO2 have also been
extensively tested in catalytic fast pyrolysis of biomass [27]. Torri et al. [55] investi-
gated different types of catalysts in pine sawdust pyrolysis at 500 °C and concluded
that ZnO, CuO, Fe2O3 catalysts were effective in reducing the concentration of heavy
compounds, although with a slight reduction in bio-oil yield. The reduction in the
concentration of heavy compounds is a positive aspect because their presence in
bio-oil results in higher viscosity and slower combustion [56].

In this sense, catalysts of transition metals, including Ga, Cu, Fe, Ni and Zn, etc.,
were considered effective to promote the production or selectivity of aromatics in
the catalytic pyrolysis of biomass [41, 57]. In the field of Fe-based catalysts, several
works, including laboratorial-scale studies on catalytic fast pyrolysis [58], catalytic
cracking of pyrolysis vapours [59, 60], indicate these low cost materials as a good
alternative for deoxygenation/conversion of oxygenated compounds at intermediate
temperatures.

Moud et al. [58] applied an unsupported Fe-based catalyst for cracking the pyrol-
ysis gas produced from pyrolysis of biomass from chipped tree tops and branches
at 450 °C. Their results showed that there was significant cracking of oxygenated
compounds/vapor reforming of the pyrolysis gas, with 70–80%wt reduction of acetic
acid, methoxyphenols and a 55–65%wt reduction of non-aromatic ketones, benzene,
toluene, xylene and heterocyclic compounds [58]; all the other compounds yield was
also influenced by the use of Fe as a catalyst.

The different properties of catalysts, such as particle size, pore size, acidity and
mesoporosity, have been reported in the literature as factors that influence signifi-
cantly the reaction pathways, yields and selectivities of pyrolysis products [20]. For
example, reducing the particle size of a catalyst to nanoscale (size 1–100 nm in at
least one dimension) can result in the generation of new catalytic materials enriched
with specific active sites on the surface and improved reducing properties that can
be substantially different from their source particles [61, 62]. The specific surface
area of nanometer catalysts can also be significantly improved due to the higher
surface to volume ratio, allowing pyrolysis gases to better access to surface active
sites [63]. In this context, the following section will address the development and
characteristics of nanomaterials used as catalysts in biomass pyrolysis to improved
bio-oil production.
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4 Nanomaterials Used in Catalytic Pyrolysis

In recent years, nanocatalysts have attracted major interest in result of their unique
properties (e.g. catalytic, electronic andmagnetic) and potential application in several
fields compared to conventional catalysts [64]. The excellent properties of electro-
catalysis and magnetic catalysis exhibited by nanocatalysts have been exploited in
several industrial sectors, including the oil, chemical and energy [65, 66].

Fine-tuning of the morphology of catalyst particles, especially metals or metal
oxides, optimizes the electronic and geometric properties of the catalyst surface.
Nanostructured metal oxides may preferentially expose large amounts of active
crystal faces. As a result of the high specific surface area, interactions between
active sites and reactive species can be increased, which is a key driving force for
obtaining high catalytic reaction rates, for example, useful in the processes of energy
conversion of biomass [67].

In this sense, according to the study carried out by Gokdai et al. [68] about the
catalytic effect of SnO2 nanoparticles, the smaller particle size and the larger specific
surface area of the catalyst favour secondary reactions of pyrolysis vapours in the
reactor and also the secondary decomposition of charcoal at higher temperatures.
The authors compared the influence of SnO2 nanoparticles with the influence of Bulk
SnO2, red mud, HZSM-5 and K2CO3 catalysts on the distribution of products from
pyrolysis of hazelnut shell. The nano-SnO2 catalyst synthesized by hydrothermal
route, which presented agglomerated particles with an average diameter of 3 to 4 nm
(Fig. 2), favoured the increase in gas production and the decrease in oil production,
which was explained as a result of cracking of tar in gaseous products at higher
temperatures (700 °C). GC–MS analysis of pyrolytic oils obtained from pyrolysis
of hazelnut shell showed that fatty acids (e.g., oleic, stearic, and palmitic acids)
were found in the presence of nano-SnO2, however, the percentage of oleic acid was
more significant in the presence of HZSM-5; this result can be attributed to the high

Fig. 2 TEM image of
hydrothermally synthesized
SnO2 nano particles.
Reprinted with permission
from Gokdai et al. [68]
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efficiency of HZSM-5 in converting unsaturated fatty acids into branched chain fatty
acids. On the other hand, the addition of nano-SnO2 led to the formation of etheric
structures in the bio-oil [69].

When comparing the catalytic activity of nanoparticles from a metal oxide
with those of the same metal oxide in a micro-scale, a lower value of activation
energy is observed with nanoparticles, thus, indicating that catalytic pyrolysis with
nanoparticles can be more attractive considering energy and economic parameters.

For example,NiOparticles in nanoscale (nano-NiO) andmicro-scale (micro-NiO)
were used by Li et al. [70] as catalysts in pyrolysis of cellulose by thermogravimetry.
The nano-NiO particles were synthesized by the homogeneous precipitation method
and showed high purity and a fine crystal phase of cubic syngony with an average
size between 7 and 9 nm and specific surface area of 187.98 m2/g. The catalytic
activity of nano-NiO particles in cellulose pyrolysis (10 °C/min to 900 °C) was
compared with the catalytic activity of micro-NiO particles (specific surface area
28.58 m2/g, 325 mesh (approximately 44 mm)). The results show that in comparison
to thermal pyrolysis, the catalytic pyrolysis of cellulose in presence of micro-NiO
particles (3%wt.) reduced in 6% (12.24 kJ/mol) the activation energy of the process
in, and in the presence of the nano-NiO particles (3%wt.) the activation energy was
further reduced in 11% (22.42 kJ/mol). Therefore, the nano-NiO particles demon-
strated amore effective catalytic effect on cellulose pyrolysis compared tomicro-NiO
particles.

The influence of nanoparticles on the decomposition reactions of biomass
molecules has been also analysed by the absorption of heat during catalytic pyrolysis
of biomass in a thermobalance. In this context, Li et al. [64] applied different propor-
tions of nano-catalysts of NiO, Fe2O3 and NiO/Fe2O3 in the production of bio-oil
by catalytic fast pyrolysis of Aesculus chinesis Bunge Seed (ACBS) and also ACBS
pre-processed with a solution of NaHCO3. The treatment of ACBS samples with
NaHCO3 had a particular influence on the composition of the products of pyrol-
ysis, and the nano-Fe2O3 catalyst accelerated the ACBS decomposition reaction.
Both nano-NiO and nano-Fe2O3 influenced the composition of acids, aromatics and
alkanes and inhibited the productionof alkenes and amines.However, the nano-Fe2O3

showed higher catalytic effects, and this higher efficiency on the decomposition of
biomass was reflected by a lower heat absorption as revealed by Differential Scan-
ning Calorimetry (DSC). It is of note the positive effects of the NaHCO3, such as the
neutralization of acidic pesticides present in the biomass, and its potential interfer-
ence in the pyrolysis process, and particularly the further influence of the NaHCO3

in promoting lower particle sizes of the iron oxide catalyst and an higher aggregation
time of the nanocrystals [71].

In addition to particle size and specific surface area, the presence of oxygen
vacancy-type defects in the metal oxide structure can influence its activity and
catalytic selectivity. One benefit of oxygen vacancies is their moderate acid strength,
which can influence a specific reaction pathway for the formation of desirable bio-
based chemicals [72]. For example, Rogers and Zheng [73] compared the influence
of oxygen vacancy sites (acid sites) of MoO3 in the hydrogenation route and in the
direct deoxygenation of compounds resulting from pyrolysis of lignin. The results
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showed that MoO3 with oxygen vacancies favoured the deoxygenation route more
than the hydrogenation route. Oxygen vacancy defects can be generated during the
synthesis process, catalytic reaction or by post-synthesis treatment with hydrogen
[72].

In the context of the influence of the acid sites of the nanocatalysts on the pyrol-
ysis products, one can mention a positive effect on the selectivity to the formation of
valuable chemical compounds present in some bio-oils, such as furfural [74].Most of
the solid acid catalysts contain Bronsted acid sites and Lewis acid sites, which influ-
ence the dehydration of cellulose, favouring the increase in the selectivity towards
furfural formation [75]. However, some catalytic materials can experiment agglom-
eration of particles during synthesis, as it is the case of materials with high iron
content. For example, Mian et al. [76] observed the agglomeration of particles in
the synthesis of the nanocatalyst TiO2/Fe/Fe3C-biochar. In this context, the doping
of iron-based materials with other chemical elements, e.g., Li+, Na+, K+, can influ-
ence the nucleation and growth of nanoparticles in order to reduce agglomeration
[77]. An example of such an iron-based nanocatalyst doped with another chemical
element, for the production of furfural, is the nano Na/Fe-solid acid produced by Bai
et al. [78]. This catalyst was synthesized by precipitation process and subsequent
co-precipitation, using different mass ratios of Na/Fex (x = 0.36, 0.69, 1.42, 2.17),
promoting the formation of different surface morphologies. The results in Fig. 3
show that the morphologies of the particles changed as the Na/Fex mass ratios were
increased, at first, they changed from a long clariform crystal to a crystal with a
prismatic angle, and for higher mass ratios it was noticed the disappearance of the
prismatic angle and the formation of spherical particles. The Na/Fe mass ratio of
1.42 was appropriate to inhibit agglomeration and form the uniform catalyst with
spherical particles (50–100 nm). The catalyst Na/Fe (1.42) solid acid with spherical
morphology also had a high specific surface area (201.5 m2/g) and more sites acid.
This catalyst Na/Fe (1.42) solid acid promoted the higher selectivity (61.4%) for
furfural formation during ex-situ cracking of vapours from pyrolysis of cellulose at
550 °C, when compared to Na/Fe (0.36) and Na/Fe (0.69) for which the selectivity
was 15.65% and 15.33%, respectively. According to the authors, the acidic activity
of the nanocatalyst promoted the conversion of glucose monomers into dehydrated
sugars and these sugars underwent secondary cracking to form furfural [78].

The performance of nanoscale catalysts can be significantly influenced by the
support material in terms of surface area, pore size, functional groups andmechanical
strength [79]. Several types of support materials such as Al2O3, SiO2, zeolites, have
been investigated for the synthesis of nanoscale metal catalysts. Metal oxides can
play the role of both active phase and catalyst support, which is why they are consid-
ered essential components for the development of various industrial heterogeneous
catalysts, particularly in the petrochemical industry [80]. Recently, carbonaceous
materials (e.g., activated carbon, biochar, hydrochar) have been explored as supports
for the synthesis of nanoscale catalysts based on their porous structure, which gener-
ally has high specific surface area, excellent pore size distribution to stabilizemetallic
nanoparticles and a surface enriched with relevant functional groups [81].
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Fig. 3 SEM images of Na/Fe nano catalysts. a Na/Fe ratio = 0.36, b Na/Fe ratio = 0.69, c Na/Fe
ratio = 1.42, d = Na/Fe ratio = 2.17. Reprinted with permission from Bai et al. [78]

Regarding zeolite structures as support for nanomaterials, an attractive alternative
is the incorporation of low-cost materials. Non-noble Ni-based nanomaterials, e.g.,
supported on zeolite structures, may have selectivity for aromatics and hydrocar-
bons (formed by deoxygenation) similar to the noble metals supported on the same
structure. For example, Murata et al. [82] considered catalysts supported on zeolite,
NiMo(O)/ZSM,NiMo(O)/Y,NiMo(O)/Beta andNi2P/Beta effective andwith similar
results to PtPd/ZSM during fast pyrolysis (500–600 °C) of Jatropha waste to produce
bio-oil. The size of nanoparticles in the porous supportswere between 20.9 to 62.2 nm
for NiMo(O)/Y and between 36.5 to 49.0 nm for Ni2P. The specific surface area, pore
volume, and pore diameter of these catalysts were 176.0 to 464.5 m2g−1, 0.098 to
0.286 cm3g−1 and 1.50 to 11.5 nm, respectively. The pore diameter of ZSM was
2.58 nm. The largest liquid yield (49.9%wt., including 21.3%wt. of organic liquid)
was obtained with NiMo(O)/Y at 500 °C. The acid values of the organic liquids
obtained at 500 ºC were expressed in terms of the amount of KOH at equivalent
point and was only 1.99 mg-KOH kg−1 for the catalytic material NiMo(O)/Y, that
was significantly lower than the result (38.7 mg-KOH kg−1) obtained by the same
authors in a previous study [83] using as catalyst thePtPd/ZSM.Under these pyrolysis
conditions, Ni-based nanomaterials showed to be a more economical alternative and
with similar, or even better, catalytic activity than noble metals, e.g., when compared
to the PtPd system.
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In addition to incorporating low-cost nanoparticles without compromising the
effectiveness in catalytic cracking of pyrolysis vapours, low-cost supports with high
catalytic activity and high resistance to coke formation are one of the main research
topics in the context of obtaining high quality bio- oil. In this sense, among the
different materials for supports, the carbonaceous ones have been emerging of partic-
ular interest, e.g., the biochar [81]. Furthermore, the incorporation of metals can also
improve the catalytic performance of biochars and, thus, the so-called bifunctional
catalysts are produced [81]. In this context, regarding low-cost nanoparticles, Fe-
based catalysts are reported as materials with excellent catalytic activity for the
production of high quality syngas and bio-oil [78, 84].

The application of Fe nanoparticles supported on biochar is an example of a
bifunctional catalyst. Dong et al. [81] used rice husk as a precursor to produce a
Fe nanocatalyst supported in biochar. The raw rice husk was impregnated with Fe
(NO3)3·9H2O and was heated in a horizontal oven (electric heating) at 800 °C for
1 h under a N2 atmosphere, and the resulting material was named RHC/Fe. The cata-
lyst was characterized for mineralogy by X-ray diffraction (XRD) and morphology
by scanning electron microscopy (SEM). The three peaks shown in Fig. 4b (2θ
= 44.6°, 65°, 82.3°) characterize the existence of Fe0 which was formed during
biomass pyrolysis due to the reduction of the Fe precursor impregnated by carbon
and reducing gas (H2, CO). The diffraction peaks corresponding to the existence of
Fe3O4 (2θ = 30.1°, 35.4°, 43.1°, 53.4°, 57°, 62.6°), show that a fraction of Fe0 is
not stable in contact with air and may be oxidized during storage. In addition, the
three-dimensional porous structures of RHC and RHC/Fe shown in Fig. 4c–d, are a
result of the thermal decomposition of organic compounds and the release of volatile
substances during the pyrolysis of rice husk. Although they have a similar structure,
the surface conditioning of RHC/Fe has been improved due to the addition of Fe
(NO3)3·9H2O during catalyst preparation, leading to a more porous structure. The
catalyst RHC/Fe was tested during pyrolysis of Sargassum, and it was observed that

Fig. 4 Characterization of the catalysts: a XRD analysis of RHC, b XRD analysis of RHC/Fe,
c SEM images of RHC, d SEM images of RHC/Fe. Edited and reprinted with permission from
Chen et al. [81]
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esterification reactions and secondary reactions were promoted, with formation of a
bio-oil enriched in esters.

The use of Fe nanoparticles supported on rice husk hydrochar in the ex-situ
catalytic cracking of pyrolysis vapours carried out in a microwave oven, has shown
that it is possible to double the yield of high purity phenolic compounds in the bio-
oil produced from pyrolysis of corn cobs [85]. To produce the catalyst, the iron
nanoparticles were inserted into the hydrochar matrix via hydrothermal carboniza-
tion (HTC), using a solution of Fe (NO3)3 at 200 °C followed by pyrolysis at 800 °C
under N2 atmosphere. This catalytic material was named FeHC@hydrochar, and the
uniform distribution of Fe nanoparticles was mainly attributed to the strong interac-
tion between Fe and several oxygenated functional groups of the hydrochar during
HTC. Besides, the FeHC@hydrochar presented the smallest particle size (7.27 nm)
in relation to the other catalysts synthesized usingwet impregnation, namely FeHC+
WI@hydrochar with particle size of 12.49 nm, and FeWI@biochar with particle size
13.50 nm;WImeanswet impregnation. The smaller-sized nanoparticles have a larger
specific surface area of contact with the functional groups of carbonaceous supports
and, thus, promote a better distribution of Fe on the surface of the support. However,
as a result of the increased incorporation of nano-Fe species, the BET surface area
of FeHC@hydrochar (206.62 m2/g) was the smallest compared to FeWI@biochar
(244.56 m2/g) and FeHC + WI@hydrochar (248.64 m2/g). Nevertheless, the reduc-
tion in surface area does not seems to have influenced the phenol selectivity in the
catalytic cracking of pyrolysis vapours. The selectivity of phenol compounds showed
an increasing trend with FeHC@hidrochar when the catalyst to raw material ratio
was increased from 1:10 to 7:10 during the pyrolysis process. Finally, the objective
of producing a bio-oil with a high concentration of phenolic compounds was at the
expense of a reduction (from 23.2 to 20.8%wt) in the production of bio-oil [85].

It has been observed a significant progress in the development of nanomaterials
to be used as catalysts in pyrolysis process for different purposes. However, several
drawbacks in the development of these materials have been noticed that need further
research and development. In this sense, some emerging perspectives and challenges
in this field need to be addressed, and those are briefly analysed in the following
section.

5 Perspectives and Challenges in Development
of Nanomaterials as Catalysts

There is an increasing demand to develop nanomaterials for use as catalysts in pyrol-
ysis technologies with different objectives. For example, the development of biochar-
based nanocatalysts (BBNs) for cracking of pyrolysis vapours during biomass pyrol-
ysis for production of high quality bio-oil. In general, BBNs have great potential as a
new type of catalyst due to their high catalytic activity and a homogeneous distribu-
tion of metal nanoparticles on the surface of the supporting biochar [86]. However,
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some efforts must be continued in order to obtain an advance in synthesis methods
and commercial applications.

Among the challenges to be overcome are included: the precise control of particle
size, homogeneity and incorporation of nanoparticles in the biochar matrix, thus
ensuring the greatest possible chemical interaction between the biochar surface
and the nanoparticles. Improved interaction between biochar and nanoparticles can
prevent nanoparticles fromdetaching frombiochar under conditions of high tempera-
tures and complex reactions involving carbon deposition during catalytic cracking of
pyrolysis vapours [79]. Therefore, exploring new synthesis methods and new metals
are important to seek greater stability and performance of BBNs.

The regeneration capacity of a catalyst is also a determining aspect in choosing
the material to be applied in a catalytic pyrolysis process. For example, under the
pyrolysis conditions of the research carried out by Murata et al. [82], the catalysts
based on Ni nanoparticles, particularly NiMo(O)/Y(14), have shown to be mate-
rials with better catalytic activity and cheaper than the PtPd systems. However, the
specific surface area of NiMo(O)/Y(14) has decreased significantly (from 464 to
255 m2g−1) after the regeneration process. Although the authors claim that changing
these physical structures would not have a critical impact on catalyst performance
and that all catalysts tested were regenerated, the number of cycles that this material
can undergo regeneration and maintaining the catalytic activity must be investigated,
to determine the economic viability of this material.

In the context of the relationship between the catalytic activity of a catalyst and
its specific surface area, the results of several research studies analysed in this
chapter indicate that a high specific surface area has a positive influence on the
catalytic performance of nanoparticles. However, during the synthesis of nanoma-
terials, agglomeration of nanoparticles can occur, particularly when the materials
have high Fe content [76], thus, reducing the specific surface area, and the poten-
tial decrease in the catalytic activity of these materials [87]. In addition, restricting
particle agglomeration can guarantee an higher quantity of acidic sites, favouring
selectivity for the production of desirable compounds [78]. Therefore, some tech-
niques such as the incorporation of chemical elements capable of restricting the
agglomeration of nanoparticles by controlling the growth and nucleation of particles
during synthesis is a potential alternative to be better investigated [77].

Regarding the application of nanocatalyts at industrial scale, some challenges
still need to be overcome. A technical barrier is the deactivation of nanocatalysts
by carbon deposition and H2S poisoning, as is the case with Ni-based nanomaterials
[70]. Carbon deposition also causes obstruction of the pores of the supports consisting
of different materials, such as carbonaceous (e.g., biochar [86], hidrochar [85]) and
zeolite structures [88]. Obstruction of pores by coking leads to catalyst deactivation
due to blocking access to active sites (e.g., acidic sites) by the molecules to be broken
down. In this sense, in addition to improving the characteristics of catalysts and their
supports, advanced catalysis techniques are needed to improve the performance of
these materials. An example of a technique that has emerged for application in fast
catalytic pyrolysis of biomass is the dual-catalyst method. This method combines the
advantages of different catalysts,where pyrolysis vapours are cracked bymesoporous
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catalysts (e.g., CaO andAl2O3) arranged in sequence or physicallymixedwithmicro-
porous catalysts (e.g., ZSM-5). Mesoporous catalysts convert large molecules into
smaller molecules with a low content of oxygen, that undergo further conversion into
aromatics by microporous structures [89, 90]. Therefore, the use of the dual-catalyst
method with the application of porous materials impregnated with nanoparticles,
presents itself as a potential alternative to improve the catalytic performance of these
bifunctional catalysts.

Besides the relevance and performance of nanomaterials as catalysts in the pyrol-
ysis process, an import subject to be addressed is that related to potential envi-
ronmental impacts of nanomaterials. Those impacts can emerge either during the
pyrolysis process itself or during the further use of the biooil in downstream applica-
tions, e.g., as fuel. In fact, during the pyrolysis process the nanoparticles can detach
from the catalyst support and becomemixed with the products flows, e.g., the bio-oil.
Thereafter, because of their nano-size these particles can represent an environment
problem during the use of the bio-oil. In order to minimize those risks, a subject that
must deserve most attention is the recovering of the nanocatalyts particles during
the pyrolysis process and from the products of the process. This recovering of the
nanocatalyst represents also an economic issue. In this sense, an alternative that
has been emerging to ensure the recovery of these nanoscale materials is the use of
ferromagnetic nanoparticles. Fe-based materials is an example of a ferromagnetic
material that has been used as catalyst in distinct applications [91–93], which has
efficient catalytic properties and can be easily recovered by magnetic processes, and,
in addition, it is a low-cost material.

As concluding remark, the development of materials with catalytic properties
to improve the quality of bio-oil and at the same time ensure a minimization of
environmental impacts, as well as guarantee the economic viability of the process,
is a subject that requires further research.
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Iron-Based Nanomaterials for Fenton
Reaction

Thays de Oliveira Guidolin, Maria Alice Prado Cechinel,
and Sabrina Arcaro

Abstract Fenton process is widely recognized as an efficient technique for
degrading complex organic pollutants. Themethod is based on the hydrogen peroxide
decomposition by an iron catalyst, forming highly reactive hydroxyl radicals. It can
be used together with other techniques coupled to the system that improves the
degradation mechanism, such as electrodes, ultrasound, irradiation, or solid cata-
lysts. In addition, several materials can be used as heterogeneous Fenton catalysts
for oxygen-active species formation. With the advancement of nanotechnology, the
development and application of iron-based nanomaterials for contaminated water
treatment have increased. This chapter brings a discussion about Fenton processes
for degrading organic compounds present in water and recent advances related to the
use of nanomaterials in this process, especially those derived from iron oxides.

Keywords Fenton Oxidation · Iron-Based Nanomaterials · Iron Oxides

1 Introduction

Currently, researchers around the world are looking for water treatment processes
that remove pollutants more effectively. These processes can be simple methods
or a combination of methods that complement each other [1]. For example, many
personal, pharmaceuticals, and industrial chemical products are found in aquatic
environments, in addition to urban and agricultural wastewater that carries many
organic chemicals [2]. Unfortunately, these pollutants are often recalcitrant and

T. de Oliveira Guidolin (B) · M. A. P. Cechinel · S. Arcaro
Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-Graduação em Ciência e
Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Av. Universitária 1105, P.O.
Box 3167, Criciúma 88806-000, Brazil

M. A. P. Cechinel
e-mail: maria.cechinel@unesc.net

S. Arcaro
e-mail: sarcaro@unesc.net

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Kopp Alves (ed.), Environmental Applications of Nanomaterials, Engineering
Materials, https://doi.org/10.1007/978-3-030-86822-2_8

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86822-2_8&domain=pdf
mailto:maria.cechinel@unesc.net
mailto:sarcaro@unesc.net
https://doi.org/10.1007/978-3-030-86822-2_8


134 T. de Oliveira Guidolin et al.

emerge as a challenge to conventionalwater treatment plants due to their high toxicity
[3].

As a solution to these issues, Advanced Oxidative Processes (AOPs) have been
widely used to treat organic contaminants due to their high oxidation capacity. The
applications of these processes are vast, with emphasis on the remediation of agro-
chemical industrial effluents, pulp and paper, textiles, oil fields and metallization
residues; treatment of hospital waste, slaughterhouses, pathogens and pharmaceu-
tical waste, as well as heavy metals such as arsenic and chromium [1]. Among the
existing AOP’s, Fenton’s oxidation, photochemistry, electrochemistry, ozonization,
gamma-ray, persulfate-based, humid air, and ultrasound stand out [4].

The Fenton process is the most used among these oxidizing mechanisms due to
its efficiency in degrading overly complex organic pollutants, such as polycyclic
aromatic hydrocarbons (PAHs). This method consists of decomposing hydrogen
peroxide by the catalytic action of iron, forming hydroxyl radicals, which are highly
oxidizing [5]. Furthermore, Fenton reactions can be used together with other tech-
niques to improve this mechanism. Figure 1 shows this derived Fenton process
from the addition of different techniques to the system. When using ultrasound,
these methods are usually sono-Fenton, electro-Fenton, when using electrodes, and
photo-Fenton, when using irradiation.

The system using light irradiation in the Fenton system (photo-Fenton) is most
commonly reported in the literature as the degradation of organic pollutants can be
accelerated by the ability of light to reduce Fe3+ to Fe2+ ions [6].Another combination
that similarly contributes to the Fenton oxidation is the use of high-frequency acoustic
cavitation. This mechanism, called sono-Fenton, uses ultrasound waves to generate
cavitation bubbles that break the bonds ofwatermolecules forming •OH [7]. Another
widely used technique is electro-Fenton, whose pollutant degradation occurs from
the oxidizing agent generation (•OH) in-situ, whichmoves from the electrode surface
and reacts in the solution. The electrode is immersed in amixture of H2O2 and ferrous

Fig. 1 Derived fenton process and its techniques
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ions [8]. The oxidation mechanisms of the Fenton Process and its conjugates will be
discussed more fully in Sect. 8 of this chapter.

2 Fenton Process

The Fenton process consists of reactions where hydrogen peroxide is catalyzed
by iron ions, generating oxygen-active species that oxidize organic and inorganic
compounds. Henry J. Fenton described the Fenton reaction in 1894, showing that
hydrogen peroxide (H2O2) could be activated by ferrous salts (Fe2+), oxidizing
tartaric acid [9]. In 1934, Haber et al. [10] described that hydroxyl radicals (•OH)
are the components present in Fenton reactions. According to Zhang et al. [11], the
oxidation mechanism for the Fenton process has been studied for almost 90 years.
Research shows that Fenton’s oxidation process includes more than twenty chemical
reactions, highlighting Eqs. 1–10:

Fe2+ + H2O2 → Fe3+ + OH− + •OH (1)

Fe3+ + H2O2 → Fe2+ + H+ + •O2H (2)

Fe2+ + •OH → Fe3+ + OH− (3)

Fe2+ + • O2H → Fe3+ + HO−
2 (4)

Fe3+ + • O2H → Fe2+ + H+ + O2 (5)

•OH + • OH → H2O2 (6)

•OH + H2O2 → •O2H + H2O (7)

•O2H + •O2H → H2O2 + O2 (8)

•OH + •O2H → H2O + O2 (9)

2 H2O2 → O2 + 2H2O (10)

In the primary reaction (Eq. 1), known as the Fenton Reaction, hydrogen peroxide
is activated by ferrous ions (Fe2+), generating ferric ions (Fe3+) and hydroxyl radicals.
Ferric ions can be reduced by reacting with excess hydrogen peroxide to form ferrous
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ions again and more radicals (Eq. 2). Hydroperoxyl radicals (•O2H) are produced,
which can oxidize organic components less effectively [9].

Equations 3, 4, and 5 are reactions present in the Fenton oxidation process and
represent, together with Eq. 2, the limiting steps of the Fenton reaction, as there is the
consumption of oxygen-active species. The produced radicals can be eliminated by
the action of ferrous ions (Eq. 3), by reaction with peroxide (Eq. 7), by hydroperoxyl
radicals (Eq. 9), and even be eliminated by itself (Eqs. 6 and 8) [9]. The decomposition
of hydrogen peroxide into molecular oxygen and water takes place according to
Eq. (10).

The equations presented prove the complex mechanism associated with Fenton
reactions. In the same way that hydrogen peroxide acts as a radical generator, as
illustrated in Eq. 1, it can also act as a scavenger of these radicals. The hydroxyl
radicals generated are compounds with high redox potential, as shown in Table 1,
which compares the redox potentials values of some species.

Note that the redox potential of the hydroxyl radical (2.8 V) is only lower than
that of fluorine (3.03 V), proving its high performance. Another radical present in
Fenton’s equations, the hydroperoxyl radical (•O2H), has a low redox potential,
confirming its lower capacity to oxidize organic species.

The traditional Fenton reaction, also known as homogeneous Fenton, has some
operational disadvantages that make it difficult to operate on a large scale or in some
specific treatment processes.Among the disadvantages,we can list the high consump-
tion of hydrogen peroxide, the restricted pH range for effective operation (pH~3),
and the excessive generation of ferric hydroxide and consequent sludge formation.
Therefore, researchers have begun to investigate Fenton’s heterogeneous catalysis
[13–15]. In this process, iron is stable in a solid structure, decomposing the H2O2

into •OH without leaching iron ions into the solution, preventing its precipitation.
The more stable condition of the catalysts used in the heterogeneous Fenton reaction
also guarantees a wide range of working pH values and allows for easy recovery and
reuse of the material [14].

Table 1 Redox potentials of
some compounds [1, 12]

Species Redox potencial (V)

Fluorine 3.03

Hydroxyl radical 2.8

Atomic oxygen 2.42

Ozone 2.07

Hydrogen peroxide 1.78

Hydroperoxyl radical 1.70

Permanganate 1.68

Chlorine dioxide 1.57

Chlorine 1.36

Iodine 0.54
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The heterogeneous catalysts used in the Fenton oxidation process can bematerials
of different types, such as zero-valent iron, some types of soils rich in iron, ironoxides,
and residual materials with iron in their composition. Among the iron oxides, it can
be mentioned ferrihydrite (Fe5HO8. 4H2O) [16], hematite (α-Fe2O3) [17], goethite
(α-FeOOH) [18], lepidocrocite (γ-FeOOH) [19], maghemite (γ-Fe2O3) [20] and
pyrite (FeS2). Among the soils are hydroxides (LDHs) [21] and pillared clays [22].
Among the residues used as catalysts can be cited fly ash, pyrite ash, and blast
furnace dust [23]. These catalysts are often supported by other materials to maintain
iron immobilization. Themost common supports are clay, activated carbon, alumina,
silica, zeolites, fibers in general, biosorbents, and hydrogels [23].

The use of iron-based nanomaterials as catalysts brings new application perspec-
tives for Fenton reactions. Nanomaterials have a better catalytic performance when
compared to the same materials on the micro-scale. This fact is mainly due to the
large surface area that gives greater chemical reactivity [24]. According to Zeidman
et al. [25], the use of immobilized nanomaterials in AOPs has been reported to be
highly efficient in the degradation of emerging organic compounds such as antibi-
otics. Some iron-based nanomaterials most used in Fenton oxidation processes will
be discussed in Sect. 4 of this chapter.

2.1 Photo-Fenton

As previously presented, the photo-Fenton process is a branch of the homogeneous
Fenton process where there is a combination of hydrogen peroxide with Fe2+ ions
and irradiation. Overall, the photo-Fenton system produces more hydroxyl radicals
than the Fenton process alone, increasing the rate of organic pollutants degradation
[26]. The radiation effect in the system is attributed to the photo-reduction of Fe3+

to Fe2+ in parallel with the photolysis of H2O2 (UV/H2O2). Thus, different reactions
occur in the system and are represented in Eqs. 11 and 12.

Fe3+ + H2O2 + hv → Fe2+ + •OH (11)

H2O2 + hv → •OH + •OH (12)

The regeneration of Fe2+ by photo-reduction of Fe3+ is accelerated in this process
(Eq. 11), providing an increase in the formation of hydroxyl radicals. Furthermore,
the photolysis reaction of H2O2 (Eq. 12) also produces •OH, contributing to the
oxidation efficiency. Figure 2 shows a representative scheme of the photo-Fenton
reaction.

In the photo-Fenton system, the type of light source interferes with the pollutants
degradation performance. In the case of lamps, commonly used in this process, the
model and its power can interfere with its efficiency. Commonly used artificial lamps
emit UVA with λ = 315–400 nm, UVB with λ = 280–315 nm, or UVC with λ =
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Fig. 2 Conventional photo-Fenton reaction

100–280 nm [27]. Studies show that the shorter the wavelength, the greater the
efficiency of photoreduction. In this case, ultraviolet radiation (with λ < 400 nm) is
highlighted in the application for photo-Fenton reactions. However, at wavelengths
above 320 nm, photolysis of H2O2 does not occur. Thus, UVA radiation does not
activate the decomposition of H2O2, only participates in the iron photo-reduction.

The increase in radiation energy positively influences the catalytic activity of the
system. When changing an 8 W for a 16 W lamp, for example, there is an increase
in the rate of iron photo-reduction and a more significant formation of hydroxyl
radicals, enhancing photo-Fenton degradation [11]. Wavelength radiation in visible
and near-ultraviolet range (between 400 and 700 nm, approximately) also showed
efficiency in the degradation of some organic pollutants, including 4-chlorophenol,
nitrobenzene, anisole, herbicides, and ethylene glycol [26].

In general, the photo-Fenton process takes place at a pH close to 3, with a molar
ratio of H2O2/Fe between 2 and 150 and a molar ratio of H2O2/DQO between 1 and
3.5.Adisadvantage of this process is the lowpH,whichmakes large-scale application
difficult. For the photo-Fenton reaction to occur at pH close to neutral (6.5–7.5), it
would be necessary to add chelating agents to the system, forming organic complexes
of dissolved iron. An advantage of this process is the use of a low iron concentration
for the reaction.As photons quickly regenerate iron, it is not necessary to use it in high
amounts. Furthermore, removing iron from the solution after the oxidation process
may be unnecessary if the concentration is below the limit imposed for disposal [28].
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2.2 Sono-Fenton

The sonochemical degradation process emerged in the 1990s and is characterized
using ultrasound waves that propagate with compression and rarefaction cycles,
generating the phenomenon of acoustic cavitation. Cavitation generates numerous
bubbles in the system, called microreactors, and at its center, chemical reactions
occur [29]. The cavitation bubbles violently collapse and produce localized shock
waves, with a temperature around 5000 °C and pressure close to 500 atm for a
few microseconds. This extreme condition called a “hot spot,” allows the pyrolytic
cleavage of water molecules into a hydrogen atom and a hydroxyl radical [30].
Equations 13–15 present the generation process of oxygen-active species, while
Eqs. 16 and 17 show how pollutants are degraded using ultrasound. The symbol
“)))” indicates the presence of ultrasound.

H2O+))) → •OH + •H (13)

O2+))) → •O + •O (14)

H2O + •O → •OH + •OH (15)

Pollutants +))) → degradation products (16)

Pollutants + •OH → degradation products (17)

Ultrasound can be used for the degradation of the pollutant without the addition
of chemical substances, through high temperature (Eq. 16) or by the oxidative attack
of hydroxyl radicals (Eq. 17) [31]. A wide variety of organic pollutants can be
degraded using sonochemical degradation without chemicals, making this technique
environmentally safe. However, its application is limited. The main disadvantage is
the excessive use of energy to carry out the process. Therefore, combining thismethod
with the Fenton reaction becomes interesting, aiming at high process efficiency and
low operating cost. The method is called sono-Fenton, where sonication improves
mass transfer, increasing •OH formation and decreasing chemical consumption.

On the other hand, it is ideal for adding the right amount of Fe2+ to react with
the H2O2 and amplify the •OH production. Figure 3 illustrates the mechanism of
the sono-Fenton process reaction for the degradation of antibiotics, presented by Liu
et al. (2021) [29]. As shown, iron corrosion at the solid–liquid interface, oxygen acti-
vation, and Fenton reactions are the primary oxidation pathways in the sono-Fenton
processes, during which sonication performs mechanical and chemical functions
[29]. In addition to pharmaceutical compounds, the sono-Fenton process is efficient
in degrading dyes and pesticides [32].
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Fig. 3 Mechanism schematic of sono/Fenton-like processes. Reprinted from ref. [29] Copyright
(2021), with permission from Elsevier

2.3 Electro-Fenton

The mechanism of the electro-Fenton process is composed of a few steps:

1. H2O2 electrogeneration in situ from the O2 cathodic reduction, step dependent
on the intensity of the applied current and the dissolved O2;

2. •OH formation through the Fenton reaction between ferrous ions and the
electrogenerated H2O2;

3. •OH formation on the electrode surface, which occurs when materials such as
diamond are doped with boron (BDD) and are used as anodes; and

4. regeneration of Fe3+ to Fe2+ by direct cathode reduction.

Equations 18–20 show the reactions of oxygen-active species formation and Fe
regeneration [8, 33]:

O2 + 2 H+ + 2e− → H2O2 (18)

Fe2+ + H2O2 → Fe3+ + OH− + •OH (19)

Fe3+ + e− → Fe2+ (20)

The electro-Fenton is characterized as an advanced and sustainable electrochem-
ical oxidation technique. Figure 4 illustrates the mechanism of the electro-Fenton
process, presented by Nidheesh [34].

The most exciting feature of this process is the continuous electrogenerated of
H2O2, making the transport and storage of this chemical indispensable [35]. Another
attractive advantage is the constant regeneration of Fe2+ at the cathode (Eq. 20),
causing a high mineralization rate and avoiding the Fe3+ accumulation in the solu-
tion and possible sludge formation. Electro-Fenton becomes much more effective
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Fig. 4 Reaction mechanism of Electro-Fenton process. Reprinted from ref. [34] Copyright (2021),
with permission from Elsevier

compared to electrochemical oxidation and the Fenton reaction [36]. On the other
hand, the most significant disadvantage is the high energy consumption to reach
complete mineralization, generating a high cost for the process. A combination of
biological treatments could be used to solve this problem, for example, making the
process successful [37].

2.4 Operating Parameters

The main operating parameters that have a significant effect on the effectiveness
of the Fenton reaction are pH, catalyst concentration, H2O2 concentration, and the
concentration of the pollutant in the solution. Therefore, these parameters need to be
studied and optimized to obtain the best process efficiency with the lowest operating
cost [11].

Solution pH is considered one of the main factors that affect the Fenton process
performance, as it influences the oxidizing activity of the system [38]. At lower pH
ranges (up to pH~2), the hydroxyl radical reacts with the H+ ions in the solution
instead of oxidizing the organic pollutants. Thus, there is a reduction in the oxidation
capacity of the Fenton process. At higher pH values, there is hydrolysis and precipi-
tation of Fe3+ present in the solution and, therefore, there is a decrease in the catalytic
capacity to form •OH [11]. The pH also changes the stability of H2O2: at very acidic
pH, H2O2 becomes stable, creating H3O2

+, decreasing the rate of •OH formation
[39]; the alkaline pH ranges promote the decomposition of H2O2 and also reduce the
generation of hydroxyl radicals and the oxidizing activity of the system [40]. When
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it comes to homogeneous Fenton Reactions, the oxidation of the pollutants occurs
more satisfactorily in pH between 2 and 4 [38].

The concentration of H2O2 in the Fenton process is another critical parameter, as
both excess and lack of this reagent can cause •OH extinction. When adding a low
amount of H2O2, there may be insufficient hydroxyl radicals in the system, and the
oxidation will take place inefficiently. On the other hand, the excess of reagent, in
addition to producing hydroxyl radicals, will produce other substances, such as the
hydroperoxyl radical (•O2H), which decreases the contaminant oxidation rate [38].
Some studies indicate efficient oxidation results using low H2O2concentrations due
to the use of modified heterogeneous catalysts. For example, Dantas et al. (2006) [41]
used a heterogeneous catalyst to treat textile industry wastewater by a heterogeneous
Fenton process. As a result, it was necessary to consume less hydrogen peroxide than
in the homogeneous Fenton process and apply the process at a pH above 3.0.

The concentration of the pollutant in the wastewater influences the degree of
oxidation. In general, high pollutants concentrations lead to low degradation effi-
ciency. In addition to the difficulty of oxidizing the contaminants, the reaction time
becomes more prolonged, and the expenses with Fenton’s reagents also increase. In
many studies where there is a high concentration of organic compounds, the Fenton
reaction does not reach the complete mineralization of the system due to the total
consumption of the oxidizing agent and catalyst [11]. Thus, there may be a more
significant amount of intermediate products formed [39]. However, there are cases
where the increase in the pollutant concentration causes more significant degrada-
tion in the system. This happens due to the limitation of mass transfer between •OH
radicals and pollutant molecules. A higher concentration of contaminant increases
the number of collisions with the •OH molecules, optimizing the oxidation of the
compound [40].

Finally, iron is the commonly used material regarding the catalyst used in Fenton
reactions because it is more economical, safer, and ecologically correct. However,
other transition metals can be used for the same function, such as copper, ruthe-
nium, cerium, and manganese. The requirement is that the metal has at least two
oxidation states. However, Fe2+ has higher performance compared to other catalysts
[42]. The catalyst concentration used in the process is linked to the efficiency of
organic pollutants degradation. According to Zhang et al. [11], the degradation of
pollutants intensifies with the increase in the Fe2+ concentration; however, the unre-
stricted addition can harm the process since the excess of Fe2+ causes the scavenging
of hydroxyl radicals. Furthermore, when it comes to a homogeneous Fenton reaction,
the accumulation of Fe2+ in solution causes sludge formation and an increase in total
dissolved solids and the conductivity in the generated effluent [38].

As described in Sect. 2 of this chapter, many iron-basedmaterials are used as cata-
lysts in oxidative processes. In recent years, with the advancement of the nanotech-
nology area, there has been a growing interest in developing and applying new nano-
materials in the environmental area to treat contaminated water. Recent applications
of iron oxide nanomaterials in Fenton processes will be discussed in Sect. 3 of this
chapter.
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3 Nanomaterials

Nanomaterials have morphological characteristics that facilitate their application in
catalytic and adsorptive processes, such as a significant relationship between surface
and volume and high surface charges [43]. Furthermore, the activity and selectivity
of nanoparticles depend on their size, shape, surface structure, and bulk composition,
which can be appropriately adjusted during their synthesis.

The morphology and reactivity of the exposed faces of nanometric materials
directly influence the activation of H2O2 through the absorption of Fe2+ and
other reactive species on its surface [14, 44–46]. The importance of nanoparticle
morphology is evidenced by studies carried out in recent years, especially with
hematite, to obtain catalysts with specific faces used in environmental remediation
processes [45, 47–49]. Huang et al. [48] report that ferrous ions confined to specific
faces of the hematite crystal can significantly promote the decomposition of H2O2

to produce •OH than unconfined counterparts. Hematite nanorods with {001} and
{110} exposed faces exhibit a better confinement effect than nanoplates with {001}
exposed faces. Zhong et al. [50] identified that the catalytic activity of Fe3O4 in
different morphologies, under UVA irradiation, followed the order: nanospheres >
nanoplates > nanooctahedra ≈ nanocubes > nanorods. The greater catalytic perfor-
mance of Fe3O4 nanospheres was attributed to their smaller particle size but above
all to the larger specific surface area and greater exposure of {111} reactive faces.
Huang et al. [49] reported that hematite nanocubes with {002} exposed faces in the
presence of ascorbate exhibited lower Fenton catalytic performance when compared
to hematite nanoplates with {001} exposed faces.

The surface area of iron base nanomaterials is also an essential factor influencing
the degradation of organic pollutants by the Fenton reaction. Kwan and Voelker
[51] described a method to determine the rate of hydroxyl radicals formation in iron
oxide/hydrogen peroxide systems. In this method, the amount of •OH generated is
proportional to the surface area concentrations of iron oxide and hydrogen peroxide,
with a different proportionality coefficient for each iron oxide. Wan et al. [52] eval-
uated the performance of Fe3O4 nanoparticles with mean diameters between 30 and
600 nm. The result obtained proved that the surface area was more remarkable for
the smaller particles and that the catalytic activity increased with the reduction in the
size of the nanoparticles, as there is a greater specific surface area to interact with
the substrate [53].

Another attractive property of iron-based nanomaterials is that the magnetic prop-
erties are related to the composition of the nanomaterials and the size of the particles
[54]. For example, Fe3O4 is ferrimagnetic at room temperature, while Fe3O4 with a
size below 6–8 nm is superparamagnetic [55]. This magnetic characteristic is attrac-
tive because it favors an easy, fast and economic separation by applying a magnetic
field, simplifying the recovery and reuse of the catalyst, which are critical points
for large-scale application [56]. However, it has been stated that the magnetism of
ferromagnetic nanoparticles favors the aggregation of nanoparticles, thus reducing
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their dispersibility and activity [57]. Furthermore, the immobilization of ferromag-
netic nanoparticles on high surface supports has been reported as an ecologically
friendly solution that maintains the unique properties of these materials [58–60].
Recent literature brings two trends in the nanomaterials preparation: the synthesis of
composites where iron is part of the structure and the impregnation of ferromagnetic
nanoparticles on porous supports [56].

Among the various nanoparticles used in catalytic processes, magnetic iron oxide
nanoparticles are promising to treat different wastewater using heterogeneous Fenton
[41, 61, 62]. The ferromagnetic nanoparticles of zero-valent iron and the ferrimag-
netic or superparamagnetic nanoparticles of magnetite (Fe3O4) and maghemite (γ-
Fe2O3) are widely reported for wastewater or underground environments treatment
in recent decades. Iron oxides have been preferred in use for conversion to nanos-
tructured magnetic materials [1, 63]. According to Munoz et al. [56], since 2008,
magnetic nanoparticles have been applied in Fenton oxidation and represent a new
generation of catalysts for this technology. The nanomaterials mentioned here and
their perspectives for use in Fenton processes will be presented below.

3.1 Hematite

Hematite (α-Fe2O3) is one of the main iron ores used as heterogeneous catalysts. Its
use is associatedwith the fact that it is an abundant and low-cost material, with a large
surface area, large surface-to-volume ratio, and interesting topology andmorphology.
Another essential feature is that even after losing its reactivity, it can be used as a raw
material to produce pig iron, avoiding inappropriate disposal and without causing an
environmental impact.

The use of hematite has been reported in remediation processes for various
organic and inorganic contaminants through adsorption processes and Fenton oxida-
tion [64, 65], and nanoscale material [66]. Doping hematite with heavy metals and
non-metallic ions also improves its performance to degrade pollutants [23]. Synthe-
sized hematite nanoparticles with sodium pyrophosphate as a chelating agent were
used by Jorfi et al. [67] to pre-treatment soil contaminated with pyrene, obtaining
a pyrene removal rate of 96%. Photocatalytic degradation of Rhodamine B using
visible light and structurally well-defined hematite nanoparticles reached 70% effi-
ciency [68]. Hematite nanoparticles (α-Fe2O3)were synthesized using ferrous sulfate
residues (FeSO4·7H2O) andpyrite (FeS2) as rawmaterials and used formethyl orange
decolorization by the photo-Fenton system, obtaining a decolorization efficiency of
99.55% in 4 min [69]. A disadvantage of this ore is its paramagnetic behavior, which
means it is slightly attracted to magnetic fields. Although this characteristic does not
affect the Fenton oxidation efficiency, the application of hematite nanoparticles on
a large scale is complex since the separation by magnetic field will not be effective
[24].
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3.2 Magnetite

Magnetite is an iron oxide that has a mixed-valence and belongs to the spinel group,
having unique redox properties. Among the ores found in nature, magnetite is the
most magnetic and is widely used in the Fenton process because of its structural
ferrous ions. Due to its magnetic properties, that is, its ferrimagnetic behavior, Fe3O4

can be easily separated in wastewater purification processes, such as functioning
continuously as a heterogeneous catalyst, without considerable loss and mass.

The literature presents efficient results usingmagnetite as a catalyst for the hetero-
geneous Fenton reaction in the degradation of organic pollutants. The degradation of
carbamazepineand ibuprofen was investigated using nano-magnetite as a catalyst for
the heterogeneous Fenton reaction, obtaining degradation percentages more signifi-
cant than 80% [70].Magnetite nanoparticles, synthesized by the sol-gel citrate-nitrate
method, were applied as precursors for methylene blue degradation obtained a color
removal of 93.4% [71]. Amoxicillin degradation reached the maximum removal
efficiency of 98.2% using heterogeneous electro-Fenton without external aeration
with nano-Fe3O4 synthesized by chemical co-precipitation method [72]. Microwave
irradiation was used in the heterogeneous activation of nano-Fe3O4 to obtain •OH
radicals from the decomposition of H2O2. In addition to the remarkable reuse in up
to seven cycles, being completely removed by applying a simple magnetic field, the
degradation of the dye Rhodamine B reached 97.55% [73].

3.3 Maghemite

Maghemite has properties similar to those of magnetites, such as spinel structure and
ferrimagnetic behavior. However, γ-Fe2O3 can be more stable and resistant to acidic
environments thanmagnetite and can be used in applicationswith adverse conditions.
Maghemite has a lower magnetization value thanmagnetite (~80 emu/g), and for this
reason, it ends up being less used [24].

Maghemite nanoparticles (γ-Fe2O3) and maghemite/silica nanocomposite micro-
spheres (γ-Fe2O3/SiO2) were evaluated as heterogeneous Fenton magnetic catalysts
in the degradation of different organic compounds (methyl orange, methylene blue,
and paranitrophenol), obtaining mineralization rates between 50 and 99% [74]. The
decolorization of the triphenylmethane dye using a sliding arc plasma discharge in
humid air and maghemite nanoparticles (γ-Fe2O3) obtained a discoloration rate of
55.6% [75]. Maghemite differs from magnetite since all iron species are in the form
of Fe3+ and Fe2+ ions are absent. This characteristic decreases the effectiveness of
the catalytic activity of this material compared to magnetite [76].
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3.4 Other Ferrites

Ferrites are iron oxides with one or more transition metals in their composition. They
have a general structure given byMFe3O4, whereM represents the divalent transition
metal ions present in the material, for example, Cu, Zn, Ni, Co, Mn, and Fe. Ferrites
are up-and-coming materials as heterogeneous catalysts for photo-Fenton reactions
due to their narrowbandgap and high stability. Furthermore, they generally have good
magnetic properties and are easily separated from solutions. Among the possible
formed ferrites, ferrites have remarkable properties for the degradation of organic
compounds. Somemetals, such as Co,Mn, andCu (Mn+, with n= 1.2), can react with
H2O2 to generate •O2H and •OH through a Haber–Weiss type mechanism during
the Fenton reaction (Eqs. 21 and 22). The metals mentioned can also participate in
the redox cycling of Fe3+/Fe2+, as shown in Eqs. 23–25 [14, 77]. The symbol ≡
represents the metals bonded to the nanomaterial surface.

Mn+ + H2O2 → M(n+1)+ + OH− + • OH (21)

M(n+1)+ + H2O2 → Mn+ + H+ + • O2H (22)

Fe2+ + Co3+ → Fe3+ + Co2+ (23)

Fe2+ + Mn3+ → Fe3+ + Mn2+ (24)

≡ Fe(III) + ≡ Cu(I) → ≡ Fe(II)+ ≡ Cu(II) (25)

Cobalt nanoferrites (CoFe2O4)were used as photocatalysts formethylene blue dye
degradation under visible light irradiation, reaching a degradation efficiency of 80%
after 140 min [78]. Nanostructured catalysts Co1-xZnxFe2O4 (0 ≤ x ≤ 0,5) synthe-
sized by the microwave combustion method were used in the photocatalytic degra-
dation of Rhodamine B under visible light. Among all samples, Co0,6Zn0,4Fe2O4

exhibited a degradation efficiency of 99.9% in the visible light exposure time of
210min [79]. Cobalt FerriteNanoparticles (CoFe2O4)were used for the sonocatalytic
removal of various organic dyes (AO7, AR17, BR46, and BY28). The maximum
removal efficiency of 90.5% was reached, and nanocomposites’ reuse suffered a
22% drop in efficiency after 5 cycles [80]. The photocatalytic activity of different
ferrites (NiFe2O4, CuFe2O4, MnFe2O4, and SrFe2O4) was investigated for methy-
lene blue dye degradation, obtaining efficiencies above 98% for all studied materials
[81]. Finally, the incorporation of Co and Mn in the magnetite structure, studied by
Costa et al. [77], significantly increased the Fenton reactivity of the magnetite due
to the increased H2O2 decomposition.
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4 Final Considerations and Future Directions

The versatility of Fenton’s oxidation process is unquestionable. The method, which
can be improved with the addition of light, ultrasound, electricity, and/or solid iron
source particles, can remediate contaminated water from different sources. The use
of iron-based nanomaterials represents a promising alternative for heterogeneous
Fenton oxidation and a potential field of studies related to the application of nanocat-
alysts. Nanoparticles are also considered promising and efficient catalysts due to their
high surface area and low resistance to diffusion. Nanomaterials from iron oxides are
highlighted in recent literature since magnetic natural minerals have high availability
and low cost. However, its immobilization on support proves to be a field of study yet
to be explored. The ease of applying the Fenton process and advances in thematerials
area suggest that the method will still be widely investigated in the coming decades,
especially regarding underexplored contaminants, such as emerging pollutants.
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Nanomaterials for Fuel Production

João Víctor Pereira Abdalla, Adriane de Assis Lawisch Rodríguez,
and Annelise Kopp Alves

Abstract Fuel production is an essential part of modern society. The use of fossil
fuels increases every day, generatingmore greenhouse gases. Processes are developed
to reduce global warming, aiming to convert these gases into hydrocarbons, which
will be used as fuel. The main problem consists of the energy needed to allow the
process to happen. The use of solar energy becomes more likely to succeed every
day. This chapter will discuss current fuel production methods and alternatives to
convert greenhouse gases into usable products.

Keywords Nanomaterials · Solar fuels · Nanocatalysts · Dry reforming

Abbreviations

PC Photochemical
PEC Photoeletrochemical
MOF Metal-Organic Framework

1 Introduction

Over the years, energydemandhas been increasing due to industrialization and signif-
icant population growth. As a result, it causes an increase in fossil fuel combustion,
substantially increasing greenhouse gas emissions [1, 2].

Nowadays, global warming hits values of about 2ºC, compared with temperatures
pre-industrialization [3]. Thus, to Karmaker et al. [1], thermoelectric power plants’
energy production is responsible for a significant part of greenhouse gas emissions.
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Projections show that the human race’s energy consumption will be doubled until
2050 and triplicated until 2100 [4]. Given this problem, the search for alternative
energy sources increases, making new technologies emerge every day.

In 2015, the UN established the Paris Agreement, which recognizes the climate
change caused by industrialization and establishes goals to reduce greenhouse gas
emissions until 2030.

In this agreement, countries like Brazil committed to reducing greenhouse gas
emissions by 37% until 2025 and 43% until 2030, compared with the emission level
observed in 2005.

In this context, theUSA created “TheUnited States BiofuelMandate,”which aims
to reduce the consumption of fossil fuels, increasing the use of biofuels, reducing
the impact of greenhouse gas emissions.

Against this problem, new technologies are developed to recycle greenhouse gas
emissions generated in industrial processes (mainly CO2), converting them, again,
into hydrocarbons [5]. In addition, those technologies can also produce hydrogen
fromwater splitting, making it a usable fuel that will not emit new greenhouse gases.

Among those technologies, Advanced Oxidation Processes highlights the impor-
tance of nanocatalysts in this context.When applied in heterogeneous photocatalysis,
those materials are revolutionizing the industry, allowing the use of light as an energy
source for fuel synthesis [6].

2 Nanocatalysts

Among the nanomaterials, nanocatalysts’ class involves semiconductors and metal
oxides, which, due to their reduced size and shape, have their properties modified,
increasing superficial area for reactions and changing their applications [7, 8]. They
are divided into three different groups [9], as seen in Table 1. Also, mixed non-
noble metal oxide consists of merging two non-noble metal oxides to obtain various
properties. Also, those materials can be classified as perovskites.

The perovskites consist of materials composed of semiconductors and oxygen.
Usually, niobium-based perovskites are excellent materials to work with, allowing
the catalyst to be shaped into different forms. In those systems, metal–organic
frameworks have the function mainly to improve the catalytic activity of the mate-
rials, avoiding recombination and stabilizing materials. In this class, the niobium

Table 1 Nanocatalysts
groups

Noble metal Non-noble metal oxide

High activity Lower activity compared to noble metal

High stability Easier size manipulation

Easier to deactivate Resistant to deactivation

High cost Low cost
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compounds also demonstrate to be a good candidate for fuel production. Further-
more, the association of niobium and other metals creates catalysts that can be used
for this purpose and improved with research.

In recent years, the nanostructure engineering of catalysts creates a new way
to produce valuable fuels, the structure for this purpose divides into nanosheets,
nanowire, nanotube, nanorod, and quantum dots [10]. To be activated, the photon
energy focused on thematerial must be higher than its bandgap, allowing the creation
of an electron–hole pair [11].

2.1 Metal–Organic Frameworks

Metal–organic frameworks (MOFs) are characterized as coordinated metal ions
linked by an organic compound [12]. Compared to ceramics, MOFs show a similar
pore structure with the advantage that they can be shaped into different designs.
Also, it’s characterized as a flexible nanoporous material with low structure density.
Furthermore, creating catalytic interfaces makes them a good choice for catalytic
purposes [13–17]. Again, as a high coordination environment, theMOFs can stabilize
single atoms catalysts, nanomaterials, and quantum dots [16, 18]. Figure 1 illustrates
MOFs applications in catalytic reactions while Fig. 2 demonstrates the utilization of
MOFs in different applications. The upper applications demonstrate an encapsula-
tion of the originalmaterial, allowing photocatalytic systems improvements, avoiding
nanoparticle agglomeration.

Fig. 1 MOFs applications. Reprinted with permission from Liu et al. [14]
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Fig. 2 MOFs integration. Reprinted with permission from Chen et al. [16]

2.2 Niobium

Since it’s an accessible material to tune optical and electrical properties, niobium-
based nanocatalysts are being studied to develop a new photocatalyticway to produce
fuels [19]. For example, processes like electrocatalytic water splitting can benefit
from these properties, as tuning the bandgap andpotentials can increase the selectivity
towards H2 formation [20].

The bulk niobium pentoxide doesn’t achieve good photocatalytic performance
when utilized since its charge recombination rate is very high. However, the niobium
compounds have the facility easier to shape, allowing modifications that turn them
into excellent material for fuel production [21].

2.3 Perovskites

Perovskites are materials that associate two or more elements in the structure,
providing a highly tunable band structure. This material demonstrates to be efficient
in solar energy production and photocatalysis [22, 23]. Furthermore, these materials
seem to fulfill the requirements for fuel production since it’s possible to develop a
high-efficiency charge separation material [17, 24, 25].
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Fig. 3 Structural doping. Reprinted with permission from Zhu et al. [28]

2.4 Graphitic Carbon Nitride (g-C3N4)

Graphitic carbon nitride is a two-dimensional network (nanosheet) with bandgaps
around 2.67 eV, close to the visible light region. Since it haves a high surface area
and increased stability, this material is ideal for catalyst [26, 27]. However, like other
materials, it has a high recombination rate and low carrier mobility. These problems
can be fixed by doping the g-C3N4 structure [28]. When doped with heteroatoms,
their recombination rates are reduced, and their potentials can be tuned to produce
hydrocarbons [28].

Figure 3 demonstrates the possibilities for heteroatom doping in the g-C3N4

structure, while Fig. 4 shows the band gaps and potentials for each doping system.
As seen above, this material shows a lot of advantages. The figures demonstrate

the capacity for the material to be shaped and manipulated into the process’s needs.

3 Alternative Fuel Production Methods

As alternatives for the traditional process, nanomaterials can be used as catalysts,
making the process cleaner, recycling greenhouse gases into hydrocarbons, and split-
tingwater into hydrogen (Hydrogen Evolution). Table 2 demonstrates processes used
to produce different fuels. The photocatalytic systems can be used with solar energy
originating the solar fuel production method.
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Fig. 4 g-C3N4 potentials. Reprinted with permission from Zhu et al. [28]

Table 2 Most common gases, processes, and fuel products

Gases Process Product Reference

CH4 Thermocatalysis CH3OH, HCOOH, CO2, CH3OOH [29–31]

CH4, CO2 Electrocatalysis CH3OH, HCOOH, CO2, CH3OOH, HCHO [29, 30, 32]

CH4 Photocatalysis CH3OH, HCHO, HCOOH, H2 [29, 30, 33]

CH4, CO2 Dry reforming H2, CO [33–39]

CO2, H2O Photocatalysis HCOOH, CH3OH, C2H5OH, CO, CH4 [30, 40–43]

CO2, H2O Photocatalysis CH3OH, H2O [44]

4 Hydrogen Evolution

Being an environmentally friendly fuel, hydrogen gas (H2) is a promising form of
energy transportation [45, 46]. However, the high infrastructure costs create a barrier
between humanity and a hydrogen economy [47].

Hydrogen can be produced mainly by two different processes, water splitting
and Steam Reforming of Methane [48]. In both cases, specific catalysts are used to
improve the process.

Mainly, the reaction for hydrogen production from water splitting is described as
below:

2H2O + 4e− → 2H2 + O2
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Fig. 5 Activation energy reduction. (Reprinted with permission from Lin et al. [48])

The electrons described in the equation can be obtained by electro or photochem-
ical methods [49, 50], including a catalyst’s association. In this case, the electron
will be obtained from the material after activation.

Figure 5 shows the activation energy with and without a catalyst, demonstrating
its reduction in the nanomaterial presence.

The photocatalytic process associates a catalyst with a light source, creating elec-
tron–hole pairs to react and form the required products. Heterojunction systems
associate two catalysts as ZnO/ZnS and MoS2/CdS, aiming to improve the catalytic
efficiency of both [46, 51]. However, one of the process problems is catalyst aggre-
gation, which needs to be corrected to maintain the high surface area. As mentioned
before, this problem can be fixed by associating the catalyst with a MOF. Recent
research demonstrates that the material can be related to nanodiamonds, avoiding
the aggregation problem [45].

Nanotubes are also used as catalysts for water splitting systemswith TiO2 [52] and
CeO2 [53]. However, their efficiency can be improved by adding doping elements in
the structure, like Nitrogen [52], or sensitizing the material.

Table 3 indicates some of the current catalysts researches for hydrogen production
from water splitting, indicating the energy source, the amount of H2 produced, and
characteristics of the respective catalyst.
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Table 3 Research on hydrogen production from water splitting, indicating the energy source, the
amount of H2 produced, and characteristics of the respectively used catalysts

Catalyst Method Energy
source

Production Characteristics Authors

ZnS-ZnO PC UVC
light

1600 µmolh−1

g−1
Heterojunction
improves the
electron–hole pair
generation; an
ideal sulfur
content

[51]

Photocatalyst/
nanodiamond

PEC – – Small particle size
and low density,
aggregates that
reduce the surface
energy and spread
into the air;
stability, high
catalytic activity

[45]

MoS2/CdS PC Visible
Light

27,72 mmolh−1

g−1
MoS2 reduced
charge
recombination;
higher MoS2
ranges reduced H2
production
(covering CdS
active sites)

[46]

N-doped TiO2
nanotubes

PC Solar
Light

19,848 µmolh−1

g−1
After optimal
concentration, the
catalytic activity
decreases due to
the formation of
recombination
centers

[52]

CeO2/SnO2 Aerogel PC 300 W
380 nm
Xenon
lamp

21,937 µmolh−1

g−1
The electrons of
CeO2 are
transferred to the
defect energy level
of SnO2, while
SnO2 holes are
transferred to
CeO2, improving
the electron–hole
pair generation

[53]

5 Dry Reforming

This process consists of breaking carbon dioxide and methane into syngas (hydrogen
and carbon monoxide) [54, 55]. Usually, the process depends on high temperatures
due to the high activation energy in CO2 and CH4 [56].
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The syngas obtained in the process can produce different hydrocarbons with the
Fischer–Tropsch process [57, 58]. Those can be used as fuel. Besides that, hydrogen
itself can perform as fuel, generating water as the combustion product.

Due tomethane decomposition to hydrogen and carbonmonoxide, the catalyst can
be deactivated from coke deposition at high temperatures [57, 59, 60]. Using systems
like Metal–organic frameworks could avoid this problem due to the encapsulation of
the catalyst by the organic framework [61].

In dry reforming, noblemetals have shown higher activity and better resistance for
coke deposition, but their high cost restrains industry applications [58]. So, alternative
metals are used as substitutes, such as cobalt and nickel. Table 4 demonstrates the
most common catalysts being researched and their respective characteristics.

6 Solar Fuel Production

The solar fuel production method consists of synthesizing fuels using the sun as
the energy source for the reaction. Similar to others processes, the solar method
associates electro and photochemical procedures. Some systems unite both ways
and create a photoelectrochemical process that mainly improves fuel production.

As seen before, CO2 demands very high energy to break its bonds, since, in the
other process, the energy source is thermal, the synthesis needs a fuel consumption
to happen. Therefore, aiming for valuable fuel synthesis, solar light can remove the
overconsumption of non-renewable fuels [69].

This system differs from dry reforming, as dry reforming mainly focuses on
product syngas, and solar production methods aim to convert carbon dioxide and
hydrogen into usable fuels [70].

Sunlight can be divided into three wavelengths: Ultraviolet (approximately 4%
of the energy, 3.2 eV), Visible (43% of the energy, 1.6 eV), and infrared (53% of the
energy) [71]. Nowadays, most of the catalysts are activated by UV light, this being a
minor part of the sunlight. For the process to be improved, the catalysts will need to
be activated in visible light, while the energy potentials maintain values adequates
for the synthesis.

Figure 6 demonstrates the needed energy potentials to synthesize different hydro-
carbons.As observed, the potentials are very close, so studies are necessary to develop
a catalyst that shows a higher selectivity to the desired product.

Figure 7 represents the photoelectrochemical system, associating a photocata-
lyst with an electrochemical technique for fuel production. The generated electrical
current split the water into hydrogen and oxygen, allowing fuel synthesis to occur.

As seen in Fig. 8, this process could be associated with the industry, capturing the
generated CO2 to turn into a helpful hydrocarbon again, obtaining hydrogen from
water splitting and activation energy fromsolar light. Inside the solar photoreactor, the
catalyst will directly influence the process efficiency. Therefore, catalyst selection,
being the central part of the process, requires deep analysis.
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Table 4 Most common catalysts used for dry reforming

Catalyst Energy source CH4
conversion
(%)

CO2
conversion
(%)

Characteristics Authors

Ni/SiO2 core,
ZrO2 Shell

Thermal (900 ºC) 98,80% 95% ZrO2 shell avoid
coke deposition

[57]

Pd core, SiO2
Shell

Thermal (750 ºC) 85% 85% SiO2 shell
increases
stability. Stable
for at least 10 h

[59]

Ni/Al2O3 Thermal 75 80 25wt % Ni has
optimum
performance.
Additional Ni
decrease
dispersion,
lowering the
catalytic activity

[58, 62]

Ni/Al2O3—eO2 Thermal (850 ºC) – – [55, 63, 64]

NiCo-NiAl2O4 Thermal (750 ºC) – – Potassium
decreases the
catalytic activity,
but increases
material stability

[60]

Co/Al2O3 Thermal (800 ºC) 76,2 81,6 10 wt% Co
exhibits excellent
performance with
high stability

[65]

Ni/MeAl2O4 Me
= Fe, Co, Ni, Cu,
Zn, Mg

Thermal (700 ºC) Ni 73 Ni 68 Ni support
demonstrates
higher
production:
higher surface
area reduced coke
deposition

[66]

Mg 70 Mg 65

Co 68 Co 60

Zn 60 Zn 50

Fe 48 Fe 30

Cu 37 Cu 10

Pd/CeO2 Thermal – – The catalyst
remains stable
after 9 h. Stability
was affected by
sintering and
reoxidation

[67]

(continued)
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Table 4 (continued)

Catalyst Energy source CH4
conversion
(%)

CO2
conversion
(%)

Characteristics Authors

Pt-Ni Thermal (700 ºC) – – Improved
selectivity
towards H2. Also,
reduce the carbon
deposition in the
catalyst,
enhancing its
stability

[68]

Fig. 6 Energy potentials. (Reprinted with permission from Ikreedeegh and Tahir [72])

Asmentioned before,MOFs demonstrates to be a strong candidate for this process
due to their structure, high potential for CO2 adsorption, and maximized surface
efficiency, isolating active sites and avoiding recombinations [73].

Nowadays, the photo-assisted Fischer–Tropsch process can convert syngas into
valuable hydrocarbons. Still, due to the high recombination rate and low efficiency
in synthesizing the products, the process needs improvements.

In this case, materials like graphitic carbon nitride (g-C3N4) have shown inter-
esting properties, especially when doped with heteroatoms that tune their bandgap
into visible light and their potentials to produce hydrocarbons [28].
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Fig. 7 Photoelectrochemical process. (Reprinted with permission from Kalamaras [40])

Fig. 8 Solar production process. (Reprinted with permission from Francis et al. [70])
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Table 5 Developed catalysts for solar fuel production

Catalyst Light Source Products Production Reference

ZnS1-xSex nanobelts 300 W Xe lamp CO, H2 – [74]

Zn0.5Cd0.5S/Au@g-C3N4 300 W Xe lamp/
UV- cutoff filter

CH3OH 1.31 µmolg−1

h−1
[75]

Dolomite supported Cu2O LED visible 20 W CH3OH and
HCOH

38 µmolg−1

h−1
[76]

Ni/CeO2 THERMAL (350
ºC)

CH4 – [77]

Ni/In2O3 300 W Xe lamp/
UV- cutoff filter

CH4 55 µmolg−1

h−1
[78]

CsPbBr3/MoS2 300 W Xe lamp/
UV- cutoff filter

CH4 125 µmolg−1

h−1
[24]

CsPbBr3/UiO-66(NH2) 300 W Xe
lamp/UV- cutoff
filter

CO, CH4 10 µmolg−1

h−1
[17]

Table 5 demonstrates the catalysts being developed for the solar fuel production
method. Most of the tests utilize a simulated solar light, using a UV cutoff filter to
reduce the ultraviolet contribution in the synthesis.

Metal–Organic Frameworks produced a higher value of methane. Mainly, this
material has the advantage of prevents recombinations and material aggregation,
maintaining the catalyst stable for an extended period.

7 Future Perspectives

As they are today, alternative fuel production methods have low synthesis efficiency,
converting a minimal amount of CO2 in each process. Therefore, for these processes
to be used as alternatives to conventional fuels, further research will be needed to
improve them.

As the day passes, new materials emerge as strong candidates for solar fuel
production. However, for those systems to be capable of an environmentally friendly
synthesis, the new materials need to be activated under visible light irradiation,
allowing better use of sunlight.

The fuel production by photo and electrocatalysis can mainly benefit industries
since the photocatalyst can help decrease the electrical energy used to synthesize the
products.

Thermochemical methods, such as dry reforming and the Fischer–Tropsch
process, need to be evaluated since they need to achieve high temperatures. In those
cases, the catalysts can help to reduce those temperatures. Besides, catalysts with
coke deposition resistance can make the process more efficient since they will be
active for a longer time.
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Nowadays, sunlight can be associated with the Fischer–Tropsch synthesis, origi-
nating the photo-assisted Fischer–Tropsch process. This process can convert syngas
into valuable hydrocarbons. Still, due to the high recombination rate and low
efficiency in synthesizing the products, the process needs improvements.

The hydrogen production processes can achieve a great potential, mainly in the
automobile industry, since it solves the hydrogen transportation problem, allowing
vehicles to carry only water that can be split into hydrogen, used, and then produce
water again.
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Photoelectrochemical Performance
of Doped and Undoped TiO2 Nanotubes
for Light-Harvesting and Water Splitting
Techniques: Systematic Review
and Meta-Analysis

Maria Luisa Puga, Carla Schwengber ten Caten,
and Carlos Pérez Bergmann

Abstract Strategies for optimizing the performance of titanium dioxide (TiO2)
nanotubes on photoelectrochemical applications include morphological adjustments
via doping or deposition techniques. This systematic review and meta-analysis
summarize published articles from2015 to date on pure andmodifiedTiO2 nanotubes
(TNTs) anodized in organic electrolytes and evaluate potential relationships between
anodization parameters, tube morphology, and water splitting applicability. Studies
were searched on Science Direct online database, screened according to predefined
criteria, and evaluated for their eligibility. Fourteen studies composed the meta-
analysis, 11 of them on pure and six on doped TNTs. Multiple linear regression was
performed to test if percentages of water (H2O) and ammonium fluoride (NH4F) in
the electrolyte, anodizing time, applied voltage, and the presence of a doping agent
significantly predicted the developed photocurrent density. The overall regression
was statistically significant (R2 = 0.893, F (10, 20) = 3.90, p = 0.0000). The main
effects predicting photocurrent density were H2O (p = 0.014), NH4F (p = 0.001),
anodizing time (p = 0.012), and type of nanotube modification (p = 0.005). Doped
nanotubes yielded a mean photocurrent density value 65% higher than pure TiO2

nanotubes (1.082 and 0.656 mA.cm−2, respectively).

Keywords TiO2 nanotubes · Doping ·Water splitting · Anodization · Systematic
review ·Meta-analysis

1 Introduction

The ever-increasing global concern about sustainability has shifted efforts to devel-
oping innovative environmentally friendly energy resources [1]. Among the prospec-
tive alternatives, hydrogen fuel has been described as an ideal solution to counter the
negative impacts of fossil fuel exploration, primarily because its generation occurs
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through the electrolysis of water under sunlight irradiation, two naturally abundant
and renewable resources [1–5]. Electrochemical systems for hydrogen generation via
water splitting using the semiconductor TiO2 as photoelectrode were first reported
in 1972 [6]. The technique is also carbon–neutral [7], which holds a fundamental
asset to the worldwide decarbonization goals ratified by the 2016 Paris Agreement.

The working principle of the technique is based on the generation and transferring
of electron–hole pairs under direct solar illumination. As illustrated in Fig. 1, light
absorption induces the generation of excited electrons (e−) and holes (h+) in the
conduction and valence bands of the semiconductor, respectively [3, 8]. Charge
carriers then migrate to the TiO2-electrolyte interface, where the photo-generated
holes promote water oxidation into oxygen (H2O to O2), while electrons reduce the
hydrogen ions to form molecular hydrogen (H+ to H2) [6, 9, 10].

Even though TiO2 is an outstanding, cost-effective photocatalyst semiconductor
[11], its wide band gap (3.0–3.2 eV) restricts the effective range of the incoming
solar energy spectrum utilized in water splitting processes to the UV radiation [12].
Moreover, TiO2 nanoparticles are prone to a fast recombination rate of the photo-
induced charge carriers, which further restricts photocatalytic activity [13, 14]. Given
these aspects,morphological alterations are required tomaximize the light-harvesting
efficiency of TiO2 as a photoanode [9, 10].

A chief modification of the pure TiO2 structure is to shift from randomly oriented
nanoparticles to well-defined nanotube arrays (TNTs). The TNT structure is also
defined by a large surface area, which provides additional active sites for photochem-
ical reactions while reducing charge carrier recombination rates [15, 16]. Regarding
TiO2 nanotube synthesis, electrochemical anodization has taken up the spotlight
since their first reports in 1999 [17, 18]. The technique is a straightforward, versatile,
and scalable way to fabricate highly-ordered, self-assembled nanotube arrays from
metallic titanium substrates [10, 19].

Fig. 1 Schematic principle of photocatalyticwater splitting. Adapted and reprintedwith permission
from [3]
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It is important to note that accurate control over anodizing parameters and
electrolyte composition is pivotal in fine-tuning TNT morphology [20]. To date,
employing organic-based electrolytes with the addition of specific amounts of water
and ammonium fluoride (NH4F) is shown to set up the most beneficial environment
for optimized tube growth [21, 22].

The optimization of electronic properties on TNTs is mainly achieved by intro-
ducing a comprehensive variety of materials into the TiO2 lattice [23], such as noble
and transition metals, rare-earths, non-metal ions, and other semiconductors [9, 14].
The dopingmethod aims to decrease band gap energy levels and broaden the effective
absorption range to the visible light spectrum [15]. Dopants also support higher sepa-
ration rates of electron–hole pairs through oxygen vacancies and electron trapping
mechanisms [24, 25].

Given its fitting to long-term sustainability goals, hydrogen production is expected
to hold up to 22% of the global energy consumption in 2050 [7, 26]. So, it is funda-
mental to outline the effects of anodization parameters on TiO2 photoelectrochemical
output to maximize TNT suitability in hydrogen fuel generation production.

2 Methods

This study was conducted following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Statement [27]. Research papers published
between 2015 and 2021 were selected from the online database Science Direct
in April 2021, using the key term “TiO2 nanotubes anodization water splitting”.
Searching results were limited to subscription journals.

2.1 Eligibility Criteria and Study Selection

The online database search yielded 707 results, which were manually selected by
the authors. Studies meeting the following criteria were eligible for meta-analysis:
(i) nanotubes fabricated via electrochemical anodization; (ii) anodizing electrolyte
preparedwith ethylene glycol, H2O, andNH4F; (iii) samples consisting of either pure
OR doped TiO2 nanotubes; (iv) substrate made of Ti foils, plates or sheets; linear
voltammetry conducted in (v) Ag/AgCl electrode and (vi) 1 M KOH electrolyte.

Screened papers were saved to the Mendeley database for further evaluation.
Studies were excluded if (i) they had insufficient data on electrolyte composition,
band gap analysis, or photoelectrochemical performance; or (ii) the photoelectro-
chemical performance was conducted in any other electrolyte or set-up condition
than the one stated above. The study flow diagram is presented in Fig. 2.
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Fig. 2 PRISMA study flow diagram

2.2 Analytic Approach

The meta-analysis was conducted through a multiple linear regression model for 14
eligible studies, detailed in Table 1. Continuous predictors selected were (i) applied
potential (V); (ii) anodizing time (h); (iii)H2Ocontent (vol.%); and (iv)NH4F content
(wt.%); and the categorical predictor was (v) type of TNT, i.e., doped or pure. The
response was defined as (vi) photocurrent (PC) density developed at 0 V (mA.cm−2).
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Table 1 Summary of the 14 studies included in the meta-analysis

Modification on
TNTs

Electrolyte
composition

Anodizing
condition

Photocurrent
density at 0 V

References

Pure EG + 0.67% NH4F
+ 3% H2O

50 V—1 h 0.06 mA cm−2 [28]

Pure EG + 0.5% NH4F +
3% H2O

40 V—0.3 h 0.42 mA cm−2 [29]

Pure EG + 0.5% NH4F +
3% H2O

60 V—0.28 h 0.16 mA cm−2 [30]

Pure EG + 0.3% NH4F +
2% H2O

60 V—1 h 0.47 mA cm−2 [31]

Pure EG + 0.8% NH4F +
8% H2O

60 V – 6 h 1.42 mA cm−2 [25]

Pure EG + 0.5% NH4F +
5% H2O

60 V—0.5 h 0.45 mA cm−2 [25]

Pure EG + 0.3% NH4F +
5% H2O

60 V—0.5 h 0.02 mA cm−2 [32]

Pure EG + 0.3% NH4F +
2% H2O

20 V—1 h 0.54 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

20 V—2 h 0.57 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

20 V—3 h 0.18 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

20 V—6 h 0.48 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

40 V—1 h 0.78 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

40 V—3 h 0.12 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

40 V—6 h 0.24 mA cm−2 [33]

Pure EG + 0.3% NH4F +
2% H2O

60 V—6 h 0.49 mA cm−2 [33]

Pure EG + 0.5% NH4F +
2% H2O

60 V—1 h 0.08 mA cm−2 [34]

Pure EG + 0.35% NH4F
+ 2% H2O

30 V—0.3 h 0.8 mA cm−2 [35]

Pure EG + 0.4% NH4F +
12% H2O

30 V—0.3 h 0.97 mA cm−2 [35]

Pure EG + 0.4% NH4F +
12% H2O

30 V – 1 h 1.12 mA cm−2 [36]

Pure EG + 0.5% NH4F +
2% H2O

55 V – 0.5 h 0.013 mA cm−2 [37]

(continued)
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Table 1 (continued)

Modification on
TNTs

Electrolyte
composition

Anodizing
condition

Photocurrent
density at 0 V

References

Doping (Na2Co3) EG + 0.67% NH4F
+ 3% H2O +
0,03 M Na2CO3

50 V—1 h 0.28 mA cm−2 [28]

Doping (Ti-5%Si
alloy)

EG + 0.5% NH4F +
3% H2O

40 V—0.3 h 0.75 mA cm−2 [29]

Doping (T-1%Ni
alloy)

EG + 0.5% NH4F +
3% H2O

40 V—0.3 h 0.84 mA cm−2 [38]

Doping (Ti-10%Ni
alloy)

EG + 0.5% NH4F +
3% H2O

40 V—0.3 h 0.60 mA cm−2 [38]

Doping (Al2O3) EG + 0.5% NH4F +
2% H2O + 6.35 mM
Al(NO3)3

60 V—1 h 0.2 mA cm−2 [34]

Doping (Ti-1%Nb
alloy)

EG + 0.35% NH4F
+ 3.8% H2O

30 V—0.3 h 1.14 mA cm−2 [39]

Doping (Ti-1%Nb
alloy)

EG + 0.35% NH4F
+ 3.8% H2O

30 V—1 h 1.2 mA cm−2 [39]

Doping (Ti-1%Nb
alloy)

EG + 0.35% NH4F
+ 3.8% H2O

45 V—0.3 h 0.86 mA cm−2 [39]

Doping (Ti-1%Nb
alloy)

EG + 0.35% NH4F
+ 3.8% H2O

45 V—1 h 0.88 mA cm−2 [39]

Doping (Ti-1%Nb
alloy)

EG + 0.35% NH4F
+ 3.8% H2O

60 V—0.3 h 0.92 mA cm−2 [39]

Doping (Ti-1%Nb
alloy)

EG + 0.35% NH4F
+ 3.8% H2O

60 V—1 h 1.10 mA cm−2 [39]

Doping (H+) EG + 0.5% NH4F +
2% H2O

55 V—0.5 h 0.028 mA cm−2 [37]

3 Findings

The regression model for developed photocurrent density in doped and pure TiO2

nanotubes is statistically significant (p = 0.000), with a coefficient of determination
(R2) of 0.893 and an adjusted R2 of 0.84. Table 2 details the contribution and p-
values for the statistically significant predictors. The main effects included in the
model are H2O and NH4F content in the anodic electrolyte, duration of nanotube
synthesis via electrochemical anodization, and type of TNT evaluated. Noteworthy
contributions were calculated for H2O percentage and tube modification, namely
21.5% and 19.4%. A quadratic effect of NH4F was also found to be responsible for
15.2% of the observed responses on PC density at 0 V.

Results highlight the importance of a deliberate electrolyte preparation, as the
effective growth of TiO2 nanotubes is entirely dependent on a well-balanced rate
between chemical dissolution and electrochemical formation of the oxide layer. In
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Table 2 Analysis of variance for PC density developed at 0 V

Source Contribution (%) F-Value P-Value

Regression 89.32 16.73 0.000

H2O (vol.% in electrolyte) 21.50 7.31 0.014

NH4F (wt.% in electrolyte) 1.00 14.22 0.001

Anodizing time (h) 4.04 7.70 0.012

Type of nanotube (pure or doped) 19.39 9.97 0.005

NH4F * NH4F 15.22 19.63 0.000

H2O * NH4F 1.99 8.40 0.009

NH4F * Anodizing time 1.50 5.13 0.035

NH4F * Applied potential (V) 6.85 18.20 0.000

Anodizing time *Applied potential 5.73 9.73 0.005

H2O * Type of nanotube 12.09 22.65 0.000

Error 10.68

Lack-of-Fit 10.00 1.65 0.443

Pure Error 0.67

Total 100.00

organic-based electrolytes, fluoride species and water content are respectively the
controlling agents of these processes [40, 41].

In addition, the expressive contribution of doping elements is consistent with
published studies [9, 14, 23], showing that the method effectively increases TNT
performance in light-harvesting applications.

Figure 3 shows the main effects plot for mean PC density. A linear relationship
is observed for H2O content (Fig. 3a) and anodizing time (Fig. 3c) versus developed
current at 0 V. Regarding the extent of anodization, an increment in synthesis time
progressively evolves TNT length and regularity [9, 42]. Similarly, added water in
anodizing electrolytes acts as the source of oxygen required for oxide formation and
dissolution of F− ions. A gradual increase in H2O content leads to broader nanotube
diameters and wall thickness [21, 43]. Thus, both parameters translate into better
morphological aspects, which enhance TNT properties.

The quadratic effect of NH4F (Fig. 3b) shows an increase in the applicability of
TiO2 up to 0.5 wt %. The result agrees with the body of the literature, which employs
an overall window of around 0.3%NH4F in organic electrolytes [44]. Also, structural
formation is severely impaired when F− ion content reaches values above 2% [45],
as the etching rate of the oxide layer becomes overly aggressive. Relative fluoride
concentration is then a rate-limiting factor in anodization processes [40].

As for the type of material (Fig. 3d), dopant addition increases the photocurrent
efficiency for TiO2 nanotubes by about 65% (0.656 mA.cm−2 on pure TNTs to
1.082 mA.cm−2). Such an outcome reinforces the benefit of doping strategies for
performance enhancement on clean energy generation.
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Fig. 3 Main effects plot for photocurrent densitymeasured at 0V (mA.cm−2). Significant predictors
are a H2O and b NH4F content in the electrolyte; c anodizing time; and d nanotube modification
type

The regression model also discloses combined effects on developed current.
Ammonium fluoride percentage (Fig. 4a) and the type of TNT (Fig. 4b) are both
limiting factors for the suitable concentration of water in the electrolyte. As observed
in Fig. 4a, the commonly employed volume of about 2% H2Omaximizes the current
density with low amounts of NH4F [44]. Moreover, higher concentrations of F− ions
require an increased amount of water to prevent corrosion of the Ti substrate [46]. For
doped materials, water percentage shows a considerable influence on photocurrent
density, whichmay relate to occurring side reactions. By adding secondary elements,
the role of H2O could be extended beyond oxygen input for oxide layer formation.

Regarding the interaction plot for anodizing time and applied potential (Fig. 4c),
the optimal window for well-aligned and progressively longer TNT architectures
is reported to be 20–60 V [47, 48]. Accordingly, an increase in current density
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Fig. 4 Interaction plots for photocurrent density measured at 0 V (mA.cm−2): a H2O * NH4F;
b H2O * type of TNT; c anodizing time * applied potential; d NH4F * anodizing time; and e NH4F
* applied potential
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is noticed for the regression model with longer anodizing times at both applied
potentials. However, as the tendency of higher voltages to increase the randomness
of synthesized arrays hamper their mechanical properties [49], the photocatalytic
performance observed for tubes anodized at 60Vflattens out after 6 h in the presented
model.

On correlations for NH4F and anodizing time, Fig. 4d points that developed
PC density grows for extended processes and more substantial amounts of fluo-
ride species. Concentrations up to 0.3 wt % yielded a negative value of measured
current, as the electrolyte may not have enough F− ions to maintain sustainable
etching rates for long periods. Shorter intervals showed that photocurrent density
is not notably changed with NH4F amount, indicating that the processing time was
insufficient to cause meaningful variations in the resulting nanotubes. Lastly, as the
parabolic behavior of both lower and higher fluoride concentrations suggests, exces-
sive lengthening of anodization processes has no significant effect on morphological
features or output properties, as the material is already in the steady-state growth
region [21].

Proceeding on the NH4F combined effects, lower concentrations result in similar
PC responses for the evaluated potential window (Fig. 4e). However, a decrease in
current density is observed as the percentage of F− ions increase. Amore pronounced
effect is perceived at 60 V, as higher anodizing voltage impairs the ability to form
well-aligned arrays due to a multi-directional chemical dissolution of the oxide layer
derived from the enhanced mobility of fluoride species [50]. Therefore, anodizing
with lower potentials and longer times would be more appropriate to maximize both
tubular organization and measured photocurrent.

The performed meta-analysis highlights a strong correlation between the evalu-
ated anodizing parameters of TNTs, indicating that their deliberate selection is neces-
sary to improve morphology and applicability in catalytic processes. The observed
effectiveness of adding doping agents into the TiO2 lattice is also backed up by
several studies, being one of the most efficient options to promote charge carrier
separation and optimize the material response under incident solar irradiation [15].

4 Conclusions

Multiple linear regression was calculated to predict the developed photocurrent
density of doped and undoped TiO2 nanotubes based on the percentages of water
(H2O) and ammoniumfluoride (NH4F) in the electrolyte, anodizing time, and applied
voltage. A significant regression equation was found (F (10, 20)= 3.90, p= 0.0000),
with an R2 of 0.893 and an adjusted R2 of 0.84. The most significant main effects
were H2O, type of TNT, and NH4F.

Doping processes are a remarkable modification of TiO2 nanotubes, as they
enhance the suitability for light-harvesting and water splitting techniques. The meta-
analysis revealed mean values of PC density 65% higher for doped TNTs. Also, a
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secondary element allows greater ranges of water and fluoride to be added to the elec-
trolyte, fundamental variables in enhancing tubular morphology and, consequently,
applied performance.
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CNT/TiO2 Hybrid Nanostructured
Materials: Synthesis, Properties
and Applications
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Abstract The study of semiconductor photocatalysts is essential to achieve sustain-
able solutions for application in energy generation and treatment of environmental
pollution. Titanium dioxide (TiO2) is one of the most researched photocatalysts
because of its abundance and non-toxicity, but its low efficiency, when deployed as a
photocatalyst, can sometimes hinder its potential for these applications. Combining
nanostructuredTiO2 with carbon nanotubes (CNTs) to formhybridmaterials can help
overcome some of the metal oxide limitations, such as a large band-gap and a high
electron–hole recombination rate. This chapter summarizes some of the CNT/TiO2

nanostructured materials that have been reported in the last years and outlines their
morphologies, methods of synthesis, and applications.
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1D One-dimensional
AC Alternating current
ALD Atomic layer deposition
BET Brunauer-Emmett-Teller
CNT Carbon nanotube
CO Carbon monoxide
Co-TiO2 Cobalt doped titanium dioxide
CVD Chemical vapor deposition
DMF Dimethylformamide
DSC Differential scanning calorimetry
DSSC Dye-sensitized solar cell
EDL Electric double-layer capacitor
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EDS Energy dispersive X-ray spectroscopy
FE-SEM Field emission scanning electron microscopy
FF Fill factor
FT-IR Fourier transform infrared spectroscopy
H2 Hydrogen gas
HCl Hydrochloric acid
HNO3 Nitric acid
JSC Short circuit current density
KOH Potassium hydroxide
LIB Lithium-ion battery
MAO Micro-arc oxidation
MWCNT Multi-walled carbon nanotube
Na2S2O3 Sodium thiosulfate
NO Nitric oxide
NP Nanoparticle
PAN Polyacrylonitrile
PCE Power conversion efficiency
PP Plasma polymer
PVP Poly(vinyl pyrrolidone)
SEM Scanning electron microscopy
SiO2 Silicon dioxide
SWCNT Single-walled carbon nanotube
TBT Titanium butoxide
TEM Transmission electronic microscopy
TGA Thermogravimetric ananalysis
TiO2 Titanium dioxide
TNR Titania nanoribbon
TTIP Titanium isopropoxide
UV Ultraviolet
VOC Open circuit voltage
XRD X-ray diffraction

1 Introduction

Titanium dioxide is the naturally occurring oxide of titanium and can be found in
nature in its three primary crystalline forms: anatase, rutile, and brookite [1]. Due
to its low cost, non-toxicity, and strong oxidizing power [2, 3], TiO2 is a promising
material to be used in applications such as photocatalysis [4], dye-sensitized solar
cells (DSSC) [5], and H2 production via water splitting [6]. However, its relatively
high band-gap (3.2 eV for the anatase phase) and high charge carrier recombination
rate limit its solar photoconversion [7]. The three main ways this can be overcome
is by band-gap tuning, which can be achieved using dopants [8] or by synthesizing
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oxygen-rich titania [9], suppressing the electron–hole recombination [10], and by
improving surface reactions [11]. Carbon nanotubes (CNT) present a high surface
area, high-quality active sites, and high electronic conductivity [12, 13], therefore
allowing it to enhance the photocatalytic activity of TiO2 through all of these routes.

Since their discovery by Iijima in 1991 [14], CNTs have attracted attention
because of their unique properties. They can be either single-walled (SWCNTs),
which consists of a single graphite sheet wrapped into a cylindrical tube, or multi-
walled (MWCNTs), which are an arrangement of multiple concentrical SWCNTs
[7]. The SWCNTs have a surface area of 400–900 m2 g−1, while MWCNTs have
a surface area of 200–400 m2 g−1, which means that they can provide a large reac-
tive surface area that is comparable to activated carbon. According to Woan et al.
[15], TiO2 and CNTs may form a Schottky barrier similar to metal–semiconductor
junctions, which results in the CNTs having an excess negative charge and the TiO2

an extra positive charge. In addition, they may accept photo-induced electrons in
CNT/TiO2 hybrid materials, thus increasing the recombination time.

The formation of CNT/TiO2 heterostructures was reported by Banerjee andWong
in the early 2000s [16]. Thenceforth, a variety of TiO2/CNTs hybrid nanomaterials
have been researched [7], including TiO2 nanoparticles on the CNTs surface [17],
TiO2 coated with CNTs [18], and CNTs grown on TiO2 nanotubes [19].

2 Synthesis and Morphology

As mentioned above, both the CNTs and the TiO2 used in the hybrid nanostructures
can present different morphologies. The titanium dioxide can be synthesized in the
form of nanoparticles [17], nanotubes [19, 20], nanorods [21, 22], nanofibers [23],
or thin films [24]. Regarding the methods employed for the synthesis of these hybrid
nanostructures, some widely performed techniques can be mentioned: mixture in
solution with pre-functionalized surfaces [4, 25], sol–gel [26, 27], hydrothermal [28,
29], chemical vapor deposition (CVD) [19], and atomic layer deposition (ALD)
[17]. This section summarizes some of the main synthesis routes and promising
nanostructures that have been studied recently.

2.1 CNT/TiO2 Nanoparticles

Hybrid nanostructures of CNTs and TiO2 nanoparticles can be obtained through
multiple routes, such as hydrothermal synthesis [28], modified microwave method
[30], and ALD [17]. However, sol–gel is the most employed technique [7]. Sol–gel
is a relatively low-cost method that presents good controllability of the synthesis
conditions [31]. In addition, it has the advantage of using precursors in a liquid
state, which allows good dispersion of the filler phase when producing composites
[32]. However, because CNTs present strong van der Waals interactions, they tend
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to form agglomerates, which requires a functionalization step to be dispersed in an
aqueous solution [33]. Thus, the synthesis is divided into two significant steps, one
organic and one inorganic. The CNTs are functionalized in the organic step, and
surfactants are used to disperse them in the inorganic step. The composite materials
are formed during the gelification process of the condensed sol, and the porous
sol–gel can encapsulate nanoparticles and carbon nanotubes. In addition, sol–gel
synthesis provides the prospect of adding CNTs alongside the precursors, allowing
for a better connection between the carbon and the nanotubes and providing a uniform
mesoporosity throughout the material [31].

Da Dalt et al. [4] produced CNT@TiO2 composites by a modified sol–gel method
using commercial MWCNT (Baytubes®), titanium propoxide, nitric acid, isopropyl
alcohol, and deionized water. Different heat treatment temperatures for the obtained
sol were evaluated. The authors synthesized spherical-shaped TiO2 nanoparticles
(NPs) aggregated on the CNT surface, as shown in Fig. 1. The TiO2 NPs presented
an average diameter smaller than 30 nm. The photocatalytic activity of the compos-
ites was evaluated and compared to commercial TiO2 (AEROXIDE®—P25) and its
combination withMWCNT. The CNT@TiO2 composites performed better than pure
TiO2 nanoparticles when the catalyst concentration in the dye solution increased.
The authors concluded that the CNT/TiO2 heterojunctions formed reduced the
recombination rate of photo-induced electron–hole pairs.

Yao et al. [18] synthesized anatase/CNTs composite materials. Anatase nanopar-
ticles with diameters of 5 and 100 nmwere added to different proportions of commer-
cially SWCNTs and MWCNTs. First, the CNTs were functionalized with nitric acid
and dispersed in water. Then, they were combined with the composite structures by
simple evaporation and drying process. The photocatalytic activity for the degra-
dation of a solution containing phenol was tested. The TiO2/SWCNTs composites
presented a lower electron–hole recombination rate than TiO2/MWCNTs compos-
ites, probably because of the attachment area of the nanotubes on the surface of the
nanoparticles.

Fig. 1 TEM images of the CNT@TiO2 composites using. a P25. b Sol–gel obtained nanoparticles.
Edited and reprinted with permission of Da Dalt et al. [4]
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Banerjee andWong [16] synthesized heterostructures by oxidizing raw SWCNTs
bundles using acidic potassium permanganate solution and hydrochloric acid and
then etched the nanotubes using HNO3. This procedure removed most of the amor-
phous carbon and the metal catalysts from the nanotubes. Next, the TiO2 nanoparti-
cles were synthesized by slow hydrolysis of titanium tetraisopropoxide in the pres-
ence of an alcoholic solution of 11-aminoundecanoic acid. Finally, in order to achieve
TiO2/CNTs heterostructures, solutions containing the nanoparticles and the oxidized
SWCNTs were sonicated for 24 h in a dimethylformamide (DMF) solution. After
filtering, washing, and drying, the authors confirmed the formation of the heterostruc-
tures byTransmissionElectronicMicroscopy (TEM), EnergyDispersiveX-raySpec-
troscopy (EDS), and Fourier Transform Infrared Spectroscopy (FT-IR). In addition,
the FT-IR analysis indicated that charge transfer from nanotube to nanoparticles had
been achieved.

Zhao et al. [34] deposited TiO2 on the surface of CNTs by solvothermal reaction.
To achieve that, the authors functionalized commercial-grade CNTs with HNO3,
which was later dispersed in an ethanol and glycerol solution. Titanium butoxide
(TBT) was added dropwise to this solution, and the formed liquid was heated at 110
ºC for 24 h. Finally, the products were dried and then calcinated at 350 ºC for 2 h.
Figure 2a shows a schematic illustration of the experimental procedure adopted and
Fig. 2b presents the scanning electron microscopy (SEM) image of the CNT@TiO2

morphology obtained, in which can be noticed the TiO2 grains on the surface of
CNTs. The SEM analysis showed that composites with a CNT content of 42 wt%
maintained the original morphology of tangled CNTs, and EDS analysis showed that
the TiO2 nanoparticles were connected and coated on the surface of the CNTs.

MWCNT forests coated with TiO2 films via Atomic Layer Deposition (ALD)
were obtained byKaushik et al. [35]. Two types of layer configuration were obtained:
(1) MWCNT with TiO2 films and (2) MWCNT with a coating of carboxyl plasma
polymer (PP) and TiO2 films. Figure 3a presents the SEM image of the lateral view
of the MWCNTs forest after 400 cycles of ALD. It can be seen that the tips of
the forests are brighter, which means that TiO2 film was not deposited uniformly
on CNTs, only on the surface of the forests. The region selected at TEM analysis
(Fig. 3b) shows a uniform TiO2 film covering a MWCNT. The carboxyl coating
created more nucleation sites for the deposition of TiO2, thereby producing a more
uniform layer.

2.2 CNT/TiO2 Fibers

One-dimensional (1D) nanoarchitectures attract attention because of their
length-to-diameter ratio, which can enhance their chemical and optic properties
when compared to nanoparticles [36]. That may occur because TiO2 nanoparticles
have reduced electron mobility caused by the contact between the particles, which
enhances the scattering of free electrons [5]. Nevertheless, when employed as a
photoanode, structures such as nanofibers present some limitations caused by their
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Fig. 2 a Schematic illustration of the experimental procedure for the synthesis of CNTs@TiO2
composites.bSEM image of theCNTs@TiO2 compositewith 42wt%. ofCNT.Edited and reprinted
with permission of Zhao et al. [34]

Fig. 3 a Backscattered electrons (BSE) SEM image of the lateral view of the MWCNTs forest
coatedwithTiO2.bTEMimage of theTiO2-coatedMWCNT.Reprintedwith permission ofKaushik
et al. [35]
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reduced surface area, which can be surpassed by using nanoparticles decorated on
their surface [37]. Another innovative way to overcome these limitations is by using
CNTs combined with 1D nanostructures.

One versatile and simple method to produce ultrathin TiO2 fibers is the elec-
trospinning technique [38]. It requires a relatively simple basic setup that involves
electrifying a liquid droplet to generate a jet, which is stretched into a fiber. The
droplet is deformed into a Taylor cone due to the electrostatic repulsion among the
surface. Initially, the formed jet is stretched through a straight line before whipping
due to electrostatic instability, and finally, the thinner jet solidifies and is deposited
into an electrified collector [39].

Macdonald et al. [40] fabricated a TiO2 nanofiber-CNTs composite to be applied
as a photoanode in a DSSC. To achieve that, the authors synthesized SWCNTs
by arc discharge and TiO2 nanofibers by electrospinning. First, they electrospun a
sol–gel containing titanium n-butoxide, poly(vinyl pyrrolidone) (PVP), and glacial
acetic acid in absolute ethanol. Next, the fiber mats were subject to pyrolysis at
500 ºC to remove the PVP. The remaining TiO2 nanofibers were then sonicated in
an SWCNT/ethanol solution until a uniform TiO2 nanofibers/CNTs mixture was
formed. Finally, the mixture underwent rotary evaporation to remove the ethanol.
The inclusion of CNTs in the mixture was confirmed by Raman spectroscopy, which
showed the disorder-induced D-band at 1345 cm−1 and the G-band at 1575 cm−1

for the samples containing SWCNTs. Following, the authors fabricated DSSC using
TiO2 nanofibers and TiO2 nanofibers/SWCNT photoanodes and applied J-V curves
to characterize the photovoltaic activity. The solar cells composed of TiO2/CNTs
photoanodes presented JSC of 12.65 mA cm−2, VOC of 0.72 V, FF of 0.53, and PCE
of 4.83%. The addition of SWCNTs improved the efficiency of the solar cells by
67%, probably due to the CNTs contributing with addition charge-transfer channels
which ultimately increased the diffusion coefficient.

Jung et al. [41] synthesized hollow TiO2 nanofibers with embedded CNTs
through electrospinning and impregnation. To achieve that, they electrospun a solu-
tion containing polyacrylonitrile (PAN), DMF, and MWCNTs. The as-spun fibers
were then impregnated using a solution containing 0, 1, 5, and 10 wt% titanium
isopropoxide (TTIP)/ isopropyl alcohol for 5 h, dried, and later calcinated at 550
ºC for 1 h. The characterization was made by field emission scanning electron
microscopy (FE-SEM), thermogravimetric analysis (TGA), differential scanning
calorimetry (DSC), and the surface area was calculated via Brunauer-Emmett-Teller
(BET) method. Finally, the adsorption and photocatalytic capability of the obtained
materials were investigated by adding the photocatalyst in a solution containing
methylene blue undermagnetic stirring in a dark room for 30min before exposing the
solution to UV light at 365 nm for 70 min. For comparison, the authors also prepared
hollow TiO2 nanofibers without the presence of CNTs. A schematic representation
of the experimental procedure is shown in Fig. 4. The obtained CNT-embedded
hollow TiO2 fibers (Fig. 5) had a diameter that ranged from 430 to 550 nm, and the
CNTs were aligned with the fibers. The authors attributed this variation in diameter
to the irregular distribution of CNTs within the nanofiber. They suggested that the
alignment of the CNTs could be due to the electric field lines during the injection.
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Fig. 4 Schematic representation of the experimental procedure to obtain hollow TiO2 nanofiber
embedded with CNTs. Reprinted with permission of Jung et al. [41]

Fig. 5 SEM images of the a PAN-CNT fibers, b impregnated PAN-CNT fibers, c CNT embedded
hollow TiO2 fibers, and d hollow TiO2 fibers. Reprinted with permission of Jung et al. [41]
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Furthermore, the addition of CNTs improved the adsorption capability of the TiO2

nanofibers. The photocatalytic activity was highest for the sample impregnated in
the solution containing 5 wt% TTIP concentration, and the CNT-TiO2 photocatalysts
more efficiently degraded the methylene blue compared to the pure TiO2 nanofibers.
The authors proposed that the CNTsmight have introduced photogenerated electrons
into the conduction band of the TiO2 fibers, contributing to the enhancement of the
photocatalytic capability of the TiO2 fibers.

2.3 TiO2 as Catalyst for CNT Synthesis

Carbon nanotubes can be synthesized by three main methods: the laser deposition
method, electric arcmethod, andCVD[42]. The latter is themost employedmethod to
synthesize nanomaterials and to mass-produce CNTs. When employed to synthesize
CNTs, CVD has the advantage of requiring a lower temperature (550–1000 ºC).
Moreover, the method allows the control of the morphology and structure of the
nanotubes and the growth of CNTs with the desired alignment [43].

In order to produce CNTs, the CVDmethod involves employing a carbon-bearing
precursor over a substrate in the presence of a catalyst [43]. This catalyst has the
functionof decomposing andnucleate the carbon source in the formofnanotubes.The
most common catalysts are transition metals such as Fe, Ni, and Co. Hydrocarbons
such as methane or acetylene are commonly used as carbon sources. As for the
substrates, the most common are Ni, SiO2, Cu/Ti/Si, glass, and stainless steel [44].
Lately, a particular type of substrate (doped TiO2) has been researched, where the
doping atoms act as a catalyst for the CNTs [19].

Recently, Guaglianoni et al. [45] investigated the influence of CVD parameters
on synthesizing CNTs using cobalt doped TiO2 nanotubes (Co-TiO2) as catalyst. For
that, the authors produced Co-TiO2 nanotubes via a one-step anodization process
using titanium foil as substrate. Instead of performing the traditional heat treatment to
transform the amorphous titania to anatase, they used the as-synthesized metal oxide
as catalyst to produce MWCNTs. They employed hexane as the carbon source and
studied the synthesis temperatures of 700 and 800 ºC, as well as different synthesis
times (10, 20, and 30 min). The Co-TiO2/CNT structures were characterized by X-
ray diffraction (XRD), Raman spectroscopy, SEM, and TEM. The Raman spectra
showed the characteristic modes for CNTs in all synthesized samples. The presence
ofCNTs on the surface of theTiO2 nanotubeswas also confirmed bySEM(Fig. 6). By
comparing the intensity between the D and the G bands (ID/IG), the authors found
out that the CNTs obtained in longer synthesis times are more defective. Linear
voltammetry essays showed that the combination of CNTs and Co-TiO2 developed
a photocurrent density 65 times greater than the Co-TiO2 nanotubes.
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Fig. 6 a Lateral, b top-view FE-SEM images of connected Co-TiO2 nanotubes and CNTs obtained
by CVD with synthesis temperature of 700 ºC

3 Applications

3.1 Lithium-Ion Batteries

TiO2 is a promising material to be employed as anode for lithium-ion batteries
(LIBs) because of its stability, non-toxicity, low cost, high theoretical capacity and
low volume expansion during the charging/discharging processes (<4%) [34, 46].
However, the electrochemical performance of this semiconductor is hindered by its
poor electronic conductivity and low lithium-ion diffusivity [25, 34, 47]. A strategy to
surpass these limitations is the formation of composites with carbonaceousmaterials,
such as carbon nanotubes (CNTs).

Lo et al. [48] reported the application of TiO2-CNT layers deposited on titanium
thinplate as anodes forLIBs.The composites (Fig. 7a, b)were obtainedusing amicro-
arc oxidation (MAO) process with different CNT quantities in the electrolyte. The
charge–discharge behavior (Fig. 7c) was evaluated between 0.1 and 3.0V (vs. Li/Li+)
at a current rate of 0.2 C. The sample without CNTs (Ti/nTiO2) presented charge–
discharge capacities of 176 and 170mAh g−1 in the initial cycle. The formation of the
CNT composite greatly increased the charge–discharge capacities. For instance, the
capacitieswere 292/248mAhg−1 for the samplewith higher CNT content (Ti/nTiO2-
CNT3). Thus, the presence of CNTs provided electrons to the TiO2 nanostructure
and promoted the Li-ion incorporation. Additionally, the discharge capacity of the
Ti/nTiO2 decreased to 69 mAh g−1 at the 20th cycle (Fig. 7d), probably due to
changes in the anode surface generated by the Li-ion insertion/extraction. On the
other hand, the TiO2-CNT composites showed high cycle stability and discharge
capacities. The discharge capacities of the Ti/nTiO2-CNT3 sample at discharge rates
of 0.2 C, 1 C, and 2 C were 201, 53 and 38 mAh g−1, respectively. The authors
attributed the enhancement of electron transport and discharge capacity observed for
the composites to the conductive CNT network that supported the TiO2 nano-flaky
structures.

Another interesting TiO2/CNT configuration that produced outstanding results
for application as anode material for LIBs was obtained by Zhao et al. [34]. TiO2
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Fig. 7 FE−SEM cross-sectional images of a Ti/nTiO2-CNT1 and b Ti/nTiO2-CNT3 composites.
c Charge–discharge curves for Ti/nTiO2, Ti/nTiO2-CNT1, and Ti/nTiO2-CNT3 anodes. d Cycling
performance of Ti/nTiO2 and Ti/nTiO2-CNT composites at discharge rates of 0.2 C, 1 C, and 2 C.
Edited and reprinted with permission of Lo et al. [48]

nanoparticles connected to the surface of the CNTs were obtained. The samples had
their specific capacities tested at different current densities (Fig. 8a) and their cyclic
performances were evaluated at 10C (Fig. 8b). The composites exhibited superior
performance than the TiO2 alone for all current densities tested. The sample with

Fig. 8 a Specific capacities at different current densities and b cyclic performances of the
CNTs@TiO2 composites. Reprinted with permission of Zhao et al. [34]



196 G. da Rosa Cunha et al.

higher CNT content (i.e., 42 wt%) showed an increased specific capacity (approxi-
mately 200 mAh g−1), with a discharge capacity almost 2.5 times that of pure TiO2

after 1000 cycles (Fig. 8b). These results indicate that the CNTs provided a prompt
pathway for the electrons and ions movement throughout the composites.

3.2 Supercapacitors

Originated from the patent applied byBecker in 1954 [49], supercapacitors or ultraca-
pacitors are electrochemical energy storage devices that present high power-density
in discharge and recharge, basically combining the capabilities of batteries and
capacitors [50, 51]. The supercapacitors can be divided into three categories based
on their charge storage mechanism: (1) electric double-layer capacitors (EDL); (2)
pseudocapacitors; and (3) hybrid capacitors [52].

Due to their high surface area, high chemical stability, and low electric resistance,
CNTs are promising materials to be used as an electrode of supercapacitors [53].
To further enhance the CNTs performance for this application, methods such as
modifying the nanotubes with transition metal oxides or conductive polymers are
often used [54, 55].

Zhang et al. [56] produced a CNT/TiO2 composite via hydrothermal method and
enhanced its capacitance by pretreating the material with UV light irradiation. To
achieve this, the authors placed commercial-grade CNTs, titanium sulfate, and urea
in an autoclave and baked it at 150 ºC for two hours. The remaining product was
centrifuged and later dried. Electrodes were manufactured with the composite to
test the electrochemical properties by cyclic voltammetry, chronopotentiometry, and
AC impedance method. Finally, the UV light pretreatment was made by placing the
CNT/TiO2 electrode in a black-box-type analyzer and irradiated it for 1 h under 254
and 365 nm UV light. In addition, pristine CNT electrodes were used for compar-
ison. TheSEManalysis (Fig. 9a–b) revealed that theTiO2 nanoparticles anddispersed
evenly and well-mixed with the CNTs. The AC impedance analysis (Fig. 9c) showed
that the CNT/TiO2 electrodes pretreated with UV light presented the largest polar-
ization resistance. The authors attributed the results to the oxygen-containing groups
on the TiO2 surface and its larger Faradic pseudo capacitance from the oxidation–
reduction reaction of TiO2. In addition, the calculated impedance derived from the
AC impedance method was 10.7 F g−1 for the UV-irradiated CNT/TiO2 electrode
and 4.1 F g−1 for the pristine CNT electrode.
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Fig. 9 a–b SEM images of the CNT/TiO2 electrodes. c AC impedance analysis performed on the
CNT, CNT/TiO2 and UV-irradiated CNT/TiO2 electrodes. Reprinted and edited with permission of
Zhang et al. [56]

3.3 Gas Sensors

TiO2/CNT composites have been studied as gas sensors for detection of ammonia,
toluene, hydrogen, oxygen, NO, CO, among other gases [35, 57–60]. The TiO2/CNT
hybrid materials present enhanced sensing performance, when compared to sensors
made by the single constituents, due to the formation of p-n junctions, facilitated
electron transfer and increased surface area [61, 62].

MWCNT forests coated with TiO2 films via ALDwere employed as ammonia gas
sensors [35]. The samples synthesizedwere exposed to different concentrations (100,
250, and 500 ppm) of ammonia gas, as shownonFig. 10. The sensorswith the thinnest
TiO2 layers, nominal thickness of 5 nm, presented the best response for ammonia
detection. TiO2 layers with greater thicknesses may have reduced the diffusion of
charge carriers, which decreased the sensitivity of the sensor. Regarding the type of
layer configuration, the sensors formed by TiO2-coated MWCNTs with carboxyl PP
film had the higher response. According to Kaushik et al. [35], this result can be
attributed to the formation of a conduction path for charge carriers that facilitated the
charge transfer between the MWCNTs and the TiO2. The authors proposed that the
improved sensing behavior of the TiO2/CNT composites is due to the formation of
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Fig. 10 Sensor response for ammonia detection of the MWCNTs-TiO2 sensors (a) with and (b)
without carboxyl PP layer. Reprinted with permission of Kaushik et al. [35]

two p-n junctions: (1) between the MWCNTs (p-type semiconductor) and the TiO2

(n-type semiconductor); (2) the TiO2 surface.

3.4 H2 Production via Water Splitting

Hydrogen (H2) is a promising compound used as an energy source in the replacement
of petroleum because of its low molecular weight and high-power density. It can be
produced by steam reforming of natural gas; however, it can be harnessed more
environmentally friendly way. A greener alternative to using fossil fuels is to reduce
water to hydrogen using semiconductor and solar energy, but the high charge carrier
recombination of these materials is a limiting factor [63]. Fujishima and Honda [6]
were the first to publish a report on splitting water using solar radiation. For that,
they used an n-type TiO2 coupled with a Pt counter electrode. The relatively high
band-gap of the TiO2 (3.2 eV) makes only ultraviolet light excite the semiconductor,
hindering the TiO2 application. Thus, solutions to this limitation have been widely
researched.

The photocatalytic activity of TiO2 can be enhanced in numerousways. One that is
commonly researched is the use of dopants, such as metal ions, to decrease the band-
gap and better the optical response to sunlight [64, 65]. The most popular dopants
are transition metals since their incorporation in the TiO2 lattice can form a new
energy level near the conduction band [66]. The use of CNTs combined with TiO2
can also increase the photocatalytic activity of the semiconductor. CarbonNanotubes
can promote charge transfer because of their high electrical conductivity and high
surface area [67–69].

Recently, Ahmed et al. [70] managed to combine hydrothermal synthesis and
CVD to produce a nanoribbon-shaped TiO2 and CNT hybrid material with a lower
band-gap than commercially available TiO2. They evaluated the hybrid nanomaterial
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using different electrolytes (KOH, Na2S2O3, and HCl) and prepared two configu-
rations of electrodes, one using the titania nanoribbons (TNRs) and other using
CNT@TNRs. They found a substantial increase in current density voltage from the
CNT@TNRs electrode compared with the TNRs electrode under the same configu-
ration. The authors concluded that this was probably because of the decrease of elec-
tron–hole recombination on the CNT@TNRs electrode. Moreover, its large surface
area, nanoporous structure, and high optical absorption in the visible region made
the electrode suitable for H2 production. However, the downside of their method was
that a long time was required to synthesize the TNRs.

Another interesting configuration is the usage of TiO2 in the form of nanotubes
in combination with CNTs. Because of their 1D structure, nanotubes can present
enhanced optical and chemical properties when compared to nanoparticles [36].
For example, Guaglianoni et al. [19] produced cobalt doped titania nanotubes via
one-step anodization followed by CVD treatment to grow CNTs on its surface.
The method allowed the production of connected arrays of titania nanotubes and
CNT. When tested, the Co-TiO2/CNT nanotubes presented an improved photocur-
rent performance compared with the cobalt doped titania nanotubes and CNT and
TiO2 nanoparticles composites reported in literature [71].

4 Conclusion

TiO2 is a widely employed semiconductor, but some of its applications are hindered
due to its relatively high band-gap and recombination rate. The addition of CNTs
to form hybrid nanomaterials with TiO2 has been extensively studied for various
applications, from photocatalysts to supercapacitors. The unique properties and high
specific surface area of the carbon nanotubes allow them to overcome these limita-
tions. CNTs can enhance the photocatalytic activity of the TiO2 by decreasing the
recombination rate of electron-hole pairs and contributing to adsorptive active sites.
In addition, TiO2 may improve the capacitance of carbon nanotubes, thus making it
a more suitable material to be used as an anode in supercapacitors. Novel CNT/TiO2

nanostructures have been reported in recent years, and a better understanding of the
mechanisms that cause this synergic effect and the development of reliable, low-cost
synthesis would make these materials more suitable for energy and eco-friendly
applications.
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3. Hamaloğlu, K.Ö., Sağ, E., Tuncel, A.: Bare, gold and silver nanoparticle decorated,
monodisperse-porous titania microbeads for photocatalytic dye degradation in a newly
constructedmicrofluidic, photocatalytic packed-bed reactor. J. Photochem. Photobiol. AChem.
332, 60–65 (2017). https://doi.org/10.1016/j.jphotochem.2016.08.015

4. Da Dalt, S., Alves, A.K., Bergmann, C.P.: Photocatalytic degradation of methyl orange dye in
water solutions in the presence ofMWCNT/TiO2 composites. Mater. Res. Bull. 48, 1845–1850
(2013). https://doi.org/10.1016/j.materresbull.2013.01.022

5. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Use of highly-ordered
TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215–218 (2006). https://doi.
org/10.1021/nl052099j

6. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode.
Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

7. Leary, R., Westwood, A.: Carbonaceous nanomaterials for the enhancement of TiO2 photo-
catalysis. Carbon N. Y. 49, 741–772 (2011). https://doi.org/10.1016/j.carbon.2010.10.010

8. Ullah, I., Haider, A., Khalid, N., Ali, S., Ahmed, S., Khan, Y., Ahmed, N., Zubair, M.: Tuning
the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of
Congo red dye. Spectrochim. Acta—Part A Mol Biomol. Spectrosc. 204, 150–157 (2018).
https://doi.org/10.1016/j.saa.2018.06.046

9. N. G., D.R. A., A.I. A., J. R.L.: Tuning the optical band Gap of pure TiO2 via photon induced
method. Optik (Stuttg). 179, 889–894 (2019). https://doi.org/10.1016/j.ijleo.2018.11.009.

10. Pesci, F.M., Wang, G., Klug, D.R., Li, Y., Cowan, A.J.: Efficient suppression of electron-hole
recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical
water splitting. J. Phys.Chem.C. 117, 25837–25844 (2013). https://doi.org/10.1021/jp4099914

11. Al Jitan, S., Palmisano, G., Garlisi, C.: Synthesis and surface modification of TiO2-based
photocatalysts for the conversion of CO2. Catalysts (2020)

12. Baughman, R.H., Zakhidov, A.A., De Heer, W.A.: Carbon nanotubes—The route toward
applications. Science 297, 787–792 (2002). https://doi.org/10.1126/science.1060928

13. Serp, P., Figueiredo, J.L.: Carbon Materials for Catalysis. John Wiley & Sons, Inc., Hoboken,
NJ, USA (2008). https://doi.org/10.1002/9780470403709

14. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/
10.1038/354056a0

15. Woan, K., Pyrgiotakis, G., Sigmund, W.: Photocatalytic Carbon-Nanotube-TiO2 Composites.
Adv. Mater. 21, 2233–2239 (2009). https://doi.org/10.1002/adma.200802738

16. Banerjee, S., Wong, S.S.: Synthesis and characterization of carbon nanotube-nanocrystal
heterostructures. Nano Lett. 2, 195–200 (2002). https://doi.org/10.1021/nl015651n

17. Acauan, L., Dias, A.C., Pereira, M.B., Horowitz, F., Bergmann, C.P.: Influence of different
defects in vertically aligned carbon nanotubes on TiO2 nanoparticle formation through atomic
layer deposition.ACSAppl.Mater. Interfaces. 8, 16444–16450 (2016). https://doi.org/10.1021/
acsami.6b04001

18. Yao, Y., Li, G., Ciston, S., Lueptow, R.M., Gray, K.A.: Photoreactive TiO2/carbon nanotube
composites: synthesis and reactivity. Environ. Sci. Technol. 42, 4952–4957 (2008). https://doi.
org/10.1021/es800191n

19. Guaglianoni, W.C., Florence, C.L., Bonatto, F., Venturini, J., Arcaro, S., Alves, A.K.,
Bergmann, C.P.: Novel nanoarchitectured cobalt-doped TiO2 and carbon nanotube arrays:

https://doi.org/10.1016/j.egypro.2018.11.159
https://doi.org/10.1016/j.jphotochem.2016.11.001
https://doi.org/10.1016/j.jphotochem.2016.08.015
https://doi.org/10.1016/j.materresbull.2013.01.022
https://doi.org/10.1021/nl052099j
https://doi.org/10.1038/238037a0
https://doi.org/10.1016/j.carbon.2010.10.010
https://doi.org/10.1016/j.saa.2018.06.046
https://doi.org/10.1016/j.ijleo.2018.11.009
https://doi.org/10.1021/jp4099914
https://doi.org/10.1126/science.1060928
https://doi.org/10.1002/9780470403709
https://doi.org/10.1038/354056a0
https://doi.org/10.1002/adma.200802738
https://doi.org/10.1021/nl015651n
https://doi.org/10.1021/acsami.6b04001
https://doi.org/10.1021/es800191n


CNT/TiO2 Hybrid Nanostructured Materials … 201

synthesis and photocurrent performance. Ceram. Int. 45, 2439–2445 (2019). https://doi.org/
10.1016/j.ceramint.2018.10.169

20. Zhu, Z., Zhou, Y., Yu, H., Nomura, T., Fugetsu, B.: Photodegradation of humic substances on
MWCNT/nanotubular-TiO2 composites. Chem. Lett. 35, 890–891 (2006). https://doi.org/10.
1246/cl.2006.890

21. Yang, L., Leung, W.W.F.: Electrospun TiO2 nanorods with carbon nanotubes for efficient
electron collection in dye-sensitized solar cells. Adv. Mater. 25, 1792–1795 (2013). https://doi.
org/10.1002/adma.201204256

22. Zhu, Y.E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., Zhou, Z.: Fast sodium storage in
TiO2@CNT@C Nanorods for High-Performance Na-Ion Capacitors. Adv. Energy Mater. 7,
1701222 (2017). https://doi.org/10.1002/aenm.201701222

23. Hieu, N.T., Baik, S.J., Chung, O.H., Park, J.S.: Fabrication and characterization of electrospun
carbon nanotubes/titanium dioxide nanofibers used in anodes of dye-sensitized solar cells.
Synth. Met. 193, 125–131 (2014). https://doi.org/10.1016/j.synthmet.2014.04.010

24. Wang, G.J., Lee, M.W., Chen, Y.H.: A TiO2/CNT coaxial structure and standing CNT array
laminated photocatalyst to enhance the photolysis efficiency of TiO2. Photochem. Photobiol.
84, 1493–1499 (2008). https://doi.org/10.1111/j.1751-1097.2008.00374.x

25. Liu, J., Feng,H., Jiang, J., Qian,D., Li, J., Peng, S., Liu,Y.:Anatase-TiO2/CNTs nanocomposite
as a superior high-rate anode material for lithium-ion batteries. J. Alloys Compd. 603, 144–148
(2014). https://doi.org/10.1016/j.jallcom.2014.03.089

26. Koli, V.B., Dhodamani, A.G., Delekar, S.D., Pawar, S.H.: In situ sol-gel synthesis of
anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications. J. Photochem.
Photobiol. A Chem. 333, 40–48 (2017). https://doi.org/10.1016/j.jphotochem.2016.10.008

27. Nguyen, K.C., Ngoc, M.P., Van Nguyen, M.: Enhanced photocatalytic activity of nanohybrids
TiO2/CNTsmaterials.Mater. Lett. 165, 247–251 (2016). https://doi.org/10.1016/j.matlet.2015.
12.004

28. Naffati, N., Sampaio, M.J., Da Silva, E.S., Nsib, M.F., Arfaoui, Y., Houas, A., Faria, J.L., Silva,
C.G.: Carbon-nanotube/TiO2 materials synthesized by a one-pot oxidation/hydrothermal route
for the photocatalytic production of hydrogen from biomass derivatives. Mater. Sci. Semicond.
Process. 115, 105098 (2020). https://doi.org/10.1016/j.mssp.2020.105098

29. Dai, K., Zhang, X., Fan, K., Peng, T., Wei, B.: Hydrothermal synthesis of single-walled carbon
nanotube-TiO2 hybrid and its photocatalytic activity. Appl. Surf. Sci. 270, 238–244 (2013).
https://doi.org/10.1016/j.apsusc.2013.01.010

30. Alosfur, F.K.M., Jumali, M.H.H., Radiman, S., Ridha, N.J., Yarmo, M.A., Umar, A.A.:
Modified microwave method for the synthesis of visible light-responsive TiO2/MWCNTs
nanocatalysts. Nanoscale Res. Lett. 8, 1–6 (2013). https://doi.org/10.1186/1556-276X-8-346

31. Bazli, L., Siavashi, M., Shiravi, A.: A Review of Carbon nanotube/TiO2 Composite prepared
via Sol-Gel method. J Compos. Compd. 1, 1–12 (2019). https://doi.org/10.29252/jcc.1.1.1

32. De Andrade, M.J., Lima, M.D., Stein, L., Bergmann, C.P., Roth, S.: Single-walled carbon
nanotube silica composites obtained by an inorganic sol-gel route. Phys. Status Solidi Basic
Res. 244, 4218–4222 (2007). https://doi.org/10.1002/pssb.200776114

33. de Andrade, M.J., Lima, M.D., Bergmann, C.P., de Ramminger, G.O., Balzaretti, N.M.,
Costa, T.M.H., Gallas, M.R.: Carbon nanotube/silica composites obtained by sol–gel and high-
pressure techniques. Nanotechnology 19, 265607 (2008). https://doi.org/10.1088/0957-4484/
19/26/265607

34. Zhao, S., Ding, H., Chen, J., Yang, C., Xian, X.: Facile synthesis of CNTs@TiO2 composites by
solvothermal reaction for high-rate and long-life lithium-ion batteries. J. Phys. Chem. Solids.
152, 109950 (2021). https://doi.org/10.1016/j.jpcs.2021.109950
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Nanostructured Zero-Valent Iron: From
Synthesis to Application

Tania Maria Basegio, Ana Paula Garcia, and Carlos Pérez Bergmann

Abstract Iron is one of the most abundant chemical elements in the Earth’s crust
and is found in nature in the form of ores. Obtaining it in its pure state involves the
exploration, extraction and processing of these minerals. The production of iron is of
fundamental importance, given the scope of its use, which ranges from the production
of steel—its main application—to the most diverse industrial applications. It is due
to its physical and chemical properties that iron has such a wide range of industrial
uses. Thus, knowing the behavior of iron in different structures and environments
is necessary. Currently, one of the forms of iron that has attracted attention because
of its most diverse applications is zero-valent iron (ZVI), which is the subject of
many studies, especially on its uses in soil remediation and effluent treatment on
account of its physical and chemical properties. These properties can be enhanced
when it is on a nanoscale, in the form of nanoscale zero-valent iron (nZVI). nZVI—
given that it is easily obtainable, affordable, and has a toxic effect that is considered
irrelevant—has environmental uses that are accepted by many regulatory agencies,
and its applications have deserved attention. Thus, this chapter will provide a general
review of the subject of iron ore and, in particular, will analyze the properties and
applications of nZVI. It will also discuss its synthesis methods and the treatments
that it can be submitted to in order to improve its efficiency in applications of interest.
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aq Aquous
BC Biochar
BET Brunauer-Emmett-Teller method
BJH Barret, Joyner and Halenda method
cm Centimeter
CO Carbon monoxide
CO2 Carbon dioxide
CPC Cetylpyridinium chloride,
DDT Dichlorodiphenyltrichloroethane
EPA Environmental Protection Agency
Fe Iron
Fe(1−x)S Pyrrothite
Fe2O3 Hematite
Fe2O3 ·H2O Goethite
Fe3O4 Magnetite
FeCl3 Ferric chloride
FeCO3 Siderite
FeS2 Pyrite
FeTiO3 Ilmenite
g/cm3 Gram per cubic centimeter
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H2 Hydrogen gas
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ksp Solubility product constant
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MO Methyl orange
Mt Millions of tonnes
M� Megaohm
N2 Nitrogen gas
NaBH4 Sodium borohydride
NB Nitrobenzene
nm Nanometer
nZVI @ BC Biochar-supported nZVI for in-situ remediation
nZVI/BC Biochar-supported nZVI
nZVI Nanoscale zero-valent iron
nZVI-GO Graphene-nZVI hybrid composite
O2 Oxygen gas
°C Degree Celsius
_OH Hydroxyl group
PCBs Polychlorinated biphenyls
PEG-4000 Polyethylene glycol-4000
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PEI-nZVI Polyethylenimine-modified nZVI nanocomposite
pH Potential of hydrogen
pKa Acidity constant
PVP Polyvinylpyrrolidone
R&D Research and Development
RHC/Fe Iron-impregnated rice husk catalyst
S Sulfate
SA Surface area
SEM Scanning electron microscopy
SF-Fe0 Iron-supported silica
S-nVZI Sulfate-nZVI hybrid composite
TEM Transient electromagnetic method
TNT Trinitrotoluene
W Watt
WOS Web of science
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1 Introduction

Iron is the fourth most abundant chemical element in the Earth’s crust, representing
5% (in mass) of its elements and being surpassed only by oxygen (46.6%), silicon
(26.72%) and aluminum (8.13%) [1]. It is found in nature as ores and obtained
by their exploration. According to their definition, ores are natural aggregates of
minerals and gangue (a material without value, or with secondary value) that, in the
current state of technology, can be normally used for the economic extraction of one
or more metals [2]. Hence, an iron ore can contain one or more iron minerals. The
major iron-bearing minerals and their respective iron contents are shown in Table 1.
The greater their iron content is, the more important the mineral is for the exploration
of iron.

Table 1 Major iron-bearing
minerals: chemical formulae
and contents [3]. Edited and
reproduced from Carvalho
et al. [3]

Mineral Chemical formula Theoretical iron content (%)

Magnetite Fe3O4 72.4

Hematite Fe2O3 69.9

Goethite Fe2O3 ·H2O 62.9

Pyrrhotite Fe(1−x)S 61.0

Limonite 2Fe2O3 ·3H2O 59.8

Siderite FeCO3 48.2

Pyrite FeS2 46.5

Ilmenite FeTiO3 36.8
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With regard to the data on worldwide production and iron ore reserves (Table
2), they can be presented as follows [5]: (i) crude ore: obtained directly by mining,
without undergoing any sort of processing; (ii) usable ore: products created after the
processing of crude ores, usually with an iron content of 58–65%; (iii) iron content:
amount of metal available in a reserve or in crude and processed production.

According to data from the U.S. Geological Survey [4] (shown in Table 2), in
2019 the world reserve of iron ore amounted to 180.000 million tonnes and world
production amounted to 2.450 billion tonnes. Australia, Brazil and Russia are the
countries with the largest reserves. However, in terms of worldwide iron ore produc-
tion, Australia produces 919.000 Mt annually and Brazil 405 Mt, maintaining their
ranks of first and second major producers, respectively, with China following in the
third place with 351 Mt. Remarkably, the three countries are responsible for 68.4%
of the iron ore production in the world.

Large-scale production of iron is of the utmost importance, given its wide range
of uses. Iron applications range from steel production—its main use—to the most

Table 2 Iron ore: 2019 world production, estimate for 2020 and world reserves in 2019. Edited
and reproduced from U. S. Geological Survey [4]

Mine production

Usable ore Iron content Reserves*

2019 2020 2019 2020 Crude ore Iron content

United
States

46,900 37,000 29,800 24,000 3000 1000

Australia 919,000 900,000 569,000 560,000 50,000 24,000

Brazil 405,000 400,000 258,000 252,000 34,000 15,000

Canada 58,500 57,000 35,200 34,000 6000 2300

Chile 13,100 13,000 8430 8000 NA NA

China 351,000 340,000 219,000 210,000 20,000 6900

India 238,000 230,000 148,000 140,000 5500 3400

Iran 33,100 32,000 21,700 21,000 2700 1500

Kazakhstan 22,000 21,000 6150 5900 2500 900

Peru 15,100 15,000 10,100 10,000 NA 1500

Russia 97,500 95,000 64,300 63,000 25,000 14,000

South Africa 72,400 71,000 41,200 40,000 1000 640

Sweden 35,700 35,000 22,100 22,000 1300 600

Turkey 16,400 16,000 9110 8,900 NA NA

Ukraine 63,200 62,000 39,500 39,000 6,500 2,300

Other
countries

67,700 75,000 39,000 43,000 18,000 9500

World total
(rounded)

2,450,000 2,400,000 1,520,000 1,500,000 180,000 84,000

*Value in Mt (million tonnes)
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diverse industrial purposes, such as, for instance, in the metalmechanic industry,
where it plays a fundamental role. Iron can also be used in agriculture as a fertilizer,
in the chemical industry as pigments and catalysts of processes, e.g. the Fischer–
Tropsch process, in which iron-based catalysts are employed in the conversion of
synthesis gases (hydrogen and carbonmonoxide) into liquid fuels [5].Another impor-
tant industrial process to which iron is essential is the production of ammonia via
the Haber–Bosch process [6].

Naturally, there is a long path thatmust be followed in order to use iron in industrial
processes: a path that involves the research, exploration, extraction and processing
of minerals.

As can be seen in Table 1, the minerals that contain major amounts of iron are
found in the form of oxides. Thus, it can be inferred that the exploration of these
oxides to obtain iron is of great economic significance, considering the high iron
content (of over 62%) in their composition.

The primary forms of iron oxides are magnetite (Fe3O4) and hematite (Fe2O3),
substances that, when heated in the presence of a reducing agent, release iron in its
metallic form (Fe) [7]. The production of iron with higher purity is important for
certain uses and can be achieved by specific methods, such as electrolysis and the
reduction of oxides or hydroxides with hydrogen, or the formation of a carbonyl
complex—Fe(CO)5—followed by its thermal decomposition [8].

The physical and chemical properties of iron allow it to have such a wide array
of applications. Therefore, knowing its behavior in different structures and means is
necessary.

According to Duarte [1], in order to better understand the potential roles of iron
in many chemical, biological and geochemical processes, its reactivity in an aqueous
environment must be analyzed.

Fe has three predominant oxidation states: 0, +2 and +3, in addition to +4, +
5 and +6. Fe3+ is a relatively strong acid, with pkAs of 2.2, 3.5, 6.3 and 9.6, and is
water-insoluble (Kps= 2.79× 10–39). On the other hand, the ion Fe2+ is a weak acid
with a pKa of approximately 9.2 and a solubility of 0.72 g/100 mL (Kps = 4.87 ×
10–17) [9, 10].

With regard to the electrochemical potentials of Fe3+, it is known that its standard
electrochemical potential is 0.77 V—in other words, Fe3+(aq) tends to be reduced to
Fe2+(aq) in standard conditions [1].

Another important property of iron-based compounds is their magnetism, which
has been studied by several authors.

The magnetism of these materials potentiates their application in several areas,
such as:magnetic fluids, catalysis processes, the acquisition of elements formagnetic
storage, compounds with biotechnological potential in biomedicine and magnetic
resonance systems [11].

In relation to their use as catalysts, their magnetism facilitates the separation of
iron in a reactive environment simply by means of an external magnet. This method
renders unnecessary the use of solvents (filtration stage) and additional filtration or
centrifugation stages during the separation process of iron-based catalysts [12].
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Magnetic iron oxide particles can be easily synthesized from low-cost, accessible
reagents; additionally, when secure and controlled, its reaction conditions allow the
production of this material to be upscaled in its use in industrial reactions [12].
Currently, one of the most remarkable forms of iron is zero-valent iron (ZVI), which
has been the subject of much research, especially regarding its roles in soil remedi-
ation and effluent treatment. Due to its physical and chemical properties, iron plays
an important role in the efficiency of the degradation of recalcitrant compounds [13].

At the nanoscale, the physical and chemical properties of ZVI can be potentiated.
As is well-known, nanostructuredmaterials have a crystallite size of less than 100 nm
and distinguished properties compared to conventional materials. Nanostructured
materials are defined by the ISO/TS 80004-1:2015 standard as materials with an
internal structure or surface structure at the nanoscale, i.e. with an approximate
length range of 1–100 nm.

According to Fransciquini [15], nanostructured systems have unique properties
that are not found in voluminous or bulk materials. The author also states that, at
the nanoscale, the system has a much higher surface area to volume ratio than that
of traditional systems, being in many cases treated as an essentially two- or one-
dimensional system [15]. It can be inferred that one of the determining factors for
the augmentation of the physical and chemical properties of nanostructuredmaterials
lies in the fact that their grain size is so reduced an important fraction of their atoms
is located in the grain boundaries (or in the surface of the particles of the material).
Meanwhile, bulk materials have most of their atoms located in the interior of the
grains, i.e. in their volume [16]. The greater the proportion of atoms located in
the surface, the greater their tendency toward adsorbing, interacting and reacting
with other atoms, molecules and complexes in order to attain charge stabilization
[17]. With respect to nanoparticules, in addition to their diminutive size, particle
size distribution, specific surface area and surface charge, their morphology and
crystallography are also important features for understanding their behavior [18].

In this context, due to the possibility of controlling the property of materials
by manipulating particle sizes, nanomaterials are being studied at a growing pace.
Alongside them, nanoscale zero-valent iron (nZVI) has also been frequently studied,
as it can be obtained easily, has a low cost and a toxic effect that is nonetheless
considered irrelevant. It also has environmental uses that are approved by many
regulatory agencies, and its applications deserve attention [19].

Thus, this chapter shall do a general review of the features and applications of
nZVI, as well as its synthesis methods.
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2 Zero-Valent Iron (ZVI) and Zero-Valent Iron
Nanoparticles (nZVI)

The intermediate position of ZVI in the reduction potential table indicates that its
electrochemical equilibrium can be easily dislodged due to environmental condi-
tions—in other words, due to the pH, concentration and presence of other ions [1].
This chemical equilibrium can be represented by the following reaction: Fe � Fe2+

+ 2 e−, where there is a reduction potential and an oxidation potential.
The ability of iron to function as a reducing agent allows it to perform effi-

ciently when reacting with oxidized contaminants. The ZVI transfers electrons to
the contaminants, reducing and transforming them into less toxic or even non-toxic
species. The most common methods of degrading organic contaminants by using
ZVI are hydrogenolysis and dehalogenation [18, 20].

Keane [21] lists a few environmental contaminants that can be trans-
formed via contact with ZVI and nZVI, such as: chlorinated methanes, chlo-
rinated benzenes, chlorinated ethenes, trihalomethanes, organic dyes, pesticides
(dichlorodiphenyltrichloroethane—DDT–, lindane), heavy metal ions (mercury,
nickel, silver, cadmium), inorganic anions (dichromate, arsenic, perchlorate,
nitrate), other polychlorinated hydrocarbons (polychlorinated biphenyls, dioxins,
pentachlorophenol), other organic contaminants (N-nitrosodimethylamine, trinitro-
toluene—TNT), among others.

The author also remarks that metallic iron oxidizes naturally when exposed to air,
with the same occurring when it is exposed to contaminants. When metallic iron is
in contact with organic contaminants, the latter decompose into simpler compounds,
and when it is in contact with heavy metals, it transforms the soluble saline forms of
the latter into water. The behavior displayed by ZVI when degrading contaminants
can be illustrated by the reactions shown in Table 3.

At the macroscale, ZVI and nZVI particles are chemically very similar. That
is, ZVI—regardless of its particle size—is a good reducing agent and functions
efficiently in environmental remediation processes. However, when it is converted
into nanoparticles, its effects are amplified, and it becomes a more efficient material
due to its reactivity compared with micro ZVI [23, 24].

Table 3 Contaminant degradation: Fe0 reactions and considerations. Based on Li et al. [22]

Fe0 → Fe2+ + 2e− (1) Fe0 or ZVI: functions as an electron donor

RCl + H+ + 2e− → RH + Cl− (2) Chlorinated hydrocarbons: accept electrons and
undergo reductive dechlorination

RCl + Fe0 + H+ → RH + Fe2+ + Cl (3) Thermodynamic perspective: coupling of
reactions (1) and (2) is highly favorable

C2Cl4 + 5Fe0 + 6H+ → C2H6 + 5Fe2+ +
4Cl− (4)

An example: tetrachloroethene (C2Cl4), a
common solvent, can be completely reduced
into ethene by nZVI according to the general
Eq. (4)
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Fig. 1 Comparison of available surface area between micro and nano ZVI. Created by the authors
of the present chapter based on Remillard et al. [27]

The augmented efficiency of nZVI can be explained, according to Henry et al.
[25], by the fact that it has a greater density of active sites on its surface, allowing
its pores to be penetrated by contaminants with greater power when compared to
macroscopic ZVI.

Likewise, the higher reactivity displayed by nZVI is a result of its large specific
surface area, which yields higher reactivity rates than those of micron-scale ZVI
[26].

Figure 1 shows a comparison of available surface areas between micro and nano
ZVI. It was created by the authors of the present chapter, based on information from
reference [27].

In short, according to Keane [21], the properties that make most nanoparticles
qualitatively different from larger particles are their large surface areas in relation to
their volumes, and/or the higher natural reactivity of the reactive surface sites. The
smaller the particles are, the larger their proportion of surface atoms is, which raises
their tendency toward adsorbing, interacting and reacting to other atoms, molecules
and complexes to achieve charge stabilization. This relation corroborates the study
conducted by Gillham and O’Hannesin [19], which identified the larger specific
area of nZVI as the factor responsible for its better efficiency in the dehalogenation
of chlorate compounds. In other words, the smaller the particles are, the higher its
surface is, which raises its reactivity.

Figure 2 shows how the surface area grows as the diameter of the particles is
reduced. It can be noticed that the smaller the size of the particle, the larger its
surface area—basically, size and surface area are inversely proportional variables.

With regard to the structure of nZVI particles, many studies suggested a core–
shell type of structure [28]. A schematic diagram of a core–shell type zero-valent
iron nanoparticle can be seen in Fig. 3. Its core consists of zero-valent iron, while
its mixed-valence oxide layer is a result of the oxidation of the metallic iron of
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Fig. 2 Particle surface area calculated from diameter assuming spherical geometry and density =
6.7 g/cm3 (based on the average of densities for pure FeO and Fe3O4). Reprinted with permission
from Tratnyek et al. [23]

Fig. 3 Schematic diagram of zerovalent iron nanoparticle. Reprinted with permission from
O’Carroll et al. [26]
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the core [22]. In other words, the iron oxide/hydroxide layer is formed due to the
oxidation of the metallic iron core (Fe0). Nonetheless, even after this crust/fine layer
of oxide/hydroxide is formed, it still allows the transference of electrons from the core
of themetal, causing this nanoparticle to preserve its reduction capacity. Furthermore,
because of this oxide/hydroxide crust, the nanoparticle also becomes able to react
with inorganic components, such as metallic anions and metals [29]. Hence, the
external oxide/hydroxide layer allows nZVI to function as an efficient adsorbent for
several contaminants, including metals.

It has been established that with a smaller particle size comes a larger specific
surface area, and consequently more reaction sites on the surface of the nanopar-
ticles—which, in turn, will increase the reaction between contaminants and nZVI
particles. However, it must also be known that due to its significant magnetic prop-
erty, nZVI can create an aggregate of nanoparticles, as seen in Fig. 4. The formation
of such aggregate leads to a reduction in surface area, which results in the decrease
of the reactivity of nZVI. In order to solve these questions pertaining to the reactivity
of nZVI particles, as well as their mobility, many researchers have developed studies

Fig. 4 Micrographs of: a a single particle and b–d aggregates of iron particles. Reprinted with
permission from Suna et al. [30]
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on the processing or modification of the synthesis of nZVI, which shall be covered
in item 12.5 of this chapter.

3 nZVI Synthesis

There is a wide range of methods that can be used to synthesize metallic nanoparti-
cles. Such as: chemical vapor deposition, inert gas condensation, pulsed laser abla-
tion, spark discharge generation, sputtering gas-aggregation, thermal decomposition,
thermal reduction of oxide compounds, hydrogenation of metallic complexes and the
aqueous reduction of iron salts, among others [17].

These methods can be divided into two major groups depending on the type of
processing they employ to obtain the nanoparticles: top-down and bottom-up [17].

A method belonging to the top-down category obtains nanoparticles from larger
materials (granular or microscale), which are submitted to mechanical and/or chem-
ical processes, such as, for instance, mechanical milling, chemical etching, laser
ablation and electro-explosion. On the other hand, a bottom-up method “grows”
nanostructures, atom by atom or molecule by molecule, and basically consists of a
sequence of different physical and chemical processing techniques. A few examples
of this approach are methods that employ chemical reducers (e.g. sodium borohy-
dride, lithium borohydride and hydrazine), carbothermic reduction, electrochem-
ical deposition, chemical vapor deposition and reduction with the use of biogenic
compounds (green synthesis) [17, 22, 24, 32–34].

According to Li et al. [22], both types of processing were successfully applied
to the ZVI nanoparticle preparation process. A typical example of the top-down
approach to the production of nZVI is the milling of iron swarf, which reduces
the material from a micrometric to a millimetric size until a nanoscale size (below
100 nm) is reached [35]. In this process, iron microparticles are decomposed into
nanoparticles by the mechanical forces generated by stainless steel granules inside a
high-velocity rotation chamber [34]. It is a method used in the industrial production
of nZVI by the US company Golder Associates [35].

With regard to nZVI synthesis methods belonging to the bottom-up classification,
a notable example can be cited: the chemical method of reducing nanoscale iron
oxides to goethite or hematite using hydrogen as a reducing agent at high tempera-
tures [22]. It was developed for the commercial production of nZVI by the Japanese
company Toda Kogyo Ltd. and is still used by the latter currently [17]. Another
example of this approach is themethod of decomposing iron pentacarbonyl in organic
solvents or in argon, which is also used for the commercial production of nZVI, in
addition to the iron reduction method [22, 35].

The method of reducing Fe or Fe using sodium borohydride (NaBH4) is the most
widely used method in academia due to its simplicity and the high reactivity of the
particles it obtains [22]. Thismethodwas reported for the first timemore than 50 years
ago by Oppegard et al. [36]. Nevertheless, it received much attention in 1997, when
Wang and Zang [37] described it, singling out its efficiency, and also pioneered the
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use of nZVI for contaminant degradation. The nZVI synthesis process was done via
the reduction of Fe+3 with sodium borohydride. To this end, an aqueous solution of
1.6 M NaBH4 was added dropwise to an aqueous solution of 1.0 M FeCl3. 6H2O at
room temperature, in accordance with the following reaction:

Fe(H2O)3+6 + 3BH−
4 + 3H2O → Fe0 + 3B(OH)3 + 10.5H2 (1)

Over 90% of the obtained particles had a final size of 1–100 nm. The resulting
surface area (obtained by theBrunauer–Emmett–Tellermethod, BET)was 33.5m2/g,
approximately 37 times larger than the fine iron powder commercially available at
that time.

In the decades after the work of Wang and Zang [37], many other researchers
advanced studies on the synthesis of nZVI by reducing Fe+3 or Fe+2 with NaBH4.
The studies done by [38–42] can be cited as examples for each decade.

Sun et al. [38] synthesized ZVI by reducing iron with sodium borohydride. They
used a 1:1 volume proportion of NaBH4 (0.2 M) and FeCl3·6.H2O (0.05 M), which
were stirred in a reaction flask during 30 min after titration. 92% of the acquired
particles had a size of less than 100 nm, with an average size of around 60 nm,
leaving only a small percentage of particles sized between 200 and 250 nm.

Singh et al. [39] also synthesized nZVI using the iron reduction method,
employing FeCl3.6H2O (0.05M) and the reducing agent NaBH4 (0.2 M) in the same
concentrations proposed by Sun et al. [38]. NaBH4 was added dropwise to the FeCl3
solution, and the resulting mixture was stirred vigorously for 30 min. Afterward, the
iron nanoparticles formed were separated by filtration, then washed and stored in
ethanol to avoid the oxidation of the zero iron obtained. They were characterized
as follows: crystallite size, 15.9 nm, calculated using XRD (X-ray diffraction with
Scherrer equation), and average nanoparticle size, 26 nm, evaluated via the transient
electromagnetic (TEM) method.

Boparai et al. [40] also bet on the iron reduction method, starting with a solution
containing FeCl and using NaBH4 as a reducing agent. NaBH4 was added dropwise
to the FeCl3 solution with a 1:1 volume ratio, with constant stirring in an inert
environment. An excess of borohydride was added to accelerate the synthesis of
nZVI and ensure a uniform formation of particles. The process yielded spherical
nZVI particles with sizes between 20 and 200 nm; among these, around 85% had a
diameter of less than 120 nm, with an average particle size of 80 nm.

Xiaoyuan Li [41], following the examples set by the previous researchers, also
synthesized nZVI using the iron reduction method, employing sodium borohydride
as a reducing agent—although with a solution containing FeSO4.7H2O instead of
FeCl3. Also used was a deoxygenated solution of 30% ethanol–water to dissolve
FeSO4 and later add, dropwise, NaBH4 under stirring. The surrounding environment
was kept inert in order to accomplish the required reactions (high-purity N2). As to
the characterization of the resulting particles, it was as follows: the scanning electron
microscopy (SEM) found sphere-shaped particles, XPS showed that the surface of
the acquired iron nanoparticles consisted of 86.9% Fe (II/III) and only 13.1% Fe0,
and the BET result was 23.4 m2/g.
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Mdlovu et al. [42] also used sodium borohydride as a reducing agent for iron and
FeSO4.7 H2O. However, the synthesis method they employed was slightly modified
in comparison with the methods of previous studies. Their coprecipitation method
consisted of the dissolution of 10 g of FeSO4.7 H2O in an aqueous solution with 30%
ethanol and pH adjusted to 6.8, with NaOH 3.8 N (aq). After that, 1.9 g of powdered
NaBH4 was added and the solution remained in stirring for 30 min, followed by
filtration using a 0.22 µm filter. The resulting particles were filtered, collected via
magnetic filtration and then washed with ethanol 3 to 5 times. The acquired nZVI
particles were vacuum-dried for 24 h. As a result of this synthesis, sphere-shaped
nZVI particles with sizes between 20 and 60 nm were obtained. The total surface
area of the nZVI, per the BET analysis, was 42.6 m2/g. According to the Barret,
Joyner and Halenda (BJH) method, which was used to examine the distribution
of the pore sizes of the specimens, the nZVI had a mesoporous structure with an
adsorption–desorption hysteresis typical of a Type IV isotherm, representing thus
the mesoporous nature of the samples [42].

As can be noted in the studies mentioned in this section, to obtain nZVI using
the method of reducing iron ions, different precursors and reducers can be used. It is
remarkable that these precursors and reducers have a fundamental role in defining the
morphology, size and composition of the acquired nZVI particles, which are impor-
tant aspects that influence the chemical and physical properties of the nanoparticles.
Figure 5 shows the morphology of nZVI variants synthesized by different combina-
tions of precursors (ferrous sulfate and ferric chloride) and reducing agents (sodium
dithionite and sodium borohydride) [43].

These were only a few examples to illustrate themany studies done throughout the
years on zero iron synthesis by reducing Fe+3 or Fe+2 with NaBH4. Researchers such
as Visentin et al. [44], Wang et al. [45], Li et al. [46], Stefaniuk [47] and Phenrat et al.
[35] include in their articles extensive lists of studies on the synthesis of nanoscale
zero iron, featuring the most diverse methods and applications. As these lists can be
consulted in the articles cited above, it will not be necessary to reproduce them here.

According to Phenrat et al. [35], with regard to the research and development
(R&D) on nZVI as a field of study, using the Web of Science (WOS) database as
a corpus (consulting data from 2001 to 2018), the number of peer-reviewed articles
and citations about the subject has grown quadratically each year. In 2017, there were
262 peer reviews of journal articles and 8094 citations related to research on nZVI.

Stefaniuk et al. [47] cite a few nZVI production methods that, due to their advan-
tages, can become very popular. They are: precision milling, carbothermal reduc-
tion, ultrasound-assisted production, electrochemical generation and green synthesis.
Thus, a brief report describing these methods shall be done, despite some of them
already having been mentioned as examples of top-down and bottom-up approaches
earlier in this chapter.
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Fig. 5 TEM images of freshly synthesized nZVI samples: a and b nZVI were synthesized using
ferrous sulfate and ferric chloride as precursors and sodiumdithionite as reducing agent, respectively,
while c and d were formed by using ferrous sulfate and ferric chloride as precursors and sodium
borohydride as reducing agent. Reprinted with permission from Rónavári et al. [43]

3.1 Precision Milling

Li et al. [31] synthesized nZVI by using precision milling. According to the authors,
it is an environmentally-friendly and economical method because, in order to break
down micrometric iron particles and thus produce nanoparticles, it depends solely
on the mechanical impact forces generated by stainless steel granules inside a high-
velocity rotating chamber. They performed tests using microscale zero-valent iron
(BASF, iron content >99%, d50 = 2 µm). The tests lasted 8 h and yielded particles
smaller than 50 nm—with the great majority of the particles having 20 nm—and
with a specific surface area of 39 m2/g. The authors state that the size and super-
ficial area of the particles are easily controllable by the milling time, and that the
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Fig. 6 SEM images ofmicro iron and ironmilled for 30 h. Reprintedwith permission fromKhayam
et al. [48]

system is completely scalable for large-scale production. It does not employ toxic
solvents and is thus an attractive synthesis pathway for the ecological creation of
iron nanoparticles.

Figure 6 shows the SEM images of micro iron particles, including an image of
them after 30 h of milling, which evidences the reduction of the particle size after
the milling process [48].

3.2 Carbothermal Reduction

The method of obtaining nZVI by carbothermal reduction consists of reducing
nanoparticles of iron oxide or hydrated Fe+2 ions under high temperatures (T > 600
°C) using thermal energy and exposing them to gaseous reducing agents (H2, CO2 ou
CO) in an inert atmosphere. According to Stefaniuk et al. [47], these reducing agents
are a result of the thermal decomposition of carbon-based materials (carbon black,
biochar, carbon nanoparticles, among others). In other words, this method allows the
use of the supporting elements or products from gasification as reducing agents, thus
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dispensing the need for the addition of other reducers. It also minimizes monetary
costs and the environmental damage that could be caused by certain reducing agents,
e.g. sodium borohydride, which is not only expensive but also requires an intense
washing process to remove it from the synthesized nZVIwhen it is used as a reducing
agent.

To put it shortly, in the carbothermal reduction process, Fe0 is formed by a high-
temperature endothermic reaction in the presence of gaseous products. This reaction
can occur according to Eqs. 1 and 2:

Fe(C2H3O2)2 + C → Fe0 + 2CH2CO + H2O (1)

Fe3O4 + 2C → 3Fe0 + 2CO2 (2)

A typical example of nZVI production via carbothermal reduction is the study
carried out by Hoch et al. [49], which was also already mentioned by [17, 44, 47].

Hoch and collaborators [49] synthesized nZVI using iron salts with carbon
black as a starting material. The carbon black, which had a surface area of 80
m2/g, was combined with aqueous solutions containing Fe+2 or Fe+3 salts. 50 g
of Fe(NO3)3.H2O and 5 g of carbon black were mixed in 200 mL of deionized,
nanopure water, with a resistivity of 18.2 M� cm. This solution was filtered, and
the resulting solid was removed from the filter and placed inside a vacuum oven
to dry, with no heating being applied. Afterward, it was heated in accordance with
the following conditions: inert atmosphere (argon), heating rate of 4.5 °C/min until
800 °C was reached, followed by the maintenance of the same temperature for 3 h.
Under these conditions, the researchers managed to produce Fe0 with 20–100 nm of
fixed diameter, especially in the external surface of the support. The improvement
of the necessary properties for the reduction of Cr (VI), which was the object of
the aforementioned study, was attained. Furthermore, Hoch et al. [49] remark that
the method can be easily scaled to larger reactors, which allows its use in the mass
production of nZVI. I.e., it is a cheap and environmentally-compatible method. This
carbothermal reduction method was also used by Dai et al. [50] with great success in
the synthesis of nZVI composites and ordered mesoporous carbon (OMC) by means
of simultaneous carbothermal reduction methods.

3.3 Ultrasound-Assisted Production

Ultrasound-assisted production of nZVI is the application of ultrasonic waves to
enhance the efficiency of the physical and/or chemical methods employed in the
synthesis of nZVI [47]. These waves act directly on the reduction of particle size,
and also increase surface area and particle uniformity [44, 47].

Jamei et al. [33] present the ultrasound-assisted method as a new and innovative
way of synthesizing nZVI particles. The method the researchers used in the initial
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synthesis of nZVI is the chemical method, i.e. the reduction of Fe3 based on a FeSO4

and NaBH4 solution. nZVI was synthesized within a reaction flask with three open
necks.Nitrogen gaswas injected into the twonecks of the extremity to removeoxygen
and prevent the oxidation of nZVI. The ultrasound was applied to the central neck
via the placement of a titanium sonic probe with a diameter of 1 inch. It was adjusted
until 2.5 cm of the probe was submerged in the solution. A range of ultrasonic power
(0–1000 W) with constant frequency (20 kHz) was used during the experiments,
and the sonication device used was a 1000 W-Ultrasonic Processor. The resulting
material was filtered and washed with pure ethanol then put in a centrifuge to remove
the renascent humidity. Afterward, it was dried in a vacuum oven for a minimum of
24 h in order to proceed to the characterization of its physicochemical properties.

The results demonstrated that the application of the ultrasound wave significantly
altered the morphology of the nanoparticles, also reducing their size from 90.3 to
29.9 nm and consequently increasing the specific surface area, from 10 to 42 m2/g.
These results corroborate the argument that the use of ultrasound in the synthesis of
nZVI via iron reduction improves the efficiency of this same method, significantly
enhancing the properties of interest of these materials.

3.4 Electrochemical Generation

Electrolysis is a well-established industrial method for sequestering metals from an
ionic solution. It is an extremely simple, cheap and fast method, which made elec-
trochemical techniques for synthesizing nZVI an object of research [17]. It requires
only a solution containing Fe+2/Fe+3 salts, electrodes (cathode and anode), an elec-
tric current and a method to disperse the electrodeposited nanoparticles [17, 47].
The dispersion method became necessary in light of the iron atoms involved in the
process, which are formed by the reduction of ferric chloride (reactions 3 and 4) and
are deposited in the cathode, displaying a strong tendency toward aggregating and
forming agglomerations [44, 47].

Cathode : Fe+3 + 3e− + stabilizer → nZV (3)

Anode : Cl− → 1/2Cl2 + e− (4)

Among the dispersion methods studied, Chen et al. [51] combine electrochemical
techniques and ultrasonic waves for the dispersion of the particles. To this end, they
employed cationic surfactants as stabilizing agents and ultrasonic waves (20 kHz),
which are a necessary energy source for the rapid removal of iron nanoparticles from
the cathode and thus to avoid their aggregation [47].

According to Chen et al. [51], in order to produce nZVI, a ferric chloride solu-
tion must be prepared first. Then an electrogalvanization reactor is used, to which a
platinum cathode and anode connected to an energy source are added. The reactor is
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then submerged in an ultrasonic vibrator. The ferric chloride solution is transferred to
the electrogalvanization reaction together with the stabilizers (e.g. polyvinylpyrroli-
done, PVP, and cetylpyridinium chloride, CPC) [44]. The stabilizers and the ultra-
sonic vibrator are fundamental in order to avoid the clustering of the produced
nZVI nanoparticles. The nZVI produced under these conditions has a particle size
of 1–20 nm and a specific surface area of 25 m2/g [47].

In addition to the work of Chen et al. [51], other researchers also studied methods
geared toward dispersing the nZVI particles formed in the cathode, such as, for
instance, Wang et al. [52], who used ion-exchange in nafion film, and Yoo et al. [53],
who electrodeposited thin films and nanowires from an aqueous electrolyte using
template-directed electrodeposition methods.

3.5 Green Synthesis

In the last decades, concerns with environmental sustainability began to become
the subject of discussions and encourage the search for solutions from all areas of
expertise. Naturally, it would not be any different when it comes to the synthesis
of materials that satisfy this demand and are many times used for environmental
treatment activities.

The traditional nZVI synthesis methods can often involve some toxicity due to
the reagents, reducers and stabilizers they use, as well as a high production cost
given how expensive these products are [34]. In this regard, green synthesis can be
an environmentally and economically viable alternative in the production of nZVI.

The economy offered by the green synthesis methods lies not only in the cost
of the products it uses, but also in the different versions of its process, as it does
not require the use of high temperatures or pressures and additional energy sockets,
being also easy to implement on a large scale [47].

One of the most significant aspects of green synthesis is the production of nZVI
using biogenic material such as plants or microorganisms, fungi and bacteria, which
can function not just as stabilizing agents but also as reducers for nanoparticles [34].
Microbial enzymes or plant phytochemicals with antioxidant or reducing properties
are generally responsible for the reduction and oxidation ofmetallic compounds [44].
Nevertheless, the microorganism-based green synthesis method is not widely used or
studied in the scientific community yet. That is because the use of microorganisms in
the nZVI synthesis process requires the obligatory restriction of aseptic conditions,
which requires trained personnel and thus raises production costs [47]. Factors such
as reaction time are more important in the microorganism-based synthesis method
than in themethodusing plant extracts. Therefore, the use of plants for green synthesis
ends up being preferred to the use of microorganisms [47].

According to Hoag et al. (2009) apud Stefaniuk et al. [47], green synthesis was
used to produce nZVI for the first time by theUS companyVeruTEKand the Environ-
mental Protection Agency (EPA). The method in question included the preparation
of a polyphenolic solution containing a plant extract (coffee, green tea, black tea,
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lemon, balsam, sorghum, grape powder, among others) obtained by heating the plant
samples in water at a temperature close to boiling point. The prepared extract is then
separated from the plant residues and mixed with a Fe2+ solution. The iron ions are
reduced to nZVI with the exposure to the polyphenols.

The disadvantage of synthesizing nZVI using plants is that the process requires
their destruction. However, this problem can be solved by the use of agroindustrial
residues as raw materials, e.g. extracts of various fruit residues (lemon, tangerine,
orange or grapevine pomace), in addition to other alternatives [47].

According to Stefaniuk et al. [47], the nZVI obtained via green synthesis has been
successfully used as a Fenton catalyst to oxidize monochlorobenzene (to 69%) and
carry out the reductive degradation of dyes such as malachite green or bromothymol
blue. Similarly, green nZVI can also be used to degrade drugs (e.g. ibuprofen) in
soils, Cr (VI) ions, nitrates in aqueous solutions, or to treat swine wastewater.

In spite of the countless advantages of green synthesis for the production of nZVI,
both in terms of environment and cost, its disadvantages must also be known. One of
them is the diminished reactivity and surface energy of the phytogenic ZVI nanopar-
ticles compared to chemically-prepared ZVI nanoparticles. The slower synthesis
process in comparison with that of chemically-synthesized nanoparticles and the
incomplete reduction of Fe2+ ions in ZVI nanoparticles are also disadvantages of
phytogenic nanoparticles [34].

Still, regardless of these disadvantages, studies on the optimization of the synthesis
process and the improvement of its desired qualities by the processing of the nanopar-
ticles must be done, since solving these difficulties will result in the availability of a
low-cost, highly environment-compatible method of producing nZVI.

4 Considerations on the Synthesis Process of nZVI

After this discussion of the several methods of synthesizing nZVI, it is important
to highlight which of them are currently used in industrial-level nZVI production.
According toCrane andScott [17], threemethods are used in the industrial production
of nZVI: milling, chemical reduction with hydrogen and chemical vapor deposition.
Table 4 shows data relative to the industrial production of nZVI.

Furthermore, it is important to identify which factors determine the non-
implementation of other methods for the large-scale production of nZVI, and also
to bring attention to alternatives indicated by researchers for the production of this
material. Such alternatives range from processing techniques to traditional synthesis
or modified synthesis methods.
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Table 4 nZVI industrial production methods. Created by the authors of the present chapter based
on Phenrat et al., Visentin et al. and Stefaniuk et al. [35, 44, 47]

Synthesis method Producing company
(Country)

Particle size (nm) Specific surface area
(m2/g)

Milling Golder Assoc. (USA) 12.5 30–50

Chemical reduction
with H2

Toda Kogyo Ltd. (Japan) 100 23

Chemical vapor
deposition

Nanoestrutured &
Amorphous Materials,
Inc. (USA)

25 40–60

*NA Polyflon (USA) 100–25 37–58

NA SkySpring
Nanomaterials, Inc

20–80 7–60

NA MKNano (Canada) 25 NA

NA NC NA NA

*(NA): Not available

5 nZVI: Modified Treatments and/or Synthesis and Uses

One of the most studied methods in academia is the synthesis of nZVI via the reduc-
tion of Fe+3 or Fe+2 with NaBH4. However, it is rarely recommended for large-scale
production because of a few technical and economical aspects: high cost of reagents
for the production process, a great amount of hydrogen generated, the presence of
polydisperse particles (with size variation), and a high nanoparticle agglomeration,
directly impacting the properties of interest, such as reactivity, which diminishes due
to the agglomeration of the particles [38, 54, 55].

With the intent of bettering the properties of nZVI produced by the most diverse
methods, studies on its processing have been developed to improve issues such as
particle agglomeration, stability, mobility and efficiency in different applications. A
few examples of the topics investigated in those studies: sulfatation; the formation of
Fe/graphene composites; polymer-modified nZVI; emulsified nZVI; and the creation
of bimetallic nZVI compounds supported in other materials.

Examples of a few processing treatments and/or modification procedures to the
synthesis process of nZVI, its starting synthesis and intended uses, as well as the
properties optimized by these treatments/modifications, are shown in Table 5.

6 ZVI and Supported nZVI—Biochar

There are many processing treatments and/or modification procedures that can be
adopted to improve the properties of nZVI. Its small particle size makes it very reac-
tive; nonetheless, it can be a problematic material due to the difficulty of separating
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nanoscale iron from the purified matrix. Still, that can be counterbalanced by the use
of materials that support nZVI, such as silica, activated carbon, zeolites, polymeric
membranes and biochar. These supporting materials immobilize the nZVI by fixing
it to the structure or trapping it inside their pores. Such treatment corroborates the
modification of the physicochemical properties of nZVI that are of interest for the
better accomplishment of its intended application [47].

Among these options, biochar-supported nZVI (nZVI/BC) stands out as an
innovative technology for the recuperation of degraded soils and the treatment of
contaminated industrial effluents.

Biochar, depending on the pyrolysis conditions and the biomass utilized, has a
porous structure and a large surface area with a significant density of functional
groups containing oxygen, such as carboxyl (_COOH) and hydroxyl (_OH) [60].
Its porous structure facilitates the mass transfer from contaminants to the surface.
Furthermore, the biochar matrix controls the size and dispersion of the particles, as
well as the corrosion of nZVI, thus offering a good catalytic, reductive and oxidative
resource for the treatment of contaminants. It also increases electron transference
from the nZVI to target contaminants due its good electric conductivity, which qual-
ifies it to be used as an adsorbent in the removal of organic contaminants and heavy
metals. According to Wang et al. [61], the synergetic effect of the nZVI/BC in the
removal of contaminants is related to the greater sorption capacity of biochar, the
properties of nZVI and the positive interactions among both materials [61].

Some studies on the use of biochar as a support to ZVI are reviewed below.
Yanmei Zhou et al. [62] developed a simple method of synthesizing ZVI-biochar

compounds using chitosan as a dispersing and stabilizing agent. Chitosanwas used as
an “organic glue” in order to annex fine ZVI particles to the biochar. The commercial
chitosan powder used was dissolved in 90mL of a 2% acetic acid solution. Following
that, the commercial ZVI particleswere dispersed in the solution, and then the biochar
(which was produced by the pyrolysis of bamboo) was added. The mixture was then
stirred during 30min to form a homogenous solution,whichwas then added dropwise
to a 450mL 1.2%NaOH solution. This solution was left undisturbed for 12 h at room
temperature. The solid products were then separated by decanting and washed with
de-ionized water to remove the NaOH excess, and dried in an oven for 24 h at 70 °C.
The iron-modified biochar demonstrated an excellent capability of removing several
contaminants, including heavy metals, phosphate and methylene blue, from aqueous
solutions. Furthermore, the modified biochar is ferromagnetic and can be easily
collected by a magnet. In short, the acquired material can be used in environmental
activities, including water treatment and soil remediation.

Yan et al. [62] synthesized a biochar-supported nZVI composite to be used as
a persulfate activator and thus increase the removal of trichloroethylene (TCE) in
aqueous solutions. Biochar obtained via the pyrolysis of rice hulls was used. It was
added to an aqueous FeSO4.7H2O solution with 5.0 pH, then N2 was purged in
the solution during 1 h in order to exclude the O2 dissolved during the preparation
process. Afterward, the obtained material, nZVI/biochar, was filtered, washed with
ethanol and vacuum-dried. nZVI/biochar was successfully synthesized and used as
efficient activator for persulfate. With the oxygen functional groups in the surface
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of the biochar, nZVI/biochar offered more reactive sites to activate the persulfate,
allowing an almost complete removal of the TCE in 5 min.

Zhang et al. [64] synthesized an nZVI/BC composite with the aim of assessing its
efficiency in activating persulfate to promote the oxidative degradation of atrazine.
It was synthesized by a simple one-pot method via oxygen-limited high-temperature
co-pyrolysis of themixture of soybean straw powder and Fe2O3. To this end, different
formulations were carried out bymixing Fe2O3 and soybean stem powder. Theywere
subjected to pyrolysis at temperatures between 600 and 900 °C, with a heating rate
of 20 °C, under argon flow, for 1 h. The authors found that the most suitable pyrolysis
temperature was 800 °C, at which 75% of Fe2O3 can be converted to Fe0. They also
verified that the prepared nZVI/BC can effectively activate the persulfate to promote
the oxidative degradation of atrazine. In the representative persulfate-catalyst system,
the atrazine removal rate was up to 93.8%.

Wei et al. [65] synthesized an nZVI/BC composite using biochar (BC) produced
from oak sawdust. Its purpose was to be used in the efficient reduction of nitroben-
zene (NB). Firstly, oak sawdust biochar was acquired with the following pyrolysis
conditions: N2 flow, heating rate of 5 °C/min to 800 °C, with a residence time of 4 h,
and a final pause for it cool down to room temperature.With the biochar obtained, the
nZVI/BC composite was synthesized using the liquid phase reduction method. First,
0.15 g biochar, 0.25 g polyethylene glycol-4000 (PEG-4000), 0.75 g FeSO4.7H2O,
15 mL n-pentane and 35 mL distilled water were added to a three-necked flask. For
the reduction step, a NaBH4 solution (0.108 mol/L with 0.1 wt.% NaOH, 50 mL)
was prepared and added dropwise into the flask, then stirred for 30 min. Based on the
X-ray diffraction analyses, a peak of zero-valent iron in the synthesized composite
was identified. The BET specific surface area of pure nZVI is 6.4 m2/g, while that of
the nZVI/BC composite is 264.9 m2/g, showing a significant increase. The removal
efficiency of nZVI/BC was higher than the simple summation of bare nZVI and BC.
Moreover, nZVI/BC displayed lower Fe leaching and high durability in nitrobenzene
removal. The obtained results imply that nZVI/BC would be a promising material
for the remediation of a nitroaromatic-contaminated aquatic environment.

Han et al. [66] prepared an nZVI/BC composite in order to verify its effective-
ness against organic contaminants by evaluating the discoloration of methyl orange
(MO), which was used as a representative organic contaminant. The synthesis of the
nZVI/BC composite began with the pyrolysis of rice hulls biochar at 500 °C. The
biochar (<100-mesh) was first mixed with 1 MHCl (1/20, v/v) and shaken overnight
at room temperature for demineralization, in order to remove elements such as K+,
Na+,Ca2+ andMg2+.Thebiocharwas thenpurifiedusingdialysis until the pHsolution
was close to neutral and dried at 80 °C in an oven. Subsequently, the treated biochar
was added to a solution of FeSO4.7H2O (0.05 M) in methanol/deionized water (3/7,
v/v), and stirred for 1 h to form a homogeneous solution. For the iron reduction
process, an equal volume of 0.1 M KBH4 solution was added dropwise into the
slurry under vigorous stirring. The nZVI/BC composite formed was separated from
the supernatant and washed several times with deionized water and methanol. The
BET surface area (SA) of the nZVI/BC composite increased significantly compared
to the area of pure nZVI. The SA of nZVIwas 20.89m2/g, while that of the composite
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in its best formulation was 142.80 m2/g. A mass ratio of biochar to nZVI of 5:1
seemed to give the best performance, with 98.5%MO decolorization efficiency. The
effectiveness of nZVI/BC for MO removal was confirmed.

Liu et al. [67] evaluated the dechlorination of polychlorinated biphenyls (PCBs)
using an nZVI/BC composite, which was synthesized alongside an nZVI sample.
The biomass used was pinewood sawdust. The biomass sample, previously dried at
105 °C for 24 h, was immersed in a FeCl3 solution and subsequently ultrasonicated
for 2 h at room temperature. After being stirred at 60 °C for 12 h, the mixture
was separated by vacuum filtration. The recovered residue was dried at 100 °C in
vacuum for 2 h. Then, it was submitted to the pyrolysis process using a N2 flow
rate of 30 mL/min and heating rate of 20 °C/min, starting from room temperature
until 800 °C. It remained at this temperature for 40 min before its cooling process
started. It remained in the oven, with exposure to a flow of N2 until it reached room
temperature. The resulting sample was washed several times with deionized water
and ethanol and vacuum-dried for use.

In short, the sawdust was able to be significantly activated by ferric chloride,
and subsequently nZVI was formed in the carbonization process, thus originating
the nZVI/BC composite. For comparison purposes, the sawdust was subjected to the
same test conditions, onlywithout impregnation of ferric chloride. TheX-ray diffrac-
tion results of the sample that was activatedwith ferric chloride showed characteristic
peaks of ZVI and a crystallite size of 27 nm, which was calculated by the Scherrer
equation. I.e., an nZVI/BC composite was formed. Regarding BET, surface area
and pore volume, the sawdust that was pyrolized without ferric chloride activation
presented values of 20 m2/g and 0.04 cm3/g, respectively. Meanwhile, the nZVI/BC
composite showed much higher values: 423 m2/g and 0.23 cm3/g. Additionally, the
synergistic and simultaneous function of adsorption and dechlorination carried out
by the nZVI/BC resulted in a mostly complete removal of PCBs from the aqueous
solution.

Dong et al. [68] also used biochar as a support for iron in order to produce a
nanoscale catalyst for the production of ZVI-based bio-oil. The biomass usedwas rice
hull. The raw rice hull was impregnated with Fe(NO3)3•9H2O, which was achieved
by stirring it in a solution for 12 h. The impregnated biomass was dried at 105 °C for
48 h and then heated in a horizontal oven (electric heating) at 800 °C for 1 h, under
a N2 atmosphere. The resulting material was named RHC/Fe. The mineralogy of the
catalyst was characterized byXRD,which showed three peaks indicative of ZVI. The
ZVI was formed during biomass pyrolysis due to the reduction of the Fe precursor,
which was impregnated in the biomass, using H2 and CO as reducing agents. The
catalyst obtained—RHC/Fe—was tested during the pyrolysis of macroalgae from
the Sargassum genus, and it was observed that esterification reactions and secondary
reactions were were promoted, with the formation of a bio-oil enriched in esters.

Su et al. [69] produced a material with biochar-supported nZVI (nZVI @ BC)
designed for in-situ remediation of soil contaminated with hexavalent chromium.
Biochar was obtained via the pyrolysis of vegetable waste at 600 °C, with a residence
time of 2 h. To produce the nZVI@BC composite, the resulting biochar was added to
a FeSO4.7H2O solution and stirred for 60 min, under anaerobic conditions, to form a
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homogeneous solution. Following that,NaBH4 was added dropwise to this solution to
reduce iron, thus enabling the formation of nZVI@BC. In characterization terms, the
BET results showed that the specific surface area of pure nZVI was 35 m2/g and that
of nZVI @ BC was 71 m2/g; in other words, it doubled in relation to pure nZVI, due
to the large surface area of the biochar (whichwas 353m2/g). Sedimentation tests and
column experiments were used to compare the stability and mobility of nZVI @ BC
and pure nZVI. Chromium immobilization efficiency, the toxic effect of chromium
and the iron content were also evaluated by leaching tests and pot experiments.
Sedimentation tests and transport experiments indicated that nZVI @ BC, with an
nZVI to BC mass ratio of 1:1, had better stability and mobility than pure nZVI. The
efficiency in immobilizing Cr (VI) and total Cr was 100% and 92.9%, respectively,
when the soil was treated with 8 g/kg of nZVI @ BC for 15 days. Furthermore,
the remediation effectively reduced the Fe leaching caused by pure nZVI, and the
pot experiments showed that the remediation reduced the phytotoxicity of Cr and
leachable Fe and promoted plant growth.

Lastly, these were just some examples of studies developed using biochar as a
support for nZVI, aiming to improve its properties of interest for different uses by
producing this new material. A wide list of works involving the development of
biochar to support nZVI can be found in reference [61].

7 Conclusions

Minerals that contain mostly iron are found in the form of oxides. Thus, it can
be inferred that the exploration of these oxides to obtain iron has great economic
significance, considering the high iron content (of above 62%) in their composition.

There is a wide range of methods that can be used for ZVI and/or nZVI synthesis.
They can be divided into two large groups depending on the type of processing done
in order to obtain the particles. They are: top-down (from top to bottom), where
particles are obtained from larger (granular or microscale) materials, and bottom-up
(from bottom to top), which involves the "growth" of nanostructures atom by atom
or molecule by molecule. The type of method used to produce the particles directly
influences their properties.

The Fe+3 or Fe+2 reduction method for the production of ZVI and/or nZVI is a
typical bottom-upmethod. It canbe carried outwith different precursors and reducers,
which will directly influence the morphology and size of the particles obtained. It is
the method most widely used in academia due to its simplicity and the high reactivity
of the particles acquired; however, it is not used for large-scale production due to
the high cost of its required reagents and some technical aspects, e.g. the resulting
agglomeration of nanoparticles, which directly impacts the properties of interest.
For the industrial production of nZVI, methods such as grinding, chemical reduction
with hydrogen gas and chemical vapor deposition are used.

Many studies have been done in order to improve the properties of nZVI produced
by the most diverse methods, with respect to particle agglomeration, stability,
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mobility and efficiency in different applications. Among them is the use of other
materials as support for nZVI. These support materials provide the immobilization
of nZVI by fixing it to their structure or imprisoning it inside their pores. This treat-
ment corroborates the modification of the physicochemical properties of nZVI of
interest in order to better accomplish its intended application.

Among many other materials, nZVI supported by biochar (nZVI/BC) is emerging
as an innovative technology for the recovery of degraded soils and the treatment of
contaminated industrial effluents. Biochar, depending on the pyrolysis conditions
and the biomass used, has a porous structure and large surface area with a signifi-
cant density of functional groups containing oxygen. Its porous structure facilitates
the mass transfer from contaminants to its surface. Furthermore, it improves the
electron transfer capacity of nZVI to target contaminants due to its good electrical
conductivity, which qualifies it to be used as an adsorbent in the removal of organic
contaminants and heavy metals.
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Nanosensors in Forensic Sciences

Gisele Inês Selli, Anne Esther Targino Bonatto, Fernando Targino Bonatto,
Michel Jose Anzanello, and Carlos Pérez Bergmann

Abstract The sensors are powerful tools for the detection of illicit substances. The
application and development of sensors have attracted tremendous attention in the
last few years. This fever for the development of new detectors can be attributed to
the lack of an efficient device that brings to the analyst all the required properties,
likewise, low-cost production, portable or on-site analysis, instrumental simplicity,
reliability, and accurate results. Thepresent chapter outlines the application of sensors
in forensics sciences, bringing to the reader recent reviews and papers. It also reports
the main differences among the three big classes of sensors, the chemical, biological,
and optical sensor, and offers insights into the future perspectives of these sensing
materials
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1 Introduction

The sensors are characterized as devices used for the detection of specific substances.
These devices can perform detection, measurement of different physical properties
(such as mass and temperature), and sensing of electrical or optical properties of
materials [1–3]. The sensing is realized by the production of a measurable signal,
which depending on the sensor, will be generated and interpreted in different ways
[3, 4].

Since the second half of the twentieth century, sensors have become a key part
of everyday life [5]. One of the first devices developed with this technology was the
glucose test [3] and the pregnancy or fertility test for women [6, 7]. The increasing
advancement of technology andminiaturization ofmaterials provide an enhancement
of nanosensors’ role in the sensing field. Similar in some characteristics to macro
sensors, on the other hand, nanosensors should contain at least one of their dimensions
smaller than 100 nm.Due to the extremely small size, large surface area, and excellent
reactivity, the detection of differentmaterials on the nanoscale becomes possible. The
potential application and multi-functionality of these nanomaterials mean that the
number of researches and the consequent use of these devices in the sensing field
has increased exponentially in the last years [1, 8–13].

Forensic science, due to its judicial importance, is a field that mistakes cannot be
tolerated. The materials applied for analysis, likewise, fingerprint detection, biolog-
ical fluids, DNA, narcotics, poisons, and explosives, must present high specificity
and precision [1, 9]. To obtain results with the required accuracy, several laboratories
have invested in the use of analytical techniques and nanomaterials [8, 9, 14, 15].
The application of nanosensors allows them to be used in the crime scene, as in the
case of fingerprint detection [8, 16], or even the use of biosensors for drug detection
[17–19] and explosives [20–22].

This chapter aims to provide a brief literature reviewon the application of nanosen-
sors in different areas of forensic science. The chapter is divided into classes of
sensors starting with chemicals sensors, after that, biological and ends with optical
sensors.

2 Definition of Nanosensors

To be classified as a nanosensor, the device must have two main components, the
material that will have the detection properties and a transducer that have as aim to
receive a measurable signal. The material responsible for the detection interacts with
different external stimuli; these include temperature and pressure exchange, electric
signal and formation of a chemical bond and/or biological reactions, and others. The
different reactions, generally, lead to change in one or more of the intrinsic properties
of the material, which are then transformed into measurable signals and sent to the
transducer [3, 5]. This is the general operation mechanism of nanosensors. But, each
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class of these nanomaterials has its particularities, which will be explored in the
following topics.

3 Chemical Sensors

The Chemical sensors are defined by IUPAC as “Devices or instruments capable
of performing detection by converting a chemical or physical property of a specific
analyte into a measurable signal, whereby the magnitude is directly related to the
concentration of the analyte”. Figure 1 demonstrates the architecture of a chemical
sensor [23].

The nanosensors, next to specific compounds or ions, can provide real-time and
online results. The main characteristics are low cost and portability for the analysis
field. The potential of these materials allows them to be applicable in different areas
of our everyday life, as seen in Fig. 2. Chemical detection has gained a significant
role in forensics sciences and allows the detection of various substances in forensics
such as poisons, drugs, explosives, gunshot residues, and fingerprints detection [7,
14, 24, 25].

The use of nanomaterials in forensics has been the subject of a lot of researches
and the development of new devices. This growing number of studies and patents can

Fig. 1 Chemical structure of sensor. In the first stage, analytes interact with the sensing material
changing some of its properties, likewise, temperature (�T), mass �M, conductivity (�σ), work
function (��), refractive index(�n), permittivity (�ε). In the second stage the transducer make
your work, converting some of physical properties into the variation of its electric parameter. In the
end, the circuit gives rise to the sensing signal. (Adapted with permission from Ref. [5] Copyright
2021 American Chemical Society)



242 G. I. Selli et al.

Fig. 2 The application of Chemical sensors in our everyday life (Adapted with permission from
Ref. [5] Copyright 2021 American Chemical Society)

be attributed to the versatility of these nanomaterials and the possibility of detection
in concentrations that were not even considered. A review about the explosives in
trace detection is presented by To, K. C. [13]. According to To, K. C. [13], the use of
technologies to detect explosives in trace amounts play a vital role in hold on national
security. In this review, the author highlights the use of nanostructured semiconduc-
tors as chemical sensors and classifies them according to chemical composition:
composites, carbon-based, plasmonic, quantum dots, and semiconductors. Using
p-type and n-type semiconductors, such as TiO2, ZnO, Sn2O, Cu2O, the author
mentions different studies that attribute the rapid response of these compounds to
properties such as improved charge transfer. The presented results are meaningful
for the forensic sciences field. Nevertheless, the author reports Qu [26] research,
which developed a chemiresistive sensor for detection of trinitrotoluene (TNT), dini-
trotoluene (DNT), 2,4,6-trinitrophenol (TNP), 1,3,5-trinitroperhydro-1,3,5-triazine
(RDX) and ammonium nitrate (AN).

It is possible to note a large number of references reporting the use of plas-
monic materials such as gold (Au) [27] and silver(Ag) [10] for explosives detection.
According to Muehlethaler, C. [12], plasmonic materials provide on their surface
a large amount of active binding sites that exhibit affinity for the chemical groups
present in explosives. The Nitroaromatics TNT or DNT can be cited as examples
of explosives with a great affinity for gold. These Nitro compounds, through bonds
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with the oxygen atoms (present in their structure), form a bidentate chelate complex
with the metal surface.

In the study conducted by Squire [27], it is possible to understand the synthesis
of a sensor containing silica and gold in a core–shell structure, applied for detection
of vapor DNT. The compound detected trace amounts of the explosive in the order
of 100 ppm. Also, according to the author, this detection occurred within 3 min at
room temperature [27]. Results like these clearly show the potential application of
these materials as sensors for the detection of vapor explosives. Figure 3 outlines the
synthesis process and results obtained by Squire, K. J [27].

The use of illicit drugs is a big problem for public health worldwide. Due to
the devastating effects of these substances, take action to prevent the transportation,
sold, and being able to trace their origin is extremely important. In this context, it is
correct to say that the investigation and detection of drugs is one of the main areas
for investigators and scientists linked to the forensic sciences [8, 12, 28–31].

Fig. 3 1a Schematic diagram of sensor synthesis containing synthesis Au@SiO2 core—hell NPs.
1b The results of time-dependent desorption analysis a with substrate and b without substrate at
room temperature and at 70 ºC. c–d Average peak intensity in relation to analyte concentration is
plotted to show the concentration dependence with a diatom—apor interaction. 1c SEM pictures of
SERS substrate with core–shell and frustule structure shown at different magnifications a–c. TEM
pictures of NPS in a frustule pore d and core—hell structure with arrows highlighting the shell e.
(Adapted with permission from Ref. [27]. Copyright 2020 American Chemical Society)
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The development of sensors that are easy to use, have high-throughput, on-site,
and fast has been the focus of the scientific community. Furthermore, Nanomate-
rials with a chemical affinity for these drugs have been explored in researches, as
seen in research conducted by Minhas [29]. The Minhas [29], have demonstrated
the detection of illicit performance-enhancing substances in athletes. Using biolog-
ical matrices and the device compound of nanostructured silicon, the samples were
submitted for analysis with a mass spectrometer (SALDI-MS). The results obtained
were compared with other analytical methods and showed a better performance. As
seen in Fig. 4 (adapted from Ref. [29]), a schematic illustration show the steps for
the development of a new device. Also in Fig. 4b is the analysis mechanism for the
detection of banned substances in biological samples belonging to athletes.

Other studies that report the detection of illicit drugs using chemical sensors, and
it is worth highlighting, are those developed by Akhoundian [30] and Parrilla [31].

The first author [30] developed a method for trace amounts detection of metham-
phetamine using Fast Fourier TransformSquareWaveVoltammetric (FFT-SWV) and
aMolecularly Imprinted Polymer (MIP)/multi-walled carbon nanotube (MWCNTs)-
Modified Carbon Paste Electrode. The nanopolymer was synthesized using the
polymer precipitation method. Furthermore, the sensor was tested with human blood
and urine. The results obtained for experimental conditions resulted in a linear
response range of 1.0× 10–8–1.0× 10–4 mol L−1 and a detection limit of 8.3× 10–10

molL−1.According to the author, the detection limitwas the lowest ever reported. The
development of this sensor provides an important tool to detect methamphetamine in
human blood and urine in a quickly and accurately way. On the other hand, Parrilla

Fig. 4 Scheme of the Testing Procedure for Athlete Doping: a The biological samples
(Saliva/Urine) are obtained from an Athlete and then spotted onto a Nano-Si Surface, Tailored
for Doping Detection. b Samples are analyzed with Nano-Si SALDI-MS and the results indicate
the presence or no of an Adverse Analytical Finding (AAF). (Adapted with permission from Ref.
[29] Copyright 2020 American Chemical Society)



Nanosensors in Forensic Sciences 245

[31] developed a sensor for the detection of amphetamines in samples seized by the
police, using voltammetric oxidation of a derivatized compound on a graphite screen-
printed electrode. The results exhibit the efficiency of the sensor and its potential to
quantify amphetamines in 20 seized samples in approximately 3min. Figure 6 shows
some of the results obtained by analyzing Fig. 5.

The researches presented here explore the development of new chemical devices
with someproperties, such as high-throughput, real-time analysis, which are essential
characteristics for sensors used in the forensic area.

Fig. 5 a Schematics of the concept for the on-site screening of Amphetamine. b The electrochem-
ical essays of the sensing method to detect Amphetamine at graphite screen-printed electrodes.
(Reproduced with permission from Ref. [31])
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Fig. 6 The schematic structure of biosensor with electrochemical transducer. (Created with
biorender. itens)

As seen in this section, there are several studies that address the development of
chemical sensors for explosives and illicit drugs detection. Many sensors have multi-
modal detection properties as a chemical with biological and/or optical. However,
when the sensor presents conjugation of biomolecules, antibodies, aptamers,
enzymes, and other biological species, the correct classification of sensors is a
biosensor that has been widely used.

4 Biosensors

Biosensors are composed of biological sensing receptors (which can be: enzymes,
proteins, aptamers, antibodies, nucleic acids, cells, or tissues), a transducer, and
a detector (Fig. 6). The target analyte binds to biological receptors and produces
a measurable signal that is directly related to the concentration of the target under
investigation. Nanostructured biosensors have as an advantage accurate analysis with
a minimum amount of sample and the possibility of detection in highly complex
matrices such as body fluids and environmental samples [7, 32].

It is possible to cite different references that report the development and applica-
tion of nanobiosensors as a potential tool for detection of explosives [13, 33]; illicit
drugs [32, 34]; body fluids [35, 36] at crime scenes, among others. In this section,
we will explore a little more about biosensors and their applications.

Body fluids are complex matrices; however, the amount of relevant information
that can be extracted and the abundance of these samples at crime scenes make them
the object of many types of research that focus on nanobiosensores synthesis, like
the study developed by Li et al. [35] that used human saliva.
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Saliva is an important tool at crime scenes because it allows the association
between victim and suspect. Based on the quantity of information that can be found in
this fluid the author proposes the development of a multimodal sensor for the detec-
tion of two classes of bacteria using a smartphone as a platform and human saliva for
sampling. This sensor was developed using silicon-carbide quantum dots with blue
fluorescence and gold nanoclusters with red fluorescence to develop a series of test
strips.

According to the results, when the strips were exposed to a solution of bacteria
(of the species S. salivarius and S. sanguinis) was verified the color change under
365 nmUV light. This change of color was collected using a smartphone camera and
analyzed by the app. The app idea is collect the color change and generate the result,
according to the number of bacteria present in saliva. In Fig. 7 (reproduced with
permission of the author), the scheme with procedures performed for simultaneous
detection of S. salivarius andS. sanguinis in the saliva is based on the sensing platform
using the smartphone [35].

Sweat is an interesting biological fluid that shows as advantages your non—
invasive nature. In the study developed by Xue [34], sweat was used to verify the
performance of biosensor. The researchers prepared a sensor based on a microfluidic
capillary array combine with a competitive enzyme-linked immunosorbent assay
(ELISA protocol). This device allows the quantitative, quick, and accurate detection
of illicit substances. The results demonstrated the potential of the sensor for detection
of 4 drugs of abuse (Methadone, Methamphetamine, Amphetamine, and Tetrahydro-
Cannabinol (THC)) in artificial sweat. According to the author, the sensor showed
an excellent specificity concerning to cross-reactivity, with values lower than 1%.
Furthermore, in approximately 16 min and with only 4 μL of each drug, all the
desired results were obtained. The estimated detection limits for the sensor were:
1.6 pg mL−1 for Methadone, 142 pg mL−1 for Methamphetamine, 35 pg mL−1 for

Fig. 7 Scheme showing the working of simultaneous detection of S. salivarius and S. sanguini in
saliva, applying the smartphone as sensing platform. ( Reproduced with permission from Ref. [35])
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Amphetamine, and 20 pg mL−1 for THC. The results were excellent, demonstrating
the accuracy of the method since others presented in the literature exhibit a range of
100–1000 pg mL−1 [34].

The detection of illicit substances is a challenge for border security professionals
becausemany of these compounds have low vapor pressure, and the concentrations in
vapor are extremely low. Moreover, in order the organizations hide the substances in
boxes with complex odors, confusing the more accurate detection systems. However,
one of themain problems related to the existing detection systems is the occurrence of
many false—positives results and extremely high maintenance and purchase prices.

In this context, Scorsone [37] has selected several LigandBinding Proteins (LBPs)
and integrated them into a nanodiamond transducer coated with acoustic surface
waves with the aim to develop a biosensor array. The biosensor arrays have been
used for the detection of explosives and illicit drugs, which exhibit a high affinity
for proteins. According to the results, a linear response over the range of ppb—ppm
concentrations values was observed. Furthermore, using Principal Component Anal-
ysis, the sensor was able to discriminate among different explosives and narcotics.
The developed biosensor showed a higher affinity for Nitroaromatic compounds than
for narcotics. According to the author, bioelectronics noses are seen as an important
tool to overcome existing challenges in current detection systems.

As can be seen, biosensors provide analysis with exceptional specificity and
sensitivity for explosives through the use of antibodies, aptamers, and molecularly
imprinted polymers. A review that addresses the state of the art and future trends for
the development of biosensors for explosives detection is the one prepared by Liu
[38]. During the review different studies are referenced; among them,we canmention
one that uses aptamer composite sensors for TNT detection. The study developed by
Kong [39]., reports the development of a chemiluminescent biosensor composed of
magnetic beads incorporating Co2+ and N-(4-aminobutyl)-N-ethyl isoluminol with
magnetic properties. The TNT aptamer was attached to the composite surface via
electrostatic interactions and coordination interactions between the TNT aptamer
and Co 2+. This interaction resulted in a decrease in the chemiluminescence inten-
sity of the compound. According to the author, this quenching effect may be due to
effects in the catalytic site of Co2+ being blocked by the TNT-aptamer peptide, thus
leading to a reduction in fluorescence intensity. Finally, the biosensor was able to
detect TNT in the range of 0.05–25 ng/ mL with a detection limit of 17 pg/mL. We
can see in Fig. 8 the schematic diagram of the biosensor and the comparison of the
luminescence curves of the compound according to the synthesis steps [38, 39].

From perspectives, the author points out that, unfortunately, there isn’t still on
the market a sensor that combines all the required properties such as low detection
limit, stand-off distance, high selectivity, and portability in a single device. But, the
future of these materials is very promising due to the quick development of both
technologies that improve the sensing and progress in the biological area [38].

This chapter demonstrates the potential and different applications of biosensors.
Furthermore, we present the different characteristics of biosensors and the possibility
of enhancing the performance of the devices tunning the properties. It can also be seen
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Fig. 8 a Scheme illustrating of the proposed label-free aptasensor for TNT.bComparison of kinetic
curves in different moments of compound synthesis. (Reproduced with permission from Ref. [38,
39])

that the response of biosensors will be controlled by reaction kinetics, transduction
reactions, or mass transfer rates.

In the following sections, we will present a little more about optical sensors. As
demonstrated in the other sections of the chapter, combined with different sensors,
optical sensors play a vital role in the forensic area.

5 Optical Sensing

Optical sensors have played an important role in forensic science due to their
sensitivity, fast detection, and easy operation [40]. Moreover, this sensor exhibits
great ease of interaction between substances and elements with sensory properties,
providing important information through easy and low-cost processes [41]. There are
different methods for detection analysis using optical sensors, such as fluorescence,
colorimetry, chemiluminescence, surface-enhanced Raman scattering (SERS), and
immune chromatographic assays (ICAs). Its structure is similar to another sensor
reported in this chapter, but it consists of a transducer that captures the signal and
converts it into different radiations [41].

Optical sensors are mainly obtained with straightforward synthesis methods, as
reported by Lantam [42], who developed a sensor employing the Sol–Gel method for
promethazine detection in lean cocktail and pharmaceutical dosages. The working
process of the sensor is attributed to the oxidation reaction of promethazine caused by
potassium persulfate entrapped within a sol–gel polymer network. The reaction leads
to a color change to pinkish-red in the aqueous medium. Although the color change
is visible, allowing qualitative analysis to obtain more accurate and quantitative data,
the sample was analyzed with a portable spectrometer. As related by the author, the
device was successful in being developed at low cost, easy to use, and portable.
The limits of detection and quantification obtained were 16.5 and 48.9 mg L−1,
respectively. The accuracy of the promethazine detection analysis was in the range
of 87–105%, and the device showed stability of 90 days. One of the significant
advantages of this sensor is that it allows qualitative and quantitative analysis of the
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Fig. 9 Schematic illustration of device development for promethazine detection, using a portable
spectrometer. (Reproduced with permission of Ref. [42])

target molecule [42]. Figure 9, adapted fromRef. [42] illustrates themethod to obtain
the presented results.

Another method of analysis using optical sensors that have been widely applied
is Surface Enhanced Raman Spectroscopy (SERS). As can be seen in this chapter,
they are associated with different sensors, such as chemical and biological. Materials
with SERS properties enhance the characteristics of Raman spectroscopy [9]. The
enhancement is due to their ability to form a localized plasmonic surface, that’s
improves the Raman signal by factors [9] of 103 to 106.

Different researches are presented in the literature reporting about the applica-
tion of SERS for the detection of illicit substances, mainly drugs, such as metham-
phetamine [9, 41, 43–45] and explosives [13, 46, 47]. The author Khorablou [41]
shows a review, which describes some advances in the development of optical
and electrochemical sensors for Methamphetamine detection. The review brings
us the main methods to realize detection with optical sensors, likewise: fluores-
cence, colorimetry, SERS, and ICAs. According to Khorablou [41], sensors that
present SERS properties have shown optimal performance in the detection of illicit
substances due to ease of sampling and to being a non-destructive method.

Concerning the materials engineering area properties, the author Khorablou,
presents important studies, such as, carried out by Hong [44] e Mao [45]. Both
studies bring different insights for sensor development.

Optoplasmonic materials are composed of materials with photonic and plasmonic
properties. Its main function is to improve plasmonic properties. Based on this factor,



Nanosensors in Forensic Sciences 251

Hong [44], developed a study aiming to apply self-assembled optoplasmonic struc-
tures as a substrate for trace detection of methamphetamine. The depositions of
microspheres consisting of dielectric material and self-assembly of monolayers of
gold nanoparticles were used to obtain the sensor. The synthesis process aims to
improve the intensity of electric (E-) field localization and redirect the analyte to
areas close to electromagnetic hot-spots. Different simulations and measurements
using SERS spectroscopy were performed by the author to verify the reliability of
the material. As seen in the study, great results were obtained as the performance
of SERS material by using 5 μm diameter SiO2 spheres. Furthermore, the detection
of Methamphetamine in biological fluids and concentrations in the nanomolar range
was possible [44].

On the other hand, Mao [45], developed a novel nanosensor based on aligner
mediated cleavage (AMC) for methamphetamine detection. The operation is based
on several specific breaking sequences of the aptamer bound to gold nanoparti-
cles, causing aggregation of nanoparticles and consequently, generating a plasmonic
coupling effect. According to the results obtained, it was possible to enhance the
electric field and improve the SERS effect. A detection limit of 7 pM and a linear
range of 10 pM–10 nM were obtained. The author also provides a table with the
association of existing methods, demonstrating the potential of the presented [45].
Figure 10 shows a schematic illustration with synthesis steps and operation of the
developed sensors.

Finally, the author compares the advantages and disadvantages of optical and
electrochemical sensors; and highlights some lacks that still need to be overcome in
the development of sensors for methamphetamine detection [41].

Optical sensors have beenwidely used in different analyses, but they present some
disadvantages such as susceptibility to environmental interference and complexity
depending on the method used. However, it has advantages such as being inert and
being portable [41].

6 Conclusions

In summary, reviews of articles have been presented to provide for readers different
applications of sensors in forensics science. There are many materials under devel-
opment, many features that still need to be improved, but this area has a bright future.
Through the reading of this chapter, it is possible to note that, to obtain a detector with
the necessary reliability for forensic analysis and portable, it must be the blending
of materials with different properties (chemical, physical and biological).
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Fig. 10 Scheme illustrating the sensor synthesis and detection ofmethamphetamine based onAMC
method. a The AMC unsuccessful process, due to the methamphetamine presence and no enhance-
ment of signal. b The formation of DNA-directed self- assembly of Au NPs in the absence of
methamphetamine and enhancement of signal. b DNA structure aligner hybridized with metham-
phetamine aptamer. c Process of recognition sequence and cleavage of specific site Nt.AlwI. (
Reproduced with permission from Ref. [45])
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Abstract The exceptionally outstanding performances of organometallic
perovskites are a result of their unique characteristic properties. Hybrid perovskites
exhibit significant optical absorption, a modifiable bandgap, long diffusion lengths,
ambipolar charge transport, high charge carrier mobility, and high tolerance to point
defects. Besides that, its processing is easy and low cost. This chapter describes the
properties of perovskites and their most notable applications.
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TCO Transparent conductive oxide
UV Ultraviolet light

Perovskites are materials with a structure of the ABX3 type, with A and B being
cations with different sizes (with A greater than B) and X is an anion. The first
perovskite studied was the mineral calcium titanate (CaTiO3), discovered in Russia
by Gustav Rose in 1839, which was later named perovskite in honor of Russian
mineralogist Lev Perovski [1]. The crystal structure of perovskites mentioned above
is typically cubic form, for temperatures above 330 K. However, for temperatures
in the range of 160–330 K, the structure undergoes a phase transition, changing to
tetragonal, while below 160 K it presents an orthorhombic structure [2]. Perovskites
can be divided into two classes, the purely inorganic (PbTiO3, CaSiO3, etc.) and the
organic–inorganic hybrids (CH3NH3MX3 - M = Pb or Sn; X = Cl, Br or I, among
other configurations) [3].

1 General Perovskites Properties

It is already known that perovskites are causing considerable interest and dedica-
tion of various scholars in various science branches, especially in the electrical and
renewable energy segment. The reason for that is that perovskites-based materials
have a variety of properties that assist them in their applications in several areas.

One of these properties (and probably themost know) is the optical absorption and
conductivity property. The perovskite, in this case, absorbs the incident light and turns
it into moving electrons, electrons which will compose the electrical current in the
photovoltaic cell the perovskite is included in. The fact here is that this property can be
tunable by the addition of impurities [4]; this process is called “doping”. Therefore,
choosing the correct doper may cause the perovskite to conduce and absorb more
electrons, and thus the solar cell will be generating more energy. Depending on the
doper, the crystal structure of the perovskite may be changed as well.

Another perovskite’s property is magnetism (especially in Cobalt-based
perovskites, explained by the Cobalt’s spin). For example, some perovskites (for
example, LnCoO3) may present magnetic characteristics such as paramagnetism
and ferromagnetism, depending on their circumstances [5]. As an example, LnCoO3

presents a crescent magnetic susceptibility from 30 to 100 K where it reaches the
maximum; then it becomes to decrease till 500 K, where it gets stable in a plateau
[5]. So, there will be different parameters for different perovskites, and each one
with its magnetic properties. It is relevant to state that magnetic properties may also
be improved by doping.

The third property for perovskites material is optical reflectivity. It is quite curious
to imagine that a material with one of its mains purposes as absorb light can reflect
it. The main reason for a perovskite material to reflect light is that it can degrade
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the perovskite just like moisture can [6]. Too much heat on the material can harm
its structure and lower its efficiency; therefore, reflect some spectrum of light and
absorb another is beneficial once it extends the lifetime of the material.

2 Applications

As seen above, the structure of perovskite has a variety of interesting properties,
highlighting magnetoresistance, ferroelectricity, superconductivity, and high dielec-
tric capacity, as described by confirmed by Lozano-Gorrín [7], which allow its use
as a sensor, semiconductor, dielectric material, luminescent material, among other
applications, which some of the most relevant are discussed below.

2.1 Solar Cells

Perovskites have attracted enormous attention in the area of renewable energies,
especially organic–inorganic halide perovskites, because of their exceptional optical
properties and can be processed at low temperatures. The type of perovskite most
used in solar cells is organic–inorganic hybrid semiconductor materials based on
lead halides, with general formula MPbX3 (M = CH3NH3, X = Br, I), which, in
addition to being low cost, present excellent performance when used as sensitizers
in photovoltaic devices. The 3D structure of lead methylammonium perovskite can
be seen in Fig. 1 [8].

Perovskite solar cells are currently the most prominent among emerging cells.
The first perovskite solar cell (PSC) developed in 2009, only 3.8% of the total
energy conversion efficiency was achieved by introducing organometallic perovskite

Fig. 1 Structure of 3D
perovskites with ABX3
formula. Reproduced from
ref. [8]
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CH3NH3PbI3 with a liquid-based hole transport layer in a dye-sensitized solar cell.
These cells, composed of this photoactivematerial, already surpass 25%of the energy
conversion efficiency, thus surpassing even silicon cells. Among themajor challenges
related to the research development regarding the application of this material are to
achieve high efficiency in the face of instability caused by environmental variations,
especially in relation to humidity.

2.1.1 Efficiency of Perovskites Solar Cells

The first researches focused on the application of perovskites in solar cells date
back to 2009, carried out by Miyasaka et al. [9], where CH3NH3PbI3 was used
as a dye-sensitizing material in solar cells. The efficiencies reached low values of
3.8%, and in addition, such devices were unstable due to problems with the liquid
electrolyte then used in the hole transport material (HTM), with the aggravation of
these devices being sensitive to atmospheric moisture [10]. Park et al. [11] performed
similar tests and produced a devicewith a 6.5% increase in efficiency, but the stability
of the HTM layer was still the main problem due to the liquid medium. The most
promising results involving the study of perovskite solar cells appeared in 2012,
when researchers replaced the liquid electrolyte with a polymeric matrix, making
the cells more stable and raising their levels efficiencies to 9.7% [12].

The applicationof solid-stateHTMin the highly crystallizedperovskite layer, such
as Spiro-OMeTAD, has increased its efficiency over the past few years. Lee et al. [13]
reported in 2012 a device efficiency of 10.9% with an open-circuit voltage greater
than 1.1 V. Wang et al. [14] have introduced graphene in PSCs, thus acquiring an
efficiency of 15.6%. The application of another perovskite material, formamidinium
iodide, together with poly-triarylamine (PTAA) as a newHTM brought a remarkable
20.1% efficiency in 2015 [15]. The current record for PHC efficiency was 22.1%,
created in 2016 by Seong Sik Shin et al. [16]. They also achieved a long-term and
stable efficiency of 21.2% in other work [17]. The perovskite-inserted tandem cell
also achieved a promising efficiency of 26.7% when combined with Si cells [18].
The rapid improvement in the efficiency of PSCsmakes perovskite comparable to the
stable performance of c-Si solar cells, while all other types of non-silicon solar cells
have suffered major hurdles in future improvements. According to the theoretical
calculation based on the known Shockley-Queisser limit, perovskite devices could
reach an efficiency of around 25–27% [19].

2.1.2 Perovskites Stability

The degradation of organometallic perovskites is the main problem in solar cells,
requiring further study to improve the stability of this material in the long term.
Humidity, oxygen, temperature, and UV radiation are the main factors affecting
the stability of organometallic perovskites [20]. As the material is very sensitive
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to oxygen and moisture, most manufacturing processes are carried out in an inert
atmosphere and controlled temperature, such as in a glove box.

Significant degradation occurs in solar cells during testing under ambient condi-
tions. Seok et al. reported that degradation of the perovskite film begins to occur
at a humidity of 55%, exhibiting a color change from dark brown to yellow [21].
This degradation limits perovskite solar cells in outdoor applications, as there is a
significant decrease in their efficiency [22].

Several studies are currently being carried out to improve the stability of perovskite
solar cells and not to restrict their use in external applications [23–25]. As it is a new
technology, the perovskite stabilization process is not fully understood, thus requiring
further study for practical applications of the devices [26].

2.2 Perovskite-Based LED

Quantum dots from metallic perovskite (PQD) already play a good role in consumer
color display products. However, the excellent properties of PQDs suggest that they
should be suitable for these applications. However, injection and charge transport in
perovskite nanocrystal films need to be optimized to obtain high-efficiency devices.
Some studies emerged from research by Tan et al. [27] in 2014, who demon-
strated infrared and visible electroluminescence in lead halide and methylammo-
nium perovskites using a charge-limited diode structure to achieve effective radiative
recombination.

However, the use ofmethylammonium halide, which is a chemical combination of
gaseous methylamine and hydrogen halide, substantially limits the thermal stability
of these perovskite-based devices. The replacement of methylammonium by inor-
ganic cesium provides extra thermal stability to perovskite up to its melting point
at ±500 °C, but makes it more intractable for solution processing, necessitating the
manufacture of thin films of PQDs. Song et al. [28] prepared the first device with the
structure ITO/PEDOT:PSS/PVK/CsPbBr3/TPBi/LiF/Al to generate LEDswith blue,
green, and orange emissions. These materials have narrow emission lines, ideal for
these applications. Thus, while the bands were narrow, the brightness of the LEDs
was limited (less than 1000 cd/m2), and the external quantum efficiency (EQE) was
limited to 0.1% [28]. Therefore, Li et al. [29], in their studies, cited the importance
of the surface chemistry of nanocrystals. As much as ligands are needed to passivate
the surface of PQDs and prevent aggregation (leading to high quantum yields and
greater stability), the excessive amount of surface ligands blocks the injection and
transport of electrons. Thus, by optimizing the charge transport layers and control-
ling the density of the ligand on the surface, the EQE of the CsPbBr3-based LEDs
increased by 50 timesmore (0.12% to 6.27%) andwas obtained if a brightness greater
than 15,000 cd/m2.

Over time, theEQEof perovskite LEDs increased tomore than 10%.Yan et al. [30]
developed devices that reached a maximum external quantum efficiency of 12.9%.
Chiba et al. exhibited red emissive perovskite LEDswith anEQEefficiency of 21.3%.
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This contribution demonstrates a significant advance in studies about LEDs based
on PQDs [31]. It is noteworthy that despite the rapid advances in Perovskite LEDs
in recent years, their commercial applications remain a challenge as the device’s
efficiency still does not outperform traditional devices, and the long-term stability
of perovskite LEDs still requires improvements, in addition to the appeal for the
development of environmentally-friendly LEDs.

2.3 Perovskite Sensors

Perovskites are multifunctional materials with an important role in the field of
sensors, and that has attracted a lot of attention from the scientific community [32–
35]. This great interest in Perovskites can be attributed to its intrinsic optoelectronic
properties, such as electro-optic, high carrier mobility, long diffusion length, broad-
band absorption, photoluminescence quantum yield, photorefractive, and precise
tunable bandgaps and emission [32, 33, 36, 37]. Furthermore, perovskite structures
allow the coupling of different metallic ions as well as several anions. This char-
acteristic of having different elements in the structure allows the adjustment and
improvement of some specific properties.

In addition to having a wide application in solar cells [38–40], light-emitting
diodes (LEDs) [41–43], and lasers [44, 45], Perovskites have proven to be a good
alternative for application as sensors [32–34, 46].

Due to their chemical structure, Perovskites can show great sensitivity and insta-
bility to environmental conditions. However, in the face to the potential that this
material has, researchers made this sensitivity an advantage, using Perovskites as
optical and electrochemical sensors.[33, 37, 47].

According to Huang [37], perovskites can be used to detect organic compounds,
metal ions, gases, and biomolecules, in addition to being used in devices that measure
temperature and humidity. These measurements can be performed with different
methods such as photoluminescence (PL), photoelectrochemistry (PEC), electro-
chemiluminescence (ECL), and chemoresistance (CR) [37].

As mentioned above, Perovskites have excellent optical properties but also a high
sensitivity to the environment. Therefore, these materials have shown great potential
for detecting different analytes among these gases.

We can highlight the study conducted by Guishun [48], which worked devel-
oping a fluorescent sensor consisting of MAPbBr3/mesoporous TiO2 for detection
of gases such as NH3 and amine. According to the author, after the preparation of the
compound containing differentMAPbBr3/mp-TiO2 layers, analyzes were carried out
to investigate whether there would be an improvement or attenuation of fluorescence
when exposed to NH3 or amine vapors. Among the main results shown by the author,
he highlights the increase in fluorescence intensity (72% and 988% at concentrations
of 5 and 100 ppm of the analyte, respectively), in the first seconds after sensor expo-
sure to analyte vapors. Subsequently, a decrease in the initial level was noted when
complete gas volatilization occurred. During the discussion, the author discusses
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Fig. 2 Graphical abstract of
main results obtained for
study in the development of
perovskite as gas sensing
Reproduced with permission
from Ref. [48]

and presents the physical phenomena that are related to the increase in fluorescence
intensity. The author also reports the successful detection of amine vapors. Finally,
properties obtained and properly characterized are highlighted, including favorable
reversibility, high gas selectivity, humidity insensitivity, and regeneration [48]. We
can see the Graphical Abstract of the article with the main scientific contributions in
Fig. 2.

As it is possible to notice, in the study presented above, through a chain of opto-
electronic reactions, it was possible to obtain the detection of gases derived from
the amine. Through similar references that present gas detection, it was possible to
notice a similarity when the detection mechanism is discussed. According to the
study by Qin [49], who worked with LaCoO3 (LCO) modified on the ZnO surface;
it is possible to study the gas detection mechanism of this compound. The author
reports that the optimization of sensory properties can be attributed to the increase
in the amount of oxygen adsorbed on the surface and the strong catalytic oxidation
activity of LCO. That is, through different optoelectronic reactions, it was possible
to obtain a significant improvement in the detection of ethanol vapor.

Other articles present results demonstrating the synthesis of Perovskites and
improvement of the properties of this material to be applied as a sensor. A study
that presents the synthesis and development of a nanosensor is developed by Moradi
[50]. In this study, the authors designed and developed an optical nanosensor using a
low-cost deposition process. The nanosensor was synthesized using Methylammo-
nium lead iodide and lead sulfide (PbS) nanoparticles as an active layer. The results
demonstrate the potential of the nanocompound, with a little dark current for low
applied bias voltages less than 1 V, a very important parameter for optical sensors.
Furthermore, the sensors have demonstrated excellent quantum efficiency over a
wide range of wavelengths, 370–940 nm.

In order to start the contextualization of different detection mechanisms, we can
mention the study developed by Jing [34]. According to the author, there are notmany
works that present the use of monocrystalline perovskites using flexible devices. The
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results presented demonstrate the success of the synthesized device; it was possible to
obtain a responsivity (5600 A/W), 2 times greater than that presented in other studies
using the polycrystalline material. Furthermore, the extremely thin 20 nm thickness
allowed for an improvement in the temporal response, resulting in a broadband
photodetection to 0.2 MHz. These results demonstrate the potential for using this
photodetector in wearable and cellular devices, artificial eyes, and in areas such as
medicine and robotics [34]. We can see the structure of the device and its proper
characterization in Fig. 3.

Another research that is based on this context is that developed by Ippili [32].
In the study, a multifunctional sensor consisting of methylammonium lead iodide-
polyvinylidene fluoride (MAPbI3 − PVDF) was developed. This device allows the
simultaneous detection of light and pressurewithout the need to use an external power
source. The functioning mechanism of this device proves to be extremely interesting
since the device collectsmechanical energy to feed itself and simultaneously operates

Fig. 3 Scheme exhibiting the architecture and the characterization of flexible photodetector.
Reproduced with permission from Ref. [34]
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as light and pressure sensor due to the combination of intrinsic photoelectric and
piezoelectric/triboelectric properties of the synthesized compound, called by the
author as MAPbI3−PVDF. The results show responsiveness (∼129.2 V/mW) and a
relatively fast response time (~50 ms), excellent data when developing sensors. It
was also possible to obtain satisfactory detection in piezoelectric mode (∼1.4× 1010

Jones). Due to the multimodality of the sensor, it was possible to obtain excellent
results regarding pressure detection, values in the range of 0.107 and 0.194 V/kPa in
the piezoelectric and triboelectric modes respectively. Finally, through the analysis
of the results, it is possible to highlight that the sensor had a very fast response time,
long-term stability, and excellent mechanical resistance [32].

In addition, the device features a fast response time with long-term on–off proper-
ties, excellent mechanical durability, and long-term stability. In Fig. 4, it is possible
to see the main results obtained in the study [32].

Other studies that present very interesting topics using electrochemical sensors
composed of perovskites are those carried out by He [51] and Anajafi [52].

Fig. 4 Scheme exhibiting a brief overview of main results obtained by the research in PENG and
TENG mode. Reproduced with permission from Ref.[32]
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The first author [51] works with the detection of p-phenylenediamine (PPD), a
chemical compound used in hair dyes. The study reports the systematic character-
ization of a series of oxide perovskites composed of Pr1-xSrxCoO3-δ (x = 0, 0.2,
0.4, 0.6, 0.8, and 1), denominated by the author as PSC82, for detection of PPD in
alkaline solution. For the best performance of the sensor properties, the deposition
of PSC82 was carried out under a glassy carbon electrode (PSC82/GCE). Through
the formation of this composite, it was possible to perceive a correlation between
the yields of the intermediate hydrogen peroxide and the bond strength of these
oxide perovskites, which was attributed to electronic phenomena that occur in the
transport of electrons. The reactions that occurred in the sensor follow amperometric
mechanisms. The synthesized composite had a very high sensitivity de 655 and 308
μA mM−1 cm−2 in a PPD concentration range of 0.5–2900 and 2900–10,400 μM,
respectively. Comparing with the traditionally used method, which is ultraviolet–
visible (UV–vis) spectrometry, the amperometric sensor provided more accurate
results with a detection limit of 0,17 μM and being able to detect trace concentra-
tions of PPD in real paints. Furthermore, the sensor showed greater stability being
tested with cyclic voltammetry, resisting for 50 cycles and one month of storage.
These properties obtained demonstrate the potential of the sensor to be used in the
detection of this and other toxic compounds in hair dyes [51]. We can see the main
results and reactions that improved the detector’s performance by analyzing Fig. 5.

The other study that presents the development of an electrochemical sensor is
the one developed by Anajafi [52]. Using a heat treatment method, he obtained
nanoparticles of NdFeO3 perovskite screen-printed carbon electrode for detection of
dopamine and uric acid. The characterization and results showed that the composite
improved the electrooxidation of dopamine compared to the results obtained for
the screen-printed carbon electrode. Regarding the characteristic parameters of the
sensors, it presented a detection limit of 0.27 μM (at S/N = 3) and two linear
concentration ranges of 5 to 100μMand 150 to 400μM. To complement the results,
the sensor was used to detect dopamine in real samples. With this, the author points

Fig. 5 a Scheme illustrating the sensing perovskite reactions and the related redox reaction that
converts PPD to PQD on the PSC82/GE electrode, b graph of Chronoamperometric responses in
the form of current–time (I-t). Reproduced with permission from Ref. [51]
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out the originality of the work stating that this is the first sensor that allows the
quantification of dopamine.

In these sections, it was possible to understand a little more about the application
of perovskites as optical and electrochemical sensors. We saw the main detection
mechanisms and checked how wide the range of applications of these materials is.
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