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1	 �Introduction

There is no denying that earth’s climate is changing. This shift has 
prompted organizations as well as governments around the globe to 
take action toward climate change mitigation and adaptation. According 
to the Intergovernmental Panel on Climate Change (IPCC), “climate 
change mitigation” is the term used to describe the efforts aimed at 
reducing carbon emissions and greenhouse gases, whereas “climate 
change adaptation” refers to adjustments in natural or human systems 
in response to actual stimuli or expected stimuli and their effects 
(IPCC, 2001); the latter moderates harm or exploits beneficial 
opportunities.
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In financial markets, climate adaptation can be thought of as a tempo-
ral process that describes the progress in investors’ awareness of current 
climate change risks as well as their beliefs and perceptions about future 
risks. This is consistent with the aspect of human adjustment in the IPCC 
definition. As a temporal process, climate adaptation can be characterized 
by two key features: time (duration) and risk (climate uncertainty). So, a 
successful adaptation plan should entail both an increase in investors’ 
awareness and portfolio strategies that guarantee a perception that cli-
mate risks are decreasing over time.

This chapter proposes an asset pricing model that describes uncer-
tainty (financial and climate risks) in investment decision-making as a 
temporal process over the duration of financial portfolios. The premise 
of modern portfolio theory (Markowitz, 1952, 1959) and Fahmy’s 
(2020) recent extension of this theory are the foundation for this study’s 
proposed framework. The novelty of the approach lies in describing 
investors’ adaptation to climate change as a temporal process, in which 
investors’ perception of climate hazards shapes their preferences and 
decisions over the duration of their financial portfolios. The proposed 
model has several advantages. First, the optimal solution of the model 
provides a parametric formula of climate duration hazard risk, which can 
be easily estimated empirically. Second, the model is flexible enough to 
be used by practitioners when projecting various climate risk scenarios 
and factoring climate risks into their portfolios. Third, the analytical 
results of the model yield a set of recommendations for a sustainable 
climate adaptation process. These recommendations are important to 
participants, regulators, and policy makers alike; such recommendations 
hopefully present a step forward toward winning the battle against cli-
mate change.

The chapter is organized as follows. Section 2 describes climate adapta-
tion as a temporal process. Section 3 discusses investors’ behavior over 
time and their perception regarding future climate risks. Section 4 intro-
duces the model in question and discusses the main results. Section 5 
demonstrates the empirical applicability of the model. Finally, Section 6 
concludes and provides policy recommendations in line with the pro-
posed framework.
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2	 �Adaptation as a Temporal Process

Winning the battle against climate change is a monumental task that 
requires global collaboration. Stern (2007) offers an estimate of the 
financing needed to mitigate the effects of climate change in the range of 
US$200 billion and US$1000 billion. A report by the World Bank Group 
in 2008 echoes Stern’s findings by suggesting that at least tens of billions 
of dollars are needed every year to finance the cost of adaptation to global 
warming. Raising this staggering amount of funds is clearly beyond the 
means of governments’ limited budgets. Therefore, private investment in 
climate mitigation and adaptation projects is urgently needed, and on a 
large scale, this mobilization of funds can be achieved only through global 
financial markets with innovative solutions across asset classes (Reichelt, 
2010). Although some organizations have already provided creative solu-
tions that have attracted investors’ interest in climate-related investments 
and have caused a rapid growth in green markets, investors are still unen-
thusiastic about investing in green instruments. This lack of enthusiasm 
is mainly attributed to investors’ lack of knowledge about the potential 
impact of climate change on various asset classes (Shen et al., 2019) and/
or investors’ belief that green investment is more of a moral choice than 
a reward (Riedl & Smeets, 2017; Walley & Whitehead, 1994).

There is, however, evidence indicating a rise in the awareness of climate 
change amid climate-related events. For instance, Fahmy (2022) shows 
that admitting clean energy as an asset class on its own in portfolio con-
struction is rewarding especially after the Paris Agreement. Choi et  al. 
(2020) examine the impact of abnormally high temperature on investors’ 
beliefs about climate change. The authors document a rise in the aware-
ness of climate change at the time of those events. By further examining 
trading volume and stock markets’ returns during the times of these 
events, the authors report that retail investors tend to overreact to climate 
events by selling carbon-intensive stocks, and carbon-intensive firms are 
perceived to under-perform firms with low emissions. Alok et al. (2019) 
find that institutional investors overreact to large climatic disasters that 
happen close to them. Moreover, in a recent survey on global institu-
tional investors’ perceptions of climate risks, Krueger et al. (2020) find 
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that investors regard these risks to be important despite ranking them 
below financial, operational, and other types of risks.

Much of the extant literature suggests that investors’ awareness, espe-
cially after the Paris Agreement (Fahmy, 2022) and the increased occur-
rence of climate crises around the globe, is on the rise. Climate awareness, 
however, is not enough to win the battle against climate change. Investors 
need assurance that green investments are rewarding and that temporal 
climate risks in green portfolios (i.e., portfolios that contain green instru-
ments) are decreasing over time. Achieving the former objective is more 
related to mitigation, whereas the latter objective relates to adaptation. 
Although this analysis focuses on the second objective, it is worth noting 
that there is a natural risk/reward interconnection between the two objec-
tives. Successful mitigation policies that stimulate investments in clean 
energy must have the potential to make investors perceive lower future or 
expected climate risks. On the other hand, successful adaptation policies 
that have the potential to alter investors’ perception regarding future cli-
mate risks will, over time, enhance awareness and attract more green 
investments.

3	 �Investors’ Temporal Behavior

In financial markets, processes known as asset allocation and portfolio 
construction form the basis of investment decisions. These processes are 
founded on Harry Markowitz’s (1952, 1959) seminal work on portfolio 
theory. It postulates that, given a target expected rate of return (mean) on 
a financial portfolio, a risk-averse investor, who is facing a choice set X 
that consists of n risky assets, allocates their wealth over n assets to mini-
mize the risk (variance) of the portfolio. Markowitz’s mean-variance 
(MV) portfolio theory yields a vector of optimal asset weights that mini-
mizes the risk of a portfolio of n assets.

The previous MV optimization, or some variant of it, for example, 
Black and Litterman (1992) model, is the process that is commonly used 
by fund and portfolio managers in the asset allocation phase in the 
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portfolio management process (PMP).1 In this phase, subject to the 
investment strategy of the fund, the total wealth of all investors in the 
fund is allocated on a number of asset classes (e.g., fixed income, domes-
tic equity, foreign equity, commodities, real estate, and derivatives). Once 
the optimal investment weight in each class is determined, a process of 
security selection begins within each individual asset class such that the 
expected rate of return on the portfolio is maximized or the risk is 
minimized.

It is worth noting that the above-mentioned MV optimization is static 
in the sense that it is executed on the set X at a reference point in time. 
This reference point is equivalent to a trading time t = 0, that is, the time 
of constructing the portfolio before the actual trading takes place. As 
time progresses from point t = 0, investors’ reactions to various types of 
uncertainty (e.g., global events, financial news, and other cognitive and 
behavioral biases) impact their temporal allocations and choices. This, in 
turn, could cause some investors to revisit their portfolios sooner than 
later for rebalancing. This dynamic process of continuously rebalancing 
or revisiting the portfolio over time is known as the dynamic portfolio 
duration problem. Fahmy (2020) provides a solution to this problem 
(i.e., an optimal time to revise/rebalance a portfolio under the assump-
tion of uncertainty) via their time extension of the MV portfolio theory. 
In particular, by adding a time-choice set T to the set of monetary out-
comes X and by modeling the investor’s choice over the extended set 
X × T, the author extends the MV portfolio theory and derives an analyti-
cal expression in which optimal portfolio duration is explicitly expressed 
as a function of different types of uncertainty. This explicit connection 
between time and uncertainty is what distinguishes Fahmy’s (2020) 
model from other studies on portfolio selection under uncertain time-
horizon (e.g., Blanchet-Scalliet et al., 2008; Brennan, 1998; Hakansson, 
1969, 1971; Martellini & Urošević, 2006; Merton, 1971; Richard, 1975; 
Yaari, 1965).

The present chapter uses a modified generalization of Fahmy’s (2020) 
model, in which duration hazard of climate change is added as an 

1 The PMP consists of three stages: planning, allocation, and performance evaluation. Asset alloca-
tion and portfolio construction take place in the second stage of the PMP.
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additional source of uncertainty in the portfolio duration problem. The 
focus is on applying this generalized framework to climate adaptation. 
This framework is particularly suitable here since it yields analytical 
results that quantify the hazard of climate duration. The following sec-
tion introduces the model and deduces the main results.

4	 �A Simple Two-Period, Risk and Reward 
Asset Pricing Model with Climate 
Duration Hazard

This section proposes a simple two-period, risk and reward asset pricing 
model that accounts for time and uncertainty. The proposed model, 
founded on Markowitz’s MV portfolio theory (1952, 1959) and a gener-
alization of Fahmy’s (2020) MV-time extension, makes the distinction 
between the present and the future by separating the portfolio/invest-
ment decision into two sequential optimal decisions: an allocation deci-
sion on the space of monetary outcomes, X, and a duration decision on 
the time space, T. At time t  =  0 (i.e., before trading takes place), the 
investor chooses an optimal allocation of assets on X that minimizes the 
variance (risk) of the portfolio. As time progresses from zero (i.e., as 
t > 0), the chosen allocation is subject to different types of uncertainty 
(including climate hazard). The investor chooses an optimal portfolio 
duration such that a utility of time function that represents the investor’s 
preference, U(t), is maximized. It is worth noting that the allocation deci-
sion executed on X at time t = 0 represents the certainty of the present. 
On the other hand, the optimal time to revise, rebalance, or even exit the 
market after trading represents the future uncertainty. A decision to exit 
the market amid an unexpected event with global implications, such as 
the recent COVID-19 pandemic, is due to the investor’s perception that 
the portfolio duration hazard is increasing over time. This perception, 
which is usually fueled by intensive news coverage of the event, is what 
prompts rational investors to make irrational exit decisions amid global 
events or financial crises. Focusing on climate change, this chapter posits 
that if one can alter investors’ beliefs to perceive a decreasing climate 
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duration hazard in their financial portfolios, then a successful adaptation 
policy is guaranteed.

4.1	 �The Portfolio Allocation Problem on X

Consider constructing a portfolio p that consists of a number of n assets, 
which includes green securities. Let the time of constructing p be t = 0; in 
other words, assume that the time dimension T is absent for now. Denote 
the weight of asset i in portfolio p by wi and the investor’s level of wealth 
at time t by yt. Therefore, y0 is the initial level of wealth that the investor 
wishes to allocate on the n assets forming portfolio p.2 Assume two peri-
ods: period 0 representing the present and period 1 representing the 
future. Notice that, in the previous setup, the choice set X is a set of 
monetary outcomes. At time t = 0, the monetary outcome y0, which is an 
element of X, is an allocation of the initial wealth on a number n of risky 
assets such that the weight of asset i in this allocation is wi and 

i

n

iw� �1.  
Following the premise of the MV portfolio theory, consider a risk-averse 
investor with a strictly concave utility of wealth function, u(y), on X.3 The 
investor’s objective is to find the best allocation that maximizes the 
expected utility of future wealth. More formally, the investor solves the 
following problem:

	
choose in order to .w w maximize Eu yn1 1, , � �

	
(1)

Let the price of asset i in period t be Pit, for i = 1, 2, …, n, and t = 0, 1. 
Notice that Pi0 is the price of asset i at period t = 0, that is, it is the current 
or known price of the asset. In practice, this price is the end-of-day clos-
ing price of an asset in a financial exchange. Notice also that Pi1 is the 

2 An investor could be a retail trader or an institutional investor, that is, a fund or portfolio manager.
3 This chapter follows the convention of treating wealth as a commodity with an increasing total 
utility but diminishing in value added utility, that is, the added utility per additional increase in 
wealth is diminishing. This is known as the law of diminishing marginal utility of wealth. 
Mathematically, this means that u(y) is an increasing function in wealth y, that is, the first derivative 
u′ > 0, and diminishing in value added, that is, the second derivative is strictly negative; u′′ < 0. This 
is the mathematical condition that guarantees the strict concavity of the utility of wealth.
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asset’s price at the beginning of period 1, that is, the future uncertain 
price of the asset. The symbol “tilde” makes the distinction between 
known and uncertain variables through its placement above the variable, 
which indicates that it is random. Thus, the rate of return on asset i is
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(2)

The choice on the set X is described as follows. At time t = 0, the inves-
tor allocates their wealth y0 over the n assets by purchasing ai units of asset 
i at period 0 prices. Subsequently,
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(3)

Notice that a negative (positive) ai signifies selling (buying) some units 
of asset i. If the portfolio is constructed for the first time, then all the ai 
terms will be positive. A rebalancing of an existing portfolio implies a mix 
of positive (long position) and negative (short position) ai terms. 
Therefore, the weight of asset i, wi, can be defined as
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(4)

The rate of return on the portfolio p is, by definition, the weighted 
sum of the rates of return on the n assets forming it; that is,
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(5)

The mean of the portfolio, or the expected rate of return on portfolio 
p, denoted by μp, is the weighted sum of the expected returns of the indi-
vidual assets forming the portfolio; that is,
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The variance of portfolio p’s return, denoted by ?p
2 , is a weighted func-

tion of the individual variances of the n risky assets forming the portfolio 
and their pairwise covariances:
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(7)

for all i ≠ j. The investor’s wealth in the future, that is, in period 1, y1, is 
the number of units per assets purchased times period 1’s price; that is,
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Equation (8) can be re-written as
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where the second term on the right-hand side is the initial wealth in  
Eq. (3). Multiplying the first term on the right-hand side of Eq. (9) 
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Equation (10) states that the future uncertain level of wealth is the cur-
rent wealth grown by the portfolio return. Applying the expectation 
operator and the variance operator to y

?

1  in Eq. (10) yields, respectively, 
the expected value (mean) and variance of the future uncertain level of 
wealth as functions of the mean and variance of the portfolio p; that is,
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and
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(12)

By taking a second-order Taylor approximation of u about Ey1 , one 
can show that the investor problem in Eq. (1) is equivalent to minimizing 
the variance of the portfolio in Eq. (12). To demonstrate this, let G be the 
Taylor approximation and notice that
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 is the remainder of the approxi-

mation. Applying the expectation operator on both sides of Eq. (13) yields
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Equation (14) shows that the investor’s expected utility of wealth is a 
function of Ey1  and var y1� � , the mean and variance of period 1’s wealth. 
As previously mentioned, from Eqs. (11) and (12), both Ey1 and var y1� �  
are, in turn, functions of the mean and variance of portfolio p respec-
tively. In other words, Eq. (14) establishes the link between expected 
utility of wealth and the portfolio mean and variance. In particular, Levy 
and Markowitz (1979) show that, provided that ER goes to zero, a strictly 
concave utility of wealth function (u′′ < 0) guarantees that maximizing 
the investor’s objective in Eq. (1) is equivalent to minimizing the variance 
of the portfolio; that is,

	
max min .Eu y p1

2� � if and only if �
	

(15)

This is evident since u′′ < 0 guarantees that the second term on the 
right-hand side of Eq. (14) is negative. Therefore, minimizing this  
term, that is, minimizing σ p

2 , is equivalent to maximizing Eu y1� � . The 
assumption that the utility of wealth is strictly concave is sensible since 
the concavity of u implies risk aversion. The restriction that the remain-
der goes to zero in Eq. (14) to ensure the equivalence in Eq. (15), how-
ever, is not a simple one. A choice of a strictly concave utility function, 
for example, u =  ln y, might not ensure that ER goes to zero. It is worth 
noting that a quadratic utility function is increasing, concave, and has a 
zero remainder under Taylor’s approximation. However, when entertain-
ing this function, there will be a point of satiation beyond which utility 
decreases.4

Luckily, in the present model, the previous technical concerns will 
have no impact on the model and its analytical results. This is true since 
the proposed model focuses on the progress of the initial allocation over 
time regardless of the form of the utility of wealth function on X. In 

4 This concern led to the alternative of putting a distributional restriction on the rates of return to 
achieve the equivalence in Eq. (15).
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particular, the present model assumes that at time t  =  0, a risk-averse 
investor with a strictly concave utility of wealth function, u(y), chooses 
optimal portfolio weights such that ?p

2  is minimized. The utility of the 
resulting allocation at time 0, that is, u(y0), is assumed to be constant:

	
u y m0� � � ,

	
(16)

where m is the level of satisfaction from owning the portfolio before the 
actual trading takes place.

4.2	 �The Portfolio Duration Problem on T

This section discusses the temporal progression of the initial allocation 
u(y0)  =  m over time. The assumption of a risk-averse investor with a 
strictly concave utility of wealth u still holds to ensure optimal initial 
allocation on X. In particular, given an initial allocation y0 at time t = 0 
that minimizes the variance (risk) of the constructed portfolio, the inves-
tor at t > 0 is solving the following problem: choosing an optimal portfo-
lio duration, t∗, such that a utility of time function, U(t), is maximized. 
Notice that the utility of time function U(t) on the T space is different 
from the utility of wealth function u(y) on the X space. The former cor-
responds to duration choices, whereas the latter corresponds to mone-
tary/allocation choices. Per the previous sub-section, the investor has 
already solved the allocation problem at time t = 0. In order to solve the 
duration problem, one must define U(t).

Under a set of conventional preference axioms, Fahmy (2020) shows 
the existence of a unique utility of time function that represents the inves-
tor preference over the portfolio duration that takes the following form:

	
U t M m M t� � � � �� � ��e � �, ,0

	
(17)

where m = u(y0) is the lower bound of U, that is, it is the value derived 
from the allocation of the initial level of wealth at time t = 0. Notice that 
when t = 0 in Eq. (17),
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U m u y0 0� � � � � �.

	
(18)

That is, both functions, u and U, agree at time t = 0. The parameter M 
is an upper bound of U. It is the maximum amount of satisfaction that 
corresponds to a maximum portfolio duration time t. This assumption is 
imposed for the mathematical tractability of the function, and it has no 
impact on the results of the model. The utility level corresponding to that 
time is U(t) = M. Thus, the function in Eq. (17) is bounded from below 
by m and from above by M, as Fig. 11.1 shows, where m = 2, M = 10, and 
θ = 0.8 (left panel) or θ = 2 (right panel). Parameter θ is what governs the 
rate of decay of U. Notice that since U t U t� � � � �  for all 0 < <t t , then 
dU/dt is strictly positive; that is, the marginal utility of duration is posi-
tive. Moreover, the second derivative with respect to time is negative, that 
is, the function is strictly concave. This means that the marginal utility of 
portfolio duration is diminishing over time. In other words, the marginal 
utility that is gained from an increase in portfolio duration by one period 
in the short-run is higher than the same increase in duration in the long-
run. Since the magnitude of the additional increase in utility per addi-
tional period is governed by parameter θ, an investor with large θ derives 
higher value of one increment increase in time in the short-run and, sub-
sequently, reaches maximum utility faster than an investor with a lower 
θ. These behaviors can be observed from the shape of the utility function 
in Eq. (17) under different parameterization of θ as Fig.  11.1 shows, 
where the left panel depicts a utility function with low θ = 0.8 and the 
right panel corresponds to a larger θ  =  2. The behavior of the former 

Fig. 11.1  The utility of time function
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belongs to rational or institutional investors, who tend to react less to 
financial news and market events, whereas the latter belongs to irrational 
investors who tend to overreact.

The previous discussion suggests that parameter θ captures the degree 
of investors’ overreaction to market conditions. By solving the investor 
duration problem, Fahmy (2020) shows that optimal portfolio duration 
is inversely related to the degree of overreaction. In particular, by taking 
a Taylor approximation of U about an expected duration time, Et, and 
solving for the optimal time, t∗, that maximizes this approximation, the 
author was able to derive the following optimal duration decision rule:

	
t Et t Et* * or equivalently� � � �

1 1

� �
, , .

	
(19)

Figure  11.2 depicts the second-order Taylor approximations of the 
utility functions in Fig.  11.1 about an expected duration time Et  =  2 
weeks. Notice here that Et is the investor’s own expectation regarding the 
time to revise or rebalance the portfolio. The distance between the opti-
mal duration and this expectation is inversely related to parameter θ, 
which captures the degree of overreaction to market conditions. The 
rationale behind this inverse relation is that the lower the overreaction, 
the more likely that the investor will be to revise the portfolio in the long-
run. This behavior is consistent with institutional investors, and it is well 
documented in the literature that long-term duration strategies are more 
profitable for rational investors under perfect information (Fahmy, 2020; 

Fig. 11.2  Second-order Taylor approximations of the utility functions
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Jegadeesh & Titman, 1993). On the other hand, irrational or retail inves-
tors with large θ who tend to overreact to financial news are more likely 
to revise/rebalance the portfolio in the short-run.

The result in Eq. (19) departs from most specifications in the literature on 
portfolio selection under uncertain time-horizon in its explicit treatment of 
the non-money attribute of the decision-making process, that is, Et (dura-
tion) and θ (uncertainty). That being said, two remarks regarding the empir-
ical applicability of the result in Eq. (19) and how it fits in the present 
framework are in order: first, in practice, the investor’s own expectation of 
portfolio duration, Et, is usually the investor or the fund manager’s pre-
determined duration strategy, which could be short term (one or two weeks) 
or long term (twelve or more weeks). In an empirical analysis, it is sensible 
to assume a given expected duration a priori and to maximize U(t) locally 
around it. Second, it is important to note that the degree of overreaction is 
intrinsic to the investor and is prone to cognitive and behavioral biases. In 
other words, it does not capture the risk of the event per se; rather, it cap-
tures the investor’s attitude and reaction toward it. Most investors are risk 
averse. However, the degree of risk aversion and overreaction to financial 
news and events vary from one investor to another. In summation, although 
the result in Eq. (19) is useful in explaining various phenomena in financial 
markets (Fahmy, 2020), it does not capture climate uncertainty. The next 
sub-section shows how to modify this result to account for climate risk.

4.3	 �Climate Duration Hazard

I propose to match U(t), the utility of time function in Eq. (17) over all 
possible values of t, with a posterior duration distribution F(t| data) over 
future unknown states.5 Since U is a monotonic increasing function in its 
argument (t in the present model), then a cumulative probability distri-
bution function F may be convenient to describe utility.

If one entertains the frequentist approach in statistics and thinks of the 
portfolio duration problem as an experiment that is repeated in different 

5 This matching of utility with a distribution function is not new to the literature. The underlying 
theory of this matching approach is treated in Novick and Lindley (1979). An application of this 
theory on education is presented in a companion paper (Novick & Lindley, 1978).
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states such that the trials of the experiment are the rebalancing/revising of 
the portfolio over time, then one could think of duration time as a ran-
dom variable, denoted by d, with a density function f(t) and a distribu-
tion function F(t) over the set (0, t]. The reason the support of the 
distribution function F is a left-open right-closed set is to guarantee the 
right continuity of the distribution function F. This technical assumption 
is imposed to ensure that F is an adequate distribution function and that 
it will not impact the results of the model. In practice, two suitable dis-
tributions are commonly used to describe duration data: the exponential 
distribution, which is defined as

	
F t t� � � � �1 e ,�

	
(20)

and the Weibull distribution, defined as

	
F t t� � � � �1 e .� �

	
(21)

The former distribution is characterized by parameter θ > 0, whereas 
the latter is characterized by θ > 0 and α > 0.

The survival function, S(t), of the portfolio duration is the probability 
of its survival beyond time t; that is,

	
S t d t F t� � � �� � � � � �Prob 1 ,

	
(22)

where F(t) is the portfolio duration distribution. The hazard function, 
h(t), is the likelihood that the portfolio revision/rebalancing or the mar-
ket exit will be completed at time t, which is conditional on the portfolio 
surviving or lasting up till that time; that is,

	

h t
f t

S t

d

dt
F t

F t
� � � � �

� �
�

� �
� � �1

,
	

(23)
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Per Eq. (23) and the definitions of F in (20) and (21), if portfolio dura-
tion, d, follows an exponential distribution, then the hazard function, h, 
is constant and equal to parameter θ. On the other hand, under the 
Weibull distribution, the hazard function exhibits duration dependence:

	
h t t� � � ��� � 1,

	
(24)

for the Weibull distribution with parameters α > 0 and θ > 0. Notice that 
the hazard function of the Weibull distribution is increasing in duration 
if α > 1, decreasing in duration if α < 1, and constant (as well as equal to 
the exponential case) if α = 1. The parameter α is known as the hazard rate 
parameter, and it governs the behavior of the hazard function in Eq. (24).

If the lower bound of U in Eq. (18) is zero, that is, m = u(y0) = U(0) = 0, 
and the upper bound M  =  U(t)  =  1, then the utility function 
U(t) = M + (m − M)e−θt becomes U = 1 − e−θt. Together the previous two 
restrictions, with the monotonicity of U over the range (0, t], guarantee 
that U satisfies the requirements of a distribution function in general and 
matches the exponential distribution function F(t) = 1 − e−θt in Eq. (20).6 
Moreover, since the Weibull distribution, F t t� � � � �1 e � �

, is just a 
monotone transformation of the exponential distribution, F(t) = 1 − e−θt, 
then it follows immediately that the function,

	
V M m M t� � �� � � ��e ,� �

� �, ,0 0
	

(25)

is a positive monotonic transformation of Fahmy’s (2020) utility of time 
function U = M + (m − M)e−θt, and V also represents the investor’s prefer-
ence over time.

Figure  11.3 plots the monotonic transformation function V in Eq. 
(25) for different values of the hazard rate parameter α using the same 
parameterization of U in Eq. (17), namely the upper bound M = 10, the 
lower bound m = 2, and the overreaction parameter θ = 0.8. The thick 
bold line depicts V with a large hazard rate α = 8 > 1. Notice how the 

6 The restrictions that the lower bound is 0 and the upper bound is 1 are not restrictive and can be 
thought of as rescaling of the utility function. Furthermore, this rescaling will not affect the analyti-
cal results of the model.
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trajectory of the function reaches its upper bound M. This swift swing 
over a short period of time is indicative of the high hazard rate perceived 
by the investor. This perception is what prompts the investor to re-visit 
the portfolio or even exit the market in the short-run during a global 
event. The dashed line in Fig. 11.3 corresponds to a utility function V 
with a neutral hazard rate α = 1. This is in fact the exact same utility func-
tion that is plotted in Fig. 11.1 (left panel). Notice that when α = 1, V is 
equivalent to the original utility function U that does not account for 
duration hazard. Finally, the thin solid line in Fig. 11.3 corresponds to 
the utility function V with a low hazard rate 0 < α = 0.2 < 1. Notice how 
this function progresses slowly to its upper bound. The “slow” pace is due 
to the fact that the investor perceives the diminishing duration hazard, 
which in turn prompts her to choose a long-term duration strategy rather 
than a short-term one.

The three versions of utility function V in Fig. 11.3 intersect at t = 1. 
Consider the possibility of a global climate event at time t = 0. The three 
curves in Fig. 11.3 depict three different scenarios in the short-run, that 
is, at a portfolio duration 0 < t < 1, and in the long-run, at duration t > 1. 

Fig. 11.3  A plot of the utility function V, where the y-axis represents V(t) and the 
x-axis represents time t.
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In the short-run, it is clear from integrating the area under each V curve 
that the total utility for investors who perceive climate hazard to be 
decreasing over time, that is, those investors with a utility of time func-
tion V with 0 < α < 1 (solid thin line in Fig. 11.3) is higher than others 
who believe that the hazard is neutral (dashed line) or increasing (solid 
thick line) over time. The same conclusion may apply to the long-run 
scenario, when t > 1. This is true since the utility functions with neutral 
and increasing hazard rates will reach the upper bound M faster than the 
decreasing duration hazard function (solid thin curve). The previous 
analysis reveals that a decreasing climate duration hazard perception is 
more rewarding for investors.7 If policy makers, regulators, and key play-
ers in financial markets embrace the task of designing sound policies and 
strategies that guarantee a diminishing climate hazard over time, inves-
tors will be keener to hold green instruments. Moreover, this approach 
has the advantage of maintaining stability in financial markets by altering 
the attitude of investors who tend to panic and overreact in the short-run 
because of a climate event; this helps them to hold their positions rather 
than exiting the market. This preference reversal is crucial in reducing 
disruptions in financial markets that are mainly caused by retail investors. 
I illustrate this preference reversal in the following section.

To conclude this section, I solve the portfolio duration problem using 
the proposed monotonic transformation utility function V in Eq. (25) 
that accounts for climate duration hazard. Proceeding in the exact same 
way as in Sub-sect. 4.2, it is clear that taking a second-order Taylor 
approximation V about Et and solving for the optimal portfolio duration 
time that maximizes this approximation yield the following expression:

	

t Et
ET

Et
* � �

� �� ��� �1
,
	

(26)

where α is the duration hazard rate and everything else is represented in 
Eq. (19). Equation (26) states that the optimal portfolio duration is a 
function of three types of uncertainty, namely, the investor’s own expected 

7 Recall that the investor in the present framework is maximizing U(t) around an expected duration 
time Et.
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duration, Et; the investor’s degree of overreaction to news, θ; and the 
hazard rate of duration, α, which may represent the climate duration 
hazard in the proposed model.

5	 �Empirical Analysis

Consider a risk-averse investor with an extremely low overreaction param-
eter θ = 0.02. In practice, this could refer to institutional investors, mutual 
fund managers, or sovereign wealth managers. These types of investors usu-
ally prefer to adopt long-term duration strategies. Therefore, a reasonable 
mandate for these funds is to revisit the portfolio for rebalancing every two 
or three quarters. Ultimately, taking an average Et = 32 weeks target long-
term duration is reasonable for parameterizing the problem. Consider an 
existing MV optimal portfolio that contains green instruments. Assume a 
major climate event at time t  =  0. The investor’s reaction to this event 
depends on the way they perceive its degree of hazard over time. If the 
investor believes that the climate duration hazard is increasing over time, 
that is, if α > 1 in the utility of time function in Eq. (26), the likely reaction 
would be a revising/rebalancing of the portfolio sooner than later. When α 
is “high” or when its level is magnified by news coverage and social media, 
it is possible for the investor to exit the market in the short-run, that is, 
within days of the climate event. If many investors opt to exit, a major sell-
off could significantly disrupt financial markets. The major sell-off that 
stock markets worldwide have recently witnessed amid the recent 
COVID-19 pandemic is a key example. It is easy to capture this behavior 
if one sets α = 5.6 > 1 in Eq. (26). This results in

	

t Et
ET

Et
*

weeks

� �
� �� �

� �
� � � �� �

�
�� �1

32
32

5 6 0 02 32 1 5 6
0 5

. . .
. . 	

(27)

Ultimately, a rational investor with an expected long-term duration 
strategy Et = 32 weeks might exit the market within a few days of a major 
climate event due to the perception of increasing climate duration hazard.
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On the other hand, if measures are taken to assure investors that the 
duration hazard of climate events is decreasing over time, then long-term 
(profitable) strategies are likely to be entertained. To see this, set α = 0.2 in 
Eq. (27) and compute the optimal duration given the same intrinsic 
parameters, namely, expected time Et = 32 and overreaction θ = 0.02. 
This gives a long-term duration strategy of 66 weeks instead of 0.5 weeks:

	

t Et
ET

Et
*

weeks

� �
� �� �

� �
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�

�� �1
32

32

0 2 0 02 32 1 0 2

66

. . .

. 	

(28)

This analysis demonstrates that successful climate adaptation over time 
relies on enhancing investors’ awareness of climate change risks and assur-
ing them that these risks are diminishing over time. Therefore, per the 
following section, portfolio strategies and policies that guarantee a per-
ception that climate risk is decreasing over time are essential for success-
ful adaptation.

6	 �Concluding Remarks 
and Policy Recommendations

The temporal model that this chapter proposes provides a measure of 
climate duration hazard in the optimal solution of the portfolio dura-
tion problem. The analytical result of the proposed model (Eq.  26) 
reveals that investors exhibit increasing impatience and tend to revise, 
rebalance, or even exit the market in the short-run amid a major cli-
mate event due to the perception that climate hazard is increasing over 
time. This behavior has negative implications on financial markets in 
general as well as on climate mitigation and adaptation efforts in par-
ticular. Investors who believe that climate hazards are rising over time 
tend to be skeptical about investments in clean energy and/or mitiga-
tion or adaptation projects. Reversing this belief is, therefore, at the 
core of climate adaptation.
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While altering investors’ perceptions of climate risks is the key to sus-
tainable climate adaptation, it is not an easy task. It requires the collective 
collaboration of politicians, policy makers, regulators, and practitioners 
in the finance industry. In particular, in order to achieve this incredible 
goal, politicians should put climate mitigation and adaptation policies at 
the top of their agenda. International organizations and governments 
around the world should increase their efforts toward implementing poli-
cies that stimulate investments in renewable clean energy that reduces the 
emissions of greenhouse gases, for example, feed-in tariff policies (Bürer 
& Wüstenhagen, 2009; Hofman & Huisman, 2012). Global institutions 
such as the World Bank are already working on creating more effective 
green solutions across asset classes. These solutions have been mainly 
focused on the fixed income class of assets, for example, green bonds, 
cool bonds, and eco notes (Reichelt, 2010). Innovative solutions that cre-
ate more awareness in other asset classes are needed (Fahmy, 2022). Many 
investors are not aware of the carbon footprint and the climate impact of 
the companies in their portfolios. Few investors who hold oil and gas 
stocks in their portfolios are conscious of the risk they face with respect 
to those companies’ stranded assets (Anderson et al., 2016). Despite the 
unanimous agreement on climate change following the Paris Agreement, 
climate risk remains unpriced by the market, and thus, future uncertainty 
about climate risk remains an increasingly important risk factor for inves-
tors—particularly long-term investors. CEOs of private companies 
should increase their efforts to reduce the carbon footprints of their prod-
ucts and, more importantly, to provide investors with clear signals and 
transparent rules with respect to how this reduction is to be achieved. 
Fund and portfolio managers should focus on factoring climate risks in 
their portfolios and design hedging policies that aim to lower the risk 
exposure to climate events without compromising the rewards of the 
portfolios.

In conclusion, the collective efforts of all of the above-mentioned play-
ers in financial markets will have the potential of inversely impacting the 
perception of increasing climate hazard over time. This preference rever-
sal will, ultimately, lead to a successful climate adaptation and more sus-
tainability over time.

  H. Fahmy
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