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To be uncertain is to be
uncomfortable, but to be certain
is to be ridiculous.

Chinese proverb

Abstract. Inductive logic is concerned with assigning probabilities to
sentences given probabilistic constraints. The Maximum Entropy App-
roach to inductive logic I here consider assigns probabilities to all sen-
tences of a first order predicate logic. This assignment is built on an appli-
cation of the Maximum Entropy Principle, which requires that probabil-
ities for uncertain inference have maximal Shannon Entropy. This paper
puts forward two different modified applications of this principle to first
order predicate logic and shows that the original and the two modified
applications agree in many cases. A third promising modification is stud-
ied and rejected.
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1 Introduction

Inductive logic is a formal approach to model rational uncertain inferences. It
seeks to analyse the degree to which premisses entail putative conclusions. Given
uncertain premisses ϕ1, . . . , ϕk with attached uncertainties X1, . . . , Xk an induc-
tive logic provides means to attach uncertainty Y to a conclusion ψ, where the
Xi and Y are non-empty subsets of the unit interval. An inductive logic can be
represented as

ϕX1
1 , . . . , ϕXk

k |≈ ψY , (1)

where |≈ denotes an inductive entailment relation [11]. Much work has gone into
the development and exploration of inductive logics, see, e.g., [4,9,12,16,29–
31,41].
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The main early proponent of inductive logic was Rudolf Carnap [2,3]. Nowa-
days, the spirit of his approach today continues in the Pure Inductive Logic
approach [14,17,21–24,40]. In this paper, I however consider uncertain inference
within the maximum entropy framework, which goes back to Edwin Jaynes [15],
who put forward a Maximum Entropy Principle governing rational uncertain
inference.

Maximum Entropy Principle. Rational agents ought to use a probability
function consistent with the evidence for drawing uncertain inferences. In case
there is more than one such probability function, a rational agent ought to use
probability functions with maximal entropy.

In case only a single probability function is consistent with the evidence, the
Maximum Entropy Principle is uncontroversial. Its strength (and sometimes con-
troversial nature) is rooted in applications with multiple prima facie reasonable
probability functions for probabilistic inference. This principle is at the heart of
objective Bayesianism.

If the underlying domain is finite, then applying the Maximum Entropy Prin-
ciple for inductive entailment is straight-forward and well-understood due to the
seminal work of Alena Vencovská & Jeff Paris [32–34,36–39]. Matters change
dramatically for infinite domains. Naively replacing the sum by an integral in
the definition of Shannon Entropy produces a great number of probability func-
tions with infinite entropy. But then there is no way to pick a probability function
with maximal entropy out of a set in which all functions have infinite entropy.

There are two different suggestions for inductive logic on an infinite first order
predicate logic explicating the Maximum Entropy Principle. The Entropy Limit
Approach [1,35] and the Maximum Entropy Approach [28,45–48]. It has been
conjectured, that both approaches agree in cases in which the former approach
is-well defined [48, p. 191]. This conjecture has been shown to hold in a number
of cases of evidence bases with relatively low quantifier-complexity [19,25,44].

This paper introduces modifications of the Maximum Entropy Approach and
studies their relationships. I next properly introduce this approach along with
some notation and the modifications. I then proceed to investigate their rela-
tionships. My main result is Theorem1; it proves that the two suggested mod-
ifications agree with the original Maximum Entropy Approach expounded by
Jon Williamson for convex optimisation problems, if at least one of these three
approaches yields a unique probability function for inference on the underlying
first order predicate language.

In Sect. 4, I study a third modification of Williamson’s Maximum Entropy
Approach, which I reject due to the absurd probabilities it delivers for inductive
inference, see Proposition 6. In Sect. 5, I put forward some concluding remarks
and consider avenues for future research.

2 The Maximum Entropy Approach and Two
Modifications

The formal framework and notation is adapted from [25].
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A fixed first order predicate language L is given. It consists of countably many
constant symbols t1, t2, . . . exhausting the universe (for every element in the
universe there is at least one constant symbol representing it) and finitely many
relation symbols, U1, . . . , Un. In particular, note that the language does not
contain a symbol for equality nor does it contain function symbols. The atomic
sentences are sentences of the form Uiti1 . . . tik , where k is the arity of the relation
Ui; the atomic sentences are denoted by a1, a2, . . .. They are by construction
ordered in such a way that atomic sentences involving only constants among
t1, . . . , tn occur before those atomic sentences that also involve tn+1. The set of
sentences of L is denoted by SL.

The finite sublanguages Ln of L are those languages, which only contain the
first n constant symbols t1, . . . , tn and the same relation symbols as L. Denote
the sentences of Ln by SLn.

The contingent conjunctions of maximal length of the form ±a1∧ . . .∧±arn
∈

SLn are called the n-states. Let Ωn be the set of n-states for each n ∈ N with
|Ωn| = 2rn .

Definition 1 (Probabilities on Predicate Languages). A probability func-
tion P on L is a function P : SL −→ R≥0 such that:

P1: If τ is a tautology, i.e., |= τ , then P (τ) = 1.
P2: If θ and ϕ are mutually exclusive, i.e., |= ¬(θ ∧ ϕ), then P (θ ∨ ϕ) = P (θ) +

P (ϕ).
P3: P (∃xθ(x)) = supm P (

∨m
i=1 θ(ti)).

A probability function on Ln is defined similarly (the supremum in P3 is
dropped and m is equal to n).

P denotes the set of all probability functions on L.

A probability function P ∈ P is determined by the values it gives to the
quantifier-free sentences, this result is known as Gaifman’s Theorem [8]. P3 is
sometimes called Gaifman Condition [40, p. 11]. The Gaifman Condition is jus-
tified by the assumption that the constants exhaust the universe. Consequently,
a probability function is determined by the values it gives to the n-states, for
each n [33, p. 171].

It is thus sensible to measure the entropy of a probability function P ∈ P via
n-states with varying n.

Definition 2 (n-entropy). The n-entropy of a probability function P ∈ P is
defined as:

Hn(P ) : = −
∑

ω∈Ωn

P (ω) log P (ω) .

The usual conventions are 0 log 0 := 0 and log denoting the natural logarithm.
The second convention is inconsequential for current purposes.
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Hn(·) is a strictly concave function.
The key idea is to combine the n-entropies defined on finite sublanguages Ln

into an overall notion of comparative entropy comparing probability functions
P and Q defined on the entire first order language.

So far, the literature has only studied such inductive logics with respect to
the first binary relation in the following definition.

Definition 3 (Comparative Notions of Entropy). That a probability func-
tion P ∈ P has greater (or equal) entropy than a probability function Q ∈ P

could be defined in the following three ways.

1. If and only if there is some natural number N such that for all n ≥ N it holds
that Hn(P ) > Hn(Q), denoted by P 	 Q.

2. If and only if there is some natural number N such that for all n ≥ N it holds
that Hn(P ) ≥ Hn(Q) and there are infinitely many n such that Hn(P ) >
Hn(Q), denoted by P ]Q.

3. If and only if there is some natural number N such that for all n ≥ N it holds
that Hn(P ) ≥ Hn(Q), denoted by P )Q.

The lower two definitions are alternative ways in which one could explicate the
intuitive idea of comparative entropy, which have never been studied before.
Prima facie, all three definitions appear reasonable.

Before I can define notions of maximal entropy with respect to the given
premisses, I need to specify the set of probability functions over which entropy
is to be maximised.

Definition 4 (Region of Feasible Probability Functions). The set of prob-
ability functions consistent with all premisses, P (ϕi) ∈ Xi for all i, is denoted
by E and defined as

E := {P ∈ P : P (ϕi) ∈ Xi for all 1 ≤ i ≤ k} .

In order to simplify the notation, I do not display the dependence of E on the
premisses.

In this paper, I only consider a fixed set of premisses, ϕX1
1 , . . . , ϕXk

k . There is
hence no need to complicate notation by writing E

ϕ
X1
1 ,...,ϕ

Xk
k

or similar.

Definition 5 (Set of Maximum Entropy Functions). The set of probability
functions on L with maximal entropy in E relative to a notion of comparative
entropy > defined on P × P can then be defined as

maxent> E : ={P ∈ E : there is no Q ∈ E \ {P} with Q > P} . (2)

The Maximum Entropy Principle now compels agents to use probabilities
in maxent> E for drawing uncertain inferences as described by the scheme for
inductive logic in (1). The induced inductive logics are described in the following
definition.
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Definition 6 (Maximum Entropy Inductive Logics). An inductive logic
with respect to > is induced by attaching uncertainty Y>(ψ) ⊆ [0, 1] to the sen-
tences ψ of L via

Y>(ψ) := {r ∈ [0, 1] | there exists P ∈ maxent> E with P (ψ) = r} .

In case there are two or more different probability functions in maxent> E, there
are some sentences of ψ of L to which multiple different probabilities attach.

The Maximum Entropy Approach arises using 	 for comparing entropies of
probability functions in P [28,45–48].

Remark 1 (Comparisons to the Entropy Limit Approach). It is known that the
Entropy Limit Approach is invariant under arbitrary permutations of the con-
stant symbols [25, Footnote 2]. The Entropy Limit Approach however suffers
from a finite model problem, a premiss sentence formalising the existence of an
infinite order does not have a finite model [42, Sect. 4.1] and hence the entropy
limit is undefined.

The three Maximum Entropy Approaches defined in Definition 6 are invariant
under finite permutations of constant symbols, the three notions of comparative
entropy only depend on the limiting behaviour of Hn and n-entropy is invariant
under permutation of the first n constant symbols (Definition 3). Whether these
Maximum Entropy Approaches are invariant under infinite permutations is still
to be determined. Since these approaches do not make use of finite models,
they are immune to the finite model problem. See [19,25] for more detailed
comparisons and further background.

Remark 2 (Maximum Entropy Functions). Determining maximum entropy func-
tions is an often difficult endeavour. In concrete applications, it is often easier
to determine the entropy limit first and then show that the entropy limit also
has maximal entropy. See [25] for an overview of the cases in which a maximum
entropy function exists and is unique.

Trivially, if the equivocator function, P= ∈ P, which for all n assigns all
n-states the same probability of 1/|Ωn|,1 is in E, then {P=} = maxent� E.

In a forthcoming paper [26], we show that if there is only a single premiss ϕ
such that 0 < P=(ϕ) < 1, then the maximum entropy function is obtained from
(Jeffrey) updating the equivocator function. For the premiss ϕc with 0 ≤ c ≤ 1
it holds that {cP=(·|ϕN )+(1−c)P=(·|¬ϕN )} = maxent� E, where N is maximal
such that tN ∈ ϕ and ϕN is defined as the disjunction of N -states ωN such that
P=(ϕ ∧ ωN ) > 0.

Cases with multiple uncertain premisses are, in general, still poorly under-
stood.
1 Note that the equivocator function is the unique probability function in P which is

uniform over all Ωn, P=(ωn) = 1
|Ωn| for all n and all ωn ∈ Ωn. The name for this

function is derived from the fact that it is maximally equivocal. The function has
also been given other names. In Pure Inductive Logic it is known as the completely
independent probability function and is often denoted by c∞ in reference to the role
it plays in Carnap’s famous continuum of inductive methods [3].
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In the next section, I study (the relationships of) these binary relations and
the arising inductive logics. Particular attention is paid to the case of a unique
probability function for inference, |maxent> E| = 1. These cases are of partic-
ular interest, since they deliver well-defined (unique) probabilities for inductive
inference.

3 Maximal (Modified) Entropy

I first consider two notions of refinement relating these three binary relations.

Definition 7 (Strong Refinement). > is called a strong refinement of �, if
and only if the following hold

– > is a refinement of �, for all P,Q ∈ P it holds that P � Q entails P > Q,
– for all R,P,Q ∈ P it holds that, if R � P and P > Q are both true, then

R � Q and R = Q.

Definition 8 (Centric Refinement). A refinement > of � is called centric,
if and only if for all different R,P ∈ P with R > P it holds that (R+P )/2 � P .

The name centric has been chosen to emphasise that the centre between R and
P is greater than P .

Clearly, not all binary relations possess strong refinements; not all binary
relations possess centric refinements.

Proposition 1 (Strong and Centric Refinements). ] is a strong and centric
refinement of 	. ) is a strong and centric refinement of ] and of 	.

Proof. For ease of comparison, I now display the three notions of comparative
entropy line by line. The first line defines P 	 Q, the second line P ]Q and the
third line P )Q. The second conjunct in the first definition is superfluous as is
the second conjunct in the third definition:

Hn(P ) ≤ Hn(Q) not infinitely often & Hn(P ) > Hn(Q) infinitely often
Hn(P ) < Hn(Q) not infinitely often & Hn(P ) > Hn(Q) infinitely often
Hn(P ) < Hn(Q) not infinitely often & Hn(P ) ≥ Hn(Q) infinitely often .

By thusly spelling out both comparative notions of entropy one easily observes
that P 	 Q entails P ]Q, and that P ]Q entails P )Q. This establishes the refine-
ment relationships.

Strong Refinements. Next note that, if R 	 Q or if R]Q, then R = Q.

] is a strong refinement of 	: Let R 	 P and P ]Q. Then R = Q. Furthermore,
Hn(R) ≤ Hn(Q) is true for at most finitely many n, since from some N onwards
P has always greater or equal n-entropy than Q. So, R 	 Q.

) is a strong refinement of ]: Let R]P and P )Q. Then R = Q. From some N
onwards P has always greater or equal n-entropy than Q. There are also infinitely
many n ∈ N such that Hn(R) > Hn(P ). So, R]Q.
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) is a strong refinement of 	: Let R � P and P )Q. Then R = Q. From some
N onwards P has always greater or equal n-entropy than Q. From some N ′

onwards R has always greater n-entropy than P . Hence, Hn(R) ≤ Hn(Q) can
only be the case for finitely many n ∈ N. So, R 	 Q.

Centric Refinement. First, note that different probability functions disagree
on some quantifier free sentence ϕ ∈ LN (Gaifman’s Theorem [8]). Since
ϕ ∈ Ln+N for all n ≥ 1, these probability functions also disagree on all more
expressive sub-languages Ln+N .

] is a centric refinement of 	: Fix arbitrary probability functions R,P defined
on L with R]P . R = P . From the concavity of the function Hn it follows that
Hn(R+P

2 ) > Hn(P ), whenever Hn(R) ≥ Hn(P ). By definition of ], there are
only finitely many n for which Hn(R) ≥ Hn(P ) fails to hold. Hence, R+P

2 	 P
by definition of 	.

) is a centric refinement of 	: Fix arbitrary probability functions R,P defined
on L with R)P . Note that R may be equal to P . From the concavity of the
function Hn it follows that Hn(R+P

2 ) > Hn(P ), whenever Hn(R) ≥ Hn(P ). By
definition of ), there are only finitely many n for which Hn(R) ≥ Hn(P ) fails to
hold. Hence, R+P

2 	 P by definition of 	.

) is a centric refinement of ]: Fix arbitrary probability functions R,P defined on
L with R)P . Note that R may be equal to P . Since R+P

2 	 P (see above case)
and since ] is a refinement of 	, it holds that R+P

2 ]P . ��
Remark 3 (Properties of Comparative Entropies). If Hn(P ) = Hn(Q) for all even
n and Hn(P ) > Hn(Q) for all odd n, then P ]Q and P � Q. Hence, ] is a proper
refinement of 	.

For P = Q it holds that P )Q and Q)P . Hence, ) is a proper refinement of ]
and thus a proper refinement of 	.

] is transitive, irreflexive, acyclic and asymmetric. ) is transitive, reflexive and
has non-trivial cycles, e.g., for all probability functions P,Q with zero-entropy,
Hn(P ) = 0 for all n ∈ N, it holds that P )Q.

I now turn to entropy maximisation and the induced inductive logics.

Proposition 2 (Downwards Uniqueness). Let > be a strong refinement of
�. If maxent� E = {Q}, then {Q} = maxent� E = maxent> E.

In case the inductive logic induced by � as a notion of a comparative entropy
provides a unique probability function for rational inference, so does the induc-
tive logic induced by >.

Proof. Note at first that since > is a refinement of � it holds that

maxent> E ⊆ maxent� E . (3)

Maximal elements according to � may not be maximal according to > and all
maximal elements according to > are also maximal according to �.



A Triple Uniqueness of the Maximum Entropy Approach 651

Assume for the purpose of deriving a contradiction that Q /∈ maxent> E.
Then, there has to exist a P ∈ E \ {Q} such that P > Q but P � Q fails to
hold ({Q} = maxent� E holds by assumption).

However, since {Q} = maxent� E and Q /∈ maxent> E hold, there has to
exist some R ∈ E \ {P} such that R � P , P cannot have maximal �-entropy.
We hence have R � P and P > Q. Since > is a strong refinement of �, we
obtain R � Q and R = Q. Since R ∈ E it follows from the definition of maxent�
that Q /∈ maxent� E. Contradiction. So, Q ∈ maxent> E.

Since {Q} = maxent� E

(3)
⊇ maxent> E � Q, it follows that maxent> E =

{Q}. ��
The converse is also true for convex E and centric refinements.

Proposition 3 (Upwards Uniqueness). If E is convex, > is a centric refine-
ment of � and maxent> E = {Q}, then {Q} = maxent� E = maxent> E.

Proof. Assume for contradiction that there exists a feasible probability function
P ∈ E\{Q} such that P is not �-dominated by the probability functions in E but
>-dominated by some R ∈ E \ {P}, R > P . Now define S = 1

2 (P + R) and note
that S ∈ E (convexity) and that S, P,R are pairwise different, |{S, P,R}| = 3.

Since > is a centric refinement of �, we conclude that S � P , which con-
tradicts that P ∈ maxent� E and P = Q. So, only Q can be in maxent� E.

Since Q ∈ maxent> E and maxent> E

(3)
⊆ maxent� E it follows that {Q} =

maxent� E. ��
Theorem 1 (Triple Uniqueness). If E is convex and at least one of
maxent) E, maxent] E or maxent� E is a singleton, then

maxent E) = maxent] E = maxent� E .

Proof. Simply apply the above three propositions. ��
It is known that maxent� E is a singleton, in case of a certain Σ1 premiss [44],

a class of Π1 premisses [25] and a class of constraints for unary languages [42]. As
remarked above, we show in a forthcoming paper [26], that for a single premiss
ϕc with 0 < P=(ϕ) < 1 and 0 ≤ c ≤ 1 there exists a unique maximum entropy
function in maxent� E, which is obtained from suitably (Jeffrey) updating the
equivocator.

Premiss sentences ϕ with P=(ϕ) = 0 and cases with multiple uncertain pre-
misses – on the other hand – are still poorly understood.

4 Modification Number 3

The Maximum Entropy Approach, in its original formulation, fails to provide
probabilities for uncertain inference for certain evidence bases of quantifier com-
plexity Σ2 [43, § 2.2]. For example, for the single certain premiss ϕ := ∃x∀yUxy
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every probability function P consistent with the evidence must assign ϕ proba-
bility one, P ∈ E entails P (ϕ) = 1. There must hence be, at least, one constant
tk witnessing the existence of all these y, P (∀yUtky) > 0. Ceteris paribus, the
k − 1-entropy of such functions increases the greater the k such that tk is a
witness. Now suppose for contradiction that there exists a maximum entropy
function P ∈ E with tk as the first witness. Now construct a probability Q by
postponing the witness by one, tk+1 is the first witness of the premiss according
to Q. Q can be constructed such that Hn(Q) ≥ Hn(P ) for all n. One can then
show that R := Q+P

2 has strictly greater n-entropy than P for all r ≥ n + 1
(concavity of Hn). It is hence the case that for all P ∈ E there exists a R ∈ E

such that R 	 P . maxent� E is hence empty, see the forthcoming [26] for more
details and a proof.

Theorem 1 shows that inductive logics induced by ) and ] also do not
produce a unique probability for uncertain inference for the certain premiss
ϕ = ∃x∀yUxy.

From the perspective of this paper, we see that the inductive logic of the
standard Maximum Entropy Approach fails to deliver well-defined probabilities
for inference for the certain premiss ϕ = ∃x∀yUxy, because the relation 	
holds for too many pairs of probability functions. Proceeding in the spirit of this
paper, it seems sensible to define a modified inductive logic induced by a notion
of comparative entropy, }, which holds for fewer pairs of probability functions.
That is, } is refined by 	.

Closest to the spirit of Definition 3 is to define P}Q as follows.

Definition 9 (Modification Number 3). P}Q, if and only if Hn(P ) >
Hn(Q) for all n ∈ N.

Clearly, the other three notions of comparative entropy are refinements of }.

Proposition 4 (Comparison of } vs. 	, ],)). Neither of the three binary
relations 	, ], ) is a strong refinement and neither is a centric refinement of }.
Proof. Consider three pairwise different probability functions P,Q,R with i)
Hn(P ) > Hn(Q) for all n , ii) Hn(P )

Hn(Q) ≈ 1, iii) H1(Q) = H1(R)− δ for large δ > 0
and iv) Hn(Q) > Hn(R) for all n ≥ 1.

Then P}Q and Q 	 R,Q]R,Q)R all hold. Now note that H1(P ) < H1(R)
and thus P}R fails to hold. Hence, none of 	, ], ) is a strong refinement of }.
Finally, observe that Q+R

2 }R fails to hold. Hence, none of 	, ], ) is a centric
refinement of }. ��

The aim here is to define a different inductive logic producing well-defined
probabilities for the premiss sentence ϕ = ∃x∀yRxy (and other premiss sen-
tences). Theorem 1 shows that a different logic can only arise, if none of the
other three notions of comparative entropy is a strong and centric refinement
of }. Proposition 4 shows that neither of these notions is a strong and centric
refinement. It his hence in principle possible that } defines a novel inductive
logic.
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The following proposition shows that this not only possible in principle by
providing a case in which the induced inductive logics do come apart.

Proposition 5 (Inductive Logics). The binary relation } induces a different
inductive logic than 	, ], ).

Proof. Let U be the only and unary relation symbol of L. Suppose there is
no evidence, then all probability functions are consistent with the empty set of
premisses, E = P. Then every P ∈ P with P (Ut1) = P (¬Ut1) = 0.5 has maximal
1-entropy. Hence, all such P are members of maxent} E. For � ∈ {	, ], )} it holds
that maxent� E = {P=}. So, maxent� E is a proper subset of maxent} E:

maxent� E = {P=} ⊂ {P ∈ P : P (Ut1) = P (¬Ut1)} ⊂ maxent} E .

��
This proof leads to the following more general observation:

Proposition 6 (Finite Sublanguages). If there exists an n ∈ N and a P ∈ E

such that Hn(P ) = max{Hn(Q) : Q ∈ E}, then P ∈ maxent} E.

This strong focus on single sublanguages Ln makes maxent} unsuitable as an
inductive logic for infinite predicate languages, as the following example demon-
strates.

Example 1 (Absurdity of Modification 3). Consider the case in which the pre-
misses jointly determine the probabilities on L1. For example, the given lan-
guage L contains two relation symbols: a unary relation symbol U1 and a
binary relation symbol U2. The premisses are U2t1t1 holds with certainty and
P (U1t1) = 10%. Then every probability function P ∈ P that satisfies these
two premisses has a 1-entropy of H1(P ) = −0.9 · log(0.9) − 0.1 · log(0.1). So,
H1(P ) = max{H1(Q) : Q ∈ E}. This means that every feasible probability
function (of which there are many) is a maximum entropy function – regardless
of how entropic (or not) probabilities are assigned to the other sublanguages Ln

for n ≥ 2:

maxent} E = E .

5 Conclusions

Maximum entropy inductive logic on infinite domains lacks a paradigm approach.
The Entropy Limit Approach, the Maximum Entropy Approach as well as the
here studied modified Maximum Entropy Approaches induce the same unique
inductive logic in a number of natural cases (Theorem1 and [25,42,44]). This
points towards a unified picture of maximum entropy inductive logics – in spite
of the number of possible ways to define such inductive logics.
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This uniqueness is particularly noteworthy in light of a string of results sug-
gesting and comparing different notions of entropy (maximisation), which lead
to different maximum entropy functions [5–7,10,13,18,20,27].

The Maximum Entropy Approach fails to provide probabilities for uncertain
inference for some evidence bases of quantifier complexity Σ2 [43, § 2.2]. In these
cases, for all P ∈ E there exists a Q ∈ E such that Q 	 P and maxent E is hence
empty [26]. One way to sensibly define an inductive logic could be to consider
a binary relation which is refined by 	. Unfortunately, the most obvious way to
define such an inductive logic produces absurd results (Proposition 6). Finding
a way to sensibly define a (maximum entropy) inductive logic properly dealing
with such cases must be left to further study.

Further avenues for future research suggest themselves. Firstly, the ques-
tion arises whether the first two here suggested modifications and the original
Maximum Entropy Approach agree more widely or whether they come apart in
important cases. If they do provide different probabilities for inductive inference,
which of them is to be preferred and why? Secondly, are there further prima facie
plausible ways to modify the Maximum Entropy Approach? Thirdly, are there
other modifications of the Entropy Limit Approach? If so, how do they look like
and what are the implications for the induced inductive logics? Fourthly, what
is the status of the entropy limit conjecture [48, p. 191], the conjecture that
the Entropy Limit Approach and the Maximum Entropy Approach agree under
the assumption that the former is well-defined, in light of these modifications?
Finally, cases with multiple uncertain premisses remain poorly understood and
pose a challenge to be tackled.
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I’m also indebted to anonymous referees who helped me improve this paper.
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40. Paris, J.B., Vencovská, A.: Pure Inductive Logic. Cambridge University Press,
Cambridge (2015)
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