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Abstract. There are many randomness notions. On the classical
account, many of them are about whether a given infinite binary sequence
is random for some given probability. If so, this probability turns out to
be the same for all these notions, so comparing them amounts to finding
out for which of them a given sequence is random. This changes com-
pletely when we consider randomness with respect to probability inter-
vals, because here, a sequence is always random for at least one interval,
so the question is not if, but rather for which intervals, a sequence is
random. We show that for many randomness notions, every sequence
has a smallest interval it is (almost) random for. We study such smallest
intervals and use them to compare a number of randomness notions. We
establish conditions under which such smallest intervals coincide, and
provide examples where they do not.

Keywords: Probability intervals · Martin-Löf randomness ·
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1 Introduction

The field of algorithmic randomness studies what it means for an infinite binary
sequence, such as ω = 0100110100 . . . , to be random for an uncertainty model.
Classically, this uncertainty model is often a single (precise) probability p ∈ [0, 1].
Some of the best studied precise randomness notions are Martin-Löf randomness,
computable randomness, Schnorr randomness and Church randomness. They are
increasingly weaker; for example, if a sequence ω is Martin-Löf random for a
probability p, then it is also computably random, Schnorr random and Church
random for p. Meanwhile, these notions do not coincide; it is for example possible
that a path ω is Church random but not computably random for 1/2. From a
traditional perspective, this is how we can typically differentiate between various
randomness notions [1,2,6,10].

As shown by De Cooman and De Bock [3–5], these traditional randomness
notions can be generalised by allowing for imprecise-probabilistic uncertainty
models, such as closed probability intervals I ⊆ [0, 1]. These more general ran-
domness notions, and their corresponding properties, allow for more detail to
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arise in their comparison. Indeed, every infinite binary sequence ω is for exam-
ple random for at least one closed probability interval. And for the imprecise
generalisations of many of the aforementioned precise randomness notions, we
will see that for every (or sometimes many) ω, there is some smallest probabil-
ity interval, be it precise or imprecise, that ω is (almost) random for—we will
explain the modifier ‘almost’ further on. It is these smallest probability intervals
we will use to compare a number of different randomness notions.

We will focus on the following three questions: (i) when is there a well-defined
smallest probability interval for which an infinite binary sequence ω is (almost)
random; (ii) are there alternative expressions for these smallest intervals; and
(iii) for a given sequence ω, how do these smallest intervals compare for different
randomness notions? Thus, by looking from an imprecise perspective, we are
able to do more than merely confirm the known differences between several
randomness notions. Defining randomness for closed probability intervals also
lets us explore to what extent existing randomness notions are different, in the
sense that we can compare the smallest probability intervals for which an infinite
binary sequence is random. Surprisingly, we will see that there is a large and
interesting set of infinite sequences ω for which the smallest interval that ω is
(almost) random for is the same for several randomness notions.

Our contribution is structured as follows. In Sect. 2, we introduce (im)pre-
cise uncertainty models for infinite binary sequences, and introduce a generic
definition of randomness that allows us to formally define what it means for a
sequence to have a smallest interval it is (almost) random for. In Sect. 3, we pro-
vide the mathematical background on supermartingales that we need in order
to introduce a number—six in all—of different randomness notions in Sect. 4:
(weak) Martin-Löf randomness, computable randomness, Schnorr randomness,
and (weak) Church randomness. In the subsequent sections, we tackle our three
main questions. We study the existence of the smallest intervals an infinite binary
sequence ω is (almost) random for in Sect. 5. In Sects. 6 and 7, we provide alter-
native expressions for such smallest intervals and compare them; we show that
these smallest intervals coincide under certain conditions, and provide examples
where they do not. To adhere to the page limit, the proofs of all novel results—
that is, the ones without citation—are omitted. They are available in Appendix
B of an extended on-line version [8].

2 Forecasting Systems and Randomness

Consider an infinite sequence of binary variables X1, . . . , Xn, . . . , where every
variable Xn takes values in the binary sample space X := {0, 1}, generically
denoted by xn. We are interested in the corresponding infinite outcome sequences
(x1, . . . , xn, . . . ), and, in particular, in their possible randomness. We denote such
a sequence generically by ω and call it a path. All such paths are collected in the
set Ω := XN.1 For any path ω = (x1, . . . , xn, . . . ) ∈ Ω, we let ω1:n := (x1, . . . , xn)
1
N denotes the natural numbers and N0 := N∪ {0} denotes the non-negative integers
(A real x ∈ R is called negative, positive, non-negative and non-positive, respectively,
if x < 0, x > 0, x ≥ 0 and x ≤ 0).
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and ωn := xn for all n ∈ N. For n = 0, the empty sequence ω1:0 := ω0 := () is
called the initial situation and is denoted by �. For any n ∈ N0, a finite outcome
sequence (x1, . . . , xn) ∈ X n is called a situation, also generically denoted by s,
and its length is then denoted by |s| := n. All situations are collected in the
set S :=

⋃
n∈N0

X n. For any s = (x1, . . . , xn) ∈ S and x ∈ X , we use sx to denote
the concatenation (x1, . . . , xn, x).

The randomness of a path ω ∈ Ω is always defined with respect to an uncer-
tainty model. Classically, this uncertainty model is a real number p ∈ [0, 1],
interpreted as the probability that Xn equals 1, for any n ∈ N. As explained in
the Introduction, we can generalise this by considering a closed probability inter-
val I ⊆ [0, 1] instead. These uncertainty models will be called interval forecasts,
and we collect all such closed intervals in the set I. Another generalisation of the
classical case consists in allowing for non-stationary probabilities that depend
on s or |s|. Each of these generalisations can themselves be seen as a special
case of an even more general approach, which consists in providing every situ-
ation s ∈ S with a (possibly different) interval forecast in I, denoted by ϕ(s).
This interval forecast ϕ(s) ∈ I then describes the uncertainty about the a priori
unknown outcome of X|s|+1, given that the situation s has been observed. We
call such general uncertainty models forecasting systems.

Definition 1. A forecasting system is a map ϕ : S → I that associates with
every situation s ∈ S an interval forecast ϕ(s) ∈ I. We denote the set of all
forecasting systems by Φ.

With any forecasting system ϕ ∈ Φ, we associate two real processes ϕ and ϕ,
defined by ϕ(s) := min ϕ(s) and ϕ(s) := max ϕ(s) for all s ∈ S. A forecasting
system ϕ ∈ Φ is called precise if ϕ = ϕ. A forecasting system ϕ ∈ Φ is called
stationary if there is an interval forecast I ∈ I such that ϕ(s) = I for all s ∈ S;
for ease of notation, we will then denote this forecasting system simply by I.
The case of a single probability p corresponds to a stationary forecasting system
with I = {p}. A forecasting system ϕ ∈ Φ is called temporal if its interval
forecasts ϕ(s) only depend on the situations s ∈ S through their length |s|,
meaning that ϕ(s) = ϕ(t) for any two situations s, t ∈ S that have the same
length |s| = |t|.

In some of our results, we will consider forecasting systems that are com-
putable. To follow the argumentation and understand our results, the following
intuitive description will suffice: a forecasting system ϕ ∈ Φ is computable if
there is some finite algorithm that, for every s ∈ S and any n ∈ N0, can compute
the real numbers ϕ(s) and ϕ(s) with a precision of 2−n. For a formal definition
of computability, which we use in our proofs, we refer the reader to Appendix A
of the extended on-line version, which contains these proofs [8].

So what does it mean for a path ω ∈ Ω to be random for a forecasting
system ϕ ∈ Φ? Since there are many different definitions of randomness, and
since we intend to compare them, we now introduce a general abstract definition
and a number of potential properties of such randomness notions that will, as it
turns out, allow us to do so.
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Definition 2. A notion of randomness R associates with every forecasting sys-
tem ϕ ∈ Φ a set of paths ΩR(ϕ). A path ω ∈ Ω is called R-random for ϕ if
ω ∈ ΩR(ϕ).

All of the randomness notions that we will be considering further on, satisfy
additional properties. The first one is a monotonicity property, which we can
describe generically as follows. If a path ω ∈ Ω is R-random for a forecasting
system ϕ ∈ Φ, it is also R-random for any forecasting system ϕ′ ∈ Φ that
is less precise, meaning that ϕ(s) ⊆ ϕ′(s) for all s ∈ S. Consequently, this
monotonicity property requires that the more precise a forecasting system is,
the fewer R-random paths it ought to have.

Property 1. For any two forecasting systems ϕ,ϕ′ ∈ Φ such that ϕ ⊆ ϕ′, it holds
that ΩR(ϕ) ⊆ ΩR(ϕ′).

Furthermore, it will also prove useful to consider the property that every
path ω ∈ Ω is R-random for the (maximally imprecise) vacuous forecasting
system ϕv ∈ Φ, defined by ϕv(s) := [0, 1] for all s ∈ S.

Property 2. ΩR([0, 1]) = Ω.

Thus, if Properties 1 and 2 hold, every path ω ∈ Ω will in particular be R-random
for at least one interval forecast—the forecast I = [0, 1]—and if a path ω ∈ Ω is
R-random for an interval forecast I ∈ I, then it will also be R-random for any
interval forecast I ′ ∈ I for which I ⊆ I ′. It is therefore natural to wonder whether
every path ω ∈ Ω has some smallest interval forecast I such that ω ∈ ΩR(I).
In order to allow us to formulate an answer to this question, we consider the
sets IR(ω) that for a given path ω ∈ Ω contain all interval forecasts I ∈ I that ω
is R-random for. If there is such a smallest interval forecast, then it is necessarily
given by

IR(ω) :=
⋂

IR(ω) =
⋂

I∈IR(ω)

I.

As we will see, for some randomness notions R, IR(ω) will indeed be the small-
est interval forecast that ω is random for. Consequently, for these notions, and
for every ω ∈ Ω, the set IR(ω) is completely characterised by the interval fore-
cast IR(ω), in the sense that ω will be R-random for an interval forecast I ∈ I
if and only if IR(ω) ⊆ I.

In general, however, this need not be the case. For example, consider the
situation depicted in Fig. 1. It could very well be that for some randomness
notion R: that satisfies Properties 1 and 2, there is a path ω∗ ∈ Ω that is
R-random for all interval forecasts of the form [p, 1] and [0, q], with p < 1/3
and 2/3 ≤ q, but for no others. Then clearly, IR(ω∗) = [1/3, 2/3], but ω∗ is not
R-random for IR(ω∗).

In addition, it need not even be guaranteed that the intersection IR(ω) is
non-empty. To guarantee that it will be, and as an imprecise counterpart of the
law of large numbers, it suffices to consider the additional property that if a
path ω ∈ Ω is R-random for an interval forecast I ∈ I, then this I should imply
the following bounds on the relative frequency of ones along ω.
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Fig. 1. The green intervals correspond to interval forecasts for which ω∗ is R-random,
whereas the red intervals correspond to interval forecasts that ω∗ is not R-random for.
(Color figure online)

Property 3. For all interval forecasts I ∈ I and all paths ω ∈ ΩR(I), it holds
that min I ≤ lim infn→∞ 1

n

∑n
k=1 ωk ≤ lim supn→∞

1
n

∑n
k=1 ωk ≤ max I.

Properties 1–3 hold for all randomness notions R that we will consider, whence
also, IR(ω) �= ∅. We repeat that for some of these notions, IR(ω) will be the
smallest interval forecast that ω ∈ Ω is R-random for. If not, we will sometimes
still be able to show that IR(ω) is the smallest interval forecast that ω is almost
R-random for.

Definition 3. A path ω ∈ Ω is called almost R-random for an interval fore-
cast I ∈ I if it is R-random for any interval forecast I ′ ∈ I of the form

I ′ = [min I − ε1,max I + ε2] ∩ [0, 1], with ε1, ε2 > 0.

If a path ω ∈ Ω is almost R-random for the interval forecast IR(ω), then IR(ω)
almost completely characterises the set IR(ω): the only case where we cannot
immediately decide whether a path ω is R-random for an interval forecast I ∈ I
or not, occurs when min I = min IR(ω) or max I = max IR(ω). Moreover, if
Property 1 holds, then as our terminology suggests, ω ∈ Ω is almost R-random
for every interval forecast I ∈ I it is random for.

In the remainder of this contribution, we intend to study the smallest interval
forecasts a path is (almost) random for, for several notions of randomness. In
the next section, we start by introducing the mathematical machinery needed
to introduce some of these notions, and in particular, the martingale-theoretic
approach to randomness, which makes extensive use of the concept of betting.
Generally speaking, a path ω ∈ Ω is then considered to be random for a fore-
casting system ϕ ∈ Φ if a subject can adopt no implementable betting strategy
that is allowed by ϕ and makes him arbitrarily rich along ω. This approach will
enable us to introduce the notions of Martin-Löf randomness, weak Martin-Löf
randomness, computable randomness and Schnorr randomness, which differ only
in what is meant by ‘implementable’ and in the way a subject should not be able
to get arbitrarily rich [6].
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3 A Martingale-Theoretic Approach—Betting Strategies

Consider the following betting game involving an infinite sequence of binary
variables X1, . . . , Xn, . . . There are three players: Forecaster, Sceptic and Reality.

Forecaster starts by specifying a forecasting system ϕ ∈ Φ. For every situ-
ation s ∈ S, the corresponding interval forecast ϕ(s) expresses for every gam-
ble f : X → R whether or not Forecaster allows Sceptic to select f ; the set of
all gambles is denoted by L(X ). A gamble g ∈ L(X ) is offered by Forecaster to
Sceptic if its expectation Ep(g) := pg(1) + (1 − p)g(0) is non-positive for every
probability p ∈ I, or equivalently, if maxp∈I Ep(g) ≤ 0.

After Forecaster has specified a forecasting system ϕ ∈ Φ, Sceptic selects
a betting strategy that specifies for every situation s ∈ S an allowable gam-
ble fs ∈ L(X ) for the corresponding interval forecast ϕ(s) ∈ I, meaning that
maxp∈ϕ(s) Ep(fs) ≤ 0.

The betting game now unfolds as Reality reveals the successive elements
ωn ∈ X of a path ω ∈ Ω. In particular, at every time instant n ∈ N0, the
following actions have been and are completed: Reality has already revealed the
situation ω1:n, Sceptic engages in a gamble fω1:n ∈ L(X ) that is specified by
his betting strategy, Reality reveals the next outcome ωn+1 ∈ X , and Sceptic
receives a (possibly negative) reward fω1:n(ωn+1). We furthermore assume that
Sceptic starts with initial unit capital, so his running capital at every time instant
n ∈ N0 equals 1+

∑n−1
k=0 fω1:k(ωk+1). We also don’t allow Sceptic to borrow. This

means that he is only allowed to adopt betting strategies that, regardless of the
path that Reality reveals, will guarantee that his running capital never becomes
negative.

In order to formalise Sceptic’s betting strategies, we will introduce the notion
of test supermartingales. We start by considering a real process F : S → R; it is
called positive if F (s) > 0 for all s ∈ S and non-negative if F (s) ≥ 0 for all s ∈ S.
A real process F is called temporal if F (s) only depends on the situation s ∈ S

through its length |s|, meaning that F (s) = F (t) for any two s, t ∈ S such that
|s| = |t|. A real process S is called a selection process if S(s) ∈ {0, 1} for all s ∈ S.

With any real process F , we can associate a gamble process ΔF : S → L(X ),
defined by ΔF (s)(x) := F (s x) − F (s) for all s ∈ S and x ∈ X , and we call it
the process difference for F . If F is positive, then we can also consider another
gamble process DF : S → L(X ), defined by DF (s)(x) := F (s x)/F (s) for all s ∈ S

and x ∈ X , which we call the multiplier process for F . And vice versa, with
every non-negative real gamble process D : S → L(X ), we can associate a non-
negative real process D� : S → R defined by D�(s) :=

∏n−1
k=0 D(x1:k)(xk+1) for

all s = (x1, . . . , xn) ∈ S, and we then say that D� is generated by D.
When given a forecasting system ϕ ∈ Φ, we call a real process M a super-

martingale for ϕ if for every s ∈ S, ΔM(s) is an allowable gamble for the corre-
sponding interval forecast ϕ(s), meaning that maxp∈ϕ(s) Ep(ΔM(s)) ≤ 0. More-
over, a supermartingale T is called a test supermartingale if it is non-negative
and T (�) := 1. We collect all test supermartingales for ϕ in the set T(ϕ).
It is easy to see that every test supermartingale T corresponds to an allowed
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betting strategy for Sceptic that starts with unit capital and avoids borrow-
ing. Indeed, for every situation s = (x1, . . . , xn) ∈ S, T specifies an allowable
gamble ΔT (s) for the interval forecast ϕ(s) ∈ I, and Sceptic’s running capital
1+

∑n−1
k=0 ΔT (x1:k)(xk+1) equals T (s) and is therefore non-negative, and equals 1

in �.
We recall from Sect. 2 that martingale-theoretic randomness notions differ in

the nature of the implementable betting strategies that are available to Scep-
tic. More formally, we will consider three different types of implementable test
supermartingales: computable ones, lower semicomputable ones, and test super-
martingales generated by lower semicomputable multiplier processes. A test
supermartingale T ∈ T(ϕ) is called computable if there is some finite algorithm
that, for every s ∈ S and any n ∈ N0, can compute the real number T (s) with
a precision of 2−n. A test supermartingale T ∈ T(ϕ) is called lower semicom-
putable if there is some finite algorithm that, for every s ∈ S, can compute an
increasing sequence (qn)n∈N0 of rational numbers that approaches the real num-
ber T (s) from below—but without knowing, for any given n, how good the lower
bound qn is. Similarly, a real multiplier process D is called lower semicomputable
if there is some finite algorithm that, for every s ∈ S and x ∈ X , can compute
an increasing sequence (qn)n∈N0 of rational numbers that approaches the real
number D(s)(x) from below. For more details, we refer the reader to Appendix
A of the extended on-line version [8].

4 Several Notions of (Imprecise) Randomness

At this point, we have introduced the necessary mathematical machinery to
define our different randomness notions. We start by introducing four martingale-
theoretic ones: Martin-Löf (ML) randomness, weak Martin-Löf (wML) random-
ness, computable (C) randomness and Schnorr (S) randomness. Generally speak-
ing, for these notions, a path ω ∈ Ω is random for a forecasting system ϕ ∈ Φ
if Sceptic has no implementable allowed betting strategy that makes him arbi-
trarily rich along ω. We stress again that these randomness notions differ in
how Sceptic’s betting strategies are implementable, and in how he should not
be able to become arbitrarily rich along a path ω ∈ Ω. With these types of
restrictions in mind, we introduce the following sets of implementable allowed
betting strategies.

TML(ϕ) all lower semicomputable test supermartingales for ϕ
TwML(ϕ) all test supermartingales for ϕ generated by lower

semicomputable multiplier processes
TC(ϕ),TS(ϕ) all computable test supermartingales for ϕ

For a path ω to be Martin-Löf, weak Martin-Löf or computably random, we
require that Sceptic’s running capital should never be unbounded on ω for any
implementable allowed betting strategy; that is, no test supermartingale T ∈
TR(ϕ) should be unbounded on ω, meaning that lim supn→∞ T (ω1:n) = ∞.
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Definition 4 ([5]). For any R ∈ {ML,wML,C}, a path ω ∈ Ω is R-random for
a forecasting system ϕ ∈ Φ if no test supermartingale T ∈ TR(ϕ) is unbounded
on ω.

For Schnorr randomness, we require instead that Sceptic’s running capital
should not be computably unbounded on ω for any implementable allowed betting
strategy. More formally, we require that no test supermartingale T ∈ TS(ϕ)
should be computably unbounded on ω. That T is computably unbounded on ω
means that lim supn→∞[T (ω1:n) − τ(n)] ≥ 0 for some real map τ : N0 → R≥0

that is

(i) computable;
(ii) non-decreasing, so τ(n + 1) ≥ τ(n) for all n ∈ N0;
(iii) unbounded, so limn→∞ τ(n) = ∞.2

Since such a real growth function τ is unbounded, it expresses a (computable)
lower bound for the ‘rate’ at which T increases to infinity along ω. Clearly, if
T ∈ TS(ϕ) is computably unbounded on ω ∈ Ω, then it is also unbounded on ω.

Definition 5 ([5]). A path ω ∈ Ω is S-random for a forecasting system ϕ ∈ Φ
if no test supermartingale T ∈ TS(ϕ) is computably unbounded on ω.

De Cooman and De Bock have proved that these four martingale-theoretic
randomness notions satisfy Properties 1 and 2 [5, Propositions 9,10,17,18]. To
describe the relations between these martingale-theoretic imprecise-probabilistic
randomness notions, we consider the sets ΩR(ϕ), with R ∈ {ML,wML,C,S};
they satisfy the following inclusions [5, Section 6].

ΩML(ϕ) ⊆ ΩwML(ϕ) ⊆ ΩC(ϕ) ⊆ ΩS(ϕ).

Thus, if a path ω ∈ Ω is Martin-Löf random for a forecasting system ϕ ∈
Φ, then it is also weakly Martin-Löf, computably and Schnorr random for ϕ.
Consequently, for every forecasting system ϕ ∈ Φ, there are at most as many
paths that are Martin-Löf random as there are weakly Martin-Löf, computably
or Schnorr random paths. We therefore call Martin-Löf randomness stronger
than weak Martin-Löf, computable, or Schnorr randomness. And so, mutatis
mutandis, for the other randomness notions.

We also consider two other imprecise-probabilistic randomness notions, which
have a more frequentist flavour: Church randomness (CH) and weak Church
randomness (wCH). Their definition makes use of yet another (but simpler) type
of implementable real processes; a selection process S is called recursive if there
is a finite algorithm that, for every s ∈ S, outputs the binary digit S(s) ∈ {0, 1}.

2 Since τ is non-decreasing, it being unbounded is equivalent to limn→∞ τ(n) = ∞.
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Definition 6 ([5]). A path ω ∈ Ω is CH-random (wCH-random) for a fore-
casting system ϕ ∈ Φ if for every recursive (temporal) selection process S for
which limn→∞

∑n−1
k=0 S(ω1:k) = ∞, it holds that

lim inf
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]

∑n−1
k=0 S(ω1:k)

≥ 0

and

lim sup
n→∞

∑n−1
k=0 S(ω1:k)[ωk+1 − ϕ(ω1:k)]

∑n−1
k=0 S(ω1:k)

≤ 0.

For a stationary forecasting system I ∈ I, the conditions in these definitions
simplify to the perhaps more intuitive requirement that

min I ≤ lim inf
n→∞

∑n−1
k=0 S(ω1:k)ωk+1
∑n−1

k=0 S(ω1:k)
≤ lim sup

n→∞

∑n−1
k=0 S(ω1:k)ωk+1
∑n−1

k=0 S(ω1:k)
≤ max I.

It is easy to see that these two randomness notions also satisfy Properties 1
and 2. Since the notion of weak Church randomness considers fewer selection
processes than Church randomness does, it is clear that if a path ω ∈ Ω is
Church random for a forecasting system ϕ ∈ Φ, then it is also weakly Church
random for ϕ. Hence, ΩCH(ϕ) ⊆ ΩwCH(ϕ). For computable forecasting systems,
we can also relate these two ‘frequentist flavoured’ notions with the martingale-
theoretic notions considered before [5, Sections 6 and 7]: for every computable
forecasting system ϕ ∈ Φ,

ΩML(ϕ) ⊆ ΩwML(ϕ) ⊆ ΩC(ϕ) ⊆ ΩCH(ϕ) ⊆
⊆ ΩS(ϕ) ⊆ ΩwCH(ϕ). (1)

5 Smallest Interval Forecasts and Randomness

From now on, we will focus on stationary forecasting systems and investigate
the differences and similarities between the six randomness notions we consider.
We start by studying if there is a smallest interval forecast for which a path
is (almost) random. To this end, we first compare the sets IR(ω), with R ∈
{ML,wML,C,S,CH,wCH}. They satisfy similar relations as the sets ΩR(ϕ)—
but without a need for computability assumptions.

Proposition 1 ([5, Sect. 8]). For every path ω ∈ Ω, it holds that

IML(ω) ⊆ IwML(ω) ⊆ IC(ω) ⊆ ICH(ω) ⊆
⊆ IS(ω) ⊆ IwCH(ω).

Similarly to before, if a path ω ∈ Ω is Martin-Löf random for an interval fore-
cast I ∈ I, then it is also weakly Martin-Löf, computably, Schnorr and (weakly)
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Church random for I. Observe that for our weakest notion of randomness, Defi-
nition 6—with S = 1—guarantees that all interval forecasts I ∈ IwCH(ω) satisfy
Property 3, and therefore, by Proposition 1, all six randomness notions that we
are considering here satisfy Property 3. Since the sets IR(ω) are also non-empty
by Property 2, the interval forecasts IR(ω) are well-defined and non-empty for
all R ∈ {ML,wML,C,S,CH,wCH}. Moreover, since the sets IR(ω) satisfy the
relations in Proposition 1, their intersections IR(ω) satisfy the following inverse
relations.

Corollary 1. For every path ω ∈ Ω, it holds that

IwCH(ω) ⊆ ICH(ω) ⊆
⊆ IS(ω) ⊆ IC(ω) ⊆ IwML(ω) ⊆ IML(ω).

For Church and weak Church randomness, it holds that every path ω ∈ Ω is
in fact Church and weakly Church random, respectively, for the interval fore-
casts ICH(ω) and IwCH(ω).

Proposition 2. Consider any R ∈ {CH,wCH} and any path ω ∈ Ω. Then
IR(ω) is the smallest interval forecast that ω is R-random for.

A similar result need not hold for the other four types of randomness we
are considering here. As an illustrative example, consider the non-stationary but
temporal precise forecasting system ϕ∼1/2 defined, for all s ∈ S, by

ϕ∼1/2(s) :=
1
2

+ (−1)|s|δ(|s|), with δ(n) := e− 1
n+1

√

e
1

n+1 − 1 for all n ∈ N0.

It has been proved that if a path ω ∈ Ω is computably random for ϕ∼1/2, then
ω is Church random and almost computably random for the stationary precise
model 1/2, whilst not being computably random for 1/2 [3].

While in general IR(ω) may not be the smallest interval forecast that a
path ω ∈ Ω is R-random for, De Cooman and De Bock have effectively proved
that for R ∈ {wML,C,S}, every path ω ∈ Ω is almost R-random for IR(ω),
essentially because the corresponding sets IR(ω) are then closed under finite
intersections.

Proposition 3. ([5, Sect. 8]). Consider any R ∈ {wML,C,S} and any
path ω ∈ Ω. Then IR(ω) is the smallest interval forecast for which ω is almost
R-random.

It should be noted that there is no mention of Martin-Löf randomness in
Propositions 2 and 3. Indeed, it is an open problem whether every path ω ∈ Ω is
(almost) ML-random for the interval forecast IML(ω). We can however provide a
partial answer by focusing on paths ω ∈ Ω that are ML-random for a computable
precise forecasting system ϕ ∈ Φ.

Proposition 4. If a path ω ∈ Ω is ML-random for a computable precise fore-
casting system ϕ ∈ Φ, then IML(ω) is the smallest interval forecast for which ω
is almost ML-random.
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6 What Do Smallest Interval Forecasts Look Like?

Having established conditions under which IR(ω) is the smallest interval forecast
ω is (almost) random for, we now set out to find an alternative expression for
this interval forecast. Forecasting systems will play a vital role in this part of
the story; for every path ω ∈ Ω and every forecasting system ϕ ∈ Φ, we consider
the interval forecast Iϕ(ω) defined by

Iϕ(ω) :=
[
lim inf
n→∞ ϕ(ω1:n), lim sup

n→∞
ϕ(ω1:n)

]
.

When we restrict our attention to computable forecasting systems ϕ ∈ Φ, and
if we assume that a path ω ∈ Ω is R-random for such a forecasting system ϕ,
with R ∈ {ML,wML,C,S,CH,wCH}, then the forecasting system ϕ imposes
outer bounds on the interval forecast IR(ω) in the following sense.

Proposition 5. For any R ∈ {ML,wML,C,S,CH,wCH} and any path ω ∈ Ω
that is R-random for a computable forecasting system ϕ ∈ Φ: IR(ω) ⊆ Iϕ(ω).

If we only consider computable precise forecasting systems ϕ ∈ Φ and assume
that a path ω ∈ Ω is R-random for ϕ, with R ∈ {ML,wML,C,CH}, then the
forecasting system ϕ completely characterises the interval forecast IR(ω).

Theorem 1. For any R ∈ {ML,wML,C,CH} and any path ω ∈ Ω that is R-
random for a computable precise forecasting system ϕ ∈ Φ: IR(ω) = Iϕ(ω).

When the computable precise forecasting systems ϕ ∈ Φ are also temporal,
this result applies to Schnorr and weak Church randomness as well.

Theorem 2. For any R ∈ {ML,wML,C,S,CH,wCH} and any path ω ∈ Ω
that is R-random for a computable precise temporal forecasting system ϕ ∈ Φ:
IR(ω) = Iϕ(ω).

7 When Do These Smallest Interval Forecasts Coincide?

Finally, we put an old question into a new perspective: to what extent are ran-
domness notions different? We take an ‘imprecise’ perspective here, by comparing
the smallest interval forecasts for which a path ω ∈ Ω is (almost) R-random,
with R ∈ {ML,wML,C,S,CH,wCH}. As we will see, it follows from our previ-
ous exposition that there are quite some paths for which these smallest interval
forecasts coincide.

Let us start by considering a path ω ∈ Ω that is ML-random for some com-
putable precise forecasting system ϕ ∈ Φ; similar results hold when focusing on
weaker notions of randomness. We know from Eq. (1) that ω is then also wML-,
C- and CH-random for ϕ. By invoking Propositions 2, 3 and 4, we infer that
IR(ω) is the smallest interval forecast that ω is (almost) R-random for, for any
R ∈ {ML,wML,C,CH}. Moreover, by Theorem 1, these smallest interval fore-
casts all equal Iϕ(ω) and therefore coincide, i.e., IML(ω) = IwML(ω) = IC(ω) =
ICH(ω) = Iϕ(ω).
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By only looking at temporal computable precise forecasting systems ϕ ∈ Φ,
we can even strengthen these conclusions. For example, using a similar argument
as before—but using Theorem 2 instead of 1—we see that if ω is ML-random
for such a forecasting system ϕ, then the smallest interval forecasts IR(ω) for
which ω is (almost) R-random coincide for all six randomness notions that we
consider.

Looking at these results, the question arises whether there are paths ω ∈ Ω
for which the various interval forecasts IR(ω) do not coincide. It turns out
that such paths do exist. We start by showing that the smallest interval fore-
casts IC(ω) and IS(ω) for which a path ω ∈ Ω is respectively almost C- and
almost S-random do not always coincide; this result is mainly a reinterpretation
of a result in [5,10].

Proposition 6. There is a path ω ∈ Ω such that IS(ω) = 1/2 ∈ [1/2, 1] ⊆ IC(ω).

We are also able to show that there is a path ω ∈ Ω such that IC(ω) = 1/2 is
the smallest interval forecast it is almost C-random for, whereas ω is not almost
ML-random for 1/2; for this result, we have drawn inspiration from [9].

Proposition 7. For every δ ∈ (0, 1/2), there is a path ω ∈ Ω such that IC(ω) =
1/2 and I /∈ IML(ω) for any I ∈ I such that I ⊆ [1/2 − δ, 1/2 + δ].

Clearly, the path ω ∈ Ω in Proposition 7 cannot be Martin-Löf random for a
precise computable forecasting system ϕ ∈ Φ, because otherwise, the interval
forecasts IC(ω) and IML(ω) would coincide by Eq. (1) and Theorem 1, and ω
would therefore be almost Martin-Löf random for 1/2 by Proposition 4, contra-
dicting the result. So the path ω in this result is an example of a path for which
we do not know whether there is a smallest interval forecast that ω is almost
Martin-Löf random for. However, if there is such a smallest interval forecast,
then Proposition 7 shows it is definitely not equal to 1/2; due to Corollary 1, it
must then strictly include 1/2.

8 Conclusions and Future Work

We’ve come to the conclusion that various (non-stationary) precise-probabilistic
randomness notions in the literature are, in some respects, not that different; if
a path is random for a computable precise (temporal) forecasting system, then
the smallest interval forecast for which it is (almost) random coincides for sev-
eral randomness notions. The computability condition on the precise forecasting
system is important for this result, but we don’t think it is that big a restriction.
After all, computable forecasting systems are those that can be computed by a
finite algorithm up to any desired precision, and therefore, they are arguably the
only ones that are of practical relevance.

An important concept that made several of our results possible was that
of almost randomness, a notion that is closely related to randomness but is—
slightly—easier to satisfy. In our future work, we would like to take a closer look
at the difference between these two notions. In particular, the present discussion,
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together with our work in [7], makes us wonder to what extent the distinction
between them is relevant in a more practical context.

We also plan to continue investigating the open question whether there is for
every path some smallest interval forecast for which it is (almost) Martin-Löf
random. Finally, there is still quite some work to do in finding out whether the
randomness notions we consider here are all different from a stationary imprecise-
probabilistic perspective, in the sense that there are paths for which the smallest
interval forecasts for which they are (almost) random do not coincide.
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