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Abstract. This paper proposes new analysis techniques for Bayes net-
works in which conditional probability tables (CPTs) may contain sym-
bolic variables. The key idea is to exploit scalable and powerful tech-
niques for synthesis problems in parametric Markov chains. Our tech-
niques are applicable to arbitrarily many, possibly dependent, parame-
ters that may occur in multiple CPTs. This lifts the severe restrictions on
parameters, e.g., by restricting the number of parametrized CPTs to one
or two, or by avoiding parameter dependencies between several CPTs,
in existing works for parametric Bayes networks (pBNs). We describe
how our techniques can be used for various pBN synthesis problems
studied in the literature such as computing sensitivity functions (and
values), simple and difference parameter tuning, ratio parameter tuning,
and minimal change tuning. Experiments on several benchmarks show
that our prototypical tool built on top of the probabilistic model checker
Storm can handle several hundreds of parameters.

1 Introduction

Parametric Bayesian Networks. We consider Bayesian networks (BNs) whose
conditional probability tables (CPTs) contain symbolic parameters such as x1,
2·x2

1, and x1+x2 with 0 < x1, x2 < 1. Parametric probabilistic graphical models
received a lot of attention, see e.g., [7,9–11,13,14,17–19,26,34,37,40,42]. Sensi-
tivity analysis determines the effect of the parameter values in the CPTs on the
decisions drawn from the parametric BN (pBN), e.g., whether Pr(H=h | E=e) >
q for a given q ∈ Q ∩ [0, 1]. It amounts to establishing a function expressing an
output probability in terms of the xi parameters under study. Parameter syn-
thesis on pBNs deals with instantiating or altering the parameters such that the
resulting BN satisfies some constraint of interest. For pBNs, synthesis mostly
amounts to parameter tuning: find the minimal change on the parameters such
that some constraint, e.g., Pr(H=h | E=e) > q holds [15,40]. As sensitivity
analysis and parameter synthesis are computationally hard in general [37,38,40],
many techniques restrict the number of parameters per CPT (n-way for small
n [13,17,29]), permit parameter dependencies in several CPTs (single CPT [14]),
or consider specific structures such as join trees [37] and require all parameters
to occur in the same clique of the junction tree.
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Parametric Markov Chains. Quite independently, analysis techniques for
Markov chains (MCs) have been developed in the formal verification commu-
nity in the last two decades [21,23,24,27,30,31,39,41]; for a recent overview
see [35]. Parametric MCs (pMCs) are MCs in which transitions are labelled with
multivariate polynomials over a fixed set of parameters. Substitution of these
variables by concrete values induces a probability distribution over the state
space of the MC. Whereas early works focused on computing a rational func-
tion over the parameters expressing the reachability probability of a given target
state, in the last years significant progress has been made to check whether there
exists a parameter valuation inducing a MC that satisfies a given objective, or to
partition the parameter space—the space of all possible parameter values—into
“good” and “bad” w.r.t. a given objective, e.g., is the probability to reach some
states below (or above) a given threshold q? The complexity of various pMC
synthesis problems is studied in [1,36].

This paper aims to extend the spectrum of parameter synthesis techniques for
parametric BNs, i.e., BNs in which arbitrary many CPTs may contain symbolic
probabilities, with state-of-the-art and recently developed techniques for paramet-
ric MCs. Consider the BN adapted from [22] depicted below. The probability of
a cow being pregnant given both tests are negative is about 0.45. Assume the
farmer wants to replace both tests such that this false-positive error is below 0.2.
Figure 1 (left) indicates the corresponding pBN while (right) shows the synthe-
sized values of the parameters p and q (the false-negative probabilities for the
new urine and blood tests) using pMC techniques [41] such that the farmer’s
constraint is satisfied (green) or not (red).

Pregnancy

Blood TestUrine Test

Pregnancy

no yes

0.13 0.87

Urine Test

Pregnancy neg pos

no 0.893 0.107
yes 0.36 0.64

Blood Test

Pregnancy neg pos

no 0.894 0.106
yes 0.27 0.73

Fig. 1. (left) Parametric CPTs and (right) the parameter space split into safe and
unsafe regions for the constraint Pr(P = yes | U = neg and B = neg) ≤ 0.2. (Color
figure online)
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Let us highlight a few issues: we can treat parameter space partitionings that
go beyond rectangular shapes, and we support multiple, possibly dependent,
parameters (not illustrated in our example). Thanks to approximate techniques
such as parameter lifting [41], the entire parameter space can be split into safe,
unsafe, and—by some approximation factor—unknown regions. This provides
useful information: if it is not possible to find urine and blood tests of a certain
quality, are alternatives fine too? Parameter tuning [13] for pBNs finds parame-
ter values that are at a minimal distance to the original values in the BN. For our
example, the BN sensitivity tool SamIam suggests changing the false-negative
probability of the urine test (p) from 0.36 to 0.110456; or changing the false-
negative probability of the blood test (q) from 0.27 to 0.082842.1 Interestingly,
if the parameters occur in multiple CPTs, the constraint can be satisfied with
a smaller deviation from the original parameter values. Other recent work [5]
focuses on obtaining symbolic functions for pBN-related problems such as sen-
sitivity analysis. Note that pBNs are similar to constrained BNs [6] that focus
on logical semantics rather than synthesis algorithms and tools as we do.

We treat the theoretical foundations of exploiting pMC techniques for various
synthesis questions on pBNs, present a prototypical tool that is built on top of the
probabilistic model checker Storm [25] and the pMC analysis tool Prophesy [24],
and provide experimental results that reveal:

– pMC techniques are competitive to most common functions with the pBN
tools SamIam and Bayesserver2.

– pMC techniques are well-applicable to general pBNs, in particular by allowing
parameter dependencies.

– Approximate parameter space partitioning is effective for parameter tuning
e.g., ratio, difference, and minimal change problems.

Further proofs and details of this paper can be found in [44].

2 Parametric Bayesian Networks

This section defines parametric Bayesian networks (BNs)3 and defines the sensi-
tivity analysis and parameter tuning tasks from the literature that we consider.

Parameters. Let X = {x1, . . . , xn} be a finite set of real-valued parameters and
Q(X) denote the set of multivariate polynomials over X with rational coeffi-
cients. A parameter instantiation is a function u : X → R. A polynomial f can
be interpreted as a function f : Rn → R where f(u) is obtained by substitution,
i.e., in f(u) each occurrence of xi in f is replaced by u(xi). To make clear where
substitution occurs, we write f [u] instead of f(u) from now on. We assume that

1 When it comes to multiple parameter suggestions, SamIam suggests p = 0.120097 or
q = 0.089892.

2 We do not consider tools such as [48] for sensitivity analysis of Credal networks.
3 Our notion of parametric BN should not be confused with existing parametric notions

that consider variations of the structure, i.e., the topology of the BN.
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all parameters are bounded, i.e., lbi ≤ u(xi) ≤ ubi for each parameter xi. The
parameter space of X is the set of all possible parameter values, the hyper-
rectangle spanned by the intervals [lbi, ubi]. A subset R of the parameter space
is called a region.

Parametric Bayes Networks. A parametric BN is a BN in which entries in the
conditional probability tables (CPTs) are polynomials over the parameters in X.

Definition 1. A parametric BN (pBN) B is a tuple (V,E,X,Θ) with:

– V = {v1, . . . , vm} is a set of discrete random variables with dom(vi) = Dvi

– G = (V,E) with E ⊆ V × V is a directed acyclic graph on V
– X = {x1, . . . , xn} is a finite set of real-valued parameters
– Θ is a set of parametric conditional probability tables Θ = {Θvi

| vi ∈ V }

Θvi
:

⎛
⎝ ∏

p∈parents(vi)

Dp

⎞
⎠ → Q(X)|Dvi

|.

Let B[u] be obtained by replacing every parameter xi in B by its value u(xi). A
parameter instantiation u is well-formed for the pBN B if B[u] is a BN, i.e., for
every vi ∈ V and parent evaluation par, Θvi

(par)[u] yields a probability distri-
bution over Dvi

. In the sequel, we assume u to be well-formed. A pBN defines a
parametric joint probability distribution over V .

pBN Subclasses. We define some sub-classes of pBNs that are used in existing sen-
sitivity analysis techniques and tools. They constrain the number of parameters,
the number of CPTs (and the number of rows in a CPT) containing parameters.
Let B = (V,E,X,Θ) be a pBN, c(xi) the number of CPTs in B in which xi

occurs and r(xi) the number of CPT rows in which xi occurs.

– B ∈ p1c1r1 iff B contains one parameter x1 and x1 only occurs in a single row
of a single CPT, i.e., X = {x1}, c(x1) = r(x1) = 1.

– B ∈ p2c≤2r1 iff B involves two parameters occurring only in two rows of two
(or one) CPTs, i.e., X = {x1, x2}, c(xi) ∈ {1, 2}, r(xi) = 1 for i = 1, 2.

– B ∈ p∗c1r1 iff B allows multiple distinct parameters, provided each parameter
occurs in a single row of a single CPT, i.e., r(xi) = 1, c(xi) = 1 for each xi

and all the parameters occur in the same CPT.

The class p1c1r1 is used in one-way, p2c≤2r1 in two-way sensitivity analy-
sis [13,17,29] and p∗c1r1in single CPT [14].

Parameter Synthesis Problems in pBN. We define some synthesis problems for
pBNs by their corresponding decision problems [38]. Let Pr denote the paramet-
ric joint distribution function induced by pBN B = (V,E,X,Θ) and Pr[u] the
joint probability distribution of B[u] at well-formed instantiation u. Let E ⊆ V
be the evidence, H ⊆ V the hypothesis and q ∈ Q ∩ [0, 1] a threshold.

Parameter Tuning. Find an instantiation u s.t. Pr[u](H = h | E = e) ≥ q.
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Hypothesis Ratio Parameter Tuning. Find an instantiation u s.t.

Pr[u](H = h′ | E = e)
Pr[u](H = h | E = e)

≥ q i.e.,
Pr[u](H = h′, E = e)
Pr[u](H = h,E = e)

≥ q,

where h and h′ are joint variable evaluations for the hypothesis H.
Hypothesis Difference Parameter Tuning. Find an instantiation u s.t.

Pr[u](H = h | E = e) − Pr[u](H = h′ | E = e) ≥ q,

where h and h′ are joint variable evaluations for the hypothesis H.
Minimal Change Parameter Tuning. For a given parameter instantiation

u0 and ε ∈ Q>0, find an instantiation u s.t.

d(Pr[u],Pr[u0]) ≤ ε,

where d is a distance notion on probability distributions, see [15].
Computing Sensitivity Function and Sensitivity Value. For the evidence

E = e and the hypothesis H = h, compute the sensitivity function:

fPr(H=h | E=e) = Pr(H = h | E = e).

This is a rational function over X, i.e., a fraction g/h with g, h ∈ Q(X).

The difference and ratio problems can analogously be defined for evidences. The
evidence tuning problems are defined for values e and e′ for E, given a fixed
value h for H.

3 Parametric Markov Chains

A parametric Markov chain is a Markov chain in which the transitions are
labelled with polynomials over the set X of parameters. These polynomials are
intended to describe a parametric probability distribution over the pMC states.

Definition 2. A parametric Markov chain (pMC) M is a tuple (Σ, σI ,X, P )
where Σ is a finite set of states with initial state σI ∈ Σ, X is as before, and
P : Σ × Σ → Q(X) is the transition probability function.

For pMC M = (Σ, σI ,X, P ) and well-formed parameter instantiation u on X,
M[u] is the discrete-time Markov chain (Σ, σI ,X, P [u]) where P [u] is a probabil-
ity distribution over Σ. We only consider well-formed parameter instantiations.
Reachability Probabilities. Let D be an MC. Let Paths(σ) denote the set of all
infinite paths in D starting from σ, i.e., infinite sequences of the form σ1σ2σ3 . . .
with σ1 = σ and P (σi, σi+1) > 0. A probability measure PrD is defined on mea-
surable sets of infinite paths using a standard cylinder construction; for details,
see, e.g., [2, Ch. 10]. For T ⊆ Σ and σ ∈ Σ, let

Pr
D
(♦T ) = Pr

D
{σ1σ2σ3 . . . ∈ Paths(σ) | ∃i. σi ∈ T } (1)
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denote the probability to eventually reach some state in T from σ. For pMC M,
PrM(♦T ) is a function with PrM(♦T )[u] = PrD(♦T ) where D = M[u], see [23].
Parameter Synthesis Problems on pMCs. We consider the following synthesis
problems on pMCs. Let M = (Σ, σI ,X, P ) be a pMC and λ ∈ Q ∩ [0, 1] a
threshold, ∼ a binary comparison operator, e.g., < or ≥, and T ⊆ Σ.

Feasibility Problem. Find a parameter instantiation u s.t. PrM[u](♦T ) ∼ λ.
Synthesis Problem. Partition a region R into Ra and Rr s.t.

Pr
M[u]

(♦T ) ∼ λ for all u ∈ Ra and Pr
M[u]

(♦T ) 
∼ λ for all u ∈ Rr.

Ra is called an accepting region and Rr a rejecting region.
Approximate Synthesis Problem. Partition a region R into an accepting

region Ra, rejecting region Rr, and unknown region Ru, such that Ra ∪ Rr

covers at least c% of R. Additionally, Ra,Rr, and Ru should be finite unions
of rectangular regions.

Verification Problem. Check whether region R is accepting, rejecting, or
inconsistent, i.e., neither accepting nor rejecting.

Computing Reachability Functions. Compute the rational function
PrM(♦T ).

Algorithms for pMC Synthesis Problems. Several approaches have been devel-
oped to compute the reachability function PrM(♦T ). This includes state elim-
ination [23], fraction-free Gaussian elimination [1] and decomposition [28,33].
The reachability function can grow exponentially in the number of parameters,
even for acyclic pMCs [1]. Feasibility is a computationally hard problem: find-
ing parameter values for a pMC that satisfy a reachability objective is ETR-
complete4 [36]. Feasibility has been tackled using sampling search methods such
as PSO5 and Markov Chain Monte Carlo [16] and solving a non-linear opti-
mization problem [4]. State-of-the-art approaches [20,21] iteratively simplify the
NLP6 encoding around a point to guide the search. The approximate synthesis
problem checking is best tackled with parameter lifting [41]. The parameter lift-
ing algorithm (PLA) first drops all dependencies between parameters in a pMC.
It then transforms the pMC into a Markov decision process to get upper and
lower bounds for the given objective.

4 Analysing Parametric BNs Using pMC Techniques

The key of our approach to tackle various synthesis problems on pBNs is to
exploit pMC techniques. To that end, we transform a pBN into a pMC. We first
present a recipe that is applicable to all inference queries on pBNs, and then
detail a transformation that is tailored to the evidence in an inference query.
4 Existential Theory of the Reals. ETR problems are between NP and PSPACE, and

ETR-hard problems are as hard as finding the roots of a multi-variate polynomial.
5 Particle swarm optimization.
6 Nonlinear programming.
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A pBN2pMC Transformation. This is inspired by our mapping of BNs onto tree-
shaped MCs [43]. Here, we propose an alternative transformation that yields
more succinct (p)MCs, as it only keeps track of a subset of (p)BN variables at
each “level” of the (p)MC. These are the so-called open variables whose valuations
are necessary to determine the subsequent transitions. Intuitively, the variable
vi is open if it has already been processed and at least one of its children has
not. Below, we use ∗ if the value of variable v ∈ V is don’t care, i.e., either not
yet determined or not needed any more.

Definition 3. Let G = (V,E) be a DAG with topological order � = (v1, . . . , vm)
on V . Let vi ∈ V be open at level7 j iff i <� j and ∃vk ∈ children(vi). k >� j.
Let open�(j) denote the set of open variables at level j under �.

Definition 4. For pBN B = (V,E,X,Θ) with topological order � = (v1, . . . , vm)
on V and dom(vi) = Dvi

, let the pMC M�
B = (Σ, σI ,X, P ) where:

– Σ =
⋃m

j=1

∏m
i=1 {vi} × Tj(Dvi ) with Tj(Dvi ) =

{
Dvi if i = j or vi ∈ open�(j),

{∗} otherwise

– σI = V × {∗} is the initial state, and
– P is the transition probability function defined for f ∈ Q(X) and function

tj(di) =

{
di if vi ∈ open�(j)
∗ otherwise

by the following inference rules:

Θv1(d1) = f

σI
f→ (

(v1, d1), (v2, ∗), . . . , (vm, ∗)) (2)

σ =
(
(v1, ti−1(d1)), . . . , (vi−2, ti−1(di−2)), (vi−1, di−1), (vi, ∗), . . . , (vm, ∗)),

σ |= parents(vi), Θvi
(parents(vi))(di) = f

σ
f−→ σ′ =

(
(v1, ti(d1)), . . . , (vi−1, ti(di−1)), (vi, di), (vi+1, ∗), . . . , (vm, ∗))

(3)

σF =
(
(v1, ∗), . . . , (vm−1, ∗), (vm, dm)

) 1−→ σF (4)

The states in pMC M�
B are tuples of pairs (vi, di) where vi is a random vari-

able in B and di ∈ dom(vi) ∪ { ∗ } is the current value of vi. Note that (vi, di)
encodes vi = di. In the initial state all variables are don’t care. The (parametric)
function P specifies the probability of evolving between pMC states, which is
determined by parametric CPT entries of the pBN B. Rule (2) defines the outgo-
ing transitions of the initial state σI . Let d1 ∈ Dv1 and f=Θv1(d1) be v1’s CPT
entry for d1. σI evolves—with the parametric probability function f—to a state
in which all variables are ∗ except that v1=d1. Let σF=((v1, ∗), · · · , (vm, dm))

7 Levels are definable on M�
B as Definition 4 does not impose any backward transition.
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be the final state of M�
B. Since vm has no children, open�(m)=∅. It also holds

that open�(m−1)−{vm}=∅ as vm−1 can not have any other unprocessed children
than vm. Thus all variables, except for vm, have been reset to ∗ in σF , see rule
(4). Rule (3) specifies the transitions from the states that are neither initial nor
final. Let σ be the state in which v1, · · · , vi−1 have been already processed, i.e.,
have been assigned a value in the path from σI to σ; some may have been reset
to ∗ afterwards. Functions tj(di) ensures that only variables with no unprocessed
children are reset. Let parents(vi) be a joint variable evaluation for vi’s parents.
The second premise in rule (3) confirms that σ is consistent with parents(vi). Let
f=Θ(parents(vi))(di) be vi’s CPT entry for parents(vi) and vi=di. Function f

accordingly determines the (parametric) transition probability from σ to σ′, i.e.
a state with vi=di and the other variables determined by ti(dj). Intuitively, for
j < i, σ′ forgets vj if vi has been vj ’s only unprocessed child.

Example. Figure 2 (left) indicates the pMC for the pregnancy test pBN and the
topological ordering (P,U,B) by definition 4. The node names are abbreviated
by the first letter and the “don’t care” evaluations are omitted.

Fig. 2. The generated pMCs for the pregnancy test example based on (left) pBN2pMC
and (right) evidence-guided pBN2pMC transformation.

The following result relates (conditional) inference in pBNs to (conditional)
reachability objectives in pMCs.

Proposition 1. Let B be a pBN. Let E,H ⊆ V and � be a topological ordering
on V . Then, for the pMC M�

B we have:

Pr
B
(E) = 1 − Pr

M�
B
(♦¬E) and Pr

B
(H | E) =

1 − Pr
M�

B
(♦ (¬H ∨ ¬E))

1 − Pr
M�

B
(♦¬E)

,

where the latter equality requires PrB(¬E) < 1.
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This result directly enables to use techniques for feasibility checking on pMCs
to pBNs, and the use of techniques to compute reachability functions on pMCs
to computing sensitivity functions on pBNs.

An Evidence-Tailored pBN2pMC Transformation. The above transformation is
agnostic from the inference query. We now construct a pMC M�

B,E tailored
to a given evidence E ⊆ V . This transformation is inspired by a transfor-
mation on MCs [3] for computing conditional reachability probabilities. Let
B = (V,E,X,Θ) be a pBN and � be a topological order on V . Let evidence
E = (v1 = d1) ∧ · · · ∧ (vk = dk), such that v1 <� . . . <� vk. We construct
pMC M�

B,E by the following two amendments on the pMC M�
B as defined in

Definition 4:

1. Let Σ¬E = {σ ∈ E | ∃i. σ |= (vi = ¬di)} be the set of states violating E. We
redirect all incoming transitions of σ ∈ Σ¬E to the initial state σI .

2. For vj 
∈ E with vj <� vk, we propagate the values of vj until the level k. In
other words, we pretend vk+1 is the child of vj , so we keep vj open.

Let us formalize this. Let Σ′ and P ′ be defined analogously to Σ and P in
Definition 4, except that the definition of open set changes as described above,
affecting the definitions of Tj(vi) and tj(di). Then, let M�

B,E = (ΣE , σI ,X, PE),
where

ΣE = Σ′ \Σ¬E and PE(σ, σ′) =

{ ∑
σ′ �|=E

P ′(σ, σ′) if σ′ ∈ Σ¬E

P ′(σ, σ′) otherwise.

Example. Fig. 2 (right) indicates the evidence-guided pMC generated for our
running example, the ordering (P,U,B), and the evidence U=neg ∧ B=neg.

Proposition 2. For the evidence-tailored MC M�
B,E of pBN B, we have:

Pr
B
(H | E) = 1 − Pr

M�
B,E

(♦¬H). (5)

This result facilitates using pMC techniques for pBN parameter tuning.

Ratio and Difference Parameter Tuning by Parameter Lifting. The ratio problem
on pBN B corresponds to finding an instantiation u in the pMC M�

B,E s.t.

Pr
M�

B,E

[u](♦T ) ≥ q · Pr
M�

B,E

[u](♦G), (6)

where Pr(♦T ) stands for 1 − PrM�
B,E

[u](♦(H = ¬h′ ∨ E = ¬e)) and Pr(♦G)
abbreviates 1 − PrM�

B,E
[u](♦(H = ¬h ∨ E = ¬e)). This problem can be solved

by using PLA: let region R ⊆ Rn
≥0. We perform PLA for reaching G and reaching

T on MB, respectively. This gives upper (UBT , UBG) and lower bounds (LBT ,
LBG) for the probabilities on the left- and the right-hand side of (6). Then:

– If LBT ≥ q · UBG, the region R is accepting for the ratio property.
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– If LBT ≤ q · UBG, the region R is rejecting for the ratio property.
– Otherwise, refine the region R.

For difference parameter tuning, we adopt the above recipe by replacing (6) by:

Pr
M�

B,E

[u](♦T ) ≥ q + Pr
M�

B,E

[u](♦G). (7)

5 Experiments

Our pBN Analysis Tool. We developed a prototypical tool on top of the
tools Storm [25] and Prophesy [24], see Fig. 3. Storm is a probabilistic model
checker that dominated the last (and only) two model-checking competitions,
see https://qcomp.org/; Prophesy is an efficient tool for pMC synthesis. Our
tool deploys pMC parameter synthesis techniques to analyze pBNs. It includes
both pBN2pMC transformations where pBNs are provided in an extended bif
format. The pMCs are either encoded in Jani [8] or in the explicit drn format.
It is also possible to transform non-parametric BNs into MCs and parameterize
the MC. Storm is used to compute the sensitivity function and for parameter
tuning using PLA. Prophesy is exploited for feasibility checking: find a param-
eter instance satisfying an inference query. Our tool-chain supports p∗c∗r∗, the
general pBNs class. As baseline we used two synthesis tools for parametric BNs:
SamIam and Bayesserver.

Fig. 3. Our prototypical tool-chain for synthesis problems on pBNs

SamIam. SamIam8 is a commonly used tool for the sensitivity analysis for pBNs,
developed at Darwiche’s group at UCLA. It allows the specification of condi-
tional, hypothesis ratio, and hypothesis difference constraints on pBNs. SamIam
then attempts to identify minimal parameter changes that are necessary to sat-
isfy these constraints. It supports the pBN classes p1c1r1 and p∗c1r1.

Bayesserver. Bayeserver9 is a commercial tool that offers sensitivity analysis and
parameter tuning of pBNs. For sensitivity analysis, it computes the sensitivity

8 http://reasoning.cs.ucla.edu/samiam.
9 https://www.bayesserver.com.

https://qcomp.org/
http://reasoning.cs.ucla.edu/samiam
https://www.bayesserver.com
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function and sensitivity value. It also performs minimal-change parameter tun-
ing for conditional, hypothesis ratio, and hypothesis difference constraints. It
supports the classes p1c1r1 and p2c≤2r1 for sensitivity analysis and the class
p1c1r1 for parameter tuning. Table 1 lists the functionalities of all tools.

Table 1. Overview of the capabilities of the pBN synthesis tools considered.

SamIam Bayesserver Storm-prophesy

Computing sensitivity function ✗ p≤2c≤2r1 p∗c∗r∗
Computing sensitivity value ✗ p≤2c≤2r1 p1c∗r∗
Simple parameter tuning p∗c1r1 p1c1r1 p∗c∗r∗
Difference parameter tuning p∗c1r1 p1c1r1 p∗c∗r∗
Ratio parameter tuning p∗c1r1 p1c1r1 p∗c∗r∗
Minimal change tuning p∗c1r1 p1c1r1 p∗c∗r∗

Experimental Set-up. We took benchmarks from [45] and conducted all our exper-
iments on a 2.3 GHz Intel Core i5 processor with 16 GB of RAM. We focused
on questions such as:

1. What is the scalability for computing sensitivity functions on pBNs?
2. What is the practical scalability for feasibility checking?
3. To what extent is PLA applicable to parameter tuning for pBNs?

Computing Sensitivity Function. We performed a series of experiments for com-
puting pBN sensitivity functions using our tool-chain for the p∗c∗r1 class.
Figure 4 summarizes the results. The x−axis (log scale) indicates the pBN bench-
marks and the y−axis denotes the timing in seconds. The numbers on the bars
indicate the number of parameters in the solution functions, which is related to
the number of relevant parameters identified for the given query. We observe that

Fig. 4. Storm’s performance for calculating prior sensitivity functions of pBNs. (Unfor-
tunately, a comparison with the other tools was not possible, as SamIam does not
explicitly offers sensitivity function computation and Bayesserver sensitivity analysis
is limited to 1 or 2 parameters, see Table 1.)
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Storm scales up to 380 parameters for very large networks such as hailfinder.
The blue bars represent regular computations, while the orange bars indicate the
impact of bisimulation minimization, a built-in reduction technique in Storm.

Feasibility Checking. Our tool exploits Prophesy to find a parameter instanti-
ation u of pBN B such that the BN B[u] satisfies the given inference query.
We have performed a set of experiments for the class p∗c∗r1. Figure 5 (log-log
scale) illustrates the results; the x-axis indicates the number of parameters in
the pBN and the y-axis the time for feasibility checking (in seconds). Each line
corresponds to a pBN and the points on the lines represent single experiments.
We inserted the parameters in the predecessors of the query nodes (i.e., in H) to
maximize their relevance. We also imposed queries over multiple nodes at once
to push the boundaries. We used convex optimization (QCQP10) (left plot) and
PSO (right plot). Prophesy was able to handle up to 853 parameters.

Fig. 5. Feasibility checking on pBN benchmarks by (left) QCQP and (right) PSO.

Fig. 6. PLA results on the alarm pBN (p2c3r26) for the constraint Pr(venttube = 0 |
ventlung = 0) > 0.6 with a 99% parameter space coverage. (Color figure online)

Approximate Parameter Synthesis on pBNs: Tuning the Parameters and More.
Experiments on the pBN benchmarks using PLA aimed at (a) the classes p1c1r1

10 Quadratically-constrained quadratic programming.
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and p∗c1r1 to validate them against SamIam and Bayesserver, and (b) the class
p∗c∗r∗ to investigate the potential of PLA for general pBNs. Figure 6 visualizes
the results for the alarm pBN with 2 parameters occurring in 26 rows of 3 CPTs,
i.e., a pBN with parameter dependencies. The parameter x was used in the CPT
entries e1, · · · , ek only when the probability values of those entries coincided
in the original BN. As seen in the figure, PLA can partition the entire n-way
parameter space. The minimal-change parameter values can be extracted from
the PLA results, where the precision depends on the PLA approximation factor.

6 Conclusion

This paper exploited tools and techniques for parameter synthesis on Markov
chains to synthesis problems on parametric Bayesian networks. Prototypical tool
support for pBN analysis on top of existing pMC synthesis tools has been real-
ized. Our experiments indicate that pMC techniques can scale sensitivity anal-
ysis and parameter tuning tasks on pBNs. The experiments reveal the poten-
tial of parameter lifting [41] for partitioning the parameter space of pBNs. Most
importantly, the proposed techniques are applicable to general pBNs—no restric-
tions are imposed on the number or occurrence of parameters—and may involve
parameter dependencies. Future work include finding optimal parameter set-
tings [47], exploiting monotonicity checking [46] and to extend the current work
to (parametric) dynamic, Gaussian [12], and recursive BNs [32].

Acknowledgement. We thank Robin Drahovsky for his contributions on transform-
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Junges, Tim Quatmann, and Matthias Volk for discussions. We also thank Arthur
Choi for his support.
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