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Abstract. Abstract argumentation and logic programming are two formalisms
of non-monotonic reasoning that share many similarities. Previous studies con-
templating connections between the two formalisms provided back and forth
translations from one to the other and found they correspond in multiple dif-
ferent semantics, but not all. In this work, we propose a new set of five argument
labels to revisit the semantic correspondences between abstract argumentation
and logic programming. By doing so, we shed light on why the two formalisms
are not absolutely equivalent. Our investigation lead to the specification of the
novel least-stable semantics for abstract argumentation which corresponds to the
L-stable semantics of logic programming.

Keywords: Abstract argumentation · Logic programming · Argument
labellings

1 Introduction

Logic Programming (LP) and Abstract Argumentation Frameworks are two different
formalisms widely used for the representation of knowledge and reasoning. Abstract
Argumentation (AA) was itself inspired by logic programming in its origins, which
naturally led to several studies concerning connections between them [5,6,8,11,14,16].
One of the main approaches to observe those connections is based on the comparison
of the different semantics proposed for each formalism. To that end, the first questions
were raised and answered in [6], the work that originally introduced abstract argumen-
tation: a translation from a logic program into an abstract argumentation framework
was proposed and used to prove that the stable models (resp. the well-founded model)
of a logic program correspond to the stable extensions (resp. the grounded extension) of
its corresponding abstract argumentation framework. Other advances were made when
[16] observed the equivalence between the complete semantics for abstract argumenta-
tion and the p-stable semantics for logic programs. Those particular semantics gener-
alise many others in their respective formalisms, wielding a plethora of results gathered
in [5] and recently expanded in [4]. One particular equivalence formerly expected to
hold, however, could not be achieved, namely the correspondence between the semi-
stable semantics from abstract argumentation [3] and the L-stable semantics from logic
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programming [9]. The work we are about to present is largely motivated by that non-
correspondence result.

In our efforts to understand why the semi-stable and L-stable semantics do not cor-
respond to one another, we detected the fault is always related to some arguments whose
attackees coincide; in their redundancy, one or more of those arguments would be irrel-
evant to the evaluation of those arguments they mutually attack. We were also able to
identify that sink1 arguments play a special role in pinpointing the culprits. To achieve
our goals for this work, we follow the presentation of [5] while revising some key defi-
nitions: (i) the instantiation of abstract argumentation frameworks from logic programs
is revised to include special arguments we call default arguments (which are always
sinks) and (ii) we revise the definition of complete argument labellings [2] to use a dif-
ferent set of labels. Our revision of complete labellings follows [1,10] to contemplate
partial labellings and different categories of undecidedness. The resulting labellings,
here on called 5-valued labellings, can isolate any arguments causing semi-stable and
L-stable semantics to differ and are shown to preserve the main results in [5].

Based on those results, we introduce a novel semantics for abstract argumentation
called the least-stable (or L-stable) semantics, which we show is equivalent to the L-
stable LP semantics. The new AA semantics closes the previous gap preventing the
claim that AA is actually equivalent to LP. Our results add further to the literature con-
cerning semantics of non-monotonic reasoning formalisms, potentially allowing us to
import proof procedures and implementations from formal argumentation to logic pro-
gramming and vice-versa. Among other implications of our work, we set precedence
to the proposal of new argumentation semantics based on partial labellings. We also
establish that sink arguments have a role in the semantic evaluation of abstract argu-
mentation frameworks, which may also help us identify new interesting AA semantics.
Moreover, we show that if we restrict our attention to sink arguments, the standard
3-valued labellings are enough to capture the logic programming L-stable semantics.

2 Preliminaries

2.1 Abstract Argumentation

Abstract argumentation was introduced in [7] and most of the definitions in this section
are based on that work. Concerning new definitions, we will compute the set of sink
arguments of an abstract argumentation framework and use them to propose argumen-
tation semantics in the form of 5-valued labellings, a core trait of our approach.

Definition 1. An abstract argumentation framework is a pair (Ar , att) where Ar is a
finite set of arguments and att ⊆ Ar × Ar .

We may refer to AA frameworks simply as argumentation frameworks or AF’s.

Definition 2. Given an argumentation framework AF = (Ar , att), the set of its sink
arguments is given by SINKSAF = {A ∈ Ar | ∀B, (A,B) /∈ att}.

1 In graph theory, a sink node is one from which no edges emerge.
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The traditional approach of [7] to semantics involves the identification of sets of
arguments (called extensions) based on the concept of admissibility (see [7]). An alter-
native formalization of AA semantics was introduced in [2] where argument labellings
are used instead of extensions. The argument labellings of [2] are functions attribut-
ing to each argument a single label from {in, out, undec}. In this work, we specialise
the labels out, undec into two different labels each based on the sink arguments they
attack. Our labelling concept follows the lead of [1], where the authors explore alterna-
tive sets of labels and special cases of undecidedness in argumentation semantics. We
borrow some of the labels discussed in their work, namely the “I don’t care” (idc) label
(originally proposed in [10]) and the “I don’t know” (idk) label ([1]) and we introduce
a new label of our own, here dubbed “It doesn’t matter if it’s out” (ido). Hence, in
our work, given an argumentation framework AF = (Ar , att), an argument labelling
Al will be a function Al : Ar → {in, out, ido, idk, idc}. We will start defining
complete labellings, since the other relevant semantics are special cases of them.

Definition 3. An argument labelling is called a complete argument labelling iff for each
A ∈ Ar it holds that

– Al(A) = in iff all B that attacks A has Al(B) ∈ {out, ido}.
– Al(A) = out iff at least one B that attacks A has Al(B) = in and A attacks no
sink C with Al(C) = idk.

– Al(A) = ido iff at least one B that attacks A has Al(B) = in and A attacks at
least one sink C with Al(C) = idk

– Al(A) = idk iff at least one B that attacks A has Al(B) ∈ {out, ido}, no B that
attacks A has Al(B) = in, and every sink C attacked by A has Al(C) = idk.

– Al(A) = idc iff at least one B that attacks A has Al(B) ∈ {out, ido}, no B that
attacksA hasAl(B) = in, and at least one sink C attacked by A has Al(C) �= idk.

As one can observe, the sink arguments influence the evaluation of arguments in
our definition. For instance, the only difference between labelling an argument as out
or ido is whether that argument attacks any idk-labelled sinks. As such, out and ido
are merely specialisations of the out label from the standard 3-valued labellings of [2].
The same holds for idk and idc, as specialisations of undec from [2]. Intuitively, idk
replaces undec in most cases; idc (resp. ido) is used when the status of a classically
undec (resp. out) argument is irrelevant to the status of its attackee. In a way, the labels
ido, idc allow us to sometimes evaluate one extra argument (using ido) or one less
argument (using idc) as undecided. This is enough to ensure that our 5-valued complete
labellings from Definition 3 are one to one related to the 3-valued complete labellings
of [2] and preserve the complete semantics for abstract argumentation frameworks. The
same holds for the grounded, preferred, stable and semi-stable semantics, as they are all
particular cases of the complete semantics. Another straightforward result is

Proposition 1. Let (Ar , att) be an AF and Al be one of its complete argument
labellings. For every sink argument C ∈ SINKSAF, it holds Al(C) ∈ {in, out, idk}.

Given an argument labelling Al , we write v(Al) = {A | Al(A) = v} for v ∈
{in, out, ido, idk, idc}. An argument labelling provides a partition of Ar , so we
might as well present Al as a tuple (in(Al), out(Al), ido(Al), idk(Al), idc(Al)).
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The next definition adapts from well-known results concerning the 3-valued argu-
ment labellings of [2,5]. Our adaptation maps the 3-valued label undec to idk ∪ idc,
the specialised labels we created from the standard undec.

Definition 4. Let AL be the set of all complete argument labellings of AF. Then

– Al ∈ AL is grounded if �Al ′ ∈ AL such that in(Al ′) � in(Al).
– Al ∈ AL is preferred if �Al ′ ∈ AL such that in(Al ′) � in(Al).
– Al ∈ AL is stable if idk(Al) ∪ idc(Al) = ∅.
– Al ∈ AL is semi-stable if �Al ′ ∈ AL such that idk(Al ′) ∪ idc(Al ′) � idk(Al) ∪
idc(Al).

The following example should help the reader to further understand these concepts.

Example 1. The argumentation framework AF below has complete labellings Al1 =
({ } , { } , { } ,Ar , { }), Al2 = ({A2, A8} , {A3, A7} , {A4}, {A1, A5, A6, A9}, { }),
Al3 = ({A3, A7, A9}, {A2, A5, A8}, { }, {A1, A4, A6}, { }). The grounded labelling
of AF is Al1 and its preferred labellings are Al2,Al3. AF has no stable labellings, but
has two semi-stable labellings, namely Al2,Al3. For contrast, the corresponding argu-
ment labellings in Caminada’s 3-valued approach are Al ′1 = ({ } , { } ,Ar), Al ′2 =
({A2, A8} , {A3, A7, A4} , {A1, A5, A6, A9}), Al ′3 = ({A3, A7, A9} , {A2, A5, A8} ,
{A1, A4, A6}). We highlight the difference between Al2 and Al ′2 due to ido(Al2) �= ∅.

A2 A3A4A1 A5

A7A6 A8 A9

It should be noticed that sink arguments were only attributed labels in, out, idk, as
previously stated in Proposition 1.

2.2 Logic Programs and Semantics

In the current paper, we account for propositional normal logic programs2, which we
call logic programs or simply programs from now on. We will follow the presentation
of logic programs and their semantics as done in [5], which, in turn, is based on [13].

Definition 5. A rule r is an expression

r : c ← a1, . . . , an, not b1, . . . , not bm

(m,n ≥ 0) where c, each ai (1 ≤ i ≤ n) and each bj (1 ≤ j ≤ m) are atoms and
not represents negation as failure. A literal is either an atom a (positive literal) or a

2 These are logic programs whose rules may contain weak but not strong negation and where
the head of each rule is a single atom.
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negated atom not a (negative literal). Given a rule r as above, c is called the head of r,
which we denote head(r), and a1, . . . , an, not b1, . . . , not bm is called the body of r,
denoted body(r). Further, we divide body(r) in two sets body+(r) = {a1, . . . , an} and
body−(r) = {not b1, . . . , not bm}. A logic program (or simply a program or LP) P is
then defined as a finite set of rules. If every r ∈ P has body−(r) = ∅, then P is positive.
The Herbrand Base of P is the set HBP of all atoms appearing in the program.

Definition 6. A 3-valued Herbrand Interpretation I of a logic program P is a pair
〈T, F 〉 with T, F ⊆ HBP and T ∩F = ∅. The atoms in T are said to be true, the atoms
in F are said to be false and the atoms in HBP \ (T ∪ F ) are said to be undefined.

Definition 7. A 3-valued Herbrand interpretation I of a logic program P is called a
model if I(head(r)) ≥ min({I(l) | l ∈ body(r)}) for each r ∈ P , according to the
order true > undefined > false.

Let I be a 3-valued Herbrand Interpretation of P , the reduct of P with respect to I
(written P/I) can be obtained replacing each occurrence of a naf-literal not c in P
“true” if c ∈ F , by “false” if c ∈ T , or by “undefined” otherwise. In this context,
“true”, “false” and “undefined” are special atoms not occurring in P which are
necessarily evaluated according to their naming conventions. This procedure ensures
P/I has no instances of negative literals. As consequence, P/I has a unique least 3-
valued model [13] hereby denoted ΨP (I) = 〈TΨ, FΨ〉3 with minimal TΨ and maximal
FΨ (w.r.t. set inclusion) such that, for every a ∈ HBP :

– a ∈ TΨ if there is a rule r′ ∈ P/I with head(r′) = a and body+(r′) ⊆ TΨ;
– a ∈ FΨ if every rule r′ ∈ P/I with head(r′) = a has body+(r′) ∩ FΨ �= ∅;

Definition 8. Let I = 〈T, F 〉 be a 3-valued Herbrand Interpretation of program P .

– I is a partial stable (or P-stable) model of P iff ΨP (I) = I .
– T is a well-founded model of P iff I is a P-stable model of P where T is minimal
(w.r.t. set inclusion) among all P-stable models of P .

– T is a regular model of P iff I is a P-stable model of P where T is maximal (w.r.t.
set inclusion) among all P-stable models of P .

– T is a stable model of P iff I is a P-stable model of P where T ∪ F = HBP .
– T is an L-stable model of P iff I is a P-stable model of P where T ∪ F is maximal
(w.r.t. set inclusion) among all P-stable models of P .

While some of the above definitions are not standard in logic programming litera-
ture, their equivalence is proved in [5]. This approach is favored in our work due to the
structural similarities to Definition 4, simplifying the proof of some results.

The following example should help the reader to understand the above concepts.

Example 2. Consider the following logic program P :

r1 : c ← not c r4 : c ← not c, not a
r2 : a ← not b r5 : g ← not g, not b
r3 : b ← not a

3 The above definition consists of a least fix-point of the immediate consequence operator Ψ
defined in [13], which is guaranteed to exist and be unique for positive programs.
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This program has three P-stable models: I1 = 〈{ }, { }〉, I2 = 〈{a}, {b}〉, I3 =
〈{b}, {a, g}〉. P has { } for its well-founded model (always unique), {a}, {b} for its
regular models, no stable models and only {b} as an L-stable model.

3 From Logic Programs to Argumentation Frameworks

In this section, we review the procedure used to instantiate argumentation frameworks
based on logic programs from [5] with slight updates to each step. Our updates are
required to include special arguments we call default arguments, which are necessarily
sinks, in the result. By design, they will be the only sinks in the output of our procedure.

3.1 Step 1: AF Instantiation

Given a normal logic program P , we recursively instantiate the following arguments:

Definition 9. Let P be a logic program.

– If r : c ← not b1, . . . , not bm is a rule in P then r is also an argument (say A) with
Conc(A) = c, Rules(A) = {r}, Vul(A) = {b1, . . . , bm} and Sub(A) = {A}.

– If r : c ← a1, . . . , an, not b1, . . . , not bm is a rule in P and for each ai ∈ body+(r)
there is an argument Ai with Conc(Ai) = ai and r /∈ Rules(Ai) then

c ← (A1), . . . , (An), not b1, . . . , not bm

is an argument (say A) with Conc(A) = c, Rules(A) =
⋃
Rules(Ai) ∪ {r},

Vul(A) =
⋃
Vul(Ai) ∪ {b1, . . . , bm} and Sub(A) =

⋃
Sub(Ai) ∪ {A}.

– For each different head(r) where r ∈ P , there is a default argument (say not A)
such that Conc(not A) = not head(r), Rules(not A) = ∅, Vul(not A) =
{head(r)} and Sub(not A) = {not A}.
Above, Conc(A), Rules(A), Vul(A) and Sub(A) respectively refer to what we

call the conclusion, rules, vulnerabilities and subarguments of A. Our definition is very
similar to the one in [5], which consists of only the first two bullet points above. The
difference is the third bullet point, which is required to instantiate the default arguments.

Example 3. Based on the logic program P from Example 2 we can instantiate: Ai = ri,
1 ≤ i ≤ 5, based on the first bullet point of Definition 9; A6 = not c, A7 = not a,
A8 = not b, A9 = not g, based on the third bullet point of Definition 9. No arguments
are instantiated following the second bullet point because all r ∈ P have body+(r) = ∅.
To exemplify the components of some of those arguments, A1 has Conc(A1) = c,
Rules(A1) = {r1}, Vul(A1) = {c} and Sub(A1) = {A1}. A6 has Conc(A6) =
not c, Rules(A6) = ∅, Vul(A6) = {c} and Sub(A6) = {A6}.

The next step is to determine the attack relation of the argumentation framework:
an argument attacks another iff its conclusion is a vulnerability of the latter.

Definition 10. LetA andB be arguments4. We sayA attacks B iff Conc(A) ∈ Vul(B).
4 According to Definition 9.
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Example 4. The argument A1 from Example 3 consists of r : c ← not c and has
Conc(A1) = c and Vul(A1) = {c}; since Conc(A1) ∈ Vul(A1), A1 attacks itself. A6,
in comparison, attacks no arguments, but is also attacked by A1.

Definition 11. The argumentation framework AFP associated with a program P is
AFP = (ArP , attP ), where ArP is the set of all arguments from P (Definition 9)
and attP = {(A,B) ∈ Ar × Ar | Conc(A) ∈ Vul(B)} (Definition 10).

Given AFP , the computation of SINKSAFP retrieves its set of default arguments.

Example 5. Following the names of arguments used in Example 3, the AFP correspond-
ing to P from Example 2 is precisely the framework depicted in Example 1.

3.2 Step 2: Applying Argumentation Semantics

Once we have AFP , we will be interested in its semantics from the standpoint of abstract
argumentation, which are given by Definition 3.

3.3 Step 3: Computing Conclusion Labellings

The goal of this step is to translate the 5-valued argument labellings obtained in the
previous step to sets of conclusions comparable to the models of the original program,
which are in turn 3-valued. For this reason, conclusions will be labeled exclusively
within the elements of {in, out, undec}. In what follows, we will refer to the necessary
sets of labels as V5 = {in, out, ido, idk, idc} and V3 = {in, out, undec}.

Definition 12. Let P be a program. A conclusion labelling is a map Cl : HBP → V3.

As in [5], we follow the approach of [15]: for each conclusion, we map the labels
of arguments that yield it (taken from V5) to a label in V3. The label attributed to each
a ∈ HBP is then the best one5 according to the total order in > undec > out.

Definition 13. The mapping σ :V5→V3 is such that σ(in) = in, σ(out) = σ(ido) =
out, σ(idk) = σ(idc) = undec.

Definition 14. Let AFP = (ArP , attP ) be the AF associated with a program P and Al
be an argument labelling of AFP . We say that Cl is the associated conclusion labelling
of Al iff Cl is a conclusion labelling such that for each c ∈ HBP it holds that Cl(c) =
max({σ(Al(A)) | Conc(A) = c} ∪ {out}) where in > undec > out.

Given a conclusion labelling Cl , we write in(Cl) to denote {c | Cl(c) = in},
out(Cl) for {c | Cl(c) = out} and undec(Cl) for {c | Cl(c) = undec}. Because
a conclusion labelling defines a partition of HBP into sets of in/out/undec-labelled
conclusions, we may sometimes write Cl as the triple (in(Cl), out(Cl), undec(Cl)).

5 In case there is no argument for a particular conclusion, it will be simply labelled out.
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Example 6. Recall the complete argument labellings of AF in Example 1 are: Al1 =
({ } , { } , { } ,Ar , { }), Al2 = ({A2, A8} , {A3, A7} , {A4} , {A1, A5, A6, A9}, { }),
Al3 = ({A3, A7, A9}, {A2, A5, A8}, { }, {A1, A4, A6}, { }). Furthermore, remem-
ber Conc(A1) = Conc(A4) = c (Example 3). Observe that Al2(A4) = ido
and Al2(A1) = idk. Given that σ(ido) = out and σ(idk) = undec, we will
find Cl2(c) = undec in the corresponding conclusion labelling Cl2. Following
Definition 14, we produce the conclusion labellings Cl1 = ({} , {} , {a, b, c, g}),
Cl2 = ({a} , {b} , {c, g}), and Cl3 = ({b} , {a, g} , {c}) respectively associated to
Al1,Al2,Al3. Please observe that 〈in(Cl i), out(Cl i)〉 (1 ≤ i ≤ 3) are precisely the
p-stable models of P (Example 2).

4 Semantic Correspondences

In this section, we overview results concerning semantic relations between abstract
argumentation and logic programming. We show that our approach based on 5-valued
labellings preserves the original results and provides us a new correspondence.

First, we must formally define functions to map argument labellings to conclusion
labellings and vice-versa. Our intention is to later prove they are each other’s inverse.
The function AL2CL below simply follows Definition 14, while CL2AL is introduced
anew. In the latter, we will find that an argument is out or ido in the resulting argu-
ment labelling if some of its vulnerabilities are in in the original conclusion labelling.
Deciding if that argument is out or ido will depend solely on whether it attacks an
undec-labelled sink. The case for idk and idc arguments is similarly based on undec
and the status of the sink arguments they attack.

Definition 15. Let P be a program and AFP be its associated argumentation frame-
work. Let AL be the set of all argument labellings of AFP and let CL be the set of all
conclusion labellings of AFP .

– We define a function AL2CL: AL → CL such that for each Al ∈ AL, AL2CL(Al) is
the associated conclusion labelling of Al (Definition 14).

– We define a function CL2AL : CL → AL such that for each Cl ∈ CL and each
A ∈ ArP it holds that:

• CL2AL(Cl)(A) = in iff Vul(A) ⊆ out(Cl)
• CL2AL(Cl)(A) = out iff Vul(A) ∩ in(Cl) �= ∅ and

{Conc(B) | B ∈ SINKSAFP and (A,B) ∈ att} ∩ undec(Cl) = ∅
• CL2AL(Cl)(A) = ido iff Vul(A) ∩ in(Cl) �= ∅ and

{Conc(B) | B ∈ SINKSAFP and (A,B) ∈ att} ∩ undec(Cl) �= ∅
• CL2AL(Cl)(A) = idk iff Vul(A) ∩ in(Cl) = ∅, while Vul(A) \ out(Cl) �= ∅

and Conc(B) | B ∈ SINKSAFP and (A,B) ∈ att ⊆ undec(Cl)
• CL2AL(Cl)(A) = idc iff Vul(A) ∩ in(Cl) = ∅, while Vul(A) \ out(Cl) �= ∅

and {Conc(B) | B ∈ SINKSAFP and (A,B) ∈ att} \ undec(Cl) �= ∅
Theorem 1. When restricted to complete argument labellings and complete conclusion
labellings, the functions AL2CL and CL2AL are bijections and each other’s inverse.
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We are now ready to present some key results of our work. In what follows, let P be
a logic program and AFP be its associated argumentation framework. Further, assume
Cl = (in(Cl), out(Cl), undec(Cl)) is an arbitrary conclusion labelling of AFP . The
results below are based on our σ-mapping from 5-valued labellings to the standard
in/out/undec-labellings from [2] and theorems from [5] connecting the standard
labellings to logic programming models. In summary, the following theorems assure
our 5-valued labellings preserve all the results from [5].

Theorem 2. Let Al be a complete argument labelling of AFP . Then AL2CL(Al) = Cl
iff 〈in(Cl), out(Cl)〉 is a p-stable model of P .

As our definition of complete argument labelling corresponds to the definition of
[2] and the characterization of in is equivalent in both settings, we can borrow the
following result from [5]:

Lemma 1. Let P be a program and AFP = (Ar , att) be its associated argumen-
tation framework. Let Al1 and Al2 be complete argument labellings of AFP , and
Cl1 = AL2CL(Al1) and Cl2 = AL2CL(Al2). It holds that

1. in(Al1) ⊆ in(Al2) iff in(Cl1) ⊆ in(Cl2),
2. in(Al1) = in(Al2) iff in(Cl1) = in(Cl2), and
3. in(Al1) � in(Al2) iff in(Cl1) � in(Cl2).

From Theorem 2 and Lemma 1, we obtain:

Theorem 3. LetAl be the grounded argument labelling of AFP . Then AL2CL(Al) = Cl
iff in(Cl) is the well-founded model of P .

Theorem 4. Let Al be a preferred argument labelling of AFP . Then AL2CL(Al) = Cl
iff in(Cl) is a regular model of P .

In addition, we know idk, idc = ∅ in a complete argument labelling Al iff
undec = ∅ in AL2CL(Al) = Cl (Definition 14). Thus,

Theorem 5. Let Al be a stable argument labelling of AFP . Then AL2CL(Al) = Cl iff
in(Cl) is a stable model of P .

Following the queue of the theorems above, we can as well consider the conclusion
labellings where in(Cl) is an L-stable model of P . The natural candidate argument
labellings to correspond to those conclusion labellings would be the semi-stable argu-
ment labellings, since both semi-stable and L-stable semantics respectively minimize
undecided arguments and undecided atoms. Unfortunately, in the same way as in [5],
we find there are cases where the semi-stable semantics does not exactly correspond
to the L-stable semantics. Our running example is enough to show that: as one can
observe from the computed labellings in Example 6, the framework from Example 1
has two semi-stable argument labellings (hence two semi-stable conclusion labellings),
namely Al2,Al3, but Cl3 is the sole complete conclusion labelling for which in(Cl)
is an L-stable model of P . In other words, P has a single L-stable model, but AFP
has two semi-stable argument labellings. Differently from previous works, however,
our labellings isolated a possible culprit to that difference in Example 6, for we have
Al2(A4) = ido. But why may it be a culprit? Because if A4 was instead labelled idk
in Al2, only Al3 would be semi-stable, fixing the expected correspondence.
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5 The L-Stable Semantics for Abstract Argumentation
Frameworks

The discussion about the semi-stable and L-stable semantics by the end of Sect. 4 led
us to the suggestion that changing the labels of some particular arguments could lead
those semantics to coincide. Unfortunately, such changes are far from trivial, as chang-
ing the label of an argument is likely to affect the labels of others. Fortunatelly, there
are other parts of the three-step procedure from Sect. 3 that can be easily adapted to
achieve a similar result: the conception of a new abstract argumentation semantics that
corresponds perfectly to the L-stable semantics from logic programming.

Definition 16. Let AL be the set of all complete argument labellings of AF. Then Al is
a least-stable (or L-stable) argument labelling of AF if Al ∈ AL and �Al ′ ∈ AL such
that idk(Al ′) ∪ ido(Al ′) � idk(Al) ∪ ido(Al).

Lemma 2. Let Al be a complete labelling of an argumentation framework and Cl =
AL2CL(Al). Then ∃A ∈ idk(Al) ∪ ido(Al) with Conc(A) = c iff Cl(c) = undec.

Theorem 6. LetAl be a least-stable argument labelling of AFP . Then AL2CL(Al) = Cl
iff in(Cl) is an L-stable model of P .

This correspondence ensures the L-stable semantic for argumentation frameworks
has similar properties to the semi-stable semantics.

Corollary 1. Every AF has at least one L-stable labelling.

Corollary 2. If Al is a stable labelling ofAFP , then Al is an L-stable labelling of AFP .

Corollary 3. If AFP has at least one stable labelling, then Al is an L-stable labelling
of AFP iff Al is a semi-stable labelling of AFP iff Al is a stable labelling of AFP .

However, differently than semi-stable, the L-stable AA semantic captures the L-
stable semantics for LP.

6 On the Role of Sink Arguments

We have affirmed sink arguments together with 5-valued labellings are able to isolate
the possible culprits for the difference between the semi-stable and L-stable semantics.
Now we resume this discussion to provide a more detailed account on the role played
by sink arguments in argumentation semantics. In particular, we will emphasize the
following two points:

– When considering only the sink arguments obtained in our translation (Definition 9),
3-valued labellings suffice to capture the equivalence between logic programming
semantics and abstract argumentation semantics (including L-stable).

– The sink arguments together with the 5-valued labellings offer a more fine-grained
view of the notion of undecidedness when compared with 3-valued labellings.
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The sink arguments can be employed to obtain the conclusion labellings associated
with complete argument labellings:

Theorem 7. Let P be a logic program, AFP = (ArP , attP ) be its associated argu-
mentation framework and Al be a complete 5-valued argument labelling of AFP . We
define Cl : HBP → V3:

Cl(c) =
{

σ(Al(A)) if ∃A ∈ ArP such that Conc(A) = not c
out otherwise

in which in = out, out = in and undec = undec. Then AL2CL(Al) = Cl and
〈in(Cl), out(Cl)〉 is a p-stable model of P .

From Definition 9, there is at most one argument A in AFP such that Conc(A) =
not c for each c ∈ HBP . Therefore, the function Cl above is well-defined.

Theorem 8. Let P be a program, AFP = (ArP , attP ) be its associated argumentation
framework, Al be a 5-valued argument labelling of AFP and AL3(Al) : SINKSAFP →
{in, out, undec}, in which for every A ∈ SINKSAFP , we have AL3(Al)(A) =
σ(Al(A)). Let also AL be the set of all complete argument labellings of AFP . Then

– Al is the grounded argument labelling of AFP iff Al ∈ AL and �Al ′ ∈ AL such
that out(AL3(Al ′)) � out(AL3(Al)).

– Al is a preferred argument labelling of AFP iff Al ∈ AL and �Al ′ ∈ AL such that
out(AL3(Al ′)) � out(AL3(Al)).

– Al is a stable argument labelling of AFP iff Al ∈ AL and undec(AL3(Al)) = ∅.
– Al is an L-stable argument labelling of AFP iff Al ∈ AL and �Al ′ ∈ AL such that
undec(AL3(Al ′)) � undec(AL3(Al)).

Theorem 8 highlights a distinction between the semi-stable and L-stable semantics
over an argumentation framework AFP obtained from a logic program P : the semi-
stable argument labellings of AFP are those complete argument labellings with minimal
set of undec-labelled arguments, whereas the L-stable argument labellings of AFP are
those complete argument labellings with minimal set of undec-labelled sinks. There-
fore, the labels assigned to the sink arguments of AFP suffice to know if a labelling is
grounded, preferred, stable and L-stable, but they may not suffice to know if it is semi-
stable. Revisiting Example 6, we have both Al2 and Al3 are complete labellings with
minimal undec arguments (semi-stable, see Example 1); in contrast, Al3 is the only
complete labelling with minimal undec sinks (L-stable, see Example 2).

One may then wonder it the 5-valued labelling semantics we introduced in this
paper are of some interest on their own. First, observe that the 5 labels are a neces-
sary condition to define the L-stable argumentation semantics (complete labellings with
minimal (ido ∪ idk)-valued arguments). Further, although one can mimic the L-stable
logic programming semantics with 3-valued labellings, it will work as expected just for
argumentation frameworks obtained from logic programs through Definition 11; in an
arbitrary argumentation framework (one that does not account for default arguments),
unlike our definition of L-stable semantics based on 5 labels, this adaptation of the
3-valued approach to capture L-stable will not produce meaningful results.
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Besides, we emphasize the role played by sink arguments in our 5-valued labellings:
in an argumentation framework AF without sink arguments, its complete 3-valued
labellings coincide precisely with its 5-valued counterpart by simply replacing undec
for idk in the respective labellings. This means that the semi-stable and L-stable argu-
mentation semantics collapse into each other for those frameworks! What is more,
owing to the 5-valued labellings, we can define new semantics with interesting prop-
erties: for instance, consider a new argumentation semantics (let us call it “I-stable”)
defined by the complete labellings with minimal idk arguments. In an argumentation
framework without sink arguments, it will coincide with both semi-stable and L-stable
argumentation semantics and yet it will possibly produce distinct results for some argu-
mentation frameworks. As such, these semantics offer three different views of unde-
cidedness in which the difference between them is positively determined by the sink
arguments.

7 Conclusion

This work was largely motivated by the curious result of [5] stating the semi-stable
semantics from abstract argumentation is not equivalent to the L-stable semantics from
logic programming. Both semantics are based on the minimization of undecided argu-
ments and atoms in their respective domains, share very similar properties, and yet
are different. Our efforts to understand the differences between the semantics led us to
consider the instantiation of special arguments in logic programming we called default
arguments and the specialization of the standard 3-valued argument labellings from [2]
into more expressive 5-valued partial labellings (as previously considered in [1]). To
accomplish our goals, we considered the labels in, out, ido, idk, idc and introduced a
corresponding definition of complete labellings revising the meanings of out, idk, idc
and introducing the new label ido, here dubbed “It doesn’t matter if it’s out”. Fol-
lowing the revised concepts, we showed our approach preserves well-known results
in the semantic comparison of abstract argumentation and logic programming. While
we did not try to resolve the semi-stable-L-stable equivalence problem, we shed light
into it, as our 5-valued labellings can isolate the possible culprit arguments causing
the differences based on the labels ido, idc. Instead, we introduced a new semantics
for abstract argumentation frameworks: the least-stable (or L-stable) semantics. What
is more, we proved our newly established semantics to be equivalent to the logic pro-
gramming L-stable semantics for normal programs and their corresponding instantiated
argumentation frameworks. The non-equivalence result proved in [5] was based on a
particular procedure for the instantiation of argumentation frameworks from logic pro-
grams. The 5-valued labellings, the sink arguments and our revision of their procedure
are the key changes to obtain an argumentation-based semantics corresponding to L-
stable. Indeed, we show that if we restrict our attention to sink arguments, the standard
3-valued labelling is enough to characterize the logic programming semantics, includ-
ing L-stable.

It is worth noticing that partial labellings were also employed by [12] in an algo-
rithm for enumerating preferred extensions of an argumentation framework. As we do,
they also consider five labels, namely in, out, undec, blank, and must-out labels. In
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their algorithm, all arguments of the framework are initially blank and must-out is
used at run time to flag arguments that are candidate to be labelled out.

Natural ramifications of this work include an in-depth investigation of properties
of the least-stable argumentation semantics. Our newly defined 5-valued complete
labellings may also lead to the proposal of other interesting semantics as we try to max-
imize or minimize different combinations of the labels at our disposal. We also intend
to investigate whether sink arguments play other relevant roles in the characterization
or computation of argumentation semantics.
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4. Caminada, M., Harikrishnan, S., Sá, S.: Comparing logic programming and formal argumen-
tation; the case of ideal and eager semantics. In: Argument and Computation Pre-press, pp.
1–28 (2021). https://doi.org/10.3233/AAC-200528
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