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Abstract. This paper is focused on developing an Automatic Speech
Recognition (ASR) system robust against different noisy scenarios. ASR
systems are widely used in call centers to convert telephone recordings
into text transcriptions which are further used as input to automati-
cally evaluate the Quality of the Service (QoS). Since the evaluation of
the QoS and the customer satisfaction is performed by analyzing the
text resulting from the ASR system, this process highly depends on the
accuracy of the transcription. Given that the calls are usually recorded
in non-controlled acoustic conditions, the accuracy of the ASR is typi-
cally decreased. To address this problem, we first evaluated four different
hybrid architectures: (1) Gaussian Mixture Models (GMM) (baseline),
(2) Time Delay Neural Network (TDNN), (3) Long Short-Term Mem-
ory (LSTM), and (4) Gated Recurrent Unit (GRU). The evaluation is
performed considering a total of 478,6 h of recordings collected in a real
call-center. Each recording has its respective transcription and three per-
ceptual labels about the level of noise present during the phone-call: Low
level of noise (LN), Medium Level of noise (ML), and High Level of noise
(HN). The LSTM-based model achieved the best performance in the MN
and HN scenarios with 22, 55% and 27, 99% of word error rate (WER),
respectively. Additionally, we implemented a denoiser based on GRUs to
enhance the speech signals and the results improved in 1,16% in the HN
scenario.

Keywords: ASR · Noise reduction · Speech enhancement ·
Speech-to-text

1 Introduction

Millions of calls answered in call centers are recorded and stored every day. The
recordings are used for different purposes including to improve the Quality of
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the Service (QoS). Typically the QoS evaluation process consists in listening
to the conversations between call-center agents and customers to label whether
the service requested by the customer was successfully provided or not. This
procedure is usually done by humans who evaluate the service by randomly
taking samples from the total set of calls. During the evaluation process, it is
analyzed the reason for the call, the emotional state of both the customer and
advisor, the effectiveness and promptness of the service provided by the agent,
and others [18]. Although the aforementioned is the standard procedure, it has
two main disadvantages: (1) it is very expensive and time consuming, and (2)
only a few samples over the total calls are evaluated, so it is not possible to know
about all critical calls that could negatively impact the service [18].

With the aim to make the above mentioned process more efficient, automatic
systems are designed to rate the calls based on the text transcription of the spo-
ken conversation. This is performed by using Automatic Speech Recognition
(ASR) systems. Once the conversations are transcribed, several information are
extracted from the resulting texts including keywords, key sentences, number
and types of hesitations, specific expressions, and others. The main advantage
of ASR-based systems is that they enable the analysis of all answered calls
automatically. Although ASR systems are the natural way to go in order to
improve QoS in call centers, their accuracy directly affects the performance of
the system that rates the calls (the one that is based on text analysis). This
means that transcriptions with errors could produce wrong interpretations for
the QoS evaluation system. Typically, an ASR works with high performance
under ideal acoustic conditions; however, many different factors reduce the ASR
performance, such as the speaker’s health condition and emotional state, the
communication channel including the microphone and the sound card, environ-
mental noise, and others.

This work aims of developing ASR system robust against different noisy
scenarios. We first evaluate four hybrid architectures in three levels of noise:
low, medium, and high. We then propose to implement a Deep Learning based-
denoiser in order to clean the speech signal and thus improve the recognition
performance. The denoiser is based on Complex Linear Coding (CLC), a similar
approach presented in [13]. To assess the denoising technique, we re-evaluated
the ASR systems’ performance when passing the noisy recordings through the
filter.

The rest of this paper is organized as follows: Sect. 2 presents an overview of
related works; Sect. 3 describes the database; Sect. 4 introduces the methodology
followed in this work; Sect. 5 shows the results obtained in this study; and Sect. 6
includes the conclusions and future work.

2 Related Works

Several techniques have been proposed in the literature to model acoustic fea-
tures in ASR systems. The most typical approaches used nowadays are those
based on Hidden Markov Models - Gaussian Mixture Models (HMM-GMM),
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and Hidden Markov Models - Deep Neural Network (HMM-DNN) [16]. HMM-
GMM has played an important role in designing conventional recognizers because
they are easy to train and have low computational cost [16]. Thanks to the
advances in computational power and machine learning algorithms, DNN has
shown excellent results in different applications including ASR. In [5] and [4],
results using different acoustic models in ASR systems with different acoustic
conditions are reported. Both works show that DNN-based models outperform
classical methods based on GMMs. Different topologies of networks have been
proposed to improve the ASR performance. In [14] three topologies are com-
pared: (1) Recurrent Neural Network, (2) Long Short-Term Memory (LSTM),
and (3) Gated Recurrent Unit (GRU). The authors used a total of 378 audio
recordings from the TED talks in English. The dataset contains files for training,
validation, and test. Spectrograms were used to train the acoustic model and the
best WER was achieved using LSTM (65.04%). The authors reported that GRU
showed similar results (67,42% WER) in a shorter period training time; GRU
only ran for 5 days and 5 h while LSTM required slightly more than seven days.

More complex architectures based on end-to-end systems have been recently
proposed. In [17], the authors compared different “very deep models”. Convo-
lutional LSTM with a residual connection (reConvLSTM) was also introduced
in the same work. Convolutional LSTM layers basically replace multiplication
operations among parameters and inputs by convolutions. Their architecture
consists of 2 convolutional layers, followed by 4 ResConvLSTM and finally an
LSTM Network in Network block. A total of 80 filter-banks with their deltas
were used as the feature set. The Wall Street Journal (WSJ) English corpus [8]
was used to train and test the network. This database contains 73 h for train-
ing and 8 h for testing. The model proposed by Zhang et al. in [17] showed a
WER of 10,53%, while previous studies were around 18% in the same corpus.
In the same line, the authors in [1] proposed an end-to-end system where its
input is the raw speech signal. To do that, they used a convolutional filter learn-
ing based on rectangular band-pass filters. This technique is called SincNet. The
authors proposed to connect SincNet to an end-to-end recurrent encoder-decoder
structure using joint CTC-attention procedure. It was used WSJ corpus [8], and
TIMIT corpus [3] for training and testing the model. The authors compared
their system with traditional end-to-end models operating on Mel-filter-banks.
For the TIMIT database, their technique did not show improvements in com-
parison to conventional hybrid DNN-HMM perhaps due to the small amount
of available training data (less than 5 h). On the other hand, when using WSJ,
their technique obtained a top-of-line WER of 4.5%, outperforming all baselines.
The previous best score was 5.9% WER, which means an absolute improvement
of 1.2%.

Other kinds of techniques as speech enhancement, domain adaptation, and
data augmentation have also been studied with DNNs. In [7], it was proposed
the problem-agnostic speech encoder (PASE), a novel architecture that combines
a convolutional encoder followed by multiple neural networks, called workers,
tasked to solve self-supervised problems. The aim of each worker is to generate
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features extracted from the original speech signal as MFCCs, log power spectrum,
gammatone features, waveform speech signal, and others. The needed consensus
across different tasks naturally imposed meaningful constraints to the encoder,
contributing to discover general representations and hence minimizing the risk
of learning superficial features. The authors performed self-supervised training
with a portion of 50 h of the LibriSpeech dataset [5]; TIMIT [3], DIRHA [11] and
CHiME-5 [2]. In order to validate the technique, the authors trained a hybrid
DNN-HMM speech recognizer using different acoustic features such as MFCC,
filter bank, gammatone, and MFCC + gammatone + filter bank. The features
extracted from the PASE architecture significantly outperformed the other fea-
ture sets, with a relative improvement of 9.5% in clean speech and of 17.7% in
noisy conditions using TIMIT.

3 Databases

We evaluate the proposed ASR systems using a call-center database called
KONECTADB. The recordings were captured in non-controlled acoustic con-
ditions, so we implemented a denoising technique to enhance the speech signals.
We split the dataset into two parts, train and test, with the aim to optimize and
evaluate the ASR system and the denoiser. The augmented version of KONEC-
TADB was created by adding noise of the Demand Noise Dataset (DND).

3.1 KONECTADB

This corpus contains recordings of conversations between customers and agents
of a contact-center of the Konecta Group company in Medelĺın, Colombia. The
customers were informed that their speech was going to be recorded. Due to the
nature of the service, it is assumed that the speakers in these recordings are all
of legal age. The database consists of 478, 6 h of audio with a sampling frequency
of 8 kHz and a 16 bits resolution. Experts in QoS annotated the recordings in
the contact center. Each audio has its transcription text, the customer’s gen-
der, and its level of noise. Since the recordings were captured in non-controlled
acoustic environments, this database is useful to evaluate the robustness of ASR
systems against noisy conditions. Table 1 shows the demographic information of
this database.

3.2 Demand Noise Dataset (DND)

The DND corpus [15] contains a variety of noise signals taken in real-world
acoustic environments. The database considers two scenarios, namely “inside”
environments and “open-air” environments. The inside recordings are divided
into Domestic, Office, Public, and Transportation; while the open-air recordings
are classified as Street and Nature. All recordings are captured with a 16-channel
array of microphones sampling at 48 kHz. Thus, each environment noise record-
ing is actually a set of 16 mono sound files.
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Table 1. Demographic description of Konecta database. LN: Low level of noise. MN:
Medium level of noise. HN: High level of noise. Male: Number of male recordings.
Female: Number of female recordings

Label of noise # of speakers Gender distribution Hours

Male Female Training Test

LN 18938 19459 27313 321,0 30,3

MN 6615 7180 8191 101,4 15,9

HN 633 636 666 8,7 1,2

3.3 Data Augmentation

Clean recordings of KONECTADB are augmented by adding noise signals of
the DND corpus. The noisy samples are created by randomly taking two differ-
ent noises from the DND corpus associated with different Signal-to-Noise Ratio
(SNR) levels: −5, 0, 5, 10, 20, and 40 dB. To achieve the selected SNR level, the
noise is scaled by a factor α, which is expressed as:

α =

√
Ps(t)

SNR · Pn(t)
(1)

where Ps(t), Pn(t), and SNR are speech signal power, noise signal power, and
SNR computed in linear scale, respectively.

Training and test sets were augmented separately and used to train and
evaluate the denoiser described in Sect. 4.1. The data augmentation algorithm
is depicted in Fig. 1.

Clean Speech

Random noise
selection

Noise scaling

DND

Fig. 1. Data augmentation process.

4 Methodology

Figure 2 illustrates the overall process to train and test an ASR system. At the
top, it is described the training stage, and at the bottom the test one.
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Fig. 2. General methodology followed in this study.

4.1 Training Stage

This stage encompasses feature extraction, Language Model (LM), Acoustic
Model (AM), and the Dictionary.

4.1.1 Feature Extraction
This study considered a total of 40-MFCCs extracted from 40 triangular Mel-
frequency bins with a window size of 25 ms and a step size of 10 ms. The spec-
trogram is unit-normalized.
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4.1.2 Language Model
The transliteration of the training set was used to train a 3-gram language
model. The probabilities of a language model can be computed by counting
relative frequencies of the 3−tuples of words that belong to the training set. To
estimate the probabilities of the 3−gram model, the following equation is used:

P (wn|wn−1, wn−2) =
C(wn−2, wn−1, wn)

C(wn−2, wn−1)
(2)

where wn represents a word located in position n, and C represents a func-
tion that counts the number of occurrences of the word sequence defined in its
argument.

4.1.3 Acoustic Model
This study considers a 3-state HMM for modeling temporal dependencies. We
trained and evaluated four different models to represent the acoustic distribution
of each acoustic unit (HMM state).

– GMM: This acoustic model is based on GMM models. A total of 100 thou-
sand of Gaussian components and a decision tree of 4016 leaves were con-
sidered in this work. The GMMs were trained using a Maximum Likelihood
estimation. This model was also used to force-align the training data and is
regarded as the baseline in this study.

– TDNN: This architecture consists of six TDNN layers with 1536 units and
a bottleneck dimension of 256. Each layer contains a frame context of three
and a skip connection coming from the previous layer’s input. The last TDNN
layer’s output is fed into a fully connected layer with a softmax activation
function. Details of this method can be found in [9].

– LSTM: This architecture consists of four bidirectional LSTM layers with a
tanh activation function. Each layer contains 550 units and a dropout regu-
larization of 0.2. The last LSTM layer’s output is fed into a fully connected
layer with a softmax activation function.

– GRU: This architecture consists of five bidirectional GRU layers with a relu
activation function. Each layer contains 550 units and a dropout regulariza-
tion of 0.2. The last GRU layer’s output is fed into a fully connected layer
with a softmax activation function.

The forced-aligned data generated by the GMMs were used to train the DL-
based models. On the one hand, the Kaldi toolkit [10] was used to train the
TDNN model using Stochastic Gradient Decent (SGD) with an initial learning
rate of 0.00015 and batch size of 64. On the other hand, ADAM optimizer with
an initial learning rate of 0.0002 and batch size of 64 was used to train the
LSTM- and GRU- based architectures using Pytorch-Kaldi framework [12]. We
only considered five epochs due to computational constraints.
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4.1.4 Dictionary
The dictionary contains the phone pronunciation of each word to be recognized
in our model. The phone composition is performed using pronunciation rules of
the Spanish language from Colombia. To build the dictionary, the most frequent
words seen in the training set were selected. This study considered 20 thousand
different words.

4.2 Test Stage

This involves the same processes as the training stage and also includes denoising
and performance evaluation. To avoid any possible bias and to guarantee the
generalization capability of the model, this process only considers recordings of
the test set.

4.2.1 Denoising Model
The denoiser is thought to enhance the speech signals. We used a similar app-
roach as the one presented in [13]. A Short-Time Fourier transform (STFT) was
computed using a 25 ms Hanning window with a step size of 10 ms. The model
architecture consists of a fully connected layer followed by two GRU layers and
finally, two fully connected layers. The input to the model is the unit-normalized
complex spectrogram. The last layer predicts the masking coefficient to denoise
the complex spectrogram. The mask aims to reduce noise effects by multiplying
weights closer to zero with those frequency bands that contain noise energy. The
masked complex spectrogram is then transformed into the time-domain using
the inverse STFT function. The complete filter process is illustrated in Fig. 3.

STFT

Magnitude Unit
normalization FC→BN→ReLU

256

GRU

GRU

256

FC→BN→ReLU

256

FC→TanH

256

(Fx2)ISTFT

Fig. 3. Denoising process [13]. F is the number of frequency bins and
⊗

is the
Hadamard product.
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The augmented training dataset of KONECTADB described in Sect. 3 is used
to train the system. The original signals are used as the ground truth during the
training process of the GRU. The GRU-based denoiser is trained with Pytorch
using the Adam optimization strategy with an initial learning rate of 0.0001
and a batch size of 10. Only five epochs are considered due to computational
constraints.

4.2.2 Performance Evaluation
Once the ASR system is trained, this is used to convert the recordings into
text transcriptions of the test set. Word Error Rate (WER) was computed to
evaluate the model. This is the a well known performance measure typically used
to evaluate ASR systems [6]. It is defined as follows:

WER =
S + D + I

S + D + C
(3)

where,

– S: # of substitutions.
– D: # of deletions.
– I: # of insertions.
– C: # of correctly recognized words.

WER compares two text chains. This metric counts the number of operations
needed to convert one text into another one. WER is computed upon the original
transcription and the predicted transcription in the case of an ASR system.

5 Results

With the aim to develop a robust ASR system, we trained and evaluated four
different acoustic model architectures in non-controlled acoustic scenarios. The
following are the models: (1) GMM-based model, (2) TDNN-based model, (3)
LSTM-based model, and (4) GRU-based model. Finally, a DL-based denoiser is
implemented to improve the recognition performance.

5.1 Results of Acoustic Model

The call center database described in Sect. 3 is used to train each ASR system.
The LN, MN, and HM training sets were mixed during the training. The models
are evaluated in each real acoustic scenario. Table 2 shows the performance of
the different ASR systems for each scenario. Note that all DL-based models
outperformed the baseline (based on GMMs). The LSTM model yields the best
performance in non-controlled acoustic conditions with WER values of 22, 55%
and 27, 99% for MN and AN scenarios, respectively. Note that all models except
the GMM-based one, obtained similar WER values in the LN condition, that is:
21, 73% for TDNN, 21, 31% for LSTM, and 21, 30 for GRU.
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Table 2. Performance of the ASR systems in terms of the WER in each real acoustic
conditions. LN: Low level of noise. MN: Medium level of noise. HN: High level of
noise.

Architecture Acoustic scenario

LN MN HN

GMM 32,10 35,54 52,47

TDNN 21,73 23,48 30,94

LSTM 21,31 22,55 27,99

GRU 21,30 22,67 28,77

5.2 Results of Denoising Process

The denoiser described in Sect. 4.1 was trained to enhance noisy speech sig-
nals. The augmented training dataset of KONECTADB was used to train the
model. Two test sets are considered to evaluate the capability of the filter to sup-
press/remove the noise: (1) The artificially created noisy recordings (The scenario
described in Sect. 3), and (2) The noisy recordings of the HN test set (Real sce-
nario). WER values of the ASR systems are computed for the noisy and enhanced
speech signals for comparison purposes. Table 3 shows the performance obtained
for the DL-based ASR systems in the simulated and real scenarios. The TDNN
model shows improvements in both scenarios when the denoiser is applied. In the
simulated conditions, the WER goes down from 40,41% to 35,70%, and in the real
noisy conditions it changes from 30,94% to 26,83% which is actually the best per-
formance obtained for noisy conditions. For the case of the LSTM-based model in
the simulated scenario, without denoising it yields the worst WER for noisy con-
ditions (44,39%), but it improves to 38,88% after applying the denoiser. Although
the improvement is relatively high (5,51 absolute percentage points), the result is
still the worst among the rest obtained in that scenario. Regarding its results in
the real conditions, without any denoising procedure, the LSTM yields the best
WER (27,99%), however, when the denoiser is applied the WER value increases
to 29,63%. A similar behavior can be observed for the GRU model, where the WER
value obtained in the simulated conditions prior to the denoiser is 40,41% and it
gets better to 37,27% when the denoiser is applied; however, in the real noisy con-
ditions, its WER value gets worst in 1 absolute percentage when the denoiser is
applied (from 28,77% to 29,77%).

Table 3. Performance of the ASR systems in terms of the WER before and after
applying the denoiser. Simulated: The augmented test set. Real: The HN test set of
KONECTADB. Values in %.

Model Simulated conditions Real conditions

Noisy Enhanced Noisy Enhanced

TDNN 40,41 35,70 30,94 26,83

LSTM 44,39 38,88 27,99 29,63

GRU 40,41 37,27 28,77 29,77
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6 Conclusions and Future Work

This work presented a methodology to improve the recognition performance of
ASR systems. We trained and evaluated four different acoustic models in non-
controlled acoustic conditions: (1) GMM-based model (Baseline), (2) TDNN-
based model, (3) LSTM-based model, and (4) GRU-based model. The models
were trained with recordings of a call center database, called KONECTADB.
This database contains customer service telephone calls. Each recording was
captured in real acoustic conditions and it was labeled in terms of its level of
noise: low, medium and high. These acoustic conditions allowed us to evaluate
the models in real noisy acoustic conditions. The LSTM-model achieved the best
performance for medium and high levels of noise, which likely indicates that this
model is the most robust in non-controlled conditions.

With the aim to improve the recognition performance, a DL-based filter
was developed to clean the speech signals. The portion of KONECTADB with
low level of noise was artificially contaminated with noise signals taken from
Demand Noise Dataset. We trained the denoiser using the noisy recordings.
Once the denoiser was trained, the ASR models were again evaluated in two
scenarios: (1) Simulated (The artificially contaminated test set), and (2) the real
test set with the recordings originally labeled as high level of noise. The WER was
computed before and after passing the recordings through the denoiser. On the
one hand, the performance of the GRU- and LSTM- based models decreased after
the denoising process. But, on the other hand, the TDNN model achieved the
best results when the denoiser was applied in both simulated and real acoustic
scenarios. The observed improvement was 1,16% of WER with respect to the
result obtained by the LSTM without any denoising strategy. For future work
we consider to explore more complex architectures in the denoising process to
see whether the performance can be further improved.
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13. Schröter, H., Rosenkranz, T., Maier, A., et al.: CLC: complex linear coding for the
DNS 2020 challenge. arXiv preprint arXiv:2006.13077 (2020)

14. Shewalkar, A., Nyavanandi, D., Ludwig, S.A.: Performance evaluation of deep neu-
ral networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell.
Soft Comput. Res. 9(4), 235–245 (2019)

15. Thiemann, J., Ito, N., Vincent, E.: Demand: a collection of multi-channel record-
ings of acoustic noise in diverse environments. In: Proceedings of Meetings Acoust
(2013)

16. Yu, D., Deng, L.: Automatic Speech Recognition: A Deep Learning Approach.
Springer, London (2015). https://doi.org/10.1007/978-1-4471-5779-3

17. Zhang, Y., Chan, W., Jaitly, N.: Very deep convolutional networks for end-to-end
speech recognition. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4845–4849. IEEE (2017)

18. Zweig, G., et al.: Automated quality monitoring in the call center with ASR and
maximum entropy. In: 2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings, vol. 1, p. I. IEEE (2006)

http://arxiv.org/abs/1904.03416
http://arxiv.org/abs/2006.13077
https://doi.org/10.1007/978-1-4471-5779-3

	Robust Automatic Speech Recognition for Call Center Applications
	1 Introduction
	2 Related Works
	3 Databases
	3.1 KONECTADB
	3.2 Demand Noise Dataset (DND)
	3.3 Data Augmentation

	4 Methodology
	4.1 Training Stage
	4.2 Test Stage

	5 Results
	5.1 Results of Acoustic Model
	5.2 Results of Denoising Process

	6 Conclusions and Future Work 
	References




