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Abstract. Hydrometeorological phenomena, including mass move-
ments, are a frequent threat that can generate a great impact at different
levels. In order to estimate the susceptibility to mass movements, this
work contains a new proposal to estimate the susceptibility to mass move-
ments using a supervised learning algorithm designed using AutoML
(Automated machine learning). Pixel-level information from Sentinel-2
multispectral images was used to train the model, and an expert’s sus-
ceptibility map was used as labels.
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1 Introduction

Hydrometeorological phenomena, including mass movements, are one of the most
frequent hazards that cause a large number of deaths and damage to infrastruc-
ture around the world. Particularly in Colombia, 88% of disasters are associated
with the occurrence of this type of events, where about 14% of the affected
houses, as well as 66% of deaths are associated with mass movements [16].

Therefore, in order to mitigate the effects generated by the occurrence of these
events and to carry out a more efficient management of the territory, several types
of methodologies have been proposed to assess the susceptibility to landslides,
whose application depends on aspects related to the type of movements, the scale
of work, the information available and the level of experience of those performing
these analyses.

The main methods used in the assessment of mass movements described by
[6] include Landslide susceptibility maps based on a combination of geological,
topographical and land-cover conditions, inventory-based and knowledge driven
methods, quantitative data-driven methods and physically based models. The
heuristic method involves the direct intervention of experts to determine the
susceptibility in the field or from geological and geomorphological information
c© Springer Nature Switzerland AG 2021
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of the terrain, using GIS (Geographic Information System) tools for the elabora-
tion of the final map. There are also bivariate, multivariate and artificial neural
network-based statistical methods, as well as physical methods for assessing sus-
ceptibility to mass movement obtained from modeling slope failure processes.

Several of the studies carried out involve the use of techniques such as remote
sensing. Techniques used include visual interpretation and digital analysis of
aerial photographs and satellite images [3,7,8], supervised classification methods
to differentiate hill-slope landslides from other terrain units [15], and use of high
resolution and image fusion for landslide risk assessment [13,17].

Likewise, different types of analysis have been carried out to improve the
detection processes of this type of phenomenon. For instance, the analysis of
conventional methods for landslide mapping including geomorphological inven-
tories of seasonal and multitemporal events and the application of other recent
technologies involving high-resolution digital elevation models [9], analysis of
the influence of tectonics on the progressive erosion of landscapes and propose
a method for the classification of landscapes according to their erosional stage
from the combination of geomorphic indices based on digital elevation models
(DEMs) [1], the use of a joint probability model to show a measure of future
landslide hazard using five model estimation procedures applied to the Chinchiná
river basin, department of Caldas, Colombia [5], or the use of object oriented
classification (OOA) with high resolution images to detect mass movements [12].

With respect to the use of artificial intelligence methods, different approaches
have been proposed, such as the use of residual networks for landslide detec-
tion employing spectral and topographic information [19] or the use of ensem-
bled methods [23]. For example, the assembled boosting models presented the
best values in terms of performance and predictive capacity in an evaluation of
machine learning methods in the vicinity of a hydrographic basin in Colombia
[14].

Considering the above, this paper contains a new proposal for mass movement
susceptibility using an artificial intelligence algorithm. The AutoML (Automated
Machine Learning) algorithm is trained using as label the susceptibility map
made by an expert from geological, geomorphological information and the use
of GIS tools, and as attributes the pixel level information from Sentinel-2A
multispectral images. This method is presented as an alternative to evaluate
landslide susceptibility in areas where there is a lack of information such as
slopes, geological or geomorphological data.

2 Study Area

The study area includes a region between “San Luis de Gaceno” and “Santa
Maŕıa” at the Department of Boyacá (Colombia). The geographical zone cover
an area of 300 km2; the upper left corner of the zone is placed at 4◦54’44.02”N,
−73◦21’22.15”W, whereas the lower right corner is placed at 4◦46’35.62”N,
−73◦10’34.46”W. The locator map is shown in Fig. 1. In the study zone, most of
the area corresponds to forest cover (approximately 55%), while pasture cover



Landslide Susceptibility Model Using Remote Sensing Images and AutoML 27

corresponds to approximately 35% of the study area, and the remaining percent-
age is soil.

Fig. 1. Location of the study area corresponding to “San Luis de Gaceno” and “Santa
Maŕıa” at the Department of Boyacá (Colombia).

Once the study area has been defined, and in order to use remote sensing
data, it is necessary to define the type of sensor to be used and the image bands to
be selected as attributes within a machine learning model. Similarly, in order to
train the supervised learning method, it is necessary to obtain a reference map
(ground truth) that defines the labels of the data. These issues are presented
below.
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3 Image Data

Given that the determination of areas with susceptibility to landslide is a phe-
nomenon that depends on geological, geomorphological and land cover aspects,
it is necessary to consider images that include bands in different regions of the
electromagnetic spectrum (ultraviolet, visible, infrared).

According to the above, a multispectral image of Sentinel-2 sensor captured
in January of 2016 was selected for the study area. This image has 998 × 750
pixels, and it contains 13 spectral bands, including visible, Near Infra-Red (NIR),
and Short Wave Infra-Red (SWIR) bands. Of the 13 bands, four have a spatial
resolution of 10 meters, six bands have a resolution of 20 meters and three have
a resolution of 60 meters. The radiometric resolution of the Sentinel 2 images
is 12-bits, and the intensities are stored as 16-bits integers in the final product.
The true color composition of the multispectral image is shown in Fig. 2a, and
the general information of Sentinel-2 bands is shown in Table 1.

Table 1. Sentinel-2 bands.

Band Description Wavelength (nm) Resolution

B1 Coastal aerosol ∼ 443 60

B2 Blue ∼ 493 10

B3 Green ∼ 560 10

B4 Red ∼ 665 10

B5 Vegetation Red edge ∼ 704 20

B6 Vegetation Red edge ∼ 740 20

B7 Vegetation Red edge ∼ 783 20

B8 NIR ∼ 833 10

B8A Vegetation Red edge ∼ 865 20

B9 Water vapour ∼ 945 60

B10 Cirrus detection ∼ 1374 60

B11 SWIR 1 ∼ 1610 20

B12 SWIR 2 ∼ 2190 20

4 Materials and Methods

The identification scheme for landslide susceptible zones is based on a supervised
classification model, so it is necessary to build the reference data that will be
used for training the model (ground truth), define the features that will be used
in the model from the image data, and define the structure of the machine
learning model that will be trained using the labels and attributes previously
defined. The construction of these labels, the definition of the features and the
characteristics of the proposed model are explained below.
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4.1 Ground Truth Data

In order to define the reference labels that can be used to train, select and eval-
uate a machine learning model, a consolidated methodology was used. The sus-
ceptibility to landslide in the study area was determined by applying elements
of the methodology proposed in [20,21]. The application of these methodolo-
gies allows estimating a map of susceptibility to landslide phenomena from the
crossing of weighted thematic layers (variables), based on the density of unstable
processes and their degree of influence.

Susceptibility to landslide is subject to several factors such as the lithological
composition of the rock (geology), the denudational environment in which it is
formed (geomorphology) and the type of land use that is being given to this
area (land cover). The combination of these factors determines the occurrence
of landslide, always taking into account the variation of the terrain, the mor-
phogenetic environments and the degree of humidity and infiltration in the area
that can affect the resistance of the material.

The variation of the lithological and structural characteristics of the study
area influences the process of landslide generation, since they lead to differences
in the resistance and permeability of rocks and soils. For the determination of
susceptibility by geologic factor, three weighted thematic layers were assigned as
shown in Eq. 1.

G = 0.25R + 0.25T + 0.5FD (1)

Where, G is the susceptibility by geologic factor, R (resistance) measures the
resistance of the rocks to weathering, T (Texture) is the variable that establishes
the differences in the rocks in terms of strength and directionality of mechanical
properties, and FD (fracture density) measures the regional structural disconti-
nuities in the rock masses that decrease their resistance, increasing susceptibility
to the occurrence of landslide.

Regarding geomorphology, the geomorphological units generated by the
Colombian Geological Service were taken, making a more detailed delimitation
of these units using a digital elevation model with a spatial resolution of 12.5 m
and satellite images of the study area. Subsequently, this element was qualified
according to its morphogenesis (origin of landforms, i.e., the causes and processes
that shaped the landscape [20]). The susceptibility by geomorphology factor is
given by Eq. 2.

Gm = 0.4Mg + 0.6Mm (2)

Where Gm is the susceptibility by geomorphology factor, Mg is the morpho-
genesis, and Mm is the morphometry.

Regarding land use, the type of vegetation cover and land use influence soil
stability, as they can reflect soil infiltration capacity and soil moisture, as well as
increased resistance due to the presence of roots and protection against erosion.
With respect to urban areas, there is generally no good wastewater management,
hence surface runoff can increase erosion and consequently instability. In general,
it can be said that the areas where most movements occur are directly related
to soils without cover or bare soils, as well as the areas with the steepest slopes.
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Finally, the total susceptibility was calculated from the weighting of the sus-
ceptibility obtained for geology (G), geomorphology (Gm) and cover (C) factors
(Eq. 3).

S = 0.2G + 0.6Gm + 0.2C (3)

In addition, taking into account that geology, geomorphology and cover fac-
tors were rated from 1 to 5, the susceptibility of the final map is also defined
on the same scale, where 5 relates to the highest susceptibility. The landslide
susceptibility map of the study area is shown in Fig. 2b. In this map there is a
high percentage of areas with high susceptibility, mainly from the central zone to
the north-west, while from the central zone to the south-east, the susceptibility
presents mostly areas of medium and low susceptibility.

The map shown in Fig. 2b was obtained from the analysis of susceptibility
and threat due to landslide for the study area and was carried out by an expert
supported by GIS tools. The spatial and dynamic relationship of the information
was made from the collection of information and observations of variables. The
complexity of obtaining this type of maps leads to the evaluation of automatic
learning tools that make use of easily accessible data. The following section shows
the proposal for data selection to perform this task.

In accordance with the above, the susceptibility value obtained is taken as
ground truth and will be used in the training process as the label for the selected
attributes, as well as the label for evaluating the proposed model.

Fig. 2. Image data and Ground truth data.
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4.2 Structured Data (Input for the AutoML Model)

Although satellite images can be considered unstructured data (i.e., they do not
have a rigid structure like tabular data), in this research the image was converted
to structured data by considering pixel-level information. Accordingly, for each
pixel position, the input attributes correspond to the pixel values of each of the
image bands (i.e. the bands shown in Table 1). Having the data structured in
this way (i.e., from a multispectral image) ensures that there are no null data,
categorical data, or outlier data. It should be noted that bands 1, 9 and 10 were
not considered as input attributes due to their low spatial resolution (60 m).

Therefore, the attributes initially selected correspond to bands 2, 3, 4 and 8
(10 m), and bands 5, 7, 8A, 11 and 12 (20 m) of Sentinel-2 Image. From these
georeferenced bands of different pixel size, a new multiband file was formed, in
which the 10 m bands were resampled to 20 m (nearest neighbor) maintaining
the UTM WGS-84 projection.

In addition, the five susceptibility levels shown in the map in Fig. 2b were
reduced to two classes: high susceptibility (for values of 5), and moderate sus-
ceptibility (for values between 1 and 4). Thus, the attributes to be evaluated
include 9 bands of the original image, and the problem can be approached as a
binary classification problem.

Since the input image (998×750 pixels) is being processed at the pixel level,
the total number of examples available to train, validate and test the model is
748500 examples. Samples from this dataset were randomized and split, involving
80% samples (598800) for training, 10% samples (74850) for validation (used to
tune hyperparameters) and 10% samples (74850) for testing.

4.3 AutoML Model

Automated Machine Learning (AutoML) consists of solutions to automate tasks
that apply machine learning to any type of problem. AutoML solutions can
include different phases of the process, from data processing to model retrieval.
AutoKeras is an AutoML system based on Keras, looking for make machine
learning accessible to everyone; it was developed by DATA Lab at Texas A&M
University [11]. AutoKeras supports several tasks, such as image classification,
image regression, text classification, text regression, structured data classifica-
tion and structured data regression. This tool also allows to build customized
models, specifying the high-level architecture, so that AutoKeras performs a
search for the best configuration (hyperparameters).

For the present investigation, the AutoKeras AutoModel option was used,
which allows defining the model according to the inputs and outputs, i.e. Auto-
Model infers the rest of the model. The model is fitted from a hyperparameter
search space, and the fitted model can then be used as any Keras model (e.g.,
prediction or evaluation) [4].

To configure the AutoModel, the input was defined as structured data, and
the output as a classification type. The number of trials was set to 100, the
batch size to 32, the number of epochs to train each model to 10, and the
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search space (automatically defined by AutoKeras) involved the hyperparame-
ters shown in Table 2. In AutoKeras, a greedy search algorithm is used to select
the hyperparameters in the space, which evaluates a list of models recursively,
always selecting the best model and building a hyperparameter tree from it.
Once evaluated, it can generate a new set of hyperparameter values by replacing
the previous ones. The evaluation and selection of the best model is repeated
until the maximum number of trials is reached. This search process is greedy
as it always selects the current best model and generates new models in its
neighborhood [10].

Table 2. Hyperparameters in the search space for the AutoModel.

Hyperparameter Values in search space Best value

Normalization [False, True] True

Batch normalization [False, True] True

No. of layers [1, 2, 3] 3

No. of units (Layer 1) [16, 32, 64, 128, 256, 512, 1024] 256

Dropout (Layer 1) [0.0, 0.25, 0.5] 0.0

No. of units (Layer 2) [16, 32, 64, 128, 256, 512, 1024] 256

Dropout (Layer 2) [0.0, 0.25, 0.5] 0.0

No. of units (Layer 3) [16, 32, 64, 128, 256, 512, 1024] 32

Dropout (Layer 3) [0.0, 0.25, 0.5] 0.25

Optimizer [Adam, SGD, Adam weight decay] Adam weight decay

Learning rate [0.1, 0.01, 0.001, 0.0001, 2e−05, 1e−05] 0.001

After searching for the best model and the best hyperparameters for the
AutoModel, based on the performances in the validation data, the model shown
in Fig. 3 was obtained. The best model was obtained from the hyperparameter
configuration shown in Table 2 (column 3). The description of the model and
its layers is shown in Table 3. Accordingly, the model includes an input data
normalization layer, batch normalization to accelerate network convergence, 2
fully connected layers of 256 units without dropout, followed by a fully connected
layer of 32 units with dropout of 0.25 to reduce overfitting, an Adam optimizer
with weight decay and a learning rate of 0.001 was used to train the best model.
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Fig. 3. Architecture of the model obtained with AutoKeras. FC: Fully Connected
(Dense) layer, BN: Batch Normalization, ReLU: Rectified Linear Unit activation func-
tion.

The number of trainable parameters of the model can be seen in Table 3. In
each fully connected layer, this value is calculated by taking the number of units
of the previous layer (or number of inputs) multiplied by the number of units of
the layer, plus the number of units of the layer. The total number of trainable
parameters thus equals 77,953 (including batch normalization parameters) and
the number of non-trainable parameters is 1,109.

Table 3. Summary of the model obtained with AutoKeras

Layer No. of units Output shape Trainable parameters

Input - (,10) 0

Normalization - (,10) 21

FC1 (Dense) 256 (,256) 2816

BN1 (Batch normalization) - (,256) 1024

ReLU - (,256) 0

FC2 (Dense) 256 (,256) 65792

BN2 (Batch normalization) - (,256) 1024

ReLU - (,256) 0

FC3 (Dense) 32 (,32) 8224

BN3 (Batch normalization) - (,32) 128

ReLU - (,32) 0

Dropout - (,32) 0

FC4 (Dense) 1 (,1) 33

5 Results and Discussion

Once the best model was obtained, unknown data (i.e. data that were neither
used in training nor in validation) were used to evaluate its performance. These
correspond to the test dataset, i.e. 74850 samples, as explained above. With
each of these samples, the respective prediction was performed using the trained
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model, comparing its result with the real value, and the results were consolidated
in a binary confusion matrix (see Table 4). In this matrix, TP (True Positives)
corresponds to pixels that are correctly classified as moderate susceptibility,
TN (True Negatives) corresponds to points that are correctly classified as high
susceptibility, FP (False Positives) corresponds to pixels that are incorrectly
classified as moderate susceptibility, while FN (False Negatives) corresponds to
pixels that are incorrectly classified as high susceptibility. From the confusion
matrix, the classifier evaluation metrics shown in Table 4 can be calculated using
Eqs. 4–7 [18,22].

Table 4. Confusion matrix and evaluation metrics for the test set.

True condition

Moderate susceptibility High susceptibility

Predicted condition Moderate susceptibility 54861 15820

High susceptibility 1541 2628

Accuracy (ACC) 0.7681

Precision (P) 0.7762

Recall (R) 0.9727

F1-Score (F1) 0.8634

Thus, accuracy corresponds to the percentage of correct classifications, pre-
cision to the percentage of classifications in the positive class (moderate sus-
ceptibility) that are true positives, and recall corresponds to the proportion of
positives that are correctly identified [2]. In a classification task it is desirable
that P and R reach the highest possible value, while being similar to each other.
The ideal value in each case is 1 and the minimum value is 0. To evaluate the bal-
ance between them, the F1 score corresponding to the harmonic mean between
P and R is calculated.

ACC = (TP + TN)/(TP + TN + FP + FN) (4)

P = TP/(TP + FP ) (5)

R = TP/(TP + FN) (6)

F1 = 2(P ×R)/(P + R) (7)

According to the evaluation results, the model is able to correctly classify
most of the moderate susceptibility zones. In the case of high susceptibility zones,
there are pixels that are classified as moderate susceptibility, which is mainly
due to the absence of slope data (e.g. a digital elevation model), or geology and
geomorphology data, which were key to build the ground truth data and are
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not captured by a multispectral image. Beyond this, the zones detected by the
model as high susceptibility largely reflect the areas classified in the elaboration
of the ground truth data, as shown in the example in Fig. 4.

Fig. 4. Example of a landslide susceptibility map obtained using the proposed AutoML
model for the study area. Red: high susceptibility, Violet: moderate susceptibility.
(Color figure online)

Given the high variability of the susceptibility of ground truth data (Fig. 3b),
the problem of identifying such zones becomes complex for a classifier fed only
by multispectral data. This is reflected in the number of false negatives and
positives. Hence, although the method can be used to obtain a general overview
of the landslide susceptibility of an area, for greater accuracy the data must be
complemented with other types of information.

6 Conclusion

The proposed model allows estimating susceptibility to mass movements, even
without slope information or specific geological or geomorphological informa-
tion. Since the response is obtained only from multispectral information, the
susceptibility estimation is performed in a binary map (moderate or high sus-
ceptibility), while allowing to obtain such information only from one image. The
model adjustment was performed using AutoML (AutoKeras) and achieved an
F1 Score close to 86%.
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