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Abstract. The quadratic assignment problem (QAP) is classified as an NP-hard
problem, so metaheuristic procedures are often used to solve it. QAP is a classic
combinatorial optimization problem with real applications, for example in supply
chain, logistics, manufacturing, finance, among others. In this article, to search for
QAP solutions, the design of a program code for theGreedyRandomizedAdaptive
Search Procedure (GRASP) metaheuristic was implemented with three different
neighborhood structures contained in k-exchange mode in order to perform the
local search. The experimental procedurewas applied for large-scale test instances
available from QAPLIB. Finally, the results of the approximations to the optimal
solutions are reported.
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1 Introduction

Metaheuristic procedures are a class of approximation methods, designed to solve dif-
ficult combinatorial optimization problems [1]. Optimization problems are based on
choosing the best configuration from a set of feasible solutions to achieve an objective
[2] and are divided into two categories: problems with continuous and discrete variables.
For this case, the second category will be taken that tries to find an objective that is taken
within a finite and discrete set, an integer, a set of integers, a permutation or a graph. The
two types of problems have different solution methods, however, combinatorial opti-
mization problems belong to the second category [2] as an example, Greedy Random
Adaptive Search Procedures (GRASP).

GRASP is an iterative procedure where each step consists of a construction phase
and an improvement phase. In the construction phase, a constructive heuristic procedure
is applied to obtain a good initial solution. This solution is improved in the second phase
by a local search algorithm. The best of all the solutions examined is the final result
[3, 4].
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The main contribution of this work is based on the experimentation and analysis of
the results in the method, obtaining a good initial solution and subsequently improving
it.

This paper is organized as follows: Sect. 1, contains an introduction to this work, in
Sect. 2, relatedwork is presented. In Sect. 3, the formulation for the quadraticAssignment
Problem (QAP); Sect. 4, shows the metaheuristics, Sect. 4.1, contains a description of
GRASP, as well as the design of the pseudocode, subsequently in Sect. 4.2 the use of
GRASP for the Quadratic Assignment Problem.

Section 5, shows the experiments that were done, and the results that were obtained,
respectively. Finally, in Sect. 6, it will find a discussion, conclusions and future work.

2 Related Work

The Quadratic Assignment Problem (QAP) is a combinatorial optimization problem
that consists in finding an optimal allocation of n resources to n locations in order to
minimize the cost of transportation, additionally, two matrixes are needed, one for the
requirements of the units to be transported and the second is the cost of transport per
unit between the localities.

QAP was proposed by [5] in 1957. Later in 1976, Shani and González proved that
QAP is an NP-complete problem [6]. So far, optimal solutions have been found using
exact methods for instances of size 30 [7]. The QAP is used in many applications such
as: computer keyboard design, manufacturing programming, airport terminal design,
and communication processes. An exact branch and bound algorithm is used with some
variants to solve the QAP and was proposed by [7], however, recently solutions were
proposed with different metaheuristics techniques such as [8, 9]: genetic algorithms,
simulated annealing, tabu search [10] and GRASP [3, 11]. In [12] implemented GRASP
in parallel for QAP.

Other works related to the search for QAP solutions are based on the particle swarm
algorithm, recombination of operators for genetic algorithms and stagnation aware
cooperative parallel to local search [13, 14].

QAP in large instances is a notably hard problem to find a solution to and the perfor-
mance of metaheuristic algorithms varies, as mentioned in [15] where two algorithms
are compared with results that depend on the size of the problem.

In [16] simulated annealing, particle swarmoptimization, genetic algorithms, iterated
local search, tabu search and crow search algorithms are implemented and compared in
massive parallel processing units to solve QAP for large instances. Another example of
parallel processing can be seen in [17] where this metaheuristic is implemented with
Tabu search to work with large size QAP.

3 Formulation for the Quadratic Assignment Problem

The QAP consists of finding an optimal allocation that minimizes the cost of trans-
porting materials, among n facilities in n locations, considering the distance between
locations and the flow of materials between facilities. The QAP can be formulated by a
combinatorial optimization model (CP).
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Given a set N = {1, 2,.., n} and two symmetric matrices of size n x n where: F =(
fij

)
y D = (dkl), a permutation p m �N must be found that minimizes

n∑

i=1

n∑

j=1

fijdp(i)p(j) (1)

Where �N is the set of all permutations of N, F is the material flow matrix between
facilities and D is the distance matrix between cities.

4 Metaheuristics

The major drawbacks that heuristic techniques face is the existence of local optimum
that are not absolute. If during the search there is a local optimum, the heuristic could
not continue the process and would be “trapped” at the same point. In order to solve the
problem, it is recommended to restart the search from another initial solution and verify
that the new search explores other paths.

Most combinatorial optimization problems are specific problems, so a heuristic tech-
nique algorithm that works for one problem is sometimes not useful for solving other
problems. However, in recent times. general purpose heuristics called metaheuristics
have been developed that try to solve the above drawbacks. Most metaheuristics are
developed with neighborhood search methods.

The word metaheuristics was coined [1] at the same time that the term Tabu Search
emerged (1986). A metaheuristic is a master strategy that guides and modifies other
heuristics to generate better solutions than are normally presented by other methods
[18].

There are several successful metaheuristics in solving combinatorial problems. The
Greedy Randomized Adaptive Search Problem (GRASP) metaheuristic is one of the
most recent techniques, it was originally developed [19] at the time of studying coverage
problems of high combinatorial complexity [3]. Each iteration in GRASP generally
consists of two steps: the construction phase and the local search procedure. In the first
stage, an initial solution is built that is later improved by post-processing to perfect the
solution obtained in the first stage until obtaining a local optimum.

There are works where this metaheuristic is applied for optimization problems in big
data [20]. Additionally, there are other variants such as: GRASP-path relinking, GRASP-
reactive,GRASP-parallel,GRASP-hybridswith someothermetaheuristicswhose search
is based on neighborhoods [21].

4.1 Greedy Randomized Adaptive Search Problem GRASP

A GRASP is an iterative process, each iteration consists of two steps: the construction
phase and the local search procedure. In the first, an initial feasible solution is construct,
later it is improved by means of an exchange procedure until obtaining a local optimum
[4].
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Once the two phases have been executed, the solution obtained is stored and another
iteration is carried out, each time saving the best solution that has been found so far.

An algorithm that exemplifies metaheuristics is shown in Fig. 1.

Procedure GRASP

InputInstance();

While (stop criterion not satisfied) do
ConstructSolutionGreedyRandomizeAdaptative();

Post-proccesing();

UpdateSolution();

End {While}

Return (Best solution)

End {GRASP}

Fig. 1. Generic GRASP pseudocode.

The general description of the main components of GRASP are: The Greedy com-
ponent that uses a myopic algorithm for the selection of the components that guide the
construction of solutions, the Randomized used for the random selections of an elite list
of candidates that determine the path of search, the Adaptive has the mission of updating
each result obtained from the components of the solution that is built [22].

4.2 GRASP for the Quadratic Assignment Problem

The GRASP design has been used by some researchers to solve the QAP for different
instances [1, 4, 6]. It should be noted that the solutions are a permutation of length n,
summarizing the procedure as follows: Initial construction phase: stage 1, generation of
a list of candidates, which has previously been restricted by two parameters, then one is
randomly taken of these candidates fromwhich the first 2 assignments are derived. Stage
2, the remaining n−2 assignments are added in relation to theGreedy procedure, once the
process is finished, the permutation is completed, producing a feasible solution. Phase
2 of improvement: the solution generated from phase 1 is taken as the initial solution of
some local search procedure, at the end of the procedure, a local optimal solution will
be obtained, which could also be globally optimal.

The neighborhood structures used are: 2-exchange, N* and λ-exchange. In practice,
the flow matrixes are taken, as well as the distance matrix and their elements are listed
separately. The flows (matrix) are ordered from highest to lowest and the distances from
least to greatest, both lists are restricted with a parameter 0 < α < 1, they are multiplied
generating a new list of elements of the form fij * dkl that contains large flows and
short distances. This list is restricted with a parameter 0 < β < 1, with these operations
you have a restricted list of candidates (CRL), from this list an element of the form is
randomly selected fij * dkl , producing the first assignment pair (i, k), (j, l), interpreted
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as facility k is assigned to location i and facility l is assigned to location j. Finally n−2
components remain to be assigned, again with a greedy we calculate the Cik costs with
respect to the 2 assignments against the remaining possible assignments, another CRL
is formed and one of these candidates is selected with which the third assignment is
generated and so on. Until completing the permutation of n components called initial
solution S0 which is subjected to phase 2, called improvement phase, this is an iteration
of GRASP [23].

5 Results

This section shows the results obtained for instances taken from [24], the instances
dimensions are greater than 42 up to 100 considering as a great scale. A data table is
shown for each of the three implemented neighborhood structures. It also shows three
comparative tables of the neighborhood structures in terms of the number of iterations,
the execution time TCPU and the percentage in which they reach the optimal or best
known value. Likewise, a table with the GAP percentages is presented.

All the results shown in this section were obtained by restricting the list of candidates
(RLC) with the parameters α = 0.2 and β = 0.3, which were determined experimentally.
The neighborhood topologies is discussed in [3, 25] inwhich the size of the neighborhood
is commented as follows: for 2-exchange is C2

n , λ-exchange, for the size is
n3
24 , N

∗ is n4
8 ,

finally, the pseudocode algorithms for the previous neighborhood structures are shown
in [3].

Table 1. GRASP results with local search λ-exchange, Skorin-Kapov instances

Instance Neighborhood Option BKV BFV GRASP Error % TCPU

Sko 42 λ-exchange Random 15812 15966 0.97 36380

Sko 49 λ-exchange Greedy 2 stage 23386 23596 0.90 64381

Sko 56 λ-exchange Greedy 2 stage 34458 34694 0.68 121372

Sko 64 λ-exchange N. initial Sol. 48498 48686 0.39 207061

Sko 72 λ-exchange Random 66256 66686 0.65 282684

Sko 81 λ-exchange Random 90998 91772 0.85 462095

Sko 90 λ-exchange Greedy 2 stage 115534 116582 0.91 797597

Sko 100a λ-exchange Random 152002 153208 0.79 1064643

Sko 100b λ-exchange Greedy 2 stage 153890 155188 0.84 1251686

Sko 100c λ-exchange Random 147862 149074 0.82 11543734

Sko 100d λ-exchange Greedy 2 stage 149576 150958 0.92 1245131

Sko 100e λ-exchange Random 149150 150454 0.87 1141179
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Table 2. GRASP results with local search 2-exchange, Skorin-Kapov instances

Instance Neighborhood Option BKV BFV GRASP % error TCPU

Sko 42 2-exchange Random 15812 15922 0.70 28288

Sko 49 2-exchange Greedy 2 stage 23386 23594 0.89 64184

Sko 56 2-exchange Random 34458 34840 1.11 96746

Sko 64 2-exchange Greedy 2 stage 48498 49002 1.04 197513

Sko 72 2-exchange Random 66256 66794 0.81 281584

Sko 81 2-exchange Greedy 2 stage 90998 91640 0.71 537896

Sko 90 2-exchange Random 115534 116448 0.79 757746

Sko 100a 2-exchange Random 152002 153012 0.66 1162220

Sko 100b 2-exchange Random 153890 154916 0.67 1262583

Sko 100c 2-exchange Greedy 2 stage 147862 148736 0.59 1290115

Sko 100d 2 exchange Greedy 2 Stage 149576 150800 0.82 647448

Sko 100e 2 exchange Greedy 2 stage 149150 150724 1.06 1372944

Table 3. GRASP results with local search N*, Skorin-Kapov instances

Instance Neighborhood Option BKV BFV GRASP Error % TCPU

Sko 42 N* Random 15812 15950 0.87 351405

Sko 49 N* Greedy 2 stage 23386 23554 0.72 606638

Sko 56 N* Random 34458 34780 0.93 1318201

Sko 64 N* Greedy 2 stage 48498 48912 0.85 192592

Sko 72 N* Random 66256 66830 0.87 289931

Sko 81 N* Random 90998 91868 0.96 489550

Sko 90 N* Greedy 2 stage 115534 116176 0.56 860121

Sko 100a N* Random 152002 152942 0.62 2186983

Sko 100b N* Random 153890 154928 0.67 1060393

Sko 100c N* Random 147862 148854 0.67 1094756

Sko 100d N* Random 149576 150772 0.80 1197065

Sko 100e N* Random 149150 150704 1.04 961112956

6 Conclusions

The results of Tables 1, 2 and 3 shows that GRASP is a robust metaheuristic in the search
for solutions to NP-hard problems. The solutions reached in the work are compared with
the best known values according with QAPLIB [24]. As shown in Tables 1, 2 and 3
and in the % error column, the results obtained oscillate between 0.56 and 1.11 in
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error percentage. The seventh column shows the execution time for each instances in
milliseconds, which is a reasonable computing time for large-scale instances.

Within the research it was shown that for the Sko 42 instance case, the best imple-
mentation was 2-exchange, in the case of Sko 64 the best combination was λ-exchange
and for Sko 90 the best execution was Greedy 2 stage. Talking about the case of matrices
of size 100 that represent the largest scale, the results are considered favorable because
the error is less than 1%, only in the case of the Sko100e instance the maximum error is
1.06.

In the present document, the results obtained were carried out in the Java program-
ming language for the three local searches with GRASP and were executed on an Intel
i7 processor. Therefore, with the results shown, the usefulness of metaheuristics to solve
highly complex problems was verified, as well as the verification to obtain approximate
optimal solutions, given the inefficiency of the exact methods.

As future work, it is proposed to implement the metaheuristic variable neighborhood
search (VNS) with the neighborhood structures 2-exchange, N* and λ-exchange as an
improvement phase for GRASP to form a hybrid GRASP-VNS.
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