
Solving Dynamical Systems Using
Windows of Sliding Subproblems

Angel Fernando Garcia Contreras(B) and Martine Ceberio

The University of Texas at El Paso, El Paso, TX 79968, USA
afgarciacontreras@miners.utep.edu

Abstract. Phenomena that change over time are abundant in nature.
Dynamical systems, composed of differential equations, are used to model
them. In some cases, analytical solutions exist that provide an exact
description of the system’s behavior. Otherwise we use numerical approx-
imations: we discretize the original problem over time, where each state of
the system at any discrete time moment depends on previous/subsequent
states. This process may yield large systems of equations. Efficient tools
exist to solve dynamical systems, but might not be well suited for certain
types of problems. For example, Runge-Kutta-based solution techniques
do not easily handle parameters’ uncertainty, although inherent to real
world measurements. If the problem has multiple solutions, such methods
usually provide only one. When they cannot find a solution, it is not know
whether none exists or it failed to find one. Interval methods, on the other
hand, provide guaranteed numerical computations. If a solution exists, it
will be found. Interval methods for dynamical systems fall into two main
categories: step-based methods (fast but too conservative with overestima-
tion for large systems) and constraint-solving techniques (better at con-
trolling overestimation but usually much slower). In this article, we pro-
pose an approach that “slices” large systems into smaller, overlapping ones
that are solved using constraint-solving techniques. Our goal is to reduce
the computation time and control overestimation, at the expense of solv-
ing multiple smaller problems instead of a larger one. We share promising
preliminary experimental results.

1 Introduction

Phenomena that change over time are abundant in nature. We model their behav-
ior using dynamical systems, i.e., differential equations to describe how they
change over time. For some real life problems, analytical solutions exist that pro-
vide an exact description of the behavior. For many other problems, such solutions
do not exist, so we use numerical approximations: we discretize the original contin-
uous problem over time, where each intermediate state of the system at each dis-
crete time depends on previous and/or subsequent states. This process may result
in a very large set of equations, depending on the level of granularity that is sought.

There exist many efficient and useful tools to solve dynamical systems, which
might not be well-suited for some types of problems. For example, Runge-Kutta-
based solution techniques do not easily handle uncertainty on the parameters,
c© Springer Nature Switzerland AG 2021
J. C. Figueroa-Garćıa et al. (Eds.): WEA 2021, CCIS 1431, pp. 13–24, 2021.
https://doi.org/10.1007/978-3-030-86702-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86702-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-86702-7_2


14 A. F. G. Contreras and M. Ceberio

although inherent to real world measurements. Solutions are heavily reliant on an
initial set of parameters. When a problem has multiple solutions, such methods
do not identify how many solutions there are or whether the found solution is
the best based on some criteria. When a solution cannot be found, it is not clear
whether the solving technique failed to find one or none exists.

In our research, we use interval-based methods [9,10], which provide guar-
anteed numerical computations. These techniques guarantee that if a solution
exists, it will be found, and that if none exists, it will report this with certainty.
There exist two main categories of interval-based methods to solve dynamical
systems: step-based methods that generate an explicit system of equations one
discretized state at a time, and constraint-solving techniques that solve the entire
system of implicitly discretized equations. Step-based methods are fast, but on
complex systems (either because they are simulating longer times or the differ-
ential system is very non-linear), their output provides overestimated solution
ranges. Constraint-solving techniques can better control the overestimation by
working on the entire system at once, but will take considerably longer to report
a reasonable solution range.

In this work, we introduce a heuristic approach based on the structure of a
dynamical system as a constraint satisfaction problem, solving multiple smaller
overlapping sub-problems. We define the parameters that determine how big
the sub-problems are and how much they overlap. We test the effect that these
parameters have on the quality of the interval solution and the total execution
time to solve the given problem, and compare the performance against interval-
based dynamical systems solvers. We conclude that our heuristic shows promise.

2 Background

2.1 Dynamical Systems

Dynamical systems model how a phenomenon changes over time. In particular,
we are interested in continuous dynamical systems.

Definition 1. A continuous dynamical system is a pair (D, f) with D ⊆ R
n

called a domain and f : D ×T → R
n a function from pairs (x, t) ∈ D ×T to R

n.

Definition 2. By a trajectory of a dynamical system, we mean a function x :
[t0,∞) → D for which dx

dt = f(x, t).

To obtain the state equations of a dynamical system, we integrate its differen-
tial equations. In this research, we focus on numerical methods that approximate
the actual solution. A key advantage of these methods is that they can provide
good results even if the exact solution cannot be found through other meth-
ods. Their drawback is that they are not perfect and always have a margin of
error that must be included in the computation. Fortunately, this error can be
minimized by choosing the right type of numerical method for the problem and
tweaking the parameters that generate the approximation.



Solving Dynamical Systems Using Windows of Sliding Subproblems 15

2.2 Traditional Methods

Numerical methods to solve dynamical systems are usually classified in two gen-
eral categories based on the type of approximation they make for the integral:
explicit and implicit methods. In explicit methods, the state equation for a spe-
cific state involves the values of one or more previous states. To solve this kind of
problem, it is possible to simply evaluate each discretized state equation in order,
to obtain the values for all states in succession, as each state equation already
has the values it needs from previous states. Implicit methods involve past and
future states in their discretization. These equations cannot be solved by simple
successive evaluation. They are often solved using root-finding methods, such as
Newton-Rhapson. Both types of methods are used to solve dynamical system
problems, either separately or synergistically.

2.3 Interval Methods

An interval is defined as: X = [X,X] = {x ∈ R | X ≤ x ≤ X; X, X ∈ R}.
Intervals represent all values between their infimum X and supremum X. In

particular, we can use them to represent uncertain quantities. We manipulate
them in computations through the rules of interval arithmetic, naively posed
as follows: X � Y = {x � y, where x ∈ X, y ∈ Y }, where � is any arithmetic
operator, and combining intervals always results in another interval. However,
since some operations, like division, could yield a union of intervals (e.g., division
by an interval that contains 0), the combination of intervals involves an extra
operation, called the hull, denoted by �, which returns one interval enclosure of
a set of real values. We obtain: X � Y = � {x � y, where x ∈ X, y ∈ Y }.

We can extend this property to any function f : Rn → R with one or more
interval parameters:

f (X1, . . . ,Xn ) ⊆ � {f (x1, . . . , xn) , where x1 ∈ X1, . . . , xn ∈ Xn}
where f (X1, . . . ,Xn ) represents the range of f over the interval domain

X1 × . . . ,×Xn , and � {f (x1, . . . , xn) , where x1 ∈ X1, . . . , xn ∈ Xn} repre-
sents the narrowest interval enclosing this range. Computing the exact range
of f over intervals is very hard, so instead we use surrogate approximations. We
call these surrogates interval extensions. An interval extension F of function f
must satisfy the following property:

f (X1, . . . ,Xn ) ⊆ F (X1, . . . ,Xn )

Interval extensions aim to approximate the range of the original real-valued
function. In general, different interval extensions can return a different range for
f while still fulfilling the above property. For more information about intervals
and interval computations in general, see [9,10].

Step-BasedMethods for Solving Dynamical Systems. Such algorithms use
explicit discretization schemes, such as Taylor polynomials or Runge-Kutta, that
must be evaluated to provide a guaranteed enclosure that includes the discretiza-
tion error at every step. The solvers implement interval evaluation schemes that



16 A. F. G. Contreras and M. Ceberio

reduce overestimation. For example, VSPODE [7] uses Taylor polynomials for dis-
cretization and Taylor models [1,8] for evaluation; DynIBEX [4] uses Runge-Kutta
discretization and evaluates its functions using affine arithmetic [5,12].

Interval Constraint-Solving Techniques. The methods used to solve a
dynamical system using explicit discretization do not work for implicit discretiza-
tion. We need to solve the entire system. We can do this if we treat the state
equations as a system of equality constraints and the dynamical system as an
interval Constraint Satisfaction Problem (CSP):

Definition 3. An interval constraint satisfaction problem is given by the tuple
P = (X,X,C ), where X = {x1, . . . , xn} is a set of n variables, with associated
interval domains X = {x1, . . . ,xn} and a set of m constraints C = {c1, . . . , cm}

The initial interval domain X represents the entire space in which a real-
valued solution to the CSP might be found. With intervals, we want to find an
enclosure of said solution. This enclosure X∗ needs to be narrow: the differences
between the infimum and supremum of all interval domains in X∗ must be less
than a parameter ε, representing the accuracy of the solution’s enclosure. If the
entire domain is inconsistent, it will be wholly discarded, which means that the
problem has no solution.

An interval constraint solver attempts to find a narrow X∗ through con-
sistency techniques. Consistency is a property of CSPs, in which the domain
does not violate any constraint. For interval CSPs, we want domains that are at
least partially consistent: if they do not entirely satisfy the constraints, they may
contain a solution. Figure 1 shows a visualization of the general concept behind
contraction using consistency. Figure 1a shows the evaluation of a function f(x)
over an interval x, represented by the gray rectangle y = f(x). This function
is part of a constraint f(x) = −4, whose solutions are found in the domain of
x; however, this interval is too wide, so it must be contracted. In this case, the
range of f(x) ≥ −4.0 can be discarded, which creates a new interval value for
the range of f(x), or y′, which can be propagated to remove portions of x that
are not consistent with y′. This creates the contracted domain x′, which is a
narrower enclosure of the solutions of f(x) = −4, as shown in Fig. 1b.

Contraction via consistency is just part of how interval constraint solver tech-
niques find narrow enclosures of solutions to systems of constraints. For exam-
ple, the constraint f(x) = −4 shown in Fig. 1 has two solutions enclosed inside
the domain x′, but we need the individual solutions. Interval constraint solvers
use an algorithm called branch-and-prune. The “prune” part of the algorithm
is achieved through contraction via consistency; when “pruning” is not enough
to find the most narrow enclosure that satisfies the constraints, the algorithm
“branches” by dividing the domain X into two adjacent subdomains by split-
ting the interval value of one of its variables through a midpoint m(x) = x+x

2 .
These two new sub-boxes, XL =

{
x0, . . . ,

[
xi,m(xi)

]
, . . . ,xn

}
and XU =

{x0, . . . , [m(xi), xi] , . . . ,xn}, are then processed using the same algorithm. This
means that all sub-boxes are put in a queue of sub-boxes, as each sub-boxes and
be further “branched” into smaller sub-boxes.



Solving Dynamical Systems Using Windows of Sliding Subproblems 17

Fig. 1. Visual example of interval domain contraction

Interval constraint solvers such as RealPaver [6] and IbexSolve [2,3] solve sys-
tems of constraints. To solve a dynamical system, we need to generate all required
state equations, and provide an initial domain containing all possible state values.
While interval solvers can provide good results, when systemare too large, they can
be slow to find a reasonable solution. For large systems, there have been attempts
at making them easier to solve, including generating an alternative reduced-order
model [13], and focusing on a subset of constraints at a time [11].

2.4 Step-Based or Constraint-Based?

Step-based methods (VSPODE, DynIbex) work well, up to a point. They rely on
a dynamically-computed step size aimed at minimizing the error intrinsic to the
approximation. As these are interval-based methods, this means they compute an
enclosure of the solution that incorporates the approximation error. This error
introduces a small amount of overestimation into the solution. After computing
multiple states, each with their respective computed step size h, the overestima-
tion that accumulates at every iteration can become too large to be useful in com-
puting a new h. If the solver cannot compute a new h, the simulation stops, even
before reaching the expected final state at tf .

Solving a full system using interval constraint-solving techniques can explore
multiple realizations of the system with a desired width for the enclosure. Every
state equation is evaluated multiple times, potentially increasing the contraction
of the initial domain for the state variables involved. Even with a static value
of h for all states, implicit approximations used increase the accuracy of the
approximation.

The main reason why step-based methods are often preferred is simple: inter-
val constraint-solving techniques are slower. Interval-based domain contractors
evaluate each equation multiple times and the branch-and-prune-based algo-
rithms used within constraint solvers create subproblems exponentially based
on the number of variables. The exponential amount of subproblems combined



18 A. F. G. Contreras and M. Ceberio

with the multiple evaluations of each equation per subproblem results in algo-
rithms that can provide strong guarantees on the solution but at a considerably
higher computation time.

So, on one hand, a family of methods that is fast but falls pray to overesti-
mation; on the other hand, methods that reduce domains with a higher compu-
tation time. Let us compare these methods using a complex dynamical system.
For this example, we have chosen a three-species food chain model with Holling
II predator response functions:

dm1

dt
= r1m1

(
1 − m1

K1

)
− a12

(
m1m2

m1A1

)

dm2

dt
= −d2m2 + a21

(
m1m2

m1A1

)
− a23

(
m2m3

m2A2

)

dm3

dt
= −d3m3 + a32

(
m2m3

m2A2

)

We ran this problem with VSPODE, DynIBEX, and IBEX. We used same
parameters for the system, the best settings for their respective algorithms (i.e.
VSPODE and DynIBEX use dynamic step size, DynIBEX uses its most accurate
Range-Kutta discretization). For IBEX, we generated a set of state equations
using trapezoidal discretization, with a step size of h = 0.01. The dynamical
system as solved up to tf = {40, 100} for a total of N = 4000, 10000 states,
respectively. Figure 2 shows the plots of the solution for VSPODE and DynIBEX;
there is no plot for the results of IBEX, as of the time of writing, the solver has
been working for about three weeks without returning a single solution.

(a) VSPODE (b) DynIBEX

Fig. 2. State enclosures VSPODE and DynIBEX when tf = {40, 100}

The plots for tf = 40 look like a single line, but actually represent narrow
ranges. This is more evident in the tf = 100 plots, in which overestimation starts
separating the lower and upper bounds. The results for these plots do not reach
all the way to tf = 100: at some point between t = 40 and t = 60, the large
overestimation causes these solvers to become unable to dynamically compute
a new step-size h, and the solving process stops. This shows an area of oppor-
tunity: can we find a way to reduce that overestimation without an excessive



Solving Dynamical Systems Using Windows of Sliding Subproblems 19

cost in computation time? How can we apply the knowledge of one type tech-
nique to the other in order to reduce their respective flaws? In this article, we
explore implementing a heuristics that improves the execution time of interval
constraint-solving techniques while maintaining accuracy.

3 Problem Statement and Proposed Approach

We want to reduce the computation time and increase the accuracy of interval-
based dynamical system solvers. There are instances in which a decision-maker
needs accuracy under uncertainty, fast. For example, if they need to recompute
the parameters of a problem on-the-fly, after an event causes the state of the
problem to change dramatically and with some degree of uncertainty. Existing
tools can already produce good results, often at a cost: either the method is fast
but has less accuracy, or its accuracy increases at the expense of additional and
potentially prohibitive computation time [14].

We believe that combining ideas from step-based methods and interval con-
straint solvers can yield better solutions to dynamical systems in a reasonable
amount of time. In this work, we outline a preliminary approach, focused on re-
examining how an interval constraint solver works through the state equations of
a dynamical system: a heuristic that takes advantage of the problem’s structure
to speed up the solving process.

The idea is to take advantage of the structure in a dynamical system (specif-
ically, an initial value problem) to create and solve subproblems made of subsets
of contiguous state variables and their respective equations. We take the state
variables Xsub = {x (j) , . . . x (j + Nw)} with domains {x (j), . . . ,x (j + Nw )},
along the following set of state equations as a system of constraints Csub:

gi (x (j) , . . . x (j + Nw) , ti) = f (x (i) , ti, h) , ∀i ∈ {j, . . . j + Nw}
where function gi is a discretization of dx

dt at ti. We call this subproblem
Psub = (Xsub, Csub) a window of size Nw. Our technique aims to speed up the
computation process of interval constraint solvers by sequentially creating and
solving a series of subproblems of size Nw.

The first subproblem involves the initial conditions of the problem. However,
we cannot treat subsequent subproblems as smaller initial value problems, with
the initial conditions taken from the last state of the previous subproblem. When
doing this, we treat the new subproblem as an independent initial value problem
and lose the trajectory created by the values of the states from the previous
subproblem.

Our solution is to transfer multiple state values between subproblems. Solving
the k-th subproblem Pk = (Xk, Ck) yields a reduced domain X∗

k representing
Nw states, from tj to tj+Nk

. For the next subproblem, Pk+1 = (Xk+1, Ck+1), we
take the last o interval values of X∗

k and use them as the initial domain for the
first o values of Xk+1:

{xk+1 (1), . . . ,xk+1 (o)} = {xk (Nw − o), . . . ,xk (Nw )}



20 A. F. G. Contreras and M. Ceberio

We then solve subproblem Pk+1 using interval constraint-solving techniques,
yielding a new reduced domain used to repeat the process again. We call o the
overlap between subproblem windows of size Nw. Figure 3 shows a graphical
representation of how o states are transferred from one subproblem to the next.

With interval constraint solvers, a series of subproblems with a smaller num-
ber of variables is faster to solve than one with more variables: the number of
subproblems generated from domain division is reduced, which speeds up the
overall process. We want to find out the impact that Nw and o have in the
process, both in terms of execution time, but also on the quality of said solu-
tion. Our hypothesis is that smaller sizes of Nw will be faster but with greater
imation. Regarding o, we believe smaller sizes will have a similar effect.

Fig. 3. Graphical plot of overlap transfer

4 Experimental Results and Analysis

4.1 Methodology

We compare the sliding windows heuristic against existing methods to solve
dynamical systems using intervals (we chose VSPODE and DynIBEX), with
the same three-species food chain system, with the same parameters, step size
h = 0.01, solving up to tf = {40, 100}. This creates two different problems to
compare for: a problem with N = 4000 discrete times, with one state per species
or a system of 12000 equations; and a problem with N = 10000 discrete times
and 30000 equations.

We consider three metrics to compare the sliding windows heuristic against
existing methods:

– Quality of the solution (Quality). The solution of a given dynamical system
found by an interval-based solver is given as interval values that enclose the
real solutions. Due to the overestimation inherent in interval computations,
the boundaries of this interval might not be a perfectly narrow enclosure. This
metric is the max interval width across all state values. As we want the most
narrow enclosures possible, the closer this value is to 0, the better quality the
solution has

– Total execution time (Execution time). The total computation time spent
by each specific algorithm/solver, in seconds. This is a comparison metric
for methods that provide similar results: if two methods provide equivalent
overall quality, the faster is preferable. However, a method that provides wider
enclosures but takes considerably less computation time might be preferable
to a potential decision maker’s problem (i.e. near real-time systems).



Solving Dynamical Systems Using Windows of Sliding Subproblems 21

– States until overestimation (S. Over). In interval computations, overesti-
mation is inherent. When re-using interval quantities with overestimation
in interval computations, the overestimation across different interval values
might be compounded. When using interval computations to solve dynamical
systems, the first discretized states will be narrower than states further in the
simulation’s future. This metric represents the first state in the simulation at
which overestimation becomes too large; we consider an interval state value
to be overestimated if the supremum of its interval value is 10% above its
midpoint. For this metric, if a solution has overestimation, a value that is
closer to tf is better.

We also aim to explore how the sliding windows parameters affect the solution
quality and execution time. We explored the following parameters/values: the
window size: Nw = {20, 50} the overlap: expressed as a percentage of Nw, o =
{30%, 50%, 70%}.

We implemented the sliding heuristic using the default solver in IBEX to
solve each individual subproblem. We set the default solver to contract domains
into solutions of width 10−8, to stop the solving process after 900 s, and finally,
if multiple solutions are found, we take the hull that encloses them.

4.2 Experiments

Figure 4 show the plots for all the experiments using sliding windows. Table 1
shows the comparison of metrics for DynIBEX and VSPODE against the differ-
ent variations of the sliding algorithm.

4.3 Results Analysis

As shown in the metrics of Table 1, there is value for the “States until overes-
timation” metric any of the experiments using our slide heuristic on tf = 40
because there is no overestimation up to that point – all the states are narrow,
as seen in the “Quality” column.

Regarding the heuristic parameters, based on our experimental results, we
conclude that, for the food chain problem, the size of the window Nw does not
have a significant impact in the width of the obtained solution, though with a
larger value for Nw, there is a slight improvement on the number of narrow states,
as seen in the “States until overestimation” column for tf = 100. The main
drawback is that it requires a significantly longer computation time. Regarding
ow, its influence on the narrowness is similar to Nw’s. In the results for up to
tf = 40, there is no significant difference in the quality of the solution, only on
the execution time.

The solutions obtained by our heuristic are more relevant when compared
with the solutions from other interval-based solvers. For the food chain problem,
our heuristic has a later “state until overestimation” than the other two methods.
This means that the slide heuristic, in all its variants, manages to return a
solution that remains narrow for a longer number of states.



22 A. F. G. Contreras and M. Ceberio

(a) o = 30% (b) o = 50% (c) o = 70%

(d) o = 30% (e) o = 50% (f) o = 70%

(g) o = 30% (h) o = 50% (i) o = 70%

(j) o = 30% (k) o = 50% (l) o = 70%

Fig. 4. (a,b,c) Plots for the sliding windows with Nw = 20 and tf = 40. (d,e,f) Plots
for the sliding windows with Nw = 50 and tf = 40. (g,h,i) Plots for the sliding windows
with Nw = 20 and tf = 100. (j,k,l) Plots for the sliding windows with Nw = 50 and
tf = 100.



Solving Dynamical Systems Using Windows of Sliding Subproblems 23

Table 1. Table of metrics

Problem 1 (tf = 40) Problem 2(tf = 100)

Solver Quality Exec. time S. Over Quality Exec. time S. Over

VSPODE 1.0000 3189.0619 29.09 1.5848 5351.2794 29.09

DynIBEX 0.4879 30.6470 1.50 1.1136 57.8751 1.50

Nw = 20, o = 30% 6.1330E-04 313.6700 – 0.7437 741.1903 49.22

Nw = 20, o = 50% 5.6379E-04 459.5741 – 0.7341 1273.4984 49.98

Nw = 20, o = 70% 5.1991E-04 934.7888 – 0.7282 1346.8824 51.16

Nw = 50, o = 30% 2.5693E-04 1856.3104 – 0.5853 3149.8939 50.73

Nw = 50, o = 50% 2.1312E-04 2454.8584 – 0.6157 5124.8888 53.13

Nw = 50, o = 70% 1.9722E-04 3258.1111 – 0.7016 5636.2485 61.64

DynIBEX is fast, but the intermediate results it reports are not as nar-
row, as seen in Fig. 2. Between VSPODE and our heuristic, there are two main
differences: the rate at which the overestimation increases after surpassing the
expected max width, and the time it takes to reach that solution. Our heuristic
with a small size of Nw is faster, with a slower increase in overestimation than
VSPODE. It is possible that this be due to the differences between the discretiza-
tion schemes, and the current “simplified” discretization in our heuristic. Even
when considering this, the similar solution quality with the faster performance
shows that our approach is promising.

5 Conclusions and Future Work

Based on the results we presented, the sliding windows heuristic shows promise
in providing narrower results than step-based interval solvers. It computes solu-
tions faster than VSPODE, given the right combination of parameters Nw and o.
Increasing the window size Nw produces results that will not reach overestima-
tion until later, at the expense of much greater computational time. Increasing
the overlap o has a similar effect, though not as pronounced.

We plan to further explore the potential of this technique by applying and
comparing it with other challenging non-linear problems. We are looking into
experimenting with different discretization schemes to reduce the error. Finally,
we plan to examine how these techniques fare against other approaches that
reduce the computational complexity, such as reduced order modeling.

References

1. Berz, M., Makino, K.: Verified integration of odes and flows using differential alge-
braic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369 (1998)

2. Chabert, G.: Ibex, an interval-based explorer (2007)



24 A. F. G. Contreras and M. Ceberio

3. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173(11), 1079–1100
(2009)

4. dit Sandretto, J.A., Chapoutot, A.: Validated explicit and implicit Runge-Kutta
methods. Reliable Comput. 22(1), 79–103 (2016)

5. Goubault, E., Putot, S.: Under-approximations of computations in real numbers
based on generalized affine arithmetic. In: Nielson, H.R., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 137–152. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74061-2 9

6. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using
constraint satisfaction techniques. ACM Trans. Math. Softw. (TOMS) 32(1), 138–
156 (2006)

7. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for paramet-
ric odes. Appl. Numer. Math. 57(10), 1145 (2007)

8. Makino, K., Berz, M.: Taylor models and other validated functional inclusion meth-
ods. Int. J. Pure Appl. Math. 4(4), 379–456 (2003)

9. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM
(2009)

10. Moore, R.E., Moore, R.: Methods and Applications of Interval Analysis, vol. 2.
SIAM (1979)

11. Olumoye, O., Throneberry, G., Garcia, A., Valera, L., Abdelkefi, A., Ceberio, M.:
Solving large dynamical systems by constraint sampling. In: Figueroa-Garćıa, J.C.,
Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A.D., Dı́az-Gutierrez, Y.
(eds.) WEA 2019. CCIS, vol. 1052, pp. 3–15. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31019-6 1

12. Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arith-
metic. Nonlinear Theory Appl. IEICE 6(3), 341–359 (2015)

13. Valera, L., Garcia, A., Gholamy, A., Ceberio, M., Florez, H.: Towards predictions
of large dynamic systems’ behavior using reduced-order modeling and interval com-
putations. In: Proceedings of the 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 345–350. IEEE (2017)

14. Valera, L., Contreras, A.G., Ceberio, M.: “On-the-fly” parameter identification for
dynamic systems control, using interval computations and reduced-order modeling.
In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds.) NAFIPS
2017. AISC, vol. 648, pp. 293–299. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-67137-6 33

https://doi.org/10.1007/978-3-540-74061-2_9
https://doi.org/10.1007/978-3-540-74061-2_9
https://doi.org/10.1007/978-3-030-31019-6_1
https://doi.org/10.1007/978-3-030-31019-6_1
https://doi.org/10.1007/978-3-319-67137-6_33
https://doi.org/10.1007/978-3-319-67137-6_33

	Solving Dynamical Systems Using Windows of Sliding Subproblems
	1 Introduction
	2 Background
	2.1 Dynamical Systems
	2.2 Traditional Methods
	2.3 Interval Methods
	2.4 Step-Based or Constraint-Based?

	3 Problem Statement and Proposed Approach
	4 Experimental Results and Analysis
	4.1 Methodology
	4.2 Experiments
	4.3 Results Analysis

	5 Conclusions and Future Work
	References




