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Mario Enrique Duarte-González, and Sebastián Jaramillo-Isaza(B)

Faculty of Mechanical, Electronics and Biomedical Engineering,
Antonio Nariño University, Bogotá, Colombia
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Abstract. Biomechanical studies are essential in health research areas,
such as rehabilitation, kinesiology, orthopedics, and sports. For example,
they provide information to elaborate on patients’ diagnostics or improve
athletes’ performance. In recent years, deep learning and other compu-
tational methods have started to be used to quantify new biomechanical
parameters or perform deeper data analysis. Motion capture is one of
the methods commonly used in biomechanical studies. For this method,
video-based and marker-based systems are the gold standards; never-
theless, those systems are typically quite expensive. Moreover, experi-
mental errors in data capture are frequently related to the occlusion of
the markers during motion capture. Data missed is solved by increasing
the number of cameras to cover more angles or by using predetermined
interpolation algorithms. However, the last method could fail to pre-
dict all the marker data missed, and both options increase the cost of
the data analysis. For solving those kinds of problems, novel computa-
tional methods could be used. This study aims to implement an artifi-
cial neural network (ANN) to estimate the limb angle amplitude during
the execution of a movement from a single axis (X-axis). For training
and validating the ANN model, the data and features from the Five-
Minute Shaper machine (a physical conditioning device) are used. The
obtained results include RMSE values smaller than 3.2 (Minimum RMSE
of 0.96) and CC values close to 0.99. The predicted values are very close
to the experimental amplitude angles, and, according to the Two-sample
Kolmogorov-Smirnov test, the experimental and the estimated ampli-
tude angles follow the same continuous distribution (p − value > 0.05).
It is shown that these methods could help researchers in biomechanics
to perform accurate analysis, reducing the number of needed cameras
and avoid problems due to occlusion by only needing information from
a specific axis.
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J. C. Figueroa-Garćıa et al. (Eds.): WEA 2021, CCIS 1431, pp. 213–224, 2021.
https://doi.org/10.1007/978-3-030-86702-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86702-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-86702-7_19


214 C. F. Blanco-Diaz et al.

Keywords: Artificial neural networks · Biomechanical analysis · Limb
joints angles · Five minutes shaper · Computational modeling in
biomechanics · Lower and upper limbs

1 Introduction

Biomechanical movement analyses have been essential for the management of neu-
rological and orthopedic pathologies, where different kinematic and kinetic studies
provide vital information for health professionals and even show the evolution of
treatment, especially in real-time [4,10]. According to the above, several biome-
chanical systems have been introduced (diversified scales, low and high-cost tools):
electromyography, dynamometry, weight platforms, among others [1].

The latest decades have increased the use of computational intelligence in
the evaluation and analysis of biomechanics information. In this way, Artificial
Neural Networks (ANN) has been used in biomechanics analysis due to their
potential to classify and predict new data at different fields and situations [2].
In addition, the ANN has the capacity of generalizing the information, tolerate
noisy inputs, removing redundancies in the input data, and dealing with differ-
ent types [16,18]. Among the applications in biomechanics, it is important to
highlight its use to predict joint amplitudes and moments [9,12], improve the
data acquisition [15], determinate biomechanical postures [7] and others [14,17].
These applications impact daily exercises as gait, running, and devices to improve
physical conditions.

Deep learning has also been applied in the field of kinematic motion with
the aim of generating tools to improve biomechanical analysis [3,11,16]. For
example, in [19], neural networks have been used for estimating the amplitude
angles in the squat exercise by using electromyography (EMG) signals. As a
result, the Root Mean Square Error (RMSE) and Pearson correlation coefficient
(CC) were estimated. An average of five (5) for the RMSE and 0.99 for the CC
were obtained.

There are several types of physical conditioning devices in the market, and,
among them, the Five Minutes Shaper (FMS) that use the subject’s weight to
muscle toning, principally in the abdominal area. The FMS is a device that
activates several muscles in the body in different proportions and involves the
wrist, elbow, and knee joints. The principal activated joint is the knee due to
the lower limbs are displaced by the knee following the machine’s support to
generate the movement. In addition, the most activated joint amplitude is the
hip due to it acts as the center for stabilizing the trunk in the device [5].

Markers occlusion, when acquiring data in biomechanical laboratories, can
cause problems with the data integrity and generated false diagnostics [8]. One
solution to improve the acquisition and reduce the occlusion is to put more
cameras in the biomechanical laboratories. However, these cameras have a high
price in the market due to the kind of features used in data acquisition. Another
method to fix the tracking failure is by using temporal continuity of a point
trajectory, assuming rigid bodies of the volunteers’ segments and manually dig-
itizing the correct position [13].
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There are new researches about using new devices to improve the study
of kinematics parameters in the physical condition and the problems with the
marker occlusion. This study aimed to estimate, through an Artificial Neural
Network (ANN), the angle of amplitude of two joints around the upper and lower
limbs when the subjects use the FMS device in the easy level from just one axis
information. For this, features obtained of only X-axis kinematics information
and some anthropometric features of ten (10) subjects were used as input of the
ANN.

The neural network correctly estimated these angles with Root-Mean
Squared Error (RMSE) between 0.5 and 2 and Correlation Coefficient (CC)
close to 0.99. A Two-sample Kolmogorov-Smirnov test analysis shows that
the amplitude angles estimation models do not have a significant difference
(p− value > 0.05) compared to the gold standard information. This tool allows
the reduction of cameras and diminishes the occlusion problem by only needing
information from one specific axis.

This article is organized as follows: Section 2 presents the experimental
methods, Section 3 presents the results obtained for each model. Finally, the
last section presents the discussion, conclusions, contribution of the results, and
futures works.

2 Experimental Methods

2.1 Five Minutes Shaper Device

The Five Minutes Shaper (FMS) is a fitness device used for total body workouts.
This device has six different levels adjustable through the inclination angle to the
floor. These levels are cataloged in easy, intermediate, medium, difficult, hard,
and extreme, as shown in Fig. 1. The FMS is commonly used for muscle toning
in the abdominal area and increases physical conditioning due to its use of the
subject’s weight to performs the exercises. The subjects moved the lower limbs
through the knee machine’s support until reaching the maximum limit located
to 65 cm from the knee support and then return to the initial position. In this
study, only the easy level with an inclination of 15 degrees is considered.

2.2 Data Collection

In this study, the experimental protocol consisted of registering ten healthy vol-
unteers (five men and five women) who used the Five Minutes Shaper device
(FMS) at the easy level of around 30 s. Table 1 shows the anthropometric param-
eters of each subject and the average values.

The FMS places the subjects in ventral decubitus posture by supporting
the arms and knees on the device. The outline of the implemented protocol is
presented in the Fig. 2. Each participant performed a survey to know the fracture
history, surgical procedures, frequency in physical activity development, and
physical conditioning level. This survey was taken as an indicator to establish the
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Fig. 1. An image of the Five Minutes Shaper Device used in the experimental protocol.

inclusion criteria, which is healthy subjects and without physical conditioning.
The subjects were selected if they practice physical training routines less than
once a month. In addition, each one signed an informed consent considering the
recommendations established in the Helsinki declaration.

Table 1. Anthropometric parameters of each subject

Subjects Weight (kg) Height (m) Age (years)

Man 1 75 1.80 22

Man 2 65 1.71 21

Man 3 59 1.68 19

Man 4 88 1.82 18

Man 5 62 1.69 20

Woman 1 55 1.57 18

Woman 2 68 1.75 19

Woman 3 50 1.50 19

Woman 4 55 1.67 18

Woman 5 62 1.66 20

Average 63.9 ± 11.1 1.7 ± 0.1 19.4 ± 1.4

Markers were placed on the left side of the subjects following the International
Society of Biomechanics (ISB) recommendations for registering the biomechan-
ical activity. The selected joints were the wrist, elbow, shoulder, hip, and knee
and were labeled as follows: LW, LE, LS, LH, and LK, respectively, as shown
in the Fig. 2. In addition, the used markers have a diameter of approximately
2 cm. The 2D video recording was in the sagittal plane to quantify the joints
amplitude. For this, a Basler AG scA640-70gc high-speed camera system with
a capture frequency of 70 fps located 2 m distance from the subjects is used.
For extracting the position of markers, the free software Kinovea (software for
biomechanical analysis) is used. A single trial is registered for each subject, i.e.,
a cycle where the subject goes up and down. Nevertheless, the cycle for the
analysis is extracted where the movement nature is noted for each subject.
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Fig. 2. Experimental protocol for collecting data. The FMS device is configured at the
easy level.

2.3 Processing Signals

According to the experimental design, the continuous data were segmented into
one cycle per person when the subject normally executed the movement. The
markers’ positions are stored as signals in a 10×M matrix. The rows correspond
to the X and Y axis positions of the five markers, and M stands for the number
of samples. In this work, 801 samples were used.

Subsequently, the matrix was reduced by using only the information of the axis
with more variance (for this movement, Y-axis information was discarded), and
thus the main extracted features consisted of the difference between the position
of the markers of interest (LK, LH, LS, and LE), whose angles between them corre-
spond to the joint amplitude of the movement (upper and lower joint amplitude),
and a reference marker, corresponding to the one with less movement (LW). Model
1 was trained and evaluated only with features extracted from markers. For mod-
els 2–6, these features were complemented with data from subjects such as weight,
sex, height, age, and anthropometric segment length (see Table 2).

Table 2. Features used to train and test the different ANN models

Features
Models

LK-LW LH-LW LS-LW LE-LW Height Sex Weight Age Segment

Length

Model 1 X X X X

Model 2 X X X X X

Model 3 X X X X X

Model 4 X X X X X

Model 5 X X X X X

Model 6 X X X X X
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Finally, the true outputs correspond to the upper limb angle, calculated
through the X and Y position of the LE-LS-LH markers, and the lower limb
angle, calculated through the X and Y position of the LS-LH-LK markers. These
angles were quantified following the Eq. 1, where α corresponds to the angle of
limb amplitude either lower or upper, a is the vector formed between LS and
LE for the upper limb, and LS-LH for the lower limb, and b is the vector formed
between LS and LH for the upper limb and LH-LK for the lower limb, respec-
tively.

α = cos−1

(
ā · b̄

|ā| · ∣∣b̄∣∣
)

, (1)

Fig. 3. Block Diagram of the processing of signals, feature extraction, and training of
ANN for prediction of limbs angles amplitude

2.4 Neural Network Structure

The processed input features were given to a three-layer feed-forward neural
network whose schematic view is shown in Fig. 3. The Levenberg–Marquardt
algorithm was used for network training because the gradient descent algorithm
may fall into a local optimum, and network outputs may never converge towards
the targets. All the estimated results by the proposed model have been performed
using the Leave-one-out cross-validation. The sigmoid function was selected as
the network transfer function from the input layer to the hidden layers [19]. The
output layer corresponds to the estimated limb amplitude angle. Ten (10) neural
network structures were evaluated with different number of iterations in order
to choose an optimal neural network for this study. For this purpose, only the
input data corresponding to biomechanical variables (Model 1) and an output
corresponding to the inferior angle were used. The different configurations were:
3 configurations with 1 Hidden Layer of 2, 5 and 10 respectively (C1–C3), 3



Estimation of Angles Limbs Amplitudes During the Use of the FMS 219

Configurations with 2 Hidden Layers: 5× 5, 10× 5 and 5× 10 respectively (C4–
C6), and 4 configurations with 3 hidden layers: 5× 5× 5, 10× 5× 5, 5× 10× 5
and 5× 5× 10 respectively (C7–C10). The different structures were compared
and evaluated through the RMSE metric (see Eq. 2) and all processing was
implemented in MATLAB software (version 2020a, MathWorks, Inc).

2.5 Metrics

The Root Mean Square Error (RMSE) and Pearson Correlation coefficient (CC)
were used to evaluate the neural network estimation. Equations 2 and 3 define
the metrics, where θ̂i is the estimated limb amplitude angle, θi is the actual limb
angle amplitude angle at the sampling time i, and N is the length of the data
for the angle amplitude.

RMSE =

√∑N
i=1(θ̂i − θi)2

N
(2)

CC =
∑N

i=1(θi − θ̄)(θ̂i − ¯̂
θ)√∑N

i=1(θi − θ̄)
√∑N

i=1(θ̂i − ¯̂
θ)

(3)

2.6 Statistical Analysis

The statistical analysis evaluates which estimation method has a significantly
lower error than the others. First, a Kolmogorov-Smirnov analysis was performed
to confirm that the behavior of the data has a high probability of having a
normal distribution. Subsequently, a Two-sample Kolmogorov-Smirnov test was
performed. The null hypothesis is that the estimated amplitude angles and the
true value of the amplitude angles follow the same continuous distribution. On
the other hand, the alternative hypothesis is that they follow different continuous
distributions. The analysis was performed in Matlab with the function kstest2
where the criterion for the significant analysis was a p-value of 0.05 [6].

3 Results

In the Table 3 is possible to see the RMSE for the different configurations of Neu-
ral Network using biomechanical features and the lower limb amplitude angle,
with this information is possible to choose a optimal configuration for this study.
The C3 (1 Hidden Layer with 10 neurons) with 400 iterations was selected to
perform the analysis, because this configuration had less error than the others.
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Table 3. RMSE for the different configurations of Neural Network using biomechanical
features and the lower amplitude angle.

\Configurations
Number of Iterations

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

100 2.82 1.82 1.25 3.06 3.68 1.89 5.79 5.55 5.48 4.61

200 2.73 1.67 1.18 3.48 3.59 1.78 5.61 5.34 5.41 4.33

300 2.91 1.72 1.24 3.36 3.57 1.81 5.33 5.16 5.46 4.24

400 2.88 1.67 1.12 3.11 3.25 1.96 5.36 5.08 5.34 4.10

500 2.77 1.68 1.12 3.17 3.22 1.71 5.24 5.37 5.42 4.32

Fig. 4. Experimental upper and lower limb amplitude angle versus neural network
estimation of each model for a female subject

Figures 4 and 5 show the results of estimating the upper and lower limb
angles of two subjects (female and male) who performed the exercise in the Five
Minute Shaper. In these figures, the blue line indicates the original limb angles;
the red line indicates the angle estimated by the ANN model 1; and so on, as
indicated in the figures’ legends.

Figures 4 and 5 show that the estimated angles, using ANNs, are quite similar
to the original limb angle during the movement of the exercise in the Five Minute
Shaper. These facts can also be verified by the Table 4, in the Figs. 6 and 7 that
show the calculated RMSE metric through the Eq. 2. On the other hand, the
table 4 shows the calculated CC through the Eq. 3 for all the trained estimation
models.
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Fig. 5. Experimental upper and lower limb amplitude angle versus neural network
estimation of each model for a male subject

Table 4. Estimated RMSE and CC metrics for the six models used for predicting the
angles of the limbs

Lower limb angle Upper limb angle

Model RMSE CC Model RMSE CC

1 1.2531 0.9885 1 3.1820 0.9857

2 1.0948 0.9915 2 2.6268 0.9883

3 0.9587 0.9936 3 2.4291 0.9916

4 1.1655 0.9918 4 2.6461 0.9895

5 1.0299 0.9948 5 2.7423 0.9855

6 1.1811 0.9861 6 2.6719 0.9906

The Kolmogorov-Smirnov statistical analysis for a sample showed that the
behavior of the models has a high probability of having a normal distribution.
When performing the Two-sample Kolmogorov-Smirnov test analysis between
the amplitude angle estimated and the True amplitude angles, it is verified, for
all models, that they follow the same continuous distribution (p−value > 0.05).
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Fig. 6. Boxplot of the RMSE of the lower amplitude angle estimation models

Fig. 7. Boxplot of the RMSE of the upper amplitude angle estimation models

4 Discussion and Conclusion

The are several computational methods for fixing missed data from markers’
failures. This work shows that using neural networks is a promising way to
evaluate the tracking results and improve data analysis in biomechanics.

It is possible to conclude, through the Table 4, that the models have quite
acceptable performance for the estimation of the amplitude angles of the upper
and lower limbs during the execution of the exercise in the Five Minute Shaper.
Model 3 showed the best performance with an RMSE of 0.9587 and CC of 0.9936
and RMSE of 2.4291 with CC of 0.9916 for lower and upper limb amplitude,
respectively. Model 1 had the worst performance with RMSE of 1.2531 and CC
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of 0.9885 for lower limb amplitude and RMSE of 3.1820 and CC of 0.9857 for
upper limb amplitude, respectively. The results support the conclusion that the
physical variable related to sex may have a greater influence on the estimation
of the angle, so it is recommended to investigate this variable further. Although
the models have different behaviors from each other, it is highlighted that the
six proposed models can be applied for estimating the upper and lower limb
amplitude angle. The statistical analysis verified that the estimated values and
the true samples of angle follow the same continuous distribution (p − value >
0.05).

This study demonstrated that a multilayer neural network with a simple
structure could estimate the limb angle while performing a simple athletic move-
ment through features obtained in a single axis of interest even though the
movement is registered in two dimensions. This approach can be used in real-
time biomechanical analysis. It allows decreasing physical resources such as the
number of cameras, reducing the marker occlusion problem and acquiring biome-
chanical information without requiring a controlled environment. To our knowl-
edge, kinematic estimation of human motion using artificial intelligence during
multi-limb tasks in the real-load situation has not been fully studied.

This study is preliminary work and thus requires further examination. For
example, in future studies, several athletic tasks with more participants can
increase the generalizability of the network. In addition, future studies can use
simpler models of refreshment that allow the estimation of the angles of the
limbs, use less computationally expensive algorithms, and the option of using
these models with other types of movements, possibly in 3D-type acquisition.
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