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Abstract. We propose a new compressed text index built upon a gram-
mar compression based on induced suffix sorting [Nunes et al., DCC’18].
We show that this grammar exhibits a locality sensitive parsing prop-
erty, which allows us to specify, given a pattern P , certain substrings
of P , called cores, that are similarly parsed in the text grammar when-
ever these occurrences are extensible to occurrences of P . Supported by
the cores, given a pattern of length m, we can locate all its occ occur-
rences in a text T of length n within O(m lg |S| + occC lg |S| lg n + occ)
time, where S is the set of all characters and non-terminals, occ is the
number of occurrences, and occC is the number of occurrences of a cho-
sen core C of P in the right hand side of all production rules of the
grammar of T . Our grammar index requires O(g) words of space and
can be built in O(n) time using O(g) working space, where g is the sum
of the lengths of the right hand sides of all production rules. We practi-
cally evaluate that our proposed index excels at locating long patterns
in highly-repetitive texts. Our implementation is available at https://
github.com/TooruAkagi/GCIS Index.

Keywords: Grammar compression · Locality sensitive parsing ·
Induced suffix sorting · Text indexing data structure

1 Introduction

Compressed text indexes have become the standard tool for maintaining highly-
repetitive texts when full-text search queries like locating all occurrences of a
pattern are of importance. When working on indexes on highly-repetitive data,
a desired property is to have a self-index, i.e., a data structure that supports
queries on the underlying text without storing the text in its plain form. One
type of such self-indexes are grammar indexes, which are an augmentation of the
admissible grammar [20] produced by a grammar compressor. Grammar indexes
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exhibit strong compression ratios for semi-automatically generated or highly-
repetitive texts. Unlike other indexes that perform pattern matching stepwise
character-by-character, some grammar indexes have locality sensitive parsing
properties, which allow them to match certain non-terminals of the admissible
grammar built upon the pattern with the non-terminals of the text. Such a
property helps us to perform fewer comparisons, and thus speeds up pattern
matching for particularly long patterns, which could be large gene sequences in
a genomic database or source code files in a database maintaining source code.
Here, our focus is set on indexes that support locate(P ) queries retrieving the
starting positions of all occurrences of a given pattern P in a given text.

1.1 Our Contribution

Our main contribution is the discovery of a locality sensitive parsing property in
the grammar produced by the grammar compression by induced sorting (GCIS)
[29], which helps us to answer locate with an index built upon GCIS with the
following bounds:

Theorem 1. Given a text T of length n, we can compute an indexing data
structure on T in O(n) time, which can locate all occ occurrences of a given
pattern of length m in O(m lg |S|+occC lg n lg |S|+occ) time, where S is the set
of characters and non-terminals of the GCIS grammar and occC is the number
of occurrences in the right side of the production rules of the GCIS grammar of
a selected core of the pattern, where a core is a string of symbols of the grammar
of P defined in Sect. 4.1. Our index uses O(g) words of working space, where g
is the sum of the lengths of the right hand sides of all production rules.

Similar properties hold for other grammars such as the signature encoding
[25], ESP [7], HSP [16], the Rsync parse [17], or the grammar of [3, Sect. 4.2]. A
brief review of these and other self-indexes follows.

1.2 Related Work

With respect to indexing a grammar for answering locate, the first work we
are aware of is due to [5] who studied indices built upon so-called straight-line
programs (SLPs). An SLP is a context-free grammar representing a single string
in the Chomsky normal form.

Other research focused on particular types of grammar, such as the ESP-
index [24,31,32], an index [4] combining Re-Pair [22] with the Lempel–Ziv-77
parsing [34], a dynamic index [26] based on signature encoding [25], the Lyndon
SLP [33], or the grammar index of [3]. For the experiments in Sect. 5, we will
additionally have a look at other self-indexes capable of locate-queries. There, we
analyze Burrows–Wheeler-transform (BWT) [2]-based approaches, namely the
FM-index [15] and the r-index [18].

Finally, the grammar GCIS has other interesting properties besides being
locality sensitive. [28] showed how to compute the suffix array and the longest-
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common-prefix array from GCIS during a decompression step restoring the orig-
inal text. Recently, [8] showed how to compute the BWT directly from the GCIS
grammar.

2 Preliminaries

With lg we denote the logarithm to base two (i.e., lg = log2). Given two integers
i, j, we denote the interval [i..j] = {i, i + 1, . . . , j − 1, j}, with [i..j] = {} if
i > j. Our computational model is the standard word RAM with machine word
size Ω(lg n), where n denotes the length of a given input string T [1..n], which
we call the text , whose characters are drawn from an integer alphabet Σ of size
nO(1). We call the elements of Σ characters. For a string S ∈ Σ∗, we denote
with S[i..] its i-th suffix, and with |S| its length. The order < on the alphabet Σ
induces a lexicographic order on Σ∗, which we denote by ≺.

2.1 Induced Suffix Sorting

SAIS [27] is a linear-time algorithm for computing the suffix array [23]. We
briefly review the parts of SAIS important for constructing the GCIS grammar.
SAIS assigns each suffix a type, which is either L or S: T [i..] is an L suffix if
T [i..] � T [i + 1..], or T [i..] is an S suffix otherwise, i.e., T [i..] ≺ T [i + 1..],
where we stipulate that T [|T |] is always type S. Since it is not possible that
T [i..] = T [i+1..], SAIS assigns each suffix a type. An S suffix T [i..] is additionally
an S∗ suffix (also called LMS suffix in [27]) if T [i−1..] is an L suffix. The substring
between two succeeding S∗ suffixes is called an LMS substring . In other words,
a substring T [i..j] with i < j is an LMS substring if and only if T [i..] and T [j..]
are S∗ suffixes and there is no k ∈ [i + 1..j − 1] such that T [k..] is an S∗ suffix.
Regarding the defined types, we make no distinction between suffixes and their
starting positions (e.g., the statements that (a) T [i] is type L and (b) T [i..] is an
L suffix are equivalent). In fact, we can determine L and S positions solely based
on their succeeding positions with the equivalent definition: if T [i] > T [i + 1],
then T [i] is L; if T [i] < T [i + 1], then T [i] is S; finally, if T [i] = T [i + 1], then
T [i] has the same type as T [i + 1].

The LMS substrings of #T for # being a special character smaller than all
characters appearing in T such that #T starts with an S∗ position, induce a
factorization of T = F1 · · · Fz, where each factor starts with an LMS substring.
We call this factorization LMS-factorization. By replacing each factor Fi by the
lexicographic rank of its respective LMS substring1, we obtain a string T (1) of
these ranks. We recurse on T (1) until we obtain a string T (τT −1) whose rank-
characters are all unique or whose LMS-factorization consists of at most two
factors.
1 For SAIS to work, it uses a slightly different order on the LMS substrings, called

LMS-order. It differs from the lexicographic order when comparing two LMS sub-
strings, where one of them is a prefix of the other. In such a case, the LMS-order
would give the longer string a smaller rank.
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2.2 Constructing the Grammar

We assign each computed factor F
(h)
j a non-terminal X

(h)
j such that X

(h)
j →

F
(h)
j , but omit the delimiter #. The order of the non-terminals X

(h)
j is induced

by the lexicographic order of their respective LMS-substrings. We now use the
non-terminals instead of the lexicographic ranks in the recursive steps. If we
set X(τT ) → T (τT −1) as the start symbol, we obtain a context-free grammar
GT := (Σ,Γ, π,X(τT )), where Γ is the set of non-terminals and a function π :
Γ → (Σ ∪ Γ )+ that applies (production) rules. For simplicity, we stipulate that
π(c) = c for c ∈ Σ. Let g denote the sum of the lengths of the right hand sides
of all grammar rules. We say that a non-terminal (∈ Γ ) or a character (∈ Σ) is
a symbol , and denote the set of characters and non-terminals with S := Σ ∪ Γ .
We understand π also as a string morphism π : S∗ → S∗ by applying π on
each symbol of the input string. This allows us to define the expansion π∗(X)
of a symbol X, which is the iterative application of π until obtaining a string of
characters, i.e., π∗(X) ⊂ Σ∗ and π∗(X(τT )) = T . Since π(X) is deterministically
defined, we use to say the right hand side of X for π(X).

Lemma 1 ([29]). The GCIS grammar GT can be constructed in O(n) time. GT

is reduced, meaning that we can reach all non-terminals of Γ from X(τT ).

GT can be visualized by its derivation tree TT , which has X(τT ) as
its root. Each rule X

(h)
k → X

(h−1)
i · · · X(h−1)

j defines a node X
(h)
k having

X
(h−1)
i , . . . , X

(h−1)
j as its children. The height of TT is τT = O(lg n) because

the number of LMS substrings of T (h) is at most half of the length of T (h) for
each recursion level h. The leaves of TT are the terminals at height 0 that con-
stitute the characters of the text T . Reading the nodes on height h ∈ [0..τT − 1]
from left to right gives T (h) with T (0) = T . Note that we use TT only as a con-
ceptional construct since it would take O(n) words of space. Instead, we merge
(identical) subtrees of the same non-terminal together to form a directed acyclic
graph DAG, which is implicitly represented by π as follows:

By construction, each non-terminal appears exactly in one height of TT . We
can therefore separate the non-terminals into the sets Γ (1), . . . , Γ (τT ) such that a
non-terminal of height h belongs to Γ (h). More precisely, π maps a non-terminal
on height h > 1 to a string of symbols on height h − 1. Hence, the grammar is
acyclic.

3 GCIS Index

In what follows, we want to show that we can augment GT with auxiliary data
structures for answering locate. Our idea stems from the classic pattern matching
algorithm with the suffix tree [19, APL1]. The key difference is that we search
the core of a pattern in the right hand sides of the rules. For that, we make
use of the generalized suffix tree GST built upon the right hand sides of all
rules separated by a special delimiter symbol $ being smaller than all symbols.
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Specifically, we rank the rules such that {X1, . . . , X|Γ |} = Γ (this ranking will be
fixed later), and set R := π(X1)$π(X2)$ · · · π(X|Γ |)$. Since we have a budget of
O(g) words, we can afford to use a plain pointer-based tree topology. Each leaf λ
stores a pointer to the non-terminal X(h) and an offset o such that π(X(h))[o..]
is a prefix of λ’s string label. Next, we need the following operations on GST:
First, lca(u, v) gives the lowest common ancestor (LCA) of two nodes u and v.
We can augment GST with the data structure of [1] in linear time and space in
the number of nodes of GST. This data structure answers lca in constant time.
Next, child(u, c) gives the child of the node u connected to u with an edge having
a label starting with c ∈ Γ . Our GST implementation answers child in O(lg |S|)
time. For that, each node stores the pointers to its children in a binary search
tree with the first symbol of each connecting edge as key. Finally, string depth(v)
returns the string depth of a node v, i.e., the length of its string label, which
is the string read from the edge labels on the path from the root to v. We can
compute and store the string depth of each node during its construction. The
operation child allows us to compute the locus of a string S, i.e., the highest
GST node u whose string label has S as a prefix, in O(|S| lg |S|) time. For each
π(X), we augment the locus u of π(X)$ with a pointer to X such that we can
perform lookup(S) returning the non-terminal X with π(X) = S or an invalid
symbol ⊥ if such an X does not exist. The time is dominated by the time for
computing the locus of S. Finally, all leaves in suffix order are stored in a linked
list such that we can traverse the leaves in lexicographic order with respect to
their corresponding suffixes.

Linkage to the Grammar. Each rule X ∈ Γ stores an array X.P of |π(X)|
pointers to the leaves in GST such that the X.P [i] points to the leaf that points
back to X and has offset i (its string label has π(X)[i..] as a prefix). Additionally,
each rule X stores the length of π(X), an array X.L of all expansion lengths of all
its prefixes, i.e., X.L[i] :=

∑i
j=1 |π∗(π(X)[j])|, and an array X.R of the lengths

of the right hand sides of all its prefixes, i.e., X.R[i] :=
∑i

j=1 |π(π(X)[j])|.

LCE Queries. Each internal node v stores a pointer to the leftmost leaf in the
subtree rooted at v. With that we can use the function lce(X,Y, i, j) returning
the longest common extension (LCE) of π(X)[i..] and π(Y )[j..] for X,Y ∈ Γ
and i ∈ [1..|π(X)|], j ∈ [1..|π(Y )|]. We can answer lce(X,Y, i, j) by selecting the
leaves X.P [i] and Y.P [j], retrieve the LCA lca(X.P [i], Y.P [j]) of both leaves,
and take its string depth, all in constant time. More strictly speaking, we return
min(|π(X)[i..]|, |π(Y )[j..]|, string depth(lca(X.P [i], Y.P [j]))), since the delimiter $
is not a unique character, but appears at each end of each right hand side in the
underlying string R of GST.

Complexity Bounds. GST can be computed in O(g) time [13]. The grammar
index consists of the GCIS grammar, GST built upon |R| = g + |Γ | symbols,
and augmented with a data structure for lca [1]. This all takes O(g) space. Each
non-terminal is augmented with an array X.P of pointers to leaves, X.L and
X.R storing the expansion lengths of all prefixes of π(X), which take again O(g)
space when summing over all non-terminals.
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4 Pattern Matching Algorithm

Like [30, Sect. 2], our idea is to first fix a core C of a given pattern P , find the
occurrences of C in the text, and then try to extend all these occurrences to
occurrences of P .

4.1 Cores

A core C is a string of symbols of the GCIS grammar GP built on the pattern P
with the following property: given C consists of consecutive nodes on height h ≥
0 in TT , if there is an occurrence of C in TT being a set of nodes on height h
that have not the same parent node on height h + 1, then the expansion of this
occurrence of C does not lead to an occurrence of P . So for each occurrence of C
in TT whose expansion is contained in an occurrence of P , this occurrence is a
(not necessarily proper) substring of the right hand side of a rule of GT .

We qualify a core by the difference in the number of occurrences of P and
C in TT . On the one hand, although a character P [i] always qualifies as a core,
the appearance of P [i] in T is unlikely to be an evidence of an occurrence of P .

On the other hand, the non-terminal covering most of the characters of P
might not be a core. Hence, we aim for the highest possible non-terminal, for
which we are sure that it exhibits the core property.

Finding a Core. We determine a core C of P during the computation of the
GCIS grammar GP of P . During this computation, we want to assure that we
only create a new non-terminal for a factor F whenever lookup(F ) = ⊥; if
lookup(F ) = X, we borrow the non-terminal X from GT . By doing so, we ensure
that non-terminals of GP and GT are identical whenever their right hand sides of
their productions are equal. In detail, if we create the factors P (h) = F

(1)
1 · · · F (h)

zh ,
we first retrieve Y

(h)
i := lookup(P (h)) for each i ∈ [2..zh −1]. If one of the lookup-

queries returns ⊥, we abort since we can be sure that the pattern does not occur
in T . That is because all non-terminals Y

(h)
2 , . . . Y

(h)
zh−2 classify as cores. To see

this, we observe that prepending or appending symbols to P (h) does not change
the factors F

(h)
2 , . . . , F

(h)
z−1 =: C(h).

Correctness. We show that prepending or appending characters to F
(h)
1 C(h)

F
(h)
zh does not modify the computed factorization of C(h) = F

(h)
2 , . . . , F

(h)
z−1. What

we show is that we cannot change the type of any position C(h)[i] to S∗: Firstly,
the type of a position (S or L) depends only on its succeeding position, and hence
prepending cannot change the type of a position in C(h). Secondly, appending
characters can either prolong F

(h)
zh or create a new factor F

(h)
zh+1 since F

(h)
zh starts

with S∗, and therefore appending cannot change C(h). An additional insight is
that on the one side, prepending character can only introduce a new factor or
extend F

(h)
1 . On the other side, appending characters can introduce at most one

new S∗ position in F
(h)
zh that can make it split into two factors. We will need this

observation later for extending the core to the pattern.
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The construction of GP iterates the LMS factorization until we are left with
a string of symbols P (τP ) whose LMS factorization consists of at most two fac-
tors. In that case, we partition P (τP ) into three substrings CpCCs with Cp and
Cs possibly empty, and defined by one of the following mutually exclusive con-
ditions: (1) If the LMS factorization consists of two non-empty factors F1 · F2,
then Cp is F1. (2) Given P (τP ) = (P (τP )[j1])c1 · · · (P (τP )[jk])ck is the run-length-
encoded representation of P with 1 = j1 < . . . < jk = |P (τP )|, cji

≥ 1 for
i ∈ [1..k], and P [ji] 
= P [ji+1] for i ∈ [1..k − 1], we set Cs ← (P (τP )[jk])ck if
P (τP )[jk] < P (τP )[jk−1]. (3) In the other cases, Cp and/or Cs are empty.

To see why C is a core, we only have to check the case when Cs is empty.
The other cases have already been covered by the aforementioned analysis of the
cores on the lower heights. If Cs is empty, then C ends with P , and as a border
case, the last position of C is S∗. In that case, appending a symbol smaller than
P [m] to F

(h)
1 C changes the type of the last position of C to L. If we append

a symbol larger than P [m], then the last position of C becomes S, but does
not become S∗ since P (τP )[jk] > P (τP )[jk−1] due to construction (otherwise Cs

would not be empty).
In total, there are symbols A(1), . . . , A(τP −1) and S(1), . . . , S(τP −1) such that

P = π(F (1)
1 · · · F (τP −2)

1 A(1) · · · A(τP −2)CS(τP −2) · · · S(1)F (τP −2)
zτP −2

· · · F (1)
z1

), (1)

and A(h), S(h) ∈ Γ (h) are cores of P , while F
(h)
1 , F

(h)
zh ∈ (Γ (h−1))∗ are factors.

4.2 Matching with GST

Having C, we now switch to GST and use it to find all DAG parents of C,
whose number we denote by occC ∈ O(g). This number is also the number of
occurrences of C in the right hand sides of all rules of GT . Having these parents,
we want to find all lowest DAG ancestors of C whose expansions are large enough
to not only cover C but also P by extending C to its left and right side—see Fig. 1
for a sketch. We proceed as follows: We first compute the locus v of C in GST in
O(|C| lg |S|) time via child. Subsequently, we take the pointer to the leftmost leaf
in the subtree rooted at v, and then process all leaves in this subtree by using the
linked list of leaves. For each such leaf λ, we compute a path in form of a list λL

from the non-terminal containing C on its right hand side up to an ancestor of it
that has an expansion large enough to cover P if we would expand the contained
occurrence of C to P . We do so as follows: Each of these leaves stores a pointer
to a non-terminal X and a starting position i such that we know that π∗(X)[i..]
starts with π∗(C). By knowing the expansion lengths X.L[|π(X)|], X.L[i − 1],
and |π∗(C)|, we can judge whether the expansion of X has enough characters to
be able to extend its occurrence of C to P . If it has enough characters, we put
(X, i) onto λL such that we know that π∗(X)[X.L[i − 1] + 1..] has C as a prefix.
If X does not have enough characters, we exchange C with X and recurse on
finding a non-terminal with a larger expansion. By doing so, we visit at most
τT = O(lg n) non-terminals per occurrence of C in the right hand sides of GT .
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Fig. 1. Deriving a non-terminal Y (h) with π∗(Y (h)) containing P from a non-
terminal Y (τP ) with π∗(Y (τP )) containing π∗(C). The expansion of none of the descen-
dants of Y (h) towards Y (τP ) is large enough for extending its contained occurrence of
π∗(C) to an occurrence of P . We can check the expansion lengths of the substrings in
π(Y (h)) via the array Y (h).L.

We perform all operations in O(occCτT lg |S|) time because we query child in
every recursion step.

The previous step computes, for each accessed leaf λ, a list λL containing
a DAG path (Y (h), . . . , Y (τP )) of length O(τT ) and an offset o(τP ) such that
Y (τP )[o(τP )..] starts with C. By construction, these paths cover all occurrences of
C in TT . Note that we process the DAG node Y (τP ) (but for different offsets o(τP ))
as many times as C occurs in π(Y (τP ))). In what follows, we try to expand the
occurrence of C captured by Y (τP ) and o(τP ) to an occurrence of P .

Naively, we would walk down from Y (τP )[o(τP )] to the character level and
extend the substring π∗(C) in both directions by character-wise comparison with
P . However, this would take O(occCmτT ) time since such a non-terminal Y (h)

is of height O(τT ). Our claim is that we can perform the computation in O(m+
occCτT ) time with the aid of lce and an amortization argument.

For that, we use Eq. (1), which allows us to use LCE queries in the sense that
we can try to extend an occurrence of C with an already extended occurrence
(that maybe does not match P completely). For the explanation, we only focus
on extending all occurrences of C to the right to CCs (the left side side is done
symmetrically). We maintain an array D of length τP storing pairs (X(h), �h) for
each height h ∈ [1..τP −1] such that π(X(h)) has the currently longest extension
of length �h with the core S(h−1) of P in common (cf. Eq. (1)). By maintaining D,
we can first query lce with the specific non-terminal in D, and then resort to
plain symbol comparison. We descend to the child where the mismatch happens
and recurse until reaching the character level of TT . This all works since by the
core property the mismatch of a child means that there is a mismatch in the
expansion of this child. Since a plain symbol comparison with matching symbols
lets us exchange the currently used non-terminal in D with a longer one, we can
bound (a) the total number of naive symbol matches to O(m) and (b) the total
number of naive symbol mismatches and LCE queries to O(occCτT ).

Finding the Starting Positions. It is left to compute the starting position in T
of each occurrence captured by an element in W . We can do this similarly to
computing the pre-order ranks in a tree: For each pair (X, �) ∈ W , climb up DAG
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from X to the root while accumulating the expansion lengths of all left siblings
of the nodes we visit (we can make use of X.L for that). If this accumulated
length is s, then � + s is the starting position of the occurrence captured by
(X, �). However, this approach would cost O(τT ) time per element of W . Here,
we use the amortization argument of [6, Sect. 5.2], which works if we augment,
in a pre-computation step, each non-terminal X in Γ with (a) a pointer to the
lowest ancestor YX on every path from X to the DAG root that has X at least
twice as a descendant, and (b) the lengths of the expansions of the left siblings
of the child of YX being a parent of X or X itself. By doing so, when taking a
pointer of a non-terminal X to its ancestor YX , we know that X has another
occurrence in DAG (and thus there is another occurrence of P ). Therefore, we
can charge the cost of climbing up the tree with the amount of occurrences occ
of the pattern.

Total Time. To sum up, we spent O(m lg |S|) time for finding C, O(occCτT lg |S|)
time for computing the non-terminals covering C, O(m + occCτT ) time for
reducing these non-terminals to W , and O(occ) time for retrieving the start-
ing positions of the occurrences of P in T from W . To be within our O(g) space
bounds, we can process each DAG parent of C individually, and keep only D
globally stored during the whole process. The total additional space is therefore
O(τT ) ⊂ O(g) for maintaining D and a path for each occurrence of C.

5 Implementation and Experiments

The implementation deviates from theory with respect to the rather large hid-
den constant factor in the O(g) words of space. We drop GST, and represent
DAG with multiple arrays. For that, we first enumerate the non-terminals as
follows: The height and the lexicographic order induce a natural order on the
non-terminals in Γ , which are ranked by first their height and secondly by
the lexicographic order of their right hand sides, such that we can represent
Γ = {X1, . . . , X|Γ |}. By stipulating that all characters are lexicographically
smaller than all non-terminals, we obtain the property that π(Xi) ≺ π(Xi+1)
for all i ∈ [1..|Γ | − 1]. In the following, we first present a plain representation of
DAG, called GCIS-nep, then give our modified locate algorithm, and subsequently
present a compressed version of DAG using universal coding, called GCIS-uni.
Finally, we evaluate both implementations in Sect. 5.

Our first implementation, called GCIS-nep2, represents each symbol with
a 32-bit integer. We use R :=

∏|Γ |
i=1 π(Xi) again, but omit the delimiters $

separating the right hand sides. To find the right hand side of a non-terminal
Xi, we create an array of positions Q[1..|Γ |] such that Q[i] points to the starting
position of π(Xi) in R. Finally, we create an array L[1..|Γ |] storing the length of
the expansion |π∗(Xi)| in L[i], for each non-terminal Xi. Due to the stipulated
order of the symbols, the strings R[Q[i]..Q[i + 1] − 1] are sorted in ascending

2 GCIS-nep stands for GCIS with non-terminals encoded plainly.
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Table 1. Sizes of the used datasets and the indexes stored on disk. Sizes are in
megabytes [MB].

Dataset Input size GCIS-nep GCIS-uni ESP-index FM-index r-index

commoncrawl 221.180 220.119 138.856 156.006 122.575 454.124

dna 403.927 527.553 327.852 297.001 216.153 2123.817

einstein.de 92.758 1.139 0.428 0.697 40.291 1.1458

english.001.2 104.857 14.784 7.489 10.464 46.981 14.389

fib41 267.914 0.001 0.001 0.001 71.305 0.007

influenza 154.808 23.373 13.871 15.729 53.066 28.775

kernel 257.961 21.298 10.469 12.545 125.087 28.947

rs.13 216.747 0.002 0.001 0.002 57.653 0.009

tm29 268.435 0.002 0.001 0.002 69.347 0.009

world leaders 46.968 5.415 2.573 3.611 21.097 5.627

order. Hence, we can evaluate lookup(S) for a string S in O(|S| lg |S|) time by a
binary search on Q with i �→ R[Q[i]..Q[i + 1] − 1] as keys.

Locate. Our implementation follows theory for computing GP and C (cf.
Sect. 4.1) in the same time bounds, but deviates after computing the core C:
To find all non-terminals whose right hand sides contain C, we linearly scan
the right hand sides of all non-terminals on height τP , which we can do cache-
friendly since the right-hands of R are sorted by the height of their respective
non-terminals. This takes O(g + |C|) time in total with a pattern matching
algorithm [21].

Finally, for extending a found occurrence of the core C to an occurrence of P ,
we follow the naive approach to descend DAG to the character level and compare
the expansion with P character-wise, which results in O(occC |P |τT ) time. The
total time cost is O(g + |P |(occCτT + lg |S|)).
GCIS -uni. To save space, we can leverage universal code to compress the right
hand sides of the productions. First, we observe that Q and the first symbols F :=
π(X1)[1], . . . , π(X|Γ |)[1] form an ascending sequence, such that we represent both
Q and F in Elias–Fano coding [11]. Next, we observe that each right hand
side π(Xi) form a bitonic sequence: the ranks of the first �i symbols are non-
decreasing, while rest of the ranks are non-increasing. Our idea is to store �i and
the rest of π(Xi)[2..] in delta-coding, i.e., Δ[i][k] := |π(Xi)[k] − π(Xi)[k − 1]|
for k ∈ [2..|π(Xi)|], which is stored in Elias-γ code [12]. Although π(Xi)[k] −
π(Xi)[k − 1] < 0 for k > �i, we can decode π(Xi)[k] by subtracting instead of
adding the difference to π(Xi)[k − 1] as usual in delta-coding. Hence, we can
replace R with Δ, but need to adjust Q such that Q[i] points to the first bit
of Δ[i]. Finally, like in the first variant, we store the expansion lengths of all
non-terminals in L. Here, we separate L in a first part using 8 bits per entry,
then 16 bits per entry, and finally 32 bits per entry. To this end, we represent
L by three arrays, start with filling the first array, and continue with filling
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Fig. 2. Maximum memory consumption (top) and time (bottom) during the construc-
tion of the indexes.

the next array whenever we process a value whose bit representation cannot be
stored in a single entry of the current array. Since Elias–Fano code supports
constant-time random access and Elias-γ supports constant-time linear access,
we can decode π(Xi) by accessing F [i] and then sequentially decode Δ[i]. Hence,
we can simulate GCIS-nep with this compressed version without sacrificing the
theoretical bounds. We call the resulting index GCIS-uni.

Experiments. In the following we present an evaluation of our C++ implemen-
tation and different self-indexes for comparison, which are the FM-index [14],
the ESP-Index [32], and the r-index [18]3. All code has been compiled with
gcc-10.2.0 in the highest optimization mode -O3. We ran all our experiments
with an Intel Xeon CPU X5670 clocked at 2.93 GHz running Arch Linux.

Our datasets shown in Table 1 are from the Pizza&Chili and the tudocomp [9]
corpus.4 With respect to the index sizes, we have the empirically ranking GCIS-
uni < ESP-index < GCIS-nep, followed by one of the BWT-based indexes. While

3 See https://github.com/mpetri/FM-Index, https://github.com/tkbtkysms/esp-
index-I, and https://github.com/nicolaprezza/r-index, respectively.

4 To save space, we renamed the datasets commoncrawl.ascii.txt and ein-
stein.de.txt to commoncrawl and einstein.de, respectively.

https://github.com/mpetri/FM-Index
https://github.com/tkbtkysms/esp-index-I
https://github.com/tkbtkysms/esp-index-I
https://github.com/nicolaprezza/r-index
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the r-index needs less space than the FM-index on highly-compressible datasets,
it is the least favorable option of all indexes for less-compressible datasets.
Figure 2 gives the time and memory needed for constructing the indexes.

Fig. 3. Time for locate while scaling the pattern length on the datasets english.001.2
(left) and fib41 (right). The plots are in logscale. The right figure does not feature
the FM-index, which takes considerably more time than the other approaches. For the
same reason, there is no data shown for the ESP-index for small pattern lengths, which
needs 170 s on average for |P | = 10.

Fig. 4. Left: The average height τP of GP for a pattern of a certain length. Right:
Percentage of the computation of GP in relation to the whole running time for answering
locate(P ) with GCIS-nep.

We can observe in Fig. 3 that our indexes answer locate(P ) fast when P is suf-
ficiently long or has many occurrences occ in T . GCIS-uni is always slower than
GCIS-nep due to the extra costs for decoding. In particular for english.001.2,
GCIS-nep is the fastest index when the pattern length reaches 10000 characters
and more. At this time, the pattern grammar reached a height τP of almost six,
which is the height τT . The algorithm can extend an occurrence of a core to a pat-
tern occurrence by checking only 80–100 characters. However, when the pattern
surpasses 5000 characters, the computation of GP becomes the time bottleneck.
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With that respect, the ESP-index shares the same characteristic. encoding make
slow down the location time by about 2 to 10 times approximately. Let us have a
look at the dataset fib41, which is linearly recurrent [10], a property from which
we can derive the fact that a pattern that occurs at least once in T has actually
a huge number of occurrences in T . There are almost 3,000,000 occurrence of
patterns with a length of 100. Here, we observe that our indexes are faster than
ESP-index. ESP-index needs more time for locate than GCIS because GCIS can
form a core than covers a higher percentage of the pattern than the core selected
by ESP. FM-index, and ESP-index with |P | = 10 take 100 s or more on average
– we omitted them in the graph to keep the visualization clear.

In Fig. 4, we study the maximum height τP = O(lg |P |) that we achieved for
the patterns with |P | = 100 in each dataset. For this experiment, we randomly
select a position j in T and extracted P = T [j..j + 99]. For every dataset, we
could observe that τP is logarithmic to the pattern length, especially for the
artificial datasets fib41, tm29, and rs.13, where τP is empirically larger than
measured in other datasets. In dna and commoncrawl, τP is at most 3 , but
this is because τT = 3 for these datasets.
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