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Abstract. In the Shortest Common Superstring problem (SCS), one
needs to find the shortest superstring for a set of strings. While SCS is
NP-hard and MAX-SNP-hard, the Greedy Algorithm “choose two strings
with the largest overlap; merge them; repeat” achieves a constant factor
approximation that is known to be at most 3.5 and conjectured to be
equal to 2. The Greedy Algorithm is not deterministic, so its instantia-
tions with different tie-breaking rules may have different approximation
factors. In this paper, we show that it is not the case: all factors are
equal. To prove this, we show how to transform a set of strings so that
all overlaps are different whereas their ratios stay roughly the same.
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1 Introduction

In the Shortest Common Superstring problem (SCS), one is given a set of strings
and needs to find the shortest string that contains each of them as a substring.
Applications of this problem include genome assembly [12,19] and data com-
pression [3,4,15]. We refer the reader to the survey [5] for an overview of SCS
as well as its applications and algorithms.

SCS is known to be NP-hard [4] and even MAX-SNP-hard [1], but it admits
constant-factor approximation in polynomial time. The best known approxima-
tion ratios are 211

23 due to Mucha [11] (see [7, Section 2.1] for an overview of
the previous approximation algorithms and inapproximability results). While
these approximation algorithms use many sophisticated techniques, the 30 years
old Greedy Conjecture [1,15–17] claims that the trivial Greedy Algorithm (GA)
“choose two strings with the largest overlap; merge them; repeat” is a factor
2 approximation (in fact, this is the best possible approximation factor: con-
sider a dataset S = {c(ab)n, (ab)nc, (ba)n}). Ukkonen [18] shows that for a fixed
alphabet, GA can be implemented in linear time.
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Blum et al. [1] prove that GA returns a 4-approximation of SCS, and Kaplan
and Shafrir [8] improve this bound to 3.5. A slight modification of GA gives
a 3-approximation of SCS [1], and other greedy algorithms are studied from
theoretical [1,13] and practical perspectives [2,14].

It is known that the Greedy Conjecture holds for the case when all input
strings have length at most 4 [9]. Also, the Greedy Conjecture holds if GA hap-
pens to merge strings in a particular order [10,20]. GA gives a 2-approximation
of a different metric called compression [16]. The compression is defined as the
sum of the lengths of all input strings minus the length of a superstring (hence,
it is the number of symbols saved with respect to a naive superstring resulting
from concatenating the input strings).

GA is not deterministic as we do not specify how to break ties in case when
there are many pairs of strings with maximum overlap. For this reason, different
instantiations of GA (that is, GA with a tie-breaking rule) may produce different
superstrings for the same input and hence they may have different approximation
factors. In fact, if S contains only strings of length 2 or less or if S is a set of
k-substrings of an unknown string, then there are instantiations of GA [6], that
find the exact solution, whereas in general GA fails to do so.

The original Greedy Conjecture states that any instantiation of GA is a fac-
tor 2 approximation. As this is still widely open, it is natural to try to prove the
conjecture at least for some instantiations. This could potentially be easier not
just because this is a weaker statement, but also because a particular instantia-
tion of GA may decide how to break ties by asking an omniscient oracle. In this
paper, we show that this weak form of Greedy Conjecture is in fact equivalent
to the original one. More precisely, we show, that if some instantiation of GA is
a factor λ approximation, then all instantiations are factor λ approximation.

To prove this, we introduce the so-called Perturbing Procedure, that, for a
given dataset S = {s1, . . . , sn}, a parameter m � n, and a sequence of greedy
non-trivial merges (merges of strings with a non-empty overlap), constructs a
new dataset S ′ = {s′

1, . . . , s
′
n}, such that, for all i �= j, s′

i is roughly m times
longer than si, the overlap of s′

i and s′
j is roughly m times longer than the overlap

of si and sj , and the mentioned greedy sequence of non-trivial merges for S is
the only such sequence for S ′.

2 Preliminaries

Let |s| be the length of a string s and ov(s, t) be the overlap of strings s and t,
that is, the longest string y, such that s = xy and t = yz. In this notation, a
string xyz is a merge of strings s and t. By ε we denote the empty string. By
OPT(S) we denote an optimal superstring for the dataset S.

Without loss of generality we may assume that the set of input strings S
contains no string that is a substring of another. This assumption implies that
in any superstring all strings occur in some order: if one string begins before
another, then it also ends before. Hence, we can consider only superstrings that
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can be obtained from some permutation (sσ(1), . . . , sσ(n)) of S after merging
adjacent strings. The length of such superstring s(σ) is simply

|s(σ)| =
n∑

i=1

|si| −
n−1∑

i=1

| ov (
sσ(i), sσ(i+1)

) |. (1)

Let A be an instantiation of GA (we denote this by A ∈ GA). By σA we
denote the permutation corresponding to a superstring A(S) constructed by A,
and by (lA(1), rA(1)), . . . , (lA(n − 1), rA(n − 1)), we denote the order of merges:
strings slA(i) and srA(i) are merged at step i. By the definition of GA we have

| ov (
slA(i), srA(i)

) | ≥ | ov (
slA(j), srA(j)

) |, ∀ i < j < n,

and if, for some i, | ov(slA(i), srA(i))| = 0, then the same holds for any i′ > i.
We denote the first such i by TA and this is the first trivial merge (that is, one
with the empty overlap), after which all the merges are trivial. Note that just
before step TA, all the remaining strings have empty overlaps, so the resulting
superstring is just a concatenation of them in some order and this order does
not affect the length of the result. If there were no trivial merges, we set TA = n.

si

sj

a b c

b c d

s′
i

s′
j

αj

mm TA

ov(s′
i, s

′
j)

βi

$ $ $ a $ $ $ $ b $ $ $ $ c $

$ $ b $ $ $ $ c $ $ $ $ d

(a) (b)

Fig. 1. (a) strings si and sj from S. (b) the resulting strings s′
i and s′

j after perturbing;
here, m = 4, TA = 3, αi = 1, βi = 2, αj = 2 and βj = TA; since αj = βi = 2, we may
conclude that si and sj were merged by A at step 2.

3 Perturbing Procedure

Here, we describe the mentioned procedure that eliminates ties. Consider a
dataset S, an instantiation A ∈ GA and a sentinel $—a symbol that does not
occur in S, and a parameter m whose value will be determined later. For every
string si = c1c2 . . . cni

∈ S define a string

s′
i = $m−αic1$mc2$mc3$m . . . $mcni

$TA−βi , (2)

where
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1. αi is the number of step such that rA(αi) = i, if such step exists and is less
than TA, and αi = TA otherwise; note that if αi < TA then si is the right
part of a non-trivial merge at step αi;

2. βi is the number of step such that lA(βi) = i, if such step exists and is less
than TA, and βi = TA otherwise; note that if βi < TA then si is the left part
of a non-trivial merge at step βi.

Basically, we insert the string $m before every character of si and then remove
some $’s from the beginning of the string and add some $’s to its end (see Fig. 1).
The purpose of this removal and addition is to perturb slightly overlaps of equal
length, so there are no longer any ties in non-trivial merges.

We denote the resulting set of perturbed strings {s′
1, . . . , s

′
n} by S ′, and all

entities related to this dataset we denote by adding a prime (for example, σ′
A).

Let us derive some properties of S ′.

Lemma 1. For all i �= j, k �= l, m > 2n

1. if | ov(si, sj)| = d > 0, then | ov(s′
i, s

′
j)| = (m + 1)d − αj + TA − βi;

2. if | ov(si, sj)| = 0, then | ov(s′
i, s

′
j)| = min{TA − βi,m − αj};

3. perturbing procedure preserves order on overlaps of different lengths, that is,
if | ov(si, sj)| > | ov(sk, sl)|, then | ov(s′

i, s
′
j)| > | ov(s′

k, s′
l)|.

Proof. Let ov(si, sj) be c1c2 . . . cd. Consider the string

u = $m−αjc1$m . . . $mcd$TA−βi .

Clearly, u is the overlap of s′
i and s′

j and |u| = (m + 1)d − αj + TA − βi. Also, if
| ov(si, sj)| = 0 then ov(s′

i, s
′
j) = $min{TA−βi,m−αj}.

To prove the last statement, note that αj + βi ≤ 2TA < m and

| ov (
s′

i, s
′
j

) | > (m + 1)| ov (sk, sl) | + TA ≥ | ov (s′
k, s′

l) |.
Lemma 2. Let B ∈ GA. Then TA = T ′

A = T ′
B and the first TA − 1 merges are

the same for both instantiations.

Proof. We prove by induction that lA(t) = l′A(t) = l′B(t) and rA(t) = r′
A(t) =

r′
B(t) for all t < TA.

Case t = 1. As A is greedy, then k1 := | ov(slA(1), srA(1))| ≥ | ov(si, sj)|, for
all i �= j, (i, j) �= (lA(1), rA(1)). Hence

| ov (
s′

i, s
′
j

) | ≤ (m + 1)k1 − αj + TA − βi

< (m + 1)k1 − 1 + TA − 1 = | ov
(
s′

lA(1), s
′
rA(1)

)
|,

and l′A(1) = l′B(1) = lA(1) as well as r′
A(1) = r′

B(1) = rA(1).
Suppose that the statement holds for all t ≤ t′ < TA−1. Note that at moment

t = t′ +1 the sum αj +βi is strictly greater than 2t unless (i, j) = (lA(t), rA(t)).
Similarly to the base case, we have

| ov (
s′

i, s
′
j

) | ≤ (m + 1)kt − αj + TA − βi

< (m + 1)kt − t + TA − t = | ov
(
s′

lA(t), s
′
rA(t)

)
|,
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where kt = | ov(slA(t), srA(t))|, and the induction step is proven.
Now note that starting from step TA all the remaining strings in S have

empty overlaps and hence so do the remaining strings in S ′, as for all of them
βi = TA and the minimum in paragraph 2 of Lemma 1 is equal to zero. Thus,
TA = T ′

A = T ′
B and the lemma is proven.

Corollary 1. As all non-trivial merges coincide, |A(S ′)| = |B(S ′)|.

4 Equivalence of Instantiations

Theorem 1. If some instantiation A of GA achieves a λ-approximation, then
so does any other instantiation.

Proof. Assume the opposite and consider B ∈ GA as well as a dataset S such
that |B(S)| > λ|OPT(S)|. Let S ′ = S ′(B,m) be the corresponding perturbed
dataset, where m > 2n will be specified later.

Note that |s′
i|/m → |si| and | ov(s′

i, s
′
j)|/m → | ov(si, sj)| as m approaches

infinity, thanks to Lemma 1.1–2. Then |OPT(S ′)|/m → |OPT(S)|, since

1
m

|OPT(S ′)| =
1
m

min
σ

{
n∑

i=1

|s′
i| −

n−1∑

i=1

| ov
(
s′

σ(i), s
′
σ(i+1)

)
|
}

→ min
σ

{
n∑

i=1

|si| −
n−1∑

i=1

| ov (
sσ(i), sσ(i+1)

) |
}

= |OPT(S)|,

|B(S ′)|/m → |B(S)| and hence |A(S ′)|/m → |B(S)|, by Corollary 1.
As |B(S)| − λ|OPT(S)| > 0, we can choose m so that |B(S ′)| − λ|OPT(S ′)|

as well as |A(S ′)| − λ|OPT(S ′)| are positive. Hence A is not a factor λ approxi-
mation.

Corollary 2. To prove (or disprove) the Greedy Conjecture, it is sufficient to
consider datasets satisfying some of the following three properties:

1. there are no ties between non-empty overlaps, that is, datasets where all
the instantiations of the greedy algorithm work the same;

2. there are no empty overlaps: ov(si, sj) �= ε, ∀ i �= j;
3. all non-empty overlaps are (pairwise) different: | ov(si, sj)| �= | ov(sk, sl)|, for

all i �= j, k �= l, (i, j) �= (k, l).

Proof. 1. Follows directly from the proof of Theorem 1, as we always can use
the dataset S ′ instead of S.

2. Append $ to each string of S ′. Then, every two strings have non-empty overlap
that at least contains $, and in general TA = T ′

A = T ′
B from Lemma 2 does

not hold (T ′
A and T ′

B are always n). However, the first TA merges are still the
same and after them all the remaining strings have overlaps of length 1 and
then the lengths of the final solutions are the same as well.
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3. Append $n(TA−βi) to each string of S ′ instead of $TA−βi . Then

| ov (
s′

i, s
′
j

) | = (m + 1)| ov (si, sj) | − αj + nTA − nβi,

provided m is large enough, and αj + nβi �= αk + nβl if (i, j) �= (k, l).
Repeating the proofs of Lemmas 1 and 2 with this version of S ′, we obtain
this statement of the corollary.
To combine several of this properties (for example second and third), it is

sufficient to sequentially apply the corresponding transformations on the original
dataset: at first we get a dataset S ′ from S as in paragraph 2, then we treat S ′

(already without empty overlaps) as original and transform it to a dataset S ′′

according to paragraph 3 using a different sentinel instead of $.

5 Conclusion

In this paper we revealed the equivalence of greedy algorithms for the shortest
common superstring problem. This means, in particular, that proving or disprov-
ing the Greedy Conjecture is difficult not due to the non-deterministic nature of
the Greedy Algorithm, but due to the complexity of the overlaps structure.

Acknowledgments. Many thanks to Alexander Kulikov for valuable discussions and
proofreading the text, and the anonymous reviewers for their useful comments.
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