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Abstract. We prove that for n ≥ 2, the size b(tn) of the smallest bidi-
rectional scheme for the nth Thue–Morse word tn is n + 2. Since Kut-
sukake et al. [SPIRE 2020] show that the size γ(tn) of the smallest string
attractor for tn is 4 for n ≥ 4, this shows for the first time that there is
a separation between the size of the smallest string attractor γ and the
size of the smallest bidirectional scheme b, i.e., there exist string families
such that γ = o(b).

1 Introduction

Repetitiveness measures for strings is an important topic in the field of string
compression and indexing. Compared to traditional entropy-based measures,
measures based on dictionary compression are known to better capture the
repetitiveness in highly repetitive string collections [12]. Some well known exam-
ples of dictionary-compression-based measures are: the size r of the run-length
Burrows–Wheeler transform [2] (RLBWT), the size z of the Lempel-Ziv 77 fac-
torization [17], the size b of the smallest bidirectional (or macro) scheme [15].

Kempa and Prezza introduced the notion of string attractors [4], which gave
a unifying view of dictionary-compression-based measures. A string attractor
of a string is a set of positions such that any substring of the string has at
least one occurrence which contains a position in the set. The size γ of the
smallest string attractor of a word is a lower bound on the size of all known
dictionary compression measures, but is NP-hard to compute. Kociumaka et
al. [5,6] introduced another measure δ ≤ γ that is computable in linear time,
defined as the maximum over all integers k, the number of distinct substrings of
length k in the string divided by k.

The landscape of the relations between these measures has been a focus
of attention. For example, since z is a special case of a bidirectional scheme,
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b ≤ z. Also, b ≤ 2r [13] and r = O(z log2 N) [3] hold, where N is the length
of the string. Notice that a string can be represented in space (with an extra
factor of log N for bits) proportional to b, r, or z. Interestingly, while δ and
γ do not give a direct representation of the string, it is known that the string
can be represented in O(δ log N

δ ) or O(γ log N
γ ) space, respectively [4–6]. On the

other hand, Kociumaka et al. [5,6] showed that for every length N and integer
δ ∈ [2, N ], there exists a family of length-N strings having the same measure δ,
that requires Ω(δ log N

δ log N) bits to be encoded. Analogous results for γ are
not yet known [5,6,12]. The bidirectional scheme is the most powerful among the
dictionary-compression-based measures. The size b of the smallest bidirectional
scheme is also known to satisfy b = O(γ log N

γ ), but again, the tightness of this
bound was not known [12].

Following Mantaci et al. [8,9], Kutsukake et al. [7] investigated repetitive-
ness measures on Thue–Morse words [11,14,16] and showed that the size of the
smallest string attractor for the n-th Thue–Morse word is 4, for any n ≥ 4. They
also conjectured that the size of the smallest bidirectional scheme for the n-th
Thue–Morse word (which has length N = 2n) is Θ(log N), which would imply
a separation between γ and b. Possibly due to the difficulty (NP-hardness) of
computing the size of the smallest bidirectional scheme of a string [15], tight
bounds for b have only been discovered for a very limited family of strings, most
notably standard Sturmian words [10]. This was shown from the fact that the
size r of the RLBWT of every standard Sturmian word is 2, therefore implying
a constant upper bound on the smallest bidirectional scheme.

In this paper, we prove Kutsukake et al.’s conjecture by showing that for
any n ≥ 2, the size b(tn) of the smallest bidirectional scheme for tn is exactly
n + 2. For any value of γ ≥ 4, we can construct a family of strings such that
b = Θ(γ log N

γ ) and N is the length of the string. Our result shows for the first
time the separation between γ and b, i.e., there are string families such that
γ = o(b).

2 Preliminaries

We consider the alphabet Σ = {a, b}. A string is an element of Σ∗. For any
string w ∈ Σ∗, let |w| denote its length, and let w = w[0] · · · w[|w| − 1]. Also, for
any 0 ≤ i ≤ j < |w|, let w[i..j] = w[i] · · · w[j].

A string morphism μ is a function mapping strings to strings such that
each character is replaced by a single string (deterministically), i.e., μ(w) =
μ(w[0]) · · · μ(w[|w| − 1]) for any string w. Let μ0(w) = w, and for any integer
n ≥ 1, let μn(w) = μ(μn−1(w)). Now let μ be the morphism on the binary
alphabet determined by μ(a) = ab and μ(b) = ba. Then the n-th Thue–Morse
word tn is μn(a), and its length is |tn| = 2n.

A list of strings b1, . . . , bk is called a parsing of a string S, if S = b1 · · · bk.
Each bi (i = 1, . . . , k) is called a phrase. A sequence B = ((b1, s1), . . . , (bk, sk)) is
a bidirectional scheme for S, if b1, . . . , bk, is a parsing of S and for all i = 1, . . . , k,
si ∈ [0, |S| − 1] ∪ {⊥}, such that si = ⊥ if |bi| = 1, and bi = S[si..si + |bi| − 1]
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otherwise. We denote the size k of the bidirectional scheme B by |B|. We call si

the source of the phrase bi.
If |bi| = 1 then we stipulate that si = ⊥, and call bi a ground phrase.

(Consequently, there are no phrases of length one that have a source being a
text position.) We denote the number of ground phrases in B by #g(B). For
convenience, we denote the starting position of phrase bi by pi, i.e., p1 = 0 and
pi = |b1 · · · bi−1| for all i = 2, . . . , k + 1, where pk+1 is defined for technical
reasons.

A bidirectional scheme B for the string S defines a function fB : [0, |S|−1]∪
{⊥} → [0, |S| − 1] ∪ {⊥} over positions of S, where

fB(x) =

{
⊥ if x = ⊥ or if x = pi, si = ⊥ for some i,

si + x − pi otherwise, i.e., if pi ≤ x < pi+1, si �= ⊥ for some i.

Let f0
B(x) = x, and for any j ≥ 1, let f j

B(x) = fB(f j−1
B (x)). It is clear that if

fB(i) �= ⊥, then it holds that S[i] = S[fB(i)]. A bidirectional scheme for S is
valid, if there is no i ∈ [0, |S| − 1] such that the function fB contains a cycle,
that is, for every i ∈ [0, |S|−1], there exists a j ≥ 1 such that f j

B(i) = ⊥. A valid
bidirectional scheme B of size k for S implies an O(k)-word size (compressed)
representation of S, namely, the sequence ((|b1|, s′

1), . . . , (|bk|, s′
k)) ⊂ ([1, |S|] ×

([0, |S| − 1] ∪ Σ))k, where s′
i = bi if si = ⊥, and s′

i = si otherwise. Note that
the string S can be reconstructed from this sequence if and only if B is valid. A
parsing b1, . . . , bk of S is valid if there exists a list of phrase sources s1, . . . , sk

such that ((b1, s1), . . . , (bk, sk)) is a valid bidirectional scheme for S. See Fig. 1
for examples of representations of valid bidirectional schemes of t3 and t4.

Informally, fB(x) gives the position (source) from where we want to copy
the character that restores S[x] when reconstructing S from the compressed
representation, where fB(x) = ⊥ indicates that the character is stored as a
ground phrase, i.e., as a literal.

It is easy to see that a valid bidirectional scheme must have at least as many
ground phrases as there are different characters appearing in S (the number of
ground phrases is at least |Σ| if all characters of Σ appear in S).

Fig. 1. Examples of valid compressed representations of t3 and t4.
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3 Important Characteristics of Thue–Morse Words

Before proving our bounds, we first give some simple observations on Thue–
Morse words that we will use later. Remember that the first index of tn is 0,
which is an even position.

Lemma 1. aa and bb only occur at odd positions in tn.

Proof. The morphism μ implies that any substring of length 2 starting at an
even position is either μ(a) = ab or μ(b) = ba. 
�
Lemma 2 (Theorem 2.2.3 of [1]). tn has no overlapping factors, i.e., two occur-
rences of the same string in tn never share a common position.

Lemma 3. abab and baba only occur at even positions in tn.

Proof. Suppose to the contrary that there is an occurrence of abab that starts at
an odd position. Then, Lemma 1 implies that b occurs immediately left of abab,
i.e., there is an occurrence of the substring babab, thus contradicting Lemma 2
with the substring bab having two overlapping occurrences. 
�

Let the parity of an integer i be i mod 2 ∈ {0, 1}.

Lemma 4. For any substring w �∈ {aba, bab, ab, ba, a, b} of tn, the parities of
all occurrences of w in tn are the same.

Proof. Any such substring w contains at least one of {aa, bb, abab, baba} as a
substring, and thus the result follows from Lemmas 1 and 3. 
�

Further, we use that tn is a prefix of tn+1 and tn[0..4] = abbab for n ≥ 3.

4 Upper and Lower Bounds on b

We start with the upper bound on the smallest size of a (valid) bidirectional
parsing by constructing such a parsing, and subsequently show that this bound
is optimal by showing a lower bound whose proof is more involved.

4.1 Upper Bound

Theorem 1 (Upper bound). For n ≥ 2, there exists a valid bidirectional
scheme for tn of size n + 2.

Proof. Proof by induction. For n = 2 it is clear that there is a valid bidirectional
scheme of size 4.

Suppose that for some n ≥ 2, there is a valid bidirectional scheme Bn =
((b1, s1), . . . , (bk, sk)) of size k for tn. We can assume that there are at least two
ground phrases bia = tn[pia ] = a and bib = tn[pib ] = b. Since tn+1 = μ(tn), we
first consider a bidirectional scheme B′ for tn+1 where each phrase is constructed
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from phrases of Bn by applying μ, with the small exception for the two ground
phrases. More precisely, the phrases of B′ are μ(bi) for i ∈ [1, k]\{ia, ib}, and two
ground phrases from each of μ(bia) = ab and μ(bib) = ba, resulting in a parsing of
size k+2. For each non-ground phrase μ(bi) in B′, we can either choose the source
to be (i) 2pia or 2pib if its length is 2, or (ii) 2si otherwise. The latter is because
μ(bi) = μ(tn[si..si+|bi|−1]) = μ(tn)[2si..2si+2|bi|−1] = tn+1[2si..2si+2|bi|−1].
The validity of B′ follows from the validity of Bn, and fB′ has no cycles. It is easy
to see that for any position i, the parities of i and fB′(i) are the same (unless
fB′(i) = ⊥). Thus, noticing that tn+1[3..4] = ab, (1) the source of tn+1[3] = a
at an odd position can eventually be traced to the ground phrase at position
2pib + 1, and (2) the source of tn+1[4] = b at an even position can eventually be
traced to the ground phrase at position 2pib .

Next, we modify B′ by combining the two consecutive ground phrases (a,⊥)
and (b,⊥) corresponding to μ(bia), and replace them with a single (ab, 3). This
results in a bidirectional scheme B′′ of size k+1. From the above observations (1)
and (2), it is clear that B′′ is still valid. Thus, Bn+1 = B′′ is a valid bidirectional
scheme for tn+1 of size k + 1, thereby proving the theorem. 
�
The bidirectional scheme of t4 in Fig. 1 can be constructed by following the
algorithmic instructions of the proof of Theorem1.

4.2 Lower Bound

Theorem 2 (Lower Bound). For n ≥ 2, the smallest valid bidirectional
scheme for tn has size n + 2.

To prove Theorem 2, we would like to, in essence, do the opposite of what we
did in the proof of Theorem1, and show that we can construct a bidirectional
scheme for tn−1 of size k−1, given a bidirectional scheme for tn of size k. However,
the opposite direction involves halving the size of phrases, and thus does not
work straightforwardly when there are phrases of odd length. Nevertheless, we
will show that this can be done in an amortized way, and show the following.

Lemma 5. For any n ≥ 5, if there exists a valid bidirectional scheme of size k
for tn, then, for some 1 ≤ i ≤ 3, there exists a valid bidirectional scheme of size
at most k − i for tn−i.

Since the size of the smallest bidirectional scheme for t2, t3, t4 can be con-
firmed to be respectively 4, 5, 6 by computer analysis, this with Lemma5 implies
Theorem 2.

In the rest of the section, we give an algorithm that, given a bidirectional
scheme Bn for tn, constructs a bidirectional scheme Bn−1 for tn−1, and claim
that applying the algorithm repeatedly i times, for some 1 ≤ i ≤ 3, we obtain a
bidirectional scheme Bn−i for tn−i such that |Bn−i| ≤ |Bn| − i. The algorithm
consists of 3 main steps:
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1. Elimination of length-1 ground phrases.
2. Elimination of odd length phrases.
3. Application of the inverse morphism μ−1 on all phrases of the modified pars-

ing.

The goal of Steps 1 and 2 is to modify the phrases of Bn to construct a bidi-
rectional scheme B′

n so that all phrases in B′
n will be of even length. When mod-

ifying the phrases, we must take care in 1) defining the source of the phrase, and
2) ensuring that no cycles are introduced in the resulting bidirectional scheme
Bn−1. To make this clear, we temporarily relax the definition for ground phrases
in B′

n during the modification, so that the ground phrases of B′
n are phrases of

length 2 that start at even positions. In this way, we can be sure that any posi-
tion in a length-2 phrase starting at an even position in B′

n is not involved in a
cycle. In Step 3, we create a new bidirectional scheme Bn−1 of tn−1 by translat-
ing all phrase lengths and sources of B′

n according to the inverse morphism μ−1,
i.e., we map each non-ground phrase (b′

i, s
′
i) of B′

n to the phrase (μ−1(b′
i), s

′
i/2)

in tn−1. The length-2 ground phrases in B′
n become length-1 ground phrases in

Bn−1, and thus we obtain a valid bidirectional scheme Bn−1 for tn−1, without
the relaxation, and the same size as B′

n.

Eliminating Length-1 Ground Phrases. The operation is done analogously
and symmetrically for any length-1 ground phrase (a or b) that may occur at
an even or odd position. We describe in detail the case for a ground phrase with
character a that occurs at some odd position 2i + 1.

For a consecutive pair of positions 2i, 2i + 1, we call one a partner of the
other. Let ib = 2i be the partner position of the length-1 ground phrase a, i.e.,
tn[ib..ib + 1] = ba. The idea is to (re)move the phrase boundary that separates
partner positions so that the ground phrase disappears. Since we are considering
the case where the ground phrase is at an odd position, we extend the phrase
(bi, si) containing position ib by one character, so that it includes the length-
1 ground phrase tn[ib + 1] = a, thereby eliminating it. If possible, we would
like to keep the source of the extended phrase the same, i.e., change (bi, si) to
(bia, si), or equivalently, change fBn

(ib + 1) = ⊥ to fBn
(ib + 1) = si + |bi|. Note

that if the parity of fBn
(ib) is equal to that of ib, this is always possible (i.e.,

tn[fBn
(ib) + 1] = a always holds). However, it may be that the position ib + 1

gets involved in a cycle, due to this change. Notice that since we started from a
valid (relaxed) bidirectional scheme, it is guaranteed that ib is not involved in a
cycle, i.e., f j

Bn
(ib) �= ib for any j ≥ 1. Therefore, we further modify the phrase

boundaries, if necessary, to ensure that the source of tn[ib + 1] = a will belong
in the same phrase as the source of tn[ib] = b. This is repeated until we are sure
that all these changes made to eliminate the original length-1 ground phrase a
do not introduce any cycles in the final bidirectional scheme. In other words, we
ensure, for some sufficiently large j′, f j

Bn
(ib +1) = f j

Bn
(ib)+1 for all 1 ≤ j ≤ j′.

Then, from the acyclicity of position ib, the acyclicity of position ib + 1 follows.
There are six cases where the process terminates, as shown in Fig. 2 (Case

3 is further divided into two sub-cases). As noted above, as long as the parity
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of f j
Bn

(ib) is the same as that of f j−1
Bn

(ib), the character of f j
Bn

(ib)’s partner
is always a, and we can ensure that f j−1

Bn
(ib) and f j−1

Bn
(ib + 1) are in the same

phrase by only (possibly) setting f j
Bn

(ib + 1) = f j
Bn

(ib) + 1. Thus, we consider

the cases where j′ ≥ 1 is the smallest integer such that the parities of f j′−1
Bn

(ib)

and f j′
Bn

(ib) differ, in which case, Lemma 4 implies that f j′−1
Bn

(ib) is contained in
a phrase in {aba, bab, ab, ba, b}. Each of the six cases corresponds to a distinct
occurrence of b in the strings of this set. We show that in each case, we can
modify the phrases so that both f j′−1

Bn
(ib) and f j′−1

Bn
(ib + 1) are in the same

length-2 phrase, i.e., a relaxed ground phrase, and be sure that ib + 1 will not
be involved in a cycle in the final bidirectional scheme. The details of each case
are described in Fig. 2.

Although Cases 1, 2, 4 introduce a new length-1 ground phrase, the number
of phrase boundaries that separate partner positions always decreases at the
starting point, and never increases. Therefore the whole process terminates at
some point, at which point, all length-1 ground phrases have been eliminated.

Eliminating Odd Length Phrases. In this step, we eliminate all remaining
phrases with odd lengths. Since there are no more length-1 ground phrases, we
first focus on removing phrases aba and bab of length 3. Below, we describe the
operation for removing a phrase aba that starts at an odd position. The other
cases are analogous or symmetric.

Starting with an occurrence of phrase aba that starts at an odd position
ib +1, we know that this phrase is preceded by b. We move the phrase boundary
that separates partner positions, so that the length-3 phrase shrinks to a length-
2 phrase starting at an even position, i.e., a relaxed ground phrase, in this case,
by expanding the phrase to its left. Since we have changed the source of the a
at position ib + 1, we ensure that for some sufficiently large j′, f j

Bn
(ib + 1) =

f j
Bn

(ib) + 1 for all 1 ≤ j ≤ j′, as we did for the elimination of length-1 ground
phrases, so that ib + 1 is not involved in a cycle.

There are five cases where the process terminates, as shown in Fig. 3. As
noted previously, as long as the parity of f j

Bn
(ib) is the same as that of f j−1

Bn
(ib),

then the character of f j
Bn

(ib)’s partner is always a, and we can ensure that
f j−1

Bn
(ib) and f j−1

Bn
(ib + 1) are in the same phrase by only (possibly) setting

f j
Bn

(ib + 1) = f j
Bn

(ib) + 1. Thus, we consider the cases where j′ ≥ 1 is the

smallest integer such that the parities of f j′−1
Bn

(ib) and f j′
Bn

(ib) differ, in which

case, Lemma 4 and the previous step implies that f j′−1
Bn

(ib) is contained in a
phrase in {aba, bab, ab, ba}. Each of the five cases corresponds to a distinct
occurrence of b in strings of this set. The details of each case are described in
Fig. 3.

After eliminating all phrases aba and bab of length 3, all remaining phrases
are either of length 2 or do not belong to the set {aba, bab, ab, ba, a, b}. There-
fore, we can move all phrase boundaries that separate partner positions to the
right (or all of them to the left) and update the sources accordingly without intro-
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Fig. 2. Terminal cases for eliminating a length-1 ground phrase tn[ib + 1] = a at an
odd position ib + 1 (see Sect. 4.2). The shaded squares are even positions. The vertical

bars denote phrase boundaries. The black arrow points to the position f j′−1
Bn

(ib), where

j′ ≥ 1 is the smallest integer such that the parities of f j′−1
Bn

(ib) and f j′
Bn

(ib) differ. The
first line and second line of each case (except Case 5) respectively show the phrase
boundaries before and after the modification.
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ducing cycles, since length-2 phrases starting at odd positions become relaxed
ground phrases, and the occurrences of each of the other phrases have the same
parity due to Lemma 4. Thus, we now have a valid bidirectional scheme B′

n where
all phrases are of even length, and length-2 phrases are considered to be relaxed
ground phrases.

Analysis of the Number of Phrases. It is easy to see that Steps 2 and 3 do
not increase the number of phrases. Also, Step 2 does not decrease the number
of length-2 phrases that start at even positions, i.e., relaxed ground phrases,
created in Step 1, which will become ground phrases in Bn−1. Thus, we focus
on the analysis of Step 1.

Examining each case of Fig. 2, we can see that while at the start we eliminate
a length-1 ground phrase and decrease the number of phrases, Cases 1, 2, 3-1, and
4 introduce a new phrase, thus do not change the total number of phrases. Also,
notice that in Case 6, two ground phrases are eliminated, while the total number
of phrases decreases only by one, since the second length-1 ground phrase is
expanded. Case 3-1 can occur in total at most twice, once for consecutive phrases
of ba and once for consecutive phrases of ab. Thus, we obtain the following
inequality:

|Bn−1| ≤ |Bn| − �(#g(Bn) − 2)/2. (1)

If |Bn−1| ≤ |Bn| − 1, then we can choose i = 1 for Lemma 5 and are done.
Otherwise, |Bn−1| = |Bn|. This implies that #g(Bn) = 2, and also that Case
3-1 was applied twice. Thus, there exists at least 2 phrases of ab and ba each,
which are converted by μ−1 to ground phrases in Bn−1, implying #g(Bn−1) ≥ 4.
Then, applying Eq. (1) for n − 2, we have

|Bn−2| ≤ |Bn−1| − �(#g(Bn−1) − 2)/2
≤ |Bn−1| − 1 = |Bn| − 1.

If |Bn−2| ≤ |Bn| − 2, then we can choose i = 2 for Lemma 5. Otherwise,
|Bn−2| = |Bn| − 1. This implies that #g(Bn−1) = 4 and that Case 3-1 was
applied twice, and Case 6 was applied once. Therefore, we get #g(Bn−2) ≥ 5.
Finally, applying Eq. (1) for n − 3, we have

|Bn−3| ≤ |Bn−2| − �(#g(Bn−2) − 2)/2
≤ |Bn−2| − 2
= |Bn| − 3.

This proves Lemma 5, and thus Theorem 2.
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Fig. 3. Terminal cases for eliminating a length-3 phrase aba that starts at an odd
position ib +1 (see Sect. 4.2). The shaded squares are even positions. The vertical bars

denote phrase boundaries. The black arrow points to the position f j′−1
Bn

(ib), where

j′ ≥ 1 is the smallest integer such that the parities of f j′−1
Bn

(ib) and f j′
Bn

(ib) differ. The
first and second lines in Cases 1, 3, 4 show the phrase boundaries before and after
the modification. The characters outside the phrase considered for each case can be
inferred from being a partner of a phrase, and also from Lemma 2
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5 Conclusion

We have shown that for any n ≥ 2, the size b(tn) of the smallest bidirectional
scheme for the n-th Thue–Morse word tn is exactly n + 2. From the result that
the smallest string attractor of tn is 4 for any n ≥ 4 [7] and that |tn| = 2n,
we have shown that Thue–Morse words are an example of a family of strings
{Sn}n≥1 in which each string Sn has b(Sn) = Θ(γ(Sn) log |Sn|

γ(Sn)
) as the size of

its smallest bidirectional parsing, where γ(Sn) is the size of its smallest string
attractor, and |Sn| = 2n is its length. Note that we can generalize this to hold
for any γ ≥ 4: Given a γ ≥ 4, concatenate k = �γ/4� copies of tn, each using
distinct letters from a different binary alphabet. Finally, we add (γ mod 4) more
distinct characters to make the smallest string attractor of the resulting string
exactly γ. We thus can obtain a string of length N = k · 2n + O(1) with b =
Θ(kn) = Θ(γ log N

γ ). Whether this can be achieved for any γ by a family of
binary strings is not yet known.

Our result shows for the first time the separation between γ and b, i.e.,
there are string families such that γ = o(b). Although it is still open whether
O(γ log N) bits is enough to represent any string of length N , it seems not
possible by dictionary compression, i.e., copy/pasting within the string.
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