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Preface

This volume contains the papers presented at the International Symposium on String
Processing and Information Retrieval (SPIRE 2021), which was supposed to be held in
Lille, France, but was instead held virtually during October 4–6, 2021.

SPIRE started in 1993 as the South American Workshop on String Processing,
therefore it was held in Latin America until 2000 when SPIRE traveled to Europe.
From then on, SPIRE meetings have been held in Australia, Japan, the UK, Spain,
Italy, Finland, Portugal, Israel, Brazil, Chile, Colombia, Mexico, Argentina, Bolivia,
Peru and the USA. In this edition, we continued the long and well-established tradition
of encouraging high-quality research at the broad nexus of algorithms and data
structures for sequences and graphs, data compression, databases, data mining, infor-
mation retrieval, and computational biology. As per usual, SPIRE 2021 continues to
provide an opportunity to bring together specialists and young researchers working in
these areas.

Using different email lists, the SPIRE 2021 call for papers was distributed around
the world, resulting in 30 submissions. The EasyChair system was used to facilitate
management of submissions and reviewing. Each submission was reviewed by at least
3, and on average 3.9, Program Committee (PC) members. The PC decided to accept
18 papers (14 long papers and 4 short papers). The program also includes three invited
talks:

• Christina Boucher (University of Florida, USA)
• Daniel Lemire (University of Québec, Canada)
• Nicola Prezza (Ca’ Foscari University of Venice, Italy)

These proceedings contain all 18 presented papers, together with two extended
versions of the invited talks.

We thank the authors for their valuable combinatorial contributions and the
reviewers for their thorough, constructive, and enlightening commentaries on the
manuscripts. A special thanks goes also to the SPIRE Steering Committee members for
their availability, help, and advice. Lastly, we are grateful to the organizing committee,
chaired by Stéphane Janot and Antoine Limasset, and to GDR Bioinformatique
Moléculaire (CNRS) and CRIStAL, whose financial support made it possible to make
SPIRE 2021 a free event for all attendees.

We are happy to welcome you at SPIRE 2021.

July 2021 Thierry Lecroq
Hélène Touzet
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r-Indexing the eBWT

Christina Boucher1(B) , Davide Cenzato2 , Zsuzsanna Lipták2 ,
Massimiliano Rossi1 , and Marinella Sciortino3

1 Department of Computer and Information Science and Engineering,
University of Florida, Gainesville, FL, USA

{cboucher,rossi.m}@cise.ufl.edu
2 Department of Computer Science, University of Verona, Verona, Italy

{davide.cenzato,zsuzsanna.liptak}@univr.it
3 Department of Computer Science, University of Palermo, Palermo, Italy

marinella.sciortino@unipa.it

Abstract. The extended Burrows Wheeler Transform (eBWT) was
introduced by Mantaci et al. [TCS 2007] to extend the definition of the
BWT to a collection of strings. In our prior work [SPIRE 2021], we
give a linear-time algorithm for the eBWT that preserves the fundamen-
tal property of the original definition (i.e., the independence from the
input order). The algorithm combines a modification of the Suffix Array
Induced Sorting (SAIS) algorithm [IEEE Trans Comput 2011] with Pre-
fix Free Parsing [AMB 2019; JCB 2020]. In this paper, we show how this
construction algorithm leads to r-indexing the eBWT, i.e., run-length
encoded eBWT and SA samples of Gagie et al. [SODA 2018] can be con-
structed efficiently from the components of the PFP. Moreover, we show
that finding maximal exact matches (MEMs) between a query string and
the r-index of the eBWT can be efficiently supported.

1 Introduction

There exists a number of large sequencing projects that aim to identify the bio-
logical variation of individuals of a given species. For example, the 100K Human
Genome Project [29], the 1001 Arabidopsis Project [28], and the 3,000 Rice
Genomes Project (3K RGP) [27]. Although biological variation is common and
necessary among cultivars or individuals of these sequencing projects, a large
portion of sequencing data is shared—leading to repetition within the dataset.
Given the thousands of individuals within these sequencing projects, indexing
them in a manner that allows variation to be identified and compared is chal-
lenging. The FM-index [18] has been the cornerstone of this indexing as most
standard read alignment algorithms (e.g., BWA [16] and Bowtie [15]) build and
use the FM-index of the set of one or more reference genomes. More specifically,
these read alignment algorithms build the Burrows Wheeler Transform (BWT)
and suffix array (SA) or SA samples to find alignments between sequence reads
and the database of genomes. However, as the number of genomes increases,
there has been an aim to build the BWT and SA samples in space that is linear
in number of runs in the BWT which is typically denoted as r.
c© Springer Nature Switzerland AG 2021
T. Lecroq and H. Touzet (Eds.): SPIRE 2021, LNCS 12944, pp. 3–12, 2021.
https://doi.org/10.1007/978-3-030-86692-1_1
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4 C. Boucher et al.

Mäkinen and Navarro may have been the first to pose the search from a
FM-index that can be constructed in O(r) space [17]. They introduced the run-
length Burrows Wheeler Transform (RL BWT) and showed how to locate all
occurrences of a query string P [1..p] in string T [1..n] in O(

(p+s+occ)
(

log σ
log log r +

(log log n)2
))

-time, where occ is the number of occurrences, σ is the alphabet size,
and s is a parameter. The downside is that they require O(r+n/s)-space for the
SA samples. Given a query string P and the RL BWT of a string T , Policriti and
Prezza [25] showed how to find a single SA sample in the interval in RL BWT
containing P in O(r)-space. Then in 2018, Gagie et al. [8] showed how to fully
support locate queries, i.e., locate all occ SA samples in O(r)-space. The resulting
data structure is referred to as the r-index. We note that this result defined the
r-index but did not give an algorithm to construct it. The algorithm to construct
the r-index was described later by Boucher et al. [5] and Kuhnle et al. [14]—both
are based on a preprocessing technique called Prefix Free Parsing (PFP). PFP
produces two temporary structures called the dictionary and parse. From these
components the r-index can be built. This was a significant achievement but was
not fully set up to accomplish read alignment since finding short exact matches
between a read and an index was not defined for the r-index. To accomplish
this latter task Rossi et al. [26] augmented PFP to construct an auxiliary data
structure, called thresholds, in addition to the r-index. The addition of thresholds
allows for finding maximal exact matches (MEMs) between a query string (e.g.,
sequence read) and an index (e.g., genomes), where a MEM is defined as an
exact match that cannot be extended to the left or to the right.

In this paper, we consider the extended Burrows Wheeler Transform (eBWT),
which extends the definition of the BWT to a collection of strings. Previously,
we showed that the eBWT can be constructed by combining a modified version
of the Suffix Array Induced Sorting (SAIS) algorithm of Nong et al. [24] with
PFP. Here, we show that it follows from this construction that the run-length
encoding of the eBWT and the SA samples of Gagie et al. [8] can be constructed
in linear time in the size of the input, and linear space in the size of the dictionary
and parse. Similarly, the thresholds of Rossi et al. [26] can be constructed for
the eBWT and thus, be used to find MEMs.

2 Preliminaries

Basic Definitions. A string T = T [1..n] is a sequence of characters T [1] · · · T [n]
drawn from an ordered alphabet Σ of size σ. We denote by |T | the length n of T .
Given a multiset of m strings M = {T1, T2, . . . , Tm}, we denote the total length
of the strings in M as ||M||, i.e., ||M|| = |T1| + . . . + |Tm|.

Given two integers 1 ≤ i, j ≤ n where i ≤ j, the substring T [i] · · · T [j] is
denoted by T [i..j], the j-th prefix T [1..j] is denoted by T [..j], and the i-th suffix
T [i..n] by T [i..]. A substring S of T is called proper if S �= T .

Given two strings S and T , we denote by lcp(S, T ) the length of the longest
common prefix (LCP) of S and T , i.e., lcp(S, T ) = max{i | S[1..i] = T [1..i]}.
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Given a string T = T [1..n] and an integer k, we denote by T k the kn-length
string TT · · · T (k-fold concatenation of T ), and by Tω the infinite string TT · · ·
obtained by concatenating an infinite number of copies of T . A string T is called
primitive if T = Sk implies T = S and k = 1. For any string T , there exists a
unique primitive word S and a unique integer k such that T = Sk. We refer to
S = T [1..n

k ] as root(T ) and to k as exp(T ). Thus, T = root(T )exp(T ).

Suffix Array. We denote by <lex the lexicographic order: for two strings S[1..m]
and T [1..n], S <lex T if S is a proper prefix of T , or there exists an index
1 ≤ i ≤ n,m such that S[1..i − 1] = T [1..i − 1] and S[i] < T [i]. Given a
string T [1..n], the suffix array [20], denoted by SA = SAT , is the permutation of
{1, . . . , n} such that T [SA[i]..] is the i-th lexicographically smallest suffix of T .

Given a string T [1..n] and the SA of T , we denote the inverse suffix array as
ISA, and define it as ISA[SA[i]] = i for all i = 1, . . . , n.

Definition of φ. Kärkkäinen et al. [12] introduced the permutation φ. It is defined
as follows: φ(i) = SA[ISA[i] − 1] if ISA[i] > 1; and φ(i) = SA[n] otherwise. We
can rewrite this as: φ(SA[j]) = SA[j − 1], for all j > 1.

ω-order. We denote by ≺ω the ω-order [10,21], defined as follows: for two strings
S and T , S ≺ω T if root(S) = root(T ) and exp(S) < exp(T ), or Sω <lex Tω (this
implies root(S) �= root(T )). One can verify that the ω-order relation is different
from the lexicographic one. For instance, CG <lex CGA but CGA ≺ω CG.

Conjugate Array. The string S is a conjugate of the string T if S = T [i..n]T [1..i−
1], for some i ∈ {1, . . . , n} (also called the i-th rotation of T ). The conjugate
S is also denoted conji(T ). For a string T , the conjugate array1 CA = CAT

of T is the permutation of {1, . . . , n} such that CA[i] = j if conjj(T ) is the
i-th conjugate of T with respect to the lexicographic order, with ties broken
according to string order, i.e. if CA[i] = j and CA[i′] = j′ for some i < i′, then
either conjj(T ) <lex conjj′(T ), or conjj(T ) = conjj′(T ) and j < j′.

Given a string T , U is a circular or cyclic substring of T if it is a substring
of TT of length at most |T |, or equivalently, if it is the prefix of some conjugate
of T . For instance, ATA is a cyclic substring of AGCAT. It is sometimes also
convenient to regard a given string T [1..n] itself as circular (or cyclic); in this
case we set T [0] = T [n] and T [n + 1] = T [1].

Burrows Wheeler Transform. Given a string T , BWT(T ) [6] is a permutation of
the letters of T which equals the last column of the matrix of the lexicographically
sorted conjugates of T . The construction is reversible, allowing the original string
T to be computed in linear time [6]. The BWT itself can be computed from the
conjugate array, since for all i = 1, . . . , n, BWT(T )[i] = T [CA[i] − 1], where T
is considered to be cyclic.

It should be noted that in many applications, it is assumed that an end-
of-string-character (usually denoted $), which is not element of Σ, is appended
to the string; this character is assumed to be smaller than all characters from
1 Our conjugate array CA is called circular suffix array and denoted SA◦ in [2,11],

and BW-array in [13], but in both cases defined for primitive strings only.
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Σ. Computing the conjugate array becomes equivalent to computing the suffix
array, since CAT$[i] = SAT$[i]. Thus, applying one of the linear-time suffix array
computation algorithms [22] leads to linear-time computation of the BWT.

LF-mapping. Last-to-first-mapping (LF-mapping) is the mapping of the lexico-
graphical rank of a conjugate of T , conji(T ) to the lexicographical rank of the
conjugate conji−1(T ). In particular, the LF-mapping maps characters from the
last column of the matrix of the lexicographically sorted conjugates of T (com-
monly referred to as L) to the corresponding occurrence of the character in the
first column of the same matrix (commonly referred to as F ); hence the name
last-to-first. It is the fundamental operation behind backward search, and what
allows the BWT to be reversed.

r-index. Given a text T [1..n] whose BWT has r runs, and a pattern P [1..p],
the r-index [9] is a data structure that supports count queries, i.e. comput-
ing the number occ of occurrences of P in T , in O(p log logw(σ + n/r)) time
and O(r) words of space, where w is the machine word size. It also sup-
ports locate queries, i.e., return the occ positions in T where P occurs, in
O(p log logw(σ + n/r) + occ log logw(n/r)) time and O(r) space [9, Theorem
3.6]. Recently, Nishimoto and Tabei [23] improved the previous running times
for counting to O(p log logw σ) and locating to O(p log logw σ + occ).

The r-index is made of three main components, which are: (1) a data struc-
ture that stores the run-length encoded BWT supporting LF-mapping queries,
(2) a SA sample for each of the r runs, and (3) a data structure supporting φ
operations. In particular, in [9], (1) builds on the RLFM-index of Mäkinen et al.
[19] combined with the data structures of Belazzougui and Navarro [3], while (2)
is an array storing the SA samples at the end of each run. Lastly, (3) is imple-
mented as a predecessor data structure built on SA samples at the beginning of
each run, with the corresponding SA sample at the end of the previous run as a
satellite information.

3 r-Indexing the eBWT

In this section, we show how to construct and use the r-index for the eBWT.
The eBWT [21] (extended BWT) is a generalization of the BWT to a multiset
M = {T1, . . . , Tm} of strings that is independent of the order in which the strings
appear in the multiset. Similarly to the BWT, eBWT(M) is a permutation of
the characters of the strings in M which is, however, based on the ω-order
between the conjugates of the strings in M, rather than on lexicographic order.
It uses the generalized conjugate array GCAM, which is an array whose k-th
entry GCAM[k] equals (j, d) if conjd(Tj) is the k-th conjugate in ω-order. In
[4], we showed how to compute the eBWT and the generalized conjugate array
GCAM in time linear in the total size of M.
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Remark 1. In [4], we showed that given a multiset of strings M = {T1, . . . , Tm},
we can compute the GCAM from the GCA of the roots of the strings in M.
Therefore, we assume that the multiset of strings M = {T1, . . . , Tm} consists of
m primitive strings. Moreover, we assume that ties between same roots in M in
the eBWT are broken by string index.

Given a pattern P [1..p], we say that P occurs in M = {T1, T2, . . . , Tm} if P
occurs as a substring of any of Tω

1 , Tω
2 , . . . , Tω

m. Formally, we define an occurrence
of P in M as a pair (j, d) such that for all i = 1, . . . , p, Td[j + i − 1] = P [i],
where Td is considered as circular.

It follows from the definition of the r-index that we need three main com-
ponents to build an r-index on the eBWT, namely (1) a data structure that
stores the run-length encoded eBWT supporting LF-mapping queries, (2) the
samples of the GCA at the end of each run, and (3) a data structure supporting
φ operations, extended to the GCA. Here, we note that we make the assump-
tion throughout this paper that no two strings have the same set of conjugates.
For the eBWT, we need to store an auxiliary data structure marking the first
conjugate of all the strings in M.

We now show that all the components can be stored in O(r)-space, building
upon the results of Gagie et al. [9].

For (1), the data structure storing the eBWT supporting LF-mapping, we
can use the same data structure used by the r-index. We summarize this in the
next corollary, which follows directly from Gagie et al. [9].

Corollary 1. Given a multiset of strings M = {T1, . . . , Tm}, of total length N
and pattern P [1..p], we can build an index of O(r) words such that we can count
all occurrences of P in M in O(p log logw(σ + N/r))-time.

In the following proposition, we describe an analogue of a known property of
the BWT for the eBWT. It states that the indices corresponding to characters
within the same run are mapped contiguously by the LF-mapping. It follows
from the fact that the LF-property holds for the eBWT[21].

Proposition 1. Let M = {T1, . . . , Tm} be a multiset of strings of total length N
and GCAM = [(j1, i1), (j2, i2), . . . , (jN , iN )] its conjugate array, i.e. GCAM[ν] =
(jν , iν) for ν = 1, . . . , N . If, for some integers k and h, eBWT[k] = eBWT[k−1]
and GCA[h] = (jk−1, ik), then GCAM[h−1] = (jk−1−1, ik−1), where the strings
are considered cyclic, i.e. T [0] = T [|T |] and T [|T | + 1] = T [1].

Next, we show that for a multiset of strings M where no two strings have
the same set of conjugates, at least one of the characters of each string in the
set appears at the beginning of a run, and at least one of the characters of each
string appears at the end of a run.

Proposition 2. Given a multiset of strings M = {T1, . . . , Tm} of total length
N and where no two strings have the same set of conjugates, with GCAM =
[(j1, i1), (j2, i2), . . . , (jN , iN )]. Then, for all 1 ≤ k ≤ m, there exist two integers
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h and h′ such that ih = ih′ = k, and the following are true: (1) either h = 1
or eBWTM[h − 1] �= eBWTM[h], and (2) either h′ = N or eBWTM[h′ + 1] �=
eBWTM[h′].

The following corollary follows directly from the previous proposition.

Corollary 2. Given a multiset of strings M = {T1, . . . , Tm} of total length N
and where no two strings have the same set of conjugates, we have m ≤ r.

From the previous corollary, it follows that we can store the O(m) positions
of the starting rotations of each string in O(r)-space. Moreover, the following
result immediately follows from the previous corollary. It says that, for example,
the compression ratio for a set of reads of length 150 cannot be better than 150,
when using either the BWT or the eBWT.

Corollary 3. Given a multiset of �-length strings M = {T1, . . . , Tm} such that
no two strings have the same set of conjugates, we have that N/r ≤ �.

We can extend the definition of φ to the GCAM, such that for each h > 1
φ associates to the h-th pair (jh, ih) in GCAM the pair (jh−1, ih−1). However,
we have one additional constraint when we extend the description of φ to the
eBWT—namely, we need to ensure that each string in the set M has at least
one conjugate appearing at the beginning and at least one conjugate appearing
at the end of a run. This follows from Proposition 2. Therefore, by storing the
samples at the beginning and the end of each run, we are guaranteed to cover all
strings. Hence, the number of samples is O(r). We can then build a predecessor
data structure for each string Ti in M with the GCA samples at the beginning
of each run corresponding to samples of Ti, and associating the GCA sample at
the end of the preceding run. Note that we need the predecessor search to be
circular, i.e., the predecessor of the first element is the last element. Therefore,
using Proposition 1, we can prove the following result.

Proposition 3. Given a multiset of strings M = {T1, . . . , Tm}, of total length
N and where no two strings have the same set of conjugates, we evaluate φ in
O(r) words of space and O(log logw(N/r))-time, where w is the machine word
size.

We can summarize our results in the following theorem.

Theorem 1. Given a multiset of strings M = {T1, . . . , Tm} of total length N
and where no two strings have the same set of conjugates, we can build an index
of O(r) words such that given pattern P [1..p], we can count the occ occurrences
of P in M in O(p log logw(σ + N/r))-time and we can locate the occ positions
in M, in additional O(occ log logw(N/r))-time.
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4 Constructing the r-Index of the eBWT

In [4], we demonstrated how to construct the eBWT efficiently and in a manner
that preserves the original definition of Mantaci et al. [21]. In particular, we com-
bined a modified version of the Suffix Array Induced Sorting (SAIS) algorithm
of Nong et al. [24] with PFP to develop a novel construction algorithm. Hence,
we produce a dictionary and parse of the eBWT as a result of this algorithm. It
follows from Kuhnle et al. [14] that we can produce the run-length encoding of
the eBWT and the GCA samples from the dictionary and parse in linear time
and space in their size.

Corollary 4. Given a multiset M of input strings, we can build the run-length
encoding of the eBWT and the GCA samples in O(||D|| + ||P||)-space, where D
and P are the dictionary and parse defined by the PFP.

As previously noted, the main components of the r-index—namely the
RL BWT and the SA samples—are not enough to support efficient MEM-finding.
In order to accomplish this, Bannai et al. [1] showed that MEM-finding can be
supported by computing matching statistics for a query string P , which is defined
for each position in P as the length of the longest substring starting at that posi-
tion that occurs in the indexed string T , and the starting position in T of one
of its occurrences. From the matching statistics for P , one can compute the
occurrence of a MEM using a two-pass process: first, working right to left, for
each suffix of P until it finds a suffix of the text that matches for as long as
possible; then, working left to right, it uses random access to T to determine the
length of those matches. Thus, to compute the matching statistics, Bannai et al.
described the addition of a small data structure to the r-index that is referred to
as thresholds. A threshold between a consecutive pair of runs can be defined as
the position of the minimum LCP value in the interval between them. Rossi et
al. [26] showed how to compute all thresholds efficiently by modifying the PFP
construction of the r-index. Here, we see that such a modification can also be
made for the eBWT construction, allowing the thresholds for the eBWT to be
constructed along with the GCA samples.

Corollary 5. Given a set of input strings M, we can construct the thresholds
in addition to the run-length encoding of the eBWT and the GCA samples in
O(||D|| + ||P||)-space, where D and P are the dictionary and parse defined by
the PFP.

It follows directly from Bannai et al. [2] and Rossi et al. [26] that given a
query string P [1..p] that has occ occurrences of a MEM in M, we can find a
single MEM in O(p(log logw(σ + N/r) + tRA))-time and O(r + sRA) words of
space, where tRA and sRA are the time and space of any data structure that is
able to provide random access to the string. Moreover, we can extend this search
to find all occ occurrences in additional O(occ log logw(N/r))-time.

Figure 1 depicts an example of matching statistics query of the pattern P =
CABAA against the collection of strings M = {AAC, AACAC, AABACAAC}.
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P = CABAA

P Prefix POS
C CA (3,2)
A ABA (2,3)
B BA (3,3)
A AA (1,2)
A A (2,2)

M = {AAC, AACAC, AABACAAC}

GCAM THRM eBWTM
A B C

(1,3) ∗ ∗ ∗ C AABACAAC
(6,3) C AACAABAC
(1,1) C AAC
(1,2) C AACAC
(2,3) ∗ A ABACAACA
(7,3) A ACAABACA
(4,3) ∗ B ACAACAAB
(2,1) A ACA
(4,2) C ACAAC
(2,2) ∗ A ACACA
(3,3) A BACAACAA
(8,3) A CAABACAA
(5,3) A CAACAABA
(3,1) A CAA
(5,2) A CAACA
(3,2) A CACAA

Fig. 1. An illustration of the thresholds for calculating the matching statistics of a
query string P [1..p] in a set of strings M. Shown on the left is P , the longest Prefix of
the suffix of that occurs in M, and the position of the corresponding prefix in the text.
Shown on the right, continuing from left to right, is the GCAM of M, the thresholds
THRM for the characters A, B, and C, the eBWTM, and all conjugates of all strings
in M, with the samples of the GCAM highlighted in red. The arrows illustrate the
position in the GCAM which corresponds to the prefix on the left.

5 Conclusions

In this paper, we describe how the fundamentals of the r-index can be transferred
to the context of the eBWT. We note that the eBWT has an advantage over other
BWT-based data structures for string collections, which is that it is independent
of the order of the input strings. An r-index based on the eBWT inherits this
important property. Yet, we note that the applicability of this data structure
has not been fully explored. Thus, we think that implementing this r-index of
the eBWT and evaluating the efficiency of its construction on large datasets is
warranted. From a more theoretical point of view, recasting some of the more
recent results—including the results of Nishimoto and Tabei [23], Bannai et al.
[1], and Cobas et al. [7]—of the r-index to the context of eBWT merits attention.
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Abstract. We often represent text using Unicode formats (UTF-8 and
UTF-16). The UTF-8 format is increasingly popular, especially on the
web (XML, HTML, JSON, Rust, Go, Swift, Ruby). The UTF-16 format
is most common in Java, .NET, and inside operating systems such as
Windows.

Software systems frequently have to convert text from one Unicode
format to the other. While recent disks have bandwidths of 5 GiB/s or
more, conventional approaches transcode non-ASCII text at a fraction
of a gigabyte per second.

We show that we can validate and transcode Unicode text at gigabytes
per second on current systems (x64 and ARM) without sacrificing safety.
Our open-source library can be ten times faster than the popular ICU
library on non-ASCII strings and even faster on ASCII strings.

Keywords: Unicode · Vectorization · Internationalization

1 Introduction

From the early days of computing, programmers have had to represent characters
in software. They needed to agree to standards so that different software written
by different vendors would be interoperable. One of the earliest such standards
is ASCII—first specified in the early 1960s. The ASCII standard is still popular
today: it uses one byte per character—with the most significant bit set to zero.
Unfortunately, ASCII could only ever represent up to 128 characters—far less
than needed.

Thus many diverging standards emerged for representing characters in soft-
ware. The existence of multiple incompatible formats made the production of
interoperable localized software difficult. Conversion between some formats could
sometimes be lossy or ambiguous.

Unicode arose in the late 1980s as an attempt to provide a single agreed-upon
standard. Initially, it was believed that using 16 bits per character would be suf-
ficient. However, engineers realized over time that a wider range of characters
should be supported—if the standard was to be universal. Thus the Unicode

This manuscript is based on a forthcoming long-form article written with Wojciech
Mu�la, Transcoding Billions of Unicode Characters per Second with SIMD Instructions.
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standard was extended to potentially include up to 1114112 characters. Charac-
ters are sometimes called code points and represented as integer values between
0 and 1114112. In practice, only a small fraction of all possible code points have
been assigned, but more are assigned over time with each Unicode revision. The
Unicode standard is an extension of the ASCII standard in the sense that the
first 128 Unicode code-point values match the ASCII characters.

There are several ways to represent Unicode characters in bytes. Due to the
original expectation that Unicode would fit in 16-bit space, a format based on
16-bit words (UTF-16) format was published in 1996 and formalized in 2000 [3].
It may use either 16-bit or 32-bit per character. The UTF-16 format was adopted
by programming languages such as Java, and became a default under Windows.

Unfortunately, UTF-16 is not backward compatible with ASCII at a byte
level. Thus an ASCII compatible format was proposed and formalized in 2003:
UTF-8 [8]. Over time, it became widely used. Text interchange formats such as
JSON, HTML or XML are expected to be in the UTF-8 format. Programming
languages such as Go, Rust and Swift use UTF-8 by default. When used as
part of data interchange documents, UTF-8 is commonly more concise due to
its ability to use one byte per character to represent ASCII text.

Though UTF-8 dominates in many applications, it does not make UTF-16
obsolete. The UTF-16 format has advantages. Indeed, most text represented in
the UTF-16 format has exactly 2-byte per character, except for the occasional
special character (e.g., an emoji). Having a flat 2-byte per character makes some
operations faster. Both formats require validation: not all arrays of bytes are
valid. However, the UTF-8 format is more expensive to validate. In some cases,
UTF-16 may be even more concise as well (e.g., when representing Chinese text).

Thus, for the foreseeable future, we need to validate both UTF-16 and UTF-8
strings, and to convert (transcode) text between the two formats.

We should expect these operations to be fast, and they are. However, speed
and efficiency are relative. Cloud vendors offer high bandwidth between node
instances (e.g., 3.3 GiB/s) and the bandwidth of disks is rising fast (e.g., 5 GiB/s
with PCIe 4.0) [1]. We believe that we should be able to match such high speeds
inside the processor when transcoding text.

For fast processing, we should seek to make the best possible use out of
our processors. Commodity processors support single-instruction-multiple-data
(SIMD) instructions. These instructions operate on several words at once unlike
regular instructions. Starting with the Haswell microarchitecture (2013), Intel
and AMD processors support the AVX2 instruction set and 256-bit vector reg-
isters. Most mobile phones tablets have 64-bit ARM processors (aarch64) with
NEON instructions (128-bit registers). Hence, on recent x64 processors, we can
compare two strings of 32 characters in a single instruction. Algorithms designed
for SIMD instructions typically require fewer instructions per byte. Software that
retires fewer instructions tends to use less power and to be faster.
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2 Related Work

There are many ways to validate and transcode Unicode text. One may use series
of branches or finite-state approaches [4]. We are most interested in the fastest
techniques. Keiser and Lemire [6] describe a fast SIMD-based UTF-8 validation
directly on byte streams. We make use of their approach (see Sect. 4).

Cameron [2] proposed that we transform text using bit streams. Given byte
arrays, the bit-stream approach creates eight bit arrays, each one corresponding
to a bit position within a byte. There is one bit stream for the least significant
bit, one for the second least significant bit, and so forth. We must first transform
the input data into such bit streams and then convert the data back from bit
streams to an array of bytes. Cameron applied this strategy to UTF-8 to UTF-16
transcoding.

Independently, Inoue et al. [5] proposed a UTF-8 to UTF-16 SIMD-
accelerated transcoder, but it does not validate its inputs. The authors did not
make their implementation (for PowerPC processors) available.

We are not aware of any further work in the scientific literature regarding
the application of SIMD instruction to the validation or transcoding of Unicode
text. Except for fast ASCII paths, we do not know of any widespread use of
SIMD instructions for validating or transcoding Unicode text.

3 The Unicode Formats

ASCII characters require one byte with UTF-8 and two bytes with UTF-
16. UTF-16 can represent all characters—except for the supplemental charac-
ters such as emojis—using two bytes. The UTF-8 format uses two bytes for
Latin, Hebrew and Arabic alphabets. Asiatic characters (including Chinese and
Japanese) require three UTF-8 bytes. Both UTF-8 and UTF-16 require 4 bytes
for the supplemental characters. We often represent Unicode characters using its
integer value in hexadecimal as, for example, U+7F (for 127).

UTF-8 encodes values in sequences of one to four bytes. We refer to the first
byte of a sequence as a leading byte; the most significant bits of the leading byte
indicate the length of the sequence:

– If the most significant bit is zero, we have a sequence of one byte (ASCII).
– If the three most significant bits are 110, we have a two-byte sequence.
– If the four most significant bits are 1110, we have a three-byte sequence.
– Finally, if the five most significant bits are 11110, we have a four-byte

sequence.

All bytes following the leading byte in a sequence are continuation bytes, and
they must have their two most significant bits as 10. Except for the required
most significant bit sequences, other bits (from 7 bits to 21 bits) provide the
code-point value. The most significant bits of the code-point value are in the
leading byte, followed by lesser significant bits in the second byte and so forth,
with the least significant bits in the last byte of the sequence. Valid UTF-8
sequences must follow the following exhaustive rules:
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1. The five most significant bits of any byte cannot be all ones.
2. The leading byte must be followed by the right number of continuation bytes.
3. A continuation byte must be preceded by a leading byte.
4. The decoded character must be larger than U+7F for two-byte sequences,

larger than U+7FF for three-byte sequences, and larger than U+FFFF for four-
byte sequences.

5. The decoded code-point value must be less than 1114112.
6. The code-point value must not be in the range U+D800...DFFF.

In the UTF-16 format, characters in U+0000...D7FF and U+E000...FFFF
are stored as 16-bit values—using two bytes. The characters in the range
U+010000...10FFFF require two 16-bit words (a surrogate pair). The first word
in the pair is in 0xD800...DBFF whereas the second word is in 0xDC00...DFFF.
The code-point value is made of the 10 least significant bits of the two words—
using the second word as least significant—adding 0x10000 to the result. During
validation, only the possible surrogate pairs require attention.

4 Algorithms

All commodity software with SIMD instructions (e.g., x64, ARM, POWER)
have fast instructions to permute bytes within a SIMD register according to a
sequence of indexes. Our transcoding techniques depend critically on this feature:
we code in a table the necessary parameters—including the indexes (sometimes
called shuffle masks)—necessary to process a variety of incoming characters.

Our accelerated UTF-8 to UTF-16 transcoding algorithm processes up to
12 input UTF-8 bytes at a time. From the input bytes, we can quickly determine
the leading bytes and thus the end beginning of each character. We use a 12-
bit word as a key in a 1024-entry table. Each entry in the table contains the
number of UTF-8 bytes that will be consumed and an index into another table
where we find shuffle masks. The value of the index into the other table also
determines one of three possible code paths. The first 64 index values indicate
that we have 6 characters spanning between one and two bytes. Index values
in [64, 145) indicate that we have 4 characters spanning between one and three
bytes. The remaining indexes represent the general case: 3 characters spanning
between one and four bytes. The shuffle mask can then be applied to the 12 input
bytes to form a vector register that can be transformed efficiently. We use this
12-byte routine inside 64-byte blocks. After loading a 64-byte block, we apply the
Keiser-Lemire validation routine [6]. Afterward, we identify the leading bytes,
and then process the block in multiple iterations, using up to 12 bytes each time.
In the special case where all 64 bytes are ASCII, we use a fast path. For even
greater efficiency, we have three other fast paths within the 12-byte routine: we
check whether the next 16 bytes are ASCII bytes, whether they are all two-byte
characters, or all three-byte characters.

Our UTF-16 to UTF-8 algorithm iteratively reads a block of input bytes in
a SIMD register. If all 16-bit words in the loaded SIMD register are in the range
U+0000...007f, we use a fast routine to convert the 16 input bytes into eight
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Fig. 1. Transcoding speeds for various test files.

equivalent ASCII bytes. If all 16-bit words are in the range U+0000...07ff,
then we use a fast routine to produce sequences of one-byte or two-byte UTF-8
characters. Given an 8-bit bitset which indicates which 16-bit words are ASCII,
we load a byte value from a table indicating how many bytes will be written,
and a 16-byte shuffle mask. If all 16-bit words are in the ranges U+0000...d777,
U+e000...ffff, we use another similar specialized routine to produce sequences
of one-byte, two-byte and three-byte UTF-8 characters. Otherwise, when we
detect that the input register contains at least one part of a surrogate pair, we
fall back to a conventional code path.

5 Experiments

We make available our software as a portable open-source C++ library.1 As
a benchmarking system, we use a recent AMD processor (AMD EPYC 7262,
Zen 2 microarchitecture, 3.39 GHz) and GCC 10. We compare against a popular
library: International Components for Unicode (UCI) [7] (version 67.1). We also
use the u8u16 library [2]. Unlike UCI and our own work, the u8u16 library only
provides UTF-8 to UTF-16 transcoding. For our experiments, we use lipsum text
in various languages.2 All of our transcoding tests include validation. To measure
the speed, we record the time by repeating the task 2000 times. We compare
the average time with the minimal time and find that we have an accuracy of at
least 1%. We divide the input volume by the time required for the transcoding.
Figure 1 shows our results. Our UTF-8 to UTF-16 transcoding speed exceeds
4 GiB/s for Chinese and Japanese texts, which is about four times faster than

1 https://github.com/simdutf/simdutf.
2 https://github.com/rusticstuff/simdutf8.

https://github.com/simdutf/simdutf
https://github.com/rusticstuff/simdutf8
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UCI. In our tests, the u8u16 library only surpasses ICU significantly for Arabic.
Our UTF-16 to UTF-8 transcoding speed is nearly 6 GiB/s in all tests which is
nearly ten times faster than UCI.

For ASCII transcoding (not shown in the figures), we achieve 36 GiB/s for
UTF-16 to UTF-8 transcoding, and 20 GiB/s for UTF-8 to UTF-16 transcoding.
Effectively, we are so fast that we are nearly limited by memory bandwidth.
Comparatively, UCI delivers 2 GiB/s and 1 GiB/s in our tests.

6 Conclusion

Our SIMD-based transcoders can surpass popular transcoders (e.g., UCI) by
a wide margin (e.g., 4×). Our UTF-16 to UTF-8 transcoder achieves speed of
about 6 GiB/s for many Asiatic languages using a recent x64 processor. In some
cases, we achieve 4 GiB/s for UTF-8 to UTF-16 transcoding with full validation.
For ASCII inputs, we achieve tens of gigabytes per second.
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Abstract. For an integer k ≥ 3, a k-rollercoaster is a numeric string
such that any maximal strictly non-increasing or non-decreasing sub-
string has length at least k. We consider the problem of computing the
longest common k-rollercoaster between two integer strings S and T ,
i.e., the longest k-rollercoaster that is a subsequence common to both S
and T . We give two algorithms that solve this problem; The first runs
in O(nmk) time and space, where n, m are respectively the lengths of S
and T . The second runs in O(rk log3 m log log m) time and O(rk) space,
where r = O(mn) is the number of pairs (i, j) of matching points such
that S[i] = T [j], assuming that m ≤ n and that S, T only consist of
characters which occur in both strings. The second algorithm is faster
than the first one when r is sub-linear in nm/ log3 m log log m.

Keywords: k-rollercoaster · Dynamic programming · Dynamic range
query

1 Introduction

A subsequence of a string S is a string that can be obtained by removing 0
or more characters from S. Given a string of length n, the problem of find-
ing a longest subsequence that satisfies certain properties has been studied for
various settings. For strings over an ordered alphabet, the longest increasing
subsequence problem is well known, and is known to have a O(n log n) time
solution [5]. The longest palindromic subsequence problem, where the objective
is to find the longest subsequence that is a palindrome, has a simple O(n2)
dynamic programming solution. The longest square subsequence problem (orig-
inally referred to as the longest scattered subsequence problem [19]), where the
objective is to find the longest subsequence that is a square, is also known
to be solvable in O(n2) time [19], and later improved to O(n2 log log n/ log n)
time [22]. Algorithms running in O(�min{n, r} log n

� + r log n + n) time [16], or
O(�min{n, r}(1 + log(min{�, r

� })) + n� + r) time [21], have also been proposed,
where r is the number of pairs (i, j) of matching points such that S[i] = T [j], and
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� is the length of the solution. Notice that while r = O(n2) in the worst case, r
can be much smaller than O(n2) when the matching points are sparse. Thus, the
aforementioned algorithms, and the ones to be mentioned later, whose complex-
ities are dependent on r can be faster than their basic dynamic programming
counterparts in the case where the matching points are sparse.

These problems can be naturally extended to the case where two strings S, T
of respective lengths n,m (n ≥ m) are given, and the objective is to compute a
longest such sequence that is common to both S and T . The longest common
palindromic subsequence problem was considered by Chowdhury et al. [11,12],
where they gave an O(n4) time algorithm, as well as an O(r2 log2 n log log n)
time algorithm. This was later improved to O(σr2 + n) time by Inenaga and
Hyyrö [15], where σ is the number of distinct characters occurring in both
strings, and to O(r2 + n) time by Bae and Lee [5]. The longest common square
subsequence problem was considered by Inoue et al. [17] where they gave sev-
eral algorithms running in O(n6), O(rn4), or O(σr3 + n) time. The longest
common increasing subsequence problem was considered by Yang et al. [23],
where they gave an O(mn) time algorithm. This was improved by Chan et
al. [9] to O(min{r log �, n� + r} log log n + Sort) time, where Sort is the time
to sort the elements of the input strings. Also, Kutz et al. [20] showed an
O((n + m�) log log σ + Sort) time algorithm. More recently, Duraj [13] proposed
an O(n2(log log n)2/ log1/6 n) time algorithm. Agrawal and Gawrychowski [2]
further give an O(n2 log log n/

√
log n) time algorithm.

In this paper, we focus on characteristic subsequences called rollercoasters
[8]. For an integer k ≥ 3, a k-rollercoaster is a string over an ordered alphabet
such that any maximal strictly non-increasing or non-decreasing substring has
length at least k. Biedl et al. [6,7] gave an O(n log n) time solution, as well as
an O(n log log n) time solution when the string is a permutation of {1, . . . , n}.
Later, Gawrychowski et al. [14] showed an O(nk2) time algorithm.

As with the other properties mentioned above, we consider the following
extension of this problem: Given two strings S, T of respective lengths n,m, and
a non-negative integer k, compute a longest k-rollercoaster that is common to
both S and T . We show two algorithms: the first runs in O(nmk) time and space.
The second runs in O(rk log3 m log log m) time and O(rk) space, assuming that
m ≤ n and that S, T only consist of characters which occur in both strings.
This can be translated to O(rk log3 m log log m+Sort) time and O(rk+n) space
without the latter assumption.

1.1 Related Work

The Longest Property-Preserved Common Factor problem which asks to find
a longest common substring that satisfy certain properties, was considered by
Ayad et al. [3,4]. They consider three settings and properties, and show that: 1)
A given string x can be preprocessed in linear time so that for any query string
y, a longest common square-free factor between x and y can be computed in
linear time. 2) Given a set of k strings and integer 1 < k′ ≤ k, a longest periodic
substring common to at least 1 < k′ ≤ k of the strings can be computed in
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linear time. 3) Given two strings, a longest palindromic factor common to the
two strings can be computed in linear time.

Kai et al. [18] further generalized and unified these settings. For the proper-
ties: square-free, square, periodic, palindromic, and Lyndon, they showed that a
given set X of k strings can be preprocessed in linear time so that for any string
y and 1 < k′ ≤ k, the longest property preserved substring common to y and at
least k′ of the strings in X can be computed in linear time.

2 Preliminaries

Let Σ be an ordered alphabet. A string is an element of Σ∗. The length of a
string X ∈ Σ∗ is denoted by |X|. For any integer 1 ≤ i ≤ |X|, X[i] denotes the
ith character of X, i.e., X = X[1] · · · X[|X|]. Also, for any 1 ≤ i ≤ j ≤ |X|, we
denote X[i..j] = X[i] · · · X[j]. A (positioned) substring X[i..j] of X is a run in X,
if it is a maximal strictly increasing (+-run) or a maximal strictly decreasing (--
run) substring, i.e., i = 1 or X[i − 1..j] is neither strictly increasing nor strictly
decreasing, and j = |X| or X[i..j + 1] is neither strictly increasing nor strictly
decreasing. X is a k-rollercoaster if any run in X has length at least k.

For an integer string X, let X1, . . . , Xx be the sequence of runs in X ordered
by their occurrence in X. Notice that for any i ∈ [1, x − 1], Xi[|x|] = Xi+1[1].
We use the notion of (k, h)w-rollercoasters defined by Biedl et al. [6,7]. For
w ∈ {+, -} and integer h ∈ [1, k], X is a (k, h)w-rollercoaster if X1, . . . , Xx

satisfies the following:

1. The last run Xx is a w-run.
2. |Xi| ≥ k for all i ∈ [1, |x| − 1].
3. If h ∈ [1, k − 1], |Xx| = h, and |Xx| ≥ k otherwise, i.e., h = k.

In other words, X is a (k, h)w-rollercoaster if all but the last run has length at
least k, and the last run is a w-run of length exactly h if h < k, or at least k
if h = k. Note that a (k, k)w-rollercoaster is a k-rollercoaster, while a (k, h)w-
rollercoaster for h < k is not.

For example, for X = (8, 5, 4, 1, 6, 7, 9, 7, 5), the runs of X are (8, 5, 4, 1),
(1, 6, 7, 9), (9, 7, 5). Thus, X is a 3-rollercoaster but not a 4-rollercoaster, and is
also a (3, 3)+-rollercoaster and a (4, 3)+-rollercoaster as well, but not a (3, 2)+-
rollercoaster or a (4, 2)+-rollercoaster.

A string s is a subsequence of a string t, if s can be obtained by removing 0
or more symbols from s. Previous work focused on the problem of finding the
longest k-rollercoaster that is a subsequence of a given string. We consider the
following problem:

Problem 1 (Longest Common k-Rollercoaster). Given two integer strings S[1..n],
T [1..m], and integer k ≥ 3, find a longest k-rollercoaster that is a subsequence
of both S and T .

We will further assume n ≥ m and that S and T only consists of characters
which occur in both S and T . Notice that for a linearly sortable alphabet, the
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problem can be reduced, with extra O(n) time and space, to finding the k-
rollercoaster between S′, T ′ which are respectively subsequences of S, T , that
satisfy this condition. For general ordered alphabets, this can be done with extra
O(n log m) time and O(n) space.

3 Algorithms

3.1 O(nmk) Time and Space Algorithm

Unless noted otherwise, we will use S, T to denote integer strings with respective
lengths n,m. Also, we will assume w ∈ {+, -}, h ∈ [1, k], i ∈ [1, n], and j ∈ [1,m].
Also, let w = - if w = + and w = + if w = -.

Let Rk,h
w (S, T, i, j) denote the set of longest (k, h)w-rollercoasters that is com-

mon to S[1..i] and T [1..j] and ends with T [j]. Let Lk,h
w [i, j] denote the length of

elements in Rk,h
w (S, T, i, j). Then, it is clear that the length of a longest common

k-rollercoaster between S and T is max{Lk,k
w [n, j] | w ∈ {+, -}, j ∈ [1,m]}.

For example, if S = (1, 2, 7, 4, 3, 8, 3, 4, 2, 1) and T = (3, 1, 4, 2, 8, 7, 1, 4, 3, 2),
R3,2

- (S, T, 8, 9) = {(1, 2, 7, 3), (1, 2, 8, 3), (1, 4, 8, 3)}.
Finally, we define Mk,h

w [i, j] as the length of the longest common (k, h)w-
rollercoaster between S[1..i] and T [1..j − 1] that ends with an element that is
less than T [j] when w = + and greater than T [j] when w = -. More formally,

Mk,h
w [i, j] =

{
max({0} ∪ {Lk,h

+ [i, j′] | 1 ≤ j′ < j, T [j′] < T [j]}) if w = +

max({0} ∪ {Lk,h
- [i, j′] | 1 ≤ j′ < j, T [j′] > T [j]}) if w = -

For example, for S = (1, 2, 4, 8, 5, 1, 4, 2) and T = (8, 1, 4, 2, 2, 8, 1), we have
L3,2
+ [5, 2] = 0, L3,2

+ 2[5, 3] = L3,2
+ [5, 4] = L3,2

+ [5, 5] = 2, and therefore, M3,2
+ [5, 6] =

2. Intuitively, Mk,h
w [i, j] denotes the length of the longest (k, h)w-rollercoaster

that might be extended by T [j].
In the following, we claim a recurrence formula for computing Lk

w[i, j]. As
the conditions of each recurrence is somewhat involved, these will be denoted as
shown below:

– (C1): i = 0 or j = 0
– (C2): S[i] = T [j]
– (C3): Lk,k

w [i, j] = 0
– (C4): Mk,h−1

w [i − 1, j] = 0
– (C5): max{Mk,k−1

w [i − 1, j],Mk,k
w [i − 1, j]} = 0

Lemma 1. The following recurrences for Lk,h
w [i, j] hold:

For h = 1,

Lk,1
w [i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if C1,

1 if ¬C1 ∧ C2 ∧ C3,

Lk,k
w [i, j] if ¬C1 ∧ C2 ∧ ¬C3,

Lk,1
w [i − 1, j] if ¬C1 ∧ ¬C2.

(1)
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For h ∈ [2, k − 1],

Lk,h
w [i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if C1

0 if ¬C1 ∧ C2 ∧ C4

Mk,h−1
w [i − 1, j] + 1 if ¬C1 ∧ C2 ∧ ¬C4

Lk,h
w [i − 1, j] if ¬C1 ∧ ¬C2.

(2)

Finally, for h = k,

Lk,k
w [i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if C1

0 if ¬C1 ∧ C2 ∧ C5

max{Mk,k−1
w [i − 1, j],Mk,k

w [i − 1, j]} + 1 if ¬C1 ∧ C2 ∧ ¬C5

Lk,k
w [i − 1, j] if ¬C1 ∧ ¬C2.

(3)

Proof. We show the case for w = +. The case for w = - can be shown in a
symmetric fashion.

For any h ∈ [1, k], if case C1 holds, then it is clear that Lk,h
+ [i, j] = 0

holds since at least one of S[1..i] or T [1..j] is empty. If ¬C1 ∧ ¬C2, let U ∈
Rk,h

+ (S, T, i, j), i.e., U is a longest common (k, h)+-rollercoaster between S[1..i]
and T [1..j] that ends with T [j]. Then, from S[i] �= T [j] (¬C2), it holds that the
last element of U cannot be S[i]. Therefore, Rk,h

+ (S, T, i, j) = Rk,h
+ (S, T, i − 1, j)

which implies Lk,h
+ [i, j] = Lk,h

+ [i − 1, j].
In what follows, we consider the cases where ¬C1 ∧ C2 holds, i.e., i, j > 0

and S[i] = T [j].

Case h = 1: Since S[i] = T [j] holds, Lk,1
+ [i, j] is at least 1. Notice that a (k, 1)+-

rollercoaster is either a sequence of length 1, or a (k, k)--rollercoaster.
C3: Lk,k

- [i, j] = 0. This implies that the length of the longest (k, k)--
rollercoaster between S[1..i] and T [1..j] that ends with T [j] is 0, and
thus the longest common (k, 1)+-rollercoaster between S[1..i] and T [1..j]
that ends with T [j] is of length 1, i.e., Lk,1

+ [i, j] = 1.
¬C3: Lk,k

- [i, j] > 0. Since k ≥ 3, this implies that Lk,k
- [i, j] ≥ 3 > 1, and

therefore Lk,1
+ [i, j] = Lk,k

- [i, j].
Case h ∈ [2, k − 1]: Recall that Mk,h−1

+ [i − 1, j] is the length of the longest
common (k, h− 1)+-rollercoaster between S[1..i− 1] and T [1..j − 1] that ends
with en element less than T [j].
C4: Mk,h−1

+ [i − 1, j] = 0. If we can show Rk,h
+ (S, T, i, j) = ∅, then

Lk,h
+ [i, j] = 0 follows. Suppose to the contrary that there exists some

U ∈ Rk,h
+ (S, T, i, j). Then, since |U | ≥ h ≥ 2 and S[i] = T [j], U [1..|U |−1]

is a common (k, h − 1)+-rollercoaster between S[1..i − 1] and T [1..j − 1]
that ends with an element smaller than T [j]. Therefore, by definition,
Mk,h−1

+ [i−1, j] ≥ |U |−1. Since Mk,h−1
+ [i−1, j] = 0, this implies |U | ≤ 1,

but this contradicts |U | ≥ 2.
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¬C4: Mk,h−1
+ [i − 1, j] > 0. Therefore, it must be that there is some j∗ =

arg maxj′{Lk,h−1
+ [i − 1, j′] | j′ < j, T [j′] < T [j]} such that Mk,h−1

+ [i −
1, j] = Lk,h−1

+ [i − 1, j∗] > 0. This implies Rk,h−1
+ (S, T, i − 1, j∗) �= ∅.

Let U ′ ∈ Rk,h−1
+ (S, T, i − 1, j∗). Then, since j∗ < j, T [j∗] < T [j], and

S[i] = T [j], the sequence obtained by appending T [j] to U ′ is a com-
mon (k, h)+-rollercoaster between S[1..i] and T [1..j] that ends with T [j].
Therefore, Lk,h

+ [i, j] ≥ |U ′| + 1 = Mk,h−1
+ [i − 1, j] + 1.

Since Lk,h
+ [i, j] > 0, there exists some U ∈ Rk,h

+ (S, T, i, j). Then,
U [1..|U | − 1] is a common (k, h − 1)+-rollercoaster between S[1..i − 1]
and T [1..j − 1] that ends with an element smaller than T [j]. Therefore,
Lk,h
+ [i, j] − 1 = |U | − 1 ≤ Mk,h−1

+ [i − 1, j].
Thus, it holds that Lk,h

+ [i, j] = Mk,h−1
+ [i − 1, j] + 1.

Case h = k: The proof is essentially the same to the case h ∈ [2, k − 1].
C5: max{Mk,k−1

+ [i−1, j],Mk,k
+ [i−1, j]} = 0. If we can show Rk,k

+ (S, T, i, j) =
∅, then Lk,k

+ [i, j] = 0 follows. Suppose to the contrary that there exists
some U ∈ Rk,k

+ (S, T, i, j). Then, since |U | ≥ k ≥ 3 and S[i] = T [j],
U [1..|U | − 1] is either a common (k, k)+-rollercoaster if the last run of U
is longer than k, or a common (k, k −1)+-rollercoaster if the last run of U
is exactly k, between S[1..i−1] and T [1..j −1] that ends with an element
smaller than T [j]. Therefore, by definition, either Mk,k

+ [i − 1, j] ≥ |U | − 1
or Mk,k−1

+ [i − 1, j] ≥ |U | − 1. Since Mk,k
+ [i − 1, j] = Mk,k−1

+ [i − 1, j] = 0,
this implies |U | ≤ 1, but this contradicts |U | ≥ 3.

¬C5: max{Mk,k−1
+ [i− 1, j],Mk,k

+ [i− 1, j]} > 0. Let k′ ∈ {k − 1, k} be such that
Mk,k′

+ [i−1, j] = max{Mk,k−1
+ [i−1, j],Mk,k

+ [i−1, j]}. It must be that there
is some j∗ = arg maxj′{Lk,k′

+ [i − 1, j′] | j′ < j, T [j′] < T [j]} such that
Mk,k′

+ [i−1, j] = Lk,k′
+ [i−1, j∗] > 0. This implies Rk,k′

+ (S, T, i−1, j∗) �= ∅.
Let U ′ ∈ Rk,k′

+ (S, T, i−1, j∗). Then, since j∗ < j, T [j∗] < T [j], and S[i] =
T [j], the sequence obtained by appending T [j] to U ′ is a common (k, k)+-
rollercoaster between S[1..i] and T [1..j] that ends with T [j]. Therefore,
Lk,k
+ [i, j] ≥ |U ′|+1 = Mk,k′

+ [i− 1, j] + 1 = max{Mk,k−1
+ [i− 1, j],Mk,k

+ [i−
1, j]} + 1.
Since Lk,k

+ [i, j] > 0, there exists some U ∈ Rk,k
+ (S, T, i, j). Then, U [1..|U |−

1] is either a common (k, k)+-rollercoaster if the last run of U is longer than
k, or a common (k, k − 1)+-rollercoaster if the last run of U is exactly k,
between S[1..i−1] and T [1..j −1] that ends with an element smaller than
T [j]. Therefore, Lk,k

+ [i, j] − 1 = |U | − 1 ≤ max{Mk,k−1
+ [i − 1, j],Mk,k

+ [i −
1, j]}.
Thus, it holds that Lk,k

+ [i, j] = max{Mk,k−1
w [i − 1, j],Mk,k

w [i − 1, j]} + 1.


�
Notice that when computing Lk,h

w [i, j] for any i, j and any 2 ≤ h ≤ k, the
value Mk,h−1

w [i−1, j] = max({0}∪{Lk,h−1
w [i−1, j′] | 1 ≤ j′ < j, T [j′] < T [j]}) is

required only when S[i] = T [j] (from C2), and depends on values Lk,h−1
w [i−1, j′]
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where 1 ≤ j′ < j and T [j′] < S[i] = T [j]. Thus, the required values can be
determined in increasing order of j for fixed i and h. Overall, for h = 1, Lk,1

w [i, j]
may depend on Lk,k

w [i, j]. However, for 2 ≤ h ≤ k, the value of Lk,h
w [i, j] depends

on Lk,h′
w [i′, j′] such that h′ ≤ h, j′ ≤ j, and i′ < i. Thus, the dependency

is acyclic, and these values can be computed by dynamic programming in a
suitable order.

Algorithm 1 shows pseudo-code for computing Lk,h
w and the length of the

longest k-rollercoaster. In the code, θ represents the value for M computed
for increasing j for fixed i and h. Let w∗, j∗ be such that Lk,k

w∗ [n, j∗] =
max{Lk,k

w [n, j] | w ∈ {+, -}, j ∈ [1,m]}. P and φ are used for holding which
values were used in the recurrence, so that a longest k-rollercoaster may be
retrieved after computing its length, by backtracking. This can be done by call-
ing Reconstruct1(w∗, k, n, j∗) of Algorithm 2.

Thus, we obtain the following theorem.

Theorem 1. Given integer strings S[1..n], T [1..m], and integer k ≥ 3, a longest
common k-rollercoaster between S and T can be computed in O(nmk) time and
space.

3.2 O(rk log3 m log logm) Time and O(rk) Space Algorithm

Notice that in the recurrences of Lemma 1, the value of Lk,h
w [i, j] is not Lk,h

w [i −
1, j] only when S[i] = T [j], or when i = 0 or j = 0 in which case the value of
Lk,h

w [i, j] is 0. This implies that we essentially need only the values of Lk,h
w [i, j]

for pairs i, j such that S[i] = T [j].
It is easy to see that we can modify the recurrences of Lemma 1 for i, j

restricted to the case where S[i] = T [j], as follows.

Lemma 2. The recurrences of Lemma 1 for pairs i, j where S[i] = T [j] can be
modified as follows: For h = 1,

Lk,1
w [i, j] =

{
Lk,k

w [i, j] if Lk,k
w [i, j] > 0

1 otherwise
(4)

For h ∈ [2, k − 1],

Lk,h
w [i, j] =

{
Mk,h−1

+ [i, j] + 1 if Mk,h−1
+ [i, j] > 0

0 otherwise
(5)

Finally, for h = k,

Lk,k
w [i, j] =

⎧⎪⎨
⎪⎩

max{Mk,k−1
+ [i, j],

Mk,k
+ [i, j]} + 1 if

max{Mk,k−1
+ [i, j],

Mk,k
+ [i, j]} > 0

0 otherwise
(6)

where

Mk,h
+ [i, j] = max({0} ∪ {Lk,h

+ [i′, j′] | 1 ≤ i′ < i, 1 ≤ j′ < j, S[i′] = T [j′] < T [j]}).
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Algorithm 1: Computing the longest common k-rollercoaster in
O(nmk) time and space.
Input: Integer strings S[1..n], T [1..m], integer k ≥ 3
Output: Length of longest common k-rollearcoaster between S[1..n] and

T [1..m]
1 Initialize Lk,1

+ , · · · , Lk,k
+ , Lk,1

- , · · · , Lk,k
- to 0.;

2 Initialize P 1
+ , · · · , P k

+ , P 1
- , · · · , P k

- to (0, 0, 0, 0).;
3 for i = 1 to n do
4 for h = 2 to k − 1 do
5 θ+ ← 0;
6 φ+ ← (0, 0, 0, 0);
7 for j = 1 to m do
8 if S[i] = T [j] then

9 if θ+ > 0 then Lk,h
+ [i, j] ← θ+ + 1;

10 else Lk,h
+ [i, j] ← 0;

11 Ph
+ [i, j] ← φ+;

12 else

13 Lk,h
+ [i, j] ← Lk,h

+ [i − 1, j], Ph
+ [i, j] ← Ph

+ [i − 1, j];

14 if S[i] > T [j] and θ+ < Lk,h−1
+ [i − 1, j] then

15 θ+ ← Lk,h−1
+ [i − 1, j];

16 φ+ ← (+, h − 1, i − 1, j);

17 Compute Lk,h
- [i], Ph

- [i] similarly. ;

18 Compute Lk,k
+ , Lk,k

- , P k
+ , P k

- similarly ;
19 for j = 1 to m do
20 if S[i] = T [j] then

21 if Lk,k
- [i, j] = 0 then

22 Lk,1
+ [i, j] ← 1;

23 P 1
+ [i, j] ← (0, 0, 0, 0);

24 else Lk,1
+ [i, j] ← Lk,k

- [i, j], P 1
+ [i, j] ← P k

- [i, j];

25 else Lk,1
+ [i, j] ← Lk,1

+ [i − 1, j], P 1
+ [i, j] ← P 1

+ [i − 1, j];

26 Compute Lk,1
- , P 1

- similarly ;

27 return max{Lk,k
w [n, j] | w ∈ {+, −}, j ∈ [1, m]};

Proof. Considering the condition S[i] = T [j] and the recurrences in Lemma 1,
we only have to prove Mk,h

w [i, j] = Mk,h
w [i−1, j]. We consider the case for w = +.

The case for w = - is symmetric.
Recall that

Mk,h
+ [i − 1, j] = max({0} ∪ {Lk,h

+ [i − 1, j′] | 1 ≤ j′ < j, T [j′] < T [j]}).

Suppose for some 1 ≤ i′ < i and 1 ≤ j′ < j, there is a common (k, h)+-
rollercoaster between S[1..i′] and T [1..j′] of length Mk,h

+ [i, j] = Lk,h
+ [i′, j′] that

ends with an element S[i′] = T [j′] < T [j]. This implies Mk,h
+ [i−1, j] ≥ Mk,h

+ [i, j].
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Algorithm 2: Reconstruct1(w, h, i, j)
Input: w, h, i, j
Output: Reconstructing a longest common k-rollercoaster between S[1..n]

and T [1..m]
1 if Ph

w [i, j] = (0, 0, 0, 0) then return;
2 else

3 (w′, h′, i′, j′) ← Ph
w [i, j];

4 Reconstruct1(w′, h′, i′, j′);
5 Print T [j];
6 return

On the other hand, suppose for some j′, there is a common (k, h)+-rollercoaster of
length Mk,h

+ [i−1, j] = Lk,h
+ [i−1, j′] between S[1..i−1] and T [1..j′] that ends with

T [j′] < T [j]. Let i′ be the largest value less than i such that S[i′] = T [j′]. Since
T [j′] does not occur in S[i′ +1..i−1], it must be that Lk,h

+ [i′, j′] = Lk,h
+ [i−1, j′],

which implies that Mk,h
+ [i, j] ≥ Mk,h

+ [i − 1, j]. 
�
We use the following property to compute the recurrence formulas in

Lemma 2 efficiently.

Property 1. For any 1 ≤ i′ < i and 1 ≤ j ≤ m such that S[i′] = S[i] = T [j],
Lk,h

w [i′, j] ≤ Lk,h
w [i, j].

Proof. A common (k, h)w-rollercoaster of length Lk,h
w [i′, j] between S[1..i′] and

T [1..j] that ends with element S[i′] = T [j], is also a (k, h)w-rollercoaster between
S[1..i] and T [1..j] that ends with element S[i] = T [j].

We reorganize the computation as follows, and consider the relevant values
of Lk,h

w [i, j] to be computed as weights on a point on a 2-dimensional grid fixing
i and h. More precisely, we consider 2k 2-dimensional grids, each corresponding
to a distinct pair (w, h) ∈ {+, -} × [1, k]. For each position j of T , we consider
a point at (j, T [j]) on the grid. The points will initially have weight 0, and the
weights will be maintained incrementally for i = 1, . . . , n, to represent Lk,h

w [i, j],
by updating them for all points {(j, T [j]) | j ∈ [1,m], T [j] = S[i]}.

From Property 1, the points in the range [1..j−1]×[1..T [j]−1] for some i have
weights which represent {Lk,h

+ [i′, j′] | 1 ≤ i′ < i, 1 ≤ j′ < j, S[i′] = T [j′] < T [j]}.
Thus, Mk,h

w [i, j] can be computed by a range maximum query on the weighted
grid constructed for i − 1, in the range [1..j − 1] × [1..T [j] − 1]. This can be
computed efficiently using the following result by Chazelle [10].

Lemma 3 (Theorem 3 of [10]). There is an O(n) space data structure that
maintains n weighted points that supports 2D range maximum queries, as well
as insertion and deletion of a point, in O(log3 n log log n) time.

Note that a k-rollercoaster can be reconstructed in a similar fashion to the
first algorithm. Thus, we obtain the following result.
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Theorem 2. For two integer strings S[1..n], T [1..m] and integer k ≥
3, a longest k-rollercoaster between S and T can be computed in
O(rk log3 m log log m) time and O(rk) space, where r is the number of pairs
(i, j) such that S[i] = T [j].

4 Conclusion

We considered the problem of finding a longest common k-rollercoaster between
two strings. Notice that for k = 1, any non-empty string is a k-rollercoaster, and
thus, the problem is equivalent to the classic longest common subsequence prob-
lem which has O(n2/polylog(n)) time solutions, but believed to be unlikely to
have O(n2−ε) time solutions [1]. It is an open problem whether O(n2/polylog(n))
time algorithms exist for general k.
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Abstract. A palindrome is a string that reads the same forward and
backward. A palindromic substring w of a string T is called a minimal
unique palindromic substring (MUPS) of T if w occurs only once in
T and any proper palindromic substring of w occurs at least twice in
T . MUPSs are utilized for answering the shortest unique palindromic
substring problem, which is motivated by molecular biology [Inoue et al.,
2018]. Given a string T of length n, all MUPSs of T can be computed in
O(n) time. In this paper, we study the problem of updating the set of
MUPSs when a character in the input string T is substituted by another
character. We first analyze the number d of changes of MUPSs when
a character is substituted, and show that d is in O(log n). Further, we
present an algorithm that uses O(n) time and space for preprocessing,
and updates the set of MUPSs in O(log σ + (log log n)2 + d) time where
σ is the alphabet size. We also propose a variant of the algorithm, which
runs in optimal O(1 + d) time when the alphabet size is constant.

Keywords: String algorithm · Palindrome · Edit operation

1 Introduction

Palindromes are strings that read the same forward and backward. Finding palin-
dromic structures has important applications to analyze biological data such as
DNA, RNA, and proteins, and thus algorithms and combinatorial properties on
palindromic structures have been heavily studied (e.g., see [6,9,13,16,17,19,20]
and references therein). In this paper, we treat a notion of palindromic structures
called minimal unique palindromic substring (MUPS ) that is introduced in [14].
A palindromic substring T [i..j] of a string T is called a MUPS of T if T [i..j]
occurs exactly once in T and T [i+1..j−1] occurs at least twice in T . MUPSs are
utilized for solving the shortest unique palindromic substring (SUPS ) problem
proposed by Inoue et al. [14], which is motivated by an application in molecular
biology. They showed that there are no more than n MUPSs in any length-n
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string, and proposed an O(n)-time algorithm to compute all MUPSs of a given
string of length n over an integer alphabet of size nO(1). After that, Watan-
abe et al. [23] considered the problem of computing MUPSs in an run-length
encoded (RLE ) string. They showed that there are no more than m MUPSs in
a string whose RLE size is m. Also, they proposed an O(m log σR)-time and
O(m)-space algorithm to compute all MUPSs of a string given in RLE, where
σR is the number of distinct single-character runs in the RLE string. Recently,
Mieno et al. [18] considered the problems of computing palindromic structures
in the sliding window model. They showed that the set of MUPSs in a sliding
window can be maintained in a total of O(n log σW ) time and O(D) space while
a window of size D shifts over a string of length n from the left-end to the right-
end, where σW is the maximum number of distinct characters in the windows.
This result can be rephrased as follows: The set of MUPSs in a string of length
D can be updated in amortized O(log σW ) time using O(D) space after deleting
the first character or inserting a character to the right-end.

To the best of our knowledge, there is no efficient algorithm for updating
the set of MUPSs after editing a character at any position so far. Now, we
consider the problem of updating the set of MUPSs in a string after substituting
a character at any position. Formally, we tackle the following problem: Given a
string T of length n over an integer alphabet of size nO(1) to preprocess, and
then given a query of single-character substitution. Afterwards, we return the set
of MUPSs of the edited string. In this paper, we first show that the number d of
changes of MUPSs after a single-character substitution is O(log n). In addition,
we present an algorithm that uses O(n) time and space for preprocessing, and
updates the set of MUPSs in O(log σ+(log log n)2 +d) ⊂ O(log n) time. We also
propose a variant of the algorithm, which runs in optimal O(1 + d) time when
the alphabet size is constant.

Related Work. There are some results for the problem of computing string
regularities, including palindromes, on dynamic strings [2,3,5,8]. In this work,
we consider the problem of computing MUPSs after a single edit operation as
a first step toward a fully dynamic setting. This line of research was initiated
by Amir et al. [4], who tackled the problem of computing the longest common
factor after one edit. After that, other notions of string regularities are treated
in a similar setting [1,12,22]. In particular, regarding palindromic structures,
Funakoshi et al. [12] proposed algorithms for computing the longest palindromic
substring after single-character or block-wise edit operations.

2 Preliminaries

2.1 Notations

Strings. Let Σ be an alphabet of size σ. An element of Σ is called a character.
An element of Σ∗ is called a string. The length of a string T is denoted by |T |.
The empty string ε is the string of length 0. For a string T = xyz, then x, y, and
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z are called a prefix, substring, and suffix of T , respectively. They are called a
proper prefix, proper substring, proper suffix of T if x �= T , y �= T , and z �= T ,
respectively. For each 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T . For each
1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T starting at position i and
ending at position j. For convenience, let T [i′..j′] = ε for any i′ > j′. A positive
integer p is said to be a period of a string T if T [i] = T [i+p] for all 1 ≤ i ≤ |T |−p.
For strings X and Y , let lcp(X,Y ) denotes the length of the longest common
prefix (in short, lcp) of X and Y , i.e., lcp(X,Y ) = max{� | X[1..�] = Y [1..�]}.
For a string T and two integers 1 ≤ i ≤ j ≤ |T |, let lceT (i, j) denotes the length
of the longest common extension (in short, lce) of i and j in T , i.e., lceT (i, j) =
lcp(T [i..|T |], T [j..|T |]). For non-empty strings T and w, begT (w) denotes the set
of beginning positions of occurrences of w in T . Also, for a text position i in
T , inbegT,i(w) denotes the set of beginning positions of occurrences of w in T
where each occurrence covers position i. Namely, begT (w) = {b | T [b..e] = w}
and inbegT,i(w) = {b | T [b..e] = w and i ∈ [b, e]}. Further, let xbegT,i(w) =
begT (w)\inbegT,i(w). For convenience, |begT (ε)| = |inbegT,i(ε)| = |xbegT,i(ε)| =
|T | + 1 for any T and i. We say that w is unique in T if |begT (w)| = 1, and that
w is repeating in T if |begT (w)| ≥ 2. Note that the empty string is repeating in
any other string. Since every unique substring u = T [i..j] of T occurs exactly
once in T , we will sometimes identify u with its corresponding interval [i, j]. In
what follows, we consider an arbitrarily fixed string T of length n ≥ 1 over an
alphabet Σ of size σ = nO(1).

Palindromes. For a string w, wR denotes the reversed string of w. A string
w is called a palindrome if w = wR. A palindrome w is called an even-
palindrome (resp. odd-palindrome) if its length is even (resp. odd). For a palin-
drome w, its length-�|w|/2� prefix (resp. length-�|w|/2� suffix) is called the left
arm (resp. right arm) of w, and is denoted by larmw (resp. rarmw). Also, we
call Larmw = larmw · sw (resp. Rarmw = sw · rarmw) the extended left arm (resp.
extended right arm) of w where sw is the character at the center of w if w is
an odd-palindrome, and sw is empty otherwise. Note that when w is an even-
palindrome, Rarmw = rarmw and Larmw = larmw. For a non-empty palindromic
substring w = T [i..j] of a string T , the center of w is i+j

2 and is denoted by
center(w). A non-empty palindromic substring T [i..j] of a string T is said to be
maximal if i = 1, j = n, or T [i − 1] �= T [j + 1]. For a non-empty palindromic
substring w = T [i..j] of a string T and a non-negative integer �, v = T [i−�..j+�]
is said to be an extension of w if 1 ≤ i − � ≤ j + � ≤ n and v is a palindrome.
Also, T [i + �..j − �] is said to be a shrink of w. A non-empty string w is called
a 1-mismatch palindrome if there is exactly one mismatched position between
w[1..�|w|/2�] and w[	|w|/2
+1..|w|]R. Informally, a 1-mismatch palindrome is a
pseudo palindrome with a mismatch position between their arms. As in the case
of palindromes, a 1-mismatch palindromic substring T [i..j] of a string T is said
to be maximal if i = 1, j = n or T [i − 1] �= T [j + 1].

A palindromic substring T [i..j] of a string T is called a minimal unique
palindromic substring (MUPS ) of T if T [i..j] is unique in T and T [i + 1..j − 1]
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is repeating in T . We denote by MUPS(T ) the set of intervals corresponding to
MUPSs of a string T . A MUPS cannot be a substring of another palindrome
with a different center. Also, it is known that the number of MUPSs of T is at
most n, and set MUPS(T ) can be computed in O(n) time for a given string T
over an integer alphabet [14]. The following lemma states that the total sum of
occurrences of strings which are extended arms of MUPSs is O(n):

Lemma 1. The total sum of occurrences of the extended right arms of all
MUPSs in a string T is at most 2n. Similarly, the total sum of occurrences
of the extended left arms of all MUPSs in T is at most 2n.

Proof. It suffices to prove the former statement for the extended right arms since
the latter can be proved symmetrically. Let w1 and w2 be distinct odd-length
MUPSs of T with |w1| ≤ |w2|. For the sake of contradiction, we assume that
T [j..j + |Rarmw1 | − 1] = Rarmw1 and T [j..j + |Rarmw2 | − 1] = Rarmw2 for some
position j in T . Namely, Rarmw1 is a prefix of Rarmw2 . Then, larmw1 is a suffix
of larmw2 by palindromic symmetry. This means that w1 is a substring of w2.
This contradicts that w2 is a MUPS of T . Thus, all occurrences of the extended
right arms of all odd-length MUPSs are different, i.e., the total number of the
occurrences is at most n. Similarly, the total number of all occurrences of the
right arms of all even-length MUPSs is also at most n. ��

2.2 Tools

This subsection lists some data structures used in our algorithm. Our model of
computation is a standard word RAM model with machine word size Ω(log n).

Suffix Trees. The suffix tree of T is the compacted trie for all suffixes of
T [24]. We denote by STree(T ) the suffix tree of T . If a given string T is over an
integer alphabet of size nO(1), STree(T ) can be constructed in O(n) time [10].
Not all substrings of T correspond to nodes in STree(T ). However, the loci of
such substrings can be made explicit in linear time:

Lemma 2 (Corollary 8.1 in [15]). Given m substrings of T , represented by
intervals in T , we can compute the locus of each substring in STree(T ) in O(n+
m) total time. Moreover, the loci of all the substrings in STree(T ) can be made
explicit in O(n + m) extra time.

Also, this lemma implies the following corollary:

Corollary 1. Given m substrings of T , represented by intervals in T , we can
sort them in O(n + m) time.

LCE Queries. An LCE query on a string T is, given two indices i, j of T , to
compute lceT (i, j). Using STree(T$) enhanced with a lowest common ancestor
data structure, we can answer any LCE query on T in constant time where $ is
a special character with $ �∈ Σ. In the same way, we can compute the lcp value
between any two suffixes of T or TR in constant time by using STree(T$TR#)
where # is another special character with # �∈ Σ.
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Eertrees. The eertree (a.k.a. palindromic tree) of T is a pair of rooted edge-
labeled trees Todd and Teven representing all distinct palindromes in T [19]. The
roots of Todd and Teven represent ε. Each non-root node of Todd (resp. Teven)
represents an odd-palindrome (resp. even-palindrome) which occurs in T . Let
pal(v) be the palindrome represented by a node v. For the root rodd of Todd,
there is an edge (rodd, u) labeled by a ∈ Σ if there is a node u with pal(u) = a.
For any node v in the eertree except for rodd, there is an edge (v, w) labeled by
a ∈ Σ if there is a node w with pal(w) = a·pal(v)·a. We denote by EERTREE(T )
the eertree of T . We will sometimes identify a node u in EERTREE(T ) with its
corresponding palindrome pal(u). Also, the path from a node u to a node v in
EERTREE(T ) is denoted by pal(u) � pal(v). If a given string T is over an integer
alphabet of size nO(1), EERTREE(T ) can be constructed in O(n) time [19].

Path-Tree LCE Queries. A path-tree LCE query is a generalized LCE query
on a rooted edge-labeled tree T [7]: Given three nodes u, v, and w in T where u
is an ancestor of v, to compute the lcp between the path-string from u to v and
any path-string from w to a descendant leaf. The following result is known:

Theorem 1 (Theorem 2 of [7]). For a tree T with N nodes, a data structure
of size O(N) can be constructed in O(N) time to answer any pathtree LCE query
in O((log log N)2) time.

We will use later path-tree LCE queries on the eertree of the input string.

Stabbing Queries. Let I be a set of n intervals, each of which is a subinterval
of the universe U = [1, O(n)]. An interval stabbing query on I is, given a query
point q ∈ U , to report all intervals I ∈ I such that I is stabbed by q, i.e., q ∈ I.
We can answer such a query in O(1 + k) time after O(n)-time preprocessing,
where k is the number of intervals to report [21].

3 Changes of MUPSs After Single Character Substitution

In the following, we fix the original string T of length n, the text position i in T
to be substituted, and the string T ′ after the substitution. Namely, T [i] �= T ′[i]
and T [j] = T ′[j] for each j with 1 ≤ j ≤ n and j �= i. This section analyzes the
changes of the set of MUPSs when T [i] is substituted by T ′[i]. For palindromes
covering editing position i, Lemma 3 holds. All the proofs omitted due to lack
of space can be found in a full version [11].

Lemma 3. For a palindrome w, if inbegT,i(w) �= ∅, then inbegT ′,i(w) = ∅.

For a position i, let Wi be the set of palindromes w such that |inbegT,i(w)| ≥ 1,
|xbegT,i(w)| = 1, and w is minimal, i.e., |inbegT,i(v)| = 0 or |xbegT,i(v)| ≥ 2 where
v = w[2..|w| − 1]. This set Wi is useful for analyzing the number of changes of
MUPSs in the proof of Theorem 2.
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Lemma 4. For any position i in T , |Wi| ∈ O(log n).

Lemma 5. For each position i in T , the number of MUPSs covering i is
O(log n).

By using Lemmas 3, 4, and 5, we show the following theorem:

Theorem 2. |MUPS(T ) � MUPS(T ′)| ∈ O(log n) always holds.

Proof. In the following, we consider the number of MUPSs to be removed.
First, at most one interval can be a MUPS of T centered at i. Also, any other

interval in MUPS(T ) covering position i cannot be an element of MUPS(T ′) since
its corresponding string in T ′ is no longer a palindrome. By Lemma 5, the number
of such MUPSs is O(log n).

Next, let us consider MUPSs not covering position i. When a MUPS w of T
not covering i is no longer a MUPS of T ′, then either (A) w is repeating in T ′

or (B) w is unique in T ′ but is not minimal.
Let w1 be a MUPS of the case (A). Since w1 does not cover i, is unique in

T , and is repeating in T ′, |inbegT ′,i(w1)| ≥ 1 and |xbegT ′,i(w1)| = 1. Let v1 be
the minimal shrink of w1 such that |inbegT ′,i(v1)| ≥ 1 and |xbegT ′,i(v1)| = 1.
Contrary, w1 is the only MUPS of the case (A) which is an extension of v1 since
|xbegT ′,i(v1)| = 1. Namely, there is a one-to-one relation between w1 and v1. By
Lemma 4, the number of palindromes that satisfy the above conditions of v1 is
O(log n). Thus, the number of MUPSs of the case (A) is also O(log n).

Let w2 be a MUPS of the case (B). In T ′, w2 covers some MUPS as a proper
substring since it is not a MUPS and is unique in T ′. Let v2 be the MUPS of
T ′, which is a proper substring of w2. While v2 is unique in T ′, it is repeating
in T since w2 is a MUPS of T . Namely, |inbegT,i(v2)| ≥ 1 and |xbegT,i(v2)| = 1
hold. Also, v2 is actually minimal: Let u2 = v2[2..|v2| − 1]. If we assume that
|inbegT,i(u2)| ≥ 1 and |xbegT,i(u2)| = 1, then u2 becomes unique in T ′, and
this contradicts that v2 is a MUPS of T ′. Furthermore, similar to the above
discussions, there is a one-to-one relation between w2 and v2. Again by Lemma 4,
the number of palindromes that satisfy the above conditions of v2 is O(log n).
Thus, the number of MUPSs of the case (B) is also O(log n).

Therefore, |MUPS(T )\MUPS(T ′)| ∈ O(log n) holds. Also, |MUPS(T ′)\MUPS
(T )| ∈ O(log n) holds by symmetry.

To summarize, |MUPS(T )�MUPS(T ′)|= |MUPS(T )\MUPS(T ′)∪MUPS(T ′)\
MUPS(T )| = |MUPS(T )\MUPS(T ′)| + |MUPS(T ′)\MUPS(T )| ∈ O(log n).

4 Algorithms for Updating Set of MUPSs

In this section, we propose an algorithm for updating the set of MUPSs when
a single-character in the original string is substituted by another character. We
denote by sub(i, s) the substitution query, that is, to substitute T [i] by another
character s. First, we define a sub-problem that will be used in our algorithm:
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Problem 1. Given a substitution query sub(i, s) on T , compute the longest odd-
palindromic substring v of T ′ such that center(v) = i and v occurs in T if
it exists. Also, if such v exists, determine whether v is unique in T or not.
Furthermore, if v is unique in T , compute the shrink of v that is a MUPS of T .

We show the following lemma:

Lemma 6. After O(n)-time preprocessing, we can answer Problem 1 in
O(δ(n, σ)+ (log log n)2) time where δ(n, σ) denote the time to retrieve any child
of the root of the odd-tree of EERTREE(T ).

When σ ∈ O(n), we can easily achieve δ(n, σ) ∈ O(1) with linear space, by using
an array of size σ. Otherwise, we achieve δ(n, σ) ∈ O(log σ) for a general ordered
alphabet by using a binary search tree.

In the rest of this paper, we propose an algorithm to compute the changes
in MUPSs after a single-character substitution. Our strategy is basically to pre-
compute changes in MUPSs for some queries as much as possible within linear
time. The other changes will be detected on the fly by using some data structures.

4.1 Computing MUPSs to Be Removed

We categorize MUPSs to be removed into three types as follows:

R1) A MUPS of T that covers i.
R2) A MUPS of T that does not cover i and is repeating in T ′.
R3) A MUPS of T that does not cover i and is unique but not minimal in T ′.

In the following, we describe how to compute all MUPSs for each type separately.

Type R1. All MUPSs covering editing position i are always removed. Thus,
we can detect them in O(1+αrem) time after a simple linear time preprocessing
(e.g., using stabbing queries), where αrem is the number of MUPSs of Type R1.

Type R2. Before describing our algorithm, we give a few observations about
MUPSs of Type R2. Let w be a MUPS of Type R2. Since w is unique in T and
is repeating in T ′, |inbegT ′,i(w)| ≥ 1. When w occurs in T ′ centered at editing
position i, we retrieve such w by applying Problem 1. If it is not the case, we
can utilize the following observations: Consider the starting position j of an
occurrence of w in T ′ such that T ′[j..j + |w| − 1] = w and i ∈ [j, j + |w| − 1].
If position i is covered in the right arm of T ′[j..j + |w| − 1], then Larmw occurs
at position j in both T and T ′. Further, the Hamming distance between T [j +
|Larmw|..j + |w| − 1] and w[|Larmw| + 1..|w|] = rarmw equals 1. Namely, for each
occurrence at position k of string Larmw in T , w can occur at k in T ′ only if the
Hamming distance between T [k + |Larmw|..k + |w| − 1] and w[|Larmw| + 1..|w|]
equals 1. In other words, if the Hamming distance is greater than 1, w cannot
occur at k in T ′.
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In the preprocessing phase, we first apply the O(n)-time preprocessing of
Lemma 6 for Problem 1. Next, we initialize the set AR2 = ∅. The set AR2

will become an index of MUPSs of Type R2 when the preprocessing is finished.
For each MUPS w = T [b..e] of T , we process the followings: For the beginning
position j �= b of each occurrence of Larmw in T , we first compute the lcp
value between T [j + |Larmw|..|T |]$ and rarmw with allowing one mismatch. Note
that T [j + |Larmw|..|T |]$ must have at least one mismatch with rarmw, since
T [j..j + |Larmw| − 1] = Larmw, j �= b, and T [b..e] is unique in T . If there are
two mismatch positions between them, do nothing for this occurrence since w
cannot occur at j after any substitution. We can check this by querying LCE at
most twice. Otherwise, let q = j + |Larmw| − 1 + d be the mismatched position
in T . When the q-th character of T is substituted by the character rarmw[d],
w = T [b..e] occurs at j �= b, i.e., it is a MUPS of Type R2. So we add MUPS
w = T [b..e] into AR2 with the pair of index and character (q, rarmw[d]) as the
key. In addition, symmetrically, we update AR2 for each occurrence of Rarmw in
T . After finishing the above processes for every MUPS of T , we sort the elements
of AR2 by radix sort on the keys. If there are multiple identical elements with
the same key, we unify them into a single element. Also, if there are multiple
elements with the same key, we store them in a linear list. By Lemma 1, the
total number of occurrences of arms of MUPSs is O(n), and hence, the total
preprocessing time is O(n).

Given a query sub(i, s), we query Problem 1 with the same pair (i, s) as the
input. Then, we complete checking whether there exists a MUPS of Type R2
centered at i. Next, consider the existence of the remaining MUPSs of Type
R2. First, an element in AR2 corresponding to the key (i, s) can be detected
in O(log σi) time by using random access on indices and binary search on
characters, where σi is the number of characters si such that the key (i, si)
exists in AR2. After that, we can enumerate all the other elements with the
key by scanning the corresponding linear list. Thus, the total query time is
O(δ(n, σ) + (log log n)2 + log σi + βrem) where βrem is the number of MUPSs of
Type R2. Finally, we show σi ∈ O(min{σ, log n}). Let us consider palindromes
in T ′ whose right arm covers position i. Those whose left arms cover i can be
treated similarly. Any palindrome in T ′ whose right arm covers i is an exten-
sion of some maximal palindrome in T ending at i − 1. It is known that the
number of possible characters immediately preceding such maximal palindromes
is O(log n) [12]. Therefore, σi ∈ O(log n) holds, and thus, the query time is
O(δ(n, σ) + (log log n)2 + βrem).

Type R3. Let w = T [b..e] be a MUPS of T and let v = T [b + 1..e − 1]. Further
let T [bl1..el1] and T [br1..er1] be the leftmost and the rightmost occurrence of v in
T except for T [b+1..e−1]. We define interval ρw = {k | k �∈ [b+1, e−1] and k ∈
[br1, el1]}. Note that ρw can be empty. If the editing position i is in ρw, then the
only occurrence of v in T ′ is T ′[b + 1..e − 1], i.e., v is unique in T ′. Thus, w is a
removed MUPS of Type R3. Contrary, if i �∈ [b, e] and i �∈ ρw, there are at least
two occurrences of v in T ′, i.e., w cannot be a MUPS of Type R3.
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In the preprocessing phase, we first compute the set of intervals R = {ρw |
w is a MUPS of T}. R can be computed by traversing over the suffix tree of T
enhanced with additional explicit nodes, each of which represents a substring
T [b + 1..e − 1] for each MUPS T [b..e] of T . Also, we apply the preprocessing for
stabbing queries to R. The total time for preprocessing is O(n).

Given a query sub(i, s), compute all intervals in R stabbed by position i by
answering a stabbing query. They correspond to MUPSs of Type R3. The query
time is O(1 + γrem), where γrem is the number of MUPSs of Type R3.

To summarize, we can compute all MUPSs to be removed after a single-
character substitution in O(δ(n, σ) + (log log n)2 + αrem + βrem + γrem) time.

4.2 Computing MUPSs to Be Added

Next, we propose an algorithm to detect MUPSs to be added after a substitution.
As in Sect. 4.1, we categorize MUPSs to be added into three types:

A1) A MUPS of T ′ that covers i.
A2) A MUPS of T ′ that does not cover i and is repeating in T .
A3) A MUPS of T ′ that does not cover i and is unique but not minimal in T .

Furthermore, we categorize MUPSs of Type A1 into two sub-types:

A1-1) A MUPS of T ′ that covers position i in its arm.
A1-2) A MUPS of T ′ centered at editing position i.

Type A1-1. A MUPS of Type A1-1 is a shrink of some maximal palindrome in
T ′ covering editing position i in its arm. Further, such a maximal palindrome in
T ′ corresponds to some 1-mismatch maximal palindrome in T , which covers i as
a mismatch position. Thus, we preprocess for arms of each 1-mismatch maximal
palindrome in T . For MUPSs of Type A1, we utilize the following observation:

Observation 1. For any palindrome v covering position i in T ′, v is unique in
T ′ if and only if |inbegT ′,i(v)| = 1 and |xbegT ′,i(v)| = 0.

In the preprocessing phase, we first consider sorting extended arms of 1-
mismatch maximal palindromes in T . Let EA be the multiset of strings that
consists of the extended right arms and the reverse of the extended left arms
of all 1-mismatch maximal palindromes in T . Note that each string in EA can
be represented in constant space since it is a substring of T or TR. Let MA′ be
a lexicographically sorted array of all elements in EA. Here, the order between
the same strings can be arbitrary. Also, for each string in EA, we consider a
quadruple of the form (par , pos , chr , rnk) where par ∈ {odd, even} represents
the parity of the length of the corresponded 1-mismatch maximal palindrome,
pos is the mismatched position on the opposite arm, chr is the mismatched
character on the extended arm, and rnk is the rank of the extended arm in MA′.
Let MA be a radix sorted array of these quadruples. It can be seen that for each
triple (p, i, s) of parity p, mismatched position i, and mismatched character s, all
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elements corresponding to the triple are stored continuously in MA. We denote
by MAp,i,s the subarray of MA consists of such elements. In other words, MAp,i,s

is a sorted array of extended arms of maximal palindromes of parity p covering
position i in T ′ when the i-th character of T is substituted by s.

Now let us focus on odd-palindromes. Even-palindromes can be treated simi-
larly. We construct the suffix tree of T and make the loci of strings in EA explicit.
We also make the loci of the extended right arm of every odd-palindrome in
T explicit. Simultaneously, we mark the nodes corresponding to the extended
right arms and apply the preprocessing for the nearest marked ancestor (NMA)
queries to the marked tree. We denote the tree by ST odd . Next, we initialize
the set AA1,1 = ∅. The set AA1,1 will become an index of MUPSs of Type A1-1
when the preprocessing is finished. For each non-empty MAodd,i,s and for each
string w in MAodd,i,s, we do the followings: Let xw be the odd-palindrome whose
extended right arm is w when T [i] is substituted by s. Let u and v are the pre-
ceding and the succeeding string of w in MAodd,i,s (if such palindromes do not
exist, they are empty). Further let �w = max{lcp(u,w), lcp(w, v)}. When T [i] is
substituted by s, any shrink y of xw such that y covers position i and the arm-
length of y is at least �w has only one occurrence which covers position i in T ′,
i.e.,|inbegT ′,i(y)| = 1. Next, we query the NMA for the node corresponding to w
on ST odd . Let �′

w be the length of the extended right arm obtained by the NMA
query. When T [i] is substituted by s, any shrink y′ of xw such that the arm-
length of y′ is at least �′

w, has no occurrences which do not cover position i in T ′,
i.e., |xbegT ′,i(y′)| = 0. Thus, by Observation 1, the shrink y� of xw of arm-length
max{�w, �′

w} is a MUPS of Type A1-1 for the query sub(i, s), if such y� exists. In
such a case, we store the information about y� (i.e., its center and radius) into
AA1,1 using (odd, i, s) as the key. After finishing the above preprocessing for all
strings in MA, we sort all elements in AA1,1 by their keys.

Since each element in EA is a substring of T$TR#, they can be sorted in
O(n + |EA|) = O(n) time by Corollary 1. Namely, MA′ can be computed in
linear time, and thus MA too. By Lemma 2, tree ST odd can be constructed in
O(n) time. Also, we can answer each NMA query and LCP query in constant
time after O(n) time preprocessing. Hence, the total preprocessing time is O(n).

Given a query sub(i, s), we compute all MUPSs of Type A1-1 by searching
for elements in AA1,1 with keys (odd, i, s) and (even, i, s). An element with each
of the keys can be found in O(log min{σ, log n}) time. Thus, all MUPSs of Type
A1-1 can be computed in O(log min{σ, log n} + α′

add) time where α′
add is the

number of MUPSs of Type A1-1.

Type A1-2. The MUPS of Type A1-2 is a shrink of the maximal palindrome
in T ′ centered at i. By definition, there is at most one MUPS of Type A1-2.

In the preprocessing phase, we again construct MA and related data struc-
tures as in Type A1-1. Further, we apply the O(n)-time preprocessing of
Lemma 6 for Problem 1. The total preprocessing time is O(n).

Given substitution query sub(i, s), we compute the MUPS centered at i in
T ′ as follows (if it exists): It is clear that T ′[i..i] = s is the MUPS of Type
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A1-2 if s is a unique character in T ′. In what follows, we consider the other
case. Let w be the maximal palindrome centered at i in T ′. First, we compute
the maximum lcp value �w between Rarmw and extended arms in MAodd,i,s.
Then, any shrink y of w, such that the arm-length of y is at least �w, has no
occurrences which cover position i in T ′, i.e., |inbegT ′,i(y)| = 1. We can compute
�w in O(log min{σ, log n}) time, combining LCE queries and binary search. Note
that rarmw occurs at i + 1 in both T and T ′ while Rarmw might be absent from
T . Next we compute the arm-length �′

w of the shortest palindrome v such that
center(v) = i and |xbegT ′,i(v)| = 0, i.e., v is absent from T . Since the shrink
ṽ of w of arm-length �′

w − 1 is the longest palindrome such that center(ṽ) = i
and ṽ occurs in T , we can reduce the problem of computing �′

w to Problem 1.
Thus, we can compute �′

w in O(δ(n, σ) + (log log n)2) time by Lemma 6. Similar
to the case of Type A1-1, by Observation 1, the shrink y� of xw of arm-length
max{�w, �′

w} is a MUPS of Type A1-2, if such y� exists. Therefore, the MUPS
of Type A1-2 can be computed in O(δ(n, σ) + (log log n)2) time.

Type A2. A MUPS of Type A2 occurs at least twice in T , and there is only one
occurrence not covering editing position i. For a palindrome w repeating in T ,
let T [bl1..el1] and T [bl2..el2] be the leftmost and the second leftmost occurrence
of w in T . Further, let T [br1..er1] and T [br2..er2] be the rightmost and the second
rightmost occurrence of w in T . We define interval ρw as the intersection of all
occurrences of w except for the leftmost one, i.e., ρw = {k | k �∈ [bl1, el1] and k ∈
[br1, el2]}. Similarly, we define interval ρ̃w as the intersection of all occurrences
of w except for the rightmost one. Note that ρw and ρ̃w can be empty. Then, w
is unique after the i-th character is edited if and only if i ∈ ρw ∪ ρ̃w. Thus, any
MUPS of Type A2 is a palindrome corresponding to some interval in ρw ∪ ρ̃w

stabbed by i. To avoid accessing intervals that do not correspond to the MUPSs
to be added, we decompose each ρw. It is easy to see that for any shrink v of w,
ρv ⊂ ρw holds. Also, if T [i], with i ∈ ρv, is edited, then both w and v become
unique in T ′, i.e., w cannot be a MUPS of T ′. For each unique palindrome
w in T , we decompose ρw into at most three intervals ρw = ρ1wρw′ρ2w where
w′ = w[2..|w| − 1]. Similarly, we decompose ρ̃w into ρ̃w = ρ̃1wρ̃w′ ρ̃2w. Then, w is
a MUPS of Type A2 if and only if i ∈ ρ1w ∪ ρ2w ∪ ρ̃1w ∪ ρ̃2w.

In the preprocessing phase, we first construct the eertree of T and the suffix
tree of T enhanced with additional explicit nodes for all distinct palindromes in
T . Next, we compute at most four (leftmost, second leftmost, rightmost, second
rightmost) occurrences of each palindrome in T by traversing the enhanced suffix
tree. At the same time, we compute ρw and ρ̃w for each palindrome in w. Next,
we sequentially access distinct palindromes by traversing EERTREE(T ) in a pre-
order manner. Then, for each palindrome w, we decompose ρw and ρ̃w based on
the rules as mentioned above. Finally, we apply the preprocessing for stabbing
queries to the O(n) intervals obtained. The total preprocessing time is O(n).

Given a query sub(i, s), we compute all intervals stabbed by position i. The
palindromes corresponding to the intervals are MUPSs of Type A2. Hence, the
query time is O(1 + βadd), where βadd is the number of MUPSs of Type A2.
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Type A3. A MUPS of Type A3 is unique but not minimal in T . Such a unique
palindrome u in T contains a MUPS w �= u of T as a shrink. Since u is a MUPS
of T ′, w is repeating in T ′, i.e., w is a removed MUPS of Type R2. Contrary,
consider a MUPS w of Type R2, which is repeating in T ′. Then, the shortest
unique extension of w in T ′ is an added MUPS of Type A3, if it exists. The
preprocessing for Type A3 is almost the same as for Type R2. We store a bit
more information for Type A3 in addition to the information in AR2.

In the preprocessing phase, we first apply the O(n)-time preprocessing of
Lemma 6 for Problem 1. Next, we initialize the set AA3 = ∅. This set AA3

will become an index of MUPSs of Type A3 when the preprocessing is finished.
For each MUPS w = T [b..e] of T , we process the followings: For the beginning
position j �= b of each occurrence of Larmw in T , we compute the lcp value �j

between T [j + |Larmw|..|T |]$ and T [	c
..|T |]$ with allowing one mismatch where
c is the center of w in T . If �j is smaller than rarmw, then we do nothing for
this occurrence since w cannot occur at j after any single-character substitution.
Otherwise, let q = j+|Larmw|−1+d be the first mismatched position in T . When
the q-th character of T is substituted by the character rarmw[d], w = T [b..e]
occurs at j �= b, i.e., it is a MUPS of Type R2. Unlike for Type R2, we add
the pair of MUPS and (1-mismatched) lcp value (T [b..e], �j) into AA3 with the
pair of index and character (q, rarmw[d]) as the key. In addition, symmetrically,
we update AA3 for each occurrence of Rarmw in T . After finishing the above
processes for every MUPS of T , we then sort the elements of AA3 by radix sort
on the keys. If there are multiple identical elements with the same key, we unify
them into a single element. Also, if there are multiple elements with the same
key, we store them in a linear list. By Lemma 1, the total number of occurrences
of arms of MUPSs is O(n), and hence, the total preprocessing time is O(n).

Given a query sub(i, s), we query Problem 1 with the same pair (i, s) as the
input. Then, we complete checking whether there exists a MUPS of Type A3
centered at i. For the remaining MUPSs of Type 3, we retrieve the MUPSs of
Type A3 using the index AA3 as in the query algorithm for Type R2. This can be
done in O(log min{σ, log n} + γadd) time where γadd is the number of MUPSs of
Type A3. Therefore, the total query time of Type A3 is O(δ(n, σ)+(log log n)2+
γadd).

To summarize, we obtain our main theorem:

Theorem 3. After O(n)-time preprocessing, we can compute the set of MUPSs
after a single-character substitution in O(δ(n, σ) + (log log n)2 + d) ⊂ O(log n)
time where d is the number of changes of MUPSs.

With a little modification, we obtain the following:

Corollary 2. If σ ∈ O(1), after O(n)-time preprocessing, we can compute the
set of MUPSs after a single-character substitution in O(1 + d) time.
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Abstract. We introduce and study a new combinatorial problem based
on the famous Minimum Common String Partition (MCSP) problem,
which we call Permutation-constrained Common String Partition (PCSP
for short). In PCSP, we are given two sequences/genomes s and t with
the same length and a permutation π on [k], the question is to decide
whether it is possible to decompose s and t into k blocks that conform
with the permutation π. The main result of this paper is that if s and t
are both d-occurrence (i.e., each letter/gene appears at most d times in
s and t), then PCSP is FPT. We also study a variant where the input
specifies whether each matched pair of block needs to be preserved as is,
or reversed. With this result on PCSP, we show that a series of genome
rearrangement problems are FPT as long as the input genomes are d-
occurrence.

Keywords: Genome rearrangement · Permutation-constrained
common string partition · Minimum common string partition · FPT

1 Introduction

Computing the distance between genomes is a fundamental problem in biology;
in fact, the reversal and the corresponding breakpoint concept on sections of
some chromosome (when a whole genome was not obtainable) were studied as
early as in 1926 by Sturtevant and Dobzhansky [20,21]. The signed reversals
were confirmed in radish genome in 1988 [18]. Since then, a lot of rearrangement
operations were studied, for instance, reversals, transpositions and block inter-
changes, etc. (Here we focus more on operations on unichromosomal genomes—
singleton genomes, each being a sequence, we skip the details for genomic oper-
ations applied on multichromosomal genomes, like translocation and the more
general double-cut-and-join operations).

Let us first describe some popular string operations. A transposition takes
two adjacent substrings and swaps them. A block-interchange takes two non-
overlapping substrings and swaps them. The recent p-cut partitions a string
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into p substrings and permutes them in any way [2]. A flip switches the sign of
each symbol of a chosen substring. A reversal first applies a flip to a substring,
and then reverses the order of the characters. An unsigned reversal only reverses
the order of the characters of a chosen substring. If P is a set of string operations,
dP(s, t) is the minimum number of operations from P to apply to s and transform
it into t. We also call dP(s, t) the corresponding distance under operations in P.

Most of these problems are NP-hard under different circumstances. The
transposition distance problem [4] and the unsigned reversal distance problem
[6] are NP-hard even if s and t are permutations (i.e., 1-occurrence strings). The
block-interchange distance problem is polynomially solvable for permutations
[8]; however, when s and t are sequences over a fixed-size alphabet the problem
becomes NP-hard [9]. Other types of distances that remain to be incorporated
into our framework have recently been studied, including the NP-hard tandem
duplication distance [16] and the copy-number distance [15,19].

In many practical applications, the value � = dP(s, t) is small, and it
makes sense to consider the FPT (fixed-parameter tractable) complexity of these
problems—using parameter �. When s and t are permutations, both the trans-
position distance problem and the unsigned reversal distance problem are FPT
since each such operation reduces at most three breakpoints [17]. When s and t
are d-occurrence sequences (i.e., each letter appears at most d times in s and t),
whether these problems are FPT is unknown, to the best of our knowledge. The
d-occurrence variant is of practical interest in bioinformatics, since in genome
comparison, repeated occurrences represent duplicated genes. Duplication is a
rare event and the number of duplicates is usually less than a dozen. For instance,
plants have undergone up to three rounds of whole genome duplications, result-
ing in a number of duplicates bounded by eight (see e.g. [22]).

Using a general framework first stated by Mahajan et al. [17], if � operations
can be applied on s to obtain t, then we can partition s and t into O(�) sub-
strings, hereafter called blocks, such that the blocks of t are a permutation of the
blocks of s. It turns out that the problem of decomposing s and t (possibly with
letter duplications) into a minimum set of common blocks was studied in another
context called ortholog assignment [7]. The problem was formally coined as Min-
imum Common String Partition (MCSP), which received quite some algorithmic
attention due to its NP-hardness status [10,13]. The best known approximation
(to minimize the number of blocks) has a factor of O(log n) [12]. For these rea-
sons, the fixed-parameter tractability of MCSP was considered in 2008 [11]. For
d-occurrence strings, the problem was first shown to be FPT in [3,14]. In 2014,
it was shown that MCSP parameterized by the solution size � is FPT [5].

Although MCSP has been used to approximate various string distances, the
applications of MCSP to compute exact distances is not always clear. When
trying to solve, for instance, the transposition distance problem using MCSP,
different string partitions with the same number of blocks lead to different trans-
position distances. It would seem necessary to enumerate all MCSP solutions to
compute our string distances exactly. In fact, we show that restricting an MCSP
instance to find blocks ordered according to a permutation π is sufficient.
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Our Results. In this paper, we thus first establish a precise relationship between
MCSP and string distance problems in terms of fixed-parameter tractability. We
propose a string operation that generalizes all the ones mentioned above, and
then show that if MCSP is FPT when the matched substrings in the partitions
must satisfy a given block permutation, then computing the string distance
under our general operation is FPT. Our new variant of MCSP is called the
Permutation-constrained Common String Partition problem (PCSP for short)
and we show that when s and t are both d-occurrence strings, PCSP is FPT
in � + d, where � is the number of desired blocks in the partition. This result
holds if some matched pairs of blocks should be the reverse of one another or
not, making the result applicable to several combinations of allowed operations.

The recent results by Bulteau, et al. imply that PCSP, parameterized by the
number of blocks � only, is W[1]-hard [1], thereby motivating the need for two
parameters � and d. Our algorithmic framework is based on the work of Bulteau
et al. [3], who showed that MCSP is FPT in d + �. The algorithm of [3] uses
a match graph that depicts which characters could be corresponding in a block
partition. A branching strategy finds exactly one match per block in a solution.
Our approach relies on a similar strategy, but requires non-trivial extensions
to the framework. First, we want to find a block partition that uses a specific
permutation π, and so our branching algorithm must maintain a set of matched
substrings that always agrees with π. Moreover, we cannot assume that we want
to find a solution that minimizes the number of blocks, since none may agree
with π. This prevents us from using structural results on optimal solutions (see
e.g. Lemma 2 in [3]), which in turn requires a deeper case analysis. Finally,
in our general framework, some matched substrings in a solution might be the
reverse of one another. We develop novel machinery in the match graph to ensure
that characters are matched consistently, i.e. that our branching matches all
characters in a common substring in a forward or reverse manner, and not both.

As a consequence of our results, we show that several string distances are
FPT since they reduce to PCSP. The main results that can be derived from this
PCSP reduction is that for strings s and t in which each symbol occurs at most
d times, and with a pair of strings at distance at most k,

– the transposition distance can be computed in time kO(k)d6k+2n.
– the block interchange distance can be computed in time kO(k)d8k+2n.
– the flip, reversal and unsigned reversal distances can be computed in time

kO(k)d4k+2n
– the p-cut distance can be computed in time (pk)O(pk)d2k(p−1)+2n.
– for any subset P of operations among transpositions, block interchanges,

reversals, unsigned reversals or flips, computing dP(s, t) can be done in time
kO(k)d8k+2n,

where n is the length of the input strings. Due to space constraints, all proofs
can be found in the full version of this paper.
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2 Preliminary Notions

For � ∈ N, we denote [�] = {1, . . . , �}. If X = (x1, . . . , xl) is an ordered sequence
of arbitrary elements, we denote set(X) = {xi : i ∈ [l]}. The empty string is
denoted λ. For a string s, we write s[i] for its i-th character. We denote by
s[a, b] the substring of s containing positions a to b, inclusively. If b < a, then
s[a, b] = λ. The concatenation of strings s1 and s2 is denoted s1s2. For clarity,
a string s may be denoted s = 〈a1, a2, . . . , an〉, where each ai is an individual
symbol. We denote a partition of a string s by s1|s2| . . . |s�, where s is equal to
the concatenation s1s2 . . . s�. We allow any of the si’s to be the empty string,
which will have implications later on. Each si substring is called a block of the
partition. Moreover, for each non-empty si, the position of the last character of
si in s is called a breakpoint. Observe that position n is always a breakpoint.

A marker is a specific character of a string s. Each character s[i] is a distinct
marker, even if other positions contain the same symbol. For concreteness, one
may think of a marker as a pair (s, i) where s is the string containing the marker,
and i is its position—although we shall not use this notation. Two markers are
adjacent if they are at consecutive positions in s, in either order. If a marker x
of s is positioned before another marker y of s, we write x ≺ y. For a marker x
and an integer i, we write x + i to denote the marker located i positions to the
right of x, and x−i for the marker i positions to the left of x. For markers x ≺ y,
we write s[x, y] for the substring that starts at x and ends at y, inclusively.

A string function is a function h : Σ∗ → Σ∗ that maps strings to strings. We
require that h(λ) = λ. We say that h is length-preserving if |h(s)| = |s| for any
string s. Unless stated otherwise, we shall assume that h(s) can be computed
in time O(|s|) if h is length-preserving. The identity function is denoted id and
satisfies id(s) = s for all s. Other functions of interest include those that apply
on an alphabet in which each symbol x has a negation −x, and −(−x) = x:

– the flip function negates every symbol of s; flip(〈a1, . . . , an〉) =
〈−a1, . . . ,−an〉;

– the rev function flips and reverses each symbol; rev(〈a1, . . . , an〉) =
〈−an, . . . ,−a1〉;

– the urev function reverses the symbols; urev(〈a1, . . . , an〉) = 〈an, . . . , a1〉.
In the general Permutation-Constrained Common String Partition (PCSP),

we receive strings s and t, an integer �, a permutation π of [�] and string functions
f1, . . . , f�. We must partition s and t in a way that the i-th block of t is equal
to the π(i)-th block of s after applying the fi function to that block.

The Permutation-Constrained Common String Partition (PCSP) problem

Input. Strings s and t of equal length, integer �, permutation π of [�], and a
sequence of string functions F = (f1, f2, . . . , f�).

Question. Does there exist partitions s1| . . . |s� and t1| . . . |t� of s and t, respec-
tively, such that ti = fi(sπ(i)) for each i ∈ [�]?

The � parameter therefore refers to the desired number of substrings in our
partitions. Recall that in the introduction, we used parameter k as the distance
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between two genomes. The exact relationship between � and k depends on the
specific distance of interest, as we shall detail later in the paper. Notice that in
the classical MCSP problem, π and the fi functions are not present (i.e. each fi

is the identity). The incorporation of string functions allow blocks to be affected
by operations such as flips or reversals. As we mentioned, PCSP is W[1]-hard in
parameter � even if each fi is the identity [1].

Generic String Operations

One of our goals is to establish a relationship between PCSP and string distances
based on certain types of operations. We focus on operations that, given a string
s, can (1) partition the string; (2) apply a string function on each block; and (3)
apply a permutation on the blocks from a given list. Note that a similar string
operation was proposed in [2], but without string functions and permutation list.

To define this more precisely, let s be a string, let p be an integer, let
H = (h1, . . . , hp) be a sequence of p string functions, and let Π be a list of
permutations of [p]. We call the triple (p,H,Π) an operation. Given a string s,
applying (p,H,Π) on s modifies the string by applying the following steps:

– partition s into a set of p substrings s1|s2| . . . |sp (some of which may be λ);
– for each i ∈ [p], let s′

i = hi(si);
– choose π ∈ Π and return the string s′ = s′

π(1)s
′
π(2) . . . s′

π(p).

Let P be a set of operations, which can be thought of as a set of moves that
are permitted. If, for each (p′,H,Π) ∈ P, we have p′ ≤ p, then we call P a set
of p-operations. Let us write s

P−→ t if there exists (p,H,Π) ∈ P that can be

applied on s to obtain t. Also write s
P,k−−→ t if there exist strings s2, . . . , sk−1

such that s
P−→ s2

P−→ . . .
P−→ sk−1

P−→ t. Given strings s and t, we denote by

dP(s, t) the minimum value of k that satisfies s
P,k−−→ t.

Relationship with Known String Operations

The (p,H,Π)-operations generalize several well-known string operations. For
instance, a transposition takes two consecutive substrings and exchanges them.
This takes the form s1|s2|s3|s4 → s1|s3|s2|s4, which can be modeled by putting
p = 4,H = {id}4, and Π only allowing to exchange blocks 2 and 3. Simi-
larly, a block interchange swaps two arbitrary substrings. This takes the form
s1|s2|s3|s4|s5 → s1|s4|s3|s2|s5, which takes p = 5,H = {id}5 and Π allowing to
swap blocks 2 and 4. The p-cut defined in [2], which allows cutting into p pieces
and permuting them in any way, can also be modeled similarly.

For examples that do not use the identity function, the reversal operation,
takes the form s1|s2|s3 → s1|rev(s2)|s3, hence p = 3, H = (id, rev, id) and Π
only allowing the identity permutation. A tandem duplication replaces a sub-
string s[a, b] by s[a, b]s[a, b]. We can apply s1|s2|s3 → s1|s2s2|s3, with p = 3 and
h2(s2) = s2s2 (and h1 = h3 = id).
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3 Reduction to PCSP for Simple String Functions

We will show that if the H functions allowed in the operations are “simple”,
computing dP(s, t) reduces to PCSP. We will need the following.

Lemma 1. Let P be a set of p-operations that only use length-preserving string
functions. Then dP(s, t) can be computed in time O(|P|knpkppk) where n = |s|.

This can be proved easily using an algorithm that brute-forces every possible
sequence of k operations. We can now define our notion of simplicity.

Definition 1. A string function f is simple if f is length-preserving and either:

– f(s) = f(s1)f(s2) . . . f(s�) for any string s and partition s1| . . . |s� of s; or
– f(s) = f(s�)f(s�−1) . . . f(s1) for any string s and partition s1| . . . |s� of s;

It is obvious that id, flip, rev and urev are simple, for instance. Also notice
that if s = 〈x1, x2, . . . , xn〉, then f(s) ∈ {〈f(x1), . . . , f(xn)〉, 〈f(xn), . . . , f(x1)〉},
i.e. the function is applied to each character individually, and we decide to reverse
or not. For that reason, a simple function can be represented as a lookup table
that maps each symbol of Σ to another symbol, plus one bit that distinguishes
whether to reverse or not. In what follows, we shall assume that each simple
string function is given as a lookup table of size O(|Σ|) = O(n).

Definition 2. Let H be a set of simple string functions. We say that an opera-
tion (p,H,Π) is H-restricted if set(H) ⊆ H.

Let H = {h1, . . . , hr} be a set of simple string functions. By H〈k〉, we mean
the set of functions obtained by composing any k functions or less from H:

H〈k〉 =
k⋃

k′=1

{hak′ ◦ hak′−1
◦ . . . ◦ ha1 : a1, . . . , ak′ ∈ [r]}

By convention, put H〈0〉 = {id}. By H〈k〉�, we mean the set of vectors of �
functions from H〈k〉. Before proceeding, we must show that H〈k〉 function are
simple, and that their lookup tables can be computed easily.

Lemma 2. Let H be a set of simple functions on alphabet Σ. Assume that
each function f ∈ H is represented as a lookup table of size |Σ|, plus one bit
for whether f reverses its input or not. Then H〈k〉 can be computed in time
O(k|Σ||H〈k〉|). Moreover, any h ∈ H〈k〉 is simple and, for any string s, h(s) can
be computed in time O(|s|).

We can now show that distances that use operations based on simple string
functions reduce to PCSP. Beforehand, we need tools to represent permuted
matches between a common partition in a succinct manner. We define a spe-
cial alphabet for this purpose. Let F be the set of all length-preserving string
functions (which includes id). We will treat the set ΣF = N × F as a special
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alphabet, each symbol consisting of a pair with an integer and a function. For
any f ∈ F and any (i, h) ∈ ΣF , we put f((i, h)) = (i, f ◦ h). For simplicity, we
will write i instead of (i, id), with the understanding that no integer i is part of
the alphabet of our strings of interest s and t (this is without loss of generality).
We thus write f(i) instead of f((i, id)) = (i, f). It is therefore understood that
for any i, j ∈ N and f, f ′ ∈ F , f(i) and f ′(j) are both symbols of ΣF , and they
are the same symbol if and only if i = j and f = f ′.

Lemma 3. Let H be a set of simple string functions and let P be a set of H-
restricted p-operations.

Then dP(s, t) ≤ k if and only if there exists a partition s1| . . . |s� of s, a
partition t1| . . . |t� of t, a permutation π of [�], and f1, . . . , f� ∈ H〈k〉 such that
all the following conditions hold:

1. � ≤ 1 + k(p − 1);
2. ti = fi(sπ(i)) for each i ∈ [�];
3. dP(〈1, 2, . . . , �〉, 〈f1(π(1)), f2(π(2)), . . . , f�(π(�))〉) ≤ k.

There is a clear intuition behind this lemma. If dP(s, t) ≤ k, then each of the k
operations creates at most p breakpoints, and there are at most � ≤ 1+k(p−1) of
them. These breakpoints define a partition of s and t into corresponding blocks,
and if this partition into � substrings is known, we could replace each i-th block
by the symbol i in s, and by fi(π(i)) in t.

Lemma 3 shows that the exact content of the matched blocks does not truly
matter, as we may reduce to computing a distance between strings of length �.

Theorem 1. Let H be a set of simple string functions, and let P be a set of
H-restricted p-operations.

Assume that any PCSP instance (s, t, �, π, F ) satisfying F ∈ H〈k〉� can be
solved in time g(�, n). Then deciding whether dP(s, t) ≤ k can be done in time
O((pk)3pk+1 · |H〈k〉|pk · |P|k · g(1 + k(p − 1), n)).

The correctness of Theorem 1 and the complexity can be derived from Algo-
rithm 1, which uses Lemma 3 directly to compute dP .

1 function computeDistance(s, t,P, F, k)
2 Compute H〈k〉
3 foreach � ∈ [1 + k(p − 1)] do
4 foreach permutation π of [�] do
5 foreach F = (f1, . . . , f�) ∈ H〈k〉� do
6 Compute PCSP on input (s, t, �, π, F )
7 if the answer is yes then
8 Compute dP(〈1, . . . , �〉, 〈f1(π(1)), . . . , f�(π(�))〉)
9 if the distance is at most k then

10 return yes

11 return no

Algorithm 1: Main dP algorithm
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4 FPT Algorithms for d-occurrence PCSP with Reversals

In this section, we show that if F only contains id, flip, rev and urev, and if
each symbol occurs at most d times in the input strings, then PCSP is FPT in
parameter d + �. Since empty blocks are allowed, we will show that in PCSP,
we do not have the obligation of satisfying the given permutation exactly—we
can have missing blocks, provided that the order of the blocks found agrees with
π. For the rest of this section, we assume that we are given strings s and t, an
integer �, a permutation π, and functions (f1, . . . , f�).

For a string w, a numbered partition of w is a sequence of ordered pairs
(wa1 , a1), . . . , (war

, ar) where wa1 | . . . |war
is a partition of w and a1, . . . , ar ∈ [�].

We denote a numbered partition by Pw = (wa1 , a1)| . . . |(war
, ar). If a1 <

a2 < . . . < ar ≤ �, then Pw is called an ordered partition. Let Ps =
(sa1 , a1)| . . . |(sar

, ar) and Pt = (tb1 , b1)| . . . |(tbr , br) be ordered partitions of s
and t, respectively. with r ≤ �. We say that (Ps, Pt) agrees with π and F if, for
each bi ∈ {b1, . . . , br}, we have π(bi) ∈ {a1, . . . , ar} and tbi = fbi(sπ(bi)).

Roughly speaking, an ordered partition allows us to “tag” each block with
its position in a solution to PCSP. There may be holes between some ai and
ai+1, which correspond to empty blocks in a solution.

Lemma 4. The instance (s, t, π, �, F ) is a Yes-instance of PCSP if and only if
there exist ordered partitions (sa1 , a1)| . . . |(sar

, ar) and (tb1 , b1)| . . . |(tbr , br) that
agree with π and F .

4.1 Bounded Occurrences and Reversal Functions

From now on, we assume that each symbol occurs at most d times in s, and at
most d times in t. We assume that s and t are on an alphabet Σ where each
symbol x has a unique reverse −x, where −(−x) = x. We also assume that
each function of F is in {id, flip, rev, urev}. For a marker x of s or t, denote by
S(x) ∈ {s, t} the string that contains x. Our goal is to find an ordered partition
that agrees with π and F .

Our algorithm is based on the approach of Bulteau, et al. [3] for the classical
common string partition problem (noting that this approach also allows deletions
of “extra” symbols). This algorithm guesses a pair of matching markers in each
block of a solution. We apply the same idea here, but develop new tools to
account for the permutation π and the F functions.

A fixed-match is a tuple (x, y, ai, bj) where x is a marker of s, y is a marker
of t, ai, bj ∈ [�], ai = π(bj), and y = fbi(x) (this is slightly abusing notation,
since x and y are markers, not strings—it is understood here that x and y are
treated as their symbols in this equality). The interpretation of (x, y, ai, bj) is
that in the desired ordered partition, x belongs to block (sai

, ai) of s, y belongs
to block (tbj , bj) of t, and tbj = fbj (sπ(bj)). Of course, the blocks are unknown,
but x and y serve as a witness of their existence. Also note that ai is redundant
in the definition of a fixed-match, since it is given by π(bj). However, it will help
making some notions clearer later on.
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A fixed-match set is a set M of fixed-matches such that, for any distinct
(x, y, ai, bj), (x′, y′, ap, bq) ∈ M , we have x 
= x′, y 
= y′, and bj 
= bq (which
implies ai 
= ap). The idea is that a fixed-match set provides at most one match
per block, and our goal is to eventually find exactly one fixed-match per block
of a solution, if any. With the following, we ensure that fixed-match sets can
satisfy the requirements of an ordered partition.

Definition 3. A fixed-match set M is order-consistent if, for any (x, y, ai, bj),
(x′, y′, ap, bq) ∈ M , x ≺ x′ implies ai < ap and y ≺ y′ implies bj < bq.

Assuming that a solution is known, we know which substring tj corresponds
to which fj(sπ(j)) substring. However, we also need a way to determine which
markers are in correspondence, which depends on whether fj reverses the string
or not. Assume that tj = fj(sπ(j)) for some substrings tj of t and sπ(j) of s. For
each i ∈ [|sπ(j)|], if fbj ∈ {id, flip}, match the i-th marker of sπ(j) with the i-th
marker of tj , and otherwise match the i-th marker of sπ(j) with the (|tj |− i+1)-
th marker of tj . Two markers x of sπ(j) and y of tj matched as described above
are call matched with respect to sπ(j) and tj . In essence, this matching simply
indicates the new location of the x marker after applying fj . We next relate
fixed-match sets with numbered partitions (which are not necessarily ordered).

Definition 4. Let M be a fixed-match set with r elements. We say that M is
complete if there exist numbered partitions Ps = (sa1 , a1)| . . . |(sar

, ar) of s and
Pt = (tb1 , b1)| . . . |(tbr , br) of t such that all the following conditions hold:

1. for each bj ∈ {b1, . . . , br}, tbj = fbj (sπ(bj));
2. for each (x, y, ai, bj) ∈ M , x is in the sai

substring, y is in the tbj substring,
and x, y are matched with respect to sai

and tbj .

We call (Ps, Pt) a completion of M . Furthermore, we say that M is com-
pletable if there exists a fixed-match set M ′ ⊇ M such that M ′ is complete.

Note that the definition of complete does not require a1 < . . . < ar nor
b1 < . . . < br. In fact, not all complete fixed-match sets correspond to a solution,
as order-consistency is required.

Lemma 5. There exist ordered partitions of s and t that agree with π and F if
and only if there exists a complete and order-consistent fixed-match set M .

4.2 Constructing a Complete and Order-Consistent Fixed-Match
Set

In the rest of the section, we aim to construct a complete and order-consistent
fixed-match set. We adopt a branching strategy that adds one fixed-match at a
time. If, at any point in the search tree, we reach a fixed-match set M that is not
order-consistent, it cannot lead to the desired numbered partitions and we can
stop trying to complete M (this is because we can only add elements to a fixed-
match set, and adding elements cannot repair the lack of order-consistency).
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Termination Rule. If M is not order-consistent, then M is not part of a
solution.

This is where we extend the framework of [3]. Let M be a fixed-match set,
and let u be a marker of s or t that is not in any fixed-match of M . Let ls,t,M (u)
(resp. rs,t,M (u)) be the closest marker to the left (resp. right) of u that belongs
to some fixed-match of M . We may write lM (u) and rM (u) if s and t are clear
from the context. Note that lM (u) or rM (u) may not exist, in which case they
are left undefined. Let (x, y, ai, bj) ∈ M . We are interested in pairs of markers
that could belong to the same block as x and y. For this purpose, let {u, v} be
a pair of markers that are not in the same string. Assume that u is in s and v is
in t. There are four types of matches that are represented in Fig. 1.

– (LL match) {u, v} is a left-left match of (x, y, ai, bj) if fbj ∈ {id, flip},
rM (u) = x, rM (v) = y and t[v, y] = fbj (s[u, x]);

– (RR match) {u, v} is a right-right match of (x, y, ai, bj) if fbj ∈ {id, flip},
lM (u) = x, lM (v) = y and t[y, v] = fbj (s[x, u]);

– (LR match) {u, v} is a left-right match of (x, y, ai, bj) if fbj ∈ {rev, urev},
rM (u) = x, lM (v) = y and t[y, v] = fbj (s[u, x]);

– (RL match) {u, v} is a right-left match of (x, y, ai, bj) if fbj ∈ {rev, urev},
lM (u) = x, rM (v) = y and t[v, y] = fbj (s[x, u]).

a b c a c b -a b c -b c

b a b c a c b -c -b a -b

Block no 3
f3 = id

Block no 5
f5 = rev

LL RR LR RL

Fig. 1. A simple example depicting the four types of matches. The black edges represent
fixed-matches, red edges are LL matches, green are RR, pink are LR and blue are
RL. Hypothetically, the leftmost black edge belongs to some fixed-match (x, y, ai, bj)
satisfying bj = 3 (its block number), and f3 = id. Similarly, the rightmost black edge
belongs to a fixed-match (x′, y′, ap, bq) with bq = 5 and f5 = rev.

Note that {u, v} can be multiple types of matches simultaneously. Also note
that we defined {u, v} as an unordered pair, and assumed that u was in s and v
was in t. This means that if {u, v} is a left-right match, for instance, then {v, u}
is also a left-right match. This is an important notational detail: when a pair
{x, y} of markers from s and t is given, x could be in s and y in t, or vice-versa.
In most cases, this will not matter, but since this may impact the LR and RL
types, we will need to specify the strings of origin of x and y when required.

We will view the markers and matches as a bipartite edge-colored multigraph.
Given a fixed-match set M , the graph Gs,t(M) contains one vertex for each
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marker in s or t. We will not make the distinction between markers and vertices
from now on, and will omit the s, t subscript when they are clear from the
context. We add one edge for each match of any type, and label the edge by
the type. That is, for each (x, y, ai, bj) ∈ M , add an edge {u, v} labeled LL
(respectively RR, LR, RL) if {u, v} is a left-left (resp. right-right, left-right,
right-left) match of (x, y, ai, bj). Furthermore, for each (x, y, ai, bj) ∈ M , add
the edge {x, y} and label it fixed.

Note that it is possible that an edge {u, v} is present more than once, but
each has a distinct label. The basic properties of G(M) are listed in the following.

Lemma 6. Let u be a vertex of G(M). Then u is incident to at most two edges,
and u is not incident to two edges with the same label. Moreover, if u is in a
fixed-match in M , then u is incident to exactly one edge, which is labeled fixed.

It follows from the above that G(M) has maximum degree 2 and consists of
a collection of disjoint cycles and paths. As in [3], our goal is to identify a subset
of vertices that prevents us from having a complete fixed-match set.

Definition 5. Let M be a fixed-match set, let M ′ ⊇ M be a complete fixed-
match set and let (Ps, Pt) be a completion of M ′. Let u be a marker of s or t.
Then u is unseen by M in (Ps, Pt) if, for any (x, y, ai, bj) ∈ M , u is not in the
same substring as x in Ps and u is not in the same substring as y in Pt.

Lemma 7. Let M be a fixed-match set and suppose that, for any complete
M ′ ⊇ M and any completion (Ps, Pt) of M ′, there exists a marker unseen by M
in (Ps, Pt). Then M is not complete.

An odd M -path is a connected component of G(M) with an odd number
of vertices. Note that because G(M) is bipartite and because each vertex has
degree at most 2, such a connected component must be a path. Also note that
a vertex of degree 0 is an odd path. By Lemma 6, such a path cannot contain
fixed edges, and does not contain two consecutive edges with the same label.

Lemma 8. Suppose that M is completable, and suppose that there is an odd M -
path (u1, . . . , uh) in G(M). Then for any complete M ′ ⊇ M and any completion
(Ps, Pt) of M ′, at least one of u1, . . . , uh is unseen by M in (Ps, Pt).

The idea of the proof is that if we assume that each ui is not unseen by some
completion (Ps, Pt), u1 must be matched with u2, then u3 with u4, and so on
until uh cannot be matched with any marker.

Note that if, in an odd path (u1, . . . , uh), the u1 marker corresponds to symbol
w ∈ Σ, then each of u1, . . . , uh is a marker that corresponds to symbol w or −w.
Since each has at most d occurrences in s and in t, the maximum number of
vertices in an odd path is 4d. Therefore, the number of possible vertices on such
a path to add to a fixed-match of M is bounded by a function of d, as well as
the number of “partners” of these vertices in a fixed-match. In fact, this is the
only reason why our branching algorithm does not work for any given sequence
of simple string functions F , since if F has arbitrary simple functions, we cannot
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guarantee that the number of vertices on an odd path is a function of d only.
Moreover in general, the number of possible partners may depend on |F |.
Branching Rule. If there is an odd M -path (u1, . . . , uh), branch into all ways
of adding a fixed-match that contains one of u1, . . . , uh to M .

Our next step is to show that once all odd paths have been handled, we
have reached a complete fixed-match set. This can be shown by induction: if we
find a fixed edge {x, y} that has an LL,RR,LR or RL edge next to it, we can
assume that this latter edge can belong to the same substring as x and y in a
solution. We can remove it and apply induction. The main difficulty is that we
must ensure that the graph resulting from this removal has no odd path.

Lemma 9. A fixed-match set M is complete if and only if G(M) has no odd
path.

The main consequence is that branching over odd paths is all that is required.
We can now describe a concrete algorithm (with M = ∅ initially).

Theorem 2. If F is a subset of {id, flip, rev, urev}, then PCSP can be solved
in time O(d2�(8�)�n).

1 function PCSP(s, t, �, π, F,M)
2 if M is not order-consistent then
3 return “No solution”
4 if G(M) has an odd path (u1, . . . , uh) then
5 if |M | = � then
6 return “No solution”
7 foreach ui on the path and each marker v with the same symbol

or negated symbol, such that v is not in a fixed-match of M do
8 foreach bi that is not already in a fixed-match of M do
9 Call PCSP (s, t, �, π, F,M ∪ {(u, v, π(bi), bi)})

10 if a positive answer was returned then
11 return “Yes”
12 return “No solution”
13 else
14 return “Yes”

Algorithm 2: Main PCSP algorithm

Consequences. Theorem 1 and Theorem 2 can be combined to deduce that
several distances can be computed in FPT time, provided that each symbol
occurs at most d times. It suffices to express these distances as operations and
plug in the complexity values. See full version for details.

5 Conclusion

We studied a new version of the famous Minimum Common String Partition
problem, called the Permutation-constrained Common String Partition (PCSP),
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where we are given two sequences s and t with the same content and a permu-
tation π on [k], and the problem is to decide whether the two sequence can be
decomposed into k blocks fitting π. Although PCSP is W[1]-hard when param-
eterized by k, we show that it is FPT (with parameters k and d) if s and t are
both d-occurrence sequences. This results in a series of FPT results for genome
rearrangements when the input sequences are d-occurrence.

References

1. Bulteau, L., Fellows, M., Komusiewicz, C., Rosamond, F.: Parameterized string
equations. arXiv arXiv:2104.14171 (2021)

2. Bulteau, L., Fertin, G., Jean, G., Komusiewicz, C.: Sorting by multi-cut rearrange-
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All Instantiations of the Greedy
Algorithm for the Shortest Common
Superstring Problem are Equivalent

Maksim S. Nikolaev(B)

Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences,

Saint Petersburg, Russia

Abstract. In the Shortest Common Superstring problem (SCS), one
needs to find the shortest superstring for a set of strings. While SCS is
NP-hard and MAX-SNP-hard, the Greedy Algorithm “choose two strings
with the largest overlap; merge them; repeat” achieves a constant factor
approximation that is known to be at most 3.5 and conjectured to be
equal to 2. The Greedy Algorithm is not deterministic, so its instantia-
tions with different tie-breaking rules may have different approximation
factors. In this paper, we show that it is not the case: all factors are
equal. To prove this, we show how to transform a set of strings so that
all overlaps are different whereas their ratios stay roughly the same.

Keywords: Superstring · Shortest common superstring ·
Approximation · Greedy algorithms · Greedy conjecture

1 Introduction

In the Shortest Common Superstring problem (SCS), one is given a set of strings
and needs to find the shortest string that contains each of them as a substring.
Applications of this problem include genome assembly [12,19] and data com-
pression [3,4,15]. We refer the reader to the survey [5] for an overview of SCS
as well as its applications and algorithms.

SCS is known to be NP-hard [4] and even MAX-SNP-hard [1], but it admits
constant-factor approximation in polynomial time. The best known approxima-
tion ratios are 211

23 due to Mucha [11] (see [7, Section 2.1] for an overview of
the previous approximation algorithms and inapproximability results). While
these approximation algorithms use many sophisticated techniques, the 30 years
old Greedy Conjecture [1,15–17] claims that the trivial Greedy Algorithm (GA)
“choose two strings with the largest overlap; merge them; repeat” is a factor
2 approximation (in fact, this is the best possible approximation factor: con-
sider a dataset S = {c(ab)n, (ab)nc, (ba)n}). Ukkonen [18] shows that for a fixed
alphabet, GA can be implemented in linear time.
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Blum et al. [1] prove that GA returns a 4-approximation of SCS, and Kaplan
and Shafrir [8] improve this bound to 3.5. A slight modification of GA gives
a 3-approximation of SCS [1], and other greedy algorithms are studied from
theoretical [1,13] and practical perspectives [2,14].

It is known that the Greedy Conjecture holds for the case when all input
strings have length at most 4 [9]. Also, the Greedy Conjecture holds if GA hap-
pens to merge strings in a particular order [10,20]. GA gives a 2-approximation
of a different metric called compression [16]. The compression is defined as the
sum of the lengths of all input strings minus the length of a superstring (hence,
it is the number of symbols saved with respect to a naive superstring resulting
from concatenating the input strings).

GA is not deterministic as we do not specify how to break ties in case when
there are many pairs of strings with maximum overlap. For this reason, different
instantiations of GA (that is, GA with a tie-breaking rule) may produce different
superstrings for the same input and hence they may have different approximation
factors. In fact, if S contains only strings of length 2 or less or if S is a set of
k-substrings of an unknown string, then there are instantiations of GA [6], that
find the exact solution, whereas in general GA fails to do so.

The original Greedy Conjecture states that any instantiation of GA is a fac-
tor 2 approximation. As this is still widely open, it is natural to try to prove the
conjecture at least for some instantiations. This could potentially be easier not
just because this is a weaker statement, but also because a particular instantia-
tion of GA may decide how to break ties by asking an omniscient oracle. In this
paper, we show that this weak form of Greedy Conjecture is in fact equivalent
to the original one. More precisely, we show, that if some instantiation of GA is
a factor λ approximation, then all instantiations are factor λ approximation.

To prove this, we introduce the so-called Perturbing Procedure, that, for a
given dataset S = {s1, . . . , sn}, a parameter m � n, and a sequence of greedy
non-trivial merges (merges of strings with a non-empty overlap), constructs a
new dataset S ′ = {s′

1, . . . , s
′
n}, such that, for all i �= j, s′

i is roughly m times
longer than si, the overlap of s′

i and s′
j is roughly m times longer than the overlap

of si and sj , and the mentioned greedy sequence of non-trivial merges for S is
the only such sequence for S ′.

2 Preliminaries

Let |s| be the length of a string s and ov(s, t) be the overlap of strings s and t,
that is, the longest string y, such that s = xy and t = yz. In this notation, a
string xyz is a merge of strings s and t. By ε we denote the empty string. By
OPT(S) we denote an optimal superstring for the dataset S.

Without loss of generality we may assume that the set of input strings S
contains no string that is a substring of another. This assumption implies that
in any superstring all strings occur in some order: if one string begins before
another, then it also ends before. Hence, we can consider only superstrings that
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can be obtained from some permutation (sσ(1), . . . , sσ(n)) of S after merging
adjacent strings. The length of such superstring s(σ) is simply

|s(σ)| =
n∑

i=1

|si| −
n−1∑

i=1

| ov (
sσ(i), sσ(i+1)

) |. (1)

Let A be an instantiation of GA (we denote this by A ∈ GA). By σA we
denote the permutation corresponding to a superstring A(S) constructed by A,
and by (lA(1), rA(1)), . . . , (lA(n − 1), rA(n − 1)), we denote the order of merges:
strings slA(i) and srA(i) are merged at step i. By the definition of GA we have

| ov (
slA(i), srA(i)

) | ≥ | ov (
slA(j), srA(j)

) |, ∀ i < j < n,

and if, for some i, | ov(slA(i), srA(i))| = 0, then the same holds for any i′ > i.
We denote the first such i by TA and this is the first trivial merge (that is, one
with the empty overlap), after which all the merges are trivial. Note that just
before step TA, all the remaining strings have empty overlaps, so the resulting
superstring is just a concatenation of them in some order and this order does
not affect the length of the result. If there were no trivial merges, we set TA = n.

si

sj

a b c

b c d

s′
i

s′
j

αj

mm TA

ov(s′
i, s

′
j)

βi

$ $ $ a $ $ $ $ b $ $ $ $ c $

$ $ b $ $ $ $ c $ $ $ $ d

(a) (b)

Fig. 1. (a) strings si and sj from S. (b) the resulting strings s′
i and s′

j after perturbing;
here, m = 4, TA = 3, αi = 1, βi = 2, αj = 2 and βj = TA; since αj = βi = 2, we may
conclude that si and sj were merged by A at step 2.

3 Perturbing Procedure

Here, we describe the mentioned procedure that eliminates ties. Consider a
dataset S, an instantiation A ∈ GA and a sentinel $—a symbol that does not
occur in S, and a parameter m whose value will be determined later. For every
string si = c1c2 . . . cni

∈ S define a string

s′
i = $m−αic1$mc2$mc3$m . . . $mcni

$TA−βi , (2)

where
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1. αi is the number of step such that rA(αi) = i, if such step exists and is less
than TA, and αi = TA otherwise; note that if αi < TA then si is the right
part of a non-trivial merge at step αi;

2. βi is the number of step such that lA(βi) = i, if such step exists and is less
than TA, and βi = TA otherwise; note that if βi < TA then si is the left part
of a non-trivial merge at step βi.

Basically, we insert the string $m before every character of si and then remove
some $’s from the beginning of the string and add some $’s to its end (see Fig. 1).
The purpose of this removal and addition is to perturb slightly overlaps of equal
length, so there are no longer any ties in non-trivial merges.

We denote the resulting set of perturbed strings {s′
1, . . . , s

′
n} by S ′, and all

entities related to this dataset we denote by adding a prime (for example, σ′
A).

Let us derive some properties of S ′.

Lemma 1. For all i �= j, k �= l, m > 2n

1. if | ov(si, sj)| = d > 0, then | ov(s′
i, s

′
j)| = (m + 1)d − αj + TA − βi;

2. if | ov(si, sj)| = 0, then | ov(s′
i, s

′
j)| = min{TA − βi,m − αj};

3. perturbing procedure preserves order on overlaps of different lengths, that is,
if | ov(si, sj)| > | ov(sk, sl)|, then | ov(s′

i, s
′
j)| > | ov(s′

k, s′
l)|.

Proof. Let ov(si, sj) be c1c2 . . . cd. Consider the string

u = $m−αjc1$m . . . $mcd$TA−βi .

Clearly, u is the overlap of s′
i and s′

j and |u| = (m + 1)d − αj + TA − βi. Also, if
| ov(si, sj)| = 0 then ov(s′

i, s
′
j) = $min{TA−βi,m−αj}.

To prove the last statement, note that αj + βi ≤ 2TA < m and

| ov (
s′

i, s
′
j

) | > (m + 1)| ov (sk, sl) | + TA ≥ | ov (s′
k, s′

l) |.
Lemma 2. Let B ∈ GA. Then TA = T ′

A = T ′
B and the first TA − 1 merges are

the same for both instantiations.

Proof. We prove by induction that lA(t) = l′A(t) = l′B(t) and rA(t) = r′
A(t) =

r′
B(t) for all t < TA.

Case t = 1. As A is greedy, then k1 := | ov(slA(1), srA(1))| ≥ | ov(si, sj)|, for
all i �= j, (i, j) �= (lA(1), rA(1)). Hence

| ov (
s′

i, s
′
j

) | ≤ (m + 1)k1 − αj + TA − βi

< (m + 1)k1 − 1 + TA − 1 = | ov
(
s′

lA(1), s
′
rA(1)

)
|,

and l′A(1) = l′B(1) = lA(1) as well as r′
A(1) = r′

B(1) = rA(1).
Suppose that the statement holds for all t ≤ t′ < TA−1. Note that at moment

t = t′ +1 the sum αj +βi is strictly greater than 2t unless (i, j) = (lA(t), rA(t)).
Similarly to the base case, we have

| ov (
s′

i, s
′
j

) | ≤ (m + 1)kt − αj + TA − βi

< (m + 1)kt − t + TA − t = | ov
(
s′

lA(t), s
′
rA(t)

)
|,
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where kt = | ov(slA(t), srA(t))|, and the induction step is proven.
Now note that starting from step TA all the remaining strings in S have

empty overlaps and hence so do the remaining strings in S ′, as for all of them
βi = TA and the minimum in paragraph 2 of Lemma 1 is equal to zero. Thus,
TA = T ′

A = T ′
B and the lemma is proven.

Corollary 1. As all non-trivial merges coincide, |A(S ′)| = |B(S ′)|.

4 Equivalence of Instantiations

Theorem 1. If some instantiation A of GA achieves a λ-approximation, then
so does any other instantiation.

Proof. Assume the opposite and consider B ∈ GA as well as a dataset S such
that |B(S)| > λ|OPT(S)|. Let S ′ = S ′(B,m) be the corresponding perturbed
dataset, where m > 2n will be specified later.

Note that |s′
i|/m → |si| and | ov(s′

i, s
′
j)|/m → | ov(si, sj)| as m approaches

infinity, thanks to Lemma 1.1–2. Then |OPT(S ′)|/m → |OPT(S)|, since

1
m

|OPT(S ′)| =
1
m

min
σ

{
n∑

i=1

|s′
i| −

n−1∑

i=1

| ov
(
s′

σ(i), s
′
σ(i+1)

)
|
}

→ min
σ

{
n∑

i=1

|si| −
n−1∑

i=1

| ov (
sσ(i), sσ(i+1)

) |
}

= |OPT(S)|,

|B(S ′)|/m → |B(S)| and hence |A(S ′)|/m → |B(S)|, by Corollary 1.
As |B(S)| − λ|OPT(S)| > 0, we can choose m so that |B(S ′)| − λ|OPT(S ′)|

as well as |A(S ′)| − λ|OPT(S ′)| are positive. Hence A is not a factor λ approxi-
mation.

Corollary 2. To prove (or disprove) the Greedy Conjecture, it is sufficient to
consider datasets satisfying some of the following three properties:

1. there are no ties between non-empty overlaps, that is, datasets where all
the instantiations of the greedy algorithm work the same;

2. there are no empty overlaps: ov(si, sj) �= ε, ∀ i �= j;
3. all non-empty overlaps are (pairwise) different: | ov(si, sj)| �= | ov(sk, sl)|, for

all i �= j, k �= l, (i, j) �= (k, l).

Proof. 1. Follows directly from the proof of Theorem 1, as we always can use
the dataset S ′ instead of S.

2. Append $ to each string of S ′. Then, every two strings have non-empty overlap
that at least contains $, and in general TA = T ′

A = T ′
B from Lemma 2 does

not hold (T ′
A and T ′

B are always n). However, the first TA merges are still the
same and after them all the remaining strings have overlaps of length 1 and
then the lengths of the final solutions are the same as well.
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3. Append $n(TA−βi) to each string of S ′ instead of $TA−βi . Then

| ov (
s′

i, s
′
j

) | = (m + 1)| ov (si, sj) | − αj + nTA − nβi,

provided m is large enough, and αj + nβi �= αk + nβl if (i, j) �= (k, l).
Repeating the proofs of Lemmas 1 and 2 with this version of S ′, we obtain
this statement of the corollary.
To combine several of this properties (for example second and third), it is

sufficient to sequentially apply the corresponding transformations on the original
dataset: at first we get a dataset S ′ from S as in paragraph 2, then we treat S ′

(already without empty overlaps) as original and transform it to a dataset S ′′

according to paragraph 3 using a different sentinel instead of $.

5 Conclusion

In this paper we revealed the equivalence of greedy algorithms for the shortest
common superstring problem. This means, in particular, that proving or disprov-
ing the Greedy Conjecture is difficult not due to the non-deterministic nature of
the Greedy Algorithm, but due to the complexity of the overlaps structure.

Acknowledgments. Many thanks to Alexander Kulikov for valuable discussions and
proofreading the text, and the anonymous reviewers for their useful comments.
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Abstract. We consider covering labeled trees by a collection of paths
with the same string label, called a (string) cover of a tree. We
show how to compute all covers of a directed (rooted) labeled tree in
O(n log n/ log log n) time and all covers of an undirected labeled tree in
O(n2) time and space or in O(n2 log n) time and O(n) space. We also
show several essential differences between covers in standard strings and
covers in trees.

1 Introduction

We consider undirected and directed trees with at least 2 nodes and edges labeled

by single symbols. The label of a simple path v1
a1− v2

a2− v3
a3− . . .

ak−1

− vk is the
string W = a1a2 . . . ak−1. Let us note that the label of the reverse path from vk
to v1 is WR, the reverse of W . We say that a non-empty string W covers a tree
if each edge is on a simple path labeled by W . In case of rooted trees we consider
only edges directed bottom-up towards the root (the symmetric ordering top-
down is equivalent with respect to coverings). Figure 1 shows the covers of an
example undirected tree.

A standard string can be considered as a directed path, hence covers of a
directed path can be found using one of the known algorithms for computing
covers of strings [4,7,24,25]. However, covering an undirected simple path (see
e.g. Fig. 2) is a very different problem and is much harder than covering a string.
It is equivalent to covering with two strings W and WR. A nontrivial almost
linear time algorithm for covering an undirected path is implied by the algorithm
in [27, Section 3] about covering a string with two equal-length strings.

Covers in directed trees are also quite different from covers in strings. A
directed tree can be seen as a collection of strings corresponding to leaf-to-root
paths, but a cover of a tree does not necessarily cover each of these strings; see
Fig. 3, where the string ababaaba is not a cover of a string corresponding to the
leftmost leaf-to-root path, though it is a cover of the whole tree. However, the
following fact can be shown with the aid of induction.
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Fig. 1. The string aab is a cover of this undirected tree T ; all its occurrences are shown
in green. The tree has 14 distinct covers: aab, aabab, ab, abaabab, abab, ba, baa, baab,
baabab, baba, babaa, babaab, babaaba, babaabab. Observe that the bottom-up directed
version of T rooted in the top node has only two covers: ba and baba.

Fig. 2. An undirected path ambam of length n = 2m + 1 has Ω(n) different aperiodic
covers, of the form ambai or aibam, for i = 0, . . . , m. A standard string of length n can
only have O(log n) aperiodic covers; see [4].

Observation 1. If S is a cover of a directed tree T , then it is a cover of at least
one of the strings corresponding to leaf-to-root branches.

Fig. 3. The displayed directed tree has 3 covers aba, ababa, ababaaba. In case of stan-
dard strings a shorter cover is a suffix of the longer one. This does not work for covers
of directed trees; ababa is not a suffix of ababaaba

This work extends the rich study of covers in non-standard settings—
e.g., 2-dimensional [9,10,26], Abelian [20,21,23], parameterized and order-
preserving [17], and on indeterminate [1,3,11,16] and weighted strings [5,16]—to
labeled trees. Moreover, we continue the line of work on algorithmic and combi-
natorial properties of palindromes, powers and runs in labeled trees, which have
different properties than in strings [8,10,12–14,18,19,29].
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Our Results: We show that all covers of a directed labeled tree can be com-
puted in O(n log n/ log log n) time if the labels of tree edges belong to an integer
alphabet, i.e., are integers of magnitude nO(1). In case of undirected trees with
labels over any alphabet, all covers can be computed in O(n2) time and space
or in O(n2 log n) time and O(n) space.

2 Preliminaries

In this section we introduce several algorithms and combinatorial properties
related to labeled and unlabeled trees. If u1 � uk = (u1, u2, . . . , uk−1, uk) is a
(simple) path in a labeled tree T , then its length dist(u1, uk) is defined as the
number of edges (i.e., k − 1) and its string label is the concatenation of labels of
edges (u1, u2), . . . , (uk−1, uk).

Let T be a rooted labeled tree. We assume that all edges are directed towards
the root. For a node v of T , by labeld(v) we denote the string label of a path
from v to its ancestor at distance d and by label(v) we denote the string label of
a path from v to the root.

2.1 The Table of Prefixes

For a string S, we denote TreePREFS [v] = max{d ≥ 0 : labeld(v) = S[1..d]},
where S[1..d] is a length-d prefix of string S; see Fig. 4.

Fig. 4. An example of TreePREFS array, where S = babcabc (red path, bottom-up).
The nonzero values of the array are shown in brackets. (Color figure online)

To compute this array we use the concept of a suffix tree of a labeled tree T
that was introduced by Kosaraju [22]. A compacted trie is a trie in which maximal
paths whose inner nodes have degree 2 are represented as single edges with string
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labels. Usually such labels are not stored explicitly, but as pointers to a base
string (or base strings); only the first letters are stored. The remaining nodes
are called explicit, whereas the nodes that are removed due to compactification
are called implicit. The suffix tree of a rooted labeled tree T is a compacted trie
of the strings label(v) for all nodes v in T . An efficient construction of the suffix
tree of a tree was given by Shibuya [28].

Fact 1 (Shibuya [28]) The suffix tree of a rooted tree with n nodes over an
integer alphabet has size O(n) and can be constructed in O(n) time.

Lemma 1. For a directed labeled tree T with n nodes, the array TreePREFS can
be computed in O(n) time.

Proof. We create a path from the root of T leading to a new leaf s with label(s) =
S; let T ′ be the resulting tree. Then we compute the suffix tree T of the tree
T ′. For each node u of T ′, by where(u) let us denote the node of T with path
label label(u). For each node u of T ′ that originates from T , TreePREFS [u] is
the depth of the lowest common ancestor (LCA) of where(u) and where(s). We
use the fact that LCA queries can be answered in O(1) time after linear time
preprocessing [6]. ��

2.2 Summing Second Heights of All Nodes

We are interested in computing sums of heights of nodes. Let us define height(v)
to be the number of nodes on the longest path from v to a leaf.

Remark 1. The sum of heights of all nodes can be quadratic, for example for a
simple directed path.

The situation changes if we consider for each node its second highest child.
Denote by sec-height(v) the second largest height of a child of v (possibly
sec-height(v) = height(v) − 1 if there are two children with the same largest
height). If v has only one child then we define sec-height(v) = 0.

Proposition 1.
∑

v∈T sec-height(v) ≤ n.

Proof. For a node v we define MaxPath(v) as a longest path from v to its leaf.
Initially we choose (one of possibly many) MaxPath(root), then we remove this
path (both nodes and edges) and choose longest paths for roots of resulting
subtrees. We continue in this way and obtain a decomposition of the tree into
node-disjoint longest paths; see Fig. 5.

Let FirstChild(v) denote a child of v which belongs to the same path in
the decomposition and SecondChild(v) denote a child w �= FirstChild(v) of v of
largest height. Let V ′ be the set of nodes with at least two children each. Then

∑

v

sec-height(v) =
∑

v∈V ′
|MaxPath(SecondChild(v))| ≤ n,

since all selected longest paths are node-disjoint (|p| denotes the number of nodes
in a path p). ��
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Fig. 5. A tree T with the values sec-height(v). The longest paths are distinguished.
Observe that

∑
v sec-height(v) < |T |.

3 Covers of Directed Trees

Let T be a rooted labeled tree with n ≥ 2 nodes. Let Subtree(v) denote the set
of descendant nodes of v, including v. For a set M of marked nodes and nodes
u, v in T we define

Bottom(v) = a node u ∈ M ∩ Subtree(v) with minimal dist(u, v),
chain(u) = {v : Bottom(v) = u}.

Fig. 6. Chain decomposition; each chain is the set of nodes v such that Bottom(v) = u,
where u is its bottom node (marked node, black in the figure). Red nodes are top nodes
of nontrivial chains; nodes constituting single element chains are black and red at the
same time. We have maxgap = 4; the two chains of size 4 are drawn in orange. (Note
that the chain containing the root has size 3, since the root node is not counted.) (Color
figure online)

Let u ∈ M . Our algorithm keeps an invariant that chain(u) is a path. We
denote by ‖chain(u)‖ the number of non-root nodes on chain(u), called the size
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of the chain. If v ∈ chain(u), then by Top(v) we denote the topmost node of
chain(u). We define:

maxgap(M) = max{‖chain(v)‖ : v ∈ T}.

In other words, maxgap(M) is the maximal number of edges from a bottom node
to the root, if the root is in the same chain, or to the lowest node in a different
chain; see Fig. 6. Here ‖chain(v)‖ = ∞ if v does not belong to any chain.

Observation 2. Let S be the label of a chosen leaf-to-root path, d be a positive
integer, and let M = {w : TreePREFS(w) ≥ d}. The tree T has a cover of length
d if and only if maxgap(M) ≤ d.

Fig. 7. Structure of a chain u � w. The top node w keeps the value Bottom[w] = u.
(Color figure online)

Algorithm 1: Covers-in-directed-tree

S := label(leaf , root) for some leaf ;
Compute TreePREFS [v] for all v ∈ T ;
m := min{TreePREFS [v] : v is a leaf};
foreach v in T do TreePREFS [v] := min(TreePREFS [v], m);

Initialize;

for d := m down to 1 do

NEW := {v : TreePREFS [v] = d} \ leaves(T );
foreach v in NEW do MarkAndUpdate(v);

if maxgap(M) ≤ d then Report a cover of length d;

For each u ∈ M , the values len[u] := ‖chain(u)‖ and Top[u] := Top(u) are
stored. Moreover, we assume that the node w = Top[u] is colored in red and
stores u, as Bottom[w] := Bottom(w). If v �∈ M , we store, as Prev[v], the child
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of v on the path from v to Bottom(v). If v �∈ M , we will compute Top(v) as the
lowest red ancestor of v; this will be the bottleneck of the algorithm. See Fig. 7.

We use the algorithm Covers-in-directed-tree shown as Algorithm 1 with
auxiliary functions. The algorithm considers all possible lengths d of a cover in
descending order and stores the chain decomposition implied by the set M of
Observation 2. Non-leaf nodes are sorted by their TreePREFS values using buck-
ets in O(n) time. To some extent this algorithm resembles Moore and Smyth’s
algorithm [24,25] for computing covers of strings (working in a reversed order).

Function Initialize
Comment: Creates chains for M = leaves(T )
foreach v in T do

Compute Leaf [v] as the leftmost nearest leaf in the subtree of v;
foreach leaf in leaves(T ) do

NewChain(leaf , v) where v is the topmost node with Leaf [v] = leaf ;
Compute the initial Prev[·] values;

The function NewChain(u,w) creates a chain u � w, whereas the function
FindChain(v) = (u � w) first computes w = Top(v) as the lowest red ancestor
of v and then computes u = Bottom[w]. We assume that the nodes of T are
pre-ordered from left to right in Initialize.

v

u

w

w1

w2

w3

w4

u1

u2

u3

u4

v

u

w3

w4

u1

u2

u3

u4

Fig. 8. Illustration of execution of one call to MarkAndUpdate(v). The successive
values of Top(chain1) are w, w1, . . . , w3. Finally Top(chain1) = w3. The nodes p =
parent(w), p1 = parent(w1), p2 = parent(w2) are changing their chains and Prev values.
For each of them chain-height (for a definition, see below) is decreasing, also their chain
goes through a different child. The newly marked node v is winning with u1, u2, u3.

In addition to the pseudocodes, the len[·] array is updated whenever opera-
tions on chains are performed. Moreover, the maximum (finite value) in this
array, i.e., maxgap(M), never increases because a newly created chain only
extends if it “wins” with an existing one (see Fig. 8). Hence, it is sufficient to
store an array of n buckets containing all len[·] values and retain as maxgap(M)
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Function MarkAndUpdate(v)
Comment: Inserts v to M and updates the chains decomposition; see Fig. 8
chain := FindChain(v);
chain1 := NewChain(v,Top(chain));
Top(chain) := Prev[v]; color Top(chain) in red;

while Top(chain1) �= root do
chain2 := FindChain(parent(Top(chain1)));
if not Crossover(chain1, chain2) then

break;
// Otherwise we say that v wins with w

update maxgap(M);

the maximum index of a non-empty bucket, which never increases. Overall this
works in time linear in the number of operations on chains plus O(n).

To analyze the complexity of the algorithm, let us define chain-height(v) =
dist(v,Bottom(v)).

Observation 3. In the algorithm Covers-in-directed-tree, after a node p
changes its chain in the function Crossover, we have chain-height(p) ≤
sec-height(p) + 1. Afterwards, each time p changes its chain in the func-
tion Crossover, its chain-height decreases. Consequently, p changes its chain
O(sec-height(p)) times.

Lemma 2. The algorithm Covers-in-directed-tree works in O(β(n)) time, where
β(n) is the cost of answering on-line n lowest red ancestor queries.

Proof. It is enough to show that the total number of “wins” performed in the
algorithm is O(n). Then the total number of iterations of the while-loop in the
function MarkAndUpdate is linear.

Due to Observation 3 the total number of wins in the function MarkAndUp-
date is amortized by the sum of all numbers sec-height(p). Now the thesis follows
from Proposition 1. ��

Fig. 9. Graphical illustration of one call to Crossover(chain1, chain2).

To answer Top queries, we can use the following result from [2], where in this
case the marked nodes are the red nodes.
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Function Crossover(chain1, chain2)

Comment: Works as shown in Fig. 9. We have parent(Top(chain1)) ∈ chain2.

p := parent(Top(chain1));

if dist(p,Bottom(chain1)) ≥ dist(p,Bottom(chain2)) then

return false;
else

uncolor Top(chain1);
(Top(chain2), Prev[p], Top(chain1)) :=
(Prev[p], Top(chain1), Top(chain2));

color Top(chain2) in red; return true;

Fact 2. Lowest red ancestor queries for a dynamic set of marked nodes in a tree
of size n can be answered in O(log n/ log log n) time.

Now, the main result of this section follows from Lemma 2 and Fact 2.

Theorem 1. All covers in a directed tree with n nodes can be computed in
O(n log n/ log log n) time.

4 Covers of Undirected Trees

Covering an undirected tree is much harder than that of a directed tree. Even
the case when the tree is a simple undirected path is nontrivial. For example,
the shortest standard cover of a Fibonacci string abaababaabaab (and the corre-
sponding directed path) is abaab, however it is not true in the undirected case,
where the shortest cover is ab. A serious difference between covers in directed
and covers in undirected trees is shown in the generic example below.

Example 1. Take a full binary tree Tk of height k, subdivide each edge, and then
label the higher edge obtained in this division with a, and the lower edge with b
(Fig. 10 shows the tree T4). Tk has 2k+2−3 nodes. This tree has Ω(k) = Ω(log n)
different covers of the same length (this cannot happen for covers of strings).

4.1 O(n2) Time and Space Solution

We say that a set M of simple paths in a tree T covers T if each edge of T is
on some path in M . We define an auxiliary problem that will be used to test
candidates for a cover.

Strips Covering Problem
Input: A set M of simple paths in an undirected tree T (given by their
endpoints).
Output: YES if M covers T , NO otherwise.
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Fig. 10. The undirected tree T4. It has 44 distinct covers and there are many distinct
aperiodic covers of the same length. Generally there are k(2k+3) covers in Tk. The label
of every path that starts in a leaf, has length at least two and if it ends with an edge with
a letter b, then it has a subpath with label aa, is a cover of Tk. The reverses of such labels
are also covers. There are 4 distinct covers of length 6: bababa, ababab, babaab, baabab.

Lemma 3. The Strips Covering Problem can be solved in O(|T | + |M |) time.

Proof. Let us root T in an arbitrarily chosen node. We can reduce the problem
to the case when each path π ∈ M is a bottom-up path. For a path π = u � v
we compute w = LCA(u, v) and replace π by two paths u � w, v � w. This
reduction works in linear time [6].

We use counters for nodes. For each node w initially count [w] = 0. Next for
each non-empty bottom-up path (u,w) we set count [u]+=1, count [w]–=1. An
edge (w, parent(w)) is covered by M if and only if the sum of counters of all
descendants of w (including w) is positive. These sums can be easily computed
in a bottom-up manner within the required complexity. In the end M covers T
if and only if all edges are covered. ��

Lemma 4. An undirected labeled tree with n nodes has at most 2n − 2 covers.

Proof. Take any leaf; the only edge connected to this leaf must be covered by a
first or last letter of the cover. An occurrence of the cover must appear on some
path in the tree, and each such path is determined by the two nodes on its ends.
As one end is fixed (the chosen leaf), there can only be n − 1 such paths. This
gives at most 2(n − 1) possible cover candidates. ��

Theorem 2. All covers of an undirected tree with n nodes can be computed in
O(n2) time and space.

Proof. We group all O(n2) paths in the tree by their string labels, and for each of
the k = O(n) candidates from Lemma 4 check if all paths in the group with the
same string label as the candidate cover the whole tree. If M1, . . . ,Mk are these
sets of paths, then the solution using Lemma 3 works in O(kn +

∑k
i=1 |Mi|) =

O(n2) time since the sets Mi are pairwise disjoint.
For grouping paths by their string labels we assign identifiers in {1, . . . , n2}

to all paths using the following algorithm:
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– The labels of edges are renumbered with integers in the range {1, . . . , n − 1}
in O(n log n) time.

– Given the identifiers of paths of length i, we compute paths of length i + 1
and assign identifiers to them by forming pairs of the form: (the identifier of
prefix path of length i, the identifier of the last edge), sorting them by radix
sort and renumbering with integers from {1, . . . , n2}. If pi+1 is the number of
paths of length i + 1, then this step takes O(pi+1 + n) time.

This gives O(n log n +
∑n

i=2(pi + n)) = O(n2) time and space. ��

4.2 O(n2 logn) Time and O(n) Space

Let us recall that there are O(n) candidates for a cover (see Lemma 4). In this
section we show how to check if each of them is a cover in O(n log n) time. We
use the following auxiliary problem together with a centroid decomposition.

Anchored Covering Problem
Input: Labeled tree T , its node r and a string C; |T | = n, |C| = m.
Output: All edges of T that are covered by occurrences of C in T that pass
through the node r.

Lemma 5. Anchored Covering Problem for a tree with n nodes can be solved in
O(n) time.

Proof. Let us root T in r. We denote by T1, T2, . . . , Tt the subtrees of r. For each
i ∈ {1, . . . , t}, we define Pi, Si as the set of nodes v ∈ Ti such that the label of the
path v � r is a prefix and a reverse of a suffix of C, respectively. For v ∈ Ti we
have v ∈ Pi (v ∈ Si) if TreePREFC [v] = depth(v) (TreePREFCR [v] = depth(v),
respectively, where depth(v) denotes the distance of v from the root r), so these
sets can be computed in O(n) time (cf. Lemma 1).

A node v is called good if it is an endpoint of an undirected path labeled C
and passing through r.

Claim 1. v ∈ Ti is good if there is a node u ∈ Tj , j �= i such that

(depth(u) + depth(v) = m) and (u ∈ Sj , v ∈ Pi or u ∈ Pj , v ∈ Si).

We use the function MarkNodes to mark good nodes. In the pseudocode we
denote by depths(W ) a list of depths of nodes in W . We represent each of the
sets PrefDepths, SufDepths by its characteristic vector so that adding a set
depths(W ) to them can be done in time proportional to the number of inserted
elements.

In the algorithm AnchoredCovering we are implementing the claim and pro-
cess i’s in the ascending and descending orders; in the first pass PrefDepths,
SufDepths consist of depths of Pj , Sj of u ∈ Tj for all j < i and in the second
pass for j > i. Each pass works in O(n) time. In the end all edges that are
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Function MarkNodes(i)

Comment: (some) good nodes in the subtree Ti are marked

foreach v in Pi do
if m − depth(v) ∈ SufDepths then

mark v as a good node;

foreach v in Si do
if m − depth(v) ∈ PrefDepths then

mark v as a good node;

PrefDepths := PrefDepths ∪ depths(Pi);

SufDepths := SufDepths ∪ depths(Si);

Algorithm 2: AnchoredCovering

PrefDepths := SufDepths := ∅;
for i := 1 to t do MarkNodes(i);

PrefDepths := SufDepths := ∅;
for i := t down to 1 do MarkNodes(i);

return all edges on paths from marked nodes to r;

located on paths v � root for good nodes v are computed in O(n) time with a
simple bottom-up traversal. ��

Let T1, T2, . . . , Tt be the connected components obtained after removing a
node r from T . The node r is called a centroid of T if |Ti| ≤ n/2 for all Ti.

The centroid decomposition of T , CDecomp(T ), is defined recursively as:

CDecomp(T ) = {(T, r)} ∪
t⋃

i=1

CDecomp(Ti).

Every tree has a centroid, see [15], and a centroid of a tree can be computed in
O(n) time.

The recursive definition of CDecomp(T ) implies the following bounds.

Fact 3. For a tree T with n nodes, the total size of all subtrees in CDecomp(T )
is O(n log n). The decomposition CDecomp(T ) can be computed in O(n log n)
time and O(n) additional space (excluding the space used for storing the output).

Theorem 3. One can check if a given string covers an undirected tree with n
nodes in O(n log n) time and O(n) space.

Proof. A known property of a centroid decomposition is that for every path π
in T there exists an element (T ′, r′) ∈ CDecomp(T ) such that π is a path in
T ′ that passes through r′. We generate the pairs (T ′, r′) forming CDecomp(T )
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one by one, for each of them solve an instance of the Anchored Covering Prob-
lem, and mark all edges returned by each instance. The complexity follows by
Fact 3. ��

Corollary 1. All covers of an undirected tree can be computed in O(n2 log n)
time and O(n) space.
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Abstract. We propose a new compressed text index built upon a gram-
mar compression based on induced suffix sorting [Nunes et al., DCC’18].
We show that this grammar exhibits a locality sensitive parsing prop-
erty, which allows us to specify, given a pattern P , certain substrings
of P , called cores, that are similarly parsed in the text grammar when-
ever these occurrences are extensible to occurrences of P . Supported by
the cores, given a pattern of length m, we can locate all its occ occur-
rences in a text T of length n within O(m lg |S| + occC lg |S| lg n + occ)
time, where S is the set of all characters and non-terminals, occ is the
number of occurrences, and occC is the number of occurrences of a cho-
sen core C of P in the right hand side of all production rules of the
grammar of T . Our grammar index requires O(g) words of space and
can be built in O(n) time using O(g) working space, where g is the sum
of the lengths of the right hand sides of all production rules. We practi-
cally evaluate that our proposed index excels at locating long patterns
in highly-repetitive texts. Our implementation is available at https://
github.com/TooruAkagi/GCIS Index.

Keywords: Grammar compression · Locality sensitive parsing ·
Induced suffix sorting · Text indexing data structure

1 Introduction

Compressed text indexes have become the standard tool for maintaining highly-
repetitive texts when full-text search queries like locating all occurrences of a
pattern are of importance. When working on indexes on highly-repetitive data,
a desired property is to have a self-index, i.e., a data structure that supports
queries on the underlying text without storing the text in its plain form. One
type of such self-indexes are grammar indexes, which are an augmentation of the
admissible grammar [20] produced by a grammar compressor. Grammar indexes
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exhibit strong compression ratios for semi-automatically generated or highly-
repetitive texts. Unlike other indexes that perform pattern matching stepwise
character-by-character, some grammar indexes have locality sensitive parsing
properties, which allow them to match certain non-terminals of the admissible
grammar built upon the pattern with the non-terminals of the text. Such a
property helps us to perform fewer comparisons, and thus speeds up pattern
matching for particularly long patterns, which could be large gene sequences in
a genomic database or source code files in a database maintaining source code.
Here, our focus is set on indexes that support locate(P ) queries retrieving the
starting positions of all occurrences of a given pattern P in a given text.

1.1 Our Contribution

Our main contribution is the discovery of a locality sensitive parsing property in
the grammar produced by the grammar compression by induced sorting (GCIS)
[29], which helps us to answer locate with an index built upon GCIS with the
following bounds:

Theorem 1. Given a text T of length n, we can compute an indexing data
structure on T in O(n) time, which can locate all occ occurrences of a given
pattern of length m in O(m lg |S|+occC lg n lg |S|+occ) time, where S is the set
of characters and non-terminals of the GCIS grammar and occC is the number
of occurrences in the right side of the production rules of the GCIS grammar of
a selected core of the pattern, where a core is a string of symbols of the grammar
of P defined in Sect. 4.1. Our index uses O(g) words of working space, where g
is the sum of the lengths of the right hand sides of all production rules.

Similar properties hold for other grammars such as the signature encoding
[25], ESP [7], HSP [16], the Rsync parse [17], or the grammar of [3, Sect. 4.2]. A
brief review of these and other self-indexes follows.

1.2 Related Work

With respect to indexing a grammar for answering locate, the first work we
are aware of is due to [5] who studied indices built upon so-called straight-line
programs (SLPs). An SLP is a context-free grammar representing a single string
in the Chomsky normal form.

Other research focused on particular types of grammar, such as the ESP-
index [24,31,32], an index [4] combining Re-Pair [22] with the Lempel–Ziv-77
parsing [34], a dynamic index [26] based on signature encoding [25], the Lyndon
SLP [33], or the grammar index of [3]. For the experiments in Sect. 5, we will
additionally have a look at other self-indexes capable of locate-queries. There, we
analyze Burrows–Wheeler-transform (BWT) [2]-based approaches, namely the
FM-index [15] and the r-index [18].

Finally, the grammar GCIS has other interesting properties besides being
locality sensitive. [28] showed how to compute the suffix array and the longest-
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common-prefix array from GCIS during a decompression step restoring the orig-
inal text. Recently, [8] showed how to compute the BWT directly from the GCIS
grammar.

2 Preliminaries

With lg we denote the logarithm to base two (i.e., lg = log2). Given two integers
i, j, we denote the interval [i..j] = {i, i + 1, . . . , j − 1, j}, with [i..j] = {} if
i > j. Our computational model is the standard word RAM with machine word
size Ω(lg n), where n denotes the length of a given input string T [1..n], which
we call the text , whose characters are drawn from an integer alphabet Σ of size
nO(1). We call the elements of Σ characters. For a string S ∈ Σ∗, we denote
with S[i..] its i-th suffix, and with |S| its length. The order < on the alphabet Σ
induces a lexicographic order on Σ∗, which we denote by ≺.

2.1 Induced Suffix Sorting

SAIS [27] is a linear-time algorithm for computing the suffix array [23]. We
briefly review the parts of SAIS important for constructing the GCIS grammar.
SAIS assigns each suffix a type, which is either L or S: T [i..] is an L suffix if
T [i..] � T [i + 1..], or T [i..] is an S suffix otherwise, i.e., T [i..] ≺ T [i + 1..],
where we stipulate that T [|T |] is always type S. Since it is not possible that
T [i..] = T [i+1..], SAIS assigns each suffix a type. An S suffix T [i..] is additionally
an S∗ suffix (also called LMS suffix in [27]) if T [i−1..] is an L suffix. The substring
between two succeeding S∗ suffixes is called an LMS substring . In other words,
a substring T [i..j] with i < j is an LMS substring if and only if T [i..] and T [j..]
are S∗ suffixes and there is no k ∈ [i + 1..j − 1] such that T [k..] is an S∗ suffix.
Regarding the defined types, we make no distinction between suffixes and their
starting positions (e.g., the statements that (a) T [i] is type L and (b) T [i..] is an
L suffix are equivalent). In fact, we can determine L and S positions solely based
on their succeeding positions with the equivalent definition: if T [i] > T [i + 1],
then T [i] is L; if T [i] < T [i + 1], then T [i] is S; finally, if T [i] = T [i + 1], then
T [i] has the same type as T [i + 1].

The LMS substrings of #T for # being a special character smaller than all
characters appearing in T such that #T starts with an S∗ position, induce a
factorization of T = F1 · · · Fz, where each factor starts with an LMS substring.
We call this factorization LMS-factorization. By replacing each factor Fi by the
lexicographic rank of its respective LMS substring1, we obtain a string T (1) of
these ranks. We recurse on T (1) until we obtain a string T (τT −1) whose rank-
characters are all unique or whose LMS-factorization consists of at most two
factors.
1 For SAIS to work, it uses a slightly different order on the LMS substrings, called

LMS-order. It differs from the lexicographic order when comparing two LMS sub-
strings, where one of them is a prefix of the other. In such a case, the LMS-order
would give the longer string a smaller rank.
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2.2 Constructing the Grammar

We assign each computed factor F
(h)
j a non-terminal X

(h)
j such that X

(h)
j →

F
(h)
j , but omit the delimiter #. The order of the non-terminals X

(h)
j is induced

by the lexicographic order of their respective LMS-substrings. We now use the
non-terminals instead of the lexicographic ranks in the recursive steps. If we
set X(τT ) → T (τT −1) as the start symbol, we obtain a context-free grammar
GT := (Σ,Γ, π,X(τT )), where Γ is the set of non-terminals and a function π :
Γ → (Σ ∪ Γ )+ that applies (production) rules. For simplicity, we stipulate that
π(c) = c for c ∈ Σ. Let g denote the sum of the lengths of the right hand sides
of all grammar rules. We say that a non-terminal (∈ Γ ) or a character (∈ Σ) is
a symbol , and denote the set of characters and non-terminals with S := Σ ∪ Γ .
We understand π also as a string morphism π : S∗ → S∗ by applying π on
each symbol of the input string. This allows us to define the expansion π∗(X)
of a symbol X, which is the iterative application of π until obtaining a string of
characters, i.e., π∗(X) ⊂ Σ∗ and π∗(X(τT )) = T . Since π(X) is deterministically
defined, we use to say the right hand side of X for π(X).

Lemma 1 ([29]). The GCIS grammar GT can be constructed in O(n) time. GT

is reduced, meaning that we can reach all non-terminals of Γ from X(τT ).

GT can be visualized by its derivation tree TT , which has X(τT ) as
its root. Each rule X

(h)
k → X

(h−1)
i · · · X(h−1)

j defines a node X
(h)
k having

X
(h−1)
i , . . . , X

(h−1)
j as its children. The height of TT is τT = O(lg n) because

the number of LMS substrings of T (h) is at most half of the length of T (h) for
each recursion level h. The leaves of TT are the terminals at height 0 that con-
stitute the characters of the text T . Reading the nodes on height h ∈ [0..τT − 1]
from left to right gives T (h) with T (0) = T . Note that we use TT only as a con-
ceptional construct since it would take O(n) words of space. Instead, we merge
(identical) subtrees of the same non-terminal together to form a directed acyclic
graph DAG, which is implicitly represented by π as follows:

By construction, each non-terminal appears exactly in one height of TT . We
can therefore separate the non-terminals into the sets Γ (1), . . . , Γ (τT ) such that a
non-terminal of height h belongs to Γ (h). More precisely, π maps a non-terminal
on height h > 1 to a string of symbols on height h − 1. Hence, the grammar is
acyclic.

3 GCIS Index

In what follows, we want to show that we can augment GT with auxiliary data
structures for answering locate. Our idea stems from the classic pattern matching
algorithm with the suffix tree [19, APL1]. The key difference is that we search
the core of a pattern in the right hand sides of the rules. For that, we make
use of the generalized suffix tree GST built upon the right hand sides of all
rules separated by a special delimiter symbol $ being smaller than all symbols.



Grammar Index by Induced Suffix Sorting 89

Specifically, we rank the rules such that {X1, . . . , X|Γ |} = Γ (this ranking will be
fixed later), and set R := π(X1)$π(X2)$ · · · π(X|Γ |)$. Since we have a budget of
O(g) words, we can afford to use a plain pointer-based tree topology. Each leaf λ
stores a pointer to the non-terminal X(h) and an offset o such that π(X(h))[o..]
is a prefix of λ’s string label. Next, we need the following operations on GST:
First, lca(u, v) gives the lowest common ancestor (LCA) of two nodes u and v.
We can augment GST with the data structure of [1] in linear time and space in
the number of nodes of GST. This data structure answers lca in constant time.
Next, child(u, c) gives the child of the node u connected to u with an edge having
a label starting with c ∈ Γ . Our GST implementation answers child in O(lg |S|)
time. For that, each node stores the pointers to its children in a binary search
tree with the first symbol of each connecting edge as key. Finally, string depth(v)
returns the string depth of a node v, i.e., the length of its string label, which
is the string read from the edge labels on the path from the root to v. We can
compute and store the string depth of each node during its construction. The
operation child allows us to compute the locus of a string S, i.e., the highest
GST node u whose string label has S as a prefix, in O(|S| lg |S|) time. For each
π(X), we augment the locus u of π(X)$ with a pointer to X such that we can
perform lookup(S) returning the non-terminal X with π(X) = S or an invalid
symbol ⊥ if such an X does not exist. The time is dominated by the time for
computing the locus of S. Finally, all leaves in suffix order are stored in a linked
list such that we can traverse the leaves in lexicographic order with respect to
their corresponding suffixes.

Linkage to the Grammar. Each rule X ∈ Γ stores an array X.P of |π(X)|
pointers to the leaves in GST such that the X.P [i] points to the leaf that points
back to X and has offset i (its string label has π(X)[i..] as a prefix). Additionally,
each rule X stores the length of π(X), an array X.L of all expansion lengths of all
its prefixes, i.e., X.L[i] :=

∑i
j=1 |π∗(π(X)[j])|, and an array X.R of the lengths

of the right hand sides of all its prefixes, i.e., X.R[i] :=
∑i

j=1 |π(π(X)[j])|.

LCE Queries. Each internal node v stores a pointer to the leftmost leaf in the
subtree rooted at v. With that we can use the function lce(X,Y, i, j) returning
the longest common extension (LCE) of π(X)[i..] and π(Y )[j..] for X,Y ∈ Γ
and i ∈ [1..|π(X)|], j ∈ [1..|π(Y )|]. We can answer lce(X,Y, i, j) by selecting the
leaves X.P [i] and Y.P [j], retrieve the LCA lca(X.P [i], Y.P [j]) of both leaves,
and take its string depth, all in constant time. More strictly speaking, we return
min(|π(X)[i..]|, |π(Y )[j..]|, string depth(lca(X.P [i], Y.P [j]))), since the delimiter $
is not a unique character, but appears at each end of each right hand side in the
underlying string R of GST.

Complexity Bounds. GST can be computed in O(g) time [13]. The grammar
index consists of the GCIS grammar, GST built upon |R| = g + |Γ | symbols,
and augmented with a data structure for lca [1]. This all takes O(g) space. Each
non-terminal is augmented with an array X.P of pointers to leaves, X.L and
X.R storing the expansion lengths of all prefixes of π(X), which take again O(g)
space when summing over all non-terminals.



90 T. Akagi et al.

4 Pattern Matching Algorithm

Like [30, Sect. 2], our idea is to first fix a core C of a given pattern P , find the
occurrences of C in the text, and then try to extend all these occurrences to
occurrences of P .

4.1 Cores

A core C is a string of symbols of the GCIS grammar GP built on the pattern P
with the following property: given C consists of consecutive nodes on height h ≥
0 in TT , if there is an occurrence of C in TT being a set of nodes on height h
that have not the same parent node on height h + 1, then the expansion of this
occurrence of C does not lead to an occurrence of P . So for each occurrence of C
in TT whose expansion is contained in an occurrence of P , this occurrence is a
(not necessarily proper) substring of the right hand side of a rule of GT .

We qualify a core by the difference in the number of occurrences of P and
C in TT . On the one hand, although a character P [i] always qualifies as a core,
the appearance of P [i] in T is unlikely to be an evidence of an occurrence of P .

On the other hand, the non-terminal covering most of the characters of P
might not be a core. Hence, we aim for the highest possible non-terminal, for
which we are sure that it exhibits the core property.

Finding a Core. We determine a core C of P during the computation of the
GCIS grammar GP of P . During this computation, we want to assure that we
only create a new non-terminal for a factor F whenever lookup(F ) = ⊥; if
lookup(F ) = X, we borrow the non-terminal X from GT . By doing so, we ensure
that non-terminals of GP and GT are identical whenever their right hand sides of
their productions are equal. In detail, if we create the factors P (h) = F

(1)
1 · · · F (h)

zh ,
we first retrieve Y

(h)
i := lookup(P (h)) for each i ∈ [2..zh −1]. If one of the lookup-

queries returns ⊥, we abort since we can be sure that the pattern does not occur
in T . That is because all non-terminals Y

(h)
2 , . . . Y

(h)
zh−2 classify as cores. To see

this, we observe that prepending or appending symbols to P (h) does not change
the factors F

(h)
2 , . . . , F

(h)
z−1 =: C(h).

Correctness. We show that prepending or appending characters to F
(h)
1 C(h)

F
(h)
zh does not modify the computed factorization of C(h) = F

(h)
2 , . . . , F

(h)
z−1. What

we show is that we cannot change the type of any position C(h)[i] to S∗: Firstly,
the type of a position (S or L) depends only on its succeeding position, and hence
prepending cannot change the type of a position in C(h). Secondly, appending
characters can either prolong F

(h)
zh or create a new factor F

(h)
zh+1 since F

(h)
zh starts

with S∗, and therefore appending cannot change C(h). An additional insight is
that on the one side, prepending character can only introduce a new factor or
extend F

(h)
1 . On the other side, appending characters can introduce at most one

new S∗ position in F
(h)
zh that can make it split into two factors. We will need this

observation later for extending the core to the pattern.



Grammar Index by Induced Suffix Sorting 91

The construction of GP iterates the LMS factorization until we are left with
a string of symbols P (τP ) whose LMS factorization consists of at most two fac-
tors. In that case, we partition P (τP ) into three substrings CpCCs with Cp and
Cs possibly empty, and defined by one of the following mutually exclusive con-
ditions: (1) If the LMS factorization consists of two non-empty factors F1 · F2,
then Cp is F1. (2) Given P (τP ) = (P (τP )[j1])c1 · · · (P (τP )[jk])ck is the run-length-
encoded representation of P with 1 = j1 < . . . < jk = |P (τP )|, cji

≥ 1 for
i ∈ [1..k], and P [ji] 
= P [ji+1] for i ∈ [1..k − 1], we set Cs ← (P (τP )[jk])ck if
P (τP )[jk] < P (τP )[jk−1]. (3) In the other cases, Cp and/or Cs are empty.

To see why C is a core, we only have to check the case when Cs is empty.
The other cases have already been covered by the aforementioned analysis of the
cores on the lower heights. If Cs is empty, then C ends with P , and as a border
case, the last position of C is S∗. In that case, appending a symbol smaller than
P [m] to F

(h)
1 C changes the type of the last position of C to L. If we append

a symbol larger than P [m], then the last position of C becomes S, but does
not become S∗ since P (τP )[jk] > P (τP )[jk−1] due to construction (otherwise Cs

would not be empty).
In total, there are symbols A(1), . . . , A(τP −1) and S(1), . . . , S(τP −1) such that

P = π(F (1)
1 · · · F (τP −2)

1 A(1) · · · A(τP −2)CS(τP −2) · · · S(1)F (τP −2)
zτP −2

· · · F (1)
z1

), (1)

and A(h), S(h) ∈ Γ (h) are cores of P , while F
(h)
1 , F

(h)
zh ∈ (Γ (h−1))∗ are factors.

4.2 Matching with GST

Having C, we now switch to GST and use it to find all DAG parents of C,
whose number we denote by occC ∈ O(g). This number is also the number of
occurrences of C in the right hand sides of all rules of GT . Having these parents,
we want to find all lowest DAG ancestors of C whose expansions are large enough
to not only cover C but also P by extending C to its left and right side—see Fig. 1
for a sketch. We proceed as follows: We first compute the locus v of C in GST in
O(|C| lg |S|) time via child. Subsequently, we take the pointer to the leftmost leaf
in the subtree rooted at v, and then process all leaves in this subtree by using the
linked list of leaves. For each such leaf λ, we compute a path in form of a list λL

from the non-terminal containing C on its right hand side up to an ancestor of it
that has an expansion large enough to cover P if we would expand the contained
occurrence of C to P . We do so as follows: Each of these leaves stores a pointer
to a non-terminal X and a starting position i such that we know that π∗(X)[i..]
starts with π∗(C). By knowing the expansion lengths X.L[|π(X)|], X.L[i − 1],
and |π∗(C)|, we can judge whether the expansion of X has enough characters to
be able to extend its occurrence of C to P . If it has enough characters, we put
(X, i) onto λL such that we know that π∗(X)[X.L[i − 1] + 1..] has C as a prefix.
If X does not have enough characters, we exchange C with X and recurse on
finding a non-terminal with a larger expansion. By doing so, we visit at most
τT = O(lg n) non-terminals per occurrence of C in the right hand sides of GT .
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Fig. 1. Deriving a non-terminal Y (h) with π∗(Y (h)) containing P from a non-
terminal Y (τP ) with π∗(Y (τP )) containing π∗(C). The expansion of none of the descen-
dants of Y (h) towards Y (τP ) is large enough for extending its contained occurrence of
π∗(C) to an occurrence of P . We can check the expansion lengths of the substrings in
π(Y (h)) via the array Y (h).L.

We perform all operations in O(occCτT lg |S|) time because we query child in
every recursion step.

The previous step computes, for each accessed leaf λ, a list λL containing
a DAG path (Y (h), . . . , Y (τP )) of length O(τT ) and an offset o(τP ) such that
Y (τP )[o(τP )..] starts with C. By construction, these paths cover all occurrences of
C in TT . Note that we process the DAG node Y (τP ) (but for different offsets o(τP ))
as many times as C occurs in π(Y (τP ))). In what follows, we try to expand the
occurrence of C captured by Y (τP ) and o(τP ) to an occurrence of P .

Naively, we would walk down from Y (τP )[o(τP )] to the character level and
extend the substring π∗(C) in both directions by character-wise comparison with
P . However, this would take O(occCmτT ) time since such a non-terminal Y (h)

is of height O(τT ). Our claim is that we can perform the computation in O(m+
occCτT ) time with the aid of lce and an amortization argument.

For that, we use Eq. (1), which allows us to use LCE queries in the sense that
we can try to extend an occurrence of C with an already extended occurrence
(that maybe does not match P completely). For the explanation, we only focus
on extending all occurrences of C to the right to CCs (the left side side is done
symmetrically). We maintain an array D of length τP storing pairs (X(h), �h) for
each height h ∈ [1..τP −1] such that π(X(h)) has the currently longest extension
of length �h with the core S(h−1) of P in common (cf. Eq. (1)). By maintaining D,
we can first query lce with the specific non-terminal in D, and then resort to
plain symbol comparison. We descend to the child where the mismatch happens
and recurse until reaching the character level of TT . This all works since by the
core property the mismatch of a child means that there is a mismatch in the
expansion of this child. Since a plain symbol comparison with matching symbols
lets us exchange the currently used non-terminal in D with a longer one, we can
bound (a) the total number of naive symbol matches to O(m) and (b) the total
number of naive symbol mismatches and LCE queries to O(occCτT ).

Finding the Starting Positions. It is left to compute the starting position in T
of each occurrence captured by an element in W . We can do this similarly to
computing the pre-order ranks in a tree: For each pair (X, �) ∈ W , climb up DAG
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from X to the root while accumulating the expansion lengths of all left siblings
of the nodes we visit (we can make use of X.L for that). If this accumulated
length is s, then � + s is the starting position of the occurrence captured by
(X, �). However, this approach would cost O(τT ) time per element of W . Here,
we use the amortization argument of [6, Sect. 5.2], which works if we augment,
in a pre-computation step, each non-terminal X in Γ with (a) a pointer to the
lowest ancestor YX on every path from X to the DAG root that has X at least
twice as a descendant, and (b) the lengths of the expansions of the left siblings
of the child of YX being a parent of X or X itself. By doing so, when taking a
pointer of a non-terminal X to its ancestor YX , we know that X has another
occurrence in DAG (and thus there is another occurrence of P ). Therefore, we
can charge the cost of climbing up the tree with the amount of occurrences occ
of the pattern.

Total Time. To sum up, we spent O(m lg |S|) time for finding C, O(occCτT lg |S|)
time for computing the non-terminals covering C, O(m + occCτT ) time for
reducing these non-terminals to W , and O(occ) time for retrieving the start-
ing positions of the occurrences of P in T from W . To be within our O(g) space
bounds, we can process each DAG parent of C individually, and keep only D
globally stored during the whole process. The total additional space is therefore
O(τT ) ⊂ O(g) for maintaining D and a path for each occurrence of C.

5 Implementation and Experiments

The implementation deviates from theory with respect to the rather large hid-
den constant factor in the O(g) words of space. We drop GST, and represent
DAG with multiple arrays. For that, we first enumerate the non-terminals as
follows: The height and the lexicographic order induce a natural order on the
non-terminals in Γ , which are ranked by first their height and secondly by
the lexicographic order of their right hand sides, such that we can represent
Γ = {X1, . . . , X|Γ |}. By stipulating that all characters are lexicographically
smaller than all non-terminals, we obtain the property that π(Xi) ≺ π(Xi+1)
for all i ∈ [1..|Γ | − 1]. In the following, we first present a plain representation of
DAG, called GCIS-nep, then give our modified locate algorithm, and subsequently
present a compressed version of DAG using universal coding, called GCIS-uni.
Finally, we evaluate both implementations in Sect. 5.

Our first implementation, called GCIS-nep2, represents each symbol with
a 32-bit integer. We use R :=

∏|Γ |
i=1 π(Xi) again, but omit the delimiters $

separating the right hand sides. To find the right hand side of a non-terminal
Xi, we create an array of positions Q[1..|Γ |] such that Q[i] points to the starting
position of π(Xi) in R. Finally, we create an array L[1..|Γ |] storing the length of
the expansion |π∗(Xi)| in L[i], for each non-terminal Xi. Due to the stipulated
order of the symbols, the strings R[Q[i]..Q[i + 1] − 1] are sorted in ascending

2 GCIS-nep stands for GCIS with non-terminals encoded plainly.
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Table 1. Sizes of the used datasets and the indexes stored on disk. Sizes are in
megabytes [MB].

Dataset Input size GCIS-nep GCIS-uni ESP-index FM-index r-index

commoncrawl 221.180 220.119 138.856 156.006 122.575 454.124

dna 403.927 527.553 327.852 297.001 216.153 2123.817

einstein.de 92.758 1.139 0.428 0.697 40.291 1.1458

english.001.2 104.857 14.784 7.489 10.464 46.981 14.389

fib41 267.914 0.001 0.001 0.001 71.305 0.007

influenza 154.808 23.373 13.871 15.729 53.066 28.775

kernel 257.961 21.298 10.469 12.545 125.087 28.947

rs.13 216.747 0.002 0.001 0.002 57.653 0.009

tm29 268.435 0.002 0.001 0.002 69.347 0.009

world leaders 46.968 5.415 2.573 3.611 21.097 5.627

order. Hence, we can evaluate lookup(S) for a string S in O(|S| lg |S|) time by a
binary search on Q with i �→ R[Q[i]..Q[i + 1] − 1] as keys.

Locate. Our implementation follows theory for computing GP and C (cf.
Sect. 4.1) in the same time bounds, but deviates after computing the core C:
To find all non-terminals whose right hand sides contain C, we linearly scan
the right hand sides of all non-terminals on height τP , which we can do cache-
friendly since the right-hands of R are sorted by the height of their respective
non-terminals. This takes O(g + |C|) time in total with a pattern matching
algorithm [21].

Finally, for extending a found occurrence of the core C to an occurrence of P ,
we follow the naive approach to descend DAG to the character level and compare
the expansion with P character-wise, which results in O(occC |P |τT ) time. The
total time cost is O(g + |P |(occCτT + lg |S|)).
GCIS -uni. To save space, we can leverage universal code to compress the right
hand sides of the productions. First, we observe that Q and the first symbols F :=
π(X1)[1], . . . , π(X|Γ |)[1] form an ascending sequence, such that we represent both
Q and F in Elias–Fano coding [11]. Next, we observe that each right hand
side π(Xi) form a bitonic sequence: the ranks of the first �i symbols are non-
decreasing, while rest of the ranks are non-increasing. Our idea is to store �i and
the rest of π(Xi)[2..] in delta-coding, i.e., Δ[i][k] := |π(Xi)[k] − π(Xi)[k − 1]|
for k ∈ [2..|π(Xi)|], which is stored in Elias-γ code [12]. Although π(Xi)[k] −
π(Xi)[k − 1] < 0 for k > �i, we can decode π(Xi)[k] by subtracting instead of
adding the difference to π(Xi)[k − 1] as usual in delta-coding. Hence, we can
replace R with Δ, but need to adjust Q such that Q[i] points to the first bit
of Δ[i]. Finally, like in the first variant, we store the expansion lengths of all
non-terminals in L. Here, we separate L in a first part using 8 bits per entry,
then 16 bits per entry, and finally 32 bits per entry. To this end, we represent
L by three arrays, start with filling the first array, and continue with filling
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Fig. 2. Maximum memory consumption (top) and time (bottom) during the construc-
tion of the indexes.

the next array whenever we process a value whose bit representation cannot be
stored in a single entry of the current array. Since Elias–Fano code supports
constant-time random access and Elias-γ supports constant-time linear access,
we can decode π(Xi) by accessing F [i] and then sequentially decode Δ[i]. Hence,
we can simulate GCIS-nep with this compressed version without sacrificing the
theoretical bounds. We call the resulting index GCIS-uni.

Experiments. In the following we present an evaluation of our C++ implemen-
tation and different self-indexes for comparison, which are the FM-index [14],
the ESP-Index [32], and the r-index [18]3. All code has been compiled with
gcc-10.2.0 in the highest optimization mode -O3. We ran all our experiments
with an Intel Xeon CPU X5670 clocked at 2.93 GHz running Arch Linux.

Our datasets shown in Table 1 are from the Pizza&Chili and the tudocomp [9]
corpus.4 With respect to the index sizes, we have the empirically ranking GCIS-
uni < ESP-index < GCIS-nep, followed by one of the BWT-based indexes. While

3 See https://github.com/mpetri/FM-Index, https://github.com/tkbtkysms/esp-
index-I, and https://github.com/nicolaprezza/r-index, respectively.

4 To save space, we renamed the datasets commoncrawl.ascii.txt and ein-
stein.de.txt to commoncrawl and einstein.de, respectively.

https://github.com/mpetri/FM-Index
https://github.com/tkbtkysms/esp-index-I
https://github.com/tkbtkysms/esp-index-I
https://github.com/nicolaprezza/r-index
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the r-index needs less space than the FM-index on highly-compressible datasets,
it is the least favorable option of all indexes for less-compressible datasets.
Figure 2 gives the time and memory needed for constructing the indexes.

Fig. 3. Time for locate while scaling the pattern length on the datasets english.001.2
(left) and fib41 (right). The plots are in logscale. The right figure does not feature
the FM-index, which takes considerably more time than the other approaches. For the
same reason, there is no data shown for the ESP-index for small pattern lengths, which
needs 170 s on average for |P | = 10.

Fig. 4. Left: The average height τP of GP for a pattern of a certain length. Right:
Percentage of the computation of GP in relation to the whole running time for answering
locate(P ) with GCIS-nep.

We can observe in Fig. 3 that our indexes answer locate(P ) fast when P is suf-
ficiently long or has many occurrences occ in T . GCIS-uni is always slower than
GCIS-nep due to the extra costs for decoding. In particular for english.001.2,
GCIS-nep is the fastest index when the pattern length reaches 10000 characters
and more. At this time, the pattern grammar reached a height τP of almost six,
which is the height τT . The algorithm can extend an occurrence of a core to a pat-
tern occurrence by checking only 80–100 characters. However, when the pattern
surpasses 5000 characters, the computation of GP becomes the time bottleneck.
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With that respect, the ESP-index shares the same characteristic. encoding make
slow down the location time by about 2 to 10 times approximately. Let us have a
look at the dataset fib41, which is linearly recurrent [10], a property from which
we can derive the fact that a pattern that occurs at least once in T has actually
a huge number of occurrences in T . There are almost 3,000,000 occurrence of
patterns with a length of 100. Here, we observe that our indexes are faster than
ESP-index. ESP-index needs more time for locate than GCIS because GCIS can
form a core than covers a higher percentage of the pattern than the core selected
by ESP. FM-index, and ESP-index with |P | = 10 take 100 s or more on average
– we omitted them in the graph to keep the visualization clear.

In Fig. 4, we study the maximum height τP = O(lg |P |) that we achieved for
the patterns with |P | = 100 in each dataset. For this experiment, we randomly
select a position j in T and extracted P = T [j..j + 99]. For every dataset, we
could observe that τP is logarithmic to the pattern length, especially for the
artificial datasets fib41, tm29, and rs.13, where τP is empirically larger than
measured in other datasets. In dna and commoncrawl, τP is at most 3 , but
this is because τT = 3 for these datasets.
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Abstract. A grammar self-index of a text T (Claude et al. 2012) con-
sists of a grammar G that only produces T and a geometric data struc-
ture that indexes the string cuts of the right-hand sides of G’s rules.
This representation uses space proportional to G, the size of the gram-
mar, which is small when the text is repetitive. However, the index is
slow for matching long patterns; it finds the occ occurrences of a pattern
P [1..m] in O((m2 + occ) log G) time. The most expensive part is a set of
binary searches for the different cuts P [1..j]P [j + 1..m] in the geometric
data structure. Christiansen et al. 2010 solved this problem by build-
ing a locally consistent grammar that only searches for O(log m) cuts of
P . Their representation, however, requires significant extra space (tough
still in O(G)) to store a set of permutations for the nonterminal symbols.
In this work, we propose another locally consistent grammar that builds
on the idea of LMS substrings (Nong et al. 2009). Our grammar also
requires to try O(log m) cuts when searching for P , but it does not need
to store permutations. As a result, we obtain a self-index that searches in
time O((m log m + occ) log G) and is of practical size. Our experiments
showed that our index is faster than previous grammar-based indexes
at the price of increasing the space by a 1.8x factor on average. Other
experimental results showed that our data structure becomes convenient
when the patterns to search for are long.

Keywords: Grammar compression · LMS-substrings · Locally
consistent parsing

1 Introduction

Self-indexes built on dictionary compression [19] have gained increasing atten-
tion in recent years as they can reduce the space usage of massive repetitive
text collections by orders of magnitude, while still supporting direct access and
pattern searches on the text. Among those, grammar-based self-indexes [13] are
promising as they allow to access the text with a logarithmic-time penalty [1].
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Claude and Navarro [6] proposed the first self-index based on grammar com-
pression. Its most recent version [8] offers relevant worst-case guarantees and is
competitive in both time and space. Given any context-free grammar of size G
representing a text T [1..n], the index uses 3 + ε words of space (i.e., (3 + ε) log n
bits) for any constant ε > 0, and finds all the occ occurrences of any pattern
P [1..m] in time O((m2 + occ) log G).

While this time complexity is practical for short patterns, the quadratic time
complexity becomes noticeable on longer ones. There have been several attempts
to decrease the m2 term in the time complexity. In the same article [8], they
show that the time can be reduced to O(m2 +(m+occ) logε G), for any constant
ε > 0, while maintaining the space within O(G), by replacing binary searches
with Patricia trees and using larger geometric data structures. More radically,
Christiansen et al. [5, App. A] showed that the time complexity can be reduced
to O(m log n + occ logε n), still within O(G) space, by using new data structures
called Z-fast tries instead of Patricia trees. Those improved time complexities
pay a significant price, however, in the constant hidden in the O(G) space term.
If implemented, this index is likely to be considerably larger than the classic
grammar-based index of Claude et al. [8].

The main contribution of Christiansen et al., however, is the design of a
particular grammar with local consistency properties, meaning that identical
text substrings are largely parsed in the same way. This feature helps to reduce
the number of anchor points of P that must be tested in the text (the meaning of
this concept will be made clear throughout the paper), from m − 1 to O(log m).
Such a significant reduction enables them to search in near-optimal time O(m+
(1 + occ) logε n). This scheme, however, only works on the particular grammar
they designed. Further, it is also likely that, if implemented, the heavy theoretical
machinery required to achieve their result produces a large index in practice.

Our Contribution We design a practical scheme to generate a locally consis-
tent grammar. We encode the result using the representation of Claude et al.
2021 to produce a self-index that locates the occurrences of a pattern P [1,m]
in O((m log m + occ) log G) time. Our method builds on a new idea to produce
a locally consistent parsing that uses induced suffix sorting [21]. We prove this
parsing is locally consistent and exploit the fact that, unlike Christiansen et
al. [5], it does not require us to store the alphabet permutations of the parsing
levels to perform pattern matching. When querying P in the index, we use the
lexicographical relations of its symbols to infer how its occurrences in T would
be parsed. By not generating the random permutations, we are likely to obtain a
larger grammar than Christiansen et al. We weigh this disadvantage by simpli-
fying our grammar in a way that does not affect its locally consistent properties.
Using induced suffix sorting for grammar compression is not new, nor is the
idea of simplifying the grammar [9,22]. However, self-indexing on those gram-
mar compressors, exploiting their local consistency properties, is a contribution
of this paper. Our experimental results showed that our grammar is compara-
ble in size with that of Christiansen et al., but, as explained before, does not
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require the permutations. Further experiments also showed that our self-index
is larger than that of Claude et al. 2021 (which we built on top of RePair), but
considerably faster as the pattern length grows.

2 Related Concepts

2.1 Grammar Compression

A context-free grammar, or just grammar, is a tuple G = (V,Σ,R, S) that
describes rewriting rules to produce a set of strings in Σ∗. In this tuple, V
is the alphabet of nonterminal symbols, Σ is the alphabet of terminal symbols,
R is a list of productions that maps nonterminals to strings over Σ ∪ V , and
S ∈ V is the start symbol of G. The nonterminals rewrite as strings, while ter-
minal symbols cannot be replaced. The rules in R are represented as A → B,
where A ∈ V and B ∈ (V ∪ Σ)∗, meaning that A is replaced by B. The set of
strings in Σ∗ we can obtain from S by recursively rewriting nonterminals is the
language generated by G, L(G). The parse tree of a string T ∈ L(G) is a labeled
ordinal tree that represents the recursive nonterminal replacements leading to T .
The root is labeled with S, the leaves are labeled with terminals spelling out T
left to right, and the internal nodes are labeled with nonterminals: the children
of A are, left to right, the symbols of B for some rule A → B ∈ R.

The aim in grammar compression is to encode an input string T [1..n] by
finding a small grammar G whose language is L(G) = {T}. In this grammar
there is exactly one rule A → B per A ∈ V ; we call exp(A) ∈ Σ∗ the only string
of terminals derived from A, and then T = exp(S). The size G = |G| of the
grammar is the sum of the lengths of all the right-hand sides of the rules. Then
we significantly compress T if we manage to build a grammar of size G � |T |
that generates only T . Even approximating the smallest grammar for T within a
small constant factor is NP-hard [4,25]. However, there are good heuristic that
perform well in practice, RePair [16] being the most popular one.

2.2 A Grammar Self-index

A classical grammar self-index [7,8] for a string T [1..n] consists of a grammar
G generating (only) T and a geometric data structure [3] used to perform effi-
cient pattern matching on T . Using O(G) space, the index locates all the occ
occurrences of a pattern P [1..m] in time O((m2 + occ) log G).

In order to use G, it is first (easily) modified to enforce some properties:

1. For every terminal a ∈ Σ, there is a nonterminal rule Xa → a.
2. There are no rules in R of the form A → ε or A → B with B ∈ V .
3. The nonterminal symbols are numbered such that, if X < Y , then the reverse

of exp(X) is lexicographically smaller than the reverse of exp(Y ).
4. Every nonterminal A ∈ V appears at least twice on the right-hand sides of

R. The only exceptions are S and the nonterminals produced from Σ.
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The index stores the grammar tree of G [7] (also called partial parse tree
[25]), which is a pruned version of the parse tree: if a nonterminal A ∈ V labels
several parse tree nodes, we maintain only the leftmost as an internal node and
convert the others to leaves. The leaves of the grammar tree induce a partition
of T into phrases, formed by the substrings exp(A) for the labels A of all the
leaves. Those phrases are indexed in the geometric data structure.

When searching for P [1..m] in the grammar self-index, we classify its occur-
rences into primary and secondary. Primary occurrences of P cross two or more
phrases, while secondary occurrences are completely contained within phrases.

The pattern matching algorithm first reports the primary occurrences of P ,
using the geometric structure to find all the distinct sequences of consecutive
phrases that contain P as a substring. For each such sequence, it obtains the
lowest common ancestor v of their corresponding grammar tree leaves. Say the
label of v is A ∈ V . We traverse upwards from A to the root S to find the
position of the occurrence in T (for every A child of A′ in the grammar tree,
the index stores the offset of exp(A) inside exp(A′)). Let A = A0, A1, A2, . . .
be the labels of the nodes traversed in the way to S. Apart from reporting
the primary occurrence, the algorithm also finds all the leaves in the grammar
tree labeled Ai and reports further (secondary) occurrences of P inside exp(Ai).
The ancestors of those leaves labeled Ai recursively trigger further secondary
occurrences. The total time amortizes to constant per occurrence thanks to the
grammar transformation rules applied.

The Grid Data Structure. We use the geometric data structure to locate the
primary occurrences of P . To build it, we first define two string sets; the first
one, Y, has |R| strings, and the second, X , has G − |R| + |Σ| strings. The sets
are built as follows; let A → B1 . . . Bt ∈ R be any nonterminal rule and let v
the internal node for A in the grammar tree. For every Bi, with i ∈ [1..t], we
insert the reverse sequence exp(Bi)r to Y. Additionally, for every proper suffix
Bi . . . Bt, with i ∈ [2, t], we insert the string exp(Bi) · · · exp(Bt) to X . We build
a matrix M of |Y| × |X | cells. Every row k is labeled with the string in Y with
lexicographic rank k. Equivalently, every column k′ is labeled with the string in
X with lexicographic rank k′. The cell of M in the intersection of the row for
exp(Bi)r and the column for exp(Bi+1) · · · exp(Bt) stores the identifier of the
(i + 1)th child of v in the grammar tree. This arrangement automatically gives
the lowest common ancestor v of the primary occurrence and the offset inside it.

Finding the Primary Occurrences. We cut P in two halves P [1..j] and
P [j + 1..m]. The idea is to locate the range of rows (y1, y2) in M whose labels
are prefixed by P [1..j]r and the range (x1, x2) of columns prefixed by P [j+1..m].
The non-empty cells within the grid range (x1, y1, x2, y2) point to the internal
nodes in the grammar tree with primary occurrences of P . We binary search for
P [1..j]r in the prefixes of Y to define (y1, y2), and binary search for P [j + 1..m]
in the prefixes of X to define (x1, x2). When comparing P [1..j]r against the row
labels, we decompress from the grammar tree the last j characters of the reversed
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string in Y. Similarly, when comparing P [j + 1..m] against the column labels,
we decompress the first m − j + 2 symbols of the string in X . The time for both
searches is then O(m log G) per partition of P , adding up to O(m2 log G) in total.
We can reduced this to O(m2), still within O(|G|) space, by using Patricia trees
on Y and X . Once we obtain a grid range, we get the p points inside it in time
O((1 + p) log G), which over all the partitions adds up to O((m2 + occ) log G).

Christiansen et al. [5, App. A] showed that one can obtain time O(m log n +
occ logε n) for any constant ε > 0 within space O(G), but the constant multiply-
ing their space is much higher and the resulting index is likely impractical.

2.3 Locally Consistent Parsing

Locally consistent parsing [18,26] is a method for partitioning a text T [1..n] into
a sequence of phrases in which equal substrings of T are largely parsed in the
same way. Let a phrase boundary be a pair of positions (j − 1, j) such that T [j]
is a prefix in the kth phrase and T [j − 1] is a suffix in the phrase preceding it.
A parsing is locally consistent if there are two integers a, b (which may depend
on n) such that, for every pair of equal substrings T [j..j + u] = T [j′..j′ + u],
only their first a and their last b phrase boundaries can differ. In general, a
locally consistent parsing algorithm puts a phrase boundary in T wherever some
specific symbol combination arises. The first and last phrases of T [j..j+u] might
be formed in a different way than those in T [j′..j′ + u] because they might be
preceded or followed by different symbols. Note that this approach differs from
other parsing algorithms such as Lempel-Ziv [27] or RePair [16], which use global
information on T to define its partition.

2.4 Locally Consistent Grammars

This type of grammars is constructed by applying successive rounds of locally
consistent parsing over T [1..n]. In every round i, we capture the distinct phrases
in the input text T i (T 1 = T ) and create new nonterminals rewriting to them.
We then build a new text T i+1 by replacing the phrases in T i with their cor-
responding nonterminal symbols. This new text T i+1 is the input for the next
round. The algorithm stops when T i can no longer be partitioned. If the phrases
in every T i are of length at least 2, then the string T i+1 is at most half the
length of T i, and thus the number of parsing rounds is O(log n) and the total
running time is of the same order as for parsing T .

The algorithm described above produces a balanced grammar G, which is
probably bigger than the one we obtain with RePair. In exchange, if a pattern P
appears more than once in T , then the parse subtrees containing its occurrences
will be almost identical, differing only in a few nodes at the ends of every tree
level. The internal part of the subtrees remains unchanged regardless P ’s context.
This can be exploited to speed up pattern matching.

Recently, Christiansen et al. [5] proposed a run-length locally-consistent
grammar of size G = O(γ log(n/γ)), where γ is the size of the smallest attractor
of T [12]. In their algorithm, the parsing rounds have two steps. In the first one,
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they create new nonterminal rules with the equal-symbol runs of T i. These rules
are of the form X → xl, where xl is a run of l copies of symbol x in T i (these
rules are of constant size). Then, they produce a new string T̂ i by replacing the
runs with their generating nonterminals. In the second round step, they define a
random permutation π : Σ̂i → [1..|Σ̂i|] for the symbols in the alphabet Σ̂i of T̂ i,
and use this permutation to partition T̂ i: each phrase ends in a local minima,
which is a position T̂ i[j] such that π(T̂ i[j − 1]) > π(T̂ i[j]) < π(T̂ i[j + 1]).

Christiansen et al. also showed that, if we build the self-index of Claude et al.
[8] using their grammar, then we require to test only O(log m) cuts of P to find
its primary occurrences in G. Their idea consists in preprocessing P at query time
with the same algorithm they used to build G. In every round i, they obtain the
symbols of P̂ i by querying the equal-symbol runs of P i in a hash table storing the
nonterminals assigned to the sequences of the form xl in G. Subsequently, they
query the phrases induced by the local minima of P̂ i in another hash table that
maps phrases (right-hand sides in R) to their nonterminal symbols. They use
the symbols returned from the lookups to compute P i+1. The prefix P̂ i[1..a] and
the suffix P̂ i[b..|P i|] that are not complete phrases do not have symbols in P i+1.
Analogously, the first and last equal-symbol runs of P i do not have symbols in
P̂ i as they are (possibly) incomplete. The preprocessing yields a list Q with the
positions in P that limit incomplete parsing phrases. More specifically, every
position q ∈ Q is either the rightmost symbol under the internal node for P̂ i[a]
in P ’s parse tree, or the leftmost symbol under the node for P̂ i[b]. The elements
in Q denote the cuts we try in the geometric data structure. As there are O(1)
incomplete phrases per parsing level i, there are O(log m) cuts in total. The time
obtained [5] is O(m + (occ + 1) logε n) for any constant ε > 0.

2.5 Induced Suffix Sorting

Induced suffix sorting (ISS) [21] is a technique to sort the suffixes of T in lexico-
graphical order. The basic idea consists of sampling some suffixes, sort them in
lexicographical order, and use the result to induce the orders of the rest. ISS is
the underlying procedure in several linear-time algorithms that build the suffix
array [17,20,21] and the Burrows-Wheeler transform (BWT) [2,23]. We repeat
some ISS-related definitions introduced for the SA-IS algorithm [21]:

Definition 1. Let T [1..n] be a text terminated with a sentinel symbol $, smaller
than the others. A position T [i] is called L-type if T [i] > T [i + 1] or if T [i] =
T [i+1] and T [i+1] also L-type. Instead, T [i] is said to be S-type if T [i] < T [i+1]
or if T [i] = T [i + 1] and T [i + 1] is also S-type. The symbol T [n] = $ is S-type.

Definition 2. A character T [i] is called leftmost S-type, or LMS-type, if T [i] is
S-type and i = 1 or T [i − 1] is L-type.

Definition 3. An LMS substring is (i) a minimal substring T [i..j] with both
T [i] and T [j] being LMS characters, for i < j; or (ii) the sentinel itself.



106 D. Dı́az-Domı́nguez et al.

Let D[1..n] be an array that stores in D[i] the type (L, S, or LMS) of T [i].
We refer to D as the description of T .

SA-IS is a recursive approach. In every recursion level i, it first scans the
input text T i, with T 1 = T , from right to left to compute its description. As
it moves through the text, SA-IS records the positions of the LMS substrings
and sorts them. The idea is to use the resulting ranks to induce an ordering for
the suffixes of T that are not prefixed by LMS substrings. When comparing two
LMS substrings T [a..b] and T [a′..b′], the algorithm inspects them from left to
right until their symbols differ. However, if for some two positions j ∈ [a..b] and
j′ ∈ [a′..b′], the type of T [j] is distinct from the type of T [j′], then the substring
with S-type gets the highest order, even if T [j] and T [j′] are the same symbol.
We refer to this ordering as ≺LMS .

Before inducing the order of the suffixes, SA-IS recursively sorts the suffixes
starting LMS substrings. For this purpose, it creates a new string T i+1 in which
it replaces the LMS substrings with their ≺LMS orders, and uses T i+1 as input
for another recursive call, of level i+1. The recursive call returns the suffix array
of T i+1, which gives the order between LMS-starting suffixes. This information
is used to induce the order of the other suffixes of T i.

Nunes et al. [22] noticed that the LMS substrings of the recursive calls of
SA-IS can be used to build a grammar for T . The advantage of this construction
is that it requires O(n) time and space, and it is much cheaper in practice than
other popular grammar heuristics, like RePair. However, it does not achieve
compression ratios as good as those of RePair.

3 A Grammar Self-index Based on LMS Parsing

3.1 LMS Parsing

We define LMS parsing as the procedure of parsing T using its LMS substrings.
The idea is similar to the method described in the SA-IS algorithm: we compute
the description of T , and define a phrase T [i..i′] for every consecutive pair of
LMS-type positions T [i − 1] and T [i′]. We refer those phrases as LMS phrases.

The LMS parsing is locally consistent. To prove it, we demonstrate that equal
substrings of T have the same descriptions, except possibly at their endpoints.

Lemma 1. The LMS parsing is locally consistent.

Proof. Let T [a..b] = T [a′..b′] be two equal substrings. Let their suffixes of length
u ≥ 1 be equal-symbol runs, and symbols T [b−u] and T [b′ −u] be different from
T [b − u + 1] and T [b′ − u + 1], respectively. The symbols within the same run
have the same types, by definition. However, those types might differ if T [b] and
T [b′] are followed by different symbols. In particular, if T [b − u + 1] is L-type
and T [b′ − u + 1] is not, then T [b′ − u + 1] can be LMS-type, and thus a phrase
may end at T [b′ − u + 1] and not at T [b − u + 1] (or vice versa).

Instead, the positions T [b−u] and T [b′ −u] preceding those runs will always
have the same type because they are followed by the same symbol, T [b − u +
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1] = T [b′ − u + 1]. Furthermore, the equal substrings T [a + 1..b − u − 1] and
T [a′ +1..b′ −u− 1] will also have the same types because they are preceded and
followed by the same symbols.

Finally, the types of T [a] and T [a′] may differ because they may depend on
the preceding symbol. Both or none can be L-type, but if they are not, then one
may be LMS-type and the other be S-type, depending on the symbols at T [a−1]
and T [a′ − 1]. Therefore, one substring may have an LMS phrase ending at the
first position and not the other.

To conclude, there can be at most one LMS phrase boundary appearing in
each extreme of one of the substrings and not in the order. �	

We then produce a locally consistent grammar G using several rounds of LMS
parsing. In every round i, we create a dictionary Di with all the distinct LMS
phrases of T i. Then, for every F ∈ Di, we create a new rule X → F , where X is
the number of rules in R built before round i plus the ≺LMS rank of F among
the strings in Di. After generating the new rules, we create T i+1 by replacing
the LMS phrases in T i with their nonterminal symbols. If there are still repeated
symbols in T i+1, we perform another parsing round i + 1 using T i+1 as input.

Note that this procedure is very similar to that of Christiansen et al. [5]. They
randomly permute the alphabet and place a phrase boundary after every local
minimum. In our LMS parsing, we place a phrase boundary after every LMS-type
symbol, which is also a local minimum. The key difference is that Christiansen
et al. need to store the permutations used in order to replicate the same process
on the search pattern, whereas our parsing is given by the lexicographic order
and thus can be applied on the pattern without further information.

To further reduce the grammar, we create a new rule Y → X l for every
maximal equal-symbol run X l appearing on a right-hand side. The grammar
tree represents rules Y → X l as Y → X X l−1, where X l−1 is a special leaf. This
unique cut is enough to detect the occurrences of any pattern, provided a special
procedure is carried out to report the secondary occurrences inside X l−1 [5].

We also reduce space by replacing the nonterminals appearing once with the
right-hand sides of their rules, unless they represent equal-symbol runs. The
rules of those replaced symbols are then removed from R.

3.2 Computing the Cuts During the Pattern Matching

We use our grammar to build the self-index of Claude et al. [8] (with the special
provision for run-length rules). The main change is the way we cut the pattern.

Let us call the projection of P i[p] the index q ∈ [1..m] such that P [p] is the
rightmost leaf under the subtree rooted at P i[p] in P ’s parse tree; similarly with
the projection of P̂ i[p].

Our procedure for finding the cuts for P is analogous to that of Christiansen
et al. [5]. We start with an empty set Q and apply successive rounds of LMS
parsing over P . In every round i, we insert into Q the projection of P i[1] and
P̂ i[1]. We then hash the distinct LMS phrases in P i. We discard for the hashing,
however, the prefix P i[1..a] where P i[a] is the leftmost LMS-type symbol, and the
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suffix P i[b..] where P i[b − 1] is the rightmost LMS-type symbol. These elements
can be incomplete phrases, so we do not use them for the next round. Still, we
do record in Q the projection of P i[a] and the projection of P i[b−1] in P ’s parse
tree. Additionally, when the rightmost equal-symbol run of P i (last symbol in
P̂ i) has length u > 1 and P i[|P i| − u] is L-type, we also insert the projection of
P i[|P i| − u + 1] into Q. We consider this position because if the rightmost run
of P i is S-type, then P i[|P i| − u + 1] can be LMS-type if P i[|P i| − u] is L-type.
After scanning P i, we sort the hashed phrases in ≺LMS order and create a new
string P i+1 that replaces the phrases’ occurrences with their ≺LMS orders. The
new parse P i+1 is the input for the next round. The processing of P stops when
there are no more LMS-type symbols in P i.

The length of P i+1 is at most half that of P i, so we scan O(m) symbols
along the O(log m) parsing rounds. On the other hand, we sort the distinct
LMS subtrings of P i in O(|P i|) time [21], which adds up to O(m) total time.
Therefore, the complete preprocessing of P requires O(m) time.

To find the primary occurrences, we binary search the cut P [1..q]P [q + 1..m]
associated to every q ∈ Q. Since |Q| ∈ O(log m), the total time to look for the
primary occurrences is O(|Q|m log G) ⊆ O(m log m log G), plus O(|Q| log G) ⊆
O(log m log G) for the geometric searches, plus O(occ log G) to extract the grid
points. Our final result borrows the space figures of Claude et al. [8].

Theorem 1. Let our grammar, built for T [1..n], be of size G. Then our index
uses G log n + (2 + ε)G log G bits of space, for any constant ε > 0, and finds all
the occ occurrences of P [1..m] in time O((m log m + occ) log G).

We note that, still within O(G) space, we can use Patricia trees to speed up
the binary searches, obtaining O(m log m + (log m + occ) log G) time.

4 Experiments

We implemented our version of the grammar index in C++ on top of the
SDSL-lite library [11]. The source code is available at https://github.com/
ddiazdom/LPG/tree/LPG grid. We generated two versions of our index. The
regular version (lms-ind) implements the wavelet tree of the grid data structure
using plain bit vectors. The second variant (lms-ind-rrr) encodes the wavelet
tree using the RRR [24] data structure for compressed bit vectors. We compared
our software against the state-of-the-art self-indexes for repetitive collections:

– r-ind1: The run-length compressed FM-index of [10]. It uses O(r log n) bits,
where r is the number of runs in the text’s BWT, and supports locate within
that space.

– lz-ind2: A self-index based on Lempel-Ziv [15] that guarantees O(z log z) bits
of space over a Lempel-Ziv parse of z phrases. We also included the variant
that uses LZ-end parsing (lz-end-ind) [14].

1 https://github.com/nicolaprezza/r-index.
2 https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/LZ.

https://github.com/ddiazdom/LPG/tree/LPG_grid
https://github.com/ddiazdom/LPG/tree/LPG_grid
https://github.com/nicolaprezza/r-index
https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/LZ
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Table 1. Datasets. The second and third columns are the number of symbols and
alphabet, respectively. The rest of the columns are grammar sizes (value for G) obtained
with different grammar algorithms. The column for RePair considers the postprocessing
described in Claude et al. 2021 (Sect. 3). LMS is the grammar obtained with LMS
parsing and LMS post is grammar resulted from the postprocessing described in Sect. 3.
The last column (LC) refers to the grammar of Christiansen et al. 2020.

Dataset n σ RePair LMS LMS post LC

para 429,265,758 5 5,344,480 22,787,047 8,933,303 8,888,002

cere 461,286,644 5 4,069,450 37,426,507 6,802,801 4,069,450

influenza 154,808,555 15 1,957,370 4,259,746 3,304,035 4,477,322

einstein.en 467,626,544 139 212,903 643,338 427,142 601,755

kernel 257,961,616 162 1,374,650 3,769,839 2,870,350 3,795,801

– slp-ind: An optimized implementation of the grammar index of Claude et
al. 2012 [7]. This version speeds up the binary searches by storing q-grams of
the prefixes to which the nonterminals expand (grid labels). We used three
q-gram values in our experiments; 4,8, and 16. We refer to these variants as
slp-ind4, slp-ind8 and slp-ind16, respectively.

– g-ind3: The grammar index of Claude et al. 2021. The first variant of this
index (g-ind-bs) uses binary searches over the grid labels to find the primary
occurrences of P . The second variant (g-ind-pt) speeds up the search by
maintaining two Patricia trees, one for a subset of uniformly sampled column
labels in the grid and the other for a subset of uniformly sampled row labels.
We used three sampling rates; 1/4, 1/16, and 1/64. We refer to these variants
as g-ind-pt4, g-ind-pt16, and gt-ind-pt64, respectively.

We used five data sets of the Pizza&Chilli4 corpus for the experiments. The
characteristics of these datasets are shown in Table 1. We assessed the compres-
sion ratio and the running time for locating patterns. We extracted random
substrings from the datasets and then we searched them back with the different
indexes. The length of these patterns ranged from 10 to 100 characters.

We also compared our grammar algorithm against RePair and the method of
Christiansen et al. [5]. The metric we used for the comparison was the grammar
size (G value). The algorithm of Christiansen et al. has no formal implementa-
tion, so we produced one ourselves.

All the experiments were carried out on a machine with eight Intel(R)
Xeon(R) CPU E5-2407 processors at 2.40 GHz and 250 GB RAM. We com-
piled our source code using full compiler optimizations and we do not use multi
threading.

3 https://github.com/apachecom/grammar improved index.
4 http://pizzachili.dcc.uchile.cl.

https://github.com/apachecom/grammar_improved_index
http://pizzachili.dcc.uchile.cl
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Fig. 1. Time-space tradeoffs for locating 1000 random pattern of length 100 on different
collections and indexes. The time (y-axis) is given in μ secs per occurrence and the index
space (x-axis) in bits per symbol (bps).

5 Results and Discussion

The grammars produced with our method were, on average, 4.2 times bigger
than the RePair grammars (see columns 4 and 5 of Table 1). This considerable
difference is expected as our grammar algorithm prioritizes consistency over
compression. By further processing the grammars produced with our method
(see Sect. 3), we reduced their sizes by 41% on average. However, their final
sizes were still far from those of RePair; they were 1.82 times bigger on average.
Interestingly, the sizes of our post-processed grammars were similar to those of
Christiansen et al. (columns 6 and 7 of Table 1), even though we are not using
random permutations. It is important to note that the grammar of Christiansen
et al. cannot be further simplified without losing local consistency.

Figure 1 shows the trade-offs between index space usage and time for locating
patterns of length 100. The results varied widely depending on the dataset. For
instance, in cere and para, the index that used the most space was r-ind (1.93
and 2.76 bps, respectively), but it was also the fastest (0.34 and 0.37 μ secs). The
second-largest index was lms-ind (1.32 and 1.89 bps), and the second-fastest
after r-ind. In both datasets, the variant lms-ind-rrr reduced the space usage
and stayed competitive for locating, but in the other datasets, lms-ind-rrr
reduced the space at the cost of becoming slower. The smallest representation in
cere and para was lz-ind (0.49 and 0.70 bps), but it was the slowest at locating
(10.2 and 15.5 μ secs). In einstein.en, lms-ind was the biggest index (0.076 bps),
even bigger than r-ind, which remained the fastest. However, lms-ind was the
fastest dictionary-based data structure. The lms-ind-rrr variant reduced the
space, but it did not outperform r-ind.

Things went differently with influenza and kernel. The Lempel-Ziv data
structures (lz-ind and lz-end-ind) were competitive with r-ind for locating
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Fig. 2. Locating time for increasing pattern lengths. The time is given in μ secs per
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(14.16 and 18.05 μ secs versus 5.89 μ secs, respectively). Nevertheless, they used
less space. This result is unexpected as influenza and kernel are not as repeti-
tive as einstein.en. Our index performed poorly in these datasets. Both variants
(lms-ind and lms-ind-rrr) were the biggest dictionary-based data structures,
and they were not the fastest ones. However, they were competitive with r-ind
in terms of space, with lms-ind-rrr using less space than r-ind in kernel (0.81
bps versus 0.89 bps, respectively), although they were significantly slower.

Figure 2 shows the performance of the indexes for the locate operation using
different pattern lengths (from 100 to 800). In para and cere, lms-ind-rrr greatly
outperformed the other dictionary-based indexes as the pattern length increased.
This was not the case in einstein.en and kernel, where the performance of lms-
ind-rrr was not different from that of slp-ind16. We also noted that in those
datasets, the performance of lz-ind was very close to that of r-ind. Interestingly,
the performance of r-ind remained steady as the pattern length increased.

6 Concluding Remarks

We presented a locally consistent grammar that allows us to produce a self-
index using G log n + (2 + ε) G log G bits of space and that performs pattern
matching in O((m log m + occ) log G) time. Our experimental results showed
that our method is a practical alternative to the technique of Christiansen et al.
as we obtain a locally consistent grammar of comparable size without storing the
symbol permutations. The resulting self-index is thus not much larger than the
other popular dictionary-based indexes but generally faster at locating patterns,
especially long ones.
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Abstract. A family of Lempel-Ziv factorizations is a well-studied string
structure. The LZ-End factorization is a member of the family that
achieved faster extraction of any substrings (Kreft & Navarro, TCS
2013). One of the interests for LZ-End factorizations is the possible dif-
ference between the size of LZ-End and LZ77 factorizations. They also
showed families of strings where the approximation ratio of the num-
ber of LZ-End phrases to the number of LZ77 phrases asymptotically
approaches 2. However, the alphabet size of these strings is unbounded.
In this paper, we analyze the LZ-End factorization of the period-doubling
sequence. We also show that the approximation ratio for the period-
doubling sequence asymptotically approaches 2 for the binary alphabet.

Keywords: Lempel-Ziv 77 factorization · LZ-End factorization ·
Period-doubling sequence

1 Introduction

The Lempel-Ziv 77 compression (LZ77 ) [33] is one of the most successful lossless
compression algorithms to date. On the practical side, LZ77 and its variants have
been used as a core of compression software such as zip, gzip, rar, and compressed
formats such as PNG, JPEG, PDF. In addition to these real world applications,
compressed self-indexing structures based on LZ77 have been proposed [10–12,
22]. An LZ77-based compressed representation of a string allowing for fast access,
rank, and select queries also exists [2].

On the (more) theoretical side, the left-to-right greedy factorization in LZ77,
a.k.a. the LZ77-factorization, has widely been considered for decades. It parses
a given input string w into a sequence p1, . . . , pz of non-empty substrings such
that p1 = w[1] and pi for i ≥ 2 is the shortest prefix of pi · · · pz that does not
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occur in p1 · · · pi−1. This implies that the prefix pi[1..|pi|−1] occurs in p1 · · · pi−1,
and such an occurrence is called a source of pi

1.
Among many versions of LZ77 (c.f. [9,13,20,21,23,29,34]), this paper focuses

on the LZ-End compressor proposed by Kreft and Navarro [21]. It is also based
on a greedy parsing q1, . . . , qz′ of an input string, with a restriction that for each
phrase qi there has to be a source which ends at the right-end of a phrase in
q1, . . . , qi−1. This constraint permits fast substring extraction without expand-
ing the whole input string. It is known that the LZ-End compression can be
computed in linear time in the input string length [17], or in compressed space
with slight slow-down on compression time [16].

One can regard LZ-End as a mix of LZ77 and LZ78 [34], since in the LZ78
factorization the source of each phrase has to begin and end at boundaries of
previous phrases. Since LZ78 belongs to the class of grammar compression [6],
LZ-End can be seen as a new bridge between grammar compression and LZ77.

Now, a natural question arises. How good is the compression performance of
LZ-End? Practical evaluation in the literature [21] has revealed that the com-
pression ratio of LZ-End is quite close to that of LZ77 (at most 20% worse), but
very little is understood in theory. As in the literature, we measure and compare
the sizes of LZ-End and LZ77 by the numbers z′ and z of their phrases in the
factorizations, i.e., “z′ versus z”.

Since LZ77 is an optimal greedy unidirectional parsing, z′ ≥ z always holds.
Thus we are concerned with the approximation ratio of LZ-End to LZ77, which
is defined by z′/z. Kreft and Navarro [21] presented a simple family of strings
for which z′/z is asymptotically 2 over an alphabet of size n/3, where n is the
length of the string. Kreft and Navarro [21] conjectured that the upper bound
for z′/z is also 2, but to our knowledge no non-trivial upper bound is known.

In this paper, we show that the same lower bound for z′/z can be obtained
on a binary alphabet, thus significantly reducing the number of distinct char-
acters used in the analysis from n/3 to 2. In particular, we prove that z′/z is
asymptotically 2 for the period-doubling sequences, an interesting family of recur-
sive strings. While the LZ77-factorization of the period-doubling sequences has
an obvious structure (Proposition 1), the LZ-End factorization of the period-
doubling sequences has a non-trivial structure and needs careful analysis (see
our extensive discussions in Sect. 4 for detail).

Since the LZ77 factorization (without self-references) and the LZ-End factor-
ization for the unary string an are the same, our result uses a minimum possible
number of distinct characters to achieve such a lower bound for z′/z.

Related Work. A famous variant of the LZ77 factorization, which is called
the C-factorization [9] and is denoted by w = c1 · · · cx, differs from the LZ77 in
that each phrase ci is either a fresh character or the longest prefix of ci · · · cx

that occurs in c1 · · · ci−1. The size x of the C-factorization is known to be a
lower bound for the size of the smallest grammar which generates only the input
string [30]. A comparison of the LZ77 factorization and the C-factorization was
1 This version of LZ77 is often called non-overlapping LZ77 or LZ77 without self-
references, since each phrase pi never overlaps with any of its sources.
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also considered in the literature [3,26]. The structure of the C-factorization of the
period-doubling sequences was investigated in [3]. We emphasize that our analy-
sis of the LZ-End factorization of the period-doubling sequences is independent
and is quite different from this existing work [3].

Relative LZ (RLZ ) is a practical modification of LZ77 which efficiently com-
presses a collection of highly repetitive sequences [23]. In [20] an RLZ-based fac-
torization of a string, called the ReLZ-factorization, was proposed. The approx-
imation ratio of ReLZ to LZ77 was shown to be Ω(log n) [20], where n denotes
the length of the input string. On the other hand, in practice ReLZ was larger
than LZ77 by at most a factor of two in all the tested cases in [20].

2 Preliminaries

2.1 Strings

Let Σ be the binary alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is the string of length 0. Let Σ+

be the set of non-empty strings, i.e., Σ+ = Σ∗ \ {ε}. For a string w = xyz, x, y
and z are called a prefix, substring, and suffix of w, respectively. They are called
a proper prefix, a proper substring, and a proper suffix of w if x �= w, y �= w, and
z �= w, respectively. Further, we say that w has an internal occurrence of y if y
occurs in w as a proper substring which is neither a prefix nor a suffix. The i-th
character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and
two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins
at position i and ends at position j. For convenience, let w[i..j] = ε when i > j.
For any 1 ≤ i ≤ |w|, w[i..|w|] · w[1..i − 1] is called a cyclic rotation of w. If a
cyclic rotation of w is not equal to w, the cyclic rotation is said to be proper.
For any string w, let w1 = w and let wk = wwk−1 for any integer k ≥ 2, i.e.,
wk is the k-times repetition of w. A string w is said to be primitive if w cannot
be written as xk for any x ∈ Σ∗ and k ≥ 2. Let c be the opposite character of c
in a binary alphabet (e.g., a = b, b = a for alphabet {a, b}). For any non-empty
binary string w, ŵ denotes the string w[1..|w| − 1] · w[|w|]. We sometimes use
b(x) and e(x) as the beginning position and the ending position of a substring
x of a given string w, if the occurrence of x in w is clear from a discussion.

2.2 Lempel-Ziv Factorizations

We introduce the Lempel-Ziv 77 and LZ-End factorizations.

Definition 1 (LZ77 [33]2). The Lempel-Ziv 77 factorization (LZ77 factoriza-
tion for short) of a string w is the factorization LZ77(w) = p1, . . . , pz of w such
that pi[1..|pi| − 1] is the longest prefix of pi · · · pz which occurs in p1 · · · pi−1. As
an exception, the last phrase pz can be a suffix of w which occurs in p1 · · · pz−1.

2 This definition of LZ77 is different from the original one [33] (see [21] for more
information).
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Definition 2 (LZ-End [21]). The LZ-End factorization of a string w is the
factorization LZend(w) = q1, . . . , qz′ of w such that qi[1..|qi| − 1] is the longest
prefix of qi · · · qz′ which occurs as a suffix of q1 · · · qj for some j < i. As an
exception, the last phrase qz′ can be a suffix of w which occurs as a suffix of
q1 · · · qj for some j < z′.

We refer to each pi and qi as an LZ phrase and LZ-End phrase, respectively. For
each phrase, associated longest substring is called a source of the phrase. z77(w)
and zend(w) denote the number of the LZ phrases and the LZ-End phrases of
a string w, respectively. For each 1 ≤ i ≤ zend(w), LZend(w)[i] denotes the i-th
LZ-End phrase of LZend(w). Let LZend(w).last be the last LZ-End phrase of a
string w, i.e., LZend(w).last = LZend(w)[zend(w)]. Figure 1 shows examples of two
factorizations.

Fig. 1. The upper one shows the LZ77 factorization of w and the lower one shows the
LZ-End factorization of w, where w = abaaabababaaabaaabaaabababaaabab. This w is
the fifth period-doubling sequence S5 which will be defined later.

2.3 Period-Doubling Sequence

The period-doubling sequence (cf. [1]) is one of the prominent automatic
sequences. Let Sk be the k-th period-doubling sequence for any k ≥ 0. The
following two definitions are equivalent:

Definition 3. S0 = a and Sk = φ(Sk−1) for k ≥ 1 where φ is the morphism
such that φ(a) = ab, φ(b) = aa.

Definition 4. S0 = a and Sk = Sk−1 · ̂Sk−1 for k ≥ 1.

Let nk be the length of the k-th period-doubling sequence, i.e., nk = 2k.

3 Properties on Period-Doubling Sequence

The period-doubling sequences have many good combinatorial properties (see
cf. [1]). In this section, we introduce helpful properties for our results on the
period-doubling sequences.

Lemma 1. For any k ≥ 0, Sk is primitive.

Proof. If Sk is not primitive, Sk has a period 2i for some i. This implies that
Sk[nk/2] = Sk[nk], which contradicts Definition 4. ��
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Lemma 2 (Proposition 8.1.5 of [25]). If a string w is primitive, ww has no
internal occurrence of w.

Lemma 3. For any k ≥ 2, Sk = AkBkAkAk where Ak = Sk−2 and Bk = ̂Ak.
Moreover, Ak = Ak−1Bk−1 and Bk = Ak−1Ak−1 for any k ≥ 3.

Proof. Straightforward from Definition 3. ��
Lemma 4. For any k ≥ 2, AkAk, AkBk, and BkAk have no internal occurrence
of Ak. Hence the number of occurrences of Ak in Sk = AkBkAkAk is 3.

Proof. If k = 2, the lemma clearly holds. We assume k ≥ 3. Since Ak = Sk−2,
Ak is primitive. By Lemma 2, AkAk has no internal occurrence of Ak. Since
AkBk = ̂AkAk, AkBk also has no internal occurrence of Ak. Similarly, Ak−1Ak−1

and Ak−1Bk−1 have no internal occurrence of Ak−1. Also, by Lemma 3, BkAk

can be written as Ak−1Ak−1Ak−1Bk−1. These imply that BkAk have no internal
occurrence of Ak = Ak−1Bk−1. ��
Lemma 5. For any k ≥ 3 and any proper cyclic rotation α of Ak, the number
of occurrences of α in AkAkAk, AkBk, and BkAk are 2, 1, and 0, respectively.

Proof. Since Ak = Sk−2 and Lemma 1, Ak is primitive. This implies that
α is also primitive. Thus, AkAk has exactly one (internal) occurrences of
α. Namely, α occurs in AkAkAk exactly two times. Since AkBk = ̂AkAk,
AkBk also has exactly one (internal) occurrence of α. Finally, let us consider
BkAk = Ak−1Ak−1Ak−1Bk−1. In a similar way of the proof of Lemma 4, we can
show that both Ak−1Ak−1 and Ak−1Bk−1 have no internal occurrence of Bk−1.
From this facts and Lemma 4, Ak−1 occurs exactly three times and Bk−1 occurs
exactly once in BkAk. If α = Bk−1Ak−1, α cannot occur in BkAk. Otherwise, α
can be written as either xBk−1y or x′Ak−1y

′ where x (resp. y) is a non-empty
suffix (resp. prefix) of Ak−1, and x′ (resp. y′) is a non-empty suffix (resp. prefix)
of Bk−1. If α = xBk−1y, α cannot occur in BkAk due to the constraint of Bk−1.
If α = x′Ak−1y

′, α cannot occur in BkAk due to the constraint of Ak−1 and the
difference between the last characters of Ak−1 and x′. Therefore α cannot occur
in BkAk in all cases. ��

4 Factorizations of Period-Doubling Sequence

By the definition of LZ77, the following proposition immediately holds:

Proposition 1. LZ77(Sk) = (S0, ̂S0, ̂S1, . . . , ̂Sk−1) and thus z77(Sk) = k + 1.

In this section, we mainly discuss the LZ-End factorization of the period-doubling
sequence, and give the following result.

Theorem 1. zend(Sk) = 2k − f(k) where f(k) = O(log∗ k).

By Proposition 1 and Theorem 1, we can reach our goal of this paper:
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Corollary 1. There exists a family of binary strings w such that the ratio
zend(w)/z77(w) asymptotically approaches 2.

In the rest of this paper, we show Theorem 1. The next lemma gives the
LZ-End factorization of the period-doubling sequence. Notice that statement (I)
in the lemma is not an immediate property for the LZ-End factorization due to
the next example. Let S = abaababaabbabbaababa. Then,

LZend(S) = a|b|aa|ba|baab|bab|baabab|a,

LZend(Saba) = a|b|aa|ba|baab|bab|baababaaba.

Lemma 6. For any k ≥ 5, the following statements (I)-(IV) hold.

(I) LZend(Sk)[i] = LZend(Sk−1)[i] for every 1 ≤ i ≤ zend(Sk−1) − 1.
(II) zend(Sk) ≥ zend(Sk−1) + 1.

Let

wk = LZend(Sk)[zend(Sk−1)],
xk = LZend(Sk)[zend(Sk−1) + 1],
yk = Sk[e(xk) + 1..nk] (possibly empty).

(III) If wk �= LZend(Sk−1).last,

|wk| =
1
8
nk + 1, |xk| =

3
8
nk, |yk| =

3
16

n�(k) − (k − �(k)) − 1,

where �(k) = max{i | i ≤ k,wi = LZend(Si−1).last}.
Otherwise (if wk = LZend(Sk−1).last),

|wk| =
3
16

nk, |xk| =
5
16

nk + 1, |yk| =
3
16

nk − 1.

(IV) If |yk| ≥ 2, yk[1..|yk| − 1] has another occurrence to the left which ends
with some LZ-End phrase of Sk. Namely, yk is the last LZ-End phrase of
Sk if yk is not empty.

Proof. In this proof, we use Z′
k = LZend(Sk) and z′

k = zend(Sk) for simplicity.
We prove this lemma by induction on k.

Suppose that k = 5. The LZ-End factorizations of S4, S5 are

Z′
4 = a|b|aa|aba|bab|aaabaa,

Z′
5 = a|b|aa|aba|bab|aaabaa|abaaabababa|aabab.

Statements (I) and (II) clearly hold. Then, w5 = aaabaa, x5 = abaaabababa, y5 =
aabab. Hence, statement (III) holds since n5 = 32 and w5 = Z′

4.last (i.e., the
latter case). Statement (IV) also holds since y5[1..4] = aaba has an occurrence
which ends with the fourth phrase aba.

Suppose that all the statements hold for any k ∈ [5, k′ − 1] for some k′ > 5.
We show that all the statements hold for k′. Firstly, suppose on the contrary
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Fig. 2. Illustration for the LZ-End factorization when wk′ �= Z′
k′−1.last.

that statement (I) does not hold for k′. This implies that there exists a phrase
T = Sk′ [b(Z′

k−1[i])..j] for some i < z′
k′−1 and j > nk′−1. Since |xk′−1yk′−1| ≥

3
8nk′−1 > 1

4nk′−1 and xk′−1yk′−1 is a substring of T , T has an internal occurrence
of the length-14nk′−1 suffix Ak′−1 of Sk′−1. By Lemma 4 (showing the occurrences
of Ak−1 in Sk−1), Ak′−1 occurs exactly three times in Sk′ [1..nk′−1]. The first
occurrence of Ak′−1 cannot be included by a source of T since Ak′−1 is not a
prefix of T [1..|T |−1]. In addition, the second occurrence of Ak′−1 also cannot be
included by a source of T since the source overlaps phrase T . Thus, T [1..|T | − 1]
cannot have another occurrence to the left as a source of T . This contradicts
that T is an LZ-End phrase of Sk′ at that position. Hence, statement (I) holds
for k′. Due to statement (I), wk′ must have yk′−1 as a prefix. On the other hand,
wk′ cannot reach the end of Sk′ . Hence, statement (II) also holds. Thanks to
statements (I) and (II) for k′, three substrings wk′ , xk′ , and yk′ are well-defined
(see Fig. 2 and 5 for illustrations).

Next, we show statements (III) and (IV).

– Assume that �(k′ − 1) = �(k′) (i.e., wk′ �= Z′
k′−1.last). We consider a phrase

wk′ . If |yk′−1| = 0, xk′−1 is the suffix of length 3
8nk′−1 of Sk′−1, i.e., xk′−1 =

Bk′−2Ak′−1. From Lemma 4, xk′−1 does not have other occurrences to the
left. This implies that wk′ = xk′−1. This contradicts to wk′ �= Z′

k′−1.last.
Thus, |yk′−1| > 0 holds. Namely, xk′−1 = Z′

k′−1[z′
k′−1 − 1] and yk′−1 =

Z′
k′−1.last (see also Fig. 2). Let W be the string of length 1

8nk′ which begins
at b(Z′

k′−1.last). �(k′ − 1) = �(k′) also implies that �(k′ − 1) < k′. Hence,
|yk′−1| < 3

16n�(k′−1) ≤ 3
32nk′ < 1

8nk′ . This fact means that W is a proper
cyclic rotation of Ak′−1. By Lemma 5, W occurs twice to the left (one is in
Ak′−1Bk′−1, the other is in Ak′−1Ak′−1). Since the second occurrence ends
with phrase Z′

k′ [z′
k′−1 − 1], WcW is a candidate of phrase wk′ where cW

is the character preceded by W . Assume on the contrary that a source of
phrase wk′ is Wu for some u ∈ Σ+ (see Fig. 3). The second occurrence of
W cannot be the beginning position of a source of wk′ since Wu overlaps
wk′ . Hence, the only candidate of the beginning position of source Wu is in
the first Ak′−1Bk′−1. Moreover, Wu cannot contain Bk′−1 since the original
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Fig. 3. Illustration for a part of the proof. W is a candidate of a source of phrase w′
k.

Wu occurs in Ak′−1Ak′−1 · · · . Thus, Wu is a proper substring of Ak′−1Ak′−1

and Ak′−1Bk′−1. In other words, u′Wu is a proper prefix of Ak′−1Ak′−1 and
Ak′−1Bk′−1 for some u′. Since xk′−1 is a proper substring of Ak′−1Ak′−1,
xk′−1 also occurs in u′Wu. Hence, this contradicts that phrase xk′−1 ends
with W (i.e., xk′−1 has to be a longer phrase.), and then, wk′ = WcW . Next,
we consider a phrase xk′ . By the definition of the period-doubling sequence,
there exists a clear candidate X of a source which ends at e(xk′−1) (see Fig. 4).
Then, an equation |yk′−1|+ 1

2nk′ = |wk′ |+|X|+|yk′−1| stands w.r.t. the length
of suffix Sk′ [b(yk′−1)..nk′ ]. Thus, |X| = 3

8nk′ − 1 holds since |wk′ | = 1
8nk′ +1.

This implies that X has Bk′−1Ak′−1 as a substring. There does not exist a
longer candidate since Bk′−1Ak′−1 has only one occurrence to the left. Hence,
xk′ = XcX where cX is the character preceded by X. Finally, we consider the
suffix yk′ of Sk′ . If |yk′ | ≥ 2, from the above discussion, yk′−1[2..|yk′−1|−1] =
yk′ [1..|yk′ | − 1] holds. Since yk′−1[2..|yk′−1| − 1] has an occurrence to the left
which ends with some phrase (∵ statement (IV) for k′ − 1), yk′ [1..|yk′ | − 1]
too. Therefore, statements (III) and (IV) also hold.

– Assume that �(k′−1) �= �(k′) (i.e., wk′ = Z′
k′−1.last). We can show that all the

statements also hold for this case in a similar way. If we assume |yk′−1| > 0,
then |wk′ | > |yk′−1| holds by the above discussions. This contradicts that
wk′ = Z′

k′−1.last, and hence, |yk′−1| = 0 and wk′ = xk′−1 hold (see Fig. 5).
Hence, |wk′ | = |xk′−1| = 3

8nk′−1 = 3
16nk′ . We consider a phrase xk′ that

begins at position 1
2nk′ + 1. Let X ′ = Sk′ [1..e(wk′−1)] be a clear candidate

of a source of xk′ . Since |X ′| = 1
2nk′ − 3

16nk′ = 5
16nk′ , X ′ has A′

k as a prefix.
From Lemma 4, X ′ is the only candidate of a source, and thus xk′ = X ′cX′

where cX′ = Sk′ [1316nk′ + 1] is the character preceded by X ′. Moreover, the
length of yk′ is 1

2nk′ − ( 5
16nk′ + 1) = 3

16nk′ − 1. Since |yk′ | = |wk′ | − 1 and
phrase wk′ is a suffix of Sk′−1, a source of wk′ can be also a source of yk′ .
Namely, yk′ is the last phrase. Thus, all the statements also hold for this case.

Therefore, this lemma holds. ��
We have just finished showing the form of the LZ-End factorization of Sk.

Now, we will analyze the number of phrases of the factorization. Let K be the
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Fig. 4. Illustration for a part of the proof. X is a candidate of a source of phrase x′
k.

Fig. 5. Illustration for the LZ-End factorization when wk′ = Z′
k′−1.last.

sequence of integers k which satisfies �(k) = k. Let k∗
m denotes the m-th smallest

integer in K. Each k∗
m can be represented by the following recurrence formula:

Lemma 7

k∗
1 = 5 and k∗

m = k∗
m−1 +

3
16

· 2k∗
m−1 for m ≥ 2.

Proof. Let m be an integer greater than one. By the discussion of the proof for
the previous lemma, |yi−1|−1 = |yi| holds for any integer i ∈ [k∗

m−1 +1, k∗
m −1].

In addition, |yk∗
m−1| = 0. Hence,

k∗
m = k∗

m−1 + |yk∗
m−1

| + 1 = k∗
m−1 +

3
16

nk∗
m−1

= k∗
m−1 +

3
16

· 2k∗
m−1 .

��
Lemma 8. For any k ≥ 5,

zend(Sk) = 2k − f(k),

where f(k) is a function such that f(k) = m + 1 if k ∈ [k∗
m − 1, k∗

m+1 − 2].

Proof. By Lemma 6, if |yk| = 0 (i.e., k + 1 ∈ K), then zend(Sk) = zend(Sk−1) + 1
holds, otherwise, zend(Sk) = zend(Sk−1) + 2 holds. Hence, for any k ∈ [k∗

m −
1, k∗

m+1 − 2],

zend(Sk) = zend(S5) + 2(k − 5) − (m − 1) = 2k − (m + 1) = 2k − f(k).

��
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Lemma 9. f(k) = O(log∗ k).

Proof. By Lemma 7,

k∗
m = O(2k∗

m−1) ⊆ O

⎛

⎝22
. .

.
2k

∗
1
⎞

⎠ .

Thus, m = O(log∗ k) holds. This implies that f(k) = O(log∗ k) by Lemma 8. ��
By Lemmas 8 and 9, Theorem 1 holds.

5 Conclusions and Further Work

Let z′ and z be the number of phrases in the LZ-End and LZ77 factorizations in
a string. In this paper, we proved that the approximation ratio z′/z of LZ-End
to LZ77 is asymptotically 2 for the period-doubling sequences. This significantly
reduces the number of distinct characters needed to achieve such a lower bound
from n/3 (in the existing work [21]) to 2 (in this work). We believe that our
work initiates analysis of theoretical performance of LZ-End compression.

A lot of interesting further work remains for LZ-End, including the following:

– Is our lower bound for the approximation ratio tight? Kreft and Navarro [21]
conjectured that z′/z ≤ 2 holds for any string. We performed some exhaustive
experiments on binary strings and the result supports their conjecture.

– Is the size z′ of the LZ-End factorization a lower bound for the size g of the
smallest grammar generating the input string? It is known that the size of
the C-factorization [9], a variant of LZ77, is a lower bound of g [6,30]. In
particular case of the period-doubling sequences, there exists the following
small SLP (i.e., grammar in the Chomsky normal form) generating the k-
th period-doubling sequence: Sk = Sk−1Tk, Tk = Sk−2Sk−2, . . . , S1 = ab,
S0 = a. Following [30], the size of an SLP is evaluated by the number of
productions and thus the above grammar is of size 2k + 1. It is quite close
to the size of the LZ-End factorization which is 2k − O(log∗ k) but is slightly
larger.

– Interesting relationships between the size of the C-factorization and other
string repetitive measures such as the size r of the run-length BWT [5], the
size s of the smallest run-length SLP [28], the size � of the Lyndon factoriza-
tion [7], the size b of the smallest bidirectional scheme [31], the size γ of the
smallest string attractor [18], the substring complexity δ [8], have been con-
sidered in the literature [4,14,15,19,24,27,32]. Can we extend these results
to the LZ-End?
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12. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54423-1 63

13. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: LZD Factorization: simple and prac-
tical online grammar compression with variable-to-fixed encoding. In: Cicalese, F.,
Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 219–230. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19929-0 19
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Abstract. Mantaci et al. [TCS 2007] defined the eBWT to extend the
definition of the BWT to a collection of strings. However, since this intro-
duction, it has been used more generally to describe any BWT of a col-
lection of strings, and the fundamental property of the original definition
(i.e., the independence from the input order) is frequently disregarded.
In this paper, we propose a simple linear-time algorithm for the construc-
tion of the original eBWT, which does not require the preprocessing of
Bannai et al. [CPM 2021]. As a byproduct, we obtain the first linear-time
algorithm for computing the BWT of a single string that uses neither an
end-of-string symbol nor Lyndon rotations. We combine our new eBWT
construction with a variation of prefix-free parsing to allow for scalable
construction of the eBWT. We evaluate our algorithm (pfpebwt) on sets
of human chromosomes 19, Salmonella, and SARS-CoV2 genomes, and
demonstrate that it is the fastest method for all collections, with a max-
imum speedup of 7.6× on the second best method. The peak memory is
at most 2× larger than the second best method. Comparing with meth-
ods that are also, as our algorithm, able to report suffix array samples,
we obtain a 57.1× improvement in peak memory. The source code is
publicly available at https://github.com/davidecenzato/PFP-eBWT.

1 Introduction

In the last several decades, the number of sequenced human genomes has been
growing at unprecedented pace. In 2015 the number of sequenced genomes was
doubling every 7 months [35]. Now the amount of data for some species is large
enough that it poses challenges with respect to storage and analysis. One of the
most widely-used methods for indexing data in bioinformatics is the Burrows-
Wheeler Transform (BWT), which is a text transformation that compresses the
input in a manner that allows for efficient substring queries. Not only can it be
constructed in linear-time, it is also reversible—meaning the original input can
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be constructed from its compressed form. The BWT is formally defined over
a single input string; thus, in order to define and construct it for one or more
strings, the input strings need to be concatenated or modified in some way. In
2007 Mantaci et al. [26] presented a formal definition of the BWT for a multiset
of strings, which they call the extended Burrows-Wheeler Transform (eBWT).
It is a bijective transformation that sorts the cyclic rotations of the strings of
the multiset according to the ω-order relation, an order, defined by considering
infinite iterations of each string, which is different from the lexicographic order.

Since its introduction, several algorithms have been developed that construct
the BWT of collections of strings for various types of biological data, including
short sequence reads [1,3,4,9–11,16,23,32,33], protein sequences [39], metage-
nomic data [15], and longer DNA sequences such as long sequence reads and
whole chromosomes [21]. However, we note that in the development of some of
these methods the underlying definition of eBWT was loosened. For example,
ropebwt2 [21] tackles a similar problem of building what they describe as the
FM-index for a multiset of long sequence reads, however, they do not construct
the suffix array (SA) or SA samples, and also, require that the sequences are
delimited by separator symbols. Similarly, gsufsort [23] and egap [11] construct
the BWT for a collection of strings but do not construct the eBWT according
to its original definition. gsufsort [23] requires the collection for strings to be
concatenated in a manner that the strings are deliminated by separator sym-
bols that have an augmented relative order among them. egap [11], which was
developed to construct the BWT and LCP for a collection of strings in external
memory, uses the gSACA-K algorithm to construct the suffix array of the con-
catenated input and then constructs the BWT from the suffix array, using an
additional (σ +1) log N bits, where σ is the size of the alphabet and N the total
length of the strings in the collection. Lastly, we note that there exists a number
of methods for construction of the BWT for a collection of short sequence reads,
including ble [4], BCR [3], G2BWT [10], egsa [24]; however, these methods make
implicit or explicit use of end-of-string symbols appended to strings in the col-
lection. For an example of the effects of these manipulations, see Sect. 2, and [8]
for a more detailed study.

We present an efficient algorithm for constructing the eBWT that preserves
the original definition of Mantaci et al. [26]—thus, it does not impose any order-
ing of the input strings or delimiter symbols. It is an adaptation of the well-known
Suffix Array Induced Sorting (SAIS) algorithm of Nong et al. [29], which com-
putes the suffix array of a single string T ending with an end-of-string character
$. Our adaptation is similar to the algorithm proposed by Bannai et al. [2] for
computing the BBWT (bijective BWT), which can also be used for computing
the eBWT after additional linear-time preprocessing of the input strings. The
key change in our approach is based on the insight that the properties necessary
for applying Induced Sorting are valid also for the ω-order between different
strings. As a result, it is not necessary that the input be Lyndon words, or that
their relative order be known at the beginning. Furthermore, our algorithmic
strategy, when applied to a single string, provides the first linear-time algorithm



Computing the Original eBWT Faster, Simpler, and with Less Memory 131

for computing the BWT of the string that uses neither an end-of-string symbol
nor Lyndon rotations.

We then combine our new eBWT construction with a variation of a pre-
processing technique called prefix-free parsing (PFP). PFP was introduced by
Boucher et al. [6] for building the (run-length encoded) BWT of large and highly
repetitive input text. Since its original introduction, it has been extended to
construct the r-index [20], applied as a preprocessing step for building gram-
mars [12], and used as a data structure itself [5]. Briefly, PFP is a one-pass
algorithm that divides the input into overlapping variable length phrases with
delimiting prefixes and suffixes; which in effect, leads to the construction of what
is referred to as the dictionary and parse of the input. It follows that the BWT
can be constructed in space proportional to the size of the dictionary and parse,
which is expected to be significantly smaller than linear for repetitive text.

In our approach, PFP is applied to obtain a parse that is a multiset of cyclic
strings (cyclic prefix-free parse) to which our eBWT construction is applied.
We implement our approach (called pfpebwt), measure the time and mem-
ory required to build the eBWT for sets of increasing size of chromosome 19,
Salmonella, and SARS-CoV2 genomes, and compare this to that required by
gsufsort, ropebwt2, and egap. We show that pfpebwt is consistently faster
and uses less memory than gsufsort and egap on reasonably large input (≥4
copies of chromosome 19, ≥50 Salmonella genomes, and ≥25,000 SARS-CoV2
genomes). Although ropebwt2 uses less memory than pfpebwt on large input,
pfpebwt is 7× more efficient in terms of wall clock time, and 2.8× in terms of
CPU time. Moreover, pfpebwt is capable of reporting SA samples in addition to
the eBWT with a negligible increase in time and memory [20], whereas ropebwt2
does not have that ability. If we compare pfpebwt only with methods that are
able to report SA samples in addition to the eBWT (e.g., egap and gsufsort),
we obtain a 57.1× improvement in peak memory.

Due to space limitations, proofs are deferred to the full version of the paper.

2 Preliminaries

A string T = T [1..n] is a sequence of characters T [1] · · · T [n] drawn from an
ordered alphabet Σ of size σ. We denote by |T | the length n of T , and by ε the
empty string, the only string of length 0. Given two integers 1 ≤ i, j ≤ n, we
denote by T [i..j] the string T [i] · · · T [j], if i ≤ j, while T [i..j] = ε if i > j. We
refer to T [i..j] as a substring (or factor) of T , to T [1..j] as the j-th prefix of T ,
and to T [i..n] = T [i..] as the i-th suffix of T . A substring S of T is called proper
if T �= S. Given two strings S and T , we denote by lcp(S, T ) the length of the
longest common prefix of S and T , i.e., lcp(S, T ) = max{i | S[1..i] = T [1..i]).

Given a string T = T [1..n] and an integer k, we denote by T k the kn-length
string TT · · · T (k-fold concatenation of T ), and by Tω the infinite string TT · · ·
obtained by concatenating an infinite number of copies of T . A string T is called
primitive if T = Sk implies T = S and k = 1. For any string T , there exists a
unique primitive word S and a unique integer k such that T = Sk. We refer to
S = S[1..n

k ] as root(T ) and to k as exp(T ). Thus, T = root(T )exp(T ).
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We denote by <lex the lexicographic order: for two strings S[1..n] and T [1..m],
S <lex T if S is a proper prefix of T , or there exists an index 1 ≤ i ≤ n,m such
that S[1..i − 1] = T [1..i − 1] and S[i] < T [i]. Given a string T [1..n], the suffix
array [25], denoted by SA = SAT , is the permutation of {1, . . . , n} such that
T [SA[i]..] is the i-th lexicographically smallest suffix of T .

We denote by ≺ω the ω-order [13,26], defined as follows: for two strings S
and T , S ≺ω T if root(S) = root(T ) and exp(S) < exp(T ), or Sω <lex Tω (this
implies root(S) �= root(T )). One can verify that the ω-order relation is different
from the lexicographic one. For instance, CG <lex CGA but CGA ≺ω CG.

The string S is a conjugate of the string T if S = T [i..n]T [1..i − 1], for
some i ∈ {1, . . . , n} (also called the i-th rotation of T ). The conjugate S is also
denoted conji(T ). It is easy to see that T is primitive if and only if it has n distinct
conjugates. A Lyndon word is a primitive string which is lexicographically smaller
than all of its conjugates. For a string T , the conjugate array1 CA = CAT of
T is the permutation of {1, . . . , n} such that CA[i] = j if conjj(T ) is the i-th
conjugate of T with respect to the lexicographic order, with ties broken according
to string order, i.e. if CA[i] = j and CA[i′] = j′ for some i < i′, then either
conjj(T ) <lex conjj′(T ), or conjj(T ) = conjj′(T ) and j < j′. Note that if T is a
Lyndon word, then CA[i] = SA[i] for all 1 ≤ i ≤ n [14].

Given a string T , U is a circular or cyclic substring of T if it is a factor of
TT of length at most |T |, or equivalently, if it is the prefix of some conjugate
of T . For instance, ATA is a cyclic substring of AGCAT. It is sometimes also
convenient to regard a given string T [1..n] itself as circular (or cyclic); in this
case we set T [0] = T [n] and T [n + 1] = T [1].

Burrows-Wheeler-Transform. Given a string T , BWT(T ) [7] is a permuta-
tion of the letters of T which equals the last column of the matrix of the lexi-
cographically sorted conjugates of T . The mapping T �→ BWT(T ) is reversible,
up to rotation. It can be made uniquely reversible by adding to BWT(T ) an
index indicating the rank of T in the lexicographic order of all of its conjugates.
Given BWT(T ) and an index i, the original string T can be computed in linear
time [7]. The BWT itself can be computed from the conjugate array, since for
all i = 1, . . . , n, BWT(T )[i] = T [CA[i] − 1], where T is considered to be cyclic.

It should be noted that in many applications, it is assumed that an end-
of-string-character (usually denoted $), which is not element of Σ, is appended
to the string; this character is assumed to be smaller than all characters from
Σ. Computing the conjugate array becomes equivalent to computing the suffix
array, since CAT$[i] = SAT$[i]. Thus, applying one of the linear-time suffix-array
computation algorithms [28] leads to linear-time computation of the BWT.

When no $-character is appended to the string, the situation is slightly more
complex. For primitive strings T , first the Lyndon conjugate of T has to be
computed (in linear time, see [34]) and then a linear-time suffix array algo-
rithm can be employed [14]. For strings T which are not primitive, one can take

1 Our conjugate array CA is called circular suffix array and denoted SA◦ in [2,17],
and BW-array in [19,31], but in both cases defined for primitive strings only.
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advantage of the following well-known property of the BWT: if T = Sk and
BWT(S) = U [1..m], then BWT(T ) = U [1]kU [2]k · · · U [m]k (Prop. 2 in [27]).

Generalized Conjugate Array and Extended BWT. Given a multiset of
strings M = {T1[1..n1], . . . , Tm[1..nm]}, the generalized conjugate array of M,
denoted by GCAM or just by GCA, contains the list of the conjugates of all
strings in M, sorted according to the ω-order relation. More formally, GCA[i] =
(j, d) if conjj(Td) is the i-th string in the 	ω-sorted list of the conjugates of
all strings of M, with ties broken first w.r.t. the index of the string (in case of
identical strings), and then w.r.t. the index in the string itself.

The extended Burrows-Wheeler Transform (eBWT) is an extension of the
BWT to a multiset of strings [26]. It is a bijective transformation that, given a
multiset of strings M = {T1, . . . , Tm}, produces a permutation of the characters
on the strings in the multiset M. Formally, eBWT(M) can be computed by
sorting all the conjugates of the strings in the multiset according to the 	ω-
order, and the output is the string obtained by concatenating the last character
of each conjugate in the sorted list, together with the set of indices representing
the positions of the original strings of M in the list. Similarly to the BWT, the
eBWT is thus uniquely reversible. The eBWT(M) can be computed from the
generalized conjugate array of M in linear time, since eBWT(M)[i] = Td[j − 1]
if GCA[i] = (j, d), where again, the strings in M are considered to be cyclic.
It is easy to see that when M consists of only one string, i.e. M = {T}, then
eBWT(M) = BWT(T ).

Example 1. Let M = {GTACAACG,CGGCACACACGT,C}. Then GCA(M)
is as follows, where we give the pair (j, d) vertically, i.e. the first row contains
the position in the string, and the second row the index of the string:

5 3 5 7 6 9 4 4 6 8 1 1 7 10 3 2 8 1 11 2 12
1 1 2 2 1 2 1 2 2 2 3 2 1 2 2 2 1 1 2 1 2

From the GCA we can compute eBWT(M) = CTCCACAGAACTAAGCCG
CGG, with index set {11, 12, 18}. Note that conj8(T2) comes before conj1(T3),
since CACGTCGGCACA ≺ω C. In fact, (CACGTCGGCACA)ω <lex Cω =
CCCC . . ..

Remark 1. Note that if end-of-string symbols are appended to the string of the
collection then the output of eBWT could be quite different. For instance,
if M = {GTACAACG$1, CGGCACACACGT$2,C$3}, then eBWT(M) =
GTCCTCCAC$3AGAAA$2ACGCC$1GG.

While in the original definition of eBWT [26], the multiset M was assumed
to contain only primitive strings, our definition is more general and allows also
for non-primitive strings. For example, eBWT({ATA, TATA}) = TATTAAA,
with index set {2, 6}, while eBWT({ATA,TA,TA}) = TATTAAA, with index
set {2, 6, 7}. Also the linear-time algorithm for recovering the original multiset
can be straightforwardly extended.

The following lemma shows how to construct the generalized conjugate array
GCAM of a multiset M of strings (not necessarily primitive), once we know the
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generalized conjugate array GCAR of the multiset R of the roots of the strings
in M. It follows straightforwardly from the fact that equal conjugates will end
up consecutively in the GCA.

Lemma 1. Let M = {T1, . . . , Tm} be a multiset of strings and let R the multiset
of the roots of the strings in M, i.e. R = {S1, . . . , Sm}, where Ti = (Sri

i ), with
ri ≥ 1 for 1 ≤ i ≤ m. Let GCAR[1..K] = [(j1, i1), (j2, i2), . . . , (jK , iK)], where
K =

∑m
i=1 |Si|. GCAM is then given by (where N =

∑m
i=1 |Si| · ri):

GCAM[1..N ] = [(j1, i1), (j1 + |Si1 |, i1), . . . , (j1 + (ri1 − 1) · |Si1 |, i1), . . . ,

(jK , iK), (jK + |SiK
|, iK), . . . , (jK + (riK

− 1) · |SiK
|, iK)].

3 Computing the eBWT and GCA

Here, we describe our algorithm to compute the eBWT of a multiset of strings
M. We will assume that all strings in M are primitive, since we can use Lemma 1
to compute the eBWT of M otherwise. Our algorithm is an adaptation of the
well-known SAIS algorithm of Nong et al. [29], which computes the suffix array
of a single string T ending with an end-of-string character $. Our adaptation is
similar to that of Bannai et al. [2] for computing the BBWT, which can also be
used for computing the eBWT. Even though our algorithm does not improve the
latter asymptotically (both are linear time), it is significantly simpler, since it
does not require first computing and sorting the Lyndon rotations of the input
strings. We assume some familiarity with the SAIS algorithm, focusing on the
differences between our algorithm and the original SAIS. Detailed explanations
of SAIS can be found in [22,29,30].

The main differences between our algorithm and the original SAIS algorithm
are: (1) we are comparing conjugates rather than suffixes, (2) we have a multiset
of strings rather than just one string, (3) the comparison is done w.r.t. the
omega-order rather than the lexicographic order, and (4) the strings are not
terminated by an end-of-string symbol.

We need the following definition, which is the cyclic version of the definition
in [29] (where S stands for smaller, L for larger, and LMS for leftmost-S):

Definition 1. (Cyclic types, LMS-substrings). Let T be a primitive string
of length at least 2, and 1 ≤ i ≤ |T |. Position i of T is called (cyclic) S-type
if conji(T ) <lex conji+1(T ), and (cyclic) L-type if conji(T ) >lex conji+1(T ). An
S-type position i is called (cyclic) LMS-position if i− 1 is L-type (where we view
T as a cyclic string). An LMS-substring is a cyclic substring T [i, j] of T such
that both i and j are LMS-positions, but there is no LMS-position between i and
j. Given a conjugate conji(T ), its LMS-prefix is the cyclic substring from i to
the first LMS-position strictly greater than i (viewed cyclically).

Since T is primitive, no two conjugates are equal, and in particular, no two
adjacent conjugates are equal. Thus, the type of every position is defined.
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Example 2. Continuing Example 1 (where we mark LMS -positions with a ∗),

G T A C A A C G C G G C A C A C A C G T
S L S L S S S S S L L L S L S L S S S L

∗ ∗ ∗ ∗ ∗ ∗
The LMS -substrings are ACA, AACGGTA, CGGCA, and ACGTC. The LMS -
prefix of the conjugate conj7(T1) = CGGTACAA is CGGTA.

Lemma 2. (Cyclic type properties). Let T be primitive string of length at
least 2. Let a1 be the smallest and aσ the largest character of the alphabet. Then
the following hold, where T is viewed cyclically:

1. if T [i] < T [i + 1], then i is type S, and if T [i] > T [i + 1], then i is type L,
2. if T [i] = T [i + 1], then the type of i is the same as the type of i + 1,
3. i is of type S iff T [i′] > T [i], where i′ = min{i + j | j > 0, T [i + j] �= T [i]},
4. if T [i] = a1, then i is type S, and if T [i] = aσ, then i is type L.

Corollary 1. (Linear-time cyclic type assignment). Let T be a primitive
string of length at least 2. Then all positions can be assigned a type in altogether
at most 2|T | steps.

Let N be the total length of the strings in M. The algorithm constructs an
initially empty array A of size N , which, at termination, will contain the GCA
of M. The algorithm also returns the set I containing the set of indices in A
representing the positions of the strings of M. The overall procedure consists of
the following steps (each step will be explained below):

Algorithm SAIS-for-eBWT
Step 1 remove strings of length 1 from M (to be added back at the end)
Step 2 assign cyclic types to all positions of strings from M
Step 3 use procedure Induced Sorting to sort cyclic LMS -substrings
Step 4 assign names to cyclic LMS -substrings; if all distinct, go to Step 6
Step 5 recurse on new multiset M′, returning array A′, map A′ back to A
Step 6 use procedure Induced Sorting to sort all positions in M, add

length-1 strings in their respective positions, return (A, I)

At the heart of the algorithm is the procedure Induced Sorting of [29]
(Algorithms 3.3 and 3.4), which is used once to sort the LMS -substrings (Step
3), and once to induce the order of all conjugates from the correct order of the
LMS -positions (Step 6), as in the original SAIS. Before sketching this procedure,
we need to define the order according to which the LMS -substrings are sorted
in Step 2. Our definition of LMS -order extends the LMS -order of [29] to LMS -
prefixes. It can be proved that these definitions coincide for LMS -substrings.

Definition 2. (LMS-order). Given two strings S and T , let U resp. V be their
LMS-prefixes. We define U <LMS V if either V is a proper prefix of U , or neither
is a proper prefix of the other and U <lex V .
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The procedure Induced Sorting for the conjugates of the multiset is anal-
ogous to the original one, except that strings are viewed cyclically. First, the
array A is subdivided into so-called buckets, one for each character. For c ∈ Σ,
let nc denote the total number of occurrences of the character c in the strings
in M. Then the buckets are [1, na1 ], [na1 + 1, na1 + na2 ], . . . , [N − naσ

+ 1, N ],
i.e., the k-th bucket will contain all conjugates starting with character ak. The
procedure Induced Sorting first inserts all LMS -positions at the end of their
respective buckets, then induces the L-type positions in a left-to-right scan of
A, and finally, induces the S-type positions in a right-to-left scan of A, possibly
overwriting previously inserted positions. We need two pointers for each bucket
b, head(b) and tail(b), pointing to the current first resp. last free position.

Procedure Induced Sorting [29]
1. insert all LMS -positions at the end of their respective buckets; for all

buckets b, initialize head(b), tail(b) to the first resp. last position
2. induce the L-type positions in a left-to-right scan of A: for i from 1

to N − 1, if A[i] = (j, d) then A[head(bucket(Td[j − 1]))] ← (j − 1, d);
increment head(bucket(Td[j − 1]))

3. induce the S-type positions in a right-to-left scan of A: for i from N to
2, if A[i] = (j, d) then A[tail(bucket(Td[j −1]))] ← (j −1, d); decrement
tail(bucket(Td[j − 1]))

At the end of this procedure, the LMS -substrings are listed in correct relative
LMS -order (see Lemma 4), and they can be named according to their rank. For
the recursive step, we define, for i = 1, . . . , m, a new string T ′

i , where each LMS -
substring of Ti is replaced by its name (i.e. its rank). The algorithm is called
recursively on M′ = {T ′

1, . . . , T
′
m} (Step 5).

Finally (Step 6), the array A′ = GCA(M′) from the recursive step is mapped
back into the original array, resulting in the placement of the LMS -substrings
in their correct relative order. This is then used to induce the full array A. All
length-1 strings Ti, which were removed in Step 1, can now be inserted between
the L- and S-type positions in their bucket (Lemma 3).

Correctness and Running Time. The following lemma shows that the indi-
vidual steps of Induced Sorting are applicable for the ω-order on conjugates
of a multiset (part 1), that L-type conjugates (of all strings) come before the
S-type conjugates within the same bucket (part 2), and that length-1 strings are
placed between S-type and L-type conjugates (part 3). The second property was
originally proved for the lexicographic order between suffixes in [18]:

Lemma 3. (Induced sorting for multisets). Let U, V ∈ Σ∗.

1. If U ≺ω V , then for all c ∈ Σ, cU ≺ω cV .
2. If U [i] = V [j], i is an L-type position, and j an S-type position, then

conji(U) ≺ω conjj(V ).
3. If U [i] = V [j] = c, i is an L-type position, and j an S-type position, then

conji(U) ≺ω c ≺ω conjj(V ).
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Next, we show that after applying procedure Induced Sorting, the conju-
gates will appear in A such that they are correctly sorted w.r.t. to the LMS -order
of their LMS -prefixes, while the order in which conjugates with identical LMS -
prefixes appear in A is determined by the input order of the LMS -positions.

Lemma 4. (Extension of Thm. 3.12 of [29]). Let T1, T2 ∈ M, let U be the
LMS-prefix of conji(T1), with i′ the last position of U ; let V be the LMS-prefix
of conjj(T2), and j′ the last position of V . Let k1 be the position of conji(T1) in
array A after the procedure Induced Sorting, and k2 that of conjj(T2).

1. If U <LMS V , then k1 < k2.
2. If U = V , then k1 < k2 if and only if conji′(T1) was placed before conjj′(T2)

at the start of the procedure.

Lemma 5. Let S, T ∈ Σ∗, let U be the LMS-prefix of S and V the LMS-prefix
of T . If U <LMS V then S ≺ω T .

Theorem 1. Algorithm SAIS-for-eBWT correctly computes GCA and eBWT of
multiset of strings M in time O(N), with N the total length of strings in M.

Computing the BWT for One Single String. The special case where M
consists of one single string leads to a new algorithm for computing the BWT,
since for a singleton set, the eBWT coincides with the BWT. To the best of our
knowledge, this is the first linear-time algorithm for computing the BWT of a
string without an end-of-string character that uses neither Lyndon rotations nor
end-of-string characters.

We demonstrate the algorithm on a well-known example, T = banana. We get
the following types, from left to right: LSLSLS, and all three S-type positions are
LMS. We insert 2, 4, 6 into the array A; after the left-to-right pass, indices are in
the order 2, 4, 6, 1, 3, 5, and after the right-to-left pass, in the order 6, 2, 4, 1, 3, 5.
The LMS -substring aba (pos. 6) gets the name A, and the LMS -substring ana
(pos. 2,4) gets the name B. In the recursive step, the new string T ′ = ABB,
with types SLL and only one LMS -position 1, the GCA gets induced in just
one pass: 1, 3, 2. This maps back to the original string: 6, 2, 4, and one more pass
over the array A results in 6, 4, 2, 1, 5, 3 and the BWT nnbaaa.

4 eBWT and PFP

We show how to extend the PFP to build the eBWT. We define the cyclic
prefix-free parse for a multiset of strings M = {T1, T2, . . . , Tm} (with |Ti| = ni,
1 ≤ i ≤ m) as the multiset of parses P = {P1, P2, . . . , Pm} with dictionary D,
where we consider Ti as circular, and Pi is the parse of Ti. We denote by pi the
length of the parse Pi. In the following we show how the multiset of parses P
and the dictionary D are constructed. Given a positive integer w, let E be a set
of strings of length w called trigger strings. We assume that each string Th ∈ M
has length at least w and at least one cyclic factor in E. We divide each string



138 C. Boucher et al.

Th ∈ M into overlapping phrases as follows: a phrase is a circular factor of Th

of length > w that starts and ends with a trigger string and has no internal
occurrences of a trigger string. The set of phrases obtained from strings in M is
the dictionary D. The parse Ph can be computed from the string Th by replacing
each occurrence of a phrase in Th with its lexicographic rank in D.

We denote by S the set of suffixes of D having length greater than w. The
first important property of the dictionary D is that the set S is prefix-free, i.e.,
no string in S is prefix of another string of S. This follows directly from [6].

The computation of eBWT from the prefix-free parse consists of three steps:
computing the cyclic prefix-free parse of M (denoted as P), computing the
eBWT of P by using the algorithm described in Sect. 3; and computing the
eBWT of M from the eBWT of P using the lexicographically sorted dictionary
D = {D1,D2, . . . , D|D|} and its prefix-free suffix set S. We now describe the last
step as follows. We define δ as the function that uniquely maps each character
of Th[j] to the pair (i, k), where with 1 ≤ i ≤ ph, k > w, and Th[j] appears as
the k-th character of the Ph[i]-th phrase of D. We call i and k the position and
the offset of Th[j], respectively. Furthermore, we define α as the function that
uniquely associates to each conjugate conjj(Th) the element s ∈ S such that s is
the k-th suffix of the Ph[i]-th element of D, where (i, k) = δ(Th[j]). By extension,
i and k are also called the position and the offset of the suffix α(conjj(Th)).

Lemma 6. Given two strings Tg, Th ∈ M, if α(conji(Tg)) <lex α(conji(Th)) it
follows that conji(Tg) ≺ω conjj(Th).

Proposition 1. Given two strings Tg, Th ∈ M. Let conji(Tg) and conjj(Th) be
the i-th and j-th conjugates of Tg and Th, respectively, and let (i′, g′) = δ(Tg[i])
and (j′, h′) = δ(Th[j]). Then conji(Tg) ≺ω conjj(Th) if and only if either
α(conji(Tg)) <lex α(conjj(Th)), or conji′+1(Pg) ≺ω conjj′+1(Ph), i.e., Pg[i′] pre-
cedes Ph[j′] in eBWT(P).

Next, using Proposition 1, we define how to build the eBWT of the multiset of
strings M from P and D. We consider the eBWT partitioned into |S| consecutive
blocks, each block associated to one s ∈ S, such that each block consists of the
last characters of all conjugates of the strings in M prefixed by s. Hence, it
follows that we only need to describe how to build an eBWT block corresponding
to a suffix s ∈ S. We will iterate through all the suffixes in S in lexicographic
order. Given s ∈ S, we let Ss be the set of the lexicographic ranks of the phrases
of D that have s as a suffix, i.e., Ss = {i | 1 ≤ i ≤ |D|, s is a suffix of Di ∈ D}.
Moreover, given the string Th ∈ M, we let conji(Th) be the i-th conjugate of Th,
let j and k be the position and offset of Th[i], and lastly, let p be the position
of Ph[j] in eBWT(P). We define f(p, k) = DPh[j][k − 1] if k > 1, otherwise
f(p, k) = DPh[j−1][|DPh[j−1]| − w] where we view Ph as a cyclic string.

Finally, we let Os be the set of pairs (p, c) such that for all d ∈ Ss, p is
the position of an occurrence of d in eBWT(P), and c is the character result-
ing the application of the f function considering as k the offset of s in Dd,
i.e., c = f(p, |Dd| − |s| + 1). Formally, Os = {(p, f(p, |DeBWT(P)[p]| − |s| + 1) |
eBWT(P)[p] ∈ Ss}.
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To build the eBWT block corresponding to s ∈ S, we scan the set Os in
increasing order of the first element of the pair, i.e., the position of the occurrence
in eBWT(P), and concatenate the values of the second element of the pair, i.e.,
the character preceding the occurrence of s in Th. Note that if all the occurrences
in Os are preceded by the same character c, we do not need to iterate through
all the occurrences but rather concatenate |Os| copies of the character c.

More details about the implementation will be given in the full version.

5 Results and Discussion

We implemented the algorithm for building the eBWT and measured its perfor-
mance on real biological data. We performed the experiments on a server with
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz with 16 cores and 62 gigabytes of
RAM running Ubuntu 16.04 (64bit, kernel 4.4.0). The compiler was g++ version
9.4.0 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. We recorded the
runtime and memory usage using the wall clock time, CPU time, and maximum
resident set size from /usr/bin/time. The source code is available online at:
https://github.com/davidecenzato/PFP-eBWT.

Competing Methods. We compared our method (pfpebwt) with the BCR
algorithm implementation of [21] (ropebwt2), gsufsort [23], and egap [11]. We
did not compare against G2BWT [10], lba [4], and BCR [3] since they are currently
implemented only for short reads2. We did not compare against egsa [24] since it
is the predecessor of egap. Note that all tested implementations produce different
outputs due to the different rules used for the end of string symbols, see [8].

Datasets. We evaluated our method using 2,048 copies of human chromo-
somes 19 from the 1000 Genomes Project [37]; 10,000 Salmonella genomes
taken from the GenomeTrakr project [36], and 400,000 SARS-CoV2 genomes
from EBI’s COVID-19 data portal [38]. We used 12 sets of variants of human
chromosome 19 (chr19), containing 2i variants for i = 0, . . . , 11 respectively.
We used 6 collections of Salmonella genomes (salmonella) containing 50, 100,
500, 1,000, 5,000, and 10,000 genomes respectively. We used 5 sets of SARS-
CoV2 genomes (sars-cov2) containing 25,000, 50,000, 100,000, 200,000, 400,000
genomes respectively. Each collection is a superset of the previous one. We ran
pfpebwt and ropebwt2 with 16 threads, and gsufsort and egap with a single
threads since they do not support multi-threading. We used ropebwt2 with the
-R flag. The experiments that exceeded 48 h of wall clock time or exceeded 62
GB of memory were omitted from further consideration.

Experiments. In Fig. 1 we illustrate the construction time and memory usage
to build the eBWT and the BWT of collections of strings for the chromosome
19 dataset. pfpebwt was the fastest method to build the eBWT of 4 or more
sequences of chromosomes 19, with a maximum speedup of 7.6× of wall-clock

2 G2BWT crashed and BCR did not terminate within 48 h with the smallest of each
dataset; lba works only with sequences of length up to 255.

https://github.com/davidecenzato/PFP-eBWT
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(a) Construction time. (b) Peak memory.

Fig. 1. Chromosome 19 dataset construction CPU time and peak memory usage. We
compare pfpebwt with ropebwt2, gsufsort, and egap. Note that for time, egap has
almost the same performance as gsufsort, therefore the two plots are indistinguishable.

time and 2.9× of CPU time over ropebwt2 on 256 sequences of chromosomes
19, 2.7× of CPU time over egap on 64 sequences, and 3.8× of CPU time over
gsufsort on 128 sequences. Considering the peak memory, on the chromosomes
19 dataset, ropebwt2 used the smallest amount of memory for 1, 2, 4, 8, and 2,048
sequences, while pfpebwt used the smallest amount of memory in all other cases.
pfpebwt used a maximum of 5.6× less memory than ropebwt2 on 256 sequences
of chromosomes 19, 28.0× less than egap on 64 sequences, and 45.3× less than
gsufsort on 128 sequences. Note that the memory increase in gsufsort from
16 to 32 sequences is due to the switch from the 32 bit implementation to the
64 bit implementation.

Similar results were obtained also on Salmonella and SARS-CoV2 sequences,
for which we provide an in-depth discussion in the full version of the paper.

The memory peak of ropebwt2 is given by the default buffer size of 10 GB,
and the size of the run-length encoded BWT stored in the rope data structure.
This explains the memory plateau on 10.5 GB of ropebwt2 on the chromosomes
19 dataset. However, ropebwt2 is able only to produce the BWT of the input
sequence collection, while pfpebwt can be trivially extended to produce also the
samples of the conjugate array at the run boundaries with negligible additional
costs in terms of time and peak memory.
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Abstract. Given a text T of length n, the sparse suffix sorting problem
asks for the lexicographic order of suffixes starting at m selectable text
positions P . The suffix binary search tree [Irving and Love, JDA’03]
is a dynamic data structure that can answer this problem dynamically
in the sense that insertions and deletions of positions in P are allowed.
While a standard binary search tree on strings needs to store two longest-
common prefix (LCP) values per node for providing the same query
bounds, each suffix binary search tree node only stores a single LCP
value and a bit flag. Its tree topology induces the sorting of the m suffixes
by an Euler tour in O(m) time. However, it has not been addressed how
to compute the lengths of the longest common prefixes of two suffixes
with neighboring ranks with this data structure. We show that we can
compute these lengths again by an Euler tour in O(m) time.

Keywords: Suffix binary search tree · Sparse suffix sorting · Longest
common prefixes · Euler tour

1 Introduction

While common full-text indexing data structures provide interfaces answering
pattern matching queries for all positions in the underlying text, the sparse
variation of such data structures index the text only at certain m positions
with the aim to improve the space and construction time bounds to a complex-
ity related to m. Such a technique can make sense if we work with large data
sets for which the maintenance of a full-text data structure is prohibitive with
respect to its space or construction time. In such a case, when only certain posi-
tions are of interest such as word beginnings in natural language texts, we can
resort to a sparse text index. One of the most well-studied sparse text indices
is the sparse suffix array. Given a text T [1..n] of length n, and a set of text
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positions P = {p1, . . . , pm} with pi ∈ [1..n], the sparse suffix array SSA deter-
mines the lexicographic order of all suffixes starting with the positions of P .
Formally, the sparse suffix array SSA[1..m] is a ranking of P with respect to
the suffixes starting at the respective positions, i.e., T [SSA[i]..] ≺ T [SSA[i + 1]..]
for i ∈ [1..m − 1] with {SSA[1], . . . ,SSA[m]} = P . To support pattern match-
ing efficiently, the sparse suffix array can be augmented with the sparse longest
common prefix (LCP) array SLCP to support the classic suffix array pattern
matching algorithm of Manber and Myers [19]. The sparse LCP array SLCP
stores the length of the LCP of each suffix stored in SSA with its preceding
entry, i.e., SLCP[1] = 0 and SLCP[i] := lcp(T [SSA[i − 1]..], T [SSA[i]..]) for all
integers i ∈ [2..|SSA|].

Other applications of SSA beyond plain pattern matching include the com-
putation of the LCP array in external memory [12], a Burrows-Wheeler trans-
form [4] variation [5], or finding maximal exact matches [14,22]. There are algo-
rithms that can compute SSA and SLCP for a given set P efficiently (e.g., [2,3,6–
8,13,15,17,20,21]), where most approaches resort to a data structure answering
longest common extension (LCE) queries, i.e., a query that asks for the length of
the LCP of two suffixes of the underlying text. As pointed out by Fischer et al. [7,
Observation 1.2], given a data structure that answers LCE queries in OtLCE(n)
time for tLCE(n) > 0, we can solve the sparse suffix sorting problem for m posi-
tions in OtLCE(n) · m · tD(m,n) time by inserting the m respective suffixes into
a dynamic dictionary D with an insertion operation taking tD(m,n) time when
D stores m suffix starting positions. In particular, this observation generalizes
the suffix sorting problem to be dynamic. By dynamic we mean that we allow
insertions or deletions of positions in P , and hence have the additional need for
updating D. This problem is a fundamental task for dynamic pattern matching,
where the user can (a) change P and (b) query an indexing data structure built
on P and T , both in an arbitrary order. A straightforward approach is to use a
binary search tree (BST) as the dictionary representation since it supports the
necessary insertion operations. However, the time complexity can be a problem,
since a suffix has O(n) characters and hence, we need tD(m,n) = O(nh) time
for an insertion into a BST of height h. We can use a balanced representation
such as the AVL-tree [1] to obtain h = O(lg m), but the insertion time complex-
ity has still a linear factor in n. Exactly for this use case scenario, Irving and
Love [11] provided an augmentation of the standard BST to obtain O(m + h)
time, which they called suffix BST. In the suffix BST, they augmented each BST
node with the length of the LCEs with an ancestor node. They also proposed
a variant with the virtues of the AVL-tree, which they called suffix AVL-tree,
having h = O(lg m). In the following we write SBST for the suffix BST or its
variants, the suffix AVL-tree, built upon the m suffixes of our text. Although we
can retrieve SSA from SBST with a simple Euler tour, we show in the following
that retrieving SLCP is also possible:1

1 A precursor of this research is the technical report [10, Section 5] and a PhD the-
sis [18].
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Theorem 1. We can compute SLCP from SBST in time linear in the number
of nodes stored in SBST.

Theorem 1 is important in use cases where we need to compute the order of the
suffixes dynamically, but then need SSA and SLCP for one of the aforementioned
applications. The problem tackled by Theorem 1 can be made trivial with a
variation of SBST that stores two LCP values per node [16, Sect. 4.6], and thus
this variant is a constant factor larger than SBST. Another way to solve the
problem naively would be to use an LCE data structure to compute the LCPs of
two neighboring entries in SSA, after extracting SSA from SBST, as done in [7,
Corollary 4.2].

2 Preliminaries

We work in the pointer machine model. Let T [1..n] be a text of length n whose
characters are drawn from an ordered alphabet Σ. We assume that we can com-
pare two characters of Σ in constant time. We write T [i] for the i-th character
of T , for i ∈ [1..n]. For X,Y,Z ∈ Σ∗ with T = XY Z, X, Y , and Z are called a
prefix , substring , and suffix of S, respectively. Since X, Y , or Z may be empty,
X and Z are also substrings of S at the same time by this definition.

Let SSA and SLCP be defined as in the introduction. The sparse inverse suffix
array SISA[1..n] is (partially) defined by SISA[SSA[i]] = i. We only need SISA
conceptually, and only care about the entries determined by this equation. The
idea is that SISA[i] for i ∈ P is the rank of the suffix T [i..] among all suffixes
starting with a position in P . See Fig. 1 for an example of the defined arrays for
n = m. There, the entries of rules are sorted in suffix order, i.e., rules[i] is the
rule for the node representing SSA[i].

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T c a a t c a c g g t c g g a c

SSA 2 14 6 3 15 1 5 11 7 13 12 8 9 4 10
SISA 6 1 4 14 7 3 9 12 13 15 8 11 10 2 5
SLCP 0 1 2 1 0 1 2 1 3 0 1 2 1 0 2
rules E A L L A D R A L A L L R D A

Fig. 1. The example string T = caatcacggtcggac used in [11, Fig. 2]. The row rules
shows from which rule or scenario (cf. Sect. 4) the SLCP value was obtained.

3 The Suffix AVL Tree

Given a set of text positions P , the suffix AVL tree represents each suffix T [p..]
starting at a text position p ∈ P by a node. The nodes are arranged in a binary
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1
0 ⊥

2
0 ⊥

3
1 R

6
1 L

14
2 L

15
1 L

4
0 ⊥

5
2 R

7
1 R

11
3 L

8
0 ⊥

12
2 L

13
1 L

9
1 R

10
2 R

Fig. 2. The unbalanced SBST of the string T = caatcacggtcggac defined in Fig. 1
when inserting all text positions in increasing order. A node consists of its position v
(top), mv (bottom left) and dv (bottom right) abbreviated to L and R for left and
right, respectively.

search tree topology such that reading the nodes with an in-order traversal gives
the sparse suffix array. To support fast operations, each node is augmented with
the following extra information:

Given a node v of SBST, clav (resp. crav) is the lowest node having v as a
descendant in its left (resp. right) subtree. We write T [v..] for the suffix repre-
sented by the node v, i.e., we identify nodes with their respective suffix starting
positions. Each node v stores a tuple (dv,mv), where mv is

– lcp(T [v..], T [clav..]) if dv = left and clav exists,
– lcp(T [v..], T [crav..]) if dv = right and crav exists, or
– 0 if dv = ⊥.

The value of dv ∈ {left, right,⊥} is set such that mv is maximized. Let cav be
clav (resp. crav) if dv = left (resp. dv = right). If dv = ⊥, then cav as well as
clav and crav are not defined. See Fig. 2 for an example.

4 Computing the Sparse LCP Array

Since an SBST node does not necessarily store the LCP with the lexicographi-
cally preceding suffix, it is not obvious how to compute SLCP from SBST. For
computing SLCP from SBST, we use the following two facts and a lemma:

Fact 1: We have T [crav..] ≺ T [v..] ≺ T [clav..] in case that clav and crav exist.
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Fact 2: During an Euler tour (an in-order traversal), we can compute SSA by
reading the text positions represented by the nodes in the order we visit
the nodes for the first time. We can additionally keep track of the in-
order rank SISA[v] of each node v.

Lemma 1 ([11, Lemma 1]). Given three strings X,Y,Z with the lexicographic
order X ≺ Y ≺ Z, we have lcp(X,Z) = min (lcp(X,Y ), lcp(Y,Z)).

With the following three rules Rule L, R, and E (as abbreviations for left,
right and non-existing), we can partially compute SLCP:

Rule L: If dv = left and the right sub-tree of v is empty, then SLCP[SISA[v] +
1] = mv. That is because cav = clav = SSA[SISA[v]+1] is the starting position
of the lexicographically next larger suffix with respect to the suffix starting
with v.

Rule R: If dv = right then SLCP[SISA[v]] ≥ mv since v shares a prefix of at
least mv characters with the lexicographically (not necessarily next) smaller
suffix crav. In particular, if v does not have a left child, then SLCP[SISA[v]] =
mv since crav = SSA[SISA[v] − 1] in this case.

Rule E: If v does not have a left child and crav does not exist, then
SLCP[SISA[v]] = 0. This is the case when T [v..] is the smallest suffix stored
in SBST.

To compute all SLCP values, there remain the two scenarios Scenario D and A
(the letters D and A have the meaning to compare with a descendent or ancestor
node):

Scenario D: If a node v has a left child, then we have to compare v with
the rightmost leaf in v’s left subtree because this leaf corresponds to the
lexicographically preceding suffix of the suffix starting with v.

Scenario A: Otherwise, this lexicographically preceding suffix corresponds to
crav, such that we have to compare crav with v. If dv = right, we are already
done due to Rule R since cav = crav in this case (such that the answer is
already stored in mv).

Figure 1 lists which rule or scenario has been applied to compute the SLCP
value of a specific node of the SBST instance shown in Fig. 2. We cope with
both scenarios by an Euler tour on SBST. For Scenario D, we want to know
lcp(T [v..], T [clav..]) for each leaf v regardless of whether dv = left or not.
For Scenario A, we want to know lcp(T [v..], T [crav..]) for each node v regard-
less of whether dv = right or not. We can obtain this LCP information by the
following lemma:

Lemma 2. Given lcp(T [clav..], T [crav..]), lcp(T [v..], T [cav..]), and dv, we can
compute lcp(T [v..], T [clav..]) and lcp(T [v..], T [crav..]) in constant time.

Proof. If dv = left,

– lcp(T [v..], T [clav..]) = lcp(T [v..], T [cav..]) since clav = cav, and
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– lcp(T [v..], T [crav..]) = lcp(T [clav..], T [crav..]).

The latter is because of Fact 1 (assuming clav and crav exist) and

lcp(T [crav..], T [clav..]) = min(lcp(T [crav..], T [v..]), lcp(T [v..], T [clav..]))
= lcp(T [v..], T [crav..]) ≤ lcp(T [v..], T [clav..])

according to Lemma 1. The case dv = right is symmetric:

– lcp(T [v..], T [clav..]) = lcp(T [clav..], T [crav..]), and
– lcp(T [v..], T [crav..]) = lcp(T [v..], T [cav..]). ��

With Lemma 2, we can keep track of lcp(T [clav..], T [crav..]) while descending
the tree from the root: Suppose that we know lcp(T [clav..], T [crav..]) and v’s left
and right children are x and y, respectively. Then the following holds for x and y:

– Since clax = v and crax = crav, lcp(T [clax..], T [crax..]) = lcp(T [v..], T [crav..]).
– Since cray = v and clay = clav, lcp(T [clay..], T [cray..]) = lcp(T [v..], T [clav..]).

During an Euler tour, we keep the values lcp(T [clau..], T [crau..]) in a stack for
the ancestors u of the current node. By applying the above rules and using the
LCP information of Lemma 2 for both scenarios, we can compute SLCP during a
single Euler tour. Since we did not make any assumptions on the height of SBST,
this algorithm runs in linear time, regardless of whether the tree is balanced or
not. Altogether, we obtain SSA and SLCP with a single Euler tour with constant
time operations per node, and thus could prove the claim of Theorem 1.

Finally, one might be interested not in the complete arrays, but in the recov-
ery of certain parts. By augmenting each node v with the size of the subtree
rooted at v, we can answer SSA[i] in O(h) time by a top-down traversal in
SBST. We select the left child if its subtree size s is at most i, otherwise we
exchange i with i− s− 1 and either select the right child if i > 1, or stop (i = 1)
since we arrived at a node representing the suffix starting position in question.
Like with classic AVL trees, the subtree sizes can be maintained dynamically
without additionally costs to the asymptotic time bounds.

For computing SLCP[i], we need to locate the nodes representing SSA[i] and
SSA[i+1], which is done by two top-down traversals as above. If we additionally
keep track of lcp(T [clav..], T [crav..]) while descending the tree as in the afore-
mentioned Euler tour, we gain information of all the above described cases for
computing SLCP[i]. By then continuing the Euler tour as described above we
obtain:

Corollary 1. SBST augmented by the subtree sizes can retrieve SSA[i..i+�] and
SLCP[i..i + �] in O(h + �) time for any � ∈ [0..m − i].

5 Future Work

Future directions of research include the analysis of space efficient data structures
that have the same capabilities as the suffix BST, but work in compressed or
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succinct space. For instance, it is possible to use the B tree of [9] whose topology
can be succinctly represented in o(nk) bits. Another benefit of this B tree would
be that it can read SLCP from the satellite values stored in leaves from left to
right. Finally, for B+ variants, the data can be practically faster accessed than
in classic binary search trees due to memory locality.
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JP21K17701 (DK) and JP19K20213 (TI). We thank the four anonymous reviewers
of SPIRE’21 for their valuable comments on our manuscript. They give additional
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suffix binary search tree instances. Tackling this problem could indeed be useful for
building and updating FM-indexes and other related indexing data structures.
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9. I, T., Köppl, D.: Load-balancing succinct B trees. arXiv CoRR abs/2104.08751
(2021)

10. Irving, R.W., Love, L.: Suffix binary search trees and suffix arrays. University of
Glasgow, Technical report (2001)

11. Irving, R.W., Love, L.: The suffix binary search tree and suffix AVL tree. J. Discret.
Algorithms 1(5–6), 387–408 (2003)
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Abstract. Motivation: Approximate membership query (AMQ)
structures such as Cuckoo filters or Bloom filters are widely used for rep-
resenting large sets of elements. Their lightweight space usage explains
their success, mainly as they are the only way to scale hundreds of bil-
lions or trillions of elements. However, they suffer by nature from non-
avoidable false-positive calls that bias downstream analyses of methods
using these data structures.

Results: In this work we propose a simple strategy and its imple-
mentation for reducing the false-positive rate of any AMQ data struc-
ture indexing k-mers (words of length k). The method we propose, called
findere, enables to speed-up the queries by a factor two and to decrease
the false-positive rate by two order of magnitudes. This achievement is
done on the fly at query time, without modifying the original indexing
data-structure, without generating false-negative calls and with no mem-
ory overhead.

This method yields so-called “construction false positives”, but the
amount of such false positives is negligible when the method is used
within classical parameter ranges. This method, as simple as effective,
reduces either the false-positive rate or the space required to represent a
set given a user-defined false-positive rate.

Availability: https://github.com/lrobidou/findere.

Keywords: Approximate membership query · Data structure ·
Indexation · k-mers · Bloom filters · Sequence data

1 Introduction

Genomic studies generate a “data deluge” [13]. Public data banks providing
sequencing data or assembled genome sequences are growing at an exponential
rate [1]. Alongside, a fundamental need consists in comparing sequences at large
scale, for instance for species identification [15], metagenome similarity estima-
tion [3,11], or any generic need for estimating the presence of a sequence among
available datasets [10].
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Given the overwhelming amount of data to compare, these large scale
sequence comparisons are made through alignment-free methods [16] mainly
based on the number of words of fixed length, usually called k-mers for words
of length k, shared between the two (set of) sequences to compare. So then,
indexing k-mers for fast and low memory membership queries is a fundamental
need. This last decade, an intense research activity was carried out in order to
optimize such indexes (see [9] and [6] reviewing these efforts). Most of those
indexes use approximate membership query (AMQ) structures such as Bloom
filters [4] (called “BF” in this manuscript). With low space needed per repre-
sented element (usually less than 10 bits), these data structures are widely used
although they suffer by nature from the existence of false-positive calls.

In genomics, BFs are the simplest and the most employed AMQ data struc-
ture used for representing the set of k-mers from a set of sequences. However,
more sophisticated AMQ data structures enable under certain conditions to
improve the BF features (cuckoo filters [7], SAT filters [14], quotient filters [2]).
However, these improvements are marginal and/or at the expense of impor-
tant limitations such as an important query time. For instance with SAT filters,
despite they need ≈ 22% less space, their queries are roughly 14 times slower
than BFs’ ones. Also, Cuckoo filters may show marginal smaller space cost per
element for false-positive rates below 3% (space gain of 16% for instance for a
false-positive rate of 0.1%, at the expense of longer query time).

In this work, we do not propose yet another AMQ data structure. Instead,
we propose a downstream analysis of results returned by such data structures
when used to query k-mers from a sequence. To the best of our knowledge, the
only work in the same spirit is kBF [12]. kBF is designed to work on genomic
sequences with the alphabet {A,C,G, T} and indexes k-mers using a BF. With
kBF if a queried k-mer is positive in the BF, the presence in the BF of at least
one of the four (the alphabet size) potential previous and incoming k-mers is also
checked. If none of them is positive, then the original queried k-mer is considered
a negative. This leads to a lower false-positive rate (up to 30x lower than a raw
BF) at the expense of longer query time and higher memory usage. kBF presents
interesting features that can be further improved as 1/ its query times are 1.3
to 1.6x longer than a classical BF, and 2/ its strategy is limited to the previous
and the k-mer that comes just after a queried k-mer. Extending this approach to
n neighbor increases the query time by (4n) fold. Finally, this approach applies
only for small alphabets (e.g. of size four) as the number of queries depends on
the size of the alphabet. The work we propose aims to overcome these limitations.

In this paper, we propose a method for improving AMQ results when used
for querying k-mers from a sequence. Our strategy is based on the observation
that false-positive k-mers from AMQ are not likely to occur consecutively on
a queried sequence. Hence, in a procedure that we call the “Query Time Fil-
tration” (QTF), small stretches of positive calls surrounded by negative calls are
considered as false-positives and are filtered out. This simple strategy leads to an
unprecedented decrease of the AMQ false-positive rate. However, this leads to
the introduction of false-negative calls that are a barrier for many downstream



findere: Fast and Precise Approximate Membership Query 153

applications. Nevertheless, we show that the QTF strategy can be used for query-
ing K-mers (with K > k), with no false-negative.

We implemented this approach in a tool called findere. Used on results
from any original AMQ data structure, findere presents only advantages when
querying K-mers: it does not necessitate any change to the original AMQ struc-
ture, it does not use any additional memory or disk, it has no false-negative calls,
and it has a false-positive rate two orders of magnitude lower than original AMQ.
Moreover, findere does not entail any additional query time penalty and even
enables faster query of K-mers (in average >2 times faster with recommended
parameters) with no negative impact on result quality.

2 Method

2.1 Background

Preliminary Definitions
A k-mer is a word of length k over an alphabet Σ. Given a sequence S, |S|
denotes the length of S.

In the current framework, we consider a dataset as composed of one sequence
or a set of sequences. We consider that a k-mer occurs in a dataset if it occurs
at least once in any of the sequences composing the set.

An AMQ data structure represents a set of elements D. It can be queried
with any element d. If d ∈ D, then the AMQ answer is positive (there is no false-
negative). If d /∈ D, the AMQ answer may be negative or positive, in this last case
it is a false-positive call. The false-positive rate, denoted by FPRAMQ, is defined
by FPRAMQ = #FP

#FP+#TN with #FP and #TN denoting respectively the
number of false-positive calls and the number of true negative calls. FPRAMQ

depends on the used AMQ strategy and mainly on the amount of space used by
this AMQ.
Sequence Similarity Estimated by the Number of Shared k-mers
Given two sequences, a k-mer occurring in both sequences is called “shared”.
The number of shared k-mers between a queried sequence q and a dataset B
provides an insight of the presence of q in B, or at least of a sequence similar to
q in B [5].

In practice, for scaling Terabyte-sized sets B, a static AMQ indexes all (over-
lapping) k-mers from B. At query time, all (overlapping) k-mers from the query
q are read on the fly and, for each of them, the k-mer is queried using the AMQ.
Note that for each position p on q ∈ [0, |q| − k + 1] the k-mer starting at this
position is queried. Thus, it overlaps by k − 1 characters with the previously
queried k-mer if it exists (if p > 0).

2.2 Decreasing the AMQ False-Positive Rate with “Query Time
Filtration”

In the context of computing the k-mer similarity between a bank B represented
by its set of k-mers indexed in an AMQ and a query sequence q, we propose a
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surprisingly simple approach for drastically decreasing the AMQ false-positive
calls.

Observation About the False-Positive Calls
Given the AMQ properties, one can assume that false-positive calls appear at
random when querying elements from Σ∗. In particular, when querying neg-
ative k-mers from a queried sequence q, the probability to query one false-
positive is FPRAMQ, the probability to query two successive false-positives
is FPRAMQ

2, and so on. Overall, the probability to query z successive false-
positives is FPRAMQ

z. Given a classical FPRAMQ value of 1% (usual expected
false-positive rate with BFs for instance), with z = 3, the chances to call three
consecutive false-positives k-mers is 0.0001%.

Intuition About the True Positive Calls
When approximating the sequence similarity between q and B using the k-mer
similarity, the underlying idea is to choose k (usually chosen higher than 20 and
lower than 40) such that q and sequences of B share large (≥ k) sub-sequences.
An intuitive consequence of this choice stands in the fact that, when querying
successive k-mers from q, it is unlikely that only a low number (e.g. less than 3)
of successive k-mers are true positives.

Query Time Filtration
Motivated by the observation and the intuition presented in the two previous
sections, we propose a method that we call the “Query Time Filtration” (QTF in
short), designed for lowering the FPRAMQ at the expense of the introduction
of false-negative calls.

Fig. 1. Example with k = 5 and z = 2, showing a query sequence (first line) and the
various answers in the three next lines while querying 5-mers (indexed truth, AMQ
answer and QTF answer). For each k-mer, a cross mark (resp. a check mark) indicates
that this k-mer is absent from (resp. present in) the queried set. False answers are
shown in red. This AMQ false-positive response (5-mer CAAAG) is filtered out by QTF

as it generates a positive stretch of size one, lower than z = 2. Hence, one the last line
showing the result after QTF, this false-positive does not occur. However, by applying
this strategy, QTF may also remove the true positive stretch of size ≤ z (example shown
with a red cross), leading to a false-negative QTF answer for the 5-mer GATTG.

As illustrated Fig. 1, the fundamental idea is to filter the AMQ answers
depending on the context of the queried k-mers when those are queried suc-
cessively. Given a parameter z, QTF answers “positive” only for k-mers having
at least z consecutive neighbors indexed in the AMQ, and it answers “negative”
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else. Said differently, QTF considers as negative any k-mer that does not belong
to a set of at least z + 1 successive k-mers positive for the AMQ.

In the following, a set of x consecutive k-mers positive for the AMQ is called
a “positive stretch of length x”, or simply an “x-stretch”.

QTF Algorithm
The QTF algorithm is straightforward. However, given its designed use cases
(querying billions or trillions of k-mers) it has to be as much optimized
as possible. We propose a simple yet efficient algorithm (see Algorithm 1)
not using any extra disk space or RAM. Compared to a usual usage of an
AMQ querying consecutive k-mers, it only requires a single additional integer
“currentStretchLength” that represents the number of consecutive positives k-
mers being read on q and a single test, with no impact on query time complexity
that is O(|q|).

Algorithm 1: QTF
Data: q ∈ Σ∗; AMQ indexing k-mers; k and z in N

+

Result: Prints k-mers from q shared with AMQ, after QTF

1 currentStretchLength = 0;
2 for each position i in [0, |q| − k + 1] do
3 kmer = kmer starting position i in q;
4 if AMQ contains kmer then
5 currentStretchLength = currentStretchLength + 1;

6 else
7 if currentStretchLength > z then
8 print all overlapping k-mers occurring on q from

i − currentStretchLength to i − 1;

9 currentStretchLength = 0

10 if currentStretchLength > z then
11 print all overlapping k-mers occurring on q from

|q| − k + 1 − currentStretchLength to |q| − k;

Considerations About QTF False-Positive and False-Negative Rates
The QTF strategy drawback is the introduction of false-negative calls. A false-
negative call occurs when a true-positive k-mer belongs to a x-stretch with x ≤ z.
This situation happens when q and B share a (small) sub-sequence of length
< k + z. This may happen in practice.

As shown by intermediate results (see Supplementary Materials, Sect. S1.1),
the QTF strategy enables to reduce the original AMQ false-positive rate by several
orders of magnitude at the expense of non-null false-negative rate. For instance,
when applied to an AMQ composed of a BF indexing 31-mers with a false-
positive rate of 5%, the QTF filter, using z = 3, enables to decrease the false-
positive rate from 5% to ≈ 0.02% but increases the false-negative rate from 0%
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to ≈ 1.37%. With no impact on query time or memory, these results are highly
satisfying for applications in which a small false-negative rate is acceptable.

By the way, in the following section we propose a second main contribution.
We show how to take advantage of the QTF strategy to query K-mers (with
K > k) with no false-negative call, with low false-positive rate and with query
time being faster than usual AMQ queries.

2.3 Querying K-mers with findere

As exposed previously, after QTF, a false-negative call arises only when a positive
k-mer belongs to a positive stretch of length ≤ z. Conversely, if a sequence of
length K (with K > k) is shared between q and B, then it generates K − k + 1
successive true positive k-mers, thus defining a (K − k + 1)-stretch.

Conceptually, we take advantage of this remark by proposing an algorithm
that we call findere in which we query K-mers based on indexed k-mers filtered
by the QTF algorithm, using z = K − k, hence looking for stretches of length
≥ z + 1.

More precisely, given two integer values K and k, with K > k > 0, a bank
dataset B and a query sequence q, the findere strategy consists in indexing all
the k-mers from B using an AMQ. In contrast to QTF that calls k-mers, findere
calls K-mers based on their k-mer content. Given a position i ∈ [0, |q| − K + 1]
on q, the K-mer starting at this position is considered as “present” by findere
if the k-mer starting at position i and the K − k next successive k-mers are
considered as present by QTF. This explains the “findere” name that comes
from Latin and means “divide”.

The findere algorithm is obtained from a straightforward modification of
the QTF algorithm (Algorithm 1). It is sufficient to define z = K − k and to
print K-mers instead of k-mers lines 8 and 11, taking care to avoid printing
the last K − k K-mers of each stretch. The complete algorithm is presented
in Algorithm 2, including an additional time optimization as presented in the
following section.

findere Time Optimization
While walking a sequence q searching for (z + 1)-stretches, it is possible to skip
some k-mer queries. Indeed, if two negative k-mers start positions i and i+z +1
on q, it is impossible to have a (z +1)-positive stretch starting from any position
between i and i + z + 1. This is because at most z positive k-mers can start
between i and i + z + 1 both excluded, hence no (z + 1)-stretch can contain any
position in [i, i + z + 1].

Thus, when a negative k-mer is found position i on q, we check directly
whether the k-mer starting at position i + z + 1 is positive or negative for the
AMQ.

– If it is negative, we know that no z-stretch can exists including any position
in [i, i + z + 1]. There is in this case no need to query k-mers starting at
positions in [i, i+ z], and we can repeat the process position i+ 2(z + 1), and
so on.
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Algorithm 2: findere
Data: q ∈ Σ∗; AMQ indexing k-mers; K and k in N

+, K ≥ k
Result: Prints k-mers from q shared with AMQ, after QTF

1 z = K − k;
2 currentStretchLength = 0;
3 extendingStretch = True;
4 i = 0;
5 while i ≤ |q| − k + 1 do
6 kmer = kmer starting position i in q;
7 if AMQ contains kmer then
8 currentStretchLength = currentStretchLength + 1;
9 if extendingStretch then

10 i = i + 1;

11 else
12 extendingStretch = True;
13 i = i − z;

14 else
15 if currentStretchLength ≥ z then
16 print all overlapping K-mers occurring on q from

i − currentStretchLength to i − 1 − (K − k);

17 currentStretchLength = 0;
18 extendingStretch = False;
19 i = i + z + 1;

20 if currentStretchLength ≥ z then
21 print all overlapping K-mers occurring on q from

|q| − k + 1 − currentStretchLength to |q| − K;

– If it is positive, k-mers starting from position i+1 have to be queried following
the same process.

Note that even if we report this optimisation specifically for the findere
algorithm, it also applies for the QTF strategy.

findere Algorithm
Algorithm 2 proposes an overview of the findere algorithm. This includes the
time optimization described in the previous section. This optimisation mainly
takes effects line 19 where z positions are not queried unless the next checked
position contains a positive k-mer, leading to rewind the query z positions back
(line 13).

findere False-Positives and “construction False-Positives” (cFP)
findere reduces the false-positive rate of an AMQ by detecting and filtering
out stretches of length ≤ z (= K − k). The greater the length of the stretches,
the fewer false-positives stretches pass through the filtration, as illustrated by
results presented in Supp. Mat, Sect. S1.1.
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However, detecting K-mers based on their k-mer content leads to the appari-
tion of a novel kind of false-positives for findere. It may appear that for a neg-
ative K-mer, all its k-mers are true-positives. In this case, findere generates
a false-positive call for this K-mer. We name those false-positive K-mers “con-
struction false-positives” (cFP). The higher z, the higher the number of cFP, as
when k gets too small, more k-mers occur by chance.

findere Implementation
We propose an implementation of findere, available at https://github.com/
lrobidou/findere. This implementation uses a Bloom filter as its inner AMQ.
However, any other AMQ implementation can be used through a simple wrap-
per (provided with the findere implementation). The BF chosen for this imple-
mentation is a fork of the original https://github.com/mavam/libbf, which was
modified to add the support of serialization. Although findere can index and
query any alphabet, its implementation proposes a specialisation for genomic
sequences: as such, one can index not only natural language, but also fasta and
fastq files (gzipped or not) representing genomes or any sequencing read files.
In this genomic context, a function to index and query canonical K-mers is also
available.

3 Results

We propose results on real biological data and on natural texts. The aim is
to show the practical advantages offered by findere, both in terms of query
precision, index size, and query time. Being developed to be used on top of any
AMQ, we do not compare findere with any of those. Remind that findere may
be used on filtering the results from any such data structure, including Cuckoo
Filters for instance. To the best of our knowledge, the only tool comparable to
findere is kBF. We compared findere and kBF on biological data only as kBF
is not designed to work on a generic alphabet.

Executions were performed on the GenOuest platform on a node with 4× 8-
cores Xeon E5-2660 2,20 GHz with 200 Go of memory. A complete description
of tool versions, data acquisition, command lines, and numerical results are
provided in the Github repository https://github.com/lrobidou/findere/tree/
master/paper companion.

3.1 Experimental Data

Metagenomic Data. In order to measure the impacts of the findere algorithm
on real genomic data, we used two HMP [8] fastq files, indexing reads1 from sam-
ple SRS014107 and querying reads1 from sample SRS016349, both downloaded
from the NCBI Sequence Read Archive. Theses samples contain respectively 4.2
million reads of average size 92 characters and 2.3 million reads of average size
96 characters. We simply refer to this dataset as the “hmp” dataset.

Natural Language Data. In order to test the findere implementation on natural
language, we used a dump of Wikipedia, from which we extracted two subsets

https://github.com/lrobidou/findere
https://github.com/lrobidou/findere
https://github.com/mavam/libbf
https://github.com/lrobidou/findere/tree/master/paper_companion
https://github.com/lrobidou/findere/tree/master/paper_companion
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overlapping with 10 Mo. They have each a size of 105 Mo, leading to about 108

31-mers each. We refer to this dataset as the “natural language dataset”.

3.2 Results on Genomics Data

In this Section we propose results using K = 31. As shown in Supp. mat.
(Sect. S1.2), findere results are robust with this main parameter.

False-Positive Analyses
We obtained results with a classical BF, indexing SRS014107 and querying
SRS016349 with K-mers of length K = 31. For all experiences the size of the
used BF is ≈ 2.6 billion bits, leading to 5% FPR when indexing 31-mers. With
the same BF size, findere was run varying the z value, with K = 31. As shown
Fig. 2, with z = 0, findere obtains as expected exactly the same results as those
obtained with the original used AMQ. With low z values (e.g. lower than 5), the
findere FPR quickly drops close to zero. For instance, with z = 3, the findere
FPR is equal to 0.056%, which is two orders of magnitudes smaller than the
original BF FPR. Also, with such low z values, k-mers are large enough to limit
the findere “construction FP” (cFP) to negligible values. For instance, z = 3
leads to k = 28 and the cFP rate is 0.025%.

0 2 4 6 8 10

0
1

2
3

4
5

6
7

False positive rate, depending on z, K=31

z value

FP
 ra

te
 (%

)

Bloom Filter (5%)
findere
findere construction FP

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Fig. 2. Comparative false-positive rate obtained on the hmp dataset. A BF indexes
31-mers, with a pratical FP rate of ≈ 5% (blue filled squares, independent of the z
value). With the same BF size, findere was run varying the z value (and thus the k
value), leading to FP rates as shown in red filled circles. Orange empty circles show the
amount of findere “construction FP”, the rest of findere FP being due to stretches
of length ≥ z+1 containing BF FP. The full figure zooms on recommended z values (in
particular z ∈ [2, 5]). The small frame shows results including higher but discouraged
z values. (Color figure online)

When using large values of z (here > 15), k-mers get too small to be specific
enough. Hence they have high chances to appear at random, leading to a dra-
matic increase of the cFP rate. This happens with z values leading to k-mers of
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size < 13. For instance, with z = 19, one has k = 12, which results for findere
in an FPR of 89.27%, being almost only composed of cFP (curves overlap on
the figure, cFP representing 99.95% of the FP).

Fortunately, fixing z is easily anticipated by choosing a value small enough
so that the indexed k-mers in the AMQ have a low chance (e.g.. lower than
0.01%) to appear by chance. The probability for a k-mer to appear by chance

in a random text of length n can be roughly approximated as 1 −
(
1 − 1

|Σ|k
)n

,
with |Σ| being the size of the alphabet. For instance on the indexed SRS014107
sample, where |Σ| = 4 and n = 386 millions, the probability to appear by
chance for a k-mer is respectively equal to 0.99% for k = 13 (z = 18), to 0.30%
for k = 15 (z = 16), to 0.02% for k = 17 (z = 14), and to 0.005% for k = 18
(z = 13). Hence choosing z < 14 is acceptable. By default findere uses z = 3.

Space Gain
We recall first that findere memory usage has no overhead compared to the
size of the used AMQ. For a given AMQ size, we can deduce the FPR for a BF
and findere. Results are presented Fig. 3 (with the default z = 3 value). This
can also be used for deducing the amount of space needed for a given FPR. For
instance, to obtain a usual value of 1% FPR, findere requires 0.05 Gio of space
while a BF requires 1.06 Go. The findere advantage gets even more important
with a lower FPR: with 0.1% of FPR, findere requires 0.16 Go while a BF
requires about 17 Go (dotted lines). This leads to a gain of space of two orders
of magnitude, while not requiring any additional run time or RAM.

False positive rate, depending on the Bloom filter size, K=31
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Fig. 3. findere and BF FPR depending on the space used, on the hmp dataset. Dotted
line segment corresponds to 0.1% false-positive rate

Query Time
Thanks to the optimization detailed Sect. 2.3, the query time decreases when z
increases. As shown Table 1, with discouraged values z = 0 or z = 1, the query
time of findere is slightly higher than querying the original BF. This is due to
additional conditional tests. With recommended z values (z = 2 to 5), compared
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to the query time of the BF, the findere query time is divided by a factor 2 to
3. With the default z = 3 value, query time is divided by 2.4, while query time
still decreases when z increases: with z = 10, the query time is divided by ≈ 5.

Table 1. BF and findere query time in seconds on the hmp dataset, depending on
the z value. BF result does not depend on z and is reported only for z = 0.

z 0 1 2 3 4 5 10

BF 42.4

findere 42.9 43.7 24.3 17.5 14.1 12.0 8.6

Comparisons with kBF
To compare findere and kBF, we created a fork of kBF, available at http://
github.com/lrobidou/kbf/. This fork enables to specify the amount of memory
to be used by kBF and more importantly, it enables to index a set of reads and
query another set (the original implementation does not allow that). kBF comes
with two versions: 1-kBF and 2-kBF. 1-kBF uses less space at higher FPR than
2-kBF. The kBF strategy imposes to query up to nine times the BF when asking
for the membership of a single k-mer. At the same time, findere is ≈ 2.4 times
faster than a Bloom filter with the recommended value z = 3. Moreover, kBF
dumps all queried k-mers in RAM, and 2-kBF uses an additional hash set. Hence,
kBF is much slower than findere. For instance, on the hmp data, with a BF FP
of 5%, 1-kBF (resp. 2-kBF) query needs ≈ 300s (resp. ≈ 1450s) while findere
needs ≈ 17s.

Moreover, as it shows a higher FPR for a fixed amount of space, kBF uses
more space than findere for an equivalent FPR. For instance with for ≈ 1%
FPR, findere requires 0.05 Go of space while 1-kBF requires ≈ 0.40 Go. Com-
parisons with 2-kBF are not fair as it computes a hash set of every k-mer, leading
to unreasonable space usage (e.g. 7.78 Go for an FPR of ≈1% when findere
requires 0.05 Go). Full kBF results are proposed in Supp. Mat, Sect. S1.4.

3.3 Results on Natural Languages

We applied findere and BF on the natural language corpus. Full results are
provided in Supp. Mat, Sect. S1.3.

Memory Gain. As in Sect. 3.2, we computed the FPR in function of the space
used. From those results, we can deduce that, also on natural languages, for an
FPR of 0.1%, the findere space usage is two orders of magnitude less than BF.
Indeed, findere needs 0.023 Go, while a BF requires 3.38 Go.

Query Time. As described in Sect. 2.3, the query time decreases when z increases.
It holds when findere is used on the natural language dataset as well. With
recommended z values (z = 2 to 5), compared to the query time of the Bloom
filter, the findere query time is divided by a factor 1.6 to 3. With the default
z = 3 value, query time is divided by 2.2 compared to the raw Bloom filter query.

http://github.com/lrobidou/kbf/
http://github.com/lrobidou/kbf/
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3.4 Limit of the findere Approach

The findere algorithm generates so-called “construction false-positives” that
occur when a negative K-mer contains only true positive k-mers. With rec-
ommended parameters, those cFP are negligible as shown in Fig. 2. However,
as cFP depends only on true-positive calls, its value does not depend on the
FPRAMQ. Hence theoretically, when FPRAMQ tends toward zero, the cFP rate
(and thus findere FPR as well) becomes higher than FPRAMQ. This effect can
be observed on the natural language results (Fig. S2, Supp. Mat.) with BF FPR
below 0.02%. However, one should remind that, first, the difference is insignifi-
cant (0.008% difference FPR when using 26 Go space), and second, the practical
usage of an AMQ is usually with FPR higher than 0.1% to prevent huge space
requirements.

4 Conclusion

We propose a method filtering results of any approximate member query (AMQ)
data structure when used for querying words of length K from a query. Despite its
amazing simplicity, applied on metagenomics and natural text data, compared to
the non-filtered results: findere 1/ makes queries two times faster, 2/ enables
to decrease by two orders of magnitude the false-positive rate or enables to
decrease the space allocated to each element by two orders of magnitudes, and
3/ has no drawback when used with recommended values.

We are expecting an important impact of the findere tool, for which we pro-
pose an implementation. Indeed, AMQ data-structure are essential for indexing
large datasets. In particular their usage is fundamental for indexing the genomic
sequencing data, for which findere offers a new scaling breakthrough.
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Abstract. We prove that for n ≥ 2, the size b(tn) of the smallest bidi-
rectional scheme for the nth Thue–Morse word tn is n + 2. Since Kut-
sukake et al. [SPIRE 2020] show that the size γ(tn) of the smallest string
attractor for tn is 4 for n ≥ 4, this shows for the first time that there is
a separation between the size of the smallest string attractor γ and the
size of the smallest bidirectional scheme b, i.e., there exist string families
such that γ = o(b).

1 Introduction

Repetitiveness measures for strings is an important topic in the field of string
compression and indexing. Compared to traditional entropy-based measures,
measures based on dictionary compression are known to better capture the
repetitiveness in highly repetitive string collections [12]. Some well known exam-
ples of dictionary-compression-based measures are: the size r of the run-length
Burrows–Wheeler transform [2] (RLBWT), the size z of the Lempel-Ziv 77 fac-
torization [17], the size b of the smallest bidirectional (or macro) scheme [15].

Kempa and Prezza introduced the notion of string attractors [4], which gave
a unifying view of dictionary-compression-based measures. A string attractor
of a string is a set of positions such that any substring of the string has at
least one occurrence which contains a position in the set. The size γ of the
smallest string attractor of a word is a lower bound on the size of all known
dictionary compression measures, but is NP-hard to compute. Kociumaka et
al. [5,6] introduced another measure δ ≤ γ that is computable in linear time,
defined as the maximum over all integers k, the number of distinct substrings of
length k in the string divided by k.

The landscape of the relations between these measures has been a focus
of attention. For example, since z is a special case of a bidirectional scheme,
c© Springer Nature Switzerland AG 2021
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b ≤ z. Also, b ≤ 2r [13] and r = O(z log2 N) [3] hold, where N is the length
of the string. Notice that a string can be represented in space (with an extra
factor of log N for bits) proportional to b, r, or z. Interestingly, while δ and
γ do not give a direct representation of the string, it is known that the string
can be represented in O(δ log N

δ ) or O(γ log N
γ ) space, respectively [4–6]. On the

other hand, Kociumaka et al. [5,6] showed that for every length N and integer
δ ∈ [2, N ], there exists a family of length-N strings having the same measure δ,
that requires Ω(δ log N

δ log N) bits to be encoded. Analogous results for γ are
not yet known [5,6,12]. The bidirectional scheme is the most powerful among the
dictionary-compression-based measures. The size b of the smallest bidirectional
scheme is also known to satisfy b = O(γ log N

γ ), but again, the tightness of this
bound was not known [12].

Following Mantaci et al. [8,9], Kutsukake et al. [7] investigated repetitive-
ness measures on Thue–Morse words [11,14,16] and showed that the size of the
smallest string attractor for the n-th Thue–Morse word is 4, for any n ≥ 4. They
also conjectured that the size of the smallest bidirectional scheme for the n-th
Thue–Morse word (which has length N = 2n) is Θ(log N), which would imply
a separation between γ and b. Possibly due to the difficulty (NP-hardness) of
computing the size of the smallest bidirectional scheme of a string [15], tight
bounds for b have only been discovered for a very limited family of strings, most
notably standard Sturmian words [10]. This was shown from the fact that the
size r of the RLBWT of every standard Sturmian word is 2, therefore implying
a constant upper bound on the smallest bidirectional scheme.

In this paper, we prove Kutsukake et al.’s conjecture by showing that for
any n ≥ 2, the size b(tn) of the smallest bidirectional scheme for tn is exactly
n + 2. For any value of γ ≥ 4, we can construct a family of strings such that
b = Θ(γ log N

γ ) and N is the length of the string. Our result shows for the first
time the separation between γ and b, i.e., there are string families such that
γ = o(b).

2 Preliminaries

We consider the alphabet Σ = {a, b}. A string is an element of Σ∗. For any
string w ∈ Σ∗, let |w| denote its length, and let w = w[0] · · · w[|w| − 1]. Also, for
any 0 ≤ i ≤ j < |w|, let w[i..j] = w[i] · · · w[j].

A string morphism μ is a function mapping strings to strings such that
each character is replaced by a single string (deterministically), i.e., μ(w) =
μ(w[0]) · · · μ(w[|w| − 1]) for any string w. Let μ0(w) = w, and for any integer
n ≥ 1, let μn(w) = μ(μn−1(w)). Now let μ be the morphism on the binary
alphabet determined by μ(a) = ab and μ(b) = ba. Then the n-th Thue–Morse
word tn is μn(a), and its length is |tn| = 2n.

A list of strings b1, . . . , bk is called a parsing of a string S, if S = b1 · · · bk.
Each bi (i = 1, . . . , k) is called a phrase. A sequence B = ((b1, s1), . . . , (bk, sk)) is
a bidirectional scheme for S, if b1, . . . , bk, is a parsing of S and for all i = 1, . . . , k,
si ∈ [0, |S| − 1] ∪ {⊥}, such that si = ⊥ if |bi| = 1, and bi = S[si..si + |bi| − 1]
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otherwise. We denote the size k of the bidirectional scheme B by |B|. We call si

the source of the phrase bi.
If |bi| = 1 then we stipulate that si = ⊥, and call bi a ground phrase.

(Consequently, there are no phrases of length one that have a source being a
text position.) We denote the number of ground phrases in B by #g(B). For
convenience, we denote the starting position of phrase bi by pi, i.e., p1 = 0 and
pi = |b1 · · · bi−1| for all i = 2, . . . , k + 1, where pk+1 is defined for technical
reasons.

A bidirectional scheme B for the string S defines a function fB : [0, |S|−1]∪
{⊥} → [0, |S| − 1] ∪ {⊥} over positions of S, where

fB(x) =

{
⊥ if x = ⊥ or if x = pi, si = ⊥ for some i,

si + x − pi otherwise, i.e., if pi ≤ x < pi+1, si �= ⊥ for some i.

Let f0
B(x) = x, and for any j ≥ 1, let f j

B(x) = fB(f j−1
B (x)). It is clear that if

fB(i) �= ⊥, then it holds that S[i] = S[fB(i)]. A bidirectional scheme for S is
valid, if there is no i ∈ [0, |S| − 1] such that the function fB contains a cycle,
that is, for every i ∈ [0, |S|−1], there exists a j ≥ 1 such that f j

B(i) = ⊥. A valid
bidirectional scheme B of size k for S implies an O(k)-word size (compressed)
representation of S, namely, the sequence ((|b1|, s′

1), . . . , (|bk|, s′
k)) ⊂ ([1, |S|] ×

([0, |S| − 1] ∪ Σ))k, where s′
i = bi if si = ⊥, and s′

i = si otherwise. Note that
the string S can be reconstructed from this sequence if and only if B is valid. A
parsing b1, . . . , bk of S is valid if there exists a list of phrase sources s1, . . . , sk

such that ((b1, s1), . . . , (bk, sk)) is a valid bidirectional scheme for S. See Fig. 1
for examples of representations of valid bidirectional schemes of t3 and t4.

Informally, fB(x) gives the position (source) from where we want to copy
the character that restores S[x] when reconstructing S from the compressed
representation, where fB(x) = ⊥ indicates that the character is stored as a
ground phrase, i.e., as a literal.

It is easy to see that a valid bidirectional scheme must have at least as many
ground phrases as there are different characters appearing in S (the number of
ground phrases is at least |Σ| if all characters of Σ appear in S).

Fig. 1. Examples of valid compressed representations of t3 and t4.
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3 Important Characteristics of Thue–Morse Words

Before proving our bounds, we first give some simple observations on Thue–
Morse words that we will use later. Remember that the first index of tn is 0,
which is an even position.

Lemma 1. aa and bb only occur at odd positions in tn.

Proof. The morphism μ implies that any substring of length 2 starting at an
even position is either μ(a) = ab or μ(b) = ba. 
�
Lemma 2 (Theorem 2.2.3 of [1]). tn has no overlapping factors, i.e., two occur-
rences of the same string in tn never share a common position.

Lemma 3. abab and baba only occur at even positions in tn.

Proof. Suppose to the contrary that there is an occurrence of abab that starts at
an odd position. Then, Lemma 1 implies that b occurs immediately left of abab,
i.e., there is an occurrence of the substring babab, thus contradicting Lemma 2
with the substring bab having two overlapping occurrences. 
�

Let the parity of an integer i be i mod 2 ∈ {0, 1}.

Lemma 4. For any substring w �∈ {aba, bab, ab, ba, a, b} of tn, the parities of
all occurrences of w in tn are the same.

Proof. Any such substring w contains at least one of {aa, bb, abab, baba} as a
substring, and thus the result follows from Lemmas 1 and 3. 
�

Further, we use that tn is a prefix of tn+1 and tn[0..4] = abbab for n ≥ 3.

4 Upper and Lower Bounds on b

We start with the upper bound on the smallest size of a (valid) bidirectional
parsing by constructing such a parsing, and subsequently show that this bound
is optimal by showing a lower bound whose proof is more involved.

4.1 Upper Bound

Theorem 1 (Upper bound). For n ≥ 2, there exists a valid bidirectional
scheme for tn of size n + 2.

Proof. Proof by induction. For n = 2 it is clear that there is a valid bidirectional
scheme of size 4.

Suppose that for some n ≥ 2, there is a valid bidirectional scheme Bn =
((b1, s1), . . . , (bk, sk)) of size k for tn. We can assume that there are at least two
ground phrases bia = tn[pia ] = a and bib = tn[pib ] = b. Since tn+1 = μ(tn), we
first consider a bidirectional scheme B′ for tn+1 where each phrase is constructed
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from phrases of Bn by applying μ, with the small exception for the two ground
phrases. More precisely, the phrases of B′ are μ(bi) for i ∈ [1, k]\{ia, ib}, and two
ground phrases from each of μ(bia) = ab and μ(bib) = ba, resulting in a parsing of
size k+2. For each non-ground phrase μ(bi) in B′, we can either choose the source
to be (i) 2pia or 2pib if its length is 2, or (ii) 2si otherwise. The latter is because
μ(bi) = μ(tn[si..si+|bi|−1]) = μ(tn)[2si..2si+2|bi|−1] = tn+1[2si..2si+2|bi|−1].
The validity of B′ follows from the validity of Bn, and fB′ has no cycles. It is easy
to see that for any position i, the parities of i and fB′(i) are the same (unless
fB′(i) = ⊥). Thus, noticing that tn+1[3..4] = ab, (1) the source of tn+1[3] = a
at an odd position can eventually be traced to the ground phrase at position
2pib + 1, and (2) the source of tn+1[4] = b at an even position can eventually be
traced to the ground phrase at position 2pib .

Next, we modify B′ by combining the two consecutive ground phrases (a,⊥)
and (b,⊥) corresponding to μ(bia), and replace them with a single (ab, 3). This
results in a bidirectional scheme B′′ of size k+1. From the above observations (1)
and (2), it is clear that B′′ is still valid. Thus, Bn+1 = B′′ is a valid bidirectional
scheme for tn+1 of size k + 1, thereby proving the theorem. 
�
The bidirectional scheme of t4 in Fig. 1 can be constructed by following the
algorithmic instructions of the proof of Theorem1.

4.2 Lower Bound

Theorem 2 (Lower Bound). For n ≥ 2, the smallest valid bidirectional
scheme for tn has size n + 2.

To prove Theorem 2, we would like to, in essence, do the opposite of what we
did in the proof of Theorem1, and show that we can construct a bidirectional
scheme for tn−1 of size k−1, given a bidirectional scheme for tn of size k. However,
the opposite direction involves halving the size of phrases, and thus does not
work straightforwardly when there are phrases of odd length. Nevertheless, we
will show that this can be done in an amortized way, and show the following.

Lemma 5. For any n ≥ 5, if there exists a valid bidirectional scheme of size k
for tn, then, for some 1 ≤ i ≤ 3, there exists a valid bidirectional scheme of size
at most k − i for tn−i.

Since the size of the smallest bidirectional scheme for t2, t3, t4 can be con-
firmed to be respectively 4, 5, 6 by computer analysis, this with Lemma5 implies
Theorem 2.

In the rest of the section, we give an algorithm that, given a bidirectional
scheme Bn for tn, constructs a bidirectional scheme Bn−1 for tn−1, and claim
that applying the algorithm repeatedly i times, for some 1 ≤ i ≤ 3, we obtain a
bidirectional scheme Bn−i for tn−i such that |Bn−i| ≤ |Bn| − i. The algorithm
consists of 3 main steps:



172 H. Bannai et al.

1. Elimination of length-1 ground phrases.
2. Elimination of odd length phrases.
3. Application of the inverse morphism μ−1 on all phrases of the modified pars-

ing.

The goal of Steps 1 and 2 is to modify the phrases of Bn to construct a bidi-
rectional scheme B′

n so that all phrases in B′
n will be of even length. When mod-

ifying the phrases, we must take care in 1) defining the source of the phrase, and
2) ensuring that no cycles are introduced in the resulting bidirectional scheme
Bn−1. To make this clear, we temporarily relax the definition for ground phrases
in B′

n during the modification, so that the ground phrases of B′
n are phrases of

length 2 that start at even positions. In this way, we can be sure that any posi-
tion in a length-2 phrase starting at an even position in B′

n is not involved in a
cycle. In Step 3, we create a new bidirectional scheme Bn−1 of tn−1 by translat-
ing all phrase lengths and sources of B′

n according to the inverse morphism μ−1,
i.e., we map each non-ground phrase (b′

i, s
′
i) of B′

n to the phrase (μ−1(b′
i), s

′
i/2)

in tn−1. The length-2 ground phrases in B′
n become length-1 ground phrases in

Bn−1, and thus we obtain a valid bidirectional scheme Bn−1 for tn−1, without
the relaxation, and the same size as B′

n.

Eliminating Length-1 Ground Phrases. The operation is done analogously
and symmetrically for any length-1 ground phrase (a or b) that may occur at
an even or odd position. We describe in detail the case for a ground phrase with
character a that occurs at some odd position 2i + 1.

For a consecutive pair of positions 2i, 2i + 1, we call one a partner of the
other. Let ib = 2i be the partner position of the length-1 ground phrase a, i.e.,
tn[ib..ib + 1] = ba. The idea is to (re)move the phrase boundary that separates
partner positions so that the ground phrase disappears. Since we are considering
the case where the ground phrase is at an odd position, we extend the phrase
(bi, si) containing position ib by one character, so that it includes the length-
1 ground phrase tn[ib + 1] = a, thereby eliminating it. If possible, we would
like to keep the source of the extended phrase the same, i.e., change (bi, si) to
(bia, si), or equivalently, change fBn

(ib + 1) = ⊥ to fBn
(ib + 1) = si + |bi|. Note

that if the parity of fBn
(ib) is equal to that of ib, this is always possible (i.e.,

tn[fBn
(ib) + 1] = a always holds). However, it may be that the position ib + 1

gets involved in a cycle, due to this change. Notice that since we started from a
valid (relaxed) bidirectional scheme, it is guaranteed that ib is not involved in a
cycle, i.e., f j

Bn
(ib) �= ib for any j ≥ 1. Therefore, we further modify the phrase

boundaries, if necessary, to ensure that the source of tn[ib + 1] = a will belong
in the same phrase as the source of tn[ib] = b. This is repeated until we are sure
that all these changes made to eliminate the original length-1 ground phrase a
do not introduce any cycles in the final bidirectional scheme. In other words, we
ensure, for some sufficiently large j′, f j

Bn
(ib +1) = f j

Bn
(ib)+1 for all 1 ≤ j ≤ j′.

Then, from the acyclicity of position ib, the acyclicity of position ib + 1 follows.
There are six cases where the process terminates, as shown in Fig. 2 (Case

3 is further divided into two sub-cases). As noted above, as long as the parity
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of f j
Bn

(ib) is the same as that of f j−1
Bn

(ib), the character of f j
Bn

(ib)’s partner
is always a, and we can ensure that f j−1

Bn
(ib) and f j−1

Bn
(ib + 1) are in the same

phrase by only (possibly) setting f j
Bn

(ib + 1) = f j
Bn

(ib) + 1. Thus, we consider

the cases where j′ ≥ 1 is the smallest integer such that the parities of f j′−1
Bn

(ib)

and f j′
Bn

(ib) differ, in which case, Lemma 4 implies that f j′−1
Bn

(ib) is contained in
a phrase in {aba, bab, ab, ba, b}. Each of the six cases corresponds to a distinct
occurrence of b in the strings of this set. We show that in each case, we can
modify the phrases so that both f j′−1

Bn
(ib) and f j′−1

Bn
(ib + 1) are in the same

length-2 phrase, i.e., a relaxed ground phrase, and be sure that ib + 1 will not
be involved in a cycle in the final bidirectional scheme. The details of each case
are described in Fig. 2.

Although Cases 1, 2, 4 introduce a new length-1 ground phrase, the number
of phrase boundaries that separate partner positions always decreases at the
starting point, and never increases. Therefore the whole process terminates at
some point, at which point, all length-1 ground phrases have been eliminated.

Eliminating Odd Length Phrases. In this step, we eliminate all remaining
phrases with odd lengths. Since there are no more length-1 ground phrases, we
first focus on removing phrases aba and bab of length 3. Below, we describe the
operation for removing a phrase aba that starts at an odd position. The other
cases are analogous or symmetric.

Starting with an occurrence of phrase aba that starts at an odd position
ib +1, we know that this phrase is preceded by b. We move the phrase boundary
that separates partner positions, so that the length-3 phrase shrinks to a length-
2 phrase starting at an even position, i.e., a relaxed ground phrase, in this case,
by expanding the phrase to its left. Since we have changed the source of the a
at position ib + 1, we ensure that for some sufficiently large j′, f j

Bn
(ib + 1) =

f j
Bn

(ib) + 1 for all 1 ≤ j ≤ j′, as we did for the elimination of length-1 ground
phrases, so that ib + 1 is not involved in a cycle.

There are five cases where the process terminates, as shown in Fig. 3. As
noted previously, as long as the parity of f j

Bn
(ib) is the same as that of f j−1

Bn
(ib),

then the character of f j
Bn

(ib)’s partner is always a, and we can ensure that
f j−1

Bn
(ib) and f j−1

Bn
(ib + 1) are in the same phrase by only (possibly) setting

f j
Bn

(ib + 1) = f j
Bn

(ib) + 1. Thus, we consider the cases where j′ ≥ 1 is the

smallest integer such that the parities of f j′−1
Bn

(ib) and f j′
Bn

(ib) differ, in which

case, Lemma 4 and the previous step implies that f j′−1
Bn

(ib) is contained in a
phrase in {aba, bab, ab, ba}. Each of the five cases corresponds to a distinct
occurrence of b in strings of this set. The details of each case are described in
Fig. 3.

After eliminating all phrases aba and bab of length 3, all remaining phrases
are either of length 2 or do not belong to the set {aba, bab, ab, ba, a, b}. There-
fore, we can move all phrase boundaries that separate partner positions to the
right (or all of them to the left) and update the sources accordingly without intro-
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Fig. 2. Terminal cases for eliminating a length-1 ground phrase tn[ib + 1] = a at an
odd position ib + 1 (see Sect. 4.2). The shaded squares are even positions. The vertical

bars denote phrase boundaries. The black arrow points to the position f j′−1
Bn

(ib), where

j′ ≥ 1 is the smallest integer such that the parities of f j′−1
Bn

(ib) and f j′
Bn

(ib) differ. The
first line and second line of each case (except Case 5) respectively show the phrase
boundaries before and after the modification.
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ducing cycles, since length-2 phrases starting at odd positions become relaxed
ground phrases, and the occurrences of each of the other phrases have the same
parity due to Lemma 4. Thus, we now have a valid bidirectional scheme B′

n where
all phrases are of even length, and length-2 phrases are considered to be relaxed
ground phrases.

Analysis of the Number of Phrases. It is easy to see that Steps 2 and 3 do
not increase the number of phrases. Also, Step 2 does not decrease the number
of length-2 phrases that start at even positions, i.e., relaxed ground phrases,
created in Step 1, which will become ground phrases in Bn−1. Thus, we focus
on the analysis of Step 1.

Examining each case of Fig. 2, we can see that while at the start we eliminate
a length-1 ground phrase and decrease the number of phrases, Cases 1, 2, 3-1, and
4 introduce a new phrase, thus do not change the total number of phrases. Also,
notice that in Case 6, two ground phrases are eliminated, while the total number
of phrases decreases only by one, since the second length-1 ground phrase is
expanded. Case 3-1 can occur in total at most twice, once for consecutive phrases
of ba and once for consecutive phrases of ab. Thus, we obtain the following
inequality:

|Bn−1| ≤ |Bn| − �(#g(Bn) − 2)/2. (1)

If |Bn−1| ≤ |Bn| − 1, then we can choose i = 1 for Lemma 5 and are done.
Otherwise, |Bn−1| = |Bn|. This implies that #g(Bn) = 2, and also that Case
3-1 was applied twice. Thus, there exists at least 2 phrases of ab and ba each,
which are converted by μ−1 to ground phrases in Bn−1, implying #g(Bn−1) ≥ 4.
Then, applying Eq. (1) for n − 2, we have

|Bn−2| ≤ |Bn−1| − �(#g(Bn−1) − 2)/2
≤ |Bn−1| − 1 = |Bn| − 1.

If |Bn−2| ≤ |Bn| − 2, then we can choose i = 2 for Lemma 5. Otherwise,
|Bn−2| = |Bn| − 1. This implies that #g(Bn−1) = 4 and that Case 3-1 was
applied twice, and Case 6 was applied once. Therefore, we get #g(Bn−2) ≥ 5.
Finally, applying Eq. (1) for n − 3, we have

|Bn−3| ≤ |Bn−2| − �(#g(Bn−2) − 2)/2
≤ |Bn−2| − 2
= |Bn| − 3.

This proves Lemma 5, and thus Theorem 2.
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Fig. 3. Terminal cases for eliminating a length-3 phrase aba that starts at an odd
position ib +1 (see Sect. 4.2). The shaded squares are even positions. The vertical bars

denote phrase boundaries. The black arrow points to the position f j′−1
Bn

(ib), where

j′ ≥ 1 is the smallest integer such that the parities of f j′−1
Bn

(ib) and f j′
Bn

(ib) differ. The
first and second lines in Cases 1, 3, 4 show the phrase boundaries before and after
the modification. The characters outside the phrase considered for each case can be
inferred from being a partner of a phrase, and also from Lemma 2
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5 Conclusion

We have shown that for any n ≥ 2, the size b(tn) of the smallest bidirectional
scheme for the n-th Thue–Morse word tn is exactly n + 2. From the result that
the smallest string attractor of tn is 4 for any n ≥ 4 [7] and that |tn| = 2n,
we have shown that Thue–Morse words are an example of a family of strings
{Sn}n≥1 in which each string Sn has b(Sn) = Θ(γ(Sn) log |Sn|

γ(Sn)
) as the size of

its smallest bidirectional parsing, where γ(Sn) is the size of its smallest string
attractor, and |Sn| = 2n is its length. Note that we can generalize this to hold
for any γ ≥ 4: Given a γ ≥ 4, concatenate k = �γ/4� copies of tn, each using
distinct letters from a different binary alphabet. Finally, we add (γ mod 4) more
distinct characters to make the smallest string attractor of the resulting string
exactly γ. We thus can obtain a string of length N = k · 2n + O(1) with b =
Θ(kn) = Θ(γ log N

γ ). Whether this can be achieved for any γ by a family of
binary strings is not yet known.

Our result shows for the first time the separation between γ and b, i.e.,
there are string families such that γ = o(b). Although it is still open whether
O(γ log N) bits is enough to represent any string of length N , it seems not
possible by dictionary compression, i.e., copy/pasting within the string.
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Abstract. A 2D string is simply a 2D array. We continue the study of
the combinatorial properties of repetitions in such strings over the binary
alphabet, namely the number of distinct tandems, distinct quartics, and
runs. First, we construct an infinite family of n×n 2D strings with Ω(n3)
distinct tandems. Second, we construct an infinite family of n × n 2D
strings with Ω(n2 log n) distinct quartics. Third, we construct an infinite
family of n × n 2D strings with Ω(n2 log n) runs. This resolves an open
question of Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba
[ESA 2020], who asked if the number of distinct quartics and runs in an
n × n 2D string is O(n2).

Keywords: 2D strings · Quartics · Runs · Tandems

1 Introduction

The study of repetitions in strings goes back at least to the work of Thue from
1906 [36], who constructed an infinite square-free word over the ternary alphabet.
Since then, multiple definitions of repetitions have been proposed and studied,
with the basic question being focused on analyzing how many such repetitions
a string of length n can contain. The most natural definition is perhaps that of
palindromes, which are fragments that read the same either from left to right or
right to left. Of course, any fragment of the string an is a palindrome, therefore
we would like to count distinct palindromes. An elegant folklore argument shows
that this is at most n+1 for any string of length n [19], which is attained by an.

Another natural definition is that of squares, which are fragments of the form
xx, where x is a string. Again, because of the string an we would like to count
distinct squares. Using a combinatorial result of Crochemore and Rytter [16],
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Fraenkel and Simpson [21] proved that a string of length n contains at most 2n
distinct squares (see also [26] for a simpler proof, and [27] for an upper bound of
2n − Θ(log n)). They also provided an infinite family of strings of length n with
n−o(n) distinct squares. It is conjectured that the right upper bound is actually
n, however so far we only know that it is at most 11/6n [18]. Interestingly, a proof
of the conjecture for the binary alphabet would imply it for any alphabet [30].

Perhaps a bit less natural, but with multiple interesting applications, is the
definition of runs. A run is a maximal periodic fragment that is at least twice
as long as its smallest period. Roughly speaking, runs capture all the repetitive
structure of a string, making them particularly useful when constructing algo-
rithms [15]. A well-known result by Kolpakov and Kucherov [29] is that a string
of length n contains O(n) runs; they conjectured that it is actually at most n.
After a series of improvements [12,32,33], with the help of an extensive computer
search the upper bound was decreased to 1.029n [13,24]. Finally, in a remark-
able breakthrough Bannai et al. [9] confirmed the conjecture. On the lower bound
side, we current know an infinite family of strings with at least 0.944575712n
runs [22,31,34]. Better bounds are known for the binary alphabet [20,25].

Given that we seem to have a reasonably good understanding of repetitions
in strings, it is natural to consider repetitions in more complex structures, such
as circular strings [7,17,35] or trees [14,23,28]. In this paper, we are interested
in repetitions in 2D strings. Naturally, algorithms operating on 2D strings can
be used for image processing, and combinatorial properties of such strings can
be used for designing efficient pattern matching algorithms [1–4,11]. Therefore,
we would like to fully understand what is a repetition in a 2D string, and what
is the combinatorial structure of such repetition.

Apostolico and Brimkov [8] introduced the notions of tandems and quartics
in 2D strings. Intuitively, a tandem consists of two occurrences of the same block
W arranged in a 1× 2 or 2 × 1 pattern, while a quartic consists of 4 occurrences
of the same block W arranged in a 2 × 2 pattern. They considered tandems
and quartics with a primitive W , meaning that it cannot be partitioned into
multiple occurrences of the same W ′ (called primitively rooted in the subse-
quent work [10]), and obtained asymptotically tight bounds of Θ(n3 log n) and
Θ(n2 log2 n) for the number of such tandems and quartics in an n×n 2D string,
respectively. Both tandems and quartics should be seen as an attempt to extend
the notion of squares in a 1D string to 2D strings, and thus the natural next
step is to consider distinct tandems and quartics (without restricting W to be
primitive). Very recently, Charalampopoulos et al. [10] studied the number of
distinct tandems and quartics in an n × n 2D string. For distinct tandems, they
showed a tight bound of Θ(n3) with the construction in the lower bound using
an alphabet of size n. For distinct quartics, they showed an upper bound of
O(n2 log2 n) and conjectured that it is always O(n2), similarly to the number of
distinct squares in a 1D string of length n being O(n).

Amir et al. [5,6] introduced the notion of runs in 2D strings. Intuitively, a
2D run is a maximal subarray that is both horizontally and vertically periodic;
we defer a formal definition to the next section. They proved that an n × n 2D
string contains O(n3) runs, showing an infinite family of n × n 2D strings with
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Ω(n2) runs. Later, Charalampopoulos et al. [10] significantly improved on this
upper bound, showing that an n × n 2D string contains O(n2 log2 n) runs, and
conjectured that it is always O(n2), similarly to the number of runs in a 1D
string of length n being O(n).

Our Results. In this paper, we consider 2D strings and obtain improved lower
bounds for the number of distinct tandems, distinct quartics, and runs. We start
with the number of distinct tandems and extend the lower bound of Charalam-
popoulos et al. [10] to the binary alphabet in Sect. 3 by showing the following.

Theorem 1. There exists an infinite family of n×n 2D strings over the binary
alphabet containing Ω(n3) distinct tandems.

Then, we move to the number of distinct quartics in Sect. 4 and the number
of runs in Sect. 5, and show the following.

Theorem 2. There exists an infinite family of n×n 2D strings over the binary
alphabet containing Ω(n2 log n) distinct quartics.

Theorem 3. There exists an infinite family of n×n 2D strings over the binary
alphabet containing Ω(n2 log n) runs.

By the above theorem, the algorithm of Amir et al. [6] for locating all 2D runs
in O(n2 log n + output) time is worst-case optimal.

Our constructions exhibit a qualitative difference between distinct squares
and runs in 1D strings and distinct quartics and runs in 2D strings. The number
of the former is linear in the size of the input, while the number of the latter,
surprisingly, is superlinear.

Our Techniques. For distinct tandems, our construction is similar to that of [10],
except that we use distinct characters only in two columns. This allows us to
replace them by their binary expansions, with some extra care as to not lose any
counted tandems.

For both distinct quartics and runs, we construct an n × n 2D string recur-
sively, but the high-level ideas behind both constructions are quite different.

For distinct quartics, our high-level idea is to consider subarrays with
Θ(log n) different aspect ratios. For each such aspect ratio, we want to obtain
Ω(n2) distinct quartics. To this end, we recursively define a family of rectangular
arrays of the same width n but different heights, one for each aspect ratio, with
the final array being the desired n × n 2D string. Each step of the recursion
creates multiple new special characters, as to make the new quartics distinct;
later we show how to implement this kind of approach with the binary alphabet.

For runs, we directly proceed with a construction for the binary alphabet,
and build on the insight used by Charalampopoulos et al. [10] to show that the
same quartic can be induced by Θ(n2) runs. The construction is recursive, and
allows us to obtain larger and larger 2D strings with many runs. In every step
of the recursion, we compose multiple smaller 2D strings defined in the previous
step. Then, we appropriately modify two of them to create many new runs. This
needs to be carefully analyzed in order to lower bound the total number of runs.
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2 Preliminaries

Let Σ be a fixed finite alphabet. A 2D string over Σ is an m×n array A[0..m−
1][0..n − 1] with m rows and n columns, with every cell A[i][j] containing an
element of Σ. Furthermore, we use ε to denote an empty 2D string. A subarray
A[x1..x2][y1..y2] of A[0..m − 1][0..n − 1] is an (x2 − x1 + 1) × (y2 − y1 + 1) array
consisting of cells A[i][j] with i ∈ [x1, x2], j ∈ [y1, y2].

We consider three notions of repetitions in 2D strings.

Tandem. A subarray T of A is a tandem if it consists of 2 × 1 (or 1 × 2)
subarrays W �= ε. Two tandems T = W W and T ′ = W ′ W ′ are distinct
when W �= W ′.
Quartic. A subarray Q of A is a quartic if it consists of 2×2 subarrays W �= ε.

Two quartics Q =
W W
W W

and Q′ =
W ′ W ′

W ′ W ′ are distinct when W �= W ′.

Run. Consider an r × c subarray R of A. We define a positive integer p to be
its horizontal period if the ith column of R is equal to the (i+p)th column of R,
for all i = 1, 2, . . . , c − p. The horizontal period of R is its smallest horizontal
period, and we say that R is h-periodic when its horizontal period is at most
c/2. Similarly, we define a vertical period, the vertical period, and a v-periodic
subarray. An h-periodic and v-periodic R is called a run when extending R in
any direction would result in a subarray with a larger horizontal or vertical
period. Informally, for such R there exists a subarray W such that we can
represent R as follows, with at least two repetitions of W in both directions,
and we cannot extend R in any direction while maintaining this property.

R =

W . . . W W ′

. . . . . . . . . . . .
W . . . W W ′

W ′′ . . . W ′′ W ′′′

Where W = W ′ U , W =
W ′′

U ′ and W =
W ′′′ V
V ′ V ′′ , and any of the subarrays

W ′,W ′′,W ′′′, U, U ′, V, V ′ and V ′′ may be ε.

3 Distinct Tandems

In this section, we show how to construct an n × n array A over the binary
alphabet with Θ(n3) distinct tandems, for any � ≥ 4, where n = 3 · 2� + 2(� +
2). The ith row of A is divided into 5 parts, where 0 ≤ i < n (see Fig. 1).
The first, third, and fifth part each consists of 2� cells, each containing the
binary representation of 1. The second and fourth part each consists of � + 2
cells that contains the binary representation of the row number, i.e. the binary
representation of i. Hence, all rows of A are different, see Fig. 2.
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Fig. 1. The ith row of A, where 0 ≤ i < n.

Proof. To lower bound the number of tandems in A, consider any 0 ≤ i ≤ j < n
and k ∈ {1, 2, . . . , 2�}. Then, let T be the subarray of width 2(2� +�+2) starting
in the ith row and ending in the jth row with the top left cell of T being A[i][k].
We claim that for each choice of i, j, k we obtain a distinct tandem, making the
number of distinct tandems in A is at least n2 · 2� = Ω(n3). It is clear that each
such T is a tandem. To prove that all of them are distinct, consider any such T .
The position of the leftmost 1 in its top row allows us to recover the value of k.
Then, the next � + 2 cells contain the binary expansion of i, so we can recover
i. Finally, the height of T together with i allows us to recover j. Thus, we can
uniquely recover i, j, k from T , and all such tandems are distinct. ��

Fig. 2. Array A, where each color corresponds to the binary representation of the row
number. The black borders correspond to the leftmost tandem of height j − i + 1 and
width 2(2� + �+2); by shifting it to the right we obtain distinct tandems. (Color figure
online)

4 Distinct Quartics

In this section, we show how to construct an n × n array A�
� with Ω(n2 log n)

distinct quartics, for any � ≥ 1, where n = 3� − 1. The construction is recursive,
that is, we construct a series of arrays A�

1, A
�
2, . . . , A

�
�, with A�

i being defined
using A�

i−1. The number of columns of each array A�
i is the same and equal to n.

The number of rows is increasing, starting with 2 rows in A�
1 and ending with n

rows in the final array A�
�. We provide the details of the construction in the next

subsection, then analyze the number of distinct quartics in A�
� in the subsequent

subsection. Finally, in the last subsection we show how to use A�
� to obtain a

n × n binary array B�
� with Ω(n2 log n) distinct quartics, where n = Θ(3��).
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4.1 Construction

First, we provide array A�
1 of size 2 × n with 0 in all but 4 cells, namely, cells

A�
1[0][n−2

3 ], A�
1[1][n−2

3 ], A�
1[0][2n−1

3 ] and A�
1[1][2n−1

3 ] containing the same special
character. In particular, we are dividing the columns into 3 equal parts.

Second, we describe the general construction of an Mi ×n array A�
i , for i ≥ 2.

We maintain the invariant that the columns of A�
i are partitioned into 3i maximal

ranges of Ni columns consisting of only 0s and separated with single columns,
i.e., N1 = (n−2)

3 . To obtain A�
i , we first vertically concatenate 3 copies of A�

i−1,
using different special characters in each copy, while adding a single separating
row between the copies. Thus, Mi = 3Mi−1 + 2. Initially, each separating row
consists of only 0s. For each maximal range of columns in A�

i−1 that consists of
only 0s, we proceed as follows. We further partition the columns of the range
into 3 sub-ranges of Ni−1−2

3 columns, separated by single columns. We create a
new special character and insert its four copies at the intersection of each column
separating the sub-ranges and each separating row. Overall, we create 3i−1 new
special characters. See Fig. 3 for an illustration with i = 2.

Fig. 3. Array A�
2, where rows 0–1 are the first copy of A�

1, rows 3–4 are the second
copy of A�

1, and rows 6–7 are the third copy of A�
1. Rows 2 and 5 are the separating

rows. Each color corresponds to a different special character. (Color figure online)

4.2 Analysis

Before we move to counting distinct quartics in each A�
i , we recall that the

number of columns in each A�
i is the same and equal to n, while the number of

rows Mi is described by the recurrence M1 = 2 and Mi = 3Mi−1 + 2 for i ≥ 2,
hence Mi = 3i − 1. The size Ni of each maximal range of columns consisting
only of 0s is described by the recurrence N1 = n−2

3 and Ni = Ni−1−2
3 for i ≥ 2,

hence Ni = n+1
3i − 1. For n = 3� − 1 all these numbers are integers.

We now analyze the number of distinct quartics in each A�
i . We will be only

counting quartics such that each quartic contains a single special character in
each of the four copies that comprise it, and denote by Qi the distinct quartics
counted in the following argument that, similarly to the construction, considers
first i = 1 and then the general case.

For i = 1, we count quartics of width 2(n−2
3 + 1) and height 2 where each

quartic contains a single special character in each of the four copies that comprise
it. There are Q1 = n−2

3 + 1 = n+1
3 such quartics and all of them are distinct.
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For the general case of i ≥ 2, we consider two groups of distinct quartics.
The first group consists of distinct quartics contained in the copies of A�

i−1. For
each of the 3i−1 maximal ranges of Ni−1 columns of A�

i−1 consisting of 0s, the
second group consists of all possible 2(Mi−1+1)×2(Ni +1) subarrays contained
in that range. For each such range, we have Ni +1 possible horizontal shifts and
Mi−1+1 possible vertical shifts and for each of them we obtain a distinct quartic
containing the new special character created for the range. As we use different
special characters in every copy of A�

i−1 and, for every range, in the separating
rows of A�

i , overall we have at least Qi = 3Qi−1+3i−1(Ni +1)(Mi−1+1) distinct
quartics. See Fig. 4 for an illustration with i = 2.

Fig. 4. Array A�
2, where the black border corresponds to the leftmost quartic in the

third copy of A�
1, and by shifting it to the right we obtain distinct quartics. The red

borders correspond to the leftmost quartic in each of the 3 maximal ranges of columns
of A�

1 consisting of 0s; by shifting each of them to the right and down we obtain distinct
quartics. (Color figure online)

Substituting the formulas for Ni and Mi−1, we conclude that Q1 = n+1
3 and

Qi = 3Qi−1 + 3i−2(n + 1) for i ≥ 2. Unwinding the recurrence, we obtain that
Qi = 3i−1Q1 + (i − 1)3i−2(n + 1) = 3i−1 n+1

3 + (i − 1)3i−2(n + 1). Therefore,
Qi = 3i−2i(n + 1).

Theorem 4. There exists an infinite family of n × n 2D strings containing
Ω(n2 log n) distinct quartics.

Proof. For each � ≥ 1, we take n = 3� − 1 and define arrays A�
1, A

�
2, . . . , A

�
� as

described above. The final array A�
� consists of M� = n rows and n columns, and

contains at least Q� = 3�−2�(n + 1) distinct quartics, which is Ω(n2 log n). ��
While we were not concerned with the size of the alphabet in this construc-

tion, observe that the number of distinct special characters Si in A�
i is described

by the recurrences S1 = 1 and Si = 3Si−1+3i−1 for i ≥ 2. This is because we are
using new special characters in each copy of A�

i−1 and adding 3i−1 new special
characters to divide the maximal ranges of Ni−1 columns into 3 parts. The size of
the alphabet used to construct A�

� is thus S� +1 = (n+1) log3(n+1)
3 +1 = 3�−1�+1.
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4.3 Reducing the Alphabet

In this subsection, we show how to modify the array A�
� to obtain an array B�

�

over the binary alphabet, for any � ≥ 6. Informally speaking, we will replace
each character by a small gadget of size k×k encoding its binary representation.
Both the width and height of the array increase by a factor of k, and therefore
we need the number of distinct quartics increase by (roughly) a factor of k2.
Therefore we cannot consider only subarrays consisting of full gadgets, and need
to adjust the gadgets so that sufficiently large subarrays with different horizontal
or vertical offsets modulo k are certainly distinct.

Let Σ = {1, 2, . . . , σ} be the alphabet used to construct A�
�, where σ =

3�−1� + 1. We define arrays C1, C2, . . . , Cσ of the same size k × k, where k =
�∗
√log2 σ + 2 = Θ(

√
�). The first row and column of every array Cc contain

only 0s, while the remaining cells of the last row and column contain only 1s.
The concatenation of cells from the middle of Cc (without the first and last
row and column), in the left-right top-bottom order, should be equal to the
binary representation of c. Now, we construct the array B�

� from the array A�
�

by repeating the recursive construction of arrays A�
1, A

�
2, . . . , A

�
�, but replacing a

cell containing the character c with the array Cc. We denote the resulting arrays
B�

1, B
�
2, . . . , B

�
� .

Let n = (3� − 1)k. Each of the arrays B�
i consists of n columns and Mi · k

rows, so the final array, B�
� , is of size n × n. We now analyze the number of

distinct quartics in B�
i . This will be done similarly as it was for A�

i , but we must
be more careful about arguing quartics as being distinct, because we no longer
have multiple distinct special characters. We first argue that, for all sufficiently
wide and tall subarrays of B�

i , the horizontal and vertical shifts are uniquely
defined modulo k, see Fig. 5.

Lemma 1. Consider a subarray R = B�
i [x1..x2][y1..y2] with width and height at

least k. Then (x1 mod k) and (y1 mod k) can be recovered from R.

Proof. We only analyze how to recover (y1 mod k), recovering (x1 mod k) is
symmetric. By construction of C1, C2, . . . , Cσ, every kth row of B�

i consists of
only 0s, while in every other row there is at least one 1 in every block of k cells.
Therefore, because the width of R is at least k, a row of R consists of 0s if and
only if it is aligned with a row of B�

i that consists of 0s. Because the height of
R is at least k such a row surely exists and allows us to recover (y1 mod k). ��

We argue that the number of distinct quartics in B�
1 is at least Q′

1 = (n−2
3 )k+

1. To show this, we consider subarrays spanning the whole height of B�
1 and of

width 2((n−2
3 )k +k). There are (n−2

3 )k +1 such subarrays and each of them is a
quartic that fully contains some Cc. Furthermore, subarrays starting in columns
with different remainders modulo k are distinct by Lemma 1. Subarrays starting
in columns with the same remainder modulo k are also distinct, as in such a case
we can recover the special character from Cc fully contained in the subarray.
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Fig. 5. Subarray of B�
i of size 2k×3k, that is 2×3 concatenation of gadgets Cc. The red

rectangle corresponds to R in Lemma 1. The yellow cells correspond to rows consisting
of only 0s. The blue squares correspond to binary representations of symbols in Σ.
(Color figure online)

For the general case, we claim that the number of distinct quartics in B�
i

is at least Q′
i = 3Q′

i−1 + 3i−1(Ni · k + 1)(Mi−1 · k + 1) for i ≥ 2. The argu-
ment proceeds as for A�

i ; however, we must argue that the counted quartics are
all distinct. By construction, each of them fully contains some Cc. Thus, quar-
tics starting in columns with different remainders modulo k (and also in rows
with different remainders modulo k) are distinct by Lemma 1. Now consider all
counted quartics starting in columns with remainder y modulo k and rows with
remainder x modulo k. For each of them, we can recover the special character
from Cc fully contained in the quartic, so all of them are distinct.

Finally, we lower bound and solve the recurrence for Q′
i as follows.

Q′
i = 3Q′

i−1 + 3i−1(Ni · k + 1)(Mi−1 · k + 1)

> 3Q′
i−1 + 3i−1 · k2 · Ni · Mi−1

= 3Q′
i−1 + 3i−1 · k2(

n + 1
3i

− 1)(3i−1 − 1)

> 3Q′
i−1 + 3i−1 · k2(

n

3i
− 1)3i−2

= 3Q′
i−1 + 32i−3 · k2(

n − 3i

3i
)

= 3Q′
i−1 + 3i−3 · k2(n − 3i) using i ≥ 2.

Unwinding the recurrence, we obtain that Q′
i >

∑i
j=2 3i−j · 3j−3 · k2(n − 3j) =

3i−3 · k2
∑i

j=2(n − 3j) > 3i−3 · k2((i − 1)n − 3i+1

2 ).

Proof. For each � ≥ 6, we take n = (3� −1)k and define arrays B�
1, B

�
2, . . . , B

�
� as

described above. The final array B�
� is over the binary alphabet by construction,

consists of n rows and n columns, and contains at least Q′
� distinct quartics.
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Finally,

Q′
� > 3�−3 · k2 · ((� − 1)n − 3�+1

2
)

= 3�−3 · k2 · ((� − 1)(3� − 1) − 3�+1

2
)

> 3�−3 · k2 · (� − 4)(3� − 1) because
3�

2
< 3� − 1

≥ 3�−3 · k2 · �

4
· (3� − 1) because � − 4 ≥ �

4
.

Therefore, the number of runs in B�
� is Ω(n2 · �). Because k = Θ(

√
�) and

n = (3� − 1)k, this is Ω(n2 log n). ��

5 Runs

In this section, we show how to construct an n × n array A� with Ω(n2 log n)
runs, for any � ≥ 2, where n = 2 · 4�. We note that here we do not restrict the
runs to be distinct, that is, we count all occurrences. As in the previous section,
the construction is recursive, i.e., we construct a series of arrays A1, A2, . . . , A�,
with Ai being defined using Ai−1. Both the number of rows and columns in
Ai is equal to 2 · 4i, starting with 8 rows and columns in A1. We describe the
construction in the next subsection, then analyze the number of runs in A� in
the subsequent subsection.

5.1 Construction

First, we provide array A1 of size 8 × 8 with 1s in the cells A1[0][1], A1[1][0],
A1[6][7] and A1[7][6], and 0s in the other cells, see Fig. 6 (left).

Second, we obtain array Ai by concatenating 4×4 copies of array Ai−1 while
using 1s to fill the antidiagonals in the upper left and bottom right copy of
Ai−1, with A′

i−1 denoting such modified copy of Ai−1, see Fig. 6 (right) for an
illustration with i = 2.

The intuition behind the recursive construction is to duplicate the runs
obtained in the previous arrays. For example, the array A1 produces one run
that does not touch the boundaries. This is duplicated 14 times in A2, hence, A1

contributes 14 runs to the counted runs produced by A2. Moreover, the intuition
behind filling the antidiagonals is to produce new runs such that the number of
the new runs is equal to the size of the array up to some constant. As an exam-
ple, A2 produces 72 new runs between the antidiagonals of A′

1 such that the
upper left and the bottom right corners of each run touch exactly two cells of
the antidiagonals of the two copies of A′

1. Therefore, overall the counted runs
produced by A2 is 14 + 72 = 63. The general case is analyzed in detail in the
next subsection.
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5.2 Analysis

The number Ni of rows and columns in Ai is described by the recurrence N1 = 8
and Ni = 4Ni−1 for i ≥ 2, so Ni = 2 · 4i. By straightforward induction, the
antidiagonal of every Ai is filled with 0s.

We analyze the number of runs in Ai. We call a run new iff its upper left and
the bottom right corners touch exactly two cells of the antidiagonals of the two
copies of A′

i−1. We observe that a new run is not contained in any of the copies
of Ai−1 or A′

i−1. Let Ri denote the number of new runs in Ai.

Lemma 2. Ri = (2 · 4i−1 − 1)2 = 16i

4 − 4i + 1.

Proof. Consider any subarray R of Ai with the upper left and the bottom right
corners touching exactly two cells of the antidiagonals of the two copies A′

i−1. It
is easy to verify that Ni−1 is a horizontal and a vertical period of R. Therefore, R
is h-periodic and v-periodic. Now consider extending R in any direction, say by
one column to the left. Then the topmost cell of the new column would contain a
1 from the antidiagonal of A′

i−1. For the horizontal period of the extended array
to remain Ni−1 we would need a 1 in the corresponding cell of the antidiagonal
of Ai−1, but that cell contains a 0, a contradiction. Therefore, any such R is a
run. The number of such subarrays is (Ni−1 −1)2 = (2 ·4i−1 −1)2 = 16i

4 −4i +1,
because we have (Ni−1 − 1) possibilities for choosing the two corners. ��

Second, we have the runs contained in the 14 copies of Ai−1, hence Ai−1

contributes 14Ri−1 to the counted runs in Ai. Moreover, whenever Ai−1 contains
a copy of Aj , for some j < i − 1, all new runs of Aj are preserved in Ai−1

and consequently in Ai. Additionally, we have the two copies of A′
i−1. Because

we have filled their antidiagonals with 1s, we lose some of the runs. However,
whenever A′

i−1 contains a copy of Aj that does not intersect the antidiagonal,
for some j < i− 1, all new runs of Aj are preserved in A′

i−1 and consequently in
Ai. For example, each copy of Ai−1 contains 14 copies of Ai−2 and each copy of
A′

i−1 contains 10 copies of Ai−2 (5 above and 5 below the antidiagonal). Hence,
Ai contains 14 ·14+2 ·10 = 216 copies of Ai−2, thus Ai−2 contributes 216 ·Ri−2

to the counted runs in Ai. So, in order to bound the number of runs in the final
array A�, we need to analyze how many copies of Ai are in A�, for 1 ≤ i ≤ �.

Let Xi denote the number of copies of Ai in A�, and Yi denote the number
of copies of A′

i in A�. By construction, Ai consists of 14 copies of Ai−1 and 2
copies of A′

i−1. Similarly, A′
i consists of 10 copies of Ai−1 (5 above and 5 below

the antidiagonal) and 6 copies of A′
i−1 (4 intersecting the antidiagonal and the

top left and bottom right copy). Consequently, we obtain the recurrences X� = 1
and Xi = 14Xi+1 + 10Yi+1 for i < �, Y� = 0 and Yi = 6Yi+1 + 2Xi+1 for i < �.
Instead of solving the recurrences, we show the following.

Lemma 3. Xi ≥ 5
616�−i

Proof. We first observe that Xi + Yi = 16(Xi+1 + Yi+1), as Ai+1 consists of
the 4 × 4 smaller subarrays, each of them being Ai or A′

i. By unwinding the
recurrence, Xi + Yi = 16�−i(X� + Y�) = 16�−i. Furthermore, we argue that
Xi ≥ 5Yi for every i < �. This is proved by induction on i:
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Fig. 6. Left: array A1, where red cells contain 1s and white cells contain 0s. Right:
Array A2 consists of 14 copies of A1 and 2 copies of A′

1. Red cells contain 1s and white
cells contain 0s. Red is used to fill the antidiagonals of A′

1. (Color figure online)

i = � − 1 X�−1 = 14X� + 10Y� = 14 ≥ 5Y�−1 = 5(6Y� + 2X�) = 10.
i < � − 1 Assuming that Xi+1 ≥ 5Yi+1, we write Xi = 14Xi+1 + 10Yi+1 ≥
10Xi+1 + 30Yi+1 and 5Yi = 30Yi+1 + 10Xi+1, so Xi ≥ 5Yi.

Therefore, 16�−i = Xi + Yi ≤ Xi + Xi

5 , so Xi ≥ 5
616�−i. ��

As explained earlier, whenever a copy of Ai occurs in A�, all of its new runs
contribute to the counted runs in A�. Therefore, the total number of runs in A�

is at least
∑�

i=1 Xi · Ri.

Proof. For each � ≥ 2, we take n = 2 ·4� and construct the arrays A1, A2, . . . , A�

as described above. The final array A� is over the binary alphabet by construc-
tion, consists of n rows and columns and contains at least

∑�
i=1 Xi ·Ri runs. By

Lemma 2 and 3, this is at least

�∑

i=1

5

6
16�−i(2 · 4i−1 − 1)2 =

5

6
16�

�∑

i=1

16−i(
16i

4
− 4i + 1)

=
5

6
16�

�∑

i=1

(
1

4
− 1

4i
+

1

16i
)

=
5

6
16�(

�

4
+

1

3 · 4�
− 1

15 · 16�
− 4

15
)

=
5

6 · 4
� · 16� +

5

6 · 3
4� − 1

6 · 3
− 4

6 · 3
16�

≥ 5

24
� · 16� − 1

18
− 2

9
16�

≥ 1

24
� · 16� = Ω(n2 log n) using � ≥ 2

��
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Abstract. The size b of the smallest bidirectional macro scheme, which
is arguably the most general copy-paste scheme to generate a given
sequence, is considered to be the strictest reachable measure of repet-
itiveness. It is strictly lower-bounded by measures like γ and δ, which
are known or believed to be unreachable and to capture the entropy
of repetitiveness. In this paper we study another sequence generation
mechanism, namely compositions of a morphism. We show that these
form another plausible mechanism to characterize repetitive sequences
and define NU-systems, which combine such a mechanism with macro
schemes. We show that the size ν ≤ b of the smallest NU-system is reach-
able and can be o(δ) for some string families, thereby implying that the
limit of compressibility of repetitive sequences can be even smaller than
previously thought. We also derive several other results characterizing ν.

Keywords: Repetitiveness measures · Data compression ·
Combinatorics on words

1 Introduction

The study of repetitiveness measures, and of suitable measures of compressibility
of repetitive sequences, has recently attracted interest thanks to the surge of
repetitive text collections in areas like Bioinformatics, and versioned software and
document collections. A recent survey [15] identifies a number of those measures,
separating those that are reachable (i.e., any sequence can be represented within
that space) from those that are not, which are still useful as lower bounds.

Reachable measures are, for example, the size g of the smallest context-free
grammar that generates the sequence [8], the size c of the smallest collage system
that generates the sequence [7] (which generalizes grammars), the number z of
phrases of the Lempel-Ziv parse of the sequence [10], or the number b of phrases
of a bidirectional macro scheme that represents the sequence [19]. Such a macro
scheme cuts the sequence into phrases so that each phrase either is an explicit
symbol or it can be copied from elsewhere in the sequence, in a way that no cyclic
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dependencies are introduced. As such, macro schemes are the ultimate measure of
what can be obtained by “copy-paste” mechanisms, which characterize repetitive
sequences well.

Other measures are designed as lower bounds on the compressibility of repet-
itive sequences: γ is the size of the smallest string attractor for the sequence [6]
and δ is a measure derived from the string complexity [3,17].

In asymptotic terms, it holds δ ≤ γ ≤ b ≤ c ≤ z ≤ g and, except for c ≤ z,
there are string families where each measure is asymptotically smaller than the
next. The recent result by Bannai et al. [2], showing that there exists a string
family where γ = o(b), establishes a clear separation between unreachable lower
bounds (δ,γ) and reachable measures (b and the larger ones).

Concretely, Bannai et al. show that b = Θ(log n) and γ = O(1) for the Thue-
Morse family, defined as t0 = 0 and tk+1 = tktk, where tk is tk with 0s converted
to 1s and vice versa. This family is a well-known example of the fixed point of
a morphism φ, defined in this case by the rules 0 → 01 and 1 → 10. Then, tk is
simply φk(0). This representation of the words in the family is of size O(1), and
each word can be easily produced in optimal time by iterating the morphism.

Iterating a small morphism is arguably a relevant mechanism to define repet-
itive sequences. Intuitively, any short repetition α[1, k] that arises along the gen-
eration of a long string turns into a longer repetition φt(α[1]) · · · φt(α[k]) in the
final string, t steps later. More formally, if a morphism is k-uniform (i.e., all its
rules are of fixed length k), then the resulting sequence is so-called k-automatic
[1] and its prefixes have an attractor of size γ = O(log n) [18]. That is, many
small morphisms lead to sequences with low measures of repetitiveness. Further,
in the Thue-Morse family, morphisms lead to a reachable measure of repetitive-
ness that is o(b), below what can be achieved with copy-paste mechanisms.

In this paper we further study this formalism. First, we define macro sys-
tems, a grammar-like extension that we prove equivalent to bidirectional macro
schemes. We then study deterministic Lindenmayer systems [11,12], a grammar-
like mechanism generating infinite strings via iterated morphisms; they are stop-
ped at some level to produce a finite string. We combine both systems into what
we call NU-systems. The size ν (“nu”) of the smallest NU-system is always reach-
able and O(b). Further, we show that there are string families where ν = o(δ),
thereby showing that δ is not anymore a lower bound for the compressibility of
repetitive sequences if we include other plausible mechanisms to represent them.
We present several other results that help characterize the new measure ν.

2 Basic Concepts

2.1 Terminology

Let Σ be a set of symbols, called the alphabet. A string w of length |w| = n
(also denoted as w[1, n] when needed) is a concatenation of n symbols from
Σ; in particular the string of length 0 is denoted by ε. The set of k-length
concatenations of symbols from Σ is denoted Σk, and the set Σ∗ of strings over
Σ is defined as

⋃
k≥0 Σk; we also define Σ+ =

⋃
k≥1 Σk. We juxtapose strings
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(xy) or combine them with the dot operator (x ·y) to denote their concatenation.
A string x is a prefix of w if w = xz, a suffix of w if w = yx, and a substring
of w if w = yxz, for some y, z ∈ Σ∗. Let w[1, n] denote an n-length string.
Then w[i] is the i-th symbol of w, and w[i, j] the substring w[i]w[i + 1] · · · w[j]
if 1 ≤ i ≤ j ≤ n, and ε if j < i.

2.2 Parsing Based Schemes

Probably the most popular measure of repetitiveness is the number z of phrases
in the so-called Lempel-Ziv parse of a word w[1, n] [10]. In such a parse, w is
partitioned optimally into phrases w = x1 · · · xz, so that every xk is either of
length 1 or it appears starting to the left in w (so the phrase xk is copied from
some source at its left). This parsing can be computed in O(n) time.

Storer and Szymanski [19] introduced bidirectional macro schemes, which
allow sources appear to the left or to the right of their phrases, as long as
circular dependencies are avoided. We follow the definition by Bannai et al. [2].

Let w[1, n] be a string. A bidirectional macro scheme of size k for w is a
sequence B = (x1, s1), . . . , (xk, sk) satisfying w = x1 · · · xk and xi = w[si, si +
|xi| − 1] if |xi| > 1, and si = ⊥ if |xi| = 1. We denote the starting position of xi

in w by pi = 1 +
∑i−1

j=1 |xj |. The function f : [1, n] → [1, n] ∪ {⊥},

f(i) =
{⊥ : if i = pj , sj = ⊥ for some j

sj + i − pj : if pj ≤ i < pj+1 for some j and sj �= ⊥
is induced by the macro scheme. For B to be a valid bidirectional macro scheme
it must hold that, for each i, there exists some r satisfying fr(i) = ⊥. Therefore,
it suffices with the values |xi| and si, plus xi where si = ⊥, to recover w.

We call b ≤ z the number k of elements in the smallest bidirectional macro
scheme generating a given string w[1, n]. There are string families where b = o(z)
[16]. While z is computed in linear time, computing b is NP-hard.

2.3 Grammars and Generalizations

The size g of the smallest context-free grammar generating (only) a word w[1, n]
[8] is a relevant measure of repetitiveness. Such a grammar has exactly one rule
per nonterminal, and those can be sorted so that the right-hand sides mention
only terminals and previously listed nonterminals. The size of the grammar is
the sum of the lengths of the right-hand sides of the rules. The expansion of
a nonterminal is the string of terminals it generates; the word defined by the
grammar is the expansion of its last listed nonterminal.

More formally, a grammar over the alphabet of terminals Σ is a sequence
of nonterminals X1, . . . , Xr, with a rule Xk → Ak,1 · · · Ak,�k , each Ak,r being a
terminal or some nonterminal in X1, . . . , Xk−1. The expansion of a terminal a is
exp(a) = a, and that of a nonterminal Xk is exp(Xk) = exp(Ak,1) · · · exp(Ak,�k).
The grammar represents the string w = exp(Xr), and its size is

∑r
k=1 	k.
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Composition systems were introduced by Gasieniec et al. [5]. Those add the
ability to reference any prefix or suffix of the expansion of a previous nonterminal
(and, thus, substrings as prefixes of suffixes). Let us use the more general form,
allowing terms Ak,r = Xj [s, t] where exp(Xj [s, t]) = exp(Xj)[s, t].

Kida et al. [7] extended composition systems with run-length terms of the
form (Ak,r)t, so that exp((Ak,r)t) = exp(Ak,r)t, the expansion of Ak,r concate-
nated t times. They called this extension a collage system. We call c ≤ g the
size of the smallest collage system generating a word w[1, n], and it always holds
b = O(c)1 and c = O(z). There are string families where b = o(c) [16], and where
z = o(g). Computing g (and, probably, c too) is NP-hard.

2.4 Lower Bounds

Kempa and Prezza introduced the concept of string attractor [6], which yields
an abstract measure that lower-bounds all the previous reachable measures.

Let w[1, n] be a string. A string attractor for w is a set of positions A ⊆ [1, n]
where for every substring w[i, j] there exists a copy w[i′, j′] (i.e., w[i, j] = w[i′, j′])
and a position k ∈ A with i′ ≤ k ≤ j′. The measure γ is defined as the cardinality
of the smallest of such attractors for a given string w[1, n], and it always holds
that γ = O(b). Further, a string family where γ = o(b) exists [2].

Kociumaka et al. [3] used the string complexity of w[1, n] to define a measure
called δ. Let Sw(k) be the number of distinct substrings of length k in w. Then
δ = max{Sw(k)/k | 1 ≤ k ≤ n}. This measure is computed in O(n) time and
it always holds that δ = O(γ); there are string families where δ = o(γ) [9].
While δ is unreachable in some string families, any string can be represented in
O(δ log(n/δ)) space [9]. Measure δ has been proposed as a lower bound on the
compressibility of repetitive strings, which we question in this paper.

2.5 Morphisms over Strings

We explain some general concepts about morphisms acting over strings [1,14]. A
monoid (M, ∗, e) is a set with an associative operation ∗ and a neutral element
e ∈ M satisfying a ∗ e = e ∗ a = a for every a ∈ M . We write ab for a ∗ b and say
that M is a monoid, instead of (M, ∗, e). A morphism of monoids is a function
φ : M1 → M2, where (M1, ∗1, e1) and (M2, ∗2, e2) are monoids, φ(a ∗1 b) =
φ(a) ∗2 φ(b) for every a, b ∈ M1, and φ(e1) = e2.

Let Σ be a set of symbols, and · the concatenation of strings. Then (Σ∗, ·, ε)
is a monoid with string concatenation, called the free monoid. A morphism of
free monoids φ : Σ∗ → Δ∗ is defined completely just by specifying φ on the
symbols of Σ. If Σ = Δ, then φ, is called an automorphism, and φ is iterable.
We define the n-iteration (or composition) of φ over s as φn(s).

Let φ : Σ∗ → Δ∗ be a morphism of free monoids. We define depth(φ) = |Σ|,
width(φ) = maxa∈Σ |φ(a)|, and size(φ) =

∑
a∈Σ |φ(a)|. We say φ is expanding

if |φ(a)| > 1, non-erasing if |φ(a)| > 0, and k-uniform if |φ(a)| = k, for every

1 At least if the collage system is internal, that is, every exp(Xk) appears in w.



On Stricter Reachable Repetitiveness Measures 197

a ∈ Σ. A coding is a 1-uniform morphism. We say φ is prolongable on a ∈ Σ if
φ(a) = as for a non-empty string s.

Let φ be an automorphism on Σ∗. Let φ be prolongable on a, so φ(a) = as.
Then, w = asφ(s)φ2(s) · · · is the unique infinite fixed point of φ starting with
a, that is, φ(w) = w [14]. Words built in this fashion are called purely morphic
words. If we apply a coding to them, we obtain morphic words. A morphic word
obtained from a k-uniform morphism is said to be k-automatic [1].

3 Macro Systems

Our first contribution is the definition of macro systems, a generalization of
composition systems we prove to be as powerful as bidirectional macro schemes.
That is, the smallest macro system generating a given string w is of size O(b).

Definition 1. A macro system is a tuple M = (V,Σ,R, S), where V is a finite
set of symbols called the variables, Σ is a finite set of symbols disjoint from V
called the terminals, R is the set of rules (exactly one per variable)

R : V → (V ∪ Σ ∪ {A[i, j] | A ∈ V, i, j ∈ N})∗,

and S ∈ V is the initial variable. If R(A) = α is the rule for A, we also write
A → α. The symbols A[i, j] are called extractions. The rule A → ε is permitted
only for A = S. The size of a macro system is the sum of the lengths of the
right-hand sides of the rules, size(M) =

∑
A∈V |R(A)|.

We now define the string generated by a macro system as the expansion of
its initial symbol, exp(S). Such expansions are defined as follows.

Definition 2. Let M = (V,Σ,R, S) be a macro system. The expansion of a
symbol is a string over Σ∗ defined inductively as follows:

• If a ∈ Σ then exp(a) = a.
• If S → ε, then exp(S) = ε.
• If A → B1 · · · Bk is a rule, then exp(A) = exp(B1) · · · exp(Bk).
• exp(A[i, j]) = exp(A)[i, j] (this second [i, j] denotes substring).

We say that the macro system is valid if there is a single solution w ∈ Σ∗ for
exp(S). We say that the macro system generates the string w.

Note that a macro system looks very similar to a composition system, how-
ever, it does not impose an order so that each symbol references only previous
ones. This algorithm determines the string generated by a macro system, if any:

1. Compute |exp(A)| for every nonterminal A, using the rules:
– If a ∈ Σ, then |exp(a)| = 1.
– If A → B1 · · · Bk, then |exp(A)| = |exp(B1)| + · · · + |exp(Bk)|.
– |exp(A[i, j])| = j − i + 1.
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This must generate a system of equations without loops (otherwise the macro
system is invalid), which is then trivially solved.

2. Replace every symbol A[i, j] by A[i] · · · A[j]; we use A[r] to denote A[r, r].
3. Replace every A[r], if A → B1 · · · Bk, iterating until obtaining a terminal:

– Let pi = 1 +
∑i−1

j=1 |exp(Bj)|, for 1 ≤ i ≤ k + 1.
– Let s be such that ps ≤ r < ps+1.
– If Bs ∈ Σ, replace A[r] by Bs.
– Otherwise replace A[r] by Bs[r − ps + 1].

4. If the process to replace any A[r] falls in a loop (i.e., we return to A[r]), then
the system has no unique solution and thus it is invalid. Otherwise, we are
left with a classical context-free grammar without extractions, and compute
w = exp(S) in the classical way.

Note that a rule like A → B A[1, (t − 1)|exp(B)|] solves only for exp(A) =
exp(B)t, just like the run-length symbol Bt of collage systems. For example,
A → ab and S → A S[1, 4] generates ababab as follows:

A S[1] S[2] S[3] S[4]
A A[1] A[2] S[1] S[2]
A a b A[1] A[2]
A a b a b

a b a b a b

This shows that macro systems are at least as powerful as collage systems. But
they can be asymptotically smaller. For example, the smallest collage system
generating the Fibonacci string Fk (where F1 = b, F2 = a, and Fk+2 = Fk+1Fk)
is of size Θ(log |Fk|) [16, Thm. 32]. Instead, we can mimic a bidirectional macro
scheme of size 4 [16, Lem. 35] with a constant-sized macro system generating
Fk: S → S[fk−2 + 1, fk − 2] b a S[fk−2 + 1, 2fk−2] if k is odd and S → S[fk−2 +
1, fk − 2] a b S[fk−2 + 1, 2fk−2] if k is even (where fk = |Fk|). For example, for
F7 the system is S → S[6, 11] b a S[6, 10] and we extract F7 = exp(S) as follows,
using that F7[1, 6] = F7[6, 11], F7[7] = b, F7[8] = a, and F7[9, 13] = F7[6, 10]:

S[6] S[7] S[8] S[9] S[10] S[11] b a S[6] S[7] S[8] S[9] S[10]
S[11] b a S[6] b a b a S[11] b a S[6] b

a b a S[11] b a b a a b a S[11] b

a b a a b a b a a b a a b

In general, we can prove that a restricted class of our macro systems is
equivalent to bidirectional macro schemes.

Definition 3. A macro system M = (V,Σ,R, S) generating w is internal if
exp(A) appears in w for every A ∈ V . We use m to denote the size of the
smallest internal macro system generating w.

Theorem 1. It always holds that m ≤ b.
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Proof. Let (x1, s1), . . . , (xb, sb) be the smallest bidirectional macro scheme gen-
erating w[1, n] = x1 · · · xb. We construct a macro system M = ({S}, Σ,R, S)
with a single rule S → A1 · · · Ab, where Ai is the single terminal xi if si = ⊥,
and the extraction symbol S[si, si + |xi| − 1] if not.

We now show that this macro system is valid. After we execute step 2 of our
algorithm, the length of the resulting string (which we call W ) is already n: it
has only terminals and symbols of the form W [i] = S[r]. Note that this implies
that f(i) = r in the bidirectional macro scheme. In every step, we replace each
such S[r] by W [r]. Since the macro scheme is valid, for each i there is a finite k
such that fk(i) = ⊥, and thus W [i] becomes a terminal symbol after k steps. 
�
Theorem 2. For every internal macro system of size m there is a bidirectional
macro scheme of size b ≤ m.

Proof. An internal macro system M = (V,Σ,R, S) generating w[1, n] can always
be transformed into one with a single rule for the initial symbol. Let A ∈ V be
such that w[i, j] = exp(A). We can then replace every occurrence of A by S[i, j],
and every occurrence of A[i′, j′] by S[i′ + i−1, j′ + i−1], on the right-hand sides
of all the rules. In particular, the rule defining S will now contain terminals and
symbols of the form S[i, j], and thus all the other nonterminals can be deleted.

From the resulting macro system S → A1 · · · Am′ , where m′ ≤ m, we can
derive a bidirectional macro scheme (x1, s1), . . . , (xm′ , sm′), as follows: if At is
a terminal, then xt is that terminal and st = ⊥. Otherwise, At is of the form
S[i, j] and then xt = w[i, j] and st = i. The resulting scheme is valid, because
our algorithm extracts any S[i] after a finite number k of steps, which is then
the k such that fk+1(i) = ⊥. 
�

That is, bidirectional macro schemes are equivalent to internal macro sys-
tems. General macro systems can be asymptotically smaller in principle, though
we have not found an example where this happens.

4 Deterministic Lindenmayer Systems

In this section we study a mechanism for generating infinite sequences called
deterministic Lindenmayer Systems [11,12], which build on morphisms. We
adapt those systems to generate finite repetitive strings. Those systems are,
in essence, grammars with only nonterminals, which typically generate longer
and longer strings, in a levelwise fashion. For our purposes, we will also specify
at which level d to stop the generation process and the length n of the string w to
generate. The generated string w[1, n] is then the n-length prefix of the sequence
of nonterminals obtained at level d. We adapt, in particular, the variant called
CD0L-systems, though we will use the generic name L-systems for simplicity.

Definition 4. An L-system is a tuple L = (V,R, S, τ, d, n), where V is a finite
set of symbols called variables, R : V → V + is the set of rules, S ∈ V ∗ is a
sequence of variables called the axiom, τ : V → V is a coding, d ∈ N is the level
where to stop (or depth), and n ∈ N is the length of the string to generate.
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An L-system produces levels of strings Li ∈ V ∗, starting from L0 = S at level
0. Each level replaces every variable A from the previous level by R(A), that is,
Li+1 = R(Li) if we identify R with its homomorphic extension. The generated
string is w[1, n] = τ(Ld[1, n]) ∈ V ∗, seeing τ as its homomorphic extension.

The size of an L-system is |S| +
∑

A∈V |R(A)|. We call 	 the size of the
smallest L-system generating a string w.

L-systems then represent strings by iterating a non-erasing automorphism.
Somewhat surprisingly, we now exhibit a string family where δ = Ω(	 log n), thus
L-systems are a reachable mechanism to generate strings that can be asymptot-
ically smaller than what was considered to be a stable lower bound.

Theorem 3. There exist string families where δ = Ω(	 log n).

Proof. Consider the L-system L = (V,R, S, τ, d, n) where V = {0, 1}, S = 0,
R(0) = 001, R(1) = 1, τ(0) = 0, τ(1) = 1, and n = 2d+1 − 1. The family of
strings is formed by all those generated by the systems L, where d ∈ N. It is
clear that all the strings in this family share the value 	 = 5.

The first strings of the family generated by this system (i.e., its levels Li)
are 0, 001, 0010011, 001001100100111, and so on. It is easy to see by induction
that level i contains 2i 0s and 2i − 1 1s, so the string Li is of length 2i+1 − 1.

More importantly, one can see by induction that levels i ≥ 2 start with 00
and contain all the strings of the form 01j0 for 1 ≤ j < i. This is true for level
2. Then, in level i+1 the strings 01j0 become 0011j001, which contains 01j+10,
and the first 00 yields 001001, containing 010.

Consider now the number of d-length distinct substrings in Ld, for d ≥ 4.
Each distinct substring 01j0, for d/2� − 1 ≤ j ≤ d − 2, yields at least d − j − 1
distinct d-length substrings (containing 01j0 at different offsets; no single d-
length substring may contain two of those). These add up to d2/8+ d/4 distinct
d-length substrings, and thus δ = Ω(d) = Ω(log n) on the string w = τ(Ld). 
�

On the other hand, L-systems are always reachable, which yields the imme-
diate result that δ and 	 are incomparable.

Theorem 4. There exist string families where 	 = Ω(δ log n).

Proof. Kociumaka et al. [9, Thm. 2] exhibit a string family of 2Θ(log2 n) elements
with δ = O(1), so it needs Ω(log2 n) = Ω(δ log2 n) bits, to be represented with
any method. On the other hand, an L-system of size 	 is described with O(	 log n)
bits. Therefore 	 = Ω(log n) = Ω(δ log n) in this family. 
�

Those strings are formed by n as, replacing them by bs at single arbitrary
positions between 2·4j−2+1 and 4j−1 for every j ≥ 2. While such a string is easily
generated by a composition system of size Θ(log n), we could only produce L-
systems of size Θ(log2 n) generating it. We now prove bounds between L-systems
and context-free grammars.
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Theorem 5. For any L-system L = (V,R, S, τ, d, n) of size 	 generating w,
there is a context-free grammar of size (d + 1)	 generating w. If the morphism
represented by R is expanding, then the grammar is of size O(	 log n).

Proof. Consider the derivation tree for w in L: the root children are S = L0 at
level 0, and if A is a node at level i, then the children of A are the elements in
R(A), at level i + 1. The nodes in each level i spell out Li.

We create a grammar G = (V ′, V,R′, S′) where V ′ contains the initial symbol
S′ and, for each variable A ∈ V of the L-system, d nonterminals A0, . . . , Ad−1.
The terminals of the grammar are the set of L-system variables, V . Then, for
each L-system rule A → B1 · · · Bk appearing in level 0 ≤ i ≤ d − 2, we add the
grammar rule Ai → (B1)i+1 · · · (Bk)i+1. Further, for each rule A → B1 · · · Bk

appearing in level d − 1, we add the grammar rule Ad−1 → τ(B1) · · · τ(Bk).
Finally, if S = B1 · · · Bk is the L-system axiom, we add the grammar rule S′ →
(B1)0 · · · (Bk)0 for its initial symbol.

It is clear that the grammar is of size at most (d + 1)	 and it generates w. If
every rule is of size larger than 1, and d > lg n, then the prefix w[1, n] of τ(Ld) is
generated from the first symbol of Ld−�lg n�, which can then be made the axiom
and d reduced to �lg n�. In this case, the grammar is of size O(	 log n). 
�

For example, consider our L-system 0 → 001 and 1 → 1. A grammar sim-
ulating a generation of d = 3 levels contains the rules S′ → 00, 00 → 010111,
01 → 020212, 11 → 12, 02 → 001, and 12 → 1. Note how the grammar uses the
level subindices to control the point where the L-system should stop.

On the other hand, while we believe that composition systems can be smaller
than L-systems, we can prove that L-systems are not larger than grammars.

Theorem 6. It always holds that 	 = O(g).

Proof. Consider a grammar G = (V,Σ,R, S) of height h generating w[1, n]. We
define the L-system L = (V ∪Σ,R′, R(S), τ, h, n), where R′ contains all the rules
in R except the one for S. We also include in R the rules a → a for all a ∈ Σ.
The coding τ is the identity function.

It is clear that this L-system produces the same derivation tree of G, reaching
terminals a at some level. Those remain intact up to the last level, h, thanks to
the rules a → a. At this point the L-system has derived w[1, n].

The size of the L-system is that of G plus |Σ|, which is of the same order
because every symbol a ∈ Σ appears on some right-hand side (if not, we do not
need to create the rule a → a for that symbol). 
�

The following simple result characterizes a class of morphisms generating
families with constant-sized L-systems.

Theorem 7. Let w ∈ Σ∗, φ : Σ∗ → Σ∗ be a non-erasing automorphism, and
τ : Σ → Σ. Then 	 = O(1) on the family {τ(φd(w)) | d > 0}.
Proof. We can easily simulate φ on the L-system L = (Σ,R,w, τ, d, n) of fixed
size, with R(a) = φ(a) and n = |φd(w)|. The system generates τ(φd(w)) and, as
d grows, it does not change its size. 
�
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This implies that 	 = O(1) on families of n-iterations of the Thue-Morse
morphism, the Fibonacci morphism, images of k-uniform morphisms (i.e., mor-
phisms generating k-automatic words [1]), and standard Sturmian morphisms
[4]. More generally, 	 is O(1) on the set of prefixes of any morphic word.

5 NU-Systems

We now define a mechanism that combines both macro systems and L-systems,
yielding a computable measure that is reachable and strictly better than b.

Definition 5. A NU-system is a tuple N = (V,R, S, τ, d, n), which is understood
in the same way as L-systems, except that we extend rules with extractions, that
is, R : V → (V ∪ E)+ and

E = {A(l)[i, j] | A ∈ V, l, i, j ∈ N}.

The symbol A(l)[i, j] means to expand variable A for l levels and then extract
τ(Al[i, j]) from the string Al at level l, recursively expanding extractions if nec-
essary. This counts as a single expansion (one level) of a rule, that is, the levels
Li in the NU-system belong to V ∗. We also use A(l) = A(l)[1, |Al|] to denote the
whole level l of A. The size of the NU-system is size(N) = |S| +

∑
A∈V |R(A)|.

We call ν the size of the smallest NU-system generating a string w[1, n].

Just as macro systems, a NU-system is valid only if it does not introduce cir-
cular dependencies. Let maxl be the maximum l value across every rule A(l)[i, j]
in the NU-system. The following algorithm determines the string generated by
the system, if any:

1. Compute |Al| for every variable A and level 0 ≤ l ≤ maxl, using the rules:
– |A0| = 1.
– If l > 0 and A → B1 · · · Bk, then |Al| = |(B1)l−1| + · · · + |(Bk)l−1|.
– Replace |B(l)[i, j]| = j − i + 1 on the previous summands |(Br)l−1|.

This generates a system of equations without loops, which is trivially solved.
2. Replace every symbol A(l)[i, j] in R by A(l)[i] · · · A(l)[j]; we use A(l)[r] to

denote A(l)[r, r].
3. Expand the rules, starting from the axiom, level by level as in L-systems.

Handle the symbols A(l)[r] as follows:
(a) Replace every A(0)[r] (so r = 1 if the NU-system is correct) by τ(A).
(b) Replace every A(l)[r], if l > 0 and A → B1 · · · Bk, as follows:

– Let pi = 1 +
∑i−1

j=1 |(Bj)l−1|, for 1 ≤ i ≤ k + 1.
– Let s be such that ps ≤ r < ps+1.
– Replace A(l)[r] by Bs(l − 1)[r − ps + 1].

(c) Return to (a) until the extraction symbol disappears.
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Note that the symbol Bs in step 3(b) can in turn be of the form Bs = B(l′)[r′];
we must then extract B(l′)[r′] before continuing the extraction of Bs(l − 1)[r −
ps + 1]. If, along the expansion, we return again to the original A(l)[r], then the
system has no unique solution and thus it is invalid. This is computable because
the number of possible combinations A(l)[r] is bounded by |V | · maxl · n.

We now show that NU-systems are at least as powerful as macro systems
and L-systems.

Theorem 8. It always holds that ν = O(min(	,m)).

Proof. It always holds ν ≤ 	 because L-systems are a particular case of NU-
systems. With respect to m, let M = (V,Σ,R, S) be a minimal macro system
generating w[1, n]. Then we construct a NU-System N = (V ∪ Σ,R′, S, τ, d, n)
where τ is the identity and d = |V |, which upper-bounds the height of the
derivation tree. Each level of N will simulate the sequence of extractions that
lead from each A[r] to its corresponding terminal in the macro system.

For each a ∈ Σ we define the rule a → a in R′. For each rule A → B1 · · · Bm

in R, we define the rule A → B′
1 · · · B′

m in R′, where B′
i = Bi if Bi ∈ V ∪ Σ,

and B′
i = A′(d)[j, k] if Bi = A′[j, k]. It is not hard to see that the NU-System N

simulates the macro system M , and its size is O(m). 
�
For example, consider our previous macro system A → ab and S → A S[1, 4].

The corresponding NU-system would have the rules a → a, b → b, A → ab, and
S → A S(2)[1, 4]. The derivation is then generated as follows:

L0 = S −→ A S(2)[1] S(2)[2] S(2)[3] S(2)[4]
A A(1)[1] A(1)[2] (S(2)[1])(1)[1] (S(2)[2])(1)[1]
A a b (A(1)[1])(1)[1] (A(1)[2])(1)[1]

L1 = A a b a b ←− A a b a(1)[1] b(1)[1]
L2 = a b a b a b.

Our new measure ν is then reachable, strictly better than b and incomparable
with δ. It is likely, however, that computing ν (i.e., finding the smallest NU-
system generating a given string w[1, n]) is NP-hard.

NU-systems easily allow us concatenating and composing automorphisms.

Theorem 9. Let N1 = (V1, R1, S1, τ1, d1, n1) and N2 = (V2, R2, S2, τ2, d2, n2) be
NU-systems generating w1 and w2, respectively. Then there are NU-systems of
size O(size(N1)+size(N2)) that generate w1 ·w2 and the composition of w1 and
w2, which is the string generated by N2 with axiom w1, (V2, R2, w1, τ2, d2, n2).

Proof. Let V ′
1 = {a1 | a ∈ V1} and V ′

2 = {a2 | a ∈ V2} be disjoint copies of V1

and V2, respectively, and let R′
i, and S′

i be variants that operate on V ′
i instead

of Vi. We build a NU-system N = (V,R, S, τ, 1, n1 + n2) for w1 · w2, where
V = V ′

1 ∪ V ′
2 ∪ V1 ∪ V2 ∪ {Z1, Z2}, where Z1 and Z2 are new symbols. Let

R = R′
1 ∪ R′

2 ∪ {Z1 → S′
1, Z2 → S′

2}, plus the rules a → a for a ∈ V1 ∪ V2. The
axiom is then S = Z1(d1) · Z2(d2). Finally, the mapping on V ′

i is τ(ai) = τi(a),
and τ(a) = a for a ∈ V1 ∪ V2. It is easy to see that N generates w1 · w2.
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To generate the composition, V2 should contain the image of V1 by τ1, but
still V ′

1 is disjoint from V ′
2 . The axiom is Z1(d1). The mapping is τ(a1) = τ1(a)2

on V ′
1 , τ(a2) = τ2(a) on V ′

2 , and τ(a) = a on V1 ∪ V2. The depth is d = 1 + d2. 
�
The theorem allows a family F to have ν = O(1), by finding a finite collection

of families generated by fixed non-erasing automorphisms, and then joining them
using a finite number of set unions, concatenations and morphism compositions.

6 Future Work

We leave a number of open questions. We know ν = O(m) = O(b) =
O(δ log(n/δ)), but it is unknown if ν = O(γ); if so, then γ would be reach-
able. We know 	 = O(g), but it is unknown if 	 = O(c); we suspect it is not,
but in general we lack mechanisms to prove lower bounds on 	 or ν. We also
know m = O(b), but not if it can be strictly better. We also do not know if these
measures are monotone, and if they are actually NP-hard to compute (they are
likely so).

We could prove that g = O(	 log n), and thus the lower bound 	 =
Ω(g/ log n), if every L-system could be made expanding, but this is also
unknown. This, for example, would prove that the stretch 	 = O(δ/ log n) we
found for a family of strings is the maximum possible.

7 Conclusions

Extending the study of repetitiveness measures, from parsing-based to
morphism-based mechanisms, opens a wide number of possibilities for the study
of repetitiveness. There is already a lot of theory behind morphisms, waiting to
be exploited on the quest for a golden measure of repetitiveness.

We first generalized composition systems to macro systems, showing that a
restriction of them, called internal macro systems, are equivalent to bidirectional
macro schemes, the lowest reachable measure of repetitiveness considered in the
literature. It is not yet known if general macro systems are more powerful.

We then showed how morphisms, and measures based on mechanisms captur-
ing that concept called L-systems (and variations), can be strictly better than δ
for some string families, thereby questioning the validity of δ as a lower bound for
reachable repetitiveness measures. L-systems are never larger than context-free
grammars, but probably not always as small as composition systems.

Finally, we proposed a novel mechanism of compression aimed at unify-
ing parsing and morphisms as repetitiveness sources, called NU-systems, which
builds on macro systems and L-systems. NU-systems can combine copy-paste,
recurrences, and concatenations and compositions of morphisms. The size ν of
the smallest NU-system generating a string is a relevant measure of repetitive-
ness because it is reachable, computable, always in O(b) and sometimes o(δ).

A simple lower bound capturing the idea of recurrence on a string, and lower
bounding 	, just like δ captures the idea of copy-paste and strictly lower bounds b,
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would be of great interest when studying morphism-based measures. For infinite
strings, there exist concepts like recurrence constant and appearance constant
[1], but an adaptation, or another definition, is needed for finite strings. Besides,
like Lindenmayer systems, NU-systems could be used to model other repetitive
structures beyond strings that appear in biology, like the growth of plants and
fractals. In this sense, they can be compared with tree grammars; the relation
between NU-systems and TSLPs [13], for example, deserves further study.
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Abstract. Social networks play a fundamental role in propagation
of information and news. Characterizing the content of the messages
becomes vital for different tasks, like breaking news detection, person-
alized message recommendation, fake users detection, information flow
characterization and others. However, Twitter posts are short and often
less coherent than other text documents, which makes it challenging to
apply text mining algorithms to these datasets efficiently. Tweet-pooling
(aggregating tweets into longer documents) has been shown to improve
automatic topic decomposition, but the performance achieved in this
task varies depending on the pooling method.

In this paper, we propose a new pooling scheme for topic modelling in
Twitter, which groups tweets whose authors belong to the same commu-
nity (group of users who mainly interact with each other but not with
other groups) on a user interaction graph. We present a complete evalu-
ation of this methodology, state of the art schemes and previous pooling
models in terms of the cluster quality, document retrieval tasks perfor-
mance and supervised machine learning classification score. Results show
that our Community polling method outperformed other methods on the
majority of metrics in two heterogeneous datasets, while also reducing
the running time. This is useful when dealing with big amounts of noisy
and short user-generated social media texts. Overall, our findings con-
tribute to an improved methodology for identifying the latent topics in
a Twitter dataset, without the need of modifying the basic machinery of
a topic decomposition model.

Keywords: Topic modelling · Community detection · Twitter · Text
mining · Text clustering

1 Introduction

Characterizing texts based on their content is an important task in machine
learning and natural language processing. Latent Dirichlet Allocation (LDA)
c© Springer Nature Switzerland AG 2021
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is a generative model for unsupervised topic decomposition [6]. Documents are
represented as random mixtures over topics with a Dirichlet distribution, and
each topic is characterized by a distribution over words. LDA has been widely
used for topic modeling in different areas such us medical science [17], political
science [8], social computer science [19] and software engineering [9].

In practice, content analysis on microblogging services can be particularly
challenging due to short and often vaguely coherent text [13,14]. Given the fact
that Twitter has become a platform where a tremendous amount of content
is generated, shared and consumed, this problem become of interest for the
scientific community. Hong presented an intuitive solution to this problem: tweet
pooling (making longer document by aggregating multiple tweets) [12]. Tweet-
pooling has been shown to improve topic decomposition, but the performance
varies depending on the pooling method [4,12–14,16]. For example, Mehrotra et
al. [14] extended this idea by pooling all tweets that mention a given hashtag.
More pooling techniques are described in detail in Sect. 2.

In this paper, we propose a novel pooling techniques based on community
detection on graphs. Previous works stated that LDA has problems with sparse
word co-occurrence matrix [13] and showed that users in a community tweet
mostly about two or three particular topics [3]. Based on these issues, we propose
a community pooling method which groups tweets whose authors belong to the
same community on the retweet network, increasing the length of each document
and reducing the total number of documents. We compare the schemes in terms
of clustering quality, document retrieval, machine learning classification tasks
and running time and we empirically show that this new scheme improves the
performance over previous methods in two heterogeneous Twitter datasets.

The remainder of this work is organized as follows: In Sect. 2 we describe the
different pooling schemes for topic models and propose a novel method. In Sect. 3
we describe the datasets that we used to test our method. In Sect. 4, we define
the experiments and evaluation metrics that we use to measure the performance
of all pooling schemes. In Sect. 5, we show the results of the experiments. Finally,
we interpret the results in the Conclusions section.

2 Tweet Pooling for Topic Models

Microblog messages are very short texts. In particular Twitter posts are only 280
characters or shorter. Consequently, using each tweet as an individual document
does not present adequate term co-occurrence data within documents [14]. This
induced the idea that aggregating similar tweets gives place to larger documents
and better LDA topic decomposition. In this section, we present a new pooling
method for topic modeling based on community detection and describe five other
methods proposed in the literature which were used for comparison.

Tweet-Pooling (Unpooled): The default approach which treats each tweet
as a single document.
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Author-Pooling: All tweets authored by a single user are aggregated in a
single document. The number of documents is equal to the number of users.
This pooling method outperforms the Unpooled scheme [12].

Hashtag Pooling: In this scheme, a document consists of all tweets that men-
tion a given hashtag. A tweet that contains multiple hashtags appears in several
documents. Tweets without hashtags are considered as individual documents.
It has been shown that aggregating tweets this way outperforms the baseline
scheme and user-pooling in some metrics and for some datasets [14].

Conversation Pooling: A document consists of all tweets in a conversation tree
(i.e. a tweet, all the tweets written in reply to it, the replies to the replies, and
so on). This schemes aggregate tweets form different authors and with multiple
hashtags that belong to one conversation [4].

Network-Based Pooling: Twitter users are grouped together if they reply or
are mentioned in a tweet or in replies to a tweet. Each single document consists
of all tweets of a group of users. In contrast to Conversation pooling, only direct
replies to an original tweet are considered since a conversation can shift its topic
in time. This pooling scheme showed better results than the previous methods
in most (not all) tasks and datasets [16].

Community Pooling: In this novel scheme, a retweet graph is defined in terms
of G = (N,E), where users are the nodes N , and retweets between them are
edges E [5]. Since a user can retweet multiple times other user’s tweets, the
edges are weighted. A community in a social network is a group of users who
mainly interact with each other but not with other groups. We determine these
communities using the Louvain method for community detection [7], which seeks
to maximize modularity by using a greedy optimization algorithm. Therefore,
each community clusters users by their interactions. In our novel pooling method,
we group in one document all the tweets authored by all users in each community.
Therefore, there are as many documents as communities in the retweet network.
Compared with the majority of the previous schemes, the number of words in
a document is bigger and the number of documents is smaller, resulting in a
denser word co-occurrence matrix, which is beneficial to LDA algorithm [4].

3 Twitter Dataset Construction

In order to evaluate the schemes in different scenarios and show the robustness
of the methodology, we used two diverse datasets. Our experiments used data
from Twitter Streaming API1. Similarly to previous works, we constructed two
diverse datasets collecting tweets containing different queries and each tweet
was labeled by the query that retrieved it [2,12,14,16]. We removed all tweets
that were retrieved by more than one query, so as to preserve uniqueness of the
tweet labels, which was important for our analysis. Besides, we prepossessed the

1 https://developer.twitter.com/en.

https://developer.twitter.com/en
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tweets by lower-casing and removing stop-words. All tweets are in English. The
two datasets are:

Generic Dataset: 115,359 tweets from December 15th to December 16th, 2020,
concerning a wide range of themes and collected using the following queries
(percentage of tweets retrieved by each query): music (36.78%), family (23.94%),
health (17.21%), business (14.90%), movies (4.70%), sports (2.44%).

Event Dataset: 328,452 tweets from January 20th, 2021. A dataset composed
of tweets belonging to a particular event: US president Biden inauguration day.
We used the following queries: Biden (69.45%), joebiden (21.75%), kamalaharris
(4.74%), inauguration2021 (4.04%).

4 Evaluation

As there is no standard way for evaluating topic models, previous works eval-
uated the proposed pooling methods using different metrics or tasks. In order
to present a complete and exhaustive analysis, in this work we evaluate the
schemes by the multiple metrics used in the different previous works: topic clus-
tering metrics (Purity and Normalized Mutual Information) [1,4,11,14,16,20],
a supervised machine learning classification task [10,12], a document retrieval
task [2,4] and overall running time [4]. We briefly explain each of them.

Purity: We define each cluster as a topic and assign the tweets to their corre-
sponding mixture topic of highest probability (a quantity estimated with LDA).
The purity of a cluster measures the fraction of tweets in a cluster having the
assigned cluster query label [21]. Formally, let Ti be the set of tweets in LDA topic
cluster i and Qj be the set of tweets with query label j. Let T = {T1, T2, ..., T|T |}
be the set of size |T | of all Ti and let Q = {Q1, Q2, ..., Q|Q|} be the set of size
|Q| of all Qj . Then, the purity is defined as follows:

Purity(T,Q) =
1

|T |
∑

i∈{1...|T |}
maxj∈{1...|Q|}|Ti ∩ Qj | (1)

A higher purity score reflects a better cluster representation and a better
LDA decomposition.

Normalized Mutual Information (NMI): NMI measures the cluster quality
using information theory and it is formally defined as follows:

NMI(T,Q) =
2I(T,Q)

H(T ) + H(Q)
(2)

where I(·, ·) is the mutual information and H(·) is the entropy, as defined in
[21]. NMI’s minimum and maximum values are resp. 0 when labels and clusters
are independent sets and 1 when cluster results exactly match all labels.
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Supervised Machine Learning Classifying Task: For the supervised
machine learning task, we follow a basic machine learning classifying evalua-
tion scheme [12]. We separate the dataset in two (train and test), train a clas-
sifier with the first one and evaluate on the second one. The first 80% of tweets
(according to the time their were posted) were assigned to the train set and the
other 20% to the test set. For this task, we train a naive Bayes classifier [15] and
reported F-Measure (F1 score) on the test set.

Document Retrieval Task: We also evaluate the topic decomposition of the
different pooling methods on a document retrieval task, using the same train-
test split as the supervised classifier task. We use each tweet in the test set as a
query and return the most similar tweets from the train set, according to their
LDA topic decomposition. If the retrieved tweet has the same query label, we
consider it relevant. More concretely, the methodology is as follows: we apply
LDA using the different pooling techniques on the train set, for each tweet in the
test set calculate its topic decomposition, compute the cosine similarity between
its topic decomposition and the topic decomposition of all tweets in the train set
and retrieve the top 10 most similar train tweets. Then, we calculate the F1 score
in order to know if the categories of the retrieved tweets match the category of
the test tweet. This task recreates a scenario of recommending content based on
previous tweets.

Running Time: The measured time (in seconds) includes tweet pooling (aggre-
gating the tweets in different documents) and the LDA topic modeling, which
varies depending on the total number of documents of each pooling methods.

All experiments were run using the same hardware on a GTX 1080 NVIDIA
graphic card.

5 Results

In this section we show and discuss the results of our evaluation. For each pooling
scheme, we replicated the training workflow used in the literature and used an
LDA model with 10 topics [14,16]. As we mentioned earlier, previous works
showed that having denser co-occurrence matrix (fewer documents with more
words each) is beneficial to LDA [4]. Table 1 reports the corpus characteristics
and shows how our proposed model drastically reduced the number of documents
and increased the number of words per document.

The results of the experiments can be seen in Table 2. The best performances
are marked in bold. The table shows that Community pooling has the best
performance of all examined methods in all metrics for the Generic Dataset, and
in all metrics except the retrieval task for the Event Dataset.

Our methodology obtained the best cluster quality, having the highest Purity
and NMI scores. Also our experiments showed that Community pooling outper-
formed the previous schemes in the supervised classification task, indicating
that this topic decomposition was a good descriptor of the query label. Regard-
ing the document retrieval task, this evaluation considers small changes in the
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Table 1. Document characteristics for different pooling schemes and datasets.

Scheme # of docs Max # of words/doc Mean # of words/doc

Generic Event Generic Event Generic Event

Unpooled 115,359 328,452 783 1,023 137 128

Author 36,526 87,883 36,029 11,240 369 273

Hashtag 34,624 59,388 820,689 3,736,132 8295 173952

Conversation 35,484 67,276 12,480 41,024 141 130

Network-based 36,882 88,314 59,195 90,391 385 277

Community 24,657 31,303 2,077,085 5,284,617 874 1379

Table 2. Results for different pooling schemes and datasets.

Scheme Purity NMI Classification Retrieval Running time

Generic Event Generic Event Generic Event Generic Event Generic Event

Unpooled 0.664 0.733 0.436 0.110 0.814 0.843 0.837 0.893 137 388

Author 0.696 0.736 0.374 0.149 0.798 0.859 0.839 0.900 429 926

Hashtag 0.724 0.719 0.383 0.066 0.779 0.762 0.839 0.869 1,737 17,758

Conversation 0.658 0.733 0.436 0.110 0.814 0.843 0.835 0.908 738 1,569

Network-based 0.695 0.736 0.372 0.149 0.798 0.859 0.840 0.910 1131 2,841

Community 0.780 0.779 0.439 0.310 0.827 0.889 0.843 0.868 141 340

topic decomposition of a tweet, since it uses the cosine similarity between this
decomposition instead of only taking into account the most likely topic as we did
before with the clustering metrics. The results indicate that Community pooling
had the best performance in a generic dataset where the topics of the labels
(“family”, “health” or “business”) differentiate from each other. In contrast, we
found that the Network-based method has a better score in this task for the
event dataset, where the labels are closely related (“joebiden” and “kamalahar-
ris”). Community pooling has better performance on all tasks and datasets, with
the only exception of the retrieval task on the event dataset.

Finally, Community pooling had the best time performance among all pooling
methods. From the fact that LDA time complexity depends on the number of
documents [18] and Community pooling considerably reduced the number of
documents by pooling together in a single document all the tweets posted by
users of each community (see Table 1), it follows that our proposed method was
faster than all other aggregation techniques (less than half the running time).

6 Conclusions

We presented a new way of pooling tweets in order to improve the quality of LDA
topic modeling on Twitter, without requiring any modification of the underlying
LDA algorithm. The proposed Community pooling uses the users’ interaction
information and aggregates into a single document all tweets of the users that
belong to a community in the retweet network.
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Our method was evaluated and compared with multiple pooling techniques
on different task including clustering quality, a supervised classification problem
and a retrieval tasks. The results on two heterogeneous datasets indicate that
the novel Community based pooling outperforms all other pooling strategies
in all tasks and metrics, with the only exception of the retrieval task on the
event dataset. Also, the running time analysis shows that Community pooling
has a significant improvement in time performance in comparison with previous
pooling methods, due to its capacity of reducing the total number of documents.
Future work includes further testing with other datasets from different social
media.
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Abstract. Time series are ubiquitous in computing as a key ingredi-
ent of many machine learning analytics, ranging from classification to
forecasting. Typically, the training of such machine learning algorithms
on time series requires to access the data in temporal order for several
times. Therefore, a compression algorithm providing good compression
ratios and fast decompression speed is desirable. In this paper, we present
TSXor, a simple yet effective lossless compressor for time series. The main
idea is to exploit the redundancy/similarity between close-in-time values
through a window that acts as a cache, as to improve the compression
ratio and decompression speed. We show that TSXor achieves up to 3×
better compression and up to 2× faster decompression than the state of
the art on real-world datasets.

1 Introduction

In this paper, we focus on compressing time series that have become the de-facto
data format for monitoring systems sharing content through the Internet [1]. As
a result, time series are heavily used in several machine learning applications. In
fact, machine learning algorithms learn analytics on time series data by accessing
the data in temporal order and for several times during training. Fast and loss-
less decompression of time series is important to reduce training time without
compromising the accuracy of the process.

We present TSXor, a simple yet effective encoder/decoder for time series that
achieves high compression ratios and fast decompression speed. TSXor leverages
on the similarity between values in a window. This permits to reference recently
seen values using few bytes and, at the same time, to achieve fast decompression
by using the window of decompressed values as a data cache. We measure the
performance of TSXor in comparison to two state-of-the-art compression algo-
rithms (Gorilla [2] by Facebook and FPC [3]) on seven public, real-world, time
series datasets. Results show that TSXor achieves a compression ratio of up to
3× better compared to its competitors while decompressing up to 2× faster.

2 Background

A uni-variate time series is a collection of key-value pairs 〈tn, vn〉 for a single
time-dependent variable, where the key tn denotes the time at which the n-th
c© Springer Nature Switzerland AG 2021
T. Lecroq and H. Touzet (Eds.): SPIRE 2021, LNCS 12944, pp. 217–223, 2021.
https://doi.org/10.1007/978-3-030-86692-1_18
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Table 1. Cost in bits of a value Δ using the range-based encoding by Gorilla.

Range Value bits Total bits

Δ ∈ [−0, 0] 0 0 1

Δ ∈ [−26 + 1, 26] 10 7 9

Δ ∈ [−28 + 1, 28] 110 9 12

Δ ∈ [−211 + 1, 211] 1110 12 16

Δ ∈ [−231 + 1, 231] 1111 32 36

observation was made and vn is the corresponding measured value. A multi-
variate time series has m time-dependent variables, hence each point can be
regarded as a tuple 〈tn, [vn,1, . . . , vn,m]〉. In our experiments, in Sect. 4, we con-
sider both types of time series. Refer to the book by Hamilton [4] for an intro-
duction to time series.

FPC [3] is a lossless compression algorithm for double-precision floating-point
data. FPC compresses sequences of IEEE 754 double-precision floating-point
values by sequentially predicting each value. It uses variants of an FCM [5]
and a DFCM [6] value predictor to predict the doubles. Both predictors are
implemented using hash tables. The more accurate of the two predictions, i.e.,
that sharing the largest number of most significant bits with the true value, is
XOR-ed with the true value. The XOR operation turns identical bits into zeros.
Hence, if the binary representation of the predicted and that of the true value
are similar, the result has many leading zeros. FPC then counts the number of
leading zero bytes, encodes the count in a 3-bit value, and uses an extra bit to
specify which of the two predictions was used. The resulting 4-bit code and the
nonzero residual bytes are written to the output.

Gorilla [2] is an in-memory time-series database developed at Facebook. It uses
compression techniques based on delta-encoding timestamps and values. The n-th
timestamp tn is turned into a “delta of a delta” as Δ = (tn−tn−1)−(tn−1−tn−2)
and encoded using the simple range-based encoding illustrated in Table 1: if Δ
belongs to the k-th range [�, r], first k is coded in unary, followed by the binary
representation of Δ using �log2(r − � + 1)� bits. Since most measurements occur
at regular and constant intervals, this results in a very small difference between
consecutive timestamps (with often Δ = 0), thus achieving good compression
effectiveness. Instead, the n-th value vn is XOR-ed with the previous vn−1 and
the result of the XOR, say xn, is encoded as follows (the first value v0 is written
explicitly in 64 bits). If xn = 0, then output a 0 bit. If xn �= 0, then output a 1 bit
and calculate the number of leading and trailing zeros: if these quantities are the
same as those of the previous XOR value xn−1, then just output the different bits;
otherwise store the number of leading zeros (in 5 bits), the number of different bits
(in 6 bits), followed by the different bits themselves.

3 TSXor

Inspired by the XOR-based approach adopted by both FPC and Gorilla, we now
present a novel lossless compressor, TSXor. We aim at improving the compression
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Table 2. Examples of pairs of values and their corresponding IEEE 754 double-
precision representation.

Value Double-precision representation

11.3 0100000000100110100110011001100110011001100110011001100110011010

11.5 0100000000100111000000000000000000000000000000000000000000000000

−6.6 1100000000011010011001100110011001100110011001100110011001100110

−3.8 1100000000001110011001100110011001100110011001100110011001100110

15.9 0100000000101111110011001100110011001100110011001100110011001101

12.4 0100000000101000110011001100110011001100110011001100110011001101

ratios of FPC and Gorilla, while achieving very fast decoding speed. In this
preliminary version of the work we focus on compressing the values vn, that are
more challenging to compress effectively compared to the timestamps tn.

Good compression has to necessarily exploit the empirical property of time
series data in that close-in-time measurements are very similar if not exactly the
same. To understand how to best exploit this property, we first study how the
IEEE 754 double-precision binary representation of two values varies in com-
parison to their decimal representation. We contribute the following insight:
floating-point values that are very close in decimal format do not necessarily have
a similar binary representation. Table 2 illustrates some concrete examples. The
first two rows are relative to 11.3 and 11.5 that are very close in decimal format
but only share 16 bits out of 64 (25%). Instead, although the difference between
−6.6 and −3.8 is larger than 11.5 − 11.3 = 0.2, the binary format of −6.6 and
−3.8 share 61 bits out of 64 (more than 95%).

As a result of this observation, it is not always effective to compress vn
relative to vn−1 (as Gorilla does). Better compression can instead be achieved
by enlarging the number of values that should be compared to vn as to select the
one with most common bits. To achieve this, we compare vn with its preceding
W ≤ 127 values, logically corresponding to the values seen in the time range
[tn−W , tn−1]. Our goal is to compress vn relative to this “window” containing
the previous W values. We distinguish between 3 cases, namely Reference, XOR,
and Exception.

Reference. If vn is equal to a value in the window, just output its position p
in the window. Since the window contains at most 127 values, 1 byte suffices to
write the position with the most significant bit always equal to 0.

If the window does not contain vn, then we search for the value u in the
window such that x = vn ⊕ u has the largest number of leading and trailing
zeros bytes. Let p be the position of u in the window. We first write p + 128
using 1 byte. In this case the most significant bit will always be 1 because of
sum, which allows us to distinguish this case from the Reference case. Let LZ
and TZ indicate the number of leading and trailing zero bytes of x respectively.

XOR. If LZ + TZ ≥ 2, we output a byte where 4 bits are dedicated to TZ and
the other 4 bits to the length (in bytes) of the segment of x between the leading
and trailing zero bytes. We then write such middle bytes.
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Table 3. Basic statistics of the datasets: number of time series, size of each time series,
and percentage of distinct values.

Dataset Time series Size Distinct values

AMPds2 [7] 14 629 292 11 5.01%

Bar-Crawl [8] 14 057 564 4 12.45%

Max-Planck [9] 473 353 32 0.54%

Kinect [10] 733 432 80 41.07%

Oxford-Man [11] 143 397 19 79.85%

PAMAP [12] 3 127 602 44 0.38%

UCI-Gas [8] 2 841 954 18 0.63%

Exception. Otherwise, we output an exception code, i.e., the value 255 using 1
byte, followed by the plain double-precision representation of vn using 8 bytes.

The decoding algorithm just reverts the encoding procedure. In particular,
during decoding, the last W decoded values are cached in a separate data struc-
ture that represents the sliding window. If the Reference case occurs frequently,
as we are going to show for several real-world datasets, decoding vn defaults to
an inexpensive lookup in the window, which is small and likely to be kept in
the processor cache. Moreover, the encoding of vn requires just 1 byte which is
not possible with neither FPC nor Gorilla. The byte-level alignment maintained
by the algorithm further contributes to keep the decoding process simple and
efficient.

4 Experiments

In this section, we present the results of an experimental evaluation that com-
pares the performance of TSXor, FPC, and Gorilla on seven public time series
datasets. All experiments are carried out on a server machine equipped with
Intel i7-7700 cores (@3.60 GHz), 64 GB of RAM, and running Ubuntu 18.04.
The implementation of TSXor is written in C++ and available at https://github.
com/andybbruno/TSXor. The code was compiled with gcc 9.1.0 with the -O3
optimization flag.

We test all algorithms on datasets belonging to different scientific fields so as
to not introduce any bias in the results. The datasets comprehend uni-variate as
well as multi-variate time series. We do not apply any normalization nor further
pre-processing to the datasets. Table 3 reports some basic statistics.

Compression Effectiveness. TSXor achieves a higher compression ratio than
FPC and Gorilla, compressing from 1.0 to 3.5× better than Gorilla and from 1.2
to 5.8× better than FPC (which is always outperformed by Gorilla). Further-
more, TSXor achieves a 6.4× compression ratio on the AMPds2 dataset, while
the best competitor achieve only a 2.0× compression ratio on this dataset. Here,

https://github.com/andybbruno/TSXor
https://github.com/andybbruno/TSXor
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Table 4. Performance of TSXor, FPC, and Gorilla. The best performance on each
dataset is highlighted in bold.

Compr. ratio Decompr. speed (MB/s) Compr. speed (MB/s)

TSXor FPC Gorilla TSXor FPC Gorilla TSXor FPC Gorilla

AMPds2 6.39× 1.10× 2.03× 1174 411 666 67 339 704

Bar-Crawl 2.36× 1.20× 1.44× 710 436 447 29 424 466

Max-Planck 4.84× 1.06× 2.97× 1057 355 859 52 313 871

Kinect 1.37× 1.09× 1.41× 665 287 636 17 166 696

Oxford-Man 1.30× 1.06× 1.28× 604 222 574 15 170 630

PAMAP 4.85× 1.01× 1.38× 949 224 487 45 182 521

UCI-Gas 3.50× 1.19× 1.23× 642 455 578 22 287 654

the strength of TSXor is the use of a single byte in 85% of the cases (see Table 5)
to reference an identical 8-byte value that occurred in the sliding window.

On the dataset containing the highest percentage of distinct values, i.e.,
Oxford-Man, TSXor is still able to beat the other two algorithms. Interestingly
enough, on this dataset only 23% of the values has been compressed using 9
bytes (see Table 5), thus spending an extra byte with respect to the 8 bytes
needed by the uncompressed representation. In this case, our advantage comes
from the 17% of the values that are compressed with only one byte (Reference
case), while the remaining 59% of the values are compressed using 6.94 bytes on
average.

Decompression Speed. Since the time series are compressed once but read
several times, the most critical evaluation metric is decompression speed. There-
fore, we start by analyzing the decompression speeds (reported in MB/s) of the
different algorithms. Gorilla is from 1.0 to 2.6× faster than FPC. TSXor is the
fastest algorithm, consistently on all datasets. In particular, TSXor is from 1.0
to 1.9× faster than Gorilla and from 1.4 to 4.2× faster than FPC. The byte
granularity helps the algorithm to avoid bit shifts and costly functions calls. In
particular, 92% of the times (see Table 5) we end up either in the Reference case
or in the XOR case, by consuming only 2.62 bytes on average instead of the 8
bytes of the original representation. This means that TSXor heavily leverages
on the window of cached values.

Compression Speed. Regarding the compression speeds (in MB/s), which is
the less interesting case, Gorilla outperforms both FPC and TSXor. The reason
lies in the simplicity of the algorithm. Indeed Facebook’s approach requires nei-
ther table lookups nor complicated calculations. The second fastest algorithm is
FPC, which compresses the values exploiting two hash functions as predictors.
TSXor trades compression speed for better compression and faster decoding
speed. In fact, for each value to encode, the whole window is scanned.

Varying the Window Size. We now examine the performance achieved by
TSXor when varying the window size W . We show this analysis in Fig. 1, which
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Table 5. Percentage of TSXor cases (Reference, XOR, and Exception) over each
dataset. For the XOR case, it is evident that TSXor spends less than 8 bytes for a
double-precision value.

Reference (1 byte) XOR Exception (9 bytes)

% % bytes %

AMPds2 84.87 14.87 3.19 0.26

Bar-Crawl 50.53 28.25 5.53 21.22

Max-Planck 77.93 21.94 4.15 0.13

Kinect 28.01 62.95 7.66 9.04

Oxford-Man 17.44 59.44 6.94 23.12

PAMAP 75.95 23.13 3.63 0.92

UCI-Gas 45.36 54.63 3.57 0.01

Average 54.30 37.89 4.95 7.81

Fig. 1. Compression ratio, decompression speed, and compression speed of TSXor by
varying the size of the window. Each point represents the average of each metric over
all datasets.

reports the average performance over all datasets. We did not observe noteworthy
variations among the different datasets. Figure 1a shows that the compression
ratio improves when increasing the window size. Not surprisingly, the larger the
window, more compression opportunities are created for Reference and XOR
cases. This improvement is balanced by the fact that the compression algorithm
needs to look at more values when compressing. Indeed, Fig. 1c shows that the
compression speed slows down when increasing the window size.

An interesting finding is that the window does not affect the decompression
speed (Fig. 1b). The main reason is that during the decoding phase no searches
are performed in the window, but only direct access to individual elements.

5 Conclusion and Future Work

In this short communication we introduced a lossless compression scheme for
time series, TSXor, achieving good compression ratios and very fast sequential
decoding. Despite its simplicity, TSXor provides very promising results: there-
fore, we think that room for improvement is possible with more sophisticated
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mechanisms. One defect of TSXor is certainly its encoding time, as it requires to
scan the window for each value to encode. Future work will tackle this issue, e.g.,
by exploiting vectorized instructions. We will also explore the concrete applica-
bility of TSXor to machine learning applications.

Acknowledgments. This work was partially supported by the projects: MobiData-
Lab (EU H2020 RIA, grant agreement No101006879), OK-INSAID (MIUR-PON 2018,
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Exploiting Pseudo-locality of Interchange
Distance
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Abstract. String metrics play an important role in various computa-
tional tasks. In this paper, we focus on a property shared by a sub-
set of string rearrangement metrics, called pseudo-locality. This subset
includes, for example, the swap, interchange and parallel-interchange
distances. Intuitively, operators of pseudo-local string metrics have a
bounded effect on the Hamming distance between the string prior to
the operation and after it. The goal of this paper is to examine how to
exploit pseudo-locality in order to transform tools derived for the Ham-
ming distance in order to derive tools for other pseudo-local metrics.
Specifically, we demonstrate such a way to exploit pseudo-locality of the
interchange distance combined with additional techniques to derive:
1. The first efficient approximate nearest-neighbour (ANN) search data

structure for the interchange distance, which is NP-hard to compute
for general strings even for binary alphabets.

2. The first linear time algorithm to compute approximate pattern
matching with interchanges, which is a vast improvement from the
Θ(nm) known algorithm.

In addition, we provide a highly accurate online space efficient construc-
tion of a histogram of a given pattern alphabet symbols in a text string as
an infinite distance exclusion tool, which may be of independent interest.

1 Introduction

String metrics play an important role in various computational tasks, such as
similarity search and analysis [9,11,15]), text editing [2,6,30], pattern match-
ing [1,29,31] or comparative genomics [10,12,16,20].

Similarity search includes a range of mechanisms with the principle of search-
ing (typically, very large) spaces of objects through computation of the similarity
between any pair of objects. Various metrics are used for such similarity compu-
tations, where different measures may be preferred according to the applications.
This is becoming increasingly important in large information repositories where
the objects contained do not possess any natural order, for example large collec-
tions of images, sounds and other sophisticated digital objects. Nearest neighbor
search (NN) is an important widely used subclass of similarity search [9,15].

String metrics are also used in text editing and pattern matching as a tool
for approximate matching and error recovery. Edit distances find applications in
natural language processing, where automatic spelling correction can determine
c© Springer Nature Switzerland AG 2021
T. Lecroq and H. Touzet (Eds.): SPIRE 2021, LNCS 12944, pp. 227–240, 2021.
https://doi.org/10.1007/978-3-030-86692-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86692-1_19&domain=pdf
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candidate corrections for a misspelled word by selecting words from a dictionary
that have a low distance to the word in question. Different models of errors
express diverse possible applications needs as well as suggest different recovery
algorithms (see e.g., [1,5,17,25]).

String rearrangement distances have gained interest in computational biology
and were widely studied in order to establish phylogenetic information about
the evolution of species. During the course of evolution, whole regions of genome
may evolve through reversals, transpositions and translocations. Considering the
genome as a string over the alphabet of genes, these cases represent a situation
where the difference between the original string and the resulting one is in the
locations of the different elements, where changes are caused by rearrangements
operators. Many works have considered specific versions of this biological setting
(sorting by reversals [12,20], transpositions [10], and translocations [19]).

In this paper, we focus on a property shared by a subset of string rearrange-
ment metrics called pseudo-locality [3] (see formal definition in Sect. 2). This
subset includes, for example, the swap, interchange and parallel-interchange dis-
tances (see formal definitions in Sect. 2). Intuitively, operators of pseudo-local
string metrics have a bounded effect on the Hamming distance between the
string prior to the operation and after it. The pseudo-locality was defined and
observed in [3] to aid solving period recovery under this broaden set of string met-
rics using tools developed for the Hamming distance. Moreover, their techniques
developed for pseudo-local metrics were applied even to the non-pseudo-local
edit distance.

Our goal is to examine how pseudo-locality can be exploited beyond the
context of the period recovery problem, in order to transform tools derived for the
Hamming distance to other pseudo-local metrics. Specifically, we demonstrate
such a way to exploit pseudo-locality of the interchange distance.

The Interchange Distance. The interchange rearrangement problem is the
following: Given two strings x, y over alphabet Σ such that x, y have the same
quantity of each symbol, the goal is to transform x (called the input string)
to y (called the target string) using a succession of interchange operations. An
interchange of two elements, a in position i and b in position j, puts element a
in position j and element b in position i. The interchange distance problem is to
find the minimum number of interchanges needed to transform the input string
x to the target string y.

Note that, an interchange is the basic operation used in all comparison-based
sorting algorithms. Indeed, the interchange distance problem is actually a clas-
sical problem mentioned back in 1849 by Cayley [13]. Cayley mainly studied
permutation strings, in which all elements are distinct. In this case, strings can
be viewed as permutations of 1, . . . ,m, where m is the length of the string. This
classical setting was well studied (e.g., [13,24]). Cayley [13] gives a character-
istic theorem for the distance, from which a simple linear time algorithm for
computing it on permutation strings can be immediately derived, as described
in [1]. However, these results do not apply for the general strings case, posed as
an open problem by Cayley. A generalization of the problem on permutations
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considering general input strings is studied by [4], thus solving the open problem
of Cayley, while also examining various cost models.

The study of interchange distance pseudo-locality here focuses in the follow-
ing key problems within the scope of similarity search and pattern matching.

The Scope Problems. We examine the following problems:

– Approximate NN-Search (ANN). Let V be some vector space of dimen-
sion d, and let dist be some distance function for V. Given a database con-
sisting of n vectors in V, a slackness parameter ε > 0, and a query vector q, a
C(ε)-approximate nearest neighbor of q is a database vector a such that for
any other database vector b, dist(q, a) ≤ C(ε) · dist(q, b), where C(ε) > 1 is
some constant that depends on ε. It is assumed that d is considerably large,
and that n >> d, i.e., n is much larger than d.1

– Approximate Pattern Matching (PM). Let dist be some distance func-
tion for strings. Given a pattern P of length m, a slackness parameter ε > 0
and a text T of length n > m, the task is to output a C(ε)-approximation
of the distance dist between P and the m-length substring of the text T for
each position i, 1 ≤ i ≤ n − m + 1 (each position is called an alignment).

This Paper Contributions. The main contributions of this paper are:

– Demonstrating how the pseudo-locality condition can be used beyond the
original period recovery problem, for which this property was first identi-
fied [3], to use tools derived for the Hamming distance in order to derive
solutions for pseudo-local metrics.

– Obtaining the first efficient ANN-search data structure for the interchange
distance, which is NP-hard to compute for general strings even for binary
alphabets [4].

– Providing the first linear algorithm to compute approximate PM with inter-
changes, which outperforms the complexity of the prior best algorithm while
still providing only a slightly larger approximation ratio.
While the former algorithm, which is implicit from [1] and [4], has complexity
Θ(nm) with approximation ratio 1.5, the randomized algorithm given here is
linear and provides approximation ratio of 2+ ε. For fixed-size alphabets, the
algorithm is deterministic and its approximation ratio is 2.

– Providing a highly accurate online space efficient construction of the his-
togram of the pattern alphabet symbols appearing in every alignment of the
text, which we call the SEP-Vector.

Paper Organization. The paper is organized as follows. Section 2 gives the
preliminary definitions and lemmas regarding string metrics and pseudo-local
metrics. Section 3 studies the approximate NN-search problem in high dimen-
sions for pseudo-local metrics and applies it to derive an approximate NN-search
1 The original definition of the problem required a (1 + ε)-approximation, which is

relaxed to require only a constant approximation depending on the slackness param-
eter.
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for the interchange distance. Section 4 studies the approximate PM problem for
pseudo-local metrics and applies it to derive an algorithm for approximate PM
with interchanges, and also describes a highly accurate online space efficient
construction of a histogram. Section 5 concludes with open questions.

2 Preliminaries

Consider a set Σ and let x and y be two n-long strings over Σ. [5] formally define
the process of converting x to y through a sequence of operations. An operator
ψ is a function ψ : Σn → Σn′

, with the intuitive meaning being that ψ converts
n-long string x to n′-long string y with a cost associated to ψ. That cost is the
distance between x and y. Formally,

Definition 1. [String Metric] [5]
Let s = (ψ1, ψ2, . . . , ψk) be a sequence of operators, and let ψs = ψ1 ◦ψ2 ◦ · · · ◦ψk

be the composition of the ψj’s. We say that s converts x into y if y = ψs(x).
Let Ψ be a set of rearrangement operators, we say that Ψ can convert x to

y, if there exists a sequence s of operators from Ψ that converts x to y. Given a
set Ψ of operators, we associate a non-negative cost with each sequence from Ψ ,
cost : Ψ∗ → R+. The pair (Ψ, cost) is called an edit system. Given two strings
x, y ∈ Σ∗ and an edit system R = (Ψ, cost), the distance from x to y under R
is defined to be:

dR(x, y) = min{cost(s)|s from R converts x to y}

If there is no sequence that converts x to y then the distance is ∞.

It is easy to verify that dR(x, y) is a metric, if there is also the inverse oper-
ation with equal cost for each operation in Ψ , thus, we have that dR(x, y) =
dR(y, x), and the cost function definition preserves the triangle inequality. Defi-
nition 2 gives examples of string metrics.

Definition 2. 1. Hamming distance: Ψ = {ρn
i,σ|i, n ∈ N, i ≤ n, σ ∈ Σ},

where ρn
i,σ(α) substitutes the ith element of n-tuple α by symbol σ.

The Hamming distance is denoted by H.
2. Edit distance: In addition to the substitution operators of the Hamming dis-

tance, Ψ also has insertion and deletion operators. The insertion operators
are: {ιni,σ|i, n ∈ N, i ≤ n, σ ∈ Σ}, where ιni,σ(α) adds the symbol σ following
the ith element of n-tuple α, creating an n + 1-tuple α′.
The deletion operators are {δn

i |i, n ∈ N, i ≤ n}, where δn
i (α) deletes the

symbol at location i of n-tuple α, creating an n − 1-tuple α′.
3. Swap distance: Ψ = {ζn

i |i, n ∈ N, i < n}, where ζn
i (α) swaps the ith and

(i + 1)st elements of n-tuple α, creating an n-tuple α′. A valid sequence of
operators in the Swap metric has the additional condition that if ζn

i and ζn
j

are operators in a sequence then i �= j, i �= j + 1, i �= j − 1.
4. Interchange distance: Ψ = {πn

i,j |i, n ∈ N, i ≤ j ≤ n}, where πn
i,j(α) inter-

changes the ith and jth elements of n-tuple α, creating an n-tuple α′.
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5. Parallel-Interchange distance: Ψ = {πn
i,j |i, n ∈ N, i ≤ j ≤ n}, where πn

i,j(α)
interchanges the ith and jth elements of n-tuple α, creating an n-tuple α′.
A valid sequence of operators in the Parallel Interchange metric has the
additional condition that if πn

i,j and πn
i′,j′ are operators in a sequence then

i �= i′, j �= j′, i �= j′ and i′ �= j.

Cost Models. Several known cost models are used for string metrics [5,25]. In
the Unit-Cost Model (UCM) each operation is given a unit cost, so the problem is
to transform a given sting x into a string y with a minimum number of operations.
In the Length-Cost Model (LCM), the cost of an operation depends on its length
characteristic. Other characteristics may be considered in the rearrangement
problem. For example, some elements may be heavier than other elements. In
such cases, moving light elements is preferable to moving heavy elements. This
motivated researchers to explore the Element-Cost Model (ECM).

Definition 3. [Pseudo-local Metric] [3]
Let dist be a string metric under unit-cost model. dist is called a pseudo-local
metric if there exists a constant c ≥ 1 such that, for every two strings S1, S2, if
dist(S1, S2) = k then

k ≤ H(S1, S2) ≤ c · k.

A metric that is pseudo-local with constant c is called a c-pseudo-local metric.

Note that pseudo-locality allows the resulted number of mismatches to be
unboundedly far from each other (as may happen in an interchange) and there-
fore, a pseudo-local metric is not necessarily also local in the intuitive sense.
Lemma 1 shows some interesting pseudo-local metrics and follows immediately
from Definitions 2 and 3.

Lemma 1 [5]. The following metrics are c-pseudo-local metrics:

1. Hamming distance (with c = 1).
2. Swap distance (with c = 2).
3. Interchange distance (with c = 2).
4. Parallel-Interchange distance (with c = 2).

On the other hand, the Edit distance is not a pseudo-local metric, because a
single deletion or insertion may cause an unbounded number of mismatches.

It will also be useful to make the following distinction between pseudo-local
and strong pseudo-local metrics, defined as follows.

Definition 4. [Strong Pseudo-local Metric]
Let dist be a string metric under unit-cost model. dist is called a strong pseudo-
local metric if there exists a constant c ≥ 1 such that, for every two strings
S1, S2, if dist(S1, S2) = k then

H(S1, S2) = c · k.

A metric that is strong pseudo-local with constant c is called a c-strong pseudo-
local metric.
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Lemma 2 immediately follows from Definitions 2 and 4.

Lemma 2. The following metrics are c-strong pseudo-local metrics:

1. Hamming distance (with c = 1).
2. Swap distance (with c = 2).
3. Parallel-Interchange distance (with c = 2).

Note, that the interchange distance is not a strong pseudo-local metric, since
a sequence of interchanges may be performed on the same positions, thus the
average effect of each interchange on the number of mismatches may be strictly
less than 2. Consider, for example, the strings abc and bca, where the interchange
distance is 2 and H(abc, bca) = 3 < 2 · 2 = 4.

3 Approximate NN-Search in High Dimensional Spaces

In this section we show how pseudo-locality can be exploited to design a data
structure enabling an efficient approximate nearest neighbor search. In fact, we
demonstrate how the pseudo-locality condition enables to generalize the data
structure of [28] for the Hamming distance to be used for the interchange dis-
tance. We follow [28] assuming, for simplicity of exposition, that the database
set of points, DB, and query point q are in {0, 1}d. As in [28], the results gen-
eralize to vector spaces over any finite field; thus we can handle a database of
documents (strings) over any finite alphabet. When needed for generalizing the
discussion, the distance is measured by a pseudo-local metric dist .

We begin by briefly describing the KOR data structure and search algorithm.

The KOR Test. The idea behind the KOR algorithm is to design a separate
test for each distance �. Given a query q, such a test either returns a database
vector at distance at most (1 + ε)� from q, or informs that there is no database
vector at distance � or less from q. [28] define the β-test τ as follows. Pick a
subset C of coordinates of the d-dimensional vectors by choosing each element
in {1, 2, . . . , d} independently at random with probability β. For each of the
chosen coordinates i, pick independently and uniformly at random ri ∈ {0, 1}.
For vector v in the database, define the value of τ at v, denoted τ(v) as follows:

τ(v) =
∑

i∈C

ri · vi (mod 2).

Let q be a query, and let a, b be two database points with H(q, a) ≤ � and
H(q, b) > (1 + ε)�. For β = 1

2� this test distinguishes between a and b with
constant probability [28].

The KOR Data Structure. Let ε > 0, μ > 0 be constants. [28] data structure
S consists of d substructures S1,S2, . . . ,Sd (one for each possible distance except
zero-distance, which can be easily verified separately). Fix � ∈ {1, 2, . . . , d}, S�

consists of M structures T1, . . . , TM , where M = (d + log d + log ε−1) log d
μ . Fix
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i ∈ {1, 2, . . . ,M}, the structure Ti consists of a list of T 1
2� -tests, where T =

O(ε−2 log log d
μ ), and a table of 2T entries (one entry for each possible outcome

of the sequence of T tests). Each entry of the table either contains a database
point or is empty. For the structure Ti, pick at random T 1

2� -tests t1, . . . , tT . For
a database vector v, its trace is the vector t(v) = t1(v) . . . tT (v) ∈ {0, 1}T .

The KOR Search Algorithm. Given a query q, a binary search is performed
in order to determine (approximately) the minimum distance � to a database
point. A step in the binary search consists of picking one of the structures Ti

in S� uniformly at random, computing the trace t(q) of the list of tests in Ti,
and checking the table entry labeled t(q). The binary search step succeeds if
this entry contains a database point, and otherwise it fails. If the step fails, the
search proceeds to larger � values, otherwise, the search proceeds to smaller �
values. The search algorithm returns the database point contained in the last
nonempty entry visited during the binary search.

Lemma 3, Lemma 4 and Theorem 1 summarize the properties of the KOR
data structure that we need.

Lemma 3. [Lemma 2.6 in [28]]
For any query q, the probability that the binary search uses a structure Ti that
fails at q is at most μ.

Lemma 4. [Lemma 2.7 in [28]]
If all the structures used by the binary search do not fail at q, then the distance
from q to the database point a returned by the search algorithm is within a (1+ε)-
factor of the minimum distance from q to any database point.

Theorem 1. [KOR (1 + ε, μ)-ANN Data Structure [28]]
Let ε > 0, μ > 0 be constants. Given n d-dimensional binary database vec-
tors, there exists a data structure S using s = O(ε−2d3 log d(log n + log log d) +
d2 log d(n log d)O(ε−2)) space and constructed in O(s · n) time, which given a d-
dimensional binary vector q finds (1 + ε)-approximate nearest neighbor to q in
the database with probability 1−μ in time O(ε−2d(log n+log log d+log 1

μ ) log d).

ANN-Data Structure for Pseudo-local Metrics. Let dist be any c-pseudo-
local metric and let ε > 0, μ > 0 be constants. The basic idea behind a con-
struction of a (c + ε, μ)-ANN data structure for dist is to simply use a KOR
(1 + ε′, μ)-ANN data structure, where ε′ = ε

c . We may try using the same query
algorithm performed on the KOR (1 + ε′, μ)-ANN data structure. Lemma 5
describes the guarantee we have on the database point returned to a query q,
where the distance is measured by dist .

Lemma 5. [Pseudo-local Query Condition]
Let q be a query such that ∀v ∈ DB, dist(q, v) < ∞. Assume that all the struc-
tures used by the binary search do not fail at q, and let a be the point returned
by the search algorithm. Let Δ = minv∈DB dist(q, v). Then,

dist(q, a) ≤ (c + ε)Δ.
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Proof. Denote the minimum Hamming distance from q to any database point
by ΔH . Since ∀v ∈ DB, dist(q, v) < ∞, by Definition 3, we have that:

Δ ≤ ΔH ≤ c · Δ.

Now, if � < Δ/(1 + ε), then � < Δ/(1 + ε′) ≤ ΔH/(1 + ε′). Then, no database
point is within distance (1 + ε′)� of q, and therefore, all the binary search steps
that visit � in this range fail. On the other hand, all binary search steps that
visit � in the range � ≥ ΔH succeed. Therefore, the binary search ends with a
value ΔH/(1+ε′) ≤ � ≤ ΔH . By Lemma 4, for the point a returned by the KOR
(1 + ε′, μ)-approximate nearest neighbor data structure we have that:

H(q, a) ≤ (1 + ε′)� ≤ (1 + ε′)ΔH .

Therefore, by Definition 3 we have:

dist(q, a) ≤ c(1 + ε′)Δ = (c + ε)Δ.


�

The condition that ∀v ∈ DB, dist(q, v) < ∞ is necessary for the guarantee
of Lemma 5. To see this, consider the following example. Let DB = {a, b, c},
where a = (0, 1, 0, 1, 0, 0), b = (0, 0, 0, 1, 0, 1), c = (0, 0, 0, 0, 1, 0), and let
q = (0, 0, 1, 0, 1, 0). We have that: Δswap = dswap(q, a) = dswap(q, b) = 2 and
H(q, a) = H(q, b) = 4, however, ΔH = H(q, c) = 1 and dswap(q, c) = ∞. Thus,
we get: ΔH < Δswap .

This means that in the presence of vectors with infinite distance to a query,
we have no guarantee on a point returned from a search based on the Hamming
distance. In order to exploit Lemma 5, we must, therefore, monitor the vectors
having infinite distance to query vectors. This monitoring should be done while
constructing the database and is required, therefore, to be independent of the
query. Fortunately, such a monitoring is possible for the interchange distance.
To this end we need the following known definition and lemma.

Definition 5. [Parikh Vector]
Let Σ = {a1, a2, . . . , ak} be an alphabet. The Parikh vector of a word (string or
vector) is the function p : Σ∗ → N

k, given by: p(w) = (|w|a1 , |w|a2 , . . . , |w|ak
),

where |w|ai
denotes the number of occurrences of the letter ai in the word w.

A Parikh vector of a binary vector should only specify the number of 1 bits.

Lemma 6. [Infinity Check for the Interchange Distance]
Let dint be the interchange distance and let a, b be two vectors, then dint(a, b) <
∞ if and only if p(a) = p(b), where p is the Parikh vector function.

Monitoring Infinite Interchange Distances. Let ε > 0, μ > 0 be constants.
The ANN-data structure for the interchange distance S consists of d2 substruc-
tures S1,1,S1,2, . . . ,Sd,d (one for each possible distance and possible number of 1
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bits). Note, that since there is only one vector with no 1 bits, it can be handled
separately. If the query is the zeroes-vector, then the distance to the query is
either 0, if the zeroes-vector is in the database, otherwise, the distance is ∞.

Fix a number of bits �′ ∈ {1, 2, . . . , d} and a distance � ∈ {1, 2, . . . , d}, S�,�′

consists of the same substructures as in [28], but with the additional requirement
for a table entry to contain a point a of the database only if p(a) = �′. We also
keep for each set of structures S·,�′ , a counter n�′ of the total number of points
with number of 1 bits equal to �′ that are stored in these structures.

The search algorithm for a query q is also refined to compute p(q) and perform
the binary search only on the structures S1,p(q), . . . ,Sd,p(q). In addition, before
the search we verify that the counter of points in the structures with number of
1 bits that equals p(q) is not zero. If it is zero, then we do not perform the search
and return that the distance to the query is ∞. By Lemma 6, this ensures that
the search is done only over the database points that have finite distance from
the query q, and thus Lemma 5 holds. Theorem 2 follows.

Theorem 2. [(2 + ε, μ)-ANN Data Structure for Interchange Distance]
Let ε > 0, μ > 0 be constants. Given n d-dimensional binary database vectors,
there exists a data structure S using space s = O(( ε

2 )−2d4 log d(log n+log log d)+
d3 log d(n log d)O(( ε

2 )
−2)) that can constructed in O(s · n) time, which given a d-

dimensional binary vector q finds (2 + ε)-approximate nearest neighbor to q in
the database with probability 1 − μ in O(( ε

2 )−2d(log n + log log d + log 1
μ ) log d)

time, where the distance is measured by the number of interchanges.

Remark. Note that Theorem 2 enables an efficient ANN-search under the inter-
change distance, which is NP-hard to compute for strings having repeating
symbols even for binary alphabet [4]. Using the linear time 1.5-approximation
algorithm of [4] for computing approximate interchange distance between the
query vector and each database vector would give a slightly better approxima-
tion (1.5 instead of 2 + ε) for the returned vector, however, much worse search
time and space consumption when n >> d as we assume in this problem.

Locally-Sensitive Hashing. To address the ANN problem, [23] proposed the
Locality Sensitive Hashing scheme (LSH), which has since proved to be influen-
tial in theory and practice [7,8,21,23]. In particular, LSH yields the best ANN
data structures for the regime of sub-quadratic space and constant approxima-
tion factor, which turns out to be the most important regime from the practical
perspective. The main idea is to hash the points such that the probability of
collision is much higher for points which are close to each other than for those
which are far apart.

It would be interesting to examine if some better data structures derived for
the Hamming distance through LSH can also be adjusted for the interchange
distance in order to improve our result.
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4 Approximate Pattern Matching

In this section we show how pseudo-locality can be exploited to efficiently com-
pute approximated distances between every alignment of the pattern to the
text. Our study applies for computing approximate pattern matching with inter-
changes. We exploit known techniques for counting mismatches between every
alignment of the pattern and the text of [18] and the randomized approximate
pattern matching algorithm of [14] for Hamming distance.

Fixed-Size Alphabets Approximate PM for Hamming Distance. A well-
known method for computing the Hamming distances for binary alphabet is
based on convolutions and gives the exact distances for every alignment of the
pattern and the text in O(n log m) time [18]. This idea easily extends to fixed-
size alphabets Σ in time O(|Σ|n log m), where |Σ| is the alphabet size, thus
providing an almost linear time algorithm for computing the Hamming distance
in every pattern-text alignment. This is summarized in Theorem 3.

Theorem 3. [Approximate PM with Mismatches [18]]
For any fixed size alphabet, given a pattern P of length m and a text T of length
n, there exists an algorithm for computing the Hamming distance between P and
T for every alignment in time O(n log m).

Approximate PM Randomized Algorithm for Hamming Distance. For
polynomial size alphabets, we use the randomized algorithm of [14] to approxi-
mately give the Hamming distances between T and P for every alignment.

Several efficient randomized (Monte-Carlo) algorithms for approximating all
Hamming distances have been proposed. [26] obtained an O(ε−2n log n log m)-
time algorithm, by randomly mapping the alphabet to {0, 1}, thereby reducing
the problem to O(ε−2 log n) binary alphabet instances. Each such instance can
be solved in O(n log m) time by [18]. This algorithm can be de-randomized in
O(ε−2n log3 m) time, via ε-biased sample spaces or error-correcting codes. [22]
solved the approximate decision problem for a fixed threshold in O(ε−3n log n)
time, by using random sampling and performing O(ε−3 log n) convolutions in F2,
each in O(n) time by a bit-packed version of FFT. The general problem can then
be solved by examining logarithmically many thresholds, in O(ε−3n log n log m)
time. [27] obtained an O(ε−1n log n log m)-time algorithm, by randomly map-
ping the alphabet to {0, 1, . . . O(ε−1)}, thereby reducing the problem to O(log n)
instances with O(ε−1)-size alphabet, each solved by O(ε−1) convolutions.

[14] is based on random sampling: the Hamming distance is estimated by
checking mismatches at a random subset of positions. The algorithm picks a
random prime p (of an appropriately chosen size) and a random offset b, and
considers a subset of positions {b, b + p, b + 2p, . . .}. The structured nature of
the subset enables more efficient computation. This result is summarized in
Theorem 4.

Theorem 4. [(1 + ε)-Approximate PM with Mismatches [14]]
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Given a slackness parameter ε > 0, a pattern P of length m and a text T of length
n, there exists a randomized algorithm for computing a (1 + ε)-approximation of
Hamming distance between P and T for every alignment in O(ε−2n) time.

Pseudo-local Metric PM Algorithm. Let dist be a c-pseudo-local metric
and let 0 < ε < 1 be any slackness parameter. We may use exactly the same
pattern matching algorithm of [14] with the slackness parameter ε/c and return
the values computed by the algorithm as the approximated distances. For a c-
strong pseudo-local metric we may use the same slackness parameter ε > 0, but
return the values computed by the algorithm divided by c as the approximated
distances. Lemma 7 gives the approximation guarantees.

Lemma 7. Let d(ε) be the value returned by [14]’s algorithm for some alignment
of P and T for a slackness parameter ε > 0, then:

1. If dist is a c-pseudo local metric, and Δdist < ∞ is the distance between P and
T at some alignment, then for any 0 < ε < 1, d(ε/c) is a (c+ε)-approximation
of Δdist .

2. If dist is a c-strong pseudo local metric, and Δdist < ∞ is the distance between
P and T at some alignment, then for any 0 < ε < 1, d(ε)/c is a (1 + ε)-
approximation of Δdist .

As in Sect. 3, in order to exploit Lemma 7, we need to exclude alignments of
P and T where the distance is infinite. The following definition is needed.

Definition 6. [Online Infinite Distance Check]
Let dist be any c-pseudo local metric. We say that dist admits an online infinite
distance check if, given P and a text T , there exists a t(m)-time per arriving
symbol and Õ(m) space algorithm to check for any alignment if the distance
between P and T is infinite, where t(m) is O(mδ) function, for some 0 < δ < 1.

Theorem 5 then follows from Definition 6, Lemma 7 and Theorems 3 and 4.

Theorem 5. [Pseudo-local Metric Approximate PM]

1. Let dist be a c-pseudo local metric that admits an online infinite distance check
in O(t(m)) time per arriving symbol, and let ε > 0 be a slackness parameter.
There is a randomized algorithm for the approximate dist PM problem that
runs in O(n(( ε

c )−2 + t(m))) time. The algorithm gives (c + ε)-approximation
for the dist-distances.
For fixed-size alphabet, there is a deterministic algorithm for the approximate
dist PM problem that runs in O(n(log m + t(m))) time. The algorithm gives
2-approximation for the dist-distances.

2. Let dist be a c-strong pseudo local metric that admits an online infinite dis-
tance check in O(t(m)) time per arriving symbol, and let ε > 0 be a slackness
parameter. There is a randomized algorithm for the approximate dist PM
problem that runs in O(n(ε−2 + t(m))) time. The algorithm gives (1 + ε)-
approximation for the dist-distances.
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Lemma 8 is used for online infinite interchange distance exclusion.

Lemma 8. [Online Infinite Interchange Distance Check]
The interchange distance admits an online infinite distance check in O(1) time
per arriving symbol and:

1. O(log m)-bits space, for fixed-size alphabets.
2. O(m log m)-bits space, for polynomial-size alphabets.

Remark. The statement and proof of Lemma 8 assumes a word-size of O(log m)
bits. If this assumption does not hold, only the time per arriving symbol changes
to O(log m) instead of O(1) and the time complexity for polynomial size alpha-
bets has a log m factor.

Theorem 6 then follows from Theorem 5.1, Lemma 8 and Lemma 1.

Theorem 6. [Approximate PM with Interchanges]
Let 0 < ε < 1 be a slackness parameter. There is a randomized algorithm for the
approximate PM with interchanges problem that runs in O(n( ε

2 )−2) time. The
algorithm gives (2 + ε)-approximation for the interchange distances.
For fixed-size alphabet, there is a deterministic algorithm for the approximate
PM with interchanges problem that runs in O(n log m) time. The algorithm gives
2-approximation for the interchange distances.

Note that a direct use of the 1.5-approximation algorithm for the interchange
distance of [4] for every alignment yields a 1.5-approximation for the approximate
PM with interchanges problem in Θ(nm) time. On the other hand, there are
known almost linear time algorithms for the approximate PM with the swap
or the parallel-interchanges distances problems [1,2]. Thus, using their pseudo-
locality property does not improve approximate PM algorithms for these metrics.

Space Efficient Online Infinite Interchange Distance Check. Due to
space limitations this part is postponed to the paper full version.

5 Conclusion and Open Problems

This paper demonstrates how to exploit pseudo-locality for achieving an effi-
cient ANN-search data structure and an approximate PM algorithm for the
interchange distance. It is interesting to continue this line of research:

– Can better ANN data structures derived for the Hamming distance through
LSH be adjusted for the interchange distance in order to improve the result
presented in this paper?

– Can an infinite-distance check for swap and parallel-interchange distances be
achieved to allow a use in ANN-search?

– Can pseudo-locality be exploited for deriving new solutions for pseudo-local
metrics in problems other than ANN-search and PM?

Answering such questions will not only enrich our set of tools but also broaden
our understanding of string metrics.
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Abstract. The Cartesian-tree pattern matching is a recently introduced
scheme of pattern matching that detects fragments in a sequential data
stream which have a similar structure as a query pattern. Formally,
Cartesian-tree pattern matching seeks all substrings S′ of the text string
S such that the Cartesian tree of S′ and that of a query pattern P coin-
cide. In this paper, we present a new indexing structure for this problem,
called the Cartesian-tree Position Heap (CPH ). Let n be the length of
the input text string S, m the length of a query pattern P , and σ the
alphabet size. We show that the CPH of S, denoted CPH(S), supports
pattern matching queries in O(m(σ + log(min{h, m})) + occ) time with
O(n) space, where h is the height of the CPH and occ is the number of
pattern occurrences. We show how to build CPH(S) in O(n log σ) time
with O(n) working space. Further, we extend the problem to the case
where the text is a labeled tree (i.e. a trie). Given a trie T with N
nodes, we show that the CPH of T , denoted CPH(T ), supports pattern
matching queries on the trie in O(m(σ2 + log(min{h, m})) + occ) time
with O(Nσ) space. We also show a construction algorithm for CPH(T )
running in O(Nσ) time and O(Nσ) working space.

1 Introduction

If the Cartesian trees CT(X) and CT(Y ) of two strings X and Y are equal,
then we say that X and Y Cartesian-tree match (ct-match). The Cartesian-tree
pattern matching problem (ct-matching problem) [18] is, given a text string S
and a pattern P , to find all substrings S′ of S that ct-match with P .

String equivalence with ct-matching belongs to the class of substring-
consistent equivalence relation (SCER) [17], namely, the following holds: If
two strings X and Y ct-match, then X[i..j] and Y [i..j] also ct-match for any
1 ≤ i ≤ j ≤ |X|. Among other types of SCERs [3–5,14,15], ct-matching is the
most related to order-peserving matching (op-matching) [7,9,16]. Two strings
X and Y are said to op-match if the relative order of the characters in X and
the relative order of the characters in Y are the same. It is known that with ct-
matching one can detect some interesting occurrences of a pattern that cannot
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be captured with op-matching. More precisely, if two strings X and Y op-match,
then X and Y also ct-match. However, the reverse is not true. With this prop-
erty in hand, ct-matching is motivated for analysis of time series such as stock
charts [11,18].

This paper deals with the indexing version of the ct-matching problem. Park
et al. [18] proposed the Cartesian suffix tree (CST ) for a text string S that can
be built in O(n log n) worst-case time or O(n) expected time, where n is the
length of the text string S. The log n factor in the worst-case complexity is due
to the fact that the parent-encoding, a key concept for ct-matching introduced
in [18], is a sequence of integers in range [0..n−1]. While it is not explicitly stated
in Park et al.’s paper [18], our simple analysis (c.f. Lemma 10 in Sect. 5) reveals
that the CST supports pattern matching queries in O(m log m+occ) time, where
m is the pattern length and occ is the number of pattern occurrences.

In this paper, we present a new indexing structure for this problem, called
the Cartesian-tree Position Heap (CPH ). We show that the CPH of S, which
occupies O(n) space, can be built in O(n log σ) time with O(n) working space
and supports pattern matching queries in O(m(σ +log(min{h,m}))+occ) time,
where h is the height of the CPH. Compared to the afore-mentioned CST, our
CPH is the first index for ct-matching that can be built in worst-case linear time
for constant-size alphabets, while pattern matching queries with our CPH can
be slower than with the CST when σ is large.

We then consider the case where the text is a labeled tree (i.e. a trie). Given
a trie T with N nodes, we show that the CPH of T , which occupies O(Nσ)
space, can be built in O(Nσ) time and O(Nσ) working space. We also show how
to support pattern matching queries in O(m(σ2 + log(min{h,m})) + occ) time
in the trie case. To our knowledge, our CPH is the first indexing structure for
ct-matching on tries that uses linear space for constant-size alphabets.

Conceptually, our CPH is most related to the parameterized position heap
(PPH ) for a string [12] and for a trie [13], in that our CPHs and the PPHs are
both constructed in an incremental manner where the suffixes of an input string
and the suffixes of an input trie are processed in increasing order of their lengths.
However, some new techniques are required in the construction of our CPH due
to different nature of the parent encoding [18] of strings for ct-matching, from
the previous encoding [3] of strings for parameterized matching.

2 Preliminaries

2.1 Strings and (Reversed) Tries

Let Σ be an ordered alphabet of size σ. An element of Σ is called a character.
An element of Σ∗ is called a string. For a string S ∈ Σ∗, let σS denote the
number of distinct characters in S.

The empty string ε is a string of length 0, namely, |ε| = 0. For a string
S = XY Z, X, Y and Z are called a prefix, substring, and suffix of S, respectively.
The set of prefixes of a string S is denoted by Prefix(S). The i-th character of
a string S is denoted by S[i] for 1 ≤ i ≤ |S|, and the substring of a string
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S that begins at position i and ends at position j is denoted by S[i..j] for
1 ≤ i ≤ j ≤ |S|. For convenience, let S[i..j] = ε if j < i. Also, let S[i..] = S[i..|S|]
for any 1 ≤ i ≤ |S| + 1.

A trie is a rooted tree that represents a set of strings, where each edge is
labeled with a character from Σ and the labels of the out-going edges of each
node is mutually distinct. Tries are natural generalizations to strings in that
tries can have branches while strings are sequences without branches.

Let x be any node of a given trie T , and let r denote the root of T . Let
depth(x) denote the depth of x. When x �= r, let parent(x) denote the parent of
x. For any 0 ≤ j ≤ depth(x), let anc(x, j) denote the j-th ancestor of x, namely,
anc(x, 0) = x and anc(x, j) = parent(anc(x, j − 1)) for 1 ≤ j ≤ depth(x). It is
known that after a linear-time processing on T , anc(x, j) for any query node x
and integer j can be answered in O(1) time [6].

For the sake of convenience, in the case where our input is a trie T , then
we consider its reversed trie where the path labels are read in the leaf-to-root
direction. On the other hand, the trie-based data structures (namely position
heaps) we build for input strings and reversed tries are usual tries where the
path labels are read in the root-to-leaf direction.

For each (reversed) path (x,y) in T such that y = anc(x, j) with j =
|depth(x)|− |depth(y)|, let str(x,y) denote the string obtained by concatenating
the labels of the edges from x to y. For any node x of T , let str(x) = str(x, r).

Let N be the number of nodes in T . We associate a unique id to each node of
T . Here we use a bottom-up level-order traversal rank as the id of each node in T ,
and we sometimes identify each node with its id. For each node id i (1 ≤ i ≤ N)
let T [i..] = str(i), i.e., T [i..] is the path string from node i to the root r.

2.2 Cartesian-Tree Pattern Matching

The Cartesian tree of a string S, denoted CT(S), is the rooted tree with |S|
nodes which is recursively defined as follows:

– If |S| = 0, then CT(S) is the empty tree.
– If |S| ≥ 1, then CT(S) is the tree whose root r stores the left-most minimum

value S[i] in S, namely, r = S[i] iff S[i] ≤ S[j] for any i �= j and S[h] > S[i]
for any h < i. The left-child of r is CT(S[1..i − 1]) and the right-child of r is
CT(S[i + 1..|S|]).
The parent distance encoding of a string S of length n, denoted PD(S), is a

sequence of n integers over [0..n − 1] such that

PD(S)[i] =

{
i − max1≤j<i{j | S[j] ≤ S[i]} if such j exists,
0 otherwise.

Namely, PD(S)[i] represents the distance to from position i to its nearest left-
neighbor position j that stores a value that is less than or equal to S[i].

A tight connection between CT and PD is known:
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S1 3 1 6 4 8 6 7 5 9
PD(S1) 0 0 1 2 1 2 1 4 1

CT )S( 1

S2 7 1 3 2 8 6 9 4 5
PD(S2) 0 0 1 2 1 2 1 4 1

CT )S( 2

Fig. 1. Two strings S1 = 316486759 and S2 = 713286945 ct-match since CT(S1) =
CT(S2) and PD(S1) = PD(S2).

Lemma 1 ([19]). For any two strings S1 and S2 of equal length, CT(S1) =
CT(S2) iff PD(S1) = PD(S2).

For two strings S1 and S2, we write S1 ≈ S2 iff CT(S1) = CT(S2) (or equiv-
alently PD(S1) = PD(S2)). We also say that S1 and S2 ct-match when S1 ≈ S2.
See Fig. 1 for a concrete example.

We consider the indexing problems for Cartesian-tree pattern matching on a
text string and a text trie, which are respectively defined as follows:

Problem 1 (Cartesian-Tree Pattern Matching on Text String).

Preprocess: A text string S of length n.

Query: A pattern string P of length m.

Report: All text positions i such that S[i..i + m − 1] ≈ P .

Problem 2 (Cartesian-Tree Pattern Matching on Text Trie).

Preprocess: A text trie T with N nodes.

Query: A pattern string P of length m.

Report: All trie nodes i such that (T [i..])[1..m] ≈ P .

2.3 Sequence Hash Trees

Let W = 〈w1, . . . , wk〉 be a sequence of non-empty strings such that for any
1 < i ≤ k, wi /∈ Prefix(wj) for any 1 ≤ j < i. The sequence hash tree [8] of a
sequence W = 〈w1, . . . , wk〉 of k strings, denoted SHT(W) = SHT(W)k, is a trie
structure that is incrementally built as follows:

1. SHT(W)0 = SHT(〈 〉) for the empty sequence 〈 〉 is the tree only with the
root.
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2. For i = 1, . . . , k, SHT(W)i is obtained by inserting the shortest prefix ui of
wi that does not exist in SHT(W)i−1. This is done by finding the longest
prefix pi of wi that exists in SHT(W)i−1, and adding the new edge (pi, c, ui),
where c = wi[|pi| + 1] is the first character of wi that could not be traversed
in SHT(W)i−1.

Since we have assumed that each wi in W is not a prefix of wj for any
1 ≤ j < i, the new edge (pi, c, ui) is always created for each 1 ≤ i ≤ k. This
means that SHT(W) contains exactly k + 1 nodes (including the root).

To perform pattern matching queries efficiently, each node of SHT(W) is
augmented with the maximal reach pointer. For each 1 ≤ i ≤ k, let ui be
the newest node in SHT(W)i, namely, ui is the shortest prefix of wi which did
not exist in SHT(W)i−1. Then, in the complete sequence hash tree SHT(W) =
SHT(W)k, we set mrp(ui) = uj iff uj is the deepest node in SHT(W) such that
uj is a prefix of wi. Intuitively, mrp(ui) represents the last visited node uj when
we traverse wi from the root of the complete SHT(W). Note that j ≥ i always
holds. When j = i (i.e. when the maximal reach pointer is a self-loop), then we
can omit it because it is not used in the pattern matching algorithm.

3 Cartesian-Tree Position Heaps for Strings
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S 26427584365741
w1 0
w2 00
w3 000
w4 0100
w5 00100
w6 012140
w7 0012140
w8 00012140
w9 010012140
w10 0010012140
w11 01214512140
w12 001214512140
w13 0001214512140
w14 01231214512140

Fig. 2. CPH(S) for string S = 26427584365741. For
each wi = PD(S[n − i + 1..]), the underlined prefix
is the string that is represented by the node ui in
CPH(S). The dotted arcs are reversed suffix links (not
all reversed suffix links are shown).

In this section, we introduce
our new indexing structure
for Problem 1. For a given
text string S of length n, let
WS denote the sequence of
the parent distance encod-
ings of the non-empty suf-
fixes of S which are sorted
in increasing order of their
lengths. Namely, WS = 〈w1,
. . . , wn〉 = 〈PD(S[n..]), . . . ,
PD(S[1..])〉, where wn−i+1 =
PD(S[i..]). The Cartesian-
tree Position Heap (CPH ) of
string S, denoted CPH(S),
is the sequence hash tree
of WS , that is, CPH(S) =
SHT(WS). Note that for
each 1 ≤ i ≤ n + 1,
CPH(S[i..]) = SHT(WS)n−i+1 holds.

Our algorithm builds CPH(S[i..]) for decreasing i = n, . . . , 1, which means
that we process the given text string S in a right-to-left online manner, by
prepending the new character S[i] to the current suffix S[i + 1..].

For a sequence v of integers, let Zv denote the sorted list of positions z in v
such that v[z] = 0 iff z ∈ Zv. Clearly |Zv| is equal to the number of 0’s in v.
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Lemma 2. For any string S, |ZPD(S)| ≤ σS.

Proof. Let ZPD(S) = z1, . . . , z�. We have that S[z1] > · · · > S[z�] since otherwise
PD(S)[zx] �= 0 for some zx, a contradiction. Thus |ZPD(S)| ≤ σS holds. 	

Lemma 3. For each i = n, . . . , 1, PD(S[i..]) can be computed from PD(S[i+1..])
in an online manner, using a total of O(n) time with O(σS) working space.

Proof. Given a new character S[i], we check each position z in the list
ZPD(S[i+1..]) in increasing order. Let ẑ = z + i, i.e., ẑ is the global position in S
corresponding to z in S[i+1..]. If S[i] ≤ S[ẑ], then we set PD(S[i..])[z − i+1] =
z− i (> 0) and remove z from the list. Remark that these removed positions cor-
respond to the front pointers in the next suffix S[i..]. We stop when we encounter
the first z in the list such that S[i] > S[ẑ]. Finally we add the position i to the
head of the remaining positions in the list. This gives us ZPD(S[i..]) for the next
suffix S[i..].

It is clear that once a position in the PD encoding is assigned a non-zero
value, then the value never changes whatever characters we prepend to the string.
Therefore, we can compute PD(S[i..]) from PD(S[i+1..]) in a total of O(n) time
for every 1 ≤ i ≤ n. The working space is O(σS) due to Lemma 2. 	


A position i in a sequence u of non-negative integers is said to be a front
pointer in u if i − u[i] = 1 and i ≥ 2. Let Fu denote the sorted list of front
pointers in u. The positions of the suffix S[i + 1..] which are removed from
ZPD(S[i+1..]) correspond to the front pointers in FPD(S[i..]) for the next suffix
S[i..].

Our construction algorithm updates CPH(S[i+1..]) to CPH(S[i..]) by insert-
ing a new node for the next suffix S[i..], processing the given string S in a
right-to-left online manner. Here the task is to efficiently locate the parent of
the new node in the current CPH at each iteration.

As in the previous work on right-to-left online construction of indexing struc-
tures for other types of pattern matching [10,12,13,20], we use the reversed suffix
links in our construction algorithm for CPH(S). For ease of explanation, we first
introduce the notion of the suffix links. Let u be any non-root node of CPH(S).
We identify u with the path label from the root of CPH(S) to u, so that u is a
PD encoding of some substring of S. We define the suffix link of u, denoted sl(u),
such that sl(u) = v iff v is obtained by (1) removing the first 0 (= u[1]), and (2)
substituting 0 for the character u[f ] at every front pointer f ∈ Fu ⊆ [2..|u|] of u.
The reversed suffix link of v with non-negative integer label a, denoted rsl(v, a),
is defined such that rsl(v, a) = u iff sl(u) = v and a = |Fu|. See also Fig. 2.

Lemma 4. Let u, v be any nodes of CPH(S) such that rsl(v, a) = u with label a.
Then a ≤ σS.

Proof. Since |Fu| ≤ |Zv|, using Lemma 2, we obtain a = |Fu| ≤ |Zv| ≤ σS′ ≤ σS ,
where S′ is a substring of S such that PD(S′) = v. 	


The next lemma shows that the number of out-going reversed suffix links of
each node v is bounded by the alphabet size.
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Lemma 5. For any node v in CPH(S), |{a | rsl(v, a) = u for some node u}| ≤
σS + 1.

Proof. Let a be any integer such that rsl(v, a) = u exists for some node u. Since v
is a node of CPH(S), v = PD(S′) for some substring S′ of S. Thus, by Lemma 4,
we get a ≤ σS . Since a ≥ 0, there can be at most σS + 1 different values for a
such that rsl(v, a) is defined for any node v. 	


u(i+1)

a

d

v(i)

v(i)

u(i)

p(i) b

0
root

0

i
^

Fig. 3. We climb up the path from
u(i + 1) and find the parent p(i) of the
new node u(i) (in black). The label a of
the reversed suffix link we traverse from
v(i) is equal to the number of front
pointers in p(i).

Our CPH construction algorithm
makes use of the following monotonicity
of the labels of reversed suffix links:

Lemma 6. Suppose that there exist two
reversed suffix links rsl(v, a) = u and
rsl(v′, a′) = u′ such that v′ = parent(v)
and u′ = parent(u). Then, 0 ≤ a − a′ ≤ 1.

Proof. Immediately follows from a =
|Fu|, a′ = |Fu′ |, and u′ = u[1..|u| − 1].

	

We are ready to design our right-to-

left online construction algorithm for the
CPH of a given string S. Since PD(S[i..])
is the (n − i + 1)-th string wn−i+1 of
the input sequence WS , for ease of expla-
nation, we will use the convention that
u(i) = un−i+1 and p(i) = pn−i−1, where
the new node u(i) for wn−i+1 = PD(S[i..])
is inserted as a child of p(i). See Fig. 3.

Algorithm 1: Right-to-Left Online Construction of CPH(S)

i = n (base case): We begin with CPH(S[n..]) which consists of the root r =
u(n + 1) and the node u(n) for the first (i.e. shortest) suffix S[n..] of S.
Since w1 = PD(S[n..]) = PD(S[n]) = 0, the edge from r to u(n) is labeled
0. Also, we set the reversed suffix link rsl(r, 0) = u(n).

i = n − 1, . . . , 1 (iteration): Given CPH(S[i+1..]) which consists of the nodes
u(i + 1), . . . , u(n), which respectively represent some prefixes of the already
processed strings wn−i, . . . , w1 = PD(S[i + 1..]), . . . ,PD(S[n..]), together
with their reversed suffix links. We find the parent p(i) of the new node
u(i) for PD(S[i..]), as follows: We start from the last-created node u(i + 1)
for the previous PD(S[i + 1..]), and climb up the path towards the root r.
Let di ∈ [1..|u(i + 1)|] be the smallest integer such that the di-th ancestor
v(i) = anc(u(i+1), di) of u(i+1) has the reversed suffix link rsl(v(i), a) with
the label a = |FPD(S[i..i+|v(i)|])|. We traverse the reversed suffix link from
v(i) and let p(i) = rsl(v(i), a). We then insert the new node u(i) as the new
child of p(i), with the edge labeled PD(S[i..])[i+|u(i)|−1]. Finally, we create
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a new reversed suffix link rsl(v̂(i), b) = u(i), where v̂(i) = anc(u(i+1), di−1)
and parent(v̂) = v. We set b ← a+1 if the position i+|p(i)| is a front pointer
of PD(S[i..]), and b ← a otherwise.

For computing the label a = |FPD(S[i..i+|v(i)|])| efficiently, we introduce a
new encoding FP that is defined as follows: For any string S of length n, let
FP(S)[i] = |FPD(S[i..n])|. The FP encoding preserves the ct-matching equivalence:

Lemma 7. For any two strings S1 and S2, S1 ≈ S2 iff FP(S1) = FP(S2).

Proof. For a string S, consider the DAG G(S) = (V,E) such that V =
{1, . . . , |S|}, E = {(j, i) | j = i − PD(S)[i]}. By Lemma 1, for any strings
S1 and S2, G(S1) = G(S2) iff S1 ≈ S2. Now, we will show there is a one-to-one
correspondence between the DAG G and the FP encoding.

(⇒) We are given G(S) for some (unknown) string S. Since FP(S)[i] is the
in-degree of the node i of G(S), FP(S) is unique for the given DAG G(S).

(⇐) Given FP(S) for some (unknown) string S, we show an algorithm that
builds DAG G(S). We first create nodes V = {1, . . . , |S|} without edges, where
all nodes in V are initially unmarked. For each i = n, . . . , 1 in decreasing order,
if FP(S)[i] > 0, then select the leftmost FP(S)[i] unmarked nodes in the range
[i − 1..n], and create an edge (i, i′) from each selected node i′ to i. We mark all
these FP(S)[i] nodes at the end of this step, and proceed to the next node i − 1.
The resulting DAG G(S) is clearly unique for a given PD(S). 	


For computing the label a = |FPD(S[i..i+|v(i)|])| = FP(S[i..i + |v(i)|])[1] of
the reversed suffix link in Algorithm 1, it is sufficient to maintain the induced
graph G[i..j] of DAG G for a variable-length sliding window S[i..j] with the nodes
{i, . . . , j}. This can easily be maintained in O(n) total time.

Theorem 1. Algorithm 1 builds CPH(S[i..]) for decreasing i = n, . . . , 1 in a
total of O(n log σ) time and O(n) space, where σ is the alphabet size.

Proof. Correctness: Consider the (n − i + 1)-th step in which we process
PD(S[i..]). By Lemma 6, the di-th ancestor v(i) = anc(u(i + 1), di) of u(i + 1)
can be found by simply walking up the path from the start node u(i + 1). Note
that there always exists such ancestor v(i) of u(i + 1) since the root r has the
defined reversed suffix link rsl(r, 0) = 0. By the definition of v(i) and its reversed
suffix link, rsl(v(i), a) = p(i) is the longest prefix of PD(S[i..]) that is represented
by CPH(S[i+1..]) (see also Fig. 3). Thus, p(i) is the parent of the new node u(i)
for PD(S[i..]). The correctness of the new reversed suffix link rsl(v̂(i), b) = u(i)
follows from the definition.

Complexity: The time complexity is proportional to the total number
∑n

i=1 di

of nodes that we visit for all i = n, . . . , 1. Clearly |u(i)|−|u(i+1)| = di−2. Thus,∑n
i=1 di =

∑n
i=1(|u(i)| − |u(i + 1)| + 2) = |u(1)| − |u(n)| + 2n ≤ 3n = O(n).

Using Lemma 5 and sliding-window FP, we can find the reversed suffix links
in O(log σS) time at each of the

∑n
i=1 di visited nodes. Thus the total time

complexity is O(n log σS). Since the number of nodes in CPH(S) is n+1 and the
number of reversed suffix links is n, the total space complexity is O(n). 	
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Lemma 8. There exists a string S of length n over a binary alphabet Σ = {1, 2}
such a node in CPH(S) has Ω(

√
n) out-going edges.

Proof. Consider string S = 11211221 · · · 12k1. Then, for any 1 ≤ � ≤ k, there
exist nodes representing 01k−2�. Since k = Θ(

√
n), the parent node 01k−2 has

Ω(
√

n) out-going edges. 	

Due to Lemma 8, if we maintain a sorted list of out-going edges for each node

during our online construction of CPH(S[i..]), it would require O(n log n) time
even for a constant-size alphabet. Still, after CPH(S) has been constructed, we
can sort all the edges offline, as follows:

Theorem 2. For any string S over an integer alphabet Σ = [1..σ] of size σ =
nO(1), the edge-sorted CPH(S) together with the maximal reach pointers can be
computed in O(n log σS) time and O(n) space.

Proof. We sort the edges of CPH(S) as follows: Let i be the id of each node
u(i). Then sort the pairs (i, x) of the ids and the edge labels. Since i ∈ [0..n − 1]
and x ∈ [1..nO(1)], we can sort these pairs in O(n) time by a radix sort. The
maximal reach pointers can be computed in O(n log σS) time using the reversed
suffix links, in a similar way to the position heaps for exact matching [10]. 	


4 Cartesian-Tree Position Heaps for Tries

Let T be the input text trie with N nodes. A näıve extension of our CPH to a
trie would be to build the CPH for the sequence 〈PD(T [N..]), . . . ,PD(T [1..])〉 of
the parent encodings of all the path strings of T towards the root r. However,
this does not seem to work because the parent encodings are not consistent
for suffixes. For instance, consider two strings 1432 and 4432. Their longest
common suffix 432 is represented by a single path in a trie T . However, the
longest common suffix of PD(1432) = 0123 and PD(4432) = 0100 is ε. Thus, in
the worst case, we would have to consider all the path strings T [N..], . . . , T [1..]
in T separately, but the total length of these path strings in T is Ω(N2).

To overcome this difficulty, we reuse the FP encoding from Sect. 3. Since
FP(S)[i] is determined merely by the suffix S[i..], the FP encoding is suffix-
consistent. For an input trie T , let the FP-trie T FP be the reversed trie storing
FP(T [i..]) for all the original path strings T [i..] towards the root. Let N ′ be
the number of nodes in T FP. Since FP is suffix-consistent, N ′ ≤ N always holds.
Namely, FP is a linear-size representation of the equivalence relation of the nodes
of T w.r.t. ≈. Each node v of T FP stores the equivalence class Cv = {i | T FP[v..] =
FP(T [i..])} of the nodes i in T that correspond to v. We set min{Cv} to be the
representative of Cv, as well as the id of node v.
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Fig. 4. Illustration for the data structure
of Lemma 9, where (T [i..])[1..�] = str(x, z).

Let ΣT be the set of distinct char-
acters (i.e. edge labels) in T and let
σT = |ΣT |. The FP-trie T FP can be
computed in O(NσT ) time and work-
ing space by a standard traversal on T ,
where we store at most σT front point-
ers in each node of the current path in
T due to Lemma 3.

Let iN ′ , . . . , i1 be the node id’s of
T FP sorted in decreasing order. The
Cartesian-tree position heap for the input trie T is CPH(T ) = SHT(WT ), where
WT = 〈PD(T [iN ′ ..], . . . ,PD(T [i1..])〉.

As in the case of string inputs in Sect. 3, we insert the shortest prefix of
PD(T [ik..]) that does not exist in CPH(T [ik+1..]). To perform this insert opera-
tion, we use the following data structure for a random-access query on the PD
encoding of any path string in T :

Lemma 9. There is a data structure of size O(NσT ) that can answer the fol-
lowing queries in O(σT ) time each.

Query input: The id i of a node in T and integer � > 0.
Query output: The �th (last) symbol PD((T [i..])[1..�])[�] in PD(T [i..])[1..�].

Proof. Let x be the node with id i, and z = anc(x, �). Namely, str(x, z) =
(T [j..])[1..�]. For each character a ∈ ΣT , let na(x, a) denote the nearest ancestor
ya of x such that the edge (parent(ya),ya) is labeled a. If such an ancestor does
not exist, then we set na(x, a) to the root r.

Let z′ = anc(x, �−1), and b be the label of the edge (z, z′). Let D be an empty
set. For each character a ∈ ΣT , we query na(x, a) = ya. If da = |ya| − |z′| > 0
and a ≤ b, then da is a candidate for (PD(T [j..])[1..�])[�] and add da to set D.
After testing all a ∈ ΣT , we have that (PD(T [j..])[1..�])[�] = min D. See Fig. 4.

For all characters a ∈ ΣT and all nodes x in T , na(x, a) can be pre-computed
in a total of O(NσT ) preprocessing time and space, by standard traversals on
T . Clearly each query is answered in O(σT ) time. 	

Theorem 3. Let T be a given trie with N nodes whose edge labels are from an
integer alphabet of size nO(1). The edge-sorted CPH(T ) with the maximal reach
pointers, which occupies O(NσT ) space, can be built in O(NσT ) time.

Proof. The rest of the construction algorithm of CPH(T ) is almost the same as
the case of the CPH for a string, except that the amortization argument in the
proof for Theorem 1 cannot be applied to the case where the input is a trie.
Instead, we use the nearest marked ancestor (NMA) data structure [2,21] that
supports queries and marking nodes in amortized O(1) time each, using space
linear in the input tree. For each a ∈ [0..σT ], we create a copy CPHa(T ) of
CPH(T ) and maintain the NMA data structure on CPHa(T ) so that every node
v that has defined reversed suffix link rsl(v, a) is marked, and any other nodes
are unmarked. The NMA query for a given node v with character a is denoted
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by nmaa(v). If v itself is marked with a, then let nmaa(v) = v. For any node x
of T , let Ix be the array of size at most σT s.t. Ix[j] = h iff h is the jth smallest
element of FPD(str(x)).

We are ready to design our construction algorithm: Suppose that we have
already built CPH(T [ik+1..]) and we are to update it to CPH(T [ik..]). Let w
be the node in T with id ik, and let u = parent(w) in T FP. Let u be the
node of CPH(T [ik+1..]) that corresponds to u. We initially set v ← u and a ←
|FPD(T [ik..ik+|u|])|. Let d(a) = max{|u|−Iw[a]+1, 0}. We perform the following:

(1) Check whether v′ = anc(u, d(a)) is marked in CPHa(T ). If so, go to (2).
Otherwise, update v ← v′, a ← a − 1, and repeat (1).

(2) Return nma(v, a).

By the definitions of Iw[a] and d(a), the node v(ik) from which we should take
the reversed suffix link is in the path between v′ and v, and it is the lowest
ancestor of v that has the reversed suffix link with a. Thus, the above algorithm
correctly computes the desired node. By Lemma 4, the number of queries in (1)
for each of the N ′ nodes is O(σT ), and we use the dynamic level ancestor data
structure on our CPH that allows for leaf insertions and level ancestor queries
in O(1) time each [1]. This gives us O(NσT )-time and space construction.

We will reuse the random access data structure of Lemma 9 for pattern
matching (see Sect. 5.2). Thus CPH(T ) requires O(NσT ) space. 	


5 Cartesian-Tree Pattern Matching with Position Heaps

5.1 Pattern Matching on Text String S with CPH(S)

Given a pattern P of length m, we first compute the greedy factorization f(P ) =
P0, P1, . . . , Pk of P such that P0 = ε, and for 1 ≤ l ≤ k, Pl = P [lsum(l − 1) +
1..lsum(l)] is the longest prefix of Pl · · · Pk that is represented by CPH(S), where
lsum(l) =

∑l
j=0 |Pj |. We consider such a factorization of P since the height h of

CPH(S) can be smaller than the pattern length m.

Lemma 10. Any node v in CPH(S) has at most |v| out-going edges.

Proof. Let (v, c, u) be any out-going edge of v. When |u|−1 is a front pointer of u,
then c = u[|u|] and this is when c takes the maximum value. Since u[|u|] ≤ |u|−1,
we have c ≤ |u| − 1. Since the edge label of CPH(S) is non-negative, v can have
at most |u| − 1 = |v| out-going edges. 	


The next corollary immediately follows from Lemma 10.

Corollary 1. Given a pattern P of length m, its factorization f(P ) can be com-
puted in O(m log(min{m,h})) time, where h is the height of CPH(S).

The next lemma is analogous to the position heap for exact matching [10].

Lemma 11. Consider two nodes u and v in CPH(S) such that u = PD(P ) the
id of v is i. Then, PD(S[i..])[1..|u|] = u iff one of the following conditions holds:
(a) v is a descendant of u; (b) mrp(v) is a descendant of u.
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We perform a standard traversal on CPH(S) so that one we check whether a
node is a descendant of another node in O(1) time.

When k = 1 (i.e. f(P ) = P ), PD(P ) is represented by some node u of CPH(S).
Now a direct application of Lemma 11 gives us all the occ pattern occurrences
in O(m log m + occ) time, where min{m,h} = m in this case. All we need here
is to report the id of every descendant of u (Condition (a)) and the id of each
node v that satisfies Condition (b). The number of such nodes v is less than m.

When k ≥ 2 (i.e. f(P ) �= P ), there is no node that represents PD(P ) for the
whole pattern P . This happens only when occ < m, since otherwise there has
to be a node representing PD(P ) by the incremental construction of CPH(S), a
contradiction. This implies that Condition (a) of Lemma 11 does apply when k ≥
2. Thus, the candidates for the pattern occurrences only come from Condition
(b), which are restricted to the nodes v such that mrp(v) = u1, where u1 =
PD(P1). We apply Condition (b) iteratively for the following P2, . . . , Pk, while
keeping track of the position i that was associated to each node v such that
mrp(v) = u1. This can be done by padding i with the off-set lsum(l − 1) when
we process Pl. We keep such a position i if Condition (b) is satisfied for all the
following pattern blocks P2, . . . , Pk, namely, if the maximal reach pointer of the
node with id i+lsum(l−1) points to node ul = PD(Pl) for increasing l = 2, . . . , k.
As soon as Condition (b) is not satisfied with some l, we discard position i.

Suppose that we have processed the all pattern blocks P1, . . . , Pk in f(P ).
Now we have that PD(S[i..])[1..m] = PD(P ) (or equivalently S[i..i+m−1] ≈ P )
only if the position i has survived. Namely, position i is only a candidate of
a pattern occurrence at this point, since the above algorithm only guarantees
that PD(P1) · · ·PD(Pk) = PD(S[i..])[1..m]. Note also that, by Condition (b), the
number of such survived positions i is bounded by min{|P1|, . . . , |Pk|} ≤ m/k.

For each survived position i, we verify whether PD(P ) = PD(S[i..])[1..m].
This can be done by checking, for each increasing l = 1, . . . , k, whether or not
PD(S[i..])[lsum(l − 1) + y] = PD(P1 · · · Pl)[lsum(l − 1) + y] for every position
y (1 ≤ y ≤ |Pl|) such that PD(Pl)[y] = 0. By the definition of PD, the number of
such positions y is at most σPl

≤ σP . Thus, for each survived position i we have
at most kσP positions to verify. Since we have at most m/k survived positions,
the verification takes a total of O(m

k · kσP ) = O(mσP ) time.

Theorem 4. Let S be the text string of length n. Using CPH(S) of size O(n)
augmented with the maximal reach pointers, we can find all occ occurrences for
a given pattern P in S in O(m(σP +log(min{m,h}))+occ) time, where m = |P |
and h is the height of CPH(S).

5.2 Pattern Matching on Text Trie T with CPH(T )

In the text trie case, we can basically use the same matching algorithm as in the
text string case of Sect. 5.1. However, recall that we cannot afford to store the PD
encodings of the path strings in T as it requires Ω(n2) space. Instead, we reuse
the random-access data structure of Lemma 9 for the verification step. Since it
takes O(σT ) time for each random-access query, and since the data structure
occupies O(NσT ) space, we have the following complexity:
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Theorem 5. Let T be the text trie with N nodes. Using CPH(T ) of size O(NσT )
augmented with the maximal reach pointers, we can find all occ occurrences for
a given pattern P in T in O(m(σP σT + log(min{m,h})) + occ) time, where
m = |P | and h is the height of CPH(T ).
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