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1 Introduction

Mitochondria are double-membrane-bound organelles exclusively found in eukary-
otic cells and best known for its role in the generation of adenosine triphosphate
(ATP) [1]. The endosymbiotic hypothesis proposes that mitochondria arise from the
integration of a free-living aerobic bacterium into a host cell over a billion of years
ago. In this relationship, the host cell provided a safe and nutrient-rich environ-
ment for the aerobic bacterium. It also acquired a new source of oxygen dependent-
energy [2]. More recently, it has been suggested that the phagocytosed bacterium
may have provided defense molecules for the host cell, also connecting the advan-
tages of this endosymbiotic relationship to immunity [3]. Throughout evolution, a
massive transfer of genes to the host cell allowed the evolvement of the endosym-
biotic bacterium as a permanent organelle—the mitochondrion (mitochondria for
plural) [4].
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Derived from two Greek words: “mitos”—thread and “chondros”—granule, the
organelle displays two lipid bilayer-membranes enclosing two aqueous compart-
ments. The outer mitochondrial membrane surrounds the intermembrane space,
while the inner mitochondrial membrane, which contains invaginations denominated
cristae, encloses the matrix compartment [5, 6]. The inner membrane accommo-
dates the oxidative phosphorylation system (OXPHOS)—a five multimeric protein
complexes (Complex I-V) that uses redox reactions to generates ATP. At the expense
of oxygen as a final electron acceptor, a sequential transfer of electrons from Complex
I to Complex IV generates a proton electrochemical gradient across the inner
membrane, also known as membrane potential, that is used by Complex V to drive
ATP synthesis [1]. The mitochondrial membrane potential also helps metabolites
transport and ion homeostasis.

Often referred as the powerhouse of the eukaryotic cells, the role of mitochondria
goes beyond ATP production. The organelle orchestrates a myriad of other processes
including reactive oxygen species (ROS) formation [7, 8], aldehyde metabolism [9],
heat production [10], ion homeostasis [11] and programmed cell death [12] that ulti-
mately dictate cell fate. This functional versatility is intimately linked to the content,
size and number of mitochondria. Their morphological complexity is controlled by
the processes termed mitochondrial biogenesis and dynamics. While mitochondrial
biogenesis increases the number and content of the organelles in a coordinated effort
with the nucleus [13], mitochondrial dynamics drives the formation of larger or
smaller organelles through the antagonist activities of fusion and fission [14].

Mitochondria are recently recognized by their dynamic nature. In order to meet
the cellular requirements for ATP, the mitochondrial network are under constantly
remodeling. Indeed, metabolic cues (i.e. starvation, exercise) trigger not only fusion
and fission machineries in order to create elongated or fragmented mitochondria
[15], but also drive transcription factors activation to increase mitochondrial mass
and boost oxidative metabolism [16]. Moreover, this dynamism helps impaired mito-
chondria to be rescued or eliminated. In the first case, fusion events allow damaged
components to be diluted throughout the network, thereby avoiding the propagation
of stress that might cause mitochondrial dysfunction or collapse [17]. On the oppo-
site way, the fission process segregates part of dysfunctional mitochondria that now
can be addressed for degradation in the lysosome, a process termed mitophagy [18].

Exciting new findings have revealed mitochondria as a major intracellular
signaling platform regulating immune cell function. Indeed, the cellular metabolic
plasticity provided by mitochondria not only allows immune cells to grow, but it
is also required during transition from a metabolically quiescent stage to a highly
active state [19]. Moreover, proteins located on the outer mitochondrial membrane,
as well as mitochondrial DNA can dictate immune cell activation [20, 21]. Finally,
due to the reciprocal crosstalk between mitochondrial metabolism and morphology,
fluctuations in shape, size and position of the organelle within the cell likey affect
both phenotype and activity of immune cells [22].

Considering the extensive knowledge highlighting mitochondria as the power-
house of the cells as well as emerging evidence placing mitochondria at the heart
of immunity, this chapter reviews the general processes regulating mitochondrial
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biogenesis and dynamics, and discuss the critical role of these processes in health
and disease.

2 Mitochondrial Biogenesis

Mitochondrial biogenesis is a simplified term used to describe a complex process
involving the increase in mass of pre-existing mitochondria. Due to their bacte-
rial origin, mitochondria possess their own genetic material, which includes DNA
and the translational/transcriptional system. The mitochondrial DNA (mtDNA) is
a circular double strand DNA molecule containing ~16.5 kb that encodes only 37
genes: 22 transfer RNA and 2 ribosomal RNA (128 and 16S) required for translating
13 messenger RNA. Moreover, maternal inheritance, lack of introns (non-coding
sections of a gene) and several copies per cell (1-10 copies per mitochondrion) are
among the unique features that differ mtDNA from the nuclear DNA [23].

The entire protein-coding capacity of mtDNA relies on 13 essential subunits of
the electron transport chain (ETC) that are replicated and transcribed within the
mitochondrial matrix: 7 subunits of NADH: Ubiquinone oxidoreductase (Complex
I), 1 subunit of Ubiquinone: Cytochrome c oxidoreductase (Complex III), 3 subunits
of Cytochrome ¢ Oxidase (Complex I'V) and 2 subunits of ATP synthase (Complex V)
[24]. The ~1100 remaining mitochondrial proteins [25, 26] have to be transcribed in
the nucleus, translated in cytosolic ribosomes and imported into the organelle (Fig. 1).
Therefore, mitochondrial biogenesis faces several challenges before promoting an
increase in the mitochondrial content.

The first challenge relies on coordinating the gene expression between two
genomes located into distinct subcellular compartments. Indeed, to ensure a proper
OXPHOS, the number of ETC subunits must be stoichiometrically balanced [27].
mtDNA occurs in the ratio of ~1000:1 copies relative to nuclear DNA [23]. Second,
the majority of mitochondrial proteins are translated in the cytosol; thus, demanding
a synchronized cellular machinery to properly target, import and assemble these
nuclear-encoded proteins [28, 29]. Failure in addressing these proteins to mitochon-
dria not only impairs ETC subunitse stoichiometry, but also compromises mtDNA
replication, which is orchestrated by the nuclear-encoded protein DNA polymerase
gamma (POLG) [30]. For a complete description about how mitochondrial genome
is replicated, transcribed and translated, please see reviews [28, 31, 32]. Finally,
mitochondrial dynamics, which will be discussed above, must also be coordinated.
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Fig.1 Summary of the transcriptional regulation of mitochondrial biogenesis. The expression
of mitochondrial genes encoded by both nDNA (nuclear DNA) and mtDNA (mitochondrial DNA) is
mainly regulated by a family of transcriptional coactivators named PGC-1 [peroxisome proliferator-
activated receptor (PPAR) gamma coactivator 1]. PGC-1 members bind to and coactivate NRFs
(nuclear respiratory factors) to induce the expression of multiple components of the OXPHOS
(oxidative phosphorylation system), ETC (electron transport chain) and mtDNA replication. NRFs
alsoregulate the levels of TFAM and TFB (mitochondrial transcription factors A and B, respectively)
involved in the expression of genes encoded by the mtDNA. Interaction between PGC-1 and specific
transcription factors such as PPARs and EERs (estrogen-related receptors) control the expression of
many genes involved in FAO (fatty acid oxidation), TCA cycle (tricarboxylic acid cycle), glucose and
lipid metabolism, and detoxifying enzymes. Nuclear-encoded mitochondrial proteins are translated
in cytosolic ribosomes and imported into the organelle

2.1 Transcription Factors Regulating Mitochondrial
Biogenesis

The transcription of both nuclear and mitochondrial genomes is coordinated by
specific proteins termed transcription factors. Transcription factors are able to modu-
late the rate of gene expression by binding to specific regulatory regions of DNA.
These proteins contain effector domains that allow the interaction not only with
other proteins essential for transcription, including the RNA polymerase, but also
with other transcription factors; thereby regulating the amount of messenger RNA
produced per gene [33].

Nuclear Respiratory Factors 1 (NRF-1) and 2 (NRF-2) are considered critical
players in mitochondrial biogenesis. Together, these transcription factors display
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DNA-binding sites for most of the genes encoding respiratory subunits. First iden-
tified in 1989 as a transcriptional activator of the cytochrome ¢ gene [34], NRF-
1 targeted genes are now branded for encoding subunits of all five respiratory
complexes of the ETC [35]. A couple of years later, NRF-2 was discovered by
its specific binding to the cytochrome oxidase subunit IV promoter [36]. Although
often recognized by their power of binding to antioxidant response element (ARE)
and promoting gene expression of detoxifying enzymes [37], functional NRF-2 sites
have been implicated in the expression of subunits of Complex II, IV and V of the
OXPHOS [38].

The regulatory network of NRFs also targets other nuclear genes whose products
function in the mitochondria, including components for assembling and importing
mitochondrial proteins [39], and constituents of the mtDNA transcription and repli-
cation machinery [40]. Indeed, NRF-1 is able to stimulate the expression of mito-
chondrial transcription factors A (TFAM) [40] and B (TFB) [41]—two nuclear-
encoded transcription factors essential for replication, maintenance, and transcrip-
tion of mtDNA [42, 43]. Moreover, not only TFAM and TFB have been recently
added to the list of genes controlled by NRF-2 [38], but NRF-2 indirectly regulates
mitochondrial biogenesis by driving the gene expression of NRF-1 [44]. Due to this
essential role in coordinating bi-genomic respiratory subunits, deficiency of NRF
can lead to a severe impairment of mitochondrial biogenesis [45, 46].

Members of the nuclear receptor superfamily also control the transcription of
respiratory apparatus. The peroxisome proliferator-activated receptor (PPAR) family
is composed by three isoforms: PPARa [47], PPAR /3 [48], PPARYy [49]. The expres-
sion of PPAR isoforms differs among tissues and these transcription factors regu-
late metabolic pathways at different levels. While PPARY is involved in glucose
metabolism and regulation of fatty acid storage, PPARa and PPAR /8 promote
changes in cellular lipid metabolism by upregulating genes involved in mitochondrial
fatty acid oxidation [50]. Estrogen-related receptors o (ERRa) and y (ERRYy) repre-
sent another class of nuclear receptors targeting ~700 nuclear-encoded mitochondrial
genes. The controlling of these transcription factors, expressed in mitochondrion-
enriched tissues such as skeletal muscle and heart [51], is attached to all aspects of
energy homeostasis, including mtDNA replication, OXPHOS, ion homeostasis and
mitochondrial detoxifying mechanisms (reviewed in [52]). Moreover, ERRa can
regulate the levels of PPARa transcripts [53], therefore magnifying the control over
mitochondrial fatty acid oxidation pathway.

Finally, a relative small number of other transcription factors have been shown to
activate or repress nuclear genes encoding mitochondrial proteins, including stim-
ulatory protein 1 (Spl), ying yang 1 transcription factor (YY1), cAMP-responsive
element-binding protein (CREB) and myocyte enhancer factor 2 (MEF-2), and a
detailed consideration of those is covered elsewhere [54].
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2.2 The Role of Transcriptional Coactivators
in Mitochondrial Biogenesis: PGC-1 Family

As described above, mitochondrial biogenesis requires the coordination of several
transcription factors to proper ensure the expression of both nuclear and mito-
chondrial genes. Adding complexity to this process, mitochondrial metabolism and
content differs widely among cells, tissues and organs; thereby demanding an extra
layer of regulation. While transcription factors bind to DNA in a sequence-dependent
manner, transcriptional coactivators interact with them and amplify the activity of
the transcriptional machinery by recruiting multi-protein complexes to modify chro-
matin folding, interact with the RNA polymerase II complex and process messenger
RNA [38]. Although the fundamental mechanisms of how mitochondrial biogen-
esis is orchestrated are still elusive, a major breakthrough came with the discovery
of a family of transcriptional coactivators termed PPARYy coactivator 1 (PGC-1)
[55]. PGC-1 proteins have emerged as major players in the transcriptional regulatory
circuits controlling mitochondrial biogenesis and function.

Conserved across many species, PGC-1 family is formed by three members that
share similar domain structures to interact with nuclear receptors [56]. The first and
most studied member of this family is PGC-1a. First identified in brown adipose
tissue during adaptive thermogenesis—a process that regulates heat production in
response to cold and diet, PGC-1a is considered the master regulator of mitochondrial
biogenesis in mammals [55]. Similar to PGC- 1o, PGC-18 is predominantly expressed
in tissues with abundant mitochondria (e.g. heart and skeletal muscle [57]). However,
it is not upregulated upon cold exposure [56]. The third member of this family is the
PGC-1 related coactivator (PRC). Despite the relatively low homology with the other
two isoforms, PRC is ubiquitously expressed and supports mitochondrial biogenesis
during early embryogenesis [58, 59]. Together, they bind to and coactivate most of
the transcription factors regulating expression of mitochondrial proteins encoded by
the nucleus.

Several studies have shown that PGC-1a is capable of regulating virtually every
aspect of mitochondrial content [60]. Indeed, by binding to and coactivating NRF-1
and NRF-2, PGC-1a promotes not only a powerful induction of nuclear-encoded
mitochondrial respiratory chain subunits, but also leads to the transcription of the
mitochondrial genome through the induction of TFAM [61]. Moreover, the interac-
tion between PGC-1a and transcription factors such as PPARa [62], PPARS [63],
ERRa [64], EERYy [64, 65], thyroid hormone receptor [66] and estrogen receptor
[57, 67], controls fat and glucose metabolism. And since PGC-1a and PGC-1f share
similar molecular structures and functions, it is not surprising that the mitochondrial
gene expression driven by these two coactivators overlaps [68, 69]. Interestingly,
their work results in mitochondria with different metabolic features [70]; thereby
suggesting that distinct upstream pathways modulate PGC-1a and PGC-18.

The pioneering work of Puigserver and coworkers first showed in 1998 that PGC-
la is dramatically induced (up to 50-fold) upon cold exposure in brown fat and
skeletal muscle [55]. Since then, many studies have determined that the expression
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of PGC-1 family members are controlled by a variety of external stimuli, such as exer-
cise, cold and nutrient deprivation, in a tissue-dependent manner (reviewed in [71]).
Among the transcription factors regulating PGC1-a levels, CREB is responsible for
integrating multiple signaling pathways in different cell types to boost mitochondrial
function. For example, CREB-dependent induction of PGC1-a occurs in fasted liver
[72], in exercised skeletal muscle [73], as well as in brown adipose tissue during cold
[55]. Moreover, in a positive autoregulatory loop, PGC-1a regulates its own expres-
sion when binding to some of its transcription factors targets such as MEF2 [73]
and ERRy [74]. With equal importance of transcriptional levels, posttranslational
modifications of PGC-1a also control mitochondrial biogenesis.

Posttranslational modifications refer to biochemical modifications of a protein
(e.g. phosphorylation, acetylation, methylation) capable of influencing not only its
structure, but also its activity [ 75]. The fine-tuning of PGC-1a activity occurs via post-
translational mechanisms. First, phosphorylation of PGC-1a protein is able to triple
its half-life, which is relatively short (~2.3 h) [76]. Second, posttranslational modifi-
cations interfere with PGC-1a signal transduction by either increasing or inhibiting its
activity. In response to bioenergetics imbalance, PGC-1a displays increased activity
when phosphorylated by AMP-activated protein kinase (AMPK) [77] and deacety-
lated by Sirtuin 1 (SIRT1) [78]. On the contrary, PGC-1a can be phosphorylated by
glycogen synthase kinase 38 (GSK3p) leading to its inhibition and degradation [79].
Third, most of the signaling pathways conducting these protein modifications have
their gene expression regulated by PGC-1 family; thus, reinforcing the feed forward
loop [80].

Finally, although the molecular mechanisms are not fully elucidated, it has been
demonstrated that posttranslational modifications of PGC-1a result in a preferen-
tial induction of biogenesis in a time-, tissue- and subset of mitochondrial genes-
dependent manner [78, 81]. This can be explained, at least in part, by the discovery
of different splicing variants of PGC-1a: novel truncated PGC-1a (NT-PGC-1a),
PGC-1a-f and PGC-1a4. While NT-PGC-1a [82] and PGC-1a-8 [83] specifically
affect energy metabolism by promoting mitochondrial biogenesis in brown adipose
tissue and skeletal muscle, respectively, PGC-1a4 leads to skeletal muscle hyper-
trophy by regulating a non-mitochondrial gene program [84]. Interestingly, exercise
is able to induce and activate all these variants [84, 85].

3 Mitochondrial Dynamics

The high-resolution electron microscopy images of mitochondria, published by
Palade [5] and Sjostrand [6] in the 1950s, revealed for the first time the unique ultra-
structure of these organelles. Those images also showed a lack of physical connection
between mitochondria; thus, suggesting that the organelle was stationary and working
independently. Two decades later, descriptions of mega-mitochondria formation in
tissues such as liver [86] and skeletal muscle [87] started to question this indepen-
dency. In the 1990s, advances in electron microscopy along with the development
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of mitochondrial-targeted fluorescent proteins allowed the observations that mito-
chondrial can dynamically rearrange their structure over time [88, 89]. Since then, a
complete set of genes driving these morphological changes was discovered (reviewed
in [90]) and mitochondrial dynamics has been consolidated as a new area of study
in mitochondrial biology.

Mitochondrial dynamics refers to a set of processes including the regulation of
mitochondrial morphology and connectivity, as well as their position inside the cells.
The mitochondrial ability to reshape, rebuild and redistribute itself is orchestrated
by the opposite role of fusion and fission processes [90]. Members of a large family
of dynamin guanosine triphosphatases (GTPases) use the hydrolysis of guanosine
triphosphate (GTP) to create conformational changes in the mitochondrial membrane
that will lead to either the union between two organelles or the division of one
mitochondrion in two organelles [91] (Fig. 2).

Despite often viewed as a separate phenomenon, the recycling of mitochondria
through mitophagy—a specific form of autophagy, is influenced by mitochondrial

Daughter mitochondria

OMM fusion

Mitophagy

o

IMM fusion i Drp1 oligomerization/constriction

T P

(2

Fused mitochondria Drp1 activation/recruitment

Fig. 2 Simplified model for mitochondrial fusion and fission. The OMM (outer mitochondrial
membrane) fuses through interaction of homo- or hereto-oligomers Mfn1 (Mitofusin 1) and Mfn2
(Mitofusin 2) of two opposing mitochondria. Following OMM fusion, OPA1 (Optic atrophy 1)
drives IMM (inner mitochondrial membrane) fusion. Please note that, as membrane-bound proteins,
Mitofusins and OPA1 are still present in the new fused membranes, but are now disassembled.
Mitochondrial fragmentation requires activation of cytosolic Drpl (Dynamin-related protein 1) and
recruitment to the organelle via OMM-bound receptors (R). At these sites, the Drpl oligomerizes
in a ring-like structure and constricts the mitochondria into 2 daughters. Of interest, asymmetrical
fission of a damaged or senescent mitochondrion produces 1 dysfunctional organelle that can either
be eliminated by mitophagy or re-enter the mitochondrial network and regenerate by fusing with
other healthy organelles
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fission and therefore directly interferes with the dynamic nature of the organelle.
To a detailed description of mitophagy, readers are referred to excellent reviews on
this topic [92, 93]. Together, mitochondrial fusion-fission machinery, mitochondrial
biogenesis and mitophagy comprise a well-conserved quality control axis capable
of controlling the function of the organelle, and as consequence, interfering with
cellular physiology [94].

3.1 Mitochondrial Fusion

Mitochondrial fusion is an evolutionary conserved process that merges two neigh-
boring mitochondria. By allowing the exchange of mitochondrial proteins, metabo-
lites and mtDNA, mitochondrial fusion maximizes cellular respiration [95]. It is also
required for the maintenance of mtDNA integrity [96]. Moreover, the newly elon-
gated fused organelle prevents erroneous degradation of mitochondria [17]. Consid-
ering that mitochondria have outer and inner membranes, the fusion process requires
bringing together four membranes in separated events. First, mitofusin 1 (Mfnl)
and mitofusin 2 (Mfn2) proteins are responsible for fusing the outer mitochondrial
membrane. Later, optic atrophy factor 1 (OPA1) governs the union of the inner mito-
chondrial membrane [97]. As nuclear-encoded mitochondrial proteins, they need to
be synthesized in the cytosol and imported into mitochondria, therefore reinforcing
the connection between mitochondrial biogenesis and dynamics. Additionally, these
GTPases contain a transmembrane domain that anchors part of them to the lipid
bilayer, whereas their free part can physically interact with other GTPases to promote
the tethering [98].

Mifnl and Mfn2 are the major players in promoting outer membrane shape-
changes. These isoforms display high homology (~80%) and initiate the fusion
of the outer mitochondrial membrane by the formation of homo- (Mfn1-Mfnl or
Mfn2-Mfn2) or hetero-oligomers (Mfnl1-Mfn2) between adjacent organelles [99].
Despite widely expressed and essential for embryonic development [100], Mfnl1 is
more abundant in heart and liver, while Mfn2 predominates in skeletal muscle, brain
and adipose tissue [101]. Interestingly, each mitofusin not only differently affects
mitochondrial morphology, but also plays distinct roles in cellular physiology. The
absence of Mfn1 leads to highly fragmented mitochondria when compared to Mfn2
downregulation [100]. Moreover, Mfn2 also participates in calcium regulation by
tethering the mitochondria to the endoplasmic reticulum [102, 103].

In order to complete the fusion process, OPA1 drives the unification of the two
inner mitochondrial membranes. This intermembrane space-localized GTPase not
only suffers alternative splicing—a mechanism by which different messenger RNA
are generated from the same gene, but its activity is also regulated by proteolytic
processing [104]. Because of that, there are at least eight variants of OPAIl in
humans containing one or two proteolytic sites [105]. The mitochondrial proteases
OMA1 and YMEIL1 are responsible for generating long and short OPA1 isoforms,
in a membrane potential dependent manner [106, 107]. Despite the fact that both
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isoforms are required for full fusion events, an excessive processing of short OPA1
limits fusion; therefore, triggering mitochondrial fragmentation [108—110]. Finally,
regardless governing the delicate balance between fusion and fission, OPA1 variants
are able to control apoptosis by regulating the cristae morphology and consequent
release of cytochrome c—a component of ETC that triggers programed cell death
[109, 111].

3.2 Mitochondrial Fission

Mitochondrial fission process is responsible for the asymmetrical segregation of
portions of the organelle. Whereas this new spherical and smaller organelle facilitates
motility throughout the cell, it is also involved in mtDNA replication and inheritance
during cellular proliferation [112]. Fragmentation of the mitochondrial network also
permits the selective removal of damaged organelles by mitophagy [18]. Unlike
mitochondrial fusion, the division of the outer and inner membranes of the organelle
is catalyzed by a single GTPase effector—dynamin-related protein 1 (Drpl) [113].
Unlike mitochondrial fusion-related proteins, Drpl is a nuclear-encoded protein that
resides in the cytosol as a small oligomer, thereby demanding recruitment to the
mitochondrial surface. The assembly of several Drpl oligomers forms a ring-like
structure around the outer mitochondrial membrane and cut mitochondria into two
separate entities in a GTP hydrolysis-dependent manner [114].

A multi-step process is required before completing mitochondrial membrane
remodeling. First, Drp1 needs to be activated in order to translocate from the cytosol
to mitochondria. Among the posttranslational modifications regulating Drp1 activity,
phosphorylation has been extensively studied and serves as an efficient way to
synchronize intracellular signaling pathways and mitochondrial metabolism. For
example, protein kinase A (PKA) phosphorylation of Drpl at serine-637 blocks
fission and protects mitochondrial from degradation during starvation [115]. Dephos-
phorylation of the same residue by the phosphatase calcineurin triggers fission in a
calcium-induced mitochondrial dysfunction environment [116, 117]. Ubiquitination
of Drp1 by E3 ligases can either induce mitochondrial fragmentation or inhibit fission
by promoting Drpl degradation [118, 119]. Additional posttranslational modifica-
tions of Drpl (e.g. SUMOylation and S-nitrosylation) also dictate mitochondrial
dynamics. These regulatory mechanisms are reviewed elsewhere [120, 121].

Once activated, the second step involves the recruitment of Drp1 to specific regions
of the outer mitochondrial membrane. Four specific adaptor proteins, also termed
Drpl receptors, facilitate this anchoring process: mitochondrial fission 1 protein
(Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of
49 and 51 kDa (MiD49 and MiD51, respectively) [113, 122, 123]. This receptor-
mediated recruitment of Drpl assists mitochondrial fragmentation by allowing the
self-assemble of Drpl into oligomeric complexes at specific sites of the outer
membrane pre-constricted by the endoplasmic reticulum [ 124, 125]. Similar to Drp1,
these receptors can be activated by posttranslational modifications. In particular, MFF
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can be phosphorylated by AMPK in response to nutrient excess, favoring mitochon-
drial fission [126, 127]. Finally, recent evidence place another GTPase—dynamin
2 (Dyn2), as a mechanoenzyme involved in terminating membrane scission. It has
been proposed that Drp1-mediated constriction allows Dyn2 assembly to complete
the fission event [128].

4 Mitochondrial Dynamics in Health and Disease

Given the fact that mitochondrial biogenesis and dynamics interfere with a variety
of intracellular processes including ATP production, ROS release and apoptosis, it
is not surprising that they are critical in the context of both physiological and patho-
logical events [129]. Disruption of mitochondrial homeostasis follows the clinical
progression of a variety of chronic degenerative diseases (e.g. Heart Failure and
Diabetes) [130]. Moreover, mitochondrial dysfunction is a common feature of rare
inherited mitochondrial diseases, which are driven by mutations in either nuclear or
mitochondrial DNA (e.g. Leigh syndrome and Friedreich’s ataxia) [131]. Either way,
the inability of maintaining a healthy mitochondrial population has been placed as a
central determinant of several diseases. Here, we discuss mitochondrial biogenesis
and dynamics in the context of cardiac, metabolic and neurodegenerative diseases,
as well as in mitochondrial diseases.

Since heart contractility requires elevated and sustained levels of ATP, an overall
failure of mitochondrial function has been placed as a hallmark of cardiac diseases
[132, 133]. Disrupted mitochondrial morphology—characterized by increase number
of smaller organelles [134], has been detected in cardiac patients suggesting imbal-
ance between fusion and fission as critical factor for heart pathophysiology. Indeed,
while absence of Mfnl or Mfn2 [135-137], or excessive OPA1 cleavage [138] are
sufficient to disrupt mitochondrial fusion leading to cardiomyopathy in mice, inac-
tivation of Drp1 blunts excessive fission of the organelle, thus counteracting cardiac
dysfunction [139]. Likewise, small molecules capable of blocking fission (i.e. Mdivi-
1 and P110) [139, 140] or improving fusion (SAMPBA) [141], as well as exercise
[142], reestablish mitochondrial dynamics and improve clinical outcome in preclin-
ical models of cardiac diseases. Of interest, failing hearts display loss of mtDNA
along with reduced expression of mitochondrial biogenesis markers [143]. More-
over, cardiac specific ablation of PGC-1a leads to cardiac dysfunction in mice [144].
Because of that, activators of AMPK (i.e. Metformin, AICAR) capable of stimu-
lating mitochondrial biogenesis [145], are emerging as promising therapies to treat
cardiovascular diseases [146].

Metabolic disorders including type 2 Diabetes and obesity not only arises from a
complex combination of genetic and environmental factors such as insulin resistance,
dyslipidemia, erroneous food intake and physical inactivity [147], but also display
mitochondrial dysfunction as a common feature [148]. Part of this phenotype is due
to impaired mitochondrial biogenesis and dynamics in a wide spectrum of tissues.
Reduced expression of PGC-1 members along with defective translation of genes
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encoding subunits of respiratory chain have been observed in skeletal muscle from
diabetic patients [149] and adipose tissue from obese subjects [150]. Strengthening
these results, mice lacking PGC-1a in adipose tissue develop insulin resistance and
abnormal thermogenic response [151]. Moreover, mitochondrial biogenesis have
been linked to the beneficial effects of agonists of AMPK [152, 153] and PPAR
[154, 155]—widely used drugs for the treatment of type 2 Diabetes. The excessive
nutrient environment observed in metabolic disorders also promotes disruption of
mitochondrial dynamics. Consistent with reduction of Mfn2 levels [156, 157], mito-
chondrial fragmentation associated with insulin sensitivity and altered metabolism
has been observed in obesity and type 2 Diabetes [15, 158].

Along with progressive loss of neuronal systems, disruption of mitochondrial
homeostasis plays a role in the pathogenesis of neurodegenerative disorders such as
Parkinson’s, Alzheimer’s and Huntington’s diseases [159, 160]. Analysis of human
brains from Alzheimer’s patients revealed not only structurally abnormal mitochon-
dria [161, 162], but also indicated a strong link between Drpl-mediated mitochon-
drial fission and neurodegeneration [163]. Indeed, blocking mitochondrial fragmen-
tation exhibits beneficial effects in preclinical models of Huntington’s [164] and
Parkinson’s [165] disease, and Amyotrophic lateral sclerosis [166]. On the contrary,
loss-of-function Drpl mutations leading to giant and aberrant mitochondria are
often associated with lethal neurological disorders including microcephaly [167]
and refractory epilepsy [168]; therefore, reinforcing the role of an exquisite balance
of mitochondrial fusion and fission events in cellular physiology. In the context of
mitochondrial biogenesis, deficiencies in the ETC are related to mtDNA mutations
in Alzheimer’s patients, which suppress mitochondrial transcription and replication
[169]. Similarly, studies in animals have shown that whereas impaired mitochondrial
biogenesis leads to loss of neurons [170], PGC-1a upregulation protects neural cells
against oxidative stress-induced death [171].

Mostly driven by loss-of-function mutations in mtDNA or nuclear DNA, mito-
chondrial diseases refer to a heterogeneous group of disorders triggered by mito-
chondrial dysfunction [172]. Regardless the disease etiology, there is an overall
decrease in content and function of respiratory chain subunits [173—175]. In this
context, PGC-1a overexpression can boost ATP production by increasing the amount
of the organelle in Leigh syndrome [174]. Inducers of mitochondrial biogenesis
(i.e. AICAR) also delay the progression of mitochondrial myopathies in mice [174,
176]. Despite the fact that most of these disorders arise from defects in OXPHOS
components, progressive neuronal degeneration along with aberrant mitochondrial
morphology are observed in preclinical models of Leigh syndrome [175]. Progressive
loss of vision observed in autosomal dominant optic atrophy disease is associated
with OPA1 mutations [177]. Moreover, impaired mitochondrial fusion or fission by
mutations in Mfn2 [178] and Dyn2 genes [179] cause the inherited Charcot Marie
Tooth disease. Of interest, due to its involvement in mtDNA replication [112, 180],
disruption of mitochondrial dynamics may increase the susceptibility to these inborn
errors. Finally, highlighting the dynamic nature of mitochondria, gene therapy is the
latest and attractive strategy to restore mitochondrial function and counteract clinical
progression of primary mitochondrial diseases [181-184].
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5 Concluding Remarks

The dynamic behavior of mitochondria morphology, controlled by mitochondrial
biogenesis and fission-fusion machineries, are determinant for the whole-body home-
ostasis. Fluctuations in mitochondrial quantity, size and cellular position occur in
response to numerous stress and metabolic conditions, which will lead to divergent
outcomes. If transient, perturbations of mitochondrial mass and morphology enable
metabolic adaptations to meet energetic requirements. On the contrary, sustained
stress-induced mitochondrial dysfunction often triggers mitochondrial fragmenta-
tion and induces cell death. Moreover, due to the dynamic nature of mitochondria,
studying the physiological and pathological significance of mitochondrial network
in a time-, tissue- and stress-dependent manner is a challenging task. The develop-
ment of advanced techniques capable of tracking fusion and fission events in vivo,
as well as the identification of new players controlling biogenesis and dynamics will
be crucial not only to overcome these obstacles, but also to open up new avenues for
pharmacological interventions.
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