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Introduction

Interactions between organisms have been historically recognized as one of the
main drivers of the distribution and abundance of species (Paine 1966; Rohde 1984).
Organisms interact with others either negatively (one participant is benefited at the
expense of a negative impact on the other, e.g., predation and competition) or posi-
tively (one species benefits from the presence of another species without harm to the
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latter, e.g., mutualism and facilitation; Halpern et al. 2008; Silliman and He 2018).
For a long time, negative interactions were considered the most relevant in deter-
mining the structure of biological communities, while positive interactions were
underemphasized as their impact on communities was thought to be negligible or
even null (Paine 1966; Menge and Sutherland 1987). In recent years, the ecological
role of positive interactions has been re-evaluated and considered to be as important
as negative ones in structuring communities (Silliman et al. 2011). Indeed, under
increasingly stressful environmental conditions, competitive interactions can shift
to facilitative ones (Bertness and Callaway 1994; He et al. 2013). This becomes
particularly important under the current global change (GC) scenario, as the persis-
tence of populations could depend on the amelioration of harsh conditions provided
by other species (Bulleri et al. 2018).

Species are climate-dependent, and they have developed adaptations as a
response to natural variations in the Earth’s climate system, which include events of
change from short (e.g., seasonal cycles) to mid and long timescales (e.g., ENSO
episodes, glacial to interglacial transitions; Alheit and Bakun 2010; Overland et al.
2010). Since the 1900s the planet is undergoing one of the largest changes in cli-
mate ever experienced (see Helbling et al., this volume), with two particularities: (1)
the changes are occurring at extremely accelerated rates, and (2) we, human beings,
are in part responsible for it (IPCC 2019). Scientists warned that the likely rate of
change over the next century will be at least ten times quicker than any climate shift
in the past 65 million years (Ripple et al. 2020). The increase in anthropogenic car-
bon dioxide (CO,), methane (CH,), and halocarbon emissions into the atmosphere
is the main driver of these changes, being one of their primary direct consequences
of warming and acidification of the aquatic systems (IPCC 2019). Since the late
1900s the Earth’s average surface temperature has risen ca. 2 °C, and much of this
heat has been absorbed by the ocean. Simultaneously, the pH of ocean surface lay-
ers has decreased by approximately 0.02 pH units per decade since preindustrial
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times (Bindoff et al. 2019). As a consequence of warming, the planet has been
exposed to other changes, including sea level rise, increased ocean stratification,
ocean deoxygenation, decreased sea-ice extent, and altered patterns of precipitation
and winds, among others (IPCC 2019). Additionally, marine ecosystems have also
been impacted by local and regional pressures, such as increased anthropogenic
nutrient input to coastal waters, coastal land use change, extreme climatological
events, invasive species, and overexploitation of fish and shellfish species (Halpern
et al. 2008; Bennett et al. 2021; Vizzo et al. 2021).

Many studies have provided evidence about the impact of different GC drivers on
the physiology, behavior, and ecological traits of single species, which often lead to
changes in population structure, distributional range, and seasonal abundance
(Rabalais et al. 2009; Hader et al. 2014). These studies are invaluable to understand
the mechanisms behind the response of different species to GC, in order to make
predictions on the functioning of ecosystems under current and future scenarios.
More recently, the impact of GC on species interactions started to be considered
(Walther 2010; Cahill et al. 2013; Bates et al. 2017). Evidence showed that GC
influences virtually every single species interaction in both bottom-up and top-down
directions (Doney et al. 2012). Even if species composition is not altered by GC, it
has been observed that the strength or direction of interspecific interactions might
change (Harley et al. 2006). Since biological interactions intervene and, in many
cases, modulate ecosystem functions (e.g., nutrient cycling, primary and secondary
productivity) and services to humankind (e.g., food, nutrient cycling, carbon seques-
tration and storage; MEA 2005), studies incorporating more complex scenarios,
albeit challenging, are extremely necessary.

Coastal areas provide many goods and services such as habitat for many species
(Barbier et al. 2011), wave energy dissipation (Gedan et al. 2011) and protection
against erosion and storm damage (Shepard et al. 2011; Moller et al. 2014), cycling
of land-derived nutrients (McGlathery et al. 2007), and sequestration and storage of
atmospheric CO, (Duarte et al. 2013; Duarte 2017). In particular, coastal intertidal
areas are exposed to strong gradients in physical and chemical factors, such as des-
iccation, nutrient availability, and tidal exposure (Bertness and Callaway 1994;
Helmuth et al. 2006). In these stressful environments many organisms live close to
their fundamental niche edges (sensu Hutchins 1947; Wethey and Woodin 2008),
and thus, any change in environmental conditions (e.g., climate) may directly affect
their performance by increasing their levels of physiological stress. Such effects can
also be indirect, throughout, for instance, changes in predation rates, competition,
and facilitation (Gilman 2017; Lord et al. 2017; Yakovis and Artemieva 2017).

Studies aiming to evaluate the impact of GC on species interactions in Patagonian
coastal areas are scarce. The reader will have noticed from previous chapters that
even in many cases, little is known about GC effects on single species/groups.
Throughout this chapter, we aim to show examples of how different GC drivers
affect biological interactions of species inhabiting different coastal ecosystems (i.e.,
salt marshes, macroalgal beds, open coastal waters) of Atlantic Patagonia. In some
of these ecosystems, the impact of GC drivers on organisms from different trophic
levels has been well explored, thus providing a good basis to make more robust
predictions about potential effects on biological interactions.
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Increased Nutrient Inputs in Vegetated Coastal Areas
of Patagonia

Anthropogenic activities influence the relative strength of bottom-up (i.e., nutrients)
and top-down (i.e., grazers, predators) forces on coastal communities by altering
both land-derived nutrient inputs and consumer populations (see Eriksson et al.
2009). As a direct consequence of the growing human population and increased
settlement and use of coastal areas (Nixon 1995; Valiela 2006), nutrient inputs to
coastal waters have increased worldwide leading to eutrophication (e.g., Valiela
et al. 1997), one of the main drivers of change in coastal ecosystems around the
globe (Malone and Newton 2020).

Salt marshes are one of the most representative vegetated environments along
Patagonian coasts. The loss of salt marshes is almost entirely related to degradation
as a result of anthropogenic activities (Pratolongo et al. 2013), in particular land fill,
fire practice associated with cattle raising, and eutrophication. There are several
studies showing that increased nutrients enhance plant growth and biomass produc-
tion in Argentinean salt marshes (e.g., Alberti et al. 2010, 2011), and most of them
also show that the burrowing crab Neohelice granulata could partially counteract
these bottom-up effects by exerting a strong top-down pressure through herbivory.
In this regard, manipulative experiments showed that nutrient enrichment increases
biomass of Sporobolus spp. by nearly 50% (Daleo et al. 2008). However, top-down
pressure exerted by N. granulata decreases plant biomass by around 20% and 40%
in Sporobolus densiflorus and Sporobolus alterniflorus, respectively (Alberti et al.
2007). Although some of these studies were conducted in salt marshes outside
Patagonia, their authors proposed that similar processes might be operating in
Patagonian salt marshes north of 42° 25’S where this crab species occurs in high
densities (Alberti et al. 2007).

Increased nutrient availability (mainly N) may lead to more palatable plants
which, in turn, may lead to a higher herbivory pressure (Cebrian et al. 2009). In
Patagonian salt marshes, the evidence suggests that the relative importance of nutri-
ents and herbivory might vary given that growth as well as herbivory vary through-
out the year. For example, Alberti et al. (2011) showed that increased nutrients also
increase the consumption of S. densiflorus leaves by N. granulata in summer and
even to a greater extent in fall. Moreover, the impact of nutrients is not uniform
through the salt marsh. The maximum effect of increased nutrients on primary pro-
duction occurs at mid marsh elevations, while no effects of nutrient additions were
observed at low or high marsh elevations, where other factors such as anoxia and
high salinities seem to be more limiting for salt marsh plants (Alberti et al. 2010).

Nitrogen enrichment strongly enhances the infection by the fungus Claviceps
purpurea on S. densiflorus (Daleo et al. 2013), which reduces seed production and
releases alkaloids that decrease herbivory, as shown in other regions (Fisher et al.
2005; Lev-Yadun and Halpern 2007). Thus, fungus effects on plant community
structure, as well as on consumers, could have considerable impacts in Patagonian
salt marshes. Additionally, increased salinity decreased plant responses to nutrient
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addition, probably as a consequence of sodium ion interference with ammonium
uptake (Daleo et al. 2015). This antagonistic effect is of special importance, as
increases in soil salinity are expected to occur as a result of warming (Lynch and St.
Clair 2004) and especially in salt marshes (Silliman et al. 2005).

The relative impact of increased nutrients and crabs on plant growth is partly
regulated by the physical features of the salt marshes where interactions take place
(Daleo and Iribarne 2009). Increases in sediment aeration and nutrient availability
due to crab burrowing activities would be more important in poorly oxygenated
soils. On the other hand, crab herbivory impact would be more important in areas
with coarse sediments and therefore good substratum oxygenation (Daleo and
Iribarne 2009). The latest would be the case of northern Patagonian salt marshes
inhabited by N. granulata.

Another well-represented vegetated system along Patagonian coasts are mac-
roalgal beds (for a detailed description of these environments, see Horta et al., this
volume). As a general pattern, one of the first symptoms of increased nutrient inputs
to coastal waters is the change in the composition of the macroalgal assemblage,
where opportunistic species take advantage over others. When eutrophication is
incipient, the increase in macroalgal biomass can have a positive effect by seques-
tering excess nutrients (Boyer et al. 2002) and by providing abundant food of high
nutritional quality for consumers (Hemmi and Jormalainen 2002). However, as the
eutrophication process continues, the excessive growth of opportunistic macroalgae
can have several detrimental effects. For instance, the massive canopy may grow
over the previously dominant species (perennial algae) impeding their photosynthe-
sis (Smith and Schindler 2009). Advanced states of eutrophication are usually char-
acterized by hypoxic or anoxic events, with the consequent decline of associated
organisms including macroalgal grazers (D’Avanzo and Kremer 1994; Fox et al.
2009) and the simplification of the original community structure (Valiela et al.
1997; Fig. 1A, B). Under this scenario of high nutrient supply and reduction of
consumer abundance, the systems become bottom-up controlled while top-down
control may be negligible (Raffaelli et al. 1998). However, in systems where the
hydrodynamic forces are strong, the large tidal flush can partially relieve the effect
of eutrophication by diluting and exporting land-derived nutrient loads, as well as
biological products, minimizing hypoxia-related stress on the biota (Martinetto
etal. 2010, 2011). This is the case of San Antonio bay (SAb; 40° 43" 37" S, 64° 56
57” W) where the anthropogenic nutrient concentrations, mainly introduced via
groundwater from the septic system of the nearby city of San Antonio Oeste, are
among the highest registered worldwide (NO;~ 100 uM, PO/~ 7 uM; Teichberg
etal. 2010). At that site, the nutrients remain in the system long enough to be assim-
ilated by macroalgae and support high biomass and diversity of primary producers,
but not enough to cause hypoxic or anoxic events (Martinetto et al. 2010, 2011;
Fig. 1C).

High biomass of nutrient-rich macroalgae can provide a large amount of food of
high nutritional quality to grazers, which would explain the higher abundance of
herbivore invertebrates reported in nutrient-impacted areas of SAb (Martinetto et al.
2011; Becherucci et al. 2019). The higher invertebrate abundances would in turn
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Fig. 1 Responses of the macroalgal community to potential scenarios derived of increases in
anthropogenic nutrient input under different hydrodynamic conditions: (A) pristine community
without nutrient addition; (B) anthropogenic nutrient increase under low hydrodynamic condi-
tions, leading to the eutrophication of the system characterized by the overgrowth of opportunistic
green macroalgae, anoxic conditions, and a decline of consumer diversity and abundances; and (C)
anthropogenic nutrient increase under high hydrodynamic conditions as experiencing in Patagonian
coasts (e.g., San Antonio bay), where the large tidal flush attenuates the impact of excessive nutri-
ent load, resulting in an increase of both macroalgal and consumer abundances

explain the preference of local and migratory shorebird species for these areas as
feeding sites (e.g., oystercatchers and several migratory shorebirds and gulls; Garcia
et al. 2010; Martinetto et al. 2010). In fact, some shorebird species changed their
foraging strategy from visual-tactile in non-impacted areas to tactile in nutrient-
impacted areas, probably prioritizing higher encounter rates with prey of higher
nutritional quality that occurs hidden within the macroalgal mats (Garcia et al. 2010).
In nutrient-impacted areas of SAb, herbivores exert a strong pressure on Ulva
lactuca reducing their biomass by up to 60% (Martinetto et al. 2011). Surprisingly,
this macroalga species does not substantially contribute to the intertidal benthic
food web (Becherucci et al. 2019). In a manipulative experiment, it was found that
increased N supply leads to increased macroalgal biomass only when herbivores
were present, which could be related to the additional input of N (mainly NH4*) due
to excretion (Bracken and Nielsen 2004). Thus, both top-down and bottom-up
forces seem to act conjointly in the regulation of macroalgal proliferation in SAb.
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Changes in trophic interactions have been reported as a result of higher nutrient
inputs in Patagonian intertidal areas. For instance, males of the amphipod Ampithoe
valida from the Chubut river estuary (i.e., an area exposed to high anthropogenic
nutrient inputs) showed higher food consumption rates (FCR) when feeding on
macroalgal diets with high nutrient content. By contrast, individuals from intertidal
areas less impacted by anthropogenic nutrient inputs showed the opposite behavior:
higher FCR when feeding on macroalgae with low nutrient content (Valifias et al.
2014). Thus, at least in less impacted areas, individuals would be consuming more
macroalgae as a way to compensate for the lower quality of the food (Cruz-Rivera
and Hay 2000; Duarte et al. 2014). Compensatory feeding mechanisms were also
reported in SAb, where it was observed that mesoherbivores increased food con-
sumption rates when the N and C contents of the macroalgae were lower (Martinetto
et al. 2011).

Biological Invasions in Vegetated Coastal Areas of Patagonia

In the last decades, the rate of non-native species introduction has increased world-
wide, mostly due to increased global trade and transport, leading to widespread
changes in the structure and functioning of ecosystems (Seebens et al. 2013; Antén
et al. 2019). Many invasive species can benefit some native species (Geraldi et al.
2013; Ramus et al. 2017), although some others can cause extensive negative
impacts on native communities (e.g., altering ecosystem functioning, Doherty et al.
2016, or introducing diseases and parasites, Chinchio et al. 2020), and even many of
them are responsible for species extinctions (Bellard et al. 2016). In some cases,
negative impacts of invaders involve a decrease in the abundances of native species
but not on diversity (Antén et al. 2019). This is probably associated with buffering
mechanisms conferring ecosystem resistance against exotic species, such as func-
tional redundancy between exotic and native species (Garcia et al. 2014).
Anthropogenic disturbance can boost the effects of invasive species on native com-
munities by creating favorable habitats, removing potential predators and competi-
tors, and introducing propagules, thus increasing their chances of establishment in
anovel area (Byers 2002; Bertness and Coverdale 2013; Geraldi et al. 2013).

Although there is a large list of species reported as introduced in Patagonian
coasts (see chapters by Horta et al., and Lopez Gappa, this volume, Orensanz et al.
2002; Schwindt et al. 2020), only a few are widespread along that range and altered
the physiognomy of coastal habitats (Casas et al. 2004; Escapa et al. 2004). This is
the case of the barnacle Balanus glandula, the reef-forming oyster Magallana gigas
(formerly Crassostrea gigas), the green crab Carcinus maenas, and the kelp Undaria
pinnatifida. The first three have been reported in salt marshes and macroalgal beds
of Patagonia, while the invasion of U. pinnatifida is mostly restricted to rocky low
intertidal and subtidal environments.
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The Cases of Balanus glandula and Magallana gigas

The barnacle Balanus glandula shows a great plasticity as it was found colonizing
the branches, roots, and rhizomes of the cordgrass Sporobolus alterniflorus
(Schwindt et al. 2009; Méndez et al. 2013) in Patagonian salt marshes and also foul-
ing Magallana gigas and the endemic crab Neohelice granulata (Méndez et al.
2014, 2017). It was proposed that both M. gigas and Sporobolus spp. would facili-
tate the establishment of B. glandula (Sueiro et al. 2013; Méndez et al. 2015) by
increasing habitat structure and complexity and also by enhancing sediment stabil-
ity (Escapa et al. 2004; Méndez et al. 2015; Fig. 2). In the case of the barnacle-
oyster interactions, and based on studies performed with species of similar
characteristics in other regions (e.g., Thieltges 2005; Ramsby et al. 2012; Yakovis
and Artemieva 2017), barnacle epibiosis could benefit oysters by slowing down des-
iccation during the low tide and/or by providing camouflage from predators. In
addition, since attachment surfaces are a limiting factor in soft-bottom intertidal
areas, recruitment on living substrata such as Sporobolus spp., M. gigas, or N. gran-
ulata may be beneficial (Foster 1987; Escapa et al. 2004; Méndez et al. 2015). Crabs
may also constitute motile vectors speeding the regional invasion of B. glandula by
contributing the dispersion of their larvae (Méndez et al. 2014; Fig. 2).

The invasion of both B. glandula and M. gigas in Patagonian salt marshes favors
populations of several taxa of invertebrates such as insects, juvenile crabs, isopods,
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Fig. 2 Schematic representation of documented (solid arrows) and suggested (dashed arrows)
interactions mediated by the invasive species Carcinus maenas, Magallana gigas, and Balanus
glandula in Patagonian coasts. Trophic interactions are indicated with “t.” Both the oyster M. gigas
and the barnacle B. glandula increase habitat complexity benefiting other species by providing
refuge. Negative effects of B. glandula include limiting mobility and growth of species the barna-
cles settled-on. The green crab C. maenas, which has recently been found to drastically expand in
salt marshes of Patagonia, is considered a major threat to these ecosystems by potentially exerting
a strong top-down pressure, interfering facilitative mechanisms, and transferring parasites to other
organisms
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and polychaetes (Escapa et al. 2004; Méndez et al. 2015, 2017), probably by offer-
ing protection against predators and alleviating harsh environmental conditions
such as heat stress, dehydration, and wave exposure. The physical structure formed
by aggregations of B. glandula is also important for its own recruitment (Méndez
et al. 2017), as barnacle tests serve as substrata for the settlement of conspecific
larvae (Qian and Liu 1990; Schubart et al. 1995; Fig. 2). In the case of M. gigas,
several local and migratory bird species showed higher abundances and feeding
rates in oyster-invaded areas, which would be related to the higher abundance of
invertebrate prey (Escapa et al. 2004; Fig. 2).

Negative effects have also been reported as a result of B. glandula and M. gigas
invasion. It was proposed that barnacles would increase the risk of dislodgement,
reduce growth, or affect feeding activities of oysters as have been shown for other
species (da Gama et al. 2008). Moreover, negative effects of the epibiosis of B. glan-
dula on N. granulata were also suggested (Fig. 2) as barnacles settle on vital zones
of the crabs (e.g., walking appendages, ocular peduncles, jaws, and mouth; Méndez
et al. 2014) and potentially interfere with their behavior (e.g., walking, feeding,
mating). In addition, the elevated contrast of colors derived from the presence of
white barnacles growing over brown crabs might also increase their predation risk
(Méndez et al. 2014). These potential impacts of B. glandula on N. granulata
deserve further investigation as this crab species exerts a strong top-down control on
salt marsh plants and modulates major ecosystem functions (e.g., Costa et al. 2003;
Alberti et al. 2007, 2015; Martinetto et al. 2016; Gutiérrez et al. 2018).

The Case of Carcinus maenas

In the chapter by Lépez Gappa (this volume), a detailed description of the biology
of the green crab Carcinus maenas, along with information about its occurrence in
Patagonian coasts, was provided. Regarding biological interactions, this species
deserves particular attention as it is listed among the ones that cause an overall
decrease in all the ecological attributes (e.g., abundance, richness, diversity) of
native communities (Antén et al. 2019). Laboratory feeding trials and diet analysis
showed that C. maenas preferentially feeds on slow-moving and sessile animals,
including mussels that act as foundation species (i.e., species that determines the
diversity of associated taxa through non-trophic interactions and plays central roles
sustaining ecosystem services; Ellison et al. 2005; Ellison 2019) in the intertidal
zone (Hidalgo et al. 2007; Cordone et al. 2020; Fig. 2). Based on these results, the
authors proposed that C. maenas could interfere in facilitation mechanisms medi-
ated by mussels such as the provision of refuge from predation and the amelioration
of environmental stress for a large number of invertebrate species (Silliman et al.
2011; Bagur et al. 2016), as it has been observed in other regions invaded by this
species. Also C. maenas could negatively affect other crab species through the
transmission of the nemertean parasite Carcinonemertes sp. that was detected for
the first time in Argentina in this species (Cordone et al. 2020; Fig. 2). Moreover,
this crab has been reported as a novel prey item of the kelp gull Larus dominicanus
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(Yorio et al. 2020), highlighting a new trophic interaction in Patagonian coasts
(Fig. 2). In a recent publication, the authors refer to an “alarming” increase of
C. maenas population in rocky salt marshes of Nuevo gulf (Battini and Bortolus
2020), although no numerical data were provided to support this statement.

The Case of Undaria pinnatifida

Local studies showed that Undaria pinnatifida can outcompete some native mac-
roalgal species (Casas et al. 2004; Raffo et al. 2012; but see Raffo et al. 2009) and
proposed light, nutrient, and substratum limitations over native species as potential
explanations (Raffo et al. 2015). For instance, manipulative experiments showed
that U. pinnatifida fronds reduced the photosynthetic active radiation (PAR) levels
up to 75% which could potentially affect the growth of native ephemeral macroal-
gae (Raffo et al. 2015; Fig. 3). Also, in low intertidal and shallow subtidal areas, the
holdfast of U. pinnatifida covers a substantial fraction of the bottom, which could
reduce the surface available for other species. On the other hand, the lack of a strong
top-down pressure would partially contribute to its settlement in Patagonian coasts.
Although some gastropods and sea urchin species are able to feed on U. pinnatifida,
the grazing impact of these species is unlikely to control the macroalga (Teso et al.
2009; Fig. 3). Sewage and domestic water effluents in urban areas may also have
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Fig. 3 Schematic representation of documented (solid arrows) and suggested (dashed arrows)
interactions mediated by the invasive macroalga Undaria pinnatifida in Patagonian coasts. Trophic
interactions are indicated with “t.” The invasive success of U. pinnatifida in Patagonia is probably
caused by competitive exclusion, the lack of a strong top-down control, and the facilitation by
other organisms such as the ascidian Styela clava. Besides some positive effects on macroinverte-
brate species, there is growing concern by some authors about the proliferation of U. pinnatifida
along the Patagonian coast due to its negative impact on local biodiversity
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contributed to U. pinnatifida settlement as this macroalga can incorporate nitrate,
ammonium, and phosphate from the sewage (Torres et al. 2004).

The complex three-dimensional structure generated by the large U. pinnatifida
fronds (up to 2 m in length) increases species richness, diversity, and abundance of
some benthic taxa (e.g., crustaceans, sea urchins, nemerteans, and polychaetes;
Irigoyen et al. 201 1a) relative to uninvaded areas (Fig. 3). In intertidal areas of SAb,
> 80% of U. pinnatifida is attached to the invasive ascidian Styela clava, and manip-
ulative experiments proved that the recruitment of the macroalga is higher when the
ascidians are present (Pereyra et al. 2017). The authors proposed that S. clava would
facilitate U. pinnatifida settlement via moisture retention and protection from graz-
ers, as was reported in other regions (Thompson and Schiel 2012; Yakovis and
Artemieva 2017). Moreover, the erect structure of S. clava might improve flow
dynamics (Harder 2008), increase spore settlement (Bulleri and Benedetti-Cecchi
2008), and facilitate access to light (e.g., Maida et al. 1994) to the kelp. In a recent
study (Pereyra et al. 2021), it was found that recruitment of U. pinnatifida is higher
on live S. clava individuals than on mimics of the ascidians, evidencing that a bio-
logic non-trophic effect would be playing a major role in the facilitation process
between the kelp and the ascidian than the structure of the ascidians alone. Authors
suggested that the siphonal activity of S. clava could provide a more oxygenated
environment for kelp sporophytes or could help capture more spores. Moreover, the
chemical composition of the tunic may favor the emergence of the macroalgae (Paul
et al. 2011). However, when macroalga overgrows, it commonly occludes S. clava
siphons (Pereyra et al. 2017) which could potentially affect water pumping and
filter-feeding activities (e.g., Farrell and Fletcher 2006; Fig. 3). Negative effects on
fish abundances in low-relief rocky reefs covered by U. pinnatifida were also
reported in the region (Irigoyen et al. 2011b; Fig. 3).

Impact of Multiple Global Change Drivers on Open Coastal
Areas of Patagonia

The Case of Planktonic Communities

In the chapter by Villafaiie et al. (this volume), the authors provided a comprehen-
sive description about the impact of different GC drivers (e.g., increased tempera-
ture, acidification, increased nutrient inputs, UVR) on planktonic communities.
Some of these studies covered more than one trophic level (i.e., phytoplankton-
bacterioplankton, bacterioplankton-phytoplankton-microzooplankton) and/or dif-
ferent cell groups (e.g., by cell size, nano- and microplankton; by taxonomic groups,
diatoms, small flagellates, etc.), thus providing some clues about potential effects of
GC drivers on biological interactions. For instance, it was observed that under high
UVR and nutrient inputs, the structure of the community shifted toward a domi-
nance by nanoplanktonic flagellates, which in turn would negatively impact the
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heterotrophic picoplankton by increasing bacterivory (Cabrerizo et al. 2018). In the
same vein, a simulated warming scenario reduced the total biomass of the microbial
community, favoring nanoplankton and bacteria (Moreau et al. 2014). In contrast,
increased primary production under different future GC scenarios, mainly modu-
lated by increases in the abundance of larger diatoms, was also reported (nutrients,
pH, and UVR, Villafafie et al. 2015; nutrients and pH, Masuda et al. 2021). The
responses of phytoplankton communities to GC in terms of favored/negatively
impacted cell sizes or dominant groups differ depending on the initial composition
of the community, their previous light story, and the intrinsic characteristics of the
species. However, in terms of growth rates, most studies show a clear trend of
increases of this variable regardless of the GC driver or the combination of drivers
considered (i.e., UVR, CO,, nutrients, DOM, or temperature; see Villafafie et al.,
this volume).

Global change can also lead to a decoupling of phenological relationships, with
important ramifications for trophic interactions, including altered food-web struc-
tures and eventually ecosystem-level changes (e.g., Edwards and Richardson 2004).
For instance, shifts in the Patagonian wind patterns impact phytoplankton commu-
nities, not only by favoring smaller cells but also by delaying their blooms for a
lapse of about 2 months (Bermejo et al. 2018; Vizzo et al. 2021). Several studies
around the globe document drastic declines in the populations of planktonic preda-
tors due to climate-related perturbations with the concomitant disruption of
predator-prey relationships (e.g., Winder and Schindler 2004). Unfortunately, there
is no information about how grazers can impact phytoplankton communities under
GC scenarios in Patagonia or how they can be indirectly impacted by the effect of
GC on primary producers (but see Spinelli 2013). More studies on this regard are
needed given that the outcome of the phytoplankton-zooplankton interactions is
expected to be transmitted to all trophic levels, with potentially severe ecological
and economic impacts in the region.

The Case of the Squat Lobster Munida gregaria

Long-term data series indicate that some species from Patagonia increased (while
others declined) their abundances during the last decades, and examples linking
these trends with GC drivers were largely discussed along the different chapters of
Galvén et al.; Narvarte et al. this volume. While in some cases the impact on the
populations is the direct result of the GC stressors acting on the species, in others,
the effects are mediated by bottom-up or top-down processes. For instance, top-
down impact caused by commercial fishing may reduce the abundance of predators
for small fish species, thus decreasing the top-down pressure on these latest
(Boersma and Rebstock 2014). In other cases, bottom-up processes triggered by
increased nutrient inputs boost primary production in coastal waters, which may
indirectly impact primary consumers.
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One clear example of increased population abundances in Patagonia is the case
of the squat lobster Munida gregaria (Varisco and Vinuesa 2015; Diez et al. 2016;
de la Barra 2018). This crustacean is found in the southern end of South America
and around the coastline of Australia, New Zealand, and the subantarctic Campbell
islands. The species has two morphotypes, the gregaria type or pelagic-benthic
stage and the subrugosa type or epibenthic stage. Pelagic juveniles of M. gregaria
have been documented in the Atlantic ocean in the 1920s (see Varisco and Vinuesa
2010 and references therein). Nevertheless, the subrugosa was the only morphotype
recorded in the Atlantic coast (not so in the Beagle channel) over the past decades,
until the recent appearance of the pelagic morphotype (i.e., gregaria) at the begin-
ning of the 2000s. Strandings of this crustacean species along the coast, as well as
operational impacts on the shrimp fisheries (de la Garza et al. 2011), are evidence of
a recent population growth which was confirmed by direct and indirect observa-
tions. A significant increase in the relative abundance and frequency of occurrence
of M. gregaria was recorded in 2010 and subsequent years in San Jorge gulf (SJg)
and adjacent waters (Varisco et al. 2015) and in San Matias gulf (SMg; de la Barra
2018). Moreover, acoustic studies evidence that the population expansion of
M. gregaria along the Argentine shelf was promoted by the reappearance of pelagic
swarms (Madirolas et al. 2013). Even in places where the gregaria morphotype was
present (e.g., Beagle channel), an increase in pelagic/benthic ratio was observed
(Diez et al. 2016).

Munida gregaria plays a key role in the trophic webs of Patagonian and subant-
arctic coastal ecosystems for two main reasons: (1) it is an important prey item of
several marine mammals (Koen Alonso et al. 2000; D’ Agostino et al. 2018), fishes
(Sanchez and Prenski 1996; Galvan et al. 2008; Belleggia et al. 2017), and seabirds
(Scioscia et al. 2014), and (2) as the species obtains energy from pelagic and benthic
environments, it thus plays a key role in the coupling of both systems (Funes et al.
2018), aside from being a direct link between primary producers and top predators
(Vinuesa and Varisco 2007).

Although several hypotheses have been proposed to explain the increase in the
abundance of M. gregaria and the reappearance of the pelagic swarms in Patagonian
coastal waters, the evidence to date is inconclusive. A combination of the following
processes has been proposed: (a) a decrease in top-down pressure (Varisco and
Vinuesa 2015; Diez et al. 2016), (b) migrations of gregaria morphotype from Beagle
channel to Patagonian northern waters (Ravalli and Moriondo 2009), (c) a slight
increase in the fecundity of the species (Varisco 2013), and (d) an increase of bot-
tom-up forces. Given the broad spatial scale and dynamics of this expansion, migra-
tory process or local increases in fecundity could hardly explain the observed
population growth (Varisco 2013). Thus, top-down and/or bottom-up effects linked
to GC are more likely behind the M. gregaria expansion.

Skates and four commercial bony fishes (e.g., Genypterus blacodes, Genypterus
brasiliensis, Acanthistius patachonicus, and Salilota australis) were identified as
the main predators of M. gregaria in the SJg (Sdnchez and Prenski 1996). These
species are catalogued as species in retraction either because their frequency of
occurrence or population biomass has decreased from the 1970s to date (see Galvan
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Fig. 4 Main mechanisms proposed to explain the expansion of Munida gregaria in Patagonian
waters: (A) A decrease in top-down pressure on benthic stages of M. gregaria (black squat lobsters)
leads to a population increase and a subsequent appearance of the pelagic ecotype (white squat
lobsters), which potentially explains shifts in trophic interactions as well as increased competition
with other organisms of the pelagic realm. (B) The increased food availability in the pelagic realm
as a consequence of a global-change-induced phytoplankton growth leads to an increase of larval
and postlarval stages (gray larvae) as well as the further expansion of the pelagic ecotype

et al., this volume), as a result of commercial fishing or incidental capture (Fig. 4A).
Thus, a decrease in top-down pressure on M. gregaria has been proposed to explain
the expansion of the squat lobster recently observed (Fig. 4A). However, there is
evidence contrary to such hypothesis. In the 1980s, the most abundant fish of the
assemblage in SJg, the hake Merluccius hubbsi, preyed on M. gregaria in small
quantities (Sanchez and Prenski 1996), but since 2008 the occurrence of squat lob-
sters in hake’s diet increased from < 2% to > 50% (Belleggia et al. 2017), in syn-
chrony with the increase in M. gregaria abundance and the decrease in other predator
abundances. A similar result was reported at the SMg where M. gregaria was not
found in the gut contents of hakes collected between 2006 and 2007 (Ocampo et al.
2011) but became the main prey item in samples collected in 2015 (Alonso
et al. 2019).

The match between the reappearance of the pelagic swarms and the population
expansion of M. gregaria could give a clue about some potential advantages that
this species would have in the pelagic realm. Different studies reported a positive
relationship between large shoals of M. gregaria and frontal areas (Diez et al. 2016),



Global Change Effects on Biological Interactions: Nutrient Inputs, Invasive Species... 305

as also the presence of shoals in areas of the SJg with increased primary productiv-
ity (Varisco and Vinuesa 2010; Ravalli et al. 2013). As mentioned in the previous
section, there is a general trend of increased growth rates of phytoplankton com-
munities under different GC scenarios (see Villafafie et al., this volume). Thus,
bottom-up processes (i.e., increased food availability) could also explain the
increase in the time of residence of M. gregaria in the water column, which would
further determine the relative abundance of the benthic or pelagic individuals
(Varisco 2013; Fig. 4B). However, there are some aspects that we need to take into
consideration: (1) as early life stages are the most vulnerable to both predation and
abiotic stress (Przeslawski et al. 2015), a larger time that larval stages spend in the
plankton before migrating to the bottom could negatively impact the abundance of
the squat lobster, and (2) higher prey abundance does not necessarily imply an
advantage for consumers. For instance, if food is abundant but of low quality, indi-
viduals will not be able to fulfill their metabolic requirements or should invest more
time (and energy) to do it (i.e., food compensation mechanisms; Cruz-Rivera and
Hay 2000). In such cases, organisms would be allocating less energy to other pro-
cesses, such as those related to reproduction, which would ultimately affect the
reproductive potential of the population.

In addition to the trophic shifts previously mentioned, gregaria and subrugosa
morphotypes have different trophic positions but similar body size (Funes et al.
2018). Pelagic individuals feed mainly on phytoplankton and have a trophic level
just over 2 (Varisco and Vinuesa 2010; Funes et al. 2018). Benthic individuals have
a trophic level close to 3 and feed on benthic species like crustaceans, foraminifer-
ans, polychaetes, and macroalgae (Romero et al. 2004; Varisco and Vinuesa 2007)
and even on fishery discards (Varisco and Vinuesa 2007). An increase in the abun-
dance of pelagic individuals and its consumption by demersal fishes would shorten
the food chain length and change the bentho-pelagic dependence of predators.
However, also other interactions such as competition for food with pelagic species
from similar trophic levels could be triggered, as it was already reported for other
squat lobster species. For instance, on the coast of Peru the squat lobster Pleuroncodes
monodon and the Peruvian anchoveta, Engraulis ringens both occur in frontal areas
overlapping their trophic niches and spatial distribution (Gutiérrez et al. 2008). In
southern Patagonia, it was proposed that pelagic individuals would overlap their
trophic niche with the anchovy Sprattus fueguensis (Diez et al. 2012), whereas in
central and northern Patagonia, a similar situation might be occurring in the pelagic
domain with small crustaceans (e.g., euphausiids, pelagic amphipods, and cope-
pods; see table 1 in Botto et al. 2019) and small pelagic fish (Fig. 4B). However, a
partial overlap between M. gregaria and the Argentine anchovy Engraulis anchoita
was recently reported in SMg (Luzenti et al. 2021), and authors suggest that the
interaction between species could result from an active search and predation of
anchovy on squat lobster juveniles.
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Perspectives

The reader may have noticed through the chapters of this book that most studies in
Patagonian marine systems are based on the direct effects of different GC drivers on
individual species or groups (e.g., phytoplankton, intertidal invertebrates), and few
studies analyze the effects on biological interactions. In this chapter, we showed that
facilitation mechanisms (e.g., settlement, dispersal mechanisms) between sessile
invasive species and native fauna are more frequently documented than interference
processes. Negative effects of invasive species include top-down pressure and indi-
rect effects on native species by disrupting facilitation by foundation species (e.g.,
C. maenas predation on mussels). Other interference processes were related to
decreased habitat suitability (e.g., U. pinnatifida and rocky reef fishes) or settlement
on vital parts of the individuals preventing its normal performance (i.e., U. pinnati-
fida overgrowing S. clava, B. glandula growing on crabs).

Also, GC drivers affect trophic interactions through direct and indirect ways.
Direct mechanisms include bottom-up processes such as increased macroalgal bio-
mass as a result of land-derived nutrient inputs in coastal areas and increased phy-
toplankton abundance, a general pattern observed when simulated different future
GC scenarios. Yet, these direct effects on primary producers would indirectly ben-
efit primary and in some cases secondary consumers (e.g., invertebrates and birds in
macroalgal beds and M. gregaria in coastal open waters). In the same vein, top-
down pressures mediated by GC processes affect organisms directly by predation
(e.g., the invasive crab C. maenas, fisheries), but also could have indirect effects
through trophic cascades (e.g., M. gregaria expansion). Overall, significant changes
in the composition and the structure of the communities have been observed in
response to all the surveyed GC drivers.

Compared to research done on GC impacts at the species level, studies including
multiple species and their interactions are still scarce at a global scale. The
Patagonian region in particular is understudied compared to other regions in the
world (e.g., Thomsen et al. 2014; Eger and Baum 2020; Reeves et al. 2020). For
instance, despite the growing body of literature on the impact of invasive ecosystem
engineers in Patagonian coasts reviewed here (see cases of B. glandula, M. gigas,
and U. pinnatifida), the number of studies on this topic still remains very low com-
pared to other world regions (Guy-Haim et al. 2018).

Coastal ecosystems are highly dynamic systems in which all the species are con-
nected through multiple interactions. Therefore, to understand and predict the
effects of GC on marine ecosystems of Patagonia and the services they provide, it is
essential to know the structure and functioning of their communities. The challenge
when predicting the effects of GC lies upon identifying those interactions between
species that are most vulnerable to changing climate and other anthropogenic pres-
sures and that, at the same time, are key determinants of the structure and function-
ing of their community (e.g., foundation species). For these purposes, experimental
approaches in combination with observational field data are strongly recommended
to develop models aimed to predict future ecosystem changes under different GC
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scenarios. However, to obtain more robust models and to evaluate the accuracy of
their outcomes, it is necessary to count with long-term data series. With few excep-
tions (e.g., penguins, imperial cormorant, southern right whale; see chapters by
Crespo and Quintana et al., this volume), no studies of GC based on long-term data
series have been published, and many of the available data series would be not long
enough to disentangle the natural variations in climatic variables that operate at mid
to long-term timescales (e.g., ENSO episodes) from human-induced climatic
effects. Future research therefore should focus on the incorporation of field observa-
tions, manipulative experiments, and modeling, which would be the best ecological
approach to understand how marine ecosystems as a whole are facing GC in
Patagonia.
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