
Entropy and Concentration

Andreas Maurer

1 Introduction

Concentration inequalities bound the probabilities that random quantities deviate
from their average, median, or otherwise typical values. If this deviation is small
with high probability, then a repeated experiment or observation will likely produce
a similar result. In thisway concentration inequalities cangive quantitative guarantees
of reproducibility, a concept at the heart of empirical science [25].

In this chapter we limit ourselves to study quantities whose randomness arises
through the dependence on many independent random variables. Suppose that
(�i , �i ) are measurable spaces for i ∈ {1, ..., n} and that f is real valued function
defined on the product space � = ∏n

i=1 �i ,

f : x = (x1, ..., xn) ∈ � �→ f (x) ∈ R.

Now let X = (X1, ..., Xn) be a vector of independent random variables, where Xi is
distributed as μi in �i . For t > 0 and X′ iid to X we then want to give bounds on the
upwards deviation probability

Pr
X

{
f (X) − E

[
f

(
X′)] > t

}

in terms of the deviation t , the measures μi and properties of the function f . Down-
ward deviation bounds are then obtained by replacing f with − f . Usually we will
just write Pr { f − E f > t} for the deviation probability above.

The first bounds of this type were given by Chebychev and Bienaimé [11] in the
late 19th century for additive functions of the form

A. Maurer (B)
Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
e-mail: am@andreas-maurer.eu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
F. DeMari and E. DeVito (eds.),Harmonic and Applied Analysis, Applied andNumerical
Harmonic Analysis, https://doi.org/10.1007/978-3-030-86664-8_2

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86664-8_2&domain=pdf
mailto:am@andreas-maurer.eu
https://doi.org/10.1007/978-3-030-86664-8_2


56 A. Maurer

f (x) =
n∑

i=1

fi (xi ) . (1)

The subject has since been developed by Bernstein, Chernoff, Bennett, Hoeffding,
and many others [4, 16], and results were extended from sums to more general and
complicated nonlinear functions. During the past decades research activity has been
stimulated by the contributions of Michel Talagrand [27, 28] and by the relevance
of concentration phenomena to the rapidly growing field of computer science. Some
concentration inequalities, like the well known bounded difference inequality, have
become standard tools in the analysis of algorithms [23].

One of the more recent methods to derive concentration inequalities, the so-called
entropy method, is rooted in the early investigations of Boltzmann [5] and Gibbs
[12] into the foundations of statistical mechanics. While the modern entropy method
evolved along a complicated historical path via quantumfield theory and the logarith-
mic Sobolev-inequality of Leonard Gross [14], its hidden simplicity was understood
and emphasized by Michel Ledoux, who also recognized the key role which the
subadditivity of entropy can play in the derivation of concentration inequalities [18].
The method has been refined by Bobkov, Massart [20], Bousquet [9], and Boucheron
et al. [7]. Recently Boucheron et al. [8] showed that the entropymethod is sufficiently
strong to derive a form of Talagrand’s convex distance inequality.

In this chapter we present a variation of the entropy method in a compact and
simplified form, closely tied to its origins in statistical mechanics. We give an expo-
sition of the method in Sect. 2 and compress it into a toolbox to derive concentration
inequalities.

In Sect. 3 we will then use this method to prove two classical concentration
inequalities, the bounded difference inequality and a generalization of Bennett’s
inequality. As example applications we treat vector-valued concentration and gen-
eralization in empirical risk minimization, a standard problem in machine learning
theory.

In Sect. 4 we address more difficult problems. The bounded difference inequality
is used to prove the famous Gaussian concentration inequality. We also give some
more recent inequalities which we apply to analyze the concentration of convex
Lipschitz functions on [0, 1]n , or of the spectral norm of a random matrix.

In Sect. 5 we describe some of the more advanced techniques, self-boundedness,
and decoupling. As examples we give sub-Gaussian lower tail bounds for convex
Lipschitz functions and a version of the Hanson-Wright inequality for bounded ran-
dom variables and we derive an exponential inequality for the suprema of empirical
processes. We conclude with another version of Bernstein’s inequality and its appli-
cation to U-statistics.

We limit ourselves to exponential deviation bounds from the mean. For moment
bounds and other advanced methods to establish concentration inequalities, such as
the transportation method or an in-depth treatment of logarithmic Sobolev inequal-
ities, we recommend the monographs by Ledoux [18] and Boucheron, Lugosi, and
Massart [6], and the overview article by McDiarmid [23]. Another important recent
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development not covered is themethod of exchangeable pairs proposed byChatterjee
[10] .

We fix some conventions and notation:
If (�,�) is any measurable space A (�) will denote the algebra of bounded,

measurable real valued functions on�.When there is no ambiguityweoften justwrite
A forA (�). Althoughwegive some results for unbounded functions,most functions
for which we will prove concentration inequalities are assumed to be measurable
and bounded, that is f ∈ A. This assumption simplifies the statement of our results,
because it guarantees the existence of algebraic and exponential moments and makes
our arguments more transparent.

If (�,�,μ) is a probability spacewewrite Pr F = μ (F) for F ∈ �, and E [ f ] =∫
�
f dμ for f ∈ L1 [μ] and σ 2 [ f ] = E

[
( f − E [ f ])2

]
for f ∈ L2 [μ]. Wherever

weusePr, E orσ 2,weassume that there is anunderlyingprobability space (�,�,μ).
If we refer to other measures than μ, then we identify them with corresponding
subscripts.

IfX is any set andn ∈ N, then for y ∈ X and k ∈ {1, ..., n} the substitutionoperator
Sky : Xn → Xn is defined as

Sky x = (x1, ..., xk−1, y, xk+1, ..., xn) for x = (x1, ..., xn) ∈ Xn.

This and other notation which we introduce along the way is also summarized in a
final section in tabular form.

2 The Entropy Method

In this section we develop the entropy method and package it into a toolbox to prove
concentration inequalities.

2.1 Markov’s Inequality and Exponential Moment Method

The most important tool in the proof of deviation bounds is Markov’s inequality,
which we now introduce along with two corollaries, Chebychev’s inequality and the
exponential moment method.

Theorem 1 (Markov inequality) Let f ∈ L1 [μ], f ≥ 0 and t > 0 . Then

Pr { f > t} ≤ E [ f ]

t

Proof Since f ≥ 0 and t > 0 we have 1 f >t ≤ f/t and therefore
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Pr { f > t} = E
[
1 f >t

] ≤ E [ f/t] = E [ f ]

t
.

�

Corollary 2 (Chebychev inequality) Let f ∈ L2 [μ] and t > 0. Then

Pr {| f − E [ f ]| > t} = Pr
{
( f − E [ f ])2 > t2

} ≤ E
[
( f − E [ f ])2

]

t2
= σ 2 ( f )

t2
.

To use Chebychev’s inequality we need to bound the variance σ 2 ( f ). If f is a
sum of independent variables, the variance of f is just the sum of the variances of the
individual variables, but this doesn’twork for general functions. In Sect. 3.1, however,
we give the Efron–Stein inequality, which asserts that for functions of independent
variables the variance is bounded by the expected sum of conditional variances.

The idea of Chebychev’s inequality obviously extends to other even centered
moments E

[
( f − E [ f ])2p

]
. Bounding highermoments of functions of independent

variables is an important technique discussed, for example, in [6].
Here the most important corollary of Markov’s inequality is the exponential

moment method, an idea apparently due to Bernstein [4].

Corollary 3 (exponential moment method) Let f ∈ A, β ≥ 0 and t > 0. Then

Pr { f > t} = Pr
{
eβ f > eβt

} ≤ e−βt E
[
eβ f

]
.

To use this we need to bound the quantity E
[
eβ f

]
and to optimize the right-hand

side above over β. We call E
[
eβ f

]
the partition function, denoted Zβ f = E

[
eβ f

]
.

Bounding the partition function (or its logarithm) is the principal problem in the
derivation of exponential tail bounds.

If f is a sum of independent components (as in (1)), then the partition function
is the product of the partition functions corresponding to these components, and its
logarithm (called the moment generating function) is additive. This is a convenient
basis to obtain deviation bounds for sums, but it does not immediately extend to
general non-additive functions. The approach is taken here, the entropy method,
balances simplicity, and generality.

2.2 Entropy and Concentration

For the remainder of this section we take the function f ∈ A as fixed. We could
interpret the points x ∈ � as possible states of a physical system and f as the negative
energy (or Hamiltonian) function, so that− f (x) is the system’s energy in the state x .
Themeasureμ thenmodels an a priori probability distribution of states in the absence
of any constraining information. We will define another probability measure on �,
with specified expected energy, but with otherwise minimal assumptions.
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If ρ is a function on �, ρ ≥ 0 and E [ρ] = 1, the Kullback–Leibler divergence
K L (ρdμ, dμ) of ρdμ to dμ is

K L (ρdμ, dμ) = E [ρ ln ρ] .

K L (ρdμ, dμ) can be interpreted as the information we gain, if we are told that the
probability measure is ρdμ instead of the a priori measure dμ.

Theorem 4 For all f ∈ A, β ∈ R

sup
ρ

βE [ρ f ] − E [ρ ln ρ] = ln E
[
eβ f

]
,

where the supremum is over all nonnegative measurable functions ρ on � satisfying
E [ρ] = 1.

The supremum is attained for the density

ρβ f = eβ f /E
[
eβ f

]
.

Proof We can assume β = 1 by absorbing it in f . Let ρ ≥ 0 satisfy E [ρ] = 1,
so that ρdμ is a probability measure and g ∈ A �→ Eρ [g] := E [ρg] an expecta-
tion functional. Let φ (x) = 1/ρ (x) if ρ (x) > 0 and φ (x) = 0 if ρ (x) = 0. Then
E [ρ ln ρ] = −E [ρ ln φ] = −Eρ [ln φ] and with Jensen’s inequality

E [ρ f ] − E [ρ ln ρ] = Eρ [ f + ln φ] = ln exp
(
Eρ [ f + ln φ]

)

≤ ln Eρ

[
exp ( f + ln φ)

] = ln Eρ

[
φe f

]

= ln E
[
ρφe f

] = ln E
[
1ρ>0e

f
]

≤ ln E
[
e f

]
.

On the other hand

E
[
ρ f f

] − E
[
ρ f ln ρ f

] = E
[
f e f

]

E
[
e f

] − E
[
e f ln

(
e f /E

[
e f

])]

E
[
e f

] = ln E
[
e f

]
.

�

In statistical physics the maximizing probability measure dμβ f = ρβ f dμ =
eβ f dμ/E

[
eβ f

]
is called the thermal measure, sometimes also the canonical ensem-

ble. It is used to describe a system in thermal equilibrium with a heat reservoir at
temperature T ≈ 1/β. The corresponding expectation functional

Eβ f [g] = E
[
geβ f

]

E
[
eβ f

] = Z−1
β f E

[
geβ f

]
, for g ∈ A
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is called the thermal expectation. The normalizing quantity Zβ f = E
[
eβ f

]
is the

partition function already introduced above. Notice that for any constant c we have
Eβ( f +c) [g] = Eβ f [g].

The value of the function ρ �→ E [ρ ln ρ] at the thermal density ρβ f = Z−1
β f e

β f is
called the canonical entropy or simply entropy,

Ent f (β) = E
[
ρβ f ln ρβ f

] = βEβ f [ f ] − ln Zβ f . (2)

Note that Ent− f (β) = Ent f (−β), a simple but very useful fact.
Suppose that ρ is any probability density on �, which gives the same expected

value for the energy as ρβ f , so that E [ρ f ] = Eβ f [ f ]. Then

0 ≤ K L
(
ρdμ, Z−1

β f e
β f dμ

)

= E [ρ ln ρ] − βE [ρ f ] + ln Zβ f

= E [ρ ln ρ] − βEβ f [ f ] + ln Zβ f

= K L (ρdμ, dμ) − K L
(
ρβ f dμ, dμ

)
.

The thermal measure dμβ f = ρβ f dμ therefore minimizes the information gain rel-
ative to the a priori measure dμ, given the expected value −Eβ f [ f ] of the internal
energy.

For g ∈ A and ρ = Z−1
β f e

β f Theorem 4 gives

Eβ f [g] ≤ Ent f (β) + ln E
[
eg

]
,

which allows to decouple g from f . This plays an important role later on in this
chapter.

For β 	= 0 define a function

A f (β) = 1

β
ln Zβ f = 1

β
ln E

[
eβ f

]
. (3)

By l’Hospital’s rule we have limβ→0 A f (β) = E [ f ], so A f extends continuously to
R by setting A f (0) = E [ f ]. In statistical physics the quantity A f (β) so defined is
called the free energy corresponding to the Hamiltonian (energy function) H = − f
and temperature T ≈ β−1. Theorem 4 exhibits the free energy and the canonical
entropy as a pair of convex conjugates. Dividing (2) by β and writingU = Eβ f [ f ],
we recover the classical thermodynamic relation

A = U − T Ent,

which describes the macroscopically available energy A as the difference between
the internal energy U and an energy portion T Ent, which is inaccessible due to
ignorance of the microscopic state.
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The following theorem establishes the connection of entropy, the exponential
moment method and concentration inequalities.

Theorem 5 For f ∈ A and any β ≥ 0 we have

ln E
[
eβ( f −E f )

] = β

∫ β

0

Ent f (γ )

γ 2
dγ

and, for t ≥ 0,

Pr { f − E f > t} ≤ inf
β≥0

exp

(

β

∫ β

0

Ent f (γ )

γ 2
dγ − βt

)

.

Proof Differentiating the free energy with respect to β we find

A′
f (β) = 1

β
Eβ f [ f ] − 1

β2
ln Zβ f = β−2Ent f (β) .

By the fundamental theorem of calculus

ln E
[
eβ( f −E f )

] = ln Zβ f − βE [ f ] = β
(
A f (β) − A f (0)

)

= β

∫ β

0
A′

f (γ ) dγ = β

∫ β

0

Ent f (γ )

γ 2
dγ,

which is the first inequality. Then by Markov’s inequality

Pr { f − E f > t} ≤ e−βt E
[
eβ( f −E f )

]

≤ exp

(

β

∫ β

0

Ent f (γ )

γ 2
dγ − βt

)

.

�
Our strategy to establish concentration results will therefore be the search for

appropriate bounds on the entropy.

2.3 Entropy and Energy Fluctuations

The thermal variance of a function g ∈ A is just the variance of g relative to the
thermal expectation. It is denoted σ 2

β f (g) and defined by

σ 2
β f (g) = Eβ f

[(
g − Eβ f [g]

)2
]

= Eβ f
[
g2

] − (
Eβ f [g]

)2
.

For constant c we have σ 2
β( f +c) [g] = σ 2

β f [g].
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The proof of the following lemma consists of straightforward calculations, an
easy exercise to familiarize oneself with thermal measure, expectation and variance.

Lemma 6 The following formulas hold for f ∈ A
1. d

dβ

(
ln Zβ f

) = Eβ f [ f ].
2. If h : β �→ h (β) ∈ A is differentiable and (d/dβ) h (β) ∈ A then

d

dβ
Eβ f [h (β)] = Eβ f [h (β) f ] − Eβ f [h (β)] Eβ f [ f ] + Eβ f

[
d

dβ
h (β)

]

.

3. d
dβ Eβ f

[
f k

] = Eβ f
[
f k+1

] − Eβ f
[
f k

]
Eβ f [ f ] .

4. d2

dβ2

(
ln Zβ f

) = d
dβ Eβ f [ f ] = σ 2

β f [ f ] .

Proof 1. is immediate and 2. a straightforward computation. 3. and 4. are immediate
consequences of 1. and 2. �

Since the members of A are bounded it follows from 2. that for f, g ∈ A the
functions β �→ Eβ f [g] and β �→ σ 2

β f [g] are C∞.
The thermal variance of f itself corresponds to energy fluctuations. The next

theorem represents entropy as a double integral of such fluctuations. The utility of this
representation to derive concentration results has been noted by David McAllester
[22].

Theorem 7 We have for β > 0

Ent f (β) =
∫ β

0

∫ β

t
σ 2
s f [ f ] ds dt.

Proof Using the previous lemma and the fundamental theorem of calculus we obtain
the formulas

βEβ f [ f ] =
∫ β

0
Eβ f [ f ] dt =

∫ β

0

(∫ β

0
σ 2
s f [ f ] ds + E [ f ]

)

dt

and

ln Zβ f =
∫ β

0
Et f [ f ] dt =

∫ β

0

(∫ t

0
σ 2
s f [ f ] ds + E [ f ]

)

dt,

which we subtract to obtain

Ent f (β) = βEβ f [ f ] − ln Zβ f =
∫ β

0

(∫ β

0
σ 2
s f [ f ] ds −

∫ t

0
σ 2
s f [ f ] ds

)

dt

=
∫ β

0

(∫ β

t
σ 2
s f [ f ] ds

)

dt.

�
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Since bounding σ 2
β f [ f ] is central to our method, it is worth mentioning an inter-

pretation in terms of heat capacity, or specific heat. Recall that −Eβ f [ f ] is the
expected internal energy. The rate of change of this quantity with temperature T is
the heat capacity. By conclusion 4 of Lemma 6 we have

d

dT

(−Eβ f [ f ]
) = 1

T 2
σ 2

β f [ f ] ,

which exhibits the proportionality of heat capacity and energy fluctuations.

2.4 Product Spaces and Conditional Operations

We now set � = ∏n
k=1 �k and dμ = ∏n

k=1 dμk , where each μk is the probability
measure representing the distribution of some variable Xk in the space �k , so that
the Xk are assumed to be independent.

WithAk we denote the subalgebra of those functions f ∈ A, which are indepen-
dent of the k-th argument. To efficiently deal with operations performed on individual
arguments of functions inA we need some special notation.

Now let k ∈ {1, ..., n} and y ∈ �k . If 	 is any set and F is any function F : � →
	, we extend the definition of the substitution operator Sky to F by Sky (F) = F ◦ Sky .
This means

Sky (F) (x1, ..., xn) = F (x1, ..., xk−1, y, xk+1, ..., xn) ,

so the k-th argument is simply replaced by y. Since for f ∈ A the function Sky f is
independent of xk (which had been replaced by y) we see that Sky is a homomorphic
(linear and multiplication-preserving) projection of A onto Ak .

For k ∈ {1, ..., n} and y, y′ ∈ �k we define the difference operator Dk
y,y′ : A →

Ak by
Dk

y,y′ f = Sky f − Sky′ f for f ∈ A.

Clearly Dk
y,y′ annihilates Ak . The operator rk : A → Ak , defined by rk f =

supy,y′∈�k
Dk

y,y′ f is called the k-th conditional range. We also use the abbrevia-
tions infk f = inf y∈�k S

k
y f and supk f = supy∈�k

Sky f for the conditional infimum
and supremum.

Given the measures μk and k ∈ {1, ..., n} we the operator Ek : A → Ak by

Ek f = Ey∼μk

[
Sky f

] =
∫

�k

Sky f dμk (y) .
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The operator Ek [.] = E
[
.|X1, ..., Xk−1, Xk+1, ..., Xn

]
is the expectation conditional

to all variables with indices different to k. Ek is a linear projection ontoAk . Also the
Ek commute among each other, and for h ∈ A and g ∈ Ak we have

E [[Ekh] g] = E [Ek [hg]] = E [hg] . (4)

Replacing the operator E by Ek leads to the definition of conditional thermody-
namic quantities, all of which are now members of the algebraAk :

• The conditional partition function Zk,β f = Ek
[
eβ f

]
,

• The conditional thermal expectation Ek,β f [g] = Z−1
k,β f Ek

[
geβ f

]
for g ∈ A,

• The conditional entropy Entk, f (β) = βEk,β f [ f ] − ln Zk,β f ,

• The conditional thermal variance σ 2
k,β f [g] = Ek,β f

[(
g − Ek,β f [g]

)2
]
for g ∈ A.

As β → 0 this becomes
• The conditional variance σ 2

k [g] = Ek
[
(g − Ek [g])

2
]
for g ∈ A.

The previously established relations hold also for the corresponding conditional
quantities. Of particular importance for our method is the conditional version of
Theorem 7

Entk, f (β) =
∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt.

The following lemma, which states that the conditional thermal expectation just
behaves like a conditional expectation, will also be used frequently.

Lemma 8 For any f, g ∈ A, k ∈ {1, ..., n}, β ∈ R

Eβ f
[
Ek,β f [g]

] = Eβ f [g] .

Proof Using E [Ek [h] g] = E [hEk [g]]

Eβ f
[
Ek,β f [g]

] = Z−1
β f E

[

Ek
[
geβ f

] eβ f

Ek
[
eβ f

]

]

= Z−1
β f E

[

geβ f Ek

[(
eβ f

Ek
[
eβ f

]

)]]

= Z−1
β f E

[
geβ f

]

= Eβ f [g] .

�
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2.5 The Subadditivity of Entropy

In the non-interacting case, when the energy function f is a sum, f = ∑
fk, it is

easily verified that Entk, f (β) (x) = Entk, f (β) is independent of x and that

Ent f (β) =
n∑

k=1

Entk, f (β) .

In statistical physics it is said that entropy is an extensive quantity: the entropy of
non-interacting systems is equal to the sum of the individual entropies.

Equality no longer holds in the interacting, nonlinear case, but there is a subad-
ditivity property which is sufficient for the purpose of concentration inequalities:

The total entropy is no greater than the thermal average of the sum of the condi-
tional entropies.

Theorem 9 For f ∈ A and β > 0

Ent f (β) ≤ Eβ f

[
n∑

k=1

Entk, f (β)

]

(5)

In 1975 Elliott Lieb [19] gave a proof of this result, which was probably known
some time before, at least in the classical setting relevant to our arguments. Together
with Theorem 5 and Theorem 7 it completes our basic toolbox to prove concentration
inequalities. For the proof we need two auxiliary results.

Lemma 10 Let h, g > 0 be bounded measurable functions on �. Then for any
expectation E

E [h] ln
E [h]

E [g]
≤ E

[

h ln
h

g

]

.

Proof Define an expectation functional Eg by Eg [h] = E [gh] /E [g]. The function

(t) = t ln t is convex for positive t , since 
′′ = 1/t > 0. Then




(

Eg

[
h

g

])

= E [h]

E [g]
ln

E [h]

E [g]
.

Thus, by Jensen’s inequality,

E [h] ln
E [h]

E [g]
= E [g] Eg

[
h

g

]

ln Eg

[
h

g

]

= E [g]


(

Eg

[
h

g

])

≤ E [g] Eg

[




(
h

g

)]

= E

[

h ln
h

g

]

.

�
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Next we prove (5) for general positive functions.

Lemma 11 Let ρ ∈ A, ρ > 0. Then

E

[

ρ ln
ρ

E [ρ]

]

≤
∑

k

E

[

ρ ln
ρ

Ek [ρ]

]

.

Proof Write Ek [.] = E1E2...Ek [.] with E0 being the identity map on A. The
innocuous looking identity E

[
Ek [.]

] = E [.] is an obvious consequence of the fact
that we work with product probabilities. Without independence it would not hold,
and the following simple argumentwould break down.Note that En = E .We expand

ρ

E [ρ]
= E0 [ρ]

E1 [ρ]

E1 [ρ]

E2 [ρ]
...

En−1 [ρ]

En [ρ]
=

n∏

k=1

Ek−1 [ρ]

Ek−1 [Ek [ρ]]
.

We get from Lemma 10, using E
[
Ek−1 [.]

] = E [.] ,

E

[

ρ ln
ρ

E [ρ]

]

=
∑

k

E

[

Ek−1 [ρ] ln
Ek−1 [ρ]

Ek−1 [Ek [ρ]]

]

≤
∑

k

E

[

Ek−1

[

ρ ln
ρ

Ek [ρ]

]]

=
∑

k

E

[

ρ ln
ρ

Ek [ρ]

]

.

�

Finally we specialize to the canonical entropy.

Proof of Theorem 9 9 Set ρ = eβ f in Lemma 11 to get

Ent f (β) = Z−1
β f E

[

eβ f ln
eβ f

E
[
eβ f

]

]

≤ Z−1
β f

∑

k

E

[

eβ f ln
eβ f

Ek
[
eβ f

]

]

=
∑

k

Eβ f
[
β f − ln Ek

[
eβ f

]]

= Eβ f

[
∑

k

Entk, f (β)

]

,

where we used Lemma 8 in the last identity. �
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2.6 Summary of Results

The exponential moment method, Corollary 3, and Theorems 5, 7, and 9 provide us
with the tools to prove several useful concentration inequalities. Here is a summary:

Theorem 12 For f ∈ A and β > 0 we have

Pr { f − E f > t} ≤ E
[
eβ( f −E f )

]
e−βt (6)

ln E
[
eβ( f −E f )

] = β

∫ β

0

Ent f (γ )

γ 2
dγ (7)

Ent f (β) ≤ Eβ f

[
n∑

k=1

Entk, f (β)

]

(8)

Ent f (β) =
∫ β

0

∫ β

t
σ 2
s f [ f ] ds dt (9)

Entk, f (β) =
∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt (10)

Concatenating the exponential moment bound (6), the entropy representation of
the moment generating function (7), the subadditivity of entropy (8) and the fluctua-
tion representation of the conditional entropy (10), we obtain the following generic
concentration inequality.

Pr { f − E f > t} ≤ inf
β>0

exp

(

β

∫ β

0
γ −2Eγ f

[
n∑

k=1

∫ γ

0

∫ γ

t
σ 2
k,s f [ f ] ds dt

]

dγ − βt

)

.

This is the template for the results given in the next section.

3 First Applications of the Entropy Method

We now develop some first consequences of the method, beginning with the Efron–
Stein inequality, a general bound on the variance. Then we continue with the deriva-
tion of the bounded difference inequality, a simple and perhaps the most useful
concentration inequality, for which we give two illustrating applications. Then we
give a Bennett-Bernstein type inequality which we apply to the concentration of
vector-valued random variables.
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3.1 The Efron–Stein Inequality

Combining the fluctuation representations (9) and (10) with the subadditivity (8) of
entropy and dividing by β2 we obtain

1

β2

∫ β

0

∫ β

t
σ 2
s f [ f ] ds dt ≤ Eβ f

[
n∑

k=1

1

β2

∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt .

]

Using the continuity properties of β �→ Eβ f [g] and β �→ σ 2
β f [ f ], which follow

from Lemma 6 we can take the limit as β → 0 and multiply by 2 to obtain

σ 2 [ f ] ≤ E

[
∑

k

σ 2
k [ f ]

]

= E
[
�2 ( f )

]
, (11)

where we introduced the notation �2 ( f ) = ∑
k σ 2

k [ f ] for the sum of conditional
variances.

Equation (11) is the famous Efron–Stein–Steele inequality [26]. It is an easy
exercise to provide the details of the above limit process and to extend the inequality
to general functions f ∈ L2 [μ] by approximation with a sequence of truncations.

3.2 The Bounded Difference Inequality

The variance of a bounded real random variable is never greater than a quarter of the
square of its range.

Lemma 13 If f ∈ A satisfies a ≤ f ≤ b then σ 2 [ f ] ≤ (b − a)2 /4.

Proof

σ 2 ( f ) = E [( f − E [ f ]) f ] = E [( f − E [ f ]) ( f − a)]

≤ E [(b − E [ f ]) ( f − a)] = (b − E [ f ]) (E [ f ] − a)

≤ (b − a)2

4
.

To see the last inequality use calculus to find the maximal value of the function
t → (b − t) (t − a). �.

The bounded difference inequality bounds the deviation of a function from its
mean in terms of the sum of squared conditional ranges, which is the operator
R2 : A → A defined by
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R2 ( f ) =
n∑

k=1

rk ( f )2 =
n∑

k=1

sup
y,y′∈�k

(
Dk

y,y′ f
)2

.

Theorem 14 (Bounded difference inequality) For f ∈ A and t > 0

Pr { f − E f > t} ≤ exp

( −2t2

supx∈� R2 ( f ) (x)

)

.

Proof Applied to the conditional thermal variance Lemma 13 gives

σ 2
k,s f [ f ] ≤ 1

4
sup

y,y′∈�k

(
Dk

y,y′ f
)2 = 1

4
rk ( f )2 ,

so combining the subadditivity of entropy (8) and the fluctuation representation (10)
gives

Ent f (γ ) ≤ Eγ f

[
n∑

k=1

Entk, f (γ )

]

= Eγ f

[
n∑

k=1

∫ γ

0

∫ γ

t
σ 2
k,s f [ f ] ds dt

]

≤ 1

4
Eγ f

[∫ γ

0

∫ γ

t

n∑

k=1

rk ( f )2
]

ds dt

= γ 2

8
Eγ f

[
R2 ( f )

]
. (12)

Bounding the thermal expectation Eγ f by the supremum over x ∈ � we obtain from
Theorem 12 (7)

ln E
[
eβ( f −E f )

] = β

∫ β

0

Ent f (γ )

γ 2
dγ ≤ β2

8
sup
x∈�

R2 ( f ) (x) ,

and the tail bound (6) gives for all β > 0

Pr { f − E f > t} ≤ exp

(
β2

8
sup
x∈�

R2 ( f ) (x) − βt

)

.

Substitution of the minimizing value β = 4t/
(
supx∈� R2 ( f ) (x)

)
completes the

proof. �

Notice that the conditional range rk ( f ) is a function in Ak and may depend on
all xi except xk . The sum R2 ( f ) = ∑n

k=1 rk ( f )2 may thus depend on all the xi . It is
therefore a very pleasant feature that the supremum over x is taken outside the sum.
In the sequel this will allow us to derive the Gaussian concentration inequality from
Theorem 14. The bound (12) will be re-used in Sect. 5.4 to prove a version of the
Hanson-Wright inequality for quadratic forms.
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In the literature one often sees the following weaker version of Theorem 14.

Corollary 15 For f ∈ A and t > 0

Pr { f − E f > t} ≤ exp

( −2t2
∑n

k=1 supx∈� rk ( f )2 (x)

)

.

If f is a sum f = ∑
k Xk , then r2k is independent of x and the two results are

equivalent. In this case we obtain the well known Hoeffding inequality [16].

Corollary 16 (Hoeffding’s inequality) Let Xk be real random variables ak ≤ Xk ≤
bk. Then

Pr

{
∑

k

(Xk − E [Xk]) > t

}

≤ exp

( −2t2
∑n

k=1 (bk − ak)
2

)

.

In returning to the general case of non-additive functions, it is remarkable that for
many applications the following “little bounded difference inequality”, which is yet
weaker than Corollary 15, seems to be sufficient.

Corollary 17 For f ∈ A and t > 0

Pr { f − E f > t} ≤ exp

(−2t2

nc2

)

,

where
c = max

k
sup

x∈�,y,y′∈�k

Dk
y,y′ f (x) .

3.3 Vector-Valued Concentration

Suppose the Xi are independent random variables with values in a normed space
B such that EXi = 0 and ‖Xi‖ ≤ ci . Let �i = {y ∈ B : ‖y‖ ≤ ci } and define f :∏n

i=1 �i → R by

f (x) =
∥
∥
∥
∥
∥

∑

i

xi

∥
∥
∥
∥
∥
.

Then by the triangle inequality, for y, y′ with ‖y‖ ,
∥
∥y′∥∥ ≤ ck
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Dk
y,y′ f (x) =

∥
∥
∥
∥
∥

∑

i

Sky (x)i

∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥

∑

i

Sky′ (x)i

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∑

i

Sky (x)i −
∑

i

Sky′ (x)i

∥
∥
∥
∥
∥

= ∥
∥y − y′∥∥

≤ 2ck,

so R2 ( f ) (x) ≤ 4
∑

i c
2
i . It follows from Corollary 15 that

Pr { f − E [ f ] > t} ≤ exp

( −t2

2
∑

i c
2
i

)

,

or that for δ > 0 with probability at least 1 − δ in (X1, ..., Xn)

∥
∥
∥
∥
∥

∑

i

Xi

∥
∥
∥
∥
∥

≤ E

∥
∥
∥
∥
∥

∑

i

Xi

∥
∥
∥
∥
∥

+
√

2
∑

i

c2i ln (1/δ). (13)

If B is a Hilbert space we can bound E
∥
∥∑

i Xi

∥
∥ ≤

√∑
i E

[‖Xi‖2
]
by Jensen’s

inequality and if all the Xi are iid we get with probability at least 1 − δ

∥
∥
∥
∥
∥

1

n

∑

i

Xi

∥
∥
∥
∥
∥

≤
√

E
[‖X1‖2

]

n
+ c1

√
2 ln (1/δ)

n
(14)

3.4 Rademacher Complexities and Generalization

Now let X be any measurable space and F a countable class of functions f :
X → [0, 1] and X = (X1, ..., Xn) be a vector of iid random variables with values
in X.

Empirical risk minimization really wants to find f ∈ F with minimal risk
E [ f (X)], but, as the true distribution of X is unknown, it has to be content with
minimizing the empirical surrogate

1

n

∑

i

f (Xi ) .

One way to justify this method is by giving a bound on the uniform estimation error

sup
f ∈F

1

n

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (X)]

∣
∣
∣
∣
∣
.
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The vector space

B =
{

g : F → R : sup
f ∈F

|g ( f )| < ∞
}

becomes a normed space with norm ‖g‖ = sup f ∈F |g ( f )|. For each Xi define X̂i

∈ B by X̂i ( f ) = f (Xi ) − E [ f (Xi )]. Then the X̂i are zero mean random variables

in B satisfying
∥
∥
∥X̂i

∥
∥
∥ ≤ 1, and (13) of the preceding section gives with probability

at least 1 − δ

sup
f ∈F

∣
∣
∣
∣
∣

1

n

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ 1

n
E sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
+

√
2 ln (1/δ)

n
.

The expectation term on the right-hand side can be bounded in terms of Rademacher
complexity [3]. This is the function R : F × Xn → R defined as

R (F , x) = 2

n
Eε sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi f (xi )

∣
∣
∣
∣
∣
,

where the ε = (ε1, ..., εn) are vectors of independent Rademacher variables which
are uniformly distributed on {−1, 1}. We have, with X ′

i iid to Xi

1

n
E sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ 1

n
EXX′ sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − f
(
X ′
i

)
∣
∣
∣
∣
∣

= 1

n
EXX′ sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi
(
f (Xi ) − f

(
X ′
i

))
∣
∣
∣
∣
∣
,

for any ε ∈ {−1, 1}n , because the expectation is invariant under the interchange of
Xi and X ′

i on an arbitrary subset of indices. Passing to the expectation in ε and using
the triangle inequality gives

1

n
E sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ 1

n
EXX′ Eε sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi
(
f (Xi ) − f

(
X ′
i

))
∣
∣
∣
∣
∣

≤ 2

n
EXEε sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi f (Xi )

∣
∣
∣
∣
∣

= EXR (F ,X) .

Now we use the bounded difference inequality again to bound the deviation of
R (F , .) from its expectation. We have, again using the triangle inequality,
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Dk
y,y′R (F , x) = 2

n
Eε

[

sup
f ∈F

∣
∣
∣
∣
∣

∑

i

εi S
k
y f (xi )

∣
∣
∣
∣
∣
− sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi S
k
y′ f (xi )

∣
∣
∣
∣
∣

]

≤ 2

n
Eε

[

sup
f ∈F

∣
∣εi

(
f (y) − f

(
y′))∣∣

]

≤ 2

n

and thus obtain
Pr

{
E

[R (F , .)
]

> R (F , .) + t
} ≤ e−nt2/2,

or, for every δ > 0 with probability at least 1 − δ

E
[R (F ,X)

] ≤ R (F ,X) +
√
2 ln (1/δ)

n
. (15)

By a union bound we conclude that with probability at least 1 − δ

sup
f ∈F

∣
∣
∣
∣
∣

1

n

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ R (F ,X) + 2

√
2 ln (2/δ)

n
.

3.5 The Bennett and Bernstein Inequalities

The proof of the bounded difference inequality relied on bounding the thermal vari-
ance σ 2

k,β f ( f ) uniformly in β, using the constraints on the conditional ranges of
f . We now consider the case, where we only use one constraint on the ranges, say
f − Ek [ f ] ≤ 1, but we use information on the conditional variances. This leads to
a Bennett type inequality as in [23]. Recall the notation for the sum of conditional
variances�2 ( f ) := ∑

σ 2
k ( f ). Again we start with a bound on the thermal variance.

Lemma 18 Assume f − E f ≤ 1. Then for β > 0

σ 2
β f ( f ) ≤ eβσ 2 ( f )

Proof

σ 2
β f ( f ) = σ 2

β( f −E f ) ( f − E f ) = Eβ( f −E f )
[
( f − E f )2

] − (
Eβ( f −E f ) [ f − E f ]

)2

≤ Eβ( f −E f )
[
( f − E f )2

] = E
[
( f − E f )2 eβ( f −E f )

]

E
[
eβ( f −E f )

]

≤ E
[
( f − E f )2 eβ( f −E f )

]
(by Jensen’s inequality)

≤ eβE
[
( f − E f )2

]
(now using f − E f ≤ 1).

�
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Next we bound the entropy Ent f (β).

Lemma 19 Assume that f − Ek f ≤ 1 for all k ∈ {1, ..., n}. Then for β > 0

Ent f (β) ≤ (
βeβ − eβ + 1

)
Eβ f

[
�2 ( f )

]
.

Proof From Theorem 12 and the previous lemma we get

Ent f (β) ≤ Eβ f

[
n∑

k=1

∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt

]

≤
∫ β

0

∫ β

t
esds dt Eβ f

[
�2 ( f )

]
.

The conclusion follows from the formula

∫ β

0

∫ β

t
esds dt =

∫ β

0

(
eβ − et

)
dt = βeβ − eβ + 1.

�
We need one more technical Lemma.

Lemma 20 For x ≥ 0

(1 + x) ln (1 + x) − x ≥ 3x2/ (6 + 2x) .

Proof We have to show that

f1 (x) := (
6 + 8x + 2x2

)
ln (1 + x) − 6x − 5x2 ≥ 0.

Since f1 (0) = 0 and f ′
1 (x) = 4 f2 (x) with f2 (x) := (2 + x) ln (1 + x) − 2x , it is

enough to show that f2 (x) ≥ 0. But f2 (0) = 0 and f ′
2 (x) = (1 + x)−1 + ln (1 + x)

− 1, so f ′
2 (0) = 0, but f ′′

2 (x) = x (1 + x)−2 ≥ 0, so f2 (x) ≥ 0. �
Now we can prove our version of Bennett’s inequality.

Theorem 21 Assume f − Ek f ≤ 1,∀k. Let t > 0 and denote V = supx∈� �2

( f ) (x). Then

Pr { f − E [ f ] > t} ≤ exp
(−V

((
1 + tV−1

)
ln

(
1 + tV−1

) − tV−1
))

≤ exp

( −t2

2V + 2t/3

)

.

Proof Fix β > 0. We define the real function

ψ (t) = et − t − 1, (16)

which arises from deleting the first two terms in the power series expansion of the
exponential function and observe that
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∫ β

0

γ eγ − eγ + 1

γ 2
dγ = β−1

(
eβ − β − 1

) = β−1ψ (β) ,

because (d/dγ )
(
γ −1 (eγ − 1)

) = γ −2 (γ eγ − eγ + 1) and limγ→0 γ −1 (eγ − 1) =
1. Theorem 12 and Lemma 19 combined with a uniform bound then give

ln Eeβ( f −E f ) = β

∫ β

0

Ent f (γ ) dγ

γ 2

≤ β

(∫ β

0

γ eγ − eγ + 1

γ 2
dγ

)

sup
x∈�

�2 ( f ) (x) = ψ (β) V .

It now follows from Theorem 12 that Pr { f − E [ f ] > t} ≤ exp (ψ (β) V − βt) for
any β > 0. Substitution of β = ln

(
1 + tV−1

)
gives the first inequality, the second

follows from Lemma 20. �

Observe that f is assumed bounded above by the assumptions of the theorem.
The existence of exponential moments E

[
eβ f

]
is needed only for β ≥ 0, so the

assumption f ∈ A can be dropped in this case.
If f is additive the theorem reduces to the familiar Bennett and Bernstein inequal-

ities [16].

Corollary 22 Let Xk be real random variables Xk ≤ E [Xk] + 1 and let V =∑
k σ 2 (Xk). Then

Pr

{
∑

k

(Xk − E [Xk]) > t

}

≤ exp
(−V

((
1 + tV−1

)
ln

(
1 + tV−1

) − tV−1
))

≤ exp

( −t2

2V + 2t/3

)

.

Theorem 21 and its corollary can be applied to functions satisfying f − Ek [ f ] <

b by a simple rescaling argument. Then Bernstein’s inequality becomes

Pr { f − E [ f ] > t} ≤ exp

( −t2

2 supx∈� �2 ( f ) (x) + 2bt/3

)

.

Inequalities of this kind exhibit two types of tails, depending inwhich of the two terms
in the denominator A + Bt of the exponent is dominant. In the sub-Gaussian regime
A >> Bt the tail decays as e−t2/A. This is the way the bounded difference inequality
behaves globally, but with a very crude approximation for A, while Bernstein’s
inequality uses variance information. But for larger deviations, when A << Bt , the
tail only decays as e−t/A. This subexponential behavior is absent in the bounded
difference inequality and the price paid for the fine-tuning in Bernstein’s inequality.
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3.6 Vector-Valued Concentration Revisited

We look again at the situation of Sect. 3.3. Suppose again that the Xi are independent
zero mean random variables with values in normed space, which we now assume
to be a Hilbert space H , but that now we have a uniform bound ‖Xi‖ ≤ c. Again
we define f : {y ∈ H : ‖y‖ ≤ c}n → R by f (x) = ∥

∥
∑

i xi
∥
∥ and observe that for

y, y′ ∈ H , Dk
y,y′ f (x) ≤ ∥

∥y − y′∥∥. This implies that f − Ek [ f ] ≤ 2c and also

σ 2
k ( f ) = 1

2
E(y,y′)∼μ2

k

(
Dk

y,y′ f (x)
)2 ≤ 1

2
E(y,y′)∼μ2

k

∥
∥y − y′∥∥2 = E ‖Xk‖2 .

Thus �2 ( f ) ≤ ∑
i E ‖Xi‖2 and by Bernstein’s inequality, Theorem 21,

Pr { f − E [ f ] > t} ≤ exp

( −t2

2
∑

i E ‖Xi‖2 + 4ct/3

)

,

or that for δ > 0 with probability at least 1 − δ in (X1, ..., Xn)

∥
∥
∥
∥
∥

∑

i

Xi

∥
∥
∥
∥
∥

≤
√∑

i

E
[‖Xi‖2

] +
√

2
∑

i

E ‖Xi‖2 ln (1/δ) + 4c ln (1/δ) /3,

where we again used Jensen’s inequality to bound E
∥
∥∑

i Xi

∥
∥. If all the Xi are iid

we get with probability at least 1 − δ

∥
∥
∥
∥
∥

1

n

∑

i

Xi

∥
∥
∥
∥
∥

≤
√

E
[‖X1‖2

]

n

(
1 + √

2 ln (1/δ)
)

+ 4c ln (1/δ)

2n
.

If the variance E
[‖X1‖2

]
is small and n is large, this is much better than the bound

(14), which we got from the bounded difference inequality.

4 Inequalities for Lipschitz Functions and Dimension Free
Bounds

We now prove some more advanced concentration inequalities. First we will use the
bounded difference inequality to prove a famous sub-gaussian bound for Lipschitz
functions of independent standard normal variables. We then derive an exponential
Efron–Stein inequality which allows to prove a similar result for convex Lipschitz
functions on [0, 1]n . We also obtain a concentration inequality for the operator norm
of a random matrix, with deviations independent of the size of the matrix.
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4.1 Gaussian Concentration

The advantage of the bounded difference inequality, Theorem 14, over its simplified
Corollary 15 is the supremum over x outside the sum over k. This allows us to prove
the following powerful Gaussian concentration inequality (Tsirelson-Ibragimov–
Sudakov inequality, Theorem 5.6 in [6]). We assume �k = R and μk to be the
distribution of a standard normal variable, and we require f to be an L-Lipschitz
function, which means that for all x, x′ ∈ R

n

f (x) − f
(
x′) ≤ L

∥
∥x − x′∥∥ ,

where ‖.‖ is the Euclidean norm on R
n .

Theorem 23 Let f : Rn → R be L-Lipschitz and let X = (X1, ..., Xn) be a vector
of independent standard normal variables. Then for any s > 0

Pr { f (X) > E f (X) + s} ≤ e−s2/2L2
.

Note that the function f is not assumed to be bounded on R
n .

Proof The idea of the proof is to use the central limit theorem to approximate the
Xi by appropriately scaled Rademacher sums hK (εi ) and to apply the bounded
difference inequality to f (hK (ε1) , ..., hK (εn)).

By an approximation argument using convolution with Gaussian kernels of
decreasing width it suffices to prove the result if f is C2 with

∣
∣
(
∂2/x2i

)
f (x)

∣
∣ ≤ B

for all x ∈ R
n and i ∈ {1, ..., n}, where B is a finite, but arbitrarily large con-

stant. For K ∈ N define a function hK : {−1, 1}K → R, a vector-valued function
hK : {−1, 1}Kn → R

n and a function GK : {−1, 1}Kn → R by

hK (ε) = 1√
K

K∑

k=1

εk, for ε ∈ {−1, 1}K

hK (ε) = (hK (ε1) , ..., hK (εn)) for ε = (ε1, ..., εn) ∈ {−1, 1}Kn

GK = f (hK (ε)) for ε ∈ {−1, 1}Kn .

We will use Theorem 14 on the function GK applied to independent Rademacher
variables ε.

Fix an arbitrary configuration ε ∈ {−1, 1}Kn and let x = (x1, ..., xn) = hK (ε).
For each i ∈ {1, ..., n} we introduce the real function fi (t) = Sit f (x), so that we
replace the i-th argument xi by t , leaving all the other x j fixed. Since f is C2 we
have for any t ∈ R

fi (x + t) − fi (x) = t f ′
i (x) + t2

2
f ′′
i (s)
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for some s ∈ R, and by the Lipschitz condition and the bound on
∣
∣ f ′′

i

∣
∣

( fi (x + t) − fi (x))
2 = t2

(
f ′
i (x)

)2 + t3 f ′
i (x) f ′′

i (s) + t4

4

(
f ′′
i (s)

)2

≤ t2
(
f ′
i (x)

)2 + |t |3 LB + t4

4
B2.

Now fix a pair of indices (i, k) with i ∈ {1, ..., n} and k ∈ {1, ..., K } and arbitrary
values y, y′ ∈ {−1, 1} with y 	= y′. We want to bound

(
D(i,k)

y,y′ GK (ε)
)2
. Now either

one of y or y′ is equal to εik , so either S(i,k)
y GK (ε) or S(i,k)

y′ GK (ε) is equal to GK (ε).
Without loss of generality we assume the second. Furthermore SkyhK (εi ) and hK (εi )

differ by at most 2/
√
K , so

(
D(i,k)

y,y′ GK (ε)
)2 = (

f
(
x1, ..., S

k
yhK (εi ) , ..., xn

) − f (x1, ..., hK (εi ) , ..., xn)
)2

=
(

fi

(

hK (εi ) ± 2√
K

)

− fi (hK (εi ))

)2

≤ 4 f ′
i (hK (εi ))

2

K
+ 8LB

K 3/2
+ 4B2

K 2
.

Now f ′
i (hK (εi )) is just equal to (∂/∂xi ) f (x), so

∑

i

f ′
i (hK (εi ))

2 ≤ sup
x∈Rn

‖∇ f (x)‖2 ≤ L2.

Since ε was arbitrary we have

sup
ε

∑

k,i

sup
y,y′

(
D(i,k)

y,y′ GK (ε)
)2 ≤ 4L2 + 8nLB

K 1/2
+ 4nB2

K
.

From Theorem 14 we conclude from f (hK (ε)) = GK (ε) that

Pr
{
f (hK (ε)) − E f

(
hK

(
ε′)) > s

} ≤ exp

( −s2

2L2 + 4nLB/K 1/2 + 2nB2/K

)

.

The conclusion now follows from the central limit theorem since hK (ε) → Xweakly
as K → ∞. �
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4.2 Exponential Efron Stein Inequalities

We will now use the entropy method to derive some other “dimension free” bounds
of this type. We need the following very useful result.

Lemma 24 (Chebychev’s association inequality) Let g and h be real functions, X
a real random variable.

If g and h are either both nondecreasing or both nonincreasing then

E [g (X) h (X)] ≥ E [g (X)] E [h (X)] .

If either one of g or h is nondecreasing and the other nonincreasing then

E [g (X) h (X)] ≤ E [g (X)] E [h (X)] .

Proof Let X ′ be a random variable iid to X . Then

E [g (X) h (X)] − E [g (X)] E [h (X)] = 1

2
E

[(
g (X) − g

(
X ′)) (

h (X) − h
(
X ′))] .

Now if g and h are either both nondecreasing or both nonincreasing then

(
g (X) − g

(
X ′)) (

h (X) − h
(
X ′))

is always nonnegative, because both factors always have the same sign, in the other
case it is always nonpositive. �

We use this inequality to prove a bound on the thermal variance. First recall that
for two iid random variables X and X ′ we have

σ 2 (X) = 1

2
EXX ′

[(
X − X ′)2

]

= 1

2
EXX ′

[(
X − X ′)2 1X>X ′

]
+ 1

2
EXX ′

[(
X − X ′)2 1X<X ′

]

= EXX ′
[(
X − X ′)2

+
]
.

Lemma 25 Let 0 ≤ s ≤ β. Then

σ 2
s f ( f ) ≤ Ex∼μβ f

[
Ex ′∼μ

[(
f (x) − f

(
x ′))2

+
]]

.

Proof Let ψ be any real function. Lemma 6 (2) gives

d

dβ
Eβ f [ψ ( f )] = Eβ f [ψ ( f ) f ] − Eβ f [ψ ( f )] Eβ f [ f ] . (17)
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By Chebychev’s association inequality Eβ f [ψ ( f )] is nonincreasing (nondecreas-
ing) in β if ψ is nonincreasing (nondecreasing). Now define g : R2 → R by

g (s, t) = Ex∼μs f

[
Ex ′∼μt f

[(
f (x) − f

(
x ′))2 1 f (x)≥ f (x ′)

]]
,

so that

σ 2
s f ( f ) = 1

2
Ex∼μs f

[
Ex ′∼μs f

[(
f (x) − f

(
x ′))2

]]
= g (s, s) .

Now for fixed x the function
(
f (x) − f

(
x ′))2 1 f (x)≥ f (x ′) is nonincreasing in f

(
x ′),

so g (s, t) is nonincreasing in t . On the other hand, for fixed x ′,
(
f (x) − f

(
x ′))2

1 f (x)≥ f (x ′) is nondecreasing in f (x), so g (s, t) is nondecreasing in s (this involves
exchanging the two expectations in the definition of g (s, t)). So, since μ0 f = μ, we
get from 0 ≤ s ≤ β that

σ 2
s f ( f ) = g (s, s) ≤ g (β, 0) = Ex∼μβ f

[
Ex ′∼μ

[(
f (x) − f

(
x ′))2

+
]]

.

�

Here is another way to write the conclusion: let h ∈ A be defined by h (x) =
Ex ′∼μ

[(
f (x) − f

(
x ′))2

+
]
. Then σ 2

s f ( f ) ≤ Eβ f [h].

Define two operators D2 : A → A and V 2+ : A → A by

D2 f =
∑

k

(

f − inf
y∈�k

Sky f

)2

and V 2
+ f =

∑

k

Ey∼μk

[((
f − Sky f

)
+
)2

]

.

Clearly V 2+ f ≤ D2 f as D2 f is obtained by bounding the expectations in the
definition of V 2+ by their suprema.

Lemma 26 For β > 0 and f ∈ A

Ent f (β) ≤ β2

2
Eβ f

[
V+ ( f )

]
.

Proof For k ∈ {1, ..., n}write hk = Ey∼μk

[(
f − Sky f

)2
+
]
, so that V+ ( f ) = ∑

k hk .

The conditional version of Lemma 25 then reads for 0 ≤ s ≤ β and k ∈ {1, ..., n}

σ 2
k,s f ( f ) ≤ Ek,β f [hk] .

Theorem 12 gives
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Ent f (β) ≤
∫ β

0

∫ β

t

∑

k

Eβ f
[
σ 2
k,s f ( f )

]
dsdt

≤
∫ β

0

∫ β

t

∑

k

Eβ f
[
Ek,β f [hk]

]
dsdt

=
∫ β

0

∫ β

t

∑

k

Eβ f [hk] dsdt

= β2

2
Eβ f

[
V+ ( f )

]
,

where we used the identity Eβ f
[
Ek,β f [h]

] = Eβ f [h] for h ∈ A. �
The usual arguments involving Theorem 12 and an optimization in β now imme-

diately lead to

Theorem 27 With t > 0

Pr { f − E [ f ] > t} ≤ exp

( −t2

2 supx∈� V 2+ f (x)

)

≤ exp

( −t2

2 supx∈� D2 f (x)

)

.

We get a corresponding lower tail bound only for D2 and we have to use an
estimate similar to what was used in the proof of Bennett’s inequality.

Lemma 28 If f − infk f ≤ 1,∀k then for β > 0

Ent− f (β) ≤ ψ (β) E−β f
[
D2 f

]
,

with ψ (t) = et − t − 1 defined as in (16).

Proof Let k ∈ {1, ..., n}. Wewrite hk := f − infk f . Then hk ∈ [0, 1] and for s ≤ β

we have 1 ≤ e(β−s)hk ≤ eβ−s , so

Ek,−shk

[
h2k

] = Ek
[
h2ke

−βhk e(β−s)hk
]

Ek
[
e−βhk e(β−s)hk

] ≤ e(β−s) Ek
[
h2ke

−βhk
]

Ek
[
e−βhk

] = e(β−s)Ek,−βhk

[
h2k

]
.

We therefore have

∫ β

0

∫ β

t
Ek,−s f

[
h2k

]
ds dt =

∫ β

0

∫ β

t
Ek,−shk

[
h2k

]
ds dt

≤
(∫ β

0

∫ β

t
eβ−sds dt

)

Ek,−βhk

[
h2k

]
= ψ (β) Ek,−β f

[
h2k

]
,

where we used the formula

∫ β

0

∫ β

t
e−sds dt = 1 − e−β − βe−β .
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Thus, using Theorem 12 and the identity E−β f Ek,−β f = E−β f ,

Ent− f (β) ≤ E−β f

[
∑

k

∫ β

0

∫ β

t
σ 2
k,−s f [ f ] ds dt

]

≤ E−β f

[
∑

k

∫ β

0

∫ β

t
Ek,−s f

[
h2k

]
ds dt

]

≤ ψ (β) E−β f

[
∑

k

Ek,−β f

[
h2k

]
]

= ψ (β) E−β f

[
D2 f

]
.

�

Lemmas 26 and 28 together with (7) imply the inequalities

ln E
[
eβ( f −E[ f ])

] ≤ β

2

∫ β

0
Eγ f

[
V 2

+ f
]
dγ. (18)

and, if f − infk f ≤ 1 for all k, then

ln E
[
eβ(E[ f ]− f )

] ≤ ψ (β)

β

∫ β

0
E−γ f

[
D2 f

]
dγ, (19)

where in the last inequality we also used the fact that γ �→ ψ (γ ) /γ 2 is nondecreas-
ing. Bounding the thermal expectation with the uniform norm and substitution of

β = ln
(
1 + t

∥
∥D2 f

∥
∥−1

∞
)
gives the following lower tail bound as in the proof of the

Bennett-Bernstein inequalities.

Theorem 29 If f − infk f ≤ 1 for all k, then for t > 0 and with � := supx∈�

D2 f (x)

Pr {E f − f > t} ≤ exp

(

−�

((

1 + t

�

)

ln

(

1 + t

�

)

− t

�

))

≤ exp

( −t2

2 supx∈� D2 f (x) + 2t/3

)

.

4.3 Convex Lipschitz Functions

In Sect. 4.1 we gave a sub-gaussian bound for Lipschitz functions of independent
standard normal variables. Now we prove the same upper tail bound under different
hypotheses. Instead of assuming μk to be standard normal we require �k = [0, 1]
and let μk be perfectly arbitrary. On the other hand, in addition to being an L-
Lipschitz function, we require f to be convex (actually only separately convex in
each argument).

Theorem 30 Let �k = I, an interval of unit diameter, and let f ∈ A be C1, L-
Lipschitz and such that y ∈ [0, 1] �→ Sky f (x) is convex for all k and all x. Then
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Pr { f − E f > t} ≤ e−t2/2L2
.

Proof By an approximation argument we can assume f to be differentiable. Let x ∈
[0, 1]n , k ∈ {1, ..., n} and y ∈ [0, 1] such that Sky f (x) ≤ f (x). Then, using separate
convexity,

f (x) − Sky f (x) ≤ 〈
x − Skyx, ∂ f (x)

〉
Rn = (xk − y)

∂

∂xk
f (x) ≤

∣
∣
∣
∣

∂

∂xk
f (x)

∣
∣
∣
∣ .

We therefore have f (x) − inf y Sky f (x) ≤ |(∂/∂xk) f (x)| and

D2 f (x) =
n∑

k=1

(

f (x) − inf
y
Sky f (x)

)2

≤ ‖∇ f (x)‖2
Rn ≤ L2.

Theorem 27 then gives the conclusion. �

For future reference we record the following fact: if �k is an interval of unit
diameter and A anm × n-matrix then x �→ ‖Ax‖ is a convex function with Lipschitz
constant ‖A‖ and thus

D2 (‖Ax‖) ≤ ‖A‖2 . (20)

4.4 The Operator Norm of a Random Matrix

For x ∈ [−1, 1]n
2
let M (x) be the n × n matrix whose entries are given by the

components of x. We are interested in the concentration properties of the operator
norm of M (X), when X is a vector with independent, but possibly not identically
distributed components chosen from [−1, 1]. The function in question is then f :
[−1, 1]n

2 → R defined by

f (x) = ‖M (x)‖ = sup
‖w‖,‖v‖=1

〈M (x) v,w〉 ,

where 〈., .〉 and ‖.‖ refer to inner product and norm in R
n .

To bound D2 f (x) first let x ∈ [−1, 1]n
2
be arbitrary but fixed, and let v and w be

unit vectors witnessing the supremum in the definition of f (x).
Now let (k, l) be any index to a matrix entry and choose any y ∈ [−1, 1] such

that S(k,l)
y f (x) ≤ f (x). Then

f (x) − S(k,l)
y f (x) = 〈M (x) v,w〉 − sup

‖w′‖,‖v′‖=1

〈
S(k,l)
y M (x) v′,w′〉

≤ 〈(
M (x) − S(k,l)

y M (x)
)
v,w

〉 = (xkl − y) vkwl

≤ 2 |vk | |wl | .
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Note that f − infk f ≤ 2. Also

D2 f (x) =
∑

k,l

(

f (x) − inf
y∈[−1,1]

S(k,l)
y f (x)

)2

≤ 4
∑

k,l

|vk |2 |wl |2 = 4.

The results of the previous section (rescaling for the lower tail to get f − infk f ≤ 1)
then lead to a concentration inequality independent of the size of the random matrix.

Theorem 31 Let X = (
Xi j

)
1≤i, j≤n be a vector of n

2 independent random variables
with values in [−1, 1], and X′ iid to X. Then for t > 0.

Pr
{‖M (X)‖ − E

[∥
∥M

(
X′)∥∥] ≥ t

} ≤ exp

(−t2

8

)

and

Pr
{
E

[∥
∥M

(
X′)∥∥] − ‖M (X)‖ ≥ t

} ≤ exp

( −t2

8 + 4t/3

)

.

Observe that the argument depends on the fact that the unit vectors v and w could
be fixed independent of k and l. This would not have been possible with the bounded
difference inequality. Also note that square matrices were chosen for notational
convenience only. The same proof would work for rectangular matrices.

5 Beyond Uniform Bounds

All of the above applications of the entropy method to derive upper tail bounds
involved an inequality of the form

Ent f (γ ) ≤ ξ (γ ) Eγ f [G ( f )] ,

where ξ is some nonnegative real function and G is some operator G : A → A,
which is positively homogeneous of order two. For the bounded difference inequality
ξ (γ ) = γ 2/8 and G = R2, for the Bennett inequality ξ (γ ) = γ eγ − eγ + 1 and
G = �2, for Theorem 27 we had ξ (γ ) = γ 2/2 and G = V 2+. Theorem 12 is then
used to conclude that

ln Eeβ( f −E f ) ≤ β

∫ β

0

ξ (γ )

γ 2
Eγ f [G ( f )] dγ ≤ β sup

x
G ( f ) (x)

∫ β

0

ξ (γ ) dγ

γ 2
.

(21)
An analogous strategy was employed for the various lower tail bounds.
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The uniform estimate Eγ f [G ( f )] ≤ supx G ( f ) (x) in (21), while being very
simple, is somewhat loose and can sometimes be avoided by exploiting special prop-
erties of the thermal expectation and the function in question.

5.1 Self-boundedness

The first possibility we consider is that the function G ( f ) can be bounded in terms
of the function f itself, a property referred to as self-boundedness [8]. For exam-
ple, if simply G ( f ) ≤ f , then Eγ f [G ( f )] ≤ Eγ f [ f ] = (d/dγ ) ln Zγ f , and if the
function ξ has some reasonable behavior, then the first integral in (21) above can be
bounded by partial integration or even more easily. As an example we apply this idea
in the setting of Theorems 27 and 29.

Lemma 32 Suppose that for f ∈ A there are nonnegative numbers a, b such that
(i) V 2+ f ≤ a f + b. Then for 0 ≤ β < 2/a

ln E
[
eβ( f −E[ f ])

] ≤ β2 (aE f + b)

2 − aβ
,

(ii) D2 f ≤ a f + b. If in addition f − infk f ≤ 1 for all k, then for β < 0 and
a ≥ 1

ln E
[
eβ(E[ f ]− f )

] ≤ β2 (aE [ f ] + b)

2
.

Proof (i) We use (18) and get

ln E
[
eβ( f −E[ f ])

] ≤ β

2

∫ β

0
Eγ f

[
V 2

+ f
]
dγ ≤ aβ

2

∫ β

0
Eγ f [ f ] dγ + bβ2

2

= aβ

2
ln Zβ f + bβ2

2
,

where the last identity follows from the fact that Eγ f [ f ] = (d/dγ ) ln Zγ f . Thus

ln E
[
eβ( f −E[ f ])

] ≤ aβ

2
ln Eeβ( f −E[ f ]) + aβ2

2
E f + bβ2

2
,

and rearranging this inequality for β ∈ (0, 2/a) establishes the claim.



86 A. Maurer

(ii) We use (19)

ln E
[
eβ(E[ f ]− f )

]
≤ ψ (β)

β

∫ β

0
E−γ f

[
D2 f

]
dγ

≤ aψ (β)

β

∫ β

0
E−γ f [ f ] dγ + bψ (β) = −aψ (β)

β
ln Z−β f + bψ (β)

= −aψ (β)

β
ln E

[
eβ(E[ f ]− f )

]
+ ψ (β) (aE [ f ] + b) .

Rearranging gives

ln E
[
eβ(E[ f ]− f )

] ≤ ψ (β)

1 + aβ−1ψ (β)
(aE [ f ] + b) ≤ β2 (aE [ f ] + b)

2
,

where one verifies that for β > 0 and a ≥ 1 we have ψ (β)
(
1 + aβ−1ψ (β)

)−1 ≤
β2/2. �

The bound in part (i) requires an upper bound on β. To proceed we need the
following optimization lemma, which will be used several times in the sequel and
leads to tail bounds with both sub-Gaussian and subexponential regimes, similar to
Bernstein’s inequality.

Lemma 33 Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(

−βt + Cβ2

1 − bβ

)

≤ −t2

2 (2C + bt)
. (22)

Proof Let h (t) = 1 + t − √
1 + 2t . Then use

2h (t) (1 + t) = 2 (1 + t)2 − 2 (1 + t)
√
1 + 2t

= (1 + t)2 − 2 (1 + t)
√
1 + 2t + (1 + 2t) + t2

=
(
1 + t − √

1 + 2t
)2 + t2

≥ t2,

so that

h (t) ≥ t2

2 (1 + t)
. (23)

Substituting

β = 1

b

(

1 −
(

1 + bt

C

)−1/2
)

in the left side of (22) we obtain
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inf
β∈[0,1/b)

(

−βt + Cβ2

1 − bβ

)

≤ −2C

b2
h

(
bt

2C

)

≤ −t2

2 (2C + bt)
,

where we have used (23). �

Theorem 34 Suppose for f ∈ A there are nonnegative numbers a, b such that
(i) V 2+ f ≤ a f + b. Then for t > 0 we have

Pr { f − E [ f ] > t} ≤ exp

( −t2

2 (aE [ f ] + b + at/2)

)

.

(ii) D2 f ≤ a f + b. If in addition, a ≥ 1 and f − infk f ≤ 1,∀k ∈ {1, ..., n},
then

Pr {E [ f ] − f > t} ≤ exp

( −t2

2 (aE [ f ] + b)

)

.

Proof Part (i) follows from Lemmas 32 (i) and Lemma 33). Part (ii) is immediate
from Lemma 32 (ii). �

Boucheron et al. [8] have given a refined version for the lower tail, where the
condition a ≥ 1 is relaxed to a ≥ 1/3 for the lower tail. There they also show that
Theorems 34 and 27 together suffice to derive a version of the convex distance
inequality which differs from Talagrand’s original result only in that it has an inferior
constant in the exponent.

5.2 Convex Lipschitz Functions Revisited

In Sect. 4.3 we gave a sub-Gaussian bound for the upper tail of separately convex
Lipschitz functions on [0, 1]n . Nowweuse self-boundedness to complement thiswith
a sub-Gaussian lower bound, using an elegant trick of Boucheron et al. [6] where
the lower bound in Theorem 34 is applied to the square of the Lipschitz function f .
The essence of the trick is the following simple lemma.

Lemma 35 If f ≥ 0 then D2
(
f 2

) ≤ 4D2 ( f ) f 2.

Proof Since f ≥ 0we have infk
(
f 2

) = (infk f )2, so, using (a + b)2 ≤ 2a2 + 2b2,

D2
(
f 2

) =
∑

k

(

f 2 − inf
k

f 2
)2

=
∑

k

(

f − inf
k

f

)2 (

f + inf
k

f

)2

≤ 4 f 2
∑

k

(

f − inf
k

f

)2

= 4D2 ( f ) f 2.

�
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For the sub-Gaussian lower bound we need the additional assumption that f 2

takes values in an interval of length at most one.

Theorem 36 Let �k = [0, 1] and let f ∈ A be L-Lipschitz, nonnegative and such
that y ∈ [0, 1] �→ Sky f (x) is convex for all k and all x, and suppose in addition, that
f 2 takes values in an interval of length at most one. Then for all t ∈ [0, E [ f ]]

Pr {E [ f ] − f > t} ≤ e−t2/8L2
.

Proof The trick is to study the function f 2 instead of f . Let x ∈ [0, 1]n . Using
separate convexity as in the proof of Theorem 30 we have D2 f ≤ L2, so by the
previous lemma D2 ( f )2 ≤ 4L2 f 2. For any k we have f 2 (x) − inf f 2k (x) ≤ 1, so
by the lower tail bound of Theorem 34 we get a lower tail bound for f 2

Pr
{
E

[
f 2

] − f 2 > t
} ≤ exp

(
−t2

8L2E
[
f 2

]

)

.

Thus

Pr {E [ f ] − f > t} = Pr

{√
E

[
f 2

]
(E [ f ] − f ) >

√
E

[
f 2

]
t

}

≤ Pr

{(√
E

[
f 2

] + f

) (√
E

[
f 2

] − f

)

>

√
E

[
f 2

]
t

}

= Pr

{

E
[
f 2

] − f 2 >

√
E

[
f 2

]
t

}

≤ exp

(−t2

8L2

)

.

Here we used E [ f ] ≤
√
E

[
f 2

]
and the assumption that f is nonnegative in the first

inequality. �

5.3 Decoupling

A second method to avoid the uniform bound on the thermal expectation uses decou-
pling. By the duality formula of Theorem 4 we have for any f, g ∈ A and β ∈ R

Eβ f [g] ≤ Ent f (β) + ln E
[
eg

]
. (24)

Recall the discussion at the beginning of Sect. 5, where we had a general bound of
the form Ent f (β) ≤ ξ (β) Eβ f [G ( f )]. Using (24) we can now obtain for any λ > 0
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Ent f (β) ≤ ξ (β) λ−1Eβ f [λG ( f )] ≤ ξ (β) λ−1
(
Ent f (β) + ln E

[
exp (λG ( f ))

])
,

and for values of β and λ where λ > ξ (β) we obtain

Ent f (β) ≤ ξ (β)

λ − ξ (β)
ln E

[
exp (λG ( f ))

]
(25)

= ξ (β)

λ − ξ (β)

(
ln E

[
eλ(G( f )−E[G( f )])

] + λE [G ( f )]
)
.

Hence, if we can control the moment generating function of G ( f ) (or some suitable
bound thereof), we obtain concentration inequalities for f , effectively passing from
the thermal measure μβ f to the thermal measure μλG( f ). The second line shows
that in this way the supremum of G ( f ) can possibly be replaced by an expectation.
The λ − ξ (β) in the denominator makes some constraint on β necessary, so the
improvement comes at the price of an extra or enlarged subexponential term in the
resulting concentration inequality. We conclude this chapter with three applications
of this trick, which has been proposed in [7].

5.4 Quadratic Forms

As a first illustration we give a version of the Hanson-Wright inequality (Theorem
6.2.1 in [29]) for boundedvariables. Let A be a symmetricn × n-matrix,which is zero
on the diagonal, that is Aii = 0 for all i , and suppose that X1, ..., Xn are independent
random variables with values in an interval I of unit diameter. We study the random
variable f (X), where

f (x) =
∑

i, j

xi Ai j x j .

As operator G we use R2, the sum of squared conditional ranges which appears in
the bounded difference inequality. For the function in question we have

Dk
y,y′ f (x) = 2

(
y − y′) ∑

i

Aki xi = 2
(
y − y′) (Ax)k ,

and, since I has unit diameter

R2 ( f ) (x) =
∑

k

sup
y,y′∈I

(
Dk

y,y′ f (x)
)2 ≤ 4

∑

k

(Ax)2k = 4 ‖Ax‖2 .

We can therefore conclude from (12) in the proof of the bounded difference inequality
(Theorem 14), that Ent f (γ ) ≤ (

γ 2/8
)
Eγ f

[
R2 ( f )

] ≤ (
γ 2/2

)
Eγ f

[‖AX‖2]. But
instead of bounding the last thermal expectation by a supremum, as we did before,
we now look for concentration properties of the function x �→ ‖Ax‖2.
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By (20) and Lemma 35 we have the self-bounding inequality D2
(‖Ax‖2) ≤

4 ‖A‖2 ‖Ax‖2 and Lemma 32 gives for 0 ≤ λ < 1/
(
2 ‖A‖2)

ln E
[
eλ‖Ax‖2

]
≤ λE

[‖Ax‖2]

1 − 2 ‖A‖2 λ
.

Now Let 0 < γ < 1/ ‖A‖ and set λ := γ / (2 ‖A‖) < 1/
(
2 ‖A‖2). Using the above

bound on Ent f (γ ) and the decoupling inequality (24) we get

λEnt f (γ ) ≤ γ 2

2
Eγ f

[
λ ‖Ax‖2] ≤ γ 2

2

(
Ent f (γ ) + ln E

[
eλ‖Ax‖2

])

≤ γ 2

2
Ent f (γ ) + γ 2

2

λE
[‖Ax‖2]

1 − 2 ‖A‖2 λ
.

Collect terms in Ent f (γ ), divide by λ − γ 2/2 (which is positive by the constraint
on γ and the choice of λ) and substitute the value of λ to get

Ent f (γ ) ≤ γ 2

(1 − ‖A‖ γ )2

E
[‖Ax‖2]

2
.

From Theorem 12 we conclude that for β < 1/ ‖A‖

Pr { f − E f } ≤ exp

(

β

∫ β

0

Ent f (γ )

γ 2
dγ − βt

)

≤ exp

(
β2

1 − ‖A‖β

E
[‖Ax‖2]

2
− βt

)

,

and using Lemma 33 to minimize the last expression in β ∈ (0, 1/ ‖A‖) gives our
version of the Hanson-Wright inequality for bounded variables.

Theorem 37 Let A be a symmetric n × n-matrix, zero on the diagonal, and X =
(X1, ..., Xn) a vector of independent random variables with values in an interval I
of unit diameter. Let f : Xn → R be defined by f (x) = ∑

i j xi Ai j x j . Then for t > 0

Pr { f − E f > t} ≤ exp

(
−t2

2E
[‖AX‖2] + 2 ‖A‖ t

)

.

5.5 The Supremum of an Empirical Process

We will now apply the decoupling trick to the upwards tail of the supremum of an
empirical process, sharpening the bound obtained in Sect. 3.4.
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Theorem 38 Let X1, ..., Xn be independent with values in some space X with Xi

distributed as μi , and let F be an at most countable class of functions f : X →
[−1, 1] with E [ f (Xi )] = 0. Define F : Xn → R and W : Xn → R by

F (x) = sup
f ∈F

∑

i

f (xi ) and

W (x) = sup
f ∈F

∑

i

(
f 2 (xi ) + E

[
f 2 (Xi )

])
.

Then for t > 0

Pr {F − E [F] > t} ≤ exp

( −t2

2E [W ] + t

)

.

This inequality improves over Theorem12.2 in [6], since by the triangle inequality
E [W ] ≤ �2 + σ 2 and the constants in the denominator of the exponent are better
by a factor of two, and optimal for the variance term.

Proof Let 0 < γ ≤ β < 2. Using Theorem 26 and (24) we get

EntF (γ ) ≤ γ

2
Eγ F

[
γ V 2

+ (F)
] ≤ γ

2

(
EntF (γ ) + ln Eeγ V 2+(F)

)
.

Rearranging gives

EntF (γ ) ≤ γ

2 − γ
ln Eeγ V 2+(F). (26)

Fix some x ∈ Xn and let f̂ ∈ F witness the maximum in the definition of F (x). For

y ∈ Xwe have
(
F − Sky F

)
+ ≤

(
f̂ (xi ) − f̂ (y)

)

+
and by the zero mean assumption

V 2
+ (F) (x) =

∑

k

Ey∼μk

[(
F (x) − Sky F (x)

)2
+
]

≤
∑

k

Ey∼μk

(
f̂ (xk) − f̂ (y)

)2

+

≤
∑

k

Ey∼μk

(
f̂ (xk) − f̂ (y)

)2

=
∑

k

(
f̂ 2 (xk) + E

[
f̂ 2 (Xk)

])

≤ W (x) .

So V 2+ (F) ≤ W . It follows from (26) that

EntF (γ ) ≤ γ

2 − γ
ln Eeγ V+(F) ≤ γ

2 − γ
ln E

[
eγW

]
. (27)



92 A. Maurer

Next we establish self-boundedness ofW . Let f̂ ∈ F (different from the previous
f̂ , which we don’t need any more) witness the maximum in the definition of W (x).
Then

V 2
+ (W ) (x) =

∑

k

Ey∼μk

(
W (x) − SkyW (x)

)2
+

≤
∑

k

Ey∼μk

[(
f̂ 2 (xk) − f̂ 2 (y)

)2

+

]

≤
∑

k

f̂ 2 (xk)

≤ W.

It therefore follows from the self-bounding lemma, Lemma 32, that

ln E
[
eγW

] ≤ γ 2E [W ]

2 − γ
+ γ E [W ] = γ E [W ]

1 − γ /2
.

Combining this with (27) gives

EntF (γ ) ≤ γ

2 − γ

(
γ E [W ]

1 − γ /2

)

= γ 2

(1 − γ /2)2
E [W ]

2
.

From (6) in Theorem 12 we conclude that

ln Eeβ(F−EF) = β

∫ β

0

EntF (γ )

γ 2
dγ ≤ β

∫ β

0

1

(1 − γ /2)2
dγ

E [W ]

2

= β2

1 − β/2

E [W ]

2
.

Using Lemma 33 it follows that

Pr {F − E [F] > t} ≤ inf
β∈(0,2)

exp

(

−βt + β2

1 − β/2

E [W ]

2

)

≤ exp

( −t2

2E [W ] + t

)

.

�

5.6 Another Version of Bernstein’s Inequality

A potential weakness of Theorem 21 is the occurrence of the supremum in the defi-
nition of the variance parameter V = supx∈� �2 ( f ) (x). If the supremum could be
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replaced by an expectation, the variance parameter would become the Efron–Stein
upper bound E

[
�2 ( f )

]
on the variance σ 2 ( f ), making the inequality considerably

stronger. Such a modification is possible at the expense of enlarging the subexpo-
nential term in Bernstein’s inequality. Define the interaction functional

J ( f ) = 2

⎛

⎝ sup
x,z∈�

∑

k,l:k 	=l

σ 2
k

(
f − Slzl f

)
(x)

⎞

⎠

1/2

.

The following theorem is given in [21]

Theorem 39 Suppose f ∈ A (�) satisfies f − Ek f ≤ b for all k. Then for all t > 0

Pr { f − E f > t} ≤ exp

(
−t2

2E
[
�2 ( f )

] + (2b/3 + J ( f )) t

)

.

Here we will use the tools introduced above to prove a slight strengthening of this
result, removing the boundedness conditions above.

Let f : � = ∏n
i=1 �i → R and consider the three conditions

(A) = (( f − Ek f ) ≤ b for all k)

(B) =
(

Ek
[
( f − Ek f )

m
] ≤ 1

2
m!σ 2

k ( f ) bm−2 for m ≥ 2 and all k

)

(C) =
(

n∑

k=1

Ek
[
( f − Ek f )

m
] ≤ �2 ( f )

2
m!bm−2 for m ≥ 2

)

.

Then (A) =⇒ (B) =⇒ (C). The last condition (sometimes called “Bernstein con-
dition” in the literature) is sufficient for the following version of Bernstein’s inequal-
ity, which extends Theorem 2.10 in [6] from sums to general functions and replaces
the one-sided boundedness requirement of Theorem 39 by the Bernstein condition.

Theorem 40 Let f : � = ∏n
i=1 �i → R be measurable and suppose that (C)

holds. Then for t > 0

Pr { f − E f > t} ≤ exp

(
−t2

2E
[
�2 ( f )

] + (2b + J ( f )) t

)

.

The first step is to bound the entropy of f under the condition (C), thus replacing
Lemma 19 in the proof of Theorem 21.

Lemma 41 Suppose (C) holds with b = 1. Then for all β ∈ [0, 1)

Ent f (β) ≤ β2Eβ f
[
�2 ( f )

]

2 (1 − β)2
.
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Proof First we get from the variational property of variance, that

σ 2
k,β f ( f ) ≤ Ek,β f

[
( f − Ek ( f ))2

] = Ek
[
( f − Ek ( f ))2 eβ( f −Ek f )

]

Ek
[
eβ( f −Ek f )

]

≤ Ek
[
( f − Ek ( f ))2 eβ( f −Ek f )

]
,

where we used Jensen’s inequality to get Ek
[
exp (β ( f − Ek f ))

] ≥ 1 for the second
inequality. From monotone convergence and (C) we then get

n∑

k=1

σ 2
k,β f ( f ) ≤

n∑

k=1

Ek
[
( f − Ek f )

2 eβ( f −Ek f )
] =

∞∑

m=0

n∑

k=1

βm

m! Ek
[
( f − Ek f )

m+2
]

≤ �2 ( f )

2

∞∑

m=0

(m + 1) (m + 2) βm .

Thus from Theorem 12

Ent f (β) ≤ Eβ f

[∫ β

0

∫ β

t

n∑

k=1

σ 2
k,s f ( f ) ds dt

]

≤ Eβ f
[
�2 ( f )

]

2

∞∑

m=0

(m + 1) (m + 2)
∫ β

0

∫ β

t
smdsdt

= Eβ f
[
�2 ( f )

]

2
β2

∞∑

m=0

(m + 1) βm = β2Eβ f
[
�2 ( f )

]

2 (1 − β)2
.

�

At this pointwe could bound the thermal expectation Eβ f
[
�2 ( f )

]
by a supremum

and proceed along the usual path to obtain a version of Theorem 21 under condition
(C), which, for sums of independent variables, would reduce to Theorem 2.10 in [6].
Instead we wish to exploit the decoupling idea and look for concentration properties
of �2 ( f ).

The crucial property of the interaction functional J is, that J 2 is a self-bound for
�2 ( f ). The following Lemma is also the key to the proof of Theorem 39.

Lemma 42 We have D2
(
�2 ( f )

) ≤ J ( f )2 �2 ( f ) for any f ∈ A (�).

Proof Fix x ∈ �. Below all members of A are understood as evaluated on x. For
l ∈ {1, ..., n} let zl ∈ �l be a minimizer in z of Slz�

2 ( f ). Then

D2
(
�2 ( f )

) =
∑

l

⎛

⎝
∑

k:k 	=l

(
σ 2
k ( f ) − Slzlσ

2
k ( f )

)
⎞

⎠

2

.
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The sum over k 	= l, since σ 2
k ( f ) ∈ Ak , so Slzlσ

2
k ( f ) = σ 2

k ( f ). Then, using

2σ 2
k ( f ) = E(y,y′)∼μ2

k

(
Dk

y,y′ f
)2
, we get

4D2 (
�2 ( f )

) =
∑

l

⎛

⎝
∑

k:k 	=l

E(y,y′)∼μ2
k

(
Dk

y,y′ f
)2 − Slzl E(y,y′)∼μ2

k

(
Dk

y,y′ f
)2

⎞

⎠

2

=
∑

l

⎛

⎝
∑

k 	=l

E(y,y′)∼μ2
k

[(
Dk

y,y′ f
)2 −

(
Dk

y,y′ Slzl f
)2

]
⎞

⎠

2

=
∑

l

⎛

⎝
∑

k 	=l

E(y,y′)∼μ2
k

[(
Dk

y,y′ f − Dk
y,y′ Slzl f

) (
Dk

y,y′ f + Dk
y,y′ Slzl f

)]
⎞

⎠

2

≤
∑

l

∑

k:k 	=l

E(y,y′)∼μ2
k

[
Dk

y,y′
(
f − Slzl f

)]2 ×

∑

k:k 	=l

E(y,y′)∼μ2
k

[
Dk

y,y′ f + Dk
y,y′ Slzl f

]2

by an application of Cauchy–Schwarz. Now, using (a + b)2 ≤ 2a2 + 2b2, we can
bound the last sum independent of l by

∑

k:k 	=l

E(y,y′)∼μ2
k

[
2

(
Dk

y,y′ f
)2 + 2

(
Dk

y,y′ Slzl f
)2]

= 4
∑

k:k 	=l

σ 2
k ( f ) + 4Slzl

∑

k:k 	=l

σ 2
k ( f )

≤ 4
(
�2 ( f ) + Slzl�

2 ( f )
) = 4

(

�2 ( f ) + inf
z∈�l

Slz�
2 ( f )

)

≤ 8�2 ( f ) ,

so that

D2
(
�2 ( f )

) ≤ 2
∑

l

∑

k:k 	=l

E(y,y′)∼μ2
k

[
Dk

y,y′
(
f − Slzl f

)]2
�2 ( f )

≤ 4 sup
x,z∈�

∑

k,l:k 	=l

σ 2
k

(
f − Slz f

)
(x) �2 ( f ) = J 2 ( f ) �2 ( f ) .

�

Now we can use decoupling to put these pieces together.

Proof of Theorem 40 By rescaling it suffices to prove the result for b = 1. We can
also assume J := J ( f ) > 0. Let 0 < γ ≤ β < 1/ (1 + J/2) and set θ =
γ / (J (1 − γ )). Then γ 2/

(
2 (1 − γ )2

)
< θ < 2/J 2. By the Lemma 41
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θEnt f (γ ) ≤ γ 2

2 (1 − γ )2
Eγ f

[
θ�2 ( f )

]
≤ γ 2

2 (1 − γ )2

(
Ent f (γ ) + ln E

[
eθ�2( f )

])
,

where the second inequality follows from the decoupling inequality (24). Subtract
γ 2/

(
2 (1 − γ )2

)
Ent f (γ ) to get

Ent f (γ )

(

θ − γ 2

2 (1 − γ )2

)

≤ γ 2

2 (1 − γ )2
ln E

[
eθ�2( f )

]
.

Since γ 2/
(
2 (1 − γ )2

)
< θ this simplifies, using the value of θ , to

Ent f (γ ) ≤ γ J

2 (1 − (1 + J/2) γ )
ln E

[
eθ�2( f )

]
. (28)

On the other hand θ < 2/J 2, so by the self-boundedness of �2 ( f ) (Lemma 42) and
part (i) of Lemma 32 give

ln E
[
eθ�2( f )

]
≤ θ

1 − J 2θ/2
E

[
�2 ( f )

] = γ /J

1 − (1 + J/2) γ
E

[
�2 ( f )

]
. (29)

Combining (28) and (29) to get a bound on S f (γ ) gives

Ent f (γ ) ≤ γ 2

2 (1 − (1 + J/2) γ )2
E

[
�2 ( f )

]

and from Theorem 12 and Lemma 33

Pr { f − E f > t} ≤ inf
β∈(0,1/(1+J/2))

exp

(
E

[
�2 ( f )

]

2

β2

1 − (1 + J/2) β
− βt

)

≤ exp

(
−t2

2
(
E

[
�2 ( f )

] + (1 + J/2) t
)

)

.

�
To use Theorem 40 one has to bound b and J . For the latter it is often sufficient

to use the simple bound

J ( f ) ≤ nmax
k 	=l

sup
x∈�

sup
z,z′,y,y′∈�l

Dl
z,z′ Dk

y,y′ f (x) . (30)

which can be obtained from Lemma 13.
We conclude with an application to U-statistics. Let m < n be integers, �i = X

and κ : Xm → R a symmetric kernel. For a subset of indices with cardinality m,
S = { j1, ..., jm} ⊆ {1, ..., n} define κS : Xn → R by κS (x) = κ

(
x j1 , ..., x jm

)
. The

U-statistic of order m induced by κ is then the function U : Xn → R given by
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U (x) =
(
n

m

)−1 ∑

S⊆{1,...,n}
κS (x) .

U-statistics were introduced byHoeffding [15]. Their importance stems from the fact
that for iidX = (X1, ..., Xn) the random variableU (X) is an unbiased estimator for
E [κ (X1, ..., Xm)]. Starting with the work of Hoeffding there has been a lot of work
on concentration inequalities for U-statistics. To simplify the presentation we will
not use the advantage of Theorem 40 over Theorem 39 and assume the kernel κ to
be bounded, κ : Xm → [0, 1] for simplicity.

Notice that,if k /∈ S, then κS ∈ Ak , so κS (x) − Ek [κS (x)] = 0 and thus

U (x) − Ek [U (x)] =
(
n

m

)−1 ∑

S⊆{1,...,n}
k∈S

(κS (x) − Ek [κS (x)])

≤
(
n

m

)−1

|{S ⊆ {1, ..., n} : k ∈ S}|

=
(n−1
m−1

)

(n
m

)

−1

= m! (n − 1)!
n! (m − 1)! = m

n
,

so we can set the quantity b in Theorem 40 to m/n. To bound J use (30) to get

J (U ) ≤ nmax
k 	=l

sup
x∈�

sup
z,z′,y,y′∈�l

Dl
z,z′ Dk

y,y′U (x)

≤ n

(
n

m

)−1 ∑

S⊆{1,...,n}
k,l∈S:k 	=l

Dl
z,z′ Dk

y,y′κS (x)

= 2n

(
n

m

)−1

|{S ⊆ {1, ..., n} : k, l ∈ S, k 	= l}|

= 2n
(n−2
m−2

)

(n
m

) ≤ 2m2

n
.

Substitution in Theorem 40 gives for t > 0

Pr {U − EU > t} ≤ exp

(
−t2

2E
[
�2 (U )

] + 2
(
m + m2

)
t/n

)

.

It can be shown (see, e.g., [21], Houdré [17]) that in general E
[
�2 ( f )

] ≤ σ 2 ( f ) +
J 2 ( f ) /4, so that for U-statistics the Efron–Stein inequality is tight in the sense that
E

[
�2 (U )

] ≤ σ 2 (U ) + m4/n2. It follows that for deviations t > 1/n

Pr {U − EU > t} ≤ exp

(
−t2

2σ 2 (U ) + 2
(
m + 2m2

)
t/n

)

.
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This inequality can be compared to the classical work of Hoeffding [15] and more
recent results of Arcones [2], which both consider undecoupled, nondegenerate U-
statistics of arbitrary order. Hoeffding [15] does not have the correct variance term,
while [2] gives the correct variance term but severely overestimates the subexpo-
nential coefficient in Bernstein’s inequality to be exponential in the degree m of the
U-statistic (above it is only of order m2). This exponential dependence on m results
from the use of the decoupling inequalities in [24] and seems to beset most works on
U-statistics of higher order (e.g., [1, 13]), which in many other ways improve over
our simple inequality above.

6 Appendix I. Table of Notation

General notation
� = ∏n

k=1 �k underlying (product-) probability space
A bounded measurable functions on �

μ = ⊗n
k=1μk (product-) probability measure on �

Xk random variable distributed as μk in �k
f ∈ A fixed function under investigation
g ∈ A generic function
E [g] = ∫

� gdμ expectation of g in μ

σ 2 [g] = E
[
(g − E [g])2

]
variance of g in μ

Notation for the entropy method
β = 1/T inverse temperature

Eβ f [g] = E
[
geβ f

]
/E

[
eβ f

]
thermal expectation of g

Zβ f = E
[
eβ f

]
partition function

dμβ f = Z .1
β f e

β f dμ thermal measure (canonical ensemble)

Ent f (β) = βEβ f [ f ] − ln Zβ f . (canonical) entropy
A f (β) = 1

β ln Zβ f free energy

σ 2
β f (g) = Eβ f

[(
g − Eβ f [g]

)2
]

thermal variance of g

ψ (t) = et − t − 1
Sky F (x) = F

(
x1, ..., xk−1, y, xk+1, ..., xn

)
substitution operator

Ek [g] (x) = ∫
�k

Sky g dμk (y) conditional expectation
Ak ⊂ A functions independent of k-th variable

Zk,β f = Ek
[
eβ f

]
conditional partition function

Ek,β f [g] = Z−1
k,β f Ek

[
geβ f

]
conditional thermal expectation

Entk, f (β) = βEk,β f [g] − ln Zk,β f conditional entropy

σ 2
k,β f [g] = Ek,β f

[(
g − Ek,β f [g]

)2
]

conditional thermal variance

σ 2
k [g] = Ek

[
(g − Ek [g])

2
]

conditional variance
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Operators on A
Dk
y,y′g = Skyg − Sky′g difference operator

rk (g) = supy,y′∈�k
Dk
y,y′ f conditional range operator

R2 (g) = ∑
k r

2
k (g) sum of conditional square ranges

�2 (g) = ∑
k σ 2

k [g] sum of conditional variances
(infk g) (x) = inf y∈�k S

k
y g (x) conditional infimum operator

V 2+g = ∑
k Ey∼μk

[((
g − Sky

)

+

)2
]

Efron–Stein variance proxy

D2g = ∑
k (g − infk g)

2 . worst case variance proxy
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