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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to pro-
vide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applications and imple-
mentation depend fundamentally on the structure and depth of theoretical under-
pinnings. Thus, from our point of view, the interleaving of theory and applications
and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our
state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time–frequency anal-
ysis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This
leads to a study of the Heisenberg group and its relationship to Gabor systems, and
of the metaplectic group for a meaningful interaction of signal decomposition
methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates
the justification for providing a means for centralizing and disseminating infor-
mation from the broader, but still focused, area of harmonic analysis. This will be a
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key role of ANHA. We intend to publish with the scope and interaction that such a
host of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries, Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and sci-
entific phenomena, and on the solution of some of the most important problems in
mathematics and the sciences. Historically, Fourier series were developed in the
analysis of some of the classical PDEs of mathematical physics; these series were
used to solve such equations. In order to understand Fourier series and the kinds of
solutions they could represent, some of the most basic notions of analysis were
defined, e.g., the concept of “function.” Since the coefficients of Fourier series are
integrals, it is no surprise that Riemann integrals were conceived to deal with
uniqueness properties of trigonometric series. Cantor’s set theory was also devel-
oped because of such uniqueness questions.

Analytic Number theory
Antenna Theory

Artificial Intelligence
Biomedical Signal Processing
Classical Fourier Analysis

Coding Theory
Communications Theory
Compressed Sensing

Crystallography and Quasi-Crystals
Data Mining
Data Science
Deep Learning

Digital Signal Processing
Dimension Reduction and
Classification

Fast Algorithms
Frame Theory and Applications
Gabor Theory and Applications

Geophysics
Image Processing
Machine Learning
Manifold Learning

Numerical Partial Differential
Equations
Neural Networks

Phaseless Reconstruction
Prediction Theory

Quantum Information Theory
Radar Applications

Sampling Theory (Uniform and
Non-uniform) and Applications

Spectral Estimation
Speech Processing

Statistical Signal Processing
Super-resolution
Time Series

Time-Frequency and Time-Scale
Analysis

Tomography
Turbulence

Uncertainty Principles *Waveform
design

Wavelet Theory and Applications
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A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of har-
monics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engi-
neering, mathematics, and the sciences. For example, Wiener’s Tauberian theorem
in Fourier analysis not only characterizes the behavior of the prime numbers, but is
a fundamental tool for analyzing the ideal structures of Banach algebras. It also
provides the proper notion of spectrum for phenomena such as white light. This
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems. These problems, in turn, deal naturally with
Hardy spaces in complex analysis, as well as inspiring Wiener to consider com-
munications engineering in terms of feed-back and stability, his cybernetics. This
latter theory develops concepts to understand complex systems such as learning and
cognition and neural networks; and it is arguably a precursor of deep learning and
its spectacular interactions with data science and AI.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal pro-
cessing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time–frequency-scale methods such as wavelet
theory.

The coherent states of mathematical physics are translated and modulated
Fourier transforms, and these are used, in conjunction with the uncertainty prin-
ciple, for dealing with signal reconstruction in communications theory. We are back
to the raison d’être of the ANHA series!

College Park, MD, USA John J. Benedetto
College Park, MD, USA Wojciec Czaja
Boston, MA Kasso Okoudjou
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Preface

As first stated by Galileo Galilei, Mathematics is the language of the Nature and,
conversely, our understanding of the Nature gives a fresh impulse to develop new
appealing mathematical theories. For example, the first two decades of the last
century were characterized by two revolutions in Physics: Relativity and Quantum
Mechanics. These new ideas are strongly related to the fast-growing of differential
geometry and functional analysis.

A century later a new revolution is on the way: Big Data and Machine Learning
are central both in scientific research and in everyday life applications.

Once again Mathematics provides the natural language for a solid understanding
of these topics and, conversely, they ask for new sophisticated mathematical tools.

Machine Learning tries to provide a positive answer to the problem of Artificial
Intellingence: “Can machines be able to infer new knowledge from their past
experience as a human being does ?”[6]. For example, a child is able to recognize a
cat provided that his parents have shown him some example of cats. A learning
machine would be an algorithm that, starting from a training set of examples of
input–output pairs, is able to assign the correct output to a new unlabelled input.
Statistical learning theory is the theoretical framework for Machine Learning.
However, this kind of problems has a long history outside Machine Learning. For
example, in the framework of estimation problems, the first example of learning
algorithm goes back to Boscovich and Laplace, who introduced the least absolute
regression to fit astronomic data at the end of ’700, whereas the most well-known
algorithm is the least square regression independently introduced by Legendre and
Gauss at the beginning of ’800, see [4, 10] for a historical account.

Classical estimation theory is based on some strong a priori assumption, as for
example that the data follow a normal distribution or that the functional relation
between input and output is linear, whereas Machine Learning usually deals with
problems where the generating model of the data in largely unknown. In this
framework, one of the first examples of learning algorithms is the perceptron
introduced by Rosenblatt in the late ’50 which is at the root of modern Neural
Networks [1].
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From a mathematical point of view, Statistical Learning can be seen as a branch
of non-parametric estimation theory and of empirical processes, see for example [5]
and [11]. As a discipline in its own right its theoretical foundation can be traced
back to the work of Vapnik started at the beginning of ’70, see [12] and references
therein. Around ’90 Poggio and Girosi first showed that statistical learning theory
can be reformulated as a classical approximation problem [13]. This point of view
was further developed by Smale [2] allowing to recast learning theory by using
tools of Functional Analisys [3]. This approach makes the connection with the
theory of inverse problems very clear. Following this point of view, the chapter
Regularization: from inverse problems to large-scale Machine Learning provides a
brief introduction to Statistical Learning theory, whereas Ill-posed problems: From
linear to non-linear and beyond is devoted to a review on ill posed inverse
problems.

Alhough Statistical Learning can be recast in the framework of Functional
Analysis, it naturally asks for advanced concentration inequalities that generalize
the classic weak law of large numbers, which, in the present form, is due to
Chebychev and Bienaimé in the late ’800, see [9] for a historical account. Starting
from the seminal work of Talagrand in the ’90, see [8] and references therein, in the
last decades there is a growing interest on concentration inequalities. A recent
method to derive concentration inequalities is the entropy method, which takes
inspiration from classical tools in statistical mechanics and quantum field theory,
and whose power was first recognized by Ledoux, see [7] and references therein.
The chapter Entropy and Concentration gives a self-contained introduction to the
entropy method close to its original statistics formulation and applies it to derive
concentration inequalities that are standard tools to analyze the statistical properties
of learning algorithms.

Another feature characterizing Machine Learning is that the data are not uni-
formly distributed on a bounded subset of some nice Euclidean space, but they live
near some unknown submanifold or, even worse, on some discrete graph. Almost
by its very definition, a framework in which signals on manifolds and graphs can be
treated and analyzed is that of Harmonic Analysis, where several notions of
transforms are at the very heart. We focus here on the special role played by the
Radon transform, in view of its many applications. More specifically, the
pioneering work of Helgason on integral transforms on Riemannian symmetric
spaces, which is reviewed in the chapter Unitarization of the Horocyclic Radon
Transform on Symmetric Spaces, laid the foundations of a large body of problems
that span from mathematical issues concerning very general Radon-type transforms
to the challenges of up-to-date applied tomographic techniques.

As already pointed out, we are in the Big Data epoch and Machine Learning has
to provide efficient algorithms dealing with large databases, as Imagenet (106

images, organized according to the WordNet hierarchy), Million Song (106 audio
features for music tracks), and HIGGS (107 Monte Carlo simulations to distinguish
between a signal process which produces Higgs bosons and a background process
which does not), to name a few. It is crucial to have efficient optimization
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techniques to make the learning algorithms computationally efficient, a large class
of which are defined as minimization problems of a convex functional on some
suitable function space. The chapter Proximal gradient methods for machine
learning and imaging provides an updated introduction to convex optimization
tuned to learning theory.

This volume collects some of the contributions that have been presented during
the second and third editions of the Summer Schools that have been held in Genova
in 2017 and 2019. In this sense, the book should be thought of as the second
volume of what might hopefully become a series, whose first volume is “Harmonic
and Applied Analysis”, ANHA, 2015 (Dahlke, De Mari, Grohs, Labate Eds.). Most
of the chapters appearing here are sets of notes, or adaptations thereof, of the
courses that have actually been taught during the summer schools, but a certain
degree of expansion has been encouraged. After all, people who attended the
schools have developed interests and skills that demand a reasonable continuation
in the directions that have been pointed at during the courses. Two of the contri-
butions (Bartolucci–De Mari–Monti and Salzo–Villa) are not directly linked to the
actual summer schools, but are indeed topics on which several local students do part
of their training.

Genova, Italy Filippo De Mari
Ernesto De Vito

References

1. Bengio, Y., Goodfellow, I., Courville, A.: Deep learning, vol. 1. MIT press Massachusetts,
USA (2017)

2. Cucker, F., Smale, S.: On the mathematical foundation of learning. Am. Math. Soc. 39(1), 1–
49 (2001)

3. Cucker, F., Zhou, D.X.: Learning theory: an approximation theory viewpoint, vol. 24.
Cambridge University Press (2007)

4. Farebrother, R.W.: Fitting linear relationships. Springer Series in Statistics. Perspectives in
Statistics. Springer-Verlag, New York (1999). DOI 10.1007/978-1-4612-0545-6. URL https://
doi.org/10.1007/978-1-4612-0545-6. A history of the calculus of observations 1750–1900

5. Györfi, L., Kohler, M., Krzy _zak, A., Walk, H.: A distribution-free theory of nonparametric
regression. Springer Series in Statistics. Springer-Verlag, New York (2002). DOI
10.1007/b97848. URL https://doi.org/10.1007/b97848

6. Harnad, S.: The annotation game: On turing (1950) on computing, machinery, and intelli-
gence. In: The Turing test sourcebook: philosophical and methodological issues in the quest
for the thinking computer. Kluwer (2006)

7. Ledoux, M.: The concentration of measure phenomenon, Mathematical Surveys and
Monographs, vol. 89. American Mathematical Society, Providence, RI (2001). DOI
10.1090/surv/089 . URL https://doi.org/10.1090/surv/089

8. Ledoux, M., Talagrand, M.: Probability in Banach spaces. Classics in Mathematics.
Springer-Verlag, Berlin (2011). Isoperimetry and processes, Reprint of the 1991 edition

9. Seneta, E.: A tricentenary history of the law of large numbers. Bernoulli 19(4), 1088–1121
(2013). DOI 10.3150/12-BEJSP12 . URL https://doi.org/10.3150/12-BEJSP12

Preface xi

https://doi.org/10.1007/978-1-4612-0545-6
https://doi.org/10.1007/978-1-4612-0545-6
https://doi.org/10.1007/b97848
https://doi.org/10.1090/surv/089
https://doi.org/10.3150/12-BEJSP12


10. Stigler, S.M.: Gauss and the invention of least squares. Ann. Statist. 9(3), 465–474 (1981)
11. van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes. Springer

Series in Statistics. Springer-Verlag, New York (1996). DOI 10.1007/978-1-4757-2545-2 .
URL https://doi.org/10.1007/978-1-4757-2545-2 . With applications to statistics

12. Vapnik, V.N.: Statistical learning theory. Adaptive and Learning Systems for Signal
Processing, Communications, and Control. John Wiley & Sons, Inc., New York (1998).
A Wiley-Interscience Publication

13. Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia (1990)

xii Preface

https://doi.org/10.1007/978-1-4757-2545-2


Contents

Unitarization of the Horocyclic Radon Transform on Symmetric
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Francesca Bartolucci, Filippo De Mari, and Matteo Monti

Entropy and Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Andreas Maurer

Ill-Posed Problems: From Linear to Nonlinear and Beyond . . . . . . . . . . 101
Rima Alaifari

Proximal Gradient Methods for Machine Learning and Imaging . . . . . 149
Saverio Salzo and Silvia Villa

Regularization: From Inverse Problems to Large-Scale Machine
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Ernesto De Vito, Lorenzo Rosasco, and Alessandro Rudi

Applied and Numerical Harmonic Analysis (104 Volumes) . . . . . . . . . . . 297

xiii



Contributors

Rima Alaifari ETH Zürich, Zürich, Switzerland

Francesca Bartolucci Seminar for Applied Mathematics, ETH Zurich, Zurich,
Switzerland

Filippo De Mari DIMA & MaLGa Center, Università di Genova, Genova, Italy

Ernesto De Vito DIMA & MaLGA, Universita di Genova, Genova, Italy

Andreas Maurer Istituto Italiano di Tecnologia, Genova, Italy

Matteo Monti DIMA & MaLGa Center, Università di Genova, Genova, Italy

Lorenzo Rosasco DIMA & MaLGA, Universita di Genova, Genova, Italy

Alessandro Rudi Inria and Ecole Normale Supérieure, PSL Research University,
Paris, France

Saverio Salzo Istituto Italiano di Tecnologia, Via E. Melen 83, Genova, Italy

Silvia Villa DIMA & MaLGa Center, Università degli Studi di Genova, Genova,
Italy

xv



Unitarization of the Horocyclic Radon
Transform on Symmetric Spaces

Francesca Bartolucci, Filippo De Mari, and Matteo Monti

1 Introduction

The Radon transform has its origin in the problem of recovering a function defined
on R

d from its integrals over hyperplanes. In 1917 Radon proved the reconstruction
formula for two- and three-dimensional signals. In R

3 it reads

f (x) = − 1

8π2
�

∫
S2
R f (θ, x · θ)dθ, (1)

where � is the Laplacian acting on the variable x , S2 is the sphere in R
3 and for

every θ ∈ S2 and t ∈ R we denote by R f (θ, t) the integral of f over the hyperplane
x · θ = t . Formula (1) suggests to define two dual transforms f �→ R f , g �→ R#g,
known as Radon transform and dual Radon transform, or back-projection, respec-
tively. The Radon transform R maps a function on R

d into the set of integrals over
all hyperplanes, while the dual Radon transform R# maps a function defined on the
set of hyperplanes of R

d into its integrals over the sheaves of hyperplanes through a
point. Formula (1) can be rewritten

f = −1

2
�R#R f

and solves the inverse problem of recovering f from the measured datum R f .

F. Bartolucci
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2 F. Bartolucci et al.

This classical inverse problem is a particular case of the more general issue of
recovering an unknown function on a manifold by means of its integrals over a
family of submanifolds, already investigated by Gelfand in the 1950s [12]. A natural
framework for such general inverse problems was considered by Helgason [17] and
is motivated by the group structure hidden in the polar Radon transform setting [19],
whereby the signals to be analyzed are in R

d .
In the planar case, R2 and [0, 2π) × R, which parametrizes the set of lines in the

plane by polar coordinates, are both transitive spaces of the rigid motions’ group.
This is G = R

2
� K , with K = {Rφ : φ ∈ [0, 2π)}, where

Rφ =
[
cosφ − sin φ

sin φ cosφ

]
.

We write (b, φ) ∈ R
2 × [0, 2π) for the elements in G and define the group law by

(b, φ)(b′, φ′) = (b + Rφb
′, φ + φ′ mod 2π).

The group G acts transitively on R
2 by means of

(b, φ)[x] = Rφx + b

and the isotropy at the origin x0 = (0, 0) is the Abelian subgroup

K � {(0, φ) : φ ∈ [0, 2π)}.

Therefore R
2 � G/K under the canonical isomorphism gK �→ g[x0]. Clearly, G is

a group of affine transformations of the plane and maps lines into lines. A line in the
plane is parametrized by the direction tn(θ) = (cos(θ), sin(θ)), where θ ∈ [0, 2π),
of its normal and by the coordinate t on the oriented normal line1 which describes
its intersection with the given line. The transitive action of G is then given by

(b, φ).(θ, t) = (θ + φ mod 2π, t + n(θ) · R−1
φ b)

with isotropy at the y-axis ξ0 = (0, 0) ∈ [0, 2π) × R given by

H = {((0, b2), φ) : b2 ∈ R, φ ∈ {0, π}}.

Thus, [0, 2π) × R � G/H under the canonical isomorphism gH �→ g.ξ0. From this
group-theoretic point of view, the fact that a point x ∈ R

2 belongs to the line (θ, t) ∈
[0, 2π) × R is equivalent to requiring that the left cosets x = g1K and (θ, t) = g2H
intersect. Indeed, g1[x0] belongs to the line g2.ξ0 if and only if there exists h ∈ H such
that g1[x0] = g2h[x0], so that g1(g2h)−1 ∈ K and g1K ∩ g2H �= ∅. This structure
illustrates the following general framework introduced by Helgason.

1The orientation is such that the coordinate t is 1 exactly at (cos θ, sin θ).



Unitarization of the Horocyclic Radon Transform on Symmetric Spaces 3

Consider two G-spaces X and �, where the actions on x ∈ X and ξ ∈ � are

(g, x) �→ g[x], (g, ξ) �→ g. ξ.

Both X and � are assumed to be transitive spaces, so that there exist quasi-invariant
measures dx and dξ . In Helgason’s approach, it is assumed that dx and dξ are
invariantmeasures. Fix x0 ∈ X and ξ0 ∈ � and denote by K and H the corresponding
stability subgroups, so that X � G/K and� � G/H under the isomorphisms gK �→
g[x0] and gH �→ g.ξ0, respectively. The space X is meant to describe the ambient
in which the functions to be analyzed live, for example, the Euclidean plane, or
the sphere S2 or the hyperbolic plane H 2. The second space � parametrizes the
set of submanifolds of X over which one wants to integrate functions, for instance,
lines in the Euclidean plane, great circles in S2, geodesics or horocycles in H 2.
Motivated by the group structure behind the polar Radon transform, the elements in
� can be realized as submanifolds of X introducing the concept of incidence. Two
elements x = g1K and ξ = g2H are said to be incident if they intersect as cosets
in G. The concept of incidence translates the fact that a point x ∈ X belongs to the
submanifold parametrized by ξ ∈ �. Any point ξ ∈ � is realized as a submanifold
ξ̂ ⊂ X by taking all the points x ∈ X that are incident to ξ . Precisely,

ξ̂ = {x ∈ X : x and ξ are incident} ⊂ X. (2)

Conversely, one builds the “sheaf” of manifolds x̌ through the point x ∈ X by taking
all the points ξ ∈ � that are incident to x

x̌ = {ξ ∈ � : ξ and x are incident} ⊂ �. (3)

By (2) and (3) we have that

ξ̂0 = H [x0] ⊂ X, x̌0 = K .ξ0 ⊂ �.

Both x̌0 and ξ̂0 are transitive spaces and hence carry quasi-invariant measures. By
definition, for any x = gK and ξ = γ H

x̌ = g.x̌0 ⊂ �, ξ̂ = γ [̂ξ0] ⊂ X,

which are closed subsets by Lemma 1.1 in [19]. If the maps ξ �→ ξ̂ and x �→ x̌ are
both injective, then the pair of homogeneous spaces (X, �) is called a dual pair.
This assumption is called transversality, see Lemma 1.3 in [19] for an equivalent
characterization. The transversality condition avoids a redundant parametrization
of the submanifolds of X . The reader may consult [19] for numerous examples
of dual pairs. It is worth observing that the leading example of the polar Radon
transform does not satisfy the transversality condition. Indeed, the points (θ, t) and
(θ + π mod 2π,−t) in [0, 2π) × R both parametrise the line given by the set of
points



4 F. Bartolucci et al.

(̂θ, t) = ̂(θ + π mod 2π,−t) = {x ∈ R
2 : x · n(θ) = t}.

For a deeper study on the injectivity issue, the reader may consider [2].
In Helgason’s approach the transitive spaces x̌0 and ξ̂0 are supposed to carry

K -invariant and H -invariant measures, respectively, that is

∫
x̌0

g(k−1.ξ )dμ0(ξ) =
∫
x̌0

g(ξ)dμ0(ξ), g ∈ L1(x̌0, dμ0), k ∈ K ,

∫
ξ̂0

f (h−1[x])dm0(x) =
∫

ξ̂0

f (x)dm0(x), g ∈ L1(̂ξ0, dm0), h ∈ H.

In order to define the Radon transform and its dual, one needs to introduce measures
on ξ̂ and x̌ . Thismay be done taking the pushforward of themeasure dμ0 to ξ̂ = (gH )̂

by the map ξ̂0 � x �→ g[x] ∈ ξ̂ and of the measure dm0 to x̌ = (gK )̌ by the map
x̌0 � ξ �→ g.ξ ∈ x̌ , respectively. We denote by dμx the measure on x̌ and by dmξ

the measure on ξ̂ . Since the measures on ξ̂0 and x̌0 are invariant, the measures dmξ

and dμx do not depend on the choice of the representatives of ξ and x and the
transversality condition guarantees that they are unique.

Definition 1 The Radon transform of f is the map R f : � → C given by

R f (ξ) =
∫

ξ̂

f (x)dmξ (x),

and the dual Radon transform of g is the map R#g : X → C given by

R#g(x) =
∫
x̌
g(ξ)dμx (ξ),

for any f and g for which the integrals converge.

Observe that, even if the transversality condition is not satisfied for the polar
Radon transform, both (̂θ, t) and ̂(θ + π mod 2π,−t) are endowed with the same
measure since the arc-length measure is invariant under translations and rotations.
For this reason the polar Radon transform satisfies

Rpol f (θ, t) = Rpol f (θ + π mod 2π,−t).

In this context, the most relevant issue is to recover f from the values ofR f . Another
central issue is to prove that the Radon transform, up to a composition with a suitable
pseudo-differential operator, can be extended to a unitary map Q from L2(X, dx) to
L2(�, dξ) intertwining the quasi-regular representations π and π̂ of G acting on
L2(X, dx) and L2(�, dξ), respectively.
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In [4], the authors obtain both an intertwining and a unitarization result for the
affine Radon transform. The techniques used in [4] mimic the approach followed by
Helgason to unitarize the polar Radon transform [19].

Later, inspired by the results in [4] a new approach based on representation the-
ory has been taken in order to treat in a general and unified way the problem of
unitarizing and inverting the Radon transform [1] under the assumption that π and
π̂ are irreducible. The approach taken in [1, 4] differs from Helgason’s since the
assumptions on the measures carried by X and � and by the submanifolds ξ̂ ⊂ X
are weaker, namely, their relative invariance instead of (proper) invariance. This
allows to consider a wider variety of cases of interest in applications, such as the
similitude group studied byMurenzi [3], and the generalized shearlet dilation groups
introduced by Führ in [9, 10] for the purpose of generalizing the standard shearlet
group introduced in [6, 23]. It is assumed that there exists a non-trivial π -invariant
subspaceA of L2(X, dx) such thatR is well defined for all f ∈ A and the adjoint of
the operator R : A → L2(�, dξ) has non-trivial domain. Then, it is proved that the
Radon transform R is a closable operator fromA into L2(�, dξ) and that its closure
R is independent of the choice of A and is the unique closed extension of R. The
main result states that if the quasi-regular representations π ofG on L2(X, dx) and π̂

of G on L2(�, dξ) are irreducible, then the Radon transform R, up to a composition
with a suitable pseudo-differential operator, can be extended to a unitary operator
Q : L2(X, dx) → L2(�, dξ) which intertwines them, namely,

π̂(g)Qπ(g)−1 = Q, g ∈ G.

The proof is based on the extension of Schur’s lemma due to Duflo and Moore [7].
A direct consequence of the result above is studied in [1]. Adding the hypothesis

of square-integrability of π , the authors derive a new general inversion formula for
the Radon transform of the form

f =
∫
G

χ(g)〈R f, π̂(g)
〉π(g)ψdg,

where χ is a character of G and ψ ∈ L2(X, dx) and 
 ∈ L2(�, dξ) are suitable
mother wavelets and where the Haar integral is weakly convergent. Such formula is
obtained by the usual reconstruction formula for square-integrable representations
and then by applying the unitary operator Q to both entries of the scalar product
〈 f, π(g)ψ〉. We stress that the above formula allows to reconstruct an unknown
signal by computing the family of coefficients {〈R f, π̂(g)
〉}g∈G .

The results achieved in [1, 4] have posed many interesting mathematical chal-
lenges. A natural question is to investigate how to generalize these findings to other
groups and related representations without the hypothesis of irreducibility, because
the techniques used in [1] cannot be transferred directly.

In this direction, we have considered in [5] the case of homogeneous trees. Pre-
cisely, we construct the unitarization of the horocyclic Radon transform on a homo-
geneous tree X and we prove that it intertwines the quasi-regular representations of



6 F. Bartolucci et al.

the group of isometries of X acting on the space of square-integrable functions on
the tree itself and on the space of horocycles, respectively. Since the quasi-regular
representation is not irreducible, we adopt a combination of the approach followed
by Helgason in the context of symmetric spaces [17] and the techniques that have
been developed in [4]. The main observation motivating [5] is that homogeneous
trees are the natural discrete counterpart of rank-one symmetric spaces.

This article is devoted to investigate the unitarization problem in the case when
X is a symmetric space and � is the set of horocycles of X , which has at large been
addressed by Helgason. A remarkable difference from the cases treated in [1] is that
the quasi-regular representations π of the group of isometries of the symmetric space
X acting on L2(X) is not irreducible, nor is it the representation π̂ on L2(�). We
are well aware that the unitarization problem was already considered and essentially
solved by Helgason in [17]. Precisely, he constructs a pseudo-differential operator�
and he proves that the pre-composition with the horocyclic Radon transform yields
an isometric operator, see Theorem 3.9 in Chap. II in [17]. Here, we prove that the
composition �R can actually be extended to a unitary operator Q : L2(X, dx) →
L2


 (�, dξ), where dx and dξ are the G-invariant measures and where L2

 (�, dξ) is a

closed subspace of L2(�, dξ)which accounts for theWeyl symmetries. Furthermore,
we are able to show that Q intertwines the quasi-regular representations π and π̂ .

This work is focused on the horocyclic Radon transform, but another interesting
setting could be obtained by considering geodesics. The latter is commonly called X-
ray transform and has been introduced and inverted by Helgason on the hyperbolic
space H

n , see Theorem 3.12 in Chap. I in [17], and on symmetric spaces of the
noncompact type by Rouvière [24]. Although it is not in general true that a horocycle
has codimension one in the symmetric space, the horocyclic Radon transform can
be seen as the analogue of the Euclidean Radon transform on hyperplanes in R

n ,
whereas the X-ray transform is the analogue of the Radon on lines in R

n .
The primary reason of the present contribution was to settle the unitarization issue

in the setup of noncompact symmetric spaces in all details, in a self-contained and
accessible way to the readers that have little experience with the heavy machinery
of semisimple groups. We do make use of the basic Lie theoretic notions but avoid
as much as possible to make extensive use of the full body of the theory. Rather, we
collect all the most relevant results of the theory that may serve as a map.

We are not aware of a general statement such as our Theorem 39 in the literature,
though it is quite clear to us that the result comes as no surprise if not for the flexibility
of our proof (see once again [4, 5]).We also believe that thematerial presented here is
a readable introduction to a subject thatmay attract the attention of awide community
of young researchers.

The chapter is organized as it follows. In Sect. 2 we recall the basic facts of the
analysis on semisimple Lie groups and we introduce the notation used throughout
in the geometric analysis on noncompact Riemannian symmetric spaces. In Sect. 3
we present a brief overview of the general theory of symmetric spaces, illustrating
it with the examples of the Euclidean space, the sphere, the upper half plane, the
unit disk, and the positive definite symmetric matrices. Of particular interest for our
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purposes are Sects. 3.3, 3.4, and 3.5. In Sect. 3.3 we present the notion of boundary
of a symmetric space and in Sect. 3.4 we show the infinitely many ways to repre-
sent it by changing the reference point in the symmetric space. Finally, in Sect. 3.5
we define the family of horocycles and we prove some technical results needed in
Sects. 4 and 5. In Sect. 4 we collect the analytic ingredients that come into play, we
endow the symmetric space, its boundary and the family of horocycles with invari-
ant measures and we introduce the Helgason–Fourier transform discussing its main
features. Then, we study the horocyclic Radon transform and we discuss its relation
with the Helgason–Fourier transform. Finally, in Sect. 5 we prove the unitarization
result for the horocyclic Radon transform.

2 Preliminaries

The purpose of this introductory section is to recall the basic facts of the analysis on
semisimple Lie groups and to establish the notation used throughout in the geometric
analysis on noncompact Riemannian symmetric spaces. For a concise and effective
exposition, see [16]. Classical references with a wider scope are [15, 17, 22]. For a
detailed introduction to differential geometry and Lie groups, we refer to [27].

A Lie algebra g is simple if it is not Abelian and contains no proper Abelian
ideals. A semisimple Lie algebra is then the Lie algebra direct sum of (all) its sim-
ple ideals. Cartan proved that on every semisimple Lie algebra g there exists a
Cartan involution θ , namely, an involution such that the symmetric bilinear form
Bθ (X,Y ) = −B(X, θY ) is positive definite, where B is the usual Killing form
defined by B(X,Y ) = tr(adX ◦ adY ). Such an involution gives rise to a Cartan
decomposition of the Lie algebra, namely, a vector space direct sum g = k + p,
where k and p are the +1 and −1 eigenspaces of g relative to θ , respectively.

Fix a maximal Abelian subspace a of p. The set {adH : H ∈ a} is a commuting
family of self-adjoint linear maps. Therefore, g is the Bθ -orthogonal direct sum of
their joint eigenspaces, all of the eigenvalues of which are real and depend linearly
on H . For any fixed α ∈ a∗, the linear dual of a, we write

gα = {X ∈ g : (adH)X = α(H)X for all H ∈ a}

andwe say that α �= 0 is a restricted root, or simply a root of the pair (g, a), whenever
gα �= {0}. The set of restricted roots is � and the spaces gα with α ∈ � are called
(restricted) root spaces.

An element H ∈ a is called regular if α(H) �= 0 for all α ∈ �, otherwise it is
singular. The set a′ of regular elements is the complement in a of finitely many
hyperplanes and its connected components are called theWeyl chambers.

We fix a Weyl chamber a+ ⊂ a and we declare a root α to be positive if it has
positive values on a+. A root is simple if it cannot be written as the sum of positive
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roots. The set � of simple roots turns out to be a basis of a∗. Thus, there are exactly
� = dim a simple roots. This number is an important invariant and is called the real
rank of g. We order the elements in a∗, hence the roots in �, lexicographically with
respect to an ordering δ1, . . . , δ� of the simple roots. This means that λ = ∑

a jδ j is
positive (writtenλ > 0) if the first non-zero coefficient ak is positive. Togetherwith g,
θ , and awe assume that an ordering “>” has been fixed on a∗ by choosing a labeling
of the simple roots relative to a fixed Weyl chamber a+. We consequently denote by
�+ and �− the positive and negative roots, respectively. Clearly, � = �+ ∪ �−, a
disjoint union.

IfG is a Lie group, then it is said to be semisimple if such is its Lie algebra. Further-
more, for any Cartan involution θ on its Lie algebra g there exists an automorphism
� of G such that d� = θ and �2 = Id.

Theorem 2 (The Iwasawa decomposition) Let G be a connected semisimple Lie
group, g = k + p be a Cartan decomposition of its Lie algebra and fix a maximal
Abelian subspace a of p and an ordering on a∗. The vector space direct sum

n =
∑
α∈�+

gα (4)

is a nilpotent Lie algebra and g decomposes as the vector space direct sum

g = k + a + n.

Furthermore, let K , A and N be the connected subgroups of G whose Lie algebras
are k, a and n, respectively. The multiplication map K × A × N → G given by
(k, a, n) �→ kan is a diffeomorphism. The groups A and N are simply connected
and AN is solvable.

Observe that AN is in fact a semidirect product. Indeed, A acts on N by conjuga-
tion, as is most rapidly seen by observing that Ada(X) ∈ gα if X ∈ gα for any root
α ∈ � and for all a ∈ A. Indeed, for any H ∈ a, since a is Abelian, one has

[H,Ada(X)] = Ada
([Ada−1(H), X ]) = Ada ([H, X ]) = α(H)Ada(X).

Therefore Ada preserves root spaces and in particular it preserves n. Thus A acts on
n via the adjoint action and, passing to exponentials, it acts on N by conjugation.
This is tantamount to saying that A normalizes N inside G. Hence N A = AN is the
semidirect product N � A.

Let M and M ′ denote the centralizer and normalizer of a in K , respectively. This
means that

M =
{
m ∈ K : Adm(H) = H for all H ∈ a

}

M ′ =
{
w ∈ K : Adw(H) ∈ a for all H ∈ a

}
.
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Passing to exponentials, it follows that ifm ∈ M , thenmam−1 = a for all a ∈ A and
if w ∈ M ′, then waw−1 ∈ A for all a ∈ A. The quotient group W = M ′/M is called
the Weyl group of (G, K ). The compact Lie groups M and M ′ have the same Lie
algebra, namely, m, so that W is in fact a finite group. The Weyl group W acts on �

by
(w · α)(H) = α(Adw−1H), H ∈ a. (5)

The very same formula defines an action on the whole dual space a∗. It is worth
observing that the action of W on a∗ maps Weyl chambers in Weyl chambers in a
free and transitive way, so that the cardinality of the Weyl chambers is |W |. For any
α ∈ �, the vector space dimension of gα is called the multiplicity of α and is usually
denoted by mα . The following element of a∗ plays a crucial role in the theory:

ρ = 1

2

∑
α∈�+

mαα. (6)

This linear functional on a naturally appears in relation with the semidirect product
structure of the Iwasawa group AN , see (29).

Example: the decomposition of SL(d, R). We consider the Lie algebra g =
sl(d, R) of G = SL(d, R), namely,

sl(d, R) = {X ∈ gl(d, R) : trX = 0}.

The Cartan decomposition associated to the standard involution θ(X) = − tX reads

sl(d, R) = so(d, R) + Sym0(d),

where p = Sym0(d) is the space of d × d symmetric and traceless real matrices. The
Cartan involution � for SL(d, R) is then

�g = tg−1

as for allmatrix groupswith real entries. Hence K = SO(d), amaximal compact sub-
group of SL(d, R). The diffeomorphism (k, X) �→ k exp X of SO(d) × Sym0(d) �→
G is just the classical polar decomposition. The center of SL(d, R) is the identity
matrix if d is odd and {±Id} if d is even. The natural maximal Abelian subspace of
Sym0(d) is the (d − 1)-dimensional vector space consisting of the diagonal matrices
diag(a1, . . . , ad) with a1 + · · · + ad = 0. Thus, the real rank of sl(d, R) is d − 1.
Let Ei j denote the matrix whose only non-zero entry is 1 at position (i, j). Then, for
H = diag(a1, . . . , ad) and i �= j

[H, Ei j ] = (ai − a j )Ei j
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and in fact Ei j spans a root space provided that i �= j . It is customary to introduce the
linear functionals ek(·) on a, with 1 ≤ k ≤ d, via ek(diag(a1, . . . , ad)) = ak . Thus,
for i �= j the (restricted) root αi j = ei − e j acts on H = diag(a1, . . . , ad) by

αi j (H) = ai − a j .

and we write in the simplified form gi j in place of gαi j for the root space

gi j = sp{Ei j }, i �= j.

For i < j the matrix Ei j is upper triangular, and for i > j it is lower triangular. A
natural choice of Weyl chamber is

a+ =
{
diag(a1, . . . , ad) : a1 > a2 > · · · > ad

}
.

It is immediate to check that for j = 1, . . . , d − 1 the roots δ j = e j − e j+1 are the
simple ones and that the set of positive roots is

�+ = {αi j : i < j}.

It follows that the nilpotent Iwasawa Lie algebra n defined in (4) is just the Lie
algebra of strictly upper triangular matrices. Notice that g0 = a, that is,m = {0} and
that dim gα = 1 for every restricted root α ∈ �. Hence the functional ρ has the form

ρ(H) = 1

2

∑
i< j

αi j (H) = 1

2

∑
i< j

(ai − a j ) =
d∑
j=1

(
d + 1

2
− j)a j .

Let A be the group of diagonal matrices with positive entries and determinant 1,
namely,

diag(ea1 , . . . , ead ), a1 + · · · + ad = 0,

and let N be the group of unipotent upper triangular matrices, namely, those of the
form ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 a12 . . . . . . a1,d

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 ad−1,d

0 . . . . . . 0 1.

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Then a and n are the Lie algebra of A and N , respectively. Hence SL(d, R) = K AN
by the Iwasawa decomposition.
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3 Symmetric Spaces

Symmetric spaces are very special kinds of homogeneous spaces. The reader is
assumed to be familiar with basic Differential Geometry and in particular with the
main results on group actions and homogeneous spaces. The natural reference for
the material in this section is the celebrated monography [15] by Helgason, of which
this is a synthesis with examples. Other sources are, for example, [21, 28].

We very briefly recall the basic facts that we shall use throughout. A homogeneous
space X is a transitive G-space. Saying that X is a G-spacemeans that we are given
a continuous map G × X → X , written (g, x) �→ gx and called an action of G on
X , which satisfies

(i) x �→ gx is a homeomorphism of X for each g ∈ G,
(ii) g(hx) = (gh)x for all g, h ∈ G and x ∈ X .

The G-space X is called transitive if for every x, y ∈ X there exists g ∈ G such that
gx = y. In this case X is identified with G/H through the action of G, where H is
the isotropy subgroup at some point x0 ∈ X , namely,

H = {
g ∈ G : gx0 = x0

}
.

This identification depends on the choice of the reference point x0 ∈ X and is given
by the bijection

G/H → X, gH �→ gx0.

If we choose a different reference point x ′
0 = g0x0 for some g0 ∈ G, it is sufficient

to replace H with H ′ = g0Hg−1
0 . The map g �→ g0gg

−1
0 induces a G-equivariant

homeomorphism between G/H and G/H ′. If the topology on G/H is the quotient
topology then the identification map is actually a homeomorphism.

In the present contribution, we often consider different G-spaces of the same
group. For clarity, we shall thus adopt notational variations to distinguish among
different actions, such as g[x] or g.x or g · x or g〈x〉, and so forth.

3.1 Riemannian Globally Symmetric Spaces

Let M be a Riemannian manifold and let I (M) denote the group of isometries
ofM. We shall endow I (M)with the compact-open topology, the smallest topology
in which all the sets

W (C,U ) = {g ∈ I (M) : g(C) ⊂ U }

are open, where C varies in the compacta ofM and U in the open sets.

Theorem 3 (Theorem 2.5, Chap. IV, [15]) Let M be a Riemannian manifold.
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(i) The group of isometries I (M) with the compact-open topology is a locally
compact topological group acting on M.

(ii) The isotropy subgroup of I (M) at any point of M is compact.

Definition 4 The Riemannian manifold M is a Riemannian globally symmetric
space if each p ∈ M is an isolated fixed point of an isometry σp of M that is
involutive (σ 2

p = Id).

It may be shown that each σp is in this case unique and that there exists a neigh-
borhood Np of p in which σp is the geodesic symmetry. This means that if q ∈ Np

and γ (t) is the geodesic such that γ (0) = p and γ (1) = q, then σp(q) = γ (−1).

Euclidean space. LetM = R
n andfix p ∈ R

n . Theglobally definedmapσp(x) =
2p − x is clearly involutive and isometric with respect to the Euclidean distance
because ‖σp(x) − σp(y)‖ = ‖y − x‖. Further, σp(x) = x if and only if x = p, so p
is an isolated fixed point.

The sphere. Let M = Sn−1 and consider the map defined on R
n by x �→ �x

where

� =
[
1

−In

]
.

Evidently, it leaves the unit sphere invariant and is an isometry with respect to the
natural Riemannian structure on it. It fixes the north pole e0 = (1, 0, . . . , 0). Next
choose p ∈ M and take R ∈ SO(n) such that p = Re0. Then σp = R�R−1 is the
required involutive isometry, as the reader is invited to check.

The upper half plane. LetM denote the upper half plane, which we think of as
one of the natural models of the 2-dimensional hyperbolic space. We realize it as the
complex numbers with positive imaginary part. The Riemannian structure on M is
given by the inner product

〈u, v〉z = (u, v)

4y2
,

whereu, v ∈ Tz(M) are tangent vectors at z = x + iy ∈ M. It is important to observe
that G = SL(2, R) acts transitively on M by means of the Möbius action, namely,

g[z] =
[
a b
c d

]
[z] = az + b

cz + d
. (7)

The imaginary part of g[z] is positive if such is that of z, so that (7) is indeed an
action. To show transitivity, we fix p = b + ia ∈ M with a > 0 and consider

gp =
[
1 b
0 1

] [√
a 0
0 1/

√
a

]
=

[√
a b/

√
a

0 1/
√
a

]
,

an element of the Iwasawa subgroup N A of SL(2, R). It is immediate to check that
gp[i] = p and that the isotropy group at i is K = SO(2), so that M � G/K .
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As for the isometric involutions, consider first the Möbius action induced by

J =
[
0 1

−1 0

]
,

which is themap z �→ −1/z, namely, x + iy �→ (−x + iy)/(x2 + y2), andmay also
be described in polar coordinates by

ρ(cos θ + i sin θ) �→ 1

ρ2
(− cos θ + i sin θ).

This fixes only i (for ρ = 1 and θ = π/2) and is thus a global involution of which i
is an isolated fixed point. A global involution fixing only the point p is given by the
Möbius action of the SL(2, R) element gp Jg−1

p .
Of course, it needs to be to seen that thesemaps are indeed isometries relative to the

hyperbolic distance. To this end, observe that any differentiable path γ : [a, b] → M,
with γ (t) = x(t) + iy(t) has length

L(γ ) =
∫ b

a
〈γ̇ (t), γ̇ (t)〉1/2 dt = 1

2

∫ b

a

√
ẋ2(t) + ẏ2(t)

y(t)
dt.

It is then very easy to check that L(g[γ ]) = L(γ ) if g is either J or any of the
following [

es 0
0 e−s

]
∈ A,

[
1 t
0 1

]
∈ N .

We now show that these are enough. Indeed, any lower triangular unipotent matrix in
G is of the form Jn J−1 for some n ∈ N . Next, any rotation in SO(2) with cos θ �= 0
can be written

[
cos θ sin θ

− sin θ cos θ

]
=

[
1 tan θ

0 1

] [
1/ cos θ 0

0 cos θ

] [
1 0

− tan θ 1

]
.

The rotations with cos θ = 0 are of the form ±J , and we conclude that any element
in K is a finite product of elements2 chosen in {±J } ∪ A ∪ N . By the Iwasawa
decomposition we conclude that in fact L(g[γ ]) = L(γ ) for any g ∈ G. This entails
that SL(2, R) acts by isometries onM. It is worthmentioning that the isometry group
of the upper half plane is generated by SL(2, R) and by the map z �→ 1/z.

The unit disk. A second natural model of the 2-dimensional hyperbolic space
is the unit disk M = {z ∈ C : |z| < 1}, later denoted D. This is the Riemannian
manifold with inner product

2 This argument is nothing else but the Bruhat decomposition of SL(2, R).
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〈u, v〉z = (u, v)

(1 − |z|2)2 ,

where u, v ∈ Tz(M) are tangent vectors at z ∈ M. The group

G = SU(1, 1) :=
{[

a b
b̄ ā

]
: a, b ∈ C, |a|2 − |b|2 = 1

}

acts on M by the very same Möbius action as given by (7). Following similar rea-
soning as above, we can prove that the action is transitive using the N A action on
the point 0 ∈ M, where the Iwasawa components of G are obtained from that of
SL(2, R) by conjugating within SL(2, C) first with a π/4-rotation and then with
�−1, where

� = 1√
2

[
1 i
i 1

]
.

The Iwasawa subgroups are explicitly given by

K =
{[

eiθ 0
0 e−iθ

]
: θ ∈ [0, 2π)

}
,

A =
{[

cosh t sinh t
sinh t cosh t

]
: t ∈ R

}
,

N =
{[

1 + is −is
is 1 − is

]
: s ∈ R

}
.

Of course the isotropy at o ∈ M is K andM � G/K . The reader is invited to write
the isometric involutions that proveM to be a symmetric space.We content ourselves
with remarking that the Cayley transform c : M → C

c(z) = i
z + i

z − i

is an isometry of the unit disc onto the upper half plane which commutes with the
Möbius actions.

The positive definite symmetric matrices. The example of the upper half plane
can be generalized in higher dimensions. We have already seen that there exists a
diffeomorphism between the upper half plane and G/K where G = SL(2, R) and
K = SO(2). We are going to investigate the case where G = SL(d, R), d ≥ 2. We
denote by ( · , · ) the usual scalar product in R

d and we put

P(d, R) := {p ∈ Sym(d) : (v, pv) > 0 for every v ∈ R
d},

the set of d × d positive definite symmetric matrices. Observe that P(d, R) is an
open subset of Sym(d) and so it is naturally a smooth manifold. Its dimension is
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Fig. 1 The foliation of the cone P(2, R) consists of the connected components of the hyperboloids
of two sheets each of which is the preimage under the determinant mapping of a positive number

m := dim(P(d, R)) = d(d + 1)

2
.

We show that P(d, R) ⊆ R
m is the interior of a convex cone. Let p, q ∈ P(d, R) and

t > 0, then tp ∈ P(d, R), (1 − t)q ∈ P(d, R) and also

tp + (1 − t)q ∈ P(d, R),

provided that 0 ≤ t ≤ 1. The boundary of P(d, R) is the set of all singular positive
semidefinite matrices. It is easy to see that P(d, R) is a foliated manifold in which
each leaf is the preimage of a positive number through the determinant mapping.
The preimage of 1 under the determinant mapping is denoted by

SP(d, R) := P(d, R) ∩ SL(d, R).

The group GL(d, R) acts on P(d, R) by the action

(g, p) �→ gp tg =: g[p]. (8)

We next show that the action is transitive. By the spectral theorem, for every p ∈
P(d, R) there exist O ∈ SO(d, R) and a diagonal matrix D with positive entries on
the diagonal such that p = O−1DO . Since D has positive entries on the diagonal,
we can take its square root D

1
2 . Let g = O−1D

1
2 O , then g = tg and

p = g tg = g[Id ] ,
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which proves that the action is transitive. The stabilizer at Id ∈ P(d, R) is

O(d, R) := {g ∈ GL(d, R) : g tg = Id} .

Hence we have the diffeomorphism

P(d, R) � GL(d, R)/O(d, R).

The submanifold SP(d, R) is stable under the restriction of the previous action to
SL(d, R), whose action on SP(d, R) is transitive. The stabilizer of Id is SO(d, R),
so

SP(d, R) � SL(d, R)/SO(d, R).

Now we analyze the Riemannian structure on P(d, R), using [25] as main ref-
erence. First of all, we observe that if p ∈ P(d, R), then TpP(d, R) � Sym(d). We
define

〈X,Y 〉p := tr(p−1Xp−1Y ), (9)

where X, Y ∈ Tp(P(d, R)). It is easy to see that 〈 · , · 〉p is an inner product. We
check that the GL(d, R)-action preserves this form. Let g ∈ GL(d, R). Then by (8)
and (9)

〈dg(X), dg(Y )〉g.p = 〈gX tg, gX tg〉g.p
= tr( tg−1 p−1Xp−1Y tg)

= tr(p−1Xp−1Y ) = 〈X,Y 〉p,

because the trace is invariant under conjugation. Hence the Riemannian structure on
P(d, R) defined in (9) is GL(d, R)-invariant. Now, take p ∈ P(d, R) and define the
mapping σp : P(d, R) → P(d, R) by

σp(q) = pq−1 p = pq−1 tp.

Clearly, σp(p) = p and σ 2
p(q) = q for every q ∈ P(d, R). It remains to show that p

is an isolated fixed point for σp. Let q ∈ P(d, R) be another nearby fixed point, that
is pq−1 p = q. Thus, there exist Y ∈ g and a small t > 0 such that q = p exp(tY ).
Hence

p(p exp(tY ))−1 p = p exp(tY ),

that is exp(−tY ) = exp(tY ). If t is smaller than the radius of the ball in which
the exponential mapping is injective, this implies Y = 0 and so q = p. We have
proved that P(d, R) is a symmetric space. Observe that if p ∈ SP(d, R), then
σp(SP(d, R)) = SP(d, R) and so SP(d, R) with the Riemannian metric restricted
from P(d, R) is a symmetric space, too.
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In the special case d = 2, the symmetric space SP(2, R) is isomorphic to the
unit disk, in fact it is one of the possible realizations of the hyperbolic space H

1.
It is important to observe that for a general d > 2 there are no isometries between
H

d = SO(d, 1)/SO(d) and SP(d, R), because the former has constant curvature
while the latter has not.

The next results establish that there the Riemannian globally symmetric spaces
are completely described by Lie algebraic data.

Proposition 5 (Lemma 3.2, Chap. IV, [15]) Let M be a Riemannian globally sym-
metric space. Then I (M) has a smooth structure compatible with the compact-open
topology which makes it a Lie group.

Theorem 6 (Theorem 3.3, Chap. IV, [15]) LetM be a Riemannian globally symmet-
ric space, p0 ∈ M, G = I0(M), the connected component of the identity of I (M).

(i) The isotropy subgroup K of G at p0 is compact, andM � G/K under the map
gK �→ g[p0].

(ii) The map σ : g �→ sp0gsp0 is an involutive automorphism of G such that K lies
between the closed group Kσ of the fixed points of σ and its identity component.
The subgroup K contains no normal subgroups other than {e}.

(iii) Let g be the Lie algebra of G and k be the Lie algebra of K . Then

k =
{
X ∈ g : (dσe)X = X

}

and if

p =
{
X ∈ g : (dσe)X = −X

}

then g = k + p as vector space direct sum. Let π denote the natural projection
G → G/K. Then dπe maps k into {0} and p isomorphically onto Tp0M. If
X ∈ p, then the geodesic emanating from p0 with tangent vector dπe(X) is
given by

γdπe(X)(t) = exp t X · p0.

Moreover, if Y ∈ Tp0M, then (d exp t X)p0Y is the parallel translate of Y along
the geodesic.

Definition 7 Let G be a connected Lie group and H a closed subgroup. The pair
(G, H) is called a symmetric pair if there exists an involutive analytic automorphism
σ of G, briefly called an involution, such that

(Fix(σ ))0 ⊂ H ⊂ Fix(σ ).

If in addition the group AdG(H) is compact, then (G, H) is called a Riemannian
symmetric pair.
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Proposition 8 (Propositions 3.4 and 3.5, Chap. IV, [15]) Let (G, K ) be a Rieman-
nian symmetric pair,π : G → G/K the projection, o = π(e). Letσ be any involution
of G such that (Fix(σ ))0 ⊂ K ⊂ Fix(σ ). In each G-invariant Riemannian structure
Q on G/K, and such Q do exist, the manifold G/K is a Riemannian globally sym-
metric space. The geodesic symmetry σo satisfies

σo ◦ π = π ◦ σ, τ(σ (g)) = σoτ(g)σo,

where τ(g) : G/K → G/K is the natural action of g, namely, τ(g)xK = gxK . In
particular σo is independent of the choice of Q. Finally, if z is the Lie algebra of the
center of G and k ∩ z = {0}, then there exists exactly one involution σ of G such that
(Fix(σ ))0 ⊂ K ⊂ Fix(σ ).

The previous two resultsmay be condensed in the statement that there is a bijective
correspondence between Riemannian globally symmetric spaces and Riemannian
symmetric pairs.

3.2 Types of Symmetric Spaces

The next step in the general theory of symmetric spaces is to look at the Lie algebra
level. This is suggested by Theorem 7, which shows that a Riemannian globally
symmetric space gives rise to a pair (g, s), where s = dσe, that satisfies

(i) g is a real Lie algebra;
(ii) s is an involutive automorphism of g;
(iii) the fixed points k of s form a Lie algebra compactly contained in g,

where (iii) holds because K is compact (see Chap. II in [15] for the definition of
compactly embedded Lie subalgebra).

A pair (g, s) satisfying (i), (ii), and (iii) above is called an orthogonal symmetric
Lie algebra. If in addition

(iv) k ∩ z = {0},
then (g, s) is called effective. Fix such a pair and consider the decomposition
g = u + e into the+1 and−1 eigenspaces with respect to s. Motivated by the impor-
tant decomposition result stated below in Theorem 9, one introduces the following
terminology:

(a) if g is compact and semisimple, then (g, s) is said to be of the compact type;
(b) if g is noncompact and semisimple and if g = u + e is a Cartan decomposition,

then (g, s) is said to be of the noncompact type;
(c) if e is an Abelian ideal in g, then (g, s) is said to be of the Euclidean type.

Theorem 9 (Theorem 1.1, Chap. V, [15]) Suppose that (g, s) is an effective orthog-
onal symmetric Lie algebra. Then there exist ideals g0, g− and g+ such that
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(i) g = g0 + g− + g+, a Lie algebra direct sum;
(ii) g0, g− and g+ are invariant under s and orthogonal with respect to the Killing

form;
(iii) the pairs (g0, s0), (g+, s+) and (g−, s−) are effective orthogonal symmetric Lie

algebras of the Euclidean, compact and noncompact type, respectively.

The involutions s0, s−, and s+ are those that arise by restricting s to the correspond-
ing ideals. The above result is of course of central importance because it allows to
study separately the various cases. Clearly, the decomposition yields a corresponding
decomposition of a symmetric space and thus induces the notions of symmetric space
of Euclidean, compact and noncompact types. The Euclidean space, the sphere, and
the unit disk, introduced in Sect. 3.1, are the prototypical examples of such spaces.
There is a remarkable duality between compact and noncompact types in which we
are not interested. We content ourselves with mentioning that the compact types
have positive sectional curvature and the noncompact ones have negative sectional
curvature.

Since we are only interested in noncompact globally symmetric spaces, we focus
on the corresponding structural assumptions. To this end, we need yet another piece
of terminology and we also slightly change the current notation to tune into the non-
compact case. Any pair (G, K ) where G is a connected Lie group with Lie algebra
g and where K is a Lie subgroup of G with Lie algebra k is said to be associated
to the (effective) orthogonal symmetric Lie algebra (g, θ), and will be called of the
noncompact type if such is (g, θ). Thus, from now on we fix an effective orthogonal
symmetric Lie algebra (g, θ) of the noncompact type, so that the eigenspace decom-
position relative to θ , namely, g = k + p, is a Cartan decomposition. The next result
is a cornerstone in the theory.

Theorem 10 (Theorem 1.1, Chap. VI, [15]) With the notation above, suppose that
(G, K ) is any pair associated with the effective orthogonal symmetric Lie algebra
of the noncompact type (g, θ). Then:

(i) K is connected, closed and contains the center Z of G. Moreover, K is compact
if and only if Z is finite. In this case, K is a maximal compact subgroup of G;

(ii) there exists an involutive analytic automorphism � of G whose fixed point set
is K and whose differential at the identity e ∈ G is θ ; the pair (G, K ) is a
Riemannian symmetric pair;

(iii) the mapping ϕ : (X, k) �→ (exp X)k is a diffeomorphism of p × K onto G and
the mapping Exp is a diffeomorphism of p onto the globally symmetric space
G/K.

The exponential mapping Exp in item (iii) above, quoted for completeness, is just
the Riemannian exponential mapping (see for instance [15]) and will play no explicit
role in what follows.

Assumption. From now on, let G be a connected semisimple Lie group with
finite center and X = G/K the associated symmetric space of the noncompact type,
where K is amaximal compact subgroup ofG.We alsofix an Iwasawadecomposition
G = K AN and we denote by M the centralizer of A in K .
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3.3 Boundary of a Symmetric Space

Our basic example of noncompact symmetric space will be the unit disk D, which
has a rather obvious (topological) boundary, namely, the unit circle S1 = {z ∈ C :
|z| = 1}. The notion of boundary of a symmetric space is highly non-trivial. For a
deep study on the matter, the reader is referred to the classical paper of Furstenberg
[11] in which a detailed motivation of Definition 11 below may be found. For our
purposes, some heuristics and some basic observations will suffice.

Notice first that the Möbius action of G = SU(1, 1) on C has precisely three
orbits, namely, D, S1 and the complement {w ∈ C : |w| > 1}. We already know that
D is an orbit. Further, AN fixes 1 (easy to check) and K moves it along the unit
circle, so that the G-orbit of 1 is S1. Finally, for ρ > 1 the formula

kθ/2 · ρ =
[
eiθ/2 0
0 e−iθ/2

]
· ρ = ρ cos θ + iρ sin θ (10)

shows that K maps the point ρ along the circle of radius ρ and any such real point
may be reached, say, from 2 by means of A because for t > 0 the real numbers

at [2] =
[
cosh t sinh t
sinh t cosh t

]
[2] = 2 + tanh t

2 tanh t + 1

span the half-line (1,+∞). Thus the set {w ∈ C : |w| > 1} is an orbit.
Let’s go back to the unit circle. As already noticed, AN fixes 1 and K moves

it along the circle, as can also be deduced from (10) when ρ = 1. The very same
formula shows also that the elements kθ/2 when θ is anymultiple of 2π fix1. These are
±I , namely, the elements of M , the centralizer of A in K . Therefore, the stabilizer of
1 is the group P = MAN and S1 � G/P . By means of the Iwasawa decomposition
we may write

S1 � K AN/MAN

and the natural question arises whether this is the same as K/M or not. In the case
at hand this is quite clearly so because K acts transitively with isotropy M . This
actually holds more generally in the sense that

G/P = K AN/MAN � K/M.

Indeed, K acts on the coset spaceG/P in the natural fashion k · gP = (kg)P and by
the Iwasawa decomposition k ∈ P = MAN if and only if k ∈ M . Hence the isotropy
at the coset {P} is M . Further, again by the Iwasawa decomposition, the action is
transitive, and we conclude that G/P � K/M . The reverse point of view (that of G
acting on K/M with isotropy P) will be illustrated below in (15), where the explicit
action of G on K/M is given.

Definition 11 The boundary of X is the coset space B := K/M .
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We remark here en passant that M , which will play an important role below,
normalizes N , that is

mNm−1 = N , m ∈ M. (11)

To see this, look at the Lie algebra level. If α is a positive root and X ∈ gα , then for
every H ∈ a it is

[H,AdmX ] = Adm[Adm−1H, X ] = Adm[H, X ] = α(H)AdmX,

so that Adm(gα) ⊂ gα . An other normalization property that involves N is that for
any α ∈ A and any ν ∈ N it holds

ανaN = aNαν. (12)

This, in turn, follows from choosing ν ′ ∈ N such that ν ′α = αν, which gives

ανaN = αaa−1νaN = αaNα−1α = aαNα−1α = aNα = aNν ′α = aNαν.

3.4 Changing the Reference Point

In what follows, it will be useful to change the reference point of both the symmetric
space X and its boundary. Although conceptually very well known and somehow
trivial, the actual explicit determination of what happens when doing so is not to be
found in the literature, to the best of our knowledge. In order to see how the various
decompositions are affected by changing the origin of our spaces, it is convenient to
introduce Borel sections and occasionally adopt a slightly different notation for the
(various) G-actions.

The action of G on X = G/K will be written g[x], namely,

g[x] = g[hK ] = ghK .

For any fixed x0 ∈ X = G/K , a Borel section relative to x0 is a measurable map
sx0 : X → G satisfying sx0(x)[x0] = x and sx0(x0) = e, with e the neutral element
of G. Borel sections always exist since G is second countable, see Theorem 5.11
in [26].

We next show how, in the present context, a Borel section associated to o = eK ∈
G/K can be determined quite explicitly. Since K is the isotropy subgroup of G
at o, the map β : gK �→ g[o] is a diffeomorphism of G/K onto X . Furthermore,
by the Iwasawa decomposition of G (Theorem 2), each element of g ∈ G can be
written as the product g = nak for exactly one triple (n, a, k) ∈ N × A × K , and
the correspondence (n, a, k) ↔ nak is a diffeomorphism with G. Hence each class
in G/K has a representative of the form naK with unique a ∈ A and n ∈ N , so that
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the mapping ψ : G/K → N A given by naK �→ na is a diffeomorphism. It follows
that the measurable, actually smooth, map

ψ ◦ β−1 : X −→ N A

is a Borel section. Indeed, ψ ◦ β−1(o) = ψ(K ) = e and, by construction, for every
x ∈ X , it holds ψ ◦ β−1(x)[o] = x . From now on, we will denote by so the Borel
section ψ ◦ β−1 with image N A ⊆ G.

Fix now x ∈ X and let Kx be the isotropy of G at x ∈ X . Evidently,

Kx = so(x)Kso(x)
−1.

It is then possible to write an Iwasawa decomposition w.r.t. the subgroup Kx . In fact,

G = so(x)Gso(x)
−1 = so(x)K ANso(x)

−1 = so(x)Kso(x)
−1AN = Kx AN ,

because, as observed earlier, so(x) ∈ AN . By using the same approach, one obtains
the various versions of the Iwasawa decomposition where the factors appear in a
different order. It is worth observing that the subgroups A and N are independent
of the maximal compact subgroup Kx , but the individual factors appearing in the
decomposition of a fixed element g ∈ G are not. Given g ∈ G, we denote with
Hx (g), Ax (g) the elements of a uniquely determined by

g ∈ Kx exp Hx (g)N , g ∈ N exp Ax (g)Kx (13)

and by κx (g) the unique element in Kx such that g ∈ κx (g)AN . Clearly,

Ax (g
−1) = −Hx (g). (14)

Once the point x ∈ X has been fixed, a Borel section sx : X → G can also be
fixed, so that for every y ∈ X , sx (y)[x] = y and sx (x) = e. As before, it may be
arranged that sx (y) ∈ N A = AN . Also, we denote by Mx the centralizer of A in Kx ,
so that Mx = so(x)Mso(x)−1. The following technical observation will be useful
below.

Lemma 12 For any x ∈ X it is

(i) κo ◦ κx
∣∣
K= idK ; in particular, if kx = κx (k) for some k ∈ K, then k = κo(kx );

(ii) κx ◦ κo
∣∣
Kx

= idKx .

Proof We start by proving (i). Let k ∈ K . Then according to the Iwasawa decompo-
sition Kx AN it is k = κx (k)an, that is κx (k) = k(an)−1 ∈ K AN . So that κo(κx (k))
is precisely k, as desired. The proof of (ii) is analogous. �

The action of G on the boundary B = K/M is induced by the decomposition
G/P = K AN/MAN in the sense that if g ∈ G and kM ∈ B then
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g〈kM〉 := κo(gk)M. (15)

Consider now the action of Kx . By the definition (15) and by item (i) in Lemma 12,
for any k ∈ K it is

κx (k)〈M〉 = κo(κx (k))M = kM.

Thus the actionof Kx on theboundary is transitive.Next, observe that an element kx =
so(x)kso(x)−1 stabilizes M ∈ K/M if and only if κo(so(x)kso(x)−1) ∈ M , which
means so(x)k ∈ MAN . This, together with the fact that M normalizes AN , implies
that k ∈ M , hence kx ∈ Mx . Therefore the isotropy group of Kx at M is Mx . This
shows that the map induced by κo on Kx/Mx , which we denote κx,o, namely,

κx,o : Kx/Mx → K/M, kxMx �→ κx,o(kxMx ) := κo(kx )M, (16)

is a diffeomorphism. Furthermore, kM and κx (k)Mx determine the same boundary
point, because by (16) κo(κx (k))M = kM . By Lemma 12 the inverse of κx,o is the
map

κo,x : K/M → Kx/Mx , kM �→ κo,x (kM) := κx (k)Mx .

3.5 Horocycles

A hyperplane in R
n is orthogonal to a family of parallel lines. What is a reasonable

analogue of this in, say, Riemannian geometry? Since geodesics are very natural
generalizations of lines, a possible answer is given by a manifold that is orthogonal
to families of parallel geodesics. In the context of symmetric spaces, such manifolds
will be called horocycles, sometimes also horospheres.

Let us see what this idea leads to in the context of the unit disk, our basic example
of noncompact symmetric space. The origin inDwill be denoted o. If γ : [a, b] → D

is a smooth curve with γ (a) = o and γ (b) = x ∈ (−1, 1) is a point on the real axis,
then the simple inequality

ẋ(t)2

(1 − x(t)2)2
≤ ẋ(t)2 + ẏ(t)2

(1 − x(t)2 − y(t)2)2

shows that straight real lines through the origin are geodesics.We observe en passant
that since γ0(t) = (t x, 0) with t ∈ [0, 1] is such a straight line, then

d(o, x) = L(γ0) =
∫ 1

0

|x |
1 − t2|x | dt = 1

2
log

1 + |x |
1 − |x | .

As we know, G = SU(1, 1) acts by isometries via the Möbius action on D. Such
maps are conformal and map circles and lines into circles and lines. Hence the
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geodesics in D are circular arcs perpendicular to the boundary |z| = 1. All circular
arcs perpendicular to the same point at the boundary may be seen as parallel lines
and thus a natural notion of horocycle in this context is that of circle tangent to the
boundary (except the point on S1) because such a circle is of course perpendicular
to all the above parallel geodesics.

The circle through the origin and tangent to the boundary at 1 ∈ C is therefore
the prototype of horocycle. Observe that

ns[o] =
[
1 + is −is
is 1 − is

]
[o] = −is

1 − is
= s

s + i
= s2

s2 + 1
− i

s

s2 + 1

and an easy calculation shows that these are precisely the points on the circle of radius
1/4 centered at 1/2 ∈ C that are contained in D. Furthermore, as s → ±∞ one gets
the boundary point b0 = 1 ∈ C. We have obtained the basic horocycle, which will
be denoted ξo, as the N -orbit N [o].

Other horocycles tangent to b0 are the orbits Nat [o] = at N [o] where of course

at =
[
cosh t sinh t
sinh t cosh t

]

is any member of A (recall that A normalizes N ). This is because

at [o] = tanh t ∈ (−1, 1)

parametrizes any other point on the geodesic line (−1, 1) ⊂ C and an easy calculation
shows that its N -orbit is just the circle through that point and tangent to b0 (see Fig. 2).
It is clear that by acting with the rotation group one gets all other horocycles, that
is, all the circles in D tangent to the boundary. Thus, any other horocycle ξ can be
written in the form ka · ξ0 with k ∈ K and a ∈ A. But this means

ξ = (ka)N (ka)−1(ka[o]),

which exhibits ξ as an orbit of a group conjugate to N , namely, (ka)N (ka)−1. This
motivates the Definition 13 below.

Definition 13 ([17]) A horocycle in X is any orbit of any subgroup of G conjugate
to N , that is an orbit Ng[x] where x ∈ X , g ∈ G and Ng = gNg−1. We shall denote
by � the set of all horocycles in X .

By Theorem 1.1 in Chap. II in [17], horocycles are closed submanifolds of X , the
G-action on X maps horocycles to horocycles and in fact the groupG acts transitively
on � by

(g, Nh[x]) �→ g.(Nh[x]) := gNh[x].

We fix x ∈ X and we consider the horocycle ξ = N [x]. By Theorem 1.1 in Chap. II
in [17], the isotropy at ξ is MxN and therefore
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Fig. 2 The basic horocycle
ξo in the unit disc and the
horocycle ξ tangent to the
boundary at 1 and with
distance −t from the origin
o. In gray, the sheaf of
parallel geodetics
perpendicular to ξo and ξ

� � G/MxN

under the diffeomorphism gMx N �→ gN [x]. Furthermore, by Proposition 1.4 in
Chap. II in [17], (Kx/Mx ) × A is diffeomorphic to G/MxN under the mapping

(kxMx , a) �→ kxaMx N . (17)

Therefore, for each horocycle ξ ∈ � there exist unique kxMx ∈ Kx/Mx and a ∈ A
such that

ξ = kxaN [x]. (18)

Finally, since K/M is diffeomorphic to Kx/Mx under the mapping κo,x (kM) =
κx (k)Mx , we define the diffeomorphism


x : K/M × A −→ �, (kM, a) �→ κx (k)aN [x]. (19)

Observe that the boundary point kM ∈ K/M which identifies the horocycle ξ =
κx (k)aN [x] through (19) is independent of the choice of the reference point x ∈ X .
Namely, for every x, y ∈ X


x (kM, a) = 
y(kM, a′)

for some a′ ∈ A. Indeed, if ξ = kxaN [x] and if we pick y ∈ X , hence kyMy ∈
Ky/My and a′ ∈ A such that ξ = kya′N [y], then kyMy = κy(kx )My and this identi-
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fies the boundary point κo(kx )M . Indeed, by the Ky AN and K AN Iwasawa decom-
positions of kx , we have that

κy(kx ) ∈ kx AN = κo(kx )AN ,

so that
κy,o(κy(kx )My) = κo(κy(kx ))M = κo(kx )M.

We shall say that 
x (kM, a) represents the horocycle with normal kM and com-
posite distance log a from x (see below, Definition 15). We stress that the normal of
a horocycle is independent of the choice of x ∈ X . The composite distance, however,
is different for different reference points.

This parametrization generalizes the geometric picture in D, where a horocycle
ξ = kat N [o] is identified by the boundary point kM ∈ K/M to which it is tangent
and the “signed distance” t from the reference point, see Fig. 2.

Proposition 14 Fix a reference point x ∈ X. The horocycle through y ∈ X with
normal kM is N κx (k)[y].
Proof An equivalent statement is that, writing k = κo(kx ) with kx ∈ Kx , the horo-
cycle through y with normal κo(kx )M is kx Nk−1

x [y] because kx = κx (k) by item (ii)
in Lemma 12.

Since k = κo(kx), then kM and kxMx identify the same boundary point and a
horocycle with normal kM has the form ξ = kxaMx N as in (18). If this represents
a horocycle through y, then there exists g ∈ G such that

ξ = gNg−1[y] = κx(g)Nκx(g)
−1[y].

Now observe that there exist α ∈ A and ν ∈ N such that κx (g)−1[y] = να[x], then
ξ = κx (g)αN [x]. Thus, since ξ = kxaN [x], we have that

κx (g)αN [x] = kxaN [x],

which by (18) implies κx (g)Mx = kxMx . Hence κx (g) = kxmx for some mx ∈ Mx .
However, (11) implies at once that mx Nm−1

x = N , and hence N κx (g) = Nkx . �

Definition 15 Fix a reference point x ∈ X and choose y ∈ X and b ∈ K/M , so that
by Proposition 14 the horocycle ξ = ξ(y, b) passing through y with normal b = kM
is uniquely determined, and hence there exists a unique a ∈ A such that

ξ(y, kM) = κx(k)aN [x].

We denote by Ax (y, b) ∈ a the composite distance of the horocycle ξ(y, b) from
x ∈ X , namely,

Ax (y, b) = log a.
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The reader is warned not to confuse the composite distance Ax (y, b), which depends
on (y, b) ∈ X × B, with the Abelian component Ax (g) of g in the Iwaswawa decom-
position N AKx , which is a function onG (see (13)). A relation between the two does
exist, as pointed out in the next lemma, where we collect several properties of the
composite distance which will play a crucial role in our work.

Lemma 16 Fix a reference point x ∈ X. Then:

(i) for any kx ∈ Kx and g ∈ G we have

Ax (g[x] , κo(kx )M) = Ax (k
−1
x g), (20)

where the right-hand side is defined by (13);
(ii) for any y ∈ X, kM ∈ K/M and g ∈ G we have

Ax (y, kM) = Ag[x](g[y] , g〈kM〉); (21)

(iii) for any y, z ∈ X and kM ∈ K/M we have

Ax (y, kM) = Ax (z, kM) + Az(y, kM). (22)

Proof (i) Let kx ∈ Kx and g ∈ G. By Proposition 14 and (ii) of Lemma 12,
the horocycle passing through g[x] with normal κo(kx )M is kx Nk−1

x g[x]. By
Definition 15, we have that

kx Nk−1
x g[x] = kx exp(Ax (g[x], κo(kx )M))N [x],

and so k−1
x g ∈ N exp(Ax (g[x], κo(kx )M))Kx . This proves (i).

(ii) For simplicity, we first prove the statement in the case x = o. Let y ∈ X , kM ∈
K/M and g ∈ G. By Proposition 14, and the fact that A normalizes N , the
horocycle passing through g[y] with normal g〈kM〉 = κo(gk)M (see (15)) is

N κo(gk)g[y] = κo(gk)Nκo(gk)
−1g[y] = gkN (gk)−1g[y].

By the diffeomorphism given in (18), there exist h ∈ Kg[o] and a ∈ A such that

gkNk−1[y] = haNg[o], (23)

and thus, by definition

a = exp(Ag[o](g[y] , g〈kM〉)).

We need to show that a = exp(Ao(y, kM)). Since Kg[o] = gKg−1, we have
h = gk1g−1 for some k1 ∈ K and we claim that

k1κo(g
−1)M = kM. (24)
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By (23) we have that

k1g
−1aNso(g[o])[o] = k1g

−1aNg[o] = kNk−1[y] = kNso(k
−1[y])[o].

Since so takes values in AN and writing the N AK decomposition of g−1, there
exist a′, a′′ ∈ A such that

k1κo(g
−1)a′N [o] = ka′′N [o].

Hence, by (18) we have that k1κo(g−1)M = kM , that is the claim (24). There-
fore, for some m ∈ M the right-hand side of (23) is

haNg[o] = gkmκo(g
−1)−1g−1aNg[o]

= gkmaN
(
κo(g

−1)−1g−1
)
g[o]

= gkmaNκo(g
−1)−1[o]

= gkmaN [o] = gkaN [o],

where in the second line we have used that κo(g−1)−1g−1 ∈ AN and then (12).
Summarizing, we have shown that

gkNk−1so(y)[o] = gkaN [o].

By taking e ∈ N on the left, there must be n ∈ N such that so(y)[o] = kan[o],
so that (kan)−1so(y) ∈ K , whence k−1so(y) ∈ Kan. This shows that

a = exp(Ao(k
−1so(y))) = exp(Ao(y, kM)),

where the second equality follows by item (i). This concludes (ii) in the case
x = o. The general case follows from the latter. Indeed, by applying it with
so(x) and gso(x), respectively, in the first and the second equalities, we obtain

Ax (y, kM) = Ao(so(x)
−1[y], so(x)−1〈kM〉) = Ag[x](g[y], g〈kM〉) .

(iii) For simplicity we start by proving the statement for x = o, the general case
follows. Fix y, z ∈ X and kM ∈ K/M . By the definition of sz , we have that
sz(o)−1 = so(z) and K = sz(o)Kzsz(o)−1. Observe that, by the Kz AN Iwasawa
decomposition of k

sz(o)k ∈ sz(o)κz(k)AN = sz(o)κz(k)sz(o)
−1AN ,

and then
κo(sz(o)k) = sz(o)κz(k)sz(o)

−1.

Furthermore, sy(o)k ∈ K exp(Ho(sy(o)k))N , so that
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sz(o)kk
−1sy(o)

−1 ∈ sz(o)κz(k)sz(o)
−1N exp(Ho(sz(o)k) − Ho(sy(o)k))K .

(25)
Now, observe that by (14) and (i) it is possible to rewrite

Ho(sz(o)k) − Ho(sy(o)k) = Ao(k
−1sy(o)

−1) − Ao(k
−1sz(o)

−1)

= Ao(sy(o)
−1[o], kM) − Ao(sz(o)

−1[o], kM)

= Ao(y, kM) − Ao(z, kM).

Hence, (25) becomes

sz(o)sy(o)
−1 ∈ sz(o)κz(k)sz(o)

−1N exp(Ao(y, kM) − Ao(z, kM))K ,

and by conjugating by sz(o)−1 ∈ AN

sy(o)
−1sz(o) ∈κz(k)sz(o)

−1N exp(Ao(y, kM) − Ao(z, kM))Ksz(o)

=κz(k)N exp(Ao(y, kM) − Ao(z, kM))sz(o)
−1Ksz(o)

=κz(k)N exp(Ao(y, kM) − Ao(z, kM))Kz,

where in the first equality we use (12). Finally, we observe that sy(o)−1sz(o) =
so(y)sz(o) = sz(y) and then

κz(k)
−1sz(y) ∈ N exp(Ao(y, kM) − Ao(z, kM))Kz .

Therefore, by item (i) of Lemma 12 and item (i) above

Ao(y, kM) − Ao(z, kM) = Az(κz(k)
−1sz(y)) = Az(y, kM).

This proves the case x = o. The general case trivially follows:

Ax (z, kM) + Az(y, kM) = Ao(z, kM) − Ao(x, kM) + Ao(y, kM) − Ao(z, kM)

= Ax (y, kM).

This finishes the proof of the lemma.
�

Let x ∈ X . By Definition 15, for every (kM, a) ∈ K/M × A and z ∈ X

z ∈ 
x (kM, a) ⇐⇒ Ax (z, kM) = log a. (26)

Then, by (26) together with (21) it follows that
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z ∈ g.
x (kM, a) ⇐⇒ g−1[z] ∈ 
x (kM, a)

⇐⇒ log a = Ax (g
−1[z], kM)

⇐⇒ log a = Ag[x](z, g〈kM〉)
⇐⇒ z ∈ 
g[x](g〈kM〉, a).

Therefore
g.
x(kM, a) = 
g[x](g〈kM〉, a). (27)

Furthermore, if y ∈ X , then by (26) and (22) we have that

z ∈ 
x (kM, a) ⇐⇒ log a = Ax (z, kM)

⇐⇒ log a = Ax (y, kM) + Ay(z, kM)

⇐⇒ log(a exp(−Ax (y, kM))) = Ay(z, kM)

⇐⇒ z ∈ 
y(kM, a exp(Ay(x, kM))),

where in the last equivalence we use the equality Ay(x, kM) = −Ax (y, kM), which
follows immediately from (22). Hence, we have

(
−1
y ◦ 
x )(kM, a) = (kM, a exp(Ay(x, kM))). (28)

Positive definite symmetric matrices. We return to positive definite symmet-
ric matrices to describe the horocycles explicitly. Recall that the semisimple group
associated to the symmetric space is in this case G = SL(d, R). As we have already
seen, the Iwasawa decomposition of G is formed by K = SO(d), the subgroup A of
diagonal matrices with positive entries on the diagonal and the subgroup N of the
unit upper triangular matrix. Hence the principal horocycle is

ξ0 = N [Id ] = {n tn : n ∈ N } .

Let a = diag(ea1 , . . . , ead ) ∈ A, then the horocycle obtained as the N -orbit of aK ∈
SP(d, R) is the subset of SP(d, R) of matrices of the form

{
eai+a j

d∑
k=max(i, j)

ni,kn j,k

}
i, j

,

for every choice of d(d − 1)/2 values ni, j ∈ R with j > i , where ni,i = 1. The sub-
group N = �(N ) coincides with the lower unit triangular matrices. The N -orbit of
a positive definite diagonal matrix aK is the set of all the symmetric positive definite
matrices having a2 as diagonal matrix in the usual LD tL decomposition. Further-
more, for every a ∈ A, we have N [a] = (N [a−1])−1. It follows that the horocycle
N [a] is the subset of SP(d, R) of matrices having a2 as diagonal matrix in theUD tU
decomposition (Fig. 3).
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Fig. 3 In the special case d = 2, the N -orbit and the N -orbit are tangent circles. More in general,
for any w ∈ W the intersection between the N -orbit and the (wNw−1)-orbit of a point coincides
with the point itself, see Proposition 1.7 in Chap. II in [17]

Let p ∈ SP(d, R) and let p = OD tO be the spectral decomposition of p, with
O ∈ SO(d) and D diagonal, and let k ∈ K . Then we have

k[p] = kp tk = kOD tO tk,

and since kO ∈ SO(d) then k[p] has the same eigenvalues as p. In fact, the K -orbit of
p ∈ SP(d, R) is the subset of all the matrices in SP(d, R) with the same eigenvalues
of p and if a ∈ A, then the columns of k are the eigenvectors of k[a]. Furthermore
in each K -orbit there exists a diagonal matrix with entries ordered decreasingly on
the diagonal, that is, a matrix that lies on A+[Id ].

Finally, by (18), any horocycle ξ ∈ � can be written as ξ = kaN [Id ] for some
k ∈ K and a ∈ A. This is thus the subset of SP(d, R) of matrices having a2 as
diagonal matrix in the UD tU decomposition w.r.t. the R

d -basis {kei }i=1,...,d , where
{ei }i=1,...,d is the canonical basis of R

d .

4 Analysis on Symmetric Spaces

We collect in this section the analytic ingredients that come into play. Apart from the
basic measures and function spaces, we introduce the Helgason–Fourier transform
and the Radon transform and recall the results that we use throughout. The main
references are [16, 17].
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4.1 Measures

This section is devoted to the measures that will be involved in what follows.We first
present the Haar measure and then introduce the measures on the spaces X , B, and
�. These are necessary in order to define the function spaces that we are interested in,
amongwhich the L2-spaces that carry the regular representations. General references
are [8] for the first part, and [16, 17] for the second.

4.1.1 Haar Measures and Modular Functions

We recall some basic definitions and results of Analysis on locally compact groups.
We shall use them in the more specific context of Lie groups. A standard reference
is Chap.2 in [8].

A topological group is a group G endowed with a topology relative to which the
group operations

(g, h) �→ gh, g �→ g−1

are continuous asmapsG × G → G andG → G, respectively.G is locally compact
if every point has a compact neighborhood. We shall also assume our groups to be
Hausdorff. In particular, all Lie groups are locally compact topological groups.

A Borel measureμ on the topological space X , that is, a measure on the σ -algebra
B(X) of the Borel sets of X , is called a Radon measure if:

(i) it is finite on compact sets;
(ii) it is outer regular on the Borel sets, that is for every Borel set E

μ(E) = inf{μ(U ) : U ⊇ E, U open}

(iii) it is an inner regular on the open sets, that is for every open set U

μ(U ) = sup{μ(K ) : K ⊆ E, K compact}.

Definition 17 A left Haar measure on the topological group G is a non-zero Radon
measure μ such that μ(xE) = μ(E) for every Borel set E ⊆ G and every x ∈ G.
Similarly for right Haar measures.

Of course, the prototype of Haar measure is the Lebesgue measure on the additive
groupR

d , which is invariant under left (and right) translations. Compactly supported
continuous functions on a topological space Y are denoted Cc(Y ). An equivalent
definition for the left Haar measure μ is to require that for every f ∈ Cc(G) and
h ∈ G, ∫

G
f (hg)dμ(g) =

∫
G
f (g)dμ(g) .

A fundamental result on Haar measures is the following theorem due to A. Weil.
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Theorem 18 (Theorem 2.10, [8]) Every locally compact group G has a left Haar
measure λ, which is essentially unique in the sense that if μ is any other left Haar
measure, then there exists a positive constant C such that μ = Cλ.

If we fix a left Haar measure μ on G, then for any g ∈ G the measure μg defined
by

μg(E) = μ(Eg)

is again a left Haar measure. Therefore there must exist a positive real number,
denoted �(g) such that

μg = �(g)μ.

The function � : G → R+ is called the modular function. From now on, the choice
of a left Haar measure μ is considered as implicitly made, and hence we write

dg := dμ(g).

Proposition 19 (Proposition 2.24, [8]) Let G be a locally compact group. The mod-
ular function � : G → R+ is a continuous homomorphism into the multiplicative
group R+. Furthermore, for every f ∈ L1(G, μ) we have

∫
G
f (gh)dg = �(h)−1

∫
G
f (g)dg.

A group for which every left Haar measure is also a right Haar measure, hence for
which � ≡ 1, is called unimodular. Large classes of groups are unimodular, such as
the Abelian, compact, nilpotent, semisimple, and reductive groups. Many solvable
groups, however, are not. Prototypical examples of non-unimodular groups are the
Iwasawa N A groups, such as the affine “ax + b” group. A practical recipe for the
computation of modular functions is given by the following proposition.

Proposition 20 (Proposition 2.30, [8]) If G is a connected Lie group andAd denotes
the adjoint action of G on its Lie algebra, then �(g) = det(Ad(g−1)).

The basic spaces X and � in which we are interested are homogeneous spaces
of the same group G. From the point of view of Analysis, the natural question
arises whether the homogeneous space G/H admits a G-invariant Radon measure
or not. The answer to this question is contained in Theorem 21 below, which relates
integration on G to an iterated integral, first on H and then on G/H . These formulae
are achieved by means of the natural projection operator P : Cc(G) → Cc(G/H),
also known as Weil’s mean operator, defined by

P f (gH) =
∫
H

f (gh)dh,
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which is well defined by the left invariance of dh, the Haar measure on H . Fur-
thermore, it is possible to see that P is continuous and surjective. We are now in a
position to state this classical result, also known as Weil’s decomposition theorem.
Here �G and �H are the modular functions of G and H , respectively.

Theorem 21 (Theorem 2.51, [8]) Let G be a locally compact group and H a closed
subgroup. There is a G-invariant Radon measure μ on G/H if and only if �G |H =
�H . In this case, μ is unique up to a constant factor, and if the factor is suitably
chosen then

∫
G
f (g)dg =

∫
G/H

P f (gH)dμ(gH) =
∫
G/H

∫
H

f (gh)dhdμ(gH) ,

for every f ∈ Cc(G).

Hence, there always exists a G-invariant Radon measure on G/H whenever H
is compact, since �G |H = �H ≡ 1. Indeed, the image of H under both modular
functions is a compact subgroup of the multiplicative group of positive reals, namely,
{1}.

Although many homogeneous spaces do not admit invariant measures (for
example, R as a homogeneous space of the “ax + b” group), all of them admit
strongly quasi-invariant measures. If μ is a measure on X = G/H and we write
μg(E) = μ(gE) for E ∈ B(X), we say that μ is a quasi-invariant measure if all the
μg are equivalent, that is, mutually absolutely continuous. We say that μ is strongly
quasi-invariant if there exists a continuous function λ : G × G/H → (0,+∞) such
that

dμg(x) = λ(g, x)dμ(x), x ∈ X, g ∈ G.

In other words, the requirement is that the Radon–Nikodym derivative (dμg/dμ)(x)
is jointly continuous in g and x . As mentioned, all homogeneous spaces admit
strongly quasi-invariant measures (see Proposition 2.56 and Theorem 2.58 in [8]).

4.1.2 Measures on Semisimple Lie Groups of the Noncompact Type

Let G be a semisimple Lie group. By Theorem 18, there exists a (left) Haar measure
onG, unique up to multiplication by a positive constant. We recall that by Theorem 2
there exist subgroups K , A, and N of G such that G = K AN = N AK . Since each
subgroup carries a Haar measure, the natural question arises whether it is possible
to write the Haar measure of G using the Haar measures of the three subgroups
involved, which are all, individually, unimodular.

Since K is compact, we normalize its Haar measure in such a way that the total
measure is 1. The Haar measure on A is obtained by starting from the (positive)
measure that any Riemannian manifold inherits from its metric, see, e.g., Chap. I
in [16]. The invariant metric is obtained by taking the restriction to a × a of the
Killing form, which is positive definite on p × p ⊃ a × a, whereby a is identified
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with the tangent space to A at the identity. The standard normalization is to multiply
the Riemannian measure by (2π)−�/2, where � = dim A. As for N , we normalize its
Haar measure dn so that ∫

N
e−2ρ(H(n))dn = 1,

where N = �(N ) and dn is the pushforward of dn under �. The convergence of the
above integral is no trivial matter and is discussed in detail in [16].

Proposition 22 (Proposition 5.1, Chap. I, [16]) Let dk, da, and dn be left-invariant
Haar measures on K , A, and N, respectively. Then the left Haar measure dg on G
can be normalized so that

∫
G
f (g)dg =

∫
K×A×N

f (kan)e2ρ log adkdadn

=
∫
N×A×K

f (nak)e−2ρ(log a)dndadk

=
∫
A×N×K

f (ank)dadndk

for every f ∈ Cc(G).

The case of the group AN deserves a separate comment. We recall by Sect. 2 that
AN is in fact a semidirect product since A acts on N by conjugation. Furthermore,
for any H ∈ a and any root vector Xα ∈ gα it holds

Ad(exp H)(Xα) = eadH (Xα) =
∞∑
0

(adH)k

k! Xα = eα(H)Xα.

It follows that, upon choosing a basis of mα root vectors for each positive root α, it
is

det Ad(exp H)|n =
∏
α>0

emαα(H)

or, using (6),
det Ada|n = e2ρ(log a).

Proposition 20 now entails that the modular function of the AN Iwasawa group is

�(na) = e−2ρ(log a). (29)

Indeed, in the computation of det Ad(na) on n + a, all that is relevant is the action of
Ada on n because the action of Ada is unimodular on a since A is Abelian, the action
of Adn is unimodular on n because N is nilpotent, and that of Adn on a is again
unimodular because its projection on a is the identity (see also Cor. 5.2 in Chap. I
in [16]).
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4.1.3 Measures on X

In order to do an analysis on the symmetric space X it is important to introduce some
basic functions spaces and differential operators. The reader is referred to Chap. II
in [16].

A quick way to introduce differential operators on X is to say that D is such an
operator if it is a linear mapping of C∞

c (X) that decreases supports. Such operators
have local nature, in the sense that it is possible to find for any coordinate patch
(U, φ) in X and any open set W with compact closure in U a finite number of
smooth functions aα on W such that

Df =
∑

α

aα(Dα( f ◦ φ−1)) ◦ φ

for any f ∈ C∞(W), where

Dα = ∂ |α|

∂xα1
1 ∂xα2

2 . . . ∂xαd
d

is the standard partial derivative operator in R
d associated with the multi-index

α ∈ Z
d+. Because of this local nature, it is then possible to extend any differential

operator D to C∞(X).
On any differentiable manifold, hence on a symmetric space X , two are the most

relevant spaces to consider if distribution theory is among the desirable targets. These
are the space of smooth complex valued functions E(X) on X and the spaceD(X) of
smooth complex valued functions with compact support on X . When this notation,
due to Schwartz, is adopted, it is meant that these vector spaces are endowed with
suitable topologies, see Chap. II in [16] for the details. We stress that in our analysis
the topologies on E(X) and D(X) do not enter into play.

Now, our purpose is to determine an explicitG-invariantmeasure on the symmetric
space X = G/K , whose existence is guaranteed by the fact that K is compact (see
the comment after Theorem 21). Recall that, by Proposition 22, if g = nak, then the
Haar measure of G can be normalized so that

dg = e−2ρ(log a)dndadk,

where dk, da, and dn are the Haar measures on K , A and N that have been fixed in
the previous paragraph.

We endow X with the G-invariant measure dx obtained as the pushforward of
dg under the canonical projection G → G/K . Thus, for any smooth compactly
supported function f ∈ D(X)

∫
X
f (x)dx =

∫
G
f (g[o])dg =

∫
N A

f (na[o])e−2ρ(log a)dnda.
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We henceforth denote by L2(X) the Lebesgue space of square-integrable (equiva-
lence classes of) functions with respect to this measure. The quasi-regular represen-
tation π of G on L2(X) is then defined in the usual way, namely,

π(g) f (x) := f (g−1[x]), f ∈ L2(X), g ∈ G.

It is a unitary non-irreducible representation. Actually, it is possible to construct a
family of Hilbert spaces in which L2(X) can be decomposed as a direct integral,
whereby the restriction of π to each of them is irreducible. These are the spherical
principal series representations, discussed in Chap. VI in [17]. It is also well known
that π is not square-integrable.

4.1.4 Measures on the Boundary

We shall now define positive measures on the boundary B using its various possible
parametrizations. Since K and M are compact subgroups of G, there exists a proba-
bility K -invariant measure μo on B = K/M , see the comment below Theorem 21.
The choice of this measure is such that the Weil’s decomposition holds, assuming
that we normalize the Haar measure of M in such a way that the total measure is 1.
For every other choice of the reference point x ∈ X the analogous objects Kx , Mx ,
andμx can be introduced. The relation betweenμo andμx can be determined explic-
itly. We consider the diffeomorphism Tx : K → Kx defined by k �→ so(x)kso(x)−1.
Its restriction to M is a diffeomorphism between M and Mx . Hence, Tx induces the
diffeomorphism T̃x : K/M → Kx/Mx defined by

T̃x (kM) = Tx (k)Mx = so(x)kso(x)
−1Mx = so(x)kMso(x)

−1 .

Let (T̃x )∗(μo) be the pushfoward of the measure μo under T̃x . Clearly, (T̃x )∗(μo)

is a Kx -invariant probability measure on Kx/Mx and therefore μx = (T̃x )∗(μo).
As we saw in (16), Kx/Mx is diffeomorphic to the boundary K/M through the
map κx,o : Kx/Mx → K/M . Therefore, we can consider the following Kx -invariant
probability measure on the boundary B = K/M

νx := (κx,o)∗(μx ).

It is worth observing that νo = μo and the following relation follows

νx = (κx,o ◦ T̃x )∗(νo) .

Lemma 23 Themeasure νo is G-quasi-invariant. For any F ∈ C(K/M) and g ∈ G

∫
K/M

F(g−1〈kM〉)dνo(kM) =
∫
K/M

F(kM)e−2ρ(Ho(gk))dνo(kM). (30)
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Proof By Lemma 5.19 in Chap. I in [17], for every H ∈ C(K ) and g ∈ G,

∫
K
H(κo(g

−1k))dk =
∫
K
H(k)e−2ρ(Ho(gk))dk. (31)

A function F ∈ C(K/M) will now be regarded as an M-right invariant continuous
function on K . By our choice of νo, Theorem 21 holds and hence

∫
K
F(k)dk =

∫
K/M

∫
M
F(kM m)dmdνo(kM)

=
∫
K/M

F(kM)

∫
M
dmdνo(kM)

=
∫
K/M

F(kM)dνo(kM),

where we have used the normalization of the Haar measure of M . The function
k �→ F(g−1〈k〉) = F(κo(g−1k)) is M-invariant by κo(g−1km) = κo(g−1k)m. Since
m ∈ M commutes with A and N ,

gkm ∈ κo(gk)m exp(Ho(gk))N

and so k �→ Ho(gk) is M-invariant. It follows that k �→ F(k)e−2ρ(Ho(gk)) is also M-
invariant. The assertion follows by applying (31) to F in place of H and then rewriting
the integrals over K of the M-invariant functions as integrals over K/M w.r.t. νo as
before. �

Now we investigate the relation between the different boundary measures intro-
duced above. If F ∈ C(K/M) and x ∈ X , then

∫
K/M

F(kM)dνx (kM) =
∫
K/M

F(κo(T̃x (kM)))dνo(kM)

=
∫
K/M

F(κo(so(x)k)M)dνo(kM)

=
∫
K/M

F(kM)e−2ρ(Ho(so(x)−1k))dνo(kM)

=
∫
K/M

F(kM)e2ρ(Ao(x,kM))dνo(kM)

by Lemma 23 and then applying item (i) of Lemma 16 together with (14), since

−Ho(so(x)
−1k) = Ao(k

−1so(x)) = Ao(so(x)[o], kM) = Ao(x, kM).

By expressing the integral of a function on K/M with respect to either νx or ν y as
above and then using (22) in the form
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Ao(x, kM) = Ao(y, kM) + Ay(x, kM),

the Radon–Nikodym derivative between the measures νx and ν y is then

dνx

dν y
(kM) = e2ρ(Ay(x,kM)). (32)

Let x ∈ X , g ∈ G and F ∈ C(K/M). Using first (32) with y = o and then (30)

∫
K/M

F(g−1〈kM〉)dνx (kM) =
∫
K/M

F(g−1〈kM〉)e2ρ(Ao(x,kM))dνo(kM)

=
∫
K/M

F(kM)e2ρ(Ao(x,g〈kM〉))e−2ρ(Ho(gk))dνo(kM).

Now observe that, by (20) and (21),

Ao(x, g〈kM〉) − Ho(gk) = Ag−1[o](g−1[x], kM) + Ao(k
−1g−1)

= Ag−1[o](g−1[x], kM) + Ao(g
−1[o], kM)

= Ao(g
−1[x], kM),

the latter equality being just (22) from Lemma 16. Hence, we obtain a sort of dual
relation between the G-action on the boundary and that on the reference points of
the boundary measures, namely,

∫
K/M

F(g−1〈kM〉)dνx (kM) =
∫
K/M

F(kM)dνg−1[x](kM). (33)

4.1.5 Measures on �

Finally, in order to develop the theory inwhichwe are interested,we need to introduce
a G-invariant measure on�. We denote by σ the measure on A with density e2ρ(log a)

with respect to the Haar measure da. For every x ∈ X , we can endow � with the
measure dξ obtained as the pushforward of the measure νx ⊗ σ on K/M × A by
means of the map 
x : K/M × A → � defined in (19), i.e.,

dξ = 
x ∗(νx ⊗ σ).

It turns out that dξ is independent of the choice of x ∈ X . We denote by L1(�) and
L2(�) the spaces of absolutely integrable functions and square-integrable functions
with respect to the measure dξ , respectively. By definition, for every F ∈ L1(�)
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∫
�

F(ξ)dξ =
∫
K/M×A

(F ◦ 
x )(kM, a)d(νx ⊗ σ)(kM, a)

=
∫
K/M×A

(F ◦ 
x )(kM, a)e2ρ(log a)dνx (kM)da .

It is easy to verify that dξ is G-invariant. We point out that Helgason introduced this
measure w.r.t. o ∈ X , see Lemma 3.1 in Chap. II in [17]. Since in our treatment it is
important to change the reference point the expression above is useful.

The group G acts on L2(�) by the quasi-regular representation π̂ : G → U
(L2(�)) defined by

π̂(g)F(ξ) := F(g−1.ξ ), F ∈ L2(�), g ∈ G.

Equivalently, given x ∈ X , by (27)

(π̂(g)F) ◦ 
x (kM, a) = F ◦ 
g−1[x](g−1〈kM〉, a), (34)

for every (kM, a) ∈ K/M × A and g ∈ G.
We denote by �− 1

2 the map on K/M × A defined by

�− 1
2 (kM, a) = e ρ(log a).

The reason for such notation resides in the fact that this function has the same
expression of the inverse of the square root of the modular function of the AN
Iwasawa group, see (29).

Finally, for every x ∈ X , we introduce the space L2
x (K/M × A) of square-

integrable functions on K/M × Aw.r.t. the measure νx ⊗ da. For every F ∈ L2(�),
we denote by 
∗

x F the (L2(�), L2
x (K/M × A))-pull-back of F by 
x , that is, we

introduce the unitary operator 
∗
x : L2(�) → L2

x (K/M × A) given by


∗
x F(kM, a) = (�− 1

2 · (F ◦ 
x ))(kM, a)

for almost every (kM, a) ∈ K/M × A. In order to see that 
∗
x is unitary, observe

that for every F ∈ L2(�) we have that

∫
K/M×A

|
∗
x F(kM, a)|2dνx (kM)da

=
∫
K/M×A

|(�− 1
2 · (F ◦ 
x ))(kM, a)|2dνx (kM)da

=
∫
K/M×A

|(F ◦ 
x )(kM, a)|2e2ρ(log a)dνx (kM)da

=
∫
�

|F(ξ)|2dξ = ‖F‖2L2(�)
,

so that 
∗
x is an isometry from L2(�) into L2

x (K/M × A). Surjectivity is also clear.
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4.2 The Helgason–Fourier Transform

The Helgason–Fourier transform was defined by Helgason in analogy with the
Fourier transform on Euclidean spaces in polar coordinates. We briefly recall its
definition and its main features.

Definition 24 (Sect. 1, Chap. III, [17]) The Helgason–Fourier transform of f ∈
D(X) is the function H f : K/M × a∗ −→ C defined by

H f (kM, λ) =
∫
X
f (x)e(−iλ+ρ)(Ao(x,kM))dx .

As the Euclidean Fourier transform, the Helgason–Fourier transform extends to
a unitary operator on L2(X). The Plancherel measure involves the Harish-Chandra
c function, a cornerstone in the analysis on symmetric spaces [13, 14]. It is a mero-
morphic function c : a∗

c → C defined on the complexified dual space a∗
c for which

various formulae are available (see, e.g., [18]). It may thus be restricted to the real
space a∗. As an example, in the case of the unit disk, if #(iλ) > 0, then

c(λ) = π−1/2 �( 12 iλ)

�( 12 (iλ + 1))
,

so that

|c(λ)|−2 = πλ

2
tanh

(
πλ

2

)
.

We denote by L2
o,c(K/M × a∗) the space of the functions on K/M × a∗ that

are square-integrable w.r.t. the measure w−1 |c(λ)|−2 dνodλ, where w stands for the
cardinality of the Weyl group W .

Proposition 25 (Sect. 1, Chap. III, [17]) For every f1, f2 ∈ D(X)

∫
x
f1(x) f2(x)dx =

∫
a∗×K/M

H f1(kM, λ)H f2(kM, λ)dνo(kM)
dλ

w|c(λ)|2 . (35)

The rest of the paragraph is devoted to state the Plancherel theorem for the Helgason–
Fourier transform.

Property �. We say that a function F ∈ L2
o,c(K/M × a∗) satisfies Property � if

for every x ∈ X the function

a∗ � λ �−→
∫
K/M

e(ρ+iλ)(Ao(x,kM))F(kM, λ)dνo(kM) (36)

is W -invariant almost everywhere (see the comments after (5) for the W -action
on a∗).
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We denote by L2
o,c(K/M × a∗)� the space of functions F in L2

o,c(K/M × a∗)
satisfying Property �. We observe that the integral in (36) is absolutely convergent
for almost every λ ∈ a∗. By Fubini theorem, for every F ∈ L2

o,c(K/M × a∗)we have
that

‖F‖2L2
o,c(K/M×a∗) =

∫
a∗

∫
K/M

|F(kM, λ)|2dνo(kM)
dλ

w|c(λ)|2 < +∞.

Thus, the function F(·, λ) is in L2(K/M, νo) ⊆ L1(K/M, νo) for almost every λ ∈
a∗ and, since ρ(Ao(x, ·)) is bounded on K/M , the integrability properties of F(·, λ)

continue to hold for the function e(ρ+iλ)(Ao(x,·))F(·, λ).
Every function F ∈ L2

o,c(K/M × a∗)� is uniquely determined by its restriction
on K/M × a∗+. Here a∗+ denotes the positive Weyl chamber

a∗
+ = {λ ∈ a∗ : Aλ ∈ a+},

where Aλ represents λ via the Killing form, in the sense that λ(H) = B(Aλ, H). If
we suppose that F,G ∈ L2

o,c(K/M × a∗)� are such that F1|K/M×a∗+ = F2|K/M×a∗+ ,
then

∫
K/M

e(ρ+isλ)(Ao(x,kM))(F1 − F2)(kM, sλ)dνo(kM)

=
∫
K/M

e(ρ+iλ)(Ao(x,kM))(F1 − F2)(kM, λ)dνo(kM) = 0

for a. e. λ ∈ a∗+ and for every s ∈ W . Therefore, by Lemma 5.3 in Chap. II in [17],
we can conclude that F1 − F2 = 0 in L2

o,c (K/M × a∗).
By the Paley–Wiener theorem for the Helgason–Fourier transform (Theorem 5.1

in Chap. III in [17]), H f ∈ L2
o,c(K/M × a∗)� for every f ∈ D(X), so that H f is

uniquely determined by its restriction on K/M × a∗+. We denote by L2
o,c(

K/M × a∗+
)
the space of the functions on K/M × a∗+ that are square-integrable

w.r.t. the measure |c(λ)|−2 dνodλ and the Plancherel theorem for the Helgason–
Fourier transform reads:

Theorem 26 (Theorem 1.5, Chap. III, [17]) The restricted Helgason–Fourier trans-
form f �→ H f |K/M×a∗+ extends to a unitary operator H from L2(X) onto L2

o,c(
K/M × a∗+

)
.

By the Plancherel formula (35), H is an isometry from D(X) into L2
o,c

(K/M × a∗). Next we show that, by Theorem 26, H(D(X)) embeds densely in
L2
o,c(K/M × a∗)�. Let F ∈ L2

o,c (K/M × a∗)� be such that 〈F,H f 〉L2
o,c(K/M×a∗) =

0 for every f ∈ D(X). By Fubini theorem it follows that
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0 = 1

w

∫
a∗

∫
K/M

F(kM, λ)

∫
X
f (x)e(−iλ+ρ)(Ao(x,kM))dxdνo(kM)

dλ

|c(λ)|2

= 1

w

∫
a∗

∫
X

∫
K/M

F(kM, λ)e(iλ+ρ)(Ao(x,kM))dνo(kM) f (x)dx
dλ

|c(λ)|2

=
∫
a∗+

∫
X

∫
K/M

F(kM, λ)e(iλ+ρ)(Ao(x,kM))dνo(kM) f (x)dx
dλ

|c(λ)|2

=
∫
a∗+

∫
K/M

F(kM, λ)H f (kM, λ)dνo(kM)
dλ

|c(λ)|2 , (37)

where we use that F satisfies Property � and |c|2 is W -invariant. Hence, (37) yields

〈F |K/M×a∗+ ,H f |K/M×a∗+〉L2
o,c(K/M×a∗+) = 〈F |K/M×a∗+ ,H f 〉L2

o,c(K/M×a∗+) = 0,

for every f ∈ D(X), and Theorem 26 implies that F ≡ 0 a.e. on K/M × a∗+. Hence,
F = 0 in L2

o,c (K/M × a∗) andH(D(X)) embeds densely in L2
o,c(K/M × a∗)�, as

claimed.
The following formulation of Theorem 26 suits our needs.

Theorem 27 The Helgason–Fourier transformH extends to a unitary operatorH
from L2(X) onto L2

o,c (K/M × a∗)�.

In what follows, we always consider H as taking values in L2
o,c (K/M × a∗)�.

4.3 The Horocyclic Radon Transform

Wenext introduce the horocyclicRadon transform, study its range, andwe investigate
its intertwining properties with the quasi-regular representations π and π̂ of G.

Because horocycles admit several explicit parametrizations, we define the horo-
cyclicRadon transformappealing directly to the basic parametrization
o, as clarified
in the definition that follows.

Definition 28 (Sect. 3, Chap. II, [17]) The horocyclic Radon transform R f of a
function f ∈ D(X) is the map R f : � → C defined by

(R f ◦ 
o)(kM, a) =
∫
N
f (kan[o])dn,

for every (kM, a) ∈ K/M × A.

If we change reference point and pick x ∈ X , we may use equality (28) and obtain
the equivalent definition
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(R f ◦ 
x )(kM, a) = (R f ◦ 
o)(kM, a exp(Ao(x, kM)))

=
∫
N
f (ka exp(Ao(x, kM))n[o])dn. (38)

Definition 29 Let f ∈ D(X). We denote by A f the map A f : K/M × A → C

defined by

A f (kM, a) := 
∗
o (R f )(kM, a) = (�− 1

2 · (R f ◦ 
o))(kM, a).

It is worth observing that if the function f is K -bi-invariant, then A f coincides
with the Abel transform of f introduced by Helgason in Chap. III in [17].

We need to introduce the Fourier transform on the Abelian group A.

Definition 30 (Sect. 4.2, Chap. 4, [8]) Let s ∈ L1(A). The Fourier transform F s of
s is defined on a∗ by

F s(λ) =
∫
A
s(a)e−iλ(log a)da .

We now state a fundamental theorem in the L2 theory of the Fourier transform.

Theorem 31 (Theorem 4.26, Chap.4, [8]) The Fourier transform F : L1 ∩ L2(A)

→ C(a∗) extends uniquely to a unitary operator from L2(A) onto L2(a∗). In partic-
ular,

‖F s‖L2(a∗) = ‖s‖L2(A).

We denote by R the regular representation of A on L2(A), which is defined for
every s ∈ L2(A) and for every α ∈ A by

Rαs(a) = s(α−1a), a ∈ A.

Furthermore, we denote by M the representation of A on L2(a∗) defined for every
r ∈ L2(a∗) and for every α ∈ A by

Mαr(λ) = e−iλ(logα)r(λ), λ ∈ a∗.

Proposition 32 (Sect. 7.2, Chap. 5, [20]) The Fourier transform F : L2(A) →
L2(a∗) intertwines the regular representation R with the representation M, i.e.,

F Rα = MαF ,

for every α ∈ A.

Weare now ready to recall the resultwhich relates theHelgason–Fourier transform
with the horocyclic Radon transform. We refer to Proposition 33 as the Fourier
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Slice Theorem for the horocyclic Radon transform in analogy with the polar Radon
transform, see [19] as a classical reference. For the reader’s convenience, we include
the proof.

Proposition 33 (Sect. 5, Chap. III, [17]) For every f ∈ D(X) and kM ∈ K/M, the
function a �→ A f (kM, a) is in L1(A) and

(I ⊗ F )A f (kM, λ) = H f (kM, λ), (39)

for almost every λ ∈ a∗.

Proof If f ∈ D(X) and kM ∈ K/M , then by Proposition 22 and (20)

∫
A
|A f (kM, a)|da =

∫
A
eρ(log a)|R f ◦ 
o(kM, a)|da

≤
∫
A

∫
N
eρ(log a)| f (kan[o])|dnda

=
∫
A

∫
N

∫
K
eρ(log a)| f (kank1[o])|dk1dnda

=
∫
G
eρ(Ao(g))| f (kg[o])|dg

=
∫
G
eρ(Ao(k−1g))| f (g[o])|dg

=
∫
supp( f )

eρ(Ao(x,kM))| f (x)|dx < +∞.

Thus, A f (kM, ·) is in L1(A) and by similar steps it is easy to prove that

(I ⊗ F )A f (kM, λ) = H f (kM, λ),

for almost every λ ∈ a∗.
�

Let f ∈ D(X). By the Paley–Wiener theorem for theHelgason–Fourier transform
(Theorem 5.1 in Chap. III in [17]), H f is rapidly decreasing in the variable λ ∈ a∗
uniformly over K/M , that is for every n ∈ N

|||H f |||n := sup
kM∈K/M, λ∈a∗

(1 + |λ|)n|H f (kM, λ)| < +∞.

By Theorem 31 and Proposition 33, we have that
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∫
�

|R f (ξ)|2dξ =
∫
K/M×A

|
∗
o (R f )(kM, a)|2dνo(kM)da

=
∫
K/M×a∗

|(I ⊗ F )(
∗
o (R f ))(kM, λ)|2dνo(kM)dλ

=
∫
K/M×a∗

|H f (kM, λ)|2dνo(kM)dλ

=
∫
K/M×a∗

(1 + |λ|)2n|H f (kM, λ)|2
(1 + |λ|)2n dνo(kM)dλ

≤ |||H f |||2n
∫
a∗

1

(1 + |λ|)2n dλ < +∞,

for every n > dim A/2. Therefore, R f ∈ L2(�) for every f ∈ D(X).
The horocyclic Radon transform intertwines the regular representations π and π̂

of G.

Proposition 34 For every g ∈ G and f ∈ D(X)

R(π(g) f ) = π̂(g)(R f ) .

Proof Let g ∈ G and f ∈ D(X). It is sufficient to show that R(π(g) f ) ◦ 
o =
π̂(g)(R f ) ◦ 
o on K/M × A. Let (kM, a) ∈ K/M × A. Then

R(π(g) f ) ◦ 
o(kM, a) =
∫
N

π(g) f (kan[o])dn

=
∫
N
f (g−1kan[o])dn

=
∫
N
f (κo(g

−1k) exp(Ho(g
−1k))an[o])dn,

where we used the decomposition g−1k ∈ κo(g−1k) exp(Ho(g−1k))N and the fact
that A normalizes N . Now, by (14), (20) and (22), we have

Ho(g
−1k) = −Ao(k

−1g) = −Ao(g[o], kM) = Ag[o](o, kM) .

Finally, by g−1(kM) = κo(g−1k)M and (38) we have that

R(π(g) f ) ◦ 
o(kM, a) =
∫
N
f (κo(g

−1k) exp(Ag[o](o, kM))an[o])dn

=
∫
N
f (κo(g

−1k) exp(Ao(g
−1[o], g−1〈kM〉))an[o])dn

= R f ◦ 
g−1[o](g−1〈kM〉, a)

= (π̂(g)R f ) ◦ 
o(kM, a),
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where we used the action of G on � given in (34). �

We now introduce a closed subspace of L2(�) which will play a crucial role
because it is the range of the unitarization of the horocyclic Radon transform. By
definition, for every x ∈ X and every F ∈ L2(�)

‖F‖2L2(�) =
∫
K/M

∫
A
|
∗

x F(kM, a)|2dadνx (kM) < +∞.

So that, the function 
∗
x F(kM, ·) is in L2(A) for almost every kM ∈ K/M . Then,

by Plancherel formula and Fubini theorem

‖F‖2L2(�) =
∫
K/M×A

|
∗
x F(kM, a)|2dνx (kM)da

=
∫
K/M×a∗

|(I ⊗ F )
∗
x F(kM, λ)|2dνx (kM)dλ

=
∫
a∗

∫
K/M

|(I ⊗ F )
∗
x F(kM, λ)|2dνx (kM)dλ < +∞.

So that, for almost everyλ ∈ a∗ the function (I ⊗ F )
∗
x F(·, λ) is in L2(K/M, νx ) ⊆

L1(K/M, νx ) and

|
∫
K/M

(I ⊗ F )
∗
x F(kM, λ)dνx (kM)|

≤
∫
K/M

|(I ⊗ F )
∗
x F(kM, λ)|dνx (kM) < +∞.

Property 
. We say that a function F ∈ L2(�) satisfies Property 
 if for every
x ∈ X the function

a∗ � λ �−→
∫
K/M

(I ⊗ F )
∗
x F(kM, λ)dνx (kM)

is W -invariant almost everywhere.

We denote by L2

 (�) the space of functions F ∈ L2(�) satisfying Property 
.

Notice that by the considerations above, the integral appearing in Property 
 is finite
for almost every λ ∈ a∗. Our main results in Sect. 5 are based on the characterization
of L2


 (�) given in Proposition 35 below. We denote by L2
o(K/M × a∗) the space of

square-integrable functions on K/M × a∗ w.r.t. the measure νo ⊗ dλ.

Proposition 35 The operator �o defined on F ∈ L2(�) by

�oF(kM, λ) = (I ⊗ F )
∗
o F(kM, λ), a.e. (kM, λ) ∈ K/M × a∗
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is an isometry from L2(�) into L2
o (K/M × a∗). Furthermore, a function F belongs

to L2

 (�) if and only if �oF satisfies Property �.

Proof By Parseval identity, for every F ∈ L2(�) we have that

∫
K/M×a∗

|�oF(kM, λ)|2 dνo(kM)dλ

=
∫
K/M

∫
a∗

∣∣(I ⊗ F )
∗
o F(kM, λ)

∣∣2 dλdνo(kM)

=
∫
K/M×A

∣∣
∗
o F(kM, a)

∣∣2 dνo(kM)da = ‖F‖2L2(�),

so that�o is an isometry from L2(�) into L2
o (K/M × a∗). Now, let F ∈ L2(�). By

equation (28) and by the definition of the regular representation R of A, for almost
every kM ∈ K/M and λ ∈ a∗ we have that

�oF(kM, λ) = (I ⊗ F )
∗
o F(kM, λ) = (I ⊗ F )(�− 1

2 · (F ◦ 
o))(kM, λ)

= eρ(Ao(x,kM))(I ⊗ F )(I ⊗ Rexp(Ax (o,kM))−1)(�− 1
2 · (F ◦ 
x ))(kM, λ).

Therefore, by Proposition 32 we obtain

�oF(kM, λ) = eρ(Ao(x,kM))(I ⊗ Mexp(Ax (o,kM))−1)(I ⊗ F )(�− 1
2 · (F ◦ 
x ))(kM, λ)

= e(ρ−iλ)(Ao(x,kM))(I ⊗ F )(�− 1
2 · (F ◦ 
x ))(kM, λ)

= e(ρ−iλ)(Ao(x,kM))(I ⊗ F )
∗
x F(kM, λ). (40)

Now, for every x ∈ X and for almost every λ ∈ a∗, (40) yields
∫
K/M

e(ρ+iλ)(Ao(x,kM))�oF(kM, λ)dνo(kM)

=
∫
K/M

e(ρ+iλ)(Ao(x,kM))e(ρ−iλ)(Ao(x,kM))(I ⊗ F )
∗
x F(kM, λ)dνo(kM)

=
∫
K/M

(I ⊗ F )
∗
x F(kM, λ)e2ρ(Ao(x,kM))dνo(kM)

=
∫
K/M

(I ⊗ F )
∗
x F(kM, λ)dνx (kM). (41)

Equality (41) allows us to conclude that F satisfies Property 
 if and only if �oF
satisfies Property � and this concludes our proof.

�
Corollary 36 For every f ∈ D(X),

�o(R f ) = H f
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in L2
o(K/M × a∗) and R f ∈ L2


 (�).

Proof The proof follows immediately by Proposition 33 and the fact that the
Helgason–Fourier transform satisfies Property �. �

Some comments are in order. Proposition 35 with Corollary 36 shows the link
between the range of the Radon transform with the range of the Helgason–Fourier
transform, which is fundamental in our main result. The range R(D(X)) has already
been completely characterized in Chap. IV in [17]. As it will be made clear in the
next section, Property 
 allows us to formulate our findings synthetically.

5 Unitarization and Intertwining

In order to obtain the unitarization for the horocyclic Radon transform that we are
after, we need some technicalities. Figure4 belowmight help the reader to keep track
of all the spaces and operators involved in our construction.

We put

Do = {ϕ ∈ L2
o(K/M × A) : (I ⊗ F )ϕ ∈ L2

o,c(K/M × a∗)}

and we define the operator Jo : Do ⊆ L2
o(K/M × A) → L2

o(K/M × A) as the
Fourier multiplier

(I ⊗ F )(Joϕ)(kM, λ) = 1√
w |c(λ)| (I ⊗ F )ϕ(kM, λ), a.e. (kM, λ) ∈ K/M × a∗.

We define the set of functions

E = {F ∈ L2(�) : �oF ∈ L2
o,c(K/M × a∗)}

and we consider the operator � : E ⊆ L2(�) → L2(�) given by

Fig. 4 Spaces and operators that come into play in our construction
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�F = 
∗
o

−1Jo

∗
o F.

As a direct consequence of the definition of � and Jo, for every F ∈ E and for
almost every (kM, λ) ∈ K/M × a∗ we have (see the rightmost block in Fig. 4)

�o(�F)(kM, λ) = (I ⊗ F )(Jo

∗
o F)(kM, λ)

= 1√
w |c(λ)| (I ⊗ F )(
∗

o F)(kM, λ)

= 1√
w |c(λ)|�oF(kM, λ). (42)

The operator � intertwines the regular representation π̂ next.

Proposition 37 The subspace E is π̂ -invariant and for all F ∈ E and g ∈ G

π̂(g)�F = �π̂(g)F. (43)

Proof We consider F ∈ E, g ∈ G and we prove that π̂(g)F ∈ E. By (34)

π̂(g)F ◦ 
o(kM, a) = F ◦ 
g−1[o](g−1〈kM〉, a)

for almost every (kM, a) ∈ K/M × A. Therefore, we have


∗
o (π̂(g)F)(kM, a) = 
∗

g−1[o]F(g−1〈kM〉, a)

and consequently by Eq. (40)

�o(π̂(g)F)(kM, λ) = (I ⊗ F )(
∗
g−1[o]F)(g−1〈kM〉, λ)

= e(ρ−iλ)(Ag−1[o](o,g
−1〈kM〉))�o(F)(g−1〈kM〉, λ) (44)

for almost every (kM, λ) ∈ K/M × a∗. By Eqs. (44), (33) and (32)

∫
K/M×a∗

|�o(π̂(g)F)(kM, λ)|2 dν
o(kM)dλ

w|c(λ)|2

=
∫
a∗

∫
K/M

|�o(F)(g−1〈kM〉, λ)|2e2ρ(Ag−1[o](o,g
−1〈kM〉)) dνo(kM)dλ

w|c(λ)|2

=
∫
K/M×a∗

|�oF(kM, λ)|2e2ρ(Ag−1[o](o,kM)) dν
g−1[o](kM)dλ

w|c(λ)|2

=
∫
K/M×a∗

|�oF(kM, λ)|2 dν
o(kM)dλ

w|c(λ)|2 < +∞
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and we conclude that π̂(g)F ∈ E. We finally prove the intertwining property (43).
We have already observed that, by Proposition 35, it is enough to prove that

�o(π̂(g)�F) = �o(�π̂(g)F)

for every g ∈ G and F ∈ E. By Eqs. (44) and (42), for almost every (kM, λ) ∈
K/M × a∗, we have the chain of equalities

�o(π̂(g)�F)(kM, λ) = e(ρ−iλ)(Ag−1 [o](o,g
−1〈kM〉))�o(�F)(g−1〈kM〉, λ)

= 1√
w |c(λ)|e

(ρ−iλ)(Ag−1[o](o,g
−1〈kM〉))�o(F)(g−1〈kM〉, λ)

= 1√
w |c(λ)|�o(π̂(g)F)(kM, λ) = �o(�π̂(g)F)(kM, λ),

which proves the intertwining relation. �

The next result follows directly by Proposition 35 and Eq. (42).

Corollary 38 For every F ∈ E, �F ∈ L2

 (�) if and only if F ∈ L2


 (�).

Proof By Proposition 35, �F ∈ L2

 (�) if and only if �o(�F) satisfies Property �.

By (42) and since λ �→ |c(λ)| isW -invariant,�o(�F) satisfies Property � if and only
if �o(F) satisfies Property �, which is equivalent to F ∈ L2


 (�). This concludes the
proof. �

We are now in a position to prove our main result.

Theorem 39 The composite operator �R extends to a unitary operator

Q : L2(X) −→ L2

 (�)

which intertwines the representations π and π̂ , i.e.,

π̂(g)Q = Qπ(g), g ∈ G. (45)

Theorem 39 implies that π and the restriction π̂ |L2

 (�) of π̂ to L2


 (�) are unitarily
equivalent representations. Moreover, π̂ |L2


 (�) (and then π̂ ) is not irreducible, too.

Proof Wefirst show that�R extends to a unitary operatorQ from L2(X) onto L2(�).
It might be useful to keep in mind the leftmost block in Fig. 4. Let f ∈ D(X), by the
Fourier Slice Theorem (39), the Plancherel formula and the definition of Jo and �,
we have that
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‖ f ‖2L2(X) = ‖H f ‖2L2
o,c(K/M×a∗)�

= ‖(I ⊗ F )(
∗
o (R f ))‖2L2

o,c(K/M×a∗)�

=
∫
K/M×a∗

|(I ⊗ F )(Jo

∗
o (R f ))(kM, λ)|2dνo(kM)dλ

=
∫
K/M×a∗

|(I ⊗ F )(
∗
o (�R f ))(kM, λ)|2dνo(kM)dλ

=
∫
K/M×A

|
∗
o (�R f )(kM, a)|2dνo(kM)da

= ‖�R f ‖2L2(�).

Hence, �R is an isometric operator fromD(X) into L2(�). SinceD(X) is dense in
L2(X),�R extends to a unique isometry from L2(X) onto the closure of Ran(�R) in
L2(�).Wemust show that�R has dense image in L2


 (�). The inclusion Ran(�R) ⊆
L2


 (�) follows immediately from Corollary 36 and Corollary 38. Let F ∈ L2

 (�) be

such that 〈F,�R f 〉L2(�) = 0 for every D(X). By the Plancherel formula and the
Fourier Slice Theorem (39) we have that

0 = 〈F,�R f 〉L2(�)

=
∫
K/M×A

(F ◦ 
o)(kM, a)(�R f ◦ 
o)(kM, a)e2ρ(log a)dνo(kM)da

=
∫
K/M×A

(
∗
o F)(kM, a)(Jo
∗

o (R f ))(kM, a)dνo(kM)da

=
∫
K/M×a∗

�o(F)(kM, λ)(I ⊗ F )(Jo
∗
o (R f ))(kM, λ)dνo(kM)dλ

=
∫
K/M×a∗

�o(F)(kM, λ)(I ⊗ F )(
∗
o (R f ))(kM, λ)

dνo(kM)dλ√
w|c(λ)|

=
∫
K/M×a∗

√
w|c(λ)|�o(F)(kM, λ)H f (kM, λ)

dνo(kM)dλ

w|c(λ)|2 .

For simplicity, we denote by �F the function on K/M × a∗ defined as

�F(kM, λ) = √
w|c(λ)|�o(F)(kM, λ), a.e. (kM, λ) ∈ K/M × a∗.

Hence we have proved that 〈�F,H f 〉 = 0 for every f ∈ D(X). The next two
facts follow immediately by Proposition 35. Since �o is an isometry from L2(�)

into L2
o (K/M × a∗), the function �F belongs to L2

o,c(K/M × a∗). Further, since
F ∈ L2


 (�) and since λ �→ |c(λ)| is W -invariant, then �F ∈ L2
o,c(K/M × a∗)�.

By Theorem 26, H(D(X)) is dense in L2
o,c(K/M × a∗)�. Hence, �F = 0 in

L2
o,c(K/M × a∗)� and then �o(F) = 0 in L2

o (K/M × a∗). Since �o is an isome-
try from L2(�) into L2

o (K/M × a∗), then F = 0 in L2(�). Therefore, Ran(�R) =
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L2

 (�) and �R extends uniquely to a surjective isometry

Q : L2(X) −→ L2

 (�).

Observe that Q f = �R f for every f ∈ D(X). The intertwining property (45) fol-
lows immediately from Propositions 34 and 37. �
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Entropy and Concentration

Andreas Maurer

1 Introduction

Concentration inequalities bound the probabilities that random quantities deviate
from their average, median, or otherwise typical values. If this deviation is small
with high probability, then a repeated experiment or observation will likely produce
a similar result. In thisway concentration inequalities cangive quantitative guarantees
of reproducibility, a concept at the heart of empirical science [25].

In this chapter we limit ourselves to study quantities whose randomness arises
through the dependence on many independent random variables. Suppose that
(�i , �i ) are measurable spaces for i ∈ {1, ..., n} and that f is real valued function
defined on the product space � = ∏n

i=1 �i ,

f : x = (x1, ..., xn) ∈ � �→ f (x) ∈ R.

Now let X = (X1, ..., Xn) be a vector of independent random variables, where Xi is
distributed as μi in �i . For t > 0 and X′ iid to X we then want to give bounds on the
upwards deviation probability

Pr
X

{
f (X) − E

[
f

(
X′)] > t

}

in terms of the deviation t , the measures μi and properties of the function f . Down-
ward deviation bounds are then obtained by replacing f with − f . Usually we will
just write Pr { f − E f > t} for the deviation probability above.

The first bounds of this type were given by Chebychev and Bienaimé [11] in the
late 19th century for additive functions of the form
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f (x) =
n∑

i=1

fi (xi ) . (1)

The subject has since been developed by Bernstein, Chernoff, Bennett, Hoeffding,
and many others [4, 16], and results were extended from sums to more general and
complicated nonlinear functions. During the past decades research activity has been
stimulated by the contributions of Michel Talagrand [27, 28] and by the relevance
of concentration phenomena to the rapidly growing field of computer science. Some
concentration inequalities, like the well known bounded difference inequality, have
become standard tools in the analysis of algorithms [23].

One of the more recent methods to derive concentration inequalities, the so-called
entropy method, is rooted in the early investigations of Boltzmann [5] and Gibbs
[12] into the foundations of statistical mechanics. While the modern entropy method
evolved along a complicated historical path via quantumfield theory and the logarith-
mic Sobolev-inequality of Leonard Gross [14], its hidden simplicity was understood
and emphasized by Michel Ledoux, who also recognized the key role which the
subadditivity of entropy can play in the derivation of concentration inequalities [18].
The method has been refined by Bobkov, Massart [20], Bousquet [9], and Boucheron
et al. [7]. Recently Boucheron et al. [8] showed that the entropymethod is sufficiently
strong to derive a form of Talagrand’s convex distance inequality.

In this chapter we present a variation of the entropy method in a compact and
simplified form, closely tied to its origins in statistical mechanics. We give an expo-
sition of the method in Sect. 2 and compress it into a toolbox to derive concentration
inequalities.

In Sect. 3 we will then use this method to prove two classical concentration
inequalities, the bounded difference inequality and a generalization of Bennett’s
inequality. As example applications we treat vector-valued concentration and gen-
eralization in empirical risk minimization, a standard problem in machine learning
theory.

In Sect. 4 we address more difficult problems. The bounded difference inequality
is used to prove the famous Gaussian concentration inequality. We also give some
more recent inequalities which we apply to analyze the concentration of convex
Lipschitz functions on [0, 1]n , or of the spectral norm of a random matrix.

In Sect. 5 we describe some of the more advanced techniques, self-boundedness,
and decoupling. As examples we give sub-Gaussian lower tail bounds for convex
Lipschitz functions and a version of the Hanson-Wright inequality for bounded ran-
dom variables and we derive an exponential inequality for the suprema of empirical
processes. We conclude with another version of Bernstein’s inequality and its appli-
cation to U-statistics.

We limit ourselves to exponential deviation bounds from the mean. For moment
bounds and other advanced methods to establish concentration inequalities, such as
the transportation method or an in-depth treatment of logarithmic Sobolev inequal-
ities, we recommend the monographs by Ledoux [18] and Boucheron, Lugosi, and
Massart [6], and the overview article by McDiarmid [23]. Another important recent
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development not covered is themethod of exchangeable pairs proposed byChatterjee
[10] .

We fix some conventions and notation:
If (�,�) is any measurable space A (�) will denote the algebra of bounded,

measurable real valued functions on�.When there is no ambiguityweoften justwrite
A forA (�). Althoughwegive some results for unbounded functions,most functions
for which we will prove concentration inequalities are assumed to be measurable
and bounded, that is f ∈ A. This assumption simplifies the statement of our results,
because it guarantees the existence of algebraic and exponential moments and makes
our arguments more transparent.

If (�,�,μ) is a probability spacewewrite Pr F = μ (F) for F ∈ �, and E [ f ] =∫
�
f dμ for f ∈ L1 [μ] and σ 2 [ f ] = E

[
( f − E [ f ])2

]
for f ∈ L2 [μ]. Wherever

weusePr, E orσ 2,weassume that there is anunderlyingprobability space (�,�,μ).
If we refer to other measures than μ, then we identify them with corresponding
subscripts.

IfX is any set andn ∈ N, then for y ∈ X and k ∈ {1, ..., n} the substitutionoperator
Sky : Xn → Xn is defined as

Sky x = (x1, ..., xk−1, y, xk+1, ..., xn) for x = (x1, ..., xn) ∈ Xn.

This and other notation which we introduce along the way is also summarized in a
final section in tabular form.

2 The Entropy Method

In this section we develop the entropy method and package it into a toolbox to prove
concentration inequalities.

2.1 Markov’s Inequality and Exponential Moment Method

The most important tool in the proof of deviation bounds is Markov’s inequality,
which we now introduce along with two corollaries, Chebychev’s inequality and the
exponential moment method.

Theorem 1 (Markov inequality) Let f ∈ L1 [μ], f ≥ 0 and t > 0 . Then

Pr { f > t} ≤ E [ f ]

t

Proof Since f ≥ 0 and t > 0 we have 1 f >t ≤ f/t and therefore
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Pr { f > t} = E
[
1 f >t

] ≤ E [ f/t] = E [ f ]

t
.

�

Corollary 2 (Chebychev inequality) Let f ∈ L2 [μ] and t > 0. Then

Pr {| f − E [ f ]| > t} = Pr
{
( f − E [ f ])2 > t2

} ≤ E
[
( f − E [ f ])2

]

t2
= σ 2 ( f )

t2
.

To use Chebychev’s inequality we need to bound the variance σ 2 ( f ). If f is a
sum of independent variables, the variance of f is just the sum of the variances of the
individual variables, but this doesn’twork for general functions. In Sect. 3.1, however,
we give the Efron–Stein inequality, which asserts that for functions of independent
variables the variance is bounded by the expected sum of conditional variances.

The idea of Chebychev’s inequality obviously extends to other even centered
moments E

[
( f − E [ f ])2p

]
. Bounding highermoments of functions of independent

variables is an important technique discussed, for example, in [6].
Here the most important corollary of Markov’s inequality is the exponential

moment method, an idea apparently due to Bernstein [4].

Corollary 3 (exponential moment method) Let f ∈ A, β ≥ 0 and t > 0. Then

Pr { f > t} = Pr
{
eβ f > eβt

} ≤ e−βt E
[
eβ f

]
.

To use this we need to bound the quantity E
[
eβ f

]
and to optimize the right-hand

side above over β. We call E
[
eβ f

]
the partition function, denoted Zβ f = E

[
eβ f

]
.

Bounding the partition function (or its logarithm) is the principal problem in the
derivation of exponential tail bounds.

If f is a sum of independent components (as in (1)), then the partition function
is the product of the partition functions corresponding to these components, and its
logarithm (called the moment generating function) is additive. This is a convenient
basis to obtain deviation bounds for sums, but it does not immediately extend to
general non-additive functions. The approach is taken here, the entropy method,
balances simplicity, and generality.

2.2 Entropy and Concentration

For the remainder of this section we take the function f ∈ A as fixed. We could
interpret the points x ∈ � as possible states of a physical system and f as the negative
energy (or Hamiltonian) function, so that− f (x) is the system’s energy in the state x .
Themeasureμ thenmodels an a priori probability distribution of states in the absence
of any constraining information. We will define another probability measure on �,
with specified expected energy, but with otherwise minimal assumptions.
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If ρ is a function on �, ρ ≥ 0 and E [ρ] = 1, the Kullback–Leibler divergence
K L (ρdμ, dμ) of ρdμ to dμ is

K L (ρdμ, dμ) = E [ρ ln ρ] .

K L (ρdμ, dμ) can be interpreted as the information we gain, if we are told that the
probability measure is ρdμ instead of the a priori measure dμ.

Theorem 4 For all f ∈ A, β ∈ R

sup
ρ

βE [ρ f ] − E [ρ ln ρ] = ln E
[
eβ f

]
,

where the supremum is over all nonnegative measurable functions ρ on � satisfying
E [ρ] = 1.

The supremum is attained for the density

ρβ f = eβ f /E
[
eβ f

]
.

Proof We can assume β = 1 by absorbing it in f . Let ρ ≥ 0 satisfy E [ρ] = 1,
so that ρdμ is a probability measure and g ∈ A �→ Eρ [g] := E [ρg] an expecta-
tion functional. Let φ (x) = 1/ρ (x) if ρ (x) > 0 and φ (x) = 0 if ρ (x) = 0. Then
E [ρ ln ρ] = −E [ρ ln φ] = −Eρ [ln φ] and with Jensen’s inequality

E [ρ f ] − E [ρ ln ρ] = Eρ [ f + ln φ] = ln exp
(
Eρ [ f + ln φ]

)

≤ ln Eρ

[
exp ( f + ln φ)

] = ln Eρ

[
φe f

]

= ln E
[
ρφe f

] = ln E
[
1ρ>0e

f
]

≤ ln E
[
e f

]
.

On the other hand

E
[
ρ f f

] − E
[
ρ f ln ρ f

] = E
[
f e f

]

E
[
e f

] − E
[
e f ln

(
e f /E

[
e f

])]

E
[
e f

] = ln E
[
e f

]
.

�

In statistical physics the maximizing probability measure dμβ f = ρβ f dμ =
eβ f dμ/E

[
eβ f

]
is called the thermal measure, sometimes also the canonical ensem-

ble. It is used to describe a system in thermal equilibrium with a heat reservoir at
temperature T ≈ 1/β. The corresponding expectation functional

Eβ f [g] = E
[
geβ f

]

E
[
eβ f

] = Z−1
β f E

[
geβ f

]
, for g ∈ A
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is called the thermal expectation. The normalizing quantity Zβ f = E
[
eβ f

]
is the

partition function already introduced above. Notice that for any constant c we have
Eβ( f +c) [g] = Eβ f [g].

The value of the function ρ �→ E [ρ ln ρ] at the thermal density ρβ f = Z−1
β f e

β f is
called the canonical entropy or simply entropy,

Ent f (β) = E
[
ρβ f ln ρβ f

] = βEβ f [ f ] − ln Zβ f . (2)

Note that Ent− f (β) = Ent f (−β), a simple but very useful fact.
Suppose that ρ is any probability density on �, which gives the same expected

value for the energy as ρβ f , so that E [ρ f ] = Eβ f [ f ]. Then

0 ≤ K L
(
ρdμ, Z−1

β f e
β f dμ

)

= E [ρ ln ρ] − βE [ρ f ] + ln Zβ f

= E [ρ ln ρ] − βEβ f [ f ] + ln Zβ f

= K L (ρdμ, dμ) − K L
(
ρβ f dμ, dμ

)
.

The thermal measure dμβ f = ρβ f dμ therefore minimizes the information gain rel-
ative to the a priori measure dμ, given the expected value −Eβ f [ f ] of the internal
energy.

For g ∈ A and ρ = Z−1
β f e

β f Theorem 4 gives

Eβ f [g] ≤ Ent f (β) + ln E
[
eg

]
,

which allows to decouple g from f . This plays an important role later on in this
chapter.

For β 	= 0 define a function

A f (β) = 1

β
ln Zβ f = 1

β
ln E

[
eβ f

]
. (3)

By l’Hospital’s rule we have limβ→0 A f (β) = E [ f ], so A f extends continuously to
R by setting A f (0) = E [ f ]. In statistical physics the quantity A f (β) so defined is
called the free energy corresponding to the Hamiltonian (energy function) H = − f
and temperature T ≈ β−1. Theorem 4 exhibits the free energy and the canonical
entropy as a pair of convex conjugates. Dividing (2) by β and writingU = Eβ f [ f ],
we recover the classical thermodynamic relation

A = U − T Ent,

which describes the macroscopically available energy A as the difference between
the internal energy U and an energy portion T Ent, which is inaccessible due to
ignorance of the microscopic state.
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The following theorem establishes the connection of entropy, the exponential
moment method and concentration inequalities.

Theorem 5 For f ∈ A and any β ≥ 0 we have

ln E
[
eβ( f −E f )

] = β

∫ β

0

Ent f (γ )

γ 2
dγ

and, for t ≥ 0,

Pr { f − E f > t} ≤ inf
β≥0

exp

(

β

∫ β

0

Ent f (γ )

γ 2
dγ − βt

)

.

Proof Differentiating the free energy with respect to β we find

A′
f (β) = 1

β
Eβ f [ f ] − 1

β2
ln Zβ f = β−2Ent f (β) .

By the fundamental theorem of calculus

ln E
[
eβ( f −E f )

] = ln Zβ f − βE [ f ] = β
(
A f (β) − A f (0)

)

= β

∫ β

0
A′

f (γ ) dγ = β

∫ β

0

Ent f (γ )

γ 2
dγ,

which is the first inequality. Then by Markov’s inequality

Pr { f − E f > t} ≤ e−βt E
[
eβ( f −E f )

]

≤ exp

(

β

∫ β

0

Ent f (γ )

γ 2
dγ − βt

)

.

�
Our strategy to establish concentration results will therefore be the search for

appropriate bounds on the entropy.

2.3 Entropy and Energy Fluctuations

The thermal variance of a function g ∈ A is just the variance of g relative to the
thermal expectation. It is denoted σ 2

β f (g) and defined by

σ 2
β f (g) = Eβ f

[(
g − Eβ f [g]

)2
]

= Eβ f
[
g2

] − (
Eβ f [g]

)2
.

For constant c we have σ 2
β( f +c) [g] = σ 2

β f [g].
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The proof of the following lemma consists of straightforward calculations, an
easy exercise to familiarize oneself with thermal measure, expectation and variance.

Lemma 6 The following formulas hold for f ∈ A
1. d

dβ

(
ln Zβ f

) = Eβ f [ f ].
2. If h : β �→ h (β) ∈ A is differentiable and (d/dβ) h (β) ∈ A then

d

dβ
Eβ f [h (β)] = Eβ f [h (β) f ] − Eβ f [h (β)] Eβ f [ f ] + Eβ f

[
d

dβ
h (β)

]

.

3. d
dβ Eβ f

[
f k

] = Eβ f
[
f k+1

] − Eβ f
[
f k

]
Eβ f [ f ] .

4. d2

dβ2

(
ln Zβ f

) = d
dβ Eβ f [ f ] = σ 2

β f [ f ] .

Proof 1. is immediate and 2. a straightforward computation. 3. and 4. are immediate
consequences of 1. and 2. �

Since the members of A are bounded it follows from 2. that for f, g ∈ A the
functions β �→ Eβ f [g] and β �→ σ 2

β f [g] are C∞.
The thermal variance of f itself corresponds to energy fluctuations. The next

theorem represents entropy as a double integral of such fluctuations. The utility of this
representation to derive concentration results has been noted by David McAllester
[22].

Theorem 7 We have for β > 0

Ent f (β) =
∫ β

0

∫ β

t
σ 2
s f [ f ] ds dt.

Proof Using the previous lemma and the fundamental theorem of calculus we obtain
the formulas

βEβ f [ f ] =
∫ β

0
Eβ f [ f ] dt =

∫ β

0

(∫ β

0
σ 2
s f [ f ] ds + E [ f ]

)

dt

and

ln Zβ f =
∫ β

0
Et f [ f ] dt =

∫ β

0

(∫ t

0
σ 2
s f [ f ] ds + E [ f ]

)

dt,

which we subtract to obtain

Ent f (β) = βEβ f [ f ] − ln Zβ f =
∫ β

0

(∫ β

0
σ 2
s f [ f ] ds −

∫ t

0
σ 2
s f [ f ] ds

)

dt

=
∫ β

0

(∫ β

t
σ 2
s f [ f ] ds

)

dt.

�
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Since bounding σ 2
β f [ f ] is central to our method, it is worth mentioning an inter-

pretation in terms of heat capacity, or specific heat. Recall that −Eβ f [ f ] is the
expected internal energy. The rate of change of this quantity with temperature T is
the heat capacity. By conclusion 4 of Lemma 6 we have

d

dT

(−Eβ f [ f ]
) = 1

T 2
σ 2

β f [ f ] ,

which exhibits the proportionality of heat capacity and energy fluctuations.

2.4 Product Spaces and Conditional Operations

We now set � = ∏n
k=1 �k and dμ = ∏n

k=1 dμk , where each μk is the probability
measure representing the distribution of some variable Xk in the space �k , so that
the Xk are assumed to be independent.

WithAk we denote the subalgebra of those functions f ∈ A, which are indepen-
dent of the k-th argument. To efficiently deal with operations performed on individual
arguments of functions inA we need some special notation.

Now let k ∈ {1, ..., n} and y ∈ �k . If 	 is any set and F is any function F : � →
	, we extend the definition of the substitution operator Sky to F by Sky (F) = F ◦ Sky .
This means

Sky (F) (x1, ..., xn) = F (x1, ..., xk−1, y, xk+1, ..., xn) ,

so the k-th argument is simply replaced by y. Since for f ∈ A the function Sky f is
independent of xk (which had been replaced by y) we see that Sky is a homomorphic
(linear and multiplication-preserving) projection of A onto Ak .

For k ∈ {1, ..., n} and y, y′ ∈ �k we define the difference operator Dk
y,y′ : A →

Ak by
Dk

y,y′ f = Sky f − Sky′ f for f ∈ A.

Clearly Dk
y,y′ annihilates Ak . The operator rk : A → Ak , defined by rk f =

supy,y′∈�k
Dk

y,y′ f is called the k-th conditional range. We also use the abbrevia-
tions infk f = inf y∈�k S

k
y f and supk f = supy∈�k

Sky f for the conditional infimum
and supremum.

Given the measures μk and k ∈ {1, ..., n} we the operator Ek : A → Ak by

Ek f = Ey∼μk

[
Sky f

] =
∫

�k

Sky f dμk (y) .
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The operator Ek [.] = E
[
.|X1, ..., Xk−1, Xk+1, ..., Xn

]
is the expectation conditional

to all variables with indices different to k. Ek is a linear projection ontoAk . Also the
Ek commute among each other, and for h ∈ A and g ∈ Ak we have

E [[Ekh] g] = E [Ek [hg]] = E [hg] . (4)

Replacing the operator E by Ek leads to the definition of conditional thermody-
namic quantities, all of which are now members of the algebraAk :

• The conditional partition function Zk,β f = Ek
[
eβ f

]
,

• The conditional thermal expectation Ek,β f [g] = Z−1
k,β f Ek

[
geβ f

]
for g ∈ A,

• The conditional entropy Entk, f (β) = βEk,β f [ f ] − ln Zk,β f ,

• The conditional thermal variance σ 2
k,β f [g] = Ek,β f

[(
g − Ek,β f [g]

)2
]
for g ∈ A.

As β → 0 this becomes
• The conditional variance σ 2

k [g] = Ek
[
(g − Ek [g])

2
]
for g ∈ A.

The previously established relations hold also for the corresponding conditional
quantities. Of particular importance for our method is the conditional version of
Theorem 7

Entk, f (β) =
∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt.

The following lemma, which states that the conditional thermal expectation just
behaves like a conditional expectation, will also be used frequently.

Lemma 8 For any f, g ∈ A, k ∈ {1, ..., n}, β ∈ R

Eβ f
[
Ek,β f [g]

] = Eβ f [g] .

Proof Using E [Ek [h] g] = E [hEk [g]]

Eβ f
[
Ek,β f [g]

] = Z−1
β f E

[

Ek
[
geβ f

] eβ f

Ek
[
eβ f

]

]

= Z−1
β f E

[

geβ f Ek

[(
eβ f

Ek
[
eβ f

]

)]]

= Z−1
β f E

[
geβ f

]

= Eβ f [g] .

�
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2.5 The Subadditivity of Entropy

In the non-interacting case, when the energy function f is a sum, f = ∑
fk, it is

easily verified that Entk, f (β) (x) = Entk, f (β) is independent of x and that

Ent f (β) =
n∑

k=1

Entk, f (β) .

In statistical physics it is said that entropy is an extensive quantity: the entropy of
non-interacting systems is equal to the sum of the individual entropies.

Equality no longer holds in the interacting, nonlinear case, but there is a subad-
ditivity property which is sufficient for the purpose of concentration inequalities:

The total entropy is no greater than the thermal average of the sum of the condi-
tional entropies.

Theorem 9 For f ∈ A and β > 0

Ent f (β) ≤ Eβ f

[
n∑

k=1

Entk, f (β)

]

(5)

In 1975 Elliott Lieb [19] gave a proof of this result, which was probably known
some time before, at least in the classical setting relevant to our arguments. Together
with Theorem 5 and Theorem 7 it completes our basic toolbox to prove concentration
inequalities. For the proof we need two auxiliary results.

Lemma 10 Let h, g > 0 be bounded measurable functions on �. Then for any
expectation E

E [h] ln
E [h]

E [g]
≤ E

[

h ln
h

g

]

.

Proof Define an expectation functional Eg by Eg [h] = E [gh] /E [g]. The function

(t) = t ln t is convex for positive t , since 
′′ = 1/t > 0. Then




(

Eg

[
h

g

])

= E [h]

E [g]
ln

E [h]

E [g]
.

Thus, by Jensen’s inequality,

E [h] ln
E [h]

E [g]
= E [g] Eg

[
h

g

]

ln Eg

[
h

g

]

= E [g]


(

Eg

[
h

g

])

≤ E [g] Eg

[




(
h

g

)]

= E

[

h ln
h

g

]

.

�
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Next we prove (5) for general positive functions.

Lemma 11 Let ρ ∈ A, ρ > 0. Then

E

[

ρ ln
ρ

E [ρ]

]

≤
∑

k

E

[

ρ ln
ρ

Ek [ρ]

]

.

Proof Write Ek [.] = E1E2...Ek [.] with E0 being the identity map on A. The
innocuous looking identity E

[
Ek [.]

] = E [.] is an obvious consequence of the fact
that we work with product probabilities. Without independence it would not hold,
and the following simple argumentwould break down.Note that En = E .We expand

ρ

E [ρ]
= E0 [ρ]

E1 [ρ]

E1 [ρ]

E2 [ρ]
...

En−1 [ρ]

En [ρ]
=

n∏

k=1

Ek−1 [ρ]

Ek−1 [Ek [ρ]]
.

We get from Lemma 10, using E
[
Ek−1 [.]

] = E [.] ,

E

[

ρ ln
ρ

E [ρ]

]

=
∑

k

E

[

Ek−1 [ρ] ln
Ek−1 [ρ]

Ek−1 [Ek [ρ]]

]

≤
∑

k

E

[

Ek−1

[

ρ ln
ρ

Ek [ρ]

]]

=
∑

k

E

[

ρ ln
ρ

Ek [ρ]

]

.

�

Finally we specialize to the canonical entropy.

Proof of Theorem 9 9 Set ρ = eβ f in Lemma 11 to get

Ent f (β) = Z−1
β f E

[

eβ f ln
eβ f

E
[
eβ f

]

]

≤ Z−1
β f

∑

k

E

[

eβ f ln
eβ f

Ek
[
eβ f

]

]

=
∑

k

Eβ f
[
β f − ln Ek

[
eβ f

]]

= Eβ f

[
∑

k

Entk, f (β)

]

,

where we used Lemma 8 in the last identity. �
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2.6 Summary of Results

The exponential moment method, Corollary 3, and Theorems 5, 7, and 9 provide us
with the tools to prove several useful concentration inequalities. Here is a summary:

Theorem 12 For f ∈ A and β > 0 we have

Pr { f − E f > t} ≤ E
[
eβ( f −E f )

]
e−βt (6)

ln E
[
eβ( f −E f )

] = β

∫ β

0

Ent f (γ )

γ 2
dγ (7)

Ent f (β) ≤ Eβ f

[
n∑

k=1

Entk, f (β)

]

(8)

Ent f (β) =
∫ β

0

∫ β

t
σ 2
s f [ f ] ds dt (9)

Entk, f (β) =
∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt (10)

Concatenating the exponential moment bound (6), the entropy representation of
the moment generating function (7), the subadditivity of entropy (8) and the fluctua-
tion representation of the conditional entropy (10), we obtain the following generic
concentration inequality.

Pr { f − E f > t} ≤ inf
β>0

exp

(

β

∫ β

0
γ −2Eγ f

[
n∑

k=1

∫ γ

0

∫ γ

t
σ 2
k,s f [ f ] ds dt

]

dγ − βt

)

.

This is the template for the results given in the next section.

3 First Applications of the Entropy Method

We now develop some first consequences of the method, beginning with the Efron–
Stein inequality, a general bound on the variance. Then we continue with the deriva-
tion of the bounded difference inequality, a simple and perhaps the most useful
concentration inequality, for which we give two illustrating applications. Then we
give a Bennett-Bernstein type inequality which we apply to the concentration of
vector-valued random variables.
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3.1 The Efron–Stein Inequality

Combining the fluctuation representations (9) and (10) with the subadditivity (8) of
entropy and dividing by β2 we obtain

1

β2

∫ β

0

∫ β

t
σ 2
s f [ f ] ds dt ≤ Eβ f

[
n∑

k=1

1

β2

∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt .

]

Using the continuity properties of β �→ Eβ f [g] and β �→ σ 2
β f [ f ], which follow

from Lemma 6 we can take the limit as β → 0 and multiply by 2 to obtain

σ 2 [ f ] ≤ E

[
∑

k

σ 2
k [ f ]

]

= E
[
�2 ( f )

]
, (11)

where we introduced the notation �2 ( f ) = ∑
k σ 2

k [ f ] for the sum of conditional
variances.

Equation (11) is the famous Efron–Stein–Steele inequality [26]. It is an easy
exercise to provide the details of the above limit process and to extend the inequality
to general functions f ∈ L2 [μ] by approximation with a sequence of truncations.

3.2 The Bounded Difference Inequality

The variance of a bounded real random variable is never greater than a quarter of the
square of its range.

Lemma 13 If f ∈ A satisfies a ≤ f ≤ b then σ 2 [ f ] ≤ (b − a)2 /4.

Proof

σ 2 ( f ) = E [( f − E [ f ]) f ] = E [( f − E [ f ]) ( f − a)]

≤ E [(b − E [ f ]) ( f − a)] = (b − E [ f ]) (E [ f ] − a)

≤ (b − a)2

4
.

To see the last inequality use calculus to find the maximal value of the function
t → (b − t) (t − a). �.

The bounded difference inequality bounds the deviation of a function from its
mean in terms of the sum of squared conditional ranges, which is the operator
R2 : A → A defined by
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R2 ( f ) =
n∑

k=1

rk ( f )2 =
n∑

k=1

sup
y,y′∈�k

(
Dk

y,y′ f
)2

.

Theorem 14 (Bounded difference inequality) For f ∈ A and t > 0

Pr { f − E f > t} ≤ exp

( −2t2

supx∈� R2 ( f ) (x)

)

.

Proof Applied to the conditional thermal variance Lemma 13 gives

σ 2
k,s f [ f ] ≤ 1

4
sup

y,y′∈�k

(
Dk

y,y′ f
)2 = 1

4
rk ( f )2 ,

so combining the subadditivity of entropy (8) and the fluctuation representation (10)
gives

Ent f (γ ) ≤ Eγ f

[
n∑

k=1

Entk, f (γ )

]

= Eγ f

[
n∑

k=1

∫ γ

0

∫ γ

t
σ 2
k,s f [ f ] ds dt

]

≤ 1

4
Eγ f

[∫ γ

0

∫ γ

t

n∑

k=1

rk ( f )2
]

ds dt

= γ 2

8
Eγ f

[
R2 ( f )

]
. (12)

Bounding the thermal expectation Eγ f by the supremum over x ∈ � we obtain from
Theorem 12 (7)

ln E
[
eβ( f −E f )

] = β

∫ β

0

Ent f (γ )

γ 2
dγ ≤ β2

8
sup
x∈�

R2 ( f ) (x) ,

and the tail bound (6) gives for all β > 0

Pr { f − E f > t} ≤ exp

(
β2

8
sup
x∈�

R2 ( f ) (x) − βt

)

.

Substitution of the minimizing value β = 4t/
(
supx∈� R2 ( f ) (x)

)
completes the

proof. �

Notice that the conditional range rk ( f ) is a function in Ak and may depend on
all xi except xk . The sum R2 ( f ) = ∑n

k=1 rk ( f )2 may thus depend on all the xi . It is
therefore a very pleasant feature that the supremum over x is taken outside the sum.
In the sequel this will allow us to derive the Gaussian concentration inequality from
Theorem 14. The bound (12) will be re-used in Sect. 5.4 to prove a version of the
Hanson-Wright inequality for quadratic forms.
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In the literature one often sees the following weaker version of Theorem 14.

Corollary 15 For f ∈ A and t > 0

Pr { f − E f > t} ≤ exp

( −2t2
∑n

k=1 supx∈� rk ( f )2 (x)

)

.

If f is a sum f = ∑
k Xk , then r2k is independent of x and the two results are

equivalent. In this case we obtain the well known Hoeffding inequality [16].

Corollary 16 (Hoeffding’s inequality) Let Xk be real random variables ak ≤ Xk ≤
bk. Then

Pr

{
∑

k

(Xk − E [Xk]) > t

}

≤ exp

( −2t2
∑n

k=1 (bk − ak)
2

)

.

In returning to the general case of non-additive functions, it is remarkable that for
many applications the following “little bounded difference inequality”, which is yet
weaker than Corollary 15, seems to be sufficient.

Corollary 17 For f ∈ A and t > 0

Pr { f − E f > t} ≤ exp

(−2t2

nc2

)

,

where
c = max

k
sup

x∈�,y,y′∈�k

Dk
y,y′ f (x) .

3.3 Vector-Valued Concentration

Suppose the Xi are independent random variables with values in a normed space
B such that EXi = 0 and ‖Xi‖ ≤ ci . Let �i = {y ∈ B : ‖y‖ ≤ ci } and define f :∏n

i=1 �i → R by

f (x) =
∥
∥
∥
∥
∥

∑

i

xi

∥
∥
∥
∥
∥
.

Then by the triangle inequality, for y, y′ with ‖y‖ ,
∥
∥y′∥∥ ≤ ck
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Dk
y,y′ f (x) =

∥
∥
∥
∥
∥

∑

i

Sky (x)i

∥
∥
∥
∥
∥

−
∥
∥
∥
∥
∥

∑

i

Sky′ (x)i

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∑

i

Sky (x)i −
∑

i

Sky′ (x)i

∥
∥
∥
∥
∥

= ∥
∥y − y′∥∥

≤ 2ck,

so R2 ( f ) (x) ≤ 4
∑

i c
2
i . It follows from Corollary 15 that

Pr { f − E [ f ] > t} ≤ exp

( −t2

2
∑

i c
2
i

)

,

or that for δ > 0 with probability at least 1 − δ in (X1, ..., Xn)

∥
∥
∥
∥
∥

∑

i

Xi

∥
∥
∥
∥
∥

≤ E

∥
∥
∥
∥
∥

∑

i

Xi

∥
∥
∥
∥
∥

+
√

2
∑

i

c2i ln (1/δ). (13)

If B is a Hilbert space we can bound E
∥
∥∑

i Xi

∥
∥ ≤

√∑
i E

[‖Xi‖2
]
by Jensen’s

inequality and if all the Xi are iid we get with probability at least 1 − δ

∥
∥
∥
∥
∥

1

n

∑

i

Xi

∥
∥
∥
∥
∥

≤
√

E
[‖X1‖2

]

n
+ c1

√
2 ln (1/δ)

n
(14)

3.4 Rademacher Complexities and Generalization

Now let X be any measurable space and F a countable class of functions f :
X → [0, 1] and X = (X1, ..., Xn) be a vector of iid random variables with values
in X.

Empirical risk minimization really wants to find f ∈ F with minimal risk
E [ f (X)], but, as the true distribution of X is unknown, it has to be content with
minimizing the empirical surrogate

1

n

∑

i

f (Xi ) .

One way to justify this method is by giving a bound on the uniform estimation error

sup
f ∈F

1

n

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (X)]

∣
∣
∣
∣
∣
.
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The vector space

B =
{

g : F → R : sup
f ∈F

|g ( f )| < ∞
}

becomes a normed space with norm ‖g‖ = sup f ∈F |g ( f )|. For each Xi define X̂i

∈ B by X̂i ( f ) = f (Xi ) − E [ f (Xi )]. Then the X̂i are zero mean random variables

in B satisfying
∥
∥
∥X̂i

∥
∥
∥ ≤ 1, and (13) of the preceding section gives with probability

at least 1 − δ

sup
f ∈F

∣
∣
∣
∣
∣

1

n

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ 1

n
E sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
+

√
2 ln (1/δ)

n
.

The expectation term on the right-hand side can be bounded in terms of Rademacher
complexity [3]. This is the function R : F × Xn → R defined as

R (F , x) = 2

n
Eε sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi f (xi )

∣
∣
∣
∣
∣
,

where the ε = (ε1, ..., εn) are vectors of independent Rademacher variables which
are uniformly distributed on {−1, 1}. We have, with X ′

i iid to Xi

1

n
E sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ 1

n
EXX′ sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − f
(
X ′
i

)
∣
∣
∣
∣
∣

= 1

n
EXX′ sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi
(
f (Xi ) − f

(
X ′
i

))
∣
∣
∣
∣
∣
,

for any ε ∈ {−1, 1}n , because the expectation is invariant under the interchange of
Xi and X ′

i on an arbitrary subset of indices. Passing to the expectation in ε and using
the triangle inequality gives

1

n
E sup

f ∈F

∣
∣
∣
∣
∣

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ 1

n
EXX′ Eε sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi
(
f (Xi ) − f

(
X ′
i

))
∣
∣
∣
∣
∣

≤ 2

n
EXEε sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi f (Xi )

∣
∣
∣
∣
∣

= EXR (F ,X) .

Now we use the bounded difference inequality again to bound the deviation of
R (F , .) from its expectation. We have, again using the triangle inequality,
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Dk
y,y′R (F , x) = 2

n
Eε

[

sup
f ∈F

∣
∣
∣
∣
∣

∑

i

εi S
k
y f (xi )

∣
∣
∣
∣
∣
− sup

f ∈F

∣
∣
∣
∣
∣

∑

i

εi S
k
y′ f (xi )

∣
∣
∣
∣
∣

]

≤ 2

n
Eε

[

sup
f ∈F

∣
∣εi

(
f (y) − f

(
y′))∣∣

]

≤ 2

n

and thus obtain
Pr

{
E

[R (F , .)
]

> R (F , .) + t
} ≤ e−nt2/2,

or, for every δ > 0 with probability at least 1 − δ

E
[R (F ,X)

] ≤ R (F ,X) +
√
2 ln (1/δ)

n
. (15)

By a union bound we conclude that with probability at least 1 − δ

sup
f ∈F

∣
∣
∣
∣
∣

1

n

∑

i

f (Xi ) − E [ f (Xi )]

∣
∣
∣
∣
∣
≤ R (F ,X) + 2

√
2 ln (2/δ)

n
.

3.5 The Bennett and Bernstein Inequalities

The proof of the bounded difference inequality relied on bounding the thermal vari-
ance σ 2

k,β f ( f ) uniformly in β, using the constraints on the conditional ranges of
f . We now consider the case, where we only use one constraint on the ranges, say
f − Ek [ f ] ≤ 1, but we use information on the conditional variances. This leads to
a Bennett type inequality as in [23]. Recall the notation for the sum of conditional
variances�2 ( f ) := ∑

σ 2
k ( f ). Again we start with a bound on the thermal variance.

Lemma 18 Assume f − E f ≤ 1. Then for β > 0

σ 2
β f ( f ) ≤ eβσ 2 ( f )

Proof

σ 2
β f ( f ) = σ 2

β( f −E f ) ( f − E f ) = Eβ( f −E f )
[
( f − E f )2

] − (
Eβ( f −E f ) [ f − E f ]

)2

≤ Eβ( f −E f )
[
( f − E f )2

] = E
[
( f − E f )2 eβ( f −E f )

]

E
[
eβ( f −E f )

]

≤ E
[
( f − E f )2 eβ( f −E f )

]
(by Jensen’s inequality)

≤ eβE
[
( f − E f )2

]
(now using f − E f ≤ 1).

�
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Next we bound the entropy Ent f (β).

Lemma 19 Assume that f − Ek f ≤ 1 for all k ∈ {1, ..., n}. Then for β > 0

Ent f (β) ≤ (
βeβ − eβ + 1

)
Eβ f

[
�2 ( f )

]
.

Proof From Theorem 12 and the previous lemma we get

Ent f (β) ≤ Eβ f

[
n∑

k=1

∫ β

0

∫ β

t
σ 2
k,s f [ f ] ds dt

]

≤
∫ β

0

∫ β

t
esds dt Eβ f

[
�2 ( f )

]
.

The conclusion follows from the formula

∫ β

0

∫ β

t
esds dt =

∫ β

0

(
eβ − et

)
dt = βeβ − eβ + 1.

�
We need one more technical Lemma.

Lemma 20 For x ≥ 0

(1 + x) ln (1 + x) − x ≥ 3x2/ (6 + 2x) .

Proof We have to show that

f1 (x) := (
6 + 8x + 2x2

)
ln (1 + x) − 6x − 5x2 ≥ 0.

Since f1 (0) = 0 and f ′
1 (x) = 4 f2 (x) with f2 (x) := (2 + x) ln (1 + x) − 2x , it is

enough to show that f2 (x) ≥ 0. But f2 (0) = 0 and f ′
2 (x) = (1 + x)−1 + ln (1 + x)

− 1, so f ′
2 (0) = 0, but f ′′

2 (x) = x (1 + x)−2 ≥ 0, so f2 (x) ≥ 0. �
Now we can prove our version of Bennett’s inequality.

Theorem 21 Assume f − Ek f ≤ 1,∀k. Let t > 0 and denote V = supx∈� �2

( f ) (x). Then

Pr { f − E [ f ] > t} ≤ exp
(−V

((
1 + tV−1

)
ln

(
1 + tV−1

) − tV−1
))

≤ exp

( −t2

2V + 2t/3

)

.

Proof Fix β > 0. We define the real function

ψ (t) = et − t − 1, (16)

which arises from deleting the first two terms in the power series expansion of the
exponential function and observe that



Entropy and Concentration 75

∫ β

0

γ eγ − eγ + 1

γ 2
dγ = β−1

(
eβ − β − 1

) = β−1ψ (β) ,

because (d/dγ )
(
γ −1 (eγ − 1)

) = γ −2 (γ eγ − eγ + 1) and limγ→0 γ −1 (eγ − 1) =
1. Theorem 12 and Lemma 19 combined with a uniform bound then give

ln Eeβ( f −E f ) = β

∫ β

0

Ent f (γ ) dγ

γ 2

≤ β

(∫ β

0

γ eγ − eγ + 1

γ 2
dγ

)

sup
x∈�

�2 ( f ) (x) = ψ (β) V .

It now follows from Theorem 12 that Pr { f − E [ f ] > t} ≤ exp (ψ (β) V − βt) for
any β > 0. Substitution of β = ln

(
1 + tV−1

)
gives the first inequality, the second

follows from Lemma 20. �

Observe that f is assumed bounded above by the assumptions of the theorem.
The existence of exponential moments E

[
eβ f

]
is needed only for β ≥ 0, so the

assumption f ∈ A can be dropped in this case.
If f is additive the theorem reduces to the familiar Bennett and Bernstein inequal-

ities [16].

Corollary 22 Let Xk be real random variables Xk ≤ E [Xk] + 1 and let V =∑
k σ 2 (Xk). Then

Pr

{
∑

k

(Xk − E [Xk]) > t

}

≤ exp
(−V

((
1 + tV−1

)
ln

(
1 + tV−1

) − tV−1
))

≤ exp

( −t2

2V + 2t/3

)

.

Theorem 21 and its corollary can be applied to functions satisfying f − Ek [ f ] <

b by a simple rescaling argument. Then Bernstein’s inequality becomes

Pr { f − E [ f ] > t} ≤ exp

( −t2

2 supx∈� �2 ( f ) (x) + 2bt/3

)

.

Inequalities of this kind exhibit two types of tails, depending inwhich of the two terms
in the denominator A + Bt of the exponent is dominant. In the sub-Gaussian regime
A >> Bt the tail decays as e−t2/A. This is the way the bounded difference inequality
behaves globally, but with a very crude approximation for A, while Bernstein’s
inequality uses variance information. But for larger deviations, when A << Bt , the
tail only decays as e−t/A. This subexponential behavior is absent in the bounded
difference inequality and the price paid for the fine-tuning in Bernstein’s inequality.
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3.6 Vector-Valued Concentration Revisited

We look again at the situation of Sect. 3.3. Suppose again that the Xi are independent
zero mean random variables with values in normed space, which we now assume
to be a Hilbert space H , but that now we have a uniform bound ‖Xi‖ ≤ c. Again
we define f : {y ∈ H : ‖y‖ ≤ c}n → R by f (x) = ∥

∥
∑

i xi
∥
∥ and observe that for

y, y′ ∈ H , Dk
y,y′ f (x) ≤ ∥

∥y − y′∥∥. This implies that f − Ek [ f ] ≤ 2c and also

σ 2
k ( f ) = 1

2
E(y,y′)∼μ2

k

(
Dk

y,y′ f (x)
)2 ≤ 1

2
E(y,y′)∼μ2

k

∥
∥y − y′∥∥2 = E ‖Xk‖2 .

Thus �2 ( f ) ≤ ∑
i E ‖Xi‖2 and by Bernstein’s inequality, Theorem 21,

Pr { f − E [ f ] > t} ≤ exp

( −t2

2
∑

i E ‖Xi‖2 + 4ct/3

)

,

or that for δ > 0 with probability at least 1 − δ in (X1, ..., Xn)

∥
∥
∥
∥
∥

∑

i

Xi

∥
∥
∥
∥
∥

≤
√∑

i

E
[‖Xi‖2

] +
√

2
∑

i

E ‖Xi‖2 ln (1/δ) + 4c ln (1/δ) /3,

where we again used Jensen’s inequality to bound E
∥
∥∑

i Xi

∥
∥. If all the Xi are iid

we get with probability at least 1 − δ

∥
∥
∥
∥
∥

1

n

∑

i

Xi

∥
∥
∥
∥
∥

≤
√

E
[‖X1‖2

]

n

(
1 + √

2 ln (1/δ)
)

+ 4c ln (1/δ)

2n
.

If the variance E
[‖X1‖2

]
is small and n is large, this is much better than the bound

(14), which we got from the bounded difference inequality.

4 Inequalities for Lipschitz Functions and Dimension Free
Bounds

We now prove some more advanced concentration inequalities. First we will use the
bounded difference inequality to prove a famous sub-gaussian bound for Lipschitz
functions of independent standard normal variables. We then derive an exponential
Efron–Stein inequality which allows to prove a similar result for convex Lipschitz
functions on [0, 1]n . We also obtain a concentration inequality for the operator norm
of a random matrix, with deviations independent of the size of the matrix.
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4.1 Gaussian Concentration

The advantage of the bounded difference inequality, Theorem 14, over its simplified
Corollary 15 is the supremum over x outside the sum over k. This allows us to prove
the following powerful Gaussian concentration inequality (Tsirelson-Ibragimov–
Sudakov inequality, Theorem 5.6 in [6]). We assume �k = R and μk to be the
distribution of a standard normal variable, and we require f to be an L-Lipschitz
function, which means that for all x, x′ ∈ R

n

f (x) − f
(
x′) ≤ L

∥
∥x − x′∥∥ ,

where ‖.‖ is the Euclidean norm on R
n .

Theorem 23 Let f : Rn → R be L-Lipschitz and let X = (X1, ..., Xn) be a vector
of independent standard normal variables. Then for any s > 0

Pr { f (X) > E f (X) + s} ≤ e−s2/2L2
.

Note that the function f is not assumed to be bounded on R
n .

Proof The idea of the proof is to use the central limit theorem to approximate the
Xi by appropriately scaled Rademacher sums hK (εi ) and to apply the bounded
difference inequality to f (hK (ε1) , ..., hK (εn)).

By an approximation argument using convolution with Gaussian kernels of
decreasing width it suffices to prove the result if f is C2 with

∣
∣
(
∂2/x2i

)
f (x)

∣
∣ ≤ B

for all x ∈ R
n and i ∈ {1, ..., n}, where B is a finite, but arbitrarily large con-

stant. For K ∈ N define a function hK : {−1, 1}K → R, a vector-valued function
hK : {−1, 1}Kn → R

n and a function GK : {−1, 1}Kn → R by

hK (ε) = 1√
K

K∑

k=1

εk, for ε ∈ {−1, 1}K

hK (ε) = (hK (ε1) , ..., hK (εn)) for ε = (ε1, ..., εn) ∈ {−1, 1}Kn

GK = f (hK (ε)) for ε ∈ {−1, 1}Kn .

We will use Theorem 14 on the function GK applied to independent Rademacher
variables ε.

Fix an arbitrary configuration ε ∈ {−1, 1}Kn and let x = (x1, ..., xn) = hK (ε).
For each i ∈ {1, ..., n} we introduce the real function fi (t) = Sit f (x), so that we
replace the i-th argument xi by t , leaving all the other x j fixed. Since f is C2 we
have for any t ∈ R

fi (x + t) − fi (x) = t f ′
i (x) + t2

2
f ′′
i (s)
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for some s ∈ R, and by the Lipschitz condition and the bound on
∣
∣ f ′′

i

∣
∣

( fi (x + t) − fi (x))
2 = t2

(
f ′
i (x)

)2 + t3 f ′
i (x) f ′′

i (s) + t4

4

(
f ′′
i (s)

)2

≤ t2
(
f ′
i (x)

)2 + |t |3 LB + t4

4
B2.

Now fix a pair of indices (i, k) with i ∈ {1, ..., n} and k ∈ {1, ..., K } and arbitrary
values y, y′ ∈ {−1, 1} with y 	= y′. We want to bound

(
D(i,k)

y,y′ GK (ε)
)2
. Now either

one of y or y′ is equal to εik , so either S(i,k)
y GK (ε) or S(i,k)

y′ GK (ε) is equal to GK (ε).
Without loss of generality we assume the second. Furthermore SkyhK (εi ) and hK (εi )

differ by at most 2/
√
K , so

(
D(i,k)

y,y′ GK (ε)
)2 = (

f
(
x1, ..., S

k
yhK (εi ) , ..., xn

) − f (x1, ..., hK (εi ) , ..., xn)
)2

=
(

fi

(

hK (εi ) ± 2√
K

)

− fi (hK (εi ))

)2

≤ 4 f ′
i (hK (εi ))

2

K
+ 8LB

K 3/2
+ 4B2

K 2
.

Now f ′
i (hK (εi )) is just equal to (∂/∂xi ) f (x), so

∑

i

f ′
i (hK (εi ))

2 ≤ sup
x∈Rn

‖∇ f (x)‖2 ≤ L2.

Since ε was arbitrary we have

sup
ε

∑

k,i

sup
y,y′

(
D(i,k)

y,y′ GK (ε)
)2 ≤ 4L2 + 8nLB

K 1/2
+ 4nB2

K
.

From Theorem 14 we conclude from f (hK (ε)) = GK (ε) that

Pr
{
f (hK (ε)) − E f

(
hK

(
ε′)) > s

} ≤ exp

( −s2

2L2 + 4nLB/K 1/2 + 2nB2/K

)

.

The conclusion now follows from the central limit theorem since hK (ε) → Xweakly
as K → ∞. �
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4.2 Exponential Efron Stein Inequalities

We will now use the entropy method to derive some other “dimension free” bounds
of this type. We need the following very useful result.

Lemma 24 (Chebychev’s association inequality) Let g and h be real functions, X
a real random variable.

If g and h are either both nondecreasing or both nonincreasing then

E [g (X) h (X)] ≥ E [g (X)] E [h (X)] .

If either one of g or h is nondecreasing and the other nonincreasing then

E [g (X) h (X)] ≤ E [g (X)] E [h (X)] .

Proof Let X ′ be a random variable iid to X . Then

E [g (X) h (X)] − E [g (X)] E [h (X)] = 1

2
E

[(
g (X) − g

(
X ′)) (

h (X) − h
(
X ′))] .

Now if g and h are either both nondecreasing or both nonincreasing then

(
g (X) − g

(
X ′)) (

h (X) − h
(
X ′))

is always nonnegative, because both factors always have the same sign, in the other
case it is always nonpositive. �

We use this inequality to prove a bound on the thermal variance. First recall that
for two iid random variables X and X ′ we have

σ 2 (X) = 1

2
EXX ′

[(
X − X ′)2

]

= 1

2
EXX ′

[(
X − X ′)2 1X>X ′

]
+ 1

2
EXX ′

[(
X − X ′)2 1X<X ′

]

= EXX ′
[(
X − X ′)2

+
]
.

Lemma 25 Let 0 ≤ s ≤ β. Then

σ 2
s f ( f ) ≤ Ex∼μβ f

[
Ex ′∼μ

[(
f (x) − f

(
x ′))2

+
]]

.

Proof Let ψ be any real function. Lemma 6 (2) gives

d

dβ
Eβ f [ψ ( f )] = Eβ f [ψ ( f ) f ] − Eβ f [ψ ( f )] Eβ f [ f ] . (17)
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By Chebychev’s association inequality Eβ f [ψ ( f )] is nonincreasing (nondecreas-
ing) in β if ψ is nonincreasing (nondecreasing). Now define g : R2 → R by

g (s, t) = Ex∼μs f

[
Ex ′∼μt f

[(
f (x) − f

(
x ′))2 1 f (x)≥ f (x ′)

]]
,

so that

σ 2
s f ( f ) = 1

2
Ex∼μs f

[
Ex ′∼μs f

[(
f (x) − f

(
x ′))2

]]
= g (s, s) .

Now for fixed x the function
(
f (x) − f

(
x ′))2 1 f (x)≥ f (x ′) is nonincreasing in f

(
x ′),

so g (s, t) is nonincreasing in t . On the other hand, for fixed x ′,
(
f (x) − f

(
x ′))2

1 f (x)≥ f (x ′) is nondecreasing in f (x), so g (s, t) is nondecreasing in s (this involves
exchanging the two expectations in the definition of g (s, t)). So, since μ0 f = μ, we
get from 0 ≤ s ≤ β that

σ 2
s f ( f ) = g (s, s) ≤ g (β, 0) = Ex∼μβ f

[
Ex ′∼μ

[(
f (x) − f

(
x ′))2

+
]]

.

�

Here is another way to write the conclusion: let h ∈ A be defined by h (x) =
Ex ′∼μ

[(
f (x) − f

(
x ′))2

+
]
. Then σ 2

s f ( f ) ≤ Eβ f [h].

Define two operators D2 : A → A and V 2+ : A → A by

D2 f =
∑

k

(

f − inf
y∈�k

Sky f

)2

and V 2
+ f =

∑

k

Ey∼μk

[((
f − Sky f

)
+
)2

]

.

Clearly V 2+ f ≤ D2 f as D2 f is obtained by bounding the expectations in the
definition of V 2+ by their suprema.

Lemma 26 For β > 0 and f ∈ A

Ent f (β) ≤ β2

2
Eβ f

[
V+ ( f )

]
.

Proof For k ∈ {1, ..., n}write hk = Ey∼μk

[(
f − Sky f

)2
+
]
, so that V+ ( f ) = ∑

k hk .

The conditional version of Lemma 25 then reads for 0 ≤ s ≤ β and k ∈ {1, ..., n}

σ 2
k,s f ( f ) ≤ Ek,β f [hk] .

Theorem 12 gives
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Ent f (β) ≤
∫ β

0

∫ β

t

∑

k

Eβ f
[
σ 2
k,s f ( f )

]
dsdt

≤
∫ β

0

∫ β

t

∑

k

Eβ f
[
Ek,β f [hk]

]
dsdt

=
∫ β

0

∫ β

t

∑

k

Eβ f [hk] dsdt

= β2

2
Eβ f

[
V+ ( f )

]
,

where we used the identity Eβ f
[
Ek,β f [h]

] = Eβ f [h] for h ∈ A. �
The usual arguments involving Theorem 12 and an optimization in β now imme-

diately lead to

Theorem 27 With t > 0

Pr { f − E [ f ] > t} ≤ exp

( −t2

2 supx∈� V 2+ f (x)

)

≤ exp

( −t2

2 supx∈� D2 f (x)

)

.

We get a corresponding lower tail bound only for D2 and we have to use an
estimate similar to what was used in the proof of Bennett’s inequality.

Lemma 28 If f − infk f ≤ 1,∀k then for β > 0

Ent− f (β) ≤ ψ (β) E−β f
[
D2 f

]
,

with ψ (t) = et − t − 1 defined as in (16).

Proof Let k ∈ {1, ..., n}. Wewrite hk := f − infk f . Then hk ∈ [0, 1] and for s ≤ β

we have 1 ≤ e(β−s)hk ≤ eβ−s , so

Ek,−shk

[
h2k

] = Ek
[
h2ke

−βhk e(β−s)hk
]

Ek
[
e−βhk e(β−s)hk

] ≤ e(β−s) Ek
[
h2ke

−βhk
]

Ek
[
e−βhk

] = e(β−s)Ek,−βhk

[
h2k

]
.

We therefore have

∫ β

0

∫ β

t
Ek,−s f

[
h2k

]
ds dt =

∫ β

0

∫ β

t
Ek,−shk

[
h2k

]
ds dt

≤
(∫ β

0

∫ β

t
eβ−sds dt

)

Ek,−βhk

[
h2k

]
= ψ (β) Ek,−β f

[
h2k

]
,

where we used the formula

∫ β

0

∫ β

t
e−sds dt = 1 − e−β − βe−β .
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Thus, using Theorem 12 and the identity E−β f Ek,−β f = E−β f ,

Ent− f (β) ≤ E−β f

[
∑

k

∫ β

0

∫ β

t
σ 2
k,−s f [ f ] ds dt

]

≤ E−β f

[
∑

k

∫ β

0

∫ β

t
Ek,−s f

[
h2k

]
ds dt

]

≤ ψ (β) E−β f

[
∑

k

Ek,−β f

[
h2k

]
]

= ψ (β) E−β f

[
D2 f

]
.

�

Lemmas 26 and 28 together with (7) imply the inequalities

ln E
[
eβ( f −E[ f ])

] ≤ β

2

∫ β

0
Eγ f

[
V 2

+ f
]
dγ. (18)

and, if f − infk f ≤ 1 for all k, then

ln E
[
eβ(E[ f ]− f )

] ≤ ψ (β)

β

∫ β

0
E−γ f

[
D2 f

]
dγ, (19)

where in the last inequality we also used the fact that γ �→ ψ (γ ) /γ 2 is nondecreas-
ing. Bounding the thermal expectation with the uniform norm and substitution of

β = ln
(
1 + t

∥
∥D2 f

∥
∥−1

∞
)
gives the following lower tail bound as in the proof of the

Bennett-Bernstein inequalities.

Theorem 29 If f − infk f ≤ 1 for all k, then for t > 0 and with � := supx∈�

D2 f (x)

Pr {E f − f > t} ≤ exp

(

−�

((

1 + t

�

)

ln

(

1 + t

�

)

− t

�

))

≤ exp

( −t2

2 supx∈� D2 f (x) + 2t/3

)

.

4.3 Convex Lipschitz Functions

In Sect. 4.1 we gave a sub-gaussian bound for Lipschitz functions of independent
standard normal variables. Now we prove the same upper tail bound under different
hypotheses. Instead of assuming μk to be standard normal we require �k = [0, 1]
and let μk be perfectly arbitrary. On the other hand, in addition to being an L-
Lipschitz function, we require f to be convex (actually only separately convex in
each argument).

Theorem 30 Let �k = I, an interval of unit diameter, and let f ∈ A be C1, L-
Lipschitz and such that y ∈ [0, 1] �→ Sky f (x) is convex for all k and all x. Then
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Pr { f − E f > t} ≤ e−t2/2L2
.

Proof By an approximation argument we can assume f to be differentiable. Let x ∈
[0, 1]n , k ∈ {1, ..., n} and y ∈ [0, 1] such that Sky f (x) ≤ f (x). Then, using separate
convexity,

f (x) − Sky f (x) ≤ 〈
x − Skyx, ∂ f (x)

〉
Rn = (xk − y)

∂

∂xk
f (x) ≤

∣
∣
∣
∣

∂

∂xk
f (x)

∣
∣
∣
∣ .

We therefore have f (x) − inf y Sky f (x) ≤ |(∂/∂xk) f (x)| and

D2 f (x) =
n∑

k=1

(

f (x) − inf
y
Sky f (x)

)2

≤ ‖∇ f (x)‖2
Rn ≤ L2.

Theorem 27 then gives the conclusion. �

For future reference we record the following fact: if �k is an interval of unit
diameter and A anm × n-matrix then x �→ ‖Ax‖ is a convex function with Lipschitz
constant ‖A‖ and thus

D2 (‖Ax‖) ≤ ‖A‖2 . (20)

4.4 The Operator Norm of a Random Matrix

For x ∈ [−1, 1]n
2
let M (x) be the n × n matrix whose entries are given by the

components of x. We are interested in the concentration properties of the operator
norm of M (X), when X is a vector with independent, but possibly not identically
distributed components chosen from [−1, 1]. The function in question is then f :
[−1, 1]n

2 → R defined by

f (x) = ‖M (x)‖ = sup
‖w‖,‖v‖=1

〈M (x) v,w〉 ,

where 〈., .〉 and ‖.‖ refer to inner product and norm in R
n .

To bound D2 f (x) first let x ∈ [−1, 1]n
2
be arbitrary but fixed, and let v and w be

unit vectors witnessing the supremum in the definition of f (x).
Now let (k, l) be any index to a matrix entry and choose any y ∈ [−1, 1] such

that S(k,l)
y f (x) ≤ f (x). Then

f (x) − S(k,l)
y f (x) = 〈M (x) v,w〉 − sup

‖w′‖,‖v′‖=1

〈
S(k,l)
y M (x) v′,w′〉

≤ 〈(
M (x) − S(k,l)

y M (x)
)
v,w

〉 = (xkl − y) vkwl

≤ 2 |vk | |wl | .
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Note that f − infk f ≤ 2. Also

D2 f (x) =
∑

k,l

(

f (x) − inf
y∈[−1,1]

S(k,l)
y f (x)

)2

≤ 4
∑

k,l

|vk |2 |wl |2 = 4.

The results of the previous section (rescaling for the lower tail to get f − infk f ≤ 1)
then lead to a concentration inequality independent of the size of the random matrix.

Theorem 31 Let X = (
Xi j

)
1≤i, j≤n be a vector of n

2 independent random variables
with values in [−1, 1], and X′ iid to X. Then for t > 0.

Pr
{‖M (X)‖ − E

[∥
∥M

(
X′)∥∥] ≥ t

} ≤ exp

(−t2

8

)

and

Pr
{
E

[∥
∥M

(
X′)∥∥] − ‖M (X)‖ ≥ t

} ≤ exp

( −t2

8 + 4t/3

)

.

Observe that the argument depends on the fact that the unit vectors v and w could
be fixed independent of k and l. This would not have been possible with the bounded
difference inequality. Also note that square matrices were chosen for notational
convenience only. The same proof would work for rectangular matrices.

5 Beyond Uniform Bounds

All of the above applications of the entropy method to derive upper tail bounds
involved an inequality of the form

Ent f (γ ) ≤ ξ (γ ) Eγ f [G ( f )] ,

where ξ is some nonnegative real function and G is some operator G : A → A,
which is positively homogeneous of order two. For the bounded difference inequality
ξ (γ ) = γ 2/8 and G = R2, for the Bennett inequality ξ (γ ) = γ eγ − eγ + 1 and
G = �2, for Theorem 27 we had ξ (γ ) = γ 2/2 and G = V 2+. Theorem 12 is then
used to conclude that

ln Eeβ( f −E f ) ≤ β

∫ β

0

ξ (γ )

γ 2
Eγ f [G ( f )] dγ ≤ β sup

x
G ( f ) (x)

∫ β

0

ξ (γ ) dγ

γ 2
.

(21)
An analogous strategy was employed for the various lower tail bounds.
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The uniform estimate Eγ f [G ( f )] ≤ supx G ( f ) (x) in (21), while being very
simple, is somewhat loose and can sometimes be avoided by exploiting special prop-
erties of the thermal expectation and the function in question.

5.1 Self-boundedness

The first possibility we consider is that the function G ( f ) can be bounded in terms
of the function f itself, a property referred to as self-boundedness [8]. For exam-
ple, if simply G ( f ) ≤ f , then Eγ f [G ( f )] ≤ Eγ f [ f ] = (d/dγ ) ln Zγ f , and if the
function ξ has some reasonable behavior, then the first integral in (21) above can be
bounded by partial integration or even more easily. As an example we apply this idea
in the setting of Theorems 27 and 29.

Lemma 32 Suppose that for f ∈ A there are nonnegative numbers a, b such that
(i) V 2+ f ≤ a f + b. Then for 0 ≤ β < 2/a

ln E
[
eβ( f −E[ f ])

] ≤ β2 (aE f + b)

2 − aβ
,

(ii) D2 f ≤ a f + b. If in addition f − infk f ≤ 1 for all k, then for β < 0 and
a ≥ 1

ln E
[
eβ(E[ f ]− f )

] ≤ β2 (aE [ f ] + b)

2
.

Proof (i) We use (18) and get

ln E
[
eβ( f −E[ f ])

] ≤ β

2

∫ β

0
Eγ f

[
V 2

+ f
]
dγ ≤ aβ

2

∫ β

0
Eγ f [ f ] dγ + bβ2

2

= aβ

2
ln Zβ f + bβ2

2
,

where the last identity follows from the fact that Eγ f [ f ] = (d/dγ ) ln Zγ f . Thus

ln E
[
eβ( f −E[ f ])

] ≤ aβ

2
ln Eeβ( f −E[ f ]) + aβ2

2
E f + bβ2

2
,

and rearranging this inequality for β ∈ (0, 2/a) establishes the claim.
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(ii) We use (19)

ln E
[
eβ(E[ f ]− f )

]
≤ ψ (β)

β

∫ β

0
E−γ f

[
D2 f

]
dγ

≤ aψ (β)

β

∫ β

0
E−γ f [ f ] dγ + bψ (β) = −aψ (β)

β
ln Z−β f + bψ (β)

= −aψ (β)

β
ln E

[
eβ(E[ f ]− f )

]
+ ψ (β) (aE [ f ] + b) .

Rearranging gives

ln E
[
eβ(E[ f ]− f )

] ≤ ψ (β)

1 + aβ−1ψ (β)
(aE [ f ] + b) ≤ β2 (aE [ f ] + b)

2
,

where one verifies that for β > 0 and a ≥ 1 we have ψ (β)
(
1 + aβ−1ψ (β)

)−1 ≤
β2/2. �

The bound in part (i) requires an upper bound on β. To proceed we need the
following optimization lemma, which will be used several times in the sequel and
leads to tail bounds with both sub-Gaussian and subexponential regimes, similar to
Bernstein’s inequality.

Lemma 33 Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(

−βt + Cβ2

1 − bβ

)

≤ −t2

2 (2C + bt)
. (22)

Proof Let h (t) = 1 + t − √
1 + 2t . Then use

2h (t) (1 + t) = 2 (1 + t)2 − 2 (1 + t)
√
1 + 2t

= (1 + t)2 − 2 (1 + t)
√
1 + 2t + (1 + 2t) + t2

=
(
1 + t − √

1 + 2t
)2 + t2

≥ t2,

so that

h (t) ≥ t2

2 (1 + t)
. (23)

Substituting

β = 1

b

(

1 −
(

1 + bt

C

)−1/2
)

in the left side of (22) we obtain
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inf
β∈[0,1/b)

(

−βt + Cβ2

1 − bβ

)

≤ −2C

b2
h

(
bt

2C

)

≤ −t2

2 (2C + bt)
,

where we have used (23). �

Theorem 34 Suppose for f ∈ A there are nonnegative numbers a, b such that
(i) V 2+ f ≤ a f + b. Then for t > 0 we have

Pr { f − E [ f ] > t} ≤ exp

( −t2

2 (aE [ f ] + b + at/2)

)

.

(ii) D2 f ≤ a f + b. If in addition, a ≥ 1 and f − infk f ≤ 1,∀k ∈ {1, ..., n},
then

Pr {E [ f ] − f > t} ≤ exp

( −t2

2 (aE [ f ] + b)

)

.

Proof Part (i) follows from Lemmas 32 (i) and Lemma 33). Part (ii) is immediate
from Lemma 32 (ii). �

Boucheron et al. [8] have given a refined version for the lower tail, where the
condition a ≥ 1 is relaxed to a ≥ 1/3 for the lower tail. There they also show that
Theorems 34 and 27 together suffice to derive a version of the convex distance
inequality which differs from Talagrand’s original result only in that it has an inferior
constant in the exponent.

5.2 Convex Lipschitz Functions Revisited

In Sect. 4.3 we gave a sub-Gaussian bound for the upper tail of separately convex
Lipschitz functions on [0, 1]n . Nowweuse self-boundedness to complement thiswith
a sub-Gaussian lower bound, using an elegant trick of Boucheron et al. [6] where
the lower bound in Theorem 34 is applied to the square of the Lipschitz function f .
The essence of the trick is the following simple lemma.

Lemma 35 If f ≥ 0 then D2
(
f 2

) ≤ 4D2 ( f ) f 2.

Proof Since f ≥ 0we have infk
(
f 2

) = (infk f )2, so, using (a + b)2 ≤ 2a2 + 2b2,

D2
(
f 2

) =
∑

k

(

f 2 − inf
k

f 2
)2

=
∑

k

(

f − inf
k

f

)2 (

f + inf
k

f

)2

≤ 4 f 2
∑

k

(

f − inf
k

f

)2

= 4D2 ( f ) f 2.

�
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For the sub-Gaussian lower bound we need the additional assumption that f 2

takes values in an interval of length at most one.

Theorem 36 Let �k = [0, 1] and let f ∈ A be L-Lipschitz, nonnegative and such
that y ∈ [0, 1] �→ Sky f (x) is convex for all k and all x, and suppose in addition, that
f 2 takes values in an interval of length at most one. Then for all t ∈ [0, E [ f ]]

Pr {E [ f ] − f > t} ≤ e−t2/8L2
.

Proof The trick is to study the function f 2 instead of f . Let x ∈ [0, 1]n . Using
separate convexity as in the proof of Theorem 30 we have D2 f ≤ L2, so by the
previous lemma D2 ( f )2 ≤ 4L2 f 2. For any k we have f 2 (x) − inf f 2k (x) ≤ 1, so
by the lower tail bound of Theorem 34 we get a lower tail bound for f 2

Pr
{
E

[
f 2

] − f 2 > t
} ≤ exp

(
−t2

8L2E
[
f 2

]

)

.

Thus

Pr {E [ f ] − f > t} = Pr

{√
E

[
f 2

]
(E [ f ] − f ) >

√
E

[
f 2

]
t

}

≤ Pr

{(√
E

[
f 2

] + f

) (√
E

[
f 2

] − f

)

>

√
E

[
f 2

]
t

}

= Pr

{

E
[
f 2

] − f 2 >

√
E

[
f 2

]
t

}

≤ exp

(−t2

8L2

)

.

Here we used E [ f ] ≤
√
E

[
f 2

]
and the assumption that f is nonnegative in the first

inequality. �

5.3 Decoupling

A second method to avoid the uniform bound on the thermal expectation uses decou-
pling. By the duality formula of Theorem 4 we have for any f, g ∈ A and β ∈ R

Eβ f [g] ≤ Ent f (β) + ln E
[
eg

]
. (24)

Recall the discussion at the beginning of Sect. 5, where we had a general bound of
the form Ent f (β) ≤ ξ (β) Eβ f [G ( f )]. Using (24) we can now obtain for any λ > 0
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Ent f (β) ≤ ξ (β) λ−1Eβ f [λG ( f )] ≤ ξ (β) λ−1
(
Ent f (β) + ln E

[
exp (λG ( f ))

])
,

and for values of β and λ where λ > ξ (β) we obtain

Ent f (β) ≤ ξ (β)

λ − ξ (β)
ln E

[
exp (λG ( f ))

]
(25)

= ξ (β)

λ − ξ (β)

(
ln E

[
eλ(G( f )−E[G( f )])

] + λE [G ( f )]
)
.

Hence, if we can control the moment generating function of G ( f ) (or some suitable
bound thereof), we obtain concentration inequalities for f , effectively passing from
the thermal measure μβ f to the thermal measure μλG( f ). The second line shows
that in this way the supremum of G ( f ) can possibly be replaced by an expectation.
The λ − ξ (β) in the denominator makes some constraint on β necessary, so the
improvement comes at the price of an extra or enlarged subexponential term in the
resulting concentration inequality. We conclude this chapter with three applications
of this trick, which has been proposed in [7].

5.4 Quadratic Forms

As a first illustration we give a version of the Hanson-Wright inequality (Theorem
6.2.1 in [29]) for boundedvariables. Let A be a symmetricn × n-matrix,which is zero
on the diagonal, that is Aii = 0 for all i , and suppose that X1, ..., Xn are independent
random variables with values in an interval I of unit diameter. We study the random
variable f (X), where

f (x) =
∑

i, j

xi Ai j x j .

As operator G we use R2, the sum of squared conditional ranges which appears in
the bounded difference inequality. For the function in question we have

Dk
y,y′ f (x) = 2

(
y − y′) ∑

i

Aki xi = 2
(
y − y′) (Ax)k ,

and, since I has unit diameter

R2 ( f ) (x) =
∑

k

sup
y,y′∈I

(
Dk

y,y′ f (x)
)2 ≤ 4

∑

k

(Ax)2k = 4 ‖Ax‖2 .

We can therefore conclude from (12) in the proof of the bounded difference inequality
(Theorem 14), that Ent f (γ ) ≤ (

γ 2/8
)
Eγ f

[
R2 ( f )

] ≤ (
γ 2/2

)
Eγ f

[‖AX‖2]. But
instead of bounding the last thermal expectation by a supremum, as we did before,
we now look for concentration properties of the function x �→ ‖Ax‖2.
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By (20) and Lemma 35 we have the self-bounding inequality D2
(‖Ax‖2) ≤

4 ‖A‖2 ‖Ax‖2 and Lemma 32 gives for 0 ≤ λ < 1/
(
2 ‖A‖2)

ln E
[
eλ‖Ax‖2

]
≤ λE

[‖Ax‖2]

1 − 2 ‖A‖2 λ
.

Now Let 0 < γ < 1/ ‖A‖ and set λ := γ / (2 ‖A‖) < 1/
(
2 ‖A‖2). Using the above

bound on Ent f (γ ) and the decoupling inequality (24) we get

λEnt f (γ ) ≤ γ 2

2
Eγ f

[
λ ‖Ax‖2] ≤ γ 2

2

(
Ent f (γ ) + ln E

[
eλ‖Ax‖2

])

≤ γ 2

2
Ent f (γ ) + γ 2

2

λE
[‖Ax‖2]

1 − 2 ‖A‖2 λ
.

Collect terms in Ent f (γ ), divide by λ − γ 2/2 (which is positive by the constraint
on γ and the choice of λ) and substitute the value of λ to get

Ent f (γ ) ≤ γ 2

(1 − ‖A‖ γ )2

E
[‖Ax‖2]

2
.

From Theorem 12 we conclude that for β < 1/ ‖A‖

Pr { f − E f } ≤ exp

(

β

∫ β

0

Ent f (γ )

γ 2
dγ − βt

)

≤ exp

(
β2

1 − ‖A‖β

E
[‖Ax‖2]

2
− βt

)

,

and using Lemma 33 to minimize the last expression in β ∈ (0, 1/ ‖A‖) gives our
version of the Hanson-Wright inequality for bounded variables.

Theorem 37 Let A be a symmetric n × n-matrix, zero on the diagonal, and X =
(X1, ..., Xn) a vector of independent random variables with values in an interval I
of unit diameter. Let f : Xn → R be defined by f (x) = ∑

i j xi Ai j x j . Then for t > 0

Pr { f − E f > t} ≤ exp

(
−t2

2E
[‖AX‖2] + 2 ‖A‖ t

)

.

5.5 The Supremum of an Empirical Process

We will now apply the decoupling trick to the upwards tail of the supremum of an
empirical process, sharpening the bound obtained in Sect. 3.4.
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Theorem 38 Let X1, ..., Xn be independent with values in some space X with Xi

distributed as μi , and let F be an at most countable class of functions f : X →
[−1, 1] with E [ f (Xi )] = 0. Define F : Xn → R and W : Xn → R by

F (x) = sup
f ∈F

∑

i

f (xi ) and

W (x) = sup
f ∈F

∑

i

(
f 2 (xi ) + E

[
f 2 (Xi )

])
.

Then for t > 0

Pr {F − E [F] > t} ≤ exp

( −t2

2E [W ] + t

)

.

This inequality improves over Theorem12.2 in [6], since by the triangle inequality
E [W ] ≤ �2 + σ 2 and the constants in the denominator of the exponent are better
by a factor of two, and optimal for the variance term.

Proof Let 0 < γ ≤ β < 2. Using Theorem 26 and (24) we get

EntF (γ ) ≤ γ

2
Eγ F

[
γ V 2

+ (F)
] ≤ γ

2

(
EntF (γ ) + ln Eeγ V 2+(F)

)
.

Rearranging gives

EntF (γ ) ≤ γ

2 − γ
ln Eeγ V 2+(F). (26)

Fix some x ∈ Xn and let f̂ ∈ F witness the maximum in the definition of F (x). For

y ∈ Xwe have
(
F − Sky F

)
+ ≤

(
f̂ (xi ) − f̂ (y)

)

+
and by the zero mean assumption

V 2
+ (F) (x) =

∑

k

Ey∼μk

[(
F (x) − Sky F (x)

)2
+
]

≤
∑

k

Ey∼μk

(
f̂ (xk) − f̂ (y)

)2

+

≤
∑

k

Ey∼μk

(
f̂ (xk) − f̂ (y)

)2

=
∑

k

(
f̂ 2 (xk) + E

[
f̂ 2 (Xk)

])

≤ W (x) .

So V 2+ (F) ≤ W . It follows from (26) that

EntF (γ ) ≤ γ

2 − γ
ln Eeγ V+(F) ≤ γ

2 − γ
ln E

[
eγW

]
. (27)
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Next we establish self-boundedness ofW . Let f̂ ∈ F (different from the previous
f̂ , which we don’t need any more) witness the maximum in the definition of W (x).
Then

V 2
+ (W ) (x) =

∑

k

Ey∼μk

(
W (x) − SkyW (x)

)2
+

≤
∑

k

Ey∼μk

[(
f̂ 2 (xk) − f̂ 2 (y)

)2

+

]

≤
∑

k

f̂ 2 (xk)

≤ W.

It therefore follows from the self-bounding lemma, Lemma 32, that

ln E
[
eγW

] ≤ γ 2E [W ]

2 − γ
+ γ E [W ] = γ E [W ]

1 − γ /2
.

Combining this with (27) gives

EntF (γ ) ≤ γ

2 − γ

(
γ E [W ]

1 − γ /2

)

= γ 2

(1 − γ /2)2
E [W ]

2
.

From (6) in Theorem 12 we conclude that

ln Eeβ(F−EF) = β

∫ β

0

EntF (γ )

γ 2
dγ ≤ β

∫ β

0

1

(1 − γ /2)2
dγ

E [W ]

2

= β2

1 − β/2

E [W ]

2
.

Using Lemma 33 it follows that

Pr {F − E [F] > t} ≤ inf
β∈(0,2)

exp

(

−βt + β2

1 − β/2

E [W ]

2

)

≤ exp

( −t2

2E [W ] + t

)

.

�

5.6 Another Version of Bernstein’s Inequality

A potential weakness of Theorem 21 is the occurrence of the supremum in the defi-
nition of the variance parameter V = supx∈� �2 ( f ) (x). If the supremum could be
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replaced by an expectation, the variance parameter would become the Efron–Stein
upper bound E

[
�2 ( f )

]
on the variance σ 2 ( f ), making the inequality considerably

stronger. Such a modification is possible at the expense of enlarging the subexpo-
nential term in Bernstein’s inequality. Define the interaction functional

J ( f ) = 2

⎛

⎝ sup
x,z∈�

∑

k,l:k 	=l

σ 2
k

(
f − Slzl f

)
(x)

⎞

⎠

1/2

.

The following theorem is given in [21]

Theorem 39 Suppose f ∈ A (�) satisfies f − Ek f ≤ b for all k. Then for all t > 0

Pr { f − E f > t} ≤ exp

(
−t2

2E
[
�2 ( f )

] + (2b/3 + J ( f )) t

)

.

Here we will use the tools introduced above to prove a slight strengthening of this
result, removing the boundedness conditions above.

Let f : � = ∏n
i=1 �i → R and consider the three conditions

(A) = (( f − Ek f ) ≤ b for all k)

(B) =
(

Ek
[
( f − Ek f )

m
] ≤ 1

2
m!σ 2

k ( f ) bm−2 for m ≥ 2 and all k

)

(C) =
(

n∑

k=1

Ek
[
( f − Ek f )

m
] ≤ �2 ( f )

2
m!bm−2 for m ≥ 2

)

.

Then (A) =⇒ (B) =⇒ (C). The last condition (sometimes called “Bernstein con-
dition” in the literature) is sufficient for the following version of Bernstein’s inequal-
ity, which extends Theorem 2.10 in [6] from sums to general functions and replaces
the one-sided boundedness requirement of Theorem 39 by the Bernstein condition.

Theorem 40 Let f : � = ∏n
i=1 �i → R be measurable and suppose that (C)

holds. Then for t > 0

Pr { f − E f > t} ≤ exp

(
−t2

2E
[
�2 ( f )

] + (2b + J ( f )) t

)

.

The first step is to bound the entropy of f under the condition (C), thus replacing
Lemma 19 in the proof of Theorem 21.

Lemma 41 Suppose (C) holds with b = 1. Then for all β ∈ [0, 1)

Ent f (β) ≤ β2Eβ f
[
�2 ( f )

]

2 (1 − β)2
.
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Proof First we get from the variational property of variance, that

σ 2
k,β f ( f ) ≤ Ek,β f

[
( f − Ek ( f ))2

] = Ek
[
( f − Ek ( f ))2 eβ( f −Ek f )

]

Ek
[
eβ( f −Ek f )

]

≤ Ek
[
( f − Ek ( f ))2 eβ( f −Ek f )

]
,

where we used Jensen’s inequality to get Ek
[
exp (β ( f − Ek f ))

] ≥ 1 for the second
inequality. From monotone convergence and (C) we then get

n∑

k=1

σ 2
k,β f ( f ) ≤

n∑

k=1

Ek
[
( f − Ek f )

2 eβ( f −Ek f )
] =

∞∑

m=0

n∑

k=1

βm

m! Ek
[
( f − Ek f )

m+2
]

≤ �2 ( f )

2

∞∑

m=0

(m + 1) (m + 2) βm .

Thus from Theorem 12

Ent f (β) ≤ Eβ f

[∫ β

0

∫ β

t

n∑

k=1

σ 2
k,s f ( f ) ds dt

]

≤ Eβ f
[
�2 ( f )

]

2

∞∑

m=0

(m + 1) (m + 2)
∫ β

0

∫ β

t
smdsdt

= Eβ f
[
�2 ( f )

]

2
β2

∞∑

m=0

(m + 1) βm = β2Eβ f
[
�2 ( f )

]

2 (1 − β)2
.

�

At this pointwe could bound the thermal expectation Eβ f
[
�2 ( f )

]
by a supremum

and proceed along the usual path to obtain a version of Theorem 21 under condition
(C), which, for sums of independent variables, would reduce to Theorem 2.10 in [6].
Instead we wish to exploit the decoupling idea and look for concentration properties
of �2 ( f ).

The crucial property of the interaction functional J is, that J 2 is a self-bound for
�2 ( f ). The following Lemma is also the key to the proof of Theorem 39.

Lemma 42 We have D2
(
�2 ( f )

) ≤ J ( f )2 �2 ( f ) for any f ∈ A (�).

Proof Fix x ∈ �. Below all members of A are understood as evaluated on x. For
l ∈ {1, ..., n} let zl ∈ �l be a minimizer in z of Slz�

2 ( f ). Then

D2
(
�2 ( f )

) =
∑

l

⎛

⎝
∑

k:k 	=l

(
σ 2
k ( f ) − Slzlσ

2
k ( f )

)
⎞

⎠

2

.
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The sum over k 	= l, since σ 2
k ( f ) ∈ Ak , so Slzlσ

2
k ( f ) = σ 2

k ( f ). Then, using

2σ 2
k ( f ) = E(y,y′)∼μ2

k

(
Dk

y,y′ f
)2
, we get

4D2 (
�2 ( f )

) =
∑

l

⎛

⎝
∑

k:k 	=l

E(y,y′)∼μ2
k

(
Dk

y,y′ f
)2 − Slzl E(y,y′)∼μ2

k

(
Dk

y,y′ f
)2

⎞

⎠

2

=
∑

l

⎛

⎝
∑

k 	=l

E(y,y′)∼μ2
k

[(
Dk

y,y′ f
)2 −

(
Dk

y,y′ Slzl f
)2

]
⎞

⎠

2

=
∑

l

⎛

⎝
∑

k 	=l

E(y,y′)∼μ2
k

[(
Dk

y,y′ f − Dk
y,y′ Slzl f

) (
Dk

y,y′ f + Dk
y,y′ Slzl f

)]
⎞

⎠

2

≤
∑

l

∑

k:k 	=l

E(y,y′)∼μ2
k

[
Dk

y,y′
(
f − Slzl f

)]2 ×

∑

k:k 	=l

E(y,y′)∼μ2
k

[
Dk

y,y′ f + Dk
y,y′ Slzl f

]2

by an application of Cauchy–Schwarz. Now, using (a + b)2 ≤ 2a2 + 2b2, we can
bound the last sum independent of l by

∑

k:k 	=l

E(y,y′)∼μ2
k

[
2

(
Dk

y,y′ f
)2 + 2

(
Dk

y,y′ Slzl f
)2]

= 4
∑

k:k 	=l

σ 2
k ( f ) + 4Slzl

∑

k:k 	=l

σ 2
k ( f )

≤ 4
(
�2 ( f ) + Slzl�

2 ( f )
) = 4

(

�2 ( f ) + inf
z∈�l

Slz�
2 ( f )

)

≤ 8�2 ( f ) ,

so that

D2
(
�2 ( f )

) ≤ 2
∑

l

∑

k:k 	=l

E(y,y′)∼μ2
k

[
Dk

y,y′
(
f − Slzl f

)]2
�2 ( f )

≤ 4 sup
x,z∈�

∑

k,l:k 	=l

σ 2
k

(
f − Slz f

)
(x) �2 ( f ) = J 2 ( f ) �2 ( f ) .

�

Now we can use decoupling to put these pieces together.

Proof of Theorem 40 By rescaling it suffices to prove the result for b = 1. We can
also assume J := J ( f ) > 0. Let 0 < γ ≤ β < 1/ (1 + J/2) and set θ =
γ / (J (1 − γ )). Then γ 2/

(
2 (1 − γ )2

)
< θ < 2/J 2. By the Lemma 41
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θEnt f (γ ) ≤ γ 2

2 (1 − γ )2
Eγ f

[
θ�2 ( f )

]
≤ γ 2

2 (1 − γ )2

(
Ent f (γ ) + ln E

[
eθ�2( f )

])
,

where the second inequality follows from the decoupling inequality (24). Subtract
γ 2/

(
2 (1 − γ )2

)
Ent f (γ ) to get

Ent f (γ )

(

θ − γ 2

2 (1 − γ )2

)

≤ γ 2

2 (1 − γ )2
ln E

[
eθ�2( f )

]
.

Since γ 2/
(
2 (1 − γ )2

)
< θ this simplifies, using the value of θ , to

Ent f (γ ) ≤ γ J

2 (1 − (1 + J/2) γ )
ln E

[
eθ�2( f )

]
. (28)

On the other hand θ < 2/J 2, so by the self-boundedness of �2 ( f ) (Lemma 42) and
part (i) of Lemma 32 give

ln E
[
eθ�2( f )

]
≤ θ

1 − J 2θ/2
E

[
�2 ( f )

] = γ /J

1 − (1 + J/2) γ
E

[
�2 ( f )

]
. (29)

Combining (28) and (29) to get a bound on S f (γ ) gives

Ent f (γ ) ≤ γ 2

2 (1 − (1 + J/2) γ )2
E

[
�2 ( f )

]

and from Theorem 12 and Lemma 33

Pr { f − E f > t} ≤ inf
β∈(0,1/(1+J/2))

exp

(
E

[
�2 ( f )

]

2

β2

1 − (1 + J/2) β
− βt

)

≤ exp

(
−t2

2
(
E

[
�2 ( f )

] + (1 + J/2) t
)

)

.

�
To use Theorem 40 one has to bound b and J . For the latter it is often sufficient

to use the simple bound

J ( f ) ≤ nmax
k 	=l

sup
x∈�

sup
z,z′,y,y′∈�l

Dl
z,z′ Dk

y,y′ f (x) . (30)

which can be obtained from Lemma 13.
We conclude with an application to U-statistics. Let m < n be integers, �i = X

and κ : Xm → R a symmetric kernel. For a subset of indices with cardinality m,
S = { j1, ..., jm} ⊆ {1, ..., n} define κS : Xn → R by κS (x) = κ

(
x j1 , ..., x jm

)
. The

U-statistic of order m induced by κ is then the function U : Xn → R given by
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U (x) =
(
n

m

)−1 ∑

S⊆{1,...,n}
κS (x) .

U-statistics were introduced byHoeffding [15]. Their importance stems from the fact
that for iidX = (X1, ..., Xn) the random variableU (X) is an unbiased estimator for
E [κ (X1, ..., Xm)]. Starting with the work of Hoeffding there has been a lot of work
on concentration inequalities for U-statistics. To simplify the presentation we will
not use the advantage of Theorem 40 over Theorem 39 and assume the kernel κ to
be bounded, κ : Xm → [0, 1] for simplicity.

Notice that,if k /∈ S, then κS ∈ Ak , so κS (x) − Ek [κS (x)] = 0 and thus

U (x) − Ek [U (x)] =
(
n

m

)−1 ∑

S⊆{1,...,n}
k∈S

(κS (x) − Ek [κS (x)])

≤
(
n

m

)−1

|{S ⊆ {1, ..., n} : k ∈ S}|

=
(n−1
m−1

)

(n
m

)

−1

= m! (n − 1)!
n! (m − 1)! = m

n
,

so we can set the quantity b in Theorem 40 to m/n. To bound J use (30) to get

J (U ) ≤ nmax
k 	=l

sup
x∈�

sup
z,z′,y,y′∈�l

Dl
z,z′ Dk

y,y′U (x)

≤ n

(
n

m

)−1 ∑

S⊆{1,...,n}
k,l∈S:k 	=l

Dl
z,z′ Dk

y,y′κS (x)

= 2n

(
n

m

)−1

|{S ⊆ {1, ..., n} : k, l ∈ S, k 	= l}|

= 2n
(n−2
m−2

)

(n
m

) ≤ 2m2

n
.

Substitution in Theorem 40 gives for t > 0

Pr {U − EU > t} ≤ exp

(
−t2

2E
[
�2 (U )

] + 2
(
m + m2

)
t/n

)

.

It can be shown (see, e.g., [21], Houdré [17]) that in general E
[
�2 ( f )

] ≤ σ 2 ( f ) +
J 2 ( f ) /4, so that for U-statistics the Efron–Stein inequality is tight in the sense that
E

[
�2 (U )

] ≤ σ 2 (U ) + m4/n2. It follows that for deviations t > 1/n

Pr {U − EU > t} ≤ exp

(
−t2

2σ 2 (U ) + 2
(
m + 2m2

)
t/n

)

.
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This inequality can be compared to the classical work of Hoeffding [15] and more
recent results of Arcones [2], which both consider undecoupled, nondegenerate U-
statistics of arbitrary order. Hoeffding [15] does not have the correct variance term,
while [2] gives the correct variance term but severely overestimates the subexpo-
nential coefficient in Bernstein’s inequality to be exponential in the degree m of the
U-statistic (above it is only of order m2). This exponential dependence on m results
from the use of the decoupling inequalities in [24] and seems to beset most works on
U-statistics of higher order (e.g., [1, 13]), which in many other ways improve over
our simple inequality above.

6 Appendix I. Table of Notation

General notation
� = ∏n

k=1 �k underlying (product-) probability space
A bounded measurable functions on �

μ = ⊗n
k=1μk (product-) probability measure on �

Xk random variable distributed as μk in �k
f ∈ A fixed function under investigation
g ∈ A generic function
E [g] = ∫

� gdμ expectation of g in μ

σ 2 [g] = E
[
(g − E [g])2

]
variance of g in μ

Notation for the entropy method
β = 1/T inverse temperature

Eβ f [g] = E
[
geβ f

]
/E

[
eβ f

]
thermal expectation of g

Zβ f = E
[
eβ f

]
partition function

dμβ f = Z .1
β f e

β f dμ thermal measure (canonical ensemble)

Ent f (β) = βEβ f [ f ] − ln Zβ f . (canonical) entropy
A f (β) = 1

β ln Zβ f free energy

σ 2
β f (g) = Eβ f

[(
g − Eβ f [g]

)2
]

thermal variance of g

ψ (t) = et − t − 1
Sky F (x) = F

(
x1, ..., xk−1, y, xk+1, ..., xn

)
substitution operator

Ek [g] (x) = ∫
�k

Sky g dμk (y) conditional expectation
Ak ⊂ A functions independent of k-th variable

Zk,β f = Ek
[
eβ f

]
conditional partition function

Ek,β f [g] = Z−1
k,β f Ek

[
geβ f

]
conditional thermal expectation

Entk, f (β) = βEk,β f [g] − ln Zk,β f conditional entropy

σ 2
k,β f [g] = Ek,β f

[(
g − Ek,β f [g]

)2
]

conditional thermal variance

σ 2
k [g] = Ek

[
(g − Ek [g])

2
]

conditional variance
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Operators on A
Dk
y,y′g = Skyg − Sky′g difference operator

rk (g) = supy,y′∈�k
Dk
y,y′ f conditional range operator

R2 (g) = ∑
k r

2
k (g) sum of conditional square ranges

�2 (g) = ∑
k σ 2

k [g] sum of conditional variances
(infk g) (x) = inf y∈�k S

k
y g (x) conditional infimum operator

V 2+g = ∑
k Ey∼μk

[((
g − Sky

)

+

)2
]

Efron–Stein variance proxy

D2g = ∑
k (g − infk g)

2 . worst case variance proxy
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Ill-Posed Problems: From Linear
to Nonlinear and Beyond

Rima Alaifari

1 Introduction

In many applications in science and engineering, one seeks to recover an object from
some acquired measurements. Such reconstruction problems are often vulnerable to
small changes in the measured data, in the sense that slight perturbations in the data
can lead to large deviations in the reconstructed objects. Such a property is of course
highly unpleasant, as it makes the reconstruction unreliable. This observation has
led to studying so-called inverse problems and to developing the theory of regular-
ization that aims at introducing reconstruction algorithms that are sensitive to these
instabilities and that aim at extracting information as stably as possible from such
unstable systems.

For problems that can be modeled with a linear forward operator, the theory of
linear inverse problems is quite developed. The unboundedness of the inverse (or
generalized inverse) can be nicely characterized by the closedness of the range of the
forward operator.When the forward operator has a singular value decomposition, the
instabilities canoftenbequantified, aswe show in the example of the truncatedHilbert
transform (arising in limited data computerized tomography) in Sect. 3. Moreover,
regularization theory is in many cases very effective for linear problems. It can give
guarantees for convergence (and convergence rates) of algorithms, when they are
suitably chosen so that regularization can be guaranteed. Regularization is, in princi-
ple, tied to assuming prior knowledge on the solution and, therefore, to searching for
solutions only in a restricted set. This way, we also demonstrate how regularization
can be guaranteed for the truncated Hilbert transform in Sect. 4.2.

When the underlying problem is nonlinear, one can still (to some extent) describe
unboundedness of the inverse problem and suggest regularizationmethods. However,
as the example of phase retrieval demonstrates (see Sect. 6), even if the inverse is
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bounded, the nonlinear case is very different: if the inverse is not uniformly bounded,
one will in practice still witness instabilities in the reconstruction. The problem of
phase retrieval is very particular in that regularization is not effective for stable
recovery from phaseless measurements. However, one can give up on the strong
notion of unique reconstruction to achieve some sort of stable recovery that we call
atoll function reconstruction.

The last problem we visit in Sect. 7 is the one of image classification with deep
neural networks (DNNs). The network is obtained by training it on a set of test
images for which the correct labels are provided. The DNN should then perform the
task of correctly classifying objects in images it has not seen during training. For this
problem, we do not even have a rigorous mathematical formulation of the forward
operator at hand, at least not one that allows for a useful analysis. However, we
witness instabilities in the form of so-called adversarial examples.One can construct
algorithms that find, for most correctly classified images, a slightly perturbed version
that the neural network will no longer classify correctly. While some remedies have
been suggested in the form of altering the training process in form of adversarial
training, these methods still do not give rise to robust classifiers, as one can think of
other ways to “fool” the network, such as slightly deforming the images.

This chapter is organized as follows: in Sect. 2 we provide an introduction to
linear inverse problems. In Sect. 3 we introduce the problem of limited data com-
puterized tomography and describe the truncated Hilbert transform as the resulting
linear forward operator. This includes the derivation of the SVD of the truncated
Hilbert transform as well as the asymptotic behavior of its singular values. The the-
ory of regularization of linear problems is the subject of Sect. 5, in which results
on the regularization of the truncated Hilbert transform are given as well. Nonlinear
problems are then discussed in Sect. 6, with Gabor phase retrieval as an example.
Finally, we present the problem of image classification in Sect. 7.

2 Linear Inverse Problems

A study of ill-posed problems naturally begins with linear operators as the theory for
the linear case is rather complete. We will therefore follow this path and refer to the
classical book of Engl et al. [21] for further details. In Sect. 3, we will then analyze
a specific linear problem using the theory of ill-posed problems combined with
Sturm–Liouville theory and Wentzel–Kramers–Brillouin approximations. When the
underlying operator is nonlinear, the theory is by far less straightforward. However,
the main results for nonlinear inverse problems are inspired by the linear case.

In what follows, T : X → Y will always denote a bounded linear operator from
X to Y , where X and Y are separable Hilbert spaces. The range and nullspace of
an operator will be denoted by R and N , respectively. We take T to be the forward
operator of the inverse problem in question and follow the classical definition by
Hadamard: a problem is well-posed if it satisfies the following criteria.
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Definition 1 (Hadamard’s well-posedness) The inversion of T : X → Y is said to
be well-posed if the following properties hold:

• Existence: For all g ∈ Y , there exists f ∈ X such that T f = g, i.e.,

R(T ) = Y. (1)

• Uniqueness: For all g ∈ Y , the solution is unique, i.e.,

N(T ) = {0}. (2)

• Stability: The solution depends continuously on the data, i.e.,

T −1 ∈ L(Y, X). (3)

Here, L(Y, X) denotes the set of all bounded linear transforms mapping from Y
to X .

If at least one of the three conditions is violated, the problem is said to be ill-posed.
Non-uniqueness can be undesirable, for instance, in reconstruction problems

where one is interested in recovering a signal, an image, an electron density, etc.
from some acquired measurements. If the same set of measurements can be created
by two different objects, then this is problematic for the reconstruction problem. We
will address the question of uniqueness in the reconstruction problems that will be
discussed in Sects. 3 and 6. However, if the inverse problem in question is the iden-
tification of system parameters in a PDE so that a given state is reached, then having
more than one candidate parameter set is of course less of an obstruction (though
some notion of uniqueness might still be desirable for the numerical solution that
involves an optimization problem).

The lack of stability creates serious numerical issues. Acquired measurements are
never exact and can only be given up to a certain accuracy. No stable dependence of
the solution on the data means that straightforward calculations of the reconstruction
will, in principle, be unreliable, as they might be arbitrarily far from the ground
truth. The theory of regularization aims at tackling this issue: the idea is to extract
information as stably as possible, meaning that the guarantees that one will be able
to give, will depend on the noise level, i.e., on the accuracy of the measurements.

In case the first property (existence) is violated, i.e., if T f = g is not solvable
for a given right-hand side g /∈ R(T ), one can relax the notion of a solution. Instead
of a classical solution, one can search for a generalized solution. To introduce this
concept, we first start with ensuring existence by simply searching for the “best fit”.

Definition 2 (Least-squares solution) An element f ∈ X is called a least-squares
solution for T f = g if

‖T f − g‖Y ≤ ‖T h − g‖Y , ∀ h ∈ X.
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To further characterize least-squares solutions, we let Q be the orthogonal pro-
jection of Y on R(T ), i.e.,

〈Qg, u〉Y = 〈g, u〉Y , ∀ g ∈ Y, ∀ u ∈ R(T ).

The following facts can then be stated.

‖Qg − g‖Y ≤ ‖u − g‖Y , ∀ u ∈ R(T ), (minimality property)

and
Qg − g ∈ R(T )⊥. (4)

In addition, we also recall a standard result.

Theorem 3 Let T : X → Y be a bounded linear operator between Hilbert spaces
X and Y . Then,

N(T ) = R(T ∗)⊥, (5)

R(T ) = N(T ∗)⊥. (6)

The above properties enable us to make the following link between least-squares
solutions, orthogonal projections, and solutions to the normal equation.

Theorem 4 Let g ∈ Y , f ∈ X and T ∈ L(X, Y ). The following are equivalent:

T f = Qg, (7)

‖T f − g‖Y ≤ ‖T h − g‖Y , ∀ h ∈ X, (8)

T ∗T f = T ∗g. (9)

Proof We show that (7) ⇒ (8) ⇒ (9) ⇒ (7). The first implication is established by
employing (4):

‖T h − g‖2Y = ‖T h − Qg‖2Y + ‖Qg − g‖2Y , (10)

= ‖T h − Qg‖2Y + ‖T f − g‖2Y , (11)

≥ ‖T f − g‖2Y . (12)

The second implication can be established as follows: first, we note that since Qg ∈
R(T ), there exists a sequence ( fn)n∈N ⊂ X s.t. T fn → Qg as n → ∞. Hence, by
assumption, Eq. (8) yields

‖Qg − g‖2Y = lim
n→∞ ‖T fn − g‖2Y ≥ ‖T f − g‖2Y .

Together with (4), this then implies
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‖T f − g‖2Y = ‖T f − Qg‖2Y + ‖Qg − g‖2Y ,

≥ ‖T f − Qg‖2Y + ‖T f − g‖2Y .

Thus, T f = Qg. Moreover,

T f − g = Qg − g ∈ R(T )⊥ = N(T ∗).

We can thus conclude that
T ∗(T f − g) = 0.

Part (9) ⇒ (7) can be seen as follows: The assumption that T f − g ∈ N(T ∗) =
R(T )⊥ implies

Q(T f − g) = 0.

Consequently,
0 = Q(T f − g) = QT f − Qg = T f − Qg,

and, hence, T f = Qg. �

The above theorem is extremely useful, as it states that least-squares solutions
are nothing else than solutions to the normal equation T ∗T f = T ∗g. Also, they are
equivalent to solutions of T f = Qg, i.e., the original equation with right-hand side
projected on R(T ). With this at hand, one can make a statement about the existence
of least-squares solutions:

Corollary 5 Let L(g) denote the set of least-squares solutions to right-hand side g,
i.e.,

L(g) := { f ∈ X : T ∗T f = T ∗g}.

Then, the following hold:

(i) L(g) is nonempty if and only if g ∈ R(T ) ⊕ R(T )⊥.

(ii) If g ∈ R(T ) ⊕ R(T )⊥, then L(g) is a nonempty, closed, and convex subset of
X.

Proof Part (i): First, if f ∈ L(g), then T ∗T f = T ∗g, and hence

T f − g ∈ N(T ∗) = R(T )⊥.

Decomposing g as g = T f + (g − T f ), it then follows that g ∈ R(T ) ⊕ R(T )⊥. To
show the other direction, we remark that for g ∈ R(T ) ⊕ R(T )⊥, a splitting g =
g1 + g2 with g1 ∈ R(T ), g2 ∈ R(T )⊥ is unique with the only option for g1 to be
g1 = Qg. The property that g1 ∈ R(T ) means the existence of an element f ∈ X
such that g1 = T f , and hence

Qg = T f.
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By Theorem 4, we can thus conclude that this element f is a least-squares solution,
i.e., f ∈ L(g).

Part (ii): Nonemptiness is already established in Part (i). To show convexity, we
proceed in the standard way of considering f, f ′ ∈ L(g) and

h := t f ′ + (1 − t) f

for arbitrary t ∈ [0, 1]. By Theorem 4, we have

T ∗T f = T ∗g,

T ∗T f ′ = T ∗g.

Linearity of T then yields

T ∗T h = tT ∗T f ′ + (1 − t)T ∗T f = tT ∗g + (1 − t)T ∗g = T ∗g,

i.e., h ∈ L(g).
To show that L(g) is closed,we consider a sequence ( fn)n∈N ⊂ L(g)with fn → f

as n → ∞. Closure of X implies f ∈ X . Moreover, since each fn is in L(g),

‖T f − g‖Y = lim
n→∞ ‖T fn − g‖Y ≤ ‖T h − g‖Y , ∀ h ∈ X.

Thus, f ∈ L(g). �

By its definition, the least-squares solution is not necessarily unique. For if
N(T ) �= {0} and f is a least-squares solution, then also any f + f0 with f0 ∈ N(T )

is a least-squares solution as well. This implies that if N(T ) �= {0}, then there are
infinitely many least-squares solutions. We will later characterize the set of least-
squares solutions. For now, we are interested in a notion of solution that enjoys
uniqueness. One popular choice is to pick the least-squares solution with minimal
norm and this is sometimes referred to as best approximate solution.

Definition 6 (Best approximate solution) An element f ∈ X is called best approxi-
mate solution if it is a least-squares solution, i.e., f ∈ L(g), and it has minimal norm,
i.e.,

‖ f ‖X = inf{‖h‖X : h ∈ L(g)}.

Corollary 7 If g ∈ R(T ) ⊕ R(T )⊥, then the best approximate solution to T f = g
is unique.

This is a direct consequence of the convexity of L(g) stated in Corollary 5. Note
also that g ∈ R(T ) ⊕ R(T )⊥ is the only interesting case, since otherwise L(g) is
empty.
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2.1 The Moore–Penrose Generalized Inverse

So far, the previous discussion has been centered around restoring the notions of
existence and uniqueness and the best approximate solution, orminimum-norm least-
squares solution, is a candidate that fulfills these requirements.We intend to continue
this discussion in an operator-theoretic way. To do so requires the introduction of the
Moore–Penrose generalized inverse, which is the map from g ∈ R(T ) ⊕ R(T )⊥ to
the unique best approximate solution, i.e., to the element in L(g)withminimal norm.
One way to define the Moore–Penrose generalized inverse T † of T is to introduce
the invertible restriction ˜T := T |N(T )⊥ of T .

Definition 8 (Moore–Penrose generalized inverse) For T ∈ L(X, Y ), its Moore–
Penrose generalized inverse is defined as the unique linear extension of ˜T −1 to

D(T †) := R(T ) ⊕ R(T )⊥

with
N(T †) = R(T )⊥.

Thus, theMoore–Penrose generalized inverse maps each g ∈ D(T †) to f ∈ L(g)

with minimal norm, f := T †g. We record a few basic properties of T †.

Corollary 9 Let T † be the Moore–Penrose generalized inverse of T ∈ L(X, Y ).
Then,

(i) the domain D(T †) is dense in Y . Moreover, R(T ) is closed if and only if
D(T †) = Y.

(ii) If R(T ) is closed and T −1 exists, it follows that

T †|R(T ) = T −1.

(iii) R(T †) = N(T )⊥ (= R(T ∗)).
(iv) T † is linear.
(v) For g ∈ D(T †), T †g is the unique element in L(g) ∩ N(T )⊥.

Proof Except for item (iii), the statements are straightforward consequences of the
definition of T † and the results we have collected so far about least-squares solutions.
To show item (iii), let h ∈ R(T †) so that there exists an element g ∈ D(T †) with
T †g = h. By definition, g can be decomposed as g = g1 + g2 with g1 ∈ R(T ) and
g2 ∈ R(T )⊥ = N(T †). Thus, by linearity of T †,

h = T †g = T †g1 + T †g2 = T †g1 = ˜T −1g1.

Hence, h ∈ R(˜T −1) = N(T )⊥ so that overall, R(T †) ⊆ N(T )⊥. On the other hand,
suppose that h ∈ N(T )⊥. Then, by definition of ˜T , ˜T h = T h. This implies
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h = ˜T −1T h = T †T h,

so that h ∈ R(T †) and hence N(T )⊥ ⊆ R(T †). �

The first item in the above corollary states that D(T †) is dense in Y . Note also,
that by item (i) in Corollary 5, L(g) is empty when g /∈ D(T †), so that in this case
no least-squares solution exists.

We emphasize that in the discussion about generalized solutions and inverses we
have not addressed the question of stability at all. In fact, while the Moore–Penrose
generalized inverse restores uniqueness, it does not restore stability of the inversion
problem. Boundedness (and hence continuity) of T † can, however, be characterized
as follows:

Theorem 10 Let T † be the Moore–Penrose generalized inverse of T ∈ L(X, Y ).
Then, T † is bounded if and only if R(T ) is closed.

Proof The proof is based on establishing that the graph of T † is closed. See, e.g.,
Proposition 2.4 and its proof in [21] for the full argument. �

Remark 11 Since the closedness of R(T ) is equivalent to D(T †) = Y (cf.
Corollary9, item (i)), one further has

D(T †) = Y ⇐⇒ T † is bounded.

In terms of Hadamard’s well-posedness criteria, this amounts to equivalence of exis-
tence and stability in the least-squares solution sense.

2.2 Compact Operators

In inverse problems, an important class of bounded linear transforms T ∈ L(X, Y )

is compact operators. On one hand, they appear frequently, e.g., integral operators
are typically compact under some suitable assumptions on the kernel. On the other
hand, they are inherently ill-posed, as we will see in this section.

Definition 12 (Compact operator) Let K : X → Y be a linear operator. Then, K is
said to be compact if for any bounded set B ⊂ X , the closure of its image K (B) is
compact.

Alternatively, compact operators can be characterized as follows.

Theorem 13 A linear operator K : X → Y is compact if and only if for any bounded
sequence ( fn)n∈N ⊂ X, the sequence (K fn)n∈N has a convergent subsequence.

We remark that it is easily shown that compact operators are always bounded, i.e.,
K ∈ L(X, Y ). Some useful properties of compact operators are the following.
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Lemma 14 Let K1 ∈ L(X, Y )and K2 ∈ L(Y, Z). If at least one of the two operators
is compact, then K1K2 is also compact.

Lemma 15 (Identity operator) The identity operator id:X → X is compact if and
only if X is finite dimensional.

The range of a compact operator has the following special property.

Theorem 16 (Range of compact operators) Let K ∈ L(X, Y ) be a compact oper-
ator. Then, its range R(K ) is closed if and only if it is finite dimensional.

The proof can be found in Proposition 2.7 of [21] but we still provide it for the
sake of completeness and illustration:

Proof Clearly, ifR(K ) is finite dimensional, then it is closed. For the other direction,
note that the operator

˜K := K |N(K )⊥ : N(K )⊥ → R(K )

is bijective, linear, and compact. IfR(K ) is closed, then the inverse mapping theorem
implies that ˜K −1 is bounded.Hence, byLemma14, also ˜K ˜K −1 = Id|R(K ) is compact.
Thus, by Lemma 15, R(K ) is finite dimensional. �

In view of Theorem 10, the above result implies that for compact operators, the
Moore–Penrose generalized inverse K † is unbounded when the range of K is infinite
dimensional:

Corollary 17 Let K ∈ L(X, Y ) be compact and let K † be its generalized inverse.
Then, K † is bounded if and only if R(K ) is finite dimensional.

This property of inherent instability for the inversion of compact operators can
be seen more explicitly when the singular value decomposition (SVD) is utilized.
Since it will be useful in Sect. 3, we will start with a reminder on the spectrum of an
operator T ∈ L(X) (cf. Sect. VI.3 in [42]).

Definition 18 (Resolvent set and spectrum) For T ∈ L(X), the resolvent set ρ(T )

is defined as

ρ(T ) := {λ ∈ C : λId − T is bijective, Rλ(T ) := (λId − T )−1 is bounded}.

The operator Rλ(T ) is called the resolvent of T at λ. The spectrum σ(T ) of T is
defined as σ(T ) := C\ρ(T ).

In fact, the boundedness of the inverse does not have to be asked for explicitly:
if λId − T is bijective, then by the inverse mapping theorem its inverse is bounded
(note that λId − T is linear). For compact operators K : X → X , the spectrum can
be rather elegantly described as the following properties hold (cf. Theorems VI.15,
VI.16, and VI.17 in [42]):
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Theorem 19 (Riesz–Schauder theorem) The spectrum σ(K ) of a compact operator
K ∈ L(X) is at most countable with 0 as the only possible accumulation point. Every
λ ∈ σ(K )\{0} is an eigenvalue of K .

Remark 20 If X is infinite dimensional, then 0 ∈ σ(K ). For if X is infinite dimen-
sional, then K being bijective implies R(K ) = X and hence R(K ) is closed. From
this, however, and Theorem 16 we can deduce that R(K ) and, hence X , is finite
dimensional, which is a contradiction. Therefore, K cannot be a bijection, and thus
0 ∈ σ(K ).

Theorem 21 (Hilbert–Schmidt theorem)Let K : X → X be a compact, self-adjoint
operator. Then, there exist a sequence of nonzero eigenvalues (λn)

N
n=1 ⊂ R and a

sequence (un)
N
n=1 ⊂ X such that

K un = λnun,

where (un)
N
n=1 is an orthonormal basis of R(K ) and N = rank(K ). If N = ∞, then

λn → 0 as n → ∞.

Theorem 22 Let K : X → Y be a compact operator. Then, there exist sequences
(σn)

N
n=1 ⊂ R+, (un)

N
n=1 ⊂ X and (vn)

N
n=1 ⊂ Y, with N ∈ N ∪ ∞, such that

K un = σnvn,

K ∗vn = σnun.

The system (un)
N
n=1 is an orthonormal basis of R(K ∗) = N(K )⊥, and (vn)

N
n=1 is an

orthonormal basis of R(K ). If N = ∞, then σn → 0 as n → ∞. The operator K
takes on the representation

K =
N

∑

n=1

σn〈·, un〉X vn.

The numbers σn > 0 are called singular values of K and the system (σn, un, vn) is
said to form the singular value decomposition (SVD) of K .

As we have seen before, the generalized solution may not always exist. More
precisely, it only existswhen g ∈ D(K †) (cf. Corollary 5). For compact operators, the
existence of the generalized solution can be characterized with the Picard criterion
(we will always assume N = ∞ in what follows, as this is the interesting case in
which the generalized inverse is unbounded (cf. Corollary 17)).

Theorem 23 (Picard criterion). Let K ∈ L(X, Y ) be a compact operator. Then,

g ∈ D(K †) ⇐⇒
∞

∑

n=1

|〈g, vn〉Y |2
σ 2

n

< ∞. (13)
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Proof • “=⇒”: Since g ∈ D(K †), we can decompose it into g = g1 + g2 with
g1 = K f1 ∈ R(K ), g2 ∈ R(K )⊥, for some f1 ∈ X . Then, noting that vn ∈ R(K ),
one can deduce

〈g, vn〉Y = 〈g1 + g2, vn〉Y = 〈g1, vn〉Y = 〈 f1, K ∗vn〉X = σn〈 f1, un〉X .

Thus,
∞

∑

n=1

|〈g, vn〉Y |2
σ 2

n

=
∞

∑

n=1

|〈 f1, un〉X |2 ≤ ‖ f1‖2X < ∞,

where we have used that (un)n∈N is an orthonormal basis of N(K )⊥, a closed
subspace of X .

• “⇐=”: By assumption, the sequence
(

σ−1
n 〈g, vn〉Y

)

n∈N is in �2(N). Thus, the
Riesz–Fischer theorem yields that f defined as

f :=
∞

∑

n=1

σ−1
n 〈g, vn〉Y un

is an element in X.

The orthogonal projection Q onto R(K ) can be expressed with the orthonormal
basis (vn)n∈N of R(K ):

Q =
∞

∑

n=1

〈·, vn〉Y vn.

With this, one can deduce

K f =
∞

∑

n=1

σ−1
n 〈g, vn〉Y K un =

∞
∑

n=1

〈g, vn〉Y vn = Qg.

Thus, Qg ∈ R(K ), and hence g ∈ R(K ) ⊕ R(K )⊥ = D(K †).
�

With the singular value decomposition of K at hand, one can even give an explicit
representation for the Moore–Penrose generalized inverse K †.

Theorem 24 Let K ∈ L(X, Y ) be compact with SVD (σn, un, vn)n∈N. Then, the
operator K † : D(K †) → N(K )⊥ can be represented as

K † =
∞

∑

n=1

〈·, vn〉Y

σn
un.

Proof Let g ∈ D(K †). Then, the Picard criterion holds and
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f :=
∞

∑

n=1

σ−1
n 〈g, vn〉Y un ∈ X,

with K f = Qg as derived in the previous proof. Thus, by Theorem 4, f ∈ L(g).
In view of item 5 of Corollary 9, it remains to show that f ∈ N(K )⊥. This follows
immediately from the above definition of f and (un)n∈N spanning N(K )⊥. �

Remark 25 (i) For compact operators, the fact that a generalized solution does
not always exist is characterized by Picard’s criterion: it only exists if
(〈g, vn〉Y /σn)n∈N decays fast enough. Note that here σn → 0 as n → ∞. Thus,
Theorem 23 links the existence of the generalized solution to the decay of the
coefficients 〈g, vn〉Y with respect to the singular values σn . The faster the sin-
gular values decay, the more rapid the decay of the coefficients of g has to be
in order for a solution to exist.

(ii) The Picard criterion also reveals that while error components corresponding
to large singular values σn are harmless, error components corresponding to
small σn get amplified and cause severe numerical issues.

(iii) Typically, the ill-posedness of compact operator equations is characterized by
the decay rate of (σn)n∈N. A problem is said to be mildly ill-posed if (σn)n∈N
decays algebraically.
When the singular values decay exponentially, the problem is said to be severely
ill-posed.

Example 26 We conclude the treatment of compact operators by featuring a con-
crete example that we borrow from Sect. 1.5 in [21]. The backward heat equation
can be described as assuming a final temperature at time T = 1:

h(x) := u(x, 1), x ∈ [0, π ], h(0) = h(π) = 0,

where the temperature u(x, t) at position x ∈ [0, π ] and time t ≥ 0 is governed by

∂u

∂t
(x, t) = ∂2u

∂x2
(x, t),

with homogenous Dirichlet boundary conditions

u(0, t) = u(π, t) = 0, t ≥ 0.

For the backward heat equation, we then aim at determining the initial tempera-
ture u(x, 0), x ∈ [0, π ]. One can find that the corresponding forward operator is an
integral operator of the first kind:

h(x) = 2

π

∞
∑

n=1

∫ π

0
u(τ, 0) sin(nτ)dτe−n2

sin(nx).
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With the kernel of the integral operator thus given explicitly, one can derive the SVD
of the operator which is (e−n2

,
√
2/π sin(nx),

√
2/π sin(nx))n∈N. Thus, the inverse

problem is severely ill-posed (since σn = e−n2
).

We further note that the singular functions (
√
2/π sin(nx))n∈N form an orthonor-

mal basis of L2([0, π ]) so that R(K ) is dense in L2([0, π ]) and D(K †) = R(K ).
Applying thePicard criterion thenyields that the backwardheat equation is (uniquely)
solvable if and only if

∞
∑

n=1

e2n2 |hn|2 < ∞,

where hn := √
2/π

∫ π

0 f (τ ) sin(nτ)dτ. In other words, a solution exists if and only
if the Fourier coefficients of the final temperature h decay rapidly (much faster than
e−n2

).

2.3 General Bounded Linear Transforms

To conclude this section, we complete the discussion by noting that more generally
than for compact operators, the spectrum of T ∗T reveals the stability properties of
the inverse problem with forward operator T ∈ L(X, Y ). A self-adjoint bounded
linear operator A : X → X is completely characterized by the spectral theorem (see
Chap.VII in [42] for a detailed treatment). It can be derived by drawing on the func-
tional calculus for continuous functions f which allows to meaningfully define the
operator f (A) ∈ L(X) (see Theorem VII.1 in [42]). With the continuous functional
calculus introduced, one can deduce that for ψ ∈ X , 〈ψ, f (A)ψ〉X is a continuous
linear functional on C(σ (A)), the set of continuous functions on the spectrum σ(A).
The Riesz–Markov theorem further implies that there is a unique measure μψ on the
compact set σ(A) such that

〈ψ, f (A)ψ〉X =
∫

σ(A)

f (λ)dμψ. (14)

The measure μψ is said to be the spectral measure associated with ψ . Introducing
spectral measures leads to a natural extension of the functional calculus to general
bounded Borel functions: defining f (A) for f a bounded Borel function on R such
that (14) holds, the polarization identity allows for recovery of 〈ψ, f (A)φ〉 , φ ∈ X ,
and hence for f (A) by utilizing the Riesz lemma.

By generalizing to bounded Borel functions, one can take characteristic functions
χ� of Borel sets � and define spectral projections of A as operators

P� := χ�(A).
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Lemma 27 Let A ∈ L(X) be self-adjoint and let (P�) be its family of spectral
projections. Then, the following hold:

(i) each spectral projection P� is an orthogonal projection;
(ii) P∅ = 0;

(iii) there exists a > 0 s.t. P(−a,a) = id; and
(iv) for any sequence of pairwise disjoint bounded Borel sets (�n)n∈N and � :=

⋃∞
n=1 �n ,

P� = lim
N→∞

(

N
∑

n=1

P�n

)

.

Here, as before, Id denotes the identity operator on X . A family of projections
fulfilling conditions (i) to (iv) is called a projection-valued measure.With this concept
at hand, we can state the spectral theorem for bounded self-adjoint operators in its
projection-valued measure form (cf. Theorem VII.8 in [42]).

Theorem 28 (Spectral theorem). There is a one-to-one correspondence between
bounded linear self-adjoint operators and bounded projection-valued measures:

A �−→ (P�) = (χ�(A)),

(P�) �−→ A =
∫

σ(A)

λd Pλ.

In the next section, we introduce and study an inverse problem with non-compact
forward operator and derive its spectral properties to understand the sources of ill-
posedness.

3 Limited Data Computerized Tomography

In the remainder of this chapter, we will treat three different ill-posed problems.
In this section, we start with the first, which is also the most classical of them: it
can be modeled by a linear forward operator and we will show how the spectral
properties can be derived and used to prove that certain reconstruction algorithms
are regularization methods, a concept we introduce in Sect. 4.

The linear inverse problem we aim to discuss stems from medical imaging, more
precisely from computerized tomography (CT). In the classical two-dimensional
(2D) setup, full data is acquired, which means that there is a moving X-ray source
that rotates 180◦ (“short scan”) or 360◦ (“long scan”) around the 2D region (i.e.,
a cross-section of a three-dimensional object). In such a scan, the rotating source
shoots X-rays from different directions in a sufficiently dense scanning scheme at
the object of interest. The attenuation of the X-ray beams is then recorded on the
other side of the object by an array of detectors. The region which is covered by a
full angular range (i.e., at least 180◦) is called the field-of-view (FOV), see Fig. 1.
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Fig. 1 Classical 2D CT: the
field-of-view fully covers the
object support D

Fig. 2 Line integrals of the
2D cross-section

The attenuation of the X-ray beams, i.e., their intensity loss as they travel through
the object, can reveal the structure of the object density. Tomake thismore precise,we
introduce the object support D ⊂ R

2, the object density fD ∈ L2(D) and parametrize
a line L on which an X-ray beam travels by its distance s ≥ 0 from the origin and its
orientation θ ∈ S1, see Fig. 2. The attenuation can bemodeledwith theBeer–Lambert
law of optics so that the CT scan essentially yields line integrals of f :

∫

R

fD(sθ + tθ⊥)dt = − ln
IL(θ, s)

I0(θ, s)
,
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where I0(θ, s) and IL(θ, s) denote the intensity of the traveling beam as it exits the
source and as it arrives at the detector, respectively. The mapping from functions to
their line integrals is well known as the Radon transform. Thus, the measurements
collected in 2D CT can be modeled as the Radon transform of fD:

(R fD) (θ, s) =
∫

R

fD(sθ + tθ⊥)dt, s ∈ R, θ ∈ S1.

Reconstruction of fD from 2D CT data hence amounts to inversion of the Radon
transform. In light of the preceding discussion in Sect. 1, a natural question that arises
in order to understand this linear inverse problem is whether we can determine the
spectral properties of R∗ R. This has been done in [39] and we briefly summarize the
findings therein. First of all, one can assume w.l.o.g. that D ⊆ B2, where B2 denotes
the unit disk in R

2 and consider the Radon transform as a mapping from functions
in L2(B2) into a certain weighted L2-space. Then, this operator is continuous (cf.
Chap. 2 in [39]).

Theorem 29 (Continuity of the Radon transform) Let R be defined as the Radon
transform with the following mapping:

R : L2(B2) → L2(S1 × [−1, 1], (1 − s2)−1/2),

where L2(S1 × [−1, 1], (1 − s2)−1/2) is the weighted L2-space with weight (1 −
s2)−1/2 on [−1, 1]. Then, R is continuous.

This operator admits a singular value decomposition (cf. Chap. 4 in [39]) with
singular values decaying at a rateσn ∼ 1/

√
n. In light of the discussion in the previous

section, we can conclude that the reconstruction problem from full Radon transform
data is only mildly ill-posed. This also implies that CT reconstruction can be rather
easily regularized using standard methods such as filtered back-projection (FBP),
see, e.g., Sect.V.1 in [39]. Radon inversion becomes much more delicate when no
longer full Radon transform data are available, in which case one speaks of a limited
data problem. We present one such instance in the following.

3.1 Truncated Projections

In this limited data CT problem, one has full angular coverage of the X-ray beams
in only a subregion of the support D of the 2D object, see Fig. 3 for an illustration.
In this case, one can only hope at recovering the object on the intersection of D with
the field-of-view. We will refer to this intersection as the region-of-interest (ROI).

In such a setup, the FBP leads to only very poor reconstructions. Instead of per-
forming Radon inversion in two steps (filtering and back-projection), an equivalent
formulation can be given involving three steps:
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Fig. 3 Limited data 2D CT:
the field-of-view does not
cover the object support D

Differentiated back-projection (DBP):

(i) Differentiation:

rD(φ, s) = ∂

∂s
(R fD)(θ, s), θ⊥ = (cosφ, sin φ).

(ii) Back-projection:

bφ1,φ2(x) = 1

π

∫ φ2

φ1

rD(φ, s)|s=x ·θ dφ.

It can be calculated that

bφ1,φ2(x) = (Hθ⊥
2

fD)(x) − (Hθ⊥
1

fD)(x),

where Hθ fD denotes the Hilbert transform of fD along the line through x with
direction θ .

(iii) Hilbert transform inversion: The choice φ2 = φ1 + π yields θ⊥
2 = −θ⊥

1 and
hence

bφ1,φ1+π (x) = 2(Hθ⊥
2

fD)(x).

Thus, the inversion of Hθ⊥
2
recovers fD on a line, so that the reconstruction of

fD can be obtained by solving a family of one-dimensional (1D) problems.

The first two steps of DBP pose no problem in the case of truncated projections:
differentiation is a local process and back-projection is angular averaging, which
can be done in the region-of-interest because one has full angular coverage therein.
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Fig. 4 The truncated Hilbert transform with a gap (a) and the interior problem (b)

Fig. 5 The truncated Hilbert
transform with overlap

The question of inverting the Hilbert transform is more delicate and requires careful
analysis.

For the remainder of this section, let a1, a2, a3, a4 be positive real numbers such
that a1 < a3 and a2 < a4. We will denote a 1D slice of the object density fD by f
and assume that f ∈ L2([a2, a4]), i.e., supp f ⊆ [a2, a4]. Furthermore, the Hilbert
transform H : L2(R) → L2(R) is defined by the principal value integral

(H f )(x) = 1

π
p.v.

∫

R

f (y)

y − x
dy.

For any f ∈ L2(R), the inversion of Hilbert transform data is simple, if H f is
measured on all of R: The inverse of the Hilbert transform is just H−1 = −H , so
that f can be recovered via f = −H H f .

In the case of truncated projections, each Hilbert transform of a slice f is only
knownon afinite interval,whichwedenote by [a1, a3] ⊂ R. For an interval I ⊂ R, let
PI : L2(R) → L2(R) denote the projection operator on I , i.e., (PI f )(x) = f (x) for
x ∈ I and (PI f )(x) = 0 otherwise. With this, one can define the truncated Hilbert
transform as the operator

HT := P[a1,a3] HP[a2,a4].

Note that its adjoint is given by H∗
T = −P[a2,a4] HP[a1,a3], which follows from a basic

property of the Hilbert transform that its adjoint is simply H∗ = −H . To understand
the stability properties of solving

HT f = g,

for given right-hand side g, it is essential to study the spectrum σ(H∗
T HT ).

This has been done in [29, 30] for the truncated Hilbert transform with a gap, i.e.,
for the case [a1, a3] ∩ [a2, a4] = ∅, and the interior problem, i.e., when [a1, a3] ⊂
[a2, a4], respectively, seeFig. 4.Here,wepresent a different limiteddata scenario than
in [29, 30]: the truncated Hilbert transform with overlap, i.e., a1 < a2 < a3 < a4,
see Fig. 5.
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The common theme of the spectral analysis in these problems is to relate the
operators in question with differential operators through an intertwining property
and to exploit the spectrum of the differential operators. This idea goes back to older
problems, such as the spectral analysis of the interior Radon transform [34]. The
most prominent example is the problem of Landau, Pollak, and Slepian [31, 32,
44] in communication theory. It can be described as follows: a signal (for example,
in telecommunication) is naturally time-limited, say, to an interval [−T, T ]. At the
same time, when signals are transmitted through devices, this can only happen up to a
certain frequency. Let [−W, W ] be the corresponding bandwidth. Then, the process
of transmitting a time-limited signal can be described as applying the operator

FT W := P[−W,W ]FP[−T,T ],

where F denotes the Fourier transform on L2(R). From the uncertainty principle,
it is apparent that for any signal f, taking FT W means some loss of information, in
either time or frequency (or both). Engineers have thus been interested in quantifying
this loss which can be measured by the ratio

‖FT W f ‖2L2(R)

‖ f ‖2L2(R)

= 〈F ∗
T WFT W f, f 〉L2(R)

‖ f ‖2L2(R)

.

This value is maximized when f is an eigenvector to the largest eigenvalue of
F ∗

T WFT W . The fact that the eigenvalues and eigenvectors of F ∗
T WFT W can be deter-

mined relies on the nice property that this operator commutes with the second-order
differential operator

(D f )(x) = (

(T 2 − x2) f ′(x)
)′ − W 2

π2
x2 f (x)

and Sturm–Liouville theory can be employed to obtain its eigensystem. The eigen-
functions (un)n∈N of D are known as the prolate spheroidal wave functions and,
due to the commutation property, they are also the eigenfunctions of F ∗

T WFT W . The
eigenvalues of F ∗

T WFT W can then be determined as

λn := ‖F ∗
T WFT W un‖L2(R)/‖un‖L2(R).

The commutation of D with F ∗
T WFT W appears to be a lucky accident and while it is

not the sole instance of a limited data integral operator commuting with a differential
operator, there still exists no coherent theory for this phenomenon. However, the
results of Landau, Pollak, and Slepian have to some extent been generalized in [26].

We now return to our problem of finding the spectrum σ(H∗
T HT ) for HT the

truncated Hilbert transform with overlap. Motivated by the analysis of the Landau–
Pollak–Slepian operator, aswell as the interiorRadon transformand the two truncated
Hilbert transforms in [29, 30], we, too, embark on the journey of finding commuting
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differential operators of which the spectral properties can be understood. We can
formulate our goal more precisely as finding second-order differential operators L S

and ˜L S such that
HT L S = ˜L S HT .

In view of the desired aim to analyze the spectral properties of these operators, we
require L S and ˜L S to be self-adjoint. If it turns out that L S, ˜L S have simple discrete
spectra, then one can work toward obtaining the SVD of HT . Note that beforehand,
there is no guarantee that HT has an SVD, i.e., that σ(H∗

T HT ) is purely discrete.
Since we seek to find differential, and hence unbounded, operators L S , ˜L S that

are also self-adjoint, it is worth reviewing a fundamental theorem.

Theorem 30 (Hellinger–Toeplitz theorem) Let A be a linear everywhere-defined
operator on a Hilbert space X with

〈 f1, A f2〉X = 〈A f1, f2〉X , ∀ f1, f2 ∈ X.

Then, A is bounded.

In other words, an unbounded self-adjoint operator A cannot have its domain
agreeing with all of X , i.e., D(A) � X . To make this more precise, we give the
following definition:

Definition 31 (Symmetric operator) A densely defined operator A on X is symmet-
ric if and only if

〈 f1, A f2〉X = 〈A f1, f2〉X , ∀ f1, f2 ∈ D(A).

We remark that for a symmetric operator A, D(A) ⊆ D(A∗). Furthermore, A
is self-adjoint if and only if it is symmetric and D(A) = D(A∗). Starting from a
symmetric operator, we will thus search for self-adjoint extensions by specifying
suitable domains. Note that the spectrum of an unbounded operator is very sensitive
to the choice of the domain. As in [29, 30], we choose to start with the differential
form L(x, dx ) defined as

L(x, dx )ψ(x) := (

P(x)ψ ′(x)
)′ + Q(x)ψ(x), (15)

where P(x) := ∏4
i=1(x − ai ) and Q(x) := 2

(

x − 1
4

∑4
i=1 ai

)2
. The aim is to find

self-adjoint operators L S, ˜L S withD(L S) ⊂ L2([a2, a4]) andD(˜L S) ⊂ L2([a1, a3]),
respectively. Formally, they are self-adjoint extensions of symmetric operators Lmin,
˜Lmin withD(L S) ⊃ D(Lmin) and D(˜L S) ⊃ D(˜Lmin) and we refer to [9] for a defi-
nition of these operators.

For the spectral analysis, the interest lies in solutions ψ to the Sturm–Liouville
problem (SLP)

L(x, dx )ψ(x) = λψ(x), (16)
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for λ ∈ C. A point x0 ∈ C is said to be ordinary if the functions

˜P(x) := P ′(x)

P(x)
,

˜Q(x) := Q(x) − λ

P(x)

are analytic at x0. The points ai , i = 1, . . . , 4 in (15) are not ordinary.More precisely,
they are regular singular, meaning that at ai , ˜P(x) has a pole of up to order 1 and
˜Q(x) has a pole of up to order 2. A standard result known as Fuchs’ theorem roughly
states that at regular singular points, solutions to (16) are either bounded or have a
logarithmic singularity.

In the analysis of the interior problem and the truncated Hilbert transform with a
gap, the same differential form L(x, dx ) as in (15) appears. However, in these cases,
one seeks self-adjoint operators on intervals I and J forwhich ai are endpoints, but no
pointai appears inside the intervals I and J . Thismakes the corresponding eigenvalue
problems standard singular Sturm–Liouville problems with the only singular points
being the endpoints of the interval. In such a case, the spectral properties of a self-
adjoint extension are well known (cf. [47]).

The case of the truncated Hilbert transform with overlap is fundamentally dif-
ferent: here, we need to consider self-adjoint extensions on intervals [a2, a4] and
[a1, a3] with a3 and a2, respectively, in the interior of the interval. With this, one
exits standard Sturm–Liouville theory and is required to work with a singular Sturm–
Liouville problem on two intervals (meaning that, e.g., when considering L S with
D(L S) ⊂ L2([a2, a4]), there are two involved subintervals [a2, a3] and [a3, a4] as
the interval [a2, a4] is interrupted by an interior singular point, namely a3). For
such two interval problems, there is some theory on self-adjoint extensions (cf. [47])
that we will employ. However, the results on the spectral properties are no longer
straightforward. For a self-adjoint extension L S with D(L S) ⊂ L2([a2, a4]), where
a3 ∈ (a2, a4), the introduction of two boundary conditions (BCs) and two transmis-
sion conditions (TCs) is necessary to obtain a self-adjoint realization. The rationale
for having four conditions is that now one works with two intervals and hence needs
double the number of conditions (for a second-order ODE on one interval we need
two conditions). The two BCs will act on the endpoints a2 and a4, while the two TCs
will be there to connect the two subintervals (a2, a3) and (a3, a4).

Ultimately, we seek solutions to (16) that take on a special form: the (potential)
eigenfunctions (un)n∈N and (vn)n∈N of L S and ˜L S , respectively, should satisfy

HT un = σnvn,

H∗
T vn = σnun,

for some real numbers σn . We can use this goal, together with some intuition on
the Hilbert transform, to find suitable BCs and TCs. For example, when we take the
Hilbert transform of a function ψ with a jump discontinuity at x0, then Hψ will
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Fig. 6 Sketch of the (potential) singular functions un and vn of HT . They are bounded at the
endpoints and have a logarithmic singularity at the interior singular point

have a logarithmic singularity at x0. On the other hand, suppose that at a point x0, a
function ψ has a logarithmic singularity, i.e., in a region around x0,

ψ(x) = φ11(x) + φ12(x) ln |x − x0|, x < x0, (17)

and
ψ(x) = φ21(x) + φ22(x) ln |x − x0|, x > x0, (18)

for some analytic functions φi j . Then, in order for Hψ to be bounded at x0, one
necessarily has

lim
x→x−

0

φ11(x) = lim
x→x+

0

φ21(x), (19)

lim
x→x−

0

φ12(x) = lim
x→x+

0

φ22(x). (20)

These observations lead to a specific picture of the singular functions of HT , should
they exist. They are bounded at the endpoints and have a logarithmic singularity of
type (17)–(20) at the interior singular point. See [9] for full details and Fig. 6 for an
illustration.

To present a suitable candidate for L S , we need a few more preparations. First,
for an open interval I ⊂ R, define the function space

ACloc(I ) := {ψ : I → C : ψ is absolutely continuous on all [α, β] ⊂ I }.

Next, let the maximal domain Dmax ⊂ L2([a2, a4]) be given by

Dmax := {ψ : (a2, a4) → C : ψ |(ai ,ai+1), (Pψ ′)|(ai ,ai+1) ∈ ACloc((ai , ai+1)), i = 2, 3,

ψ, Lψ ∈ L2([a2, a4])},
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and recall the notion of the Lagrange sesquilinear form [·, ·] of two functions r, s ∈
Dmax which is defined as

[r, s] := r Ps ′ − s Pr ′.

One can deduce from Green’s formula that for all r, s ∈ Dmax , the limits limα→a+
2[r, s](α), limβ→a−

3
[r, s](β), limα→a+

3
[r, s](α), and limβ→a−

4
[r, s](β) exist and are

finite.

Theorem 32 Let L S : D(L S) → L2([a2, a4]) be the extension of Lmin to the domain

D(L S) := {ψ ∈ Dmax : [ψ, r ] (a+
2 ) = [ψ, r ] (a−

4 ) = 0,

[ψ, r ] (a−
3 ) = [ψ, r ] (a+

3 ),

[ψ, s] (a−
3 ) = [ψ, s] (a+

3 )},

with r, s ∈ Dmax chosen as

r(y) := 1,

s(y) :=
4

∑

i=1

∏

j �=i
j∈{1,...,4}

1

ai − a j
ln |y − ai |.

Then, L S is a self-adjoint operator.

Proof See Chap.13 in [47], in which all self-adjoint extensions for two interval
problems are given. �

Note that for λ ∈ C, the above two BCs at a2 and a4, as well as the two TCs at
a3 simplify for solutions of Lψ = λψ . More precisely, if ψ solves L Sψ = λψ , then
the above BCs mean that ψ is bounded at the endpoints a2 and a4. Furthermore,
the two TCs translate to (17)–(20). This gives hope that indeed, for this choice of
L S , there is a (much anticipated) relation between HT and L S . In main contrast to
Sturm–Liouville problems on one interval with no interior singular point, we have
no straightforward guarantee that the spectrum of L S is purely discrete. One of the
main findings in [9] is that this is, however, indeed the case. We summarize the result
as follows.

Theorem 33 (Spectrum of L S) Let L S be the self-adjoint extension of Lmin with
domain D(L S) ⊂ L2([a2, a4]) as defined in Theorem 32. Then, its spectrum σ(L S)

has the following properties:

(i) σ(L S) is purely discrete.
(ii) The set of eigenfunctions (un)n∈N of L S are complete in L2([a2, a4]).

(iii) σ(L S) is simple, i.e., each eigenvalue has multiplicity 1.
(iv) For all eigenfunctions un of L S:

(

HT L(y, dy)un
)

(x) = L(x, dx ) (HT un) (x).
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One can define a second self-adjoint operator ˜L S with D(˜L S) ⊂ L2([a1, a3])
equivalently to the definition of L S (by simply replacing the points a2, a3 and a4

by a1, a2, and a3, respectively. This allows to write property (iv) in the above more
compactly as

HT L S = ˜L S HT .

With that, one finally arrives at the following.

Theorem 34 (SVD of HT ) The eigenfunctions un of L S, together with

vn := HT un/‖HT un‖L2([a1,a3]),
σn := ‖HT un‖L2([a1,a3]),

form the SVD of HT :

HT un = σnvn,

H∗
T vn = σnun.

The functions (vn)n∈N are the eigenfunctions of ˜L S and form a complete orthonor-
mal system of L2([a1, a3]). In light of Hadamard’s well-posedness criteria one can
further show that

N(HT ) = {0},

i.e., the inversion problem enjoys uniqueness, and

R(HT ) �= L2([a2, a4]),

while R(HT ) is dense in L2([a2, a4]). Thus, inverting from truncated Hilbert trans-
form data is ill-posed in the sense that the solution does not depend continuously on
the data. Another interesting fact is the following.

Theorem 35 The values 0 and 1 are (the only) accumulation points of the singular
values of HT .

This property implies that HT is not a compact operator. The accumulation of the
singular values at 0 causes the instability of inverting the truncated Hilbert transform.
As discussed in Remark 25, the decay rate of the singular values reveals the nature of
the ill-posedness. To find how severe the ill-posedness of inverting HT is, we again
make use of the differential operators L S , ˜L S . We aim at finding the asymptotics of
the eigenfunctions ψn of L S as λn → ±∞ in

L Sψn = λnψn.

Note that the two accumulation points+∞ and−∞ of λn correspond to the accumu-
lation points 0 and 1 of σn , respectively. The asymptotic analysis ofψn for n → ±∞
is based on three ingredients:
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(i) Global asymptotics: away from the regular singular points ai , the solutionψn is
analytic and its asymptotics can be described with WKB (Wentzel–Kramers–
Brillouin) approximations.

(ii) Local asymptotics: close to the regular singular points ai , the solution ψn can
be characterized by linear combinations of the Bessel functions J0 and Y0.

(iii) Asymptotic matching: global and local asymptotics need to be matched in
specified regions in which both are valid.

The above is just a sketch of the recipe and we refer to [5] for the full argument. Since
the eigenfunctions of L S and ˜L S correspond to the two sets of singular functions of
HT , one has thus found the asymptotics of the singular functions of HT . This can be
used to further derive the asymptotic behavior of σn → 1 and σ−n → 0 as n → ∞.
The result can be stated as follows.

Theorem 36 Let (σn)n∈N and (σ−n)n∈N denote the sequences of singular values of
HT accumulating at 1 and 0, respectively. Then, there exist constants c1, c2 > 0
depending on only P and the points ai , i = 1, . . . , 4 such that

σn = 2e−c1n · (

1 + O (

n−1/2+δ
))

,

σ−n = 1 − 2e−c2n · (

1 + O (

n−1/2+δ
))

, as n → ∞,

for some small fixed δ > 0.

Thus, the decay to 0 is exponential, which leads us to classify this inversion
problem as severely ill-posed.We remark that this is typical for limited data problems
in CT.

4 Regularization

So far, we have discussed detecting the instability of an inverse problem and, if an
SVD exists, characterizing the severity of the ill-posedness through the decay rate of
the singular values. This, of course, is only of theoretical interest, if it does not lead to
new reconstruction methods dealing with these instabilities. In this section, we will
see how one can aim at extracting information as stably as possible from an unstable
system. This is the goal of regularization. With the example of the truncated Hilbert
transform, we will further demonstrate in Sect. 4.2, how the derived knowledge of
the SVD of the underlying operator and its asymptotic properties can enable us to
prove rigorous results on the proposed regularization methods.

Clearly, solving for T f = g can be done by applying the Moore–Penrose gener-
alized inverse to the right-hand side, resulting in a best-approximate solution:

f † = T †g.
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However, in practice, g is not known exactly, but only some measurement gδ is
acquired up to some noise level δ, i.e., one only has a guarantee of the form

‖g − gδ‖Y ≤ δ.

The main issue is the lack of continuous dependence of the data on the right-hand
side: recall that if Hadamard’s third property is violated, then T † is not a continuous
operator. Thus, in general, T †gδ is not a good approximation of T †g. Also note that
T †gδ might not even exist, sinceD(T †) � Y when T † is not continuous.

In regularization theory, one seeks to find an approximation f δ of f † such that

• f δ depends continuously on gδ ,
• f δ → f † as δ → 0.

This is achieved by constructing a family of continuous operators (Rα)α∈(0,α),

α ∈ R+ ∪ ∞, that approximate the unbounded operator T †. More precisely, for
α = α(δ, gδ), define f δ

α := Rαgδ . The goal is to choose α(δ, gδ) and Rα such that
f δ
α → f † as δ → 0. In other words, the lower the noise level, the more accurate the

approximation f δ
α is required to be. For high noise levels δ, the reconstruction f δ

α

does not need to be close to f †. This matches the intuition that if the right-hand
side is only known up to δ, it is not feasible to aim at an approximation of the true
solution f † that is closer than δ.. A precise definition of a regularization can be given
as follows.

Definition 37 Let T ∈ L(X, Y ), α ∈ R+ ∪ {∞} and let Rα : Y → X be a contin-
uous operator for every α ∈ (0, α). Suppose that for all g ∈ D(T †) there exists a
parameter choice ruleα = α(δ, gδ) : R+ × Y → (0, α) such that the following hold:

lim sup
δ→0

{

α(δ, gδ) : gδ ∈ Y, ‖g − gδ‖Y ≤ δ
} = 0, (21)

and
lim sup

δ→0

{‖Rα(δ,gδ)g
δ − T †g‖X : gδ ∈ Y, ‖g − gδ‖Y ≤ δ

} = 0. (22)

Then, the family (Rα)α∈(0,α) is called a regularization for T †. For every g ∈ D(T †),
a pair (Rα, α) is called a convergent regularization method for solving T f = g, if
Eqs. (21) and (22) hold.

A regularization method is thus defined by two components:

• the operators Rα and
• the parameter choice rule α(δ, gδ).

A fundamental result by Bakushinsky states that α cannot be chosen independently
of δ.

Theorem 38 (A. B. Bakushinsky) If α = α(gδ) yields a convergent regularization
method, then T † is bounded.
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There are two possible choices of dependencies left and they are divided into
a priori parameter choice rules, i.e., α = α(δ), and a posteriori parameter choice
rules, i.e., α = α(δ, gδ).

Existence of a priori parameter choice rules can be guaranteed when (Rα)α∈(0,α)

is a family of continuous operators converging to T † point-wise.

Theorem 39 If for all α > 0, Rα is a continuous operator and

Rα → T † point-wise on D(T †), as α → 0,

then (Rα)α∈R+ is a regularization of T † and for all g ∈ D(T †) there exists an a priori
parameter choice rule α(δ) for which (Rα, α) is a convergent regularization method
for T f = g.

A regularization consisting of linear operators Rα is called a linear regularization
method. Note that one can also consider a family of nonlinear operators Rα for
approximating a linear operator T †. A well-known example is the conjugate gradient
method equipped with an early stopping criterion to ensure regularization.

In order to construct regularization methods, the following viewpoint is helpful:
Suppose that the operator T ∗T was continuously invertible with spectral projections
Pλ, so that its inverse could be expressed as

(

T ∗T
)−1 =

∫

σ(T ∗T )

1

λ
d Pλ.

Then, in view of (9), the following holds for the best-approximate solution f †:

f † =
∫

σ(T ∗T )

1

λ
d PλT ∗g. (23)

If, however,R(T ) is not closed, the above integral does not exist because zero belongs
to the spectrum of T ∗T , and hence the integrand 1/λ has a pole at zero. The concept
of regularization is to replace 1/λ by a family of functions (sα(λ))α∈R+ that approx-
imates 1/λ and satisfies some continuity conditions. Instead of computing f † one
then constructs

fα :=
∫

σ(T ∗T )

sα(λ)d PλT ∗g, (24)

and the corresponding regularization operators are given by

Rα :=
∫

σ(T ∗T )

sα(λ)d PλT ∗. (25)

More precisely, one has the following.

Theorem 40 For all α > 0, let sα : [0, ‖T ‖2] → R be piecewise continuous and
suppose that there is a constant C > 0 such that for all λ ∈ (0, ‖T ‖2]
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|λsα(λ)| ≤ C, (26)

and

lim
α→0

sα(λ) = 1

λ
. (27)

Then, for all g ∈ D(T †),
lim
α→0

fα = f †

with f † = T †y and

fα :=
∫

λ∈σ(T ∗T )

sα(λ)d PλT ∗g.

Note that in view of the discussion in Sect. 2.3, the continuous functional calculus
enables us to write

fα = sα(T ∗T )T ∗g. (28)

Similarly, for reconstruction fromnoisy data gδ , the approximation via sα is expressed
as

f δ
α = sα(T ∗T )T ∗gδ. (29)

Further note that, due to the ill-posedness, α has to be chosen carefully because when
g /∈ D(T †),

lim
α→0

‖ f δ
α ‖X = ∞.

Oneway to ensure convergence of f δ
α is to chooseα(δ, gδ)viaMorozov’s discrepancy

principle, which is an a posteriori rule.

Theorem 41 Let sα be as in Theorem 40, fulfilling (26) and (27) and assume that
for each λ > 0, α �→ sα(λ) is continuous from the left. Also, define

rα(λ) := 1 − λsα(λ).

Furthermore, let
Sα := sup

{

sα(λ) : λ ∈ [0, ‖T ‖2]}

be such that

Sα ≤ c̃

α
, for α > 0,

for some constant c̃ > 0 and

τ > sup
{|rα(λ)| : α > 0, λ ∈ [0, ‖T ‖2]} .

Then, the discrepancy principle defined by
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α(δ, gδ) := sup
{

α > 0 : ‖T f δ
α − gδ‖Y ≤ τδ

}

(30)

and Rα defined as in (25) form a convergent regularization method (Rα, α) for all
g ∈ R(T ).

Remark 42 • The requirement that g ∈ R(T ) is not restrictive: if g ∈ D(T †), but
g /∈ R(T ), then we can simply solve for

T ∗T f = T ∗g

instead of T f = g. This is then solvable for g ∈ D(T †) and the same result applies
for this normal equation.

• The philosophy of the discrepancy principle is very intuitive: one compares the
residual with the error bound δ and does not aim at an approximation that achieves
a residual below δ as this is not meaningful: for noisy data gδ , with ‖g − gδ‖Y ≤ δ,
the best one should ask for is a residual of the order of δ. On the other hand, from the
viewpoint of regularization, one should aim at a regularization parameter as large
as possible to ensure stability. This is a trade-off between accuracy and stability
and the discrepancy principle roughly aims at achieving the optimal balance.

Next, we give two simple and well-known examples of regularization methods.

Example 43 One way to regularize the inversion of T ∗T is via a simple threshold:

sα(λ) :=
{

1
λ
, for λ ≥ α,

0, for λ < α.

For an operator with an SVD (σn, un, vn)n∈N, this amounts to a truncated SVD:

f δ
α :=

∞
∑

n=1
σ2n ≥α

1

σn
〈gδ, vn〉Y un.

Example 44 The most prominent example for regularization is Tikhonov regular-
ization which amounts to defining

sα(λ) := 1

λ + α
,

for α > 0. Since {λ + α : λ ∈ σ(T ∗T )} is the spectrum of T ∗T + αId, Tikhonov
regularization can be interpreted as

f δ
α =

∫

σ(T ∗T )

sα(λ)d PλT ∗gδ = (

T ∗T + αId
)−1

T ∗gδ.

In other words, one solves the regularized normal equation
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(

T ∗T + αId
)

f δ
α = T ∗gδ. (31)

For an operator with an SVD (σn, un, vn)n∈N, this can be written as

f δ
α :=

∞
∑

n=1

σn

σ 2
n + α

〈gδ, vn〉Y un, (32)

i.e., the unbounded term 1/σn is replaced by the bounded term σn/(σ
2
n + α). One

can show that f δ
α in (32) is the unique minimizer of the Tikhonov functional

f �→ ‖T f − gδ‖2Y + α‖ f ‖2X . (33)

Formulated this way, Tikhonov regularization exhibits the typical form that instead
of simply minimizing the residual, one introduces an additional penalty term, in this
case the norm of f . As the noise level δ decreases, one can choose smaller α, so that
the penalty term becomes less emphasized.

Theorem 45 If α(δ, gδ) is chosen according to the discrepancy principle (30),
Tikhonov regularization converges for all g ∈ R(T ).

4.1 Miller’s Theory

As suggested in (33), one can alternatively study regularization from an optimization
perspective. This has been suggested byMiller [37] and further discussed by Bertero,
De Mol, and Viano in [15]. Suppose for simplicity that T −1 exists and that a right-
hand side gδ is given with noise level ‖g − gδ‖Y ≤ δ. In case of ill-posedness, T −1

is unbounded and hence the set

H(δ, gδ) := { f ∈ X : ‖T f − gδ‖Y ≤ δ}

is unbounded. Thus, finding an element in H(δ, gδ) does not give any guarantee
on how close it is to the exact solution. To achieve regularization, one introduces
a restricted set of admissible solutions S(δ, gδ) ⊂ H(δ, gδ), i.e., one assumes prior
knowledge on the solution and hence only searches in a restricted set S(δ, gδ). If

diam S(δ, gδ) → 0, as δ → 0, (34)

then the problem is said to be regularized and any method (Rα, α) that guarantees

Rα(δ,gδ)g
δ ∈ S(δ, gδ)

is a convergent regularization method. A typical choice for S(δ, gδ) is { f ∈ X :
‖T f − gδ‖Y ≤ δ, ‖L f ‖X ≤ c}, for some constant c > 0 and L a densely defined
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operator with bounded inverse. The choice L = Id corresponds to Tikhonov regu-
larization. Other popular choices for L are differential operators, in which case the
constraint amounts to a smoothness condition on f .

4.2 Regularization for the Truncated Hilbert Transform

We conclude this section by presenting results on the regularized reconstruction
from truncated Hilbert transform data. As outlined in Sect. 3, the spectral properties
of the operator HT have been derived in [5, 9]. The main tool for determining the
asymptotics of the singular values is to find the global asymptotic behavior of the
singular functions. This knowledge has been further used in [6, 10] to derive results
on the regularization in the sense of Miller’s approach.

More precisely, when studying the asymptotics of the singular functions, one finds
two characteristics:

• Oscillating behavior. The singular functions un corresponding to accumulation
in the spectrum at 1 oscillate inside the overlapping region, i.e., on [a2, a3], and
decay monotonically on [a3, a4]. On the other hand, the un’s corresponding to
accumulation in the spectrum at 0 oscillate outside of the overlapping region, i.e.,
on [a3, a4] and decay monotonically on [a2, a3] (see Fig. 7). This suggests that the
part of the spectrum causing instabilities corresponds to signals that are highly
oscillating outside of the region-of-interest. Thus, to restore stability, one needs to
suppress high oscillations outside of the overlapping region.

• Logarithmic singularity at the interior singular point. As we have already
seen in Sect. 3, all singular functions have logarithmic singularities at the interior
singular point, i.e., at a3 (for un) and at a2 (for vn), see Fig. 7. Thus, methods that
are SVD based (cf. Examples 43 and 44) might not be ideal: since they use a
superposition of the singular functions in the reconstruction, they will most likely
create reconstruction artifacts in the form of logarithmic singularities at a3.

The derivation of stability estimates from the asymptotic expansions of un and vn is
very involved and technical andoutside of the scopeof this chapter.Wemerely present
the results here. The first statement is that if one is only concerned with stability in a
slightly restricted region-of-interest of the form [a2, a3 − μ], for some small μ > 0,
then the method of Tikhonov already yields a regularization for reconstruction from
HT .

Theorem 46 Let g ∈ R(HT ) and gδ ∈ L2([a1, a3]) be noisy data such that ‖g −
gδ‖Y ≤ δ for some noise level δ > 0. For E > 0, define the set of admissible solutions
as

S(δ, gδ) := { f ∈ L2([a2, a4]) : ‖HT f − g‖L2([a1,a3]) ≤ δ, ‖ f ‖L2([a2,a4]) ≤ E}.

Let μ > 0 be constant and consider the reconstruction on (a2, a3 − μ). Then, for
sufficiently small δ, any f1, f2 ∈ S(δ, gδ) satisfy a bound of the form
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Fig. 7 Examples of singular functions un and vn in red and blue, respectively. Here, a1 = 0, a2 = 3,
a3 = 6, a4 = 12. Singular functions for σn close to 0 in (a); singular functions for σn close to 1 in
(b). All of the singular functions exhibit singularities at the interior singular points

Fig. 8 Example of a limited data problem: the black circle indicates the field-of-view (FOV)

‖ f1 − f2‖L2([a2,a3−μ]) ≤ C1δ + C2E1−γ δγ ,

where C1, C2, γ > 0 are constants depending on only μ and the relative positions
of the points a1, a2, a3, a4.

Remark 47 As already stated, the drawback of using Tikhonov regularization here
is that it will create artifacts at the boundary of the region-of-interest due to the
logarithmic singularities of the singular functions. See Figs. 8 and 9 for an example:
Tikhonov regularization clearly exhibits these artifacts on the boundary of the ROI.

As one can see in Fig. 9, the reconstruction using total variation (TV) regular-
ization does not show the artifacts on the boundary of the ROI. This is because the
method is not SVD based and penalizes singularities. To be more precise, in TV
regularization, the set of admissible solutions S(δ, gδ) is chosen by restricting the
total variation of the admissible functions. For weakly differentiable functions f
with derivative fx , the TV semi-norm is given by
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Fig. 9 Regularized reconstruction for the limited data problem in Fig. 8 using Tikhonov regular-
ization in (a) and total variation (TV) regularization in (b). The artifacts at the boundaries of the
ROI are apparent in the Tikhonov reconstruction but not in the TV reconstruction

| f |T V := ‖ fx‖L1(R).

The reason we are interested in TV regularization is that a TV penalty is the natural
quantity to penalize both the artifacts on the boundary of the ROI, as well as highly
oscillating behavior, causing ill-posedness. Again, exploiting the fine properties of
the global asymptotic behavior of the singular functions (and now combined with an
argument using Helly’s selection theorem), one can formulate a stability estimate for
TV regularization. In fact, it suffices to penalize the total variation on a subinterval
[a3 − μ, a4], for some μ > 0.

Theorem 48 Let g ∈ R(HT ) and gδ ∈ L2([a1, a3]) be noisy data such that ‖g −
gδ‖Y ≤ δ for some noise level δ > 0. For μ, κ > 0, define the set of admissible
solutions as

S(δ, gδ) := { f ∈ W 1,1([a2, a4]) : ‖HT f − g‖L2([a1,a3]) ≤ δ, ‖ fx‖L1([a3−μ,a4]) ≤ κ,
∫ a4

a2

f (x)dx = C},

for some constant C. Then, as δ → 0, one has that

diam S(δ, gδ) = O(|log δ|−1/2)

and the constants in the decay rate depend on only μ and the relative positions of
the points a1, a2, a3, a4.

Remark 49 Note that this decay rate is only logarithmic, while for Tikhonov reg-
ularization one has a decay of order δγ . However, the imposed prior knowledge in
the case of TV regularization is mainly on the region outside of the ROI. Also, the
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guarantee that one obtains for the reconstruction is on ‖ f1 − f2‖L2([a2,a4]) instead of
merely on ‖ f1 − f2‖L2([a2,a3−μ]).

5 Nonlinear Inverse Problems

While the theory of regularization is well understood in the linear case, it is much
less straightforward in the case of nonlinear problems. Since for nonlinear operators
there is hardly any spectral theory at hand, the analysis of the regularization becomes
much more challenging. In this section, we intend to make brief mention of the
particularities of treating nonlinear problems and refer to [21, 28] for a detailed
discussion of the subject. In what follows, a nonlinear operator is denoted by

F( f ) = g, F : D(F) ⊂ X → Y

and ill-posedness always refers to the lack of continuous dependence of the solution
on the data. An important class of nonlinear (typically ill-posed) problems is that of
parameter estimation in PDEs.

Example 50 Suppose that for some material with support in � ⊂ R
3, u(x), x ∈ �

denotes the temperature distribution after sufficiently long time, h denotes internal
heat sources and q the heat conductivity of the material. Assuming that u is kept zero
at the boundary, the dependencies can be modeled as follows:

−∇ · (q(x)∇u) = h(x), x ∈ �,

u(x) = 0, x ∈ ∂�.

Further assuming that h is known, the following problem is a typical parameter
estimation problem: Given internal measurements of u or boundary measurements
of the heat flux q ∂u

∂n , determine the heat conductivity q. Note that the underlying
operator F : q �→ uq is not given explicitly but is described through the PDE.

General assumptions typicallymadewhen consideringnonlinear inverse problems
(and also assumed in the remainder of this section) are the following:

• F is continuous,
• F is weakly sequentially closed, i.e.,

fn ⇀ f in X
F( fn) ⇀ g in Y

}

=⇒ f ∈ D(F) and F( f ) = g.

• For simplicity, one assumes g ∈ R(F).

For linear problems, the notion of minimum-norm solution has been introduced. For
nonlinear problems, one rather considers the f ∗-minimum-norm solution f † which
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minimizes ‖ f − f ∗‖X . This is because the element 0 no longer plays a special role
for nonlinear problems. Typically, one aims at choosing f ∗ such that it includes some
a priori information on the solution. The above assumptions guarantee existence of
the f ∗-minimum-norm solution. However, since F is nonlinear, it is not necessarily
unique.

When analyzing the ill-posedness of linear operators, the closedness of the range
is a simple criterion that characterizes the stability of the problem. Therefore, it would
be convenient if for nonlinear problems it was possible to consider the linearization
of the nonlinear operator. However, in general, there is no guaranteed connection
between the ill-posedness of a nonlinear problem and its linearization.

Recall that for linear operators T : X → Y , one has that compactness and injec-
tivity of T implies unboundedness of T −1 when X is infinite dimensional. There
is a “nonlinear counterpart” to this statement: roughly, when F is compact and
locally injective, then D(F) being “infinite dimensional around f †” implies the
non-continuity of the inverse F−1. A precise formulation is the following.

Theorem 51 Let F be a nonlinear compact and continuous operator with D(F)

weakly closed. Let F( f †) = g and suppose there exists ε > 0 such that F( f ) = ĝ is
uniquely solvable for all ĝ ∈ R(F) ∩ Bε(g), where Bε(g) denotes the ball of radius
ε around g.

If there exists a sequence ( fn)n∈N ⊂ D(F) with

fn ⇀ f †, while fn �→ f †, (35)

then F−1 (defined on R(F) ∩ Bε(g)) is not continuous in g.

Note that assumption (35) can roughly be interpreted as infinite dimensionality of
D(F) around f †: If Bε( f †) ⊂ D(F), one can take fn = f † + ε · en , where en form
a basis of X (recall that X is assumed to be separable). Then, since en ⇀ 0, one has
fn ⇀ f † but ‖ fn − f †‖X = ε.
We conclude this section by mentioning two standard approaches for solving

nonlinear inverse problems: Tikhonov regularization and iterative methods.
In the nonlinear setting, Tikhonov regularization amounts to solving the following

optimization problem:

arg min
f ∈D(F)

‖F( f ) − gδ‖2Y + α‖ f − f ∗‖2X , (36)

where, as before, gδ ∈ Y denotes the noisy data and α the regularization parameter.
As already noted, (36) has a solution but it is not necessarily unique due to the
nonlinearity of F . Thus, one just searches for a solution of (36), which we will
denote by f δ

α . In general, this optimization problem is non-convex and it is possible
to get stuck in local minima. The following is a result on Tikhonov regularization
for appropriately chosen regularization parameter α.
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Theorem 52 Let g ∈ R(F) and gδ ∈ Y with ‖gδ − g‖Y ≤ δ for δ > 0. Let α(δ) be
chosen such that

α(δ) → 0, as δ → 0,

δ2

α(δ)
→ 0, as δ → 0.

Furthermore, suppose that (δn)n∈N and (αn)n∈N are sequences such that δn → 0 as
n → ∞ and αn := α(δn). Then, the sequence ( f δn

αn
)n∈N of solutions f δn

αn
to (36) for

δ = δn and α = αn has a convergent subsequence. The limit of every convergent
subsequence is an f ∗-minimum-norm solution. If the f ∗-minimum-norm solution
f † is unique, then

lim
δ→0

f δ
α(δ) = f †.

We remark that for nonlinear problems, using Morozov’s discrepancy principle
straightforwardly for Tikhonov regularization is a bit problematic because in general,

‖F( f δ
α ) − gδ‖Y = δ

is only solvable under restrictive assumptions, and even if it is, this requires solving
an additional nonlinear problem simultaneously. On the other hand, the discrepancy
principle can be easily implemented for iterative methods. One can take a conven-
tional iterative solver and often restore regularization by early stopping, where the
stopping index k∗ has to depend on the noise level δ. This is also true (and used)
for linear problems. A stopping criterion in accordance to the discrepancy principle
takes the form: stop the iteration at k∗, where

‖gδ − F( f δ
k∗)‖Y ≤ τδ < ‖gδ − F( f δ

k )‖Y , k < k∗,

for some τ > 1.

6 Phase Retrieval

In this section, we discuss a nonlinear inversion problem that does not very much
fit into the theory outlined in the previous section and therefore also highlights the
delicacy of studying nonlinear problems. The general setup is as follows.

Let X be a separable Hilbert space and (ϕλ)λ∈� ⊂ X some measurement system
with index set � ⊆ C. Typically, the requirement on (ϕλ)λ∈� is that any f ∈ X can
be stably and uniquely recovered from (〈 f, ϕλ〉X )λ∈�. For� a discrete index set, this
can be conveniently summarized as (ϕλ)λ∈� being a discrete frame, meaning that
there exist uniform constants A, B > 0 such that
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A‖ f ‖2X ≤
∑

λ∈�

|〈 f, ϕλ〉X |2 ≤ B‖ f ‖2X , ∀ f ∈ X.

The question of phase retrieval can then be formulated as follows:When is it possible
to uniquely (and stably) recover a function f ∈ X from magnitude measurements

(|〈 f, ϕλ〉X |)λ∈�?

Note that uniqueness of phase retrieval always has to be understood up to a global
constant phase factor, i.e., unique recovery of f amounts to finding τ f , for any
τ ∈ S1. Thus, the distance between two elements f1, f2 ∈ X is defined as

distX ( f1, f2) := inf
τ∈S1

‖ f1 − τ f2‖X .

A lot of work has been done on phase retrieval for general frames, see, e.g., [13, 14,
16], as well as for more structured measurement systems, cf. [2, 3, 11, 17–20, 23,
24, 27, 33, 36, 40, 41, 43, 46] for example. However, many questions on uniqueness
and stability of phase retrieval remain open. In what follows, we want to highlight
a specific phase retrieval problem with a structured measurement system, showing
that even if one can (partially) answer the question of uniqueness, the problem is in
some sense highly unstable and difficult to regularize.

Gabor Phase Retrieval

Let X = L2(R) and let the inner product on L2(R) (or L2(R2)) simply be denoted by
〈·, ·〉. We consider Gabor frames, i.e., frames that are built from a window function
that we will choose to be the Gaussian

ϕ(t) := e−π t2

and its time-frequency shifts: for each λ = x + iy ∈ C, which we also identify with
the vector (x, y) ∈ R

2, we define

ϕλ(t) = ϕ(x,y)(t) := My Txϕ(t),

where Tx denotes the translation (or time shift) by x ∈ R:

Tx f (t) := f (t − x),

and modulation (or frequency shift) by y ∈ R is denoted as

My f (t) := e2π iy·t f (t).

While there is a rich theory on Gabor frames in which stable and unique recovery
of a signal f is guaranteed from measurements (〈 f, ϕλ〉)λ∈�, � a discrete subset of
C, see, e.g., [22], we consider the best case scenario here: we assume that � = C,
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i.e., the measurements are highly redundant and the measurements are given by the
continuous transform

Vϕ f (x, y) :=
∫

R

f (t)ϕ(t − x)e−2π i t ·ydt = 〈 f, ϕ(x,y)〉, ∀ x, y ∈ R,

known as the Gabor transform of f . In phase retrieval, the task is to reconstruct f
from

(∣

∣Vϕ(x, y) f
∣

∣

)

(x,y)∈R2 .

More precisely, define the forward operator

Aϕ : L2(R)/S1 → L2(R2, R
+
0 ),

f �→ ∣

∣Vϕ f
∣

∣ ,

then phase retrieval amounts to the inversion of Aϕ .

Injectivity of Gabor Phase Retrieval

The question of uniqueness can be rather easily settled with the following funda-
mental formula:

F
(

∣

∣Vg f
∣

∣

2
)

(x, y) = V f f (−y, x) · Vgg(−y, x), (37)

where F denotes the two-dimensional Fourier transform on L2(R2). Formula (37)
holds, for example, when g is a Schwartz function and f is a tempered distribution
[25]. Note that for g = ϕ, Vϕϕ is (up to some modulation factor) simply a two-
dimensional Gaussian and therefore has no zeroes on all of C. Thus, (37) implies
that given

∣

∣Vϕ f
∣

∣, one can recover V f f uniquely. More precisely, suppose that

F
(

∣

∣Vϕ f1
∣

∣

2
)

(x, y) = V f1 f1(−y, x) · Vϕϕ(−y, x),

F
(

∣

∣Vϕ f2
∣

∣

2
)

(x, y) = V f2 f2(−y, x) · Vϕϕ(−y, x),

and
∣

∣Vϕ f1
∣

∣ = ∣

∣Vϕ f2
∣

∣ .

Then, (37) implies
(

V f1 f1 − V f2 f2
) · Vϕϕ = 0,

and hence V f1 f1 = V f2 f2. One can further show (by taking one-dimensional Fourier
transforms) that

V f1 f1 = V f2 f2 ⇒ f1 = τ f2, for some τ ∈ S1,
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Fig. 10 The functions f +
a (blue) and f −

a (orange) for a = 5

which guarantees uniqueness of phase retrieval from measurements
∣

∣Vϕ f
∣

∣

(x,y)∈R2 ,
cf. [25]. Note, however, that for practical purposes formula (37) is not very useful as
the exponential decay in Vϕϕ leads to serious instabilities in the reconstruction.

Stability of Gabor Phase Retrieval

In the strict regularization-theoretic sense, phase retrieval is not an ill-posed problem
because of a result in [7], which states that

Aϕ injective ⇒ A−1
ϕ continuous on R(Aϕ) and R(Aϕ) closed.

However, in practice, instabilities do occur. As shown in [7], the operator A−1
ϕ is

never uniformly continuous when X is infinite dimensional. More precisely, there is
no uniform constant c1 > 0 for which

c1 distX ( f1, f2) ≤ ‖Aϕ( f1) − Aϕ( f2)‖L2(R2), ∀ f1, f2 ∈ X.

For Gabor phase retrieval, this lack of stability has been quantified to some extent
in [8]. A rather simple example captures the inherent nature of instability. For this,
let ( f +

a , f −
a ) be a parameter-dependent pair of functions defined as

f +
a := Taϕ + T−aϕ, (38)

f −
a := Taϕ − T−aϕ, (39)

see Fig. 10 for a plot of ( f +
5 , f −

5 ). As one would expect, the Gabor transforms of
such functions are almost the sum of two Gaussian bumps in the complex plane (see
Fig. 11). For not too small a, the difference in magnitude of these Gabor transforms
Vϕ f +

a and Vϕ f −
a is very small (see Fig. 12).

This causes the typical instability: while the measurements are very close, this
is not true for f +

a and f −
a . More precisely, for this pair of parameter-dependent

functions one can show (see [8]):
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Fig. 11 Magnitudes of the Gabor transforms of f +
2 in (a) and of f −

2 in (b)

Fig. 12
∣

∣

∣

∣Vϕ f +
a

∣

∣ − ∣

∣Vϕ f −
a

∣

∣

∣

∣

for a = 2

Theorem 53 Let the functions f +
a and f −

a be defined as in (38) and (39). Then there
exists a uniform constant C > 0 such that for all a > 0 and for all k ∈ (0, π/2):

distL2(R)( f +
a , f −

a ) ≥ Cek a2 ∥

∥

∣

∣Vϕ f +
a

∣

∣ − ∣

∣Vϕ f −
a

∣

∣

∥

∥

W 1,2(R2)
. (40)

So already in this explicit example, one has an exponential degradation of stability
in the phase retrieval problem, which makes it “severely ill-posed”, though not in
the classical sense.

Regularization for Gabor Phase Retrieval

We conclude this section by remarking that the above example also reveals that
classical regularization will be ineffective in restoring stability of the phase retrieval
problem. In essence, one would aim at finding a suitable penalty ~ f ~ such that the
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problem is regularized by minimizing

‖Aϕ( f ) − g‖2L2(R2) + α ~ f ~ ,

where g denotes the measured data and α a suitably chosen regularization parameter.
However, one can verify (see [8] for details) that all classical penalties, such as L2,
Besov space, modulation space norm, etc., do not resolve the occurring instability
as they result in

�
� f +

a

�
� ∼ �

� f −
a

�
�

for the above example.
The construction of f +

a and f −
a , however, also reveals the source of instability: for

these functions, the gap between the two Gaussian bumps centered at ±a, cannot be
bridged by the Gabor transformmagnitude data in a stable way. The Gabor transform
is to some extent well concentrated in both time and frequency and thus the mea-
surements are disconnected, which is emphasized more strongly for larger a. This is
also reflected in the bound (40) which degrades exponentially in a2. More generally,
whenever the Gabor transform of a signal is mainly concentrated on more than one
region and the measurements are small outside of these regions, then phase retrieval
will be unstable. We could have, for example, created similar instances to f +

a and
f −
a of functions that present a gap in frequency instead of time. One could also think

of functions that neither have a gap in frequency nor in time, but a time-frequency
gap in their respective Gabor transforms. This observation has led to proposing a
novel notion of solution such that stability is restored. In [4], it has been suggested
to give up on global phase reconstruction when the Gabor transform is concentrated
on more than one atoll and is small outside of these regions: then, one would only
aim at global phase reconstruction on each individual atoll since this is the best one
can do stably for Gabor phase retrieval. Figure13 illustrates the concept. This atoll
function reconstruction indeed results in a stability estimate [4]. However, it relies
heavily onϕ being aGaussian: in this case, Vϕ f is related to theBargmann transform,
which is a holomorphic function on C. One can then argue via Cauchy–Riemann
equations to obtain stability in regions where the measurements are not small. This
has been further formalized in [25], with the concept of the Cheeger constant of the
measurements describing their connectedness.

We remark that the use of such a “semi-global” phase reconstruction is justified
in audio processing applications. There, constant phase factors on almost isolated
regions do not audibly change the signal. See Fig. 14 for an example.

7 Instabilities in Image Classification

In the previous sections,we have taken the route of discussing linear inverse problems
and the analysis and regularization that can be done for such problems, highlighting
limited data reconstruction as an example. For nonlinear problems, the analysis is
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Fig. 13 The Gabor
transform of f being
concentrated on three regions
(highlighted in color).
Outside of these regions,
Vϕ f is very small. We aim at
reconstructing Vϕ f up to
global phase on each of the
three atolls individually.
Inside each atoll, one can
allow for small lagoons
(highlighted in white) on
which the measurements are
small. The number and size
of these lagoons both enter
the stability estimate

Fig. 14 Gabor transform
magnitude of an audio signal
containing sounds of a bird
and a bison. The region
highlighted in light-blue is an
example of an atoll: taking
the original audio signal, and
an audio signal for which the
highlighted region has an
additional constant phase
factor, audibly results in the
same signal

already more cumbersome and less straightforward and we showed phase retrieval
as an example that does not fit the classical regularization theory but still exhibits
instabilities. To conclude this discussion, we provide one more instance of a problem
that suffers from instabilities but for which no rigorous theory has been developed
so far. Thus, there is no meaningful analysis that can be provided to date but one can
still point out the lack of robustness with explicit constructions.

The problem we have in mind is, in a broad sense, using deep neural networks
(DNNs) as function approximations. In what follows, we will discuss the problem of
object classification in images, but instabilities have, for example, also been reported
in using DNNs for medical imaging applications [12].
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In its simplest form, image classification aims at recognizing a single object in
a given image. Typically, there is a set of labels to choose from and the task is to
assign to each image the correct label. A function that maps images to labels is called
a classifier. Suppose that the inputs are all RGB images of fixed square size, with
P = w2 pixels, so that they can be described as vectors in X := R

3P . Let L ≥ 2 be
the number of labels or categories. Then, a classifier is a map

K : X → {1, . . . , L}.

Typically, one chooses K to pick the most likely label from a feature vector, i.e.,

K(x) := arg max
k=1,...,L

Fk(x)

for some mapping F : X → R
L . State-of-the-art results are currently achieved by

taking F to be a deep neural network. A simplified description of a neural network
is the following.

Definition 54 A feedforward neural network of depth D is a mapping

F = F D ◦ F D−1 ◦ . . . ◦ F1,

where
Fd : R

nd−1 → R
nd , x �→ ρ(W d x + bd),

for some W d ∈ R
nd×nd−1 , bd ∈ R

nd and a nonlinear activation function ρ : R → R

applied element-wise to W d x + bd .

In practice, state-of-the-art networks are more sophisticated than in the above
definition, but it still gives a good description of their structure: in essence, they are
a repeated concatenation of affine transforms and element-wise nonlinearities.

The weight matrices W d as well as the bias vectors bd are free parameters learned
during training: in supervised learning a training set of size m, i.e., a set of pairs of
images and their correct labels (x j , l j ) ∈ X × {1, . . . , L}, j ∈ {1, . . . , m}, is given.
One then aims at finding F : X → R

L such that it captures the dataset distribution
well enough. This is usually done by empirical risk minimization, where the objective
is to minimize

R (

F, (x j , l j )
m
j=1

) := 1

m

m
∑

j=1

J
(

F, x j , l j
)

,

for some loss function J . In classification, the “default” is the cross-entropy loss
function defined as

JC E
(

F, x j , l j
) := − log(Fl j (x j )),

where we assume that F outputs a vector of probabilities. Otherwise, an intermediate
step called softmax layer needs to be introduced to output probabilities from F .
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While the results obtained with supervised learning and deep neural network
architectures are really astonishing for large training sets, it has also been pointed
out over the last decade that DNNs are vulnerable to so-called adversarial examples.

In their seminal work [45], Szegedy et al. demonstrate that DNNs can be rather
easily “fooled” by creating small perturbations such that the perturbed image looks
(almost) the same upon visual inspection, but the network will no longer be able
to correctly classify the object in the image. Since then, adversarial examples have
evolved to an entire field of research in machine learning, with a number of contri-
butions that have exploded by now, making it impossible to give a fair account of the
existing literature.

To illustrate the phenomenon of adversarial examples, however, we do give an
example of an algorithm that searches for small perturbations such that the perturbed
image is incorrectly classified. The DeepFool algorithm introduced in [38] can be
summarized as follows.

Let K = arg maxk=1,...,L F be a trained classifier and let x ∈ X be an image
with correct label l = K(x). The DeepFool algorithm searches for y = x + r with
K(y) �= l as follows:

• Choose a target label k �= l.
• Set f := Fk − Fl , where the goal is to achieve f (y) > 0.
• Using f (x + r) ≈ f (x) + ∇ f (x) · r , define the perturbation

r := − f (x)

‖∇ f (x)‖2
�2

∇ f (x)

and set x̂ = x + r .
• If K(x̂) = k, then we are successful. Otherwise, start at the top with x replaced
by x̂ .

The target label k may be selected at each iteration to minimize ‖r‖, for some chosen
norm ‖ · ‖.

In Fig. 15, we give an example of a correctly classified image and a slightly
perturbed image, which is classified incorrectly.

We note that adversarial examples can be very effectively constructed: for state-
of-the-art networks such as Inception-v3 or ResNet-101, a very high percentage of
correctly classified images indeed has an adversarial example in its vicinity. It is
therefore very crucial to address this problem of instability. Many defenses against
adversarial attacks have been suggested but they mainly follow, in one way or the
other, the theme of adversarial training: adversarial examples are incorporated in
the training procedure so that the network learns these instances. While this is a quite
effective method, it also has its issues. Typically, networks are adversarially trained
with respect to small perturbations. However, as demonstrated in, e.g., [1], small
additive perturbations are not the only type of possible attack in image classification.
For example, if an image is slightly deformed, the classification output should not be
changed either.However, creatingadversarial deformations is rather straightforward.
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Fig. 15 Left: The object is correctly classified as a ptarmigan. Right: A small perturbation is added,
of size ‖r‖�∞ = 0.027. The object is now incorrectly classified as a partridge. This example has
been produced using the DeepFool algorithm on the ImageNet dataset with the Inception-v3 model

The ADef algorithm proposed in [1] can be described as follows: First of all, to
facilitate the discussion on deformations, we model images as continuous objects,
i.e., as elements of the space

L2([0, 1]2, R
3) =

{

ξ : [0, 1]2 → R
3 :

∫

[0,1]2
|ξ(u)|2 du < +∞

}

.

Given a vector field τ : [0, 1]2 → R
2, we define the image after deformation by τ as

ξτ (u) := ξ(u + τ(u)), ∀ u ∈ [0, 1]2,

where ξ is extended by zero outside of [0, 1]2. In this context, the distance between
ξ and ξτ is not well quantified by a norm of ξ − ξτ . Instead, we measure it with a
norm on τ which we define to be

‖τ‖T := ‖τ‖L∞([0,1]2) = sup
u∈[0,1]2

‖τ(u)‖�2(R2).

Suppose that a discrete image x ∈ X is a discretization of ξ on a regular grid
{ 1

w+1 , . . . ,
w

w+1 }2. In return, one can build such a function ξ from x by interpola-
tion. This way, one can make sense of a deformed image xτ by defining it to be

xτ (s, t) = ξ

(

(s, t) + τ(s, t)

w + 1

)

, ∀ (s, t) ∈
{

1

w + 1
, . . . ,

w

w + 1

}2

.

To construct adversarial deformations for a classifierK = arg max F and a correctly
classified image x ∈ X with label l = K(x), we aim at finding a small vector field
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Fig. 16 An image correctly classified as a redfox in (a) and a deformed version in (b) incorrectly
classified as a shopping cart. The deformation is depicted in (c) and has size ‖τ‖T = 1.178. This
example has been created using the ADef algorithm on the ImageNet dataset with the Inception-v3
model

τ such that l �= K(xτ ). In the spirit of the DeepFool algorithm, one can again take
gradient descent steps to achieve this:

• Choose a target label k �= l and set f := Fk − Fl .

• Define the mapping g : τ �→ f (xτ ) and search for τ such that g(τ ) > 0 .
• By linear approximation

g(τ ) ≈ g(0) + (D0g)τ,

with (Fréchet) derivative

(D0g)τ =
w

∑

s,t=1

A(s, t) · τ(s, t), with A(s, t) := 1

w + 1

(∇ f (x))(s, t)∇ξ

(

(s, t)

w + 1

)

.

• (D0g)τ = −g(0) does not have a unique solution. We can solve it in the least-
squares sense:

τ(s, t) = − g(0)
∑w

s,t=1 |A(s, t)|2 A(s, t).

• Set x̂(s, t) = x((s, t) + τ(s, t)). If K(x̂) = k, the iteration has been successful.
Otherwise repeat with x replaced by x̂ .

Figure16 shows an example of a correctly classified image and its adversarially
deformed counterpart.

First experiments suggest that networks trained against small perturbations using
the celebrated projected gradient descent (PGD) algorithm [35] are less vulnerable
to adversarial deformations than standard networks that have not been adversarially



Ill-Posed Problems: From Linear to Nonlinear and Beyond 147

trained. However, the rate of incorrectly classified images when attacked with adver-
sarial deformations is still considerably high, thus suggesting that these adversarially
trained networks are far from being robust.

Creating DNNs that are truly robust with respect to all types of invariances that
we expect (such as rotations, translations, small perturbations, small deformations,
etc.) is important, but still an open problem.
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Proximal Gradient Methods for Machine
Learning and Imaging

Saverio Salzo and Silvia Villa

1 Introduction

Convex optimization plays a key role in data science and image processing. Indeed,
from one hand it provides theoretical frameworks, such as duality theory and the
theory of nonexpansive operators, which are indispensable to formally analyze many
problems arising in those fields. On the other hand, convex optimization supplies a
plethora of algorithmic solutions covering a broad range of applications. In particular,
the last decades witnessed an unprecedented development of optimization methods
which are now capable of addressing structured and large-scale problems effectively.
An important class of suchmethods,which are at the core ofmodern nonlinear convex
optimization, is that of proximal gradient splitting algorithms. They are first-order
methods which are tailored to optimization problems having a composite structure
given by the sum of smooth and nonsmooth terms. These methods are splitting
algorithms, in the sense that along the iterations they process each term separately by
exploiting gradient information when available and the so-called proximity operator
for nonsmooth terms.

Even though there is a rich literature on proximal gradient algorithms, in this
contribution, we paid particular attention to presenting a self-contained and unifying
analysis for the various algorithms, unveiling common theoretical basis. We give
state-of-the-art results treating both convergence of the iterates and of objective
functions values in infinite-dimensional setting. This work is based on the lecture
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notes written for the PhD course “Introduction to Convex Optimization” that was
given by the authors at the University of Genoa during the last 5 years.

This chapter is divided into six sections. Section2 provides an account on convex
analysis, recalling the fundamental concepts of subdifferentials, Legendre–Fenchel
transform, and duality theory. In Sect. 3, we study the proximal gradient algorithm
under different assumptions, addressing also acceleration techniques. Section4 is
about stochastic optimization methods. We study the projected stochastic subgradi-
ent method, the proximal stochastic gradient algorithm and the randomized block-
coordinate proximal gradient algorithm. Section5 exploits duality to derive new
algorithms. Finally, in Sect. 6, we describe several important applications in which
proximal gradient algorithms has been successfully used.

2 Preliminaries on Convex Analysis

2.1 Basic Notations

We set R+ = {α ∈ R |α ≥ 0} and R++ = {α ∈ R |α > 0}. Throughout the chapter,
X is a real Hilbert space and its associated scalar product and norm is denoted by

〈·, ·〉 : X × X → R and ‖·‖ : X → R.

An affine set of X is a set M ⊂ X such that every straight line joining two distinct
points of M is contained in M . In formula this means that, for every x, y ∈ M ,
and every λ ∈ R, we have (1− λ)x + λy ∈ M . If M is affine then V := M − M
is a vector subspace of X , which is called the direction of M . Moreover, we have
M = V + x , for every x ∈ M . The intersection of a family of affine sets of X is still
affine, so ifC ⊂ X one can define the affine hull ofC , denoted by aff(C), which is the
intersection of all the affine sets of X containing C . It can be represented as the set of
the finite affine combinations of elements of C , meaning that x ∈ aff(C) if and only
if there exists finite number of points x1, . . . , xn ∈ C and numbers λ1, . . . , λn ∈ R

(n ≥ 1) such that
∑n

i=1 λi = 1 and x =∑n
i=1 λi xi . The affine dimension of a setC is

the dimension of the affine hull of C . A mapping T : X → Y between Hilbert spaces
is said to be affine if T ((1− λ)x + λy) = (1− λ)T x + λT y, for every x, y ∈ X
and λ ∈ R. An affine mapping T can be uniquely represented as T x = Ax + b with
A : X → Y be a linear operator and b ∈ Y . The image and the counter image of
affine sets through affine mappings are affine sets. An (affine) hyperplane of X is a
set of the form {x ∈ X |ϕ(x) = α}, where ϕ : X → R is a nonzero linear form on X
and α ∈ R.

For every x ∈ X and every δ > 0 we denote by Bδ(x) the (closed) ball of center
x and radius δ, that is Bδ(x) = {y ∈ X | ‖y − x‖ ≤ δ}. Given a subset C ⊂ X , we
denote by int(C), cl(C), and bdry(C) its interior, closure and boundary, respectively.
An hyperplane H = {x ∈ X |ϕ(x) = α} is closed if and only if ϕ is a continuous
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linear form on X so that it can be represented as H = {x ∈ X | 〈x, u〉 = α} with
u ∈ X \ {0}. A sequence (xk)k∈N in X converges to x ∈ X , and we write xk → x , if
‖xk − x‖ → 0, whereas it weakly converges to x , and we write xk ⇀ x , if for every
u ∈ X , 〈xk − x, u〉 → 0. A subset C ⊂ X is weakly sequentially closed if the weak
limit of every weakly convergent sequence in C belongs to C .

Classically, in optimization, functions and constraints are treated separately. By
introducing extended real-valued functions, they can be treated in a unifiedway. Here
with extended real-valued functions, we mean functions

f : X → ]−∞,+∞] ,

so that the value−∞will never be allowed. In the rest of the chapter, if not otherwise
specified, functions are supposed to be extended real-valued. The (effective) domain
of f is the set dom f = {x ∈ X | f (x) < +∞} and the epigraph of f is the set

epi( f ) = {(x, t) ∈ X × R | f (x) ≤ t}. (1)

Note that epi( f ) is a subset of X × R. We also define the sublevel sets of f as

[ f ≤ t] = {
x ∈ X | f (x) ≤ t

}
, t ∈ R, (2)

and similarly, we define the sets [ f > t]. An extended real-valued function is called
proper if dom f �= ∅, meaning that the function admits at least a finite value. The
set of minimizers of f is denoted by argmin f .

In optimization problems, extended real-valued functions allow to treat constraints
as functions. Indeed let C ⊂ X and define the indicator function of C as

ιC : X → ]−∞,+∞] : x �→
{
0 if x ∈ C

+∞ if x /∈ C.
(3)

Then the constrained minimization problem

min
x∈C

h(x), h : X → R

can be equivalently written as

min
x∈X

f (x), f : X → ]−∞,+∞] , f (x) = h(x)+ ιC(x).

Note that indicator functions and epigraphs allow to establish a one to one corre-
spondence between extended real-valued functions and sets.
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2.2 Convex Sets and Functions

A subset C ⊂ X is said to be convex if

(∀ x, y ∈ C)(∀ λ ∈ [0, 1]) (1− λ)x + λy ∈ C, (4)

meaning that for every x, y ∈ C , the segment [x, y] = {
x + λ(y − x) | λ ∈ [0, 1]},

joining x and y, is contained in C . A cone of X is a subset C ⊂ X such that

(∀ x ∈ C)(∀ λ ∈ R++) λx ∈ C, (5)

meaning that, for every x ∈ C the ray R++x = {λx | λ ∈ R++} is contained in C .
The intersection of a family of convex sets of X is still convex, so if A ⊂ X , then
one defines the convex hull of A, denoted by co(A), as the intersection of the family
of all convex subsets of X containing A. In fact it is the smallest convex subset of X
containing A and it can be represented as the set of the finite convex combinations of
elements of A, meaning that x ∈ aff(A) if and only if there exists finite number of
points x1, . . . , xn ∈ A and numbers λ1, . . . , λn ∈ R+ (n ≥ 1) such that

∑n
i=1 λi = 1

and x =∑n
i=1 λi xi .

LetC be a nonempty closed convex subset of X and let x ∈ X . Then theorthogonal
projection of x ontoC is defined as the unique point p ∈ C such that, for every y ∈ C ,
‖p − x‖ ≤ ‖y − x‖ and is denoted by PC (x). It is also characterized by the following
variational inequality

(∀ y ∈ C) 〈y − p, x − p〉 ≤ 0.

If C is an affine set with direction V , then the above characterization becomes the
classical x − p ∈ V⊥. We recall that for convex sets the property of being closed
is equivalent to that of being weakly sequentially closed. We finally recall that the
projection operator PC : X → X is firmly nonexpansive, that is, it satisfies

(∀ x ∈ X)(∀ y ∈ X) ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x − y〉 . (6)

An extended real-valued function f : X → ]−∞,+∞ ] is convex if

(∀ x, y ∈ X)(∀ λ ∈ [0, 1]) f ((1− λ)x + λy) ≤ (1− λ) f (x)+ λ f (y) (7)

and is strictly convex if in (7) the strict inequality holds when x, y ∈ dom f , x �= y
and λ ∈ ] 0, 1 [ . Finally, g : X → [ −∞,+∞ [ is concave (risp. strictly concave)
if −g is convex (risp. strictly convex). If f is convex, by induction, definition (7)
yields Jensen’s inequality, that is, for every finite sequence (xi )1≤i≤m in X and every
(λi )1≤i≤m ∈ R

m+ such that
∑m

i=1 λi = 1, we have
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f

( m∑

i=1
λi xi

)

≤
m∑

i=1
λi f (xi ). (8)

The property of convexity for a function f : X → ]−∞,+∞] is equivalent to the
fact that its epigraph epi( f ) is a convex set in X × R. The function f is strongly
convex if there exists μ > 0 such that, for every x, y ∈ X and every λ ∈ [0, 1],

f
(
(1− λ)x + λy

) ≤ (1− λ) f (x)+ λ f (y)− μ

2
(1− λ)λ‖x − y‖2. (9)

In such case,μ is called themodulus of strong convexity of f and the function f is also
said to be μ-strongly convex. It is easy to see that a function f : X → ]−∞,+∞]
is μ-strongly convex if and only if f − (μ/2)‖·‖2 is convex. Moreover, strongly
convex functions admitting a minimizer, say x∗, satisfies the following quadratic
growth condition

(∀ x ∈ X) f (x)− f (x∗) ≥ μ

2
‖x − x∗‖2. (10)

The function f : X → ]−∞,+∞] is lower semicontinuous if for every
sequence (xk)k∈N in X and every x ∈ X , xk → x ⇒ f (x) ≤ lim infk f (xk). This
property is equivalent to the closeness of epi( f ) in X × R. We denote by �0(X)

the class of functions f : X → ]−∞,+∞ ] which are proper convex and lower
semicontinuous. Such functions are continuous on the interior of their domain.When
existence of minimizers is in order, the following definition is needed. The proper
function f : X → ]−∞,+∞] is said coercive if

lim‖x‖→+∞ f (x) = +∞,

which is equivalent to say that, for every α ∈ R, [ f ≤ α] is bounded. A proper,
convex lower semicontinuous and coercive function admits a global minimizer and
if the function is strictly convex the minimizer is unique.

2.3 Differentiability and Convexity

We recall the definition of differentiable functions. Let f : X → ]−∞,+∞] be a
proper extended real-valued function and let x0 ∈ int(dom f ). Then f is Gâteaux
differentiable at x0 if there exists a vector ∇ f (x0) ∈ X such that

(∀ v ∈ X) lim
t→0

f (x0 + tv)− f (x0)

t
= 〈v,∇ f (x0)〉 . (11)

In such case ∇ f (x0) is called the gradient of f at x0 and f admits directional
derivatives at x0 in every direction v and the directional derivatives depend linearly
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and continuously on v. When f is Gâteaux differentiable at every point of a subset
A ⊂ int(dom f ) we say that f is Gâteaux differentiable on A.

When dom f is open and f is differentiable on dom f , convexity is characterized
by themonotonicity of the gradient operator, i.e., that 〈x − y,∇ f (x)− ∇ f (y)〉 ≥ 0,
for every x, y ∈ X . Similarly, the strong convexity of f is equivalent to the strong
monotonicity of the gradient operator, that is,

(∀ x ∈ dom f )(∀ y ∈ dom f ) 〈x − y,∇ f (x)− ∇ f (y)〉 ≥ μ‖x − y‖2. (12)

A function f : X → R is Lipschitz smooth if it is Gâteaux differentiable on X and
its gradient is Lipschitz continuous. The following result provides several character-
izations of Lipschitz smoothness that will be useful in analyzing proximal gradient
methods. The implication (i)⇒ (ii) is called the descent lemma, whereas the impli-
cation (i)⇒ (iv) is called the Baillon–Haddad theorem.

Fact 1 Let f : X → R be a convex differentiable function and let L ∈ R+. The
following statements are equivalent.

(i) (∀ x ∈ X)(∀ y ∈ X) ‖∇ f (x)−∇ f (y)‖ ≤ L‖x − y‖.
(ii) (∀ x ∈ X)(∀ y ∈ X) f (y)− f (x)− 〈y − x,∇ f (x)〉 ≤ L

2 ‖x − y‖2.
(iii) (∀ x ∈ X)(∀ y ∈ X) 1

2 L ‖∇ f (x)− ∇ f (y)‖2
≤ f (y)− f (x)− 〈y − x,∇ f (x)〉

(iv) (∀ x ∈ X)(∀ y ∈ X) 1
L ‖∇ f (x)−∇ f (y)‖2 ≤ 〈x − y,∇ f (x)−∇ f (y)〉

(v) (∀ x ∈ X)(∀ y ∈ X) 〈∇ f (x)− ∇ f (y), x − y〉 ≤ L‖x − y‖2.
(vi) L

2 ‖·‖2 − f is convex.
In case f is twice differentiable on X , the previous statements are equivalent to
(vii) (∀ x ∈ X)(∀ v ∈ X) 〈∇2 f (x)v, v〉 ≤ L‖v‖2.
(viii) (∀ x ∈ X) ‖∇2 f (x)‖ ≤ L .

Fact 2 Let f : X → R be a differentiable function. Then the following are equiva-
lent

(i) f is μ-strongly convex and ∇ f is Lipschitz continuous with constant L .
(ii) ∀ x, y ∈ X , 1

L+μ
‖∇ f (x)− ∇ f (y)‖2 + μL

L+μ
‖x − y‖2

≤ 〈x − y,∇ f (x)− ∇ f (y)〉.

2.4 Calculus for Nonsmooth Convex Functions

In this section, we recall the concept of subdifferentials and calculus for non-
smooth convex functions. Let f : X → ]−∞,+∞] be a proper convex func-
tion and x ∈ dom f . The directional derivative of f at x along the vector v is
f ′(x, v) = lim

t→0+
( f (x + tv)− f (x)) /t . The subdifferential of f at x is defined as
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∂ f (x) := {
u ∈ X

∣
∣ (∀ y ∈ X) f (y) ≥ f (x)+ 〈y − x, u〉 }. (13)

Each element of ∂ f (x) is called a subgradient of f at x . If x /∈ dom f , by definition,
∂ f (x) = ∅. Finally, the domain of ∂ f , denoted by dom∂ f , is defined as the set of
points atwhich the subdifferential is nonempty. It is easy to see that the subdifferential
∂ f is a monotone operator, that is, for every x, y ∈ X and u ∈ ∂ f (x), v ∈ ∂ f (y)

〈x − y, u − v〉 ≥ 0. If f is Gâteaux differentiable at x ∈ int(dom f ), then ∂ f (x) =
{∇ f (x)}. Let C ⊂ X be a nonempty convex set and let x ∈ C . The set ∂ιC(x) is
called the normal cone to C at x and it is denoted by NC(x), that is,

NC(x) = {
u ∈ X | (∀ y ∈ C) 〈y − x, u〉 ≤ 0

}
. (14)

We have the following important facts

Fact 3 (Fermat’s rule) Let f : X → ]−∞,+∞] be a proper convex function and
x ∈ dom f . Then the following are equivalent

(i) x is a minimizer of f ;
(ii) 0 ∈ ∂ f (x);
(iii) (∀ y ∈ X) f ′(x, y − x) ≥ 0;
(iv) (∀ y ∈ dom f ) f ′(x, y − x) ≥ 0,

Fact 4 Let f ∈ �0(X) be μ-strongly convex and x, u ∈ X . Then

u ∈ ∂ f (x) ⇐⇒ ∀ y ∈ X f (y) ≥ f (x)+ 〈y − x, u〉 + μ

2
‖x − y‖2.

Fact 5 (Moreau–Rockafellar) Let f ∈ �0(X), g ∈ �0(Y ), and A : X → Y be a
continuous linear operator and suppose that 0 ∈ int(domg − A(dom f )). Then,

(∀ x ∈ X) ∂( f + g ◦ A)(x) = ∂ f (x)+ A∗∂g(Ax). (15)

In particular, if g is Gâteaux differentiable at x ∈ int(domg), then ∂( f + g)(x) =
∂ f (x)+ {∇g(x)}.
Fact 6 Let (Xi )1≤i≤m be m Hilbert spaces and let X =⊕m

i=1 Xi be their direct
product, endowed with the scalar product 〈x, y〉 =∑m

i=1 〈xi , yi 〉. Let ( fi )1≤i≤m be a
family of proper convex functions, fi : Xi → ]−∞,+∞] and define

f : X → ]−∞,+∞] , f (x) = f1(x1)+ f2(x2)+ · · · ,+ fm(xm).

So the function f is separable. Then, for all x ∈ dom f =∏m
i=1 dom fi , we have

∂ f (x) = ∂ f1(x1)× ∂ f2(x2)× · · · × ∂ fm(xm).

Example 7 Let us consider the case of the 
1-norm onR
d , that is, ‖x‖1 =∑d

i=1|xi |.
Since ‖·‖1 is clearly separable with components |·|, it follows from Fact 6 that
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∂‖·‖1(x) = ∂|·|(x1)× · · · × ∂|·|(xd).

Fact 8 Let ( fi )i∈I be a finite family of continuous affine functions on X , say fi =
〈·, ui 〉 + αi , for some ui ∈ X and αi ∈ R. Let f = maxi∈I fi , let x ∈ X and set
I (x) = {i ∈ I | fi (x) = f (x)}. Then

∂ f (x) = co{ui | i ∈ I (x)}. (16)

2.5 The Legendre–Fenchel Transform

Let f : X → ]−∞,+∞] be proper. The function

f ∗ : X → ]−∞,+∞] , f ∗(u) = sup
x∈X
〈x, u〉 − f (x)

is called the Fenchel conjugate of f , which is always convex and lower semicon-
tinuous. The Fenchel–Moreau theorem ensures that if f ∈ �0(X) then f ∗ ∈ �0(X)

and f ∗∗ = f . Thus, the transformation ·∗ : �0(X) → �0(X) is an involution, which
is called the Legendre–Fenchel transform. Let C ⊂ X . The support function of C is
the function ι∗C , which is denoted by σC , that is, σC(u) = supx∈C 〈x, u〉.
Fact 9 (Properties of the conjugate operation) Let f : X → ]−∞,+∞] be a
proper function. Then the following hold.

(i) Let g : X → ]−∞,+∞] be a proper function. Then f ≤ g ⇒ f ∗ ≥ g∗.
(ii) Let γ > 0. Then, for every u ∈ X , (γ f )∗(u) = γ f ∗(u/γ ).
(iii) (The conjugate of a separable function is separable). Under the same assump-

tions of Fact 6, we have

∀ u = (u1, . . . , um) ∈ X f ∗(u) = f ∗1 (u1)+ f ∗2 (u2)+ · · · + f ∗m(um).

(iv) [ f (· − x0)]∗ = f ∗ + 〈x0, ·〉 and [ f + 〈·, u0〉]∗ = f ∗(· − u0), for x0, u0 ∈ X .
(v) Let x0 ∈ X . Then ι∗{x0} = 〈x0, ·〉.

Example 10 Let f : X → ]−∞,+∞] be proper function. Then the following
hold.

(i) If f = (1/2)‖·‖2, then f ∗ = (1/2)‖·‖2.
(ii) Let ϕ : R → ]−∞,+∞] be an even function. Then [ϕ ◦ ‖·‖]∗ = ϕ∗ ◦ ‖·‖.
(iii) Suppose that f is positively homogeneous. Then, f ∗ = ι∂ f (0). Recall that ∂ f (0)

is a closed convex cone.

Fact 11 Let f : X → ]−∞,+∞] be proper and convex and let x, u ∈ X . Then,
the following holds.

(i) 〈x, u〉 ≤ f (x)+ f ∗(u) (Young–Fenchel inequality).
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(ii) 〈x, u〉 = f (x)+ f ∗(u) ⇔ u ∈ ∂ f (x).
(iii) If f ∈ �0(X), then u ∈ ∂ f (x) ⇔ x ∈ ∂ f ∗(u).

Fact 12 Let f ∈ �0(X) be strongly convex. Then f is supercoercive, i.e.,
f (x)/‖x‖ → +∞ as ‖x‖ → +∞.

Fact 13 Let f ∈ �0(X) and μ > 0. Then, if f is μ-strongly convex, we have

(a) dom f ∗ = X , f ∗ is differentiable on X and ∇ f ∗ is (1/μ)-Lipschitz continuous.

Vice versa if (a) holds, then f is μ-strongly convex on the convex subsets of dom∂ f .

2.6 The Fenchel–Rockafellar Duality

Duality plays a key role in convex optimization. Here we recall the Fenchel–
Rockafellar duality. We let A : X → Y be a continuous linear operator between
Hilbert spaces, f ∈ �0(X) and g ∈ �0(Y ). Consider the problem

min
x∈X

f (x)+ g(Ax) =: 
(x). (P)

Its dual problem (in the sense of Fenchel–Rockafellar) is

min
u∈Y

f ∗(−A∗u)+ g∗(u) =: �(u). (D)

One can prove that

(∀ x ∈ X)(∀u ∈ Y ) 
(x) ≥ −�(u), (17)

hence
inf
x∈X


(x) ≥ sup
u∈Y
−�(u) = − inf

u∈Y
�(u). (18)

This means that the function 
 is (uniformly) above the function −� (which is
concave). The difference between the infimum of 
 and the supremum of −�, that
is inf 
+ inf �, is called the duality gap and we say that strong duality holds if the
duality gap is zero.1

Let S = argmin
 and S∗ = argmin�. Then the following are equivalent.

(i) x̂ ∈ S, û ∈ S∗, and inf X 
+ infY � = 0 (duality gap is zero);
(ii) x̂ ∈ ∂ f ∗(−A∗û) and Ax̂ ∈ ∂g∗(û)

(iii) −A∗û ∈ ∂ f (x̂) and û ∈ ∂g(Ax̂).

1 Note that if inf 
 = −∞, it follows from (18) that inf 
 = sup(−�) = − inf � = −∞. In this
case, � ≡ +∞ and inf 
+ inf � = −∞+∞ does not make sense. Anyway, since there is no
gap between 
 and −�, by convention, we set inf 
+ inf � = 0. The same situation occurs if
inf � = −∞.
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The conditions (ii) and (iii) above are calledKKT (Karush–Kuhn–Tucker) conditions.
Once one ensures that strong duality holds (that is, inf 
+ inf � = 0) they provide
fully characterizations for a couple (x̂, û) to be a primal and dual solution.

Fact 14 Suppose that one of the following conditions is satisfied.

(a) S �= ∅ and ∂( f + g ◦ A) = ∂ f + A∗∂g A
(b) 0 ∈ int(domg − A(dom f )).

Then 
 is proper and
inf

X

 = −min

Y
�, (19)

meaning that S∗ �= ∅ and inf X 
+ infY � = 0.

Example 15 (Equality constraints) We consider the problem

min
Ax=b

f (x), (20)

where f ∈ �0(X) and A : X → Y is a continuous linear operator with closed range
and b ∈ Y . We assume that a solution exists and that f is continuous at some x such
that Ax = b. This problem can be equivalently formulated as

min
x∈X

f (x)+ ι{b}(Ax), (21)

which is in the form (P). Then, in view of Fact 9(v), the dual problem of (20) is

min
u∈Y

f ∗(−A∗u)+ 〈b, u〉 .

Recalling Fact 14(a), to ensure the existence of dual solutions and a zero duality gap,
we need to find conditions ensuring the validity of the calculus rule (15). We first
prove that if x ∈ X is such that Ax = b, then

∂(ι{b} ◦ A)(x) = R(A∗) = A∗∂ι{b}(Ax). (22)

Indeed, we note that ι{b} ◦ A = ιA−1(b) and A−1(b) = x + N (A). Then,

u ∈ ∂(ι{b} ◦ A)(x) ⇐⇒ (∀y ∈ A−1(b)) 〈y − x, u〉 ≤ 0

⇐⇒ (∀v ∈ N (A)) 〈v, u〉 ≤ 0

⇐⇒ u ∈ N (A)⊥ = R(A∗).

Therefore, ∂(ι{b} ◦ A)(x) = R(A∗). Moreover, A∗∂ι{b}(Ax) = A∗∂ι{b}(b) and the
subdifferential of ι{b} is

∂ι{b} : Y → Y : y �→
{

Y if y = b

∅ if y �= b,
(23)
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hence A∗∂ι{b}(Ax) = R(A∗) and (22) holds. Finally, recalling the calculus rule
for subdifferentials in Fact 5 and that we assumed that f is continuous at some
x ∈ dom(ι{b} ◦ A), then, we have ∂( f + ι{b} ◦ A)(x) = ∂ f (x)+ ∂(ι{b} ◦ A)(x) =
∂ f (x)+ A∗∂ι{b}(Ax) and hence (15) holds. We note in passing that Fermat’s rule
for (21) is

0 ∈ ∂( f + ι{b} ◦ A)(x̂) ⇔ 0 ∈ ∂ f (x̂)+ A∗∂ι{b}(Ax̂)

⇔ 0 ∈ ∂ f (x̂)+ R(A∗)
⇔ ∃ û ∈ Y A∗û ∈ ∂ f (x̂).

In the differentiable case, this condition reduces to the classical Lagrange multiplier
rule, that is, x̂ is a solution of (20) if and only if there exists a multiplier û such that
A∗û = ∇ f (x̂).

2.7 Bibliographical Notes

Though convexity is a very old concept, the first systematic study of convex sets in
finite dimension is due toMinkowski [73]; while concerning convex functions, it was
Jensen [58] to introduce the concept now known as midpoint convexity. The lecture
notes by Fenchel [48] constitute the first modern exposition on convex analysis in the
finite-dimensional case. Indeed, the notions of support function, Legendre–Fenchel
conjugate as well as the duality theory presented in Sects. 2.5 and 2.6, for the special
case that A is the identity operator, were fully studied there. At the beginning of
the 1960s, convex analysis became a mathematical field in his own, thanks to the
works byMoreau [74–76] andRockafellar [99], who established the theory in infinite
dimension and developed the concepts of subgradients and subdifferential, among
others. Starting from those works, the field flourished, and it is nowadays still a very
active research area.

In the following, we list the main references. Concerning the finite-dimensional
setting, we refer to the fundamental monography [98] and the book [57]. For Hilbert
spaces, a comprehensive treatment is given in [11] (where most of the facts presented
can be found). A lot of research has been also devoted to the Banach spaces and
general topological vector spaces. For the former case, we refer to [10, 19, 88, 89],
and to [46, 99, 115] for the latter.

3 The Proximal Gradient Method

In this section, we focus on the main object of this chapter, which is the proximal
gradient algorithm (also called the forward–backward algorithm). In the following,
we describe the basic assumptions and the algorithm,whereas in the next sections, we
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study the convergence properties under several additional assumptions. Moreover,
we will also address techniques for accelerating the convergence.

Let f : X → R be a convex differentiable function, let g ∈ �0(X) and set F =
f + g. We aim at the following composite optimization problem:

minimize
x∈X

f (x)+ g(x) =: F(x). (24)

The algorithm is detailed below.

Algorithm 1 (The proximal gradient method) Let x0 ∈ X and γ > 0. Then,

for k = 0, 1, . . .⌊
xk+1 = proxγ g

(
xk − γ∇ f (xk)

)
.

(25)

In the above algorithm, proxγ g : X → X is the so-called proximity operator of
γ g which will be defined in the next section. Also, γ > 0 is the stepsize which has
to be determined according to the smoothness property of f . More precisely, we will
assume that the gradient ∇ f is L-Lipschitz continuous, for some L > 0, and that
the stepsize is set as

γ <
2

L
. (26)

Remark 16 We stress that some restriction on the stepsize γ should be required.
Indeed if we take g = 0 and f (x) = (L/2)‖x‖2, we have

xk+1 = (1− γ L)xk .

Thus, if we take γ = 2/L , we have xk+1 = −xk and the sequence does not converge,
unless x0 = 0.

Example 17 (Iterative Soft-Thresholding Algorithm (ISTA) [41]) We consider the
so called Lasso problem

minimize
x∈Rd

1

2
‖Ax − y‖2 + λ‖x‖1. (27)

Then, Algorithm 1 reduces to the following. Let γ ∈ ]0, 2/‖A∗A‖[ and x0 ∈ X , then

for k = 0, 1, . . .⌊
xk+1 = softγ λ(xk − γ A∗(Axk − y)).

(28)

In the above equation, softγ λ : R → R is the so-called soft-thresholding operator,
that is, the proximity operator of λ|·|, which is supposed to be applied component-
wise (see (43)).
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3.1 Nonexpansive and Averaged Operators

In this section, we present the convergence theory for the method of the fixed point
iteration. We recall the classical theory for contractive operators and then we address
the case of averaged operators which is motivated by the Krasnosel’skiı̆–Mann iter-
ation.

Let X be a real Hilbert space and let T : X → X . Then

(i) T is nonexpansive if for all x, y ∈ X, ‖T x − T y‖ ≤ ‖x − y‖
(ii) T is a contraction if for all x, y ∈ X, ‖T x − T y‖ ≤ q‖x − y‖, for some q ∈

]0, 1[.

A fixed point of T is a point x ∈ X such that T x = x and the set of such points
is denoted by Fix T . In order to compute fixed points of T , we will consider the
following fixed point iteration. Let x0 ∈ X and define, for every k ∈ N,

xk+1 = T xk . (29)

An iterative method of type (29) is also called Picard iteration or the method of
successive approximations.

Remark 18

(i) Nonexpansive operators may have no fixed points. For instance, a translation
T = Id + a, with a �= 0, does not have any fixed point.

(ii) For nonexpansive operators, even admitting fixed points, the fixed point iter-
ation may fail to converge. Indeed, this occurs if we take T = −Id and start
with x0 �= 0. More generally, rotations are nonexpansive operators admitting
a fixed point, for which the fixed point iteration does not converge.

The first important result concerning existence of fixed points and the convergence
of the fixed point iteration is the following.

Theorem 19 (Banach-Caccioppoli) Let T : X → X be a q-contractive mapping for
some 0 < q < 1. Then there exists a unique fixed point of T , that is, Fix T = {x∗}.
Moreover, for the fixed point iteration (29), we have

(∀ k ∈ N) ‖xk − x∗‖ ≤ qk‖x0 − x∗‖ and ‖xk − x∗‖ ≤ qk

1− q
‖x0 − x1‖. (30)

Proof We first note that

(∀ x, y ∈ X) ‖x − y‖ ≤ 1

1− q

(‖x − T x‖ + ‖y − T y‖). (31)

Indeed,‖x − y‖ ≤ ‖x − T x‖ + ‖T x − T y‖ + ‖T y − y‖ ≤ ‖x − T x‖ + q‖x − y‖ +
‖y − T y‖, hence (1− q)‖x − y‖ ≤ ‖x − T x‖ + ‖T y − y‖ and (31) follows. Inequal-
ity (31) shows that there may exist at most one fixed point of T . Moreover, for every
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k, h ∈ N,

‖xk − xh‖ ≤ 1

1− q

(‖xk − xk+1‖ + ‖xh − xh+1‖
)

≤ 1

1− q

(‖T k x0 − T k x1‖ + ‖T h x0 − T h x1‖
)

≤ 1

1− q

(
qk‖x0 − x1‖ + qh‖x0 − x1‖

)

≤ qk + qh

1− q
‖x0 − x1‖, (32)

where we used that T k is qk-contractive. Since 0 < q < 1, qk and qh converge to
zero as k and h go to +∞. Therefore, (xk)k∈N is a Cauchy sequence and hence it
converges, say to x∗. Then T xk → T x∗ and T xk = xk+1 → x∗, so T x∗ = x∗, that is,
x∗ is a fixed point of T . The second inequality in (30) follows from (32) by letting
h →+∞. The first equality in (30) follows from the following chain of inequalities

‖xk − x∗‖ = ‖T xk−1 − T x∗‖ ≤ q‖xk−1 − x∗‖ ≤ · · · ≤ qk‖x0 − x∗‖.

The statement follows. �

As we noted in Remark 18 for general non expansive operators, the fixed point
iteration (29) may not converge. To overcome this situation, it is enough to slightly
modify the iteration. This leads to the following definition.

Let T : X → X be a nonexpansive operator and letλ ∈ ]0, 1[. TheKrasnosel’skiı̆–
Mann iteration is defined as follows:

x0 ∈ X, xk+1 = xk + λ(T xk − xk). (33)

If we look at the example given in Remark 18(ii) , now we see that the iteration (33)
becomes xk+1 = (1− 2λ)xk . Since |1− 2λ| < 1, we have that xk = (1− 2λ)k x0 →
0. Iteration (33) can be equivalently written as a fixed point iteration of the operator
Tλ = (1− λ)Id + λT . This motivates the study of operators that are convex combi-
nation of the identity operator and nonexpansive operators and justify the definition
below.

Definition 20 Let α ∈ ]0, 1[. Then T : X → X is an α-averaged operator if T =
(1− α)Id + αR for some nonexpansive operator R. An operator which is 1/2-
averaged is also called firmly nonexpansive.

Remark 21 Since averaged operators are convex combinations of nonexpansive
operators, they are indeed nonexpansive operators. This follows by the following
chain of inequalities:
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‖T x − T y‖ = ‖(1− α)(x − y)+ α(Rx − Ry)‖ ≤ (1− α)‖x − y‖ + α‖Rx − Ry‖
≤ (1− α)‖x − y‖ + α‖x − y‖ = ‖x − y‖.

In the following, we give several characterizations of the property of being an
averaged operators.

Lemma 22 Let x, y ∈ X and λ ∈ R. Then

‖(1− λ)x + λy‖2 = (1− λ)‖x‖2 + λ‖y‖2 − (1− λ)λ‖x − y‖2. (34)

Proof Indeed

‖(1− λ)x + λy‖2 = (1− λ)2‖x‖2 + λ2‖y‖2 + 2(1− λ)λ 〈x, y〉
= (1− λ)‖x‖2 − λ(1− λ)‖x‖2
+ λ‖y‖2 − (1− λ)λ‖y‖2 + 2(1− λ)λ 〈x, y〉

= (1− λ)‖x‖2 + λ‖y‖2 − (1− λ)λ
(‖x‖2 + ‖y‖2 − 2 〈x, y〉 )

and the statement follows. �

Proposition 23 Let T : X → X and α ∈ ]0, 1[. Then the following statements are
equivalent

(i) T is α-averaged

(ii)

(

1− 1

α

)

Id + 1

α
T is nonexpansive

(iii) For every (x, y) ∈ X2,

‖T x − T y‖2 ≤ ‖x − y‖2 −
(
1

α
− 1

)

‖(Id − T )x − (Id − T )y‖2.

(iv) For every (x, y) ∈ X2

‖T x − T y‖2 + (1− 2α)‖x − y‖2 ≤ 2(1− α)〈x − y, T x − T y〉.

Proof (i)⇔ (ii): It follows from the following equivalence

T = (1− α)Id + αR ⇔ R =
(

1− 1

α

)

Id + 1

α
T .

(ii) ⇔ (iii) : Set R = (1− α−1)Id + α−1T and let x, y ∈ X . It follows from
Lemma 22 that
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‖Rx − Ry‖2 = ‖(1− α−1)(x − y)+ α−1(T x − T y)‖2
= (1− α−1)‖x − y‖2 + α−1‖T x − T y‖2
− α−1(1− α−1)‖(Id − T )x − (Id − T )y‖2

and hence

‖Rx − Ry‖2 − ‖x − y‖2

= 1

α

(

‖T x − T y‖2 − ‖x − y‖2 +
(
1

α
− 1

)

‖(Id − T )x − (Id − T )y‖2
)

.

So inequality ‖Rx − Ry‖2 − ‖x − y‖2 ≤ 0 is equivalent to that in (iii).
(iii) ⇔ (iv): It follows from the inequality

‖(Id − T )x − (Id − T )y‖2 = ‖x − y‖2 + ‖T x − T y‖2 − 2〈x − y, T x − T y〉.

�

Remark 24 The inequality in Proposition 23(iii) shows that if T is α-averaged,
then it is also α′-averaged for every α′ > α. So it makes sense to consider the best
(smallest) constant of averagedness.

Remark 25 Contractions are averaged operators. More precisely, if T is a contrac-
tion with constant q, then it is (q + 1)/2-averaged. By Proposition 23(i) it is enough
to show that (1− 2/(q + 1))Id + 2/(q + 1)T is nonexpansive. Indeed

(∀x, y ∈ X)

∥
∥
∥
∥

q − 1

q + 1
x + 2

q + 1
T x − q − 1

q + 1
y − 2

q + 1
T y

∥
∥
∥
∥ ≤

≤ 1− q

q + 1
‖x − y‖ + 2q

q + 1
‖x − y‖ ≤ ‖x − y‖.

Remark 26 In view of Definition 20 and Proposition 23(iii), an operator T is firmly
nonexpansive if and only if

(∀ x, y ∈ X) ‖T x − T y‖2 ≤ 〈x − y, T x − T y〉. (35)

The properties of being averaged is preserved by compositions, as the following
result shows.

Proposition 27 Let T1 : X → X and T2 : X → X be two averaged operators, with
constants α1 and α2 respectively. Then T1 ◦ T2 is averaged with constant

α = α1 + α2 − 2α1α2

1− α1α2
.
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Averaged operators are important since, provided that they have fixed points, the
Picard iteration always weakly converges to some fixed point. In the rest of the
section, we will prove this result.

Lemma 28 (demiclosedness principle) Let T : X → X be a nonexpansive operator.
Then I − T is demiclosed, that is, for all sequence (xk)k∈N in X and x, z ∈ X, we
have

xk ⇀ x and xk − T xk → z ⇒ x − T x = z. (36)

Proof Let k ∈ N. Then using the nonexpansivity of T , we have

‖x − T x − z‖2 = ‖xk − T x − z‖2 − ‖xk − x‖2 − 2〈xk − x, x − T x − z〉
= ‖xk − T xk − z‖2 + ‖T xk − T x‖2 + 2〈xk − T xk − z, T xk − T x〉
− ‖xk − x‖2 − 2〈xk − x, x − T x − z〉

≤ ‖xk − T xk − z‖2 + 2〈xk − T xk − z, T xk − T x〉 − 2〈xk − x, x − T x − z〉.

Since xk − T xk − z → 0, xk − x ⇀ 0, and T xk is bounded, the right-hand side of
the above inequality goes to zero and hence ‖x − T x − z‖2 = 0. �

Lemma 29 (Opial) Let F ⊂ X be nonempty. Let (xk)k∈N be a sequence in X and
suppose that the weak cluster points of (xk)k∈N belongs to F and that for any y ∈ F,
(‖xk − y‖)k∈N is convergent. Then (xk)k∈N weakly converges to a point in F.

Proof The assumptions ensure that (xk)k∈N is bounded. Therefore, the set of weak
cluster points of (xk)k∈N is nonempty. Let y1, y2 ∈ X and let (x1

k )k∈N and (x2
k )k∈N be

subsequences of (xk)k∈N such that x1
k ⇀ y1 and x2

k ⇀ y2. Then, for every k ∈ N,

‖xk − y1‖2 − ‖y1‖2 = ‖xk‖2 − 2〈xk, y1〉
‖xk − y2‖2 − ‖y2‖2 = ‖xk‖2 − 2〈xk, y2〉

and hence (subtracting)

2〈xk, y2 − y1〉 = ‖xk − y1‖2 − ‖xk − y2‖2 − ‖y1‖2 + ‖y2‖2. (37)

Since y1 and y2 are weak cluster points of (xk)k∈N, by assumptions, y1, y2 ∈ F and
(‖xk − y1‖)k∈N and (‖xk − y2‖)k∈N are convergent. Therefore, by (37), we obtain
that there exists β ∈ R such that 〈xk, y2 − y1〉 → β. Now, since xi

k ⇀ yi , i = 1, 2,
we have 〈xi

k, y2 − y1〉 → 〈yi , y2 − y1〉, which implies

〈y1, y2 − y1〉 = β = 〈y2, y2 − y1〉

and hence ‖y2 − y1‖2 = 0. This proves that the set of weal cluster points of the
sequence (xk)k∈N is a singleton. So, the sequence (xk)k∈N is weakly convergent. �
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Theorem 30 Let α ∈ ]0, 1[ and let T : X → X be an α-averaged operator such
that the set of fixed points is nonempty, that is Fix T �= ∅. Let (xk)k∈N be generated
by the fixed point iteration (29). Then the following hold.

(i) For every k ∈ N and every x∗ ∈ Fix T , ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖
(ii)

+∞∑

k=0
‖T xk − xk‖2 <

α

1− α
dist(x0,Fix T )2

(iii) (xk)k∈N weakly converges to some point x∗ ∈ Fix T .

Proof (i): Since T is nonexpansive and x∗ is a fixed point of T , ‖xk+1 − x∗‖ =
‖T xk − T x∗‖ ≤ ‖xk − x∗‖.

(ii): Let x∗ ∈ S. Then, by Proposition 23(iii) (with x = xk and y = x∗), we have

(∀ k ∈ N) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
(
1

α
− 1

)

‖xk − T xk‖2. (38)

Therefore,

1− α

α

+∞∑

k=0
‖xk − T xk‖2 ≤

+∞∑

k=0

(‖xk − x∗‖2 − ‖xk+1 − x∗‖2
) ≤ ‖x0 − x∗‖2.

(iii): It follows from (ii) that ‖T xk − xk‖ → 0. Let x∗ be a weak cluster point
of (xk)k∈N and let (x ′k)k∈N be a subsequence of (xk)k∈N such that x ′k ⇀ x∗. Then
T x ′k − x ′k → 0. Hence, in virtue of Lemma 28, T x∗ − x∗ = 0, that is x∗ ∈ Fix T .
Moreover, by item (i), for every x∗ ∈ Fix T , ‖xk − x∗‖ is decreasing and hence
convergent. The statement follows from Lemma 29 with F = Fix T . �

Applying the previous theorem to the operator Tλ = (1− λ)Id + λT and noting
that Fix Tλ = Fix T , we get the following result.

Corollary 31 Let T : X → X be a nonexpansive operator admitting fixed points
and let (xk)k∈N be generated by the Krasnosel’skiı̆–Mann iteration (33). Then (xk)k∈N
converges to some fixed point of T .

3.2 The Proximity Operator

Motivated by the use of nonsmooth regularization techniques in inverse problems,
we introduce the proximity operator of a convex function.

Definition 32 Let g ∈ �0(X). Then, the proximity operator of g is

proxg : X → X, proxg(x) = argminy∈X

{
g(y)+ 1

2
‖y − x‖2

}
.
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Note that the definition is well-posed since the function y �→ g(y)+ (1/2)‖y − x‖2
is lower semicontinuous and strongly convex, hence, it has a unique minimizer.
Moreover, let us check that proxg = (Id + ∂g)−1. Using the sum rule for the subd-
ifferential, which holds since the square norm is differentiable, we derive

z = proxg(x) ⇔ 0 ∈ ∂g(z)+ z − x

⇔ x ∈ (Id + ∂g)(z)

⇔ z ∈ (Id + ∂g)−1(x).

This shows that (Id + ∂g)−1(x) is actually a singleton and its unique element is
proxγ g(x). Note that for every x ∈ X , proxg(x) ∈ domg, since the minimizer of
g + (1/2)‖·‖2 is clearly in the domain of g.

Example 33 Let C be a closed and convex set. The proximity operator of ιC is the
projection on C . The projection is nonexpansive (and, indeed, firmly nonexpansive),
but in general not a contraction, unless C is a singleton.

Proposition 34 Let g ∈ �0(X). Then

(∀x, y ∈ X) ‖proxg(x)− proxg(y)‖2 ≤ 〈x − y, proxg(x)− proxg(y)〉. (39)

In other words, recalling (35), the operator proxg is firmly nonexpansive.

Proof Let x, y ∈ X and set px = proxg(x) and py = proxg(y). Then, by Fermat’s
rule, we have

x − px ∈ ∂g(px) and y − py ∈ ∂g(py).

Therefore,

g(py) ≥ g(px)+ 〈x − px py − px 〉
g(px) ≥ g(py)+ 〈y − py px − py〉

and summing g(py)+ g(px) ≥ g(px)+ g(py)+ 〈y − py − x + px , px − py〉.
Then the statement follows. �

Remark 35 The function

gλ(u) = inf
x∈X

{

g(x)+ 1

2λ
‖x − u‖2

}

, (40)

is called theMoreau envelope of g with parameter λ. We have that gλ is differentiable
and the gradient of gλ is given as

∇gλ(u) = u − proxλg(u)

λ
∈ ∂g(proxλg(x)). (41)
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In the following, we provide important properties of proximity operators.

Proposition 36 (Separable sum) Let (Xi )1≤i≤m be Hilbert spaces and let X =⊕m
i=1 Xi be their direct product. Let, for every i = 1, . . . , m, gi ∈ �0(Xi ) and define

g : X → ]−∞,+∞] by g(x) =∑m
i=1 gi (xi ), for every x = (x1, . . . , xm) ∈ X.

Then

(∀ x = (x1, . . . , xm) ∈ X) proxg(x) = (proxg1(x1), . . . , proxgm
(xm)). (42)

Example 37

(i) (Proximity operator of the 
1 norm)Let X = R
d . The 
1 normon X is separable,

thus the proximity operator can be computed componentwise, so it is enough
to compute the proximity operator of the absolute value in R. Let γ > 0. By
definition, for every t ∈ R, proxγ |·|(t) = (Id + γ ∂|·|)−1(t). Thus, if we make
the plot of the graph of Id + γ ∂|·| and invert it, we discover that

softγ (t) := proxγ |·|(t) =

⎧
⎪⎨

⎪⎩

t − γ if t > γ

0 if |t | ≤ γ

t + γ if t < −γ.

(43)

Thus, it follows from Proposition 36 that, for every x ∈ R
d and every i =

1, . . . , d, (proxγ ‖·‖1(x))i = proxγ |·|(xi ).
(ii) (Proximity operator of the 
1 + 
2 norm)

g(x) = ‖x‖1 + λ

2
‖x‖22

proxγ g(x) = prox(γ /(γ λ+1))‖·‖1(x/(γ λ+ 1))

(proxγ g(x))i =

⎧
⎪⎨

⎪⎩

(xi − γ )/(γ λ+ 1) if xi > γ

0 if |xi | ≤ γ

(xi + γ )/(γ λ+ 1) if xi < −γ

Proposition 38 (Properties of the proximity operator) Let h ∈ �0(X) and let γ > 0.
Then the following holds

(i) (linear perturbation) Let g = h + 〈·, u〉 + a, with u ∈ X and a ∈ R. Then

proxγ g(x) = proxγ h(x − γ u).

(ii) Let g(x) = h(ax + b), with a ∈ R, a �= 0 and b ∈ X. Then

proxγ g(x) = (proxa2γ h(ax + b)− b)/a.



Proximal Gradient Methods for Machine Learning and Imaging 169

(iii) (composition with an orthogonal matrix) Let g = h ◦ L, with L : X → X a bijec-
tive linear map such that L∗ = L−1. Then

(∀x ∈ X) proxγ g(x) = L∗proxγ h(Lx).

Proof In the following, we let x ∈ X and set p = proxγ g(x).
(i): Since p = argminy∈X {γ h(y)+ γ 〈u, y〉 + a + 1

2‖y − x‖2}, Fermat’s rule
yields

0 ∈ γ ∂h(p)+ γ u + p − x ⇔ x − γ u ∈ (Id + γ ∂h)(p)

⇔ p = proxγ h(x − γ u).

(ii): We have:

p = proxγ g(x) ⇔ p = argminy∈X

{

γ h(ay + b)+ 1

2
‖y − x‖2

}

⇔ p = argminy∈X

{

γ h(ay + b)+ 1

2a2
‖ay + b − (ax + b)‖2

}

⇔ p = argminy∈X

{

γ a2 h(ay + b)+ 1

2
‖ay + b − (ax + b)‖2

}

⇔ ap + b = proxa2γ h(ax + b)

⇔ p = (proxa2γ h(ax + b)− b)/a.

(iii): We have

p = proxγ g(x) ⇔ p = argminy∈X

{

γ h(Ly)+ 1

2
‖y − x‖2

}

⇔ 0 ∈ γ L∗∂h(Lp)+ p − x

⇔ x − p ∈ L−1∂h(Lp)

⇔ Lx ∈ γ ∂h(Lp)+ Lp

⇔ p = L∗proxγ h(Lx)

The statement follows. �

Remark 39 Regarding Proposition 38(iii), in general, if L is not orthogonal, we can
apply a gradient descent on the dual of the minimization problem defining the prox
to compute it approximately. See Sect. 5.

We now introduce an important identity, that is, the Moreau’s decomposition
formula. Let V be a closed linear subspace of X . Then we know that x can be
uniquely decomposed in two orthogonal components, PV x and PV⊥x such that:

x = xV + xV⊥ = PV x + PV⊥(x). (44)
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Ifwe set f = ιV ,wefirst note that (ιV )∗(u) = supx∈X 〈x, u〉 − ιV (x) = ιV⊥(u). Thus,
we can rewrite (44) as

x = proxιV
(x)+ prox(ιV )∗(x).

This last formula can be generalized to every convex function.

Theorem 40 (Moreau’s decomposition) Let g ∈ �0(X) and let x ∈ X. Then

x = proxg(x)+ proxg∗(x).

More generally, for all γ > 0, x = proxγ g(x)+ γ proxg∗/γ (x/γ ).

Proof It follows from the list of equivalences below.

p = proxg(x) ⇔ x − p ∈ ∂g(p)

⇔ p ∈ ∂g∗(x − p)

⇔ x − (x − p) ∈ ∂g∗(x − p)

⇔ x − p = proxg∗(x). �

Example 41 (The proximity operator of the Euclidean norm) We want to compute
the prox of the norm of X (which is a Hilbert space). First note that

‖x‖ = sup
‖u‖≤1

〈x, u〉 = σB1(0)(x).

Hence,
‖·‖ = σB1(0) = (ιB1(0))

∗.

Therefore, it follows from Theorem 40 that

prox‖·‖(x) = x − proxιB1(0)
(x) = x − PB1(0)(x).

More explicitly:

prox‖·‖(x) =
⎧
⎨

⎩

x − x

‖x‖ if ‖x‖ > 1

0 if ‖x‖ ≤ 1.

Note that this operation corresponds to a vector soft thresholding, which reduces to
(43) for dimX = 1 and γ = 1.

Example 42 (The proximity operator of the group lasso norm) LetJ = {J1, . . . , Jl}
be a partition of {1, . . . , d}. We define a norm on R

d by considering

‖x‖J =
l∑

i=1

⎛

⎝
∑

j∈Ji

|x j |2
⎞

⎠

1/2

.
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For every x ∈ R
d , let us call xJi = (x j ) j∈Ji ∈ R

Ji and denote by ‖·‖Ji the Euclidean
norm on R

Ji . Then

‖x‖J =
l∑

i=1
‖xJi‖Ji .

We next compute the proximity operator of ‖ · ‖J . First note that ‖ · ‖J is the
sum of functions depending on groups of variables xJi . Therefore the prox can be
computed group-wise thanks to the decomposability property (42). Thus

(prox‖·‖J (x))Ji = prox‖·‖Ji
(xJi ),

and recalling Example 41, we have

(prox‖·‖J (x))Ji =
⎧
⎨

⎩

xJi −
xJi

‖xJi ‖
if ‖xJi‖Ji > 1

0 otherwise

The resulting prox operator is called block soft-thresholding operator.

3.3 Worst Case Convergence Analysis

Algorithm 1 can be seen as a fixed-point iteration of the following operator

T = proxγ g ◦ (Id − γ∇ f ), (45)

which is the composition of the proximity operator of γ g and the operator Id − γ∇ f .
We also note that the fixed points of T are the minimizers of f + g. Indeed

x = T x ⇔ x = proxγ g(x − γ∇ f (x)) ⇔ x − γ∇ f (x)− x ∈ ∂γ g(x) ⇔ 0 ∈ ∂( f + g)(x).

So we need to study the operator T . We already know that proxγ g is firmly non-
expansive and hence (1/2)-averaged. The following result concerns the operator
Id − γ∇ f .

Proposition 43 Let f : X → R be differentiable and let L > 0. Let γ > 0 and set
Tγ = Id − γ∇ f . Then, the L-Lipschitz continuity of∇ f is equivalent to the property

(∀ x, y ∈ X) ‖Tγ x − Tγ y‖2 ≤ ‖x − y‖2 −
(

2

γ L
− 1

)

‖(Id − Tγ )x − (Id − Tγ )y‖2.
(46)

In particular, if γ < 2/L, Tγ is a α-averaged operator, with α = γ L/2 < 1.

Proof Multiplying by γ 2L the inequality in Fact 1(iv) and replacing γ∇ f with
Id − Tγ , we obtain
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‖(Id − Tγ )x − (Id − Tγ )y‖2 ≤ γ L〈x − y, (Id − Tγ )x − (Id − Tγ )y〉.

Then, using the identity

2〈x − y, (Id − Tγ )x − (Id − Tγ )y〉
= ‖(Id − Tγ )x − (Id − Tγ )y‖2 + ‖x − y‖2 − ‖Tγ x − Tγ y‖2,

the statement follows. �

Proposition 44 Let f : X → R a differentiable convex function with a Lipschitz
continuous gradient with constant L, let g ∈ �0(X) and set T as in (45). Suppose
that γ < 2/L. Then T is α-averaged with α = 2/(4− γ L).

Proof It follows fromProposition 43 that I − γ∇ f isα2-averagedwithα2 = γ L/2.
Moreover, Proposition 34 yields that proxγ g is firmly nonexpansive, that is, α1-
averaged with α1 = 1/2. Therefore, by Proposition 27, T = proxγ g ◦ (I − γ∇ f ) is
α-averaged with

α = 1/2+ γ L/2− γ L/2

1− (1/2)(γ L/2)
= 2

4− γ L
. �

Lemma 45 For any x, z ∈ X, y ∈ domg and for any u ∈ ∂g(x). We have

F(z) ≥ F(x)+ 〈z − x,∇ f (y)+ u〉 − L

2
‖x − y‖2.

Proof Let x, z ∈ X and let y ∈ domg. Then, it follows from Fact 1 that

f (y) ≥ f (x)− 〈x − y,∇ f (y)〉 − L

2
‖x − y‖2.

Hence, since f is convex,

f (z) ≥ f (y)+ 〈z − y,∇ f (y)〉 ≥ f (x)+ 〈z − x,∇ f (y)〉 − L

2
‖x − y‖2. (47)

Now, since u ∈ ∂g(x), g(z) ≥ g(x)+ 〈z − x, u〉, which summed with inequality
(47) give the statement. �

Lemma 46 Let (ak)k∈N be a decreasing sequence in R+. If
∑+∞

k=0 ak < +∞, then

(∀ k ∈ N) ak ≤ 1

k + 1

+∞∑

k=0
ak, and ak = o

( 1

k + 1

)
.

Proof Let k ∈ N. Since ak ≤ ai , for i = 0, 1, . . . , k, we have
∑k

i=0 ai ≥ (k + 1)ak ,
hence the first part of the statement. As regard the second part, we note that, for every
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integer k ≥ 2, we have
∑+∞

i=�k/2� ai ≥∑k
i=�k/2� ai ≥ (k + 1− �k/2�)ak ≥ k+1

2 ak .

Therefore, (k + 1)ak ≤ 2
∑+∞

i=�k/2� ai → 0 as k →+∞. �

The following theorem provides full convergence results concerning the proximal
gradient algorithm.

Theorem 47 Let f : X → R a differentiable convex function with a Lipschitz con-
tinuous gradient with constant L and g ∈ �0(X). Let S∗ be the set of minimizers of
F := f + g and suppose that S∗ �= ∅. Let γ < 2/L and (xk)k∈N be generated by
Algorithm 1. Then the following statements hold

(i)
∑

k∈N
‖xk+1 − xk‖2 ≤ 2

2− γ L
dist(x0, S∗)2.

(ii) For every k ∈ N and for every x ∈ X,

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2γ
(
F(x)− F(xk+1)

)+ (γ L − 1)‖xk+1 − xk‖2.

(iii) For all k ∈ N,

( 1

γ
− L

2

)
‖xk+1 − xk‖2 ≤ F(xk)− F(xk+1),

so that the algorithm is descending.
(iv) Let F∗ = inf x∈X ( f + g)(x). Then F(xk+1)− F∗ = o(1/(k + 1)) and, for all

k ∈ N,

F(xk+1)− F∗ ≤ dist(x0, S∗)2

k + 1
×

⎧
⎪⎪⎨

⎪⎪⎩

1

2γ
if γ ≤ 1/L

L

2

1

2− γ L
if 1/L < γ < 2/L .

(48)

(v) The sequence (xk)k∈N weakly converges to some x∗ ∈ S∗.

Proof (i): It follows from (25), Theorem 44, and Theorem 30(ii).
(ii): Let x ∈ X and k ∈ N. It follows from (25) that u := (xk − xk+1)/γ −

∇ f (xk) ∈ ∂g(xk+1), hence

xk − xk+1
γ

= ∇ f (xk)+ u, u ∈ ∂g(xk+1).

Thus, by Lemma 45, we have that

F(x) ≥ F(xk+1)+ 〈x − xk+1,∇ f (xk)+ u〉 − L

2
‖xk+1 − xk‖2

= F(xk+1)+ 1

γ
〈x − xk+1, xk − xk+1〉 − L

2
‖xk+1 − xk‖2;
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and identity ‖xk − x‖2 = ‖xk − xk+1‖2 + ‖xk+1 − x‖2 + 2 〈xk+1 − xk, x − xk+1〉,
yields

F(x)− F(xk+1) ≥ 1

2γ

[
‖xk − xk+1‖2 + ‖xk+1 − x‖2 − ‖xk − x‖2

]
− L

2
‖xk+1 − xk‖2

= 1

2γ

[
(1− γ L)‖xk − xk+1‖2 + ‖xk+1 − x‖2 − ‖xk − x‖2].

Therefore,

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2γ
(
F(x)− F(xk+1)

)− (1− γ L)‖xk − xk+1‖2

and the statement follows.
(iv): Let x∗ ∈ S∗. Then, it follows from (ii) that, for every k ∈ N,

0 ≤ 2γ
(
F(xk+1)− F(x∗)

) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + (γ L − 1)+‖xk − xk+1‖2.

Thus, summing and using (i), we have

2γ
+∞∑

k=0

(
F(xk+1)− F(x∗)

) ≤ ‖x0 − x∗‖2 +
2
(
γ L − 1

)
+

2− γ L
‖x0 − x∗‖2

= ‖x0 − x∗‖2 ×

⎧
⎪⎨

⎪⎩

1 if γ ≤ 1/L

γ L

2− γ L
if 1/L < γ < 2/L .

Then, since
(
F(xk+1)− F(x∗)

)
k∈N is decreasing and positive, the statement follows

from Lemma 46.
(v): It follows from (25), Theorems 44, 30(iii), and the fact that S∗ = Fix(T ). �

Remark 48 It follows from (48) that the best bound is achieved when γ = 1/L .

Remark 49 Suppose that in problem (24) f is the Moreau envelope of a function
h ∈ �0(X) with parameter 1, that is f = h1. Then ∇ f (x) = x − proxh(x), which is
1-Lipschitz continuous, and the proximal gradient Algorithm 1 with stepsize γ = 1,
becomes

for k = 0, 1, . . .⌊
xk+1 = proxγ g

(
proxh(xk)

)
,

(49)

which is called the backward-backward algorithm. If one takes g = ιC1 and h = ιC2 ,
for two closed convex sets C1, C2 ⊂ X , we have the alternating projection algorithm

for k = 0, 1, . . .⌊
xk+1 = PC1

(
PC2(xk)

)
.

(50)

Note that Theorem 47 ensures that the sequence (xk)k∈N weakly converges to a point
in argminx∈C1

d2
C2

(x).
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3.4 Convergence Analysis Under Strong Convexity
Assumptions

In this section, following the same notation of the previous section, we set

Tγ = Id − γ∇ f and T = proxγ g ◦ Tγ . (51)

We will consider the situation where f and/or g are strongly convex. This will make
the corresponding operators Tγ and/or proxγ g contractions.

Proposition 50 Let f : X → R be a differentiable convex function. Suppose that
for some γ > 0, the operator Tγ = Id − γ∇ f is a contraction. Then f is strongly
convex and its gradient is Lipschitz continuous.

Proof Let x, y ∈ X . Then

‖Tγ x − Tγ y‖2 ≤ q2‖x − y‖2
⇔ ‖x − y − γ (∇ f (x)− ∇ f (y))‖2 ≤ q2‖x − y‖2
⇔ ‖x − y‖2 + γ 2‖∇ f (x)− ∇ f (y)‖2 − 2γ 〈∇ f (x)− ∇ f (y), x − y〉 ≤ q2‖x − y‖2
⇔ (1− q2)‖x − y‖2 + γ 2‖∇ f (x)− ∇ f (y)‖2 ≤ 2γ 〈∇ f (x)− ∇ f (y), x − y〉

⇒

⎧
⎪⎪⎨

⎪⎪⎩

1− q2

2γ
‖x − y‖2 ≤ 〈∇ f (x)− ∇ f (y), x − y〉

γ

2
‖∇ f (x)− ∇ f (y)‖2 ≤ 〈∇ f (x)− ∇ f (y), x − y〉

So in virtue of Fact 1(iv) and (12), f is strongly convex and ∇ f is Lipschitz contin-
uous. �

Nowwe assume that f is strongly convex and with Lipschitz continuous gradient.
Then we will prove that there exists an interval of values of γ for which Tγ is a
contraction.

Theorem 51 f : X → R is Lipschitz smooth with constant L > 0 and strongly con-
vex with modulus μ > 0. Then, for every γ ∈ ]0, 2/(L + μ)], Tγ = Id − γ∇ f is a
contraction with constant

q1(γ ) :=
(

1− 2γμL

L + μ

)1/2

. (52)

Proof It follows from Fact 2(ii) (multiplied by 2γ ) that

2

γ (L + μ)
‖γ∇ f (x)− γ∇ f (y)‖2 + 2γμL

L + μ
‖x − y‖2 ≤ 2 〈γ∇ f (x)− γ∇ f (y), x − y〉

Moreover,



176 S. Salzo and S. Villa

‖(x − y)− γ (∇ f (x)−∇ f (y))‖2 = ‖x − y‖2 + ‖γ∇ f (x)− γ∇ f (y)‖2
−2 〈γ∇ f (x)− γ∇ f (y), x − y〉 .

Hence

‖(x − y)− γ (∇ f (x)−∇ f (y))‖2 ≤
(

1− 2γμL

L + μ

)

‖x − y‖2

−
(

2

γ (L + μ)
− 1

)

‖γ∇ f (x)− γ∇ f (y)‖2.

Now since Tγ = Id − γ∇ f , the inequality above becomes

‖Tγ x − Tγ y‖2 ≤
(
1− 2γμL

μ+ L

)
‖x − y‖2 −

( 2

γ (μ+ L)
− 1

)
‖(Id − Tγ )x − (Id − Tγ )y‖2.

Note that if γ (L + μ)/2 ≤ 1, then the above inequality yields

‖Tγ x − Tγ y‖ ≤
(

1− 2γμL

μ+ L

)1/2

‖x − y‖, (53)

where

0 <
2γμL

L + μ
≤ 4μL

(L + μ)2
− 1+ 1 = 1−

( L − μ

L + μ

)2
< 1.

Therefore, for every γ ∈ ]0, 2/(L + μ)], Tγ is a contraction with the constant given
in (53). �

If we additionally assume that the function f is twice differentiable the results
can be further improved.

Theorem 52 Let f : X → R be twice differentiable and suppose that f is μ-
strongly convex and that ∇ f is L-Lipschitz continuous. Then, for every γ > 0,
Tγ = Id − γ∇ f is Lipschitz continuous with constant

q̃1(γ ) = max{|1− γμ|, |1− γ L|} =

⎧
⎪⎪⎨

⎪⎪⎩

1− γμ if γ ≤ 2

L + μ

γ L − 1 if γ ≥ 2

L + μ
.

(54)

So, if γ ∈ ] 0, 2/L [ , then Tγ is a contraction.

Proof The mapping Tγ is differentiable and T ′γ (x) = Id − γ∇2 f (x). By the mean
value theorem, for every q > 1,

∀ x, y ∈ X ‖Tγ x − Tγ y‖ ≤ q‖x − y‖ ⇔ ∀ x ∈ X ‖T ′γ (x)‖ ≤ q.
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Fig. 1 Explanation of the
fact that:
q̃1(γ ) < 1 ⇐⇒ γ < 2/L

Moreover, ‖T ′γ (x)‖ = supλ∈σ(∇2 f (x))|1− γ λ|. Since f is μ strongly convex and ∇ f
is L-Lipschitz continuous,

(∀ x ∈ X)(∀ u ∈ X) μ‖u‖2 ≤ 〈∇2 f (x)u, u〉 ≤ L‖u‖2.

So σ(∇2 f (x)) ⊂ [μ, L] and hence ‖T ′γ (x)‖ ≤ maxλ∈[μ,L]|1− γ λ| = q̃1(γ ). This
last equality follows by noting that λ �→ |1− γ λ| is a piecewise convex function
and hence it achieves its maximum at the end points of the interval [μ, L]. It follows
from (54) that q̃(γ ) < 1 ⇔ γ ∈ ]0, 2/L[ (see Fig. 1). �

Remark 53 The constant q̃1(γ ) given in Theorem 52 is always better than the con-
stant q1(γ ) given in Theorem 51. However, on the minimum value they agree.

Theorem 54 Let g ∈ �0(X) and suppose that g is σ -strongly convex. Then, for
every γ > 1 the operator proxγ g is a contraction with constant 1/(1+ γ σ).

Proof Let x, y ∈ X and set px = proxγ g(x) and py = proxγ g(y). Then, by Fermat’s
rule, we have (x − px )/γ ∈ ∂g(px) and (y − py)/γ ∈ ∂g(py). Therefore, recalling
Fact 4, we have

g(py)− g(px) ≥ γ−1〈py − px x − px 〉 + (σ/2)‖py − px‖2
g(px)− g(py) ≥ γ−1〈px − py y − py〉 + (σ/2)‖px − py‖2.



178 S. Salzo and S. Villa

and summing, we have 0 ≥ γ−1〈px − py y − x + px − py〉 + σ‖px − py‖2 and
hence

〈px − py x − y〉 ≥ (1+ γ σ)‖px − py‖2. (55)

Then, Cauchy-Schwarz inequality yields ‖px − py‖2 ≤ (1+ γ σ)−1‖px − py‖
‖x − y‖ and the statement follows. �

Nowwe are ready to provide the theorem of convergence for the proximal gradient
algorithm.

Theorem 55 Let f : X → R be Lipschitz smooth with constant L > 0 and with
modulus of strong convexity μ > 0 and g ∈ �0(X) with modulus of strong convexity
σ ≥ 0. Suppose that γ < 2/L. Let x∗ be the minimizer of F := f + g and let (xk)k∈N
be generated by Algorithm 1. Then

(∀ k ∈ N) ‖xk − x∗‖ ≤ qk‖x0 − x∗‖, q := 1

1+ γ σ

(

1− 2γμL

L + μ

)1/2

(56)

Moreover, if f is twice differentiable, then

(∀ k ∈ N) ‖xk − x∗‖ ≤ qk‖x0 − x∗‖, q̃ :=

⎧
⎪⎪⎨

⎪⎪⎩

1− γμ

1+ γ σ
if γ ≤ 2

L + μ

γ L − 1

1+ γ σ
if γ ≥ 2

L + μ
.

(57)

Proof The statement follows from Theorems 51, 52, to 54 and the Banach-
Caccioppoli theorem. �

Remark 56

(i) The best value of γ in (57) is achieved for γ = 2/(μ+ L).
(ii) When g = 0 one can derive an explicit linear rate also in the function values.

Indeed, in this case, since ∇ f (x∗) = 0, it follows from Fact 1(ii) that f (x)−
f (x∗) ≤ (L/2)‖x − x∗‖2.

3.5 Convergence Analysis Under Geometric Assumptions

It is possible to show that strongly convex functions satisfy the following condition

f (x)− inf f ≤ 1

2μ
‖∂ f (x)‖2−, (58)

where ‖∂ f (x)‖− = inf{‖u‖|u ∈ ∂ f (x)}.
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This condition is called Łojasiewicz inequality and can hold even for non-strongly
convex functions and very recently has been the objective of intense research which
has unveiled its connection with the quadratic growth condition

(∀ x ∈ X) f (x)− inf
X

f ≥ μ

2
dist(x, argmin f )2 (59)

and ultimately its critical role in achieving linear convergence in optimization algo-
rithms. In this section, we study the convergence of the proximal gradient algorithm
under Łojasiewicz-type inequalities.

We start with a major (although simple) example showing a function which is
not strongly convex but satisfies the Łojasiewicz inequality and the quadratic growth
condition above.

Example 57 Let A : X → Y be abounded linear operatorwith closed rangebetween
two Hilbert spaces, b ∈ Y , and set

f : X → R f (x) = 1

2
‖Ax − b‖2. (60)

Note that here we do not assume A∗A to be positive definite. Let b∗ be the projection
of b onto the range R(A) of A. Then Pytagoras’ theorem yields

(∀ x ∈ X) f (x) = 1

2

(‖Ax − b∗‖2 + ‖b∗ − b‖2).

Thus, f∗ := inf X f = (1/2)‖b∗ − b‖2. Now, let x∗ ∈ S := argmin f = {
x ∈ X |

Ax = b∗
}
, let x ∈ X and set x p = PS x . We have b∗ = Ax∗ = Ax p, and hence

f (x)− f∗ = 1

2
‖Ax − b∗‖2 = 1

2
‖A(x − x∗)‖2 = 1

2
‖A(x − x p)‖2. (61)

Moreover, since S is an affine set with direction N (A), we have x − x p ∈ N (A)⊥.
Now we introduce the pseudo inverse of A, which is a the bounded linear operator
A† : Y → X satisfying, for every u ∈ N (A)⊥, the equality A†Au = u, hence, ‖u‖ ≤
‖A†‖‖Au‖. Therefore, using (61) we have

f (x)− f∗ ≥ 1

2
‖A†‖−2‖x − x p‖2 = 1

2
‖A†‖−2dist(x, argmin f )2, (62)

so that (59) holds withμ = ‖A†‖−2.Moreover,∇ f (x) = A∗(Ax − b∗) = A∗A(x −
x∗), and hence

‖∇ f (x)‖2 = ‖A∗A(x − x∗)‖2.

Thus, inequality (58) in this case reduces to

(∀ x ∈ X) μ‖A(x − x∗)‖2 ≤ ‖A∗A(x − x∗)‖2,
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which is equivalent to

(∀ y ∈ R(A)) μ‖y‖2 ≤ ‖A∗y‖2. (63)

Again, since (as before) for every y ∈ R(A) = N (A∗)⊥, ‖y‖ ≤ ‖(A∗)†‖‖A∗y‖ and
(A∗)† = (A†)∗, we have that (63) and hence (58) holds with μ = ‖(A†)∗‖−2 =
‖A†‖−2.

In the following we generalize condition (58).

Definition 58 Let p ∈ [1,+∞[, let F ∈ �0(X) with argmin F �= ∅. We say that F
is p-Łojasiewicz on sublevel sets if for every t > inf F there exists a constant ct > 0
such that:

∀x ∈ [inf F < F ≤ t], (F(x)− inf F)
1− 1

p ≤ ct‖∂ F(x)‖_,

where for a given set D, ‖D‖_ = infu∈D ‖u‖. We will refer to this notion as global
if supt>inf F ct < +∞.

Example 59 (Convex piecewise polynomials) A function f : Rd → R is a convex
piecewise polynomial if it is convex, continuous, and R

d can be partitioned in a
finite number of polyhedra P1, ..., Ps such that for all i ∈ {1, ..., s}, the restriction
of f to Pi is a convex polynomial of degree di ∈ N. The degree of f is defined
as deg( f ) := max{di | i ∈ {1, ..., s}}. Assume deg( f ) > 0. Convex piecewise poly-
nomial functions are p-Łojasiewicz on sublevel sets with p = 1+ (deg( f )− 1)d .
This result implies that piecewise linear functions (deg( f ) = 1) are 1-Łojasiewicz
on sublevel sets and that convex piecewise quadratic functions (deg( f ) = 2) are
2-Łojasiewicz.

Example 60 (L1 regularized least squares) Let f (x) = α‖x‖1 + (1/2)‖Ax − y‖2,
for some linear operator A : Rd → R

n , y ∈ R
n and α > 0. Then f is convex piece-

wise polynomial of degree 2, thus it is 2-Łojasiewicz on sublevel sets.

Lemma 61 Let (rk)k∈N be a real sequence being strictly positive and satisfying,
for some κ > 0, α > 1 and all k ∈ N: rk − rk+1 ≥ κrα

k+1. Define κ̃ := min{(α −
1)κ, (α − 1)κ

α−1
α , r1−α

0 , κ1/αr1−α
0 }. Then, for all k ∈ N, rk ≤ (κ̃k)−1/(α−1).

The proof can be found in [50, Theorem 3.4].

Theorem 62 Let f : X → R be convex and differentiable with L-Lipschitz continu-
ous gradient and let g ∈ �0(X). Set F = f + g and suppose that F has a minimizer
and that is p-Łojasiewicz on sublevel sets, for some p ≥ 1. Let γ < 2/L and (xk)k∈N
be generated by Algorithm 1 with x0 ∈ domF. Then the sequence (xk)k∈N has finite
length in X, meaning that

∑
k∈N ‖xk+1 − xk‖ < +∞, and converges strongly to

some x∗ ∈ argmin F. Moreover, there exists a constant bp with explicit expression
(see equation (71)), such that the following convergence rates hold, depending on
the value of p, and of κ := γ (2− γ L)[2c2F(x0)

]−1:
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(i) If p = 1, then xk = x∗ for every k ≥ (F(x0)− inf F)/κ .
(ii) If p ∈ ]1, 2[, for all k ∈ N,

F(xk+1)− inf F ≤
(

F(xk)− inf F

κ

) p
2(p−1)

and ‖xk+1 − x∗‖ ≤ bp(F(xk)− inf F)1/2,

(iii) If p = 2, for all k ∈ N,

F(xk+1)− inf F ≤ 1

1+ κ
(F(xk)− inf F) and ‖xk+1 − x∗‖ ≤ b2

(F(x0)− inf F)1/2

(1+ κ)k/2 .

(iv) If p ∈ ]2,+∞[, for all k ∈ N,

F(xk)− inf F ≤ cpk−
p

p−2 and ‖xk+1 − x∗‖ ≤ bpc1/(p−2)
p k−

1
p−2 .

Proof We first show that (xk)k∈N has finite length. Since inf F > −∞ then rk :=
F(xk)− inf F ∈ [0,+∞[, and Theorem 47(iii) yields

a‖xk+1 − xk‖2 ≤ rk − rk+1, with a = 1

γ
− L

2
. (64)

By definition of Algorithm 1, we have xk − γ∇ f (xk+1)− xk+1 ∈ γ ∂g(xk+1) and
hence

xk − γ∇ f (xk)− xk+1 + γ∇ f (xk+1) ∈ ∂γ F(xk+1). (65)

This implies, together with the nonexpansiveness of Id − γ∇ f (see Proposition 43),
that

γ inf
u∈∂ F(xk+1)

‖u‖ ≤ ‖xk − γ∇ f (xk)− (xk+1 − γ∇ f (xk+1))‖ ≤ ‖xk − xk+1‖.(66)

If there exists k ∈ N such that rk = 0 then the algorithm would stop after a finite
number of iterations (see (64)), therefore it is not restrictive to assume that rk > 0
for all k ∈ N. Since (F(xk))k∈N is decreasing by Theorem 47(iii), and x0 ∈ domF ,
xk ∈ [inf F < F ≤ F(x0)] for every k ≥ 1. We set ϕ(t) := pt1/p and F0 = F(x0),
so that the Łojasiewicz inequality at xk ∈ [inf F < F ≤ F0] can be rewritten as

(∀k ∈ N) 1 ≤ cF0ϕ
′(rk)‖∂ F(xk)‖_. (67)

Combining (64), (66), and (67), and using the concavity ofϕ, we obtain for all k ∈ N:

‖xk+1 − xk‖2 ≤ cF0

γ a
ϕ′(rk)(rk − rk+1)‖xk − xk−1‖ ≤ cF0

γ a
(ϕ(rk)− ϕ(rk+1))‖xk − xk−1‖.

By taking the square root on both sides, and using Young’s inequality, we obtain
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(∀k ∈ N) 2‖xk+1 − xk‖ ≤ cF0

γ a
(ϕ(rk)− ϕ(rk+1))+ ‖xk − xk−1‖. (68)

Sum this inequality, and reorder the terms to finally obtain

(∀k ≥ 1)
K∑

k=1
‖xk+1 − xk‖ ≤ cF0

γ a
ϕ(r1)+ ‖x1 − x0‖.

We deduce that (xk)k∈N has finite length and therefore converges strongly to some
x∗. Moreover, from (66) and the strong closedness of ∂ f : X ⇒ X , we conclude that
0 ∈ ∂ f (x∗). We next show a preliminary inequality which will be useful to prove the
rates for (‖xk − x∗‖)k∈N. Let K ∈ N and 1 ≤ k ≤ K , recall that ϕ(t) = pt1/p, and
sum the inequality in (68) between k and K to obtain

‖xK − xk‖ ≤
K∑

n=k

‖xn+1 − xn‖ ≤ pcF0

aγ
r1/p

k + ‖xk − xk−1‖.

Passing to the limit for K →∞, using (64), and the fact that rk is decreasing, we
derive

(∀k ≥ 1) ‖x∗ − xk‖ ≤ pcF0

aγ
r1/p

k−1 +
1√
a

r1/2k−1. (69)

Next we prove the convergence rates. We first derive rates for the sequence of values
rk , from which we will derive the rates for the iterates thanks to (69). Equations (64)
and (66) and the Łojasiewicz inequality at xk+1 ∈ [inf F < F ≤ F0] yield

rk − rk+1 ≥ a‖xk+1 − xk‖2 ≥ aγ 2‖∂ F(xk+1)‖2_ ≥ aγ 2c−2F0
r2−2/p

k+1 ,

which we write more compactly as

(∀k ∈ N) rk − rk+1 ≥ κrα
k+1, with α = 2(p − 1)p−1 and κ := aγ 2c−2F0

. (70)

The rates for the values are derived from the analysis of the sequences satisfying the
inequality in (70), which is recalled in Lemma 61. Depending on the value of p, we
obtain different rates.

(i): Since p = 1, we deduce from (70) that for all k ∈ N rk+1 ≤ rk − κ. Since the
sequence (rk)k∈N is decreasing and positive, this implies k ≤ r0κ−1.

(ii): Since p ∈ ]1, 2[we have α ∈]0, 1[. Thus, the positivity of rk+1 and (70) imply
that for all k ∈ N, rk ≥ κrα

k+1 and hence rk+1 ≤ κ−1/αr1/αk , meaning that rk converges

Q-superlinearly to zero. In addition,we have r1/p
k−1 = r1/p−1/2

k−1 r1/2k−1 ≤ r1/p−1/2
0 r1/2k−1 and

(69) implies ‖xk − x∗‖ ≤ bpr1/2k−1, with bp = pcF0r
1/p−1/2
0 /(aγ )+ (1/

√
a).

(iii): If p = 2, then α = 1 and (70) yields that for all k ∈ N, rk+1 ≤ (1+ κ)−1rk ,
so that rk ≤ (1+ κ)−kr0. Moreover, from (69) we derive that,

(∀k ≥ 1) ‖x∗ − xk‖ ≤ b2r
1/2
k−1.
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where b2 = 2cF0/aγ + 1/
√

a.
(iv): If p ∈ ]2,+∞[, then α ∈ ]1, 2[ and (70) and Lemma 61 imply that rk+1 ≤

cp(k + 1)−p/(p−2), where

cp = min

{[
κ(p − 2)

p

]− p
p−2

,

[
p − 2

p

]− p
p−2

κ
− p

2p−2 , r0, κ
− p2

2(p−1)(p−2) r0

}

. (71)

Note that r1/2k−1 ≤ r
1
2− 1

p

0 r1/p
k−1, and therefore, defining bp = pcF0/γ + (r0)1/2a−1/2

r−1/p
0 , we derive from (69) that ‖xk − x∗‖ ≤ bpr1/p

k−1 for every k ≥ 1. �

Remark 63 Note that the rates range from the finite termination, for p = 1, to the
worst-case rates presented in Theorem 47, when p tends to +∞. The bigger is p,
the more the rates for the objective function values become closer to o(k−1), and the
rates of its iterates become arbitrarily slow.

3.6 Accelerations

Proximal gradient methods are very simple and have a very low cost per iteration, but
often they converge slowly, both in practice and in theory (see Theorem 47). In this
section, we consider the class of accelerated proximal gradient algorithms, which
are only slightly more complicated than the basic proximal gradient methods, but
have an improved convergence rate. While in the proximal gradient method, only the
information obtained in the previous step is used to build the next iterate, accelerated
methods are multistep methods, namely they take into account previous iterates to
improve the convergence. The most popular accelerated multistep method is due to
Nesterov and is also known as Fast Iterative Soft Thresholding Algorithm (FISTA).
We consider the same setting of the previous sections.

Algorithm 2 (Accelerated proximal gradient method) Let 0 < γ ≤ 1/L and let
(tk)k∈N ∈ R

N be such that t0 = 1, tk ≥ 1, and for every integer k ≥ 1, t2k − tk ≤ t2k−1.
Let x0 = y0 ∈ X and define

for k = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk+1 = proxγ g(yk − γ∇ f (yk))

βk+1 = tk − 1

tk+1
yk+1 = xk+1 + βk+1(xk+1 − xk).

(72)
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3.6.1 Dynamical Systems Interpretation

One of the crucial observations that lead to a whole stream of literature and allowed
to give a physical interpretation of this kind of algorithms is the link of accelerated
algorithms with the trajectories of a second-order continuous dynamical system.

Let us consider a heavy ball of mass m in the potential field ∇ f + ∂g under the
force of friction, or “viscosity" controlled by a function p(t) > 0. The motion x(t)
of the heavy ball is described by the following second-order differential inclusion:

mẍ ∈ −∇ f (x(t))− ∂g(x(t))− p(t)ẋ(t) (73)

Intuitively, ignoring existence issues, the heavy ball reaches the minimizer of f + g
for t →+∞, due to the loss of energy caused by the friction. In addition, the friction
avoids the zig-zagging effect, which is one of the causes that slows down gradient
type methods. We consider a scenario where the viscosity coefficient is of the form
p(t) = α/t which turned out to be crucial in the achievement of accelerated rates:

0 ∈ ẍ + α

t
ẋ(t)+∇ f (x(t))+ ∂g(x(t)). (74)

We next show that Algorithm 2 can be seen as a discretization of (74). To this aim,
we discretize implicitly with respect to the nonsmooth function g and explicitly with
respect to the smooth one f . Let h > 0 be a fixed time step, and set tk = (τ0 + k)h,
xk = x(tk). The suggested implicit/explicit discretization strategy reads as

1

h2
(xk+1 − 2xk + xk−1)+ α

(τ0 + k)h2
(xk − xk−1)+ ∂g(xk+1)+∇ f (yk) � 0,

where yk will be suitably chosen as a linear combination of xk and xk−1. Rearranging
the terms in 3.6.1 we derive

xk+1 + h2∂g(xk+1) � xk +
(

1− α

τ0 + k

)

(xk − xk−1)− h2∇ f (yk).

A choice of yk classically made in the literature is

yk = xk +
(

1− α

τ0 + k

)

(xk − xk−1).

Recalling the definition of proximal operator, and setting γ = h2 we can rewrite
3.6.1 as {

yk = xk +
(
1− α

τ0+k

)
(xk − xk−1)

xk+1 = proxγ g(yk − γ∇ f (yk)),

which is an instance of Algorithm 2 for a specific choice of parameters tk’s (see next
section).
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3.6.2 Convergence Analysis

We start with few results concerning the sequence of the parameters tk’s.

Proposition 64 Suppose that t0 = 1 and for every integer k ≥ 1

tk ≥ 0 and t2k − tk − t2k−1 = −b − ctk (75)

for some c ∈ [0, 1 [ and b ∈ [0, 1− c]. Then condition (75) is equivalent to

tk = 1− c

2
+

√(1− c

2

)2 + t2k−1 − b. (76)

Moreover, the following hold.

(i) For every integer k ≥ 1, 1 ≤ tk−1 ≤ tk ≤ 1− c + tk−1.
(ii) Suppose that 2

√
b ≤ 1− c. Then, for every integer k ≥ 1, (1− c)/2+ tk−1 ≤ tk .

Hence k(1− c)/2 ≤ tk − 1 ≤ k(1− c).

Proof The discriminant of the quadratic equation in (75) (in the unknown tk) is�k =
(1− c)2 + 4(t2k−1 − b). Then it is clear that if tk−1 ≥ 1, then �k > 0, the positive

solution of (75) is (76) and tk ≥ (1− c)/2+√
(1− c)2/4+ 1− b ≥ 1, since b ≤

1− c. Vice versa, if tk−1 ≥ 1, then (76)⇒ (75). In the end, if tk−1 ≥ 1, then (76) and
(75) are equivalent and in such case tk ≥ 1. So, the first part of the statement follows
by an induction argument since t0 = 1.

(i): We derive from (75) that t2k − t2k−1 = −b + (1− c)tk ≥ −b + 1− c ≥ 0,
hence tk−1 ≤ tk . Moreover, it follows from (76) that

(

tk − 1− c

2

)2

≤
(
1− c

2

)2

+ t2k−1 ≤
(
1− c

2
+ tk−1

)2

. (77)

Thus, tk − (1− c)/2 ≤ (1− c)/2+ tk−1 and hence tk ≤ 1− c + tk−1. The state-
ment follows.

(ii): Suppose that 1− c ≥ 2
√

b. Then (1− c)2/4− b ≥ 0 and hence, we have

tk = (1− c)/2+
√

(1− c)2/4− b + t2k−1 ≥ (1− c)/2+ tk−1 and the first part of
the statement follows. Next, summing the inequalities (1− c)/2 ≤ ti − ti−1 ≤ (1−
c) from i = 1 to i = k, we have k(1− c)/2 ≤ tk − 1 ≤ k(1− c). �

Remark 65 The following are two special cases of (75).

tk = 1

2
+

√
1

4
+ t2k−1 and tk = k + a

a
(with) a ≥ 2, (78)

which are obtained from (75) with (b, c) = (0, 0) and (b, c) = (1/a2, (a − 2)/a)

respectively. Note that in both cases 1− c ≥ 2
√

b (and in the first case, in virtue of
Proposition 64(ii), we have tk ≥ (k + 2)/2).
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Remark 66 Suppose that the tk’s satisfy (75) with 2
√

b ≤ 1− c. Then, since t2k −
(1− c)tk ≤ t2k−1, we have, for k ≥ 2,

t2k
t2k−1

≤ t2k
tk(tk − (1− c))

= 1+ 1− c

tk − (1− c)
≤ 1+ 1− c

tk−2
≤ 2− c, (79)

where in the second last inequality we used that tk ≥ (1− c)/2+ tk−1 ≥ 1− c +
tk−2. Note that, in view of Proposition 64(i), t1 ≤ 2− c. Therefore, since 2− c > 1,
we have

(∀ k ∈ N, k ≥ 1) tk ≤ (2− c)tk−1. (80)

Lemma 67 Let y ∈ X and set x = proxγ g(y − γ∇ f (y)), with γ ≤ 1/L. Then

(∀ z ∈ X) F(x)+ ‖x − z‖2
2γ

≤ F(z)+ ‖z − y‖2
2γ

.

Proof It follows from the definition of the proximity operator that

x = argminz∈X

{
γ g(z)+ 1

2
‖y − z − γ∇ f (y)‖2

}

= argminz∈X

{
g(z)+ 1

2γ
‖y − z‖2 + 〈z − y,∇ f (y)〉

}
.

Therefore, since z �→ g(z)+ 1
2γ ‖y − z‖2 + 〈z − y,∇ f (y)〉 is γ−1-strongly convex

and x is its minimizer, it follows from (10) that

1

2γ
‖z − x‖2 ≤ g(z)+ 1

2γ
‖y − z‖2 + 〈z − y,∇ f (y)〉

−
(

g(x)+ 1

2γ
‖y − x‖2 + 〈x − y,∇ f (y)〉

)

hence

g(x)+ 1

2γ
‖y − x‖2 + 〈x − y,∇ f (y)〉

︸ ︷︷ ︸
(a)

+ 1

2γ
‖z − x‖2

≤ g(z)+ 1

2γ
‖y − z‖2 + 〈z − y,∇ f (y)〉 .

Now, since f is L-Lipschitz continuous and γ ≤ 1/L , it follows from Theorem 1
that

f (x)− f (y) ≤ 〈x − y,∇ f (y)〉 + L

2
‖x − y‖2 ≤ 〈x − y,∇ f (y)〉 + 1

2γ
‖x − y‖2

︸ ︷︷ ︸
(a)

.
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Therefore,

f (x)+ g(x)+ 1

2γ
‖z − x‖2 ≤ f (y)+ g(z)+ 1

2γ
‖y − z‖2 + 〈z − y,∇ f (y)〉

≤ f (z)+ g(z)+ 1

2γ
‖y − z‖2,

where in the last inequality we used that f (y)+ 〈z − y,∇ f (y)〉 ≤ f (z), due to the
convexity of f . �

We now present the first of the two results of the section, which concerns the
convergence in value for Algorithm 2. Next, we will address the convergence of the
iterates under slightly stronger assumptions on the sequence of parameters tk’s.

Theorem 68 Let f : X → R be convex and differentiable with L-Lipschitz continu-
ous gradient and let g ∈ �0(X). Set F = f + g and suppose that F has a minimizer.
Define (xk)k∈N and (tk)k∈N according to Algorithm 2. Then

(∀ k ∈ N, k ≥ 1) F(xk)−min F ≤ dist(x0, argmin F)2

2γ t2k−1
.

Moreover, if the parameters tk’s are defined according to Proposition 64 with 1− c ≥
2
√

b, then F(xk)−min F = O(1/k2).

Proof It follows from the definition of yk+1 in Algorithm 2 that, for every k ∈ N,

yk+1 =
(

1− 1

tk+1

)

xk+1 + 1

tk+1

(
xk + tk(xk+1 − xk)︸ ︷︷ ︸

vk+1

)

Therefore, for every k ∈ N,

yk =
(

1− 1

tk

)

xk + 1

tk
vk (v0 := y0) (81)

Moreover, it follows from the definition of vk+1 that vk+1 − xk = tk(xk+1 − xk) and
hence

xk+1 = xk + 1

tk
(vk+1 − xk) =

(

1− 1

tk

)

xk + 1

tk
vk+1. (82)

Also, by Lemma 67, with y = yk and x = xk+1, we have

(∀ z ∈ X) F(xk+1)+ ‖xk+1 − z‖2
2γ

≤ F(z)+ ‖z − yk‖2
2γ

. (83)
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Now, let x∗ ∈ argmin F and set

z =
(

1− 1

tk

)

xk + 1

tk
x∗.

Then, we derive from (81) and (151) that

xk+1 − z = 1

tk
(vk+1 − x∗) and yk − z = 1

tk
(vk − x∗).

Therefore, it follows from (83) and the convexity of F (considering that z is a convex
combination of xk and x∗) that

F(xk+1)+ ‖vk+1 − x∗‖2
2γ t2k

≤ F(z)+ ‖vk − x∗‖2
2γ t2k

≤
(

1− 1

tk

)

F(xk)+ 1

tk
F(x∗)+ ‖vk − x∗‖2

2γ t2k
.

Summing −F(x∗) to both terms of the above inequality and setting rk = F(xk)−
F(x∗), we get

rk+1 + ‖vk+1 − x∗‖2
2γ t2k

≤
(

1− 1

tk

)

rk + ‖vk − x∗‖2
2γ t2k

and hence, multiplying by t2k

t2k rk+1 + ‖vk+1 − x∗‖2
2γ

≤ tk(tk − 1)rk + ‖vk − x∗‖2
2γ

. (84)

Nowwe set, for every integer k ≥ 1,Ek = t2k−1rk + ‖vk − x∗‖2/(2γ ). Then, by using
t2k − tk − t2k−1 ≤ −ctk , we have

(∀ k ∈ N, k ≥ 1) Ek+1 ≤ tk(tk − 1)rk + ‖vk − x∗‖2
2γ

≤ −ctkrk + Ek . (85)

Therefore, Ek is decreasing and hence, using (84) with k = 0, we have, for all k ≥ 1

t2k−1rk ≤ Ek ≤ E1 = r1 + ‖v1 − x∗‖2
2γ

≤ ‖v0 − x∗‖2
2γ

= ‖x0 − x∗‖2
2γ

.

Since x∗ is an arbitrary element of argmin F , the first part of the statement follows.
The second part of the statement follows from Proposition 64(ii) and the fact that, for
every integer k ≥ 1, 2tk−1 ≥ 2+ (k − 1)(1− c) = k(1− c)+ 1+ c ≥ k(1− c).�
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Remark 69 The quantity Ek introduced in the proof of Theorem 68 can be seen as
a discretization of a Lyapunov function of the continuous dynamical system (74).

We now start the analysis of the convergence of the iterates.

Proposition 70 Under the assumptions of Theorem 68 suppose additionally that for
every integer k ∈ N,

tk ≥ 1 and t2k − tk − t2k−1 ≤ −ctk (86)

for some c ∈ ]0, 1[. Then the following hold.

(i)
∑∞

k=0 tk(F(xk)− inf F) < +∞.
(ii)

∑∞
k=1 tk‖xk+1 − xk‖2 < +∞.

Proof Let rk and Ek be defined as in the proof of Theorem 68. It follows from (85)
that, for every integer k ≥ 1,

ctkrk ≤ Ek − Ek+1. (87)

Hence c
∑∞

k=1 tkrk ≤ E1 ≤ ‖x0 − x∗‖2/(2γ ). Concerning the second statement, it
follows from (83) with z = xk , that

F(xk+1)+ ‖xk+1 − xk‖2
2γ

≤ F(xk)+ ‖xk − yk‖2
2γ

. (88)

Subtracting − inf F and recalling the definition of yk in Algorithm 2, we get

rk+1 + ‖xk+1 − xk‖2
2γ

≤ rk + (tk−1 − 1)2

t2k

‖xk − xk−1‖2
2γ

, (89)

which, multiplied by t2k yields

1

2γ

(
t2k ‖xk+1 − xk‖2 − (tk−1 − 1)2‖xk − xk−1‖2

)
≤ t2k (rk − rk−1).

Since (tk−1 − 1)2 = t2k−1 + 1− 2tk−1, we have

1

2γ

(
t2k ‖xk+1 − xk‖2 − t2k−1‖xk − xk−1‖2 + (2tk−1 − 1)‖xk − xk−1‖2

)

≤ t2k−1rk − t2k rk+1 + (t2k − t2k−1)rk . (90)

Summing the above inequality from k = 1 to k = K , and recalling that t0 = 1, we
have
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1

2γ

(
t2K‖xK+1 − xK‖2 +

K∑

k=2
(2tk−1 − 1)‖xk − xk−1‖2

)

≤ r1 − t2K rK+1 +
K∑

k=1
(t2k − t2k−1)rk

≤ r1 + (1− c)
K∑

k=1
tkrk,

where we used the fact that, by 70, we have t2k − t2k−1 ≤ (1− c)tk . Therefore, since
tk−1 ≤ 2tk−1 − 1 (being tk−1 ≥ 1),

K∑

k=2
tk−1‖xk − xk−1‖2 ≤

K∑

k=2
(2tk−1 − 1)‖xk − xk−1‖2 ≤ 2γ

(
r1 + (1− c)

K∑

k=1
tkrk

)

(91)
and the statement follows from (i). �

We need two additional results concerning the convergence of numerical
sequences.

Lemma 71 Let (ak)k∈N, (εk)k∈N be sequences in R+ such that
∑

k∈N εk < +∞ and

(∀ k ∈ N) ak+1 ≤ ak + εk . (92)

Then (ak)k∈N is convergent.

Proof Define uk = ak +∑+∞
i=k εi . Then it follows from (92) that uk+1 = ak+1 +∑+∞

i=k+1 εi ≤ ak +∑+∞
i=k εi = uk , so that (uk)k∈N is decreasing andhence convergent.

Then, by definition of uk , ak = uk −∑+∞
i=k εi and hence (ak)k∈N is convergent too.

�

Lemma 72 Suppose that the sequence of parameters tk’s satisfy equation (75) in
Proposition 64 with 2

√
b ≤ 1− c. Let (ak)k≥1 and (bk)k≥1 be two positive sequences

such that

(∀ k ∈ N, k ≥ 1) ak+1 ≤ tk−1 − 1

tk
ak + bk, (93)

If (tkbk)k∈≥1 is summable, then (ak)k∈≥1 is summable.

Proof Let k ∈ N with k ≥ 1. Multiplying equation (93) by t2k and using the relation
t2k − tk ≤ t2k−1 and the fact that tk−1 ≤ tk , we have

t2k ak+1 ≤ tk(tk−1 − 1)ak + t2k bk ≤ tk(tk − 1)ak + t2k bk ≤ t2k−1ak + t2k bk . (94)
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Hence

t2k−1ak − a1 =
k−1∑

i=1
(t2i ai+1 − t2i−1ai ) ≤

k−1∑

i=1
t2i bi . (95)

Then, dividing by t2k−1, we obtain

ak ≤ a1

t2k−1
+ 1

t2k−1

k−1∑

i=1
t2i bi (96)

and hence

k∑

j=1
a j ≤

k∑

j=1

a1

t2j−1
+

k∑

j=1

j−1∑

i=1

1

t2j−1
t2i bi

=
k∑

j=1

a1

t2j−1
+

k−1∑

i=1

k∑

j=i+1

1

t2j−1
t2i bi . (97)

Now we analyze the term
∑k

j=i+1 1/t2j−1. Let j ∈ N with j ≥ 2. Since, by assump-
tion, t j (t j − (1− c)) ≤ t2j−1 and t j ≥ (1− c)/2+ t j−1 ≥ (1− c)+ t j−2, we have

1

t2j−1
≤ 1

t j (t j − (1− c))

= 1

1− c

(
1

t j − (1− c)
− 1

t j

)

≤ 1

1− c

(
1

t j−2
− 1

t j−1
+ 1

t j−1
− 1

t j

)

.

Hence, for i ≥ 1 and k ≥ 2,

k∑

j=i+1

1

t2j−1
≤ 1

1− c

[ k∑

j=i+1

(
1

t j−2
− 1

t j−1

)

+
k∑

j=i+1

(
1

t j−1
− 1

t j

)]

= 1

1− c

(
1

ti−1
− 1

tk−1
+ 1

ti
− 1

tk

)

≤ 3− c

1− c

1

ti
,

where in the last inequality we used that t j ≤ (2− c)t j−1 (see Remark 66). In the
end, it follows from (97) that
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k∑

j=1
a j ≤

k∑

j=1

a1

t2j−1
+ 3− c

1− c

k−1∑

i=1
ti bi

≤ a1 + a1(3− c)

1− c

1

t1
+ 3− c

1− c

k−1∑

i=1
ti bi .

The statement follows. �

We are finally ready for the second main result of this section which addresses
the convergence of the iterates of Algorithm 2.

Theorem 73 Under the assumptions of Theorem 68, suppose additionally that the
parameters tk’s satisfy the equation (75) with c > 0. Then xk ⇀ x∗ for some x∗ ∈
argmin F.

Proof We invoke Opial’s Lemma 29. We first prove that weak cluster points of
(xk)k∈N belong to argmin F . We note that Theorem 68 yields that F(xk)→ inf F .
Let (xkn )n∈N be a weakly convergent subsequence with xkn ⇀ x∗. Since F is weakly
lower semicontinuous, we have F(x∗) ≤ lim infn F(xkn ) = limk F(xk) = inf F and
hence x∗ ∈ argmin F . We now prove that for every x∗ ∈ argmin F , the sequence
(‖xk − x∗‖)k∈N is convergent. Let x∗ ∈ argmin F and set hk = ‖xk − x∗‖2/2 and
δk = (1/2)‖xk − xk+1‖2. Then, since‖xk − x∗‖2 = ‖xk − xk+1‖2 + ‖xk+1 − x∗‖2 +
2 〈xk − xk+1, xk+1 − x∗〉 and yk − xk = βk(xk − xk−1), we have

hk − hk+1 = δk + 〈xk − xk+1, xk+1 − x∗〉 (98)

= δk − βk 〈xk − xk−1, xk+1 − x∗〉 + 〈yk − xk+1, xk+1 − x∗〉 . (99)

Now we note that, by definition of xk+1 and the fact that x∗ ∈ argmin F , we have

yk − xk+1 − γ∇ f (yk) ∈ ∂γ g(xk+1) and − γ∇ f (x∗) ∈ ∂γ g(x∗).

Hence, using the monotonicity of ∂g (see Sect. 2.4), we have

〈xk+1 − x∗, yk − xk+1 − γ∇ f (yk)+ γ∇ f (x∗)〉 ≥ 0

which yields, in virtue of Fact 1(iv), that

〈xk+1 − x∗, yk − xk+1〉 ≥ γ 〈xk+1 − x∗,∇ f (yk)− ∇ f (x∗)〉
= γ 〈yk − x∗,∇ f (yk)− ∇ f (x∗)〉 + γ 〈xk+1 − yk ,∇ f (yk)− ∇ f (x∗)〉
≥ γ

L
‖∇ f (yk)− ∇ f (x∗)‖2 − γ ‖xk+1 − yk‖‖∇ f (yk)− ∇ f (x∗)‖

≥ −γ L

4
‖xk+1 − yk‖2,

where in the last inequalityweminorized the functionα �→ (1/L)α2 − ‖xk+1 − yk‖α
with −‖xk+1 − yk‖2L/4. Hence it follows from (99) that
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hk − hk+1 ≥ δk − βk 〈xk − xk−1, xk+1 − x∗〉 − γ L

4
‖xk+1 − yk‖2. (100)

Now, (98), written for k − 1, yields hk−1 − hk = δk−1 + 〈xk−1 − xk, xk − x∗〉 and
hence, we have

hk+1 − hk − βk(hk − hk−1) ≤ −δk + βk
〈
xk − xk−1, xk+1 − x∗

〉+ γ L

4
‖xk+1 − yk‖2

+ βkδk−1 − βk
〈
xk − xk−1, xk − x∗

〉

= −δk + γ L

4
‖xk+1 − yk‖2

+ βkδk−1 + βk
〈
xk − xk−1, xk+1 − xk

〉
).

Now, using the definition of yk , we have

1

2
‖xk+1 − yk‖2 = 1

2
‖xk+1 − xk − βk(xk − xk−1)‖2

= 1

2
‖xk+1 − xk‖2 + β2

k

2
‖xk − xk−1‖2 − βk 〈xk+1 − xk, xk − xk−1〉

= δk + β2
k δk−1 − βk 〈xk+1 − xk, xk − xk−1〉 .

Therefore,

hk+1 − hk − βk(hk − hk−1) ≤ −1

2

(

1− γ L

2

)

‖xk+1 − yk‖2 + (βk + β2
k )δk−1.

(101)
Since γ L < 2 and βk + β2

k ≤ 2 we finally have

hk+1 − hk ≤ βk(hk − hk−1)+ 2δk−1, (102)

which yields
(hk+1 − hk)+ ≤ βk(hk − hk−1)+ + 2δk−1. (103)

Since tkδk−1 ≤ (2− c)tk−1δk−1 and tk−1δk−1 is summable in virtue of Proposi-
tion 70(ii), Lemma 72 yields that ((hk+1 − hk)+)k∈N is summable. Finally, since

hk+1 ≤ hk + (hk+1 − hk)+ (104)

and hk is positive, the statement follows from Lemma 71. �

Remark 74 In order to have convergence of the iterates in Algorithm 2, possible
choices of the parameters tk’s are (76) with c > 0 and b = 0 (which looks as a
perturbed version of the classical choice given in the first of (78)) and, recalling
Remark 18, the second in (78) with a > 2.
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3.7 Bibliographical Notes

Section3.1. Fixed-point iterations, also known as the method of successive approxi-
mations, was developed by Picard, starting from ideas by Cauchy and Liouville. For
the case of Banach spaces, Theorem 19 was first formulated and proved by Banach
in his famous dissertation from 1922. Later and independently it was rediscovered
by Caccioppoli in 1931. Since then, numerous generalizations or extensions have
been obtained which deal with more general classes of operators and iterations.
Krasnosel’skiı̆–Mann iteration, as presented in (33), were first studied in [63] with
λ = 1/2. For generalλ ∈ ]0, 1[, thesemappings have been studied by Schaefer [104],
Browder and Petryshyn [25, 26], and Opial [85]. Mann in [70] considered the more
general case of this iteration where λ may vary. Later this case was also studied in
[43, 54]. The concept of averaged operator was introduced in [9]. Later, the proper-
ties of compositions and convex combinations of averaged nonexpansive operators
(Proposition 27) have been applied to the design of new fixed-point algorithms in
[38].

Section 3.2. The proximity operator was introduced by Moreau in 1962 [74] and
further investigated in [75, 76] as a generalization of the notion of a convex projection
operator. Later was considered within the proximal point algorithm in [97]. Since
then, it appears in most of the splitting algorithms used in practice [34].

Sections 3.3–3.4. The proximal gradient algorithm finds its roots in the projected
gradient method [53, 64] and was originally devised in [72] in the more general
context of monotone operators. Weak convergence of the iterates were proved in [51,
72]. An error tolerant version, with variable stepsize is presented in [39], whereas
worst-case rate of convergence in values was studied in [12, 24]. The proximal
gradient algorithm is also a generalization of the iterative soft thresholding algorithm,
first proposed in [41].

Section 3.5. The idea of imposing geometric conditions on the function to be
optimized to derive improved convergence rates of first-order methods is old, and
was already used in [27, 91, 97]. A systematic study of the class of functions sat-
isfying favorable geometric conditions is more recent and is the result of a series
of papers, among which we mention [14, 16, 17]. The fact that convex piecewise
polynomial functions are p-Łojasiewicz on sublevel sets is due to [66, Corollary
3.6], in agreement with [27, Corollary 3.6], for the special case of piecewise linear
convex functions and with [65, Theorem 2.7] for convex piecewise quadratic func-
tions. The fact that the lasso problem is 2-Łojasiewicz has been observed in [17,
Sect. 3.2.1]. Kurdyka–Łojiasiewicz inequality is a powerful tool to analyze conver-
gence of first-order splitting algorithms as shown in a whole line of work [3–5, 17,
18, 50, 69] ranging from the analysis of the proximal point algorithm to a whole
class of descent gradient based techniques. These results had an impressive impact
on the machine learning community, see e.g., [60]. Theorem 62 is a special case of
[52, Theorem 4.1].

Section3.6. The idea of adding an inertial term in 74 to mitigate zig-zagging was
due to Polyak, and gave raise to the heavy ball method [93] (see also [1]), which
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is optimal in the sense of Nemirovski and Yudin [81] for the class of convex twice
continuously differentiable functions. A simple, but not very intuitive, modification
of Polyak’s method was due to Nesterov [83], and is the famous accelerated gradient
method for convex smooth objective functions [82, 83]. The acceleration technique
has been first extended to the proximal point algorithm by Güler [55] and finally
extended to the composite optimization problems in [12]. Various modifications
of these accelerated algorithms are nowadays the methods of choice to optimize
objective functions in a large scale scenario, even in a nonconvex setting: despite
convergence issues, the ADAM algorithm is probably the most used in the deep
learning context [62]. The first papers studying accelerated algorithms were focused
on convergence of the objective function values. Convergence of the iterates has been
established much more recently, starting from the paper by Chambolle and Dossal
[29] and further devoloped later. Only many years later its introduction, Nesterov
accelerated method has been shown to be a specific discretization of the heavy ball
system introduced by Polyak with a vanishing inertial coefficient [111], and this key
observation started a very active research activity on the subject (see [7], [6] and
references therein).

4 Stochastic Minimization Algorithms

In this section, we analyze stochastic versions of the algorithms previously presented.
We will consider problems of type

minimize
x∈X

f (x)+ g(x), (105)

where f : X → R is a convex function and g : X → ]−∞,+∞] is a proper con-
vex and lower semicontinuous function, and depending on the hypotheses only a
stochastic subgradient/gradient of f will be available. One of the main examples for
such situation is when f is given in the form of an expectation, that is,

f (x) = E[ϕ(x, ζ )], (106)

which corresponds to the setting of stochastic optimization. In this case, a stochastic
subgradient/gradient of f is obtained through a subgradient/gradient of ϕ(x, ζ ).
Finally, in general we will assume that the proximity operator of g is given explicitly.
However, in the last section we will consider a situation in which the proximity
operator of g is actually given through a stochastic oracle.

We start by recalling few facts on conditional expectation.

Fact 75 The following hold.

(i) Let ζ be a random variable with value in the measurable space Z. Then the
operator E[· | ζ ] : L1 → L1 is linear and monotone increasing.
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(ii) Let ξ be a real-valued summable random variable and ζ be a random variable
with value in a measurable spaceZ. Then, E[E[ξ, | ζ ]] = E[ξ ].

(iii) Let ζ be a random variable with value in the measurable space Z and let
ϕ : Z→ R be a measurable real function such that E[|ϕ(ζ )|] < +∞. Then
E[ϕ(ζ ) | ζ ] = ϕ(ζ ).

(iv) Let X be a separable Hilbert space and let ζ1 and ζ2 be two X -valued random
vectors such that E[|〈ζ1, ζ2〉|] < +∞ and E[‖ζ2‖] < +∞. Then
E[〈ζ1, ζ2〉 | ζ1] = 〈ζ1,E[ζ2 | ζ1]〉.

(v) Let ζ1 and ζ2 be two independent random variables with values in the mea-
surable spacesZ1 andZ2 respectively. Let ϕ : Z1 ×Z2 → R be measurable
and such thatE[|ϕ(ζ1, ζ2)|] < +∞. ThenE[ϕ(ζ1, ζ2) | ζ1] = ψ(ζ1), where, for
every z1 ∈ Z1, ψ(z1) = E[ϕ(z1, ζ2)].

4.1 The Stochastic Subgradient Method

Here we take g in (105) as an indicator function of a closed convex set. Thus, we
assume that C ⊂ X is a nonempty closed and convex set and f : X → R is a convex
function and we want to solve the following problem

minimize
x∈C

f (x), (107)

where the projection onto C can be computed explicitly but, only a stochastic sub-
gradient of f is available. The algorithm is detailed below.

Algorithm 3 (The stochastic subgradient projection method) Let x0 ∈ X and
(γk)k∈N be a sequence in R++. Then,

for k = 0, 1, . . .⌊
ûk is a summable X-valued random vector s.t. E[ûk | xk] ∈ ∂ f (xk),

xk+1 = PC(xk − γk ûk).

(108)

Moreover, define, for every k ∈ N,

fk = min
0≤i≤k

E[ f (xi )], x̄k =
( k∑

i=0
γi

)−1 k∑

i=0
γi xi .

Remark 76 In addition to the sequence xk , Algorithm3 requires keeping track of the
sequences �k :=∑k

i=0 γi and x̄k , which can updated recursively, as �k+1 = �k + γk

and x̄k+1 = �−1k+1(�k x̄k + γk+1xk+1).

The following theorem gives the main convergence results about the algorithm.
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Theorem 77 Let C ⊂ X be a nonempty closed convex set and let f : X → R be
convex. Let (xk)k∈N, ( fk)k∈N, and (x̄k)k∈N be the sequences generated by Algorithm
3. We make the following additional assumption

A1 There exists B ≥ 0, such that, for every k ∈ N, E[‖ûk‖2] ≤ B2.

Then, for every k ∈ N, xk is square summable in norm and f (xk) is summable and
the following statements hold.

(i) Suppose that γk → 0 and
∑

k∈N γk = +∞. Then lim infk E[ f (xk)] =
limk fk = infC f .

(ii) Let x ∈ C and let m, k ∈ N with m ≤ k. Then

k∑

j=m

γ j
∑k

i=m γi

E[ f (x j )] − f (x) ≤ E[‖xm − x‖2]
2

1
∑k

i=m γi

+ B2

2

∑k
j=m γ 2

i
∑k

i=m γi

.

(109)
(iii) Suppose that

∑
k∈N γk = +∞ and

∑k
i=0 γ 2

i /
∑k

i=0 γi → 0. Then fk → infC f
and E[ f (x̄k)] → infC f .

Moreover, if argminC f �= ∅, the right hand side of (109), with m = 0 and
x ∈ argminC f , yields a rate of convergence for both fk −minC f and E[ f (x̄k)] −
minC f .

Proof Let k ∈ N and x ∈ C and set uk = E[ûk | xk]. First of all, note that assumption
A1 actually implies that ‖ûk‖ is square summable and hence summable. Then we
prove the following inequality

2γk〈xk − x, ûk〉 ≤ ‖xk − x‖2 − ‖xk+1 − x‖2 + γ 2
k ‖ûk‖2. (110)

Indeed setting yk = xk − γk ûk and using the relation 2〈a, b〉 = ‖a‖2 + ‖b‖2 −
‖a − b‖2, we have

2γk〈xk − x, ûk〉 = 2〈xk − x, xk − yk〉
= ‖xk − x‖2 + ‖xk − yk‖2 − ‖yk − x‖2. (111)

Now, since PC is nonexpansive, we have ‖xk+1 − x‖ = ‖PC (yk)− PC(x)‖ ≤
‖yk − x‖ and hence (110) follows.

We prove by induction that ‖xk − x‖ is square summable for every k ∈ N. The
statement is true for k = 0. Suppose that ‖xk − x‖ is square summable for some
k ∈ N. Then it follows from (110) that

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2γk‖xk − x‖‖ûk‖ + γ 2
k ‖ûk‖2.

The right-hand side is summable, and hence ‖xk+1 − x‖ is square summable. So, all
the terms in (110) are summable. Therefore, taking the conditional expectation given
xk of both terms of inequality (110) and using the fact that uk = E[ûk | xk] ∈ ∂ f (xk)

and the properties in Fact 75, we have almost surely
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2γk( f (xk)− f (x)) ≤ 2γk〈xk − x,E[ûk | xk]〉
≤ ‖xk − x‖2 − E[‖xk+1 − x‖2 | xk] + γ 2

k E[‖ûk‖2 | xk]. (112)

Now, being f subdifferentiable, there exists (a, β) ∈ H × R, a �= 0, such that
〈·, a〉 + β ≤ f , hence 〈xk, a〉 + β ≤ f (xk). Therefore, we have ( f (xk))− ≤ ‖xk‖
‖a‖ + |β|, which together with (112) yields the summability of f (xk). Taking the
expectation in (112) and recalling that E[‖ûk‖2] ≤ B2, we get

2γk(E[ f (xk)] − f (x)) ≤ E[‖xk − x‖2] − E[‖xk+1 − x‖2] + γ 2
k B2. (113)

(i): Since ( fk)k∈N is decreasing, we have infC f ≤ limk fk = infk fk = infk

E[ f (xk)] ≤ lim infk E[ f (xk)]. Therefore it is sufficient to prove that
lim infk E[ f (xk)] ≤ infC f . Suppose that x ∈ C is such that f (x) < lim infk

E[ f (xk)] = supn infk≥n E[ f (xk)]. Then there exists n ∈ N such that f (x) < infk≥n

E[ f (xk)]. Set ρ = infk≥n E[ f (xk)] − f (x) > 0. Then, (113) yields

(∀ k ≥ n) γkρ ≤ E[‖xk − x‖2] − E[‖xk+1 − x‖2] − γk
(
ρ − γk B2).

Now, since γk → 0, there exists m ∈ N such that for every integer k ≥ m, we have
ρ − γk B2 ≥ 0 and hence, setting ν := max{n, m}, we have

ρ
∑

k≥ν

γk ≤ E[‖xν − x‖2] < +∞.

This contradicts the assumption
∑

k∈N γk = +∞. Therefore, we showed that there
is no x ∈ C such that f (x) < lim infk E[ f (xk)], that is, lim infk E[ f (xk)] ≤ infC f .

(ii): It follows from (113) that

(∀ i ∈ N) γi (E[ f (xi )] − f (x)) ≤ 1

2

(
E[‖xi − x‖2] − E[‖xi+1 − x‖2)+ B2

2
γ 2

i .

(114)
So, summing from m to k, we have

k∑

i=m

γi (E[ f (xi )] − f (x)) ≤ 1

2
E[‖xm − x‖2] + B2

2

k∑

i=m

γ 2
i .

Dividing the above inequality by
∑k

i=m γi yields (109).
(iii): We first note that, since f is convex and x̄k is a convex combination of

the xi ’s, with coefficients ηi = γi/
∑k

j=0 γ j , with 0 ≤ i ≤ k, we have E[ f (x̄k)] ≤
∑k

i=0 ηiE[ f (xi )]. Moreover, fk =∑k
i=0 ηi fk ≤∑k

i=0 ηiE[ f (xi )]. Therefore,

(∀ k ∈ N) hk := max{ fk,E[ f (x̄k)]} ≤
( k∑

i=0
γi

)−1 k∑

i=0
γiE[ f (xi )]. (115)
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Let x ∈ C . Then it follows from (109) and (115) that lim supk hk ≤ f (x). Since x is
arbitrary in C , we have lim supk hk ≤ infC f . Moreover, clearly we have infC f ≤
lim infk hk . Therefore, hk → infC f . Since infC f ≤ fk ≤ hk and infC f ≤
E[ f (x̄k)] ≤ hk , the statement follows. �

Lemma 78 Let m, k ∈ N with 2 ≤ m < k. Then, the following inequalities hold.

(i) log
( k

m

)
+ 1

2

( 1

m
+ 1

k

)
≤

k∑

i=m

1

i
≤ log

( k

m − 1

)

(ii) 2(
√

k −√m)+ 1

2

(
1√
m
+ 1√

k

)

≤
k∑

i=m

1√
i
.

(iii)
+∞∑

i=0

1

i2
= π

6
.

Lemma 79 Let a ∈ R
n++ and α, β ∈ R++. Then

min
γ∈Rn++

α

2a γ
+ β

2

‖γ ‖2
a γ

=
√

αβ

‖a‖2

and the minimum is achieved at γ =
(√

α/β‖a‖2
)

a.

Proof Define ϕ : R× R
n → ]−∞,+∞ ] such that

ϕ(t, γ ) =
⎧
⎨

⎩

α + β‖γ ‖2
2t

if t > 0 and γ ∈ R
n+

+∞ otherwise.

Clearly ϕ is closed, convex, and differentiable in R++× R
n++, and, for all (t, γ )∈

R++× R
n++,

∇ϕ(t, γ ) =
(

− α + β‖γ ‖2
2t2

,
β

t
γ

)

. (116)

Then,

inf
γ∈Rn++

α

2a γ
+ β

2

‖γ ‖2
a γ

= inf
t>0

inf
γ∈Rn++
a γ=t

α + β‖γ ‖2
2t

= inf
(t,γ )∈R×Rn

a γ=t

ϕ(t, γ ),

and the right hand side can be written as

inf
(t,γ )∈R×Rn

ϕ(t, γ )+ ι{0}
(
(−1, a) (t, γ )

)
.
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So, Fermat’s rule yields

0 ∈ ∇ϕ(t, γ )+ A∗∂ι{0}(A(t, γ )),

where A : R
n+1 → R is the linear form A = (−1, a) · and A∗ is the map s �→

s(−1, a). Therefore, we have

(−1, a) (t, γ ) = 0 and − ∇ϕ(t, γ ) ∈ R(−1, a),

which, in view of (116), implies that there exists s ∈ R such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α + β‖γ ‖2
2t2

= −s

−β

t
γ = sa

a γ = t

Now, it follows from the last two equations above that −β = −βa γ /t = s‖a‖2
and hence ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α + β‖γ ‖2
2t2

= β

‖a‖2
γ = t

‖a‖2 a

a γ = t.

It follows from the second equation above that ‖γ ‖2 = t2/‖a‖2 which, substituted
into the first equation, gives t = √α/β‖a‖. Therefore, finally, we have

γ =
(√

α

β‖a‖2
)

a and ϕ(t, γ ) =
√

αβ

‖a‖2 . �

Corollary 80 Under the same assumptions of Theorem 77, the following hold.

(i) Suppose that argminC f �= ∅ and let D ≥ dist(x0, argminC f ) and k ∈ N. Then,

max{ fk,E[ f (x̄k)]} −min
C

f ≤ D2

2

1
∑k

i=0 γi

+ B2

2

∑k
j=0 γ 2

i
∑k

i=0 γi

. (117)

Moreover, the right hand side of (117) is minimized when, for every i = 0, . . . , k,
γi = D/(B

√
k + 1) and in that case we have

max
{

fk,E[ f (x̄k)]
}−min

C
f ≤ B D√

k + 1
.
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(ii) Let, for every k ∈ N, γk = γ̄ /(k + 1). Then, fk → infC f and E[ f (x̄k)] →
infC f . Moreover, if argminC f �= ∅, we have, for every k ∈ N,

max
{

fk ,E[ f (x̄k )]}−min
C

f ≤
(
dist(x0, argminC f )2

2γ̄
+ πγ̄ B2

12

)
1

log(k + 1)
. (118)

(iii) Let, for every k ∈ N, γk = γ̄ /
√

k + 1. Then, fk → infC f and E[ f (x̄k)] →
infC f . Moreover, if argminC f �= ∅, for every integer k ≥ 2, we have

max
{

fk ,E[ f (x̄k )]}−min
C

f ≤ dist(x0, argminC f )2

2γ̄

1√
k + 1

+ γ̄ B2 log(k + 1)√
k + 1

. (119)

(iv) Let, for every k ∈ N, γk = γ̄ /
√

k + 1 and suppose that C is bounded with diam-
eter D̄ > 0 and that argminC f �= ∅. Set, for every k ∈ N, f̃k = min!k/2"≤i≤k

f (xi ) and x̃k =
(∑k

i=!k/2" γi
)−1 ∑k

i=!k/2" γi xi . Then, for every integer k ≥ 2,

max
{

f̃k,E[ f (x̃k)]
}−min

C
f ≤

(
3D̄2

2γ̄
+ 5γ̄ B2

2

)
1√

k + 1
. (120)

Proof (i): Equation (117) follows from (115) and by minimizing the right hand
side of (109), with m = 0, w.r.t. x ∈ argminC f . Now, it follows from Lemma 79
that the minimum of the right-hand side of (117) is B D/

√
k + 1 and is achieved at

(γi )0≤i≤k ≡ D/(B
√

k + 1). Note that is this case x̄k = (k + 1)−1
∑k

i=0 xi .
(ii): We derive from Lemma 78(i), with m = 1, that

∑k
i=0 γi = γ̄

∑k+1
i=1 (1/ i) ≥

γ̄ log(k + 1). Moreover, we have
∑k

i=0 γ 2
i = γ̄ 2 ∑k+1

i=1 1/ i2 ≤ γ̄ 2π/6. So, the first
part follows from Theorem 77 (iii), while the inequality in (118) follows from (117)
with D = dist(x0, argminC f ).

(iii) Lemma 78(ii), with m = 1, yields
∑k

i=1 1/
√

i ≥ 2(
√

k − 1)+ (1/2)(1+
1/
√

k) ≥ 2
√

k − 3/2. Moreover, 2
√

k − 3/2 ≥ √k for k ≥ 3 and clearly for k ≤ 2,∑k
i=1 1/

√
i ≥ √k. Therefore, for every k ∈ N,

∑k
i=0 γi = γ̄

∑k+1
i=1 1/

√
i ≥ γ̄

√
k + 1.

Moreover, by Lemma 78(i), we have
∑k

i=1 1/ i = 1+∑k
i=2 1/ i ≤ 1+ log k ≤

2 log k, for k ≥ 3. Therefore, for every k ∈ N, k ≥ 2, we have
∑k

i=0 γ 2
i = γ̄ 2 ∑k+1

i=1
1/ i ≤ 2γ̄ 2 log(k + 1). Again, the first part follows fromTheorem77(iii), while (119)
follows from (117) with D = dist(x0, argminC f ).
(iv): Let k ∈ N, k ≥ 2. It follows from Lemma 78(i) that

k∑

i=!k/2"
γ 2

i = γ̄ 2
k+1∑

i=!k/2"+1

1

i
≤ γ̄ 2 log

( k + 1

!k/2"
)
≤ γ̄ 2 log 4 ≤ γ̄ 2 5

3
.

Moreover, Lemma 78(ii) yields
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k∑

i=!k/2"
γi = γ̄

k+1∑

i=!k/2"+1

1√
i

≥ 2γ̄ (
√

k + 1−√!k/2" + 1) ≥ 2γ̄
√

k + 1
(
1−

√!k/2" + 1

k + 1

)
.

Now, since (!k/2" + 1)/(k + 1) ≤ 2/3, we have

k∑

i=!k/2"
γi ≥ 2γ̄

(

1−
√
2

3

)√
k + 1 ≥ γ̄

3

√
k + 1

The statement follows from Theorem 77(ii), with m = !k/2" and x ∈ argminC f ,

taking into account that, as in (115), max{ f̃k, f (x̃k)} ≤
(∑k

i=!k/2" γi
)−1 ∑k

i=!k/2" γi

f (xi ). �

Example 81 A case in which the above stochastic algorithm arises is in the incre-
mental subgradient method. We aim at solving

min
x∈C

f (x) := 1

m

m∑

j=1
f j (x),

where every f j : X → R is convex and Lipschitz continuous with constant L j . The
projected incremental subgradient method is as follows. Let, for every j , ∇̃ f j : X →
X be a selection of ∂ f j . Let x0 ∈ X . Then,

for k = 0, 1, . . .⎢
⎢
⎢
⎢
⎣

chose an index jk ∈ {1, . . . , m} at random
xk+1 = PC(xk − γk ∇̃ f jk (xk)

︸ ︷︷ ︸
ûk

).
(121)

Since ∂ f = (1/m)
∑m

j=1 ∂ f j , we have that (1/m)
∑m

j=1 ∇̃ f j (x) ∈ ∂ f (x). Let k ∈ N.

Then, xk is a random variable, depending on j0, . . . , jk−1. Hence, ûk := ∇̃ f jk (xk) is
a random variable, where xk and jk are independent random variables, and Fact 75
yields

uk := E
[∇̃ f jk (xk) | xk

] = 1

m

m∑

j=1
∇̃ f j (xk) ∈ ∂ f (xk)

and

E[‖∇̃ f jk (xk)‖2 | xk] = 1

m

m∑

j=1
‖∇̃ f j (xk)‖2 ≤ 1

m

m∑

j=1
L2

j ,
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and henceE[‖∇̃ f jk (xk)‖2] ≤ (1/m)
∑m

j=1 L2
j . In the end assumptions ofTheorem77

are satisfied with B2 = (1/m)
∑m

j=1 L2
j .

Example 82 (Stochastic optimization) We generalize the previous example. We
consider the following optimization problem

minimize
x∈C

f (x), f (x) = E[ϕ(x, ζ )], (122)

where f : X → R, ζ is a random variable with values in a measurable spaceZ with
distribution μ and ϕ : X ×Z→ R is such that

(SO1) ∀ z ∈ Z, ϕ(·, z) is convex and L(z)-Lipschitz continuous and
∫
Z L(z)2dμ <

+∞.
(SO2) ϕ(0, ·) ∈ L1(Z, μ).

The above assumptions ensure that, for every x ∈ X , ϕ(x, ·) ∈ L1(Z, μ). Indeed,
for every z ∈ Z, |ϕ(x, z)| ≤ |ϕ(x, z)− ϕ(0, z)| + |ϕ(0, z)| ≤ L(z)‖x‖ + |ϕ(0, z)|.
Hence ϕ(x, z) ∈ L1(Z, μ), since L(z) and ϕ(0, z) are so. We let ∂ϕ : X ×Z→ 2X

be such that ∂ϕ(x, z) = ∂ϕ(·, z)(x) and we make the following additional assump-
tions

(SO3) there exists a measurable ∇̃ϕ : X ×Z→ X , such that, for every x ∈ X and
for μ-a.e. z ∈ Z, ∇̃ϕ(x, z) ∈ ∂ϕ(x, z).

(SO4) (ζk)k∈N is a sequence of independent copies of ζ .

Then we consider the following algorithm. Let x0 ∈ X . Then,

for k = 0, 1, . . .⌊
xk+1 = PC

(
xk − γk ∇̃ϕ(xk, ζk)︸ ︷︷ ︸

ûk

)
. (123)

We have, for every x1, x2 ∈ X ,

| f (x1)− f (x2)| ≤
∫

Z
|ϕ(x1, z)− ϕ(x2, z)|dμ(z) ≤ ‖x1 − x2‖

∫

Z
L(z)dμ(z).

Therefore, f is Lipschitz continuous with constant
∫
Z L(z)dμ(z) ≤ ( ∫

Z L(z)2

dμ(z)
)1/2

. Moreover, assumption (SO3) implies that

for all x, y ∈ Xand for μ-a.e. z ∈ Z ϕ(y, z) ≥ ϕ(x, z)+ 〈y − x, ∇̃ϕ(x, z)〉.
(124)

Note that all terms of the above inequality are μ-summable, in particular, since
‖∇̃ϕ(x, z)‖ ≤ L(z) and L(z) is μ-summable, ∇̃ϕ(x, ·) is μ-summable. Hence, inte-
grating (124) w.r.t. μ we get

(∀ x, y ∈ X) f (y) ≥ f (x)+ 〈y − x,

∫

Z
∇̃ϕ(x, z)dμ(z)〉.
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Therefore, for every x ∈ X , E[∇̃ϕ(x, ζ )] ∈ ∂ f (x). Now, let k ∈ N, k ≥ 1. Then, it
follows from (123) that

xk = xk(ζ0, . . . , ζk−1),

hence xk and ζk are independent random variables. Therefore, Fact 75(v) yields that
uk := E[∇̃ϕ(xk, ζk) | xk] =

∫
Z ∇̃ϕ(xk, z)dμ(z) ∈ ∂ f (xk) and

E
[‖∇̃ϕ(xk, ζk)‖2 | xk

] =
∫

Z
‖∇̃ϕ(xk, z)‖2dμ(z) ≤

∫

Z
L(z)2dμ(z) < +∞,

and hence E[‖∇̃ϕ(xk, ζk)‖2] ≤
∫
Z L(z)2dμ(z). In the end Theorem 77 applies with

B2 = ∫
Z L(z)2dμ(z), so that the stochastic algorithm (123) provides a solution to

problem (122).

4.2 Stochastic Proximal Gradient Method

We address again problem (105) where now f is Lipschitz smooth, and we consider
a stochastic version of Algorithm 1. In the following we set F = f + g.

Algorithm 4 (The stochastic proximal gradient method) Let x0 ∈ X and (γk)k∈N
be a sequence in R++. Then,

for k = 0, 1, . . .⌊
ûk is a square summable X-valued random vector s.t. E[ûk | xk] = ∇ f (xk),

xk+1 = proxγk g(xk − γk ûk).

(125)
Moreover, define, for every k ∈ N,

Fk = min
0≤i≤k

E[F(xi+1)], x̄k =
( k∑

i=0
γi

)−1 k∑

i=0
γi xi+1.

The following theorem gives the main convergence results about the algorithm.

Theorem 83 Let f : X → R be convex and differentiable with a L-Lipschitz con-
tinuous gradient, let g ∈ �0(X), and define F = f + g. Let (xk)k∈N, (Fk)k∈N, and
(x̄k)k∈N be the sequences generated by Algorithm4. We make the following additional
assumption

A1 There exists σ ≥ 0, such that, for every k ∈ N, the random variable
‖ûk −∇ f (xk)‖ is square summable and E[‖ûk − ∇ f (xk)‖2|xk] ≤ σ 2.

A2 For every k ∈ N, γk ≤ 1/L.

Then, for every k ∈ N, xk is square summable in norm and F(xk) is summable and
the conclusions (i), (ii), and (iii) of Theorem 77 and those of Corollary 80(i)(iii)(iv)
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remain valid in expectation, with the constant B2 replaced by σ 2 and fk , E[ f (xk)],
and infC f replaced by Fk, E[F(xk)], and inf F respectively. In particular, the fol-
lowing hold.

(i) Suppose that
∑

k∈N γk = +∞ and that
∑k

i=0 γ 2
i /

∑k
i=0 γi → 0. Then Fk →

inf F, lim infk E[F(xk)] = inf F and E[F(x̄k)] → inf F.
(ii) Suppose that S∗ := argmin F �= ∅ and let, for every k ∈ N, γk = γ̄ /

√
k + 1,

with γ̄ ≤ 1/L. Then, for every integer k ≥ 2,

max{Fk+1,E[F(x̄k+1)]} −min F ≤ dist(x0, S∗)2

2γ̄

1√
k + 1

+ γ̄ σ 2 log(k + 1)√
k + 1

.

Proof Since γk ≤ 1/L for every k ∈ N, it follows from Lemma 45, that, for every
(x, y) ∈ X2, z ∈ dom∂g, and every η ∈ ∂g(z) we have

F(x) ≥ F(z)+ 〈x − z,∇ f (y)+ η〉 − 1

2γk
‖z − y‖2 . (126)

Let x ∈ X . Applying the previous inequality with z = xk+1, η = γ−1k (xk − xk+1)−
ûk , and y = xk we obtain

F(x) ≥ F(xk+1)+ 〈x − xk+1,∇ f (xk)− ûk + xk − xk+1
γk

〉 − 1

2γk
‖xk+1 − xk‖2

(127)
and thus, setting (∀k ∈ N) x̃k+1 = proxγk g(xk − γk∇ f (xk)),

F(xk+1)− F(x) ≤ 〈x − xk+1, ûk − ∇ f (xk)− xk − xk+1
γk

〉 + 1

2γk
‖xk+1 − xk‖2

= 〈x − xk+1, ûk − ∇ f (xk)〉 + 1

2γk

(
− 2〈x − xk+1, xk − xk+1〉 + ‖xk+1 − xk‖2

)

= 〈x − xk+1, ûk − ∇ f (xk)〉 + 1

2γk

(‖xk − x‖2 − ‖xk+1 − x‖2)

= 〈x − x̃k+1, ûk − ∇ f (xk)〉 + 〈
x̃k+1 − xk+1, ûk − ∇ f (xk)

〉

+ 1

2γk

(‖xk − x‖2 − ‖xk+1 − x‖2). (128)

We next want to take the conditional expectation of this inequality. To this aim we
first prove by induction that ‖xk‖ and ‖∇ f (xk)‖ are square summable and F(xk) is
summable. The statement is clearly true for k = 0. Suppose that it holds for k ≥ 0.
Then it follows from (128) and the nonexpansivity of proxγk g that
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‖xk+1 − x‖2 + 2γk (F(xk+1)− F(x))

≤ 2γk (‖x − x̃k+1‖ + ‖xk+1 − x̃k+1‖)‖ûk − ∇ f (xk )‖ + ‖xk − x‖2
≤ 2γk (‖x − proxγk g(x)‖ + ‖x − xk + γk∇ f (xk )‖ + γk‖ûk − ∇ f (xk )‖)
× ‖ûk − ∇ f (xk )‖ + ‖xk − x‖2 (129)

and hence we derive that ‖xk+1‖ is square summable and F(xk+1) is summable.
Moreover, since ∇ f is Lipschitz continuous, we have ‖∇ f (xk+1)‖ ≤ L‖xk+1 −
x‖ + ‖∇ f (x)‖, which implies that ‖∇ f (xk+1)‖ is square summable too. given xk

in (128) and recalling that E[ûk | xk] = ∇ f (xk), we get

E[‖xk+1 − x‖2|xk] + 2γkE[F(xk+1)− F(x)|xk]
≤ ‖xk − x‖2 + 2γkE[〈x̃k+1 − xk+1, ûk − ∇ f (xk)〉|xk]. (130)

Since proxγ g is nonexpansive by Proposition 34, we derive

E[‖xk+1 − x‖2|xk] + 2γkE[F(xk+1)− F(x)|xk] ≤ ‖xk − x‖2 + 2γ 2
k σ 2, (131)

and this yields

2γk(E[F(xk+1)] − F(x)) ≤ E[‖xk − x‖2] − E[‖xk+1 − x‖2] + 2γ 2
k σ 2. (132)

The above equation is the same as (113) except for the fact that F(xk) and B2 are
replaced by F(xk+1) and σ 2 respectively. The proof thus essentially continues as the
one of Theorem 77.

4.3 Randomized Block-Coordinate Descent

In this section, we address the following problem

minimize
x∈X

F(x) = f (x)+ g(x), g(x) =
m∑

i=1
gi (xi ), (133)

where X is the direct sum of m separable real Hilbert spaces (Xi )1≤i≤m , i.e.,

X =
m⊕

i=1
Xi and (∀ x = (x1, · · · , xm), y = (y1, · · · , ym) ∈ X) 〈x, y〉 =

m∑

i=1
〈xi , yi 〉

and the following assumptions hold

A1 f : X �→ R is convex and differentiable with Lipschitz continuous gradient.
A2 (∀i ∈ [m] := {1, . . . , m}), gi ∈ �0(Xi ).
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We study the following algorithm.

Algorithm 5 (The randomized block-coordinate proximal gradient method) Let
x0 = (x0

1 , . . . , x0
m) ∈ X and (γi )1≤i≤m ∈ R

m++. Then,

for k = 0, 1, . . .⎢
⎢
⎢
⎢
⎣

for i = 0, 1, . . . , m⌊

xk+1
i =

{
proxγk gik

(
xk

ik
− γik∇ik f (xk)

)
if i = ik

xk
i if i �= ik

(134)

where (ik)k∈N are independent random variables taking values in {1, . . . , m} with
pi := P(ik = i) > 0 for all i ∈ {1, . . . , m}.

In the following we denote by Ji : Xi → X the canonical embedding of Xi into
X , that is, Ji (xi ) = (0, . . . , xi , . . . , 0), where xi occurs in the i-th position. Thus, the
algorithm can be equivalently written as

xk+1 = xk + Jik

(
proxγik gik

(xk
ik
− γik∇ik f (xk))− xk

ik

)
. (135)

Moreover, we set

�−1 =
m⊕

i=1

1

γi
Idi , 〈x, y〉�−1 =

m∑

i=1

1

γi
〈xi , yi 〉 (136)

and

W =
m⊕

i=1

1

γipi
Idi , 〈x, y〉W =

m∑

i=1

1

γipi
〈xi , yi 〉 . (137)

Remark 84 Algorithm 5 can be interpreted as a stochastic optimization algorithm
which uses special stochastic gradients and proximity operators oracles. Indeed, let
ξ be a random variable with values in {1, . . . , m} distributed as ik and let

ĝ(x, ξ) = 1

pξ

gξ (xξ ). (138)

Then, clearly E[ĝ(x, ξ)] =∑m
i=1 gi (xi ) = g(x). Moreover,

proxW
ĝ(·,ξ)(x) = argmin y∈X

{ 1

pξ

gξ (xξ )+ 1

2
‖ y − x‖2W

}

= argmin y∈X

{ 1

pξ

gξ (xξ )+ 1

2γξ ,pξ

(yξ − xξ )
2 +

∑

i �=ξ

1

2γipi
(yi − xi )

2
}

and hence
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(∀ i ∈ {1, . . . , m}) [proxW
ĝ(·,ξ)(x)]i =

{
xi if i �= ξ

proxγξ gξ
(xξ ) if i = ξ.

(139)

Also, if we set ∇̂W
ξ f (x) = γξ Jξ (∇ξ f (x)), we have

E[∇̂W
ξ f (x)] = (γipi∇i f (x))1≤i≤m = W−1∇ f (x) = ∇W f (x). (140)

Therefore, it is clear that Algorithm 5 can be rewritten as a stochastic proximal
gradient algorithm in the metric W as follows

xk+1 = proxW
ĝ(·,ik )

(xk − ∇̂W
ik

f (xk)). (141)

Proposition 85 Let f : X → R be a convex differentiable function. Then the fol-
lowing statements are equivalent.

(i) ∇ f is Lipschitz continuous.
(ii) There exists (Li )1≤i≤m ∈ R

m+ such that for all i ∈ {1, . . . , m} and x = (x1, . . . ,
xm) ∈ X, the mapping ∇i f (x1, . . . , xi−1, ·, xi+1, · · · , xm) : Xi → Xi is Lips-
chitz continuous with constant Li .

Proof (i) ⇒ (ii): Let L be a Lipschitz constant of ∇ f . Then (ii) holds with
(Li )1≤i≤m ≡ L .

(ii)⇒ (i): Let, for every i ∈ [m], qi = Li/
∑m

j=1 L j . Then (qi )1≤i≤m ∈ R
m+ and

∑m
i=1 qi = 1. Let x, v ∈ X . Then

f (x + v) = f
(

x +
m∑

i=1
Ji (vi )

)

= f
( m∑

i=1
qi (x + q−1i Ji (vi ))

)

≤
m∑

i=1
qi f (x + q−1i Ji (vi ))

≤
m∑

i=1
qi

(
f (x)+ 〈

q−1i vi ,∇i f (x)
〉+ Li

2
‖q−1i vi‖2

)

= f (x)+ 〈v,∇ f (x)〉 +
m∑

i=1

Li

2qi
‖vi‖2

= f (x)+ 〈v,∇ f (x)〉 +
∑m

i=1 Li

2
‖v‖2.

Therefore, Fact 1(ii) yields that ∇ f is Lipschitz continuous. �
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Remark 86 Let f : X → R be a convex differentiable function with Lipschitz con-
tinuous gradient. The constants (Li )1≤i≤m defined in Proposition 85 are called the
block-Lipschitz constants of the partial gradients ∇i f . Then the following block-
coordinate descent lemma holds

(∀ vi ∈ Xi ) f (x + Ji (vi )) ≤ f (x)+ 〈vi ,∇ fi (x)〉 + Li

2
‖vi‖2. (142)

Lemma 87 Let X be a real Hilbert space. Let ϕ : X → R be differentiable and
convex and ψ ∈ �0(X). Let x ∈ X and set x+ = proxψ(x −∇ϕ(x)). Then, for all
z ∈ X,

〈z − x, x − x+〉 ≤ (
(ϕ + ψ)(z)− (ϕ + ψ)(x)− ‖z − x‖2)

+ (
ψ(x)− ψ(x+)+ 〈x − x+,∇ϕ(x)〉)− ‖x − x+‖2.

Proof Let z ∈ X . By definition of x+ we have x − x+ − ∇ϕ(x) ∈ ∂ψ
(
x+

)
. There-

fore, ψ(z) ≥ ψ
(
x+

)+ 〈z − x+, x − x+ − ∇ϕ(x)〉, and hence

〈z − x+, x − x+〉 ≤ ψ(z)− ψ
(
x+

)+ 〈z − x+,∇ϕ(x)〉. (143)

Now, we note that ‖x+ − z‖2 = ‖x+ − x‖2 + ‖x − z‖2 + 2〈x+ − x, x − z〉. Then,

〈z − x, x − x+〉 + 〈x − x+, x − x+〉
≤ ψ(z)− ψ

(
x+

)+ 〈z − x,∇ϕ(x)〉 + 〈x − x+,∇ϕ(x)〉

and hence

〈z − x, x − x+〉 ≤ ψ(z)− ψ(x)+ 〈z − x,∇ϕ(x)〉 + ψ(x)− ψ(x+)

+ 〈x − x+,∇ϕ(x)〉 − ‖x − x+‖2.

Since 〈z − x,∇ϕ(x)〉 ≤ ϕ(z)− ϕ(x)− (μϕ/2)‖z − x‖2, the statement follows. �

Now we set
x̄k+1 = (

proxγi gi
(xk

i − γi∇i f (xk))
)
1≤i≤m

�k = xk − x̄k+1.
(144)

Then, recalling (135), we have

x̄ k+1
ik

= proxγik gik

(
xk

ik
− γik∇ik f (xk)

) = xk+1
ik

�k
ik
= xk

ik
− xk+1

ik
. (145)

Also note that

xk = xk(i0, . . . , ik−1) and x̄k+1 = x̄k+1(i0, . . . , ik−1).

We derive from (145) that
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xk
ik
− xk+1

ik

γik

−∇ik f (xk) ∈ ∂gik (xk+1
ik

) (146)

Proposition 88 Let f and g satisfy Assumptions 4.3 and 4.3. Let (Li )1≤i≤m be the
block-Lipschitz constants of the partial gradients ∇i f as defined in Proposition 85.
Let (γi )1≤i≤m ∈ R

m++ be such that γi < 2/Li . Set δ = max1≤i≤m γi Li and pmin =
min1≤i≤m pi . Let (xk)k∈N be generated by Algorithm 5. Then, for all x ∈ X,

〈x − xk, xk − x̄k+1〉�−1 ≤ 1

pmin
E
[
F(xk)− F(xk+1) | i0, . . . , ik−1

]

+ (
F(x)− F(xk)

)+ δ − 2

2
‖xk − xk+1‖2�−1 . (147)

Proof First note that x̄k+1 = prox�−1
g (x − ∇�−1 f (xk)), where the prox and the gra-

dient are computed in the weighted norm ‖·‖�−1 . Then we derive from Lemma 87
written in the norm ‖·‖�−1 that

〈x − xk, xk − x̄k+1〉�−1 ≤
(
F(x)− F(xk)

)

+ g(xk)− g(x̄k+1)+ 〈xk − x̄k+1,∇ f (xk)〉
− ‖xk − x̄k+1‖2�−1 . (148)

Next, we have

g(xk)− g(x̄k+1)+ 〈xk − x̄k+1,∇ f (xk)〉
= E

[
1

pik

(
gik (xk

ik
)− gik (x̄ k+1

ik
)+ 〈xk

ik
− x̄ k+1

ik
,∇ik f (xk)〉) | i0, . . . , ik−1

]

Moreover, since xk+1
ik

= x̄ k+1
ik

and xk and xk+1 differ only for the ik-th component

1

pik

(
gik (xk

ik
)− gik (x̄ k+1

ik
)+ 〈xk

ik
− x̄ k+1

ik
,∇ik f (xk)〉)

= 1

pik

(
g(xk)− g(xk+1)+ 〈xk − xk+1,∇ f (xk)〉)

= 1

pmin

(
g(xk)− g(xk+1)+ 〈xk − xk+1,∇ f (xk)〉)

−
( 1

pmin
− 1

pik︸ ︷︷ ︸
≥0

)(
gik (xk

ik
)− gik (xk+1

ik
)+ 〈xk

ik
− xk+1

ik
,∇ik f (xk)〉)

≤ 1

pmin

(
g(xk)− g(xk+1)+ 〈xk − xk+1,∇ f (xk)〉)
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−
(

1

pmin
− 1

pik

)
1

γik

‖�k
ik
‖2,

where in the last inequality we used that

− (
gik (xk

ik
)− gik (xk+1

ik
)+ 〈xk

ik
− xk+1

ik
,∇ik f (xk)〉) ≤ − 1

γi
‖�k

i ‖2 (149)

which was obtained by the fact that vi = (xk
ik
− xk+1

ik
)/γik − ∇ik f (xk) ∈ ∂gik (xk+1

ik
).

So

g(xk)− g(x̄k+1)+ 〈xk − x̄k+1,∇ f (xk)〉
≤ 1

pmin
E[g(xk)− g(xk+1)+ 〈xk − xk+1,∇ f (xk)〉 | i0, . . . , ik−1]

− 1

pmin

m∑

i=1

pi

γi
‖�k

i ‖2 + ‖xk − x̄k+1‖2�−1 . (150)

Now, we derive from the block-coordinate descent lemma (142) and the fact that xk

and xk+1 differ only in the ik-th component, that

E[〈xk − xk+1,∇ f (xk)〉 | i0, . . . , ik−1]
≤ E[ f (xk)− f (xk+1)+ Lik

2
‖�k

ik
‖2 | i0, . . . , ik−1]

≤ E[ f (xk)− f (xk+1) | i0, . . . , ik−1] + 1

2

m∑

i=1
pi Li‖�k

i ‖2.

Therefore it follows from the above inequality and (150) that

g(xk)− g(x̄k+1)+ 〈xk − x̄k+1,∇ f (xk)〉
≤ 1

pmin
E[F(xk)− F(xk+1) | i0, . . . , ik−1]

+ 1

2pmin

m∑

i=1

pi

γi
(γi Li − 2− σ�−1) ‖�k

i ‖2 + ‖xk − x̄k+1‖2�−1

≤ 1

pmin
E[F(xk)− F(xk+1) | i0, . . . , ik−1]

+ δ − 2

2
‖xk − x̄k+1‖2�−1 + ‖xk − x̄k+1‖2�−1 ,

where in the last inequalitywe used that γi Li − 2 ≤ δ − 2 ≤ 0 and thatpi ≥ pmin.
The statement follows from (148). �
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Proposition 89 Under the assumptions of Proposition 88 suppose additionally that
x is an X-valued random variable which is measurable w.r.t. to the σ -algebra gen-
erated by i0, . . . , ik−1. Then

E[‖xk+1 − x‖2W | i0, . . . , ik−1] − ‖xk − x‖2W = ‖x̄k+1 − x‖2�−1 − ‖xk − x‖2�−1
(151)

and E[‖xk+1 − xk‖2W | i0, . . . , ik−1] = ‖x̄k+1 − xk‖2
�−1 .

Proof If follows from Fact 75(v) that

E[‖xk+1 − x‖2W | i0, . . . , ik−1]

= E
[ m∑

i=1

1

γipi
‖xk+1

i − xi‖2
∣
∣ i0, . . . , ik−1

]

= E
[

‖xk − x‖2W − 1

γikpik

‖xk
i − xi‖2 + 1

γikpik

‖x̄k+1
i − xi‖2

∣
∣ i0, . . . , ik−1

]

= ‖xk − x‖2W − ‖xk − x‖2
�−1 + ‖x̄k+1 − x‖2

�−1

The second equation follows from (151), by choosing x = xk . �

Proposition 90 Under the assumptions of Proposition 88 set F = f + g. Then, the
following hold.

(i) (E[F(xk)])k∈N is decreasing.
(ii) Suppose that infk∈N E[F(xk)] >∞. Then,

∑

k∈N
‖x̄k+1 − xk‖2�−1 =

∑

k∈N
E
[‖xk − xk+1‖2W

∣
∣i0, . . . , ik−1

]
< +∞ P a.s.

(iii) For every k ∈ N and every x ∈ domF

E[‖xk+1 − x‖2W | i0, . . . , ik−1]
≤ ‖xk − x‖2W − 2

(
F(xk)− F(x

)

+ 2

pmin

( (δ − 1)+
2− δ

+ 1
)
E[F(xk)− F(xk+1) | i0, . . . , ik−1].

(152)

Proof Let k ∈ N and x ∈ domF . Since

‖xk − x‖2�−1 − ‖x̄k+1 − x‖2�−1 = −‖xk − x̄k+1‖2�−1 + 2〈xk − x̄k+1, xk − x〉�−1 ,

we derive from (147), multiplied by 2, that
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‖x̄k+1 − x‖2�−1 ≤ ‖xk − x‖2�−1 + (δ − 1)‖x̄k+1 − xk‖2�−1

+ 2

pmin
E[F(xk)− F(xk+1) | i0, . . . , ik−1]

− 2
(
F(xk)− F(x)

)
. (153)

Then for an X -valued random variable x′ measurable with respect to i0, . . . , ik−1,
Proposition 89 yields

E[‖xk+1 − x′‖2W | i0, . . . , ik−1]
≤ ‖xk − x′‖2W + (δ − 1)E[‖xk+1 − xk‖2W | i0, . . . , ik−1]

+ 2

pmin
E[F(xk)− F(xk+1) | i0, . . . , ik−1]

− 2
(
F(xk)− F(x′)

)
. (154)

Taking x′ = xk in (154), we have

pmin

2
(2− δ)E[‖xk+1 − xk‖2W | i0, . . . , ik−1] ≤ E

[
F(xk)− F(xk+1) | i0, . . . , ik−1

]
,

(155)

which plugged into (154), with x′ ≡ x ∈ domF , gives (iii). Moreover, taking the
expectation in (155), we obtain

pmin

2
(2− δ)E

[‖xk+1 − xk‖2W
] ≤ E[F(xk)] − E[F(xk+1)], (156)

which gives (i). Finally, set for all k ∈ N, ξk = E
[
F(xk)− F(xk+1)

∣
∣i0, . . . , ik−1

] ≥
0. Then

E
[+∞∑

k=0
ξk

]

=
+∞∑

k=0
E[ξk ] =

+∞∑

k=0
E[F(xk)] − E[F(xk+1)] ≤ E[F(x0)] − inf

k∈NE[F(xk)].

This shows that if infk∈N E[F(xk)] > −∞, then
∑+∞

k=0 ξk is P-integrable and hence
it is P-a.s. finite. Then (ii) follows from (155) and Proposition 89. �

Proposition 91 Under the assumptions of Proposition 90, suppose in addition that
F is bounded from below. Then, there exist ( yk)k∈N and (vk)k∈N, sequences of X-
valued random variables, such that the following hold.

(i) vk ∈ ∂ F( yk) P-a.s.
(ii) yk − xk → 0 and vk → 0 P-a.s.
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Proof It follows from (144) that, (xk
i (ω)− x̄ k+1

i (ω))/γi −∇i f (xk(ω)) ∈
∂gi (x̄ k+1

i (ω)), for all i ∈ [m] and ω ∈ �. Hence

( xk
i (ω)− x̄ k+1

i (ω)

γi

)

1≤i≤m
− ∇ f (xk(ω)) ∈ ∂g(x̄k+1(ω)).

Set yk = x̄k+1 and let vk : �→ X be such that, for every ω ∈ �,

vk(ω) =
( xk

i (ω)− yk
i (ω)

γi

)

1≤i≤m
+ ∇ f ( yk(ω))−∇ f (xk(ω))

∈ ∂g( yk(ω))+ ∇ f ( yk(ω)) = ∂ F( yk(ω)).

Clearly vk is measurable and hence it is a random variable. Moreover, for every
ω ∈ �,

‖vk(ω)‖ ≤ 1

γmin
‖xk(ω)− yk(ω)‖ + ‖∇ f ( yk(ω))−∇ f (xk(ω))‖.

Now, since F is bounded frombelow, Proposition90(ii) yields that (‖ yk − xk‖2
�−1)k∈N

is summable P-a.s. and hence yk − xk → 0 P-a.s. The statement follows from the
fact that ∇ f is Lipschitz continuous (see Proposition 85). �

Lemma 92 (Stochastic Opial) Let X be a Hilbert space, let S be a nonempty subset
of X be a subset and let (xk)k∈N be a random sequence on (�,A, P) with values in
X. Assume that

(a) S is separable;
(b) for every z ∈ S, there exists �z with P(�z) = 1 such that, for every ω ∈ �z ,

∃ lim
k
‖xk(ω)− z‖;

(c) there exists �̂ with P(�̂) = 1 such that, for every ω ∈ �̂, every weak cluster
point of (xk(ω)) belongs to S.

Then there exists a S-valued random variable x̄ such that xk ⇀ x̄ a.s.

Proof We first show that there exists �̃ such that, for every ω ∈ �̃ and for every
z ∈ S, there exists

lim
n
‖xk(ω)− z‖.

Let W ⊆ S countable dense in S and let �̃ =⋂
w∈W �w. Then P(�̃) = 1 and, for

every ω ∈ �̃ and for every w ∈ W , there exists

lim
n
‖xk(ω)− w‖.
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Fix ω ∈ �̃ and z ∈ S. Since W is dense in S, there exists a sequence (w j ) in W such
that w j → z. Since w j ∈ W for every j ≥ 0, we know that there exists

lim
k
‖xk(ω)− w j‖ = τ j (ω). (157)

Note that

− ‖w j − z‖ ≤ ‖xk(ω)− z‖ − ‖xk(ω)− w j‖ ≤ ‖w j − z‖. (158)

Then, (157) and (158) yield

−‖w j − z‖ ≤ lim inf
k

[‖xk(ω)− z‖ − ‖xk(ω)− w j‖
]

= lim inf
k

‖xk(ω)− z‖ − τ j (ω) ≤ lim sup
k

‖xk(ω)− z‖ − τ j (ω)

= lim sup
k

[‖xk(ω)− z‖ − ‖xk(ω)− w j‖
] ≤ ‖w j − z‖.

Taking the limit for k →+∞ and recalling that wk → z, we get that there exists
limk ‖xk(ω)− z‖. So we proved that for every ω ∈ �̃ the limit of limk ‖xk(ω)− z‖
exists. Now suppose that �̄ := �̃ ∩ �̂. Then, for every ω ∈ �̄, we have both that:
for every z ∈ Z, ∃ limk ‖xk(ω)− z‖; every weak cluster point of xk(ω) belongs to
Z. We conclude by Lemma 29 that, for every ω ∈ �̄, there exists x̄ (ω) ∈ Z such
that xk(ω) ⇀ x̄(ω). �

Nowwe give themain convergence results, which extends to the stochastic setting
the convergence rate of the (deterministic) proximal gradient algorithm given in
Theorem 47.

Theorem 93 Under the assumptions of Proposition 88 set F = f + g, F∗ = inf F,
and S∗ = argmin F ⊂ X. Then, the following hold.

(i) E[F(xk)] → F∗.
(ii) Suppose that S∗ �= ∅. Then E[F(xk)] − F∗ = o(1/k) and, for all integer

k ≥ 1,

E[F(xk )] − F∗ ≤
[
dist2W (x0, S∗)

2
+

(max
{
1, (2− δ)−1

}

pmin
− 1

)
(F(x0)− F∗)

]
1

k
.

Moreover, there exists a random variable x∗ taking values in S∗ such that
xk ⇀ x∗ P-a.s.

Proof Proposition 90(iii) gives, for all x ∈ domF and k ∈ N,

E[‖xk+1 − x‖2W | i0, . . . , ik−1]
≤ ‖xk − x‖2W + 2E[F(x)− F(xk+1) | i0, . . . , ik−1] + ξk, (159)
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where

ξk = b1E[F(xk)− F(xk+1) | i0, . . . , ik−1], b1 = 2

(
max{1, (2− δ)−1}

pmin
− 1

)

.

Note that the randomvariables xk’s are discretewithfinite range and (E[F(xk)])k∈N is
decreasing. Moreover,

∑
k∈N E[ξk] ≤ b1(F(x0)− F∗). Therefore, taking the expec-

tation in (159) we have

2E[F(xk+1)] − F(x) ≤ E[‖xk − x‖2W ] − E[‖xk+1 − x‖2W ] + E[ξk] (160)

Since (E[F(xk)])k∈N is decreasing, E[F(xk)] → infk∈N E[F(xk)] ≥ F∗. Thus, the
statement (i) is true if infk∈N E[F(xk)] = −∞. Suppose that infk∈N E[F(xk)] > −∞
and let x ∈ domF . Then, the right hand side of (160), being summable, converges to
zero. Therefore, F∗ ≤ limk→+∞ E[F(xk+1)] ≤ F(x). Since x is arbitrary in domF ,
(i) follows. Let x ∈ S∗. Then, F(x) = F∗ and (160) yields

2
∑

k∈N

(
E[F(xk+1)] − F∗

) ≤ E
[‖x0 − x‖2]+

∑

k∈N
E[ξk ] ≤ ‖x0 − x‖2 + b1(F(x0)− F∗).

Therefore, we have
∑

k∈N(E[F(xk+1)] − F∗) ≤ (‖x0 − x‖2 + b1(F(x0)− F∗))/2.
Since (E[F(xk+1)] − F∗)k∈N is decreasing, the first part of statement (ii) follows
from Fact 46. Concerning the convergence of the iterates, we will use the stochastic
Opial’s Lemma 92. Let x ∈ argmin F . Then it follows from (159) that

(∀ k ∈ N) E[‖xk+1 − x‖2W | i0, . . . , ik−1] ≤ ‖xk − x‖2W + ξk .

SinceE[∑k∈N ξk] =∑
k∈N E[ξk] < +∞, we have

∑
k∈N ξk < +∞ P-a.s. and hence

(‖xk − x‖2W )k∈N is an almost supermartingale in the sense of Robbins and Sieg-
mund [96]. Thus, there exists �1 ⊂ � such that P(�1) = 1 and for every ω ∈ �1,
(‖xk(ω)− x‖2W )k∈N is convergent. Now, it follows from Proposition 91 that there
exists �2 ⊂ � with P(�2) = 1, such that, for every ω ∈ �2, vk(ω) ∈ ∂ F( yk(ω)),
yk(ω)− xk(ω)→ 0, and vk(ω)→ 0. Therefore, let ω ∈ �2 and let (xnk (ω))k∈N be
a subsequence of (xk(ω))k∈N such that xnk (ω) ⇀ x̄. Then,

vnk (ω) ∈ ∂ F( ynk (ω)) ynk (ω)− xnk (ω) → 0 vnk (ω)→ 0. (161)

Then, it follows from (161) that ynk (ω) ⇀ x and, since ∂ F is weak-strong closed,
that 0 ∈ ∂ F(x). Therefore the two conditions in the stochastic Opial’s Lemma 92
are satisfied with S = argmin F and hence the statement follows.
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4.4 Bibliographical Notes

Stochasticmethods in optimizationwere initiated byRobbins andMonro [95], Kiefer
and Wolfowitz [61], and Ermoliev [47]. These methods are nowadays very popular
due to applications in deep machine learning [22]. The projected stochastic subgra-
dient method was studied in [44, 80]. In the last years rate of convergence in the
last iterates were also derived [105]. The proximal stochastic gradient which explic-
itly assumes the Lipschitz continuity of the gradient was studied in [2, 100]. The
worst case convergence rate in expectation of proximal stochastic gradient method
is much worse with respect to the one of proximal gradient method. Recently, vari-
ance reduction techniques have been studied to improve the convergence behavior
of stochastic methods [59], at the cost of keeping previously computed gradients in
memory. These techniques are particularly useful for empirical risk minimization
problems, see [42, 56] and references therein. Randomized strategies in block coor-
dinate descent methods were popularized by Nesterov in [84]. Since then a number
of works appeared extending and improving the analysis under several aspects. We
cite among others [35, 79, 94, 103, 114].

5 Dual Algorithms

In this section, we show how proximal gradient algorithms can be used on the dual
problem, to derive new algorithmic solutions for the primal.

5.1 A Framework for Dual Algorithms

We consider the same setting of Sect. 2.6. Here we additionally assume that f is
strongly convex with modulus of convexity μ > 0. In this situation, it follows from
Fact 13 that f ∗ is differentiable on X and ∇ f ∗ is 1/μ-Lipschitz continuous. More-
over, since f is strongly convex, the primal problem (P) admits a (unique) solution,
say x̂ . We also assume that the calculus rule for subdifferentials (15) holds. Thus, in
view of Fact 14, we have that a dual solution û also exists, the duality gap is zero,
and the following KKT conditions hold

x̂ = ∇ f ∗(−A∗û) and Ax̂ ∈ ∂g∗(û). (162)

So, in this case, a dual solution uniquely determines the primal solution. Actually, the
map u �→ ∇ f ∗(−A∗u) provides a way to go from the dual space Y into the primal
space X . See Fig. 2. The following proposition tells us even more.

Proposition 94 Under the notation of Sect.2.6, let u ∈ Y and set x = ∇ f ∗(−A∗u).
Then
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μ

2
‖x − x̂‖2 ≤ �(u)−�(û).

Proof It follows from the KKT conditions (162), Fact 11, and the definition of u
that

f (x̂)+ f ∗(−A∗û) = 〈
x̂,−A∗û

〉
and f (x)+ f ∗(−A∗u) = 〈

x,−A∗u
〉
.

Thus, since −A∗u ∈ ∂ f (x) and f is μ-strongly convex,

f ∗(−A∗u)− f ∗(−A∗û) = f (x̂)− f (x)+ 〈
x̂, A∗û

〉− 〈
x, A∗u

〉

≥ 〈
x̂ − x,−A∗u

〉+ μ

2
‖x̂ − x‖2 + 〈

x̂, A∗û
〉− 〈

A∗u, x
〉

= 〈
Ax̂, û − u

〉+ μ

2
‖x̂ − x‖2.

Now, since Ax̂ ∈ ∂g∗(û), we have

g∗(u)− g∗(û) ≥ 〈
Ax̂, u − û

〉
.

Summing the two inequalities above, we have

(
f ∗(−A∗u)+ g∗(u)

)− (
f ∗(−A∗û)+ g∗(û)

) ≥ μ

2
‖x − x̂‖2

and the statement follows. �

We define the duality gap function

G : X × Y → ]−∞,+∞ ] , G(x, u) = 
(x)+�(u).

Fig. 2 Duality in strongly convex problems
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Recall that if strong duality holds inf 
 = − inf �, and hence

(
(x)− inf 
)+ (�(u)− inf �) = G(x, u),

so the duality gap function bounds the primal and dual objectives. We have the
following theorem

Theorem 95 Under the notation of Sect.2.6, suppose that R(A) ⊂ dom∂g. Then
the following holds:

(i) Suppose that g∗ is α-strongly convex. Let u ∈ domg∗ and set x = ∇ f ∗(−A∗u).
Then,

G(x, u) ≤
(

1+ ‖A‖2
αμ

)

(�(u)− inf �). (163)

(ii) Suppose that g is L-Lipschitz continuous. Let u ∈ domg∗ be such that �(u)−
inf � < ‖A‖2L2/μ and set x = ∇ f ∗(−A∗u). Then, we have

G(x, u) ≤ 2
‖A‖L

μ1/2
(�(u)− inf �)1/2. (164)

Proof Let u ∈ domg∗ and let x = ∇ f ∗(−A∗u). Since R(A) ⊂ dom∂g, we have
∂g(Ax) �= ∅. Let v ∈ ∂g(Ax). Then we first prove that for every s ∈ [0, 1],

�(u)− inf � ≥ sG(x, u)+ s

2

(

α(1− s)− s

μ
‖A‖2

)

‖u − v‖2. (165)

Indeed, let s ∈ [0, 1]. Then

�(u)− inf � ≥ �(u)−�(u + s(v − u))

= g∗(u)− g∗(u + s(v − u))

+ f ∗(−A∗u)− f ∗
(− A∗u − s A∗(v − u)

)
. (166)

Now, since f ∗ is (1/μ)-Lipschitz smooth, we have

f ∗
(− A∗u − s A∗(v − u)

)− f ∗(−A∗u)

≤ 〈−s A∗(v − u),∇ f ∗(−A∗u)
〉+ 1

2μ
s2‖A‖2‖v − u‖2.

Moreover, since g∗ is α-strongly convex (α ≥ 0),

g∗(u + s(v − u))− g∗(u) ≤ s(g∗(v)− g∗(u))− α
s(1− s)

2
‖u − v‖2.

Therefore, it follows from (166) that
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�(u)− inf � ≥ �(u)−�(u + s(v − u))

≥ s
(
g∗(u)− g∗(v)− 〈x, A∗(u − v)〉)

+ s

2

(

α(1− s)− s

μ
‖A‖2

)

‖v − u‖2. (167)

Now, we note that

G(x, u) = 
(x)+�(u)

= (
f (x)+ f ∗(−A∗u)− 〈−A∗u, x〉)+ (

g(Ax)+ g∗(u)− 〈Ax, u〉).

Moreover, since x = ∇ f ∗(−A∗u) and v ∈ ∂g(Ax), Young equality yields

f (x)+ f ∗(−A∗u)− 〈−A∗u, x〉 = 0 and g(Ax)+ g∗(v)− 〈Ax, v〉 = 0.

Therefore,
G(x, u) = g∗(u)− g∗(v)− 〈Ax, u − v〉. (168)

In conclusion, (165) follows from (167) and (168).
(i): If in (165) we chose s = α/(α + ‖A‖2/μ)we have α(1− s)− s‖A‖2/μ = 0

and hence
α

α + ‖A‖2/μG(x, u) ≤ �(u)− inf �.

Then (163) follows.
(ii): It follows from (165) with α = 0 that, for every s ∈ [0, 1],

sG(x, u) ≤ �(u)− inf � + s2

2μ
‖A‖2‖u − v‖2.

Since g is L-Lipschitz continuous, we have domg∗ ⊂ BL(0). Moreover, u ∈ domg∗
andv ∈ ∂g(Ax) ⇒ Ax ∈ ∂g∗(v) ⇒ v ∈ domg∗. Therefore,‖u − v‖2 ≤ 2(‖u‖2 +
‖v‖2) ≤ 2L2. Then,

G(x, u) ≤ inf
s∈[0,1]

1

s
(�(u)− inf �)+ s

μ
‖A‖2 L2.

Since, if 0 < a < b, mins∈[0,1](a/s + bs) = 2
√

ab, the statement follows. �

5.2 Dual Proximal Gradient Algorithms

It follows from Proposition 94 and Theorem 95 that if an algorithm, applied to the
dual problem (D), provides a minimizing sequence, that is, a sequence (uk)k∈N such
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that �(uk)→ inf �, then, the sequence (xk)k∈N, defined as xk = ∇ f ∗(−A∗uk) is
converging (possibly also in function values) to the solution of the primal problem.
In particular, we have

‖xk − x̂‖2 ≤ 2

μ

(
�(uk)− inf �

)→ 0,

and, depending on the assumptions in Theorem 95,


(xk)− inf 
 ≤ O
(
�(uk)− inf �

)→ 0

or


(xk)− inf 
 ≤ O
(√

�(uk)− inf �
)→ 0.

Since the gradient of the term f ∗(−A∗·) in (D) is Lipschitz continuous with constant
‖A‖2/μ, the proximal gradient algorithm applied to (D) leads to the following

Algorithm 6 (Dual proximal gradient algorithm) Let u0 ∈ Y and 0 < γ <
2μ
‖A‖2 .

Then,
for k = 0, 1, . . .⌊

xk = ∇ f ∗(−A∗uk)

uk+1 = proxγ g∗(uk + γ Axk).

(169)

Then, since Theorem 47(iv) ensures that�(uk)−�(û) = o(1/(k + 1)), we have

‖xk − x̂‖ ≤ o(1/
√

k + 1)

and, again, in the settings of Theorem 95,


(xk)− inf 
 ≤ o(1/(k + 1)) or 
(xk)− inf 
 ≤ o(1/
√

k + 1).

Similarly, we can apply Algorithm 2 to the dual problem (D) and this yields the
following dual algorithm.

Algorithm 7 (Dual accelerated proximal gradient algorithm) Let 0 < γ ≤ μ/‖A‖2
and let (tk)k∈N ∈ R

N be defined as Proposition 64 with 1− c ≥ 2
√

b. Let u0 = v0 ∈
Y and define

for k = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yk = ∇ f ∗(−A∗vk)

uk+1 = proxγ g∗(vk + γ Ayk)

βk+1 = tk − 1

tk+1
vk+1 = uk+1 + βk+1(uk+1 − uk).

(170)

Then, defining xk = ∇ f ∗(−A∗uk), Theorem 68 yield
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‖xk − x̂‖ ≤ O(1/k) (171)

and, under the assumptions of Theorem 95, that


(xk)− inf 
 ≤ O(1/k2) or 
(xk)− inf 
 ≤ O(1/k).

Finally, suppose that g is separable, meaning that

g : Y :=
m⊕

i=1
Yi → ]−∞,+∞ ] , g(y1, . . . , ym) =

m∑

i=1
gi (yi ), (172)

and A : X → Y with Ax = (A1x, . . . , Am x), where Ai : X → Yi are bounded lin-
ear operators. Then g∗ is separable as well and A∗ : Y → X is such that A∗u =∑m

i=1 A∗i ui . Hence, one can apply Algorithm 5 to the dual problem (D), yielding the
following stochastic dual algorithm.

Algorithm 8 (stochastic dual block coordinate gradient ascent method) Let u0 =
(u0

1, . . . , u0
m) ∈ Y and let (γi )1≤i≤m ∈ R

m++ be such that 0 < γi < 2μ/‖Ai‖2. Then,

for k = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk = ∇ f ∗(−A∗uk)

for i = 0, 1, . . . , m⌊

uk+1
i =

{
proxγk g∗ik

(
uk

ik
+ γik Aik x

k
)

if i = ik

uk
i if i �= ik,

(173)

where (ik)k∈N are independent random variables taking values in {1, . . . , m} with
pi := P(ik = i) > 0 for all i ∈ {1, . . . , m}.
Remark 1 Note that in the setting of Algorithm 8, the primal problem can be written
as

min
x∈X

m∑

i=1
gi (Ai x)+ f (x). (174)

Now, suppose that f ∗ is quadratic, so that∇ f ∗ = H is a linear operator. Then, since
uk+1 and uk differ on the ik component only, denoting by Jik the canonical injection
of Yik into Y , we have

xk+1 = −H A∗uk+1

= −H A∗ Jik (u
k+1
ik
− uk

k)+ xk .

Thus, Algorithm 8 can be written as follows. Set u0 = 0, x0 = 0. Then
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for k = 0, 1 . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

for i = 0, 1, . . . , m⌊

uk+1
i =

{
proxγk g∗ik

(
uk

ik
+ γik Aik x

k
)

if i = ik

uk
i if i �= ik,

xk+1 = xk − H A∗ik
(uk+1

ik
− uk

ik
).

(175)

This shows that Algorithm 8 can be used as an incremental stochastic method for
the minimization of (174), in which at each iteration one selects at random a single
component in the sum (say ik) and uses only the knowledge related to that component
(Aik , A∗ik

, g∗ik
, γik ) to make an update of the algorithm.

Example 96 (Linearly constrained problems) We consider the minimization prob-
lem

min
Ax=b

f (x),

where f : X → ]−∞,+∞] is closed and strongly convex with constant μ > 0.
Then the dual problem is

min
u∈Y

f ∗(−A∗u)+ 〈u, b〉 ,

which is an uncostrained and smooth optimization problem. Thus, since g∗ = 〈·, b〉
and proxγ g∗(u) = u − γ b, Algorithm 6 becomes

for k = 0, 1, . . .⌊
xk = ∇ f ∗(−A∗uk)

uk+1 = uk + γ (Axk − b),

(176)

where γ < 2μ/‖A‖2.

5.3 Bibliographical Notes

Proposition 94 is standard, while Theorem 95 was essentially given (in a less explicit
form) in [45]. Dual algorithms have been proposed several times in the literature. We
mention among others the works [28, 37] for deterministic algorithms, while [107]
for stochastic algorithms in the context of machine learning. The dual accelerated
proximal gradient Algorithm 7 was presented in [15] with the standard choice of
the parameters tk’s given by the first of (78). The gradient descent on the dual of
the linearly constrained optimization problem described in Example 96 coincides,
up to a change of variables, with the linearized Bregman method studied in a series
of papers, see [86, 116] and references therein.
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Fig. 3 Solution of problem
(P1) for A : R

2 → R. Here
A satisfies the NSP relative
to S = {2}

6 Applications

In this section, we present three main applications where convex optimization plays
a key role, providing fundamental tools and computational solutions.

6.1 Sparse Recovery

In many applications throughout science and engineering, one often needs to solve
ill-posed inverse problems, where the number of available measurements is smaller
than the dimension of the vector (signal) to be estimated. More formally, the setting
is the following: given an observation y ∈ R

n , and a linear measurement process
A : R

d → R
n the goal is to

find x∗ ∈ R
d such that Ax∗ = y, (177)

under the assumption that d >> n. In general, more than one solution of the above
problem exists, but reconstruction of x∗ is often possible since in many practical
situations of interest, the vectors of interest are sparse, namely they only have a few
nonzero entries or few degrees of freedom compared to their dimension. In compress
sensing it is shown that reconstruction of sparse vectors is not only feasible in theory,
but efficient algorithms also exist to perform the reconstruction in practice. One of
the most popular strategies is basis pursuit and consists in solving the following
convex optimization problem

min
Ax=y

‖x‖1. (P1)

In realistic situations, the measurements y will be always affected by noise, i.e.:

‖Ax∗ − y‖ ≤ δ

thus it makes more sense to consider the problem
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min‖Ax−y‖≤δ
‖x‖1. (P1,δ)

Then, the constrained problem (P1,δ) is usually transformed into a penalized problem,
i.e (Fig. 3).

min
x∈Rd

1

2
‖Ax − y‖2 + λ‖x‖1, (178)

which is advantageous from the algorithmic point of view. It is possible to show that
the problems (P1,δ) and (178) are equivalent, for suitable choices of the regularization
parameter.

Proposition 97 Let A ∈ R
n×d and let y ∈ R

n. Then the following hold:

(i) If x is a minimizer of (178) with λ > 0, then there exists δ = δ(x) ≥ 0 such that
x is a minimizer of (P1,δ).

(ii) If x is a minimizer of (P1,δ) with δ ≥ 0, then there exists λ = λ(x) ≥ 0 such that
x is a minimizer of (178).

Proof Fermat’s rule for problem (178) yields

0 ∈ A∗(Ax − y)+ λ∂‖·‖1(x),

that is,

(∀ i ∈ {1, . . . , d}) (A∗(y − Ax))i ∈ λ∂|·|(xi ) =
{

λ sign(xi ) if xi �= 0

[−λ, λ] if xi = 0.

This shows that 0 is a minimizer of (178) if and only if ‖A∗y‖∞ ≤ λ. Moreover, if
‖A∗y‖∞ > λ and x is a minimizer of (178), then x �= 0 and λ = ‖A∗(Ax − y)‖∞
(so λ is uniquely determined by any minimizer).

Now, problem (P1,δ) can be equivalently written as

min
x∈X
‖x‖1 + ιBδ(y)(Ax),

where Bδ(y) is the ball of radius δ centered at y. Moreover, 0 is a minimizer of
(P1,δ) if and only if ‖y‖ ≤ δ. We therefore suppose that ‖y‖ > δ, so that 0 is not
a minimizer of (P1,δ). Then, the minimizers of (P1,δ) are different from zero and
characterized by the following equation

0 ∈ ∂‖·‖1(x)+ A∗∂ιBδ(y)(Ax).

which is equivalent to

∃u ∈ ∂ιBδ(y)(Ax) such that − A∗u ∈ ∂‖·‖1(x). (179)

Recall that
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∂ιBδ(y)(Ax) = NBδ(y)(Ax) =
{
{0} if ‖Ax − y‖ < δ

R+(Ax − y) if ‖Ax − y‖ = δ.

If ‖Ax − y‖ < δ, then u = 0 and hence 0 ∈ ∂‖·‖1(x)which yields x = 0. Therefore
since 0 is not a minimizer of (P1,δ), then necessarily ‖Ax − y‖ = δ and equation
(179) is equivalent to

‖Ax − y‖ = δ and ∃α > 0 such that αA∗(y − Ax) ∈ ∂‖·‖1(x),

which yields

∃α > 0 s. t. ∀ i ∈ {1, . . . , d} (A∗(y − Ax))i ∈ 1

α
∂|·|(xi ) =

⎧
⎨

⎩

α−1 sign(xi ) if xi �= 0

[−α−1, α−1] if xi = 0.

Taking into account the above equations one can see that, if x is a minimizer of
(178), then x is a minimizer of (P1,δ) with δ = ‖Ax − y‖ and, vice versa, if x is a
minimizer of (P1,δ), then x is a minimizer of (178) with λ = ‖A∗(Ax − y)‖∞. �

Remark 98 Analogous equivalence results relate (P1,δ) and (178) to another con-
strained problem:

min‖x‖1≤τ
‖Ax − y‖2, τ > 0.

6.1.1 Proximal Gradient Algorithms for Lasso

In this section, we specialized several proximal gradients algorithms we studied in
the previous sections to the case of the lasso problem (178). As already anticipated in
Example 17, (the proximal gradient) Algorithm 1 become the so called Iterative Soft-
Thresholding Algorithm (ISTA), which is described below. Let γ ∈ ]0, 2/‖A∗A‖[
and x0 = y0 ∈ X . Then,

for k = 0, 1, . . .⌊
xk+1 = softγ λ(xk − γ A∗(Axk − y)),

(180)

where softγ λ : R → R is the so called soft-thresholding operator, which is the prox-
imity operator of λ|·| (see (43)) andwhich is supposed to be applied component-wise.
We stress that according to Example 60 and Theorem 62(iii), algorithm (180) pro-
vides a sequence that converges linearly to a solution of problem (178).

Now, according to Algorithm 2, its accelerated version is as follows. Let x0 =
y0 ∈ X and γ ∈ ] 0, 1/‖A∗A‖ ]. Then,
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for k = 0, 1, . . .⎢
⎢
⎢
⎣

uk = xk + tk−1 − 1

tk
(xk − xk−1)

xk+1 = softγ λ(uk − γ A∗(Auk − y)).

(181)

This algorithm is known as Fast Iterative Soft-Thresholding Algorithm (FISTA) and
when the parameters tk’s are defined according to Proposition 64 with 1− c ≥ 2

√
b,

Theorem 68 yields that it converges in values with rate O(1/k2). Finally, we special-
ize the randomized proximal gradient Algorithm 5. We denote by ai and ak the i-th
column and k-th row of A respectively. Since ∇i [(1/2)‖Ax − b‖2] = 〈ai , Ax − b〉,
condition (ii) in Proposition 85 is satisfied with Li = ‖ai‖2. Then, Algorithm 5
(assuming that each block is made of one coordinate only) writes as

xk+1 = xk + [
softγi λ

(
xk

i − γi a
i (Axk − b)

)− xk
i

]
eik , (182)

where γi < 2/‖ai‖2. Then, Theorem 93 ensures that E[F(xk)] − inf F = o(1/k)

and that (xk)k∈N there exists a random vector x∗ taking values in the solution set of
problem (178) such that xk → x∗ almost surely.

6.2 Image Denoising

One of themost popular denoisingmodels for imaging, is based on the total variation
regularizer, and is known under the name “ROF” (Rudin, Osher and Fatemi). We
consider a scalar-valued digital image x ∈ R

m×n of size m × n pixels. A standard
approach for defining the discrete total variation is to use a finite difference scheme
acting on the pixels. The discrete gradient operator D : R

m×n → R
m×n × R

m×n
�

(R2)m×n is defined by

(Dx)i, j = ((D1x)i, j , (D2x)i, j ) ∈ R
2,

where

(D1x)i, j =
{

xi+1, j − xi, j if 1 ≤ i ≤ m − 1

0 i = m

(D2x)i, j =
{

xi, j+1 − xi, j if 1 ≤ j ≤ n − 1

0 j = n

The discrete ROF model is then defined by

min
x∈Rm×n

λ‖Dx‖2,1 + ‖x − y‖22, (183)
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where y ∈ R
m×n is the given noisy image, and the discrete total variation is defined

by
‖Dx‖2,1 =

∑

i, j

‖(Dx)i, j‖2 =
∑

i, j

(
(D1x)2i, j + (D2x)2i, j

)1/2
,

that is, the 
1-norm of the 2-norm of the pixelwise image gradients. We can interpret
the total variation regularization from a sparsity point of view, establishing analogies
with lasso approach in (178). Indeed, the 
1-norm induces sparsity in the gradients of
the image.More precisely, this regularizer can be interpreted as a group lasso one (see
Example 42), where each group include the two directional derivatives at each pixel.
Hence, this norm favors vectors with sparse gradients, namely piecewise constant
images. This favorable property, a.k.a. staircaising effect has also some drawbacks
in the applications, and other regularizations have been proposed. In the next section
we describe an algorithm to solve (183).

6.2.1 Algorithms for Total Variation Denoising

Solving the discrete ROF (Rudin–Osher–Fatemi) model

min
x∈Rm×n

λ‖Dx‖2,1 + 1

2
‖x − y‖22, (184)

is equivalent to compute the proximity operator of the total variation, which is not
available in closed form.Herewe showhow to solve the aboveproblembyadual algo-
rithm. Indeed the problem is of the form (P) considered by the Fenchel–Rockafellar
duality theory with f (x) = (1/2)‖x − y‖2,

g(v) = λ‖v‖2,1 =
∑

i, j

λ‖vi, j‖2, v = (vi, j )1≤i≤m
1≤ j≤n

, vi, j ∈ R
2,

and A = D. We first compute ‖D‖ since it will be useful later to set the steplength.
For every x ∈ R

m×n

‖Dx‖2 =
∑

1≤i<m
1≤ j≤n

(xi+1, j − xi, j )
2 +

∑

1≤i≤m
1≤ j<n

(xi, j+1 − xi, j )
2

≤ 2
∑

1≤i<m
1≤ j≤n

((xi+1, j )
2 + (xi, j )

2)+ 2
∑

1≤i≤m
1≤ j<n

((xi, j+1)2 + (xi, j )
2)

≤ 8‖x‖2,

therefore ‖D‖2 ≤ 8. We next prove that the dual problem is



Proximal Gradient Methods for Machine Learning and Imaging 229

min
u∈(R2)m×n

1

2

(‖y − D∗u‖2 − ‖y‖2)+ ιBλ(0)m×n (u), Bλ(0) ⊂ R
2, (185)

where Bλ(0) is the ball of R
2 of radius λ centered at zero. Indeed, it is easy to

check that D∗ = −div : (R2)m×n
� (Rm×n)2 → R

m×n where, for every (u1, u2) ∈
(Rm×n)2

(div(u1, u2))i, j =

⎧
⎪⎨

⎪⎩

u1
i, j − u1

i−1, j if 1 < i < m,

u1
1, j if i = 1,

−u1
m−1, j if i = m,

+

⎧
⎪⎨

⎪⎩

u2
i, j − u2

i, j−1 if 1 < j < n,

u1
i,1 if j = 1,

−u1
i,n−1 if j = n,

and

f ∗(z) = 1

2
(‖z + y‖22 − ‖y‖22).

Moreover, g(v) =∑
i, j λ‖vi, j‖2 =∑

i, j σBλ(0)(vi, j ), which shows that g is separa-
ble. Then it follows from Fact 9(iii) that g∗ is separable as well, so

g∗(v) =
∑

i, j

ιBλ(0)(vi, j ) = ιBλ(0)m×n (v).

Finally, since∇ f ∗(z) = z + y, the way one goes from the dual variable u ∈ (R2)m×n

to the primal variable x ∈ R
m×n is through the formula

x = ∇ f ∗(−D∗u) = y − D∗u.

The dual proximal gradient algorithm (176) writes down as follows

for k = 0, 1, . . .⌊
x (k) = y − D∗u(k)

u(k+1) = PBλ(0)n×m (u(k) + γ Dx (k)),

(186)

where γ < 2/‖D‖2 = 1/4. Note also that the projection onto Bλ(0)m×n is separable
too and can be computed as

PBλ(0)m×n (u) = (
PBλ(0)(ui, j )

)
1≤i≤m
1≤ j≤n

, PBλ(0)(ui, j ) =

⎧
⎪⎨

⎪⎩

ui, j if ‖ui, j‖2 ≤ λ

ui, j

‖ui, j‖2 if ‖ui, j‖2 > λ.

Then it follows from the theory given in Sect. 5 that the sequence (xk)k∈N converges
to the minimizer of (184) as an O(1/

√
k).

We next specialize Algorithm 2 to problem (185). Let u0 = v0 ∈ X , z0 = y −
D∗u(0), and γ ∈ ]0, 1/8[. Define
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for k = 0, 1, . . .
⎢
⎢
⎢
⎢
⎢
⎣

x (k) = y − D∗u(k)

u(k+1) = PBλ(0)n×m (v(k) + γ Dz(k)),

v(k+1) = u(k+1) + βk+1(u(k+1) − u(k))

z(k+1) = x (k+1) + βk+1(x (k+1) − x (k))

(187)

With the choice of parameters as in Theorem 68, from the results in Sect. 5, we derive
that the sequence (xk)k∈N converges to the minimizer of (184) as an O(1/k).

Finally, we specialize the randomized proximal gradient Algorithm 5. Note that,
condition (ii) in Proposition 85 is satisfied with Li, j =

√
17. Then, Algorithm 5

(assuming that each block is made of one R
2 block only and (ik, jk) is uniformly

distributed on {1, . . . , n} × {1, . . . , m}) writes as

for k = 0, 1, . . .
⌊

x (k) = xk−1 + D∗(uk−1 − uk)

u(k+1) = u(k) + J(ik , jk )
[
PBλ(0)(u

(k)
ik , jk

+ γik , jk (Dx (k))ik , jk )− u(k)
ik , jk

]
,

(188)

where γi, j < 2/
√
17 and J(ik , jk ) : R

2 → (R2)m×n is the canonical injection. Then,
denoting by x∗ the unique solution of (184), Theorem 93 and the results in Sect. 5
ensure that E[‖xk − x∗‖2] ≤ o(1/

√
k).

6.3 Machine Learning

In statistical machine learning we are given two random variables ξ and η, with
values in X and Y ⊂ R respectively, with joint distribution μ. We let 
 : X×Y ×
R → R be a convex loss function and the goal is to find a function h : X→ Y
in a given hypothesis function space which minimizes the averaged risk R(h) =
E[
(ξ, η, h(η))] without knowing the distribution μ but based on some sequence
(ξk, ηk)k∈N of independent copies of (ξ, η).

In this problem, concerning the hypothesis function space one option is that of
considering reproducing kernel Hilbert spaces (RKHS). They indeed are defined
through kernel functions and are flexible enough to model even infinite-dimensional
function spaces. They are defined as follows. We let � : X→ H be a general map
from the input spaceX to a separable Hilbert space H , endowedwith a scalar product
〈·, ·〉 and norm ‖·‖. Then the corresponding RKHS is defined as

H = {h ∈ R
X | ∃w ∈ H s.t. h = 〈w,�(·)〉} ‖h‖ = inf{‖w‖ | h = 〈w,�(·)〉}.

(189)
In this context, the map � is called the feature map and the corresponding kernel
function is defined as

K : X× X→ R, K (x, x ′) = 〈
�(x),�(x ′)

〉
. (190)
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In this way, the above statistical learning problem becomes

min
w∈H

R(w) = E[
(ξ, η, 〈w,�(ξ)〉)] =
∫

X×Y

(x, y, 〈w,�(x)〉)dμ(x, y), (191)

which is supposed to be solved via some sequence (ξk, ηk)k∈N of independent copies
of (ξ, η).

In order to approach problem (191) we consider two strategies. The first one con-
sists in considering the problem as an instance of a stochastic optimization problem
as described in Example 82. The second one is to consider a regularized empirical
version of (191) based on the available sample. In the following, we describe these
two approaches.

6.3.1 Statistical Learning as Stochastic Optimization

We make the following assumptions.

SL1 For every (x, y) ∈ X×Y, 
(x, y, ·) : R → R is positive, convex and Lipschitz
continuous with constant α > 0 and E[
(ξ, η, 0)] < +∞.

SL2 The feature map � is measurable and E[‖�(ξ)‖2] < +∞.

We show that problem (191) is an instance of Example 82. Indeed,we letZ = X×Y
and, for every w ∈ H and z = (x, y) ∈ Z, ϕ(w, z) = 
(z, 〈w,�(x)〉). Then,

(∀w1, w2 ∈ H)(∀ z = (x, y) ∈ X×Y)

|ϕ(w1, z)− ϕ(w2, z)| ≤ α|〈w1 − w2,�(x)〉| ≤ α‖�(x)‖‖w1 − w2‖.

Hence, conditions (SO1)− (SO2) in Example 82 hold with L(z) = α‖�(x)‖. More-
over,

(∀ z ∈ Z)(∀w ∈ H) ∂ϕ(w, z) = ∂
(z, 〈w,�(x)〉)�(x), (192)

where ∂ϕ(w, z) = ∂ϕ(·, z)(w). Now, let, for every (z, t) ∈ Z× R, 
̃′(z, t) be a sub-
gradient of 
(z, ·) at t and define

∇̃ϕ : H ×Z→ H : (w, z) �→ 
̃′(z, 〈w,�(x)〉)�(x) ∈ ∂ϕ(w, z).

Therefore, assumptions (SO3)− (SO4) in Example 82 are satisfied and

E[∇̃ϕ(w, ζ )] =
∫

Z

̃′(x, y, 〈w,�(x)〉)�(x)dμ(x, y) ∈ ∂ R(w).

Then algorithm (175) becomes

wk+1 = wk − γk 
̃
′(ξk, ηk, 〈wk,�(ξk)〉)�(ξk). (193)
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If we define hk(x) = 〈wk,�(x)〉 and the kernel K (x, x ′) = 〈�(x),�(x ′)〉, then it
follows from (193) that

hk+1(x) = hk(x)− γk 
̃
′(ξk, ηk, hk(ξk))K (x, ξk). (194)

Moreover, set

w̄k =
( k∑

i=0
γi

)−1
k∑

i=0
γiwi , hk(x) = 〈w̄k,�(x)〉 = ( k∑

i=0
γi

)−1
k∑

i=0
γi gi (x).

Then, the risk of h̄k is R(w̄k) and according to Theorem 77 we have that R(w̄k) →
infH R, and if S∗ := argminH R �= ∅, D ≥ dist(x0, S∗), and γk = γ̄ /

√
k + 1, we

have

(∀ k ∈ N) E[R(w̄k)] −min
H

R ≤ D2

2γ̄

1√
k + 1

+ γ̄ B2 log(k + 1)√
k + 1

,

where B2 = α2E[‖�(ξ)‖2]. Moreover, for all k ∈ N, if (γi )0≤i≤k ≡
D/(B

√
k + 1), then

E[R(w̄k)] −min
H

R ≤ B D√
k + 1

. (195)

Note that algorithm (194) is fully practicable, since it depends only on the kernel
function K and on the data (ξk, ηk). In the following, we provide a list of 1-Lipschitz
continuous losses:

• the hinge loss: Y = {−1, 1} and 
(x, y, t) = max{0, 1− yt};
• the logistic loss for classification: Y = {−1, 1} and 
(x, y, t) = log(1+ e−yt );
• L1-loss: Y = R and 
(x, y, t) = |y − t |;
• logistic loss for regression: Y = R and 
(x, y, t) = − log

4ey−t

(1+ ey−t )2
.

• ε-insensitive loss: Y = R and 
(x, y, t) = max{0, |y − t | − ε}.

6.3.2 Regularized Empirical Risk Minimization

Regularized empirical risk estimation solves the following optimization problem

min
w∈H

λ

n

n∑

i=1

(yi , 〈w,�(xi )〉)+ 1

2
‖w‖2 =: 
(w), (196)

where (xi , yi )1≤i≤n are realizations of the random variables (ξi , ηi )1≤i≤n and we
assume for simplicity that the loss function is 
 : Y × R → R+ (convex in the second
variable), and λ > 0 is a regularization parameter. Essentially the goal here is to find
a function h = 〈w,�(·)〉 that best fits the data (xi , yi )1≤i≤n according the to given
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loss 
. Depending on the choice of the loss function the techniques take different
names. If 
 is the square loss, that is, Y = R and 
(s, t) = (s − t)2, one talks about
ridge regression. If 
 is the Vapnik ε-insensitive loss


(s, t) = max{0, |s − t | − ε},

then we have support vector regression. Finally, if 
 is the hinge loss, that is
Y = {−1, 1} and 
(s, t) = (1− st)+, then we get support vector machines. Another
important loss for classification is the logistic loss, which is defined as 
(s, t) =
log(1+ e−st ).

We are going to compute the dual problem of (196) in the sense of Fenchel–
Rockafellar (see Sect. 2.6). Define the operator

�(X) : H → R
n, �(X)w =

⎡

⎣
〈w,�(x1)〉

· · ·
〈w,�(xn)〉

⎤

⎦ ∈ R
n

and the functions

g : R
n → R, g(z) = λ

n

n∑

i=1

(yi ,−zi ), and f : H → R, f (w) = 1

2
‖w‖2.
(197)

Then problem (196) can be written as

min
w∈H

f (w)+ g(−�(X)w), (198)

which is in the form (P) considered by the Fenchel–Rochafellar duality. We recall
that the dual problem is

min
α∈Rn

f ∗(�(X)∗α)+ g∗(α) (199)

and the corresponding KKT optimality conditions are (see Sect. 2.6)

w̄ ∈ ∂ f ∗(�(X)∗ᾱ) and ᾱ ∈ ∂g(−�(X)w̄). (200)

So, since f ∗ = (1/2)‖·‖2 and

(∀α ∈ R
n) �(X)∗α =

n∑

i=1
αi�(xi ),

the first term in the dual objective function (199) is
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f ∗(�(X)∗α) = 1

2
‖�(X)∗α‖2

= 1

2

∥
∥
∥

n∑

i=1
αi�(xi )

∥
∥
∥
2

= 1

2

n∑

i, j=1
αiα j

〈
�(xi ),�(x j )

〉

= 1

2
α Kα,

where K ∈ R
n×n is the Gram matrix, defined as K = (K (xi , x j ))

n
i, j=1 and K is the

kernel function associated to the feature map� as defined in (190). Nowwe compute
the formof g∗. According to (197), the function g is separable, that is, it can bewritten
as g(z) =∑n

i=1 gi (zi ), where gi = (λ/n)
(yi ,−·). Therefore

g∗(α) =
n∑

i=1
g∗i (αi ).

Moreover, recalling the properties of the Fenchel conjugation, we have

g∗i (s) =
λ

n

∗

(

yi ,−s
n

λ

)

.

Therefore we are lead to the following theorem

Theorem 99 The dual problem of (196) is

min
α∈Rn

1

2
α Kα + λ

n

n∑

i=1

∗

(

yi ,−αi
n

λ

)

=: �(α). (201)

where K = (K (xi , x j ))
n
i, j=1 and K is the kernel function associated to the feature

map (see (190)), 
∗(yi , ·) is the Fenchel conjugate of 
(yi , ·). Moreover, (i) the
primal problem (196) has a unique solution, the dual problem has solutions and
min
 = −min� (strong duality holds); and (i i) the solutions (w̄, ᾱ) of the primal
and dual problems are characterized by the following KKT conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̄ = �(X)∗ᾱ =
n∑

i=1
ᾱi�(xi ),

∀ i ∈ {1, . . . , n} − ᾱi n

λ
∈ ∂L(yi , 〈�(xi ), w̄〉),

(202)

where ∂
(yi , ·) is the subdifferential of 
(yi , ·). Finally for the estimated function it
holds
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〈w̄,�(·)〉 =
n∑

i=1
ᾱi K (xi , ·).

Remark 100 The first equation in (202) says that the primal solution can be written
as a finite linear combination of featuremap evaluations on the training points. This is
known as the representer theorem in the related literature. Moreover, the coefficients
of this representation can be obtained through the solution of the dual problem (201).

We now specialize Theorem 99 to distance-based and margin-based losses.

Corollary 101 Suppose that 
 is a convex distance-based loss, that is, of the form

(s, t) = χ(s − t) with Y = R, for some convex function χ : R → R+. Then the
dual problem (201) becomes

min
α∈Rn

1

2
α Kα − y α + λ

n

n∑

i=1
χ∗

(αi n

λ

)
. (203)

Suppose that 
 is a convex margin-based loss, that is, of the form 
(s, t) = χ(st) with
Y = {−1, 1}, for some convex function χ : R → R+. Then the dual problem (201)
becomes

min
α∈Rn

1

2
α Kα + λ

n

n∑

i=1
χ∗

(
− yiαi n

λ

)
. (204)

The following example shows that all the losses commonly used in machine
learning admit explicit Fenchel conjugates.

Example 102 (i) The least squares loss is 
(s, t) = χ(s − t) with χ = (1/2)|·|2.
In that case (203) reduces to

min
α∈Rn

1

2
α Kα − y α + n

2λ
‖α‖2.

which is strongly convex with modulus n/λ and has the explicit solution ᾱ =
(K + (n/λ)Id)−1y.

(ii) TheVapnik-ε-insensitive loss for regression is 
(s, t) = χ(s − t)with χ = |·|ε.
Then, χ∗ = ε|·| + ι[−1,1] and the dual problem (203) turns out to be

min
α∈Rn

1

2
α Kα − y α + ε‖α‖1 + ιλ/n[−1,1]n (α)

(iii) The Huber loss is the distance-based loss defined by

χ(r) =
{

r2/2 if |r | ≤ ρ

ρ|r | − ρ2/2 otherwise.

Then χ∗ = ι[−ρ,ρ] + (1/2)|·|2 and (203) becomes
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min
α∈Rn

1

2
α Kα − y α + n

2λ
‖α‖22 + ιρλ/n[−1,1]n (α)

(iv) The logistic loss for classification is themargin-based loss withχ(r) = log(1+
e−r ). Thus

χ∗(s) =

⎧
⎪⎨

⎪⎩

(1+ s) log(1+ s)− s log(−s) if s ∈ ]−1, 0[
0 if s = −1 or s = 0

+∞ otherwise.

It is easy to see that χ has Lipschitz continuous derivative with constant 1/4 and
hence χ∗ is strongly convex with modulus 4. Thus, referring to (203) and (199),
we see that in this case domg∗ =∏n

i=1(yi [0, λ/n]) and g∗ is differentiable
on int(domg∗) with locally Lipschitz continuous gradient. Moreover, since
lims→1|(χ∗)′(s)| = lims→0|(χ∗)′(s)| = +∞, we have that ‖∇g∗(α)‖ = +∞
on the boundary of domg∗. Finally, it follows from (202) that 0 < yi ᾱi < λ/n,
for i = 1, . . . , n.

(v) The hinge loss is themargin-based losswithχ(r) = (1− r)+.Wehaveχ∗(s) =
s + ι[−1,0](s). So the dual problem (204) is

min
α∈Rn

1

2
α Kα − y α + ιλ/n[0,1]n (y % α).

where y % α = (yiαi )1≤i≤n is the Hadamard product of y and α.

The connection between the primal and dual problem is clarified by the following
result, which follows from Proposition 94, Theorem 95 and (197).

Corollary 103 Let ᾱ ∈ R
n be a solution of the dual problem (201) and let w̄ =

�(X) ᾱ be the solution of the primal problem (196). Let α ∈ R
n and set w =

�(X) α. Then the following hold.

(i) �(α)−min� ≥ 1
2‖w − w̄‖22.

(ii) If 
(yi , ·) Lipschitz smooth with constant a1, then


(w)− inf 
 ≤
(

1+ λa1‖�(X)‖2
n

)

(�(α)− inf �).

(iii) if 
(yi , ·) is Lipschitz continuous with constant a2, then


(w)− inf 
 ≤ 2‖�(X)‖a2λ

n
(�(α)− inf �)1/2.

Remark 104 The above proposition ensures that if an algorithm generates a
sequence (αk)k∈N that is minimizing for the dual problem (201), i.e., �(αk) →
min�, then the sequence defined by wk = �(X)∗αk , k ∈ N, converges to the solu-
tion of the primal problem. More precisely, for the function 〈wk,�(·)〉 we have
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|〈wk,�(x)〉 − 〈w̄,�(x)〉| ≤ ‖wk − w̄‖‖�(x)‖ → 0 (205)

and the function 〈wk,�(·)〉 can be expressed in terms of the kernel only, indeed
〈wk,�(x)〉 =∑n

i=1 αk
i 〈�(xi ),�(x)〉 =∑n

i=1 αk
i K (xi , x).

Proximal gradient algorithms for SVM. For all the cases treated in Example 102,
the dual problem (201) has the following form

min
α∈Rn

q(α)+
n∑

i=1
hi (αi ) = �(α), (206)

where q : R
n → R is convex and smooth with Lipschitz continuous gradient (locally

Lipschitz for the logistic loss) and includes the quadratic term (1/2)α Kα, and
hi : R → R ∪ {+∞} is proper, lower semicontinuous, convex, and admitting a
closed-form proximity operator. So, the form (201) is amenable to proximal gra-
dient type algorithms studied in the previous sections. We note that due to Corollary
103 if�(αk)k∈N converges linearly (resp. sublinearly) to inf �, then (wk)k∈N as well
as 
(wk)− inf 
 converges linearly (resp. sublinearly) too. In particular recalling
Example 59, we have that the dual proximal gradient Algorithm 6 converges linearly
on the dual problem (206) for all the losses presented in Example 102 (except for
the logistic one) and yields a linearly convergent sequence for the primal problem
too. Similarly to the lasso problem, additional algorithmic solutions are obtained by
applying on the dual problem the accelerated proximal gradient Algorithm 2 and the
randomized block-coordinate proximal gradient Algorithm 5. In the case of the logis-
tic loss considered in Example 102 (iv), proximal gradient algorithm with linesearch
should be considered. See [102].

6.3.3 Structured Sparsity in Machine Learning

Sparse estimation methods are very popular in machine learning. The most natural
one is the minimization of the empirical risk regularized with the 
1 norm, in the
very same way that we described in Sect. 6.1. In several applications of interest,
it is beneficial to impose more structure in the regularization process and several
extensions of the 
1 regularization, such as group lasso or multitask learning, are
common. It turns out that proximal gradient algorithms play a key role in the solution
of the related variational problems, which we write using the notation introduced in
the previous subsection

min
w∈Rd

λ

n

n∑

i=1

(yi , 〈w,�(xi )〉)+�(w), (207)

where the loss function is supposed to be differentiable with a Lipschitz continuous
gradient (e.g., the square loss) and � : R

d → R is a structured sparsity inducing
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penalty. In this section,webriefly summarize some examples and the related proximal
gradient algorithms.

When the input variables are supposed to be grouped together according to prede-
fined groups forming a partition of the variables, the group lasso penalty discussed in
Example 42 promotes solutions w∗ depending only on few groups. The algorithms
and the considerations made for the lasso problem in Sect. 6.1.1 can be generalized
to the group LASSO, replacing the soft-thresholding operator with the proximal
operator of the group lasso computed in Example 42. If the support of the solution
is a union of potentially overlapping groups defined a priori then a different penalty
should be used.

Let J = {J1, . . . , Jm} be a family of subsets of {1, . . . , d} whose union is
{1, . . . , d} itself. Let us call vJ


= (v j ) j∈J

∈ R

J
 . Denote by ‖·‖J

the Euclidean

norm on R
J
 and by JJ


: R
J
 → R

d the canonical embedding. We define a penalty
on R

d by considering

�(w) = inf

{ m∑


=1
‖vJ


‖
∣
∣
∣

m∑


=1
JJ


(vJ

) = w

}

. (208)

When the groups do not overlap, the above penalty coincides with the group lasso
norm. If some groups overlap, then this penalty induces the selection of w∗ sparsely
supported on a union of groups. The regularized empirical risk in this case can be
written in terms of the vectors vJ


:

min
(v1,...,vl )∈RJ1×...×RJm

λ

n

n∑

i=1



(

yi ,

m∑


=1
〈v j
 , J ∗j
�(xi )〉

)

+
m∑


=1
‖vJ


‖,

and the problem in these new variables coincide with a regularized group lasso
without overlap.

Learning multiple tasks simultaneously has been shown to improve performance
relative to learning each task independently, when the tasks are related in the sense
that they all share a small set of features. For example, given T tasks modeled as
x �→ 〈wt ,�(x)〉, for t = 1, . . . , T , multi-task learning amounts to the minimization
of

min
(w1,...,wT )∈Rd×T

T∑

t=1

λ

nt

n∑

i=1

(yi , 〈wt ,�(xi )〉)+

d∑

j=1

( T∑

t=1
w2

j,t

)1/2
,

where nt is the number of samples for each task. Note that the regularization is an
instance of a group lasso norm of the vector (w1, . . . , wT ) ∈ R

d×T , and the multitask
problem can therefore be solved as described above.
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6.4 Bibliographical Notes

Section 6.1 The connections between the lasso minimization problem and the prob-
lem of determining the sparsest solutions of linear systems is the topic of interest
for the compressive sensing community. We refer to [49] for a mathematical intro-
duction on this subject. The solution of the lasso problem motivated a huge amount
of research at the interface between convex optimization, signal processing, inverse
problems, and machine learning. The Iterative Soft thresholding algorithm has been
proposed in [41] and around the same time the application of the proximal gradient
algorithm to the lasso problem, but also to other signal processing problems was
discussed in [39]. Strong convergence of the sequence of iterates generated by the
proximal gradient algorithm for the objective function in (178)was proved in [41] and
generalized in [36]. The FISTA algorithm was proposed by Beck and Teboulle in the
seminal paper [12]. Block coordinate versions of the ISTA algorithm are considered
e.g., in [78, 103].

Section 6.2 The ROF model has been introduced by Rudin, Osher and Fatemi
in [101], and studied theoretically in [31]. The approach based on duality has been
considered in [28, 30, 33]. The application of FISTA and a monotone modification
to the dual problem has been considered in [13].

Section 6.3 Stochastic optimization approaches for machine learning are very
popular, and in particular stochastic gradient descent [21], see the related discussion
in Sect. 4.4. One of the most well known stochastic methods to solve SVM in the
primal variables is PEGASOS [106].

Proximal methods have been immediately the methods of choice to deal with
structured sparsity in machine learning. The literature on the topic is vast, see the
surveys [8, 77] and references therein.

Support vector machines are due to Vapnik and have been introduced in [20, 40].
There, the case of the hinge loss for classification with a general kernel function
(so to cover nonlinear classifiers) was treated. The dual problem was derived via
the Lagrange theory. The analysis for general losses as well as the connection with
reproducing kernel Hilbert spaces and the formulation via general feature maps is
given, e.g., in [110].
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Regularization: From Inverse Problems
to Large-Scale Machine Learning

Ernesto De Vito, Lorenzo Rosasco, and Alessandro Rudi

1 Introduction

Inverse problem theory provides a general and elegant framework to understand
and model a variety of estimation/recovery problems. Machine learning is one such
problem. Indeed, connections between inverse problems and learning have been
known for a while andmademathematically precise. An inverse problem perspective
to learning brings to light the importance of the notion of stability both from a
statistical and a numerical point of view. This latter perspective turns out to be of
particular importance when dealing with large-scale problems.

This chapter provides a brief introduction to machine learning from an inverse
problem perspective with an emphasis on large-scale problems. After recalling an
inverse problem perspective on supervised learning in Hilbert spaces, we discuss
regularization methods for large-scale machine learning. In particular, we derive and
contrast different regularization schemes. Starting from classic Tikhonov regulariza-
tion, we then introduce iterative regularization, the idea of early stopping, and discuss
different variants including accelerated and stochastic versions. Finally, we discuss
projection with regularization and introduce stochastic extensions. Our discussion
shows how the different methods are grounded in common estimation principles,
but their computational properties are different. Iterative regularization allows to
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combine statistical and time complexities, while regularization with stochastic pro-
jections allows to simultaneously control statistical, time, and space complexity.

We refer to the appendix for the notation.

2 Learning as an Inverse Problem

In this section, we revisit supervised learning from an inverse problems perspective.
This allows to later draw results and algorithms from classical regularization theory
in inverse problems and to adapt them to supervised learning. Our presentation is
based on [19].

2.1 Inverse Problems

Here we provide a short review on linear inverse problems, see, for example, [22]
for a full exposition. We also refer to [29] for technical facts on functional analysis
and operator theory.

Consider a linear continuous operator A : H → G between two Hilbert spaces
H and G. Given a datum g ∈ G, the problem of finding the solution f ∈ H of the
equation

A f = g (1)

is called the inverse problem associated with Eq. (1). The goal is to recover an
unknown f ∈ H from the knowledge of A and g. The inverse problem is called
ill-posed if at least one of the following conditions occurs:

• the solution does not exist, i.e., g /∈ ran A;
• the solution, if it exists, is not unique, i.e., ker A �= ∅;
• if the solution is unique, it does not depend continuously on the datum g.

Here ran A and ker A denote the range and the kernel of A. The last property is also
referred to as the stability property, see later.

The question is how to find well-posed approximate solutions to the above prob-
lem. The first step is to replace Problem (1) with the least-squares problem

inf
f ∈H
∥
∥A f − g

∥
∥
2
G,

which admits a solution provided that Pran A g ∈ ran A, where Pran A denotes the
projection onto the closure in G of the subspace ran A. Under this condition there
exists a canonical solution defined by

f † = argmin
f ∈H0

∥
∥ f
∥
∥
H ,



Regularization: From Inverse Problems to Large-Scale Machine Learning 247

where
H0 = argmin

f ∈H

∥
∥A f − g

∥
∥
2
G

is a closed convex subset of H , so that f † always exists and is unique.
The vector f † is called Moore–Penrose solution (or pseudo-solution) solution.

The densely defined Moore–Penrose inverse operator from G toH is defined as

A†g = f †

whose dense domain is the set of g ∈ G such that Pran Ag ∈ ran A, i.e.,

dom(A†) = ran A ⊕ ker A∗,

where A∗ denotes the adjoint.
Typically, the subspace ran A is not closed so that closed graph theorem implies

that A† is not continuous. In this case we say that f † is not stable with respect to the
datum g. This question is particularly important since in practice the data might be
affected by noise. A common way to formalize this idea is to replace the true datum
g in Problem (1) with a noisy version gδ such that

∥
∥g − gδ

∥
∥
G ≤ δ,

where δ > 0 is seen as a noise level. Note that, though it is very reasonable to
assume that g ∈ ran A ⊆ dom(A†), in general, gδ /∈ dom(A†) and, even if it happens,
∥
∥A†g − A†gδ

∥
∥ can be very large since A† is unbounded.

Regularization theory provides a general framework to derive stable solutions.
Broadly speaking, regularization refers to a procedure to derive a sequence of solu-
tions that converge to f † and is stable to noise. A classic example is Tikhonov
regularization given by

f λ
δ = argmin

f ∈H

(∥
∥A f − gδ

∥
∥
2
G + λ‖ f ‖2H

)

,

where λ > 0 is a regularization parameter. Classical results in regularization theory
[22] show that if λ = λδ is chosen as function of the noise level δ in such a way that

lim
δ→0

λδ = 0, lim
δ→0

δ

λδ

= 0,

then
lim
δ→0

∥
∥ f λδ

δ − f †
∥
∥
H = 0.

Rates of convergence and error bounds can also be derived under suitable conditions.
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2.2 Statistical Learning Theory

In this section, we briefly introduce the basic concepts in statistical supervised learn-
ing with least squares. Among a variety of references we mention [15, 16, 20, 24,
45, 48]. We refer to [21] for technical facts on probability and measure theory.

Supervised learning is concerned with the problem of learning a function from
random samples of input–output pairs (x, y) ∈ X × Y. We assume that the input
space X is a Polish space, for example, Rd , and the output space is Y = R. The
product space Z = X × R is endowed with a probability measure ρ defined on the
Borel σ -algebra of X × R.

The probability distribution ρ is known only through a training set

zn = (x1, y1), . . . , (xn, yn) ∈ Zn

of pairs, sampled independently and identically according to ρ. Given zn , the goal
of supervised learning is to find an estimate fn : X → R such that, given a new
unlabeled input x ∈ X, the value fn(x) is a good approximation of the true label y.

Tomake this precise, the error of anymeasurable function f : X → R ismeasured
introducing the expected (square) loss

L( f ) =
∫

X×R

( f (x) − y)2 dρ(x, y), (2)

so that pairs (x, y) that are more likely to be sampled have more influence on the
error. We will see that other error measures are also possible.

The expected loss can be written in a different way under the assumption that

∫

X×R

y2 dρ(x, y) < +∞. (3)

We recall the following integral decomposition. Given a measurable function h :
X × R → R, then

∫

X×R

h(x, y)dρ(x, y) =
∫

X

(∫

R

h(x, y)dρX(x)

)

dρ(y|x), (4)

whereρX is called themarginalmeasure onX andρ(· |x) is the conditional probability
measure on R given x ∈ X.
Remark 1 As for the classical Fubini’s theorem, if h is a positive measurable func-
tion such that the right-hand side of (4) is finite, then h is integrable and (4) holds
true. Indeed, for absolutely continuous distributions, the above property follows from
Fubini’s theorem. For the general case, an ad hoc analysis is needed.

It is then easy to see that Eq. (4) implies
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L( f ) =
∫

X
( f (x) − fρ(x))

2dρX(x) + L( fρ) = ∥∥ f − fρ
∥
∥
2
ρ

+ L( fρ), (5)

where fρ is the regression function, defined for ρX-almost all x ∈ X as

fρ(x) =
∫

R

y dρ(y|x),

and
∥
∥·∥∥

ρ
is the norm of the Hilbert space

L2(X, ρX) =
{

f : X → R | ∥∥ f ∥∥2
ρ

=
∫

X
| f (x)|2dρX(x) < ∞

}

.

Equation (5) makes clear that the function of interest is fρ and the goal is to find for
any training set zn an estimate fn such that its excess expected risk

∥
∥ fn − fρ

∥
∥
2
ρ

= L( f ) − L( fρ)

is small with high probability. Indeed, the above quantity is stochastic through its
dependence to the dataset zn . More precisely, in statistical learning theory the focus
is on studying the convergence as well as explicit bounds on the probability

ρn
{

zn ∈ Zn
∣
∣
∥
∥ fn − fρ

∥
∥
2
ρ

≥ ε
}

,

for all ε > 0.

Remark 2 The quantities depending on the training set zn are called empirical quan-
tities and are denoted by the subscript n , instead of zn for the easy of notation.

Remark 3 We note that in statistical learning the regression function fρ is viewed
as the solution of an optimization problem

min
f ∈L2(X,ρX)

L( f ),

where the functional L is well defined, convex, and continuous.

We next discuss how the above problem can be reformulated as a linear inverse
problem. We first discuss two basic examples of the above framework.

Example 4 (Regression) For all i = 1, . . . , n, n ∈ N, let xi be a sequence of random
points inX sampled according to a fixed probability distributionρX, and εi a sequence
of random numbers with zero mean, bounded variance, and possibly dependent on
xi . Given a bounded function f∗ : X → R, assume

yi = f∗(xi ) + εi , i = 1, . . . , n. (6)
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In other words, data are samples of a function corrupted with noise and evaluated
at random locations, while the learning problem is to recover f∗ from the training
set. The above is the classical model for regression. It is a special case of the general
framework in this section where fρ = f∗ and the conditional distribution is defined
by the noise distribution. We observe that a natural approach to the above regression
problem is to solve the interpolation problem of finding f such that

yi = f (xi ) i = 1, . . . , n. (7)

Example 5 (Binary Classification) Consider the case where the conditional distri-
bution ρ(y|x) is supported on {−1, 1}, that is, it corresponds to the pair of point
masses ρ(1|x), ρ(−1|x) for almost all x ∈ X. In this case, the natural error measure
is the misclassification risk

R( f ) = ρ{(x, y) ∈ Z | f (x)y < 0},

that is, the expected number of misclassifications. It is a classic result that the mis-
classification risk is minimized by the so-called Bayes decision rule bρ = sign( fρ)
and moreover

R( f ) − R(bρ) ≤ ∥∥ f − fρ
∥
∥

ρ
.

This latter observation can be seen as justification for using least squares for classi-
fication problems.

2.3 Learning as an Inverse Problem

In this section,we show that ifwe restrict the search for learning solutions to a suitable
Hilbert space (see below), then supervised learning can be reformulated as a linear
inverse problem under a data model different from the classic ones. Connections
between different estimation/statistical problems and inverse problems are classical.
The idea that machine learning algorithms can often be seen as regularization and
learning interpreted as an ill-posed problem has been discussed in [37], but also in
[49]. A mathematical treatment close to the one presented in this chapter is in [5],
albeit restricted to function approximation from a fixed, finite set of input points.

The treatment of learning from an inverse problem described here is introduced
in [19] and further elaborated in [18]. These latter papers stem from a line of work
moving its steps from the analytical perspective on supervised learning pushed for-
ward in [15] and developed in [17]. It is relevant the study in [43], which considers
the connection between learning and classical Shannon sampling theorem. We refer
to [8, 31] for recent developments in this line of works.

We begin our discussion considering a preliminary step where only the training
set is considered.
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2.4 Linear Inverse Problem Associated to Finite Data

As a starter, we note that it is well known that the interpolation problem defined by
Eq. (7) can be formulated as a discrete linear inverse problem [5].

We first observe that, in order to make Problem (7) meaningful, we have to fix
a suitable space H of functions f : X → R where we are looking for the solution
of Eq. (7). The space H is usually called hypotheses space and can be seen as an
a priori assumption on the function f ∗ generating the data. The key assumption we
make is the following.

Assumption 6 The hypotheses spaceH is a Hilbert space of functions f : X → R

and for all x ∈ X, the evaluation functionals

H 
 f �→ f (x) ∈ R,

are continuous.

The above requirement ensures that (7) is well defined and, as we show later, also
stable under small perturbation of f . More importantly, the above assumption allows
to view supervised learning as a linear inverse problem as we discuss next. Indeed,
a direct consequence of this assumption is that the Riesz representation theorem
ensures that for all x ∈ X there exists a function Kx ∈ H such that the following
reproducing formula holds true:

f (x) = 〈 f, Kx 〉H f ∈ H, (8)

function evaluation is given by a linear functional. This is the key property that effec-
tively allows to formulate (7) as a linear inverse problem. As we discuss later, this
condition corresponds to considering hypothesis spaces that are so-called reproduc-
ing kernel Hilbert spaces. To make the exposition simple, in the rest of the section,
we also assume that for some constant κ > 0,

∥
∥Kx

∥
∥
H ≤ κ ρX − almost surely. (9)

Given the above observation we have that, any training set zn defines a sampling
operator

Sn : H → R
n (Sn f )

i = 〈 f, Kxi

〉

H , i = 1, . . . , n,

and Problem (7) can be formulated as the linear inverse problem corresponding to
finding f ∈ H such that

Sn f = y, (10)

where y = (y1, . . . , yn) ∈ R
n .

The above problem is a promising start, but essentially corresponds to a “noisy”
inverse problem, in the sense that we have only an empirical problem based on the
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data. While this is the basis for practical algorithms, it is not clear how it relates to
the problem of estimating the regression function fρ , which is the target of learning.
The question is then, if the problem of estimating the regression function can itself
be formulated as an ideal “noiseless” linear inverse problem, of which Problem (10)
is a “noisy” empirical instantiation. Indeed, this is the case as we discuss next.
Linear Inverse Problem Associated to Infinite Data
Roughly speaking, the answer follows identifying the ideal/noiseless problem with
the infinite data limit of Problem (10), sometimes called population setting. Indeed,
this corresponds to considering the operator

Sρ : H → L2(X, ρX), (Sρ f )(x) = 〈 f, Kx 〉H , ρX − almost surely,

that by (9) is well defined and bounded, and considering the associated linear inverse
problem defined by

Sρ f = fρ. (11)

The above inverse problem can be seen as the one corresponding to estimating the
regression function. We add three remarks to illustrate the above idea.

Remark 7 (Risk and Moore–Penrose Solution) The inverse problem associated
to (11) corresponds to looking for a function in H providing a good approxima-
tion of the regression function. This problem is typically ill-posed, in particular note
that generally the regression function does not belong to H . The associated least
squares problem is

inf
f ∈H

∥
∥Sρ f − fρ

∥
∥
2
ρ
, (12)

which, in light of Remark 3, corresponds to considering,

inf
f ∈H

L( f ).

The solutions of the above problem are the set H0 of generalized solutions of
Problem (11). IfH0 is not empty, then we denote by f †H theMoore–Penrose solution,
that is, the generalized solution with minimal norm in H . Such a solution might in
general not exist, but if it does it often replaces the regression function as the target
of learning. Note that f †H can be written as f †H = S†ρ fρ . Also, note that the empiri-
cal Problem (10) always has a Moore–Penrose solution given by f †n = S†ny, but in
general the latter does not play any special role.

Remark 8 (Empirical and population problems) Let ρn = 1
n

∑n
i=1 δxi be the empir-

ical measure on the data. For sake of simplicity, assume that xi �= x j if i �= j , then
we can identify L2(X, ρn) with Rn endowed with the scalar product

〈

w,w′〉
n = 1

n
w�w′, (13)
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and Sρ reduces to Sn if we replace ρ by ρn . Developing this latter observation we
can view Problem (11) as the ideal inverse problem we would wish to solve, and to
Problem (10) as a corresponding empirical problem. It is important to note that unlike
classical inverse problems, here the operators defining the two problems have same
domains but different ranges. We will see next how the distance (noise) between the
two problems can be quantified. Note that, if xi = x j for some pair i �= j , the space
L2(X, ρn) can be identified with the subspace of vectors c = (c1, . . . , cn) ∈ R

n such
that ci = c j and Sn takes values in this subspace.

Finally, the following remark proposes a data model that is tuned to regard learning
framework as an inverse problem. This model differs from the usual setting in inverse
problems.

Remark 9 (Noise and sampling) Following the above setting, Problem (10) can be
seen as a noisy randomly discretized version of Problem (11). Note, however, that it
is not immediately clear how this idea can be formalized since the operators defining
the two problems have different range (y is a vector and fρ a function!). One idea is
to consider the normal equations associated to the two problems that is

S∗
n Sn f = S∗

ny, S∗
ρSρ f = S∗

ρ fρ.

This suggests to consider the quantities

‖S∗
ρ fρ − S∗

ny‖H ,
∥
∥S∗

ρSρ − S∗
n Sn
∥
∥∞

as a measure of the perturbation due to random noise and random sampling (here
∥
∥·∥∥∞ is the operator norm).

As seen in the following, they will play a role similar to the noise level in classical
inverse problems, but will also require probabilistic tools, such as concentration
inequalities.

The above discussion raises at least two lines of questions. The first concerns
the nature of the inverse problem describing supervised learning. We investigate
this formulation by discussing the nature of the space H considered and analyzing
the operators defining the problem. Further, we comment on the connection with
related problems. The second question regards the extension of algorithmic ideas
from regularization theory to learning. This will be the topic of all the rest of the
chapter. First, we provide a self-contained introduction on the theory of reproducing
kernel Hilbert spaces.

3 Reproducing Kernel Hilbert Spaces and Related
Operators

As seen above, the key condition to cast supervised learning as a linear inverse prob-
lem is assuming the solution space to be a Hilbert space with continuous evaluation
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functionals. This is a vast class of function spaces called Reproducing Kernel Hilbert
Spaces (RKHS) and next we recall a few important properties. Two observations are
important for our discussion. First, as we show below, different choices of RKHS are
possible, effectively introducing different parameterizations of the solution space.
Second, as we discuss, the operators defined in the previous section can be seen as
restriction/extension operators and are closely related to integral operators and corre-
sponding integral equations. A classic reference on RKHS is [1] and a self-contained
introduction can also be found in [45].

3.1 Reproducing Kernels

Each RKHS has an associated reproducing kernel

K : X × X → R K (x, x ′) = 〈Kx ′ , Kx 〉H , (14)

which is a symmetric positive definite function, that is, such that the matrix with
entries K (xi , x j ) is symmetric and positive semi-definite for all x1, . . . , xN ∈ X and
n ∈ N. In particular, the vector Kx ∈ H corresponds to the function K (x, ·).

Examples of kernels and RKHS abound, here we provide three basic ones.

Example 10 (Linear kernel) LetX = R
d and consider the kernel K (x, x ′) = x�x ′,

for all x, x ′ ∈ X. The corresponding RKHS is the space of linear functions on R
d

H = { fw : Rd → R : fw(x) = w�x where w ∈ R
d} ∥

∥ fw
∥
∥
2
H = w�w.

Example 11 (Finite dictionaries) Consider a finite family {φi : X → R | i =
1, . . . , p} of p functions and define the kernel

K (x, x ′) =
p
∑

j=1

φ j (x)φ j (x
′) = 	�

p (x)	p(x) x, x ′ ∈ X, (15)

where 	p : X → R
p,	p(x)i = φi (x), is called the feature map. The corresponding

RKHS is

H = { fw : X → R : fw(x) =
p
∑

j=1

w jφ j (x) where w ∈ R
p},

with the norm

∥
∥ f
∥
∥
2
H = inf{w�w : w ∈ R

p such that fw = f }.

It is easy to check that the operator
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U : Rp → H Uw = fw

is a partial isometry from (kerU )⊥ onto H .

Example 12 (Gaussian kernel) Let X = R
d . Given γ > 0, consider the kernel

K (x, x ′) = e−‖x−x ′‖2γ x, x ′ ∈ X.

The corresponding RKHS H can be seen as the subspace of

H = { f ∈ L2(Rd , dx) : ∥∥ f ∥∥2H := Cγ

∫

Rd

| f̃ (ω)|2e ‖ω‖2
2 dω < ∞},

where L2(Rd , dx) is the Hilbert space of functions f : Rd → R, which are square-
integrable with respect to the Lebesgue measure dx of Rd , f̃ denotes the Fourier
transform of f , and Cγ is a suitable constant.

Note that Assumption (9) corresponds to assume that

K (x, x) ≤ κ2 ρX − a.e. x ∈ X, (16)

where it is understood that K is measurable.

3.2 The Operators Defined by the Kernel

As mentioned before, it is also useful to analyze the operators defined by the kernel,
since they define the inverse problem associated to supervised learning.

We begin noting that functions in the reproducing kernel Hilbert space H are
defined over the whole space X, whereas functions in L2(X, ρX) are defined ρX-
almost everywhere. Roughly speaking, elements in L2(X, ρX) are uniquely defined1

only on the support Xρ of the marginal distribution ρX (we recall that Xρ is the
smallest closed subset of X having ρX-measure 1).

If X ⊆ R
d and ρX has a strictly positive density with respect to the Lebesgue

measure, thenX = Xρ , however in machine learningXρ can be strictly contained in
X. Indeed, it is often interesting to think ofX as a high-dimensional Euclidean space
and Xρ as smaller set, for example, a low-dimensional sub-manifold.

In this view, the operator Sρ can be seen as a restriction operator that given a func-
tion defined over the whole space X provides a restriction to Xρ . The corresponding
adjoint operator S∗

ρ : L2(X, ρX) → H can be shown to have the form

S∗
ρg =

∫

X
g(x)Kx dρX(x), ∀g ∈ L2(X, ρX),

1More precisely, two continuous functions that are equal almost everywhere, they coincide only on
Xρ .



256 E. De Vito et al.

where the integral converges as a Bochner H-valued integral since ‖Kx‖H is
bounded. Note that S∗

ρg only depends on g which is itself defined only on Xρ .
Since S∗

ρg is an element ofH , it is defined on the whole space X and S∗
ρ can be seen

as an extension operator. Given a function g defined onXρ , S∗
ρg provides a harmonic

extension on the whole spaceX defined by the kernel K . The interpretation of kernel
operators as restriction/extension operators is discussed in [14] and connected to
manifold learning [4].

We stress that the composition of the restriction and extension operators is not
identity. Indeed, it is easy to check that the operator

Lρ = SρS
∗
ρ : L2(X, ρX) → L2(X, ρX)

is the integral operator defined by the kernel K

Lρg(x) =
∫

X
K (x, x ′)g(x ′)dρX(x ′), ρX − a.e.x ∈ X, g ∈ L2(X, ρX), (17)

and the operator Tρ = S∗
ρSρ : H → H can be written as

Tρ =
∫

X
Kx ⊗ Kx dρX(x),

where Kx ⊗ Kx : H → H is the rank-one operator

(Kx ⊗ Kx )( f ) = 〈Kx , f 〉H Kx = f (x)Kx ,

and the integral converges in the Banach space S1(H) of trace class operators,
see Appendix. Furthermore, Eq. (8) shows that

〈

Tρ f , f ′〉
H =

∫

X
f (x) f ′(x) dρX(x), ∀ f, f ′ ∈ H .

As discussed below Tρ can be seen as a suitable covariance operator.

Remark 13 (Properties of the kernel operators) The operators Lρ, Tρ are trace class
positive operators and Sρ, S∗

ρ are Hilbert–Schmidt operators, see Appendix.

3.2.1 Empirical Kernel Operators

Following the above discussion, the sampling operator Sn can be seen as the restric-
tion operator associated to the input points x1, . . . , xn . Given a function in H it
evaluates the function at the training set inputs. Note that, if we endow R

n with the
normalized scalar product (13), then
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∥
∥Sn f − y

∥
∥
2
n = 1

n

n
∑

i=1

( f (xi ) − yi )
2, (18)

where the right-hand side is called the empirical error of f .
The adjoint operator S∗

n : Rn → H can be shown to have the following form:

S∗
n c = 1

n

n
∑

i=1

Kxi c
i , ∀c ∈ R

n. (19)

As discussed above R
n can be identified with L2(X, ρn), whereas the latter can

be seen as space of functions defined on the training set inputs. In this view, by
identifying c with ( f (x1), . . . , f (xn)), the action of S∗

n can be seen as an extension
operator providing the value of the functions outside of the training set inputs. Such
an operator is called an out-of-sample extension.

The operator Ln = SnS∗
n : L2(X, ρn) → L2(X, ρn) can be written as

(Lnc)
i = 1

n

n
∑

j=1

K (xi , x j )c
j = Kn/n, (20)

where, in the last equality, we identify L2(X, ρn)withRn and Kn is the n × n matrix

(Kn)i j = K (xi , x j ) i, j = 1, . . . , n.

The operator Ln can be seen as discretization of the integral operator in (17) [27].
The matrix Kn is called the kernel matrix. The operator Tn = S∗

n Sn : H → H can
be written as

Tn = 1

n

n
∑

j=1

Kxi ⊗ Kxi ,

so that
〈

Tn f , f ′〉
H = 1

n

n
∑

j=1

f (xi ) f
′(xi ), ∀ f, f ′ ∈ H .

As discussed below Tn can be seen as a suitable empirical covariance operator.

3.3 The Linear Kernel Case and Compressed Sensing

The above operators take a simple form if we consider the linear kernel in R
d . In

this case, the RKHS can be identified with R
d itself and the sampling operator Sn

with the n × d data matrix Xn whose rows are the input points. The adjoint S∗
n is the
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transpose of Xn (multiplied by 1/n) and S∗
n Sn is the empirical covariance matrix2

�n = 1

n
X�
n Xn = 1

n

n
∑

i=1

xi x
�
i .

In the population case, the only operator that have a familiar form is S∗
ρSρ that can

be seen as the population covariance

� = E[1
n
X�
n Xn] =

∫

Rd

xx� dρX(x).

Remark 14 (Connection to compressed sensing and linear regression) Note that the
sampling operator can be seen as a collection of measurements defined by random
linear functionals. This suggests a connection to classical linear regression but also to
compressed sensing [23]. Indeed, if we consider the linear kernel, then Problem (10)
can be written as

Xnw = y,

where Xn is the n by d data matrix, yi = x�
i w∗ + εi , and w∗ is a parameter to be

estimated. Unlike in compressed sensing, the source of randomness in the sampling
operator lies in the nature of the data and it is not a design choice.

4 Tikhonov Regularization

In this section, we introduce Tikhonov regularization, discuss its numerical realiza-
tion, and finally develop a suitable learning error analysis. The idea of considering
Tikhonov regularization for statistical estimation problem dates back to the work on
ridge regression [25]. The idea of combining Tikhonov regularization with kernels
has been emphasized in [49]. The analysis of Tikhonov regularization as discussed
in this chapter was first proposed in [17], where it was shown how to avoid empir-
ical process and covering number estimates in the learning error analysis, bringing
in the idea of using covariance estimates to approximate integral operators. These
ideas were then developed in several papers. In particular, [44] where bounds are
sharpened, and [12] where they were further improved under refined assumptions.

Following, the connection discussed before, consider the family of variational
problems,

min
f ∈H

(∥
∥Sn f − y

∥
∥
2
n + λ‖ f ‖2H

)

, (21)

parametrized by λ > 0, called the regularization parameter. By (19), the above prob-
lem can be written as

2 Or rather the second moment matrix.
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min
f ∈H

(

1

n

n
∑

i=1

( f (xi ) − yi )
2 + λ‖ f ‖2H

)

.

The first term is the empirical error of f and promotes functions that fit well the data
(x1, y1), . . . , (xn, yn), whereas the second term encourages functions having small
norm inH , i.e., that are more regular.

We next comment on its numerical realization.

4.1 Numerical Aspects

A direct computation shows that the minimizer of Problem (21) is given by

f λ
n = (S∗

n Sn + λI )−1S∗
ny. (22)

Note that,while the sampling operator has finite rank, in general, the above expression
is not directly applicable since (S∗

n Sn + λI ) is an operator fromH toH .
If the space H is finite dimensional, it might be possible to identify f λ

n with a
finite-dimensional vector and use (22) directly. For example, if we consider the linear
kernel, f λ

n can be identified with some w ∈ R
d , see Remark 14, and Sn with Xn , the

n by d the data matrix. Similarly, if we consider the kernel defined by a dictionary
φ1, . . . , φp, f λ

n can be identified with some w ∈ R
p and Sn with the n by p matrix

with rows (φ1(xi ), . . . , φp(xi )) for i = 1, . . . , n.
The following lemma provides a finite-dimensional representation formula, usu-

ally referred to as the representer theorem [49].

Lemma 15 For all λ > 0, let f λ
n be defined as in (22), then

f λ
n (x) =

n
∑

i=1

K (x, xi )ci , c = (Kn + λnI )−1y, (23)

where c = (c1, . . . , cn) ∈ R
n.

Proof Since SS
n (SnS∗

n + λI ) = (S∗
n Sn + λI )S∗

n , then

(S∗
n Sn + λI )−1S∗

n = S∗
n (SnS

∗
n + λI )−1,

so that
f λ
n = S∗

n (SnS
∗
n + λI )−1y. (24)

Further, (20) gives

(SnS
∗
n + λI )−1y = (Ln + λI )−1y = n(Kn + λnI )−1y = nc,
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where c = (Kn + λnI )−1y. Equation (24) with (19) reads

f λ
n = nS∗

nc =
n
∑

i=1

Kxi c
i ,

so that the reproducing Formulas (8) and (14) give

f λ
n (x) = 〈Kx , f λ

n

〉

H =
n
∑

i=1

〈

Kx , Kxi

〉

H ci =
n
∑

i=1

K (x, xi )ci .

�
We add two remarks related to computational requirements, before discussing the

statistical properties of this method.

Remark 16 (Complexity of Tikhonov regularization) Note that, for finite-
dimensional spaces with dimension p, as in Example 11, the time and memory
complexity for Tikhonov regularization are, respectively, the minimum between
O(min np2 + p3, pn2 + n3) andO(np), respectively. For infinite-dimensional spaces,
they are O(n3) and O(n2), or more precisely O(cK n2 + n3) and O(n), where cK
is the cost of computing K (x, x ′) for x, x ′ ∈ X and usually cK = O(d), so that the
time complexity is O(dn2 + n3).

Remark 17 (Model selection and regularization path) In practice, the regulariza-
tion parameter λ needs to be chosen and this often requires computing the family
solutions corresponding to different regularization levels, often called regularization
path. In this case, the above time complexities need to be multiplied by the number
of regularization parameter values to be tried.

4.2 Error Analysis for Tikhonov Regularization

We next provide an error analysis for Tikhonov regularization. We make a few sim-
plifying assumptions. We assume there exists f∗ ∈ H such that

yi = f∗(xi ) + εi ,

where xi are random points and εi zero mean bounded random numbers. In partic-
ular, the couples (x1, ε1), . . . , (xn, εn) are i.i.d. Note that the above conditions are
equivalent to assuming that

Sρ f∗ = fρ |y| ≤ M almost surely. (25)

As discussed before, in general, the support Xρ of the marginal distribution ρX is not
the whole space X so that ker Sρ is not empty. For example, it is easy to show that if
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K is continuous, then
ker Sρ = {Kx : x ∈ Xρ}⊥.

If ker Sρ �= {0}, fH is not uniquely defined. In order to restore uniqueness, according
to the discussion in Remark 7, we consider f †H = S†ρ fρ , which always exists and
satisfies

Sρ f †H = fρ. f †H ∈ ker Sρ
⊥, (26)

as well as
S∗

ρSρ f † = S∗
ρ fρ.

Themain result of this section is the following theorem,whose proof is provided in
Sect. 4.6. While the natural norm to consider is the L2(X, ρ) norm, here we consider
estimates in H since they are easier to prove. The proof of estimates in L2(X, ρ)

follows similar, albeit more complex, ideas.

Theorem 18 Fix τ > ln 4, the following results hold true:

• for all λ > 0 with probability at least 1 − 4e−τ

‖ f λ
n − f †H‖H ≤ c

τ

λ
√
n

+ ‖ f λ − f †H‖H ,

where c is a suitable constant independent of n, λ, and τ ;
• if λ = λn is chosen as a function of the number of points so that

lim
n→∞ λn = 0, lim

n→∞
1

λn
√
n

= 0,

then, with probability at least 1 − 4e−τ ,

lim
n→∞‖ f λn

n − f †H‖H = 0. (27)

Furthermore, assume that
f †H ∈ ran (S∗

ρSρ)
r , (28)

for some 0 < r ≤ 1, then

• for all λ > 0, with probability at least 1 − 4e−τ ,

‖ f λ
n − f †H‖H ≤ C

(
τ

λ
√
n

+ λr

)

,

where C is a suitable constant independent of n, λ, and τ ;
• if λ is chosen as a λn = n− 1

2(r+1) , then with probability at least 1 − 4e−τ

‖ f λn
n − f †H‖H ≤ C ′τn− r

2(r+1) , (29)
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where C ′ is a suitable constant independent of n and τ .

The assumption that τ > ln 4 ensures that 1 − 4e−τ > 0. Equation (27) states that
Tikhonov estimator f λn

n with λn going to zero slower than 1/
√
n converges in prob-

ability to f †H , which agrees almost everywhere with the regression function fρ ,
see (26). Bound (29) provides a convergence rate under the a priori Assumption (28),
we now comment. Recall that S∗

ρSρ is a positive trace class operator such that

ran S∗
ρSρ = ker S∗

ρSρ
⊥ = ker Sρ

⊥,

so that for any r ∈ R the operator (S∗
ρSρ)

r is defined by functional calculus,
see Appendix. Moreover, Hilbert–Schmidt theorem implies that there exists an
orthonormal base (v�)�∈� of ker Sρ

⊥ and a sequence of strictly positive numbers
(σ�)�∈� such that

S∗
ρSρv� = σ�v� � ∈ � and

∑

�∈�

σ� < +∞,

so that (S∗
ρSρ)

r
� = σ r

� v� for all � ∈ �. Hence, the source condition (28) is equivalent
to

∑

�∈�

〈

f †H , v�

〉2

H
σ 2r

�

< +∞. (30)

If � is finite, i.e., Sρ has finite rank, (30) holds true for any r ≥ 0. If � is infinite,
without loss of generality we can assume that� = N. Since f †H ∈ H Condition (30)
is always satisfied with r = 0. However, since the sequence (σ�)�∈� goes to zero

for � going to infinity, if r > 0, (30) requires that the Fourier coefficients
〈

f †H , v�

〉

H
of f †H on the base (v�)� go to zero faster than an �2-sequence. Hence, the source
Condition (30) can be seen as a regularity requirement on f †H with respect to the
spectral properties of S∗

ρSρ , where r plays the role of a smoothness parameter.
The bound in (29) states that the learning rate of the Tikhonov estimator f λn

n is
1/n

r
2r+1 where the exponent is an increasing function of r . This means that if f †H is

more regular, we need less training points to achieve the same error. However, there
is a saturation effect stated by the assumption that 0 < r ≤ 1. This means that even
if f †H satisfies (28) with r > 1, the best rate achieved by Tikhonov estimator f λn

n is
1/n1/4, corresponding to the choice r = 1.

The above result can be extended to cover the case when fρ does not belong to
the hypotheses space H , as well as to derive estimates in L2(X, ρn). To conclude a
matching lower bound can be derived, showing that the obtained bounds are optimal
in a precise sense. We refer the interested reader to [8, 12, 26, 31, 46] and references
therein.
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4.3 Error Decomposition

To derive the above bound, we first consider a suitable error decomposition and then
study the various error terms. The idea is to first study the difference ‖ f λ

n − f †H‖H
for any λ > 0, and then derive a suitable choice for λ. To this aim, we decompose
such an error into several terms. We begin by considering

f λ = (S∗
ρSρ + λI )−1S∗

ρ fρ, (31)

which is the unique solution of the problem

min
f ∈H

(∥
∥Sρ f − fρ

∥
∥
2
ρ

+ λ‖ f ‖2H
)

.

Then, we have the following equality:

f λ
n − f †H = f λ

n − f λ + f λ − f †H .

In the above expression:

• The term f λ − f †H does not depend on the data, but only on the distribution and
is called approximation error or bias.

• The term f λ
n − f λ depends on the data; is stochastic; and is called variance, esti-

mation, or sample error.

We study these two terms next.

4.4 Approximation Error

A first question is whether the approximation error converges to zero and a second
question we can ask is if it is possible to derive the rate of convergence for (32)
under the source Condition (28). The theory of inverse problems provides a positive
answer to both questions [22], that we state in the following theorem.

Theorem 19 Under the assumption that f †H exists, see (26), then

lim
λ→0

‖ f λ − f †H‖H = 0. (32)

Furthermore, if f †H satisfies the source Condition (28) with 0 < r ≤ 1, then

‖ f λ − f †H‖H ≤ λr‖(S∗
ρSρ)

−r f †H‖H . (33)

Proof Byconstruction f λ, f †H ∈ ker S∗
ρSρ

⊥ and (v�)�∈� is a base ker S∗
ρSρ

⊥ of eigen-
vectors of S∗

ρSρ with strictly positive eigenvalues σ�. Using (31) we have
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f λ − f †H = ((S∗
ρSρ + λI )−1S∗

ρSρ − I ) f †H = −λ(S∗
ρSρ + λI )−1 f †H ,

so that

‖ f λ − f †H‖2H =
∑

�∈�

(
λ

σ� + λ

)2 〈

f †H , v�

〉2

H
.

Fix �, λ
σ�+λ

goes to zero if λ goes to zero and 0 < λ
σ�+λ

≤ 1. Moreover, the

series
∑

�

〈

f †H , v�

〉2

H
converges, so that dominated convergence theorem implies that

limλ→0‖ f λ − f †H‖2H goes to zero, which is (32).
Assume (28) with 0 < r ≤ 1. Then

(
λ

σ� + λ

)2 〈

f †H , v�

〉2

H
=
(

λσ r
�

σ� + λ

)2

〈

f †H , v�

〉2

H
σ 2r

�

= λ2r

(
(σ�λ

−1)r

(σ�λ−1) + 1

)2
〈

f †H , v�

〉2

H
σ 2r

�

≤ λ2r

〈

f †H , v�

〉2

H
σ 2r

�

,

where the last inequality holds true since the function xr is convex with tangent line
at x = 1 given by y = 1 + r x , so that

xr ≤ 1 + r(x − 1) ≤ 1 + x x > 0.

Then

‖ f λ − f †H‖2H ≤ λ2r
∑

�∈�

〈

f †H , v�

〉2

H
σ 2r

�

= λ2r‖(S∗
ρSρ)

−r f †H‖2H ,

which is (33). �

4.5 Sample Error

We now consider the sample error. The idea is to further decompose the above
expression to isolate the perturbations due to noise and random sampling as shown
by the following result.

Lemma 20 For all λ > 0

‖ f λ
n − fλ‖H ≤ λ−1

(

‖(S∗
ny − S∗

n Sn f
†
H )‖H + ∥∥S∗

n Sn − S∗
ρSρ

∥
∥∞‖ f †H‖H

)

. (34)

Proof By the explicit form of f λ
n and f λ we get
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f λ
n − fλ = (S∗

n Sn + λI )−1S∗
ny − (S∗

ρSρ + λI )−1S∗
ρ fρ. (35)

We add and subtract (S∗
n Sn + λI )−1S∗

n Sn f
†
H in (35) so that

f λ
n − fλ = (S∗

n Sn + λI )−1(S∗
ny − S∗

n Sn f †H ) + [(S∗
n Sn + λI )−1S∗

n Sn − (S∗
ρ Sρ + λI )−1S∗

ρ Sρ) f †H ],

where we used the fact that S∗
ρ fρ = S∗

ρSρ f †H by (25). Furthermore

(S∗
n Sn + λI )−1S∗

n Sn − (S∗
ρ Sρ + λI )−1S∗

ρ Sρ = (S∗
n Sn + λI )−1S∗

n Sn − S∗
ρ Sρ(S∗

ρ Sρ + λI )−1 =
= (S∗

n Sn + λI )−1
(

S∗
n Sn(S∗

ρ Sρ + λI ) − (S∗
n Sn + λI )S∗

ρ Sρ

)

(S∗
ρ Sρ + λI )−1 =

= λ(S∗
n Sn + λI )−1

(

S∗
n Sn − S∗

ρ Sρ

)

(S∗
ρ Sρ + λI )−1.

Hence

[(S∗
n Sn + λI )−1S∗

n Sn − (S∗
ρSρ + λI )−1S∗

ρSρ)] f †H =
= λ(S∗

n Sn + λI )−1 (S∗
n Sn − S∗

ρSρ

)

(S∗
ρSρ + λI )−1 f †H .

Since S∗
n Sn and S∗

ρSρ are positive operators,

∥
∥(S∗

n Sn + λI )−1
∥
∥∞ ≤ 1

λ
,

∥
∥(S∗

ρSρ + λI )−1
∥
∥∞ ≤ 1

λ
,

so that triangular inequality gives

‖ f λ
n − fλ‖H ≤ λ−1

(

‖(S∗
ny − S∗

n Sn f
†
H )‖H + ∥∥S∗

n Sn − S∗
ρSρ

∥
∥∞‖ f †H‖H

)

.

�
We isolated the analytic part of the error analysis, and now the above error is

expressed in terms of random quantities taking into account noise and random sam-
pling. We have the following concentration inequality.

Proposition 21 Fix τ > ln 4, with probability at least 1 − 4e−τ

max{‖(S∗
ny − S∗

n Sn f
†
H )‖H ,

∥
∥S∗

n Sn − S∗
ρSρ

∥
∥∞} ≤ c

τ√
n
, (36)

where c is a suitable constant independent of n and τ .

Proof We first estimate ‖(S∗
ny − S∗

n Sn f
†
H )‖H . We introduce the family (ξi )i of i.i.d

random variables taking value in H defined as

ξi = yi Kxi .

Assumptions (9) and (25) give that
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‖ξi‖H ≤ Mκ,

and a direct computation shows that

E[ξi ] = S∗
ρ fρ = S∗

ρSρ f †H
1

n

n
∑

i=1

ξi = S∗
ny.

Hence, Höeffding inequality (76) implies that, with probability at least 1 − 2e−τ ,

‖(S∗
ny − S∗

n Sn f
†
H )‖H ≤ 2Mκ

√
τ

n
.

In order to estimate
∥
∥S∗

n Sn − S∗
ρSρ

∥
∥∞, we first note that

∥
∥S∗

n Sn − S∗
ρSρ

∥
∥∞ ≤ ∥∥S∗

n Sn − S∗
ρSρ

∥
∥
S2(H)

,

where
∥
∥·∥∥S2(H)

is the Hilbert–Schmidt norm in the Hilbert space S2(H) of Hilbert–
Schmidt operators. Let (ζi )i be the family of i.i.d. random variables taking value in
S2(H)

ζi = Kxi ⊗ Kxi .

Assumption (25) gives
∥
∥ζi
∥
∥
S2(H)

≤ κ,

and, as above,

E[ζi ] = S∗
ρSρ

1

n

n
∑

i=1

ζi = S∗
n Sn,

so that by (76), with probability at least 1 − 2e−τ

∥
∥S∗

n Sn − S∗
ρSρ

∥
∥
HS ≤ 2κ

√
τ

n
.

An union bound and the fact that τ > 1 provide the claim.

Remark 22 In the above proof, we bound the operator norm
∥
∥S∗

n Sn − S∗
ρSρ

∥
∥∞

with the Hilbert–Schmidt norm
∥
∥S∗

n Sn − S∗
ρSρ

∥
∥
S2(H)

in order to use concentration
inequality in Hilbert spaces. However, this is a rough bound and it is possible to use
concentration inequalities in the operator norm to have tight constants [31, 32, 47].
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4.6 Proof of Theorem 18

Proof Since
‖ f λ

n − f †H‖H ≤ ‖ f λ
n − f λ‖H + ‖ f λ − f †H‖H ,

combining (34) and (36), with high probability

‖ f λ
n − f †H‖H ≤ c

τ

λ
√
n
(1 + ‖ f †H‖H ) + ‖ f λ − f †H‖H .

Up to redefining the constant c,weprove thefirst claim,whereas (27) is a consequence
of (32) and the choice of λ = λn .

Furthermore, if f †H satisfies (28), bound (33) gives

‖ f λ
n − f †H‖H ≤ c

τ

λ
√
n
(1 + ‖ f †H‖H ) + λr‖(S∗

ρSρ)
−r f †H‖H ,

which is the third claim with a suitable constant C . By balancing the two terms

1

λ
√
n

= λr ,

it follows that λn = n− 1
2(r+1) and, with this choice,

‖ f λ
n − f †H‖H ≤ n− r

2(r+1)

(

cτ(1 + ‖ f †H‖H ) + ‖(S∗
ρSρ)

−r f †H‖H
)

,

which allows to derive (29). �

4.7 Optimization Enters the Game: Statistical and
Computational Trade-Offs

So farwe analyzed the numerical realization and statistical properties of the estimator
induced by Tikhonov regularization. From a statistical point of view, we obtained
optimal statistical rates. From a numerical point of view, we derived a solution in
closed form that requires solving a linear system with roughly O(n3), O(n2) time
and space requirements, respectively (for general kernels). An observation is that,
so far, we considered numerical and statistical aspects in isolation. Questioning this
way to proceed is important, especially in large-scale regimes where computations
can be massive. Computational requirements depend only on the size of data. But,
by assumption, the data are noisy and scattered, and are only a proxy to approximate
an ideal problem. Shouldn’t the computational requirements depend on the quality
of the data? Further, shouldn’t they depend on how easy or hard is the underlying
problem (e.g., as expressed by the source condition)? This is the line of reasoning
we will pursue in the rest of the chapter. A first step is to consider an optimization
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perspective on Tikhonov regularization and then couple it with the estimation point
of view in the previous section. The idea is to begin by replacing the direct solver
with an iterative one. Note that the approach of exploiting self-regularizing properties
of optimization is classical in inverse problems [22]. We refer to [9] for the idea of
combining statistics and optimization, and to [10] for basic ideas in optimization.

The basic gradient descent iteration applied to Problem (21) gives

f j
n = f j−1

n − γ [S∗
n (Sn f

j−1
n − y) + λ f j−1

n ], j = 1, . . . t − 1.

By induction, it is easy to show that the above iteration also admits the following
representation all t ∈ N:

f tn (x) =
n
∑

i=1

K (x, xi )c
t
i , ct = ct−1 − γ [1

n
(Knct−1 − y) + λct−1],

where ct = (ct1, . . . , c
t
n) and c0 = 0.

5 Iterative Regularization

In this section, we introduce a class of algorithms based on iterative regularization,
also called implicit regularization and closely related to the idea of early stopping.We
begin illustrating the general idea by discussing a basic example, namely, Landweber
iteration [28]. Iterative regularization for learning, corresponding to Landweber iter-
ation, was dubbed L2 boosting and first considered in [11] for a fixed design setting
and in [13] for the statistical learning setting. A number of variants have been recently
considered, an incomplete list including conjugate gradient [7], accelerated [34] and
stochastic gradient methods [2, 30, 39], as well as different averaging schemes [33].
Here, we provide an overview of these results highlighting the interplay between
statistics and optimization.

5.1 Landweber Iteration

Consider the algorithm defined by the following sequence:

f j
n = f j−1

n − γ S∗
n (Sn f

j−1
n − y), j = 1, . . . t − 1, (37)

where f 0n = 0, γ > 0, and t ∈ N. The above iteration can be seen to be the gradient
descent iteration of the empirical error (18). It is called Landweber iteration in the
context of inverse problems.
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Following the discussion for Tikhonov regularization, one can see that, if the
spaceH is finite dimensional, it is possible to identify f λ

n with a finite-dimensional
vector and use (37) directly. For example, if we consider the linear kernel or the
kernel defined by a dictionary φ1, . . . , φp, in this latter case, f tn can be identified
with a vector w ∈ R

p and Sn with the n by p matrix with rows (φ1(xi ), . . . , φp(xi ))
for i = 1, . . . , n. For more general kernels, the following representer theorem holds.

Lemma 23 For all t ∈ N, let f λ
n be defined as in (37), then

f tn (x) =
n
∑

i=1

K (x, xi )c
t
i , ct+1 = ct − γ

n
(Knct − y), (38)

where ct = (ct1, . . . , c
t
n) and c0 = 0

Remark 24 (Complexity of Landweber iteration) Note that for finite-dimensional
spaces with dimension p, the time and memory complexity for Landweber iteration
are, respectively, the minimum between O(npt) and O(pn2 + n2t), and O(np). For
infinite-dimensional spaces, they are O(n2t) and O(n2). More precisely the latter
complexities included the cost of evaluating the kernel which is often proportional
to the data dimension. Also note that, when the latter is small, memory requirements
can be reduced, recomputing the kernel on the fly.

5.2 A Regularization View on Gradient Descent

The following result allows to draw a connection to Tikhonov regularization and
sheds light on the regularization properties of Landweber iteration.

Lemma 25 The iteration in (37) can be written as

f tn = γ

t−1
∑

j=0

(I − γ S∗
n Sn)

j S∗
ny.

The proof of the above follows from a basic induction argument. It shows that
Landweber iteration can be seen as the linear operator

Gt =
t−1
∑

j=0

(I − γ S∗
n Sn)

j ,

applied to S∗
ny. Then, using spectral calculus and properties of the geometric series,

if γ is chosen so that
∥
∥I − γ S∗

n Sn
∥
∥ < 1, (39)
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for example taking γ < κ2, then

γ

∞
∑

j=0

(I − γ S∗
n Sn)

j = (S∗
n Sn)

−1,

if (S∗
n Sn)

−1 is assumed to exist for the sake of simplicity. More generally, it can be
shown that

γ

∞
∑

j=0

(I − γ S∗
n Sn)

j S∗
n = S†n .

Then, if the step size is chosen to satisfy (39), the operator corresponding to Landwe-
ber iteration can be seen as truncated series expansion. The only free parameter is the
number of iterations which corresponds to the number of terms in such an expansion.
It is easy to see that the condition number of the operator Gt is controlled by t , and
the bigger t the larger is the condition number. Indeed, the operators

(S∗
n Sn + λI )−1, γ

∞
∑

j=0

(I − γ S∗
n Sn)

j ,

are similar and one can consider roughly a correspondence t ∼ 1/λ. The number of
iteration t acts as the regularization parameter for Landweber iteration. This latter
observation has crucial computational implications.

5.3 Landweber Iteration and Iterative Regularization

Landweber iteration is an instance of so-called iterative regularization, sometimes
called early stopping regularization. The remarkable property of this class of method
is that they couple computational and statistical properties. The number of iterations
controls at the same time the stability, and hence the learning properties, of the
solution as well the computational requirements. More computations are needed if
the data can be exploited, whereas fewer computations must be considered to ensure
stability when data are poor or scarce.

The above reasoning is made precise by the following result.

Theorem 26 Fix τ > ln 4. Assume that for some r > 0

f †H ∈ ran (S∗
ρSρ)

r , (40)

then the following results hold:

• for all t ∈ N > 0 with probability at least 1 − 4e−τ
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‖ f tn − f †H‖H ≤ c

(
τ t√
n

+ 1

tr

)

,

where c is a suitable constant independent of n, t , and τ ;
• if t is chosen as a tn = n

1
2(r+1) with probability at least 1 − 4e−τ

‖ f λn
n − f †H‖H ≤ Cn− r

2(r+1) ,

where C is a suitable constant independent of n and τ .

The proof follows the same line of one of Theorem 18.

5.4 Proof Sketch

The starting point is to consider the population version of the algorithm

f t = γ

t−1
∑

j=0

(I − γ S∗
ρSρ)

j S∗
ρ fρ,

and the error decomposition

f tn − f †H = f tn − f t + f t − f †H .

For bounding the sample error f tn − f t it is useful to rewrite the empirical and
population gradient iterations as

f t+1
n = (I − γ S∗

n Sn) f
t
n + γ S∗

ny,

and
f t+1 = (I − γ S∗

ρSρ) f
t + γ S∗

ρ fρ,

respectively. Then subtracting the above equations, we obtain

f t+1
n − f t+1 = (I − γ S∗

n Sn) f tn − (I − γ S∗S) f t + γ (S∗
ny − S∗

ρ fρ)

= (I − γ S∗
n Sn) f tn − (I − γ S∗

n Sn + γ S∗
n Sn − γ S∗S) ft + γ (S∗

ny − S∗
ρ fρ)

= (I − γ S∗
n Sn)( f tn − f t ) + γ [(S∗S − S∗

n Sn) ft + (S∗
ny − S∗

ρ fρ)],

where, in the second equality, we added and subtracted γ S∗S ft . Then, by induction

f tn − f t = γ

t−1
∑

j=0

(I − γ S∗
n Sn)[(S∗S − S∗

n Sn) f
j + (S∗

ny − S∗
ρ fρ)].
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The bound on the sample error follows taking the norm of the above expression
and using the triangle inequality, which reduces to the problem of controlling the
stochastic terms

∥
∥S∗

ρSρ − S∗
n Sn
∥
∥,

∥
∥S∗

ny − S∗
ρ fρ
∥
∥,

already studied in the analysis of Tikhonov regularization but also the norm of
∥
∥ ft
∥
∥
H

which can be shown to be bounded by ‖ f †H‖H since using spectral calculus properties
of the geometric series,

f t = (I − (I − γ S∗
ρSρ)

t ) f †H .

The bound on the approximation error also follows from this last equation since it
implies that

∥
∥ f t − f †H

∥
∥ = ∥∥(I − γ S∗S)t f †H

∥
∥.

This latter expression can be controlled with the same approach used for controlling
the approximation error of Tikhonov regularization.

5.5 A Regularization View on Optimization

The result in Theorem 26 shows that the statistical properties of Landweber iteration
are essentially the same as Tikhonov regularization. However, the computational
complexities are different:

• From statistical to time complexity. The number of iteration controls the time
complexity. For example, in the infinite-dimensional case, we have O(n2n

1
2(r+1) ).

Note that unlike Tikhonov regularization, Landweber iteration does not suffer from
a saturation effect. For easy problems, i.e., large r , the computational difference
is dramatic.

• Regularization path and warm restart. In iterative regularization, the compu-
tation of the regularization path is embedded in the method—unlike Tikhonov
regularization.

Another interesting aspect of the above discussion is that it provides a different
perspective on optimization methods in the context of machine learning. The classi-
cal optimization viewpoint would be to consider the convergence properties of the
gradient iteration (37) to a minimizer of the empirical error (18). The above dis-
cussion provides an alternative point of view, by looking at gradient descent from a
regularization perspective. The iteration (37) is only an empirical iteration whereas
the real objective inmachine learning is to solve (12). From this perspective, to obtain
a good approximation of f †H , rather than just letting the iteration run to convergence,
it is also possible to stop early. This is what we mean here with early stopping. Fol-
lowing this discussion, it is natural to ask whether other optimization methods can
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also be analyzed within a regularization framework. This is indeed the case as we
discuss in the next.

5.6 Accelerated Iterative Regularization

A key problem in optimization is to find efficient methods to minimize an objective
function of interest. The literature on the topic is vast and here we discuss two ideas
in the context of machine learning. In particular, we revisit these ideas with respect
to the expected error rather than the training error.
Nesterov acceleration. The first idea is the so-called Nesterov acceleration of the
gradientmethod defining Landweber iteration. In our context, it defines the following
iteration:

f j
n = f j−1

n − γ S∗
n (Snh

j−1
n − y), h j−1

n = f j−1
n + α j ( f

j−1
n + f j−2

n ),

for f 0n = f −1
n = 0, γ satisfying (39) and

α j = j − 1

j + β
, β ≥ 1.

The ν-method. The second method is also known as Chebyshev method, it is related
to the heavy-ball method, and is given for ν > 0 by

f j
n = f j−1

n − ωt S
∗
n (Snh

j−1
n − y) + α j ( f

j−1
n + f j−2

n ),

for f 0n = f −1
n = 0 and α1 = 0, ω1 = 4ν+2

κ2(4ν+1) and

ω j = 4
(2 j + 2ν − 1)( j + ν − 1)

( j + 2ν − 1)(2 j + 4ν − 1)
,

α j = ( j − 1)(2 j − 3)(2 j + 2ν − 1)

( j + 2ν − 1)(2 j + 4ν − 1)(2 j + 2ν − 3)
.

The numerical realization of the above methods can be derived analogously to
Tikhonov regularization and Landweber iteration. The computational time/space
complexities per iteration are the same as Landweber iteration. The key difference
with Landweber iteration is seen considering the corresponding error bounds.
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5.7 Error Bounds and the Effect of Acceleration

Error bounds for the above accelerated methods can be proved following similar
arguments to Tikhonov regularization and Landweber iteration.

Theorem 27 Fix t > ln 4 and set r∗ = 1/2 for Nesterov acceleration, and r∗ =
ν − 1/2 for the ν-method. Assume that for some 0 < r ≤ r∗

f †H ∈ ran (S∗
ρSρ)

r , (41)

then the following results hold:

• for all t ∈ N > 0 with probability at least 1 − 4e−τ

‖ f tn − f †H‖H ≤ c

(
τ t2√
n

+ 1

t2r

)

,

where c is a suitable constant independent of n, t , and τ ;
• if t is chosen as tn = n

1
4(r+1) with probability at least 1 − 4e−τ

‖ f λn
n − f †H‖H ≤ Cτn− r

2(r+1) ,

where C is a suitable constant independent of n and τ .

The above results quantify the effect of acceleration in a statistical learning setting.
From the above bound, one can see that the approximation error decreases faster
than for Landweber acceleration. Indeed, the approximation error term can also be
seen as an optimization error. This faster convergence is the direct effect of acceler-
ation. On the other hand, one can also observe that acceleration affects the sample
error negatively. This is a well-known instability property of acceleration methods.
When combining these two terms, the effect of acceleration cancels out in the final
bound. Indeed, the above methods yield again the same optimal bound obtained for
Tikhonov regularization and Landweber iteration.

The remarkable property of the accelerate methods above is that they allow for a
much more aggressive stopping rule. Indeed, now the regularization parameter is t2,
so that

tn =
√

n
1

2(r+1)

iteration suffices. The effect of acceleration is to effectively reduce the time com-
plexity needed for optimal statistical bounds. In the infinite-dimensional setting, the

time complexity is given by O(n2
√

n
1

2(r+1) ), which greatly improves the time com-
plexity of Landweber iterations (note, however, that accelerated methods suffer from
saturation).
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5.8 Incremental and Stochastic Iterative Regularization

Stochastic gradient techniques are often advocated to deal with large-scale problems.
We review this techniques within our context. Consider the following iteration:

f j
n = f j−1

n − γt Kxp( j) ( f
j−1
n (xp( j)) − yp( j)), j = 0, . . . , q,

for f 0n = 0. We add a few comments. First, the selection function p has values in
{1, . . . , n} and can be deterministic or stochastic. Three common choices are: (1)
cyclic, p is deterministic; (2) stochastic, p is a uniformly distributed; and (3) reshuf-
fling, p describes a random permutation chosen every n steps. Second, in machine
learning, the above iteration is often broadly referred to as stochastic gradient descent
although it does not define a descent method. In optimization, the name incremental
gradient method is also used. Third, compared to Landweber iteration only an input–
output pair is used to compute a point-wise gradient in each iteration. The term pass
or epoch refers to n iterations (note that for stochastic gradient, it corresponds to one
pass over the data only on average). Finally, the numerical realization of the above
methods can be derived analogously to Tikhonov regularization and Landweber iter-
ation. Keeping in mind the difference between iterations and epochs, it is useful to
compare the complexity of the above method to Landweber iteration.

Remark 28 (Time and space complexity) The cost of each iteration is the minimum
between O(p) and O(n) in the finite-dimensional case, and O(n) in the infinite-
dimensional case, omitting the cost of computing the kernel. The memory cost is
also per iteration O(p) and O(n) in the finite-dimensional case and O(n) in the
finite-dimensional case. Note that, if we consider an epoch rather than an iteration,
then time/space complexity of each epoch is the same as Landweber iteration or
the accelerated variants, yet the final result is essentially the same as Landweber
iteration.

5.9 Error Bounds

The proof of the error bounds for the incremental gradient methods discussed above
is considerably more complex than the one for Landweber iteration. However, the
obtained bound is essentially the same as the one for Landweber. The following
bounds hold for the cyclic and stochastic incremental gradient for γt = c/n.

Theorem 29 Fix τ > ln 4. Assume that for some r > 0

f †H ∈ ran (S∗
ρSρ)

r , (42)

choose γt = c/n, the following results hold:

• for all number of epochs t ∈ N > 0 with probability at least 1 − 4e−τ
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‖ f tn − f †H‖H ≤ c

(
τ t√
n

+ 1

tr

)

,

where c is a suitable constant independent of n, t , and τ ;
• if t is chosen as a tn = n

1
2(r+1) , with probability at least 1 − 4e−τ , τ > 1

‖ f λn
n − f †H‖H ≤ Cτn− r

2(r+1) , r > 0,

where C is a suitable constant independent of n and τ .

The above result shows that again the obtained bounds are optimal; however, in light
of Remark 28, the time space complexity of incremental methods is essentially the
same as standard gradient descent andworse than acceleratedmethods. This suggests
that there is no gain in considering incremental techniques.We add two final remarks.

Remark 30 (One pass SGD) We note that a different variant of the above result
shows that only one pass over the data is sufficient provided that

• averaging of the iterates is considered,
• and the step size is chosen as

γt = nr/2(r+1).

While theoretically interesting in practice this might require running multiple passes
to choose the step size adaptively.

Remark 31 (Mini-batches) Finally, we note that an hybrid between gradient descent
and incremental gradient methods is obtained considering mini-batches, that is,

f j
n = f j−1

n − γt

b

b( j−1)
∑

i=b( j−2)+1

Kxp(i) ( f
j−1
n (xp(i)) − yp(i)), j = 0, . . . , q,

for f 0n = 0. Here, at each iteration, b points are used to compute the gradient (rather
thann or 1). It can be shown that this approach allows to obtain optimal rates, but again
does not yield computational improvements. It shows, however, how the choices of
mini-batch cardinality and the step size can be done to preserve optimal rates. In
particular, larger mini-batches allow to consider larger step size, for example, with
b = √

n we can consider γt = 1/
√
n.

6 Regularization with Stochastic Projections

In this section, we discuss how the combination of Tikhonov regularization with
stochastic projections allows to retain good statistical bounds while controlling time
as well as memory requirements.
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We begin some preliminary consideration. We will be interested in the infinite-
dimensional setting. In this context, the solution given by Tikhonov regularization
is

f λ
n (x) =

n
∑

i=1

ci K (xi , x), c = (Kn + λnI )−1y. (43)

The above procedure has O(n3d) and O(n2) complexity in time and space, respec-
tively. While the time complexity is improved for iterative regularization the space
complexity remains the same. We next discuss two basic ideas, namely, Nÿstrom
approximations and random features. Both methods introduce finite-dimensional
approximations of the space of functions to be considered, albeit in different ways.
We refer to [40, 41] for large-scale kernel methods using projection methods, and
to [38] for random features.

We start by observing that regularization with projections is well known in inverse
problems [22] as we are going to recall in this section. We next introduce Nÿstrom
approximations and we show that they can be seen as a form of regularization with
projections, where the latter are stochastic.

6.1 Projection Regularization

Projection regularization is classical in inverse problems [22] and is based on
considering a family of finite-dimensional subspaces and corresponding projec-
tion operators. In our context, given a RKHS H the classic least-squares projec-
tion method corresponds to considering a family of finite-dimensional nested sub-
spaces H1 ⊂ H2 ⊂ · · · ⊂ H , with corresponding projection operators P1, P2, . . . ,
and define a family of approximate solutions,

f Mn = S†n,My M ∈ N,

where Sn : H → R
n is the sampling operator and Sn,M = PMSn . The classical exam-

ple of projection regularization method is truncated singular values decomposition
(TSVD), aka principal component regression (PCR) in statistics. In our context, this
amounts to consider the spaces HM to be the span of the first M eigenfunctions
of the operator S∗

n Sn . This latter method is essentially known to be optimal among
projection regularization methods and indeed can also be analyzed in the context of
supervised learning, with an analysis following the one for Tikhonov regularization.
Without entering into details, crucial quantities in this analysis are

∥
∥S†n,M

∥
∥, and

∥
∥(I − PM)S∗

ρSρ

∥
∥. (44)
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The first term appears in the analysis of the sample error and controls stability,
whereas the second term appears in the control of the approximation error. Choosing
the eigenfunctions of S∗

n Sn to build the spaces H1 ⊂ H2 . . . ensures the sharpest
control of the above quantities [6].

Furthermore, it is possible to combine projections with other regularization tech-
niques. In our context, this corresponds to considering the minimization problem

min
f ∈H

(∥
∥Sn PM f − y

∥
∥
2
n + λ‖ f ‖2H

)

λ > 0, (45)

whose minimizer is given by

f λ,M
n = (PMS∗

n Sn PM + λI )−1PMS∗
ny.

The above scheme is common inverse problems where the interplay between M and
λ is known to be crucial to obtain good error bounds [22].

We next introduce a different approximation often referred to as Nÿstrom approx-
imations.

6.2 Nÿstrom Approximations

We begin noting that in light of Lemma 23, Problem (21) can be written as

min
f ∈Hn

∥
∥Sn f − y

∥
∥
2
n + λ‖ f ‖2H , (46)

where
Hn = span{Kx1 , . . . , Kxn }.

The basic idea of Nÿstrom approximations is to consider a set of centers x̃1, . . . , x̃M
sampled from x1, . . . , xn according to some distribution, e.g., uniformly at random
and then to consider,

min
f ∈HM

(∥
∥Sn f − y

∥
∥
2
n + λ‖ f ‖2H

)

λ > 0, (47)

where
HM = span{Kx̃1 , . . . , Kx̃M }.

An obvious, yet important observation, is that we are not subsampling the training
set, but only considering a smaller set of inputs to build a function space.

It is easy to check that the solution of Problem (47) is given by
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f λ,M
n (x) =

M
∑

i=1

αi K (x̃i , x), α = (K�
n,MKn,M + λnKM)†K�

n,My, (48)

where Kn,M and KM are n × M and M × M matrices, respectively, with entries

(Kn,M)i, j = K (xi , x̃ j ) (KM)i, j = K (x̃i , x̃ j ).

In this case, the complexity becomes O(nM) in space, and O(nMd + nM2 + M3)

in time, which again can be much lower than standard Tikhonov regularization if
M � n.

As clear from the above derivation, Nÿstrom approximations hold for any kernel.
A common way to asses the accuracy of such an approximation is to consider

K̃M = K�
n,MK †

MKn,M ,

and analyzing
∥
∥Kn − K̃M

∥
∥.

Indeed, considering K̃M in place of Kn is related to the Nÿstrom approximation
used to discretize integral equations and it is the reason for the name of these class
of approximations. While interesting the above reasoning does not yield any direct
insight on the effect of Nÿstrom approximation in terms of prediction accuracy.
Before analyzing this we discuss the connection between Nÿstrom approximations
and classical regularization techniques in inverse problems.

6.2.1 Regularization with Stochastic Projections

The interpretation of Tikhonov regularization with Nÿstrom approximation as a form
of regularization with stochastic projections rests on the following lemma.

Lemma 32 Problem (47) is equivalent to

min
f ∈H

∥
∥Sn PM f − y

∥
∥
2
n + λ

∥
∥ f
∥
∥
2
H (49)

and the solution of both minimization problems is

f λ,M
n = (PMS∗

n Sn PM + λI )−1PMS∗
ny, (50)

with PM the projection operator with range HM.

Proof Note that Problem (47) and Problem (49) are strictly convex and coercive,
therefore they admit a unique solution that is denoted by f λ,M

n and gλ,M
n , respectively.

To show that f λ,M
n = gλ,M

n , let gλ,M
n = a + bwith a ∈ HM and b ∈ H⊥

M . A necessary
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condition for gλ,M
n to be optimal is that b = 0, indeed, considering that PMb = 0,

we have

∥
∥Sn PMgλ,M

n − y
∥
∥
2
n + λ

∥
∥gλ,M

n

∥
∥
2
H = ∥∥Sn PMa − y

∥
∥
2
n + λ

∥
∥a
∥
∥
2
H + λ

∥
∥b
∥
∥
2
H

≥ ∥
∥Sn PMa − y

∥
∥
2
n
+ λ
∥
∥a
∥
∥
2
H .

This means that gλ,M
n ∈ HM , but on HM the functionals defining Problem (47) and

Problem (49) are identical because PM f = f for any f ∈ HM and so f λ,M
n = gλ,M

n .
Therefore, by computing the gradient of the objective function in Problem (49), we
see that f λ,M

n is given by Eq. (50). �

The above result shows that indeedTikhonov regularizationwithNÿstromapprox-
imation is a special form of regularization with projection, where the projections are
stochastic.

6.3 Error Bounds

We next discuss error bounds for Nyström approximations [40]. The analysis in this
section is a simplified version of the one in [40].

Theorem 33 Assume that for some 0 < r ≤ 1/2

f †H ∈ ran (S∗
ρSρ)

r . (51)

Select M points x̃1,…, x̃M uniformly without replacement. Let f λ,M be defined as
in (48) and, fix τ ≥ 1, choose

λn =
(

τ 2

n

) 1
2(r+1)

, Mn = C0

λn
(τ + log c2

λn
).

With probability at least 1 − Ce−τ ,

‖ f λn ,Mn − f †H‖H ≤ cτ 2n− r
2(r+1) ,

provided that n ≥ c0 + c1τ 2, where the constants c0, c1, c2, c,C0,C are independent
of n, τ .

The obtained bound is again statistically optimal. It is interesting to see the behav-
ior of Mn . Note that Mn is always smaller than

√
n and decreases for increasing r

from
√
n (if r goes to 0), to 3

√
n (if r = 1/2). This shows the problem is “easy” the

computational complexity can be dramatically reduced without incurring in any loss
in accuracy.
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We now prove the above result. First we provide an algebraic decomposition of
the error as follows.

Theorem 34 Let λ > 0. The following bound holds:

‖ f λ,M
n − f †H‖H ≤ 1

λ
‖S∗

ny − S∗
n Sn f

†
H‖H

+
(

2 + 1√
λ

‖Sn(I − PM)‖∞
)

‖(I − PM) f †H‖H
+ √

λ‖(S∗
n Sn + λI )−1/2 f †H‖H .

Proof To derive bounds for Nyströmmethod, wewill consider the following decom-
position:

f λ,M
n − f †H = (PMS∗

n Sn PM + λI )−1PM(S∗
ny − S∗

n Sn f
†
H ) (52)

+ (PMS∗
n Sn PM + λI )−1PMS∗

n Sn(I − PM) f †H (53)

+ ((PMS∗
n Sn PM + λI )−1PMS∗

n Sn PM − I )PM f †H (54)

− (I − PM) f †H (55)

that holds since P2
M = PM . Denote by Tn,M the operator Tn,M = PMS∗

n Sn PM , and
by Tn,M,λ the operator Tn,M,λ = Tn,M + λI , and note that ‖T−1

n,M,λ‖∞ ≤ λ−1 and

‖T−1/2
n,M,λ‖∞ ≤ λ−1/2. The first term (52) controls the variance of the estimator and is

bounded by

‖T−1
n,M,λPM(S∗

ny − S∗
n Sn f

†
H )‖H ≤ ‖T−1

n,M,λ‖∞‖PM‖∞‖S∗
ny − S∗

n Sn f
†
H‖H

≤ λ−1 ‖S∗
ny − S∗

n Sn f
†
H‖H .

The second term (53) depends on howwell the projected regularization approximates
Sn and f †H . To bound it, observe that

‖T−1
n,M,λPMS∗

n Sn(I − PM) f †H‖H ≤ ‖T−1/2
n,M,λ‖∞‖T−1/2

n,M,λPMS∗
n‖∞‖Sn(I − PM) f †H‖H .

Now by (68) we have

‖T−1/2
n,M,λPMS∗

n‖2∞ = ‖T−1/2
n,M,λTn,MT−1/2

n,M,λ‖∞ ≤ 1.

Moreover, since I − PM is a projection operator, we have

‖Sn(I − PM) f †H‖H = ‖Sn(I − PM)2 f †H‖H ≤ ‖Sn(I − PM)‖∞‖(I − PM) f †H‖H ,

so that

‖T−1
n,M,λPMS∗

n Sn(I − PM) f †H‖H ≤ λ− 1
2 ‖Sn(I − PM)‖∞‖(I − PM) f †H‖H .
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The third term (54) controls the bias of the estimator. To bound it, by (72) we have

‖(T−1
n,M,λTn,M − I )PM f †H‖H = λ‖T−1

n,M,λPM f †H‖H
≤ λ‖T−1/2

n,M,λ‖∞‖T−1/2
n,M,λPM f †H‖H ≤ λ1/2‖T−1/2

n,M,λPM f †H‖H .

Moreover, by (73)

‖T−1/2
n,M,λPM f †H‖2H = λ

〈

f †H , PM(PMS∗
n Sn PM + λI )−1PM f †H

〉

≤
〈

f †H , PM(S∗
n Sn + λI )−1PM f †H

〉

= ‖(S∗
n Sn + λI )−1/2PM f †H‖2H .

Hence, we get

‖(T−1
n,M,λTn,M − I )PM f †H‖H ≤ λ

1
2 ‖(S∗

n Sn + λI )−1/2PM f †H‖H .

Finally, by PM f †H = ( f †H − (I − PM) f †H ) we have

‖(S∗
n Sn + λI )−1/2PM f †H‖H ≤ ‖(S∗

n Sn + λI )−1/2 f †H‖H
+ ‖(S∗

n Sn + λI )−1/2‖∞‖(I − PM) f †H‖H ,

so that

‖(T−1
n,M,λTn,M − I )PM f †H‖H ≤ λ

1
2 ‖(S∗

n Sn + λI )−1/2 f †H‖H + ‖(I − PM) f †H‖H .

The theorem is concluded by combining the bounds derived above for the four terms.
�

Analyzing the decomposition above, we see that the error associated to the Nys-
tröm estimator decomposes in one variance term, one term that accounts for the effect
of the stochastic projection on Sn and on f †H , and a third term that resembles a bias
term. We need the following lemma.

Lemma 35 Take λ > 0 and τ > 0, with probability at least 1 − 4e−τ .

‖(S∗
n Sn + λI )−1/2 f †H‖H ≤ √

2‖(S∗
ρSρ + λI )−1/2 f †H‖H

provided that
n ≥ 4c2τ 2λ−2, (56)

where c is a suitable constant.

Proof Taking into account (56), bound (36) implies that, with probability at least
1 − 4e−τ ,
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‖S∗
n Sn − S∗

ρSρ‖∞ ≤ λ/2 < λ. (57)

By (75) with A = S∗
n Sn + λI and B = S∗

ρSρ + λI , we get with the same probability

‖(S∗
n Sn + λI )−1/2(S∗

ρSρ + λI )1/2‖∞ ≤
√

1

1 − λ−1‖S∗
n Sn − S∗

ρSρ‖∞
≤ √

2, (58)

where (74) is satisfied taking into account that

∥
∥(S∗

ρ Sρ + λI )−1/2
(

S∗
n Sn − S∗

ρ Sρ

)

(S∗
ρ Sρ + λI )−1/2∥∥∞ ≤ ∥∥(S∗

ρ Sρ + λI )−1∥∥∞
∥
∥S∗

n Sn − S∗
ρ Sρ

∥
∥∞

≤ λ−1∥∥S∗
n Sn − S∗

ρ Sρ

∥
∥∞ ≤ 1

2

since
∥
∥S∗

ρSρ + λI
∥
∥

−1
∞ ≤ λ−1 and (57). Hence,

‖(S∗
n Sn + λI )−1/2 f †H‖H = ‖(S∗

n Sn + λI )−1/2(S∗
ρ Sρ + λI )1/2(S∗

ρ Sρ + λI )−1/2 f †H‖H
≤ ‖(S∗

n Sn + λI )−1/2(S∗
ρ Sρ + λI )1/2‖∞‖(S∗

ρ Sρ + λI )−1/2 f †H‖H
≤ √

2‖(S∗
ρ Sρ + λI )−1/2 f †H‖H .

�

More advanced versions of the result above are in [40–42].
We need the following concentration inequality. Set

d∞(λ) = sup
x∈X

〈

(S∗
ρSρ + λI )−1Kx , Kx

〉

.

Lemma 36 Take τ > 0 and 0 < λ ≤ ∥∥Sρ

∥
∥
2
∞, with probability at least 1 − 2e−τ

∥
∥(S∗

ρ Sρ + λI )−1/2(S∗
n Sn − S∗

ρ Sρ)(S∗
ρ Sρ + λI )−1/2∥∥ ≤ 2β(1 + d∞(λ))

3n
+
√

2βd∞(λ)

n
, (59)

where β = τ + ln(8λ−1κ2).

Proof See Proposition 6 in [41]. �
Let x̃1, . . . , x̃M be the selected Nyström points and set

ZM : H → R
M (ZM f )i = 〈 f, Kx̃i

〉

i = 1, . . . , M.

The result above is crucial to control the effect of the randomized projection, as
shown in the next lemma.

Lemma 37 Let M ∈ N, λ > 0, τ ≥ 1. With probability at least 1 − 2e−τ

‖(I − PM)S∗
ρ‖∞ ≤ √

2λ,
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provided that

M ≥ 13κ2

λ
(τ + log 8κ2

λ
), λ ≤ ‖Sρ‖2∞. (60)

Proof Equation (71) implies that

‖(I − PM )S∗
ρ‖∞ ≤ ‖(I − PM )(S∗

ρ Sρ + λI )1/2‖∞
= ‖(I − PM )(Z∗

M ZM + λI )1/2(Z∗
M ZM + λI )−1/2(S∗

ρ Sρ + λI )1/2‖∞
≤ ‖(I − PM )(Z∗

M ZM + λI )1/2‖∞‖(Z∗
M ZM + λI )−1/2(S∗

ρ Sρ + λI )1/2‖∞.

Now note that, since ran PM = ran Z∗
M , then (I − PM)ZM = 0, so

‖(I − PM )(Z∗
M ZM + λI )1/2‖2∞ = ‖(I − PM )(Z∗

M ZM + λI )(I − PM )‖∞
≤ ‖(I − PM )Z∗

M ZM (I − PM )‖∞ + λ‖(I − PM )2‖∞
≤ λ.

To conclude the proof we have to show that

‖(Z∗
M ZM + λI )−1/2(S∗

ρSρ + λI )1/2‖∞ ≤ √
2.

Indeed, by (75) with A = (Z∗
M ZM + λI )−1/2, B = (S∗

ρSρ + λI )1/2 and � =
(Z∗

M ZM + λI )−1/2(Z∗
M ZM − S∗

ρSρ)(S∗
ρSρ + λI )1/2, we have

‖(Z∗
M ZM + λI )−1/2(S∗

ρSρ + λI )1/2‖∞ ≤
√

1

1 − ∥∥�∥∥∞
≤ √

2,

provided that

∥
∥�
∥
∥∞ = ∥∥(S∗

ρSρ + λI )−1/2(Z∗
M ZM − S∗

ρSρ)(S
∗
ρSρ + λI )1/2

∥
∥ <

1

2
.

Since the Nyström points are uniformly selected without replacement, x̃1, . . . , x̃M
are independently and identically distributed according to ρX, so that we can apply
Lemma 36 by replacing Sn with ZM . Hence, with probability at least 1 − 2e−τ ,

∥
∥�
∥
∥∞ ≤ 2β(1 + d∞(λ))

3M
+
√

2βd∞(λ)

M
≤ 1

2
,

with β = τ + ln(8λ−1κ2), where the last bound is a consequence of (60), taking into
account that by (9)

d∞(λ) ≤ κ2λ−1
∥
∥Sρ

∥
∥
2 ≤ κ2.

Indeed, since κ2λ−1 ≥ 1 and M ≥ 13βκ2/λ,
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2β(1 + d∞(λ))

3M
+
√

βd∞(λ)

M
≤ 4βκ2

3Mλ
+
√

2βκ2

Mλ
≤ 1

2
.

�
We need the following bound, which depends on the source condition.

Lemma 38 Assume that f †H ∈ ran (S∗
ρSρ)

r for some r ∈ (0, 1/2], then

‖(I − PM) f †H‖H ≤ C‖(I − PM)S∗
ρ‖2r∞, (61)

where C is a constant depending on ρ.

Proof By assumption, there exists g ∈ H such that f †H = (S∗
ρSρ)

r g, then

‖(I − PM) f †H‖H = ‖(I − PM)(S∗
ρSρ)

r g‖H ≤ C‖(I − PM)(S∗
ρSρ)

r‖∞,

where C = ‖g‖H . By Cordes inequality (69) with s = 2r , A = (I − PM)s = (I −
PM) and B = (S∗

ρSρ)
1
2

‖(I − PM)(S∗
ρSρ)

r‖∞ = ‖(I − PM)s(S∗
ρSρ)

s/2‖∞ ≤ ‖(I − PM)(S∗
ρSρ)

1/2‖s∞
= ‖(I − PM)S∗

ρ‖2r∞.

�
Proof (Theorem 33) We bound the three terms in the analytic decomposition of
‖ f λ,M

n − f †H‖H in Theorem 34. By (36), with probability at least 1 − 4e−τ

1

λn
‖S∗

ny − S∗
n Sn f

†
H‖H � 1

λn
√
n

= n− r
2(r+1) ,

since λn = n− 1
2(r+1) . To bound the second term, we need the following two consider-

ations: first, by Lemma 37, selecting C0 = 13κ2 and c2 = 8κ2, we have

‖(I − PM)S∗
ρ‖∞ ≤ √

2λ,

with probability 1 − 2e−τ . Second, we bound ‖(I − PM)S∗
n‖∞ as follows:

‖(I − PM )S∗
n‖2∞ = ‖(I − PM )S∗

n Sn(I − PM )‖2∞
≤ ‖(I − PM )(S∗

n Sn − S∗
ρ Sρ)(I − PM )‖∞ + ‖(I − PM )S∗

ρ Sρ(I − PM )‖∞
≤ ‖I − PM‖2∞‖S∗

n Sn − S∗
ρ Sρ‖∞ + ‖(I − PM )S∗

ρ‖2∞
≤ cτ√

n
+ 2λ,

with probability 1 − 4e−τ , where for the last step we used (36) and the fact that
‖I − PM‖∞ ≤ 1 since I − PM is a projection operator. Now, note that, by (61) and
the fact that λn

√
n ≥ 1,
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(

2 + 1√
λ

‖Sn(I − PM )‖∞
)

‖(I − PM ) f †H‖H ≤ C

(

2 + 1√
λ

‖Sn(I − PM )‖∞
)

‖(I − PM )S∗
ρ‖2r∞

≤ C(2 + √
2 + cτ)λrn ,

where the last bound holds true with probability at least 1 − 4e−τ . Finally, by
Lemma 35 with probability at least 1 − 4e−τ .

√

λn‖(S∗
n Sn + λI )−1/2 f †H‖H ≤ √

2λn‖(S∗
ρ Sρ + λI )−1/2 f †H‖H

= √2λn‖(S∗
ρ Sρ + λI )−1/2(S∗

ρ Sρ)r g‖H ≤ √
2‖g‖Hλrn,

where the last bound has the same proof of (33) and condition (56) is satisfied. �

6.4 Regularization by Subsampling

A useful observation is derived exchanging λ and M , that is, considering

Mn = Õ(n
1

2(r+1) ), λn = Õ(
1

Mn
).

Clearly, in this case, the same bound holds. However, we now naturally think of M
as a regularization parameter rather than a parameter controlling the computational
budget. This shows that M can be used to control at the same time the statistical time
and space complexity of the obtain solution.

Remark 39 (Regularization path) An advantage of parameterizing the algorithm by
M is that an easy incremental implementation can be considered. Indeed, it can be
shown that the solution computed for some set of centers can be efficiently updated
if one center is added. This suggests to build a regularization path by computing
solutions corresponding to an increasing number of centers via incremental updates.

6.5 Random Features

The approach of random features is based on the following basic idea [26, 38, 41,
50].

Recall that for finite dictionaries of Example 11, the kernel can be written as

KM(x, x ′) = 	M(x)�	M(x ′), (62)

where 	M : X → R
M is the feature map. We can identify HM with R

M since for
any f ∈ HM there exists a vector w ∈ R

M such that
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f (x) = 	M(x)tw x ∈ X.

With this identification,

f λ
n (x) = 	(x)twλ

n wλ
n = (Stn,MSn,M + λI )−1Stny,

where Sn,M can be seen as the n by M matrix defined as

Sn,M =
⎛

⎝

	M(x1)t

. . .

	M(xn)t

⎞

⎠ .

In this case, the complexity becomes O(nM) in space, and O(nMd + nM2 +
M3) in time, which can be much lower than standard Tikhonov regularization if
M � n. Despite the simplicity of this approach, considering kernels of the form (62)
can be too much of a restriction. Indeed, classic examples of kernels such as the

Gaussian kernel e−
∥
∥x−x ′

∥
∥

2
γ do not satisfy (62). It is then natural to ask if the above

reasoning can still be useful to reduce the computational burden for more complex
kernels such as the Gaussian kernel.

Random features provide one possible approach. The basic idea is to relax Eq. (62)
assuming it holds only approximately, that is,

K (x, x ′) ≈ 	M(x)�	M(x ′). (63)

Clearly, if one such approximation exists the approach described in the previous
section can still be used. The question is then for which kernels an approximation
of the form (63) can be derived. A simple manipulation of the Gaussian kernel of
Example 12 provides one basic example.

Example 40 (Random Fourier features) Using basic properties of the Fourier trans-
form, it is easy to see that

e−
∥
∥x−x ′

∥
∥

2
γ =

(
1

2
√

πγ

)d ∫

Rd

e−
∥
∥

ω

∥
∥

2

4γ eiω
�xe−iω�xdω,

and the above expression can be further simplified considering

e−
∥
∥x−x ′∥∥2γ =

∫ 1

0

⎛

⎜
⎝

∫

Rd
cos(ω�x + b) cos(ω�x + b)

1

(
√
2π(2γ ))d

e
−
∥
∥ω

∥
∥
2

2(2γ ) dω

⎞

⎟
⎠ db.

Then the idea is to view the above integral as an expectation and consider a Monte
Carlo approximation
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e−
∥
∥x−x ′

∥
∥

2
γ � 1

M

M
∑

j=1

cos(ω�
j x + b j ) cos(ω

�
j x + b j ),

where (ω j , b j )
M
j=1 are independent samples of the probability distribution which is

the product of a Gaussian distribution with variance 2γ and the uniform distribution
over [0, 1]. Then we can define the feature map

	M(x) = 1√
M

(cos(ω�
1 x + bM), . . . , cos(ω�

Mx + bM)).

The above example can be abstracted to a general approximation strategy. Assume
that the kernel K has an integral representation

K (x, x ′) =
∫

�

ψ(x, ω)ψ(x ′, ω)dπ(ω), ∀x, x ′ ∈ X, (64)

where (�, π) is probability space andψ : X × � → R. The randomfeature approach
consists in approximating K via Monte Carlo sampling of its integral representation:
given ω1, . . . , ωM independently and identically distributed according to the proba-
bility distribution π , consider

KM(x, x ′) := 1

M

M
∑

j=1

ψ(x, ω j )ψ(x ′, ω j ) = 	M(x)�	M(x ′), (65)

with 	M(x) := M−1/2 (ψ(x, ω1), . . . , ψ(x, ωM )).
As discussed before, this leads to the following learning algorithm. Let λ > 0 and

M ∈ N, for any x ∈ X, f λ,M
n is defined as

f λ,M
n (x) := 	M(x)�wλ,M

n , with wλ,M
n := (S�

n,MSn,M + λI )−1S�
n,My, (66)

where Sn,M is the n by M matrix with rows (	M(x1), . . . , 	M(xn)).
The above discussion shows that the random features approach, based on deriving

a representation (64) and then approximating it via (65), is applicable to a wide
range of kernels, e.g., all translation-invariant kernels, and can be used to reduce
the computational costs as soon as we choose M � n. However, since using random
features rely on an approximation (63), it is natural to ask whether the approach leads
to a loss of accuracy. A possible way to tackle this question is to characterize the
error incurred replacing a kernel K with an approximation KM , and indeed results
in this direction abound. A more compelling question for supervised learning is
whether using random features leads to computational advantages at the expanses of
a decrease in prediction performances.

Note that the random feature algorithm f λ,M
n defined by (66) is the solution of

the minimization problem
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min
w∈RM

(∥
∥Sn,Mw − y

∥
∥
2
n + λ

∥
∥w
∥
∥
2
RM

)

. (67)

The following lemma shows that random features algorithm can be seen as a special
form of regularization with projection, where the projections are stochastic. To this
aim, we assume that there exists a Hilbert space H such that 	(·, ω) ∈ H for all
ω ∈ � and, for any sample (ω1, . . . , ωM) ∈ �M , we set ψi = ψ(·, ωi )/

√
M for

i = 1, . . . , M and
HM = span{ψ1, . . . , ψM }.

Note that, random features might not belong to the RKHS defined by the kernel
being approximated. It suffices to think of Fourier random features and the Gaussian
kernel. Here, we make this assumption to illustrate a difference in the form of the
estimator considered while using random features and Nyström approximations. In
the rest of the section, we restrict to the case of finite dictionary of Example 11.
In this case, HM is a subspace of H , and we denote JM : HM → H the inclusion,
moreover HM is the RKHS with reproducing kernel KM given by (65). We stress
that, in general, ‖JM f ‖H �= ∥∥ f ∥∥HM

.

Lemma 41 Problem (67) is equivalent to

min
f ∈H

(∥
∥Sn PM f − y

∥
∥
2
n + λ

∥
∥J †

M f
∥
∥
2
HM

)

,

where Sn : H → R
n is the sampling operator and PM is the projection onto HM,

regarded as closed subspace of H .

Proof Let UM be the operator

UM : RM → HM , UMw =
M
∑

j=1

w jψi , ∀w ∈ R
M ,

thenUM is a partial isometrywith kernel kerUM = ker Sn,M and range ranUM = HM

and Sn,M = Sn JMUM . Hence, Problem (67) is equivalent to

min
w∈RM

(∥
∥Sn,Mw − y

∥
∥
2
n + λ

∥
∥w
∥
∥
2
RM

)

= min
w∈kerUM

⊥

(∥
∥Sn,Mw − y

∥
∥
2
n + λ

∥
∥w
∥
∥
2
RM

)

= min
g∈HM

(∥
∥Sn,MU

∗
Mg − y

∥
∥
2
n + λ

∥
∥g
∥
∥
2
HM

)

= min
g∈HM

(∥
∥Sn JMg − y

∥
∥
2
n + λ

∥
∥g
∥
∥
2
HM

)

= min
f ∈H

(∥
∥Sn JM J †

M f − y
∥
∥
2
n
+ λ
∥
∥J †

M f
∥
∥
2
HM

)

= min
f ∈H

(∥
∥Sn PM f − y

∥
∥
2
n + λ

∥
∥J †

M f
∥
∥
2
HM

)

,
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where the last two inequalities are consequence of the fact that ran J †
M = HM and

JM J †
M = PM . �

Note that Lemma 41 is not strictly convex, so that set of minimizer is not a singleton,
however its minimal norm solution is the minimizer of Problem (67).

The above result shows that Tikhonov regularization with random features is
indeed a form of projection regularization but wherewe consider a special regularizer
∥
∥J †

M

∥
∥
HM

depending on the random projection. An analysis random features in full
generality is in [41]. Essentially the same bounds hold for random features [41], but
obtained with different techniques.

7 Conclusions

In this chapter, we reviewed the connection of supervised learning with the square
loss and inverse problems. Then, we used the obtained formulation to provide a uni-
fying description of the computational and statistical properties of a different regular-
ization technique. In particular, we contrasted variational regularization (Tikhonov
regularization), with iterative regularization and regularization with stochastic regu-
larization.

The purpose of this discussion was to highlight how all these techniques share
common estimation principles, and indeed have very similar statistical properties,
but different computational properties.

• Variational regularization introduces a dichotomy between statistics and compu-
tations/optimization.

• Iterative regularization controls at once time and statistical complexities. Opti-
mization and statistics are seen as aspects of a common underlying problem.

• Finally, regularization with stochastic projections allows to deal simultaneously
with time, statistical, and space complexities.

We conclude with a few remarks.

• Extensions to other loss/regularizers. It is straightforward for variational regular-
ization. It is a subject of study for iterative regularization where several extensions
can be made. It is an open problem for regularization with projections.

• A regularization view on optimization. The material presented in this chapter
proposes regularization theory to study optimization and numerical algorithms to
solve statistical problems. This latter framework allows to consider at the same
time the computational and stability properties of the considered procedures.

• From supervised learning to inverse problems and beyond. Drawing a con-
nection between machine learning and inverse problems, allowed to exploit ideas,
algorithms, and results from inverse problems in the context of machine learning.
It would be interesting to investigate the opposite direction, and see if machine
learning ideas could be applied in classical inverse problems arising in signal
processing, PDE, and integral equations.
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Appendix

In this section, we collect the notation and some basic mathematical facts, adapted
to our setting.

H,G Hilbert spaces
∥
∥ f
∥
∥H norm of f ∈ H

〈 f, g〉H scalar product between f, h ∈ H
K⊥ = { f ∈ H : 〈 f, f ′〉

H = 0 ∀ f ′ ∈ K} complement of a closed subspace K ⊂ H
PK projection onto a closed subspace K ⊂ H

ker A = { f ∈ H : A f = 0} kernel of A : H → G
ran A = {A f ∈ G : f ∈ H} range of A : H → G

A∗ : G → H adjoint of A : H → G
|A| = √

A∗A absolute value of A : H → G
∥
∥A
∥
∥∞ = sup f ∈H

∥
∥A f
∥
∥
G

‖ f ‖H operator norm of A : H → G
w ⊗ v = 〈·, v〉H w : H → G rank-one operator v ∈ H , w ∈ G

(�,F ,P) probability space

E[ξ ] expectation of the random variable ξ : � → H

We recall the following results.

• Trace class operators: an operator A : H → H is trace class if there exists (any)
a base (v�)�∈� ofH such that the series

∑

�∈� 〈|A|v�, v�〉H converges and
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Tr A =
∑

�∈�

〈Av�, v�〉H

is called the trace of A. An A : H → G is trace class if |A| is trace class and
the space S1(H,G) of trace class operators from H to G is a Banach space with
respect the norm

∥
∥A
∥
∥
S1(H,G)

= Tr(|A|).

• Hilbert–Schmidt operators: A : H → G is a Hilbert–Schmidt operator if A∗A is
a trace class operator. The space S2(H,G) of Hilbert–Schmidt operators fromH
to G is a Hilbert space with respect to the scalar product

〈A, B〉S2(H,G) = Tr(B∗A),

and S1(H,G) ⊂ S2(H,G).
• Hilbert–Schmidt theorem: if A : H → H is a Hilbert–Schmidt self-adjoint oper-
ator, there exists a base (v�)�∈� ofH and a sequence (v�)�∈� of real numbers such
that

Av� = σ�v�.

• Functional calculus: if A : H → H is a Hilbert–Schmidt self-adjoint operator
and ϕ : R → R is a bounded function, by the functional calculus the operator
ϕ(A) : H → H is defined as

ϕ(A) f =
∑

�∈�

ϕ(σ�) 〈 f, v�〉H v�.

where the series converges in H .
• For any operator A : H → G

‖A‖2∞ = ‖AA∗‖∞ (68)

• Cordes inequality: for any pair of positive operator A, B : H → H and s ∈ (0, 1]

‖As Bs‖∞ ≤ ‖AB‖s∞ (69)

• Take two operators B,C : H → G such that

BB∗ ≤ CC∗, (70)

then
∥
∥AB

∥
∥∞ ≤ ∥∥AC∥∥∞ (71)

for any operator A : G → G′. Indeed, by (70)



Regularization: From Inverse Problems to Large-Scale Machine Learning 293

ABB∗A∗ ≤ ACC∗A∗ =⇒ ∥
∥ABB∗A∗∥∥∞ ≤ ∥∥ACC∗A∗∥∥∞.

Then,

∥
∥AB

∥
∥
2
∞ = ∥∥ABB∗A∗∥∥∞ ≤ ∥∥CBB∗C∗∥∥∞ = ∥∥AC∥∥2∞.

• If A : H → G and λ > 0

((A∗A + λI )−1A∗A − I ) = λ(A∗A + λI )−1 (72)

see [22].
• For any positive operator C : H → H and projection P : H → H

P(PCP + λI )−1P ≤ P(C + λI )−1P (73)

see, for example, TheoremV.2.3-(iv) of [3] for the proof of this property of operator
convex functions, and Cor. V.2.6 together with Exercise V.1.10-(ii) and Exercise
V.2.11, in the same book, for the proof of operator convexity of (· + λ)−1.

• For any pair A, B : H → H of positive operators with bounded inverse such that

∥
∥B− 1

2 (A − B)B− 1
2
∥
∥∞ < 1 (74)

then

∥
∥A− 1

2 B
1
2
∥
∥∞ ≤

√

1

1 − ∥∥B− 1
2 (A − B)B− 1

2

∥
∥∞

. (75)

Indeed, observe that

(A− 1
2 B

1
2 )∗A− 1

2 B
1
2 = B

1
2 A−1B

1
2 = B

1
2 (A − B + B)−1 B

1
2

= B
1
2

(

B
1
2

(

B− 1
2 (A − B)B− 1

2 + I
)

B
1
2

)−1
B

1
2

=
(

B− 1
2 (A − B)B− 1

2 + I
)−1 =

+∞
∑

�=0

(−1)�
(

B− 1
2 (A − B)B− 1

2

)�

,

where the Neumann series converges by (74). Hence, triangular inequality gives

∥
∥A− 1

2 B
1
2
∥
∥
2
∞ = ∥∥

(

B− 1
2 (A − B)B− 1

2 + I
)−1∥
∥∞ ≤ 1

1 − ∥∥B− 1
2 (A − B)B− 1

2

∥
∥∞

.

• Höeffidng inequality in separable Hilbert spaces [35, 36, 51] : take a family

ξ1, . . . , ξn : � → H
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of independent zeromean randomvariables such that ‖ξi‖H ≤ κ , then for all ε > 0

P

[

‖1
n

n
∑

i=1

ξi‖H > ε

]

≤ 2 exp

(

− ε2n

4κ2

)

,

i.e., for all τ > 0 with probability at least 1 − 2e−τ

‖1
n

n
∑

i=1

ξi‖H ≤ 2κ
√

τ√
n

. (76)
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