
A Composite Function for Understanding
Bin-Packing Problem and Tabu Search:

Towards Self-adaptive Algorithms

V. Landero1(B), David Ríos1, O. Joaquín Pérez2,
and Carlos Andrés Collazos-Morales3

1 Universidad Politécnica de Apodaca, Ciudad Apodaca, Nuevo León, México
{vlandero,drios}@upapnl.edu.mx

2 Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Departamento de
Ciencias Computacionales, AP 5-164, 62490 Cuernavaca, México

3 Universidad Manuela Beltrán, Bogotá, Colombia

Abstract. Different research problems (optimization, classification, ordering)
have shown that some problem instances are better solved by a certain solution
algorithm in comparison to any other. A literature review indicated implicitly that
this phenomenon has been identified, formulated, and analyzed in understand-
ing levels descriptive and predictive without obtaining a deep understanding. In
this paper a formulation of phenomenon as problem in the explanatory under-
standing level and a composite function to solve it are proposed. Case studies for
Tabu Search and One Dimension Bin Packing were conducted over set P. Fea-
tures that describe problem instance (structure, space) and algorithm behavior
(searching, operative) were proposed. Three algorithm logical areas were ana-
lyzed. Knowledge acquired by the composite function allowed designing of self-
adaptive algorithms, which adapt the algorithm logic according to the problem
instance description in execution time. The new, self-adaptive algorithms have a
statistically significant advantage to the original algorithm in an average 91% of
problem instances; other results (set P’) indicate that when they obtain a best solu-
tion quality, it is significant and when they obtain the same or less solution quality,
they finish significantly faster than original algorithm. The composite function can
be a viable methodology toward the search of theories that permit the design of
self-adaptive algorithms, solving real problems optimally.

1 Introduction

It has been seen for sorting problems, depending on the length and order of the sequence,
there are algorithms that perform better than the rest [1]. Also, for NP-hard combinatorial
optimization problems, the deterministic algorithms are considered adequate for smaller
instances of such problems [2]. Intuition says that the difficulty of a problem instance
varies with its size: large instances are usually more difficult to solve than smaller ones.
However, in practice, recognizing the measuring difficulty only in terms of the instance
size implies overlooking any structural property or feature of the instance, which could

© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12949, pp. 592–608, 2021.
https://doi.org/10.1007/978-3-030-86653-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86653-2_43&domain=pdf
https://doi.org/10.1007/978-3-030-86653-2_43

A Composite Function for Understanding Bin-Packing Problem 593

affect the problem complexity [3] and the algorithm performance. For example, clas-
sification problems show that some learning algorithms perform very well on certain
problem instances depending on a set of specific features [4]. The scientific community
of different disciplines, such as combinatorial optimization, machine learning, artificial
intelligence and other fields of knowledge has worked for describing and analyzing the
experimental relation between problem-algorithm, with the objective of solving a real
problem optimally. However, its analysis has been conducted, in most cases, in descrip-
tive and predictive understanding levels (for amajor compression of this concept [5]) and
it is necessary deepening more in this objective, in the explanatory understanding level,
answering why the relation of certain problem instances and an algorithm produces best
solutions (algorithm is very good) and why it is not good with other problem instances.
Under the scope of this research (combinatorial optimization area and search algorithms),
this paper contains: previous questions and formulations of reviewed literature, so too,
the phenomenon is formulated as a question and a formal problem statement in the
explanatory level, using and supplementing the Rice’s formal nomenclature (Sect. 2); a
proposed composite function to solve the stated problem (Sect. 3); a framework for the
performance of the proposed composite function over the One Dimension Bin-Packing
problem and Tabu Search algorithm (Sect. 4); Development of the proposed composite
function, using a instances set P (Sect. 5), the discovered knowledge is used for answer-
ing how and why certain problem instances (describing structure and problem solutions
space), algorithms features (describing operative and searching behavior); and the algo-
rithm logical design contribute toward a better relation between problem-algorithm (in
majority cases of reviewed literature, not all information are taken into account at the
same time, problem, algorithm, logical area). A new self-adaptive search algorithm is
designed for each case of study. Section 6 describes the results of self-adaptive search
algorithms over instances sets P and P’ (P’ �= P)). Conclusions and future works are
drawn in Sect. 7.

2 Reviewing State of Art and Setting the Problem Statement

Using and supplementing the Rice’s formal Nomenclature,
P= {x1, x2,…, xm} a set of problem instances or space for analysis.
F= the problem features space generated by a description process applied to P.
A= {a1, a2,…, an} a set of algorithms.
Y= the performance space, it represents the mapping of each algorithm to a set to a

set of performance metrics.
C= {C1, C2,…,Cn} a partition of P, where |A|=|C|.
W = { (aq ∈ A,Cq ∈ C)

∣
∣Yaq,x > Yα,x · ∀ · α ∈ (A − {aq}),∀ · x ∈ Cq} is a set of

ordered pairs (aq, Cq), where each dominant algorithm aq ∈ A is associated with one
elementCq of partitionC, because this gives the best solution to partitionCq, considering
a set of performance metrics mapped in set Y.

L= the algorithm features space.
In descriptive traditional level, the next first research question arises from experi-

mental relation between problem-algorithm:

1. What is the performance of algorithm aq ∈ A to solve the problem P?

594 V. Landero et al.

For this, a set of algorithms A is run over a set of instances P. The general perfor-
mance of each algorithm is measured by some performance metric y ∈ Y in order to
obtain a quantifiable value that could be used for performing a comparison of algorithms
by means statistical analysis (statistical tests The Sign, Wilcoxon and Friedman tests,
among others) or tabular analysis or graphical analysis; after that performing a results
interpretation. One classic example of related work in this understanding level is [6].
Nevertheless, the results of the solution algorithms on an instance set of a problem could
be incorrectly interpreted, this is, one might expect that there are pairs of search algo-
rithms aq and α such that aq performs better than α on average, even if outperforms aq at
times. Such expectation could be incorrect.Wolpert describes twoNo Free Lunch (NFL)
theorems in [7]. In general terms, it establishes that for any algorithm, a high perfor-
mance over a set of problems is paid in performance over another set. The existence of
instances subsets for specific problem and an algorithm for each subset is suggested by
NFL theorems. For the purpose of exemplification in the reviewed literature, other classic
examples of related works identified different performances of algorithms on different
problem instance sets, based on the construction of an association table, where each set
had one or several similar features in the context of the problem structure description
[8, 9]. A few of other related works are [1, 2, 4, 10, 11]. The above indicates that one
algorithm can be associated to a problem instances subset, where it is the one that solves
these instances in the best way possible, for a specific problem domain. The phenomenon
observed could be described by means of some setW that includes pairs in the form (aq,
Cq), where instances subset Cq better correspond to aq for instances set P for a specific
problem (see nomenclature for a major description).

In predictive level, a general research question arises:

2. What is the best way to learnW (pairs (aq, Cq)) in order to predict algorithm aq that
will give the best solution for a new instance from a problem?

The above question needs to consider information from the experimental relation
between problem-algorithm, which is significant and has a predictive value. If this ques-
tion is answered, the solution to the algorithm selection problem can be found. The
algorithm selection problem (ASP) is originally formulated in [12], which is stated as:

For a given problem instance x ∈ P, with features f (x) ∈ F, find the selec-
tion mapping S(f (x)) into algorithm space A, such that the selected algorithm

Amaximizes the performance mapping y((x)) Y .

It can be said that the phenomenon mentioned in this paper, can be analyzed and
learned in the predictive understanding level of an implicitly manner when problemASP
is being solved.ASPwasgeneralized throughdifferent researchdisciplines in [13],where
its solution is important. Two known approaches that are utilized by related works in
solving problem ASP are algorithm portfolio and supervised learning. In the case of
algorithm portfolio, the algorithm performance is characterized and adjusted to a model
(model-based portfolio) either by a regression model [14] or a probability distribution
model [15, 16]; other related works have also shown that some problem features are
considered in the building of a model (feature-based portfolio), for example, applying

A Composite Function for Understanding Bin-Packing Problem 595

supervised learning [17, 18]. In this case, many related works exhibit learning patterns
(corresponding to setW in the context of this paper) from data by means of a supervised
algorithm and use them for predicting the best algorithm for an unseen problem instance.
Examples: Case-base reasoning [19, 20], decision trees [21, 22], Neural Networks [23]
and Random Forest [24–26]. A discussion of machine learning methods applied to
ASP problem can be found in [27]. Nevertheless, the principal disadvantage is that the
phenomenon identified in the predictive understanding level is analyzed and studied
without being fully understood. Two principal reasons: the information considered in
analyses is only derived from a problem, or an algorithm, or a logical design (initializing
parameter); and the built models are found to be difficult in interpreting the acquired
knowledge by nature of its own structure; these are used for predictions.

In the explanatory understanding level, there are different guidelines. For example,
some relatedworks focused their analysis on problem difficulty, considering the problem
structure, significant features or parameters, identifying important values from them
to determine when problem is difficult and when is easy (known as Transition Phase
Analysis) through the use of graphical or statistical analysis or unsupervised learning
[23–25, 28, 29]. Other related works focused on algorithm performance, some deeply
on the searching behavior, considering metrics that measures the trajectory, identifying
when it is flat or rugged (there are fluctuations), determining whether the problem is
difficult or easy for algorithm (Known as Landscape Analysis) [30–32]; others deeply
focused on algorithm logical design [33, 34]; some focused on both [30, 35], for example,
obtain important explanations which permit to configure the algorithm in a way that it
can produce the better results. However, these explanations are not very clear, in the
regard which kind of problem instances will produce better results. What are the specific
features of the problem structure that help the configured algorithm better adjust to these
problem instances? In [36], this information is considered important in order to adapt
the algorithm logical design to the problem structure. A few related works focused on
problem and algorithm [37–40], developing some visual tool or performing a graphical,
or statistical, or data exploratory, or causal analysis. The reviewing of this literature
indicatesmuch effort has been taken to characterize and analyze the experimental relation
of problem-algorithm under different understanding levels. However, we believe that it is
necessary to pave the way in the comprehension of explanatory understanding level with
a starting point, something very essential, simple, and important. Therefore, considering
past efforts of the reviewed literature, the experience for previous works [41, 42], and
continuing with observed in descriptive and predictive understanding levels, a simple
research question arises for a domain specific:

3. Why does a problem instance subset Cq correspond better to an algorithm aq than
other instances in a specific problem domain?

In order to formulate this question as a formal problem, should be considered: as
first instance, all significant information from problem (structure, solutions space) and
algorithm (operative and searching behaviour), during and after execution, limitations
of explanatory and predictive levels; as second instance, a methodology as guide to help
obtain a formalmodel that can discover latent knowledge and explain the phenomenon in
question for a specific problem. Following a step beyond to algorithm selection problem

596 V. Landero et al.

(ASP), considering the above, and continuing in the improving of previous works, the
phenomenon could be formulated as the next statement.

For a set of algorithmsA applied to a set of problem instances P, with problem fea-
tures F, algorithm features L, the algorithms performance space Y, the algorithms
performance partitionsW, according to Y and an ordered pair (aq, Cq) ∈ W; find
the composite function E(aq, P, A, F, L, Y) that discovers an explanation formal
model M, such that M, represents the latent knowledge from relations between
features that describe: the problem features F; interest algorithm L; and provides
solid foundations to explain, why certain problem instances, being the partition
Cq correspond better to interest algorithm aq, according to performance space Y,
and why other partitions (Cq)c do not correspond to algorithm aq.

3 Proposed Solution

The solution to the above problem statement, is to discover a formal model that can
acquire latent knowledge, structured in someway as cause-effect relations fromproblem,
algorithm features, which can help explain such formulation. The process is known as
the discovery of causal structure of data [43] (causal model). A causal model can be
defined as a causal Bayesian network [43]. It is described by expression 1.

M = (V ,G,Z) (1)

Specifically,

– V = {v1, v2,..,vn} is a set of observed features.
– G is a directed acyclic graph with nodes corresponding to the elements of V that

represents a causal structure (V, EC); i.e.,
EC = {EC1, EC2,…, ECn}, where each ECi ∈ EC is a set of ordered pairs,
ECi = {(vi, y1), (vi, y2), …, (vi, yn)},it is
ECi = {(vi ∈ V, yk ∈ V)|vi �= yk , yk is a direct cause of vi relative to V and there is a
directed edge from yk to vi in G}
Pa(vi) = {yk ∈ V | (vi, yk) ∈ ECi} is a set of all direct causes of vi.

– Z = P(vi = j | y1 = α, y2 = β, ..., yp = γ), is a function of conditional probability of
vi in the range of values j given the direct causes of vi {y1, y2,…,yp} ∈ Pa(vi), which
are in the ranges of values y1 = α, y2 = β,…, yp = γ.

3.1 Composite Function E

In general terms, the composite function E (see Fig. 1) consists of analyzing the exper-
imental relation between the problem (instances set P) – algorithm (interest algorithm
aq, aq ∈ A) considering the space of features from problem F, the space of features L
and performance Y from algorithms during execution, for discovering latent knowledge
about this relation (represented by explanation model M).

The domain of proposed composite function E (Expression 2), are parameters: the
interest algorithm aq, a set of algorithms A, applied to a set of problem instances P, the

A Composite Function for Understanding Bin-Packing Problem 597

Fig. 1. General diagram of the composite function

set F obtained by f (P), the set L obtained by l(A), the performance space Y, obtained by
y(A). The functions f and l perform a description process, before and during execution
of algorithms, to obtain features that represent information about set P and A.

(E · fz · fg · fv · fd · fc)(aq,P,A,F,L,Y
) ≡ E

(

fz
(

fg
(

fv
(

fd
(

fc
(

aq,P,A,F,L,Y
))))))

(2)

The function y evaluates the algorithmsA, bymeans a set of performancemetrics. The
acquisition of latent knowledge from experimental relation between problem-algorithm
is formalized by means of the proposed composite function E, which, evaluated in each
iteration, obtains the values of a set of significant features, causal relations between
these, and estimations, represented by the sets V, G, Z (codomain-causal model M).

4 Framework for Proposed Composite Function E

The instance sets P and P’ (P �= P’) were randomly selected (324) from Beasley’s OR-
Library [44], the Operational Research Library [45]. The objective of each case of study
is to explain the description process and the composite function of the latent relation
between problem (One Dimension Bin-Packing - BPP) and algorithm (Tabu Search); an
insight into the problem structure, problem solution space, the algorithm logical design,
its operative behaviour, and behaviour during its searching and performance. Due to the
above, four versions of Tabu Search algorithm were implemented, where each one had
a specific logical design (Table 1). The methodology for initializing control parameter
(PM) is applied to size of Tabu list (nLTabu). The static procedure is to set it as 7
[46]. The dynamic procedure is to set it as

√
n, where n represents the number of the

objects or items of the problem instance. The methodology for the generation of an
initial solution (IM) can be conducted by a random or deterministic procedure. The
methodology for building the neighbourhood of a solution (NM) can achieved through
one or several methods, which were proposed in [47]. The candidate list (LCANDI) size
was fixed to 4*(nLTabu * 0.25) for all the study cases. As well as, the methodology to
stop the algorithm execution (SM) was the same; after 4000 iterations or there was no
improvement in the solution. Table 2 shows the study cases.

598 V. Landero et al.

Table 1. Set of algorithms A

Variants PM IM NM
Static Dynamic Random Deterministic One Several

Table 2. Cases of study

Case of study Algorithms Methodology

1 a1, a2 Building Neighborhood (NM)

2 a1, a3 Initializing Control Parameter (IM)

3 a1, a4 Generating Initial Solution (PM)

5 Performing Composite Function E

The function f (P) performs description process for the instances set P, where the set
F is obtained. After that, the set of algorithms A(a1, a2, a3, a4) is applied to solve the
problem instances set P. During the search and solution process, the functions l(A) and
y(A) perform description process to obtain the algorithm features space, set L and set
performance space Y. This process (f (P), l(A), y(A)), for all cases of study, is described
in greater detail only for those features that were significant in next sections.

5.1 Problem Instances Structure Description: Function f (P)

There are three features, (b, d) [21] and cu proposed in this paper; b describes the
proportion of the total weights of the objects that can be assigned to one container; d
describes the dispersion of the quotient between the object weight and the container
capacity; cu is the kurtosis of object weights (w weights and de standard deviation).

cu =
∑n

i=1 (wi − w)2

de4
(3)

The problem solution space for each instance, os, is described in past works [38, 41,
42]. It is the variability of ms randomly generated solutions (ms = 100 produced better
results). The codomain of function f is the set F (expression 4), where rows represent
the problem instances and columns are the values of these features.

F = {{b1, d1, cu1, os1}, {b2, d2, cu2, os2}, . . . , {bm, dm, cum, osm}} (4)

A Composite Function for Understanding Bin-Packing Problem 599

5.2 Algorithm Behavior Description: Function l(A)

The algorithm operative behaviour is described by features (nn, fn, vf), proposed in
past works [38, 41, 42]. The number of neighbours built by algorithm during its search
process per instance is given by nn. The number and variability of feasible solutions
are given by fn, vf . The algorithm searching behaviour is described by features pn
(number of inflection points), vn (number of valleys), vs (size of valleys) proposed in
past works [38, 41, 42] and vd proposed in this paper. These features are obtained from
the algorithm searching path. The searching inflections are the changes in the direction
of fitness function from two consecutive solutions during one algorithm run; pn is the
average of these for all algorithm runs (16); vn is concerned if there exists a searching
pattern that refers to our concept, Valley. It is considered when there is a sequence major
to sm solutions, where their fitness function values keep on decreasing (sm= 6 indicated
be significant in past works). Then, the feature vn is the average of Valleys identified
from algorithm runs. The inflection point located in an identified Valley is considered
as the location point, for example one run has location points p1, p2, p3 and p4; the
distance between each point is calculated, dd1, dd2 and dd3. The standard deviation of
these is calculated (expression 5). The average of Valleys dispersion for all algorithm
runs is calculated, vd. The set L is built with the specific order as Expression, 6. Here,
L1,1 means algorithm a1 for problem instance x1 has the elements, nn11, fn11, vf 11, pn11,
vn11, vs11, vd11 (algorithm behaviour features) and so on.

vdrun =

√
√
√
√

∑pn−1
i=1

(

ddi − dd
)2

pn − 2
(5)

L =
⎧

⎨

⎩

{

nn11, vf 11, pn11, vn11, vs11, vd11
}

, . . . , {nn1m, . . . , vd1m}
{

nn21, vf 21, pn21, vn21, vs21, vd21
}

, . . . , {nn2m, . . . , vd2m}
{

nnn1, vf n1, pnn1, vnn1, vsn1, vdn1
}

, . . . , {nnnm, . . . , vdnm}

⎫

⎬

⎭
(6)

5.3 Performance Space Description: Function Y(A)

The function, y, evaluates the algorithm performance according tometrics time and qual-
ity. The metric time is the total of feasible and infeasible solutions built during algorithm
execution. Themetric quality is the ratio between found solution and theoretical solution
[41, 42]. The codomain of the function, y, is the set, Y (performance space) which is
built with the specific order as Expression 7. Here, Y1,1 means algorithm a1 for problem
instance x1 has the elements, quality11 and time11, Y1,m means algorithm a1 for problem
instance xm has the elements quality; time, and so on.

Y =
⎧

⎨

⎩

{

quality11, time11
}

, . . . ,
{

quality1m, time1m
}

{

quality21, time21
}

, . . . ,
{

quality2m, time2m
}

{

qualityn1, timen1
}

, . . . ,
{

qualitynm, timenm
}

⎫

⎬

⎭
(7)

600 V. Landero et al.

5.4 Discovering Knowledge: Functions fc, fd (TC), fv(D), fz(G)

The proposed composite function, E, is applied to one algorithm of interest aq for
each case of study (1, 2, 3). The algorithms, a2, a3, a1 were randomly selected. The
function, fc identifies the set W, considering performance space Y (based on time and
quality metrics). After that, the performance scope of interest algorithm aq is obtained,
considering setW. The codomain of function fc is described by set S. Each value indicates
the scope of interest algorithm for each problem instance (set P), 1 was the best, 0
otherwise. For example, S = {0, 1,…,1} means that interest algorithm had scope: 0 for
instance 1, 1 for instance 2, 1 for instance m and so on. A sets family SF = {F, L, Y, S}
is built for interest algorithm aq and is represented by dataset TC, where TC = ∪ SF; the
tuples are instances and columns are features that describe: the structure and problem
solutions space F = f (P); the operative and searching behaviours of interest algorithm,
obtained from set L; performance space of the interest algorithm, obtained from set Y
(time and quality); performance scope from set W, value from set S. The function, fd,
first normalizes the values of each by means of method min-max; values that lie within
the closed interval, [0, 1]. After that, the method, MDL [48], is performed to discretize
the values. The codomain of function fd is the discretized dataset, D. The function,
fv, performs general, graphical and variance analyses of the features from dataset D
for selecting the most significant. The general analysis creates bar plots, where the
frequencies of the values of the features are analysed with respect to the scope (value
s) of aq. The metric quality from dataset TC did not assume a normal distribution;
therefore, for the graphical and variance analyses, it was transformed using methods of
logarithm or Box-Cox, using values 2 or −2 for λ. The graphical analysis creates box
plots for each feature (identified in general analysis) with respect to metric quality, in
order to identify features that in influence it in terms of variation and locality. Finally,
the function, fv, performs an analysis one variance (ANOVA), with a confidence level of
95% for each feature (identified in graphical analysis) with respect to the qualitymetric.
The function, fv, did not find significant features in the study case 3; for other cases of
study, 1 and 2, the codomain of function fv is the significant dataset V1 with proposed
features. For example, in case study 1, the dataset,V1, is formed by features b, os, nn, vf ,
pn, vn, vs, and scope of interest algorithm a2 (S). So too, with the objective of considering
metrics known and used by the scientific community (describing the algorithm searching
behaviour), the auto-correlation coefficient, (ca), the auto-correlation length, (al) ([49]),
and highlight the utility of our proposed features (pn, vn and vs), another dataset, V2,
is built with features b, os, nn, vf , metrics ac, al, and scope of interest algorithm a2 (S).
The datasets V1 (by means function fv) and V2 are built in case of studies 1 and 2. The
function fg performs the process of learning a causal structure (algorithm PC [43]) with
a confidence level of 95% for datasets V1 and V2 in case studies; the causal inference
software, HUGIN (Hugin Expert, www.hugin.com) was used.

Figure 2 shows the causal structures: a) fg → G1 and b) fg → G2 from datasets V1
and V2 for these cases of study. It is important to emphasize that the causal structure,
G1, in these cases represents clearly the direct causes (problem and algorithm significant
features) of performance scope for interest algorithm aq in performance spaceY, in terms
of setW. For case study 1, it is evident that the causal structure,G2, did not yield relevant
information about direct causes. In case study 2, G2 did not yield relevant information

http://www.hugin.com

A Composite Function for Understanding Bin-Packing Problem 601

about direct causes for algorithm performance scope with respect to algorithm behavior
during its searching. These structures (G1) were considered for the next analyses. Also,
Fig. 2 shows the intervals of direct causes, obtained previously by function fd. Continuing
with the composite function,E, the function, fz, referring to parameter learning algorithm
Counting [43], estimates the intensity of causal relations (identified in structuresG1), see
Table 3, the codomain is setZ. The codomain of composite functionE for each study case
are the sets V1, G1 and Z (causal model M). The problem instance set, P’, was used as
an input for each causal structureG1 to obtain the prediction accuracy percentage, using
another causal inference software NETICA (Norsys Corporation), where the obtained
percentages were %78.04 and %70.37, respectively.

Fig. 2. Discovering knowledge

Table 3. Significant features, casual relations and estimations

Functions
fv V1

1 fg G1

fz Z

V1={b, os, nn, vf, vn, vs, pn, S}

P(S = 1 os = 2, nn = 2, vf = 2, vn = 2, vs = 2) = 92%
P(S = 0 os = 1, nn = 1, vf = 1, vn = 1, vs = 1) = 99%

fv V1

2 fg G1

fz Z

V1={d, cu, pn, vn, S}

P(S = 1 d = 2, cu = 1, pn = 2) = 99%
P(S = 0 d = 1, cu = 2, pn = 1) = 76%

602 V. Landero et al.

5.5 Analyzing Acquired Knowledge and Self-adapting Algorithms

The results from case studies 1 and 2 are reviewed deeply in Fig. 3 (Analysis 1 and 2).
So too, the logical design of the new Tabu Search Self-Adapting Algorithms is shown.
On the other hand, another interesting result was obtained in case study 3, where the
Tabu Search algorithm was distinguished by methodology in order to generate the initial
solution. Though the function, fv, of composite function E could not discover significant
features to build a causal explanation model, it is important to highlight the fact that a
knowledgewas obtained aswell. One possible interpretation of this result may be that the
method used to generate the initial solution does not impact the algorithm performance,
according to set Y, in solving problem instances. One similar result was observed in [31]
for another optimization problem and Tabu Search algorithm.

Fig. 3. Analysis of case studies 1, 2 and Tabu Search Self-Adaptive Algorithms

A Composite Function for Understanding Bin-Packing Problem 603

6 Results Analysis

In the reviewed literature, there was no related work with the same circumstances for
comparing performance of individual results. An example of this can be an improved
Tabu Search algorithm for BPP. Therefore, the performance for the self-adaptive algo-
rithms (aa1, aa2) was compared against that of the original analyzed algorithms (a2, a3),
it is to say aa1−a2, aa2−a3. The comparative analysis of performance results from the
algorithms was performed in two consecutive phases of analysis. The first analysis phase
consisted on determining the total scope of new self-adaptive algorithms aa1 (287) aa2
(301); thereafter determining their total scope percentage, example 287/324 = 89% for
aa1, aa2 (93%). Analysing the partitions Caa1 and Caa2 in more detail, aa1 wins 159 and
aa2 wins 163 instances in quality, 128 and 138 in time, where the quality is the same for
both algorithms (see Fig. 4).

Fig. 4. Times of analyzed algorithm and self-adaptive algorithm (same quality)

The time differences are too big, it is not necessary to apply a statistical test. The self-
adaptive algorithms finishing faster than the interest algorithm (aq) analyzed in study
cases. Due the above, the objective of second analysis phase is to verify the values of
quality metric, specifically when self-adaptive algorithm has the best quality (159-case
1, 163-case 2). In this sense, for study cases 1 and 2, aa1 had best time in 80 out of 159
problem instances and aa2 had best time in 95 out of 163 problem instances.

Fig. 5. Times of analyzed algorithm and self-adaptive algorithm (best quality)

Figure 5 shows these times. The metric values time for each one of algorithms do
not assume a normal distribution. Thus, a nonparametric statistical test of two dependent
samples is applied (the two sample two-side wilcoxon signed rank test) for significance

604 V. Landero et al.

levels 95% and 99%. The Dataplot statistical software (www.itl.nist.gov) was used for
this test. The test statistic was 7.67 and 8.46 for study cases. The null hypothesis (equal
means) is rejected (critical values 1.96, 2.57) and it means that there is a significant
difference between times. The self-adaptive algorithms (μ2) finishing faster than the
original algorithm (μ1) analyzed in study cases. Continuing with the analysis, it is
necessary to verify if there is a statistically significant difference between the means of
metric quality. The values of this metric do not assume a normal distribution. Thus, the
same statistical test for significance levels was applied (test statistic 10.15 and 9.92).
The null hypothesis is rejected, there is a significant difference in terms quality.

6.1 Other Results

The analysed original algorithm and self-adaptive algorithm from cases of study 1 and
2, were executed over set P’ (P’ �= P). The self-adaptive algorithms had better quality
or time in 166 and 156 problem instances of set P’ than analysed interest algorithm,
respectively. Figure 6 shows the time of algorithms when they have the same quality.
The same wilcoxon statistical test was applied to time differences. The test statistic was
9.27 and 8.37 for both cases. The null hypothesis is rejected for significance levels 95%
and 99% (critical values 1.96, 2.57). The self-adaptive algorithmsfinishing faster than the
analysed interest algorithm. Also, Fig. 7 shows the times when self-adaptive algorithm
has less quality than analysed interest algorithm. The quality difference average was
0.025 (very small) for 158 problem instances out of 324 and the self-adaptive algorithms
finishing faster than the interest algorithm in most cases over set P’.

Fig. 6. Same quality of both algorithms and best times of self-adaptive algorithm

Fig. 7. Less quality and best times of self-adaptive algorithm

http://www.itl.nist.gov

A Composite Function for Understanding Bin-Packing Problem 605

7 Conclusions

Most of the literature consulted from combinatorial optimization area has been focus-
ing only on problem information or algorithm information or, rarely, on both in order
to describe the experimental relation between problem-algorithm. Furthermore, in the
analysis of this relation, has been identified in the descriptive understanding level that
certain problem instances correspond better to a certain algorithm than other. This phe-
nomenon has been analyzed and learned implicitly in the predictive understanding level
(algorithm selection problem). However, it has not been understood at all for a specific
problem. This paper goes beyond the predictive level, covering limitations identified.
The phenomenon is formally formulated as question and problem at the explanatory
understanding level. The composite function, E, is proposed to solve such formulation
and performed for a specific domain (One Dimension Bin-Packing problem and Tabu
Search algorithm) over an instance set P. A description process for problem structure
and space, for algorithm performance and the operative and searching behaviors of the
algorithm during execution (significant features) was proposed to build the domain of
the composite function. Also, the metrics known by scientific community were used,
but these were not significant in the analyses. Three important logical areas were con-
templated. The knowledge acquired by the proposed composite function allowed the
solving of the stated problem, understanding the phenomenon, answering the “how”
and “why” for certain problem instances, algorithm significant features and the algo-
rithm logical design contribute toward a better relation between problem-algorithm. It
was applied to design self-adaptive algorithms and improve the performance considering
the causal relations according to problem structure or space. On average, a 91% signif-
icant advantage of Tabu Search self-adaptive algorithms was obtained over analyzed
original algorithms. Other results over set P’ showed that when they obtain the same or
less quality of solution, they finish significantly faster than analyzed interest algorithm
and the quality difference is very small. As future work is to explore generalized features.
The proposed composite function E could act as a guideline to find latent knowledge
from relation problem-algorithm of other problem domains and search algorithms; this
permits the adapting of logical design as well as operative and searching behaviors of an
algorithm (self-adaptive algorithm) to problem structure, solutions space and behavior
of algorithms (operative and searching) during execution for providing the best solution
to problems.

References

1. Lagoudakis, M., Littman, M.: Learning to select branching rules in the DPLL procedure for
satisfiability. Electron. Notes Discrete Math. 9, 344–359 (2001)

2. Chr, P., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity (1982)
3. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006). https://

doi.org/10.1007/3-540-29953-X
4. Rendell, L., Cho, H.: Empirical learning as a function of concept character. Mach. Learn. 5,

267–298 (1990)
5. Cohen, P.: Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge (1995)

https://doi.org/10.1007/3-540-29953-X

606 V. Landero et al.

6. Barr, R., Golden, B., Kelly, J., Resende, M.: Designing and reporting on computational
experiments with heuristic methods. J. Heuristics 1(1), 9–32 (1995)

7. Wolpert, D., Macready, W.: No free lunch theorems for optimizations. IEEE Trans. Evol.
Comput. 1(1), 67–82 (1996)

8. Frost, D., Dechter, R.: In search of the best constraint satisfaction search. In: Proceedings of
the National Conference on Artificial Intelligence, Seattle, vol. 94, pp. 301–306 (1994)

9. Tsang, E., Borrett, J., Kwan, A. An attempt to map the performance of a range of algorithm
and heuristic combinations. In: Hallam, J., et al. (eds.) Hybrid Problems, Hybrid Solutions.
Proceedings of AISB-95, vol. 27, pp. 203–216. IOS Press, Amsterdam (1995)

10. Frost, D., Rish, I., Vila, L.: Summarizing CSP hardness with continuous probability distri-
butions. In: Proceedings of the 14th National Conference on AI, American Association for
Artificial Intelligence, pp. 327–333 (1997)

11. Vanchipura, R., Sridharan, R.: Development and analysis of constructive heuristic algo-
rithms for flow shop scheduling problems with sequence-dependent setup times. Int. J. Adv.
Manufact. Technol. 67, 1337–1353 (2013)

12. Rice, J.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
13. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection.

ACM Comput. Surv. 41(1), 1–25 (2009)
14. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimiza-

tion problems: the case of combinatorial auctions. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46135-3_37

15. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio methods. In:
Proceedings of the Twenty-Fourth AAAIConference onArtificial Intelligence, Georgia, USA
(2010)

16. Yuen, S., Zhang, X.: Multiobjective evolutionary algorithm portfolio: choosing suitable algo-
rithm for multiobjective optimization problem. In: 2014 IEEE Congress on Evolutionary
Computation (CEC), Beijing, China, pp. 1967–1973 (2014)

17. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In:
Proceedings of the 16th Biennial European Conference on Artificial Intelligence, Valencia,
Spain, pp. 475–479. IOS Press, Burke (2004)

18. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for
portfolio-based selection. In: Proceedings of the 25th National Conference on Artificial
Intelligence (AAAI 2010), pp. 210–216 (2010)

19. Pavón, R., Díaz, F., Laza, R., Luzón, M.: Experimental evaluation of an automatic parameter
setting system. Expert Syst. Appl. 37, 5224–5238 (2010)

20. Yeguas, E., Luzón, M., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tun-
ing for evolutionary algorithms using a Bayesian case-based reasoning system. Appl. Soft
Comput. 18, 185–195 (2014)

21. Pérez, J., Pazos, R.A., Frausto, J., Rodríguez, G., Romero, D., Cruz, L.: A statistical approach
for algorithm selection. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059,
pp. 417–431. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24838-5_31

22. Ries, J., Beullens, P.: A semi-automated design of instance-based fuzzy parameter tuning for
metaheuristics based on decision tree induction. J. Oper. Res. Soc. 66(5), 782–793 (2015)

23. Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from
evolved instances. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 266–280.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_29

24. Hutter, F., Xu, L., Hoos, H., Leyton-Brown, K.: Algorithm runtime prediction: methods &
evaluation. Artif. Intell. 206, 79–111 (2014)

25. Leyton-Brown, K., Hoos, H., Hutter, F., Xu, L.: Understanding the empirical hardness of
NP-complete problems. Mag. Commun. ACM 57(5), 98–107 (2014)

https://doi.org/10.1007/3-540-46135-3_37
https://doi.org/10.1007/978-3-540-24838-5_31
https://doi.org/10.1007/978-3-642-13800-3_29

A Composite Function for Understanding Bin-Packing Problem 607

26. Munoz, M., Kirley, M., Halgamuge, S.: Exploratory landscape analysis of continuous space
optimization problems using information content. IEEE Trans. Evol. Comput. 19(1), 74–87
(2015)

27. Kottho, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm selection
for search problems. AI Commun. 25(3), 257–270 (2012)

28. Lopez, T.T., Schaeer, E., Domiguez-Diaz, D., Dominguez-Carrillo, G.: Structural effects in
algorithm performance: a framework and a case study on graph coloring. In: Computing
Conference, 2017, pp. 101–112. IEEE (2017)

29. Fu, H., Xu, Y., Chen, S., Liu, J.: Improving WalkSAT for random 3-SAT problems. J. Univ.
Comput. Sci. 26(2), 220–243 (2020)

30. Tavares, J.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Trans.
Syst. Man Cybern. Part B: Cynern. 38(3), 604–616 (2008)

31. Watson, J., Darrell, W., Adele, E.: Linking search space structure, run-time dynamics, and
problem difficulty: a step toward demystifying tabu search. J. Artif. Intell. Res. 24, 221–261
(2005)

32. Watson, J.: An introduction to fitness landscape analysis and cost models for local search.
In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in
OperationsResearch&Management Science, vol. 146, pp. 599–623. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-1665-5_20

33. Chevalier, R.: Balancing the effects of parameter settings on a genetic algorithm for multiple
fault diagnosis. Artificial Intelligence, University of Georgia (2006)

34. Cayci, A., Menasalvas, E., Saygin, Y., Eibe, S.: Self-configuring data mining for ubiquitous
computing. Inf. Sci. 246, 83–99 (2013)

35. Le, M., Ong, Y., Jin, Y.: Lamarckian memetic algorithms: local optimum and connectivity
structure analysis. Memetic Comput. 1, 175–190 (2009)

36. Montero, E., Riff, M.: On-the-fly calibrating strategies for evolutionary algorithms. Inf. Sci.
181, 552–566 (2011)

37. Pérez, J., Cruz, L., Landero, V.: Explaining performance of the threshold accepting algorithm
for the bin packing problem: a causal approach. Pol. J. Environ. Stud. 16(5B), 72–76 (2007)

38. Pérez, J., et al.: An application of causality for representing and providing formal explanations
about the behavior of the threshold accepting algorithm. In: Rutkowski, L., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1087–1098.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_102

39. Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez, C., Huacuja, H.J.F.,
Alvim, A.C.: A grouping genetic algorithm with controlled gene transmission for the bin
packing problem. Comput. Oper. Res. 55, 52–64 (2015)

40. Taghavi, T., Pimentel, A., Sabeghi, M.: VMODEX: a novel visualization tool for rapid anal-
ysis of heuristic-based multi-objective design space exploration of heterogeneous MPSoC
architectures. Simul. Model. Pract. Theory 22, 166–196 (2012)

41. Landero, V., Pérez, J., Cruz, L., Turrubiates, T., Ríos, D.: Effects in the algorithm performance
from problem structure, searching behavior and temperature: a causal study case for threshold
accepting and bin-packing. In:Misra, S., et al. (eds.) ICCSA2019. LNCS, vol. 11619, pp. 152–
166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_13

42. Landero, V., Ríos, D., Pérez, J., Cruz, L., Collazos-Morales, C.: Characterizing and analyzing
the relation between bin-packing problem and tabu search algorithm. In: Gervasi, O., et al.
(eds.) ICCSA 2020. LNCS, vol. 12249, pp. 149–164. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-58799-4_11

43. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT
Press, Cambridge (2001)

44. Beasley, J.E.: OR-Library. Brunel University (2006). http://people.brunel.ac.uk/~mastjjb/jeb/
orlib/binpackinfo.html

https://doi.org/10.1007/978-1-4419-1665-5_20
https://doi.org/10.1007/978-3-540-69731-2_102
https://doi.org/10.1007/978-3-030-24289-3_13
https://doi.org/10.1007/978-3-030-58799-4_11
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html

608 V. Landero et al.

45. Scholl, A., Klein, R. (2003). http://www.wiwi.uni-jena.de/Entscheidung/binpp/
46. Glover, F.: Tabu search - Part I, first comprehensive description of tabu search. ORSA-J.

Comput. 1(3), 190–206 (1989)
47. Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin packing. Comput. Oper. Res.

29, 821–839 (2002)
48. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for

classification learning. In: IJCAI, pp. 1022–1029 (1993)
49. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: New Ideas in

Optimization, pp. 245–260. McGraw-Hill Ltd., UK (1999)

http://www.wiwi.uni-jena.de/Entscheidung/binpp/

	A Composite Function for Understanding Bin-Packing Problem and Tabu Search: Towards Self-adaptive Algorithms
	1 Introduction
	2 Reviewing State of Art and Setting the Problem Statement
	3 Proposed Solution
	3.1 Composite Function E

	4 Framework for Proposed Composite Function E
	5 Performing Composite Function E
	5.1 Problem Instances Structure Description: Function f(P)
	5.2 Algorithm Behavior Description: Function l(A)
	5.3 Performance Space Description: Function Y(A)
	5.4 Discovering Knowledge: Functions fc,fd (TC), fv(D), fz(G)
	5.5 Analyzing Acquired Knowledge and Self-adapting Algorithms

	6 Results Analysis
	6.1 Other Results

	7 Conclusions
	References

