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Abstract. Multiple sequence alignment is an important tool to rep-
resent similarities among biological sequences and it allows obtaining
relevant information such as evolutionary history, among others. Due
to its importance, several methods have been proposed to the prob-
lem. However, the inherent complexity of the problem allows only non-
exact solutions and further for small length sequences or few sequences.
Hence, the scenario of rapid increment of the sequence databases leads
to prohibitive runtimes for large-scale sequence datasets. In this work
we describe a Multi-GPU approach for the three stages of the Progres-
sive Alignment method which allow to address a large number of lengthy
sequence alignments in reasonable time. We compare our results with two
popular aligners ClustalW-MPI and ClustalΩ and with CUDA NWmod-
ule of the Rodinia Suite. Our proposal with 8 GPUs achieved speedups
ranging from 28.5 to 282.6 with regard to ClustalW-MPI with 32 CPUs
considering NCBI and synthetic datasets. When compared to ClustalΩ
with 32 CPUs for NCBI and synthetic datasets we had speedups between
3.3 and 32. In comparison with CUDA NW Rodinia the speedups range
from 155 to 830 considering all scenarios.

Keywords: Multiple sequence alignment · MSA · Hybrid Parallel
Algorithms · Multi-GPU Algorithms · Large sequence alignment

1 Introduction

A very relevant task in bioinformatics is sequence alignment, which is rou-
tinely employed in many situations, such as comparing a query sequence with
databases, comparative genome and sequence similarity searching. There are
many important real world objectives which can be pursued by applying sequence
alignment, such as paternity test, criminal forensics, drug discovery, personal-
ized medicine, species evolution studies (phylogeny), just to mention a few. In
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fact, there is a myriad of techniques and tools proposed with this aim, includ-
ing BLAST [1], S-W [2] and N-W [3] as the most popular ones. In particular,
multiple sequence alignment (MSA) is one of the important formulations of the
problem whose objective is to align multiple sequences at once. It is usually
involved in phylogeny, molecular (2D and 3D) structure predictions such as pro-
teins and RNAs, among other applications. Due to the COVID-19 pandemic,
researchers are keen to reveal SARS-CoV-2 strains phylogeny hoping to under-
stand the implications of the emerging strains in public health. Currently there
are about a million strain sequences deposited (https://www.gisaid.org).

Several methods have been proposed for MSA, such as MAFFT [4],
ClustalW [5], Kalign [6] and DeepMSA [7]. Yet, the assembly of optimal MSAs
is highly computationally demanding considering both processing and memory
requisites, since the problem is considered NP-Hard [8]. Dynamic programming
based approaches retrieve an MSA with k sequences of length n in O(2kk2nk).
These techniques usually present important limitations regarding both length
and number of input sequences to be computationally feasible [9].

Due to the aforementioned limitations and the fact that both the number
of biological sequences and sequence lengths are continuously growing, finding
fast solutions have led to employment of high performance computing techniques
to achieve MSA as the popular aligners ClustalW MPI [10] and ClustalΩ [11].
Hybrid parallel implementations of MSA have been recently proposed [12,13].
The former addresses only the first stage and the latter implements the three
stages of the progressive alignment method, namely: i) pairwise alignment on
Multi-GPUs with MPI-based communication among processes; ii) Neighbor
Joining [14] implementation in a single GPU to build the guide tree; and iii)
CUDA-GPU cluster implementation of the parallel progressive alignment algo-
rithm similar to the implementation done by Truong et al. [15].

In this work we improved the three stages of the method proposed in [13]
by addressing lengthy sequences during stage i), developing a scalable Neighbor
Joining using Multi-GPU and paralleling Myers-Miller [16] algorithm. To the
best of our knowledge this is the first Multi-GPU Neighbor Joining method in
the literature. In fact, when comparing the results obtained by our method with
the ClustalW-MPI and with the CUDA NW module of the Rodinia Suite [17],
our proposal with 8 GPUs achieved speedups ranging from 28.5 to 282.6 with
regard to ClustalW-MPI with 32 CPUs considering three NCBI datasets and
three synthetic datasets. In comparison with CUDA NW Rodinia the speedups
range from 155 to 830. When compared to ClustalΩ with 32 CPUs in NCBI and
synthetic datasets, we had speedups between 3.3 and 32. Regarding accuracy and
quality of solution, the proposed method had a performance similar to Clustal-W
and ClustalΩ, considering the benchmark BAliBASE [18].

This text is structured as follows: Sect. 2 introduces some basic concepts;
Sect. 3 describes the computational model and some details about the parallel
algorithms; Sect. 4 shows experimental results, including a comparative analysis.
Finally, Sect. 5 presents the final remarks and future work.

https://www.gisaid.org
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2 Preliminaries

A sequence over a finite alphabet Σ is a finite enumerated collection of elements
in Σ. The length of a sequence s, denoted by |s|, is the number of symbols of
s and the j-th element of s is denoted by s(j). Thus, s = s(1) . . . s(|s|). The
set of all sequences over Σ is denoted by Σ∗. Let S = {s0, s1, . . . , sk−1} ⊆ Σ∗.
An alignment of S is a set A = {s′

0, . . . , s
′
k−1} ⊆ Σ∗

(
= (Σ ∪ { })∗

)
, where:

(i) �∈ Σ is a new symbol called space; (ii) |s′
h| = |s′

i|; (iii) s′
i is obtained by

inserting spaces in si; (iv) there is no j such that s′
i(j) = for every i, 0 ≤ i < k.

Note that a sequence can be seen as an alignment for k = 1, i.e., {s} is the single
alignment of s and, hence, we sometimes refer to a sequence as an alignment.
The length of alignment A is |s′

i| and it is denoted by |A|. We denote by AS the
set of all alignments of S.

An alignment is an important tool for comparison of sequences obtained from
organisms that have the same kind of relationship. It shows which part of each
sequence should be compared to the other, thus suggesting how to transform
one sequence into another by substitution, insertion or deletion of symbols. An
alignment can be visualized placing each sequence above another as showed in
the following figure with two different alignments of (abacb, bacb, aacc). The left
part represents the alignment (abacb, bacb, a acc) and the right one represents
the alignment (aba cb , b acb , a a c c). Notice that the first suggests that the
last c in the third sequence comes from substitution operation and the second
alignment suggests that it comes from insertion operation.

a b a c b
b a c b

a a c c

a b a c b
b a c b

a a c c

An optimal alignment in AS is one which maximizes a given objective func-
tion whose value is also called similarity of S. The problem of finding an optimal
alignment or even only its similarity is NP-hard for many objective functions.

This work deals with a polynomial method known as progressive align-
ment [19], which is described in 3 stages. This organization is extremely con-
venient because the algorithms for each stage are studied and improved inde-
pendently in this work. The first stage corresponds to the PairWise alignment
(PW) of all pairs of sequences, which builds a similarity matrix D. Using D
as input, the next stage Neighbor Joining (NJ) consists in generate of a rooted
binary tree T according to the similarity of each pair of sequences, which means
that the more similar two nodes are, the closer they are. Each node represents
an operational taxonomic unit (OTU): the leaves represent the sequences given
in the PW step and the internal nodes represent hypothetical ancestor of theiR
descendant nodes. We can refer a vertex set of a subtree of T as a set of OTUs.
This tree T is known as a guide tree and each subtree of T corresponds to a group
of closest related OTUs. The third stage, known as Progressive Alignment (PA),
receives T as input, builds a profile for each node u of T and returns a profile of
the root of T . The profile of the root of any subtree T ′ is a multiple alignment
of the sequences that are leaves of T ′ and it is according to T ′ topology.
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Pairwise Alignment (PW). A scoring matrix γ for Σ is a function γ : Σ ×
Σ → R, such that γ( , ) = 0, γ(a, ) = g for some constant g ∈ R and
γ(a, b) = γ(b, a) for each pair a, b ∈ Σ . Function γ is used to attribute value for
each pair of aligned sequences.

Given sequences s and t, we define a matrix H:

H[i, j] = max
{

H[i − 1, j − 1] + γ(s(i), t(j)),
H[i − 1, j] + g,H[i, j − 1] + g

(1)

where H[0, 0] = 0. The value of the optimal alignment of s, t is H[|s|, |t|]. If |s| and
|t| are O(n), then H can be computed in O(n2) time and, once H is calculated,
an optimum alignment (s′, t′) such that

∑
i γ(s′(i), t′(i)) is maximum can be

found in O(n) time. Matrix H is called alignment matrix.
A matrix D indexed by sequences and called similarity matrix is generated,

where D[si, sh] is the value of the optimum alignment of si and sh. As a con-
sequence of γ definition, D is a symmetric matrix, which implies that we can
represent D as a lower triangular matrix. Since there are O(k2) entries of D and
each entry spends O(n2) time to be computed, the overall time spent in this step
is O(k2n2). Matrix D is the input to the next step as follows.

Neighbor Joining (NJ). This stage creates guide phylogenetic tree T that is a
binary phylogenetic tree from the similarity matrix D computed in the previous
stage and it is the input of the next stage. This stage is implemented using the
NJ algorithm [14]. The building begins with a star tree initially given by the
set S of k sequences representing the k leaves that are the indices of D and a
virtual node c in the center. In each iteration, if |S| = 2, it deletes the node c
and connect directly the two vertices in S. Otherwise, pick u, v for which

(k − 2)D[u, v] −
∑

w∈S−{u,v}

(
D[u,w] + D[w, v]

)
(2)

is the largest. Then it deletes edges (u, c) and (c, v), creates a new vertex w (new
OTU) and edges (u,w), (v, w), (w, c), updates S = (S − {u, v}) ∪ {w} and sets

D[w, z] =
1
2

(
D[u, z] + D[v, z] − D[u, v]

)
(3)

for each vertex z �= w in S. It is performed in k−2 iterations. The expression (2)
runs in time O(k3) in the first iteration and, if the computed values are stored,
it spends O(k2) time in each of the next iterations. Expression (3) spends O(1)
time in each iteration. Thus, the total running time spent in stage 2 is O(k3) +
(k − 3) · O(k2) + (k − 2) · O(1) = O(k3).

Progressive Alignment (PA). This stage buids an MSA by combining pair-
wise profiles and the guide tree described in the previous sections. For conve-
nience, let us assume that the guide tree obtained is rooted. This assumption is
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not a special constraint. A rooted binary tree can be obtained from a rootless
binary tree with the same set of leaves by subdividing some edge of the tree. By
doing this, each internal node has exactly two children.

Given two sets S and S′ of sequences, S′ ⊆ S, and two alignments C ∈ AS

and A ∈ AS′ , C is compatible with A if the elements of S′ are aligned in C in
the same way as in A. Feng and Doolittle [20] describe, from the alignments A
and B, how to build a new alignment C that is compatible with A and B. Next,
we show an example of two alignments A and B, and the respective compatible
alignment C.

A =
a c a b
b b b a
a c a a a

B =
c a b b a a
c a c a

C =

a c a b
b b b a
a c a a a
c a b b a a
c a c a

The algorithm traverses the set of internal nodes of the rooted guide tree in
post-order and it defines an profile for each visited OTU such that it is compat-
ible with its children’s profiles (and by transitivity, compatible with each of its
descendants, including leaves). The root profile is the final MSA of the method.

Given an alignment A = {s′
0, . . . , s

′
k−1}, a column j of A is denoted by A(j)

and define Γ (A(j)) =
∑

i<h γ(s′
i(j), s

′
h(j)).

Now, we describe how to get the rooted profile A of a set S. First of all,
consider the corresponding profiles A1 and A2 of (two) root children. Suppose
that |A1| = n1 and |A2| = n2, A1 and A2 with k1, k2 rows and i, j be indexes.
Denote by A1(i) · A2(j) the concatenation of columns A1(i) and A2(j), i.e., the
sequence with k1 + k2 elements

A1[0][i], . . . , A1[k1 − 1][i], A2[0][j], . . . , A2[k2 − 1][j].

Also, denote by � the sequence of � symbols equals to and suppose that
n1, n2 = O(N) for some N .

We compute the matrix also called alignment matrix

M [i, j] = max
{

M [i − 1, j − 1] + Γ (A1(i) · A2(j)),
M [i − 1, j] + Γ (A1(i) · k2),M [i, j − 1] + Γ ( k1 · A2(j))

(4)

for each 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 with M [0, 0] = 0. Considering n = n1 + n2

and that each entry of M can be computed in constant time, we spend O(n2)
time for compute all entries of M and since the guide tree has O(k) nodes,
the entire procedure spends O(kn2) time. Once M is calculated, using a similar
strategy to the trace back method by Needleman-Wunsch [3], we spend O(n) to
obtain each profile (compatible alignment) and O(kn) to obtain all profiles.
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3 Parallel Algorithms

3.1 Homogeneous Hybrid Parallel Platform

In this paper, we developed an MSA algorithm based on progressive alignment
strategy to execute on a hybrid parallel computing platform. That platform is
based on the joint use of CPUs and GPUs in order to obtain high performance
systems. Hybrid parallel platform is a two-level parallel computing model. Below
we provide some features of the target hardware related to this architecture.

Suppose we have p compute nodes (CN for short) and each of them contains
a GPU: At the upper level, we use a coarse-grained model based on Beowulf
cluster, which is scalable and based on an inexpensive hardware infrastruc-
ture composed by private and dedicated interconnection network coordinated
by MPI [21]. See Fig. 1. At this level a special process called master node runs
in CN 0, managing the tasks of the computing nodes. On the other hand, at the
lower level, we use a fine-grained model through the CUDA-enabled GPUs [22].
CUDA (Compute Unified Device Architecture) is a parallel architecture based on
many-core paradigm for NVIDIA GPUs. CUDA enables programmers to write
a source code and execute it on the GPU. Each GPU can have several streaming
multiprocessors (SM) and each SM contains dozens or even hundreds of Single
Processors (SP). All SMs access a same device global memory.

The code runs on CPU or GPU and the tasks of the computing nodes are
managed by MPI. CPU creates multi-thread kernels for the GPU. GPU has its
own scheduler that assigns a thread block to any SM dynamically during the
execution, and the SPs within SM run the threads.

Fig. 1. Homogeneous hybrid parallel model

On CUDA programming environment we need define size of thread blocks and
size of the grid, which is an abstraction for a group of thread blocks. Each thread
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block is assigned to an SM, and threads in a same block access a same shared
memory. Moreover, the hierarchical memory consists in global memory, texture
memory, shared memory and registers, where global memory is the slowest and
registers are the fastest.

3.2 Parallel Algorithm

Our implementation of the MSA problem explores the two level of parallelization
along the three stages of the progressive alignment. During the processing the
job coordination on a CN is done by CPU which can execute local operations
using CPU and GPU accordingly.

At the upper level, we use coarse-grained parallelism which manages whole
process and control the distribution of the jobs to the CNs. In this level, initially
the master node reads the input sequences from the disk and replicates them
into the CPU memory of all CNs. Our algorithm uses a simple and efficient task
allocation strategy that performs uniform load balancing between the CNs.

Let k be the number of sequences. In order to save space since we are primar-
ily interested in computing large amount of lengthy sequences, we represent the
similarity matrix D (lower triangular) by an array V of size N = k(k−1)/2. Each
position in V represents a sequence pair to be aligned, considering the positions
of the triangular matrix in lexicographic order (see Fig. 2). Assume that N is
divisible by p. The array V is partitioned into p segments of size N/p, which we
denote by v0, v1, . . . , vp−1. The CN i, 0 ≤ i ≤ p − 1, will process the elements of
the segment vi, whose positions in V are in the range [(i)N

p . . (i+1)N
p −1]. Each

CN i identifies the sequence pairs that will be sent to its GPU by computing (in
CPU) the mapping of the elements from vi to D, as follows:

l =
⌊√

2(iN/p + 1) + 1
2

⌋
and c = iN/p − l(l − 1)/2, (5)

where l and c correspond, respectively, to the row and column of the element
in D which is represented by the first element of vi. Clearly, the Eq. 5 can be
calculated in O(1) time.

As all sequence characters belong to a small and well-defined alphabet, they
can be mapped into numerical identifiers, allowing the representation of each
character symbol with only 5 bits of memory (which allows to represent up to
25 = 32 symbols). Hence, we can store 3 distinct sequence elements in a single
16-bit integer type using simple bit-wise operations. Effectively, this reduces
by up to a third the total amount of memory required to store each sequence.
Nevertheless, each sequence character can still be randomly accessed in constant
time complexity with negligible overhead.

At the lower level, we use fine-grained parallelism whose jobs are computed on
the CUDA-enabled GPUs. In the subsection below we detail the used approaches
to perform the three stages using hybrid parallel computing.

Matrix Similarity on Multi-GPU Platform. In this stage we calculate the
similarity matrix aligning pairwise sequences using a GPU version of the N-W
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Fig. 2. Load balancing: the array V is evenly partitioned into p segments of size N/p
among p computer nodes.

algorithm [3]. We align each pair of sequences in parallel on the GPU of each
CN using an approach based on intra-task parallelization [23].

Each CN i receives from the master node the whole set of sequences, together
with the scoring matrix γ, and identifies (through Eq. 5) the pairs vi whose
similarity value it will calculate. These data are sent to the GPU. The matrix γ
is stored only once in the shared memory since it is the same for all the pairs.
However, the segment vi is sent to the GPU global memory in waves. Each
element of the matrix D is computed using dynamic programming based on the
Eq. 1. After aligned a set of pairs another wave of data is sent to GPU.

In this stage we save memory and gain performance by concurrently calcu-
lating (in GPUs) the similarity values using a combination of the techniques of
the algorithms DScan-mNW and LazyRScan-mNW [15], as follows (see Fig. 3):

Fig. 3. Flow for calculating similarity values
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Each SM stores in its shared memory its respective sequence slice and per-
forms a diagonal scan. Each alignment matrix is iterated over the sequence in
vertical slices which are computed by a thread block. Each thread acts over a
row at a time. The vertical slice size is calculated so that it fits into shared
memory and according to available SPs. When the thread reaches the end of
the slice its value is transferred to global memory (dark green column). Then,
for the next slice to resume the processing, the value of this cell is sent again
to shared memory. Since our approach each thread needs only three cells at a
time, instead of maintaining two contiguous rows in the shared memory we use
sliding window strategy where old cells are removed from the shared memory.
The similarity value is sent to the global memory as soon as they is computed.

For long sequences, we can split vertical slices in horizontal slices by forming
a square mesh. As CUDA limits the number of threads per block, this improve-
ment allows shared memory is used by more threads and hence to speedup
the processing. Both combined techniques allows us to hide the access latency to
global memory. However the last optimization limits the use of threads per block.
On the other hand, it reduces the amount of necessary shared memory to store
the similarity values being calculated. In our implementation a good equilibrium
was 480 threads by block. After to compute all similarity values on GPUs these
values are sent to master node where the whole matrix D is assembled.

Guide Phylogenetic Tree. Taking matrix D (previous stage) as input, we
perform this stage according to the NJ algorithm [14], whose goal is to build
the guide tree. Basically the NJ algorithm starts with a star tree where each
leaf vertex corresponds to an OTU and iterates over the following three steps in
order to joining the most similar pair of OTUs until reaches all leafs of the tree:

1. From the matrix D we have to compute each OTU pair in D by using the
Formula 2. This processing generates a derived matrix in order to maintain
the evolution relationship among all the OTUs.

2. By current derived matrix we choose the maximum value representing the
most similar pair of OTUs. These pairs are joined to a newly created ver-
tex which is joined the rest tree such that they form a new branch in the
phylogenetic tree.

3. After joining the pair of OTUs we have to update the similarity matrix D
according to Eq. 3. New row and column are created to store the similarity
between the joined OTU and the remaining OTUs. Then, row and column
correspondent to chosen OTUs in Step 2 are removed from the matrix D.

From parallel point of view this is a difficult task due to the data dependency
among the 3 steps above, in addition there is dependency among each iteration.
Despite of the large data dependency required by the method, we face the chal-
lenge to implement this stage of the alignment on Multi-GPU platform. Figure 4
illustrates the overall flow of an iteration.

Initially, the master node broadcasts the matrix D to all CNs which is copied
to the GPU global memory. As soon as the CNs receive D they compute their
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Fig. 4. MPI-CPU-GPU flow in stage two (construction of the guide tree)

respective chunks in the same scheme that of the first stage and send to GPU.
So, each GPU have to compute the range [(i)N

p . . . (i + 1)N
p − 1].

For the Step 1, computing Eq. 2 can be done independently within each GPU.
We avoid wasting time with redundant operations by calculating the sum of the
rows and columns attributed to GPU in advance since this values are used for
all pairs. This values are kept in the shared memory and updated at the end of
each iteration. Due to memory limit and the large amount of pairs to process we
have to launch multiple kernels to compute the derived matrix, where the exact
number of kernels depends on the number of sequences k, device global memory
and the number of SMs available. The number of pairs are evenly distributed
among the blocks.

In Step 2, choosing the largest value in D is accomplished as follows. Each
thread computes its largest value and keeps it locally. After, each thread block
applies a reduction and obtains the largest value of the block. Then, each block
sends its values to CPU and each CPU computes its largest value. Finally MPI
applies a reduction to obtain the global largest value. This value and its respec-
tive pair (i, j) are then known by all CNs. The pair (i, j) is used in each CPU
to create the new node and the tree is updated on CPU.

In Step 3, we perform the computation of the branch sizes for the new node,
the similarity value from the new node to the other sequences and update D. For
this, each GPU receives the largest value and the pair (i, j) and has to remove
row i and column j from D. In fact, these row and column are only marked as
removed. We also have to calculate the similarity of newly create OTU with the
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remaining OTUs according to Eq. 3. Again, the Eq. 5 allows threads to access
each OTU quickly. Hence we update matrix D and recalculate the sum for each of
rest row/column to be used in next iteration. Note that a sum and a subtraction
is enough to recalculate row/column sums instead of applying reduction.

An important improvement we implement is that of a threshold. At the end
of each iteration every GPU calculates whether its workload is less a threshold.
If so, we choose the last GPU to become idle and its task is redistributed.

Progressive Alignment. In this stage, we perform the alignment of the
sequences according to the order provided by the guide tree. Starting from the
leaves, the method works in a bottom-up way operating in parallel level by level
and aligning ever larger groups of sequences until reaching the root (see Fig. 5).

Our approach keeps the guide tree in the master node’s memory, which coor-
dinates the alignments among its CNs. Each CN receives from the master node
a node of the guide tree and sends its sequences to GPU. Thereafter, the GPU
accomplishes a profile or sequence alignment and transfer it to its CPU which
send it to the master node which stores it into CPU memory.

Fig. 5. Parallel progressive alignment algorithm. The guide tree lead the order of the
pairwise alignments.

For all of the guide tree’s nodes with height 1, several CNs run concurrently
in its GPU our parallel version of the algorithm Myers and Miller [16]. Since
we have to compute the alignment, not only the score, this method enables to
address long sequences. In this case, we use only horizontal slices.

For the remaining nodes, note that the computation of M [i, j] is based on
the sum of all evolutionary distances between all possible combinations of amino
acids. Hence, as we move up the tree, memory will be a bottleneck. To overcome
this bottleneck we transfer only a profile and the other is sent as the slicing
window technique in horizontal slices. Each GPU trhead calculates a score con-
currently, for each column of the profile. These scores are projected as initializa-
tion values for the matrix M , enabling us to align the profile pair. After we join
together all of their sequences into a single alignment profile.
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4 Experimental Results and Discussion

We have compared our implementation, called Museqa (acronym for Multi-
ple Sequence Aligner), with the popular aligners ClustalW-MPI and ClustalΩ.
Besides, we compared the Museqa PW stage with PW R, a CUDA N-W imple-
mentation included in the Rodinia Suite [17]. In our experiments we consid-
ered sequence datasets from NCBI and OrthoDB [24]. We have also considered
three randomly generated synthetic sequence datasets called Syn20k, Syn30k and
Syn40k. Table 1 presents the number of sequences and the sequence length of each
dataset.

Table 1. Datasets considered in the experiments.

Datasets Zika Dengue SARS-CoV2 OrthoDB Syn20k Syn30k Syn40k

# of sequences 700 6,123 7,631 10,000 20,000 30,000 40,000

Average length 3,423 3,392 7,096 3,150 200 200 200

We run our experiments in two different platforms: Server A with Intel(R)
Xeon(R) CPU E5-1620 3.50 GHz, 4 cores(8 threads), 64 GB RAM, 4x GeForce
GTX 1080-11 GB and Server B with 2 x Intel(R) Xeon(R) CPU E5-2683
2.10 GHz, 16 cores (32 threads), 512 GB RAM, 8 x Tesla V100-16 GB.

Table 2. Comparison of Museqa run in GPUs with ClustalW-MPI run in CPUs and
comparison of the stage PW of the Museqa with PW R of the Suite Rodinia.

a) ClustalW-MPI b) ClustalΩ c) R S d) Museqa Speedups

#CPUs #CPUs #CPUs #CPUs #GPUs #GPUs a/d b/d c/d

Dataset Stage 8 32 8 32 1 4 8 1

Zika PW 2h 10 52m 03 31 s 15 s 30m 58 14 s 3 s 1041 5 619

NJ 15 s 2 s 14 s 9 s – 0.11 s 0.3 s 6.67 30 –

PA 2m 53 2m 20 16m 34 27m 27 – 1m 15 58 s 2.41 17.1 –

Dengue PW 196 h 07 64 h 17 8m 43 3m 40 14 h 28 18m 5m 37 687 0.65 155

NJ 37m 18 36m 56 2m 21 1m 23 – 11 s 11 s 201 7.55 –

PA 28m 59 20m 01 2 h 27 3 h 57 – 12m 54 10m 11 1.97 14,5 –

Sars-Cov2 PW 597 h 16 179 h 54 1 h 27 35m 42 92 h 57 1 h 53 35m 45 302 1 156

NJ 1 h 08 1 h 05 40m 41 22m 19 – 18 s 16 s 244 84 –

PA 28m 58 26m 09 14 h 24 19 h 59 – 15m 34 14m 18 1.83 60.8 –

OrthoDB PW 489 h 163 h 01 44m 45 22m 22 108 h 24m 27 7m 48 1253 2.86 830

NJ 2 h 45 2 h 33 10m 30 7m 30 – 29 s 7 s 1031 64.3 –

PA 129 h 20 46 h 11 47 h 15 94 h 30 – 5m 22 2m 36 1065 1090 –

Syn20k PW 2h 51 1 h 18 32 s 14 s 3 h 20 1m 55 32 s 146 0.44 375

NJ 35 h 10 32 h 24 7 s 5 s – 3m 44 50 s 2333 0.1 –

PA 8h 55 3 h 11 8 h 5 9 h 4 – 2 h 17 1 h 06 2.89 7.35 –

Syn30k PW 6h 24 2 h 03m 51 s 21 s 5 h 22 4m 36 1m 17 96 0.27 251

NJ 165 h 35 163 h 46 11 s 7 s – 11m 35 2m 38 3731 0.04 –

PA 30 h 01 9 h 45 10 h 45 20 h 23 – 8 h 11 3 h 37 2.69 5.63 –

Syn40k PW 11h 28 4 h 34 1m 12 21 s 7 h 25 8m 54 2m 23 115 0.15 187

NJ 385 h 356 h 15 s 7 s – 25m 33 3m 08 6817 0.04 –

PA 90 h 27 h 12 16 h 29 h 30 – 15 h 29 10 h 56 2.49 2.70 –



572 R. A. de O. Siqueira et al.

Table 2 shows the runtimes of the three stages (PW, NJ and PA) using Server
A and Server B by ClustalW-MPI, ClustalΩ and our Museqa. In addition, it
shows the runtimes obtained by NW R using Server A. For those tests we use
as input Zika Virus, Dengue Virus, SARS-CoV2, OrthoDB, Syn20k, Syn30k and
Syn40k datasets. We observe that ClustalΩ implements different strategies for
each step when compared to Museqa and ClustalW-MPI. We calculated the
average time over 3 executions for each test. Comparing with ClustalW-MPI,
the first relevant fact is that the stage PW dominates at least 95% of the time
in all NCBI dataset scenarios, while for synthetic datasets the opposite occurs:
the time spent by NJ becomes significant, surpassing the PW runtime.

The scalability of Museqa for all stages combined in terms of number of
GPUs were almost linear for all datasets considered. Note that, even though
NJ stage did not achieve linear speedups it still performed better with multi-
ple GPUs, even for synthetic datasets where the time spent in NJ stage was
larger than in PW stage according to Table 2. Figure 6 illustrates the speedups
between ClustalW-MPI and Museqa and between ClustalΩ and Museqa regard-
ing NJ stage only for 4 and 8 GPUs (32 CPUs for ClustalW-MPI and ClustalΩ),
highlighting the remarkable performance of Museqa compared to ClustalW-MPI
for all seven datasets, and specially for the synthetic datasets for which the time
consumption of NJ is much more significant than for NCBI datasets. Considering
the comparison between ClustalΩ NJ and Museqa NJ, Museqa NJ performed
better for real datasets (NCBI and OrthoDB), but ClustalΩ NJ had superior
performance for synthetic datasets (only marginally for Museqa with 8 GPUs).

(a) ClustalW-MPI NJ / Museqa NJ (b) ClustalΩ NJ / Museqa NJ

Fig. 6. Speedups between: a) ClustalW-MPI NJ and Museqa NJ; b) ClustalΩ NJ and
Museqa NJ; according to Table 2. Each negative value (−X) in (b) means that ClustalΩ
NJ was X times faster than Museqa NJ.

Considering the total time spent of all three stages combined, as shown in
Fig. 7, Museqa with 8 GPUs was between 28.5 to 283 times faster than ClustalW-
MPI with 32 CPUs, while Museqa with 8 GPUs had speedups ranging from 2.3
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(a) ClustalW-MPI / Museqa (b) ClustalΩ / Museqa

Fig. 7. Overall speedups (log-log scale) between ClustalW-MPI vs Museqa and
ClustalΩ vs Museqa, considering 32 CPUs for ClustalW-MPI and ClustalΩ.

to 32 when compared to ClustalΩ with 32 CPUs. In addition, Fig. 7 highlights
that all speedups increased almost linearly with the number of GPUs. Finally,
the comparison between PW R, which is also implemented in GPU, and Museqa
PW stage performed with 8 GPUs revealed that Museqa was about two orders
of magnitude faster than PW R (speedups between 155 and 830).

Alignment Accuracy: In order to measure the accuracy of the alignments
produced by Museqa, we use BAliBASE [18], which is the most widely used
benchmark test sets of reference alignments. We compute BAli scores (SP and
TC, which measure the alignment accuracy, ranging from 0 to 1, where 1 indi-
cates the best possible accuracy) for Museqa, ClustalΩ and ClustalW, consider-
ing 386 alignments, which are organized in 6 BAli families covering six different
situations (RV11, RV12, RV20, RV30, RV40, and RV50).

Table 3. SP and TC score average results for ClustalΩ, our proposed method
(Museqa), and ClustalW, for the six considered BAli families.

RV11 RV12 RV20 RV30 RV40 RV50

SP TC SP TC SP TC SP TC SP TC SP TC

ClustalΩ 0.48 0.27 0.83 0.68 0.82 0.34 0.69 0.38 0.76 0.43 0.70 0.35

Museqa 0.41 0.21 0.79 0.61 0.78 0.24 0.57 0.16 0.61 0.28 0.56 0.19

ClustalW 0.48 0.24 0.80 0.64 0,79 0.26 0.62 0.25 0.65 0.30 0.62 0.27

As can be seen in Table 3, the obtained accuracy is very similar, proving the
reliability of the alignments obtained by Museqa when compared to ClustalΩ and
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CrustalW. However, mean values can suppress nuances regarding the differences
found in each alignment. In this sense, we comparison of the measurements
of scores between the three algorithms in each of the 386 alignments, and we
clustered into three groups: group1 - when Museqa obtained a better score;
group2 - when there was a tie between the scores; group3 - when the score
obtained by Museqa was significantly lower. The group2 formed by comparisons
in which the fold change between the scores is less than or equal to 1.3. And the
group3 by fold change in scores greater than 1.3.

Comparing Museqa and ClaustralΩ, we notice that the SP-score possesses
18.6%, 73.8%, and 7.5% of the comparisons in group1, group2, and group3,
respectively. And the TC-score holds 16.3%, 68.9%, and 14.7% of the com-
parisons in group1, group2, and group3, respectively. Comparing Museqa and
ClustalW, the SP-score holds 36.5%, 60.3%, and 3.1% in group1, group2, and
group3, respectively. And the TC-score keeps 25.3%, 70.4%, and 4.1% of the
comparisons in group1, group2, and group3, respectively. These results demon-
strate a high degree of congruity between the three programs.

5 Final Remarks

In this paper we described a Multi-GPU solution for the Multiple Sequence
Alignment problem which implements the three stages of the progressive align-
ment method. All stages of the method achieved significant speedup when com-
pared to some popular tools that are currently available for the same task.

As future work, we intend to look into three directions: i) to use a modified
NJ which produces a complete binary tree, reducing the interdependence of the
computations in stages 2 and 3; ii) to implement the aligments of the method
using new biological information iii) to make improvements in the proposed
method so that it can operate in heterogeneous hybrid parallel platforms.
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