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Abstract. We present an original approach to improving seismic mod-
elling performance by applying deep learning techniques to mitigate
numerical error. In seismic modelling, a series of several thousand simula-
tions are required to generate a typical seismic dataset. These simulations
are performed for different source positions (equidistantly distributed)
at the free surface. Thus, the output wavefields that corresponded to
the nearby sources are relatively similar, sharing common peculiarities.
Our approach suggests simulating wavefields using finite differences with
coarse enough discretization to reduce the computational complexity of
seismic modelling. After that, solutions for 1 to 10 percents of source
positions are simulated using fine discretizations to obtain the train-
ing dataset, which is used to train the deep neural network to remove
numerical error (numerical dispersion) from the coarse-grid simulated
wavefields. Later the network is applied to the entire dataset. Our experi-
ments illustrate that the suggested algorithm in the 2D case significantly
(up to ten times) speeds up seismic modelling.
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1 Introduction

Seismic modelling becomes a common tool to investigate peculiarities of wave
propagation in realistic complex models of the Earth’s interior [2,12,24] ver-
ification of the seismic processing and inversion algorithms, and as a part of
the inversion methods, [21]. However, simulation of seismic wave propagation in
complex media is one of the most computationally demanding problems requir-
ing intense use of high-performance computing. In particular, if a typical seismic
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acquisition system is considered, one has to simulate wavefields corresponding
to hundreds of thousands of source positions (right-hand sides). Each simulation
of a single shot gather is performed in a domain of about 103 km, which corre-
sponds to 1003 wavelength. Thus, up to 8 · 109 grid points are needed to obtain
accurate enough numerical results. Reduction of the problem size by increasing
the grid step leads to numerical error growth, which may completely destroy the
solution. There are several ways to reduce the numerical dispersion, including use
of high order finite-difference schemes [11], dispersion-suppression schemes [14],
high-order finite element and discontinuous Galerkin methods [1,8,13]. However,
the increase of the approach accuracy imminently leads to high computational
intensity, including increased flops and RAM access operations.

The other option to reduce the numerical dispersion in the simulated wave-
fields is a post-processing [9,23]. However, the standard waveform correction
procedures used in seismic processing are not efficient for numerical dispersion
mitigation. The error associated with the numerical dispersion depends on the
wave propagation path, velocity model etc. Thus, it can not be compensated by
a single-phase shift. In this paper, we suggest an approach to post-processing
based on using the deep learning technique.

Deep learning finds wide application in various fields of science. Providing a
large representative training dataset, deep neural networks (DNNs) can approx-
imate complex non-linear operators within the supervised learning workflow.
These DNNs can learn about highly non-linear physics and usually provide much
faster computational time than traditional simulation [6,17].

To develop an efficient algorithm for numerical dispersion mitigation, we use
the following peculiarity of seismic modelling. The entire seismic dataset includes
wavefields corresponding to different source positions. These positions are rela-
tively close to each other (10 to 100 m apart). Thus, the velocity models and the
simulated wavefields are similar if the source is situated nearby. It allows using
a small number of sources to simulate accurate solution to be used as a training
dataset. At the same time, we can simulate the entire dataset using a coarse enough
grid, train the deep neural network, and then post-process the data.

The remainder of the paper has the following structure. In Sect. 2 we remind
the basic concepts of seismic modelling, including the main estimates of the
numerical dispersion, depending on the grid size. The description of the numer-
ical dispersion mitigation network (NDM-net) is provided in Sect. 3. Numerical
experiments illustrating the applicability of the NDM-net to the synthetic seis-
mic data enhancement are presented in Sect. 4.

2 Seismic Modelling

Seismic wave propagation in 2D isotropic elastic media is governed by the elastic
wave equation:
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where ρ is the mass density, λ and μ are the Lame parameters, u = (u1, u3)T is
the particle velocity vector, σ is the stress tensor, fij(t) are the components of
the source wavelet function, δ(x) is the Kroneker delta-function, x is the vector
of spatial coordinates, and xs is the source coordinate. The seismic modelling is
stated in half-space x3 > 0 and within bounded time interval t ∈ [0, T ].

A common way to approximate the elastic wave equation is the use of stag-
gered grid finite differences [11,20], where the different components of the wave-
field are defined at different spatial and temporal points with the use of sym-
metric stencils to approximate the derivatives:

ρDt[u1]
n−1/2
i+1/2,j = D1[σ11]

n−1/2
i+1/2,j + D3[σ13]

n−1/2
i+1/2,j ,

ρDt[u3]
n−1/2
i,j+1/2 = D1[σ13]

n−1/2
i,j+1/2 + D3[σ33]

n−1/2
i,j+1/2,

Dt[σ11]
n
i,j = (λ + 2μ)D1[u1]

n
i,j + λD3[u3]

n
i,j + f11(tn)[δ(x − xs)]i,j ,

Dt[σ33]
n
i,j = λD1[u1]

n
i,j + (λ + 2μ)D3[u3]

n
i,j + f33(tn)[δ(x − xs)]i,j ,

Dt[σ13]
n
i+1/2,j+1/2 = μD1[u3]

n
i+1/2,j+1/2 + μD3[u1]

n
i+1/2,j+1/2+

+f13(tn)[δ(x − xs)]i+1/2,j+1/2,

(2)

where finite-difference operators are
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where indices I, J,N can be either integer or half-integer, and g is a smooth
enough scalar function. The operator Dt approximates the temporal derivatives
with the second order to the time step τ . The operators D1 and D2 approxi-
mate the spatial derivatives. However, depending on the choice of αm one may
construct a high-order approximation up to 2m+2 [11], or use theses degrees of
freedom to suppress numerical dispersion [14]. Note, that we are not discussing
the approximation of the right-hand sides, as it is presented in [7], and the model
parameters treatment because it is studied in [16,22].

The use of symmetric stencils to approximate derivatives ensures an even
order of approximation with zero coefficients of odd degrees in the differen-
tial approximation of the finite difference scheme (2). Thus the numerical error
appears in the solution as a numerical dispersion without dissipation, see [19],
and [3] for the details. It means that the emitted impulse will deteriorate, prop-
agating through the media. An example of the impulse deformation due to the
dispersion is presented in Fig. 1. We plot the true pulse and that travelled 30
wavelengths simulated by the second-order scheme with a spatial discretization
of 10, 20, and 40 points per wavelength and Courant number equal to 0.8. Note
that the maximum impulse shifts backwards in time, leading to an overesti-
mation of the reflecting intervals depth in seismic processing and interpretation.
Refining the mesh, one gets the convergence of the numerical solution to the true
one, however, refining a spatial step by the factor of two leads to the increase
of the problem size by the factor of 8 in 3D and 4 in 2D. Moreover, the number
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of flops increases by 16 in 3D and 8 in 2D because of the temporal step refine-
ment. On the other hand, the solution obtained on the grid with 20 points per
wavelength is accurate enough, and simple processing may turn it into the true
one.

0-0.3 -0.2 -0.1 0.1 0.2
time(s)

-0.5

0

0.5

1
correct
N=40
N=20
N=10

Fig. 1. An example of the pulse deformation due to numerical dispersion.

3 Numerical Dispersion Mitigation Network (NDM-net)

Convolutional Neural Networks (CNN) are usually applied to analyze visual
imagery. A particular case of CNN is a U-Net [18], which was originally intro-
duced for biomedical image segmentation. At this moment, the U-Net and its
modifications have broad applications in seismic inversion, pre-stack seismic data
processing and interpretation. This work suggests using the Numerical Disper-
sion Mitigation deep neural network (NDM-net) to learn the mapping between
the synthetic seismic data modelled on a coarse grid and data modelled on a
fine grid. In other words, we plan to eliminate the numerical dispersion using
the Deep Learning approach.

The architecture of the network is similar to the one used by [5]. The differ-
ences are using a conventional convolutional layer instead of partial convolutions
and the different input/output dimensions, see Fig. 2. These DNN contains 16
convolutional layers, eight upsampling layers, and eight concatenation layers
(skip connections). The input and output tensors dimensions are 1250 × 512
× 2. An activation function for the first eight convolutional layers (encoding,
or feature extracting, part of the DNN) is ReLU, while the last eight convolu-
tional layers (decoding part) have LeakyReLu activation with a negative slope
coefficient equals to 0.2. We implemented NDM-net in TensorFlow. The DNN
weights were randomly initialized, and Adam stochastic optimization algorithm
was exploited during the training process.
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In the current implementation, we consider the input/output to be regularly
sampled pre-stack seismic data. For training, we used each 10-th common shot
gather computed on a fine grid and its corrupted version modelled on a coarse
grid. Each common shot is converted to a tensor with a dimension of 1250 × 512
× 2. Here 1250 is the number of time samples in data (4 ms time discretization
and 5s record time), 512 is the number of 2C receivers, and 2 is the number
of recorded components (vertical and horizontal velocity components). Next, we
split this dataset into training and validation datasets. Each common shot is
normalized by scaling it to unit variance before being processed by the NDM-
net.

Fig. 2. The architecture of NDM-net. The Black right arrow indicates convolution
operation, while the red right arrow indicates concatenation. Up and down arrows
indicate upsampling and batch normalization operations correspondingly.

4 Numerical Experiments

We applied our approach to mitigate the numerical dispersion in two datasets.
Both simulations were done in 2D to illustrate the applicability of the NDM-net
to improve seismic modelling accuracy and efficiency.
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4.1 Marmousi2 Model

First we considered the elastic Marmousi2 model [15], as presented in Fig. 3.
The size of the model was 17 km in the horizontal and 3.6 km in the vertical
direction. Marmousi2 is the offshore model with water at the top. To make
the considerations consistent with land data acquisition, we substitute water
with solid used for the ocean bottom in the model. We performed simulations
of seismic waves propagation using meshes with steps equal to 1.25 m, 2.5 m,
and 5 m, assuming the solution obtained on the 1.25 m grid is the exact one.
Such small grid steps were chosen due to the thick low-velocity layer, that was
introduced instead of water at the top of the model. Note that the original model
was provided on a grid with step size 1.25 m. However, to exclude the effect of
model changes when the simulation mesh is coarsening, we map the mode to
the mesh with step 5 m. After that 5-meters model was used for all numerical
simulations.

Fig. 3. Marmousi2 elastic velocity model used for synthetic data generation. The
marker represents the source position at x = 8 km.

The acquisition included 171 sources with the distance between the sources
100 m. We recorded wavefield by 512 2C receivers for each shot with maximal
source-receiver offsets equal to 6.4 km. The distance between the receivers was
25 m. Simulations were performed using the fourth-order staggered grid scheme
[11]. On average, the simulation time was 5 s per shot if a 5 m grid was used; 40 s
per shot for 2.5 m grid; and 4 min for 1.25 m grid, using Nvidia V100 GPU. The
example of modelled seismogram on the grid 1.25 m (X = 9 km) is presented in
Fig. 4.
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Fig. 4. Synthetic seismograms for shot positioned at x = 9 km: horizontal (a) and
vertical (b) components calculated on a numerical grid with the spatial step 1.25 m.

We performed two numerical experiments, and for each experiment, we
trained NDM-net. One was designed to map the data simulated using a 2.5
m grid to the exact solution (data acquired on the grid with steps 1.25 m). The
other NDM-net was trained to map 5 m-data to the 1.25 m-data. The training
was performed on the Nvidia V100 GPU. As a regularization, we used an early
stopping technique and interrupted the training when the error on the validation
dataset started to grow. In both cases (2.5 m to 1.25 m and 5 m to 1.25 m), the
training process took about 30min. The prediction time is about 0.7 sec for one
full common shot gather, while one forward modelling using FD technique on a
GPU took about 40 s on 2.5 m grid and about 5 s on 5 m grid, but 5 min for the
finest grid of 1.25 m.

To estimate the quality of DNN prediction, we use the normalized RMS
(NRMS) as a measure of datasets similarity. NRMS is a strict sample-by-sample
metric used for evaluating repeatability between two datasets in 4D seismic [10].
An acceptable level of NRMS in 4D seismic is about 20–40%. The verification
of DNN predictions was performed on a testing dataset that differs from train-
ing and validation, i.e. were invisible by DNN during the training process. The
NRMS plot calculated trace by trace using a sliding window of 200 ms is pre-
sented in Fig. 5. On average, the NRMS between 1.25 m data and 2.5 m-data
was 30%. Application of the NDM-net reduced the NRMS down to 14%. The
average NRMS between 5-m data and 1.25 m-data was about 59%, and the DNN
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managed to construct a prediction with the NRMS of 33%. So one may conclude
that in both cases, NDM-net were able to reduce NRMS up to the acceptable
level. To illustrate the effect of the NDM-net data enhancement, we provide the
plots (see Figs. 6, 7) of a single seismic trace computed using different grids and
then improved by the NDM-net.

Fig. 5. NRMS plot calculated between seismograms computed on a numerical grid
with the spatial steps 1.25 m and 2.5 m (a), 1.25 m and DNN predicted data using 2.5
m data as input (b), 1.25 m and 5 m (d), 1.25 m and DNN predicted data using 5 m
data as input, and the corresponding histograms (c,f).

4.2 Model with Vertical Intrusion

The second set of experiments was done for a model with vertical high-contrast
intrusions causing lateral heterogeneity as presented in Fig. 8. The size of the
entire model was 220 km by 2.6 km. The acquisition included 1901 sources with
the distance between the sources 100 m. We recorded wavefield by 512 receivers
for each shot with maximal source-receiver offsets equal to 6.4 km. The distance
between the receivers was 25 m. In this research, we simulated the wavefield
without the surface waves by using a perfectly matched layer for x < 0 [4]. The
source wavelet was the Ricker pulse with a central frequency 30 Hz.
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Fig. 6. Seismic traces at different positions and its DNN-predictions for the case 2.5
m-data (a) and 5 m-data (b). Black plot – vertical component on the fine grid, red plot
– input data for DNN prediction and blue plot – DNN-predicted data.
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Fig. 7. Seismic traces at different positions and its DNN-predictions for the case 2.5
m-data (a) and 5 m-data (b). Black plot – vertical component on the fine grid, red plot
– input data for DNN prediction and blue plot – DNN-predicted data.
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Fig. 8. Elastic velocity model used for synthetic data generation. The marker represents
the source position at x = 120 km.

Fig. 9. Synthetic seismograms for shot positioned at x = 120 km: vertical component
calculated on a numerical grid with the spatial steps 2.5 m (a), 5 m (b) and 10 m (c).
(Color figure online)

Originally, the model was provided on a grid with the steps 50 m in horizontal
and 5 m in a vertical direction. We computed three datasets using the fourth-
order staggered grid scheme [11]. We considered the solution acquired at the
grid with steps of 2.5 m as the accurate one, whereas two others generated using
grids with 5 m and 10 m spatial steps are polluted. We provide examples of the
seismograms in Fig. 9.
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Fig. 10. NRMS plot calculated between seismograms computed on a numerical grid
with the spatial steps 2.5 m and 5 m (a), 2.5 m and DNN predicted data using 5 m
data as input (b), 2.5 m and 10 m (d), 2.5 m and DNN predicted data using 10 m data
as input, and the corresponding histograms (c,f). NRMS were calculated in the area
designated by a red rectangle on Fig. 2 (vertical component at the time from 3 s to
5 s including all receiver positions)

As in the previous example, we trained two NDM-nets for two synthetic
datasets. One was designed to map the data simulated using a 5 m grid to the
exact solution (data acquired on the grid with steps 2.5 m). The other NDM-net
was trained to map 10 m-data to the 2.5 m-data. In both cases (5 m to 2.5 m
and 10 m to 2.5 m), the training process took about 40 min. The prediction time
is about 0.7 sec for one full common shot gather, while one forward modelling
using FD technique on a GPU took about 40 s on 2.5 m grid and about 5 s on 5
m grid. Since the main error accumulates in the late arrivals, we calculate NRMS
for the time range from 3 s to 5 s (red rectangle on the Fig. 9). The corresponding
NRMS plot is presented in Fig. 10. On average, the NRMS between 2.5 m data
and 5 m-data was 65%. Application of the NDM-net reduced the NRMS down to
30%. The average NRMS between 10-m data and 2.5 m-data was about 120%,
which means that the 10-m data are extremely far from the true solution. As a
result, the DNN managed to reduce NRMS up to the 90% level. The effect of
the NDM-net data enhancement is illustrated in the Figs. 11, 12.
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Fig. 11. Seismic traces at different positions and its DNN-predictions for the case 5
m-data (a) and 10 m-data (b). Black plot – vertical component on the fine grid, red
plot – input data for DNN prediction and blue plot – DNN-predicted data.
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Fig. 12. Seismic traces at different positions and its DNN-predictions for the case 5
m-data (a) and 10 m-data (b). Black plot – vertical component on the fine grid, red
plot – input data for DNN prediction and blue plot – DNN-predicted data.
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5 Conclusions

We present an original approach to numerical simulation of seismic wavefields.
The method combines conventional seismic modelling based on the finite differ-
ences with the consequent correction of the data by the DNN-based algorithm
called the NDM-net. First, we generate a training dataset simulating wavefields
corresponding to at most 10% of the positions of the sources using fine enough
spatial discretization (up to 20 points per minimal wavelength - ppw). Second,
the full dataset is generated using a coarse mesh with no more than 3–5 ppw.
Note that in the 2D case, simulation of the solution using 5 ppw is 64 times faster
than that with 20 ppw. Third, the NDM-net is trained to reduce the numerical
error in the coarse-grid solution. Then the NDM-net is applied to correct the
entire dataset. The presented results demonstrate the ability of the NDM-net to
make a high-quality seismic data prediction using the synthetics generated on
a coarse grid. In particular, the application of the NDM-net reduced the com-
putational time to simulate the full dataset of 171 common shot gathers for the
Marmousi2 model from 684 min to 112 min.
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