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Abstract. In this paper we derive new explicit two-stage peer meth-
ods for the numerical solution of ordinary differential equations by using
the technique introduced in [2] for Runge-Kutta methods. This technique
allows to re-determine the order conditions of classical methods, obtain-
ing new coefficients values. The coefficients of new methods are no longer
constant, but depend on the Jacobian function of the ordinary differen-
tial equation. The new methods preserve the order of classical peer meth-
ods, and are more accurate and with better stability properties. Numerical
tests highlight the advantage of new methods especially for stiff problems.
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1 Introduction

Peer methods are two-step s-stage methods for the numerical solution of Ordi-
nary Differential Equations (ODEs)

y′(t) = f
(
t, y(t)

)
. (1)

After the work of R. Weiner et al. [1], much more research has been conducted
on peer methods, since based on the choice of their coefficients you can obtain
explicit parallelizable methods [7–10], simply explicit methods [11–16] or implicit
methods [17–21]. It is also possible to use particular techniques, such as the
Exponential Fitting (EF) [6], obtaining peer methods adapted to the problem
[22–24], as they follow the apriori known trend of the real solution.

In this paper we focus on solving the problem (1), and we derive the coeffi-
cients of the peer methods in a different way, using the approach that was applied
on explicit two- and three-stage Runge-Kutta methods in [2]. Subsequently, the
same technique was also applied by other authors on explicit four-stage Runge-
Kutta methods [4]. In all these cases, for particular choices of the coefficients,
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A-stable versions of the methods are obtained, with accuracy order that increases
by one compared to the standard case. In the paper [3], specific numerical tests
have been carried out in order to confirm these theoretical observations.

We consider explicit peer methods of the form

Yn,i =
s∑

j=1

bij Yn−1,j + h

s∑

j=1

aij f(tn−1,j , Yn−1,j) + h

i−1∑

j=1

rij f(tn,j , Yn,j),

i = 1, ..., s,

(2)

where the stages are Yn,i ≈ y(tn,i), with tn,i = tn + h ci, and the coefficients
matrices are

A = (aij)si,j=1, B = (bij)si,j=1, R = (rij)si,j=1, (3)

with R lower triangular matrix.
The coefficients are obtained by modifying the classical order conditions for

peer methods, according to the approach proposed in [2], and, as a consequence,
they depend on the Jacobian of the function f . This new Jacobian-dependent
methods have better stability properties than the classical ones.

The organization of this work is the following: in Sect. 2 we show the classic
form of the explicit two-stage peer methods; in Sect. 3 we derive the Jacobian-
dependent coefficients of the new two-stage peer methods by imposing different
order conditions than the standard case; in Sect. 4 we analyze the linear stability
properties of the classic and Jacobian-dependent methods, obtaining for the
latter a particular version characterized by a bigger absolute stability region; in
Sect. 5 we show numerical tests in order to confirm our theoretical observations;
in Sect. 6 we discuss the results and the future research.

2 Classic Peer Methods

Given a discretization {tn, n = 1, ..., N} of the time interval [t0, T ] associated
to the problem (1), classic explicit two-stage (s = 2) peer methods assume the
form

Yn,1 = b11 Yn−1,1 + b12 Yn−1,2 + h a11 f(tn−1,1, Yn−1,1) + h a12 f(tn−1,2, Yn−1,2),
Yn,2 = b21 Yn−1,1 + b22 Yn−1,2 + h a21 f(tn−1,1, Yn−1,1) + h a22 f(tn−1,2, Yn−1,2)

+ h r21 f(tn,1, Yn,1),
(4)

where c1 ∈ [0, 1) and c2 = 1 (it is convention to use cs = 1 for s-stage peer
methods). Remembering that Yn,i ≈ y(tn,i), tn,i = tn + h ci, the solution at the
generic grid point tn + h is determined by Yn,2, in each time step from tn to
tn+1 = tn + h.
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The classical order conditions of explicit peer methods are obtained by anni-
hilating the necessary number of residuals, defined as

hΔi := y(tn,i) −
s∑

j=1

bij y(tn−1,j) − h

s∑

j=1

aij y′(tn−1,j) +
i−1∑

j=1

rijy
′(tn,j),

i = 1, ..., s.

(5)

In fact, the following definition applies:

Definition 1. The peer method

Yn,i =
s∑

j=1

bij Yn−1,j + h

s∑

j=1

aij f(tn−1,j , Yn−1,j) + h

i−1∑

j=1

rij f(tn,j , Yn,j),

i = 1, ..., s,

(6)

is consistent of order p if

Δi = O(hp), i = 1, ..., s. (7)

To familiarize with the technique we will apply in the next section, in the cur-
rent section we collect the coefficients of classic explicit two-stage peer methods
using it already.

2.1 Two-Stage Classic Version

In this paragraph we impose differently the same order conditions as obtained
in [1] in the general case of s stages. In order to derive them, we define the Local
Truncation Errors (LTEs) related to the stages as in (9), replacing Y1(t) and
Y2(t) with the continuous functions defined in (10).

The method we analyze in this work is (4), and to have visibility of its free
coefficients, we consider them in the following matrices:

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12
b21 b22

)
, R =

(
0 0

r21 0

)
, c =

(
c1 1

)
. (8)

There are ten free coefficients, and we’re going to determine some of them by
requiring that the accuracy order of the method be equal to two. After that, in
Sect. 4, we’ll assign the coefficients left free with the aim of achieving optimal
linear stability properties.

Remembering that the stages Yn,1 and Yn,2 determine the numerical solution
at the mesh points tn + h c1 and tn + h (= tn+1), respectively, we define the
linear operators

L1

(
y(t)

)
= y(t + h c1) − Y1(t), L2

(
y(t)

)
= y(t + h) − Y2(t), (9)
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that are functions by which you can measure the error of (4). In fact, with Y1(t)
and Y2(t) we indicate the continuous expressions of the discrete stages Yn,1 and
Yn,2, respectively:

Y1(t) = b11 y
(
t + h(c1 − 1)

)
+ b12 y(t) + h a11 y′(t + h(c1 − 1)

)
+ h a12 y′(t),

Y2(t) = b21 y
(
t + h(c1 − 1)

)
+ b22 y(t) + h a21 y′(t + h(c1 − 1)

)
+ h a22 y′(t)

+ h r21y
′(t + h c1).

(10)
We evaluate L1

(
y(t)

)
and L2

(
y(t)

)
for y(t) = tk, k = 0, 1, 2, ..., but, as

explained in [2,5,6], for linear operators only the moments (i.e. the expressions
of Li(tk) corresponding to t = 0) are of concern. The notation we use to indicate
the moments of order k associated with operator Li is Li,k := Li(tk). Linear
operators can be written in a form similar to Taylor series expansion, the terms
of which are their respective moments, so the following property holds:

Li

(
y(t)

)
=

∞∑

k=0

1
k!

Li,k y(k)(t). (11)

These operators represent the LTEs committed, i.e. a measure to determine how
much the solution of the differential Eq. (1) fails to solve the difference Eq. (4).

The complete expression of L1(tk) is, combining (9) and (10),

L1(tk) = (t + h c1)k − b11
(
t + h(c1 − 1)

)k − b12 tk − h k a11

(
t + h(c1 − 1)

)k−1

− h k a12t
k−1,

(12)
and the moments L1,0, L1,1, L1,2 and L1,3 are

L1,0 = 1 − b11 − b12,

L1,1 = h c1 − h b11(c1 − 1) − h a11 − h a12,

L1,2 = (h c1)2 − b11
(
h(c1 − 1)

)2 − 2h a11

(
h(c1 − 1)

)
,

L1,3 = (h c1)3 − b11
(
h(c1 − 1)

)3 − 3h a11

(
h(c1 − 1)

)2
.

(13)

Cancelling the first three moments leads to the following three equations system,
which the coefficients of (4) must satisfy so that the accuracy order of the first
stage Yn,1 is equal to two:

⎧
⎪⎨

⎪⎩

1 − b11 − b12 = 0,

c1 − b11(c1 − 1) − a11 − a12 = 0,

c21 − b11(c1 − 1)2 − 2 a11(c1 − 1) = 0.
(14)

In fact, from (9) and applying (11) to L1(tk), leads to

y(t + h c1) = Y1(t) +
h3

3!
(
c31 − b11(c1 − 1)3 − 3 a11(c1 − 1)2

)
y′′′(t) + O(h4). (15)
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We indicate the LTE on Yn,1 with err1(t), and the Principal term of the Local
Truncation Error (PLTE) on Yn,1 with terr1(t):

err1(t) = terr1(t) + O(h4), with

terr1(t) =
h3

3!
(
c31 − b11(c1 − 1)3 − 3 a11(c1 − 1)2

)
y′′′(t).

(16)

By doing the same on the second stage Yn,2 which, like the first stage Yn,1,
we calculate with order of accuracy equal to two, we obtain:

L2(tk) = (t + h)k − b21
(
t + h(c1 − 1)

)k − b22t
k − h k a21

(
t + h(c1 − 1)

)k−1

− h k a22 tk−1 − h k r21
(
t + c1 h

)k−1
,

(17)
L2,0 = 1 − b21 − b22,

L2,1 = h − h b21(c1 − 1) − h a21 − h a22 − h r21,

L2,2 = h2 − b21(h(c1 − 1))2 − 2h a21(h(c1 − 1)) − 2h2r21 c1,

L2,3 = h3 − b21(h(c1 − 1))3 − 3h a21(h(c1 − 1))2 − 3h r21 (h c1)2,

(18)

⎧
⎪⎨

⎪⎩

1 − b21 − b22 = 0,

1 − b21(c1 − 1) − a21 − a22 − r21 = 0,

1 − b21(c1 − 1)2 − 2 a21(c1 − 1) − 2 r21 c1 = 0,

(19)

y(t + h) = Y2(t) +
h3

3!
(
1 − b21(c1 − 1)3 − 3 a21(c1 − 1)2 − 3 r21 c21

)
y′′′(t) + O(h4).

(20)
In conclusion, requiring that the global accuracy order of the peer method (4)

be equal to two, means deriving the coefficients by solving the systems (14) and
(19). Invoking (8), we observe that four free coefficients remain to be assigned
later.

The extension of this procedure in the case of s stages is possible and allows
to get the coefficients of classical s-stage peer methods with accuracy order p = s.
It is customary to assign fixed values to the coefficients of B (respecting B1 = 1 ,
with 1 = (1, ..., 1)T ), R and c, obtaining (aij)si,j=1 as a function of them [1]:

A = (C V0 D−1 − R V0)V −1
1 − B(C − I)V1 D−1 V −1

1 ,

V0 = (cj−1
i )si,j=1, V1 =

(
(ci − 1)j−1

)s
i,j=1

, I = Is (Identity matrix of order s),

D = diag(1, ..., s), C = diag(ci).
(21)

3 New Jacobian-Dependent Peer Methods

The new Jacobian-dependent methods are obtained by defining differently the
functions Y1(t) and Y2(t) in (10), and therefore the operators (9) with whom we
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calculate the LTEs from which the stages are affected. In doing so, it will change
the definition of L2

(
y(t)

)
, but not that of L1

(
y(t)

)
.

In fact, we are assuming that the following localizing assumption applies only
at the previous grid points {t0, ..., tn−1}, but not at tn:

Yn−1,j = y(tn−1 + h cj), ∀j = 1, ..., s. (22)

Therefore, we’re going to consider the LTEs committed in the calculation of
the previous stages Yn,j , j = 1, ..., i − 1 in determining Yn,j , j = i, ..., s. This
change leads to the dependence of the coefficients on the Jacobian function of
the problem f .

3.1 Two-Stage Jacobian-Dependent Version

As mentioned before, the application of the new hypothesis (22) on peer methods
(4) doesn’t produce any changes in Yn,1, as it depends exclusively on Yn−1,j ,
j = 1, 2. The only variation concerns Yn,2, because it depends on Yn,1, that is
affected by the LTE (16). Therefore, the expression of L1(tk) remains the same
(12) as in the classic case, as well as the moments (13), the order conditions
(14), and the LTE (16).

However, now we need to recalculate the order conditions of the second stage
Yn,2, bearing in mind, this time, the error made in the calculation of the first
stage Yn,1 (16). The new definition of Y2(t) is

Y2(t) = b21 y
(
t + h(c1 − 1)

)
+ b22 y(t) + h a21 y′(t + h(c1 − 1)

)
+ h a22 y′(t)

+ h r21f
(
t + h c1, Y1(t)

)
,

(23)
where, unlike the definition of Y2(t) in (10), there is f

(
t + h c1, Y1(t)

)
instead of

y′(t + h c1).
In fact, it now applies that

y′(t + h c1) = f
(
t + h c1, y(t + h c1)

)
= f

(
t + h c1, Y1(t) + err1(t)

)
. (24)

Remembering that the Taylor series expansion of a generic function g(x) at x0

is

g(x) = g(x0) + g′(x0) (x − x0) + ... +
gn(x0)

n!
(x − x0)n + O

(
(x − x0)n

)
, (25)

we get the Taylor series expansion of f in (24) at Y1(t) as follows:

f
(
t + h c1, Y1(t) + err1(t)

)
= f

(
t + h c1, Y1(t)

)
+ j1(t) err1(t) + O

(
err1(t)2

)

= f
(
t + h c1, Y1(t)

)
+ j1(t) terr1(t) + O(h4),

with j1(t) = fy(t + h c1, y)|y=Y1(t) (Jacobian function).
(26)
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By combining (24) and (26), we finally get

f(t + h c1, Y1(t)) = y′(t + h c1) − j1(t) terr1(t) + O(h4). (27)

The replacement of the expression just found (27) in Y2(t) (23) leads to the new
shape of L2(tk):

L2(tk) = (t + h)k − b21
(
t + h(c1 − 1)

)k − b22t
k − h k a21

(
t + h(c1 − 1)

)k−1

− h k a22t
k−1 − h r21

(
k(t + h c1)k−1 − j1(t)

(h3

3!
(
c31 − b11(c1 − 1)3

− 3 a11(c1 − 1)2k(k − 1)(k − 2)tk−3
)))

.

(28)
The new moments L2,0, L2,1, L2,2 and L2,3 are

L2,0 = 1 − b21 − b22,

L2,1 = h − h b21(c1 − 1) − h a21 − h a22 − h r21,

L2,2 = h2 − b21
(
h(c1 − 1)

)2 − 2h a21

(
h(c1 − 1)

) − 2h2r21 c1,

L2,3 = h3 − b21
(
h(c1 − 1)

)3 − 3h a21

(
h(c1 − 1)

)2 − 3h r21 (h c1)2

+ m1(t) r21
(
h3

(
c31 − b11(c1 − 1)3 − 3 a11(c1 − 1)2

))
,

(29)

where m1(t) = hj1(t). This time we cancel all the four moments, thus obtaining
the second stage Yn,2 with accuracy order equal to three. Numerical experiments
will show that, despite this, the global accuracy order of the new peer methods
remains two:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − b21 − b22 = 0,

1 − b21(c1 − 1) − a21 − a22 − r21 = 0,

1 − b21(c1 − 1)2 − 2a21(c1 − 1) − 2r21c1 = 0,

1 − b21(c1 − 1)3 − 3a21(c1 − 1)2 − 3r21c
2
1 + m1(t)r21

(
c31

−b11(c1 − 1)3 − 3a11(c1 − 1)2
)

= 0.

(30)

The resolution of the first three equations in (30) with (14) leads exactly
to the same order conditions as the standard methods. Calculating instead the
coefficients by solving the systems (30) and (14) in full, we get the new Jacobian-
dependent peer methods. Jacobian dependency is evidenced by the presence of
m1(t) = h j1(t) in the last equation of (30).

Always keeping in mind (8), as there are seven independent equations to be
solved now, the number of free coefficients for new peer methods is three and no
longer four. By fixing b11, b21 and c1, the coefficients of new peer methods are
shown in (31). We observe that the coefficients a21, a22 and r21 of new methods
depend on m1(t), i.e. the Jacobian function of the problem at time t. This leads
to two important considerations:

– a21, a22 and r21 must be updated at each time-step;
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– in the multi-dimensional case, a21, a22 and r21 become matrices with the same
size as m1(t).

a11 =
(

− (
b11(−1 + c1)2

)
+ c21

)
/
(
2(−1 + c1)

)
,

a12 =
(

− (
b11(−1 + c1)2

)
+ (−2 + c1)c1

)
/
(
2(−1 + c1)

)
,

a21 =
(
b11(−1 + b21)m1(t) + (−1 + b11 + 7b21 − 10b11b21)c31m1(t)

− (−1 + b11)b21c51m1(t) + b21c
4
1

(
2 + 5(−1 + b11)m1(t)

)

+ c1
(
4 + 3b11m1(t) + b21(4 − 5b11m1(t))

)
+ c21

( − 6

+ 3m1(t) − 3b11m1(t) + b21(−6 − 3m1(t) + 10b11m1(t))
))

/
(
2(−1 + c1)(−(b11m1(t)) − 3(−1 + b11)c21m1(t) + (−1

+ b11)c31m1(t) + 3c1(−2 + b11m1(t))
))

,

a22 =
(

− 10 + 3b11m1(t) − 9(−1 + b11)c31m1(t) + 2(−1 + b11)c41m1(t)

+ c1(24 − 11b11m1(t)) + 3c21(−4 − 3m1(t) + 5b11m1(t))

− b21(−1 + c1)2
( − 2 − b11m1(t) − 3(−1 + b11)c21m1(t)

+ (−1 + b11)c31m1(t) + c1(−4 + 3b11m1(t))
))

/
(
2(−1

+ c1)
( − (b11m1(t)) − 3(−1 + b11)c21m1(t) + (−1

+ b11)c31m1(t) + 3c1(−2 + b11m1(t))
))

,

r21 =
(

− 5 − b21(−1 + c1)3 + 3c1

)
/
(

− (b11m1(t)) − 3(−1 + b11)c21m1(t)

+ (−1 + b11)c31m1(t) + 3c1(−2 + b11m1(t))
)
.

(31)

4 Linear Stability Analysis

The family of explicit s-stage peer methods can be written in the compact form

Yn = B Yn−1 + hAF (Yn−1) + hR F (Yn),

where Yn = (Yn,i)si=1, F (Yn) =
(
f(Yn,i)

)s
i=1

.
(32)

In order to perform linear stability analysis of classic peer methods and new
Jacobian-dependent peer methods, applying (32) to the test equation y′ = λy,
Re(λ) < 0, results in

Yn = (I − zR)−1(B + zA)Yn−1 =: M(z)Yn−1, with z = hλ. (33)

Therefore, M(z) is the stability matrix of the method, i.e. the numerical method
(32) is absolutely stable if ρ(M(z)) < 1, where ρ is the spectral radius of M(z).
The short analysis just shown is detailed in [1].
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4.1 Absolute Stability Regions of the New Two-Stage Methods

We have used Mathematica to fix the coefficients left free after the imposition
of the order conditions, with the aim of maximizing the size of the absolute
stability region of classic and new two-stage peer methods.

Referring to new two-stage Jacobian-dependent peer methods, we need to fix
b11, b21 and c1, then finding the other coefficients of the method by exploiting
(31). The exploration range for these parameters is:

– c1 ∈ [0, 1), because the intermediate stages determine the numerical solution
within the subinterval [tn, tn+1],

– b11 and b21 ∈ [−2, 2], that is usually the range of values in which the coeffi-
cients of the matrix B are considered for peer methods.

In doing so, we get the best result with

b11 = −0.59, b21 = −1, c1 = 0.3. (34)

Trying to do the same thing for classic peer methods as well, using the same
intervals for parameter exploration (this time obviously including r21 as well,
which is a free parameter for the classic methods), we get the largest real axis
of the corresponding absolute stability region by using

b11 = −0.52, b21 = −1.3, c1 = 0.3, r21 = 0.8. (35)

Finally, in order to compare the new peer methods with the classical ones,
we consider two-stage classic peer method with the same coefficients as the peer
Jacobian-dependent (34), fixing the best possible value for r21:

b11 = −0.59, b21 = −1, c1 = 0.3, r21 = 1.17. (36)

Figure (1) shows the absolute stability regions of Jacobian-dependent and
classic methods, using as parameters those just reported.

We note that, although we have fixed the coefficients of the classic peer
method (35) in such a way as to maximize the amplitude of the real axis in its
stability region, the stability region of the new Jacobian-dependent peer method
contains it. In addition, the absolute stability region of the classic method has a
rather strange shape, narrowing in some places to just the real axis. The stability
region of the classic version with non-optimal coefficients (36) is smaller than
that of the other two methods.

5 Numerical Tests

In this section, we conduct numerical tests on two scalar ODEs, by solving them
with Jacobian-dependent and classic peer methods, using as coefficient values
(34) (for Jacobian-dependent version), (35), and (36) (for classic versions), in
order to verify the theoretical properties we derived in the previous sections.
Since the exact solution of the following problems is known, we evaluate the
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Fig. 1. Absolute stability regions of the Jacobian-dependent peer method with optimal
coefficients (34), the classic peer method with optimal coefficients (35) and the classic
peer method set the coefficients of the Jacobian-dependent method (36), respectively.

absolute error at the last grid point, and the order estimate of the methods
using the formula

p(h) =
cd(h) − cd(2h)

log102
, (37)

where cd(h) is the achieved number of correct digits at the endpoint T of the
integration interval [t0, T ] with step-size equal to h. For more information on the
quantities taken into account for numerical tests consult [3].

5.1 Prothero-Robinson Equation

Let’s solve the Prothero–Robinson scalar equation
{

y′(t) = λ
(
y(t) − sin(t)

)
+ cos(t),

y(0) = 0,
(38)

in the interval [0, π/2], for different values of λ. The exact solution of the problem
(38) is y(t) = sin(t). This equation is widely used to test numerical methods as
it becomes more and more stiff as |λ| increases.

The results shown in Tables (1), (2), (3), (4), (5) and (6) allow for the fol-
lowing important observations. The Jacobian-dependent method is much more
accurate than the classic method with optimal coefficients (35) (there is a dif-
ference of two orders of magnitude between their respective absolute errors) and
slightly more accurate than the classic method with the same coefficients (36).
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As the stiffness of the problem increases, it is necessary to use the Jacobian-
dependent method, which has better stability properties than the other two,
especially the classic peer with the same coefficients. Finally, the global accu-
racy order estimation of the three methods tends to two, so the classic methods
and the new method don’t suffer from order reduction on stiff problems.

Figure (2) confirms the greater accuracy of the Jacobian-dependent method
than the other two, for λ = −50 and λ = −100. In Fig. (3), we represent the
trend of the three numerical solutions and the exact one, fixing the problem
(i.e. λ = −103) and choosing two different values for h. For the first value of h,
numerical solutions calculated with the two classical methods explode, and only
the Jacobian-dependent method provides a good result. For a smaller value of
h, even the classic method with coefficients (35) provides an acceptable solution.
Finally, looking at Fig. (4), we can appreciate the fact that when the problem
is very stiff (i.e. λ = −104), the Jacobian-dependent method becomes more
convenient than the others.

Table 1. Absolute errors at the endpoint T on Prothero-Robinson problem (38), in
correspondence of several values of the number N + 1 of mesh-points, with λ = −50.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

28 1.3525e−09 5.3149e−08 8.8738e−09

29 3.0154e−10 9.6927e−09 2.0059e−09

210 6.8472e−11 1.9597e−09 4.6980e−10

211 1.6040e−11 4.3112e−10 1.1317e−10

212 3.8507e−12 1.0031e−10 2.7743e−11

Table 2. Estimated order p(h) on Prothero-Robinson problem, with λ = −50.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

29 2.1653 2.4551 2.1453

210 2.1387 2.3063 2.0942

211 2.0939 2.1845 2.0536

212 2.0585 2.1037 2.0282

5.2 Non-linear Scalar Equation

Let’s solve the non-linear scalar equation
{

y′(t) = −y(y + 1),
y(0) = 2,

(39)

in the interval [0, 5]. The exact solution of the problem (39) is y(t) =
(2/3)e−t

1 − (2/3)e−t
.
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Table 3. Absolute errors at the endpoint T on Prothero-Robinson problem (38), in
correspondence of several values of the number N+ 1 of mesh-points, with λ = −102.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

28 3.7746e−10 2.0039e−08 2.4883e−09

29 8.4564e−11 3.3246e−09 5.5482e−10

210 1.8851e−11 6.0605e−10 1.2541e−10

211 4.2772e−12 1.2251e−10 2.9374e−11

212 9.9920e−13 2.6911e−11 7.0786e−12

Table 4. Estimated order p(h) on Prothero-Robinson problem, with λ = −102.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

29 2.1582 2.5915 2.1651

210 2.1654 2.4557 2.1453

211 2.1399 2.3066 2.0941

212 2.0978 2.1866 2.0530

Table 5. Absolute errors at the endpoint T on Prothero-Robinson problem (38), in
correspondence of several values of the number N+ 1 of mesh-points, with λ = −103.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

28 1.3301e−10 6.6674e−10 –

29 3.4133e−12 1.1099e−10 1.5820e−12

210 3.2963e−13 2.2591e−11 1.3811e−12

211 6.0840e−14 3.6213e−12 3.9857e−13

212 1.2546e−14 5.8420e−13 9.0372e−14

Table 6. Estimated order p(h) on Prothero-Robinson problem, with λ = −103.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

29 5.2843 2.5867 –

210 3.3723 2.2966 0.1959

211 2.4377 2.6412 1.7929

212 2.2779 2.6320 2.1409

The results (Tables (7) and (8)) related to the non-linear problem (39) con-
firm the observations and comments made previously, although in this case the
stability advantage of Jacobian-dependent methods is not observed as the equa-
tion is non-stiff. The greater accuracy of new methods is confirmed.
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Fig. 2. Absolute errors as a function of h, for different values of λ.
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Fig. 3. Solution of the problem (38) for different values of h, with λ = −103.
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Fig. 4. Solution and absolute errors related to the problem (38), with h ≈ 10−4 and
λ = −104.
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Table 7. Absolute errors at the endpoint T on non-linear scalar problem (39), in
correspondence of several values of the step-size h.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

1/2 1.3608e−02 1.7557e−01 1.2034e−02

1/4 1.1327e−03 4.4501e−02 2.7823e−03

1/8 1.7397e−04 5.6674e−03 6.3510e−04

1/16 3.0933e−05 8.3379e−04 1.4977e−04

1/32 6.2091e−06 1.5820e−04 3.6144e−05

1/64 1.3654e−06 3.4293e−05 8.8605e−06

1/128 3.1827e−07 7.9767e−06 2.1923e−06

1/256 7.6699e−08 1.9235e−06 5.4518e−07

1/512 1.8817e−08 4.7231e−07 1.3593e−07

Table 8. Estimated order p(h) on non-linear scalar problem.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

1/2 – – –

1/4 3.5866 1.9802 2.1128

1/8 2.7029 2.9731 2.1312

1/16 2.4916 2.7649 2.0842

1/32 2.3167 2.3980 2.0509

1/64 2.1850 2.2057 2.0283

1/128 2.1010 2.1041 2.0149

1/256 2.0530 2.0520 2.0077

1/512 2.0271 2.0260 2.0039

6 Conclusions and Future Research

In this paper, we have derived new Jacobian-dependent peer methods with better
stability properties than the classic ones. In addition, although we have focused
on this new methods, we would like to stress the fact that we have also deter-
mined the coefficients of classic explicit peer methods (35) in order to maximize
the relative absolute stability region.

Updating the coefficients that depend on the Jacobian function at each step
comes at a higher cost. However, this additional cost is acceptable, given the
benefits obtained both in terms of stability and accuracy.

The next research will focus on further improving the stability properties
of Jacobian-dependent peer methods by investigating the possibility of deriving
A-stable methods. Finally, we’ll adapt the methods obtained in this paper to
the multi-dimensional case, transforming the coefficients that depend on the
Jacobian function into matrices.
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