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Preface

These 10 volumes (LNCS volumes 12949–12958) consist of the peer-reviewed papers
from the 21st International Conference on Computational Science and Its Applications
(ICCSA 2021) which took place during September 13–16, 2021. By virtue of the
vaccination campaign conducted in various countries around the world, we decided to
try a hybrid conference, with some of the delegates attending in person at the
University of Cagliari and others attending in virtual mode, reproducing the infras-
tructure established last year.

This year’s edition was a successful continuation of the ICCSA conference series,
which was also held as a virtual event in 2020, and previously held in Saint Petersburg,
Russia (2019), Melbourne, Australia (2018), Trieste, Italy (2017), Beijing. China
(2016), Banff, Canada (2015), Guimaraes, Portugal (2014), Ho Chi Minh City, Viet-
nam (2013), Salvador, Brazil (2012), Santander, Spain (2011), Fukuoka, Japan (2010),
Suwon, South Korea (2009), Perugia, Italy (2008), Kuala Lumpur, Malaysia (2007),
Glasgow, UK (2006), Singapore (2005), Assisi, Italy (2004), Montreal, Canada (2003),
and (as ICCS) Amsterdam, The Netherlands (2002) and San Francisco, USA (2001).

Computational science is the main pillar of most of the present research on
understanding and solving complex problems. It plays a unique role in exploiting
innovative ICT technologies and in the development of industrial and commercial
applications. The ICCSA conference series provides a venue for researchers and
industry practitioners to discuss new ideas, to share complex problems and their
solutions, and to shape new trends in computational science.

Apart from the six main conference tracks, ICCSA 2021 also included 52 work-
shops in various areas of computational sciences, ranging from computational science
technologies to specific areas of computational sciences, such as software engineering,
security, machine learning and artificial intelligence, blockchain technologies, and
applications in many fields. In total, we accepted 494 papers, giving an acceptance rate
of 30%, of which 18 papers were short papers and 6 were published open access. We
would like to express our appreciation for the workshop chairs and co-chairs for their
hard work and dedication.

The success of the ICCSA conference series in general, and of ICCSA 2021 in
particular, vitally depends on the support of many people: authors, presenters, partic-
ipants, keynote speakers, workshop chairs, session chairs, organizing committee
members, student volunteers, Program Committee members, advisory committee
members, international liaison chairs, reviewers, and others in various roles. We take
this opportunity to wholehartedly thank them all.

We also wish to thank Springer for publishing the proceedings, for sponsoring some
of the best paper awards, and for their kind assistance and cooperation during the
editing process.



We cordially invite you to visit the ICCSA website https://iccsa.org where you can
find all the relevant information about this interesting and exciting event.

September 2021 Osvaldo Gervasi
Beniamino Murgante

Sanjay Misra
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Welcome Message from the Organizers

COVID-19 has continued to alter our plans for organizing the ICCSA 2021 conference,
so although vaccination plans are progressing worldwide, the spread of virus variants
still forces us into a period of profound uncertainty. Only a very limited number of
participants were able to enjoy the beauty of Sardinia and Cagliari in particular,
rediscovering the immense pleasure of meeting again, albeit safely spaced out. The
social events, in which we rediscovered the ancient values that abound on this won-
derful island and in this city, gave us even more strength and hope for the future. For
the management of the virtual part of the conference, we consolidated the methods,
organization, and infrastructure of ICCSA 2020.

The technological infrastructure was based on open source software, with the
addition of the streaming channels on YouTube. In particular, we used Jitsi (jitsi.org)
for videoconferencing, Riot (riot.im) together with Matrix (matrix.org) for chat and
ansynchronous communication, and Jibri (github.com/jitsi/jibri) for streaming live
sessions to YouTube.

Seven Jitsi servers were set up, one for each parallel session. The participants of the
sessions were helped and assisted by eight student volunteers (from the universities of
Cagliari, Florence, Perugia, and Bari), who provided technical support and ensured
smooth running of the conference proceedings.

The implementation of the software infrastructure and the technical coordination
of the volunteers were carried out by Damiano Perri and Marco Simonetti.

Our warmest thanks go to all the student volunteers, to the technical coordinators,
and to the development communities of Jitsi, Jibri, Riot, and Matrix, who made their
terrific platforms available as open source software.

A big thank you goes to all of the 450 speakers, many of whom showed an enor-
mous collaborative spirit, sometimes participating and presenting at almost prohibitive
times of the day, given that the participants of this year’s conference came from 58
countries scattered over many time zones of the globe.

Finally, we would like to thank Google for letting us stream all the live events via
YouTube. In addition to lightening the load of our Jitsi servers, this allowed us to
record the event and to be able to review the most exciting moments of the conference.

Ivan Blečić
Chiara Garau

https://jitsi.org/
https://riot.im/app/
https://matrix.org/
https://github.com/jitsi/jibri
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Natalia Kulabukhova St. Petersburg University, Russia

Smart Cities and User Data Management (SCIDAM 2021)

Chiara Garau University of Cagliari, Italy
Luigi Mundula University of Cagliari, Italy
Gianni Fenu University of Cagliari, Italy
Paolo Nesi University of Florence, Italy
Paola Zamperlin University of Pisa, Italy

Organization xix



13th International Symposium on Software Engineering Processes
and Applications (SEPA 2021)

Sanjay Misra Covenant University, Nigeria

Ports of the Future - Smartness and Sustainability (SmartPorts 2021)

Patrizia Serra University of Cagliari, Italy
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Ginevra Balletto University of Cagliari, Italy
Luigi Mundula University of Cagliari, Italy
Marco Mazzarino University of Venice, Italy
Giuseppe Borruso University of Trieste, Italy
Maria del Mar Munoz

Leonisio
Universidad de Cádiz, Spain
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Maria del Mar Munoz

Leonisio
Universidad de Cádiz, Spain

Ainhoa Amaro Garcia Universidad de Alcalà/Universidad de Las Palmas,
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Francesca Krasna University of Trieste, Italy
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toward Interdisciplinary and Integrated Solutions (SPA 2021)

Francesco Scorza University of Basilicata, Italy
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Iole Cerminara University of Basilicata, Italy
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Claudia Yamu University of Groningen, The Netherlands
Akkelies van Nes Western Norway University of Applied Sciences,
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Chiara Garau University of Cagliari, Italy

Theoretical and Computational Chemistry and Its Applications (TCCMA 2021)

Noelia Faginas-Lago University of Perugia, Italy

13th International Workshop on Tools and Techniques in Software Development
Process (TTSDP 2021)

Sanjay Misra Covenant University, Nigeria

Urban Form Studies (UForm 2021)

Malgorzata Hanzl Łódź University of Technology, Poland
Beniamino Murgante University of Basilicata, Italy
Eufemia Tarantino Polytechnic University of Bari, Italy
Irena Itova University of Westminster, UK

Urban Space Accessibility and Safety (USAS 2021)

Chiara Garau University of Cagliari, Italy
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Virtual and Augmented Reality and Applications (VRA 2021)

Osvaldo Gervasi University of Perugia, Italy
Damiano Perri University of Perugia, Italy
Marco Simonetti University of Perugia, Italy
Sergio Tasso University of Perugia, Italy
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Workshop on Advanced and Computational Methods for Earth Science
Applications (WACM4ES 2021)

Luca Piroddi University of Cagliari, Italy
Laura Foddis University of Cagliari, Italy
Augusto Montisci University of Cagliari, Italy
Sergio Vincenzo Calcina University of Cagliari, Italy
Sebastiano D’Amico University of Malta, Malta
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Sponsoring Organizations

ICCSA 2021 would not have been possible without the tremendous support of many
organizations and institutions, for which all organizers and participants of ICCSA 2021
express their sincere gratitude:

Springer International Publishing AG, Germany
(https://www.springer.com)

Computers Open Access Journal
(https://www.mdpi.com/journal/computers)

IEEE Italy Section, Italy
(https://italy.ieeer8.org/)

Centre-North Italy Chapter IEEE GRSS, Italy
(https://cispio.diet.uniroma1.it/marzano/ieee-grs/
index.html)

Italy Section of the Computer Society, Italy
(https://site.ieee.org/italy-cs/)

University of Perugia, Italy
(https://www.unipg.it)

University of Cagliari, Italy
(https://unica.it/)
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University of Basilicata, Italy
(http://www.unibas.it)

Monash University, Australia
(https://www.monash.edu/)

Kyushu Sangyo University, Japan
(https://www.kyusan-u.ac.jp/)

University of Minho, Portugal
(https://www.uminho.pt/)

Scientific Association Transport Infrastructures,
Italy
(https://www.stradeeautostrade.it/associazioni-e-
organizzazioni/asit-associazione-scientifica-
infrastrutture-trasporto/)

Regione Sardegna, Italy
(https://regione.sardegna.it/)

Comune di Cagliari, Italy
(https://www.comune.cagliari.it/)

Città Metropolitana di Cagliari

Cagliari Accessibility Lab (CAL)
(https://www.unica.it/unica/it/cagliari_
accessibility_lab.page/)
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Ranjan Kumar Behera National Institute of Technology, Rourkela, India
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Abstract. The availability of the Global Positioning System (GPS) tra-
jectory data is increasing along with the availability of different GPS
receivers and with the increasing use of various mobility services. GPS
trajectory is an important data source which is used in traffic density
detection, transport mode detection, mapping data inferences with the
use of different methods such as image processing and machine learn-
ing methods. While the data size increases, efficient representation of
this type of data is becoming difficult to be used in these methods. A
common approach is the representation of GPS trajectory information
such as average speed, bearing, etc. in raster image form and applying
analysis methods. In this study, we evaluate GPS trajectory data ras-
terization using the spatial join functions of QGIS, PostGIS+QGIS, and
our iterative spatial structured grid aggregation implementation coded
in the Python programming language. Our implementation is also paral-
lelizable, and this parallelization is also included as the fourth method.
According to the results of experiment carried out with an example GPS
trajectory dataset, QGIS method and PostGIS+QGIS method showed
relatively low performance with respect to our method using the met-
ric of total processing time. PostGIS+QGIS method achieved the best
results for spatial join though its total performance decreased quickly
while test area size increases. On the other hand, both of our meth-
ods’ performances decrease directly proportional to GPS point. And our
methods’ performance can be increased proportional to the increase with
the number of processor cores and/or with multiple computing clusters.

Keywords: Rasterization · GPS trajectory · Data aggregation ·
Spatial join · Parallelization

1 Introduction

Availability of digital data is increasing with the increase of sensor device con-
nectivity and with the decrease in data storage area costs. The availability of
spatial data, the data that are having spatial components, is also increasing.
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Spatial data is collected and stored mostly with the use of Global Positioning
System (GPS) receivers or other devices that are equipped with GPS units such
as smart phones, navigation devices etc.

Collected GPS data with receivers is also varying. One type of data collected
with GPS devices is called GPS trajectories and it is the collection of consec-
utive GPS locations during the travel time of a moving body [26]. In addition
to GPS locations, additional information such as timestamp, speed, bearing of
the movement, acceleration/deceleration can be recorded with GPS trajectory
and/or can be derived from one another.

GPS trajectories are used in studies focusing on mapping data inference
[1,11,14], traffic density detection [12] and transportation mode detection [3,13].
In these examples from literature GPS trajectories are used as is or represented
in a generalized form such as embedding attributes into predetermined feature
classes or converting GPS trajectories into raster images (Fig. 1) that are repre-
senting certain attributes (GPS point frequency, transportation mode) or their
attributes’ aggregation (average speed, maximum speed, average bearing). After
the representation of GPS trajectories with embedding or rasterization, different
data analysis methods can be applied to these derived data.

Fig. 1. A simple GPS trajectory and its rasterization.

In addition, research on GPS trajectories as GPS trajectories being the only
data source, GPS trajectories fusion with satellite or aerial imagery is a new
area [20]. In the context of data fusion of GPS trajectories with satellite imagery,
GPS trajectories are rasterized, and it is important to obtain one to one pixel
match between rasterized GPS trajectories and satellite imagery to carry out
the analysis accurately.

On the other hand, due to the size of GPS trajectory data, the rasterization
process can be time consuming while the data size and work area increases. This
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issue is not limited only to GPS trajectory rasterization or aggregation, similar
research domains such as spatial social media data analysis and other domains
that are dealing with high volume point data.

In this contribution, we address the rasterization of GPS trajectories using
open source Geographic Information System (GIS) tools and an algorithm coded
using the Python programming language. These tools are evaluated according to
their performances with an experiment which has the goal to rasterize multiple
attributes of given GPS trajectories. Evaluation carried out only on the perfor-
mance results of approaches for three tools in the same architecture is presented,
no philosophical discussion is carried out yet.

To the best of our knowledge, this study is the only study comparing multiple
open source tools and algorithms to understand their performance for aggrega-
tion of the big point data to structured grids and their rasterization. There has
been multiple research for general performance comparison of QGIS with respect
to GIS software like ArcGIS [8]. The parallelization is one of the options imple-
mented in this study. There is various research on parallelization for GIS appli-
cations spreading from implementing big data tools into GIS software [6,7,25]
to adaption of cluster based, distributed big data tools into GIS domain [5,21].
Also, there are significant research which discuss CPU and GPU acceleration,
their special applications in GIS and achieved performance improvement [22–24].
Although previous researches may contribute to various future research direc-
tions combined with our research results, these researches neither focus on the
point to structured grid aggregation and rasterization nor provide a performance
comparison with respect to the widely used open source GIS tools.

2 Tools and Rasterization Process Flow

As in raw form, GPS trajectory data is a vector data while the aim of this
research is to represent this data in raster image format. Because of these depen-
dencies, tools that are required should be able to handle both vector and raster
image data. Within the multiple open source GIS tools that are freely available,
QGIS [19] and PostGIS [17] are used for the rasterization of GPS trajectories in
this study since they are widely adopted in GIS field thanks to their robustness
and abilities.

In Sect. 2.1 and 2.2, the rasterization abilities of QGIS and PostGIS will be
examined with respect to given input data (work area boundaries, output pixel
size, GPS trajectory data) and expected output rasterized GPS trajectory layers
(frequency, average speed and maximum speed). In Sect. 2.3, our implementa-
tion will be explained. Finally, in Sect. 2.4, the process flow of methods will be
summarized.

2.1 Rasterization with QGIS

As a GIS software, QGIS has different functions, tools and plugins for data
analysis and data conversion. Rasterize (Vector to Raster) is one of these tools
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offered within QGIS. This QGIS tool acts as a user interface, collects the user
inputs and runs gdal rasterize tool at the background. This tool is able to get an
input data and burn the pixel values that are stored in the preferred attribute
field of input vector data within the predefined outer boundaries. Although QGIS
has the rasterize tool, this tool is only able to rasterize given values but cannot
aggregate multiple values of the same attribute in the given pixels. Though,
it is possible to represent pixels in vector form (structured grid) and achieve
the required aggregation with spatial join tool of QGIS. After the aggregation of
GPS trajectories into the structured grid, it is possible to rasterize the aggregated
attributes into raster image data.

2.2 Rasterization with PostGIS

PostGIS is the spatial database add-on for the PostgreSQL [18] database man-
agement system. PostGIS is able to store and analyze spatial data in vector
and raster image form that is stored in a PostgreSQL database. PostGIS has
ST AsRaster tool for similar to QGIS which is accepting the input though pro-
ducing only given attribute values. On the other hand, similar to QGIS, it is
possible to aggregate one vector layer into another using Structured Query Lan-
guage (SQL) statements. Even though PostGIS does provide rasterize function-
ality, it is also possible to connect QGIS to PostgreSQL database and rasterize
the output data that is created with PostGIS via QGIS.

2.3 Rasterization with Python

Python is a general-purpose programming language which has many internal
and external libraries such as data science libraries (Pandas) and geospatial
computation (GDAL, pyproj) libraries. With the use of these libraries, it is
possible to analyze GPS trajectories.

To achieve the required raster images, our own Python method was cre-
ated (Algorithm 1). This method gets the GPS points, coordinates of work area
boundary and pixel size as inputs and calculates the raster matrix. Unlike Post-
GIS and QGIS, the Python method makes use of the structured grid definition
(work area boundary and pixel size) of a raster image and carries out the calcu-
lation of outputs without creating a vector grid. The method determines the row
and column of the pixel where each GPS point is contained. Following, it aggre-
gates the required feature values and assigns the output raster image matrix
values according to previously determined rows and columns.

The most computation intensive part of the Algorithm 1 is the for loop
shown between row numbers 5 to 9. Python gives the ability to parallelize with
the use of additional libraries such as Dask [4] and Swifter [2]. Swifter library uses
Dask library at its backend. It is able to provide the processing time information
and provides user the ability to choose parallel or normal computation options
easily. Due to these features Swifter library is used for the experiments of this
study.
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Algorithm 1: Spatial join with Python.
Data: P = {p1, p2, p3, ...., pn} where each pi contains latitude (pi,lat),

longitude(pi,lon), speed (pi,speed).
Output raster image top-left corner coordinate (X,Y ) and pixel
size (px).

Result: Output images Imagecount, Imagespeed−avg, Imagespeed−max in
matrix form.

1 begin
/* Convert input coordinates into projected cartesian

coordinate system. */
2 def transformCoordinates(Plat, Plon):
3 Transform WGS84 to projected WGS84
4 return PX , PY

/* Determining row and column of each GPS point within the
output raster. */

5 foreach pi ∈ P do
6 prow = (pi,X − (pi,X mod px) − X)/px
7 pcolumn = (pi,Y − (pi,Y mod px) − Y )/px
8 pi ←− prow, pcolumn

9 end
/* Aggregate GPS count, average and maximum speed values

with grouping by row and column number. */
10 def aggregateValues(Prow, Pcolumn, Pspeed):
11 P

′
count ←− count of records having same prow, pcolumn where p ∈ P

12 P
′
speed−avg ←− average of pi,speed having same prow, pcolumn where
p ∈ P

13 P
′
speed−max ←− maximum of pi,speed having same prow, pcolumn

where p ∈ P

14 return P
′

/* Assign pixel values by row and column of output images.
*/

15 foreach p
′
i ∈ P

′
do

16 Imagecount[p
′
i,row][p

′
i,column] ←− p

′
i,count

17 Imagespeed−avg[p
′
i,row][p

′
i,column] ←− p

′
i,speed−avg

18 Imagespeed−max[p
′
i,row][p

′
i,column] ←− p

′
i,speed−max

19 end
20 end
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2.4 Summary of Methods

According to the spatial data processing and rasterization abilities of QGIS,
PostGIS and Python the process flow of the four methods was determined as in
the Fig. 2.

The QGIS method creates a vector grid and transforms coordinates of GPS
points into the coordinate system of the required output raster image. After cre-
ation of the vector grid and coordinate transformation, these are joined spatially.
Finally, output of the spatial join is rasterized.

Fig. 2. Process flow of the methods; QGIS, PostGIS+QGIS and Python (Python pro-
cess flow is identical for both Python and Python (Parallel) methods).

The second method is called PostGIS+QGIS because this method benefits
from both PostGIS and QGIS. This method creates the vector grid with the use
of QGIS. Also, GPS trajectories are required to be imported into PostgreSQL
database which PostGIS is operating on. After import and grid creation, PostGIS
spatially joins both data. In this method, coordinate transformation is carried
out along with the spatial join. Finally, QGIS is used to rasterize the output of
the spatial join.

The algorithm for the Python method is explained in Algorithm 1. This algo-
rithm gets the GPS trajectory data directly using Python libraries and applies
the coordinate transformation. After the transformation, our method calculates
the output raster image matrix without the need of a vector grid and saves the
output raster to the disk.



Performance Evaluation of GPS Trajectory Rasterization Methods 9

3 Setup of the Experiments

The methods defined in Sect. 2 are evaluated with the use of MTL-Trajet dataset
[10]. This dataset consists of GPS trajectories collected in 2016 around Mon-
treal, Canada. Raw data contains GPS point locations in the WGS84 Datum
and timestamps. Speed of the moving objects are calculated using time differ-
ence and geodesic distances of consecutive GPS points with Geopy package [9].
These values added as an attribute to the raw GPS trajectory data. Speed value
accuracy is dependent to projection and calculation method, but speed accuracy
is not the main focus of this study. Because of this, achieved speed values are
well enough for performance evaluation of the methods.

In the experiment, the target is to rasterize GPS point “frequency (count)”,
“average speed” and “maximum speed” raster images using QGIS, Post-
GIS+QGIS, Python and Python (Parallel) methods. In order to understand
the dependencies of performance, the experiment is carried out with varying
test area size and GPS point count. Figure 3 shows the test area boundaries
and Table 1 summarizes the corresponding GPS count that is used in the exper-
iments. MTL-Trajet GPS point coverage is wider than the defined test areas.
The GPS points that are outside of the test area are removed from main dataset
to focus only on the performance of methods for given area. Though our Python
and Python (Parallel) implementations are able to ignore the GPS points which
are out of given area.

Fig. 3. MTL-Trajet dataset and test areas boundaries.

Table 1. GPS trajectory by test area that was used in the experiment.

Test Area Size (km2) Number of GPS points (million)

100 5

225 5, 10, 11

400 5, 10, 15

625 5, 10, 15, 18

900 5, 10, 15, 20
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As explained in Sect. 1, the aim is to obtain a one to one pixel match with a
given raster image. Usually the raster images that are widely used are provided in
projected coordinate systems. In order to add this constraint to the experimental
setup, unlike GPS trajectory data, test areas are created in projected WGS84
Datum using cartesian coordinates so that the pixel dimensions are defined in
meters. According to this, GPS point coordinates must be transformed into
projected WGS84 from geographic WGS84.

The aim of our research for the rasterization is to represent GPS points in
raster format to use in further analysis with additional satellite imagery. Because
of this, the expected output should be aligned to the satellite imagery pixel
resolution. Similar studies in literature use high resolution satellite images that
are having pixel resolution around 1–5 m [15,16,20]. In order to align with the
literature examples the output raster image pixel size set as 5 m.

Total processing time (tTotaltime) and spatial join time (tSpatialJoin) are pre-
ferred as the evaluation metric. Since the process flow of each method is different,
their total processing time is also varying.

Total processing time with QGIS method is calculated with

tTotalQGIS = tQGIS
Gridcreation + tQGIS

CoordinateTransform + tQGIS
SpatialJoin + tQGIS

Rasterize (1)

where tQGIS
Gridcreation grid creation time, tQGIS

CoordinateTransform coordinate trans-
formation time, tQGIS

SpatialJoin spatial join time, tQGIS
Rasterize rasterization time with

QGIS.
Total processing time with PostGIS+QGIS method is calculated with

tTotalPostGIS+QGIS = tQGIS
Gridcreation + tPG

SpatialJoin + tQGIS
Rasterize (2)

where tQGIS
Gridcreation grid creation time with QGIS, tPG

SpatialJoin spatial join with
PostGIS, tQGIS

Rasterize rasterization time with QGIS.
Total processing time with Python method is calculated with

tTotalPython = tPy
CoordinateTransform + tPy

SpatialJoin + tPy
Rasterize (3)

where tPy
CoordinateTransform coordinate transformation, tPy

SpatialJoin spatial
join and tPy

Rasterize rasterization using Python.
Experiments are carried out using a standard laptop which has an Intel Core

I7-4600 M CPU with four 2.90 GHz cores, 16 GB RAM and Ubuntu/Linux oper-
ating system. The QGIS and PostgreSQL/PostGIS are used with their default
installation settings. Spatial indexes are used for GPS point and vector grid lay-
ers in PostGIS+QGIS method. In order to avoid delays caused by memory and
processor usage of another software, minimum required software was kept open
while running a method.
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4 Comparisons

Experiments are carried out with the methods defined in Sect. 2.4 and with the
setup defined in Sect. 3. Following the experiments, output raster images are
compared with the use of raster calculation. All output raster images subtracted
from remaining output images one by one for given test area. This comparison
aims to determine if the created raster images of each method is identical or
not. If compared raster images are identical, empty raster image expected as the
result of raster image subtraction. According to the comparison of the outputs
of each test area, the subtraction results were empty images which proves that
each method achieved the same raster images as output.

With the use of the output data from the experiments, comparison plots are
created. Figures 4 and Figs. 5 show the performance comparison of methods for
each test area. Firstly, as seen in Fig. 4a, Python (Parallel) and Python meth-
ods achieve best performance in terms of total processing time and followed by
PostGIS+QGIS method within the 900 km2 test area. On the other hand, Post-
GIS+QGIS achieves the best performance for spatial join time measure (Fig. 4b).
QGIS method achieves very poor performance for each measure. Because of this,
QGIS method is excluded from plots in the Figs. 5.

Fig. 4. (a) comparison of total processing time and (b) comparison of spatial join time
for 900 km2 test area.

The results for both measures are very similar for the rest of the test areas
(Fig. 5). It is also visible that the Python method without parallelization is
slower than PostGIS+QGIS method in small areas though performance increases
with respect to the PostGIS+QGIS method while the test area size increases
(Fig. 5c, 5e, 5g). In the spatial join measure, PostGIS+QGIS achieved better
performance followed by the Python (Parallel) method. With the increase of
GPS point count, the difference between Python methods and PostGIS+QGIS
method also increases.
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Fig. 5. Comparison of total processing time and spatial join for each test area (QGIS
method’s results are excluded).
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There are two major reasons for the performance decrease of PostGIS+QGIS
method in total processing time. The first and most important reason is the
requirement of a vector grid. As summarized in Table 2, grid creation time is
proportional to the test area size and increases as the test area size increases.
The second reason is the importing time of the GPS trajectories to the database.
Unlike the QGIS method and Python methods, GPS trajectories required to
be imported to the database before starting the rest of the process for Post-
GIS+QGIS method. Figure 6 shows that this process is dependent on the GPS
point count and not dependent on test area size.

Table 2. Grid creation time for each test area.

Test Area Size (km2) Time (s)

100 78

225 164

400 299

625 466

900 706

Fig. 6. Time spent for GPS trajectory data to database import for PostGIS+QGIS
method.

Lastly, method results are compared internally with the performance measure
by test area size when GPS count is kept constant in plots (Fig. 7). As per this
comparison, total processing time of the QGIS method increases proportional to
the test area size (Fig. 7d). Similar to QGIS method, PostGIS+QGIS method’s
total processing time also increases proportional to test area size though the
increase is steeper compared to the QGIS method. On the other hand, both
Python (Parallel) and Python methods show very few increases when test area
size increases. Their performances are proportional to GPS point count. Python
(Parallel) method is faster than Python method.
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In addition to the experiments defined in Sect. 3, an additional experiment
was also carried out to understand the limitations of these methods. This experi-
ment was carried out with test area size 22120 km2 and approximately 25 million
GPS points around Montreal. Python and Python (Parallel) methods have been
able to process and rasterize this area in 40 and 52 min respectively. On the
other hand, QGIS and PostGIS+QGIS methods couldn’t process this larger test
area due to grid creation with the current hardware. Since grid creation time is
proportional to test area size for both methods, in the case of a big test area,
grid creation cannot be possible with the use of QGIS and at the end QGIS
crashes.

Fig. 7. GPS point count vs. test area size comparison of each method; (a) Python
(Parallel) (b) Python, (c) PostGIS+QGIS, (d) QGIS.

5 Conclusions

This study evaluates the methods for rasterization of GPS trajectories. Eval-
uation is carried out for QGIS, PostGIS+QGIS methods and our Python and
Python (Parallel) implementations. For evaluation, an experiment was carried
out with varying test area and GPS trajectory size. Total processing time and
spatial join time were adopted as the evaluation metric.

According to the results, the Python (Parallel) method achieves the best
results among the compared methods. The Python method also showed bet-
ter results with respect to QGIS and PostGIS+QGIS methods. PostGIS+QGIS
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method achieves the best result for spatial join. QGIS shows the worst perfor-
mance for both of the metrics.

Python and Python (Parallel) methods perform slower than PostGIS+QGIS
method for spatial join metric. This issue is a result of the time for indexing
operation that our implementation spent which is more than the spatial join
operations carried out by PostGIS. Indexing operation only dependent to GPS
point data size but PostGIS+ QGIS method performance is dependent both to
GPS data size and the test are size. Also, when compared to the spent time
for grid creation, this delay caused by indexing is negligible. Moreover, indexing
operation is more robust than grid creation. On the contrary grid creation con-
sumes too much memory and prone to crashes. Although the PostGIS+QGIS
method achieves the best spatial join performance, due to the disadvantage of
grid creation and import time required for GPS points, the total performance
decreased very fast while the test area size increased. Grid creation can be con-
sidered as one-time cost though it is still a disadvantage for the possible cases
of different work areas in different applications domains. Similar to the Post-
GIS+QGIS method, in addition to weak performance of the spatial join, QGIS
also performed worse while the test area size increases.

On the other hand, the Python methods’ performance is proportional to point
count of the GPS trajectories. This feature is proven with additional experiment
which has wider test area. As per results, Python methods can work in large areas
though QGIS and PostGIS+QGIS methods fail to achieve this. Because the per-
formance is not dependent to test area size and being suitable to parallelization,
it is possible to increase performance of Python methods’ with distributing com-
putation into more processor cores and/or computation clusters.

As a conclusion, our implementation performs better than QGIS and Post-
GIS+QGIS methods and can be used for GPS trajectory rasterization. The use
of our implementation is not limited to GPS trajectory rasterization. It is also
possible to use our implementation in similar problems which require rasteriza-
tion and aggregation of big point-based datasets into structured grids such as
spatial social media data analysis. In addition, the integration of our implemen-
tation would increase its usage in other research domains which benefit from
QGIS but requiring better performance. It is possible to integrate our imple-
mentation scripts into QGIS since support Python programming language, but
further research needed to determine if libraries like Swifter are compatible with
QGIS Python environment.
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Abstract. The intersection of polytopes is a basic problem of compu-
tational geometry with many engineering applications. Intersections of
simplices or parallelotopes have been widely used in finite element grid
generations. This paper is devoted to an algorithm for detecting over-
lapping polytopes. We present a new iterative algorithm, which is inde-
pendent of the dimension of the Euclidean space. The main idea is tri-
angulating the tested polytopes by simplicial finite elements and then
investigating couples of potential simplices for an intersection. For that
purpose, a method for overlapping detection of arbitrary simplices in
Rn is developed. A detailed description of the pseudocode of the origi-
nal algorithm is presented. The advantages of the proposed method are
demonstrated in the twelve-dimensional case.

Keywords: Overlap detection algorithm · Overlapping domains ·
Intersection of simplices · Convex polytopes
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1 Introduction

The problem of the intersection of two polytopes in Euclidean space has arisen
in many Engineering activities. This includes applications in robotics, computer-
aided design, computer graphics, computational mechanics, etc. There are sev-
eral papers devoted to this problem [1,8,25]. This is one of the significant prob-
lems in the area of computational geometry. Most of the authors have used
various iterative techniques based on numerical methods in order to establish
the overlapping of polytopes [17]. Intersections of polyhedra related to the finite
element method have been studied by Descantes et al. [7] and Lee et al. [12].
The main idea in [7] is a common plane to be created that separates both tested
polytopes. The algorithm is restricted to the three-dimensional space and con-
vex polyhedra. The paper by Edwards et al. [8] is devoted to the intersection of
metrizable infinite-dimensional simplices. Lira et al. have applied finite element
meshes in order to detect the intersection of surfaces [15].
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Brandts et al. [5] marked the beginning of a new stage in the development of
the finite element method. They have discussed boundary value problems in mul-
tidimensional domains as a motivation to discover the finite element method in
higher-dimensional Euclidean spaces. The authors have defined areas for further
studies as: supercloseness and superconvergence; strengthened Cauchy-Schwarz
inequalities; angle conditions for regularity of FEM partitions etc.

The major contribution of the paper is a feasible polytope overlapping detec-
tion algorithm. The proposed algorithm is easy for implementing. The validity
of the algorithm does not depend on the complexity of the investigated poly-
topes. The algorithm can be successfully applied to convex polytopes in all n-
dimensional Euclidean spaces. A method for identifying an overlapping of arbi-
trary nondegenerated k-simplex and l-simplex in n-dimensional Euclidean spaces
is obtained. Intersections between polytopes of different dimensions are studied
as well. The main idea is described in pseudocode. A real comparison between
various iterative methods can be established in higher-dimensional spaces. For
this purpose, a twelve-dimensional example is used to demonstrate the advan-
tages of the presented algorithm for overlap detection. The new overlap detection
algorithm is based on a method for solving systems of linear inequalities. There-
fore, a comparison between methods for solving systems of linear inequalities is
presented. The numerical tests in the twelve-dimensional Euclidean space indi-
cate that the Motzkin method is superior among all considered methods.

This paper is organized as follows. Preliminary results on methods for solving
systems of linear inequalities are presented in Sect. 2. The overlapping of sim-
plices is considered in Sect. 3. The overlap detection algorithm in pseudocode is
described in Sect. 4. Examples illustrating the new algorithm are presented in
Sect. 5. The obtained results are discussed in Sect. 6.

2 Preliminaries

Our algorithm is based on solving a system of linear inequalities and the dissi-
pation algorithm [20]. This is why we make a brief overview of the methods for
solving a system of inequalities. We classify these methods into two major groups:
exact methods and methods applying numerical optimizations. The exact meth-
ods for solving linear systems of inequalities have a significant advantage over
iterative ones because in them the determination of a solution depends only on
the round-off errors. On the other hand, any system of linear inequalities can be
solved by the Fourier-Motzkin elimination [10]. The Fourier-Motzkin algorithm
has been improved by Bastrakov et al. [2], Keßler [11], and Šimeček et al. [24].
But unfortunately, the classic exact methods are provided with an unaccept-
able computational cost. For instance, the algebraic complexity of the Fourier-
Motzkin algorithm grows up to double exponentially concerning the dimensions
of the linear system [10]. By reducing the large number of redundant inequalities
Khachiyan [14] has obtained a computational cost equal to singly exponential
time. In the second group, we mention the applications of the least square method
[13], Newton’s method [21], the BB-method [23], the conjugate gradient method
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for quadratics [28], the relaxation method [26], and the Motzkin method [9] for
solving systems of inequalities.

The proposed method requires a system of linear inequalities to be solved.
To this end, we choose the Motzkin iterative method. Our choice is based on
a comparison between several iterative methods for solving systems of inequal-
ities. The best performance of the Motzkin method in the twelve-dimensional
space is demonstrated in Sect. 5. Our algorithm can successfully work with any
convergent method for solving a system of linear inequalities.

Throughout the whole paper ε stands for a positive number, which approx-
imates zero and the upper index indicates the dimension of the polytope. The
denotations x and ‖ ·‖ are the radius column vector of the point x ∈ Rn and the
Euclidean norm in Rn. Let A

(
2(n+1)×n

)
and B

(
2(n+1)×1

)
be matrices with

real entries, In be the identity matrix of size n, and x = (x1, x2, . . . xn) ∈ Rn.
We say that x < y, x, y ∈ Rn if xi < yi ∀i = 1, 2, . . . , n. The object of interest
in this section is the linear systems of inequalities

Ax < B (1)

presented in a matrix form. We suppose that the block decomposition of the
matrix

A =
(

A11(n × n)
A21((n + 2) × n)

)

is provided with an invertible block A11. The analyses of the specific system of
inequalities (1) is motivated by the main problem of the paper.

Definition 1. We say that the system (1) is consistent if (1) has at least one
solution.

We suppose that Ai is the i-th row of A, and

ξ = argmax
i=1,2,...,2n+2

(
Aix − Bi

)
.

Additionally, we assume that all rows of the matrix A are normalized by ‖Ai‖ =
1. We define a convex functional

Ĵ(x) =
1
2

∣∣∣Î(Aξx − Bξ)
∣∣∣
2

,

where

Îx =

{
x, if x > 0
0, otherwise

.

We apply the Motzkin iterative method [9]

xk+1 = xk − DĴ(xk), k ≥ 0. (2)

for minimization the functional Ĵ(x̂). Each stationary point of Ĵ(x̂) is a solution
of the problem (1). The choice of the initial guess will be determined further.
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3 Overlapping of Two Simplices

Definition 2. We define the n-dimensional simplex T = [t1, t2, . . . , tn+1] as
convex hull of affinely independent n + 1 vertices ti ∈ Rn, i = 1, 2, . . . , n + 1.

We suppose that the points ti are affinely independent. We denote the boundary,
the interior, the length of the longest edge, and the center of gravity of the n-
dimensional nondegenerated simplex T by ∂T , T̊ , h(T ) and CT = 1

n+1

∑n+1
i=1 ti.

We choose the cube corner T̂ = [t̂1, t̂2, . . . , t̂n+1], t̂i = {0, 0, . . . , 1, . . . , 0}, i =
1, 2, . . . , n, t̂n+1 = {0, 0, . . . , 0} for the reference simplex. The i-th coordinate of
t̂i i = 1, 2, . . . , n is equal to one, and all other coordinates are equal to zero. An
arbitrary simplex T can be obtained from the reference simplex by the generic
affine transformation FT : x = AT x̂ + BT , x̂ ∈ T̂ , x ∈ T, where AT =(
t1 − tn+1 t2 − tn+1 . . . tn − tn+1

)
is the transition matrix and BT = tn+1 is the

translation vector.
The denotation μn stands for the Lebesgue measure in Rn.

Definition 3. The value

δ(T ) =
h(T )μn−1(∂T )

2nμn(T )
,

is called measure of degeneracy [4,20] of the simplex T .

Definition 4. The measure of degeneracy related to an arbitrary triangulation
τh is defined by

δ(τh) = max
T∈τh

δ(T ).

Our goal is to establish whether two nondegenerated simplices T and K have
an intersection T ∩ K with μn(T ∩ K) > 0. In this case we say that both
simplices intersect each other. We do not consider the case when μn(T ∩ K) =
0, μk(T ∩ K) > 0 for some k so that 1 ≤ k < n.

Theorem 1. Let M = A−1
K AT and N = A−1

K (BT − BK) . The n-dimensional
nondegenerated simplices T and K have an intersection T ∩K with μn(T ∩K) >

0, if there are two points x̂, ŷ ∈ ˚̂
T , not necessarily different, so that

ŷ = Mx̂ + N. (3)

Proof. From (3) it follows that there are two points x̂, ŷ ∈ ˚̂
T so that FT (x̂) =

FK(ŷ). Since FT and FK are linear transformations, FT maps x̂ in T̊ and FK

maps ŷ in K̊. The latter means that T̊ ∩ K̊ �= ∅, whence μn(T ∩ K) > 0. The
two- and three-dimensional cases are illustrated in Fig. 1.�

By writing (3) in a scalar form

ŷi = ϕ̂i(x̂), i = 1, 2, . . . , n (4)

we obtain the following corollary.
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Fig. 1. Overlapping 2D and 3D simplices.

Corollary 1. The n-dimensional simplices T and K have an intersection T ∩K
with μn(T ∩ K) > 0, if

ϕ̂i(x̂) > 0, i = 1, 2, . . . , n,
∑n

i=1 ϕ̂i(x̂) < 1 (5)

and
x̂i > 0, i = 1, 2, . . . , n,

∑n
i=1 x̂i < 1 (6)

Proof. The relation ŷ ∈ ˚̂
T follows from (5). Additionally, x̂ ∈ ˚̂

T because of (6).
Then the validity of the corollary is guaranteed by (4).�

In a matrix form the system (5)–(6) is equivalent to (1).
In Theorem 1, we consider the case when T and K are n-dimensional. Further,

we solve more general problem when both simplices have different dimensions.
Let T̂ l be a reference simplex with dim(T̂ l) = l.

Theorem 2. The nondegenerated simplices T and K satisfy dim(T ) =
k, dim(K) = l, 1 ≤ k ≤ l ≤ n, k + l < 2n,

T̊ ∩ K̊ �= ∅ (7)

if there are two points x̂ ∈ ˚̂
T k and ŷ ∈ ˚̂

T l, so that

ŷ = Mx̂ + N, (8)

where M = Q−1
K AT

KAT and N = Q−1
K AT

K (BT − BK) , QK = AT
KAK .

Proof. In this case, it is impossible to express ŷ directly from the relation FT (x̂) =
FK(ŷ). That is why, we multiply the latter equality by AT

K . Since the simplex
K is nondegenerated we have rank(AT

KAK) = l, i.e. QK is an invertible matrix.
On the other hand, x̂ and ŷ belong to the reference simplices, which guarantees
the validity of inequality (7).�
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Analogously to Corollary 1, we create a system of linear inequalities to deter-
mine overlapping of two simplices.

Corollary 2. Assume that

ŷi = ϕ̂i(x̂), i = 1, 2, . . . , l, (9)

is a scalar form of (8). Then the nondegenerated simplices T and K satisfying
dim(T ) = k, dim(K) = l, 1 ≤ k ≤ l ≤ n, k + l < 2n, have an intersection
T ∩ K with μk(T ∩ K) > 0, if

ϕ̂i(x̂) > 0, i = 1, 2, . . . , l,
∑l

i=1 ϕ̂i(x̂) < 1 (10)

and
x̂i > 0, i = 1, 2, . . . , k,

∑k
i=1 x̂i < 1. (11)

Proof. The relations
x̂ ∈ ˚̂

T k and ŷ ∈ ˚̂
T l

follows from (10) and (11). Then the validity of the corollary is guaranteed by
(9).�

4 The Overlap Detection Algorithm

In this section we analyze an overlapping of two convex polytopes. The ball
B(T ) = Ball(CT , rT ) has a radius rT = maxi=1,2,...,n+1 ||CT − ti|| and a center
CT . The latter means that B(T ) is the smallest ball with a center CT , which
covers the simplex T . Let Fn be the set of all nondegenerated linear maps from
Rn to Rn, and Ω1 and Ω2 are nondegenerated polytopes in Rn. We suppose
that the triangulations

τh(Ω1) =

{
Ti = Fi(T̂ )

∣∣∣∣∣ Fi ∈ Fn, Ω1 =
m⋃

i=1

Ti,

μn (Ti ∩ Tj) = 0, 1 ≤ i < j ≤ m
}

and

τH(Ω2) =

{
Ki = Gi(T̂ )

∣∣∣∣∣ Gi ∈ Fn, Ω2 =
p⋃

i=1

Ki,

μn (Ki ∩ Kj) = 0, 1 ≤ i < j ≤ p
}

have as small as possible Card(τh), δ(τh), and Card(τH), δ(τH). In the general
case, the mesh parameters h and H are independent.

Petrov and Todorov [20] have obtained a dissipative algorithm for triangu-
lating convex polytopes. For the sake of computational simplicity, they demon-
strated their algorithm in the four-dimensional space. But the dissipation algo-
rithm [20] can be applied successfully to all higher-dimensional spaces. In this
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paper, we obtain the triangulations τh and τH of the domains Ω1 and Ω2 in the
following way. Each polytope Ωi is provided with the set of nodes

N (Ωi) = {all vertices of Ωi and the gravity center G(Ωi)} .

We apply the dissipation algorithm to triangulate the polytopes Ωi, i = 1, 2. We
could obtain optimal results by creating Delaunay triangulations (see Cignonit
et al. [6]) of Ω1 and Ω2 but such divisions needs much more computational work.

The proposed algorithm has four steps:

(i) Creation of simplicial triangulations τh and τH for both polytopes;
(ii) Generation of the cover balls B(T ) and B(K) for all simplices T and K in

both triangulations;
(iii) Determination of all couples (Ti,Kj), Ti ∈ τh and Kj ∈ τH satisfying

μn (B(Ti)
⋂ B(Kj)) > 0;

(iv) Overlap detection test for all couples described in step (iii).

We denote the system of linear inequalities (5) with the constrains (6) by (W ).
The procedure for solving the system (W ) by means of an iterative numerical
method is denoted by Solve. The procedure Solve indicates the consistency or
inconsistency of the system (1). This procedure has two nondegenerated poly-
topes as input and the existence or the lack of solutions of the linear system (W )
as output. The initial guess x0 for starting the Motzkin method is chosen to be
the gravity center of the reference polytope. The cardinality of both triangula-
tions affects the number of necessary operations to make a decision about the
overlapping of both polytopes. The overlap detection algorithm is presented in
pseudocode below.

1: Algorithm Polytopes Overlapping Detection;
2: function Min(J : functional);
3: var k : local;
4: x0 =GravityCenter(T̂ );
5: Min:=Ĵ(x0);
6: k=0;
7: repeat
8: γk =

∥∥∥DĴ(xk)
∥∥∥;

9: ξ = argmax
i=1,2,...,2n+2

(
Aix − Bi

)
;

10: xk+1 = xk − DĴ(xk);
11: if Ĵ(xk+1) <Min then Min:=Ĵ(xk+1)
12: end if ;
13: k=k+1
14: until γk ≥ ε
15: Min:=Ĵ(xk);
16: end function;
17: procedure Solve(T, K : simplices);
18: var i, j : local;
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19: determine AT , BT from T = AT T̂ + BT ;
20: determine AK , Bk from K = AK T̂ + BK ;
21: M := A−1

K AT ; N := A−1
K

(
BT − BK

)
;

22: Φ̂(x̂) := Mx̂ + N ;
23: % The functions ϕ̂i(x̂) are coordinates of the vector Φ̂(x̂).
24: for i = 1 to n + 1 do
25: for j = 1 to n do
26: Aij = ϕ̂i(t̂n+1) − ϕ̂i(t̂j)
27: end for
28: end for;
29:

(
Aij

)
i=n+2,n+3,...,2n+1,j=1,2,...,n

:= −In+1;

30: A2n+2 := (1, 1, . . . 1);
31: for i = 1 to n + 1 do
32: Bi = ϕ̂i(t̂n+1)
33: end for;
34:

(
Bi

)
i=n+2,n+3,...,2n+1

:= 0n; B2n+2 := 1;

35: Ĵ(x) := 1
2

∣∣∣Î(Aξx − Bξ)
∣∣∣
2

;

36: if
∣∣∣Min(Ĵ)

∣∣∣ < ε then Solution := exists
37: else Solution := nonexists
38: end if ;
39: end procedure;
40: % The Main Algorithm.
41: begin
42: set Overlap = false;
43: set ε;
44: define Ω1, Ω2;
45: compile τh(Ω1), τH(Ω2);
46: for i = 1 to m do
47: for j = 1 to p do
48: if μn (B(Ti)

⋂ B(Kj)) > 0 then
49: Solve(Ti,Kj);
50: if Solution = exists then
51: % An intersection is detected.
52: Overlap = true;
53: print(’The simplices’, Ti, ’and’, Kj , ’are overlapping each

other.’)
54: end if
55: end if
56: end for
57: end for
58: if Overlap = true then
59: print(’The polytopes have a common subset’)
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60: end if
61: end.
Algorithm 1 is explained in the specific case when dim(Ω1) = dim(Ω2) = n
for the sake of simplicity. The same algorithm can be extended to the case
dim(Ω1) = k, dim(Ω2) = l, 2 ≤ k + l < 2n by applying Corollary 2.

5 Overlap Detection Examples

In this section, we compare some low-cost numerical methods to establish overlap
between polytopes.

We begin the illustration of the theory from the previous paragraph with
a three-dimensional example. By the first two examples, we illustrate that the
intersection between the tested polytopes is found. An axonometric drawing
of the considered polyhedra in Example 1 is presented. The three-dimensional
shadow of the tested polytopes in Example 2 is shown. The real advantages
of the proposed algorithm are demonstrated by the overlapping of two twelve-
dimensional polytopes in Example 3.

Further, we use the denotation 1k = (1, i = 1, 2, . . . , k).

Example 1. We define a transformation L3 : x = D3x̂ + E3, L3 ∈ F3 by

D3 =

⎛
⎝

1 0.3 0
0 1 0.2

0.4 0 1

⎞
⎠ and E3 = 0.275598

⎛
⎝

1
1
1

⎞
⎠ .

Let us consider the polyhedra:

Ω1 = [t1(0, 0, 0), t2(1, 0, 0), t3(0, 1, 0),
t4(0, 0, 1), t5(−1, 0, 0), t6(0,−1, 0), t7(0, 0,−1)] and
Ω̂2 = [k̂8(0, 0, 0), k̂9(1, 0, 0), k̂10(0, 1, 0), k̂11(0, 0, 1),
k̂12(1, 1, 0), k̂13(0, 1, 1), k̂14(1, 0, 1), k̂15(1, 1, 1)].

The parallelohedron Ω2 is obtained by

Ω2 = L3(Ω̂2). (12)

The main purpose in this example is to determine the presence or absence of an
intersection between the polyhedra Ω1 and Ω2.

Solution. We triangulate both polyhedra as follows:
Ω1 =

{
T1 = [t1, t2, t3, t4], T2 = [t1, t3, t4, t5], T3 = [t1, t2, t4, t6], T4 =

[t1, t2, t3, t7], T5 = [t1, t4, t5, t6], T6 = [t1, t3, t5, t7], T7 = [t1, t2, t6, t7], T8 =
[t1, t5, t6, t7]

}
and Ω̂2 =

{
K̂1 = [k̂9, k̂10, k̂11, k̂15], K̂2 = [k̂8, k̂9, k̂10, k̂11], K̂3 =

[k̂10, k̂11, k̂13, k̂15], K̂4 = [k̂9, k̂11, k̂14, k̂15], K̂5 = [k̂9, k̂10, k̂12, k̂15]
}

. The polyhe-
dron Ω1 is an octahedron, which is optimally divided into eight cube corners all of
them with measure δ(Ti) = 3.34607 i = 1, 2, . . . , 8. The polyhedron Ω̂2 is a cube,
which is optimally partitioned [19] into four cube corners K̂i i = 2, 3, 4, 5 and one
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Fig. 2. An overlapping of Ω1 and Ω2 in the three-dimensional case.

Table 1. A comparison between the Motzkin method and the other iterative methods.

Method CGM BBM MM RM

ε \ initial guesses x0 = CT̂

x0 = CT̂ ,

x1 = 5 · 13

x0 = CT̂

x0 = CT̂ ,

λ = 1.9

10−6 66 87 169 11

regular tetrahedron K1. The cube Ω̂2 is deformed by means of (12). The mea-
sures of degeneracy before and after the deformation of the cube Ω̂2 are: δ(K̂1) =
2.44949, δ(K̂i) = 3.34607, i = 2, 3, 4, 5 and δ(K1) = 3.04601, δ(K2) =
2.90384, δ(K3) = 4.42111, δ(K4) = 4.0847, δ(K5) = 4.32041. The octahe-
dron Ω1 is not deformed. By applying Algorithm 1, we establish an intersection
between T1 and K1, i.e. an overlapping between Ω1 and Ω2 is detected, see Fig. 2.
The point x0(0.317466, 0.333466, 0.341466) belongs to the intersection Ω̊1 ∩ Ω̊2.
The corresponding points in the reference simplex are: x̂0(0.00760254, 0.317466,
0.333466) and ŷ0(0.0277923, 0.0469174, 0.0547506). The vertex k8 of Ω2 belongs
to the interior Ω̊1 of the octahedron.

We compare the Motzkin method (MM) [9] with the BB-method [23], the con-
jugate gradient method for quadratics (CGM) [28], and the relaxation method
(RM) with various steplengths [26]. Let γk be the Euclidean norm of the Fréchet
derivative of the objective functional. The stop criterion for all these methods is
γk < ε. An initial guess for all methods is chosen to be the gravity center of the
reference finite element. We present the number of iterations for satisfying the
stop criteria in Table 1. Additional initial guesses are necessary for the two-point
methods.

Table 1 indicates that the Motzkin method has the best performance among
other considered methods in this example. The row relaxation method strongly
depends on the relaxation parameter λ. The results in Table 2 indicate that the
overrelaxation is more suitable in this example.�
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Table 2. The performance of the row relaxation method. The initial guess is chosen
to be x0 = CT̂ and ε = 10−6. The number νλ stands for the necessary iterations for
satisfying the stop criterion.

λ 1.2 1.25 1.5 1.6 1.7 1.9

νλ 110 99 17 13 11 11

Example 2. We continue with a four-dimensional example. Here, we use a
deformation map L4 : x = D4x̂ + E4, L4 ∈ F4 by

D4 =

⎛
⎜⎜⎝

1 0.3 0.2 0.1
0.1 1 0.2 0.2
0.1 0.1 1 0.1
0.2 0.1 0.2 1

⎞
⎟⎟⎠ and E4 = 0.23

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ .

We define the polytopes:

Ω1 =
[
t1(0, 0, 0, 0), t2(1, 0, 0, 0), t3(0, 1, 0, 0), t4(0, 0, 1, 0), t5(0, 0, 0, 1),

t6(−1, 0, 0, 0), t7(0,−1, 0, 0), t8(0, 0,−1, 0), t9(0, 0, 0,−1)
]

and Ω̂2 =
[
k̂1(0, 0, 0, 0), k̂2(1, 0, 0, 0), k̂3(0, 1, 0, 0), k̂4(0, 0, 1, 0),

k̂5(1, 1, 0, 0), k̂6(0, 1, 1, 0), k̂7(1, 0, 1, 0), k̂8(1, 1, 1, 0), k̂9(0, 0, 0, 1),
k̂10(1, 0, 0, 1), k̂11(0, 1, 0, 1), k̂12(0, 0, 1, 1), k̂13(1, 1, 0, 1), k̂14(0, 1, 1, 1),
k̂15(1, 0, 1, 1), k̂16(1, 1, 1, 1), k̂17

(
1
2 , 1

2 , 1
2 , 1

2

)
].

The polytope Ω2 is obtained by

Ω2 = L4(Ω̂2). (13)

The objects of intersection in this example are: Ω1 and Ω2.

12
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11

Fig. 3. The intersecting pentatopes T1 and K1.

Solution. The polytope Ω1 is an orthoplex. Therefore, we divide it into sixteen
tesseract corners:
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Ω1 =
{

T1 = [t1, t2, t3, t4, t5], T2 = [t1, t3, t4, t5, t6], T3 = [t1, t2, t4, t5, t7],
T4 = [t1, t2, t3, t5, t8], T5 = [t1, t2, t3, t4, t9], T6 = [t1, t4, t5, t6, t7],
T7 = [t1, t3, t5, t6, t8], T8 = [t1, t3, t4, t6, t9], T9 = [t1, t2, t5, t7, t8],
T10 = [t1, t2, t4, t7, t9], T11 = [t1, t2, t3, t8, t9], T12 = [t1, t5, t6, t7, t8],
T13 = [t1, t4, t6, t7, t9], T14 = [t1, t3, t6, t8, t9], T15 = [t1, t2, t7, t8, t9],
T16 = [t1, t6, t7, t8, t9]

}

all of them with a measure of degeneracy δ(Ti) = 4.24264 i = 1, 2, . . . 16. The
polytope Ω̂2 is a tesseract, which is optimally refined into 24 tesseract corners
as it is done in [20]. All simplices Ki in

τ̂H(Ω̂2) =

{
K̂i ∈ [T̂ ] | Ω2 =

24⋃
i=1

K̂i, μn

(
K̂i ∩ K̂j

)
= 0, 1 ≤ i < j ≤ 24

}

have the same measure of degeneracy δ(K̂i) = 4.24264. After the deformation
(13) the measure δ(τH) of

τH(Ω2) =
{

Ki = L4(K̂i) | 1 ≤ i ≤ 24
}

grows up to 5.85361. The latter indicates a slight deformation of Ω2.
Obviously, Ω2 =

⋃24
i=1 Ki, μn (Ki ∩ Kj) = 0, 1 ≤ i < j ≤

24. The execution of Algorithm 1 indicates an intersection of the sim-
plices T1[t1, t2, t3, t4, t5] and K1[k10, k11, k12, k13, k18], see Fig. 3. The vertex
k10 of Ω2 belongs to the interior of the orthoplex. The point x0(0.237771,
0.246095, 0.238852, 0.250095) belongs to the intersection between the cross
polytope and the parallelotope, see Fig. 4. The preimages of x0 in the
reference simplex are: ŷ0(0.96391, 0.00147, 0.01128, 0.00583) and x̂0(0.02719,
0.23777, 0.24609, 0.23885).�
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Fig. 4. An overlapping of Ω1 and Ω2 in the four-dimensional case.

The advantages of the Motzkin method will be demonstrated in the third
example.
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Fig. 5. The gradient descent obtained by the Barzilai-Borwein method, the conjugate
gradient method, and the relaxation method with the optimal steplength.

Example 3. Here, we consider overlapping of two twelve-dimensional simplices.
Each vertex k̂i, i = 1, 2, . . . 12 of the Freudenthal element

K̂[k̂1(1, 0, . . . , 0), k̂2(1, 1, . . . , 0, 0), . . . , k̂12(1, 1, . . . , 1, 1), k̂13(0, 0, . . . , 0)]

has the first i coordinates equal to one and the other coordinates are equal to
zero. The thirteenth node is located at the origin. The simplex K̂ is deformed by
the linear transformation K = D12K̂ + E12, where

D12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2
0.1 1 0.2 0.2 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.3
0.1 0.1 1 0.1 0.3 0.2 0.1 0.1 0.1 0.2 0.2 0.2
0.2 0.1 0.2 1 0.3 0.2 0.1 0.3 0.2 0.1 0.1 0.1
0.1 0.1 0.2 0.1 1 0.2 0.1 0.1 0.1 0.2 0.2 0.2
0.3 0.1 0.3 0.1 0.3 1 0.1 0.3 0.2 0.1 0.1 0.1
0.1 0.1 0.2 0.1 0.3 0.2 1 0.3 0.1 0.2 0.1 0.2
0.2 0.1 0.3 0.1 0.3 0.2 0.1 1 0.2 0.1 0.1 0.3
0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.3 1 0.1 0.3 0.2
0.2 0.1 0.2 0.1 0.3 0.2 0.1 0.3 0.2 1 0.3 0.2
0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.3 0.2 0.1 1 0.2
0.2 0.1 0.2 1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

E12 = (0.0744333, 0.0745333, 0.0746333, 0.0747333, 0.0748333, 0.0749333,
0.0750333, 0.0751333, 0.0752333, 0.0753333, 0.0754333, 0.0755333)T .

We study the intersection between the reference cube corner T̂ 12 and the deformed
Freudenthal element K.

Solution. Since k13 ∈ ˚̂
T 12, the measure μ12(T̂ ∩ K) is positive. We calculate

the transitional matrix AK of the element K and write AT = I12, BT =
012, BK = E12. The cube corners have the lowest rate of divergence [18]. Despite
this δ(T̂ 12) = 10.93477. To obtain a real comparison between the considered
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Fig. 6. The gradient descent obtained by the Motzkin method.

methods, we choose the strongly deformed element K with δ(K) = 132.726.
This affect the condition number of the matrix κ(M12) = 67.1266. Thus we
obtain ill-conditioned system (1).

We compare the Motzkin method with the BB-method, the conjugate gra-
dient method, and the relaxation method with the optimal steplength (RMOS)
[16]. An initial guess for all methods is chosen to be the gravity center of the cube
corner. The relaxation method is divergent with a zero initial guess. We present
the number of iterations for satisfying the stop criteria in Table 3. Additional
initial guesses are necessary for the two-point methods. Table 3 indicates that
the Motzkin method is superior to other considered methods in this example.
Intermediate results on gradient descent are presented in Figs. 5 and 6.

Table 3. A comparison between the Motzkin method and the other iterative methods.
The table present the number of necessary iterations for satisfying the stop criterion.

Method CGM BBM MM RMOS

ε \ initial guesses x0 = CT̂

x0 = t̂13,

x1 = CT̂

x0 = CT̂ x0 = CT̂

10−6 284 122 26 168

10−8 370 164 41 287

10−12 545 255 72 539

We establish good performance for the row relaxation method in the low-
dimensional spaces and bad behavior of the same method in the higher-
dimensional cases.
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6 Conclusion

A feasible iterative algorithm for polytopes overlapping detection is developed
in this paper. The algorithm is described in pseudocode. The only restriction
on the polytopes tested for an intersection is both of them be convex. Concave
polytopes can be studied for intersection by this algorithm if each of them is pre-
viously divided into convex subdomains. Then each part can be triangulated by
simplicial finite elements. The algorithm is designed to be used in any Euclidean
space. The investigation for overlapping requires triangulating of the considered
polytopes. For this purpose, we use the dissipation algorithm. Thus we obtain
triangulations of the tested polytopes with a small number of elements in order
to reduce the number of couples of simplices. The overlappings of simplices with
the same and with different dimensions are analyzed. Due to the high complexity
of the Fourier-Motzkin elimination for complicated polytopes in Rn n ≥ 10, the
system (W ) is solved iteratively. The proposed algorithm is implemented and
tested in the three- and four-dimensional cases.

The numerical tests indicate that the row iterative methods have better per-
formance than the other iterative methods. Additionally, the Motzkin method
is superior to all other tested methods. The real advantages of the method are
demonstrated by intersecting twelve-dimensional polytopes. Graphical presenta-
tions are shown in the three and four-dimensional spaces.
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Abstract. We present an original approach to improving seismic mod-
elling performance by applying deep learning techniques to mitigate
numerical error. In seismic modelling, a series of several thousand simula-
tions are required to generate a typical seismic dataset. These simulations
are performed for different source positions (equidistantly distributed)
at the free surface. Thus, the output wavefields that corresponded to
the nearby sources are relatively similar, sharing common peculiarities.
Our approach suggests simulating wavefields using finite differences with
coarse enough discretization to reduce the computational complexity of
seismic modelling. After that, solutions for 1 to 10 percents of source
positions are simulated using fine discretizations to obtain the train-
ing dataset, which is used to train the deep neural network to remove
numerical error (numerical dispersion) from the coarse-grid simulated
wavefields. Later the network is applied to the entire dataset. Our experi-
ments illustrate that the suggested algorithm in the 2D case significantly
(up to ten times) speeds up seismic modelling.

Keywords: Deep learning · Seismic modelling · Numerical dispersion

1 Introduction

Seismic modelling becomes a common tool to investigate peculiarities of wave
propagation in realistic complex models of the Earth’s interior [2,12,24] ver-
ification of the seismic processing and inversion algorithms, and as a part of
the inversion methods, [21]. However, simulation of seismic wave propagation in
complex media is one of the most computationally demanding problems requir-
ing intense use of high-performance computing. In particular, if a typical seismic
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acquisition system is considered, one has to simulate wavefields corresponding
to hundreds of thousands of source positions (right-hand sides). Each simulation
of a single shot gather is performed in a domain of about 103 km, which corre-
sponds to 1003 wavelength. Thus, up to 8 · 109 grid points are needed to obtain
accurate enough numerical results. Reduction of the problem size by increasing
the grid step leads to numerical error growth, which may completely destroy the
solution. There are several ways to reduce the numerical dispersion, including use
of high order finite-difference schemes [11], dispersion-suppression schemes [14],
high-order finite element and discontinuous Galerkin methods [1,8,13]. However,
the increase of the approach accuracy imminently leads to high computational
intensity, including increased flops and RAM access operations.

The other option to reduce the numerical dispersion in the simulated wave-
fields is a post-processing [9,23]. However, the standard waveform correction
procedures used in seismic processing are not efficient for numerical dispersion
mitigation. The error associated with the numerical dispersion depends on the
wave propagation path, velocity model etc. Thus, it can not be compensated by
a single-phase shift. In this paper, we suggest an approach to post-processing
based on using the deep learning technique.

Deep learning finds wide application in various fields of science. Providing a
large representative training dataset, deep neural networks (DNNs) can approx-
imate complex non-linear operators within the supervised learning workflow.
These DNNs can learn about highly non-linear physics and usually provide much
faster computational time than traditional simulation [6,17].

To develop an efficient algorithm for numerical dispersion mitigation, we use
the following peculiarity of seismic modelling. The entire seismic dataset includes
wavefields corresponding to different source positions. These positions are rela-
tively close to each other (10 to 100 m apart). Thus, the velocity models and the
simulated wavefields are similar if the source is situated nearby. It allows using
a small number of sources to simulate accurate solution to be used as a training
dataset. At the same time, we can simulate the entire dataset using a coarse enough
grid, train the deep neural network, and then post-process the data.

The remainder of the paper has the following structure. In Sect. 2 we remind
the basic concepts of seismic modelling, including the main estimates of the
numerical dispersion, depending on the grid size. The description of the numer-
ical dispersion mitigation network (NDM-net) is provided in Sect. 3. Numerical
experiments illustrating the applicability of the NDM-net to the synthetic seis-
mic data enhancement are presented in Sect. 4.

2 Seismic Modelling

Seismic wave propagation in 2D isotropic elastic media is governed by the elastic
wave equation:

ρ∂u1
∂t = ∂σ11

∂x1
+ ∂σ13

∂x3
,

ρ∂u3
∂t = ∂σ13

∂x1
+ ∂σ33

∂x3
,

∂σ11
∂t = (λ + 2μ)∂u1

∂x1
+ λ∂u3

∂x3
+ f11(t)δ(x − xs),

∂σ33
∂t = λ∂u1

∂x1
+ (λ + 2μ)∂u3

∂x3
+ f33(t)δ(x − xs),

∂σ13
∂t = μ∂u1

∂x3
+ μ∂u3

∂x1
+ f13(t)δ(x − xs),

(1)
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where ρ is the mass density, λ and μ are the Lame parameters, u = (u1, u3)T is
the particle velocity vector, σ is the stress tensor, fij(t) are the components of
the source wavelet function, δ(x) is the Kroneker delta-function, x is the vector
of spatial coordinates, and xs is the source coordinate. The seismic modelling is
stated in half-space x3 > 0 and within bounded time interval t ∈ [0, T ].

A common way to approximate the elastic wave equation is the use of stag-
gered grid finite differences [11,20], where the different components of the wave-
field are defined at different spatial and temporal points with the use of sym-
metric stencils to approximate the derivatives:

ρDt[u1]
n−1/2
i+1/2,j = D1[σ11]

n−1/2
i+1/2,j + D3[σ13]

n−1/2
i+1/2,j ,
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i,j+1/2 = D1[σ13]

n−1/2
i,j+1/2 + D3[σ33]

n−1/2
i,j+1/2,
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n
i,j = (λ + 2μ)D1[u1]

n
i,j + λD3[u3]

n
i,j + f11(tn)[δ(x − xs)]i,j ,

Dt[σ33]
n
i,j = λD1[u1]

n
i,j + (λ + 2μ)D3[u3]

n
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Dt[σ13]
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(2)

where finite-difference operators are

Dt[g]NI,J =
g
N+1/2
I,J −g

N−1/2
I,J

τ ,

D1[g]NI,J = 1
h1

∑M
m=0 αm

(
gN

I+m+1/2,J − gN
I−m−1/2,J

)
,

D2[g]NI,J = 1
h2
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m=0 αm

(
gN

I,J+m+1/2 − gN
I,J−m−1/2

)
,

(3)

where indices I, J,N can be either integer or half-integer, and g is a smooth
enough scalar function. The operator Dt approximates the temporal derivatives
with the second order to the time step τ . The operators D1 and D2 approxi-
mate the spatial derivatives. However, depending on the choice of αm one may
construct a high-order approximation up to 2m+2 [11], or use theses degrees of
freedom to suppress numerical dispersion [14]. Note, that we are not discussing
the approximation of the right-hand sides, as it is presented in [7], and the model
parameters treatment because it is studied in [16,22].

The use of symmetric stencils to approximate derivatives ensures an even
order of approximation with zero coefficients of odd degrees in the differen-
tial approximation of the finite difference scheme (2). Thus the numerical error
appears in the solution as a numerical dispersion without dissipation, see [19],
and [3] for the details. It means that the emitted impulse will deteriorate, prop-
agating through the media. An example of the impulse deformation due to the
dispersion is presented in Fig. 1. We plot the true pulse and that travelled 30
wavelengths simulated by the second-order scheme with a spatial discretization
of 10, 20, and 40 points per wavelength and Courant number equal to 0.8. Note
that the maximum impulse shifts backwards in time, leading to an overesti-
mation of the reflecting intervals depth in seismic processing and interpretation.
Refining the mesh, one gets the convergence of the numerical solution to the true
one, however, refining a spatial step by the factor of two leads to the increase
of the problem size by the factor of 8 in 3D and 4 in 2D. Moreover, the number
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of flops increases by 16 in 3D and 8 in 2D because of the temporal step refine-
ment. On the other hand, the solution obtained on the grid with 20 points per
wavelength is accurate enough, and simple processing may turn it into the true
one.

0-0.3 -0.2 -0.1 0.1 0.2
time(s)

-0.5

0

0.5

1
correct
N=40
N=20
N=10

Fig. 1. An example of the pulse deformation due to numerical dispersion.

3 Numerical Dispersion Mitigation Network (NDM-net)

Convolutional Neural Networks (CNN) are usually applied to analyze visual
imagery. A particular case of CNN is a U-Net [18], which was originally intro-
duced for biomedical image segmentation. At this moment, the U-Net and its
modifications have broad applications in seismic inversion, pre-stack seismic data
processing and interpretation. This work suggests using the Numerical Disper-
sion Mitigation deep neural network (NDM-net) to learn the mapping between
the synthetic seismic data modelled on a coarse grid and data modelled on a
fine grid. In other words, we plan to eliminate the numerical dispersion using
the Deep Learning approach.

The architecture of the network is similar to the one used by [5]. The differ-
ences are using a conventional convolutional layer instead of partial convolutions
and the different input/output dimensions, see Fig. 2. These DNN contains 16
convolutional layers, eight upsampling layers, and eight concatenation layers
(skip connections). The input and output tensors dimensions are 1250 × 512
× 2. An activation function for the first eight convolutional layers (encoding,
or feature extracting, part of the DNN) is ReLU, while the last eight convolu-
tional layers (decoding part) have LeakyReLu activation with a negative slope
coefficient equals to 0.2. We implemented NDM-net in TensorFlow. The DNN
weights were randomly initialized, and Adam stochastic optimization algorithm
was exploited during the training process.
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In the current implementation, we consider the input/output to be regularly
sampled pre-stack seismic data. For training, we used each 10-th common shot
gather computed on a fine grid and its corrupted version modelled on a coarse
grid. Each common shot is converted to a tensor with a dimension of 1250 × 512
× 2. Here 1250 is the number of time samples in data (4 ms time discretization
and 5s record time), 512 is the number of 2C receivers, and 2 is the number
of recorded components (vertical and horizontal velocity components). Next, we
split this dataset into training and validation datasets. Each common shot is
normalized by scaling it to unit variance before being processed by the NDM-
net.

Fig. 2. The architecture of NDM-net. The Black right arrow indicates convolution
operation, while the red right arrow indicates concatenation. Up and down arrows
indicate upsampling and batch normalization operations correspondingly.

4 Numerical Experiments

We applied our approach to mitigate the numerical dispersion in two datasets.
Both simulations were done in 2D to illustrate the applicability of the NDM-net
to improve seismic modelling accuracy and efficiency.
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4.1 Marmousi2 Model

First we considered the elastic Marmousi2 model [15], as presented in Fig. 3.
The size of the model was 17 km in the horizontal and 3.6 km in the vertical
direction. Marmousi2 is the offshore model with water at the top. To make
the considerations consistent with land data acquisition, we substitute water
with solid used for the ocean bottom in the model. We performed simulations
of seismic waves propagation using meshes with steps equal to 1.25 m, 2.5 m,
and 5 m, assuming the solution obtained on the 1.25 m grid is the exact one.
Such small grid steps were chosen due to the thick low-velocity layer, that was
introduced instead of water at the top of the model. Note that the original model
was provided on a grid with step size 1.25 m. However, to exclude the effect of
model changes when the simulation mesh is coarsening, we map the mode to
the mesh with step 5 m. After that 5-meters model was used for all numerical
simulations.

Fig. 3. Marmousi2 elastic velocity model used for synthetic data generation. The
marker represents the source position at x = 8 km.

The acquisition included 171 sources with the distance between the sources
100 m. We recorded wavefield by 512 2C receivers for each shot with maximal
source-receiver offsets equal to 6.4 km. The distance between the receivers was
25 m. Simulations were performed using the fourth-order staggered grid scheme
[11]. On average, the simulation time was 5 s per shot if a 5 m grid was used; 40 s
per shot for 2.5 m grid; and 4 min for 1.25 m grid, using Nvidia V100 GPU. The
example of modelled seismogram on the grid 1.25 m (X = 9 km) is presented in
Fig. 4.
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Fig. 4. Synthetic seismograms for shot positioned at x = 9 km: horizontal (a) and
vertical (b) components calculated on a numerical grid with the spatial step 1.25 m.

We performed two numerical experiments, and for each experiment, we
trained NDM-net. One was designed to map the data simulated using a 2.5
m grid to the exact solution (data acquired on the grid with steps 1.25 m). The
other NDM-net was trained to map 5 m-data to the 1.25 m-data. The training
was performed on the Nvidia V100 GPU. As a regularization, we used an early
stopping technique and interrupted the training when the error on the validation
dataset started to grow. In both cases (2.5 m to 1.25 m and 5 m to 1.25 m), the
training process took about 30min. The prediction time is about 0.7 sec for one
full common shot gather, while one forward modelling using FD technique on a
GPU took about 40 s on 2.5 m grid and about 5 s on 5 m grid, but 5 min for the
finest grid of 1.25 m.

To estimate the quality of DNN prediction, we use the normalized RMS
(NRMS) as a measure of datasets similarity. NRMS is a strict sample-by-sample
metric used for evaluating repeatability between two datasets in 4D seismic [10].
An acceptable level of NRMS in 4D seismic is about 20–40%. The verification
of DNN predictions was performed on a testing dataset that differs from train-
ing and validation, i.e. were invisible by DNN during the training process. The
NRMS plot calculated trace by trace using a sliding window of 200 ms is pre-
sented in Fig. 5. On average, the NRMS between 1.25 m data and 2.5 m-data
was 30%. Application of the NDM-net reduced the NRMS down to 14%. The
average NRMS between 5-m data and 1.25 m-data was about 59%, and the DNN
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managed to construct a prediction with the NRMS of 33%. So one may conclude
that in both cases, NDM-net were able to reduce NRMS up to the acceptable
level. To illustrate the effect of the NDM-net data enhancement, we provide the
plots (see Figs. 6, 7) of a single seismic trace computed using different grids and
then improved by the NDM-net.

Fig. 5. NRMS plot calculated between seismograms computed on a numerical grid
with the spatial steps 1.25 m and 2.5 m (a), 1.25 m and DNN predicted data using 2.5
m data as input (b), 1.25 m and 5 m (d), 1.25 m and DNN predicted data using 5 m
data as input, and the corresponding histograms (c,f).

4.2 Model with Vertical Intrusion

The second set of experiments was done for a model with vertical high-contrast
intrusions causing lateral heterogeneity as presented in Fig. 8. The size of the
entire model was 220 km by 2.6 km. The acquisition included 1901 sources with
the distance between the sources 100 m. We recorded wavefield by 512 receivers
for each shot with maximal source-receiver offsets equal to 6.4 km. The distance
between the receivers was 25 m. In this research, we simulated the wavefield
without the surface waves by using a perfectly matched layer for x < 0 [4]. The
source wavelet was the Ricker pulse with a central frequency 30 Hz.
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Fig. 6. Seismic traces at different positions and its DNN-predictions for the case 2.5
m-data (a) and 5 m-data (b). Black plot – vertical component on the fine grid, red plot
– input data for DNN prediction and blue plot – DNN-predicted data.
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Fig. 7. Seismic traces at different positions and its DNN-predictions for the case 2.5
m-data (a) and 5 m-data (b). Black plot – vertical component on the fine grid, red plot
– input data for DNN prediction and blue plot – DNN-predicted data.



Machine Learning-Based Numerical Dispersion Mitigation 43

Fig. 8. Elastic velocity model used for synthetic data generation. The marker represents
the source position at x = 120 km.

Fig. 9. Synthetic seismograms for shot positioned at x = 120 km: vertical component
calculated on a numerical grid with the spatial steps 2.5 m (a), 5 m (b) and 10 m (c).
(Color figure online)

Originally, the model was provided on a grid with the steps 50 m in horizontal
and 5 m in a vertical direction. We computed three datasets using the fourth-
order staggered grid scheme [11]. We considered the solution acquired at the
grid with steps of 2.5 m as the accurate one, whereas two others generated using
grids with 5 m and 10 m spatial steps are polluted. We provide examples of the
seismograms in Fig. 9.
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Fig. 10. NRMS plot calculated between seismograms computed on a numerical grid
with the spatial steps 2.5 m and 5 m (a), 2.5 m and DNN predicted data using 5 m
data as input (b), 2.5 m and 10 m (d), 2.5 m and DNN predicted data using 10 m data
as input, and the corresponding histograms (c,f). NRMS were calculated in the area
designated by a red rectangle on Fig. 2 (vertical component at the time from 3 s to
5 s including all receiver positions)

As in the previous example, we trained two NDM-nets for two synthetic
datasets. One was designed to map the data simulated using a 5 m grid to the
exact solution (data acquired on the grid with steps 2.5 m). The other NDM-net
was trained to map 10 m-data to the 2.5 m-data. In both cases (5 m to 2.5 m
and 10 m to 2.5 m), the training process took about 40 min. The prediction time
is about 0.7 sec for one full common shot gather, while one forward modelling
using FD technique on a GPU took about 40 s on 2.5 m grid and about 5 s on 5
m grid. Since the main error accumulates in the late arrivals, we calculate NRMS
for the time range from 3 s to 5 s (red rectangle on the Fig. 9). The corresponding
NRMS plot is presented in Fig. 10. On average, the NRMS between 2.5 m data
and 5 m-data was 65%. Application of the NDM-net reduced the NRMS down to
30%. The average NRMS between 10-m data and 2.5 m-data was about 120%,
which means that the 10-m data are extremely far from the true solution. As a
result, the DNN managed to reduce NRMS up to the 90% level. The effect of
the NDM-net data enhancement is illustrated in the Figs. 11, 12.
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Fig. 11. Seismic traces at different positions and its DNN-predictions for the case 5
m-data (a) and 10 m-data (b). Black plot – vertical component on the fine grid, red
plot – input data for DNN prediction and blue plot – DNN-predicted data.
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Fig. 12. Seismic traces at different positions and its DNN-predictions for the case 5
m-data (a) and 10 m-data (b). Black plot – vertical component on the fine grid, red
plot – input data for DNN prediction and blue plot – DNN-predicted data.
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5 Conclusions

We present an original approach to numerical simulation of seismic wavefields.
The method combines conventional seismic modelling based on the finite differ-
ences with the consequent correction of the data by the DNN-based algorithm
called the NDM-net. First, we generate a training dataset simulating wavefields
corresponding to at most 10% of the positions of the sources using fine enough
spatial discretization (up to 20 points per minimal wavelength - ppw). Second,
the full dataset is generated using a coarse mesh with no more than 3–5 ppw.
Note that in the 2D case, simulation of the solution using 5 ppw is 64 times faster
than that with 20 ppw. Third, the NDM-net is trained to reduce the numerical
error in the coarse-grid solution. Then the NDM-net is applied to correct the
entire dataset. The presented results demonstrate the ability of the NDM-net to
make a high-quality seismic data prediction using the synthetics generated on
a coarse grid. In particular, the application of the NDM-net reduced the com-
putational time to simulate the full dataset of 171 common shot gathers for the
Marmousi2 model from 684 min to 112 min.
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Abstract. This paper presents a two-scale finite element formulation
for a variant of the nonlinear Dynamic Diffusion (DD) method, applied
to advection-diffusion-reaction problems. The approach, named here
new-DD method, introduces locally and dynamically an extra stability
through a nonlinear operator acting in all scales of the discretization, and
it is designed to be bounded. We use bubble functions to approximate
the subgrid scale space, which are locally condensed on the resolved
scales. The proposed methodology is solved by an iterative procedure
that uses the bubble-enriched Galerkin solution as the correspondent
initial approximation, which is automatically recovered wherever sta-
bilization is not required. Since the artificial diffusion introduced by
the new-DD method relies on a problem-depend parameter, we inves-
tigate alternative choices for this parameter to keep the accuracy of the
method. We numerically evaluate stability and accuracy properties of
the method for problems with regular solutions and with layers, ranging
from advection-dominated to reaction-dominated transport problems.

Keywords: New-dynamic diffusion method · Bubble functions ·
Advection-diffusion-reaction equations

1 Introduction

Stable finite element approximations to advection-diffusion-reaction problems
have been the subject of intense research for the past forty years. Typical Galerkin
formulations for this class of problems lack stability when advection or reaction
effects are much stronger than the diffusion phenomena. Several works proposed
the introduction of stabilization along the streamlines, in a linear and consistent
manner [2,11,14]. To deal with instabilities along other directions, a variety of non-
linear stabilization methodologies have been developed [4,12,13,16]. Both linear
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and nonlinear stabilization terms depend on user-defined parameters that ulti-
mately yield the accuracy and stability properties of the method. More recently,
the broader framework introduced by variational multiscale finite element formu-
lations [8,9] have reformulated stabilized methods by decomposing state variables
into resolved and unresolved (subgrid) scales. In the multiscale framework, sta-
bilized methods can be seen as techniques to capture the unresolved scale vari-
ability into the resolved scale solution. Such an approach has opened new direc-
tions of research. The method proposed in [7], for example, used scale separation
to introduce artificial dissipation only onto the small scales, still requiring defini-
tion of tunable parameter. This drawback was overcome in [17] by using a subgrid
diffusivity stabilization that locally depends on the resolved scale solution. Using
the same basis for the construction of stabilization, this method was extended in
[1] by adding isotropic dissipation on all scales, in the context of non conform-
ing two-scale methods. The so called Dynamic Diffusion (DD) method was then
extended to the continuous setting in [19,20] by using bubble functions to build the
subgrid space. In this way, the subgrid degrees of freedom can be condensed onto
the resolved scale degrees of freedom, reducing the computational cost typical of
two-scale methods. The resulting technique shows robust stability properties for
advection-diffusion-reaction problems in the presence of layers [20].

In the DD model, a nonlinear dissipation mechanism is introduced in both
the resolved and unresolved scales. The artificial diffusion is dynamically eval-
uated depending on the resolved scale solution. Specifically, it depends on the
residual and the gradient of the resolved scale solution, as well as on a charac-
teristic local length scale. In this way, without invoking any linear stabilization,
the DD method does not require any additional user-defined parameter and ulti-
mately avoids kinetic energy accumulation at the resolved scale, precluding local
and non-local oscillations in the presence of layers. Unfortunately, the numerical
analysis of the DD method could not be established since the artificial diffusion
operator is not upper bounded, a key issue to prove the existence of discrete
solution, stability, and a priori error estimate. To overcome this drawback, a
new-DD method was developed and analyzed in [18], and optimal convergence
rates in the L2(Ω), H1(Ω), and energy norms were numerically shown for prob-
lems with smooth solutions.

Here, we investigate the behavior of the new-DD method for problems with
internal and external layers, ranging from advection dominated to reaction dom-
inated transport problems. Of note, the artificial diffusion introduced by the
new-DD method relies on a problem dependent parameter that plays a key role
on its upper boundedness. Although it can be defined locally and depending
on the problem, we perform numerical experiments to investigate alternative,
and eventually simpler, choices for this parameter that does not compromise the
accuracy of the method. Thus, focusing on those numerical aspects, this work is
organized as follows. In Sect. 2 we present the new-DD method for solving the
advection-diffusion-reaction transport problems. Section 3 contains the numeri-
cal studies and the evaluation of the method. The conclusions are summarized
in Sect. 4.
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2 The New Dynamic Diffusion Method

The problem of interest is modeled by the following steady-state advection-
diffusion-reaction equation

− εΔu + β · ∇u + σu = f, in Ω, (1)

where the domain Ω ⊂ R
2 has a sufficiently regular boundary Γ . It represents the

transport dynamics of a scalar field u (e.g., temperature, chemical concentration,
etc.), subject to the diffusion coefficient ε > 0 and to the incompressible velocity
field β. Local dynamics are modeled by the reaction term σu, in which σ ≥ 0
is the reaction coefficient; and f is the source term. To complete the problem
setting, we assume for simplicity the following homogeneous Dirichlet boundary
conditions

u = 0, on Γ. (2)

Also for simplicity, and without loss of generality, we assume that both ε and
σ are constant parameters. From now on we use H1(X) to denote the Hilbert
space in X, for each X ⊆ Ω, and H0(X) = L2(X). We also denote ‖ · ‖m,X as
the standard norm in H1(X) (m = 1) and in L2(X) (m = 0), and (·, ·) as the
inner product in L2(X).

A general variational formulation of problem (1)–(2) is: find u ∈ H1
0 (Ω) =

{u ∈ H1(Ω), u = 0 on Γ} such that

B(u, v) = (f, v), ∀v ∈ H1
0 (Ω), (3)

with
B(u, v) = ε(∇u,∇v) + (β · ∇u, v) + σ(u, v). (4)

To build the corresponding discrete multiscale formulation we first define a
regular triangulation Th = {T} of the domain Ω into regular elements, denoted
by T , and we set h = max{hT : T ∈ Th} with hT := diam(T ). The Galerkin
formulation associated to (3) consists of finding uh ∈ V 0

h ⊂ H1
0 (Ω) such that

B(uh, vh) = (f, vh), ∀vh ∈ V 0
h , (5)

where V 0
h = {w ∈ H1(Ω) | w|T ∈ P1(T ), ∀T ∈ Th, w|Γ = 0}, with P1(T ) the

set of first order polynomials in elements T ∈ Th. In the multiscale framework,
we consider that V 0

h is the resolved (grid) scale space, and we define the two-
scale approximation space V 0

hb = V 0
h ⊕ Vb, which is a direct sum of V 0

h and
an unresolved subgrid (fine) scale space Vb. As in [7], we define Vb = {vb ∈
H1

0 (Ω); vb|T = span{ψT },∀T ∈ Th}, where ψT ∈ H1
0 (T ) are bubble functions.

Specifically, we define ψT (x) = 27N1(x)N2(x)N3(x), ∀x ∈ T , where Ni is the
basis function associated of the ith node of T . Using these definitions, the new-
DD method consists of finding uhb = uh +ub ∈ V 0

hb, with uh ∈ V 0
h , ub ∈ Vb, such

that
B(uhb, vhb) +

∑

T∈Th

DT (uhb;uhb, vhb) = (f, vhb), ∀vhb ∈ V 0
hb, (6)
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in which DT (·; ·, ·) : V 0
hb|T ×V 0

hb|T ×V 0
hb|T −→ R is the artificial diffusion operator

given by

DT (uhb;uhb, vhb) =
∫

T

ξT

(
κh(uhb)

)∇uhb · ∇vhb dΩ, (7)

where κh : V 0
hb −→ V 0

h is a linear projection operator, such that κh(whb) = wh

with (id − κh)(whb) = wb ∈ Vb and id is the identity operator in V 0
hb [6]. The

artificial diffusion at each element T ∈ Th is given by

ξT (uh) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ(hT )
‖R(uh)‖0,T

η + τ
, if PeT > 1 ,

with η = ‖uh‖1,T , if σ > 0; or η = ‖∇uh‖0,T , if σ = 0 ,

0, otherwise ,

(8)
where τ > 0 is an appropriate constant. In (8), PeT = ‖β‖0,T hT /2ε is the
local Péclet number, μ(hT ) = O(hT ) > 0 is the local subgrid characteristic
length scale satisfying μ(hT ) ≤ μ(h) = max{μ(hT ); T ∈ Th}, and R(uh) =
−εΔuh + β · ∇uh + σuh − f is the residual of the resolved scale solution. The
latter expression simplifies when uh|T ∈ P1(T ), which is the case considered
here. Thus, henceforth we will use R(uh) = β · ∇uh + σuh − f . Note that the
new-DD operator (7) introduces a nonlinearity into the formulation (6) since it
depends on the residual of the resolved scale solution. The artificial diffusion (8),
that depends on the T ∈ Th, regulates the amount of stabilization, being larger
where the resolved solution is less accurate and vanishing otherwise. We remark
that, in the latter case, the Galerkin method enriched with bubble functions is
automatically recovered. It is also worth mentioning that the new-DD method
can handle reaction-diffusion problems by replacing the condition PeT > 1 with
‖∇uh‖0,T > 10−5, as proposed in [20].

We solve (6) by using the iterative process developed in [20] to improve
convergence. The actual artificial diffusion in each T ∈ Th in the iteration k +
1 is defined by combining values from two consecutive iterations in the form
ξk+1
T = ωξ̂k+1

T + (1 − ω)ξT
k, with ω = 0.5 and ξ̂0 = 0.0. The quantity ξ̂k+1

T

is set equal to ξk+1
T (uk

h), which is evaluated using Eq. (8), with μ(hT ) = hT =√
meas2(T ), in which meas2(T ) is the area of the element T . The convergence of

the iterative process is reached when
(∥∥(uk+1

h − uk
h)/uk+1

h

∥∥
∞ < 10−6

)
, limited

to a maximum number of 30 nonlinear iterations. Moreover, we also integrate a
strategy that sets the damping factor ω equal to zero when ‖R(uk

h)‖0,T is close
enough to ‖R(uk−1

h )‖0,T , with a threshold of 20% for the relative error between
these residuals.
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3 Numerical Results

We investigate the numerical properties of the new-DD method for 2D trans-
port problems with smooth solutions and in the presence of layers, using both
structured and unstructured mesh, and different values for τ . We numerically
evaluate the convergence rates measured using different norms, and then we
analyze advection-dominated and reaction-dominated transport problems whose
solutions have regions with strong gradients. We analyze the quality of the solu-
tions for three values of the parameter τ : a small constant value τ = 10−5,
related to the experiments showed in [20]; τ = 1, as proposed in [15], and a
locally problem-dependent value defined as τ = τT = max{‖f‖0,T , 10−5}.

3.1 Convergence Rates

First, we investigate convergence rates in the L2(Ω), H1(Ω), and the energy
norms for transport regimes ranging from advection to diffusion dominated
problems with or without reaction term, for first-order interpolating polynomi-
als (P1). Simulations were performed on one structured grid (Grid1) that were
uniformly refined, and on one unstructured grid with obtuse triangles (Grid2)
generated and refined using Gmsh [5]. Mesh patterns are illustrated in Fig. 1.
We consider the following smooth solution

u(x, y) = 100x2(1 − x)2y(1 − y)(1 − 2y) (9)

where the source term f is defined to satisfy Eq. (1), with β = (3, 2)T and
parameter combinations of σ = 0 or σ = 1, and ε = 10−6 or ε = 10. Errors
in L2(Ω) (‖ · ‖0), H1(Ω) (‖ · ‖1), and the energy (‖ · ‖E) norms (recalling that

‖v‖E =
(
ε|v|21 + σ‖v‖20

)1/2

) were evaluated for both grids and are reported in

Table 1 using τ = 10−5, τ = max{‖f‖0,T , 10−5} named as τT , and τ = 1.

(a) Grid1 (b) Grid2

Fig. 1. Mesh patterns used in the numerical experiments.

Observe that optimal convergence rates in the L2(Ω), H1(Ω), and the energy
norms are independently of the grid pattern, for all values of τ . Also, the order
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of convergence in the energy norm is similar to that in the L2(Ω) norm when
ε = 10−6 and σ = 1. This means that the zero-order term outweighs the first-
order term, which does not happen in the cases with σ = 0. It is also possible
to notice a decrease in the convergence rates obtained with Grid2. However, the
errors associated with the unstructured Grid2 are slightly the smallest errors
for all cases. In particular, we plotted the errors against mesh size on a log–log
scale in Fig. 2, for ε = 10−6, σ = 0, and τT . Overall, the influence of τ on the
convergence orders across the grids is small, and optimal orders of convergence
is sustained. However, for τ = τT and τ = 1, we may note a slight decrease of
the convergence rate for solutions obtained with Grid2 and σ = 1 (see Table 1).
Such mesh-dependence on the method is still a topic under investigation.

Table 1. Convergence rates for the numerical solution of (9).

τ σ Grid ε = 10−6 ε = 10

‖u − uh‖0 ‖u − uh‖1 ‖u − uh‖E ‖u − uh‖0 ‖u − uh‖1 ‖u − uh‖E

10−5 0 Grid1 1.99 1.04 1.04 1.99 0.99 0.99

Grid2 1.95 1.09 1.09 1.77 0.93 0.93

1 Grid1 2.00 1.03 1.99 1.99 0.99 0.99

Grid2 1.96 1.09 1.95 1.77 0.93 0.93

τT 0 Grid1 1.94 1.01 1.01 1.99 0.99 0.99

Grid2 1.68 0.97 0.97 1.77 0.93 0.93

1 Grid1 1.95 1.01 1.94 1.99 0.99 0.99

Grid2 1.70 0.97 1.70 1.77 0.93 0.93

1 0 Grid1 2.03 1.00 0.90 1.99 0.99 0.99

Grid2 1.44 0.95 0.95 1.77 0.93 0.93

1 Grid1 2.03 1.00 2.01 1.99 0.99 0.99

Grid2 1.43 0.95 1.43 1.77 0.93 0.93

3.2 Solution with Two Internal Layers

We now consider an advection dominated advection-diffusion problem, first pre-
sented in [11], with new-DD artificial diffusion calculated using (8). The model
is defined in the unit square domain Ω = (0, 1)2, where β = (1, 0)T , σ = 0,
ε = 10−8, and f(x, y) = 16(1 − 2x) if (x, y) ∈ [0.25, 0.75]2 and zero otherwise.
Homogeneous Dirichlet boundary conditions are considered on Γ . The exact
solution depicted in Fig. 3(a) is equal to zero everywhere but in (0.25, 0.75)2,
where it is close to the parabolic function u = (4x − 1)(3 − 4x) with interior
layers at (0.25, 0.75) × {0.25} and (0.25, 0.75) × {0.75}.

The quality of the new-DD solutions are evaluated based on measures of spu-
rious oscillations given by both undershoots and overshoots, as the ones shown
by the SUPG (Streamline Upwind Petrov-Galerkin) solution in Fig. 3(b), for
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Fig. 2. Convergence rates in the L2(Ω), H1(Ω), and the energy norms for the problem
with ε = 10−6, σ = 0, and using τT .

which the plane z = 0 was reduced to a line. Of note, the SUPG solution, imple-
mented as in [2], was given for comparison. In Fig. 4, we compare the new-DD
solutions for τ = 10−5 and τ = 1, using a mesh with pattern Grid1 with 32 × 32
divisions in each direction. Both solutions are quite satisfactory, with the one
obtained with τ = 1 almost completely precluding spurious modes.

To observe the impact of τ in the solutions, we can accurately assess the
amount of spurious oscillations in the discrete solution uh by defining

min := − min
0.4≤x≤0.6

uh(x, y), diff := max
x≥0.8

uh(x, y) − min
x≥0.8

uh(x, y) , (10)

where y ∈ [0, 1], and minuh and max uh are computed using values of uh at
the vertices of the mesh. Thus, as defined in [13], the min values measure the
undershoots along the interior layers, while the diff values compare the magni-
tude of the discrete solutions in a region downstream from the layers, where it
should vanish (x ≥ 0.8). In Table 2, we show min and diff values for the new-
DD method using different meshes (Grid1) with 16 × 16, 32 × 32 and 64 × 64
divisions, as well as different values for τ . Specifically, we set τ = 10−5, 0.1, 1
and τ = τT = max{‖f‖0,T , 10−5}. The smallest diff value was attained with
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τ = 1, except for the more refined mesh; in all cases, the min values were less
than 2 × 10−5. Independently of the τ value, the new-DD method could handle
this highly complex problem and yielded quite satisfactory solutions. Of note,
the solution obtained with τT is quite similar to that using τ = 10−5.
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Fig. 3. Two internal layers problem: solution u and SUPG solution using a mesh with
pattern Grid1 with 32 × 32 cells.
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Fig. 4. Two internal layers problem: new-DD solutions using a mesh with 32 × 32
divisions and τ = 10−5 (a) and τ = 1 (b).

3.3 Reaction-Diffusion Problem

This is a reaction-diffusion problem, null velocity (β = (0, 0)), characterized by
dominance of reactive effects with two boundary layers. The problem is defined
in the square region Ω = [0, 1] × [0, 1], with ε = 10−6 and σ = 1, and source
term given by

f(x, 0) =

{
x, for x ≤ −0.5;
1 − x, for x > 0.5.
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Table 2. The min and diff values obtained using three different meshes and different
values for τ .

τ 16 × 16 32 × 32 64 × 64

min 10−5 8.03 × 10−11 1.08 × 10−12 2.18 × 10−10

τT 7.82 × 10−11 1.02 × 10−12 2.18 × 10−10

0.1 5.23 × 10−11 1.01 × 10−9 1.62 × 10−8

1 1.03 × 10−6 4.28 × 10−6 1.45 × 10−5

diff 10−5 1.42 × 10−2 6.81 × 10−2 8.51 × 10−2

τT 1.56 × 10−2 6.23 × 10−2 8.39 × 10−2

0.1 9.24 × 10−3 3.46 × 10−3 1.02 × 10−3

1 9.05 × 10−4 1.62 × 10−4 1.28 × 10−4

(a) τ = 10−5 (b) τT

(c) τ = 1 (d) SUPG

Fig. 5. Reaction-diffusion flow field: new-DD and SUPG solutions.
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Fig. 6. Reaction-diffusion flow field: solution profiles for 0 ≤ x ≤ 1 and y = 0.5.

Dirichlet boundary conditions are assigned to the boundary: u(0, y) = 1 for 0 ≤
y ≤ 1, u(x, 1) = 1 for 0 ≤ x ≤ 1 and u(x, 0) = 0 for 0 < x ≤ 1. Figures 5(a), 5(b)
and 5(c) show the three-dimensional structure plots of new-DD solutions for a
mesh (Grid1) with 40×40 division using τ = 10−5, τ = τT = max{‖f‖0,T , 10−5}
and τ = 1, respectively. Here, also for comparison, we show in Fig. 5(d) the SUPG
solution as calculated in [2]. All new-DD solutions show very small smearing
and almost the suppression of both overshoots and undershoots. The numerical
dissipation for all τ values can be better compared in the solution profiles for
0 ≤ x ≤ 1 and y = 0.5, see Fig. 6. Clearly, the new-DD solution with τ = 1
presents the biggest amount of overshoots at the left boundary, while the other
new-DD solutions produce qualitatively better solutions. As in the last example,
the new-DD solutions with τ = 10−5 and τT are practically the same and they
yield qualitatively excellent solutions.

3.4 2D Advection-Diffusion-Reaction Problem

Now, we examine an advection dominated problem that models a “rotating
pulse” [3,10], also with known exact solution but reaction term not null (σ = 2),
i.e., the artificial diffusion being defined in (8). This problem is particularly
interesting since the width of the internal transition layer is very thin (O(ε1/2))
and its alignment with the mesh elements is not constant. The exact solution,
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(b) Elevation and contour curve: DD solution with τ = 10−5.
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(c) Elevation and contour curve: DD solution with τT .
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(d) Elevation and contour curve: DD solution with τ = 1.

Fig. 7. Solutions of the “rotating pulse” problem for a mesh with 40×40 cells, τ = 10−5,
τT and τ = 1.
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shown in Fig. 7(a), depicts a circular region where u = 1 is separated by a sharp
transition from the rest of the domain, where u = 0. It is defined by

u =
1
2

+
1
π

arctg
[
1000(0.252 − (x − 0.5)2 − (y − 0.5)2)

]
. (11)

The problem, in the unit square domain, uses ε = 10−4, σ = 2, and the compo-
nents of the velocity field are

{
βx = −2(y − 1)

(
0.252 − (x − 0.5)2 − (y − 0.5)2

)
,

βy = 2(x − 1)
(
0.252 − (x − 0.5)2 − (y − 0.5)2

)
,

if 0 ≤ (x − 0.5)2 − (y − 0.5)2 ≤ 0.252, and βx = βy = 0 otherwise. The source
term f and Dirichlet boundary conditions are chosen appropriately to satisfy
(11). The new-DD solutions with τ = 10−5, τ = τT = max{‖f‖0,T , 10−5} and
τ = 1 are presented in Figs. 7(b)–7(c). In this example, observe that all new-
DD solutions are qualitatively similar. They can represent the region of high
gradient with moderate smearing and some small localized oscillations probably
related to the mesh pattern. Such issues can be better observed confronting the
level curves. Note that the impact of τ on the solutions is undetectable in this
problem.

4 Conclusions

This work focus on the stability and convergence properties of the new-DD
method developed and analyzed in [18], a consistent method that effectively
adds extra stability through a nonlinear operator acting in all scales of the dis-
cretization. This variant of the Dynamic Diffusion (DD) method [20] is defined
via a new design for the nonnegative, upper bounded nonlinear artificial diffusion
operator. In [18], it was theoretically proved that the new-DD method has a con-
vergence rate of O(h1/2) in the energy norm. Moreover, defining τ = 10−5, opti-
mal convergence rates in the L2(Ω), H1(Ω), and energy norms were numerically
shown for advection- and diffusion-dominated problems with smooth solutions.
Of note, this artificial diffusion relies on a problem dependent parameter that
plays a key role on its upper boundedness. Thus, focusing on those numerical
aspects, the objective here is a preliminary evaluation of how the new diffusion
operator impact the solution of 2D transport problems with smooth solutions
and in the presence of layers.

Our numerical experiments have shown that the new-DD method presents
robust stabilization and convergence properties, and the accuracy of the method
is not very sensitive to the choice of parameter τ . Specifically, here we considered
small constant values of τ , τ = 10−5, 0.1, 1, and also a locally defined problem-
dependent value, τ = τT = max{‖f‖0,T , 10−5}. The convergence rates were
obtained using both structured (Grid1) and unstructured (Grid2) meshes, for
the problem with smooth solution. We solved an advection dominated problem
with two internal layers, a reaction-diffusion problem characterized by dominance
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of reactive effects with also two boundary layers, and an advection dominated
problem that models a “rotating pulse”, where the width of the internal transi-
tion layer is very thin and its alignment with the mesh elements is not constant.
For all problems using the mesh pattern of Grid1, the new-DD solutions with
τ = 10−5 and τ = τT are practically the same and they yield qualitatively
excellent solutions. In particular, we noted that the impact of τ on the new-DD
solutions is undetectable in the “rotating pulse” problem. However, this is not
the case for the others two problems with sharp layers, where the impact of τ is
more significant. For instance, we have qualitatively better solutions using τ = 1
in the two internal layers problem. However, the reaction-diffusion solution with
τ = 1 presents the biggest amount of overshoots at the left boundary. Overall, we
consider that the new-DD method is robust for a wide scope of transport prob-
lems, showing potential for interesting future works. Possible extensions include
the use of mesh adaptivity and high order approximations as well as extension
for more involved problems, such as compressible and incompressible fluid flows.
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Vitória, ES, Brazil
ramoni.sedano@aluno.ufes.br
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Abstract. In this work we present a convergence study of the multi-
scale Dynamic Diffusion (DD) method applied to the three-dimensional
steady-state transport equation. We consider diffusion-convection and
diffusion-convection-reaction problems, varying the diffusion coefficient
in order to obtain an increasingly less diffusive problem. For both cases,
the convergence order estimates are evaluated in the energy norm and
the L2(Ω) and H1(Ω) Sobolev spaces norms. In order to investigate the
meshes effects on the convergence, the numerical experiments were car-
ried out on two different sets of meshes: one with structured meshes and
the other with unstructured ones. The numerical results show optimal
convergence rates in all norms for the dominant convection case.

Keywords: Dynamic diffusion method · Convergence estimate · 3D
transport equation

1 Introduction

Let Ω ⊂ R
3 be a bounded domain with a Lipschitz boundary Γ with an outward

unit normal n. The steady-state diffusive–convective–reactive transport problem
is described by

− κΔu + β · ∇u + σu = f in Ω, (1)
u = uD on Γ, (2)

where u represents the quantity being transported, κ > 0 is the diffusivity coef-
ficient, β ∈ [L∞(Ω)]3 is the velocity field such that ∇ · β = 0, σ ≥ 0 is the
reaction coefficient, f ∈ L2(Ω) is the source term and uD ∈ H1/2(Γ ).
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This equation plays an important role in many study fields such as dispersal
of pollutants [1], chemical reaction [2], deterministic and continuous population
models in ecology and economy [3], flow of large crowds of pedestrians [4], trickle-
bed reactors that are employed in hydrotreatments and hydrocracking reactions
in the petrochemical processing industries to the environmental detoxification
of exhaust gases and polluted wastewaters from chemical plants [5], petroleum
wellbore stability [6]. Due to the difficulty of solving analytically the mathe-
matical models related to those applications, several numerical methods, such
as finite differences, finite elements, finite volumes and boundary elements, have
been developed to obtain approximate solutions of problem (1)–(2) [7].

In the context of finite element methods, the usual approach to cope with
the instabilities caused by the convection (or reactive) term is to add extra
operators to the standard Galerkin formulation with the aim of increasing the
stability of the approximate solution. In general, these new formulations involves
the Galerkin method coupled with two operators, one defining linear stabilized
formulations and the other nonlinear, the so-called shock-capturing term. Some
well-known linear stabilized formulations are the Streamline Upwind Petrov-
Galerkin (SUPG) method [8], the Galerkin-Least Square (GLS) method [9], the
Unusual Finite Element Method (USFEM) [10], the Continuous Interior Penalty
(CIP) method [11] and the Local Projection Stabilization (LPS) [12]. Although
all these linear methods present stable global solutions, non-negligible spuri-
ous oscillations are often present in the neighborhood of sharp layers. In order
to recover the monotonicity properties of the continuous problem, precluding
under/overshoots in the boundary layers, one can resort to the nonlinear sta-
bilized methods. See [13,14] for an excellent review about classical nonlinear
shock-capturing schemes.

The linear stabilized methods, such as SUPG, GLS, CIP and LPS, using
linear interpolation, present convergence estimates with theoretical order of
O(h3/2) and O(h) in the norms of the Sobolev spaces, L2(Ω) and H1(Ω), respec-
tively, where h is the mesh size parameter [9,11,12,15]. The estimate in H1(Ω) is
optimal, whereas in L2(Ω) is sub-optimal, leaving a gap of O(h1/2) in the order
of convergence in the L2-norm. According to [16], in general, shock-capturing
schemes exhibit a priori error estimates of O(h1/2) for linear interpolants and
using a mesh dependent norm, although some nonlinear methods are designed to
present better convergence estimates, such as the methods presented in [17,18].

Another class of methods for solving convection dominated problems is based
on the variational multiscale (VMS) framework, introduced by Hughes et al. in
[19,20]. In particular, we mention the nonlinear two-scales formulations devel-
oped in [21–26]. These two-scales methods consists of adding locally and dynam-
ically a nonlinear artificial diffusion either on the subgrid scale [24,25] or on
both scales [21,26], in order to achieve stability of the numerical solution. This
methodology has been applied for solving 2D problems, such as scalar trans-
port equations, compressible and incompressible flow problems, obtaining good
results [22,23,26]. In [27] the nonlinear two-scale method proposed in [21,26],
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called the Dynamic Diffusion (DD) method, was applied for solving 3D scalar
transport equations with convection dominant.

The numerical analysis of the DD method shares the difficulties of classical
nonlinear shock-capturing methods. In [28] is presented a numerical analysis of a
variant of the DD method, obtaining a theoretical convergence estimate of order
O(h1/2) in the energy norm, although the numerical experiments show optimal
convergence in the L2(Ω) and H1(Ω) norms. In [26], a numerical study of the
convergence estimates of the DD method, in the solution of two-dimensional
problems, was carried out, obtaining optimal convergence rates on the L2(Ω)
and H1(Ω) norms. This study is extended here for three-dimensional problems.

The aim of this work it to present a convergence study of the DD method
when it is applied for solving 3D problems. We evaluated the convergence order
estimates in the energy norm and the norms of the Sobolev spaces, L2(Ω) and
H1(Ω), considering two transport equations for both, convection and diffusion
dominant regimes. The numerical experiments was carried out on two different
sets of meshes in order to investigate the mesh effects on the convergence order.

The remainder of this work is organized as follows. In Sect. 2 we present the
numerical formulation of the DD method. In Sect. 3 the numerical experiments
are conducted and the conclusions of the this paper are described in Sect. 4.

2 Dynamic Diffusion Method

The DD method is a nonlinear multiscale method that consists of adding a
nonlinear artificial diffusion operator acting on both scales of the discretiza-
tion [21,26]. The multiscale method is proposed by defining the enriched spaces
SE and VE , spaces of admissible functions and test functions, as SE = Sh ⊕
SB and VE = Vh ⊕ SB, where

Sh = {uh ∈ H1(Ω) : uh|Ωe
∈ P1(Ωe),∀Ωe ∈ Th, uh = g ∈ Γ},

Vh = {vh ∈ H1(Ω) : vh|Ωe
∈ P1(Ωe),∀Ωe ∈ Th, vh = 0 ∈ Γ}

are the discrete spaces of the Galekin method for linear tetrahedral elements
(see [27] for more details), and SB is the space spanned by bubble functions.
By denoting Nb ∈ H1

0 (Ωe) as the bubble function defined in each element Ωe,
we define SB |Ωe

= span(Nb) and SB = ⊕|Ωe
SB|Ωe

for all Ωe in Th. Here, we
use Nb = 256N1(x, y, z)N2(x, y, z)N3(x, y, z)N4(x, y, z), where Nj is the local
interpolation function associated with the nodal point j of the element Ωe [29].

The DD method can be statement as: find u = uh + ub ∈ SE , with uh ∈ Sh

and ub ∈ SB, such that,

A(u, v) + ADD(uh;u, v) = F (v), (3)

for all v = vh + vb ∈ VE , with vh ∈ Vh and vb ∈ SB, where

A(u, v) =
∫

Ωe

κ∇u · ∇v + (β · ∇u)v + σuv dΩe,
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ADD(uh;u, v) =
∫

Ωe

τDD(uh)∇u · ∇v dΩe,

F (v) =
∫

Ωe

fv dΩe.

In the nonlinear operator ADD(uh; ·, ·), the function τDD(uh) represents the
amount of artificial diffusion and is defined as

τDD(uh) =

{
μ(h) |R(uh)|

‖∇uh‖ , if ‖∇uh‖ > 0,

0, otherwise,
(4)

where
R(uh) = −κΔuh + β · ∇uh + σuh − f (5)

is the residue of the resolved scale of the equation, calculated in the barycenter
of the element Ωe. The symbol | · | represents the module of a real number and
‖ · ‖ is the Euclidean norm. The parameter μ(h) is given by

μ(h) =

{
3
4

(
3
√

Ve + ‖βB‖
‖B‖

)
, if Ωe ∩ Γ+ 
= ∅,

‖βB‖
2‖B‖ , otherwise,

with

βB =
|R(uh)|
‖∇uh‖2 ∇uh and B = βB

∂ξ

∂x
,

where Ve is the volume of the element Ωe, Γ+ = {x ∈ Ωe;β · n > 0} is the
outflow part of Γ , n is the unit outward normal vector to the boundary Γ ,
x = (x, y, z) ∈ Ω and ξ = (ξ, η, ζ) is the vector whose components are the
standard variables.

The method is solved by using an iterative procedure defined as: given un,
we find un+1 ∈ SE satisfying

A(un+1, v) + ADD(un
h;un+1, v) = F (v), ∀v ∈ VE , (6)

where the initial solution is u0 = 0.
To improve convergence, we consider the weighting rule τDD(un+1

h ) =
wτ̃DD(un+1

h ) + (1 − w)τDD(un
h), with w = 0.5 and τ̃DD(un+1

h ) calculated using
the expression (4). The Eq. (6) results in the following local system of algebraic
equations, associated with each element Ωe,[

Ae
hh Ae

bh

Ae
hb Ae

bb

] [
Ue

h

Ue
b

]
=

[
F e

h

F e
b

]
, (7)

where the local matrices and vectors in Eq. (7) are defined as follow,

Ae
hh :

∫
Ωe

((
κ + τDD(uh)

)∇uh · ∇vh + (β · ∇uh)vh + σuhvh

)
dΩe;

Ae
bh :

∫
Ωe

(
(β · ∇ub)vh + σubvh

)
dΩe; F e

h :
∫

Ωe

fvh dΩe;
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Ae
hb :

∫
Ωe

(
(β · ∇uh)vb + σuhvb

)
dΩe; F e

b :
∫

Ωe

fvb dΩe;

Ae
bb :

∫
Ωe

((
κ + τDD(uh)

)∇ub · ∇vb + σubvb

)
dΩe;

and Ue
h and Ue

b are the vectors that store the variables uh|Ωe
and ub, respectively.

Performing a static condensation to eliminate the unknowns Ue
b at each element,

the system (7) can be written in terms of the macro solution Ue
h, as follows,

(
Ae

hh − Ae
bh(Ae

bb)
−1Ae

hb

)
Ue

h = F e
h − Ae

bh(Ae
bb)

−1F e
b . (8)

Assembling all local systems (8), calculated on each element Ωe, we obtain
the global system,

[Ah(Un
h )]Un+1

h = Fh, (9)
U0

h = 0. (10)

We solved the problem (9)–(10) using the nonlinear scheme described in
Algorithm 1 that is based on the damping algorithm given in John and
Knobloch [14]. The linear systems are solved by the Generalized Minimal Resid-
ual (GMRES) method [30].

When calculating an approximate solution, we are concerned with the accu-
racy of that solution obtained. The error e is defined as the difference between
the exact solution and the approximate solution, e(x) = ue(x) − uh(x). Nor-
mally, the a priori error estimate, measured in an appropriate norm ‖·‖∗, follows
the form

‖e‖∗ ≤ Chp, (11)

where h is mesh parameter, C is a constant that depends on the data of the
problem and p represents the convergence rate with respect to the norm ‖·‖∗ [31].
The error estimates are calculated using the L2(Ω), H1(Ω) and energy norms,
which are defined by

‖e‖2L2(Ω) =
∫

Ω

|e|2dΩ, ‖e‖2H1(Ω) = ‖e‖2L2(Ω) + ‖∇e‖2L2(Ω),

‖e‖2E = σ‖e‖2L2(Ω) + κ‖∇e‖2L2(Ω).

The H1 and energy norms provide similar measures of the error under certain
conditions, but as the H1 norm does not depend on the problem, it is more
convenient in some situations.

Using piece-wise linear basis function, the Galerkin finite element method
presents, for ue ∈ H2(Ω), the following a priori error estimates: ‖e‖L2(Ω) ≤ Ch2

and ‖e‖H1(Ω) ≤ Ch, whereas most linear stabilized methods present ‖e‖L2(Ω) ≤
Ch3/2 and ‖e‖H1(Ω) ≤ Ch [9,11,12,15].
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Algorithm 1: Nonlinear algorithm

Data: u0
h := 0; r0 := ‖f‖; wmin := 0.01; wmax := 1.0;

c1 := 1.001; c2 := 1.1; c3 := 1.001; c4 := 0.9;
Result: Solution uh of the system (9)-(10).

1 w := wmax; k := 0; er := r0;
2 while er > Tol and k < MaxIter do
3 compute ũk+1

h satisfying Eq. (9);
4 firstDamp := 1; aux := 1;
5 while aux = 1 do
6 uk+1

h := uk
h + w(ũk+1

h − uk
h);

7 compute residual rk+1 using Eq. (5);
8 if rk+1 < rk or w ≤ c1wmin then
9 if rk+1 < rk and firstDamp = 1 then

10 wmax := min(1, c3wmax);
11 w := min(wmax, c2w);
12 end
13 aux := 0;
14 else
15 w := max(wmin, w/2);
16 if firstDamp = 1 then
17 wmax := max(wmin, c4wmax);
18 firstDamp := 0;
19 end
20 end
21 end
22 compute absolute error er = ‖uk+1 − uk‖;
23 k = k + 1;
24 end

In order to evaluate numerically the convergence rate, p, given in (11), we
define the function E(h) = Chp and plot the graph of log E = p log h + log C in
terms of log h, resulting in a straight line whose slope is p. Thus, for h sufficiently
small, a plot of log ‖e‖∗ versus log h will give a straight line with slope equal to
p. The 3D integrals present in the definition of ‖ ·‖L2(Ω), ‖ ·‖H1(Ω) and ‖ ·‖E are
solved numerically using Gaussian quadrature considering tetrahedral elements
whose weights and points are described in [32].

3 Numerical Experiments

In this section, we obtain the convergence rates for a diffusion-convection prob-
lem and for a diffusion-convection-reaction problem in a unit cube, considering
two set of meshes generated and refined using Gmsh [33]: GRID 1 (structured
meshes), generated by dividing for 4, 8, 16, 32, 64 parts in each direction; and



68 R. Z. S. Azevedo et al.

GRID 2 (unstructured meshes), generated by starting with the value of the ele-
ment size factor at 0.25 in the 8 points that generate the domain and dividing
by 2 to obtain a new, more refined mesh. Table 1 shows the number of nodes
and elements for all meshes.

Table 1. Size of the meshes using in the experiments.

(a) GRID 1

Meshes Nodes Elements

M1 125 384

M2 729 3072

M3 4913 24576

M4 35937 196608

M5 274625 1572864

(b) GRID 2

Meshes Nodes Elements

M6 141 373

M7 685 2564

M8 4014 18932

M9 27458 148982

M10 200742 1169024

The mesh Péclet number, Pe = ‖β‖h
2κ , expresses the relationship between

convective and diffusive effects on a mesh with size h. It indicates if the numerical
solution is convection or diffusion-dominated. When Pe > 1 or κ < ‖β‖h

2 the
numerical approximation is convection-dominated or the mesh is too coarse. In
this case the Galerkin finite element method may present unphysical solution in
problems with boundary and internal layers, requiring a stabilization scheme.
When Pe ≤ 1 the numerical solution is diffusion-dominated and the classical
Galerkin finite element methods perform well.

Table 2. Mesh Péclet numbers in the meshes.

Meshes Mesh Péclet numbers (Pe)

κ = 1 κ = 10−3 κ = 10−6

GRID 1 M1 1.19 × 10−1 1.19 × 102 1.19 × 105

M2 5.95 × 10−2 5.95 × 101 5.95 × 104

M3 2.97 × 10−2 2.97 × 101 2.97 × 104

M4 1.48 × 10−2 1.48 × 101 1.48 × 104

M5 7.44 × 10−3 7.44 × 100 7.44 × 103

GRID 2 M6 1.67 × 10−1 1.67 × 102 1.67 × 105

M7 8.44 × 10−2 8.44 × 101 8.44 × 104

M8 4.64 × 10−2 4.64 × 101 4.64 × 104

M9 2.25 × 10−2 2.25 × 101 2.25 × 104

M10 1.10 × 10−2 1.10 × 101 1.10 × 104

This error estimates study considers different values of Pe. The mesh size is
defined as h = 3

√
V , where V = max{Ve} is the volume of the largest element
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of the mesh. In both problems, β = (1, 1, 1)T . Therefore, the problems studied
here vary the value of κ having a problem of dominant diffusion when κ = 1 and
dominant convection when κ = 10−3 and κ = 10−6. Table 2 shows the Pe for
the thickest and most refined mesh of each set of mesh types. As one can see,
for dominant diffusion problem (κ = 1), Pe < 1 and for dominant convection
problems (κ = 10−3 and κ = 10−6), Pe > 1 and the value of Pe increases when
κ decreases.

Figure 1 presents the structured mesh M3 and the unstructured mesh M8. In
Fig. 1a (structured mesh) the elements have the same size and are distributed
in an organized way, whereas in Fig. 1b (unstructured mesh) the elements have
similar sizes but are not organized.

Fig. 1. Visualization of the two types of meshes used.

The computational code was developed in C language in a computer with the
following characteristics: Intel Corel i5−2450M , CPU 2.50 GHz ×4 and 8 GB of
RAM. The linear systems are solved with the GMRES method considering 50
Krylov vectors to restart, ILU(1) preconditioner, the maximum number of 100
cycles and a tolerance of 10−7. For the nonlinear algorithm we use a tolerance
of 10−3 and maximum number of iterations of 300. Due to the difficulty of
visualizing solutions in three-dimensional domains, we present the solutions on
the line passing through the cube diagonal, that is, a line that passes through
points (0, 0, 0) and (1, 1, 1).

3.1 Diffusion-Convection (DC) Problem

Consider a DC problem in the unit cube Ω =]0, 1[3 with a smooth exact solution
given by u(x, y, z) = sin(πx)sin(πy)sin(πz) and coefficients, β = (1, 1, 1)T ,
σ = 0, κ ∈ {1, 10−3, 10−6}, so that the source term and the Dirichlet boundary
conditions satisfy the exact solution.
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Figures 2 and 3 show the solutions obtained by the DD method on all meshes,
for each κ ∈ {1, 10−3, 10−6}. In terms of convergence, the results obtained for
the GRID 1, Fig. 2, and for the GRID 2, Fig. 3, are similar. Although the DD
solutions on the coarsest meshes (M1 for GRID 1 and M6, M7 for GRID 2)
are not quite accurate, when the meshes are refined, the solutions approach the
exact solution, for all values of κ.

Fig. 2. Solution of DC problem at the cube diagonal – κ = 1, 10−3, 10−6 – GRID 1

Fig. 3. Solution of DC problem at the cube diagonal – κ = 1, 10−3, 10−6 – GRID 2.
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Figures 4, 5 and 6 present the convergence rates in the L2(Ω), H1(Ω) and
energy norms for GRID 1 and 2 considering κ = 1, 10−3 and 10−6, respectively.
In the convection-dominated case, shown in Fig. 5 (κ = 10−3) and Fig. 6 (κ =
10−6), optimal convergence rates are obtained for all set of meshes in both norms,
L2(Ω) and H1(Ω). In the diffusion dominated case, Fig. 4 (κ = 1), also optimal
convergence rates are obtained in the H1(Ω) norm for both grids, whereas the
L2(Ω) norm presents a rate higher than the suboptimal one.

Fig. 4. Convergence rates considering the DC problem with κ = 1.

For the DC problem, σ = 0 and the energy norm satisfies ‖e‖E =√
κ‖∇e‖L2(Ω) =

√
κ|e|H1(Ω), where | · |H1(Ω) is the usual semi-norm of the space

H1(Ω) and which presents the same convergence rate of the H1(Ω) norm, for
solutions u ∈ H1

0 (Ω), as shown in Figs. 5, 6 and 4.

Fig. 5. Convergence rates considering the DC problem with κ = 10−3.

When κ = 1, Fig. 4, the error in the H1(Ω) norm is slightly greater than
the error in energy norm, so that graphically, the two lines are superimposed
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and look like a single line. As κ decreases, the energy norm error also decreases,
which causes its convergence rate line to move away from the H1(Ω) norm rate
line, but with the same slope (convergence rate), according to Figs. 5 and 6.

Fig. 6. Convergence rates considering the DC problem with κ = 10−6.

3.2 Diffusion-Convection-Reaction (DCR) Problem

In this experiment, we consider a DCR problem, defined in Ω =]0, 1[3, with a
smooth exact solution, u(x, y, z) = 100xyz(1 − x)(1 − y)(1 − z) and coefficients,
β = (1, 1, 1)T , σ = 1, κ ∈ {1, 10−3, 10−6}, so that the source term and the
Dirichlet boundary conditions satisfy the exact solution.

Fig. 7. Solution of DCR problem at the cube diagonal – κ = 1, 10−3, 10−6 – GRID 1.
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Figures 7 and 8 present the DD solutions and the exact solution to the DCR
problem considering κ = 1, 10−3, 10−6, respectively, for both set of meshes. As
one can see for GRID 1 and GRID 2 the behavior of the DD solutions for DCR
problem are very similar with those obtained for DC problem. In general, the
DD solutions are closer to the exact solution when the mesh is refined.

Fig. 8. Solution of DCR problem at the cube diagonal – κ = 1, 10−3, 10−6 – GRID 2.

Fig. 9. Convergence rates considering the DCR problem with κ = 1.

Figures 9, 10 and 11 present the convergence rates in the L2(Ω), H1(Ω) and
energy norms for GRID 1 and 2, respectively, considering κ = 1, 10−3, 10−6 for
the three dimensional DCR problem. The convergence rates present a behavior
similar to the case of the CD problem: convection dominant problems obtained
optimal rates for all set of meshes, whereas for diffusion dominated case, the
L2(Ω) norm presents a rate higher than the suboptimal one for both grids.
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When κ = 1 the energy norm is precisely the H1(Ω) norm, which can be
seen in Fig. 9. When κ = 10−6, the zero-order term outweighs the first-order
term so that the energy norm is close to the L2(Ω) norm, as shown in Fig. 11.
When κ = 10−3, the contribution of the term containing the gradient of the
error affects the convergence rate. Thus, the rate presented by the energy norm
is of order O(h1.5).

Fig. 10. Convergence rates considering the DCR problem with κ = 10−3.

Fig. 11. Convergence rates considering the DCR problem with κ = 10−6.

4 Conclusions

This work presents a convergence rate evaluation of the DD method applied
to the three-dimensional stationary transport equation, considering diffusion-
convection and diffusion-convection-reaction problems. Experiments were carried
out when diffusion was dominant, κ = 1, and when convection was dominant,
κ = 10−3 and κ = 10−6, considering two set of meshes: one structured and
another unstructured.
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In both problems we observed that when the convection is dominant, the
method presented an optimal convergence in L2(Ω) norm, i.e., O(h2) and in
H1(Ω) norm, i.e., O(h1). However, when the diffusion is dominant, the method
presented a rate higher than the suboptimal one in L2(Ω) norm, i.e., approxi-
mately O(h1.8) and an optimal convergence in H1(Ω) norm, i.e., O(h1).

The energy norm presented the behavior that was expected. In the DC prob-
lem, it presented a convergence rate equal to the rate of the H1(Ω) norm, O(h1),
whereas for the DCR problem, the convergence rate varies according to the κ
variation, agreeing with the H1(Ω) and L2(Ω) result for κ = 1 and κ = 10−6.
When κ = 10−3, it presented a convergence rate in the order O(h1.5).

As a future work, we will apply this methodology to solve three-dimensional
transient transport problems and also to investigate the convergence rates in
suitable norms.
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Abstract. This research examines and compares the construction of
protein-protein interaction (PPI) networks of CD4+ and CD8+T cells
and investigates why studying these cells is critical after HIV infection.
This study also examines a mathematical model of fractional HIV infec-
tion of CD4+T cells and proposes a new numerical procedure for this
model that focuses on a recent kind of orthogonal polynomials called
discrete Chebyshev polynomials. The proposed scheme consists of reduc-
ing the problem by extending the approximated solutions and by using
unknown coefficients to nonlinear algebraic equations. For calculating
unknown coefficients, fractional operational matrices for orthogonal poly-
nomials are obtained. Finally, there is an example to show the effective-
ness of the recommended method. All calculations were performed using
the Maple 17 computer code.

Keywords: Protein-protein interaction network · HIV infection of
CD4+T · Discrete Chebyshev polynomials · Fractional calculus ·
Absolute errors

1 Introduction

A lentivirus, the human immunodeficiency virus (HIV), causes acquired immun-
odeficiency syndrome (AIDS). HIV infection is distinguished by alterations in
the function of T cells and homeostasis and the extreme heterogeneity between
infected people and those untreated. On average, most patients infected with
HIV develop AIDS in 10 to 20 years. Variations in HIV infection clinical out-
comes may be due to genetic differences in HIV strains, host genetic differences,
or differences in virus-specific inflammatory responses. The first HIV case was
confirmed in 1980. Due to the latest count, more than 35 million people have
died as a result of HIV, and over 37 million people have this virus in their bodies,
posing a threat to the rest of the world. They will also convey this danger by
mother-to-child transfer, unsafe sex, and other ways.
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There have already been several mathematical models developed to research
the within-host dynamics of HIV infection [4,19,30]. Virus-to-cell infection was
the focus of the majority of these models. Direct cell-to-cell transmitting is also
a possibility for the virus to spread. An ODE model of HIV virus spread in a
well-mixed compartment like the bloodstream, was proposed by Perelson [23,24].
Within the field of mathematical modeling of HIV infection, this model has had
a noteworthy effect. Other several approaches have been suggested based on
Perelson model [1,3,8,10,11,13,16,21,26,29,31]. However, most HIV infection
modeling research has focused on integer-order ordinary differential equations
[5,14,22,32].

Fractional calculus (FC) has recently been widely used in a variety of fields.
Plenty of applied scientists and mathematicians have attempted to use fractional
calculus to model real-world processes. Fractional kinetics in complex systems,
reported in [17]. The dynamics of the fractional-order in botanical impedances
were studied in [12]. A mathematical fractional-order model of human root dentin
was presented in [25].

In biology, it has been determined that biological organisms’ cell membranes
have fractional-order electrical conductance, which is then categorized into non-
integer order models. Fractional derivatives represent basic characteristics of cell-
rheological conduct and have had the best achievement in the area of rheology [7].
Furthermore, it has been demonstrated that the behavior modeling by fractional
ordinary differential equations (FODE) for the vestibule oculomotor neurons has
more benefits than the classical integer-order modeling [2]. FODE is intrinsically
linked to systems found in all biological systems. They are also associated with
fractals, which are normally found in biological systems. In this study, we propose
a FODE system for modeling HIV and a numerical method for solving it.

The following is the paper’s structure. The primary objective of selecting
FODE for modeling HIV infection of CD4+T cells is described in Sect. 2. In fact,
in this section, we present and compare the protein-protein interaction network of
cell infection. In Sect. 3, the mathematical model will be outlined. The formula-
tion of the DCPs and their properties are covered in Sect. 4. The numerical solu-
tion of HIV infection of CD4+T cells is discussed in Sect. 5. Section 6, describes
illustrative examples that show the DCP’s superiority. Finally, in Sect. 7, the
main concluding remark is summarized.

2 Comparison Protein-Protein Interaction Networks
CD4+T and CD8+T

CD4+T lymphocytes are a kind of white blood cell as well as a lymphocyte.
A helper T cell is also known as a T cell that assists other cells. CD4+T cells
primarily serve as a type of T cell that helps other T cells resist virus infection,
while CD8+ cells are widely distributed on the surface of suppressor and cyto-
toxic T lymphocytes during HIV infection. The researchers concluded that HIV
infection caused severe immune system problems, including the loss of CD4+T
cells and a reduction in the CD4+

CD8+ T cell ratio.
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In the peripheral group of healthy adults, the CD4+

CD8+ T ratio is about 2:1, and
an abnormal ratio may signify disorders related to autoimmunity or immunod-
eficiency. An inverted CD4+

CD8+ T ratio (i.e., less than 1
1 ) means that the immune

system is compromised. As a result, it is critical to look into the differences
between CD4+ and CD8+T cells at various stages of HIV infection.

AIDS is caused by the pathogen HIV, which is well-known. The researchers
reasoned that analyzing the differences in mutual differentially expressed genes
between CD4+ and CD8+Tcells at different phases of disease would reveal more
about HIV.

Few studies examine the systemic features of CD4+T cells at various levels
of HIV infection or the differences between CD4+ and CD8+T cells at the same
level. And this topic is beyond the scope of this article’s discussion. In this study,
we simply compare and contrast the construction of protein-protein interaction
(PPI) networks in CD4+ and CD8+T cells after HIV infection. We investigate the
overlapping differentially expressed genes in CD4+ cells and those in CD8+T cells
in two PPI networks and compare two PPI networks Fig. 1, to comprehend the
differentially expressed between CD4+ and CD8+ from a network perspective.

Fig. 1. PPI network constructed in CD8+T cells (right) and CD4+T cells (left)

The amount of overlapping of different expressed genes in each cell type is
extremely high, and the two PPI networks shown in Fig. 1 are far too convo-
luted to provide significant network information. As a result, we compare the
functional modules from each PPI network in separate networks to assess the
differences between two HIV-infected cells, respectively (Figs. 2, 3). The immune
responses of CD4+ and CD8+T cells at various stages after HIV infection are
diverse, as shown in Figs. 2, 3.According to research, specific CD8+T cells play a
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key role in directly combating HIV infection, while CD4+T cells primarily serve
to support CD8+T cells.

Fig. 2. (a-c) Function modules obtained by the PPI network in CD8+T cells.

Fig. 3. (a-c) Functional modules obtained by the PPI network in CD4+T cells.

It has been validated by comparing networks and prior research that CD4+T
cells undergo gradual depletion after HIV infection and that virus reproduction
(more than 99 %) happened primarily in CD4+T cells in the peripheral blood and
lymphoid tissue. HIV infection can also stop CD4+T cells from proliferating. As
a consequence, HIV is a retrovirus that primarily infects CD4+T cells. CD4+T
cells will develop new virions after being infected, leading to more cell infection
and viral development (See Fig. 4). Therefore, for researchers, studying these
cells is critical. We want to introduce a mathematical model of fractional HIV
infection of CD4+T cells and find a numerical solution for it in this work.
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Fig. 4. HIV virus invades Tcell.

3 Mathematical Model Information

In the following, definitions of the Caputo and Riemann-Liouville fractional inte-
gral and derivative are discussed [20,28].

Definition 1. Let α > 0. The Riemann-Liouville fractional integration of order
α is defined as

(Iαf) (t) =

⎧
⎨

⎩

1
Γ (α)

∫ t

0

f(z)dz

(t − z)1−α , α > 0,

f(t), α = 0.

Definition 2. Let α > 0 and n is an integer. The Caputo fractional derivative
of order α, is described as

Dαf(t) =

⎧
⎪⎨

⎪⎩

1
Γ (n − α)

∫ t

0

f(n)(z)
(t − z)α−n+1

dz, t > 0, 0 ≤ n − 1 < α < n,

dnf(t)
dtn

, α = n ∈ N.

Now we present the HIV infection model in CD4+T cells with fractional-
order. The following FODE is used to characterize the new system:

DαT = q − ηT + rT (1 − T+1
Tmax

) − kV T,

DαI = kV T − βI,
DαV = μβI − γV,

(1)

where T (0) = r1, I(0) = r2, V (0) = r3, 0 ≤ t ≤ R < ∞.
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Where V (t), I(t), and T (t) represent free HIV particles within the blood,
CD4+T cells contaminated by HIV, and the concentration of susceptible CD4+T
cells, respectively. R is any positive constant. The terms η, γ, and β indicate the
normal circulation rates of non-infected T cells, virus particles, and infected T
cells, respectively. 1 − T+1

Tmax
depicts the logistic growth of healthy CD4+T cells

while ignoring the proliferation of infected CD4+T cells. The term KV T reflects
the occurrence of HIV infection of healthy CD4+T cells when k > 0 is the
infection rate. During its lifetime of CD4+T cell, each infected CD4+T cell is
expected to generate l virus particles. The body is attempted to make CD4+T
cells at a constant rate q from precursors in the bone marrow and thymus.
Whenever T cells are stimulated by antigen or mitogen, they multiply at a rate
of r via mitosis. The maximum CD4+T cell concentration in the body is denoted
by Tmax.

4 Preliminary Remarks

4.1 Discrete Chebyshev Polynomials

We will focus our attention in this section on the fundamental definition, formu-
lation, and characteristics of a large family of orthogonal polynomials namely
discrete Chebyshev polynomials introduced by P.L. Chebyshev [9,18].

Definition 3. The discrete Chebyshev polynomials Cn,N (x) are defined as

Cn,N (x) =
n∑

k=0

(−1)k

(
n + k

n

)(
N − k
n − k

)(
x
k

)

, n = 0, 1, ..., N, (2)

where N be a positive integer number.

The discrete Chebyshev polynomials set {Cn,N , n = 0, 1, ..., N} are orthogo-
nal on [0, N ] according to the following discrete norm:

〈f, g〉 =
N∑

r=0

f(r)g(r). (3)

These polynomials have the following orthogonality property:

〈Cm,N , Cn,N 〉 =
N∑

r=0

Cm,N (r)Cn,N (r) = ξnδmn,

where δmn is the Kronecker delta and ξn is introduced by the following relation:

ξn =
(N + n + 1)!

(2n + 1)(N − n)!(n!)2
. (4)

By using (2), the analytical form of Cn,N (t) can be obtained as:

Cn,N (t) =
n∑

k=0

aj,nxk, n = 0, 1, ...N, (5)
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where

aj,n =
n∑

r=j

(−1)r

(
n + r

n

)(
N − r
n − r

)

s(r, i)

r!
. (6)

and s(r, i) is a Stirling numbers of the first kind [27].

4.2 Shifted Discrete Chebyshev Polynomials

We construct the shifted discrete Chebyshev polynomials (SDCPs) by changing
the variable x = Nt for using the discrete Chebyshev polynomials over [0, 1].
Let nth SDCPs (i.e. Cn,N (Nt)) to be marked by Sn,N (t). The set of SDCPs
{Sn,N , n = 0, 1, ..., N} are then orthogonal on [0, 1] according to the discrete
norm as follow:

〈f, g〉∗ =
N∑

r=0

f
( r

N

)
g

( r

N

)
. (7)

The property of orthogonality for SDCPs is described by:

〈Sm,N (t),Sn,N (t)〉∗ =
N∑

r=0

Sm,N

( r

N

)
Sn,N

( r

N

)
= ξnδmn, (8)

where ξn was introduced in (4).

Let f(t) defined on [0, 1]. f(t) can be expanded by the SDCPs as follows:

f(t) �
N∑

i=0

ciSi,N (t) = CT Ψ(t), (9)

where C and Ψ(t) are (N + 1) vectores given by

CT = [c0, c1, ..., cN ]T , (10)

Ψ(t) = [S0,N (t),S1,N (t), ...,SN,N (t)]T , (11)

and the coefficients ci can be obtained by the following expression:

ci =
〈f(t),Si,N (t)〉∗

ξi
, i = 0, 1, ...N. (12)
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Operational Matrices:

In the follow-up, explicit formulas for operational matrices of Riemann-Liouville
fractional integration for SDCPs are provided. In addition, the SDCPs vector’s
product operating matrix is calculated.

Lemma 1. [15] The inner product of the Sn,N (t) and tr, indicated by λ(n, r),
can be calculated for a positive integer r as follows:

λ (n, r) =
1

Nr

N∑

j=0

n∑

k=0

aj,njk+r, (13)

where aj,n is introduced in (6).

Theorem 1. [6,15] Assume that Ψ(t) is the SDCPs vector specified in (11).
Then, its Riemann-Liouville fractional integral of order α is

IαΨ(t) = P(α)Ψ(t), (14)

where P(α) is fractional integral operational matrix and

P(α)
i,j =

N∑

j=0

(
i∑

k=0

ak,Nλ(k + α, j)α(k + 1)
α(k + α + 1)

)

, i, j = 1, 2, ..., N + 1. (15)

Theorem 2. [6,15] Consider that Ψ(t) is the SDCPs vector specified in (11)
and Q be an arbitrary (N + 1) vector. Then

Ψ(t)ΨT (t)Q = Q̃Ψ(t), (16)

where Q̃ is the (N + 1) × (N + 1) product operational matrix and

Q̃i+1,j+1 =
1
ξj

N∑

k=0

Qk 〈Sk,N (t)Si,N (t),Sj,N (t)〉∗, i, j = 0, 1, ..., N.

5 The Numerical Method

SDCPs are used to approximate the solution of fractional HIV infection of
CD4+T cells, In this section. Consider the FODE (1) and DαT (t),DαI(t) and
DαV (t) involved in, as follows:

DαT (t) � FT Ψ(t), DαI(t) � GT Ψ(t), DαV (t) � HT Ψ(t), (17)

where Ψ(t) is the SDCPs vector specified in (11). Furthermore, F,G,H are
unknown vectors that should be determined. By using of fractional Riemann-
Liouville operator Iα, we have:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T � IαFT Ψ(t) +
m−1∑

k=0

T (k)(0) tk

k! = FT P(α)Ψ(t) + d1Ψ(t),

I � IαGT Ψ(t) +
m−1∑

k=0

I(k)(0) tk

k! = GT P(α)Ψ(t) + d2Ψ(t),

V � IαHT Ψ(t) +
m−1∑

k=0

V (k)(0) tk

k! = HT P(α)Ψ(t) + d3Ψ(t),

(18)

where P(α) is the fractional operational matrix of SDCPs vector derived in (14).
Substituting (17)–(18) in FODE (1), we have the following residual functions

as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1(t) � (FT Ψ(t)) − q − η(FT P(α)Ψ(t) + d1Ψ(t)) + r(FT P(α)Ψ(t) + d1Ψ(t))
(1 − (F T P(α)Ψ(t)+T (0))+1

Tmax
) − k(HT P(α)Ψ(t) + d2Ψ(t))(FT P(α)Ψ(t) + d1Ψ(t)),

E2(t) � (GT Ψ(t)) − k(HT P(α)Ψ(t) + d2Ψ(t))(FT P(α)Ψ(t) + d1Ψ(t)+
β(GT P(α)Ψ(t) + d3Ψ(t)),

E3(t) � (HT Ψ(t)) − μβ(GT P(α)Ψ(t) + d3Ψ(t)) + γ(HT P(α)Ψ(t) + d2Ψ(t)).
(19)

Now, to find the solution T (t), I(t) and V (t), we must first collocate the residual
functions Ei(t), i = 1, 2, 3 at the N+1 points. We use roots of shifted Chebyshev
polynomials to find appropriate collocates, as shown below:

Ei(tj) = 0, i = 1, 2, 3, j = 1, 2, ...N + 1. (20)

Solve the system of algebraic equations to achieve unknown coefficients of
the vectors F, G, H. Finally, we obtain the numerical solution by inputting the
acquired vectors F, G, H in Eq. (1).

6 Computational Results and Comparisons

The effectiveness of the shifted discrete chebyshev polynomials method for solv-
ing fractional HIV infection of CD4+T cells is proved in this section. In the
following, one example is given to demonstrate the properties of the new model.

– SDCPM = Shifted discrete chebyshev polynomials method
– All computations are carried out using MAPLE 17 with 16 digits precision

In the t ∈ [0, 1], we used the described method for FODEs (1) with the initial
conditions T (0) = 0.1, I(0) = 0, and V (0) = 0.1. q = 0.1, η = 0.02, β = 0.3, r =
3, γ = 2.4, k = 0.0027, Tmax = 1500, μ = 10 were used in this article.

Approximate solutions population of healthy CD4+T cells, infected CD4+T
cells, and free HIV particle for N = 8 and different α in [0, 1] are represented in
Figs. 5, 6, and 7, respectively. Can be seen in Figs. 8, 9, and 10, that T (t), the
concentration of susceptible CD4+T cells, increases rapidly, I(t), the amount of
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Fig. 5. Numerical results comparison T (t) for N = 8 and different α in [0, 1].
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Fig. 6. Numerical results comparison I(t) for N = 8 and different α in [0, 1].

Table 1. Numerical results comparison for T (t).

Method t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

Runge-kutta [5] 0.208808 0.406240 0.764423 1.414046 2.591594

MVIM [14] 0.208808 0.406240 .764428 1.414094 2.208808

VIM [14] 0.208807 0.406134 0.762453 1.397880 2.506746

LADM-Pade [22] 0.208807 0.406105 0.761146 1.377319 2.329169

Bessel [32] 0.203861 0.380330 0.695462 1.275962 2.383227

SDCPM 0.208807 0.406240 0.764422 1.414045 2.591592
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Fig. 7. Numerical results comparison V (t) for N = 8 and different α in [0, 1].
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Fig. 8. Numerical result T (t) for N = 8 and α = 1 in [0, 1].

Table 2. Numerical results comparison for I(t).

Method t = 0.4 t = 0.6 t = 0.8 t = 1.0

Runge-kutta [5] 0.131583e − 4 0.212237e − 4 0.301774e − 4 0.400378e − 4

MVIM [14] 0.131583e − 4 0.212233e − 4 0.301745e − 4 0.400254e − 4

VIM [14] 0.131487e − 4 0.210141e − 4 0.279513e − 4 0.243156e − 4

LADM-Pade [22] 0.131591e − 4 0.212683e − 4 0.300691e − 4 0.398736e − 4

Bessel [32] 0.129355e − 4 0.203526e − 4 0.283730e − 4 0.369084e − 4

SDCPM 0.131583e − 4 0.212237e − 4 0.301773e − 4 0.400377e − 4
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Fig. 9. Numerical result I(t) for N = 8 and α = 1 in [0, 1].
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Fig. 10. Numerical result V (t) for N = 8 and α = 1 in [0, 1].

Table 3. Numerical results comparison for V (t).

Method t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

Runge-kutta [5] 0.061879 0.038294 0.023704 0.014680 0.009100

MVIM [14] 0.061879 0.038295 0.023710 0.014700 0.009157

VIM [14] 0.061879 0.038308 0.023920 0.016217 0.016084

LADM-Pade [22] 0.061879 0.038313 0.024391 0.009967 0.003305

Bessel [32] 0.061879 0.038294 0.023704 0.014679 0.023704

SDCPM 0.061879 0.038294 0.023704 0.014680 0.009100
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Fig. 11. Error function of E1(t) for N = 8 and α = 1.
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Fig. 12. Error function of E2(t) for N = 8 and α = 1.

CD4+T cells infected by the HIV increases significantly for N = 8, and V (t),
the number of free HIV particles in the blood decrease in a very short time after
infection.

For N = 8 and α = 1, Figs. 11, 12, and 13 display the error functions obtained
with an accuracy of the solutions by utilizing the mentioned strategy given by
Eqs. (20). The numerical values of the approximate solutions T (t), I(t), and
V (t) of the present method for N = 8 in the interval [0, 1] are compared with
the Legendre Wavelet Collocation strategy [5], the Runge-Kutta strategy [5],
the variational iteration strategy [14], the modified variational iteration strategy
[14], the Laplace Adomian decomposition-pade strategy [22] and the Bessel col-
location [32] in Tables 1, 2, and 3. To comparison of error functions provided by
Eqs. (20) for T (t), I(t), and V (t) of the current method for N = 8 in the interval
[0, 1] are reported in Tables 4, 5, and 6. These results lead to the conclusion that
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the numerical solutions of the present method are better than those obtained
with other methods since the absolute errors have gotten by the current strategy
are superior to other methods.
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Fig. 13. Error function of E3(t) for N = 8 and α = 1.

Table 4. Comparison error results for T (t).

Method t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

LWCM [5] 7.50e − 06 2.70e − 05 7.34e − 05 1.77e − 04 3.98e − 04

MVIM [14] 7.85e − 05 3.00e − 04 8.49e − 04 2.14e − 03 5.14e − 03

VIM [14] 7.78e − 05 1.94e − 04 1.13e − 03 1.41e − 02 8.00e − 02

LADM-Pade [22] 7.77e − 05 1.65e − 04 2.43e − 03 3.46e − 02 2.58e − 01

Bessel [32] 4.87e − 03 2.56e − 02 6.81e − 02 1.36e − 01 2.04e − 01

SDCPM 6.48e − 08 1.47e − 07 1.65e − 07 9.09e − 08 2.20e − 07

Table 5. Comparison error results for I(t).

Method t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

LWCM [5] 8.36e − 10 1.95e − 09 3.20e − 09 4.63e − 09 6.44e − 09

MVIM [14] 1.19e − 09 5.29e − 09 1.27e − 08 2.27e − 08 3.12e − 08

VIM [14] 1.12e − 09 4.23e − 09 1.96e − 07 2.20e − 06 1.57e − 05

LADM-Pade [22] 1.20e − 09 6.15e − 09 5.78e − 08 8.26e − 08 1.21e − 07

Bessel [32] 2.16e − 07 2.17e − 07 8.58e − 07 1.78e − 06 3.09e − 06

SDCPM 1.52e − 11 1.94e − 11 1.05e − 11 1.42e − 12 5.30e − 12



92 E. Farsimadan et al.

Table 6. Comparison error results for V (t).

Method t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

LWCM [5] 1.00e − 10 1.24e − 06 1.15e − 06 9.50e − 07 7.61e − 07

MVIM [14] 5.61e − 08 1.06e − 06 5.75e − 06 2.01e − 05 5.64e − 05

VIM [14] 1.00e − 07 1.33e − 05 2.16e − 04 1.54e − 03 6.98e − 03

LADM-Pade [22] 1.08e − 07 1.84e − 05 6.87e − 04 4.71e − 03 5.80e − 03

Bessel [32] 6.59e − 08 3.79e − 08 2.31e − 07 7.87e − 07 1.46e − 02

SDCPM 2.06e − 16 9.64e − 17 6.47e − 17 2.12e − 16 8.01e − 17

7 Conclusion

This research looked at the design of protein-protein interaction (PPI) networks
and compared them to each other as well. Besides, the mathematical model of
fractional HIV infection of CD4+T cells was introduced, which refers to a class
of nonlinear differential equation structures. The SDCPM was suggested for
finding approximate solutions to the HIV infection model of CD4+T cells. With
the help of an example, the precision and reliability of the current procedure
were illustrated. All calculations were done with the aid of a Maple 17 computer
program.
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Abstract. The Euclidean norm is widely used in scientific and engineer-
ing calculations. However, a straightforward implementation may cause
overflow/underflow and loss of accuracy. The Blue algorithm selects a
scaling value from three conditional branches according to the absolute
value to reduce overflow and underflow. We improve this algorithm and
propose the Two-Accumulator method, which is expected to be faster
by selecting it from two conditional branches. The input range of our
method is slightly smaller than the Blue algorithm. However, we miti-
gate this problem by dynamically setting the scaling value depending on
the vector size. Moreover, we combine it with double-double arithmetic
to prevent rounding errors. An evaluation shows that our method com-
bined with double-double arithmetic can be approximately 15% faster
than the Blue algorithm while maintaining the same error level, but it
can be approximately 46% slower, depending on the input range.

Keywords: Euclidean norm · Accurate computation · Overflow ·
Underflow

1 Introduction

The Euclidean norm is widely used in scientific and engineering calculations. For
example, the Euclidean norm is used in the field of numerical analysis, as well
as in linear calculations such as the Conjugate Gradient (CG) method and the
Gram-Schmidt orthogonalization method. The Euclidean norm for the vector
x = (x1, x2, . . . , xn) shown in Eq. (1) is a simple calculation, where n is the
vector size of the input vector.

‖x‖ =
√

x2
1 + x2

2 + · · · + x2
n (1)

However, the straightforward norm calculation algorithm shown as Algo-
rithm 1 can only handle a limited range of inputs due to the effects of over-
flow and underflow. The Blue algorithm [4,7] and the Kahan algorithm [7] have
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been proposed to suppress overflow and underflow. However, the Blue algorithm
requires at least three conditional branches, and the Kahan algorithm requires
conditional branching and divisions, which are slow operations. On the other
hand, there is a demand for accurate computations in scientific and engineering
calculations, and MPLAPACK [13] provides high-precision BLAS and LAPACK
routines. Euclidean norm calculations are prone to large errors due to the accu-
mulation of rounding errors.

In this paper, we propose a method called the Two-Accumulator method to
prevent overflow and underflow. We show that the implementation of double-
word arithmetic (so-called double-double (DD) arithmetic) in the proposed
method is as simple as the implementation in the Blue algorithm and can easily
achieve higher accuracy. Dynamic scaling is also proposed to further reduce the
overflow and underflow in the Two-Accumulator method.

Our contributions in this paper are as follows:

– The proposed method is able to suppress overflow and underflow with little
change in the input range of the Blue algorithm,

– It combines well with DD arithmetic, making it easy to achieve high precision,
– It has the potential to be faster than the Blue algorithm.

In what follows, only double-precision arithmetic according to IEEE 754 is used,
but application to other types of precision is possible as well.

This paper consists of the following sections. Section 2 explores related
research. In Sect. 3, the Blue algorithm and the proposed method are described.
Section 4 provides an overview of DD arithmetic, which is used as a precision
expansion method to reduce rounding errors. The accuracy and performance are
evaluated in Sect. 5. Finally, Sect. 6 summarizes the paper including suggestions
for future work in this domain.

Algorithm 1. Straightforward norm calculation algorithm
Require: Vector x, size n
Ensure: The l2 norm of x
1: sum = x2

0;
2: for i ← 1, n − 1 do
3: sum+= x2

i ;
4: end for
5: return (

√
sum);

2 Related Work

To suppress overflow and underflow in Euclidean norm calculations, the Blue
and Kahan algorithms bring the value of the exponential part close to zero
in advance by scaling. The Kahan algorithm continuously changes the scaling
value of a vector x = (x1, x2, . . . , xn) according to the maximum absolute value
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of the input values up to xi, which not only involves branching but also causes
performance problems due to the frequent execution of slow division. The Blue
algorithm is explained in the next section.

OpenBLAS [15] implements the Euclidean norm using the x87 instruction
set, which uses 80-bit floating-point format. Even squares of values that overflow
or underflow in double precision can be expressed entirely without overflow or
underflow in 80-bit floating-point format. This makes it possible to calculate
the Euclidean norm without using the Blue algorithm or the Kahan algorithm,
which suppress overflow and underflow. Since the norm calculation in double-
precision arithmetic has a large bytes/flop ratio and is memory-intensive, the
performance may not change significantly whether the x87 instruction set or
Single Instruction, Multiple Data (SIMD) instruction set is used. However, this
approach cannot be used in environments where the x87 instruction set is not
supported.

With the objective of improving accuracy, XBLAS [12] was proposed, which
uses double-word arithmetic, like DD arithmetic, for internal operations. Fur-
ther, MPLAPACK can arbitrarily select the precision from the GNU Multiple
Precision Arithmetic Library (GMP) [1], MPFR [6], and the QD library [2,8].

3 Blue Algorithm and Two-Accumulator Method

3.1 Blue Algorithm

The maximum value of double-precision numbers, DBL MAX, according to
IEEE 754 is approximately 21024, and the minimum value, DBL MIN, is approx-
imately 2−1022. Algorithm 2 shows the pseudo-code for the Blue algorithm. The
Blue algorithm selects a scaling value from three conditional branches depend-
ing on the absolute value of the input. Inputs above 2300 are scaled by 2−600.
Inputs less than 2−300 are scaled by 2600. Therefore, the value after scaling
does not overflow or underflow when squared. The number of operations in the
Blue algorithm is only one greater (a multiplication) than the straightforward
norm calculation algorithm. However, the disadvantage of the Blue algorithm is
that it requires branching for the scaling selection, making it inefficient to apply
performance-enhancing methods such as vectorization.

3.2 Two-Accumulator Method with Fixed Scaling Value

The Two-Accumulator method is a simplified version of the Blue algorithm. This
algorithm selects a scaling value from two conditional branches. The advantage
of the Two-Accumulator method is the expected increase in speed because the
number of conditional branches is smaller than in the Blue algorithm.

However, because the Two-Accumulator method only considers two condi-
tional branches, some ranges that can be handled by the Blue algorithm can-
not be handled by this simplified variant. In this section, we discuss the Two-
Accumulator method with fixed scaling value 2498 for inputs less than 1.0 (here-
inafter called the Two-Accumulator method with fixed scaling value). For exam-
ple, the scaling value for inputs less than 1.0 in the Two-Accumulator method
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Algorithm 2. Blue algorithm
Require: Vector x, size n
Ensure: The l2 norm of x
1: abig = asml = amed = 0;
2: overFlowLimit = DBL MAX ∗ sh;
3: for i ← 0, n − 1 do
4: absx = |xi|
5: if absx ≥ γ then
6: abig+= (absx ∗ sh)

2;
7: else if absx ≥ low then
8: amed+= absx2;
9: else

10: asml+= (absx ∗ sl)
2;

11: end if
12: end for
13: if asml == 0 then
14: if

√
abig ≥ overFlowLimit then

15: return (∞);
16: else if amed == 0 then
17: return (

√
abig/sh);

18: else
19: ymin = min(

√
amed,

√
abig/sh);

20: res = max(
√

amed,
√

abig/sh);
21: end if
22: else if abig == 0 then
23: if amed == 0 then
24: return (

√
asml/sl);

25: else
26: ymin = min(

√
amed,

√
asml/sl);

27: res = max(
√

amed,
√

asml/sl);
28: end if
29: else
30: return (

√
amed);

31: end if
32: if ymin <

√
ε ∗ res then

33: return (res);
34: else
35: return (res ∗ √

1 + (ymin/res)2);
36: end if

with fixed scaling value is 2498, so inputting values less than 2−1009 will cause
underflow in the calculation of a square. Also, scaling for the input of 20 −20 × ε
(ε is the machine epsilon in double precision) results in 2996×(20−ε). Therefore,
if the same input is given 228 times, it will overflow. However, as will be shown
in the next subsection, this can be mitigated by dynamic scaling.
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3.3 Two-Accumulator Method with Dynamic Scaling

As already noted, the Two-Accumulator method with fixed scaling value cannot
accommodate input values that are too large or too small. This is partly because
calculating the square of a floating-point number will more than double the value
of the exponent part. We should also take into account that the calculation of the
Euclidean norm requires a sum of squares, which has an increasing partial sum.
In other words, there is a relationship between n and the range of computable
input values and the scaling values. Therefore, we propose a dynamic scaling
method that sets the scaling value so that the range of computable input values
is handled according to the length n of the input values. The scaling value (sl)
for inputs less than 1.0 is sl = 2512−r using r in Eq. (2).

r ≥ �(log2 n)/2� (2)

If n is less than or equal to 4r, which is the vector size that can be input,
it will not overflow or underflow. However, the scaling value should be as large
as possible because the input range becomes smaller when the scaling value is
reduced. Therefore, r is the smallest value among the possible values satisfying
(log2 n)/2. The reason for r ≥ �(log2 n)/2� is that n must be less than or equal
to the size of the input vector. Further, the maximum value of the input range
below 1.0 is 1.0 − 1.0 × ε, which is extremely close to 20. If 20 is multiplied by a
power of two and squared, the result is always an even power of two. Therefore,
it is possible to add an even power of two to the maximum value 21024−21024×ε
that can be expressed in double precision. Algorithm 3 is the pseudo-code for
the Two-Accumulator method. The constants used in Algorithms 2 and 3 are
listed in Table 3.

For inputs above 1.0, the vector size that can be input changes depending
on the range of input values. Therefore, the scaling value for inputs above 1.0 is
fixed at 2−511, and by restricting the input range, overflow and underflow can
be prevented. Hereafter, when we refer simply to the Two-Accumulator method,
we mean the Two-Accumulator method with dynamic scaling.

3.4 Input Range and Vector Size

In the Euclidean norm calculation, overflow or underflow is most likely to occur
when calculating a square. The range and vector size that can be input for each
method are different because the number of partitions for each method is dif-
ferent. In this subsection, we discuss the vector sizes and ranges that can be
computed for the inputs that are most likely to have overflow and underflow for
each method. The worst-case input value is the one that minimizes the com-
putable vector size when all the values of the input vector consist of this value.
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The worst-case input values for each method and vector sizes that can be input
are shown in Table 1. Table 2 shows the maximum range of input values for which
a vector of at least two elements can be computed. Since the Euclidean norm for
a vector x of size 1 is ‖x‖ =

√
x2
1 = |x1|, it can be calculated in all ranges except

NaN (Not a Number). The maximum range shown in Table 2 is valid only when
implemented with double-precision arithmetic according to IEEE 754, and the
lower limit changes when DD arithmetic is used. The straightforward norm cal-
culation algorithm can only calculate up to 20 in vector size when 2512 × (20 − ε)
is input consecutively.

The range of possible inputs for the Two-Accumulator method and the Two-
Accumulator method with fixed scaling value depends on the vector size of the
input vectors. In the discussion of the worst-case input value, input values greater
than 1.0 of the Two-Accumulator method are excluded. The reason for this is
that, as explained in the last paragraph of the previous subsection, the worst-case
input value for inputs greater than 1.0 of the Two-Accumulator method depends
on the vector size of the input vector. The scaling value in the Two-Accumulator
method with fixed scaling value is 2498. The worst-case input value, in this case,
is 20−ε. Therefore, we can add 228 times without going over DBL MAX (approx-
imately 21024). The worst-case input value in the Two-Accumulator method is
also 20 − ε, and the minimum scaling value is 2496, so if 20 − ε is input consec-
utively, it can be input 232 times. This means that inputs with a larger vector
size and wider range can be used with the Two-Accumulator method compared
to what is possible with the Two-Accumulator method with fixed scaling value.

In contrast, the worst-case input value for the Blue algorithm is DBL MAX,
which can be input 2176 times if this value is input consecutively. This is because
the scaling value of the Blue algorithm for values less than 2300 is 2−600. There-
fore, the vector size that can be input is inferior to that of the Blue algorithm
even for the Two-Accumulator method. However, in practical contexts where
the Euclidean norm is used in scientific and engineering calculations, inputs
that cannot be handled by the Two-Accumulator method would rarely occur.

Table 1. Worst-case input values for each method and vector sizes that can be input

Worst value Vector size

Straightforward norm calculation algorithm 2512 × (20 − ε) 20

Two-Accumulator method with fixed scaling value 20 − ε 228

Two-Accumulator method 20 − ε 232

Blue Algorithm DBL MAX 2176
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Algorithm 3. Two-Accumulator method
Require: Vector x, size n
Ensure: The l2 norm of x
1: abig = asml = 0;
2: overFlowLimit = DBL MAX ∗ sh;
3: r = �(log2 n)/2�;
4: sl = 2512−r;
5: for i ← 0, n − 1 do
6: if |xi| ≥ γ then
7: abig+= (xi ∗ sh)

2;
8: else
9: asml+= (xi ∗ sl)

2;
10: end if
11: end for
12: if asml == 0 then
13: return (

√
abig/sh);

14: else if abig == 0 then
15: return (

√
asml/sl);

16: else
17: if

√
abig ≥ overFlowLimit then

18: return (∞);
19: end if
20: ymin = min(

√
asml/sl,

√
abig/sh);

21: res = max(
√

asml/sl,
√

abig/sh);
22: if ymin <

√
ε ∗ res then

23: return (res);
24: else
25: return (res ∗ √

1 + (ymin/res)2);
26: end if
27: end if

Table 2. Maximum range that can be input for each method

Range

Straightforward norm calculation algorithm 2−511 ≤ xi ≤ 2511

Two-Accumulator method with fixed scaling value 2−1009 ≤ xi ≤ 21009

Two-Accumulator method DBL MIN ≤ xi ≤ 21022

Blue Algorithm DBL MIN ≤ xi ≤ DBL MAX

Table 3. Constants in the Blue algorithm, the Two-Accumulator method with fixed
scaling value, and the Two-Accumulator method

γ low sh sl

Blue Algorithm 2300 2−300 2−600 2600

Two-Accumulator method with fixed scaling value 1.0 — 2−498 2498

Two-Accumulator method 1.0 — 2−511 2496 ∼ 2512
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Fig. 1. Format difference between DD type and binary128

4 DD Arithmetic

4.1 Overview of DD Arithmetic

Precision expansion of floating-point arithmetic is a simple approach for reducing
the accumulation of rounding errors and achieving more accurate calculations. In
this paper, we leverage DD arithmetic, which is a low-cost method for achieving
precision expansion. DD-type quadruple precision has 4 fewer bits in its exponent
part and 8 fewer bits in its mantissa part than the quadruple precision (binary128)
defined in IEEE 754 and shown in Fig. 1. DD arithmetic is faster than binary128
using software emulation. Also, the range of the exponential part that can be rep-
resented by DD-type quadruple precision is the same as that of double precision.

DD arithmetic is based on the error-free transformations by Knuth [10] and
Dekker [5]. First, the addition by Knuth is shown in Algorithm 4. The result of
the addition of the double-precision floating-point numbers a and b is denoted
by s, and the error generated during the addition is denoted by e. The double-
precision addition without error is expressed as a + b = s + e. Next, Dekker’s
addition is shown in Algorithm 5. Whilst this addition requires fewer operations
compared to that of Knuth, it can only be used when |a| ≥ |b| is true. Next, the
multiplication with error-free transformation using a Fused Multiply-Add (FMA)
instruction is shown in Algorithm 6. Let p be the result of the calculation without
considering the rounding error of double-precision multiplication a × b and let
e be the error generated. The multiplication with error-free transformation can
be expressed as a × b = p + e. The multiplication with error-free transformation
without using FMA instructions has also been proposed by Dekker [5].

We can calculate a DD addition using Algorithms 4 and 5, shown in Algo-
rithm 7. The DD addition QuadAdd(aH , aL, bH , bL, cH , cL) calculates c = a + b
for a = aH + aL, b = bH + bL, and c = cH + cL. QuadAdd needs to be normal-
ized so that the calculation result c = cH + cL satisfies cL ≤ 0.5ulp(cH), and
Quick-TwoSum of Algorithm 5 is used for normalization. DD addition can be
used so that calculations incur less rounding error compared to double-precision
addition.
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Algorithm 4. Addition with error-free transformation [10]
1: function [s, e] = TwoSum(a, b)
2: s = a + b;
3: v = s − a;
4: e = (a − (s − v)) + (b − v);
5: end function

Algorithm 5. Dekker’s addition [5]
1: function [s, e] = Quick-TwoSum(a, b)
2: s = a + b;
3: e = b − (s − a);
4: end function

DD addition can be accelerated using CPairSum by Lange and Rump [11,14].
The pseudo-code for CPairSum is shown in Algorithm 8. CPairSum omits the
assumption that the calculation result satisfies cL ≤ 0.5ulp(cH). This means
that Quick-TwoSum, which is executed twice in QuadAdd, will not be executed
in CPairSum. Therefore, CPairSum is slightly less accurate than QuadAdd, but
can be computed with fewer operations. Specifically, CPairSum performs DD
addition using the difference between the results of double-precision addition
and TwoSum calculation. Also, QuadAdd uses TwoSum to calculate the lower
bits, while CPairSum uses double-precision operations. QuadAdd requires 20
double-precision operations, while CPairSum can perform a DD addition in 11
operations.

4.2 Euclidean Norm Calculation Using DD Arithmetic

In this paper, we use DD addition to improve the accuracy of the Euclidean
norm calculation where the input and output are double precision. In the Blue
algorithm and the Two-Accumulator method, the scaling and squaring of the
input values do not need to be computed using DD arithmetic. Both methods
multiply powers of two as scaling values, and powers of two do not cause errors
even in double-precision arithmetic. The square can be calculated with TwoProd-
FMA shown in Algorithm 6.

When comparing the operations for the combination with DD arithmetic, the
Blue method and the Two-Accumulator method only require one more double-
precision multiplication for scaling compared to the straightforward norm calcu-
lation algorithm. If DD arithmetic is used in the Kahan algorithm, DD division

Algorithm 6. Multiplication using the FMA instruction [9]
1: function [p, e] = TwoProd-FMA(a, b)
2: p = a ∗ b;
3: e = a ∗ b − p; � FMA
4: end function
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Table 4. Measurement environment

CPU Intel Xeon Gold 6126 (2.6 GHz)× 2 sockets

Memory 192GiB (DDR4)

OS CentOS 7.7 (x86-64), kernel 3.10.0

Compiler Intel Compiler 19.0.5.281

is required inside the loop, which complicates the implementation and makes
it difficult to achieve high speed. Therefore, the Blue algorithm and the Two-
Accumulator method are more effective when combined with DD arithmetic.

Algorithm 7. DD addition [2]
1: function [cH , cL] = QuadAdd(aH , aL, bH , bL)
2: [sh, eh] = TwoSum(aH , bH);
3: [sl, el] = TwoSum(aL, bL);
4: eh = eh + sl;
5: [sh, eh] = Quick-TwoSum(sh, eh);
6: eh = eh + el;
7: [cH , cL] = Quick-TwoSum(sh, eh);
8: end function

Algorithm 8. Fast DD addition [11]
1: function [cH , cL] = CPairSum(aH , aL, bH , bL)
2: cH = aH + bH ;
3: [t, s] = TwoSum(aH, bH);
4: t = (t − cH) + s;
5: cL = t + (aL + bL);
6: end function

5 Evaluation of Performance and Relative Error

5.1 Evaluation Method

We implemented algorithms for calculating the Euclidean norm (the straightfor-
ward norm calculation algorithm, the Blue algorithm, and the Two-Accumulator
method) with double precision and combined them with precision expansion
methods (QuadAdd and CPairSum). We evaluated the relative error and per-
formance of these implementations as follows. The measurement environment
is shown in Table 4. Evaluation was performed using a single core and a single
thread. We specified -O3 -ipo -xSKYLAKE-AVX512 -fprotect-parens -no-vec -
fma -unroll0 as the compilation options in the Intel C Compiler to evaluate
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the relative error, and -O3 -ipo -xSKYLAKE-AVX512 -fprotect-parens -finline
-restrict to evaluate the performance.

– Straightforward norm calculation algorithm + double-precision
– Straightforward norm calculation algorithm + QuadAdd
– Straightforward norm calculation algorithm + CPairSum
– Blue algorithm + double-precision
– Blue algorithm + QuadAdd
– Blue algorithm + CPairSum
– Two-Accumulator method + double-precision
– Two-Accumulator method + QuadAdd
– Two-Accumulator method + CPairSum

First, we input uniform random numbers of [0, 1] generated with double pre-
cision for the input vector size n = 10, 100, 1000, 10000, 100000 and compare the
relative error between the value computed by each method and the value com-
puted using MPFR with a 256-bit mantissa part. Further, we compare the rela-
tive error when random numbers of [2−1014, 21014] are input to each method, and
evaluate whether the Two-Accumulator method can prevent overflow and under-
flow. We normalize the difference between the values computed using MPFR and
the values computed by each method by half of the computer epsilon to highlight
how much error is introduced.

In the performance evaluation, we compare the extent to which the process
of preventing overflow and underflow affects the performance. We evaluate the
performance difference between combinations with CPairSum or QuadAdd. The
vector size at the time of measurement is 100000.

5.2 Evaluation Results

Relative Error. Table 5 shows the relative error in [2−1014, 21014] when each
method is implemented with double-precision arithmetic. The relative errors of
each Euclidean norm calculation algorithm combined with each accuracy expan-
sion method for uniform random numbers in [0, 1] are shown in Tables 6, 7 and 8.
In this evaluation, auto-vectorization by the compiler is turned off to evaluate
the inherent relative error of the algorithm.

First, from the relative error of each Euclidean norm calculation algorithm
for the input of [2−1014, 21014] combined with double-precision arithmetic, the
relative error is Inf because of the overflow and underflow in the straightfor-
ward norm calculation algorithm. The Blue algorithm and the Two-Accumulator
method do not overflow or underflow in the calculation of the sum of squares
because of the scaling when the vector size is less than n = 100000 in the input
range [2−1014, 21014].

Next, we describe the relative error of each Euclidean norm calculation algo-
rithm for the input range [0, 1] combined with double-precision arithmetic. Even
the straightforward norm calculation algorithm does not overflow or underflow
in the input range [0, 1]. The Blue algorithm and the Two-Accumulator method
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Table 5. Relative error of each method combined with double-precision arithmetic for
the input range of [2−1014, 21014]

n Straightforward norm
calculation method

Blue algorithm Two-Accumulator
method

Average Variance Average Variance Average Variance

10 N/A N/A 0.05 0.03 0.05 0.03

100 N/A N/A 0.30 0.09 0.30 0.09

1000 N/A N/A 0.55 0.19 0.55 0.19

10000 N/A N/A 1.25 0.98 1.25 0.98

100000 N/A N/A 5.26 13.79 5.26 13.79

Table 6. Relative error of each method combined with double-precision arithmetic for
the input range of [0, 1]

n Straightforward norm
calculation method

Blue algorithm Two-Accumulator
method

Average Variance Average Variance Average Variance

10 0.47 0.12 0.47 0.12 0.47 0.12

100 1.01 0.58 1.01 0.58 1.01 0.58

1000 3.30 6.18 3.30 6.18 3.30 6.18

10000 9.96 56.34 9.96 56.34 9.96 56.34

100000 26.51 439.52 26.51 439.52 26.51 439.52

have comparable relative errors and variances. This is because the input value
is from a single region for both methods, and the computation procedure for
both is the same except for the scaling by powers of two. Further, the accu-
racy can be improved by enabling auto-vectorization by the compiler. This is
because the number of accumulators in each region changes in the Blue algo-
rithm and the Two-Accumulator method. The accumulation of rounding errors
can be mitigated by varying the number of accumulators when calculating the
sum [3].

For DD-type quadruple precision, the maximum and minimum absolute val-
ues that can be represented do not change, because the exponent values are the
same as in double precision. Therefore, even if the straightforward norm cal-
culation algorithm is implemented using DD arithmetic, the conditions for the
occurrence of overflow and underflow are unchanged. The use of DD arithmetic
extends the number of bits in the mantissa part and prevents the accumulation
of rounding errors from propagating to the double-precision output. The relative
error between the Blue algorithm and the Two-Accumulator method is smaller
than that combined with double-precision arithmetic.

CPairSum is a fast algorithm for DD addition (QuadAdd), so the accuracy
is approximately the same as combined with QuadAdd.
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Table 7. Relative error of each method combined with QuadAdd for the input range
of [0, 1]

n Straightforward norm
calculation method

Blue algorithm Two-Accumulator
method

Average Variance Average Variance Average Variance

10 0.38 0.07 0.38 0.07 0.38 0.07

100 0.39 0.07 0.39 0.07 0.39 0.07

1000 0.47 0.09 0.47 0.09 0.47 0.09

10000 0.30 0.04 0.30 0.04 0.30 0.04

100000 0.42 0.07 0.42 0.07 0.42 0.07

Table 8. Relative error of each method combined with CPairSum for the input range
of [0, 1]

n Straightforward norm
calculation method

Blue algorithm Two-Accumulator
method

Average Variance Average Variance Average Variance

10 0.38 0.07 0.38 0.07 0.38 0.07

100 0.39 0.07 0.39 0.07 0.39 0.07

1000 0.47 0.09 0.47 0.09 0.47 0.09

10000 0.30 0.04 0.30 0.04 0.30 0.04

100000 0.42 0.07 0.42 0.07 0.42 0.07

Performance. The performance of each method combined with double-precision
arithmetic is shown in Fig. 2, and the performance combined with QuadAdd
and CPairSum is shown in Fig. 3. GFLOPS is usually used as a measure of
the performance of the Euclidean norm, but GB/s is used for the vertical axes
in Figs. 2 and 3. The reason for this is that the computational amount varies
slightly depending on the method and input values, and since DD arithmetic is
used, GB/s, which is the unit of input vector size divided by the execution time,
is more suitable for performance comparison. The straightforward norm calcu-
lation algorithm has overflow and underflow for input ranges other than [0, 1]
and [2−300, 2300]. Therefore, this excludes a performance comparison. First, we
focus on the extent to which the process of suppressing overflow and underflow
affects the performance. In the case of the implementation combined with dou-
ble precision in the input range of [0, 1], the performance of the straightforward
norm calculation algorithm is twice that of the Two-Accumulator method. How-
ever, the performance of the implementations combined with QuadAdd and
CPairSum is almost identical. This is because the Euclidean norm calculation
is memory-intensive at double precision, but computation-intensive at the DD-
type quadruple-precision level. The implementation combined with double preci-
sion is faster in the order of the straightforward norm calculation algorithm, the
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Fig. 2. Performance of implementations combined with double-precision arithmetic

Fig. 3. Performance evaluation when combined with QuadAdd and CPairSum

Two-Accumulator method, and the Blue algorithm. The reason for this is that
each method is vectorized by the compiler’s automatic vectorization. Implemen-
tations that use double-precision arithmetic are vectorized by the compiler, but
implementations that use DD-type quadruple-precision arithmetic are not vector-
ized, because there is a dependency in the process of adding the squares together.
Further, the vectorization rate is higher for the straightforward norm calculation
algorithm, the Two-Accumulator method, and the Blue algorithm, in that order.
Therefore, the Two-Accumulator method is easier to speed up than the Blue algo-
rithm because the number of conditional branches greatly affects the vectorization
rate.

In the implementation combined with QuadAdd, the Two-Accumulator
method is faster than or nearly as fast as the Blue algorithm for all input ranges.
The Two-Accumulator method is faster than the Blue algorithm when all the accu-
mulators are stored, such as [2−1014, 21014]. For the other input ranges, the Two-
Accumulator method and the Blue method are nearly identical in performance.
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The performance of the implementation combined with CPairSum is up to
3.3 times faster than the implementation combined with QuadAdd. However,
the Blue algorithm is faster than the Two-Accumulator method in the input
range of [2−300, 2299] only implemented using CPairSum. One possible reason
for this is the relationship between the number of unpredictable conditional
branches and the number of operations. The Blue algorithm processes this range
of input as a single region, while the Two-Accumulator method processes it as
two regions. Therefore, in this range, the Two-Accumulator method is being
used under conditions such that the CPU is likely to fail in branch prediction.
Therefore, the implementation combined with QuadAdd is less likely to show
this difference than the implementation CPairSum because more operations are
required for DD addition. On the other hand, in the implementation combined
with CPairSum, the penalty for branch prediction failure is more likely to be
reflected in the result, and the Blue algorithm is considered to be faster than
the Two-Accumulator method.

6 Summary and Future Work

In this paper, we propose the Two-Accumulator method as an algorithm for
calculating the Euclidean norm with less overflow and underflow. We combine
this novel method with DD arithmetic to achieve higher accuracy. Further, we
use CPairSum, which is an algorithm to speed up DD addition. The algorithms
for calculating the Euclidean norm are compared in terms of input range, vector
size, relative error, and performance. In terms of ease of overflow and under-
flow, the Two-Accumulator method is inferior to the Blue algorithm. However,
in terms of accuracy, the Two-Accumulator method and the Blue algorithm are
nearly identical in performance, even when combined with an accuracy expan-
sion method. The Two-Accumulator method performs better than the Blue
algorithm in the input range of [2−1014, 21014] combined with QuadAdd. How-
ever, the Two-Accumulator method combined with CPairSum is significantly
slower than the Blue algorithm, depending on the input range. Vectorization
of the Two-Accumulator method represents fruitful terrain for future research.
In vectorization, the branching process changes significantly, and the number
of branches has a large impact on performance. The advantage of the Two-
Accumulator method with fewer conditional branches is emphasized, and the
Two-Accumulator method has the potential to be faster in all ranges, as in the
performance of implementations combined with double-precision arithmetic.
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Abstract. This paper shows the accuracy of the Hopmoc method when
applied to a partial differential equation that combines both nonlin-
ear propagation and diffusive effects. Specifically, this paper shows the
numerical results yielded by the Hopmoc algorithm when applied to
the 2-D advection-diffusion and Burgers equations. The results deliv-
ered by the Hopmoc method compare favorably with the Crank-Nicolson
method and an alternating direction implicit scheme when applied to
the advection-diffusion equation. The experiments with the 2-D Burg-
ers equation also show that the Hopmoc algorithm provides results in
agreement with several existing methods.

Keywords: Hopscotch method · Modified method of characteristics ·
Semi-lagrangian approach · Two-dimensional advection-diffusion
equation · Two-dimensional Burgers equation

1 Introduction

Practitioners apply various approaches in the approximate solution of differential
equations. Some of these approaches are based on a decomposition of operators,
such as the alternating direction method [1–3], Implicit-Explicit Method (IMEX)
[4,5], and the Odd-Even Hopscotch method [6–8].

The Hopmoc algorithm (see [9] and references therein) joins concepts of
the Odd-Even Hopscotch method and the modified method of characteristics
(MMOC for short) [10]. The Hopmoc algorithm is similar to the Odd-Even Hop-
scotch method because both approaches decompose the grid points into two
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subsets. The two subsets have their unknowns separately updated within a one-
time semi-step. Moreover, each subset performs one explicit update and one
implicit update of its unknowns. The Hopmoc algorithm evaluates time semi-
steps along characteristic lines in a semi-Lagrangian approach as the MMOC
operates. Recently, we showed numerical simulations of the Hopmoc method
applied to the 1-D modified Burgers equation [11,12].

This paper shows the computational results yielded by the Hopmoc method
when applied to the 2-D advection-diffusion equation. This paper also compares
the results provided by the Hopmoc algorithm with six recent approaches when
applied to the 2-D Burgers equation.

The remainder of this paper is structured as follows. Section 2 describes the
Hopmoc method. Section 3 shows the numerical results. Finally, Sect. 4 addresses
the conclusions.

2 Hopmoc Method

The Hopmoc method operates similarly to the Odd-Even Hopscotch method
and uses an MMOC-like strategy. One can write a differential operator for the
Hopmoc algorithm as

Lhu
n
i,j = d

[
u

n
i−1,j − 2u

n
i,j + u

n
i+1,j

(Δx)2
+

u
n
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(Δy)2
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Using operator (1), the Hopmoc method performs two semi-steps
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Each time step with size Δt in the Hopmoc method encompasses three stages

as follows [9].

1. At time step tn, the Hopmoc method obtains u for all stencil points
(
xi, yj

)
,

for i = 1, ..., N and j = 1, ..., N using an interpolation method.
2. At time semi-step tn+ 1

2
, the method computes u

n+ 1
2

i,j using the explicit
(implicit) operator for stencil points for which n + 1 + i + j is odd (even).
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3. At time semi-step tn+1, the method computes un+1
i,j using the implicit

(explicit) operator for stencil points for which n + 1 + i + j is odd (even).

The method solves neighbor stencil points at the previous time semi-step.
Thus, the implicit approach does not demand to solve a linear system in the
same way as the Odd-Even method performs. Figure 1 shows two time semi-
steps of the Hopmoc algorithm.

Fig. 1. Two time semi-steps of the Hopmoc method.

3 Computational Analysis

This section shows the results yielded by the Hopmoc method along with a bilin-
ear interpolation [13]. The MacBook Air workstation used in the executions of
the simulations featured an Intel R© CoreTM i5 1.6 GHz processor (Intel; Santa
Clara, CA, United States). We implemented the method using the C program-
ming language.

Section 3.1 shows the results yielded by the Hopmoc method when applied to
the 2-D advection-diffusion equation and compares the results returned by the
Hopmoc method with the Crank-Nicolson and an alternating direction implicit
scheme when applied to the same equation. Section 3.2 compares the results
delivered by the Hopmoc algorithm with six existing methods when applied to
the 2-D Burgers equation.



114 D. T. Robaina et al.

3.1 Advection-Diffusion Equation

Consider the numerical solution of the 2-D advection-diffusion equation

ut + v1ux + v2uy − 1
Re

(uxx + uyy) = 0 (2)

where Re = ρ·ν·L
μ is the Reynolds number, ρ is the density, ν is the characteristic

velocity, L is a characteristic linear dimension, and μ is the dynamic viscosity.
Eq. (2) is defined in the domain Ω = {(x, y) : 0 ≤ x ≤ 1; 0 ≤ y ≤ 1} with analyt-
ical solution u(x, y, t) = cos(π(x − vxt))cos(π(y − vyt))e−2Re·π2·t and boundary
conditions u(x, y, t) = cos(π(x − vxt))cos(π(y − vyt))e−2Re·π2·t. The accuracy of
the approach is measured in terms of errors norms

‖ε‖∞ = ||uexact − ucomputed||∞ = max
i,j

∣∣∣uexact
i,j − ucomputed

i,j

∣∣∣
and

‖ε‖2 = ||uexact − ucomputed||2 =

⎛
⎝ N∑

i=0

N∑
j=0

∣∣∣uexact
i,j − ucomputed

i,j

∣∣∣2
⎞
⎠

1/2

where uexact and ucomputed represent the exact and computed solutions, respec-
tively.

Table 1 shows error norms ‖ε‖∞ and ‖ε‖2 when applying the Hopmoc method
to Eq. (2). The first part of Table 1 shows the results yielded by the Hopmoc
method when varying δt, δx, and δy for the same δt

Δx·δy . The second part of
Table 1 reveals that the method yields small numerical error when using differ-
ent Reynolds number regimes. In particular, for a very small Reynolds number
regime, the numerical errors are large when compared with the other simula-
tions. This phenomenon indicates that the method presents characteristics to be
employed to turbulent flows [14]. Table 2 shows numerical errors when applying
the Hopmoc method to Eq. (2) using tf = 10−4, Re = 5.0, and vx = vy = 1.0.

Table 1. Results yielded by the Hopmoc method when applied to Eq. (2) using δt =
10−5, tf = 0.8, vx = vy = 1.0, and several Reynolds number regimes (t denotes time
and s denotes seconds).

Mesh Re ‖ε‖∞ ‖ε‖2 t(s)

10 × 10 1.00 2.2104e−02 1.2495e−02 0.4

20 × 20 2.2540e−02 1.2472e−02 0.4

30 × 30 2.2653e−02 1.2453e−02 0.4

40 × 40 2.2703e−02 1.2443e−02 0.6

50 × 50 100.00 1.8454e−02 4.0593e−03 0.7

10.00 1.8454e−02 4.5660e−03 0.7

1.00 2.2740e−02 1.2436e−02 0.6

0.10 3.2200e−02 2.0704e−02 0.6

0.01 3.5453e−02 2.3400e−02 0.7
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Table 3 shows the results yielded by the Hopmoc method in simulations using
different values for δt. In simulations using the same Δx and Δy, we conclude
that when δt tends to zero, the numerical errors of the method tend to zero.
These results show that when respecting conditions of consistency, the Hopmoc
is unconditionally stable.

Table 2. Results yielded by the Hopmoc method when applied to Eq. (2) using Re =
5.0, tf = 10−4, vx = vy = 1.0.

δt × 10−5 Mesh ‖ε‖∞ ‖ε‖2 t(s)

1.0000 10 × 10 2.2104e−02 1.2495e−02 0.4

0.2500 20 × 20 2.2541e−02 1.2473e−02 1.7

0.1111 30 × 30 2.2655e−02 1.2455e−02 4.3

0.0625 40 × 40 2.2705e−02 1.2444e−02 10.9

0.0400 50 × 50 2.2741e−02 1.2437e−02 17.4

Table 3. Results yielded by the Hopmoc method when applied to Eq. (2) using Re =
1.0, tf = 0.8, 50 × 50 grid points, and vx = vy = 1.0.

δt × 10−5 ‖ε‖∞ ‖ε‖2 t(s)

100.00 8.2135e+04 1.1126e+04 0.01

10.00 2.2725e−02 1.2419e−02 0.07

1.00 2.2740e−02 1.2436e−02 0.62

0.10 2.2741e−02 1.2437e−02 6.90

0.01 2.2741e−02 1.2437e−02 68.06

3.2 Burgers Equation

The Burgers equation is a simple equation used to comprehend the properties
of the Navier-Stokes equations. Furthermore, one obtains the Burgers equation
as a result of linking nonlinear wave motion with linear diffusion. As previously
mentioned, it is the simplest model for analyzing the combined effect of nonlinear
advection and diffusion. As in the Navier-Stokes equations, one can determine
a Reynolds number, which indicates the ratio between the advective and the
viscous contribution in a flow. The simulation of the flow evolution requires the
use of accurate and robust numerical methods [15]. Thus, the Burgers equation
arises as a mathematical model from many physical events. Examples of these
situations are environmental protection, the flow of a shock wave traveling in
a viscous fluid, fluid mechanics, gas dynamic, hydrology, nonlinear acoustics,
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sedimentation of two kinds of particles in fluid suspensions under the effect of
gravity. Other examples are shallow-water waves, acoustic transmission, traffic
flow, turbulence, supersonic flows, and wave propagation in a nonlinear ther-
moelastic media (see [16] and references therein).

This section shows two experiments. The first compares the results yielded
by the Hopmoc method with the Crank-Nicolson method and an alternating
direction implicit scheme. The second compares the results produced by the
Hopmoc algorithm with six other existing methods.

Comparison with Crank-Nicolson Method and an Alternating Direc-
tion Implicit Scheme. This section compares the results yielded by the
Hopmoc method with Crank-Nicolson (CN) [17] and the alternating direction
implicit (ADI) scheme presented by Saqib et al. [18] when applied to the equa-
tion ut + uux + uuy − 1

Re (uxx + uyy) = 0 where (x, y, t) ∈ Ω × (0, T ] with
initial conditions u(x, y, 0) = u0(x, y), (x, y) ∈ Ω given by the exact solution
u(x, y, t) = 1

1+
(x+y+t)Re

2

defined in Ω = [(x, y) : 0 ≤ x, y ≤ 1]. Table 4 (5) shows

the results yielded by the Hopmoc method, Crank-Nicolson method, and the
alternating direction implicit scheme presented by Saqib et al. [18] in typical
grid points when applied to Burgers equation using Reynolds number Re = 200,
tf = 3.0 (tf = 1.0), δt = 0.0001, and 20 × 20 (30 × 30) grid points.

Table 4. Results yielded by the Hopmoc method, Crank-Nicolson method, and an
alternating direction implicit scheme [18] when applied to Burgers equation using
Reynolds number Re = 200, tf = 3.0, Δt = 0.0001, and 20 × 20 grid points.

(x, y) Exact Hopmoc ADI CN

(0.20,0.20) 1.0000 1.0000 1.0000 1.0000

(0.05,0.05) 1.0000 1.0000 1.0000 1.0000

(0.20,0.05) 1.0000 1.0000 1.0000 1.0000

(0.15,0.15) 1.0000 1.0000 0.9999 0.9998

(0.30,0.30) 1.0000 1.0000 0.9999 0.9998

(0.30,0.20) 1.0000 1.0000 0.9997 0.9999

(0.70,0.70) 1.0000 1.0000 1.0000 1.0000

(0.70,0.15) 1.0000 1.0000 0.9999 0.9998

(0.80,0.30) 1.0000 1.0000 0.9889 0.9998

(0.90,0.90) 1.0000 1.0000 1.0000 1.0000

(0.25,0.75) 1.0000 0.9988 0.9888 0.9887

(0.75,0.25) 1.0000 1.0000 0.9888 0.9887
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Table 5. Results yielded by the Hopmoc method, Crank-Nicolson and an alternating
direction implicit scheme [18] when applied to Burgers equation using Reynolds number
Re = 200, tf = 1.0, Δt = 0.0001, and 30 × 30 grid points.

(x, y) Exact Hopmoc ADI CN

(0.2,0.2) 1.0000 1.0000 1.0000 1.0000

(0.3,0.3) 1.0000 1.0000 0.8515 0.8415

(0.3,0.2) 1.0000 1.0000 0.9000 0.9112

(0.7,0.7) 1.0000 1.0000 0.7515 0.7414

(0.8,0.3) 1.0000 1.0000 0.9876 0.9866

(0.9,0.9) 1.0000 0.9996 0.9996 0.9954

Comparison with Six Other Existing Methods This section illustrates
the accuracy of the Hopmoc method when applied to the system of 2-D Burgers
equations

{
ut + uux + vuy = 1

Re (uxx + uyy)
vt + uvx + vvy = 1

Re (vxx + vyy) (3)

with initial conditions u(x, y, 0) = f(x, y), v(x, y, 0) = g(x, y), (x, y) ∈ Ω, and
boundary conditions u(x, y, t) = ϕ(x, y, t), v(x, y, t) = ψ(x, y, t), x, y ∈ ∂Ω, t > 0
where Ω = {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b} and ∂Ω is its boundary, f , g, ϕ, and
ψ are known functions, u(x, y, t) and v(x, y, t) are the velocity componentes to
be determined.

We consider the system of 2-D Burgers Eq. (3) with exact solutions
u(x, y, t) = v(x, y, t) = 3

4 − 1

4

(
1+e(−4x+4y−t)Re

32

) using Δx = Δy = 0.05 and

Re = 100. The initial and boundary conditions are taken from the exact solu-
tion. The computational domain is Ω = {(x, y) : 0 ≤ x, y ≤ 1}. Table 6 compares
the numerical solutions yielded by the Hopmoc method with exact solution and
six existing methods:

– an exponential finite-difference (Expo-FD) method [19];
– an implicit logarithmic finite-difference method (I-LFDM) [20];
– a modified cubic B-spline differential quadrature (MCBDQ) method [21];
– a splitting method (SM) proposed by Shi et al. [16];
– a Crank-Nicolson/Adams-Bashforth (CNAB) scheme [22]
– the alternating direction implicit (ADI) method proposed by Çelikten and

Aksan [23].

Table 6 shows the results yielded by seven methods when applied to the
system of Burgers Eq. (3) for k = 0.0001 and tf = 0.5 at typical grid points.
The table shows that the results yielded by the Hopmoc method are compatible
with the six other methods.
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Table 6. Comparison of numerical and exact solutions of u(x, y, t) and v(x, y, t) for
Re = 100, k = 0.0001, Δx = Δy = 0.05, and tf = 0.5 at some typical grid points.

(x, y) Exact SM MCBDQ Expo-FD I-LFDM ADI CNAB Hopmoc

u(x, y, t) (0,1,0,1) 0.54332 0.54336 0.54412 0.54300 0.54300 0.54299 0.55979 0.54325

(0,5,0,1) 0.50035 0.50035 0.50037 0.50034 0.50034 0.50034 0.50160 0.50041

(0,9,0,1) 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50001 0.50000

(0,3,0,3) 0.54332 0.54338 0.54388 0.54270 0.54269 0.54268 0.54844 0.53957

(0,7,0,3) 0.50035 0.50034 0.50037 0.50032 0.50032 0.50032 0.50155 0.50051

(0,1,0,5) 0.74221 0.74228 0.74196 0.74215 0.74215 0.74215 0.74510 0.73468

(0,5,0,5) 0.54332 0.54333 0.54347 0.54252 0.54251 0.54249 0.54733 0.53397

(0,9,0,5) 0.50035 0.50034 0.50035 0.50030 0.50030 0.50030 0.50155 0.50056

(0,3,0,7) 0.74221 0.74236 0.74211 0.74212 0.74211 0.74211 0.74324 0.71934

(0,7,0,7) 0.54332 0.54332 0.54327 0.54247 0.54246 0.54245 0.54733 0.52921

(0,1,0,9) 0.74995 0.74995 0.74994 0.74994 0.74994 0.74994 0.74996 0.74981

(0,5,0,9) 0.74221 0.74237 0.74219 0.74210 0.74210 0.74210 0.74330 0.70472

(0,9,0,9) 0.54332 0.54331 0.54333 0.54229 0.54228 0.54227 0.54616 0.52726

v(x, y, t) (0,1,0,1) 0.95668 0.956650 0.95589 0.95700 0.95700 0.95701 0.95021 0.95675

(0,5,0,1) 0.99965 0.99965 0.99963 0.99966 0.99966 0.99966 0.99840 0.99959

(0,9,0,1) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.99999 1.00000

(0,3,0,3) 0.95668 0.95662 0.95612 0.95731 0.95731 0.95732 0.95156 0.96043

(0,7,0,3) 0.99965 0.99966 0.99964 0.99968 0.99968 0.99968 0.99845 0.99949

(0,1,0,5) 0.75779 0.75772 0.75804 0.75785 0.75785 0.75785 0.75490 0.76532

(0,5,0,5) 0.95668 0.95667 0.95654 0.95749 0.95749 0.95751 0.95267 0.96603

(0,9,0,5) 0.99965 0.99966 0.99965 0.99970 0.99970 0.99970 0.99845 0.99944

(0,3,0,7) 0.75779 0.75764 0.75789 0.75789 0.75789 0.75789 0.75676 0.78066

(0,7,0,7) 0.95668 0.95668 0.95673 0.95754 0.95754 0.95755 0.95267 0.97079

(0,1,0,9) 0.75005 0.75005 0.75006 0.75006 0.75006 0.75006 0.75004 0.75019

(0,5,0,9) 0.75779 0.75763 0.75781 0.75790 0.75790 0.75790 0.75670 0.79528

(0,9,0,9) 0.95668 0.95669 0.95667 0.95772 0.95772 0.95773 0.95384 0.97274

4 Conclusions

This paper shows the computational results yielded by the Hopmoc method
when applied to the two-dimensional advection-diffusion equation. The Hopmoc
algorithm yielded better results than did the Crank-Nicolson and the alternating
direction implicit scheme presented by Saqib et al. [18] when applied to the
advection-diffusion equation. The results yielded by the Hopmoc method when
applied to the 2-D Burgers equation are compatible with six other recent studies
presented in the literature.

We plan to integrate the Hopmoc method with backward differential formulas
in future works. We also intend to study the Hopmoc algorithm applied to the
two-dimensional advection-diffusion equation in conjunction with total variation
diminishing techniques [24] and flux-limiting procedures to improve its accuracy.
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Researchers solve very large-scale problems in the present day with the use
of parallel computations. Massive problems today are of the order of billions of
degrees of freedom (as examples, see experiments in parallel using structural [25]
and computational fluid dynamics problems [26]). We plan to apply the Hopmoc
method in parallel implementations using OpenMP, Galois, and Message Passing
Interface systems.
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Abstract. In this paper, we address our investigation to the numeri-
cal integration of nonlinear stochastic differential equations exhibiting a
mean-square contractive character along the exact dynamics. We specif-
ically focus on the conservation of this qualitative feature along the dis-
cretized dynamics originated by applying stochastic ϑ-methods. Retain-
ing the mean-square contractivity under time discretization is translated
into a proper stepsize restriction. Here we analyze the choice of the opti-
mal parameter ϑ making this restriction less demanding and, at the same
time, maximizing the stability interval. A numerical evidence is provided
to confirm our theoretical results.

Keywords: Stochastic differential equations · Stochastic ϑ-methods ·
Mean-square dissipativity · Mean-square contractivity

1 Introduction

We consider a system of stochastic differential equations (SDE) of Itô type
assuming the following differential form{

dX(t) = f(X(t))dt + g(X(t))dW (t), t ∈ [0, T ],
X(0) = X0,

(1)

where f : R
n → R

n, g : R
n → R

n×m and W (t) is a m-dimensional Wiener
process. For theoretical results on the existence and uniqueness of solutions to
(1) we refer, for instance, to the classical monograph [25]. Moreover, in the sequel,
we assume that the diffusive term in (1) is commutative.

We focus our attention on providing a nonlinear stability analysis of the
following stochastic ϑ-methods for (1) that, with reference to the discretized
domain

IΔt = {tn = nΔT, n = 0, 1, . . . , N, N = T/Δt},
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assume the following forms:

Xn+1 = Xn + (1 − ϑ)Δtf(Xn) + ϑΔtf(Xn+1) + g(Xn)ΔWn, (2)

Xn+1 = Xn + (1 − ϑ)Δtf(Xn) + ϑΔtf(Xn+1) +
m∑

j=1

gj(Xn)ΔW j
n (3)

+
1
2

m∑
j=1

Ljgj(Xn)((ΔW j
n)2 − Δt) +

1
2

m∑
j1,j2=1
j1 �=j2

Lj1gj2(Xn)ΔW j1
n ΔW j2

n ,

where ϑ ∈ [0, 1]. Xn is the approximate value for X(tn) and ΔWn is the dis-
cretized Wiener increment, distributed as a gaussian random variable with zero
mean and variance Δt. The operator Lj is defined as

Lj =
n∑

k=1

gk,j ∂

∂xk
, j = 1, ...,m,

where gj(Xn) is the j−th column of the matrix g(Xn) and ΔW j
n the j−th

element of vector ΔWn. We refer to (2) as ϑ-Maruyama methods and to (3) as
ϑ-Milstein methods in their componentwise form. We note that, if m = 1, (3)
reduces to the form

Xn+1 = Xn + (1− ϑ)Δtf(Xn) + ϑΔtf(Xn+1) + g(Xn)ΔWn +
1

2
g(Xn)g

′(Xn)(ΔW 2
n − Δt).

Convergence and linear stability analysis for stochastic ϑ-methods (2)–(3) has
been investigated in [3,20] and reference therein. Successively, a nonlinear stabil-
ity analysis has been performed in [12], as well as their conservation properties
when applied to linear and nonlinear stochastic oscillators [6,16]. The idea of
ϑ-methods has also been extended to stochastic Volterra integral equations, in
recent contributions [9,10].

1.1 Mean-Square Contractivity

Let us focus on the following relevant issue for nonlinear SDEs [22].

Theorem 1. For a given nonlinear SDE (1), let us assume the following prop-
erties for the drift f and the diffusion g, by denoting with | · | both the Euclidean
norm in R

n and the trace (or Frobenius) norm in R
n×m:

(i) f, g ∈ C1(Rn);
(ii) f satisfies a one-sided Lipschitz condition, i.e. there exists μ ∈ R such that

< x − y, f(x) − f(y) >≤ μ |x − y|2 , ∀x, y ∈ R
n; (4)

(iii) g is a globally Lipschitz function, i.e. there exists L > 0 such that

|g(x) − g(y)|2 ≤ L |x − y|2 ∀x, y ∈ R
n. (5)
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Then, any two solutions X(t) and Y (t) of (1), with E |X0|2 < ∞ and E |Y0|2 <
∞, satisfy

E |X(t) − Y (t)|2 ≤ E |X0 − Y0|2 eαt, (6)

where α = 2μ + L.

We call the inequality (6) exponential mean-square stability inequality for (1).
If α < 0 in (6), then an exponential decay of the mean-square deviation between
two solutions of a given SDE (1) occurs. We provide the following definition
that appears as the stochastic counterpart of a similar property for deterministic
ordinary differentia equations (see, for instance, [18] and references therein).

Definition 1. A nonlinear SDE (1) whose solutions satisfy the exponential sta-
bility inequality (6) with α < 0 is said to be exponential mean-square dissipative
and to generate exponential mean-square contractive solutions.

If g = 0 in (1), Definition 1 overlaps with the deterministic analog pro-
vided by μ = 0 guaranteeing a dissipative behavior of the deterministic solutions
to the corresponding ordinary differential problems. Their discretizations have
led to the well-known notion of G-stability of numerical methods, introduced
by G. Dahlquist in [11]. In the existing literature, there are several papers in
which deterministic and stochastic problems with one-sided Lipschitz constants
appear. In particular, they find huge application in finance and economics, neural
networks, population dynamics, systems synchronization, stochastic differential
equations with jumps, dynamical systems, delay ordinary (and stochastic) dif-
ferential equations (see [4,8,24,26,28,30–32,36] and references therein).

The results presented in [12] shows that it is possible to retain the mean-
square contractivity under time discretization through a proper stepsize restric-
tion. A rigorous discussion of the optimal choice of the parameter ϑ, however,
is missing in [12] and filling this gap in represents the goal of this contribution.
Indeed, we discuss the choice of the optimal parameter ϑ making the aforemen-
tioned stepsize restrictions less demanding and, at the same time, maximizing
the stability interval. As observed in [12], exponential mean-square contractivity
is certainly a relevant property to be inherited also by the discretized problem,
since it ensures a long-term damping of the error along the numerical solutions.
Specifically, the investigation led to sharp restrictions on the stepsize employed
in the numerical discretization to guarantee the conservation of exponential con-
tractive behavior along the numerical dynamics.

It is worth observing that our research is in line with the idea of structure-
preserving numerical integration; contributions in this direction and regarding
stochastic numerics are given, for instance, in [1,2,5,7,13,27,29,33,35] and ref-
erences therein.

The paper is organized as follows: in Sect. 2 we report results on linear and
nonlinear stability of stochastic ϑ-methods (2)–(3), while in Sect. 3 we focus on
the analysis of the optimal choice for the parameter ϑ guaranteeing the least
demanding stepsize restriction to retain mean-square contractivity along the
exact dynamics and maximal linear stability region; some concluding remarks
are object of Sect. 4.
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2 Stability Analysis of Stochastic ϑ-Methods

In this section, we summarize the main results about linear and nonlinear sta-
bility properties of stochastic ϑ-methods (2)–(3), that provide the starting point
for our investigation. This section is totally inspired by [12,19–21].

2.1 Linear Stability

Linear stability analysis relies on considering the following scalar linear test
equation {

dX(t) = λX(t)dt + σX(t)dW (t), t ∈ [0, T ],
X(0) = X0,

(7)

where λ, σ ∈ C. We recall the following definition [19–21].

Definition 2. The solution X(t) to the linear SDE (7) is mean-square stable if

lim
t→∞E |X(t)|2 = 0. (8)

It can been shown that, in order to attain (8), the coefficients of (7) have to
satisfy

Re(λ) +
1
2
|σ|2 < 0. (9)

Then, it looks natural to provide a numerical counterpart of mean-square sta-
bility also under time discretization, as follows.

Definition 3. A numerical solution Xn to linear SDE (7) is said to be mean-
square stable if

lim
n→∞E |Xn|2 = 0. (10)

It has been proved in [19,20] that stochastic ϑ-Maruyama methods (2) are
mean-square stable if and only if

|1 + (1 − ϑ)Δtλ|2 + Δt |σ|2
|1 − ϑΔtλ|2 < 1, (11)

while the stochastic ϑ-Milstein satisfies (10) if and only if [12]∣∣∣∣β2 +
βσ2Δt

1 − ϑΔtλ
+

σ2Δt + 3
4σ4Δt2

(1 − ϑΔtλ)2

∣∣∣∣ < 1, (12)

with

β =
1 + (1 − ϑ)Δtλ − 1

2σ2Δt

1 − ϑΔtλ
. (13)
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2.2 Nonlinear Stability

Let us now recall some of the tools useful to analyze nonlinear stability of stochas-
tic ϑ-methods (2)–(3), i.e., we aim to retain the same behaviour described by
the exponential mean-square stability inequality (6). As regards stochastic ϑ-
Maruyama methods, the following theorem holds true [12].

Theorem 2. Under the assumptions (i)–(iii) given in Theorem 1, any two
numerical solutions Xn and Yn, n ≥ 0, computed by applying the ϑ-Maruyama
method (2) to (1) with initial values such that E |X0|2 < ∞ and E |Y0|2 < ∞,
satisfy the inequality

E |Xn − Yn|2 ≤ E |X0 − Y0|2 eν(ϑ,Δt)tn , (14)

where
ν(ϑ,Δt) =

1
Δt

ln β(ϑ,Δt) (15)

and

β(ϑ,Δt) = 1 +
α + (1 − ϑ)2MΔt

1 − 2ϑμΔt
Δt, (16)

with
M = sup

t∈[0,T ]

E|f ′(X(t))|2. (17)

We observe that (14) gives the numerical counterpart of the exponential
inequality (6) stated for the SDE (1). A negative value of ν gives the exponential
mean-square decay of the gap between two numerical solutions computed by (2).
Moreover, it has been proved that the numerical exponent ν approaches the exact
one α as Δt → 0, as stated by the following result [12].

Theorem 3. Under the same assumptions of Theorem 2, for any fixed value of
ϑ ∈ [0, 1], we have

|ν(ϑ,Δt) − α| = O(Δt). (18)

Analogous results have also been established for stochastic ϑ-Milstein
schemes (3) in [12], as provided by the following theorems.

Theorem 4. Under the assumptions (i)–(iii) given in Theorem 1, any two
numerical solutions Xn and Yn, n ≥ 0, computed by applying the ϑ-Milstein
method (3) to (1) with initial values such that E |X0|2 < ∞ and E |Y0|2 < ∞,
satisfy the inequality

E |Xn − Yn|2 ≤ E |X0 − Y0|2 eε(ϑ,Δt)tn , (19)

where
ε(ϑ,Δt) =

1
Δt

ln γ(ϑ,Δt) (20)

and

γ(ϑ,Δt) = β(ϑ,Δt) +
3M̃Δt2

4(1 − 2ϑμΔt)
, (21)
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with M̃ defined as

M̃ =
m∑

i,j=1

n∑
k,l=1

M̃k,l
i,j , (22)

where

M̃k,l
i,j = sup

t∈[0,T ]

E

(
hk,l

i,j (X(t), Y (t))
)

E|X(t) − Y (t)|2 ,

being

hk,l
i,j (X(t), Y (t)) = < gk,i(X(t))

∂

∂xk
gj(X(t)) − gk,i(Y (t))

∂

∂yk
gj(Y (t)),

gl,i(X(t))
∂

∂xl
gj(X(t)) − gl,i(Y (t))

∂

∂yl
gj(Y (t)) >,

i, j = 1, . . . , m, k, l = 1, . . . , n.

Theorem 5. Under the same assumptions of Theorem 4, for any fixed value of
ϑ ∈ [0, 1], we have

|ε(ϑ,Δt) − α| = O(Δt). (23)

Clearly, inequality (19) reveals a mean-square contractive behavior along the
numerical solutions computed by (3), under the condition ε < 0.

Theorems 2 and 4 are the needed ingredient to provide the numerical coun-
terpart of the condition α < 0 in (6) under which, according to Definition 1, the
nonlinear problem (1) generates mean-square contractive solutions. This issue is
described in [12], as follows.

Definition 4. Consider a nonlinear stochastic differential Eq. (1) satisfying
assumptions (i)–(iii) given in Theorem 1 and let Xn and Yn, n ≥ 0, be two
numerical solutions of (1) computed by the ϑ-methods (2) or (3). Then, the
applied method is said to generate mean-square contractive numerical solutions
in a region R ⊆ R

+ if, for a fixed ϑ ∈ [0, 1],

ν(ϑ,Δt) < 0, ∀Δt ∈ R
for (2), being ν(ϑ,Δt) the parameter in (14), or

ε(ϑ,Δt) < 0, ∀Δt ∈ R
for (3), where ε(ϑ,Δt) is the parameter in (19).

Definition 5. A stochastic ϑ-method (2) or (3) is said unconditionally mean-
square contractive if, for a given ϑ ∈ [0, 1], R = R

+.

As regards the ϑ-Maruyama method (2), according to Definition 4, mean-
square contractive numerical solutions are generated if

0 < β(ϑ,Δt) < 1,
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for any Δt ∈ R, i.e.

R =

⎧⎨
⎩

(
0,

|α|
(1 − ϑ)2M

)
, ϑ < 1,

R
+, ϑ = 1.

(24)

As a consequence, the ϑ-Maruyama method with ϑ = 1, i.e., the implicit
Euler-Maruyama method

Xn+1 = Xn + Δtf(Xn+1) + g(Xn)ΔWn. (25)

is unconditionally mean-square contractive. In other terms, the stochastic pertur-
bation (25) of the deterministic implicit Euler method preserves its unconditional
contractivity property [18].

In analogous way, as regards the ϑ-Milstein method (3), Definition 4 leads to

0 < γ(ϑ,Δt) < 1,

for any Δt ∈ R, i.e.

R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0,

4|α|
4(1 − ϑ)2M + 3M̃

)
, ϑ < 1,(

0,
4|α|
3M̃

)
, ϑ = 1.

(26)

Finally, the computation of the regions R in (24) and (26) require the knowl-
edge of the parameters L, μ, M and M̃ . To make the region R completely
computable, the authors in [12] have adopted the estimation strategy described
in [34].

3 Optimal Choice of the Parameter ϑ

We now aim to investigate the choice of the optimal parameter ϑ, for both ϑ-
methods (2) and (3), that maximizes the region R in (24) and (26), as well as
the linear stability interval provided by (11) and (12).

To this purpose, let us denote by λ and σ the intercepts of the linearizations
of the functions f and g in (1), respectively. In the remainder, we assume λ and
σ to be real. In addition, for the nonlinear SDE (1), we assume the conditions
of Theorem 1 satisfied, i.e., we deal with exponential mean-square dissipative
nonlinear SDEs, according to the Definition 1.

3.1 Analysis of Stochastic ϑ-Maruyama Methdos

We first consider stochastic ϑ-Maruyama methods (2). We note from (11) that,
in order to satisfy (10), the following condition must be fulfilled

Δt(1 − 2ϑ)λ2 < −2
(

λ +
1
2
σ2

)
. (27)
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Moreover, the stability condition for the linear SDE (7) provides that

λ +
1
2
σ2 < 0.

It is worth separating the analysis of the two cases ϑ ∈ [0, 1
2 ) and ϑ ∈ [12 , 1).

Let us start with the case ϑ ∈ [0, 1
2 ). Taking into account (11) and (27), for

ϑ ∈ [0, 1
2 ), we define

REM =

⎡
⎢⎢⎢⎢⎣

− 2λ + σ2

(1 − 2ϑ)λ2

|α|
(1 − ϑ)2M

⎤
⎥⎥⎥⎥⎦

and denote

hEM (ϑ) = ||REM ||2 =

(
2λ + σ2

)2
(1 − 2ϑ)2

+
α2

(1 − ϑ)4M2
,

whose first derivative is then given by

h′
EM (ϑ) =

(
2λ + σ2

)2
(1 − 2ϑ)3

+
4α2

M2 (1 − ϑ)5
. (28)

Hence
hEM (ϑ) > 0, 0 ≤ ϑ <

1
2
. (29)

Therefore, the function ||REM || is a increasing function of ϑ.
We now analyze the case 1

2 ≤ ϑ < 1. In this case, the linear stability condition
(27) is satisfied for any Δt > 0. This means that the linear stability region is
unbounded and the study of the term ||REM || reduces only in the analysis of

hEM (ϑ) =
|α|

M(1 − ϑ)2
,

1
2

≤ ϑ < 1,

that is an increasing function of ϑ as well.
Finally, for ϑ = 1, both the linear and the nonlinear stability regions are equal

to R
+. Hence, we argue that ϑ = 1 is the optimal choice for ϑ in ϑ-Maruyama

methods.

3.2 Analysis of Stochastic ϑ-Milstein Methods

Let us now analyze the family of stochastic ϑ-Milstein methods (3). Taking into
account (12) and (13), proper algebraic manipulations suggest that, in order to
attain (10), the following condition must hold true

γ(ϑ)Δt <
∣∣2λ + σ2

∣∣ , (30)
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where
γ(ϑ) =

1
2
σ4 + λ

(
λ + 2ϑ

(
σ2 − λ

) − 2σ2
)
. (31)

If we define

l(λ, σ) =
σ4

2|λ| − λ + 2σ2

2 (σ2 − λ)
,

we have
γ(ϑ) > 0

if and only if
ϑ < l(λ, σ).

Let us distinguish the following two cases.

Case l(λ, σ) < 1. In this case, for 0 ≤ ϑ < l(λ, σ), we define

RMIL =

⎡
⎢⎢⎢⎢⎣

2
∣∣λ + 1

2σ2
∣∣

γ(ϑ)

4|α|
4(1 − ϑ)2M + 3M̃

⎤
⎥⎥⎥⎥⎦

and

hMIL(ϑ) = ||RMIL||2 =
4|λ + 1

2σ2|2
γ2(ϑ)

+
16|α|2

(4(1 − ϑ)2M + 3M̃)2
,

whose first derivative is given by

h′
MIL(ϑ)

−8|λ + 1
2σ2|2γ′(ϑ)

γ3(ϑ)
+

32 · 8|α|2(1 − ϑ)

(4(1 − ϑ)2M + 3M̃)3
. (32)

Since, by (30), γ′(ϑ) < 0 for any 0 ≤ ϑ < l(λ, σ), we have that RMIL is an
increasing function of ϑ, 0 ≤ ϑ < l(σ, γ).

Case l(λ, σ) ≥ 1. In this case, the linear stability interval is unbounded. Hence,
by the second summand in (32), we conclude that RMIL is an increasing function
of ϑ, 0 ≤ ϑ ≤ 1, as well. This shows that also for the stochastic ϑ-Milstein
methods, the choice ϑ = 1 is the optimal one.

3.3 A Numerical Evidence: Stochastic Ginzburg-Landau Equation

Ginzburg-Landau equation plays a relevant role in the theory of superconductiv-
ity, in particular to describe phase transitions (see [17,23] and references therein).
Its stochastic counterpart in presence of multiplicative noise has been provided
in [25]. Specifically, we consider the scalar SDE (1) with

f(X(t)) = kX(t) − τX(t)3, g(X(t)) = ρX(t), (33)
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being k, τ, ρ ∈ R. In our experiments, let us consider k = −4, τ = ρ = 1, as in
[12,22]. For this problem the constants L and μ are given by L = 1 and μ = −4,
so α = −7. Then, according to Theorem 1, this problem generates mean-square
contractive solutions. Moreover, the values of M in (17) and M̃ in (22) are 16
and 1, respectively. We consider the stochastic ϑ-Maruyama method (2) with
ϑ = 0.2. In this case (24) yields

R = (0, 0.68) .

The corresponding estimate on Δt is confirmed in Fig. 1, where the pattern of the
mean-square deviation E|Xn − Yn|2 in logarithmic scale is depicted for various
values of Δt. It is visible that, the more Δt decreases, the more the numerical
slope ν(0.2,Δt) in (14) tends to the exact one α in (6). For values of Δt > 0.68,
the mean-square deviation does not exponentially decay.

0 1 2 3 4 5 6 7 8 9 10
10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

105

 t = 0.29
 t = 0.37

exp(-7*t)
 t = 0.78

Fig. 1. Mean-square deviations over 2000 paths for the stochastic ϑ-method (2), with
ϑ = 0.2, applied to stochastic Ginzburg-Landau equation.

Let us now fix the value of stepsize Δt = 400/29 and perform the simu-
lations over M = 2000 paths obtained applying the stochastic ϑ-Maruyama
methods (2) and the stochastic ϑ-Milstein methods with ϑ = 0, 0.2, 0.5, 0.8, 1.
The numerical evidence provided in Figs. 2 and 3 reveals that, for decreasing
values of the parameter ϑ, the mean-square contractivity of the relative stochas-
tic ϑ-Maruyama method is less and less visible, according to the theory here
provided.
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Fig. 2. Mean-square deviations over 2000 paths for stochastic ϑ-Maruyama methods
(2), with different values of ϑ and constant stepsize Δt = 400/29, applied to the
stochastic Ginzburg-Landau equation.
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Fig. 3. Mean-square deviations over 2000 paths for stochastic ϑ-Mistein methods (3),
with different values of ϑ and constant stepsize Δt = 400/29, applied to stochastic
Ginzburg-Landau equation.
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4 Conclusions and Future Issues

In this work, we have considered nonlinear stochastic differential equations (1)
exhibiting an exponential mean-square dissipative character according to The-
orem 1 and Definition 1. We have analyzed the behaviours of stochastic ϑ-
methods, i.e., the ϑ-Maruyama (2) and ϑ-Milstein methods (3). As proved in
[12], these discretizations are capable of reproducing the mean-square contrac-
tivity, according to Definition 4, in accordance to a suitable stepsize restriction.
In this paper, we have discussed about to choice of the parameter ϑ in order to
maximize both the linear and nonlinear stability intervals. It has been proved
that the optimal choice is ϑ = 1 for both families of ϑ-methods, as confirmed by
Figs. 2 and 3.

Future developments of this research will be oriented to provide optimal ϑ-
methods for SDEs exhibiting a mean-square dissipative character in presence of
other types of noise and also in presence of jumps [21,22]. Moreover, the effective-
ness of ϑ-methods and their extensions in numerically retaining the characteristic
features of nonlinear stochastic oscillators [6,7,14,16,33] deserves further future
investigations.

We also highlight that the analysis of nonlinear stability properties of other
numerical methods (such as two-step Runge-Kutta methods [15]) also deserves
future investigations.
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Abstract. In this work we focus on the development of continuous
extension of Euler-Maruyama method, which is used to numerically
approximate the solution of Stochastic Differential Equations (SDEs).
We aim to provide an approximation of a given SDE in terms of a piece-
wise polynomial, because, as it is known in the deterministic case, a
dense output allows to provide a more efficient error estimate and it is
very effective for a variable step-size implementation. Hence, this contri-
bution aims to provide a first building block in such directions, consisting
in the development of the scheme.

Keywords: Stochastic Differential Equations · Euler-Maruyama
method · Collocation methods · Dense output

1 Introduction

The study of Stochastic Differential Equations (SDEs) has attracted the recent
attention of many researchers, due to their applications in many areas such
as physics, finance, biology, medicine and chemistry [13,33,34,41,43,47]. The
general form of an autonomous SDEs is given by:

dX(t) = f(X(t))dt + g(X(t))dW (t), X(0) = X0, t ∈ [0, T ], (1)

where the solution X(t) is a random variable, the coefficient f(X(t)) of the
deterministic part is the drift coefficient, while the coefficient g(X(t)) of the
stochastic term is denoted as diffusion coefficient and W (t) is a multidimensional
Wiener process. We remind that a Wiener process W (t) on [0, T ] is a real valued
continuous-time process with the property that the Wiener increments W (t) −
W (s) are independent random variables with

W (t) − W (s) ∼ √
t − sN(0, 1), 0 ≤ s < t ≤ T,
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where N(0, 1) denotes a normally distributed random variable with zero mean
and unitary variance.

The integral form of (1) is given by

X(t) = X(0) +
∫ t

0

f(X(s))ds +
∫ t

0

g(X(s))dW (s), t ∈ [0, T ], (2)

where the first integral is a Riemann integral, while the second one is a stochastic
integral, commonly interpreted in either Itô or Stratonovich form. In this paper,
we will interpret the second integral of the Eq. (2) as an Itô integral. For a
comprehensive treatise of stochastic calculus (also in the direction of numerical
integration), as well as on the existence and the uniqueness of solutions to (2), the
interested reader can refer, for instance, to [33,41,43,47] and references therein.

Numerical modeling for SDEs is a crucial ingredient to accurately simulate
the solutions to nonlinear SDEs, since they cannot be exactly computed in most
of the cases. Comprehensive monographs on the topic are, for instance, [33,41].
Relevant families of stochastic one-step, two-step, Runge-Kutta and two-step
Runge-Kutta methods are discussed, for instance, in [20,32,33,39–41,43,47–49]
and references therein. Moreover, contributions on the preservation of invariance
laws along time discretizations are object of [12,13,13,19,26,28,29,31,38,42] and
references therein.

With respect to the uniform grid

Ih = {tn = nh, n = 0, 1, . . . , n, Nh = T}, h > 0, (3)

the well-known Euler-Maruyama method (EM)

Xj = Xj−1 + hf(Xj−1) + g(Xj−1)ΔWj , j = 1, 2, . . . , N, (4)

represents a prototype of the simplest method for SDEs (1). Xj is an approxi-
mate solution to X(tj) and ΔWj = W (tj) − W (tj−1) are independent Wiener
increments. The present contribution aims to develop a continuous extension
to the EM method, useful to provide a building block for a more general the-
ory of continuous methods for SDEs, useful to assess their variable stepsize
implementation, particularly effective, for instance, to solve stiff SDEs [1–7,9–
11,14,21,35,36,44–46,50].

The idea we aim to use here is closely related to the analogous scenario
of continuous numerical methods for deterministic differential equations at the
basis, for instance, of the well-known idea of deterministic numerical collocation
(refer, for instance, to [16–18,22–25,27,37] and references therein).

Numerical collocation for deterministic problems is a feasible technique to
develop dense output methods for functional equations. In other terms, the pro-
vided approximant (the collocation function) is constructed as linear combina-
tion of selected basis functions, spanning a finite dimensional functional space;
usually these functions are algebraic polynomials. The collocation function is
required to exactly satisfies the given equation in a selected set points of the
integration interval, denoted as collocation points. It is worth observing that
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the collocation function can be chosen as a linear combination of ad hoc basis
functions, chosen coherently with the qualitative character of the given problem.

Furthermore, the collocation function provides an approximation to the solu-
tion of the continuous problem over the entire integration interval. This feature is
particularly, for instance, in order to provide high continuous order methods not
suffering from order reduction when applied to stiff problems [15,25], as well as
to provide efficient and accurate procedure of error estimation useful in variable
stepsize implementations [30]. Nonetheless, re-casting discrete numerical meth-
ods as collocation methods makes their analysis benefit from their continuous
formulation.

Inspired by the idea of collocation for Volterra integral equations [8], we aim
to provide here a continuous extension of the EM method (4) applied to the
integral form (2) of the SDE (1). The paper is organized as follows: in Sect. 2 we
briefly recall the idea of numerical collocation for Volterra Integral Equations;
this technique is extended to stochastic differential equations and, for selected
values of the collocation parameters, the extension of the EM method (4) is
provided. Some concluding remarks are discussed in Sect. 5.

2 Numerical Collocation for Volterra Integral Equations

This section aims to recall the idea of collocation for deterministic Volterra
Integral Equations (VIEs)

y(t) = g(t) +
∫ t

0

k(t, τ, y(τ))dτ, t ∈ I = [0, T ], (5)

where k ∈ C(D × R), with D = {(t, τ) : 0 ≤ τ ≤ t ≤ T} and g ∈ C(t).
Let us refer to the set of grid points Ih defined in (3) and let

0 ≤ c1 < . . . < cm ≤ 1

be m collocation parameters. Moreover, let us denote by tnj = tn + cjh the
so-called collocation points. Collocation methods allow us to approximate the
exact solution y(t) of (5) by a piecewise polynomial

P (t) ∈ S
(−1)
m−1(Ih) = {v|(tn,tn+1 ∈ Πm−1, n = 0, 1, . . . , N − 1},

where Πm−1 denotes the space of algebraic polynomials of degree not exceeding
m − 1. The collocation polynomial, restricted to the interval [tn, tn+1], is of the
form

Pn(tn + sh) =
m∑
j=1

Lj(s)Ynj , s ∈ [0, 1], (6)

for n = 0, . . . , N − 1, where Lj(s) is the j-th Lagrange fundamental polynomial
and Ynj = Pn(tnj). The collocation equation is obtained by imposing that the
polynomial (6) exactly satisfies the integral equation in the collocation points
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and requires, at each time step, the solution of a system of m nonlinear equations
in the m unknowns Yni, as follows

⎧⎪⎪⎨
⎪⎪⎩

Yni = Fni + Φni,

yn+1 =
m∑
j=1

Lj(1)Ynj ,
,

where

Fni = g(tni) + h
n−1∑
v=0

∫ 1

0

k (tni, tv + sh, Pv(tv + sh)) ds, (7)

Φni = h

∫ ci

0

k (tni, tn + sh, Pn(tn + sh)) ds, (8)

for i = 1, . . . ,m.
In order to obtain a fully discretized collocation scheme, it is necessary to

approximate the integrals appearing in (7) and (8) by suitable quadrature for-
mulae. This procedure leads to the well-known idea of discretized collocation.
The discretized collocation polynomial is of the form

P̃n(tn + sh) =
m∑
j=1

Lj(s)Ỹnj , s ∈ [0, 1], (9)

for n = 0, . . . , N − 1, where Ỹnj = P̃n(tnj). The corresponding discretized collo-
cation method assume the form:⎧⎪⎪⎨

⎪⎪⎩

Ỹni = F̃ni + Φ̃ni,

ỹn+1 =
m∑
j=1

Lj(1)Ỹnj ,
,

where

F̃ni = g(tni) + h

n−1∑
v=0

µ1∑
l=0

blk
(
tni, tv + ξlh, P̃v(tv + ξlh)

)
,

Φ̃ni = h

µ2∑
l=0

wilk
(
tni, tn + dilh, P̃n(tn + dilh)

)
,

for i = 1, . . . ,m, where
(ξl, bl)

µ1
l=1 (dil, wil)

µ2
l=1

are two quadrature formulas with nodes ξl and dil such that

0 ≤ ξ1 < . . . < ξµ1 ≤ 1

and
0 ≤ di1 < . . . < diµ2 ≤ 1.

μ1 and μ2 are positive integers and bl and wil are the weights of the formulae.
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3 Continuous Extension of the EM Method

Let us now focus our attention to the SDE in integral form (2). We aim to provide
an approximation u(t) to the solution X(t) of (2) on the overall integration
interval [0, T ], such that its restriction un(t) to the interval [tn, tn+1] is a linear
polynomial.

To this purpose, let us fix the collocation parameters c1, c2 ∈ [0, 1] and denote
by

tn1 = tn + c1h,

tn2 = tn + c2h

the two corresponding collocation points in the interval [tn, tn+1].
Let us make the following ansatz: in a sufficiently small interval of length h,

the solution X(t) to (2) can be approximated by the linear function

un(tn + θh) = L1(θ)U
[n]
1 + L2(θ)U

[n]
2 , θ ∈ [0, 1], (10)

where Lj(θ) are the Lagrange fundamental polynomials with respect the collo-
cation parameters, i.e.,

L1(θ) =
θ − c2
c1 − c2

,

L2(θ) =
θ − c1
c2 − c1

and U
[n]
i = un(tni), i = 1, 2.

Correspondingly, the following numerical scheme is obtained
{

U
[n]
i = Fn + Φ

[n]
i , i = 1, 2,

Xn+1 = L1(1)U [n]
1 + L2(1)U [n]

2 ,
(11)

where the lag-term

Fn = X(t0) +
∫ tn

0

f(u(s))ds +
∫ tn

0

g(u(s))dW (s), (12)

contains all the past history of the dynamics up to the grid point tn, while the
incremental terms Φ

[n]
1 and Φ

[n]
2 are defined by

Φ
[n]
i =

∫ tni

tn

f(un(s))ds +
∫ tni

tn

g(un(s))dW (s).

By employing (10) and by a suitable change of variable, the incremental terms
assume the form

Φ
[n]
1 = h

∫ c1

0

f

⎛
⎝ 2∑

j=1

Lj(θ)U
[n]
j

⎞
⎠ dθ +

∫ tn1

tn

g

⎛
⎝ 2∑

j=1

Lj

(
s − tn

h

)
U

[n]
j

⎞
⎠ dW (s),

(13)
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Φ
[n]
2 = h

∫ c2

0

f

⎛
⎝ 2∑

j=1

Lj(θ)U
[n]
j

⎞
⎠ dθ +

∫ tn2

tn

g

⎛
⎝ 2∑

j=1

Lj

(
s − tn

h

)
U

[n]
j

⎞
⎠ dW (s).

(14)
We observe that the scheme (11) requires the solution of a system of two

nonlinear equations in the unknowns U
[n]
1 and U

[n]
2 .

By setting c2 = 1, the scheme (11) may be substantively simplified. In fact,
in this case, we observe that

Φ
[n]
2 =

∫ tn+1

tn

f(un(s))ds +
∫ tn+1

tn

g(un(s))dW (s), (15)

therefore, by (11), (12) and (15),

U [2]
n = Fn + Φ

[n]
2 = Fn+1, n = 0, . . . , N − 1.

As a consequence, by (10),

Fn = U
[n−1]
2 = un−1(tn−1 + c2h) = un−1(tn) = Xn,

i.e. for each time step the lag term Fn is equal to the numerical solution Xn at
the mesh point tn. Moreover,

Xn+1 = un(tn + h) = un(tn + c2h) = U
[n]
2

and the method (11) assumes the form
{

U
[n]
i = Xn + Φ

[n]
i , i = 1, 2,

Xn+1 = U
[n]
2 ,

(16)

where the expressions of Φ
[n]
i are the same of (13) and (14), for i = 1, 2 respec-

tively.
Clearly, the scheme reported in (11) is not a full discretization, unless the

involved integrals are replaced by suitable quadrature formulae.
Remaining in the case c2 = 1, we consider the following discretized metod,

which is obtained from (16) by approximating the integrals in (13) and (14) by
means of the rectangular quadrature rule

⎧⎪⎪⎨
⎪⎪⎩

Ũ
[n]
1 = X̃n + hc1f

(
b1Ũ

[n]
1 + b2Ũ

[n]
2

)
+ g

(
b1Ũ

[n]
1 + b2Ũ

[n]
2

) √
c1hZ

[n]
1 ,

Ũ
[n]
2 = X̃n + hf

(
b1Ũ

[n]
1 + b2Ũ

[n]
2

)
+ g

(
b1Ũ

[n]
1 + b2Ũ

[n]
2

) √
hZ

[n]
2 ,

X̃n+1 = Ũ
[n]
2 ,

(17)
where b1 = L1(0), b2 = L2(0) and Z

[n]
1 , Z

[n]
2 are normal variables of mean 0 and

variance 1. The continuous approximant, in the interval [tn, tn+1], assumes the
form

ũn(tn + θh) =
1 − θ

1 − c1
Ũ

[n]
1 +

θ − c1
1 − c1

Ũ
[n]
2 θ ∈ [0, 1]. (18)
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The derived family of continuous methods contains the EM method as a
particular case when c1 = 0. As a matter of fact, imposing c1 = 0 in (17) and
taking into account that b1 = 1 and b2 = 0, the method assumes the form

{
Ũ

[n]
1 = X̃n,

Ũ
[n]
2 = X̃n + hf(X̃n) + g(X̃n)

√
hZ

[n]
2

and the value of X̃n+1 can be evaluated as

X̃n+1 = X̃n + hf(X̃n) + g(X̃n)
√

hZ
[n]
2 , (19)

which corresponds to the EM method (4). In the case of EM method the con-
tinuous approximant assumes the form

ũn(tn + θh) = (1 − θ)X̃n + θX̃n+1 θ ∈ [0, 1]. (20)

4 Numerical Evidences

In this section we experimentally observe the accuracy of the new class of meth-
ods obtained in the previous section, with special emphasis its weak accuracy.
We recall that a numerical method has weak order of convergence equal to p if
there exists a constant C such that

|E(Xn) − E(X(tn))| ≤ Chp

for any fixed tn = nh ∈ Ih, where E(·) is the expectation operator.
Let us assume the following SDE as test problem

dX(t) = t2dt + e
d
2 cos(X(t)), X(0) = 0, t ∈ [0, 1]. (21)

The expected value of the exact solution is E(X(t)) =
t3

3
.

Table 1. Absolute errors in the endpoint T = 1 obtained applying (11) to problem
(21), for several values of the parameter c1 .

N c1 = 0 c1 = 1/4 c1 = 1/2 c1 = 3/4

27 3.0967 · 10−3 3.0675 · 10−3 3.0095 · 10−3 2.8355 · 10−3

26 6.5909 · 10−3 6.5634 · 10−3 6.5083 · 10−3 6.3435 · 10−3

25 1.5071 · 10−2 1.5044 · 10−2 1.5071 · 10−2 1.4834 · 10−2

24 2.8721 · 10−2 2.8698 · 10−2 2.8653 · 10−2 2.8520 · 10−2

Table 1 shows the absolute errors corresponding to various numerical methods
belonging to the family (11), for selected values of c1 and setting c2 = 1, applied
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to problem (21). All methods exhibit the same weak order of convergence of
EM method (4), which is equal to 1. In other terms, passing to the continuous
extension do not deteriorate the order EM.

Let us now set c1 = 1
4 and c2 = 1, and apply the corresponding method to

the following additional SDE

dX(t) = e− t
2 dt + eX(t)− t

2 dW (t), X(0) = 0, t ∈ [0, 1], (22)

whose exact solution has expected value E(X(t)) = 2−2e− t
2 , and to the problem

d(X(t)) = (2X(t) + e2t)dt + μX(t)dW (t), X(0) = 1, t ∈ [0, 1], (23)

whose exact solution has expectation given by E(X(t)) = −e2t(1 + t).
Figure 1 shows the behaviour of the absolute errors for decreasing values of

the stepsize. We can observe that the method obtained by imposing c1 = 1/4,
applied to (21), (22) and (23), exhibits weak order of convergence equal to 1.
So, also for values of c1 different from 0, we preserve the same weak order of
convergence of EM method (4).
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Fig. 1. Absolute weak errors associated to the application of (11) with c1 = 1/4 to
problem (21) (dashed-dotted blue line), problem (22) (solid magenta line) and problem
(23) (dotted black line). The reference slope of order 1 is depicted by the dashed red
line (Color figure online).
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5 Concluding Remarks

We have focused on the possibility to continuously extend the EM method (4), by
properly revising the idea of numerical collocation method used in the literature
for deterministic Volterra integral equations. This continuous extension provides
an approximation to the solution in the overall interval of integration.

The present contribution is a first building block for a comprehensive theory
of continuous numerical methods for SDEs, useful to assess a variable step-
size framework particularly effective, for instance, to solve stiff SDEs [1–7,9–
11,21,35,36,44–46,50]. In this direction, further efforts are requested, such as
the construction of feasible error estimates by exploiting the continuous approx-
imant. Basis functions other than algebraic polynomials will also be investigated.
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Abstract. In the framework of the statistical interpretation of multiple photon
scattering as a stationary Markov process, which was given in well-known works
by V.V. Sobolev and S. Ueno, the author has formulated the principle of mirror
spatial-angular symmetry for total probabilities of photons exiting a homogeneous
slab of finite optical thickness τ0 < ∞. Based on this principle, linear second kind
Fredholm integral equations have been obtained, as well as linear singular integral
equations, for new objects of the classical radiative transfer theory, namely proba-
bilistic invariants in the case of arbitrary distribution and power of primary energy
sources in the medium. Besides, a unified probabilistic function for photons exit-
ing a homogeneous slab was constructed. For finding unique regular solutions of
the obtained linear singular integral equations, by analogy with the classical the-
ory, additional integral relations are given, depending on the presence or absence
of roots or pseudo-roots in respective characteristic equations. Given the analytic
connection between probabilistic and photometric invariants, it has been shown
that their calculations by standard computational methods, such as discretization
technique or method of successive approximations, lead to substantial savings of
computer resources and provide a more convenient form for representing theoret-
ical data and results of numerical modelling of radiation fields of an atmosphere
in the visible spectrum range of 0.6–0.8 μm.

Keywords: Mirror reflection principle · Total probability of photon exiting ·
Probabilistic invariants · Basic boundary-value problem · Phase function · Single
scattering albedo · Optical thickness · Mirror symmetrical optical levels · Mirror
symmetry vision lines · Unified probabilistic function

1 Basic Probabilistic Functions and Their Main Properties

Let’s consider a homogeneous slab of finite optical thickness τ0 < ∞ (without a reflect-
ing bottom), in which there occur processes of multiple anisotropic photon scattering
and absorption with the single-scattering albedo � and (1−�) respectively, and the
arbitrary phase function P(cos γ), where γ is a scattering angle. We ignore the effects
of radiation polarization and refraction. The distribution and power of primary external
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and internal energy sources g(τ,η,ϕ) in such a slab are deemed arbitrary and isotropic.
Here we focus on the spatial angular structure, nonlocal properties of symmetry and
invariance of scalar radiation exiting the medium, as well as on probabilistic interpreta-
tion of multiple anisotropic photon scattering in the considered homogeneous slab. We
mostly pay attention to one of the problems of the classical radiative transfer theory,
in which the medium is illuminated by parallel solar rays falling on its upper τ = 0
or lower τ = τ0 border and creating luminosity of a square perpendicular to them,
equal to πS. In this case, the basic boundary-value problem of the classical theory of
scalar radiative transfer [1, 2] is of a probabilistic nature, meaning that the phase func-
tion P(cos γ) which determines the probability of photon scattering at an angle γ (in
interaction with the medium’s elementary volume dV, and the particles albedo � equal
to the probability of their “survival” in the initial scattering event), including the basic
phenomenological equation of radiative transfer, from the statistical point of view allows
to consider the multiple scattering process in terms of a stochastic and uniform Markov
chain process with given initial probabilities of distributions of photon absorption and
scattering volume coefficients in each current point along their motion path [3–5].

Thus, in the framework of the statistical interpretation of the classical radiative
transfer theory, its basic task consists in finding, at each fixed yet arbitrary optical level
τ , a spatial-angular distribution of probabilities of photons exiting the medium across
the upper (τ = 0) or lower (τ = τ0) border at given probabilities that characterize
basic optical parameters and initial spatial-angular distribution of probabilities of initial
(single) photon scattering and absorption by the medium elementary volume dV. Given
the above, to solve the set task, we will use Sobolev’ probabilistic method in its original
basic statement [6], including generalization to the case of non-isotropic multiple photon
scattering [7].

Let the function p(τ, η′, η, ϕ′ −ϕ, τ0)d� determine the probability of such an event
where a photon moving in the direction θ ′ = arccos η′ to the outward normal of the
given homogeneous slab at the azimuth ϕ′, and then absorbed at the optical depth τ ,
exits the medium after multiple scatterings through its upper border τ = 0 at the
angle θ = arccos η to the outward normal at the azimuth ϕ inside the solid angle
dω = sinθ dθ dϕ (Fig. 1).

Fig. 1. Probabilities p(τ, η′, η, ϕ′ −ϕ, τ0) and q(τ, η′, η, ϕ′ −ϕ, τ0) of photons exiting the upper
border τ = 0 of the homogeneous slab [0, τ0] at their absorption and subsequent radiation at an
arbitrary optical thickness τ .
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Along with this probabilistic function, we consider the probability that the photon
emitted at the optical depth τ in the direction θ ′ = arccos η′ relative to the outward
normal and having the azimuth ϕ′ will exit themedium after multiple scatterings through
its upper border τ = 0 at the angle θ = arccos η to the outward normal at azimuth
ϕ inside the solid angledω. Note that according to [1, 6, 7], finding probabilistic func-
tions p

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q

(
τ, η′, η, ϕ′ − ϕ, τ0

)
allows to fully solve the basic

boundary-value problem of the scalar radiative transfer theory in the visible range of
spectra 0.6–0.8 μm in the case of a homogeneous slab of an arbitrary optical thickness
τ0 ≤ ∞ without a reflecting bottom.

2 Probabilistic Invariants in the Theory of Multiple Photon
Scattering

Let us turn now to studying the sought-for nonlocal spatial-angular properties of mirror
symmetry for the probabilities p

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q

(
τ, η′, η, ϕ′ − ϕ, τ0

)
of pho-

tons exiting the homogeneous slab of finite optical thickness τ0 < ∞ , in which the
geometric and optical symmetry axes coincide with its middle τ0/2. In the traditional
approach to considering those properties [1, 2] for upgoing η′ < 0 and downgoing
η′ > 0 vision lines, usually one arbitrary but fixed optical level τ is selected [6, 7], and
then the well-known theorem of optical reciprocity of scattering processes in a given
slab [8]. Modification of this standard approach as proposed by the author [9, 10] implies
“splitting” of the initially selected arbitrary level τ into two separate optical levels that
are mirror symmetrical in relation to the middle of the initial homogeneous slab τ0/2. In
that case, instead of one current optical level τ , the second level (τ0 − τ ) is introduced,
which is mirror symmetrical to the initial level τ in relation to the level τ0/2. As demon-
strated below, the consideration of two probabilistic functions p

(
τ, η′, η, ϕ′ − ϕ, τ0

)

and q
(
τ, η′, η, ϕ′ − ϕ, τ0

)
for two arbitrary upgoing and downgoing mirror symmetrical

directions of photon propagation η′ and −η′ leads to the formation, at optical depths τ

and τ0 − τ in directions η′ and −η′, of new probabilistic constructions which possess
invariance properties at a simultaneous shift of the current optical depths τ ⇔ τ0−τ and
change of directions η′ ⇔ −η′ when vision lines are rotating. This property of spatial-
angular mirror symmetry extends and supplements the generally accepted traditional
principle of optical reciprocity [11], being a foundation for formulating a more gen-
eral principle of mirror reflection and spatial-angular mirror symmetry of probabilistic
functions p

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q

(
τ, η′, η, ϕ′ − ϕ, τ0

)
in an extended homogeneous

slab of finite optical thickness τ0 < ∞ at any power and arbitrary spatial distribution
of primary isotropic energy sources g(τ ) within it.

Following the above-described approach, we consider the behavior of the initial
photon (I) absorbed at an arbitrary optical depth τ from the direction of its propagation
θ ′ = arccos η′ at azimuth ϕ′. At the same arbitrary optical level τ let us introduce the
probabilistic function p+

(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)
, which determines the probability

of the photon exiting the medium across its lower border τ = τ 0 in the downgoing direc-
tion θ = arccos η at azimuth

(
ϕ′ − ϕ

)
. Thus, at an arbitrarily selected optical level τ the

sum of probabilities p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q

(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)
determines
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the total probability p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
of the photon (I) exiting the medium at the

angle θ = arccos η at azimuth
(
ϕ′ − ϕ

)
:

p+
(
τ, η′, η, ϕ′ − ϕ, τ0

) = p
(
τ, η′, η, ϕ′ − ϕ, τ0

) + p
(
τ0 − τ, −η′, η, ϕ′ − ϕ, τ0

)
(2.1)

Along with the photon (I) absorbed at the level τ from the direction θ ′ = arccos η′ at
azimuthϕ′, let us consider a “mirror” photon (I∗) absorbed at themirror symmetrical level
τ∗ = τ0−τ frommirror symmetrical direction θ ′∗ = π−arccosη′ = arccosη∗ at azimuth
ϕ′ (Fig. 2). Obviously, the function p

(
τ, η′, η, ϕ′ − ϕ, τ0

)
characterizes the probability

of exit from the given homogeneous slab [0, τ0] across its upper border τ = 0 from
the mirror symmetrical level τ∗ = τ0 − τ in the direction θ = arccos η at azimuth ϕ of
the “mirror” photon (I∗) moving in the direction η′∗ = −η′ at azimuth ϕ′. The function
p∗

[
(τ0 − τ)∗,−η′∗, η, ϕ′ − ϕ, τ0

]
, inversely, determines the probability that the “mirror”

photon (I∗) moving in the direction (−η′∗) at azimuth ϕ′ will exit the medium across its
lower border τ = τ0 from the mirror symmetrical level (τ0 − τ)∗ = τ .

Fig. 2. The geometry of initial (I) and “mirror” (I∗) photons propagation in the homogeneous
slab of finite optical thickness τ0 < ∞.

As follows from Fig. 2, spatial and angular characteristics of the initial (I) and
“mirror” (I∗) photons, as well as the propagation directions (η′,−η

′
∗), and optical levels

τ, (τ0 − τ) and τ∗(τ0 − τ)∗ are mirror symmetrical. In this sense, the photons (I) and
(I∗) are photons are “mirror” reflections of each other with respect to the natural level of
optical symmetry τ0/2 of the homogeneous slab under consideration. Therefore, the total
probability p±,∗ of the “mirror” photon (I∗) exiting the medium across its upper τ = 0
or lower τ = τ0 borders from the mirror symmetrical level (τ 0–τ ) in the direction (θ, ϕ)
after multiple scatterings is equal to the sum of the following probabilities:

.
p+,∗

(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

) = p∗
[
(τ0 − τ)∗, −η′∗, η, ϕ′ − ϕ, τ0

] + p∗
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

)

= p
[
τ0 − τ, −η′, η, ϕ′ − ϕ, τ0

] + p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
.

. (2.2)
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The comparison of relations (2.1) and (2.2) leads us to constructing the first probabilistic
invariant for the initial photon (I) and its “mirror” reflection (I∗) in the homogeneous
slab of finite optical thickness τ0 < ∞:

p+,∗
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

) = p+
(
τ0 − τ, −η′, η, ϕ′ − ϕ, τ0

) = p+
(
τ, η′, η, ϕ′ − ϕ, τ0

)
. (2.3)

Thus, the total probabilities of exiting the medium for the initial (I) and “mirror” (I∗)
photons from the mirror symmetrical levels τ and τ∗ are equal in the mirror directions of
their propagationη′ iη′∗. Note that relation (2.3) determines the probabilistic equivalence
between the mirror optical levels τ and τ 0 – τ with respect to the optical symmetry axis
of the given homogeneous slab τ 0/2 with simultaneous mirror symmetry of propagation
directions η′ and −η′ of the initial photon (I) and its “mirror” analogue (I∗) exiting
the medium across any of its outside borders τ = 0 and τ = τ0. On the other hand,
given the optical homogeneousity of the slab with respect to the phase function P(cosγ )

and parameter Λ, the relation of probabilistic equivalence (2.3) can be interpreted as
a relation of spatial-angular invariance for the total probability of the initial photon (I)
exiting the medium from the optical level τ or from its mirror level τ∗= τ 0 − τ in the
case of their reciprocal translation τ ⇔ τ0 − τ and combined replacement of the photon
propagation directions η′ ⇔ −η′. This conclusion is of fundamental nature and allows,
in the case of optical homogeneousity of a given slab, to view the noted property for the
value p+

(
τ, η′, η, ϕ′ − ϕ, τ0

)
as a fundamental property of spatial-angular invariance [9,

10] for the total probability of photon exiting the initial homogeneous slab [0, τ 0] for its
linear semigroup transformations of the type of spatial shift τ⇔ τ 0−τ and simultaneous
spatial rotation of the vision line η′ ⇔ −η′ [12, 13].

Another probabilistic characteristic of scalar radiation fields that allows for its invari-
ance interpretation and respectively symmetrization at arbitrary mirror optical levels τ

and τ0 − τ in mirror directions of photon propagation η′ and −η′, is the value of spatial-
angular non-symmetry for the total probability of photon existing across the upper τ =
0 or lower τ = τ 0 borders of the considered homogeneous slab [0, τ 0]. It is obvious that
for the initial photon (I) the value of probabilistic non-symmetry can be determined by
the following relation:

p−
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

) = p
(
τ0 − τ, −η′, η, ϕ′ − ϕ, τ0

) − p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
. (2.4)

We have a similar relation for the “mirror” photon (I∗):

p−,∗
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

) = p∗
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

) − p
[
(τ0 − τ)∗, −η′∗, η, ϕ′ − ϕ, τ0

]
(2.5)

From the comparison of (2.4) and (2.5) follows the second probabilistic invariant
p−

(
τ, η′, η, ϕ′ − ϕ, τ0

)
, which at the mirror symmetrical optical levels τ i τ0 − τ in

mirror symmetrical directions of photon propagation η′ and −η′ (2.3) has an additional
property of invariance in the case of reciprocal and simultaneous translation of effective
variables τ ⇔ τ0 − τ and η′ ⇔ −η′ in relation (2.4):

p−
(
τ, η′, η, ϕ′ − ϕ, τ0

) = −p−
(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)
(2.6)

Furthermore, knowledge of probabilistic invariants p+
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and

p−
(
τ, η′, η, ϕ′ − ϕ, τ0

)
allows to uniquely determine values of their constituents
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according to a simple linear scheme as follows:

p
(
τ, η′, η, ϕ′ − ϕ, τ0

) = p+
(
τ, η′, η, ϕ′ − ϕ, τ0

) − p−
(
τ, η′, η, ϕ′ − ϕ, τ0

)

2
, (2.7)

p
(
τ0 − τ, η′, η, ϕ′ − ϕ, τ0

) = p+
(
τ, η′, η, ϕ′ − ϕ, τ0

) + p−
(
τ, η′, η, ϕ′ − ϕ, τ0

)

2
.

(2.8)

Note that the above consideration for p±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
is also valid for proba-

bilistic invariants q±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
. By reproducing it, we can easily obtain the

following relations:

q+
(
τ, η′, η, ϕ′ − ϕ, τ0

) = q
(
τ, η′, η, ϕ′ − ϕ, τ0

) + q
(
τ0 − τ, −η′, η, ϕ′ − ϕ, τ0

)
, (2.9)

q−
(
τ, η′, η, ϕ′ − ϕ, τ0

) = q
(
τ0 − τ, −η′, η, ϕ′ − ϕ, τ0

) − q
(
τ, η′, η, ϕ′ − ϕ, τ0

)
, (2.10)

q+
(
τ, η′, η, ϕ′ − ϕ, τ0

) = q+
(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)
, (2.11)

q−
(
τ, η′, η, ϕ′ − ϕ, τ0

) = −q−
(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)
. (2.12)

It is obvious that all the above remarks regarding the probabilistic invari-
ants p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
to the full extent refer to the probabilistic invariants

q±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
.

Thus, by using relations (2.3) and (2.4) local properties of optical reciprocity of the
phase function P

(
η′, η, ϕ′ − ϕ

)
, which were formulated in [8] for elementary volume

dV of a scattering and absorbing medium, and similar properties of angular symmetry
of brightness coefficients ρ

(
η′, η, ϕ′ − ϕ, τ0

)
and σ

(
η′, η, ϕ′ − ϕ, τ0

)
[14, 15] can be

generalized to the whole extended homogeneous slab [0, τ 0] of finite optical thickness
τ 0 < ∞.

3 The Principle of Spatial-Angular Mirror Symmetry for Total
Probabilities of Photon Exiting a Homogeneous Slab

The property of equivalence of total probabilities of photon exiting the medium
p+

(
τ, η′, η, ϕ′ − ϕ, τ0

)
i q+

(
τ, η′, η, ϕ′ − ϕ, τ0

)
, which are respectively absorbed or

radiated at the mirror symmetrical optical levels τ and τ 0 – τ in the mirror symmet-
rical vision lines η′ and −η′, enables us to formulate a general principle of spatial-
angular mirror symmetry for their constituents, namely for probabilistic functions
p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q

(
τ, η′, η, ϕ′ − ϕ, τ0

)
.

For that purpose, alongwith the original problemA, let us consider a similar problem
A∗ which is mirror symmetrical to the original problem A with respect to the location of
optical levels τ and τ0 − τ and vision lines η′ and −η′, including the spatial distribution
of primary isotropic energy sources g(τ ) (Fig. 3).

By combining the probabilities of the initial (I) and “mirror” (I∗) photon exit p and
p∗, respectively, from mirror level (τ, τ0) and

[
(τ−τ 0), (τ − τ0)∗

]
across the upper τ
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Problem Problem 

Fig. 3. Total probabilities p+
(
τ, η′, η, ϕ′ − ϕ, τ0

)
of photons exiting the homogeneous slab

[0, τ0] across its upper τ = 0 and lower τ = τ0 borders in the initial (A) and symmetrized
(A∗) problems.

= 0 and lower τ = τ0 borders of the given homogeneous slab [0, τ 0] in the mir-
ror symmetrical vision lines η′ i η′∗ relative to the origins τ and η′ used in the initial
non-symmetrized problem A, we can formulate their probabilistic equivalence in the
following basic proposition: in a spatial-angular symmetrized problem, the total proba-
bilities p+

(
τ, η′, η, ϕ′ − ϕ, τ0

)
of multiply scattered photons exiting the medium across

the upper τ = 0 and lower τ = τ0 border of a homogeneous slab from its symmetrical
levels τ and τ0 − τ are equal in the mirror symmetrical vision lines η′ and −η′ in the
case of symmetrized location of primary (isotropic) energy sources with respect to level
τ0/2:

p
(
τ,−η′, η, ϕ′ − ϕ, τ0

)|A + p∗
(
τ∗,−η′∗, η, ϕ′ − ϕ, τ0

)|A∗
= p

(
τ0 − τ, η′, η, ϕ′ − ϕ, τ0

)|A + p∗
[
(τ0 − τ)∗, η′∗, η, ϕ′ − ϕ, τ0

]|A∗ (3.1)

p
(
τ, η′, η, ϕ′ − ϕ, τ0

)|A + p∗
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

)|A∗
= p

(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)|A + p∗
[
(τ0 − τ)∗,−η′∗, η, ϕ′ − ϕ, τ0

]|A∗ (3.2)

From relations (3.1) and (3.2) it follows that the substitution of the initial problem A by
the “mirror” problem A∗, and vice versa, with simultaneous and superposed translation
of optical levels τ ⇔ τ0 − τ , τ∗ ⇔ (τ0 − τ)∗ and vision lines η′ ⇔ −η′, η′∗ ⇔ −η∗
in the case of “mirror” substitution of primary (isotropic) energy sources g(τ ) ⇔ g∗(τ )

with respect to the middle τ0/2 of the given homogeneous slab [0, τ0], leads to their full
probabilistic equivalence. In other words, the total probabilities p+

(
τ, η′, η, ϕ′ − ϕ, τ0

)

of photons exiting a homogeneous slab across its upper τ = 0 and lower τ = τ0
borders from symmetrical optical levels (τ, τ0 − τ ) in the mirror directions of photon
propagation η′ and −η′ in a symmetrized problem, are equal (Fig. 4).
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Fig. 4. Combined initial (A) andmirror (A∗) problems to determine the total probability of photon
exiting the homogeneous slab [0, τ0 ] from its mirror symmetrical optical levels τ i τ0–τ in the
symmetrical directions η′ and −η′ of photon propagation

The same conclusion is also true for probabilistic invariants q+
(
τ, η′, η, ϕ′ − ϕ, τ0

)
.

In that case, the following obvious relations:

τ∗ = τ0 − τ, (τ0 − τ)∗ = τ, η′∗ = −η′, g∗(τ ) = g(τ0 − τ), (3.3)

allow to directly and uniquely express probabilistic
functions p∗

(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

)
and q∗

(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

)
in the “mirror”

problem A∗ through similar probabilistic functions p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and

q
(
τ, η′, η, ϕ′ − ϕ, τ0

)
in the initial problem A:

p∗
(
τ∗, η′∗, η, ϕ′ − ϕ, τ0

) = p
(
τ0 − τ,−η′, η, ϕ′ − ϕ, τ0

)
, (3.4)

p∗
[
(τ0 − τ)∗,−η′∗, η, ϕ′ − ϕ, τ0

] = p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
. (3.5)

Thus, the equivalence of photons fully exit from the symmetrical optical levels τ and
τ − τ0 in the mirror symmetrical directions of their propagation η′ and −η′ in the initial
(A) and mirror (A∗) problems helps us to strictly formulate this fundamental property
as the following basic proposition: as a result of multiple scattering and absorption of
photons in a homogeneous slab of finite optical thickness τ0 < ∞ the total probabilities
of photons exiting across the slab’s upper τ = 0 and lower τ = τ0 borders from the
symmetrical levels τ and τ–τ0 in the mirror symmetrical propagation directions η′ and
−η′ are equal.

Therefore, it can be stated that the existence of probabilistic invariants
p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
is resulting from the general statistic

interpretation of the multiple photon scattering process in the phenomenological theory
of scalar radiative transfer [1, 2, 6, 7].
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4 Symmetrization of Main Integral Equations for Basic
Probabilistic Functions

The introduction of new probabilistic objects into the classical multiple photon
scattering theory, namely the probabilistic invariants p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and

q±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
, allows to define them through linear symmetrized integral and

integral differential equations which are different from those in [1, 6, 14]. Indeed,
by using relations (2.1)–(2.6) and (2.9)–(2.12), after obvious linear transformations of
basic integral differential equations considered in [14], we can obtain their symmetrized
analogs:

η′ ∂q±
(
τ, η′, η, ϕ′ − ϕ, τ0

)

∂τ
= −q±

(
τ, η′, η, ϕ′ − ϕ, τ0

) + p±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
,

η′ ∈ [−1, 1] ∩ η ∈ [−1, 1] ∩ ϕ ∈ [0, 2π ] ∩ τ ∈ [0, τ0].

(4.1)

Note that Eq. (4.1) is a complete analog of the integral differential equa-
tion that in the scalar radiative transfer theory connects the sought-for radia-
tion intensities I

(
τ, η′, η, ϕ′ − ϕ0, τ0

)
and source functions B

(
τ, η′, η, ϕ′ − ϕ0, τ0

)

at arbitrary optical depths τ [1, 14]. It is obvious that solutions of Eq. (4.1)
formally determine probabilistic invariants q±

(
τ, η′, η, ϕ′ − ϕ0, τ0

)
in the case

where the values of p±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and vice versa. Indeed, taking into

account the connection between the probabilistic functions p
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and

q
(
τ, η′, η, ϕ′ − ϕ, τ0

)
[14], definitions (2.1), (2.4), (2.9), (2.10) of probabilistic variants

p±
(
τ, η′, η, ϕ′ − ϕ0, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ0, τ0

)
, as well as their invariant proper-

ties (2.3), (2.6), (2.11) and (2.12), we can, after simple linear transformation, obtain the
following relations:

q±
(
τ, η′, η, ϕ′ − ϕ, τ0

) =
τ∫

0

p±
(
τ ′, η′, η, ϕ′ − ϕ, τ0

)
e
− τ−τ ′

η′ dτ ′
η′ ± δ

(
η′ − η

)
δ
(
ϕ′ − ϕ

)
e
− τ

η

η′ ∈ [−1, 1] ∩ η ∈ [−1, 1] ∩ ϕ ∈ [0, 2π ] ∩ τ ∈ [0, τ0]; (4.2)

p±
(
τ, η′, η, ϕ′ − ϕ, τ0

) = �

4π

2π∫

0

dϕ′′
1∫

−1

P
(
η′′, η′, ϕ′ − ϕ′′)q±

(
τ, η′, η, d

(
ϕ′′ − ϕ

)
, τ0

)
dη′′,

η′ ∈ [−1, 1] ∩ η ∈ [−1, 1] ∩ ϕ ∈ [0, 2π ] ∩ τ ∈ [0, τ0]. (4.3)

To obtain relations (4.2) and (4.3), we have used the angular symmetry property of
phase function P

(−η′′,−η′, ϕ − ϕ′′) = P
(
η′′, η′, ϕ′ − ϕ′′) [8]. Furthermore, it should

be emphasized that the solution of integral differential Eq. (4.1) in view of basic
properties (2.1), (2.6), (2.11), and (2.12) for the sought-for probabilistic invariants
p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
allows to halve the change intervals

of effective variable τ ∈ [0, τ0] and η′ ∈ [−1, 1] in comparison to the basic bound-
ary problem of radiative transfer theory [9, 10, 14], and [15], namely: τ ∈ [

0, τ0
2

]
and

η′ ∈ [−1, 1], or alternatively τ ∈ [0, τ0] and η′ ∈ [0, 1].
By substituting then (4.2) into (4.3) and vice versa, we can obtain the follow-

ing linear second kind Fredholm integral equations for the probabilistic invariants
p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
:
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p±
(
τ, η′, η, ϕ′ − ϕ, τ0

) = �

4π

[
P
(
η, −η′, ϕ′ − ϕ

)
e
− τ0−τ

η ± P
(
η, η′, ϕ′ − ϕ

)
e
− τ

η

]

+ �

4π

2π∫

0

dϕ′′
1∫

0

dη′′
τ∫

0

[
P
(
η′, η′′, ϕ′ − ϕ′′)p±

(
τ ′, η′′, η, ϕ′′ − ϕ, τ0

)

+P
(
η′, −η′′, ϕ′ − ϕ′′)p±

(
τ ′, −η′′, η, ϕ′′ − ϕ, τ0

)]
e
− τ−τ ′

η′′ dτ ′
η′′ ,

η′ ∈ [−1, 1], η ∈ [0, 1],
(
ϕ′ − ϕ

) ∈ [0, 2π ] ∩ τ ∈ [0, τ0];

(4.4)

q±
(
τ, η′, η, ϕ′ − ϕ, τ0

) = �

4π

2π∫

0

dϕ′′
1∫

0

dη′
τ∫

0

[
P
(
η′, η′′, ϕ′ − ϕ′′)q±

(
τ ′, η′′, η, ϕ′′ − ϕ, τ0

)

+P
(
η′,−η′′, ϕ′ − ϕ′′)q±

(
τ ′, −η′′, η, ϕ′′ − ϕ, τ0

)]
e
− τ−τ ′

η′′ dτ ′
η′′ ± δ

(
η′ − η

)
δ
(
ϕ′ − ϕ

)
e
− τ

η ,

η′ ∈ [0, 1] ∩ η ∈ [0, 1] ∩ (
ϕ′ − ϕ

) ∈ [0, 2π ] ∩ τ ∈ [0, τ0].

(4.5)

Note that integral Eqs. (4.4) and (4.5) have similar kernels and differ only in their absolute
terms. Therefore, numerical solutions of these equations can be obtained by using, for
example, one-type convergent iterative schemes with zero approximations which are
determined by exact formulas of single photon scattering [9, 10, 14, 15].

Thus, to use the probabilistic interpretation of scalar radiative transfer in a homoge-
neous slab of finite optical thickness τ0 < ∞ for building basic symmetrized problems
of the theory of multiple non-isotropic photon scattering, it is necessary first to carry out
the following combined types of spatial-angular symmetrization:

– symmetrization of optical levels that are mirror positioned relative to the middle τ0/2
of the given homogeneous slab [0, τ0],

– symmetrization of the directions of scattered photons propagation η′ and −η′,
– mirror symmetrization of the locations of primary isotropic energy sources g(τ)
relative to the middle τ0/2 of the given homogeneous slab [0, τ0].

The latter type of symmetrization could be ignored since the probabilities of photons
exiting the medium, as noted above, do not depend on the location of primary isotropic
energy sources.

5 Linear Singular Integral Equations for Probabilistic Invariants
of a Homogeneous Slab of Finite Optical Thickness

For implementing themirror reflection principle and applying it for effectivelymodelling
the probabilistic functions p

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q

(
τ, η′, η, ϕ′ − ϕ, τ0

)
, as well as

their probabilistic invariants p±
(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
, our

main interest is the class of linear singular equations that were originally introduced into
the scalar radiative transfer theory by V.V. Sobolev [1, 15] and T.M. Mallikin [16].
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Firstly, in order to reduce the total number of independent angle variables, we can
use usual Fourier transformations for phase functions P(cosγ ) ≡ P

(
η′, η′′, ϕ′ − ϕ′′):

P
(
η′, η′′, ϕ′ − ϕ′′) = ℘0(η′, η′′) + 2

M1∑

m=1

℘m(
η′, η′′) cosm

(
ϕ′ − ϕ′′), (5.1)

where azimuthal harmonics ℘m
(
η′, η′′) are determined as follows:

℘m(
η′, η′′) = 1

2π

2π∫

0

P
(
η′, η′′, ϕ′ − ϕ′′) cosm

(
ϕ′ − ϕ′′)dϕ, m = 0,M1. (5.2)

Then using transformations similar to (5.1) and (5.2) for probabilistic invariants
p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
, we get

p±
(
τ, η′, η, ϕ′ − ϕ, τ0

) =
M2∑

m=1

pm±
(
τ, η′, η, τ0

)
cosm

(
ϕ′ − ϕ

)
, (5.3)

q±
(
τ, η′, η, ϕ′ − ϕ, τ0

) =
M3∑

m=1

qm±
(
τ, η′, η, τ0

)
cosm

(
ϕ′ − ϕ

)
, (5.4)

where azimuthal harmonics pm±
(
τ, η′, η, τ0

)
and qm±

(
τ, η′, η, τ0

)
can be represented as

follows:

pm±
(
τ, η′, η, τ0

) = 1

2π

2π∫

0

p±
(
τ, η′, η, ϕ′ − ϕ

)
cosm

(
ϕ′ − ϕ

)
d
(
ϕ′ − ϕ

)
, (5.5)

qm±
(
τ, η′, η, τ0

) = 1

2π

2π∫

0

q±
(
τ, η′, η, ϕ′ − ϕ

)
cosm

(
ϕ′ − ϕ

)
d
(
ϕ′ − ϕ

)
. (5.6)

Henceforth, when using Fourier series (5.1), (5.3), and (5.4), we will select only one
common value of the maximum number of azimuthal harmonics M = max{M1, M2,
M3}, with required adjustment depending on the relation between the values M1, M2,
and M3.

Note that the sought-for linear singular integral equations for azimuthal harmonics of
the probabilistic invariants pm±

(
τ, η′, η, τ0

)
and qm±

(
τ, η′, η, τ0

)
follow, in view of basic

relations obtained on the basis of [14]:

pm±
(
τ, η′, ϕ − ϕ, τ0

) = Bm±
(
τ,−η′, η, ϕ′ − ϕ, τ0

)

πS
,

qm±
(
τ, η′, η, ϕ′ − ϕ, τ0

) = Im±
(
τ,−η′, η, ϕ′ − ϕ, τ0

)

πS
, (5.7)



The Mirror Reflection Principle and Probabilistic Invariants 157

where the photometric values Bm±
(
τ, η′, η, τ0

)
and Im±

(
τ, η′, η, τ0

)
are, respectively,

invariants of azimuthal harmonics of source functions Bm
(
τ, η′, η, τ0

)
and scalar

radiation intensities Im
(
τ, η′, η, τ0

)
[10]:

Bm±
(
τ, η′, η, τ0

) = Bm(
τ0 − τ,−η′, η, τ0

) ± Bm(
τ, η′, η, τ0

)
,

Bm±
(
τ, η′, η, τ0

) = ±Bm±
(
τ0 − τ,−η′, η, τ0

)

Im±
(
τ, η′, η, τ0

) = Im
(
τ0 − τ,−η′, η, τ0

) ± Im
(
τ, η′, η, τ0

)
,

Im±
(
τ, η′, η, τ0

) = ±Im±
(
τ0 − τ,−η′, η, τ0

)

(5.8)

from similar equations for azimuthal harmonics invariants of source functions
Bm±

(
τ, η′, η, τ0

)
and scalar radiation intensities Im±

(
τ, η′, η, τ0

)
, respectively, [9]:

Tm(η)pm±
(
τ, η′, η, τ0

) = Λ

4π

[
Am(

η,−η′)e− τ0−τ

η ± Am(
η, η′)e− τ

η

]

∓�

2
η

1∫

0

pm±
(
τ, η′, η′′, τ0

)
Am

(
η, η′′)

η − η′′ dη′′ ∓ Λ

2
ηe− τ0

η

1∫

0

pm±
(
τ, η′, η′′, τ0

)
Am

(
η,−η′′)

η + η′′ dη′′,

η′ ∈ [−1, 1] ∩ η ∈ [0, 1] ∩ τ ∈ [0, τ0],
(5.9)

(5.10)

Functions f m±
(
τ, η′, η, τ 0

) = f m
(
τ0 − τ,−η′, η, τ 0

) ± f m
(
τ, η′, η, τ 0

)
, entering into

Eq. (5.10), are determined on the basis of the following relations:

(5.11)

Azimuthal harmonics of functions Tm(η) are determined by relations [1, 15]:

Tm(η) = 1 − �η2

1∫

0

Am
(
η′, η′)

η2 − η′2 dη′, m = 0,M . (5.12)

Polynomial kernel functions Am
(
η′, η′) v (5.11) are found by the formula [15]:

Am(
η′′, η′) = Pm

m

(
η′)Am

m

(
η′′, η′) =

N∑

i=m

xi
(i − m)!
(i + m)!R

m
i

(
η′′)Pm

i

(
η′),m = 0,M , (5.13)
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where Pm
i

(
η′) are associated Legendre polynomials, and Rm

i T
m(η) are Sobolev

polynomials calculated on the basis of recurrent relations:

(i − m + 1)Rm
i+1,m

(
η′′) + (i + m)Rm

i−1,m

(
η′′) = (2i + 1 − �xi)η

′′Rm
i,m

(
η′′),

Rm
m

(
η′′)= Pm

m

(
η′′),Rm

m+1

(
η′′) = (2m + 1 − �xm)η′′Pm

m

(
η′′),m = 0,M (5.14)

The coefficients xi entering into the auxiliary functions Am
(
η, η′) are coefficient of

expansion of the given phase function P(cos γ) in terms of Legendre polynomials Pi

(cos γ):

P(cosγ ) =
N∑

i=0

xiPi(cosγ ), xi = 2i + 1

2

π∫

0

P(cosγ )Pi(cosγ )sinγ dγ, xi < 2i + 1.

(5.15)

We should, however, pay attention to one important situation connectedwith possible
non-uniqueness of solutions for linear singular integral Eqs. (5.9) and (5.10). As shown
in [15, 16] if characteristic equations

Tm
(

1

km

)
= 0, m = 0,M , Tm

(
1

k̃m

)
= 0, m = 0,M (5.16)

have neither roots km ⊂ [0, 1] nor pseudo-roots k̃m ⊂ ]0, 1[, then the sought
for solutions of Eqs. (5.9) and (5.10) are unique. Otherwise, the solutions of those
equations are non-unique, there, according to recommendations in [15], we should
assume η = 1

km
or η = 1

k̃m
, considering them together with additional integral rela-

tions. These relations can be easily obtained on the basis of defining the probabilis-
tic invariants p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
taking into account

the respective results in [9, 15], and [10]. For example, for the probabilistic invari-
ants p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
in absence of pseudo-roots k̃m and existence of only

characteristic roots km, they appear as follows:

1∫

0

p±
(
τ, η′, η′′, τ0

)
Am

(
1

km
, η′′

)
dη′′

1 − kmη′′

+ e−kmτ0

1∫

0

p±
(
τ, η′, η′′, τ0

)
Am

(
1

km
,−η′′

)
dη′′

1 + kmη′′

= 1

2π

[
Am

(
1

km
,−η′

)
e−km(τ0−τ) ± Am

(
1

km
, η′

)
ekmτ

]
, m = 0,M

(5.17)

6 Unified Probabilistic Function for Photons Exiting
a Homogeneous Slab

The methodological importance of probabilistic functions pm
(
τ, η′, η, τ0

)
and

qm
(
τ, η′, η, τ0

)
, pm±

(
τ, η′, η, τ0

)
and qm±

(
τ, η′, η, τ0

)
considered above lies in the fact
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that at mirror symmetrical optical levels τ and τ0 − τ of the given homogeneous slab
[0, τ0] without a reflecting bottom, in the symmetrical directions of photon propagation
η′ and −η′, they form, in a way similar to unified photometric functions for intensi-
ties Im�

(
τ, η′, η, τ0

)
and source functions Bm

�

(
τ, η′, η, τ0

)
[9, 10], new objects of the

radiative transfer theory, namely unified probabilistic functions Pm
�

(
τ, η′, η, τ0

)
and

Qm
�

(
τ, η′, η, τ0

)
for photons exiting the medium [18, 20]:

Pm
�

(
τ, η′, η, τ0

) = (
η′ + η

)
pm

(
τ0 − τ,−η′, η, τ0

) + (
η′ − η

)
pm

(
τ, η′, η, τ0

)

= η′pm+
(
τ, η′, η, τ0

) + ηpm−
(
τ, η′, η, τ0

)
,m = 0,M ,

(6.1)

Qm
�

(
τ, η′, η, τ0

) = (
η′ + η

)
qm

(
τ0 − τ,−η′, η, τ0

) + (
η′ + η

)
qm

(
τ, η′, η, τ0

)

= η′qm+
(
τ, η′, η, τ0

) + ηqm−
(
τ, η′, η, τ0

)
,m = 0,M , (6.2)

Taking into account relations (5.7) and (5.8), instead of relations (6.1) and (6.2) we get:

Pm
�

(
τ, η′, η, τ0

) = 1

πS

[(
η′ + η

)
Bm

(
τ0 − τ,−η′, η, τ0

) + (
η′ + η

)
Bm

(
τ, η′, η, τ0

)]

= 1

πS
[η′Bm+(τ, η′, η, τ0) + ηBm−(τ, η′, η, τ0)] = 1

πS
Bm�

(
τ, η′, η, τ0

)
,m = 0,M , (6.3)

Qm
�

(
τ, η′, η, τ0

) = 1

πS
[(η′ + η

)
Im

(
τ0 − τ, −η′, η, τ0

) + (
η′ − η

)
Im(τ, η′, η, τ0)]

= 1

πS
[η′Im+

(
τ, η′, η, τ0

) + ηIm−
(
τ, η′, η, τ0

)] = 1

πS
Im�

(
τ, η′, η, τ0

)
,m = 0,M , (6.4)

where photometric invariants Bm±
(
τ, η′, η, τ0

)
and Im±

(
τ, η′, η, τ0

)
can be determined

according to relations (5.8).
Note that knowing non-local properties of spatial-angular symmetry of probabilistic

values pm
(
τ, η′, η, τ0

)
and qm

(
τ, η′, η, τ0

)
in case of inversions of effective variables

η′ and η, similar to photometric values Bm
(
τ, η′, η, τ0

)
and Im

(
τ, η′, η, τ0

)
, enables us

to uniquely define them after simple and obvious linear transformations of the unified
probabilistic functions Pm

�

(
τ, η′, η, τ0

)
and Qm

�

(
τ, η′, η, τ0

)
[9, 10].

Thus, strict relations (6.1)–(6.4) form one and common complex of mutually consis-
tent probabilistic and photometric values. These relations enclose the system of unified
probabilistic (Pm

� ,Qm
�) and photometric (Bm

� , I
m
� ) functions, including probabilistic (pm±,

qm±) and photometric (Bm±, Im± ) invariants for finding numerical and analytical solutions of
basic boundary-value problems in the classical scalar radiative transfer theory [14, 15] in
the case of homogeneous slabs of finite optical thickness τ0 < ∞; without a reflecting
bottom [18, 20]. In that case, the symmetrization of basic structural functions of this
theory, such as fundamental Sobolev functions �m, Ambarzumian functions ϕm(τ, τ0)

and ψm(τ, τ0), Chandrasekhar functions Xm and Ym, conducted in [18, 20], in a certain
semantic sense, corresponds to the content of the initial probabilistic interpretation [1,
2] of the phenomenological theory of multiple photon scattering and to the probabilistic
meaning of the aforementioned structural functions in the visible spectrum range of
0.6–0.8 μm.

7 Conclusion

From computational viewpoint and taking into account strong evidence [17, 18] and the
concept of probabilistic invariants, it follows that the application of numerical methods,
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for example an angular discretization method, for numerical solutions of linear integral
Eqs. (4.4), (4.5), (5.9), (5.10) leads to systems of linear algebraic equations of rank N,
i.e. two time lower than for a system of similar integral equations for pm

(
τ, η′, η, τ0

)
and

qm
(
τ, η′, η, τ0

)
[14]. Furthermore, from linear second kind Fredholm integral Eqs. (4.4)

and (4.5) and linear singular integral Eqs. (5.9) and (5.10) it follows that their regular solu-
tions within the ranges of effective variables τ ∈ [0,τ0], η′ ∈ [–1,1] and η ∈ [0, 1], taking
into account basic properties (2.3)–(2.4) and (2.11)–(2.12) of spatial-angular symmetry
of probabilistic invariants p±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
and q±

(
τ, η′, η, ϕ′ − ϕ, τ0

)
, allow to

use more narrow ranges of their definition, namely τ ∈ [0, τ0/2] and η′ ∈ [–1, 1], or
alternatively τ ∈ [0,τ0] and η′ ∈ [0,1]. Understandably, such double decrease in ranges
of optical depths τ or angular variables η′ will substantially simplify algorithms for
numerical solutions of equations like (4.4), (4.5), (5.9), and (5.10), especially in cases
of large values τ >> 1 and τ0 >> 1, and also in the case of strongly elongated phase
functions P(cos γ) at m >> 1 and M >> 1 [19, 20].
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2 Bioinformatics Core, Hospital de Cĺınicas de Porto Alegre, Porto Alegre, RS, Brazil
{btrevizan,mrmendoza}@inf.ufrgs.br

Abstract. Identifying stable and precise biomarkers is a key challenge
in precision medicine. A promising approach in this direction is explor-
ing omics data, such as transcriptome generated by microarrays, to dis-
cover candidate biomarkers. This, however, involves the fundamental issue
of finding the most discriminative features in high-dimensional datasets.
We proposed a homogeneous ensemble feature selection (EFS) method to
extract candidate biomarkers of breast cancer from microarray datasets.
Ensemble diversity is introduced by bootstraps and by the integration
of seven microarray studies. As a baseline method, we used the random
effect model meta-analysis, a state-of-the-art approach in the integrative
analysis of microarrays for biomarkers discovery. We compared five fea-
ture selection (FS) methods as base selectors and four algorithms as base
classifiers. Our results showed that the variance FS method is the most
stable among the tested methods regardless of the classifier and that sta-
bility is higher within datasets than across datasets, indicating high sam-
ple heterogeneity among studies. The predictive performance of the top 20
genes selected with both approaches was evaluated with six independent
microarray studies, and in four of these, we observed a superior perfor-
mance of our EFS approach as compared to meta-analysis. EFS recall was
as high as 85%, and the median F1-scores surpassed 80% for most of our
experiments. We conclude that homogeneous EFS is a promising method-
ology for candidate biomarkers identification, demonstrating stability and
predictive performance as satisfactory as the statistical reference method.

1 Introduction

Precision medicine aims at tailoring health care testing and medication to each
patient according to their individual characteristics. It has become feasible with
the growth of digital medical records and high-throughput diagnosis devices [16].
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Since the first sequenced human genome, more recent technologies, such as
microarray, have helped to understand diseases at the molecular level through the
generation of omics data. Microarray technology allows the characterization of the
gene expression profile for all genes within an organism, also called transcriptome,
which is especially useful when expressions are compared among different groups,
such as a disease and a control group.

One of the key applications of transcriptome data for precision medicine is
the identification of candidate biomarkers. Biomarkers are measurable parame-
ters that act as indicators of the presence or severity of a disease. The exploration
of biomarkers for detecting cancer or selecting the most appropriate therapy for a
patient is one of the main branches of precision medicine research [17]. Nonetheless,
harnessing the knowledge of high-throughput omics data requires advanced com-
putational methods such as machine learning (ML) algorithms to identify molecu-
lar patterns in different patients that may be used to infer hypotheses about diag-
nostic biomarkers.

As discussed by [15], a fundamental property of biomarkers is stability. Sta-
ble biomarkers refer to a set of consistent markers identified from sampling vari-
ations. In other words, a biomarker is stable and thus representative of the popu-
lation if the same can be reproduced in other similar subpopulations. Thus, the
integration of multiple transcriptomic datasets has been advocated to improve
biomarkers discovery [30]. In addition, biomarkers should have good discrimina-
tive power, meaning that based on their application, we can accurately distinguish
tumor from non-tumor samples, for instance, if considering diagnostic biomarkers.
The identification of stable and precise biomarkers is one of the critical challenges
in transcriptome analysis in the scope of precision medicine. One of the state-
of-the-art approaches for such investigation is statistical meta-analysis. Several
meta-analysis methods exist, and they combine the primary statistics drawn from
individual analysis of each experiment, such as p-values or effect sizes (i.e., fold
change) [30].

In the field of ML, biomarkers discovery has been frequently approached as a
dimensionality reduction problem, for which feature selection (FS) methods may
be naturally applied [4]. A plethora of FS methods exist; nonetheless, the high
correlation among features, as frequently observed in omics data, leads to insta-
bility among results from multiple FS methods or from multiples runs over distinct
training samples, reducing the confidence of selected features [19]. One of the pro-
posed solutions to improve the stability of FS on high-dimensional data is ensem-
ble feature selection (EFS). Ensemble learning principles come from the idea of
“Wisdom of Crowds,” which states that a group of diverse individuals are collec-
tively smarter than any single individual, even expert ones [27]. In ML, ensem-
bles have been explored to produce more robust and accurate learning solutions.
In the context of FS, EFS methods use various base selectors and aggregate their
results, aiming to obtain a more stable feature subset. Diversity among opinions,
an essential property of ensemble learning, is achieved either by using distinct FS
methods as base selectors (i.e., function perturbation) or by using sampling varia-
tions across base selectors (i.e., data perturbation) [7]. These approaches generate,
respectively, heterogeneous and homogeneous ensembles.
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In the present work, we aim at exploring homogeneous ensemble FS to iden-
tify candidate biomarkers for breast cancer from multiple microarray studies
and compare its results to traditional meta-analysis. Our work is motivated
by the large volume of transcriptomic data publicly available and the need to
jointly analyze different gene expression datasets to derive more stable and pre-
cise hypotheses about candidate biomarkers. We believe that homogeneous EFS
is as promising as the well-established meta-analysis approaches to extract the
most relevant genes for breast cancer diagnosis. Moreover, to the best of our
knowledge, there were limited efforts so far towards the comparison of stability
and predictive performance among these different analytical approaches.

2 Related Works

The literature regarding EFS has expanded recently, and several previous works
have applied homogeneous EFS to high-dimensional data, including microar-
ray. [22] evaluated stability on EFS methods across several domains, including
biomedical data, demonstrating that homogeneous EFS approaches lead to a
significant gain of stability. An earlier study [23] exploited the performance and
stability of homogeneous ensembles applied to high-dimensional omics data. In
every case, the EFS approach outperformed other methods. The authors achieved
a high accuracy with 3% of selected features and a stability increase with homo-
geneous EFS compared to other methods. In [1], homogeneous EFS showed the
best stability and improvement in performance on identifying biomarkers for
cancer diagnosis from microarray datasets. Authors evaluate their approach for
four types of cancer (Leukemia, colon, lymphoma, and prostate), using the tra-
ditional recursive feature elimination (RFE) as the baseline FS method.

In [5], authors designed an ensemble in which, for each base selector’s output,
a classifier was trained. The final predictions were combined by majority vot-
ing among classifiers. The heterogeneous ensemble approach yielded a stability
index of 0.229 for breast cancer data and a predictive error of 28.11%. Using the
same ensemble design, [21] achieved an error of 3.09%. However, in the latter,
the authors grouped genes using information theory in which a gene is relevant
if it is correlated to classes and not to other selected genes. The ensemble selects
one gene for each group of highly correlated genes in order to reduce redundancy.
The authors also reported an increase in stability compared to other methods.
In [3], authors validated the results of genes selected from EFS algorithms with
literature meta-analysis results. The authors were able to identify 100 microR-
NAs (i.e., small non-coding RNAs) that could explain 29 types of cancer, most
of which had previous evidence from the literature. Besides, reported accuracies
are higher than 90% in all experiments.

In [25], the authors used seven datasets with different FS methods to improve
training time and increase accuracy. The best results presented for microarray
dataset used a homogeneous ensemble with SVM-RFE and mean aggregation of
rankings. According to authors, “[...] an ensemble approach would seem to be the
most reliable approach to feature selection” [25]. The authors in [6] reviewed the
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performance of state-of-the-art FS methods across several domains of microarray
- breast, prostate, brain, colon, and ovarian cancer. The authors concluded that,
in general, performance depends on the FS method, on the classifier, and, mainly,
on the problem domain. This emphasizes the importance of EFS methods, which
partially alleviates the problem of lack of robustness for single FS methods. We
note, however, that none of these works have compared EFS to meta-analysis
approaches for dimensionality reduction in microarray data. In the approach pre-
sented by [26], authors combined ML with meta-analysis in a sequential man-
ner, in which potential markers identified for mastitis disease in cattle using
meta-analysis were further analyzed with decision trees to refine the hypotheses
about most relevant features. Their approach was able to identify four biological
markers with 83% accuracy in classification; nonetheless, their methodological
and biological goals differ from ours. In fact, efforts towards comparing EFS and
meta-analysis methodologies for identifying candidate biomarkers are still scarce
in the literature.

3 Materials and Methods

3.1 Breast Cancer Microarray Datasets

Microarray datasets containing both tumor and non-tumor (i.e., “normal”) sam-
ples were collected from the Gene Expression Omnibus (GEO) database. A total
of 11 studies were downloaded and pre-processed following the standard bioin-
formatics pipeline for each manufacturer (Affymetrix or Agilent). Due to limita-
tions in the evaluation process, only datasets containing more than 10 samples in
each class were selected as training datasets, defined as T = {T1, T2, T3, ..., T7}
(Table 1). The remaining datasets were assign for results’ evaluation, defined as
E = {E1, E2, E3, ..., E6} (Table 2). To avoid redundancy on gene identification
for later comparison of gene sets, all genes were mapped to their intrinsic Entrez
ID using the R package biomaRt [11]. Furthermore, only genes common to all
studies were kept for further analyses.

Table 1. Datasets used for training the
EFS method.

Dataset Number of samples Tumor/

Tumor Normal Total Total ratio

T1 GSE38959 30 13 43 0.70

T2 GSE42568 98 17 115 0.85

T3 GSE45827 122 36 158 0.77

T4 GSE53752 46 21 67 0.69

T5 GSE62944 1119 113 1232 0.91

T6 GSE70947 148 148 296 0.50

T7 GSE7904 42 18 60 0.70

Table 2. Datasets used for testing the
EFS method.

Dataset Number of samples Tumor/

Tumor Normal Total Total ratio

E1 GSE10797 27 5 32 0.84

E2 GSE22820 74 10 84 0.88

E3 GSE26304 109 6 115 0.95

E4 GSE57297 25 7 32 0.78

E5 GSE61304 57 4 61 0.93

E6 GSE71053 6 12 18 0.33
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3.2 Feature Selection Methods

Several FS methods have been proposed to reduce dimensionality. Here, we only
considered ranker-based methods, i.e., those that provide as output a ranking
of all features ordered by a given score. The completeness in the output of these
methods facilitates ranking aggregation among multiple selectors. We focused
exclusively on filter methods among ranker-based methods, as they present the
best trade-off between predictive and computational performance. This is impor-
tant when working with high-dimensional data, as well as with homogeneous EFS
since it involves multiple applications of the FS methods [22]. In this paper, the
following FS methods were explored:

– Information Gain (IG) [18] explores the concept of entropy, which quantifies
the uncertainty of each feature in the process of decision making. Entropy is
used to measure the impurity of information, which in turn allows estimating
the relevance of each feature by evaluating the extent to which impurity (and
thus uncertainty) decreases when the value of that feature is known.

– Chi squared (φc) [10] measures the correlation between two random vari-
ables A and B based on the χ2 statistical test. The larger the χ2, the more
important the feature is for the predictive task of interest.

– Symmetrical Uncertainty [28] is also based on the information-theoretical
concept of entropy. It modifies the IG by introducing a proper normalization
factor.

– Minimum Redundancy Maximum Relevance (mRMR), defined by [13], best
scores variables with higher correlation to the target value and lower corre-
lation among other variables. For such, it takes the IG between the response
variable A given B ∈ V , where V is the set of variables, and subtracts the
pairwise IG between other variables and B.

– Variance measures the spread of a variable’s values from its mean. As a sta-
tistical summary function, variance can be expressed as the average squared
distances of A from its mean value μA.

3.3 Ensemble Feature Selection Design

The idea underlying EFS is to use various base selectors and aggregate their
results aiming at more stable and accurate feature subsets. The design of an
efficient EFS involves five main decisions: (i) type of base selectors; (ii) number
of base selectors; (iii) number and size of different training sets; (iv) aggregation
method, and (v) threshold methods [7]. In what follows, we discuss these details
regarding the proposed solution.

We implemented a homogeneous EFS in this work, meaning that all base selec-
tors employ the exact same FS method, and diversity among base selectors is intro-
duced at the data level. The FS methods tested and compared in our experiments
were listed in Sect. 3.2. In our framework, data diversity is generated in two ways.
First, multiple microarray datasets are analyzed in parallel, each of which derives
from a distinct study/population of patients with breast cancer (Table 1). Second,
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we apply data perturbation upon sampling variations for each microarray dataset
using the bootstrap method. Given a dataset with n instances, this method ran-
domly selects n instances from the original dataset with replacement to generate a
data sample, also called a bag. This sampling process is repeated B times, a param-
eter of our framework, and each bag is analyzed by the chosen FS method to gen-
erate a list of features ranked by relevance. We emphasize that only one type of
FS method is applied over all bags for a single experiment. We tested a different
number of bags (i.e., number of base selectors) per microarray dataset, from 5 to
100, which will be further explained in Sect. 4.

After running all base selectors, multiple rankings are generated and must be
aggregated into a consensus ranking. These consensus rankings are referred to as
local rankings of our framework, as they reflect the consensus among B bags for
a given microarray dataset. Many aggregation strategies have been proposed in
the literature and were compared by previous works. According to [25], the best
aggregation method for microarray datasets is the arithmetic mean, which takes
the average of the relevance values yielded by the multiple rankings to reorder
features into a consensus ranking. Thus, we adopted mean aggregation to generate
a local ranking for each microarray study. Once each study has been individually
analyzed, the multiple local rankings (i.e., seven at total) are aggregated into a
global ranking, which represents our framework’s output. We note that both local
and global rankings comprise the complete set of features in the datasets. An EFS-
based subset of highly discriminative features is obtained by applying a threshold
to keep only the top K most relevant features.
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Fig. 1. Methodology applied for building and evaluating the proposed EFS approach.
a) Homogeneous EFS is applied to each microarray dataset, generating a local ranking.
b) The local rankings extracted from the multiple datasets are aggregated into a global
ranking.
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3.4 Ensemble Feature Selection Evaluation

The main goal in EFS is to improve the stability and predictive performance of
the selected feature subset. According to [22], “stable but not accurate solutions
would not be meaningful; on the other hand, accurate but not stable results could
have limited utility”. Thus, our methodology for evaluating FS results adopts
both criteria, the stability of the selected features and the predictive performance
of the classification models built exclusively with this subset of features. Our
methodology to build and evaluate a homogeneous EFS is summarized in Fig. 1.
For each training dataset Ti ∈ T , as summarized in Table 1, we created an
ensemble following the aforementioned explanation.

To assess the predictive performance of the features subset, we applied a com-
bination of stratified k-fold cross-validation (CV) and holdout to train and test
classifiers using the selected top K features. For each iteration of k-fold CV, we
split the training data (i.e., training folds) into two parts, one for training (60%)
and the other for testing (40%) the classifier, as shown in Fig. 1a. The training part
is resampled to perturb data for B bags. B is also the number of base selectors,
one for each bag, all running a previously chosen FS method. Since our datasets
are characterized by class imbalance, we adopted SMOTE as an over-sampling
method to deal with this issue. SMOTE is applied in each bag separately prior
to FS analysis, and in the training partition to build the classifiers based on the
top K features from the generated local ranking (i.e., mean aggregation of the B
rankings). Our EFS approach outputs three objects: (i) local stability for the set
of rankings; (ii) final aggregated ranking, also called as local ranking Li; and (iii)
local performance metrics for the top K genes using 5-fold cross-validation.

Applying the basic homogeneous EFS approach to each microarray study
only allows the assessment of the stability or predictive performance based on
the specific dataset presented to the classifier, i.e., Ti. However, our interest lies
in the stability and performance across several microarray studies. Therefore,
we also evaluate stability across the set of local rankings Li for i = {1, 2, 3..., 7}
generated for the training datasets (Fig. 1b). Moreover, the local rankings are
aggregated into a unique global ranking by the arithmetic mean, and the global
ranking is finally used to select the EFS-based subset of most relevant features
by applying a threshold K (i.e., retaining the top K features). The predictive
performance of the proposed homogeneous EFS approach is evaluated by train-
ing a classifier using this subset of EFS-based top K features and the union of
datasets Ti ∈ T , and further evaluating its generalization power with the inde-
pendent test datasets Ei ∈ E (Table 2). Since these datasets contain instances
never seen by the classifier, they allow an unbiased estimate of predictive per-
formance. After studies aggregation, the output of our framework is the global
stability, global ranking, and global performance metrics.

3.5 Evaluation Metrics

As aforementioned, two evaluation criteria are adopted in our framework: sta-
bility and predictive performance. The stability validation step calculates the
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Kuncheva Index (Eq. 2) [20], which is the average of pairwise inconsistency
indexes between a set of features subsets S = {S1, S2, S3, ..., SN}. An incon-
sistency index, according to [20], increases proportionally to the intersection’s
cardinality r = |A ∩ B| between two subsets A and B with the same cardinality
|A| = |B| = k. The maximum value 1 is achieved when A = B, and the mini-
mum value is limited to −1. Equation 1 mathematically defines the inconsistency
index where A,B ⊂ X and |X| = n. The author also defines a threshold for high
and low stability. The stability can be considered high when I(S) ≥ 0.5, and
low otherwise.

I(A,B) =
rn − k2

k(n − k)
(1)

I(S) =
2

N(N − 1)

N−1∑

i=1

N∑

j=1

I(Si, Sj) (2)

The predictive performance is estimated by training a classifier solely with
the most relevant features provided by the top K features. The top K features
are extracted from the local ranking when our goal is to evaluate performance
for a single microarray dataset or from the global ranking when we aim to carry
out this analysis across multiple datasets. The classifier is evaluated using the
independent testing sets to compute the precision, recall, and F1-Score in both
cases. Precision defines the ratio of true positive (TP) predictions over all posi-
tive predictions made by the model, which is the sum of TP and false positives
(FP). Recall, or sensitivity, defines the ratio of TP predictions over all samples
labeled as positive, that is, TP and false negatives (FN). F1-Score (F1) defines
the harmonic mean between precision and recall.

3.6 Classification Algorithms

To evaluate the effectiveness of potential feature sets for classification of breast
cancer samples, we estimate the performance using the following supervised
learning algorithms as basis for training the classifiers:

– Decision Tree (J48) classification algorithm learns decision rules inferred from
training data to predict a target variable [8]. J48 iteratively selects the feature
that best splits the subset (training data for the first iteration) according to
a homogeneity metric, such as information gain.

– K-Nearest Neighbors (KNN) is an instance-based algorithm [2] that computes
classification through a majority vote among the K nearest neighbors of each
new data point. We adopted Euclidean distance as the distance measure.

– Neural Network (NNET) uses a multi-layered perceptron algorithm that
trains a model using batch gradient descent [14]. Each input neuron rep-
resents a feature for a given sample. For training, a weight is assigned for
each connection between two neurons. Therefore, a neuron’s ai value is the
weighted sum of previous neurons directly connected to ai. The values are
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propagated toward the output layer where the prediction error is calculated.
The error is applied on the weights update in the opposite direction using
gradient descent and a learning rate α, i.e.,, by error back-propagation. The
model classifies new samples by choosing the classes whose output neuron has
the highest probability.

– Support Vector Machine (SVM) creates a hyper-plane or a set of hyper-planes
that is farthest from the nearest training samples [9]. In this work, a non-linear
SVM with a radial kernel is applied. Non-linear SVM applies a kernel function
in order to expand the input space into a feature space to make the problem
linearly separable.

Experiments were run in R environment, using the caret R package to train
and evaluate models. Hyperparameter tuning was performed for each algorithm
using the package’s standard grid set of candidate models. By default, caret
automatically chooses the hyperparameters associated with the best performing
model.

3.7 Meta-analysis

Meta-analysis represents another viable approach for candidate biomarker iden-
tification, being a state-of-the-art method in this type of investigation. In a
broad sense, meta-analysis aims at integrating the findings (i.e., primary statis-
tics) from multiple studies to extract more robust hypotheses. The first step of
meta-analysis measures the effect size - the strength of a phenomenon - through
differential expression analysis (DEA). Here we adopted the LIMMA [24], espe-
cially designed for transcriptomics, to extract genes’ log fold change (logFC ) and
p-value for each study. The logFC is simply the difference between the average of
expressions of tumor cases and the average of expressions of normal cases. The
p-value evaluates the significance of a change in expressions between the two
groups. In the second step, the meta-analysis method per se is applied, which
integrates the primary statistics from individual studies to assess the significance
of each gene across all populations. In this work, the focus will be on methodolo-
gies based on effect size combination due to their performance in meta-analysis
for microarray datasets [29]. We used the Random Effect Model (REM) through
the MetaVolcano R package, which outputs a ranking of genes from the most
significant to the least significant to distinguish tumor from normal samples.

As one of ours goals is to compare EFS with meta-analysis methods, we
evaluate the results from meta-analysis with a pipeline similar to the one adopted
to EFS (Fig. 2). However, instead of the local ranking for a dataset Ti, meta-
analysis calculates the effect size for each gene through DEA and the REM
generates the global ranking. In this way, we assure a fair comparison between
EFS and REM by applying the same data and executing the same evaluation
procedure for both methods.
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Fig. 2. Evaluation pipeline adopted for the REM meta-analysis method.

4 Results

In what follows we present the results for the homogeneous EFS applied to the
selected breast cancer microarray studies in terms of stability and predictive per-
formance. The section ends by discussing the results of the comparative analysis
between EFS and the REM meta-analysis. All results are based on the average
or values distribution for 5-fold cross-validation.

Our experiments were focused on evaluating every possible combination of
the following parameters (and respective values): Threshold: 5, 10, 15, 20, 25,
30, 50 75, 100, 150, 200, 250, 500; Number of Bags: 5, 10, 25, 50, 100; Classifier:
SVM, J48, KNN, NNET; Base selector: IG, φc, SU, mRMR, variance.

4.1 Stability Analysis

High stability for biomarker identification in EFS methods means that the most
informative genes for one population are also the most informative for another,
i.e., it reflects the reproducibility of the selected genes across the populations.
The ideal scenario is stability close to 1 when feature selection methods across
different populations choose almost all the same genes. In general, the bigger the
subset of selected genes, the higher the stability. Figure 3 shows the expected
behavior for global stabilities, with values increasing for larger thresholds. Note
that global stabilities, in general, are low, indicating a poor overlap of hypothe-
ses driven from different populations. This may be due to heterogeneity across
studies’ samples. On the other hand, the stability for the top 5 genes does not
follow the trend and is slightly higher than stability achieved until the top 20
genes. This suggests that local ensembles are most agreeing in rankings’ top
positions.
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Fig. 3. Stability for different number of genes selected from the global ranking.

To investigate the outliers observed in Fig. 3, we analyzed results separately
by base selectors and by the number of bags. Breaking by base selectors (Fig. 4a),
it is clear that variance presents overall higher stability in comparison to other
base selectors, which explains the mentioned outliers. In contrast, the number of
bags (Fig. 4b) has an insignificant impact on the overall global stability. There-
fore, stability is mainly impacted by the selected genes’ subset size and the base
selector bias. Since we want to select a minimum set of informative genes - the
candidate biomarkers - high stability lies in the choice of the base selector.
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Fig. 4. Analysis of stability for a) each base selector and b) different number of bags.

In GEO, different datasets are deposited from studies within distinct popula-
tions. In this work, we will not address the biological implications and challenges
of different data sources and sample heterogeneity. However, when stabilities are
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compared locally within each training dataset (Fig. 5) based on bootstrap sam-
ples, the stabilities are much higher. We can see that, once again, variance clearly
achieves higher stabilities than other base selectors. Furthermore, the GSE62944
dataset presents higher stability for every base selector in comparison with other
datasets. We could hypothesize that a positive correlation exists between the
number of samples and stability since this dataset has 1.232 samples while the
other datasets have 123 ± 86 samples on average. However, this assumption
needs to be validated in further experiments.
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4.2 Predictive Performance Analysis

Classifiers predictive performance can also guide the identification of biomarkers.
We observed that the threshold and the base selectors do not impact performance
significantly (Fig. 6). We can see a slight increase on performance median until
50 genes are selected. However, in general, the top 5 genes already presented
high F1-Scores (Fig. 6a). Among the base selectors, variance presented the most
consistent results across multiple evaluations, which corroborates the stability
results. Therefore, we will focus our next analyses on results presented by vari-
ance as base selector and the top 20 genes as threshold. Although other thresh-
old values could be explored, the top 20 genes seem to show a good compromise
between subset size, performance, and stability.
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Fig. 6. Analysis of the impact of a) threshold and b) base selector over performance.
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Fig. 7. Predictive performance on test datasets using variance and the top 20 genes.

In general, the EFS method presented satisfactory performance (Fig. 7). In
terms of F1-Score (Fig. 7a), we note an insignificant difference between the high-
est median results within test datasets. We observed more stable results for
precision (data not shown) than recall (Fig. 7b), which could be caused by a
disproportionately smaller number of negative samples (i.e., normal samples)
compared to the number of positive samples, thus making recall more sensitive
to prediction variations. Nonetheless, we note that predictive performance mostly
varies between different test datasets rather than between different classifiers for
the same dataset, due to data heterogeneity.

Table 3 shows the performance summary for F1-Score. There is no unique
classifier able to perform satisfactorily for every test dataset. However, the mean
absolute error (MAE), which is the mean difference between the highest perfor-
mance and the other performances, in most cases is less than 0.1. MAE can be
seen as a relative measure of how much better the best classifier is among the
others. Note that when SVM outperforms other classifiers within test datasets,
its MAE is higher if compared to the other cases. In this way, generally, SVM
would be the best choice. On the other hand, in terms of recall, KNN seems to
be a more robust choice (Table 4).



Ensemble Feature Selection Compares to Meta-analysis 175

Table 3. Classifiers mean F1-Score by test dataset for variance and the top 20 genes.
Bold values indicate the highest performance achieved for a dataset.

Dataset Classifier MAE

SVM J48 KNN NNET

GSE10797 0.92 ± 0.01 0.92 ± 0.03 0.96 ± 0.02 0.92 ± 0.02 0.04

GSE22820 0.72 ± 0.28 0.87 ± 0.05 0.88 ± 0.05 0.85 ± 0.16 0.06

GSE26304 0.86 ± 0.12 0.88 ± 0.14 0.77 ± 0.07 0.84 ± 0.22 0.05

GSE57297 0.93 ± 0.04 0.79 ± 0.10 0.89 ± 0.03 0.77 ± 0.18 0.11

GSE61304 0.96 ± 0.03 0.84 ± 0.09 0.84 ± 0.09 0.94 ± 0.04 0.08

GSE71053 0.76 ± 0.06 0.53 ± 0.14 0.68 ± 0.07 0.62 ± 0.17 0.15

Table 4. Average recall by classifier computed for the test datasets using the variance
and the top 20 genes. Bold values indicate the highest performance for a dataset.

Dataset Classifier MAE

SVM J48 KNN NNET

GSE10797 1.00 ± 0.00 0.96 ± 0.04 1.00 ± 0.00 0.96 ± 0.02 0.03

GSE22820 0.71 ± 0.37 0.87 ± 0.10 0.89 ± 0.09 0.86 ± 0.23 0.08

GSE26304 0.54 ± 0.43 0.85 ± 0.22 0.65 ± 0.10 0.81 ± 0.28 0.18

GSE57297 0.89 ± 0.09 0.78 ± 0.20 0.89 ± 0.08 0.72 ± 0.25 0.14

GSE61304 0.92 ± 0.06 0.76 ± 0.16 0.74 ± 0.14 0.90 ± 0.06 0.12

GSE71053 0.62 ± 0.07 0.57 ± 0.29 0.75 ± 0.16 0.50 ± 0.16 0.19

4.3 EFS Versus Meta-analysis

To validate our EFS framework, we compared it with results generated by the
REM meta-analysis approach, considering the top 20 genes in both cases and
the variance FS method for EFS. Figure 8 shows the performance a) by classifier
across all test datasets and b) by test dataset across all classifiers. Classifiers
were able to perform satisfactorily across datasets, with median values surpass-
ing the 0.75 mark in most cases. We note that performance for EFS is more
consistent than meta-analysis and, in general, our approach has the interquar-
tile range shifted towards higher values, which indicates better performance.
When observing F1-Score per test dataset, our EFS approach outperforms meta-
analysis in four out of the six datasets. In particular, for GSE10797, GSE61304,
and GSE71053, the improvement brought by EFS over meta-analysis is remark-
able. Table 5 summarizes the performance of both methods across all experi-
ments, which corroborates the previous discussion. Note that for GSE613040
and GSE71053, EFS surpasses meta-analysis by 0.331 and 0.139, respectively.
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Fig. 8. Comparison between the predictive performance of EFS and meta-analysis.

Table 5. Average F1-scores for EFS or meta-analysis based on test datasets, using
variance and the top 20 genes. Bold values indicate the highest performance for a
dataset.

Dataset Method MAE

EFS Meta-analysis

GSE10797 0.94 ± 0.02 0.87 ± 0.05 0.079

GSE22820 0.88 ± 0.07 0.83 ± 0.16 0.048

GSE26304 0.83 ± 0.13 0.95 ± 0.01 0.120

GSE57297 0.82 ± 0.13 0.92 ± 0.06 0.098

GSE61304 0.88 ± 0.07 0.55 ± 0.11 0.331

GSE71053 0.70 ± 0.10 0.56 ± 0.18 0.139

When comparing the top 20 ranking generated by EFS and meta-analysis,
an interesting finding is that the overlap among them is very low. Only one gene
was common to both rankings, namely S100A7, which according to literature is
highly expressed in breast cancer and may play a role in early tumor progression
[12]. The high correlation among genes may justify to some extent the low overlap
- a factor that should be further investigated. Among the top 5 genes found by
our approach, we identified TFF1, SCGB1D2, SCGB2A2, and PIP with previous
relation with breast cancer according to Genecards database. A more in-depth
analysis of the genes selected by the EFS approach, including the investigation
of their biological role, may be useful for better understanding their possible
relation with breast cancer.

5 Conclusions

We explored a homogeneous EFS approach for candidate biomarkers identifica-
tion from microarray data related to breast cancer in this work. A wide range
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of parameters and configurations were explored. We could note the impact of
the FS method chosen as base selectors over performance and the effect of data
heterogeneity across distinct, independent studies. By combining several feature
rankings extracted from data bootstraps and multiple microarray studies, the
classifiers trained with the top EFS-based ranked features distinguished tumor
from non-tumor samples with very good and robust performance. A good sta-
bility was found for a study-centered analysis, although stability across multiple
studies was lower, partially due to high heterogeneity among samples. Interest-
ingly, our approach was shown to outperform in most experiments one of the
state-of-the-art approaches for integrative microarray analysis, the REM meta-
analysis method. Further analyses of our top-ranked features could introduce
new insights into the molecular mechanisms underlying breast cancer.

Provided that feature selection from high dimensional data is a challenging
task, mainly when applied in the domain of omics data, we believe that our
results are auspicious and encourage further studies in this direction. In partic-
ular, for future works, we aim to expand our analysis for other types of cancer,
investigate the role of gene expression correlation in the stability of the rankings,
perform a further investigation of top-ranked genes, and explore new strategies
to improve stability under disease heterogeneity among samples.

Acknowledgments. The authors thank Rodrigo Haas Bueno for his help with
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Abstract. In this work, we will make an energetic and structural characterization
of three-dimensional linear chains generated from a simple self-avoiding ran-
dom walk process in a finite time, without boundary conditions, without the need
to explore all possible configurations. From the analysis of the energy balance
between the terms of interaction and bending (or correlation), it is shown that the
chains, during their growth process, initially tend to form clusters, leading to an
increase in their interaction and bending energies. Larger chains tend to “escape”
from the cluster when they reach a number of “steps” N >∼ 1040, resulting in
a decrease in their interaction energy, however, maintaining the same behavior
as flexion energy or correlation. This behavior of the bending term in the energy
allows distinguishing chains with the same interaction energy that present differ-
ent structures. As a complement to the energy analysis, we carry out a study based
on the moments of inertia of the chains and their radius of gyration. The results
show that the formation of clusters separated by “tails” leads to a final “prolate”
structure for this type of chain, the same structure evident in real polymeric linear
chains in a good solvent.

Keywords: Self-avoiding random walk · Linear chains · Interaction energy ·
Bending energy · Moment of inertia · Radius of gyration · Asphericity · Prolate
structure

1 Introduction

The self-excluding random walk (SAW) is a very simple and useful model for under-
standing some physical phenomena. Under certain conditions, SAWs can model some
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properties of real linear chains. SAW is not just a useful modeling tool; the field has
advanced significantly in the last 50 years, its study has stimulated theoretical devel-
opments in areas such as mathematics, physics and computer science and is widely
accepted as the main model for polymers diluted [1–4].

We use a model based on a self-excluding walk to generate an ensemble of three-
dimensional linear chains. Ourmodel does not consider all possible configurations of the
system, avoiding high computational costs. It only considers a number of strings large
enough to guarantee acceptable statistical confidence. The cubic network used does not
have boundary conditions and the process is carried out in a “finite” time. In this article,
we propose and study a conformational energy model based on the flexibility of linear
chains that report realistic results and allows you to differentiate chains regardless of
their structure. As part of the study, it was examined the balance between the energy of
interaction between the “links” in the chain and the bending energy in order to find its
relationship with the structure of the chains. This analysis is relevant because it allows
differentiating between chains of equal interaction energy but with different structures.

The paper is organized as follows. In the next section, we speak briefly about the
proposed algorithm, used to generate the linear chains. We also describe the energy
models used, the calculation of the moment of inertia, and the asphericity, tools used for
the characterization of the chains. The subsequent section is dedicated to the discussion
of the results of our simulations and finally, we expose the conclusions of the work.

2 Methodology

2.1 Numerical Algorithm

The ensemble of linear chains was generated from the sequence of steps showed next,
for a d − dimensional network, with free boundaries:

Step 1. Initially, the number of attempts N
′
is choosen. This variable will define the

length of the chain.
Step 2. The origin of the coordinate system is choosen as the the origin of the chain.
Step 3. From the origin, the first step in the generation of the chain is choosen randomly,
from the neighbourhood of the origin.
Step 4. The following steps are choosen, randomly, from the rest of the neighbourhood,
excluding previously “visited” points. This step is themost important to ensure the SAW.
Step 5. Add the step to the walk (chain).
Step 6. When the number of new possible steps is zero or the number of attemps is
reached, the process ends and the chain is saved.

For three-dimensional chains, N < N
′
, this indicated that the “walker” usually gets

stuck before the N
′
attempts.

2.2 Energy of Linear Chains

In our analysis, we use a definition of the interaction energy, which is based on the
compactness of the chains [5–7]. We also examine the bending energy as a discrete
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variable that characterizes the chain flexibility, as well as, its tangential correlations.
The total energy of the chain is then, considered as the sum of the bending energy and
the interaction energy.

Interaction Energy. Interaction energy accounts for the energy of the chain due
to its compactness and it quantifies the short-range interactions (Von Neumann
neighbourhood) for non-continuous monomers [5–7]. It reads as,

E =
∑

i<j
eij�

(
ri − rj

)
. (1)

where �(ri − rj) = 1 if ri and rj are attached to the network, but i and j are not adjacent
positions along the chain sequence and �(ri − rj) = 0 for otherwise (see Fig. 1).

Fig. 1. 14-step 2d-chain that shows the values that the interaction takes �(ri - rj), where it adopts
the values: 1, for the attachments but not adjacent sites (blue color) and 0 for the otherwise. (Color
figure online)

The type of contact between the “links” determines the value of the factor eij. This
variable, in turn, represents the potential energy of interaction between the “links” located
in the position ri and rj respectively. For attractive “link-link” interaction, eij = −1.

Bending Energy. One of the basic characteristics of all macromolecules is their flex-
ibility [8]. The polymer chains, in the pure state or in dissolution, may adopt different
conformations depending on their flexibility. Chains with low flexibility will be more
rigid and will tend, in the limit, to behave as a hard stick. On the other hand, when the
flexibility is high, the chain may have large changes of direction within a few links. The
flexibility of the polymer chain is related to the persistence length lp. This can be defined
as the average value of the maximum linear length of the chain configuration (it is also
related to the Kuhn segment as b = 2lp [9]). For distances greater than lp, the “memory”
associated with the direction, up that point, adopted by the chain is lost. Thus, some
energy is always required to fold the chains, which can happen up to at most the lp. In
our model, we use these properties of macromolecules in the definition of our bending
energy term.

In thegraphofFig.2,weshowthecorrelation (in turn related to theflexibility)between
u and u

′
, two unit vectors that join three points of the chain (monomers h, i and j), and that
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are separated by a distance l is given by [10]:

〈
u · u′〉 =

[(
1 − (

b/lp
))1/b]l ∼ exp

(−l/lp
)
. (2)

Fig. 2. Schematic representationofasectionof thechain that showshighflexibility.Vectorsofbond
ui with a fixed link angle between two consecutive monomers, (a). Chain conformation specifying
r(s) and the unit vector u(s), (b).

At the limit, the conformation of the chain is a smooth curve as described in Fig. 2b.
Using Eq. 2 it can be obtain the correlation function between u(s) and u(s

′
) of two

segments of the chain, s and s
′
, as a function of the persistence length lp. This function

shows that the directional correlation of two segments of a macromolecule, decreases
exponentially with the growth of the chain length [8, 10, 11]:

c
(
s, s′

) = 〈
u(s) · u(

s′
)〉 = exp

(−∣∣s − s′
∣∣/lp

)
, (3)

We consider our linear chain taking into account interactions with other “links”
(monomers) in the samechain and interactionswith their environment. These interactions
(bending energy) are described by an effective potential that represents the energy cost
for their formation. The stability of the chain is determined by two forces, elastic with
a negative sign, which leads the chain to a collapse, and another repulsive one with a
positive sign, which causes the chain to be stretched. This energy cost is reflected in the
chain in the form of free energy, for example, the number of conformations decrease with
increasing end-to-end distance, but their free energy increases due to the high correlation
that exists in the chain.

In continuous mechanic systems like a rod with stiffness constant k under the action
of a force [12, 13], there is a correlated behavior in relation to its structure, described by
the Eq. 3. Flexing generates a differentiable curve on the rod, where, at a point r(s) of
the curve there is a tangent vector u(s) leading to a behavior similar to that described in
Fig. 2b for linear chains. The Hamiltonian describing the internal energy of the rod of
length ic is given by Eq. 4, as follows:

H = k

2

lc∫

0

(
∂u(s)

∂s

)2

ds. (4)
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Chains with high flexibility experience changes of direction at a distance of few
“links” tending to turn to itself, while low flexibility chains tend to become rigid, because
the two-segment correlation function in the chain decreases exponentially with the dis-
tance between them as shown in Eq. 3. By virtue of this, we propose a discretization
of bending energy in order to be adapted to our chains, in this way, part of the inter-
nal energy of the chain which is described in terms of its configuration and which is
equivalent to Eq. 4 is given by the following relation:

H ∼= H = k

b

∑N

i,j=1
εijpi, (5)

where the weight function εij can take values of (1) or (−1) depending on whether or
not the direction of the i-th step changes as compared to the previous step (see Fig. 3)
and pi represents the probability that each step will find any of its accessible microstates,
k is a constant of units of energy times distance and finally, our model adopts the b = 1
as the length of Kuhn.

(a) (b) 

Fig. 3. 4-step 2d-chain that shows the value of the weight function εi used to compute the bending
energy. Linear chain without deviation with its weight per step equal to 1, (a). Chain with mixed
deviations, when direction changes εi adopts a weight equal to (−1), as is the case with steps 2
and 4, (b).

The bending energy, in its discrete version H , describes the behavior of the polymer
chain from its tangential correlations, for example, for a highly correlated polymer chain
(Fig. 3, a) this energy will be purely positive (high free energy) what is expected from
the Hamiltonian described by the rod and the correlation given in Eq. 3.

The bending energy can be positive or negative depending on the winding of the
chain. In our simulations the calculation of bending energy takes into account the term
we call function weight as well as the relative probability of each step of the chain, which
has the form of Eq. 6 [14].

pi = e−gni

∑3d
j=1 e

−gni
= 1

∑3d
j=1 e

−g(nj−ni)
. (6)

In Eq. 6, the sum runs through all possible 3d paths from the position occupied by
the walker at each instant of time, including the address i, and g is a positive parameter
whichmeasures the intensitywithwhich thewalk avoids itself. For the sake of simplicity,
in this work we implement the limiting case g = ∞, which corresponds in the 3d case
to a discrete domain of probabilities pi(g = ∞) = [1/6, 1/5, 1/4, 1/3, 1/2, 1].
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2.3 Anisotropy in Linear Chains

Inertia, Gyration Tensor and Asphericity. The main moments of the inertia tensor
of the chains depend on their structure and they are correlated with their stability. The
inertia tensor can be diagonalized, in function of their main moments, how we can see
in the Eq. 7, as follows:

I
∧

=
⎡

⎣
Ix 0 0
0 Iy 0
0 0 Iz

⎤

⎦. (7)

Each of the main moments of inertia
(
Ix, Iy, Iz

)
corresponds to a moment of inertia

around one of the main axes, so a relationship between these moments allows us to carry
out an analysis on the symmetry or asymmetry of each of the chains. In addition to the
inertia tensor, the shape of the chains (like polymeric chains) can be characterized in
gyration tensor terms [15, 16]. The gyration tensor is built from the dyadic of the position
of the column vector rα in the center of mass of the system [17],

S = 1

N

∑N

α
rαrTα = 1

N

⎡

⎣

∑
α x

2
α

∑
α xαyα

∑
α xαzα∑

α yαxα

∑
α y

2
α

∑
α yαzα∑

α zαxα

∑
α zαyα

∑
α z

2
α

⎤

⎦. (8)

The inertia tensor I is directly related with the gyration tensor S,

I = Tr(S)1 − S, (9)

were 1 is the unit tensor and Tr(S) is the gyration tensor trace. From the gyration tensor
we can define the asphericity � [18] and the nature of asphericity � [19], represented
by:

� = 3

2

Tr
(
S
∧2)

(
Tr

(
S
∧))2 , � =

4det
(
S
∧)

(
2
3Tr

(
S
∧2))3/2 , (10)

S
∧

is the following transformation:

S
∧

= S − 1

3
Tr(S)1. (11)

For asphericity, we have 0 ≤ � ≤ 1, were� = 0 correspond to an object completely
symmetric and� = 1, correspond to a completely stretched object, similar to a rigid bar.
On the other hand, the nature of asphericity is limited by −1 ≤ � ≤ 1, were � = −1
represent a oblate object, like a disk, and � = 1, a prolate object [80, 97 Tese]. The
combination of asperity and the nature of asphericity allows to identify the approximate
shape of the configuration adopted by the three-dimensional chain. For comparative
purposes, a transformation of these parameters can be adopted [19, 20] like:

ρ = 2
√

� ∈ [0, 2], θ = 1

3
arccos(�) ∈ [0, π/3] (12)

Using the parameters ρ and θ related to asphericity and the nature of asphericity we
can have a different and more general perspective of the form adopted by the chains.
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3 Results and Discussion

3.1 Energy of the Linear Chains

To study the energy of the random chains generated by our simulation, we analyzed the
energy given by the interactions between “links” (monomers) in each chain, aswell as the
energy associated with the bending of the chains. As generated chains are homogeneous
(identical links), like “homo-polymeric” chains, they are expected to show a uniform
behavior or have a low amount of metastable states [6, 21].

In the contact potential described in Eq. 1, the value of the constant eij has the
information about of interaction energy between the non-continuous and adjacent links.
This constant adopts the value of −1, for each contact, thus generating a “folding”
force in the chain, known in proteins as a hydrophobic force [7]. The sum of all the
interactions in chain defines the energy of the system, called interaction energy E. To
take into account the flexibility of the chain and, consequently, its tangent correlations,
we proposed adding to the interaction term E, the bending energy H in its discrete
version, proposed in Eq. 5.

In the Fig. 4 we can see the characteristic histograms of each energy for three-
dimensional chains generated using our algorithm.The shape of the distribution is similar
to the results obtained previously for the distribution of number of steps.

Fig. 4. Interaction energy E (a) and bending energy H (b) histograms, for three-dimensional
chains. Gaussian distributions with standard deviations, σE ∼= 51 and σH ∼= 31, and mean values
μE ∼= −702, and μH ∼= −792 respectively.

Even when considering both attractive and repulsive behavior of the chains, the
resulting chains have negative energy, because in the SAW models for polymers in a
good solvent, the attractions prevail over the repulsions [9, 10].

The total energy of the chain is described by the sum of interaction and bending
energies, which determine the structural configuration. In Fig. 5a, the total energy dis-
tribution is shown. The most probable energy values are between −1650 and −1350
energy units, corresponding to long chains.

The mean values for the interaction energy and bending energy were computed for
eleven thousand three-dimensional chains. Although was computed the mean values for
the total (interaction plus bending) energy. All the energies were plotted as a function
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Fig. 5. Total Energy histogram (E + H ) for three-dimensional chains with mean with mean
μ ∼= −1499 and standard deviation σ ∼= 53 (a). Interaction energy E and bending energy H as a
function of the number of steps N . The horizontal dotted lines represent the values between which
the energies are distributed (see Fig. 4 and Fig. 5a). On the other hand, the vertical ones, represent
the values between which distribute all sizes of the three-dimensional chains generated (b).

of N (Fig. 5b). The plots show a linear and uniform behavior for total energy (which is
expected [6, 21]). However, when N is large (≥∼ 1650), the behavior of the interaction
energy changes from decreasing to increasing, having less negative values, which can
be interpreted as representative of more stretched chains, with fewer contacts but with
small lengths of persistence still prevailing.

With the objective to better understand the behavior of energy, we have plotted the
distribution of the size of chains. The great majority of the three-dimensional chains
generated are large (N > 1700), how we can see in Fig. 6. These chains, with total
energies between −1350 and −1650, belong to the second regime of the graph of the
total energy and follow a Gaussian distribution (see Fig. 5). The rest of the chains, with

Fig. 6. Normalized histogram of the number of steps N with mean μ = 1775 and standard
deviation σ = 33. Behavior obtained for random chains in 3d , ψ generated from N

′ = 2400
attempts. The inset illustrates the histogram in a wide interval in which a Gausian behavior occurs.
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total energy between 0 and −1350, belong to the first regime of the energy graph and
follow a uniform distribution.

In the “discrete” bending energy approach, the second regime does not appear (see
Fig. 5b). This term has the same linear behavior, regardless of the presence of neighbours
interacting with other links (monomers). The folding of the chains in the regime with
large N adds negative energy to the system.

In the total energy graph of Fig. 5b, two regimes can also be seen due to the con-
tribution of the interaction term. For chains of size below N = 1775 (mean value of
N ), the energy decreases with N at a rate of 0.86, practically twice the rate of decrease
of each term separately, because the two energy contributes in this regime in the same
proportion. For larger chains, the energy increases with N and the characteristic rate of
this increase is 0.29. Here the different contributions of the two types of energy make
the increase less significant than in the case of the interaction energy.

3.2 Inertia and Anisotropy

A typical linear chain with N = 1772 steps, generated by the simulation is shown in
Fig. 8. This chain forms two clusters separated by a tail. The chain “escapes” from the
first cluster and the interaction energy decreases because does not have neighbours that
contribute to this energy. The flexibility of the chain is maintained causing the chain to
continue folding even in the “bridge” that separates the clusters, and the bending energy
remains constant (as we saw earlier). This represents a decrease in the interaction energy,
restoring later, during the growth process, the original structure (Fig. 7).

Fig. 7. Typical structure of N = 1772 generated by the simulation which shows the formation of
two clusters. The spheres represent the links (monomers) of a linear (homo-polymeric) chain.
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We plot three different views of main moments of inertia Ix, Iy and Iz and in each
plane, a projection of them, see Fig. 8. It is observed that structurally the chains have a
preference for adopting a stretched shape along the x axis. Chains like polymeric chains
assume, preferably, an ellipsoidal or prolate shape [17, 22–24]. When analyzing our
results, from the study of main moments of inertia, we can see that they correspond with
this fact.

Fig. 8. Relationship between the main moments of inertia, (a): Iz vs. Ix; (b): Iy vs. Ix and (c): Iz
vs. Iy . In (c), is illustrated how, structurally, the chains have a preference to adopt a “stretched”
shape along the x-axis.

Figure 9 shows the distribution of asphericity values for the three-dimensional gen-
erated chains. It’s possible to observe a maximum for the asphericity in �max ≈ 0.76,
in accordance with the values corresponding to these type of structures. On the other
hand, we see that the occurrences in the case of the nature of asphericity are practically
concentrated around the value � = 1, corroborating the same hypothesis. These distri-
butions, as well as the behavior of the main moments of inertia, demonstrated that the
three-dimensional chains generated prefer to adopt stretched structures, in general, like
real polymeric chains.
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Fig. 9. Distributions of variables: asphericity (�), red dots, and nature of asphericity, blue dots,
for three-dimensional random linear chains. The behavior of these distributions reveals a preferably
prolate structure, from the position of the peaks of the frequencies. (Color figure online)

Fig. 10. Adopted configurations by linear chains. The yellow color represent high density of
points, revealing a higher concentration of chains with high values of ρ and low values of θ . This
graph shows the most likely prolate configuration that is generated by our model. (Color figure
online)
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In Fig. 10, we show a different perspective to analyze the form adopted by the
three-dimensional linear chains generated. This graph shows a high density of point in
the region corresponding to a low values of θ

(
θ ≈ π

90

)
and high values of ρ(ρ ≈ 1.78),

which reflects in the understanding of the preferential behavior of our chains. The region
of θ and ρ large is a forbidden region since the eigenvalues of tensor radius of gyra-
tion become negative, which is incompatible with real chains. The area below the yellow
region (high densities), represents all configurations ranging from a totally prolific geom-
etry at θ = 0 like that of a rigid rod to a totally oblate structure of a rigid ring at θ = π

3 .
From π

6 , the form adopted by the chains is quite noticeable. For θ > π
6 the shape is

oblate and comparatively prolate for θ < π
6 . With respect to ρ, the lower this value,

the structure becomes more and more spherical, resulting in a spherically symmetrical
conformation for (π/6; 0). Theoretically, for open polymers flexible, it is known that
the adopted form is almost exclusively prolate and rarely spherical, which indicates a
peak around θ = π

40 and ρ = 1.55 [19].

4 Conclusions

Comparing the behavior of the E energy, which characterizes the monomer-monomer
interactions of the chains, with the H energy, associated with its flexibility, we found that
the chains start with clusters that increase in size, leading to an initial increase in their
energy. When the chains reach a large number of steps, the interaction energy revealed
that the chain stretches and escapes from the cluster, which results in a loss of interaction
energy.

The behavior of the bending energy reveals that, in this escape regime, the chains
keep the folding behavior they showed before the escape. This process lasts until the
clusters reach a size comparable with themean radius of gyration. The analysis presented
in this work, including both the bending and interaction energies is important because it
allows differentiating between chains of interaction energy but with different structures
and hence different bending energies.

From analysis of inertia tensor and asphericity, we can conclude that the generated
three-dimensional chains present anisotropy, with symmetry around one of the main
axes of rotation. As a result, in general, our chains adopt a prolate structure, the same
structure evident in real polymeric chains.
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Abstract. Models based on self-excluded walks have been widely used to gen-
erate random linear chains. In this work, we present an algorithm capable of
generating linear strings in two and three dimensions, in a simple and efficient
way. The discrete growth process of the chains takes place in a finite time, in
a network without pre-established boundary conditions and without the need to
explore the entire configurational space. The computational processing time and
the length of the strings depending on the number of trials N

′
. This number is

always less than the real number of steps in the chain, N. From the statistical anal-
ysis of the characteristic distances, the radius of gyration (Rg), and the end-to-end
distance (Ree), we make a morphological description of the chains and we study
the dependence of this quantities on the number of steps, N. The universal criti-
cal exponent obtained are in very good agreement with previous values reported
in literature. We also study fractal characteristics of the chains using two differ-
ent methods, Box-Counting Dimension or Capacity Dimension and Correlation
Dimension. The studies revealed essential differences between chains of different
dimensions, for the two methods used, showing that three-dimensional chains are
more correlated than two-dimensional chains.
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1 Introduction

SAWs describes a large spectrum of real systems. One of the first theoretical approaches
to this subject is Flory’s theory [1]. This theory helped to understand the power laws
characteristic of this model and the role of dimensionality, using mean field arguments
involving the concept of excluded volume. Other analytical approaches that used rigor-
ous approximate methods such as perturbation theory, self-consistent field theory, and
renormalization group, produced estimates with a certain degree of precision for critical
exponents and some universal amplitude ratios [2–4].

Numerical methods are an important tool in the study of the properties of long SAW’s
[5]. These numerical approaches allow us to find the number of possible SAWs of length
N.Universal properties are estimated using different techniques such as the ratiomethod,
Pade approximants, or differential approximants, having reported results for square and
cubic networks up to N = 71 and N = 21 steps, respectively [2, 6, 7]. In a SAW of
length N , there are 2 × d options for the first step of the walk and at most, 2 × d −
1choices for the rest of the N – 1 steps. The number of configurations for as specific
value of N (CN ), is in the range: dN ≤ CN ≤ (2d)(2d − 1)N−1, causing this number to
grow with N according to a power law of the type CN ∼ N γ−1, where γ is an universal
critical exponent that depends on network dimension [8–10].

In this work we will not take into account the high number of walks possible for a
specific N , but we show that the exponents characteristic of this type of system can be
obtained from a subset of all possible configurations. In this work we focus in studying
relatively small SAWchain ensembles, whichmight be relevant in order to reproduce the
main characteristics of random linear chains, such as universal critical exponents. It is
understood that we are referring to classic SAWs, where the walker tends to take steps at
random, avoiding regions of the space already visited by him. These are not self-repelling
chains, for which all possible configurations for a given length are considered. In this
last type of chain, it is associated with a statistical weight, represented by the Boltzmann
factor, with a potential energy proportional to the number of self-intersections [11].

As a complement to the study, we implement a comprehensive analysis of the fractal
dimension of the generated chains using two different methods: box-counting dimension
and correlation dimension.

The main motivation of this work is to be able to generate sets, statistically repre-
sentative, of linear chains with known universal characteristics and behaviors, without
having to go through the entire configurational space. For a SAW of length N, there are
2d options for the first step of the walk and at least 2d-1 choices for the rest of the N-1
steps, this makes the value of the number of possible configurations (cN) that a SAW of
N steps can adopt, starting from the origin, grow with a power law. A huge effort has
been made in the last 6 decades to develop efficient methods for counting SAWs, but
knowing the exact values of CN and exponents still represents an open challenge. With
our work, we show that only with a subset of all possible configurations we can obtain
exponents similar to those reported in the literature.
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The paper is organized as follows. In the next section, we briefly review the SAW
and its main characteristics, the proposed algorithm, as well as the definitions of the
characteristic distances and the methods that will be used in the calculation of the fractal
dimension of the chains. The subsequent section is dedicated to the discussion of the
results of our simulations and finally, we expose the conclusions of the work.

2 Methodology

The objective of this work is to efficiently generate sets of two- and three-dimensional
linear chains, with the typical characteristics of this type of system. Each chain is gen-
erated from the path taken by a randomly moving particle within a network without
boundary conditions, with the limitation that the particle cannot pass through places
previously visited by it.

2.1 Numerical Algorithm

For a d–dimensional network with free boundaries the algorithm to generate a one chain
is as follows:

1. Choose the number of attempts N
′
.

2. Choose the origin of the polymer, which in our case is the origin of the coordinate
system.

3. Generate the first step randomly or choose it arbitrarily from a point in the cubic
network.

4. Choose the following step randomly from one of the 2 × d possible steps.
5. If the given step leads to self-intersection, go to item 4 and try again with another

step. This step is most important to ensure the SAW.
6. If the step leads to an available location, add the step to the walk.
7. If the number of attempts is reached or if the number of possible steps is zero (the

walker gets stuck), the simulation is accepted and saved.

Thus, the random chain is formed by N steps generated from N
′
attempts, and the

representative flowchart of this process is shown in the Fig. 1.
After generating the random chain, we store the positions of each of the sites that

make up the chain and start computing the characteristic measurements of its configu-
ration. First, we calculate the position ri of each site to obtain the center of mass rC ,

with which we obtain the radius of rotation, Rg . Next, we calculate the end-to-end vector
module, Ree, which can be easily derived from the distance of the Nth site to the origin
of the chain. All these quantities are properly defined in the next subsection.
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Fig. 1. Flowchart of the computational algorithm used to generate an isolated linear chain in a
d-dimensional network.

2.2 Characteristic Distances and Flory Exponent

The proposed algorithm efficiently generates a set of linear chains in uniform 2D and
3D networks, each of them is formed by N sites in positions {r0, r1, ..., rN } in the space
of dimensiond . The separation distance between the site i and its nearest neighbour is
b = ri − ri−1, for i = 1, 2, ...,N , which would be equivalent to a Kuhn segment [1,
12]. We describe the chain morphology by exploring the behavior of two characteristic
distances, end-to-end distanceRee and the radius of gyrationRg . The end-to-end distance
is defined as the mean square variance of the displacement, and the radius of gyration
represent the second moment around the center of mass. The expressions of these two
quantities are shown below [12]:

Ree
2 = 〈(rN − r0)

2〉. (1)

R2
g = 1

N + 1

∑N

i=0

〈
(ri − rC)2

〉
, (2)
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The variables rN and r0 are the positions of the end of a chain, and rC is a centre of
mass of the chain. For real chains, a relationship between these distances is [13]:

6Rg
2

Ree
2 = 0.952 (3)

The dependence of the radius of gyration with N , size of a Kuhn segment b, and
exponent γ , for this type of chain, responds to the expression below:

Rg = bN ν (4)

The exponent γ is the Flory exponent [1, 12, 14], which comes from Flory’s
theory. Flory’s exponent does not depend on the type of network, but on the spatial
dimensionality d [10]. Generally, Flory’s exponent is simply calculated from [14, 15]:

ν = 3

d + 2
(5)

2.3 Fractal Dimension of Linear Chains. Box-Counting Dimension
and Correlation Dimension

Self-similarity and self-affinity are important characteristics of linear chains. These prop-
erties are directly related to their configuration and that are well behaved for a defined
variety of scales. Random linear chains in general can behave like random fractals [16–
20]. The mean quadratic distance of the end-to-end vector is proportional to the number
of connected segments (or Khun lengths), as shown in the following equation:

〈Ree
2〉 ∼ N 2ν (6)

For any “r-size” subsection of the chain containing “n-sites”, its characteristic size
is equal to:

〈r2〉 ∼ n2ν ⇒ r ∼ bnν (7)

The degree of self-similarity for small scales is limited by the Kuhn length b, and the
characteristic sizes, (Rg andRee) of the chain for large scales. Thus, the previous equation
is valid for b < r < R. The fractal dimension suggests that the number of “segments”
within a sphere of radius R is RdF , and since the behavior of R is known according to
Flory’s exponent, it is easy define the value of the fractal dimension according to the
exponent ν given by [14, 18, 20, 21]:

dF = ν−1. (8)

The capacity dimension (box-counting dimension) is used to calculate the fractal
dimension of binary images [16, 18, 19, 22–25]. Since it is a purely geometric method,
it was only just used in two-dimensional chains. 2D images was generated, from the
walks, considering that each “link” would fill the space between him and his closest
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Fig. 2. Filling a path generated by a SAW of N = 120 that is born at the origin of the coordinate
system. Two “moments” in the evolution of the walk is presented until it complies with the “stop”
conditions established in the model.

neighbor, as we see in the Fig. 2. The correlation dimension, introduced in chaos theory
[26, 27] is a measure of the dimensionality of the space occupied by an arbitrary set of
points. In this case, the points are the positions of the steps of the random walks that
generate the linear chains.

The correlation dimension was calculated from the time series of the Euclidean
distance between the steps of the walk, both for two-dimensional chains and for three-
dimensional chains. Although the strict definition of the dF fractal dimension requires
an “infinite scale reduction”, this is not typical of real systems like our linear chains
because their size is limited. Thus, dFcorr can only be measured within a scale range,
which restricts the size of the strings. Because of this, chains with N < 10 were not
considered in our calculations.

3 Results and Discussion

3.1 Algorithm and Simulations

In the algorithm each chain is generated from an initial number of attempts (N
′
) that

remain fixed during a set generation. Then, the random chain is formed byN “steps” gen-
erated from theseN

′
attempts, so that, for a squared two-dimensional network,N

′
>> N

and for a cubic three-dimensional network, N
′
> N .

The different behaviors of N in function of N
′
for the two dimensions of networks

respond to the fact that the chains can get trapped before reaching the total number of
attempts. In the formation process of two-dimensional chains, there are a few degrees of
freedom and the chains can be trapped more easily than in the case of three-dimensional
chains.

There is no relationship between the number of attempts and the number of steps
in this type of system. It was necessary to define an adequate number of attempts to
construct a representative sample of linear chain states, guaranteeing, at the same time,
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the optimization of the processing time of the computational code. We chose an interval
between 2 and 2000 attempts, with a sequence ofN

′ +2 for the two-dimensional case and
N

′ + 5 for the three dimensional. Within each interval, 104 simulations were performed
for each N

′
, thus generating 107 two-dimensional chains and 4×106 three-dimensional

chains.
The results obtained in this system are illustrated in Fig. 3 in which two graphs are

presented, one corresponding to the maximum number of steps and the other, to the
processing time, both depending on the attempts. For the two-dimensional case (black
points), the growth of themaximum number of steps (see Fig. 3a) is approximately linear
until N

′ = 710. From this point on, the maximum number of steps generated remains
in an interval between N = 366 and N = 690 with a average value of N � 468.

Concerning computational processing time (see Fig. 3b), we see a linear increase
at a relatively low rate. For the three-dimensional case (grey diamonds), the maximum
number of steps increases linearly (Fig. 3a) as the number of attempts increases. On the
other hand, the computational processing time increases according to a power law as
we can see in Fig. 3(b). These results were important in choosing a specific number of
attempts to generate the chains according to their size, ensuring process efficiency as
well as chains of various lengths, both large and small.

Fig. 3. Relationship between the number of steps N and the number of attempts N
′
for a sample

of 10 thousand simulations in 2D and 3D. Each point in Figure (a) represents the maximum size
Nmax of the series and (b) shows the processing time, in seconds, that it took to generate the 10
thousand simulations for each N

′
.

We chose N
′ = 1000 attempts for the two-dimensional case, since increasing this

valuewould not benefit the generation of larger chains. For the three-dimensional case, an
increase inN

′ ←benefits the generationof larger chains, butwould seriously compromise
the processing time, for this reason, we use N

′ = 1500.

3.2 Chain Length, Characteristic Distances and Flory Exponent

The distributions of the continuous variable Nb, that represents the length of a “fully
stretched chain” with N “steps”, for the generated sets of linear chains, are shown in
Fig. 4.
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Fig. 4. Normalized histogram of the number of steps N for two-dimensional chains generated
from N

′ = 1000 attempts (a), and three-dimensional chains generated from N
′ = 1500 attempts

(b). The inset in (b) illustrates the histogram in a wide interval in which a Gaussian behavior
occurs, with mean μ = 1111.87 and standard deviation σ = 25.46.

For the bidimensional case, (Fig. 4a), the resulting curve is adjusted by a Fisher
distribution. This curve presents an asymmetry, since the process of formation of two-
dimensional chains is characteristic of a low number of degrees of freedom, generating,
preferably, chains with small N . Three-dimensional chains (Fig. 4b), on the other hand,
are much longer than two-dimensional. This behavior had already been explained previ-
ously. The process of forming chains in a three-dimensional network offers more possi-
bilities of “escaping” to a site not yet visited, than in networks of two dimensions, where
the probability of finding a “free” site is less, and the process can be interrupted more
easily. For this reason, the vastmajority are relatively large chains. For three-dimensional
chains, the Nbψ values are uniformly distributed in the case of small chains, while very
long chains have a normal distribution. The maximum of the distribution (N = 1112
steps for the chains generated from N

′ = 1500), is obtained for large chains (compared
to N

′
). This way, chains with approximately this number of steps appear with greater

probability under the conditions established in the simulation.
Figures 5 and 6, show the distribution of the characteristic distances (Ree and Rg) of

the chain. The graphs in Fig. 5 represent adjustments using Lhuillier’s proposal [28]:

P(R) ∼ exp
(
−Rαd − Rδ

)
. (9)

The distribution of characteristic distances, in Fig. 5, behaves according to two
different exponential laws. The first exponential behavior in Eq. 8, corresponds to small
values of characteristic distances, while the second term of this equation represents
the behavior for large values. The α and δ exponents are associated with the universal
exponent of Flory through the following expressions [29]:

α = (νd − 1)−1, δ = (1 − ν)−1 (10)
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Fig. 5. Normalized histograms of the radius of gyrationRgψ and end-to-end distanceRee. Behav-

ior obtained for the ensemble of random chains generated from N
′ = 1000 in 2D (a), and

N
′ = 1500 in 3Dψ (b). It is observed that a distributions agrees very well with the expression

derived by Lhuillier [29, 30], both, the Rgψ and Reeψ distribution.

Figure 6 shows the graphs of Rg and Ree distribution, adjusted according to the
Fisher-McKenzie-Moore-des-Cloiseaux law [12, 30–32]:

P(R) ∼ Rθexp
(−βRδ

)
(11)

Fig. 6. Normalized histograms of the radius of gyrationRg and end-to-end discanceRee. Behavior

obtained for the ensemble of random chains generated fromN
′ = 1000 in 2D (a), andN

′ = 1500
in 3D (b). It is observed that a distributions agrees very well with the function proposed by
McKenzie and Moore [30] and des Cloizeaux [31, 32], both, the Rg and Ree distribution.

The exponent θ characterizes the shorts-distance intra-chain correlations between
two segments of a long chain.

θ = (γ − 1)/ν (12)
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The total number of a chain conformations is indirectly determined by the exponent
γ . As opposed to ideal chains, where γ = 1, for real chains, γ > 1, i.e. there is a
reduction of the probabilities in the distribution of R for short chains. The chains in this
work were obtained from a random set without fixing the number of steps, unlike the
theoretical distribution of Fisher-McKenzie-Moore-des-Cloiseaux [12, 31], although it
is a different method to generate the chains, the characteristic distances follow the same
distribution.

The value of Flory exponent ν, which describes the size of the linear chain, was
calculated by computing the mean value of the radius of gyration (see Fig. 7). The values
of ν obtained from the simulation, incorporated in the graphs, result closely approximate
the expected theoretical value for the Flory exponent that is ν = 0.75 and ν = 0.60 for
the two and three-dimensional case respectively. The calculation of ν of the behavior of
Rg results in a value closer to the expected theoretical value than that calculated from the
Ree. The Flory exponent was also calculated indirectly from the δ exponent that results
from the distribution of characteristic distances, shown in Figs. 5 and 6. The values of α

and θ exponents were also obtained from these distributions, in indirect and direct ways,
respectively.

Fig. 7. Log-log scale representation of characteristic distances. Top panels, for 2D-chains: (a),
the end-to-end distance (Ree) as a function of the number of steps (N ) with its respective value of
ν = 0.757; and (b), the radius of gyration (Rg) as a function of the number of steps (N ) with its
respective value of ν = 0.743. Bottom panels, for 3D-chains: (c), the end-toend distance (Ree) as
a function of the number of steps (N ) with its respective value of ν = 0.638; and (d), the radius
of gyration (Rg) as a function of the number of steps (N ) with its respective value of ν = 0.582.
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Table 1 shows the values of exponents reported by our simulations. The above results
have shown that although the two behaviors, Ree and Rg , as a function of N fit a power
law, the value of the characteristic exponent of Rg is closer to the theoretical value of
Flory and to the values reported in [12, 33, 34]. Although, both proposed functions, fit
well the distributions (Ree and Rg), the values of the critical exponents obtained for each
function, specifically the delta exponent, are different and correspond to different laws.
The Rg distribution responds better to the law proposed by Lluillier, and the distribution
of Ree, to the Fisher-McKenzie-Moore-des Cloiseaux law.

Table 1. Main exponents calculated directly and indirectly from our simulations. The first and
second rows show the exponents calculated from the behavior of the characteristic distances as a
function of N . The exponents calculated using the distribution of Ree and Rg appear in the next
four rows. The exponents of the third and fourth rowswere obtained using the Lhuillier distribution
for both distributions. For the calculation of the exponents that appear in the last two rows, the
Fisher-McKenzie-Moore-des-Cloiseuax (MMC) distribution was used.

Characteristic distances ν(2D/3D) δ(2D/3D) α(2D/3D) θ

Ree (vs. N) 0.81/0.64 5.26/2.76 1.61/1.09 −
Rg (vs. N) 0.71/0.58 3.45/2.39 2.38/1.34 −
Ree (Lhuillier) 2.15 3.04 0.18 −
Rg (Lhuillier) 0.93 1.59 0.56 −
Ree (MMC) 0.36 1.58 − 2.70

Rg (MMC) 0.47 1.90 − 2.69

Unlike our model, the previous models reported in the literature, simulate the growth
of the chains keeping the N fixed. The parameters, despite being related to a universal
growth exponent (Flory exponent), depend strongly of the system; as a result, obtained
exponents in our simulations differ from those reported. The most important of these
results is the form adopted by the distributions. We studied the distribution for a whole
set of fifty thousand two and three-dimensional chains that are distributed as expected,
with their own exponents and a positive asymmetry.

3.3 Fractal Dimension

The graphs in Fig. 8 show the results obtained regarding the analysis of the fractal
dimension of the two and three-dimensional chains. The histograms reveal that, for
the two-dimensional chains (Fig. 8a), the fractal dimension has a normal (Gaussian)
behavior for the two method used, box-counting (dFBox ) and correlation (dFCorr ). Using
the box-counting method (blue dots), the fractal dimension turned out to be less than
the spatial dimension d and greater than the correlation dimension (red dots) whose
averages were recorded in μBox = 1.698 and μCorr = 1.189. In this way, the inequality
d > dFBox > dFCorr , is valid for our chains, as suggested by fractal theory [22]. Still, for
the two-dimensional case, a peak corresponding to dFCorr is closer to the theoretical value
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of dF2D = 1.33. In the tree-dimensional case (Fig. 8b), the distribution of dFCorr shows
three peaks, in dF1Corr ≈ 1.45, dF2Corr ≈ 1.64 and dF3Corr ≈ 1.86, with dF2Corr being
the most frequent value. In this case, the highest peak in the distribution approach the
theoretical value of dF3D = 1.7. The quantitative results show that the values obtained
from the correlation method are closer to the theoretical ones. On the other hand, the
qualitative results reveal more information about the chains. The existence of three
peaks reveals that three types of three-dimensional chains are formed during the growth
process.

Fig. 8. Frequency distribution of the fractal dimension dF obtained using the methods of box-
counting, dFBox (blue dots), for (a) the two-dimensional case and through the dimension of correla-
tion, dFCorr (red dots), for both (a) two-dimensional and (b) three-dimensional chains. The dashed
black lines indicate the maximums obtained in each distribution, in the two-dimensional case it
corresponds to the average values of the normal distribution (μBox and μCorr). The blue dashed
lines represent the theoretical value of dF which in (a) two-dimensional case is dF2D = 1.33 and,
(b) three-dimensional is dF3D = 1.7. (Color figure online)

Figure 9 show the behavior of fractal dimension as a function of the number of
steps, for 2D and 3D chains. Two-dimensional small chains have a high dFBox dimension
(Fig. 9a), this is because chains with a small number of steps can fill a large part of
the space, which can be interpreted as well-compacted chains. As N increases, it is
observed that the dimension dFBox decreases, and for chains greater than N = 200, it
remains within a region (dashed lines in Fig. 9a) oscillating around dFBox = 1.587.

The dFCorr concerns the distribution of “links” within the chain structure. Figure 9, b
and c, shows how as N grows, the correlation of the chains increases, but above a certain
size (N = 150 for two-dimensional chains and N = 500 for three-dimensional), dFCorr
oscillates around specific average values, dFCorr = 1.287 and dFCorr = 1.590 for 2D and
3 D case respectively. In a “very” large N region, the correlation between chain “links”
decreases uniformly, due to the fact that large chains have a much-stretched structure
compared to smaller chains.
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Fig. 9. Fractal dimension via Box-Counting (dFBox ) (a), and via correlation dimension (dFCorr ) (b
and c) as a function of the number of steps (N ) for two and three-dimensional chains.After reaching
a size of N ≈ 200, the fractal dimension stabilizes, oscillating around the value dF = 1.587, in
2D case. In (b), when the strings reach a size of N ≈ 150 the correlation dimension oscillates
around dF = 1.287. In (c), the dimension oscillates around dF = 1.59 when the strings reach a
size N ≈ 500.

4 Conclusions

In this work, we show an algorithm based on natural self-avoiding random walk in
square and cubic networks with no boundary was used to generate linear chains. The
implementation of this algorithm is simpler and the computational cost is significantly
lower than other approaches generally used to generate random linear chains. Although
our method does not consider all possible configurations for the N size of the chain
the values of the characteristic critical exponent’s obtained by us are similar to those
reported in the literature.

The study of the number of attempts (N
′
) as a function of N , for two and three

dimensions, showed that there are upper limits for N’, above which there is no guarantee
of better efficiency of the algorithm. This resulted in the optimization of the processing
time in the construction of the set of chains. The exponents revealed by the power laws
that govern these systems and the distribution of the characteristic magnitudes provides
a solid basis for the study of linear chains in square and cubic networks.
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The distribution of the characteristic distances for the linear chains obtained from
our simulation shows a reasonable correspondence with that reported in the literature.
Specifically, we prove that although it is possible to fit the two distributions (Rgψ and
Ree) using both Lhuillier’s theory and the law proposed by FisherMcKenzie-Moore-des
Cloiseaux, the obtained values of critical exponents such as ψ , ψ , ψψ show us that
the distribution of Rgψ responds better to the theory of Lhuillier, while in the case of
the distribution of Ree, the best fit is obtained with the Fisher-McKenzie-Moore-des
Cloizeaux function. These results are in full agreement with the literature and reinforce
the validity of the algorithm used when characterizing this type of system.

BothRee andRg resulted in power functions ofN and the values of theFlory exponent,
in both cases, are quite close to the theoretical value, especially the value corresponding
to Rg , showing that this characteristic distance is more appropriate when characterizing
structurally this type of chains. Our model does not distinguish between chains of dif-
ferent sizes, showing that structural factors of the chains are invariant of scale. We also
show that small chains are more correlated and, consequently, less flexible.

The fractal dimension of the two-dimensional chains is normally distributed, showing
that the dimension by Box-counting is greater than the correlation dimension and both,
smaller than the spatial dimension, as shown by the theory. In a three-dimensional case,
the higher peak in the fractal dimension distribution is very close to the theoretical
value. Finally, in very large three-dimensional chains the correlation decreases. This
behavior can be associated with a change in the shape of the chains, which can form
clusters separated by stretched structures. A more detailed analysis of the results and
conclusions can be found in [35].
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Abstract. The construction of integrated circuits involves testing the correct oper-
ation of its internal blocks. For this, a common practice is the integration of func-
tional blocks to stimulate the internal subsystems and extract the responses to
those stimuli. In this article, the design and simulation of a circuit for the extrac-
tion of the response signals of the devices under test in analog and mixed-signal
integrated circuits is presented. The extraction block is a 2-stage 5-bit segmented
A/D converter, operating at a sampling frequency of 10 MHz, implemented in a
0.12 µm technological process, which can be powered with 1.5 Vdc. This pro-
posal offers a reduction in the area consumed, by requiring fewer comparators
than other similar solutions found in the literature.

Keywords: Digital analog converter · Signals · Mixed integrated circuits

1 Introduction

The combination of the growing demand for consumer electronics and the constant
growth in the packaging density of semiconductor devices, is leading to the integration
of more and more functional systems into a single integrated circuit [1]. The result,
among other things, is an increased need for the integration of analog and mixed-mode
components, e.g. analog-digital, RF-analog-digital, and mechanical-analog-digital, into
the same chip or package [17]. Designing such SoC (Systems on Chip) is undoubtedly a
challenge, since it links abstractionmanagement at the system levelwhile simultaneously
dealing with the physical effects of transistors and the parasitic effects associated with
the circuit [2]. Similarly, the next generation of SoC testing represents a real challenge,
especiallywhen cost and time tomarket are usually key requirements. Suchmixed-signal
integrated circuits contain very complex signal paths and functional specifications, and
the test programs developed may not be very viable, as they would be significantly slow
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in characterizing and debugging the device, which would greatly increase the time to
market [2, 28]. The difficulty is accentuated by another aspect of system-level integration,
called third- party functional block integration. In order to compete with the complexity
of design, themanufacturers of the final system are forced to rely on pre-designed blocks,
and carry out the integration of these as part of a larger and more complex system. These
functional blocks are obtained from virtual libraries that use software to describe the
block as part of the system [3, 7].

In the digital domain, the test mechanisms and techniques are capable of testing
most devices in this domain, and the test information can be transported seamlessly
throughout the SoC [8–11]. The results can also be extracted in the same way. For this
reason, it seems possible to derive a systematic procedure by which the integrator of
the final system can access the virtual functional blocks that make up the chip. The
problem in the analog domain is how complicated it is to extract test signals over long
interconnect lines inside a chip. Rapid degradation of the signals is very likely due to
noise and distortion introduced by the parasitic behaviour of some elements within the
integrated circuit [4–6].

One of the problems to which an alternative solution is sought is the case of ICs
containing analogue functional blocks, and the aim is to test the functioning of these
blocks. Test signals from such blocks must travel inside the chip and then be extracted.
As is well known, analogue signals are very sensitive to interference, are not immune to
noise, and degrade more easily than digital signals [9, 16, 17]. Therefore, the tests on this
type of block are not very reliable, since both the input and output signals are disturbed
by noise and do not reveal the true behaviour of the block. This problem is compounded
by the fact that, at high frequencies, the microband or interconnection lines of each of
the elements that make up the system begin to behave like transmission lines, and the
following manifestations appear: energy reflection, attenuation, impedance decoupling
both at the source and at the load relative to the interconnection line [9, 17]. As a result,
manufacturers must perform impedance couplings, source and load balancing, among
many other procedures to solve the above mentioned problems. These solutions require
design times that manufacturers are not willing to take [2].

Due to the above, one objective of these test techniques is the integration of this block
into the chip to be tested, which would pose a problem due to the difficulty associated
with the transport of analog signals on an integrated circuit, in particular the fact that
these types of signals are very sensitive to noise and the tests could be affected and
not show the results that show the real behaviour of the circuit [12–15, 32]. Methods
based on the inclusion of data converters, such as D/A and A/D converters, have been
presented in the industry as alternatives [4, 5, 27]. The first one for obtaining analog
waveforms from digital words, and the second one for extracting in digital format the
output signals of the blocks under test, CUT (Core Under Test). For the above, it is clear
that the use of D/A converters would be prohibitive, due to the excessive use of area
in the silicon tablet, considering that the latter is a critical requirement in the design
of VLSI integrated circuits [1]. The aforementioned techniques are static, consisting of
predesigned fixed blocks. This has evolved to dynamic solutions based on adaptive [29]
and intelligent techniques [30, 31].
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The resolution of the waveform digitizer shall be 5 bits and the sampling frequency
shall be 10 MHz. The technology for which the circuit proposed here was designed is a
0.12 µm CMOS lithographic process. This process is characterized by having a power
level of between 1 V and 1.5 V, and it is assumed that the integrated circuits where
this test block is assembled can provide them, since they turn out to be typical of this
technology [26]. On the other hand, the dual levels of these voltages are required, these
are −1 V and −1.5 V. As the circuit designed in this project is to be used in mixed
integrated circuit tests, it is to be assumed that they are also provided by the chip. Other
features that characterize this technology are its threshold voltage, V_t, which is around
0.3 V, and an oxide layer thickness of 4 nm.

2 Analogical – Digital Conversion Process

Signal A/D conversion is done in 2 stages, the first is uniform time sampling and the
second is amplitude quantization. The samples x[n], evenly spaced time intervals Ts, of
the continuous time signal x(t), can be represented by x[n] = x (nTs). In the frequency
domain, the sampling process produces periodically repeated versions of the original
signal spectrum placed in the integer multiples of the sampling frequency fs = 1/Ts.
The above is evidenced in Eq. (1), where Xs (f) represents the spectrum of the sampled
signal, and X (f) is the spectrum of the original signal in continuous time [18].

Xs(f ) = 1

Ts

∑∞
k=−∞ X (f − kfs) (1)

This process is shown in Fig. 1, for the case where fs = 2W, where W is the highest
frequency component of the original signal. In general, the continuous-time signal can
be reconstructed from its samples, if repeated versions of the spectrum do not overlap.
To achieve the above, the original signal should be band-limited to half the sampling
frequency [19].

Fig. 1. Shape of the power spectrum of a sampled signal.
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The overlap between repeated versions of the signal spectrum is known as aliasing,
the aliasing does not allow the reconstruction of the signal from its samples. An anti-
aliasingfilter is regularly used to ensure this requirement [20]. The anti-aliasingfilter is an
analog low-pass filter that precedes the sampling circuit. The case where the sampling
frequency is fs = 2W, is known as Nyquist rate sampling, and is considered critical
because that the anti-aliasing filtermust have a frequency responsewith a small transition
band [19].

The sampling process is an invertible operation because there is no loss of informa-
tion. Note that although Fig. 1 shows the sampling process for a baseband signal, Eq.
(1) describes the sampled spectrum for any signal spectrum centered on some frequency
component other than 0, fc. Assuming the signal has a bandwidth W, the spectrum of
the original signal comprises the range [f_c − W/2, f_c + W/2]. To avoid aliasing some
authors suggest sampling at rates f_s ≥ 2W [19].

Once the sampling is done, a process called quantization follows. This process
involves approximating the values of the samples to a finite set of values, using a close-
ness criterion. In this stage the dynamic range of the input signal is divided into equal
parts, for uniform quantization. A representative value is assigned to each sector. Sam-
ples are assigned one of these values, depending on the sector where it is located. The
typical transfer characteristics of A/D Quantizers or Converters are shown in Fig. 2 [19].

Quantization is a non-reversible process. Quantified output amplitudes are usually
represented by digital code words with a finite number of bits. For example, for a 1-bit
A/D converter as shown in Fig. 2(c), the output values V and −V can be mapped to
the digital codes “1” and “0.” Another way to visualize this is by using the digital code
words instead of the output values on the axis and in Fig. 2. Quantified output values
can be considered as the ideal A/D converter output, whose output corresponds to a digit
code word [19].

An A/D converter or quantifier with Q output levels is said to have a resolution of N
bits if N = �log�_2 (Q). It should be made clear from Fig. 2 that for an A/D quantifier
or converter of Q levels of quantization, only input values separated by at least a distance
� = 2V/(Q − 1) can be distinguished or designated for different output levels. N bits
are required to encode the corresponding Q code words with each output level.

Fig. 2. Transfer characteristics of typical quantifiers.

The transfer curves of the quantifiers in Figs. 2(a) and (b), which are symmetrical,
will now be exalted. The half-increase quantifiers do not have an output level of 0 for an
input value of 0, generating a DC offset undesirable, as seen in Fig. 2(a). The half-step
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quantifier, Fig. 2(b), needs an even number of output levels to produce a completely
symmetrical transfer curve. This is an advantage because the number of output levels
could be a power of 2 and be encoded exactly with N = log2 (Q) bits. On the other hand,
the half-step quantifier needs an odd number of output levels, making Q not a power
of two and therefore no efficient coding is performed. For this case, the number of bits
needed could be N = log2 (Q − 1) + 1, where Q − 1 is taken as a power of 2.

If the number of output levels of the half-step quantifiers are forced to be powers of
2 to use only Q − 1 levels, there will be a large amplitude distortion. The distortion, of
course, could be negligible when the number of output levels is large.

MostA/D converters provide trade-offs between signal bandwidth, output resolution,
and complexity of digital and analog hardware. The qualitative compromises between
resolution and band width of some of these techniques are shown in Fig. 3.

Fig. 3. Commitment resolution vs. bandwidth.

Thequantifier used in anyA/Dconverter is a non-linear system,whichmakes analysis
difficult. Tomake the analysis manageable, the quantifier is usually made a linear system
and modeled through a noise source, e[n], added to the signal x[n], to produce the
quantified output signal y[n]:

y[n] = e[n] + x[n] (2)

The block diagram of the model of an A/D converter system displaying the sampling
process and the quantifier is shown in Fig. 4. In addition, to simplify the noise analysis
of the quantifier.

Fig. 4. Block diagram and model of a conventional A/D converter.
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3 Convertering Circuits A/D

These are the electronic circuits responsible for carrying out the quantification of the
samples obtained from the analogue signal. There are different types of A/D converters,
the usefulness of which will depend on the characteristics of the conversion applications
[17, 21].

3.1 Flash A/D Converters

The architecture of this converter consists of a string of comparators, which have their
inputs connected to a resistance ladder, and their output is fed into a digital encoder
circuit, which gives a binary value representative of the highest level of comparison
exceeded. It is possible to minimise the quantification error by selecting the values of
the resistances at the ends of the chain in an appropriate way [21].

3.2 Successive Approaches

There they are circuits that use as one of their constitutive blocks a D/A converter in
a feedback architecture. They deliver an output of n bits in n clock cycles, making
successive comparisons of the input with the output of a D/A converter, and dividing the
range in half in each cycle, this is achieved by varying from bit to bit, from the most to
the least significant [22].

3.3 Converters to Ramp and Double Ramp

The single ramp structure is prone to errors caused by variations in components, particu-
larly the capacitor, and to deviations in the frequency of the oscillating circuit. Therefore,
double ramp architectures are much more used, where such errors are compensated by
means of a double integration. In the first ramp, the capacitor voltage starts at zero and is
charged for a fixed time to a current that depends on the input voltage. Then, in a second
phase, it is discharged at constant current for a time which is measured by a meter [23].

4 Proposed Signal Digitalizer

The A/D converter, two-stage ADC, has a conventional Flash A/D converter at its heart.
The latter has as constitutive circuits the operational amplifier and the comparator, as
well as a convenient logic. A diagram of how the digitizer block is structured can be
seen in Fig. 5.

Fig. 5. Block diagram of the signal digitizer
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4.1 ADC Block

Alternatives were presented only in the A/D conversion section. Three alternatives were
considered, namely. The first was an A/D converter of successive approximations, or
SAR, but it was very slow, consuming as many clock pulses as bits of resolution it had.
In the case of 5 bits, it would be 5 clock strokes. It was discarded for speed reasons. The
second option was a conventional Flash A/D converter, but its area consumption turned
out to be excessive and therefore prohibitive for this application. The last consideration,
which was the one chosen, is the 2-stage Flash A/D converter. Consumption of small
area, similar to that of one of successive approaches, but with the speed of a conventional
Flash [24] (Fig. 6).

1.5V
+V

Fig. 6. 2-bit Flash converter.

In this design it has been assumed that the dynamic range of the signal is between
1.5 V and 0 V, in case of a change in the signal range, only the voltage in the resistive
network generating the references should be changed. In this project, a standard 1 k�
resistor type has been used, to facilitate manufacturing in an integrated circuit. The
function of this first block is to divide the dynamic range of the signal into four equal
sectors, and the 2-bit code on the output will indicate which of the four regions the input
sample is in. Table 1 shows this operation.

Table 1. Divide the 2-bit A/D converter into four sectors.

Voltage of analogue in. A4 A3 Area

0 V < Vin < 0.375 V 0 0 1

0.375 V < Vin < 0.75 V 0 1 2

0.75 V < Vin < 1.125 V 1 0 3

1.125 V < Vin < 1.5 V 1 1 4
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This way you get the 2 most significant bits. The comparator used in this section is
based on an operational amplifier presented in a previous article [25].

Once the first two bits have been obtained, the sample is taken and pre-processed
before obtaining the remaining three bits. The first is to use a D/A converter to transform
the two bits already obtained into an analog voltage, a standard configuration for this
block called a ladder network is used, and shown in Fig. 7.

1.5V
+V

Fig. 7. 2-bit D/A converter.

There is an equation that governs the operation of this circuit, and that was the basis
for the elaboration of the design, this is shown below

Vo = −Vref · R5
R7

(21 · B1 + 20 · B0) (3)

In this equation Vref is the supply voltage, which for this case is 1.5 V, R5 is the feedback
resistor, which for this application is 500 �, and R7 is the resistor corresponding to the
most significant bit, which in the circuit used here has a value of 1 k�. The switches
S1 and S2 are controlled by the 2 bits already obtained previously, and corresponding
to A0 and A1 respectively. The operation of the circuit is shown in Table 2.

Table 2. Input Output ratio of the 2-bit D/A converter.

A1 A0 Output voltage (V) Area

0 0 0 1

0 1 −0.375 2

1 0 −0.75 3

1 1 −1.125 4
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From this table and from Eq. (3) we can deduce the following conclusions: when
A0 is active, 0.375 V must be added, and when A1 is active, 0.75 V must be added,
therefore it can be concluded that

Vref · R5
R7

= 0.375 V (9.18)

If you have to Vref = 1.5 V, R7 = 1 k�, then we get that R5 is 500 �, just like we
said, getting the circuit in Fig. 7.

The next step is to subtract the analog value obtained previously from the sample
value, and to the result of this subtraction apply a conventional 3-bit A/D converter
type Flash, and in this way you get the 3 least significant bits, and generally a 5-bit
code. Because the analogue levels at the output of the D/A converter are inverted, not a
subtractor circuit is used but a summator. The latter process is equivalent to dividing the
four zones described above into 8 sub-zones each, and determining the location of the
sample related to these sub-zones. The sample summing circuit in Fig. 8.

R9
1kD/A

R8
1kMuestra

Resta
R11
1k

R10
1k

Fig. 8. Remaining circuit.

For this block, as well as for the D/A converter, the operational amplifier designed
and presented in a previous article is used [25].

The next step, the one that proceeds to the subtraction, is a 3-bit Flash converter. The
converter implemented here is divided into two parts, the first is a comparison circuit,
which consists of a series of 7 comparators and a reference generator circuit and can
be seen in Fig. 9. The second part is a coding block, which takes the thermometer-type
outputs of the comparators and transforms them into a 3-bit binary code, its architecture
can be seen in Fig. 10.

4.2 LS Block

It is the first part of the signal digitizer, and is responsible for adding an offset level to
the signal coming from the block under test. The aim of this is to ensure that there are
no changes in polarity in the signal that is to be digitized, and thus to make the design
of the A/D converter more flexible, which will be described later. A summing block was
used, which is based on the voltage summing configuration of the operational amplifier.
The level slider scheme is shown in Fig. 10. As can be seen in the figure, the added
offset voltage is 0.75 V, assuming that the output signal of the block under test does
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0.375V
+V

Input

Fig. 9. 3-bit Flash A/D converter.

Fig. 10. 3-bit thermometer output encoder.

not exceed 1 V peak to peak. This value may change depending on the application in
question. Resistances R3 and R4 must be of the same value for the following ratio to be
met:

Vo =
(
1 + R7

R1

)(
Vi + 0.75V

2

)

Immediately you can see that R7 must be equal to R1, if you want the voltage at the
output to be the sum of the input voltages.
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4.3 S/H Block

The sam pling frequency was 10 MHz as specified, but for technical reasons it is not
possible to sample at this frequency, therefore it was decided to lower the rate to 5 MHz,
once seen the results will be concluded because such a change had to be made. This
implementation offers a compact and practical solution, especially contributing signifi-
cantly to space savings, making it ideal for integrated applications. This circuit has only
one drawback, and it is the fact that the value of the sample changes during the whole
high level of the clock pulse, a fact that was thought not to represent problems in this
project, because as a Flash converter is used, the codes are generated almost instantly,
and the code corresponding to the last value that I took the sample during the cycle will
be captured. clock. However, the latter is not true, as it takes the A/D converter a while to
stabilize the output code. When the simulations and tests were performed, it was found
that the use of this type of single circuit was not suitable for the purposes of the work.
This could be solved with the inclusion of an isolation circuit, in this case, it was an
operational amplifier connected as a buffer or follower. The result is the circuit shown
in Fig. 11. These above-mentioned situations will be further clarified in the chapter on
tests and results.

Vdd

Va

R3
1k

R8
1k

R1
1k

R2
1k

R7
2k

Out

R4
1k

Fig. 11. Level shifter circuit.

Fig. 12. Sampling and maintenance circuit.
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5 Results Overalled

The operation of the signal digitizer is summarized in Table 3, which shows that each
range of the input signal corresponds to a binary code. So, what we should expect is that
for every sample taken within a given range, we get the corresponding binary code at
the encoder output. As can be seen, the static tests of the converter were satisfactory, as
all codes were correctly assigned to the corresponding sample. But it should be noted
that the simulations showed that it took the converter some time to find the correct
code corresponding to the input sample. This time was called the set-up time, and was
measured for each test. See Table 4. The ramp sign is shown in Fig. 12. The output codes
are shown in Fig. 13. In this last figure it is possible to notice that there is a behavior in
time of the countdown type, which corresponds to a ramp type input, which increases
its value gradually. The figure shows the codes that are loaded into the log over time.

Table 3. Operation summary of the 5-bit A/D converter.

Voltage ranges Binary
code

Area

0 V–0.047 V 00000 1

0.047 V–0.093 V 00001 2

0.093 V–0.14 V 00010 3

0.14 V–0.187 V 00011 4

0.187 V–0.234 V 00100 5

0.234 V–0.281 V 00101 6

0.281 V–0.328 V 00110 7

0.328 V–0.375 V 00111 8

0.375 V–0.422 V 01000 9

0.422 V–0.469 V 01001 10

0.469 V–0.516 V 01010 11

0.516 V–0.563 V 01011 12

0.563 V–0.61 V 01100 13

0.61 V–0.657 V 01101 14

0.657 V–0.704 V 01110 15

0.704 V–0.751 V 01111 16

0.751 V–0.798 V 10000 17

0.798 V–0.845 V 10001 18

0.845 V–0.892 V 10010 19

0.892 V–0.939 V 10011 20

(continued)
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Table 3. (continued)

Voltage ranges Binary
code

Area

0.939 V–0.986 V 10100 21

0.986 V–1.033 V 10101 22

1.033 V–1.08 V 10110 23

1.08 V–1.127 V 10111 24

1.127 V–1.174 V 11000 25

1.174 V–1.221 V 11001 26

1.221 V–1.268 V 11010 27

1.268 V–1.315 V 11011 28

1.315 V–1.362 V 11100 29

1.362 V–1.409 V 11101 30

1.409 V–1.456 V 11110 31

1.456 V–1.5 V 11111 32

Table 4. Results of static tests of the A/D converter.

Test
sample

Code
obtained

Binary
code

Status Area Error
(V)

Error
(%)

Time of
establishment
(ns)

1.48 V 11111 11111 Correct 32 0 0 10

1.43 V 11110 11110 Correct 31 0 0 99

0.54 V 01011 01011 Correct 12 0 0 77.55

0.48 V 01010 01010 Correct 11 0 0 62.97

A final dynamic test was carried out, which consisted of the input of a sinusoidal
wave through the sampling circuit. The input wave had 0.5V peak, an offset level of 0.75,
and a frequency of 500 kHz. All sample values were measured at the points where the
signal was captured by the converter output log, and it was checked whether the assigned
codes were the Corrects. The simulation time used was 5 µs. The results obtained are
shown in Figs. 14 and 15, as well as in Table 5 (Fig. 16).
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Fig. 13. Signal Entrance Ramp.

Fig. 14. Output of the A/D converter at a ramp input after being loaded.

Fig. 15. Output signal from the sampling circuit.
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Table 5. Summary of samples taken during the dynamic test of the A/D converter.

Sampling time
(ns)

Value of the
samples (V)

Code obtained Binary code Status Error (V) Error (%)

197 0.89 10011 10010 Error 0.046 3.12

1395 0.33 00111 00111 Correct 0 0

1600 0.24 00101 00101 Correct 0 0

Fig. 16. Waveforms of the output bits of the A/D converter before a sinusoidal input.

Correct performance of theA/Dconverter is remarkable, and one additional comment
can be added, the only sample that gave incorrect results was 0.89 V, but there is a reason
for this behavior. If we look at Table 3, we see that the code for zone 19, which is where
the 0.89 V sample should be, is 10 010, and the limits of this zone are 0.845 V–0.892 V.
Zone 20, which code is 10 011 and is the one assigned to the sample under study, has
limits 0.892 V–0.939 V. These errors can occur for several reasons. The first is that the
determined limits present some problem and are not in agreement with the reality of the
circuit. The other possibility is a problem of numerical approxi mation of the software
since the difference separating the sample from one region to another is 0.002, which
could result in the error found. If these observations are true, the signal digitizer can be
said to have achieved the objective.

6 Conclusions

The signal digitizer was made under the concept of a 2-stage Flash converter. The maxi-
mum resolution achievedwithout significantly increasing the complexity of the hardware
was 5 bits. The time of establishment forced a decrease in the sampling frequency, but,
even so, the captured signals had an acceptable quality. The use of this architecture led
to a noticeable decrease in the use of comparison devices, compared to the conven-
tional Flash conversion technique, as well as an uncomplex operation, which simplifies
the design, compared to SAR conversion techniques. This approach is similar to that
presented in [32]. In that paper, a signal extraction block is presented using an 8-bit
segmented A/D converter with 2 flash-type stages of 4 bits each. Also, it has a 4-bit
D/A converter to perform segmentation. The sampling frequency of that converter is
1.7 MHz, unlike the one presented in this paper, which is 10 MHz. The technological
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process of that approximation is 0.5 µm, which establishes its supply voltage at 4 V,
while the one presented here has a 0.12 µm process, which reduced the supply voltage
to 1.5 V. This reduced voltage limited the range dynamic of the signal to extract, and
allowing to use fewer bits.
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1 Introduction

Studies on modeling of saturated porous media began in the middle of the last
century in the works of Biot [1,2], and then Biot’s model of the propagation
of elastic waves in porous media and some of its modifications were used in
the study of many scientific problems and seismic applications (see, for exam-
ple [3,4] and references therein). Biot-type models are limited to considering
small elastic deformations, while studying modern industrial problems requires
new advanced models that take into account finite deformations and complex
rheology of saturating fluids.

Multiphase flow approach can be successfully used to design new models of
saturated porous media. In papers by Wilmanski [5,6] it is shown that Biot’s
theory can be interpreted within a two-phase liquid-solid mixture model with
some degree of accuracy. In the present paper we formulate a new computational
model for compressible two-phase flow in deformed porous medium and its appli-
cation to simulations of small amplitude wavefields. The derivation of the full
nonlinear model generalizes the model of porous medium saturated with single
compressible fluid described in [7,8], which is in turn generalizes the so-called
unified model of continuum [9,10] and is based on the theory of the Symmetric
Hyperbolic Thermodynamically Compatible (SHTC) systems. Two mechanisms
of phase interaction are taken into account: phase pressures relaxation to the
common value and interfacial friction. The governing equations of the model are
hyperbolic, and their solutions satisfy the laws of irreversible thermodynamics.

On the basis of the formulated nonlinear equations under assumption of
instantaneous phase pressures relaxation, a model for small amplitude wave
propagation in a stationary unstressed state is derived. It turns out that two
compression waves are presented in the model, fast and slow, as in the theory of
a porous medium saturated with a single fluid. The solution of a series of test
problems in which the saturating fluid is a mixture of liquid and gas demon-
strates the strong dependence of the waves behavior on the ratio of the volume
fractions of fluids.

The presented model and its generalization for the case of arbitrary number
of saturating fluids can be used to numerical modeling of compressible fluids
flow in deformed porous media at different scales from slow filtration-type to
high-rate deformations flows.

2 Three-Phase Thermodynamically Compatible Model
for Compressible Two-Phase Flow in Deformed Porous
Medium

2.1 Master System for Derivation of the Model

The derivation of the model is based on the synthesis of a unified continuum
model [9] and a compressible multiphase flow model [11], as a result of which
a three-phase model of a mixture of two fluid phases and a solid phase can be
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obtained. The presented in this paper model generalizes the two-phase SHTC
solid-fluid model for fluid saturated porous medium presented in [7,8] and can be
designed for an arbitrary number of fluid mixture constituents in a similar way.
Let us consider a three-phase continuum with phase volume fractions α1, α2, α3

satisfying the saturation constraint α1 + α2 + α3 = 1. Further we assume that
phases with number 1, 2 are fluids and the solid phase is numbered as 3. Thus,
the porosity is defined as φ = α1 + α2 = 1 − α3. The generalization of the two-
phase solid-fluid flow master system presented in [7] for the three-phase case
reads as

∂ρvi
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Here, ρ = α1ρ1 + α2ρ2 + α3ρ3 is the total density of the mixture, ρ1, ρ2, ρ3
are the mass densities of fluids and solid, ca = αaρa/ρ, (a = 1, 2) are mass
fractions of fluids (c3 = 1 − c1 − c2 = α3ρ3/ρ is the solid phase mass fraction),
vi = c1v

i
1 + c2v

i
2 + c3v

i
3 is the mixture velocity, vi

1, v
i
2 are velocities of fluids

and vi
3 is the solid phase velocities, wk

a = vi
a − vi

3, a = 1, 2 are the relative
velocity of motion of fluids phase with respect to solid phase, s is the entropy of
the mixture, Aik is the distortion matrix, characterizing the elastic deformation
of the mixture. Summation over repeated tensor indices i, j, k, . . . = 1, 2, 3 is
implied. No summation over repeated phase indices a, b, c = 1, 2, 3 is implied
unless it is state otherwise via the summation symbol.

The first and second equations of system (1) are the total momentum and
total mass conservation laws for the mixture. The third equation controls the
evolution of the mixture distortion matrix (in the case of elastic deformation of a
pure solid, this is the inverse deformation gradient). The fourth equation is mass
conservation law for fluids. The fifth one is the equation for the velocity of the
movement of each fluid relative to the solid phase. The six equation governs the
fluid volume fractions and the last one is the mixture entropy balance law. The
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source term in the latter equation provides the mixture entropy growing as the
second law of thermodynamics requires due to the special choice of source terms
in (1) for dissipative processes. The dissipative source terms are defined by the
thermodynamic forces computed from the given generalized energy E and they
are presented below.

To close equations (1) one needs to define a generalized energy E as a function
of state variables ρ,Aik, c1, c2, α1, α2, w

k
1 , wk

2 , s. Then, thermodynamic forces are
computed via derivatives Eρ, EAkj

, Ewk
, Ec1 , Es as

Φa = ρ

2∑
b=1

φabEαb
, Λk

a =
2∑

b=1

λabEwk
b
, Ψik =

1
θ
EAik

, a = 1, 2. (2)

Here, Φa is responsible for the phase pressures relaxation to a common value, Λk
a

simulates the interfacial friction between phases and Ψik is the rate of inelastic
deformation of the entire mixture. The entropy production reads as

Q =
ρ

Es

2∑
a=1

2∑
b=1

φabEαa
Eαb

+
ρ

Es

2∑
a=1

2∑
b=1

λabEwk
a
Ewk

b
+

ρ

θEs
EAik

EAik
≥ 0, (3)

that means that the second law of thermodynamics is satisfied if matrices λab

and φab are positive definite.
Pressure p, shear stress tensor σij and temperature T are also computed via

generalized energy as:

p = ρ2Eρ, σij = −ρAkiEAkj
, T = Es. (4)

The solutions of system (1) also satisfy the first law of thermodynamics –
the energy conservation law, which reads as

∂ρ(E + vivi/2)
∂t

+
∂(ρvk(E + vivi/2) + Πk)

∂xk
= 0, (5)

where Πk = vkp − viσik +
2∑

a=1
ρvlwl

aEwk
a

+
2∑

a=1
ρEcaEwk

a
is the energy flux.

Assume that kinetic coefficients satisfy Onzager’s principle, that means that
matrices φab, λab are symmetric and can be a functions of state variables. Param-
eter θ characterizes the rate of inelastic deformation of the mixture and can also
be a function of state variables.

The presented equations (1) by construction belong to the class of SHTC
systems, that means that they satisfy thermodynamic laws (as we just noted
above) and can be transformed into a symmetric form, which is hyperbolic in
the sense of Friedrichs, if the generalized energy is a convex function.

For our goals we define the generalized energy E as a sum of the kinematic
energy of the relative motion E1, the energy of volumetric deformation E2, and
the energy of shear deformation E3:

E = E1(c1, c2, w1, w2) + E2(α1, α2, c1, c2, ρ, s) + E3(c1, c2, ρ, s, A). (6)
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The kinematic energy of relative motion is defined as

E1 =
1
2

2∑
a=1

cawi
awi

a − 1
2
(

2∑
a=1

cawi
a)2. (7)

Note that this choice is unique and caused by the fact that with the use of
definition of the mixture and relative velocities one can obtain the following
identity

ρ

(
vivi

2
+ E1

)
= α1ρ1

vi
1v

i
1

2
+ α2ρ2

vi
2v

i
2

2
+ α3ρ3

vi
3v

i
3

2
, (8)

and this is exactly the total kinetic energy of the mixture. The energy of volu-
metric deformation is supposed to be additive:

ρE2(α1, α2, c1, c2, ρ, s) = α1ρ1e1(ρ1, s) + α2ρ2e2(ρ2, s) + α3ρ3e3(ρ3, s), (9)

with ea(ρa, s), a = 1, 2, 3 being the phase internal energies. The latter is equiv-
alent to

E2(α1, α2, c1, c2, ρ, s) = c1e1

(
ρc1
α1

, s

)
+ c2e2

(
ρc2
α2

, s

)
+ c3e3

(
ρc3
α3

, s

)
. (10)

The shear energy E3 depends on the distortion of the entire mixture and is
defined as

E3 =
1
8
c2s,M

(
tr(g2) − 3

)
, (11)

where cs,M is the shear sound velocity of the mixture which is determined below,
and g is the normalized Finger (metric) strain tensor: g = G/(detG)1/3, G =
ATA.

The shear velocity of the mixture should depend on the phase ratio and we
define it by the simple mixture rule

c2s,M = c1c
2
s,1 + c2c

2
s,2 + c3c

2
s,3, (12)

where cs,a, a = 1, 2, 3 are phase shear sound velocities connected with phase
shear moduli μa by relation c2s,a = μa/ρa. The fluid shear sound velocities can
be finite (non-zero), if we consider the viscous hyperbolic model for fluid as it
is done in [7]. In this paper, the influence of the viscosity of saturating fluids on
the flow is not taken into account, and we assume that the viscosity affects only
the interfacial friction. That is why we take the velocities of shear sound waves
of both fluids zero and the mixture shear sound velocity reads as

c2s,M = c3c
2
s,3 = (1 − c1 − c2)c2s,3. (13)

Using the definition of the generalized energy given above and relationships
between mixture and phase parameters, we can compute all thermodynamic
functions Eα, Eρ, EAkj

, Ewk
a
, Eca , p = ρ2Eρ, σij = −ρAkiEAkj

, T = Es:
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Eαa
= p3−pa

ρ (a = 1, 2), p = ρ2Eρ = α1p1 + α2p2 + α3p3,

∂E
∂A = c2s,M

2 A−T
(
g2 − tr(g2)

3 I
)

, σij = −ρc2s,M
2

(
gikgkj − 1

3gmngnmδij

)
,

Ewi
a

= cawi
a − ca(c1wi

1 + c2w
i
2) = −ca(vi − vi

a), (14)

Eca = ea + pa

ρa
− e3 − p3

ρ3
− c2s,3

c2s,M
E3 + 1

2wi
a(wi

a − c1w
i
1 − c2w

i
2), (a = 1, 2),

Es = T = c1
∂e1
∂s + c2

∂e2
∂s + c3

∂e3
∂s .

For the closure of the model it is also necessary to define coefficients in the
source terms Φa, Λk

a, Ψik. The choice of these coefficients may depend on the
types of saturating fluids and solid skeleton.

The presented above PDE system along with the closure relations can be used
for numerical modeling of compressible two-phase mixture flow in the deformed
porous medium in different regimes of flow, from the slow-filtration type flow
to high-rate deformation of saturated porous medium. Int the next section we
derive the simplified version of the presented model applicable to wavefields
simulation.

3 Small Amplitude Wave Propagation in the Porous
Medium Saturated by Two-Fluid Mixture

The derivation of the governing PDE system for the small amplitude wave prop-
agation in an immovable medium can be done in a standard linearization proce-
dure, as it is described in [7] for the simpler model of the elastic porous medium
saturated with a single fluid. First of all, we assume that the temperature varia-
tions in the considered processes are small and, thus, the entropy can be excluded
from the set of state variables. This means that the entropy balance law can also
be neglected.

Consider an unstressed medium and denote the state variables of this medium
by the symbol “0”. Assume that the initial value of the fluid volume fractions α0

1,
α0
2 and solid volume fraction α0

3 (α0
1+α0

2+α0
3 = 1) are known. The immovability

of the medium means that phase velocities are equal to zero vi
10 = 0, vi

20 =
0, vi

30 = 0. In the unstressed state, the pressure and shear stress of the mixture
are also equal to zero, that means that p01 = p02 = p03 = p0 = 0, σ0

ik = 0. This
unstressed state corresponds to reference phase density values ρ10, ρ20, ρ30 and
to the distortion A0

ij = δij .
We assume that the phase pressure relaxation is instantaneous due to

small pore scale. This means that we should replace in the model the evo-
lution equations for the phase volume fractions with the algebraic equations
p1 = p2 = p2 = p. Then we replace the small variations of distortion by the
small deformation tensor and after linearization of stress-strain relations we
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arrive to Hook’s law connecting shear stress and shear strain. Details of this
transformation can be found in [7]. As a result, denoting small variations of the
velocity of the mixture V i, phase relative velocities W i

1, W i
2, pressure P and

shear stress tensor Σik, we arrive to the following system for small amplitude
wave propagation in a porous medium saturated with two -fluid compressible
mixture

ρ0
∂V i

∂t
+

∂P

∂xi
− ∂Σik

∂xk
= 0, (15a)

∂W i
1

∂t
+

(
1
ρ01

− 1
ρ03

)
∂P

∂xi
= −Λi

1 = −λ11c
0
1(V

i − V i
1 ) − λ12c

0
2(V

i − V i
2 ), (15b)

∂W i
2

∂t
+

(
1
ρ02

− 1
ρ03

)
∂P

∂xi
= −Λi

2 = −λ21c
0
1(V

i − V i
1 ) − λ22c

0
2(V

i − V i
2 ), (15c)

∂P

∂t
+ K

∂V k

∂xk
+ K ′

1

∂W k
1

∂xk
+ K ′

2

∂W k
2

∂xk
= 0, (15d)

∂Σik

∂t
− μ

((
∂V i

∂xk
+

∂V k

∂xi

)
− 2

3
δik

(
∂V 1

∂x1
+

∂V 2

∂x2
+

∂V 3

∂x3

))
= −Σik

τ
, (15e)

Here, c0a = α0
aρ0a/ρ0, (a = 1, 2), ρ0 = α0

1ρ
0
1 + α0

2ρ
0
2 + α0

3ρ
0
3, K =(

α0
1

K1
+ α0

2
K2

+ α0
3

K3

)−1

is the bulk modulus of the mixture and K ′
a = (α0

a − c0a)K,

a = 1, 2. The friction source terms Λi
a can be rewritten in terms of W i

a as

Λi
1 = λ′

11W
i
1 + λ′

12W
i
2, Λi

2 = λ′
21W

i
1 + λ′

22W
i
2, (16a)

(
λ′
11 λ′

12

λ′
21 λ′

22

)
=

(
λ11 λ12

λ21 λ22

)(−(1 − c01)c
0
1 c01c

0
2

c01c
0
2 −(1 − c02)c

0
2

)
. (16b)

In the subsequent analysis of wave propagation and numerical examples we
assume that both fluids are ideal c2s,1 = c2s,2 = 0 and solid skeleton is pure elastic.
Therefore we take τ = ∞ and μ = ρc2s,M = ρc03c

2
s,3 = α0

3μ3, where μ, μ3 are the
shear moduli of the mixture and of the solid phase.

4 Dispersion Relations

In this section we study the dependence of one-dimensional longitudinal waves
on their frequency. The dispersion relation k(ω) for the linear equations (15) can
be computed exactly in the same way as in our previous work [7]. Here, k is the
complex wavenumber and ω is the real angular frequency. Figure 1 shows phase
velocities of the fast Vfast(ω) and slow Vslow(ω) compressional waves as a function
of angular frequency ω = 2πf (f is the standard frequency) for the porosity
φ = 0.3 = 1 − α0

3 and several values of the volume fraction of gaseous phase:
α0
2 = 10−2, 10−3, 10−4, 10−5, and 0. To plot this figure, we set λ′

12 = λ′
21 = 0

and took λ′
11 = 103 ∼ η−1

water and λ′
22 = 54 · 103 ∼ η−1

air, where ηwater and ηair

are the water and air viscosities. To plot all curves in a single plot, the phase
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velocities were normalized by the characteristic velocities (eigenvalues of the left
hand-side of simplified one-dimensional version of (15)) which are given by

C2
fast,slow =

K + 4
3μ + Z ±

√
− 16

3 μZ +
(
K + 4

3μ + Z
)2

2ρ
(17a)

Z = ρ (R1K
′
1 + R2K

′
2) , Ra =

1
ρ0a

− 1
ρ03

, a = 1, 2. (17b)

and are equal to Cfast = 4039 m/s and Cslow = 331 m/s for α0
2 = 10−2, Cfast =

4037 m/s and Cslow = 342.3 m/s for α0
2 = 10−3, Cfast = 4096 m/s and Cslow =

422.8 m/s for α0
2 = 10−4, Cfast = 4301 m/s and Cslow = 607.1 m/s for α0

2 = 10−5,
and Cfast = 4441 m/s and Cslow = 692.9 m/s for α0

2 = 0.

Fig. 1. Normalized phase velocities of the fast and slow compressional waves for various
volume fractions of the gaseous phase.

5 Numerical Simulations

In this section we numerically illustrate the main features of small amplitude
wavefields described by system (15). For simulations, we use finite difference
schemes on staggered grids [12,13]. This approach is most suitable for solving
first order symmetric hyperbolic systems in the velocity-stress formulation. By
analogy to the Levander approach [8,13], we developed a fourth-order accurate
scheme on a staggered grid in space and a second-order accurate scheme in
time for modeling the wave propagation in a porous medium saturated with a
two-fluid compressible mixture.

We consider a homogeneous porous medium saturated with a mixture of two
fluids. Let us call the liquid phase Fluid1, the gas phase Fluid2 and the skeleton
Solid with material parameters from Table 1.

The goal of solving the first series of test problems, in some of which a
homogeneous medium is defined as one pure phase out of three, is to validate
the model. Let us consider four cases: pure Solid (α0

1 = α0
2 = 0, α0

3 = 1), pure
Fluid1 (α0

1 = 1, α0
2 = α0

3 = 0), pure Fluid2 (α0
1 = α0

3 = 0, α0
2 = 1),and poroelastic

case with Solid and only one Fluid1 (α0
1 = 0.3, α0

2 = 0, α0
3 = 0.7).
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The computational domain is discretized with Nx × Ny grid points, Nx =
Ny = 2001 with spatial step dx = dy = 2.5 · 10−5 m, which amounts to approx-
imately 13 points per a slow compressional wavelength for a chosen frequency
f0 = 1 MHz.

To excite the volumetric-type source we add a source term in the right-hand
side of the pressure equation of the system (15). A source function is defined as
the product of Dirac’s delta function in space and Ricker’s wavelet f(t) in time:

f(t) = (1 − 2π2f2
0 (t − t0)2)exp[−π2f2

0 (t − t0)2], (18)

where f0 is the source central frequency and t0 is the time wavelet delay. We
assumed the frequency f0 = 1 MHz and the source time delay t0 = 1/f0 s. The
source is located in the centre of the computational domain.

Figure 2 shows the wavefield snapshots of the norm of the total mixture veloc-
ity vector ‖ V ‖2 at time t = 4 · 10−6 s for four cases. As one can expect,
the velocities of arising waves coincide with P-wave velocity for pure Solid (vp =
6155 m/s) and sound velocities cf1, cf2 for pure Fluid1 (cf1 = 1500 m/s) and
Fluid2 (cf2 = 330 m/s) from Table 1. Only one compressional P-wave arises in the
case of pure solid, pure water or pure gas (Fig. 2a–2c). In the case of poroelasticity,
we can observe the appearance of fast and slow (Biot’s mode) compressional waves
(Fig. 2d). Estimated velocities 4440 m/s for the fast wave and 690 m/s for the slow
wave are well consistent with the velocity dispersion curves in Fig. 1, obtained with
the technique described in [7]. When evaluating the velocities, one should keep in
mind Ricker’s wavelet delay of 1 · 10−6 s for chosen poroelastic model with Solid
and Fluid1 parameters from Table 1 and porosity α0

1 = 0.3.

Table 1. Physical parameters used for simulation.

State Property Parameters Value Unit

Fluid1 (water): Fluid density ρf1 = ρ0
1 1040 kg/m3

Sound velocity cf1 1500 m/s

Bulk modulus Kf1 = K1 = ρf1c
2
f1 2.34 GPa

Fluid2 (air): Fluid density ρf2 = ρ0
2 1.225 kg/m3

Sound velocity cf2 330 m/s

Bulk modulus Kf2 = K2 = ρf2c
2
f2 0.13 GPa

Solid: Solid density ρs = ρ0
3 2500 kg/m3

P-wave velocity vp 6155 m/s

Bulk velocity cs 4332 m/s

Shear velocity csh 3787 m/s

Bulk modulus Ks = K3 = ρsc
2
s 46.91 GPa

Shear modulus μs = μ3 = ρsc
2
sh 35.85 GPa



Computational Model for Two-Phase Flow in Deformed Porous Medium 233

Fig. 2. Wavefield snapshots of ||V ||2 for pure Solid (a), pure Fluid1 (b), pure Fluid2
(c) and poroelastic (d) media at time t = 4 · 10−6 s.

The second test investigates the effect of gas presence on the wave propaga-
tion velocity in a three-phase poroelastic medium. To this end, let us vary the
value of volume fraction α0

2 of the air (Fluid2), while the Solid volume fraction
being constant α0

3 = 0.7 and porosity is α0
1 + α0

2 = 0.3. With this considera-
tion, the sample’s porosity remains constant, only the ratio of Fluid1 and Fluid2
changes.

Figure 3 shows the wavefield snapshots of the total mixture velocity vector
‖ V ‖2 for poroelastic media with porosity α0

1 = 0.299, α0
2 = 0.001, α0

3 = 0.7
at time t = 4 · 10−6 s. Comparing phase velocities in the case of two different
ratios of liquid and gas volume fractions with α0

1 = 0.3, α0
2 = 0, α0

3 = 0.7 and
α0
1 = 0.299, α0

2 = 0.001, α0
3 = 0.7, one can notice that the velocity of the fast P
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Fig. 3. Wavefield snapshot of ||V ||2 for poroelastic medium with phase volume fractions
α0
1 = 0.299, α0

2 = 0.001, α0
3 = 0.7 at time t = 4 · 10−6 s.

wave has decreased slightly, while the velocity of the Biot mode has decreased
by almost half. That is more, the amplitude of the Biot mode has decreased
significantly in comparison with Fig. 2d. In order to trace the dependence on the
gas volume fraction α0

2, we compared snapshot slices of V 1 component passing
vertically through x = 0 for different parameters α0

2 = 0, 0.001, 0.005, 0.01 and
plotted them together in Fig. 4. From a comparison of these cases, the following
conclusions can be drawn. With an increase in the parameter α0

2, the velocity
of the fast and slow compressional P waves decreases. Simultaneously, the fast
P wave amplitude increases, while the amplitude of Biot’s mode decreases very
fast with a small increase in α0

2.



Computational Model for Two-Phase Flow in Deformed Porous Medium 235

Fig. 4. Snapshot slices of V 1 component at time t = 4 · 10−6 s passing through x = 0
for different parameters α0

2 = 0, 0.001, 0.005, 0.01.
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6 Conclusions

We have presented a new computational model of a deformed porous medium
saturated with a compressible mixture of two fluids. The governing equations of
the model are hyperbolic and are consistent with two thermodynamic laws: con-
servation of energy and growth of entropy. A simplified computational model for
the propagation of small-amplitude waves is formulated and some test problems
are solved numerically using the finite difference method on staggered grids. The
applicability of the model is shown for studying the features of wavefields in an
elastic porous medium saturated with liquid and gas, including the dependence
of wave velocities and amplitudes on their ratio.
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Abstract. Solving parameter identification and structure identification in elec-
tromechanical systems is relevant in applications for diagnostics of the technical
condition of technical systems, as well as in the development of algorithms for
controlling machines and mechanisms. Impulse response functions, correlation
and autocorrelation coordinate functions are used as dynamic characteristics. The
correspondent models unambiguously give an idea of the mathematical descrip-
tion of a linear or linearized electromechanical system. The methods of spectral
description of the dynamic characteristics, based on Fourier transforms, are quite
effective in relation to physically realizable systems under normal operating condi-
tions. The paper aims to present new approaches to the development of algorithms
for identifying electromechanical systems based on the study of the properties of
synthesized transformed orthonormal Jacobi functions and the design of spectral
models of the impulse response functions of electromechanical systems. Themeth-
ods of the theory of spectral and operator transformations, as well as functional
analysis, are used in the study. The results demonstrate the success of algorithms
for nonparametric identification of linear or linearized electromechanical systems
based on spectral models of their impulse response functions in the basis of syn-
thesized generalized orthonormal Jacobi functions. The results of the study can be
used in practice for the diagnostics and development of control systems for electric
drives of machines and installations with changing parameters or structures.

Keywords: Electromechanical systems · Modeling · Identification ·
Orthonormal functions · Jacobi functions · Impulse response functions · Fourier
transforms · Spectral models · Electric drive

1 Introduction

Solving parameter identification and structure identification in electromechanical sys-
tems (EMSs) is relevant in applications for diagnostics of the technical condition of
technical systems, as well as the development of algorithms for controlling machines
and mechanisms [1–5]. This is particularly important in conditions where the param-
eters and characteristics of individual elements of the system have variability. As an
example of such EMSs, one can consider the electric drive systems of machines and
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equipment, the quality of management of which determines not only technological pro-
cesses but also the success of the whole enterprise [1, 6]. Such machines can be found
in the mining industry (excavators, conveyors, mine lifting machines, etc.), as well as
in other industries (mechanical engineering, transport, etc.) [7–10]. The elements of the
EMSs of these machines change their properties under the influence of external fac-
tors. Thus, during the operation of long-distance long-line conveyor systems, through
which mineral raw materials are transported, the conveyor belt (the elastic element of
the EMS that connects its different masses) under different seasonal climatic conditions
has different elastic properties, which objectively affects the procedures for the synthesis
and implementation of algorithms for controlling the electric drive systems of the entire
conveyor.

In most cases, EMSs belong to the category of physically realizable systems, so
their dynamic characteristics can be described by classical methods based on systems
of differential equations or one of the forms of their representation – operator schemes
or operator linear equations [11, 12]. At the same time, in the formulation of the prob-
lem of identifying the parameters or structure of a particular EMS in the conditions
of its normal functioning, it becomes important to build equivalent models based on
the description of its dynamic characteristics. Impulse response functions (IRFs), cor-
relation and autocorrelation coordinate functions are most commonly used as dynamic
characteristics that are mathematically unambiguously related to differential equations,
Laplace operator equations of the system (response functions), frequency characteristics
[1, 13–15]. Their models unambiguously give the idea of themathematical description of
a linear or linearized EMS. The methods of spectral description of the dynamic charac-
teristics, based on Fourier transforms, are quite effective in physically realizable systems
under normal operating conditions. Spectral methods using orthonormal or orthogonal
functions as a functional basis are of particular interest [1, 15].

If the IRFs of a dynamical system are used as the dynamic characteristic, then its
mathematical model can be expressed as [13, 15]:

hδ(τ ) =
∞∑

j=0

μj�j(τ )

where hδ(τ ) are the IRFs; �j(τ ) is a system of functions, for example, orthogonal or
orthonormal ones; μj are the coefficients of the Fourier expansion of hδ(τ ) in the basis
of �j(τ ) functions. Here, �j(τ ) has the properties of the orthonormal or orthogonal
function on the interval of the argument τ [0, ∞).

The model scheme is shown in Fig. 1.
The use of orthonormalized Chebyshev functions as such a functional basis makes

it possible to ensure the uniqueness of the models, their connection with other operator
models (for example, Laplace), stability in determining themodel parameters, the imple-
mentation of computational procedures, etc. [13]. Chebyshev-Laguerre and Chebyshev-
Legendre functions, as well as Chebyshev-Hermite ones, are quite reasonably used as
orthonormal Chebyshev functions [13, 16–18]. This class of continuous functions is
defined on the time interval (0, ∞) that coincides with the interval of determining the
IRF, and also allows designing models of stable dynamical systems. However, most of
these functions have a limited set of parameters, suitable to implement the optimization



Modeling and Identification of Electromechanical Systems 239

Φ0(τ)

Φ1(τ)

…

Φj(τ)

μ0

μ1

…

μj

δ(τ)

Fig. 1. Model scheme of impulse response functions, where δ(τ ) is the Dirac function

algorithms for synthesized models. This article is devoted to the study of models of
EMSs in the basis of Chebyshev-Legendre functions as a special case of Jacobi func-
tions. The problem of demonstrating new approaches to the design of EMS identification
algorithms based on the study of the properties of synthesized transformed orthonormal
Jacobi functions and on the construction of spectral models of EMS IRFs is considered
in the paper. The methods of the theory of spectral and operator transformations, as well
as functional analysis, are used in the paper.

2 Synthesis and Study of Orthonormal Jacobi Functions

Standardized Jacobi polynomials can be expressed as

Jn(x; a, b) = �(b+n+1)·�(a+n+1)
2n

×
n∑

k=0

(x−1)n−k (1+x)k

k!�(n−k+1)�(a+n−k+1)�(b+k+1) ,
(1)

where x ∈ (−1, 1), a > −1, b > −1; �(·) is Euler’s gamma function [19].
The weight function of the polynomial is defined by the expression

h(x) = (1 − x)a(1 + x)b. (2)

The Rodrigue formula for Eq. (1) is represented as

Jn(x; a, b) = (−1)n

2nn! (1 − x)−a(1 + x)−b dn

dxn

[
(1 − x)a+n(1 + x)b+n

]
. (3)

Using the Rodrigue formula (3), the integration in parts is performed n−1 times to
obtain the following integral expression of the square of the norm:

‖Jn‖2 = (−1)2

2n·�(n+1)

1∫

−1

dn
dxn
[
(1 + x)a(1 − x)b

]
Jn(x; a, b)

= �(a+n+1)�(b+n+1)
�(n+1)·(a+b+2n+1)�(a+b+n+1)2

a+b+1.

(4)

In accordance with Eq. (4), the expression for the orthonormal Jacobi polynomial
can be written

Ĵn(x; a, b) = √
�(n + 1) · (a + b + 2n + 1)�(a + b + n + 1)�(b + n + 1) · �(a + n + 1)

× 2− 1
2 (a+b+1)−n

n∑

k=0

(x−1)n−k (1+x)k

�(k+1)·�(n−k+1)�(a+n−k+1)�(b+k+1) .
(5)
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In order to obtain functionals that are orthonormal on the interval (0; ∞) and
have satisfactory approximation properties, the modification of the standardized Jacobi
polynomials was performed.

At the first stage, the substitution of x = 1 − 2y in Jn(x) was realized.
It allows forming the displaced polynomial that has the properties of orthogonality

in the interval (0; 1):

J̇n(y; a, b) = (−1)n�(a + n + 1)�(b + n + 1)

×
n∑

k=0

yn−k (y−1)k

�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1) .
(6)

The binomial formula (1 − y)k =
k∑

j=0

(−1)jk! yj
j!(k−j)! allows obtaining a different formula

for biased orthogonal Jacobi polynomials:

J̇n(y; a, b) = (−1)n�(a + n + 1)�(b + n + 1)

×
n∑

k=0

1
�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1)

×
k∑

j=0

(−1)j�(k+1)·yj+n−k

�(j+1)·�(k−j+1) .

(7)

The next transformations of the considered polynomials are possible by imple-
menting the substitution of y = e−u·t in Eq. (6) or (7), where u is the scale
parameter.

After these transformations, the expression follows:

J n(a, b, u, t) = (−1)n�(b + n + 1)�(a + n + 1)e−unt

×
n∑

k=0

[1−eut]k
�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1) .

(8)

Equation (8) defines transformed orthogonal Jacobi functions that have orthogonality
properties on the interval (0; ∞).

The established functional dependencies allow synthesizing spectral models of
dynamic systems, but these models will not be unique. This situation will require addi-
tional procedures to check the control algorithms created on the basis of these models
and identify EMSs with different properties. For example, for systems with different
oscillations. Therefore, it is rational to use orthonormal functions while constructing
spectral models.

The norm of the resulting functional can also be determined from Eq. (4).
The necessary orthonormality condition for classical orthogonal complexes is

defined as follows [19]:

b∫

a

Jn(x)Jm(x)h(x)dx = 0 for n �= m and

b∫

a

Jn(x)Jm(x)h(x)dx = 1 for n = m (9)

where a and b are the orthogonality interval, and h(x) is the weight function of the
polynomial.
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The transformations of the weight function (2) were performed in the same sequence
as for the transformation of the classical Jacobi polynomials:

H (a, b, t, u) = h(x)x=1−2e−u·t
∣∣ = 2a+be−uta(1 − e−ut)b. (10)

The general formula defining the transformed generalized synthesized orthonormal
Jacobi functions (SOJFs) was obtained considering the above conditions of the existence
of the orthonormal functional, Eq. (8) for the transformed Jacobi functions, and Eq. (9)
for its norm,

Ĵn(u, t; a, b) = (−1)
2n+b
2

√
u�(a + n + 1)�(n + 1)�(a + b + n + 1)(a + b + 2n + 1)

×√
�(a + n + 1) × e−u t a+b+2n+1

2 ·
n∑

k=0

[
1−e(ut)

] 2 k+b
2

�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1) .

(11)

Using the binomialNewton formula allowsobtaining a different expression for SOJF:

Ĵn(u, t; a, b) = (−1)
2n+b
2

√
u�(a + n + 1)�(n + 1)�(a + b + n + 1)(a + b + 2n + 1)

×√
�(a + n + 1)e−u t a+b+2n+1

2 ·
n∑

k=0

1
�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1)

×
(
2k+b
2

)

∑
j=0

(−1)j�
(
2k+b
2 +1

)
eutj

�(j+1)
[
�
(
2k+b
2

)
−j+1

]

(12)

or

Ĵn(u, t; a, b) = (−1)
2n+b
2

√
u�(a + n + 1)�(n + 1)�(a + b + n + 1)(a + b + 2n + 1)

×√
�(a + n + 1)

n∑
k=0

1
�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1)

×
(
2k+b
2

)

∑
j=0

(−1)j�
(
2k+b
2 +1

)
e
ut
(
j− a+b+2n+1

2

)

�(j+1) �
[(

2k+b
2

)
−j+1

]

(13)

The graphical interpretation of two orthonormal transformed Jacobi functions for
n = 1 and n = 5 is shown in Fig. 2. The type of the plots indicates that the order of
the transformed functions corresponds to the number of transitions of the corresponding
function through zero.
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Fig. 2. Dependence of transformed Jacobi functions on the parameter t (J (2, 2, 1, t, 1) at a = 2,
b = 2, u = 1, and n = 1; J (2, 2, 1, t, 5) at a = 2, b = 2, u = 1, and n = 5)

3 Some Properties of Orthonormal Jacobi Functions

Theorem 1. On the recurrent formula of transformed generalized orthonormal Jacobi
functions.

For the transformed generalized orthonormal Jacobi functions, the recurrent formula
is true

2 ·
√

(a+n+1)(a+b+n+1)(n+1)(b+n+1)
(a+b+2n+3)(a+b+2n+1)(a+b+2n+1)2

Ĵn+1(u, t; a, b)
=
(
1 − 2 · e−u t − b2−a2

(a+b+2n)(a+b+2n+2)

)
Ĵn(u, t; a, b)

− 2 ·
√

n(a+n)(a+b+n)(b+n)
((a+b+2n−1)(a+b+2n+1)(a+b+2n)2

Ĵn−1(u, t; a, b).
(14)

To prove this theorem, the recurrent formula for orthonormal polynomials was used,
according to which the condition is fulfilled [19]:

λnP̂n+1(x) = (x − ηn)P̂n(x) − λn−1P̂n−1(x), (15)

where λn = μn
μn+1

; μn is the highest coefficient of the orthonormal polynomial P̂n(x);
ηn is the coefficient determined by the type of the polynomial.
For orthonormal Jacobi polynomials (5), the expansion coefficients P̂n(x) = μnxn+

νnxn−1 . . . can be determined using the following expressions:

μn = �(a+b+2n+1)√
2a+b+2n+1Γ (a+b+n+1)(a+b+2n+1)�(n+1)�(a+n+1)�(b+n+1)

,

νn = (a−b)�(a+b+2n)
√
n(a+b+2n+1)√

2a+b+2n+1Γ (a+b+n+1)�(n)�(a+n+1)�(b+n+1)
.
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In the next step, the parameter λn in Eq. (15) was determined

λn = μn

μn+1
= 2

√
(n + 1)(a + n + 1)(a + b + n + 1)(b + n + 1)

(a + b + 2n + 2)2(a + b + 2n + 3)(a + b + 2n + 1)
. (16)

Solving the equations composed under the condition that the coefficients are equal
for the same powers of the argument, the expression for ηn can be determined as:

λnνn+1 = νn − ηnμn.

Solving this equation, the following expression can be obtained:

ηn = b2 − a2

(a + b + 2n + 2)(a + b + 2n)
. (17)

The expression equivalent to Eq. (14) can be obtained from the three-term recur-
rent formula taking into account the substitutions carried out earlier when performing
transformations on Jacobi polynomials. Thus, the theorem on the recurrent formula of
transformed orthonormal Jacobi polynomials can be considered proven.

The recurrent formula (14) can be represented so that it will be possible to calculate
the n-th function based on the values of the previous two functions:

2 ·
√

(a+n+1)(a+b+n+1)(n+1)(b+n+1)
(a+b+2n+3)(a+b+2n+1)(a+b+2n+1)2

· Ĵn(u, t; a, b)
=
(
1 − 2 · e−u t − b2−a2

(a+b+2n)(a+b+2n+2)

)
× Ĵn−1(u, t; a, b)

− 2 ·
√

n(a+n)(a+b+n)(b+n)
(a+b+2n−1)(a+b+2n+1)(a+b+2n) · Ĵn−2(u, t, a, b).

The identified recurrent formula is essential in determining the parameters of spec-
tral models in the conditions of limited information, as well as in the formalization of
mathematical operators in the structure of mathematical models.

4 Spectral Models Based on Orthonormal Jacobi Functions

IRF decomposition coefficients are determined using the method of the spectral decom-
position of the IRF in the basis of SOJF, Eqs. (11–13), in accordance with the following
expression

γi =
∞∫

0

hδ(τ )Ĵi(u, t; a, b)dτ. (18)

The spectral model is defined as

hδ(τ ) =
∞∑

j=0

γj Ĵj(u, t; a, b). (19)
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Equation (11) allows obtaining the general formula for the orthogonal spectral model
of the IRF in the basis of orthonormal Jacobi functions:

hδ(τ ) =
∞∑

j=0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γj(−1)
2j+b
2
√
u�(a + j + 1)�(j + 1)�(a + b + j + 1)(a + b + 2j + 1)

×√
�(a + j + 1)e−u t a+b+2j+1

2

×
j∑

k=0

[
1−e(ut)

] 2 k+b
2

�(k+1)�(j−k+1)�(a+j−k+1)�(b+k+1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(20)

The application of the binomial Newton formula allows obtaining the different
expression for the IRF model:

hδ(τ ) =
∞∑

j=0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γj(−1)
2j+b
2
√
u�(a + j + 1)�(j + 1)�(a + b + j + 1)(a + b + 2j + 1)

×�(a + j + 1)
j∑

k=0

1
Γ (k+1)Γ (j−k+1)Γ (a+j−k+1)Γ (b+k+1)

×
(
2k+b
2

)

∑
i=0

(−1)i�
(
k+ 1

2 b+1
)
e− 1

2 ut(a+b+2n−2i+1)

�(i+1)�
(
k+ 1

2 b−i+1
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(21)

It can be shown that n-th Jacobi function in the space of Laplace transformations can
be defined by the following formula:

L
[
Ĵn(u, a, b; p)

]
== (−1)

2n+b
2

√
u�(a + n + 1)�(n + 1)�(a + b + n + 1)

×√
(a + b + 2n + 1)�(b + n + 1)

×
n∑

k=0

{
−�

(
− p

u− a+b+1
2 −n

)
�
(
k+ b

2+1
)

�(k+1)�(n−k+1)�(a+n−k+1)�(b+k+1)�
(
− p

u+k− a−1
2 −n

)

}
,

(22)

where L (·) is the notation of Laplace transformations.
Some simplifications in order to develop final algorithms were introduced. Let a �=

0, b = 0, then on the basis of Eqs. (22), the following operator expression for SOJF
was obtained

L
[
Ĵn(u, a, b = 0; p)

]
= (−1)n+1√u (a + 2n + 1)

× �
(
− p

u− a−1
2 −n

)
�
(
− p

u+ a+1
2 −n

)

u
(
− p

u− a−1
2 −n

)
�
(
− p

u− a−1
2

)
�
(
− p

u+ a+1
2

) .
(23)

The ratio of operator transforms of the orthonormal functions with the ordinal
numbers j + 1 and j for SOFJ at a �= 0, b = 0 was determined:

L
{
Ĵn+1(u, a, b = 0; p)

}

L
{
Ĵn(u, a, b = 0; p)

} =
√
a + 2n + 3

a + 2n + 1

(
ua+2n+1

2 − p

ua+2n+3
2 + p

)
. (24)
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The parameters of the chain former of Jacobi functions at the value of the parameter
b = 0 at each stage were set as:

WJ0(p) =
L
{
Ĵ1(u, t, a, b = 0; p)

}

L
{
Ĵ0(u, t, a, b = 0; p)

} =
√
a + 3

a + 1

[
u
2 (a + 1) − p
3u
2 (a + 3) + p

]
;

WP1(p) =
L
{
Ĵ2(u, t, a, b = 0; p)

}

L
{
Ĵ1(u, t, a, b = 0; p)

} =
√
a + 5

a + 3

[ u
2 (a + 3) − p
u
2 (a + 5) + p

]
;

WP2(p) =
L
{
Ĵ3(u, t, a, b = 0; p)

}

L
{
Ĵ2(u, t, a, b = 0; p)

} =
√
a + 7

a + 5

[ u
2 (a + 5) − p
u
2 (a + 7) + p

]
;

WP3(p) =
L
{
P̂4(u, t)

}

L
{
P̂3(u, t)

} =
√
a + 9

a + 7

[ u
2 (a + 7) − p
u
2 (a + 9) + p

]
...

Figure 3 shows the block diagram of the former of orthonormal Jacobi functions for
the corresponding parameter values.

Fig. 3. The block diagram of the former of orthonormal Jacobi functions

If u(τ ) = δ(τ ), where δ(τ ) is the Dirac function, then the corresponding Jacobi
functions can be observed at the output of each filter cascade.

The formula for the spectral orthogonal model for the IRF, Eq. (20), also allows
synthesizing the block diagram of the orthogonal EMSmodel in the SOJF basis (Fig. 4).
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Fig. 4. The block diagram of the orthogonal EMS model in the SOJF basis

5 Nonparametric Identification Based on Spectral Models
in the Basis of Orthonormal Jacobi Functions

The relationship between the components of the IRF spectral model in the SOJF basis
and the parameters of the transfer function was determined and can be represented as
the ratio of two polynomials:

W (p) = A(p)

G(p)
= a0 + a1p + a2p2 + . . . anpn

g0 + g1p + g2p2 + . . . gnpn
. (25)

The identification problem is reduced in this case to determining the coefficients of
the polynomials A(p) = (a0, a1, a2 . . . an) and B(p) = (g0, g1, g2 . . . gn).

To demonstrate the solution, the nonparametric model based on the first three SOJFs
with parameter values a �= 0; b = 0 was considered. The general operator expression
for the transfer function will have the form:

W1(p) = γ02
√
u(a+1)

2p+u(a+1) + γ12
[u(a+1)−2p]

√
u(a+3)

[2p+u(a+1)][2p+u(a+3)]
+ γ22

√
u(a+5)[u(a+1)−2p][u(a+3)−2p]

[2p+u(a+1)][2p+u(a+3)][2p+u(a+5)] .
(26)
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Equating the coefficients for the same degree of p, the expressions for the coefficients
of the polynomials A(p) and B(p) in Eq. (25) were obtained:

a0 = γ0u2
√
u(a + 1)(a + 5)(a + 3) + γ2u2

√
u(a + 5)(a + 3)(a + 1)

+ γ1

[
u2

√
u(a + 3)a(a + 6) + 5

2u
3(a + 3)

]
,

a1 = u
3
2
{
4
[
γ0

√
a + 1 − γ2

√
a + 5

]− 8
[
γ2

√
a + 5 − 2γ0

√
a + 1 + γ1

√
a + 3

]}
,

a2 = 4
√
u
(√

a + 1γ0 − √
a + 3γ1 + √

a + 5γ2
)

g0 = 1
2u

3(a + 1)(a + 3)(a + 5), g1 = u2
(
3a2 + 18a + 23

)
, g2 = 6u(a + 3), g3 = 4.

Similarly, using the above method, the expressions for determining the relationship
between the parameters of the approximating transfer functions at different orders of
SOJF can be obtained.

6 Synthesis and Study of Spectral Models of Two-Mass EMSs
in the Basis of Orthonormal Jacobi Functions

The main aspects of the design of spectral models of two-mass EMSs based on the
spectral decomposition of the IRF in the SOJF basis were studied. The case of the open
two-mass EMS was considered, the differential equation of which has the form [12]:

⎧
⎨

⎩

J1 · dω1
dt + c1 · (ϕ1 − ϕ2) = Md ;

J2 · dω2
dt − c1 · (ϕ1 − ϕ2) = −Mc;

(u − ω1 · kc) · ka = Md + Te · dMd
dt ,

(27)

where J1 and J2 are the moments of inertia of the first and second EMS masses, respec-
tively; c1 is the rigidity coefficient of the connection between the first and second EMS
masses; ω1, ϕ1, ω2, and ϕ2 are the coordinates (angular velocity and angle of rotation)
of the first and second EMS masses, respectively; kc, ka and Te are the design constants
of the electric motor device; Md is the moment of the electric motor device; Mc is the
moment of resistance on the executive body; u is the controlling coordinate.

The roots of the characteristic equation have the form:

p1,2 = −10.36 ± 31.308 · j,

p1,2 = −7.7 ± 22.89 · j, where j = √−1

The coefficients of IRF expansion of the two-mass EMS in the eighth-order SOJF
basis, determined with the help of Eq. (18), are presented in Fig. 5 for the fixed value of
the scale parameter u = 7.

The data presented in Fig. 5 indicate the satisfactory convergence of the spectral
model, as well as the effectiveness of the algorithmic support for calculating the model
parameters.
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To assess the reliability of synthesis of the IRF model, the square of the normalized
variance of the IRF spectral model is used, which is determined by the expression [15]:

σ 2
n (u) =

∞∫

0

[
ĥδ(τ ) −

n∑
i=0

ϑiĤ ei(u, τ )

]2
dτ

∞∫

0
ĥ2δ (τ )dτ

. (28)

Fig. 5. The values of IRF expansion coefficients of the two-mass EMS control channel (IRF
EMS spectral model), established using SOJF (a = 4, b = 4) of 8th order at the value of the scale
parameter u = 7

The best approximation of the spectral model Eq. (19) is achieved by choosing the
optimal values of the parameter u. As a criterion, the minimum condition of Eq. (28) is
used:

min
{
σ 2
n (u)

}
.

The dependencies of the square of the normalized variance of the spectral IRFmodel
over the control channel of the two-mass EMS on the values of the scale parameters of
the transformed orthonormal Jacobi functions for different orders of the spectral model
are shown in Fig. 6.

The dependencies of the square of the normalized variance on the scale parameter u
indicate the stability of the method of the design of IRF spectral models of EMSs in the
basis of orthonormal Jacobi functions presented in this paper.

The proposed methodological approach to the spectral models of electromechanical
systems based on orthonormal Jacobi functions has a certain practical significance. The
following applications may be noted:

• the possibility of simplifying the linear complex and multi-coupled models of elec-
tromechanical multi-mass systems, for example, described by Eq. (27) to the level of
the spectral sequential model shown in Fig. 4;
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Fig. 6. The dependence of the square of the normalized dispersion of the IRF spectral model of
the two-mass EMS control channel on the value of the scale parameter SOJF: (a = 2, b = 0)
sigJ (0.0, u, 4) – n = 4; sigJ (0.0, u, 8) – n = 8; sigJ (0.0, u, 12) – n = 12; sigJ (0.0, u,16) – n = 16,
where a, b are the parameters of the spectral model; u is the scale parameter of the optimization
procedure; n is the order of the spectral model)

• diagnostics of electric drive systems of machinery (for example, excavators, belt con-
veyors, etc.) based on the algorithms of parametric identification presented in the
paper;

• new opportunities in the interpretation of experimental studies of the dynamic
characteristics of electromechanical systems.

The above-mentioned trends will be the subject of further study by the author.

7 Conclusion

The studies presented in this paper demonstrate the success of using the synthesized
transformed orthonormal Jacobi functions to solve the problems of constructing IRF
spectral models of EMSs.

The parameters of IRF spectral models of EMSs with a high degree of confidence
can be used to synthesize algorithms for nonparametric identification of EMSs.

The applicability of the presented Jacobi functions in nonparametric identification
algorithms using examples of a two-mass EMS was examined in the paper. This creates
the prerequisites for solving the class of problems, for example, the control problems in
electric drive systems and the systems of automation of technological processes.

8 Key Focus of Further Study

Having determined the class of EMS mathematical models based on IRF spectral repre-
sentation in the SOJF basis, it is considered appropriate to solve a number of problems
in further study:
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• to define parametric identification algorithms based on the data on the IRF EMS
spectral model in the SOJF basis;

• to identify the impact of SOJF parameters on the quality of the EMS parametric
identification procedure;

• to evaluate the influence of the parameters a and b of SOJF on the optimization
procedure of the IRF EMS spectral model;

• to determine the influence of reliability indicators of parametric and nonparametric
identification procedures based on IRF EMS spectral models on the quality of con-
trol algorithms applied to closed control systems for electric drives of machines and
installations;

• to develop algorithmic and methodological support for diagnostics systems of the
parameters and structure of electric drive systems of machines and equipment in
normal operation.
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Abstract. In this paper, the definition of the cross product of three tan-
gent vectors to IR4 at the same point is stated, based on this definition
a lemma is stated in which eight properties of said product are proposed
and demonstrated. In addition, four theorems and two corollaries are
stated and proved. One of the theorems constitutes an extension of the
Jacobi identity. In some of the proofs, programs based on the paradigms:
functional, rule-based and list-based from the Wolfram language, incor-
porated in Mathematica, are used.
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1 Introduction

The cross product of three tangent vectors to IR4 in the same point is formally
defined in [6]. From that year to the present it has been used in different research
works [1–3].

In this paper, the definition of the cross product of three tangent vectors to
IR4 given by Williams and Stein [6] is stated, based on this definition a lemma is
stated in which eight properties of said product are proposed and demonstrated.
Given five vectors tangent to IR4 at the same point, an extension of the Jacobi
identity is established (which is valid for three vectors tangent to IR3 at the
same point). Given two vectors tangent to IR4 at the same point, we establish a
formula to calculate the area of the parallelogram whose sides are these vectors.
Given three vectors tangent to IR4 at the same point, we proof that the volume
of the parallelepiped whose edges are these three vectors is equal to the length
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of the cross product of them. A relation is established between the length of the
cross product of three vectors tangent to IR4 in the same point and the areas of
the faces of the parallelepiped whose edges are these vectors. Finally, we proof
that the absolute value of the quadruple scalar product of four vectors tangent
to IR4 at the same point is equal to the hyper-volume of the hyper-parallelepiped
whose edges are these four vectors.

The Wolfram language [7], built into Mathematica [8], stands out from tra-
ditional computer languages by simultaneously supporting many programming
paradigms, such as procedural, functional, rule-based, list-based, pattern-based,
and more [4,5]. In this paper, certain demonstrations are carried out with the
help of programs implemented based on these first three paradigms; in such a
way that these programs are shorter and more efficient.

The structure of this paper is as follows: Sect. 2 introduce the mathematical
definition of the Euclidean 4-space, a tangent vector, a vector field, the dot
product of two points, the norm of a point, the dot product of two tangent
vectors and a frame at a point. Then, Sect. 3 introduces the cross product of three
tangent vectors. In this section properties, lemmas, theorems, and corollaries
associated with this product are stated and demonstrated. Finally, Sect. 4 closes
with the main conclusions of this paper.

2 Mathematical Preliminaries

Definition 1. Euclidean 4-space IR4 is the set of all ordered quadruples of real
numbers. Such a quadruple p = (p1, p2, p3, p4) is called a point of IR4.

Definition 2. A tangent vector vp to IR4 consist of two points of IR4: its vector
part v and its point of application p.

Definition 3. Let p be a point of IR4. The set Tp

(
IR4

)
consisting of all tangent

vectors that have p as point of application is called the tangent space of IR4 at
p.

Definition 4. A vector field V on IR4 is a function that assigns to each point
p of IR4 a tangent vector V (p) to IR4 at p.

Definition 5. Let U1, U2, U3 and U4 be the vector fields on IR4 such that

U1(p) = (1, 0, 0, 0)p U2(p) = (0, 1, 0, 0)p
U3(p) = (0, 0, 1, 0)p U4(p) = (0, 0, 0, 1)p

for each point p of IR4. We call U1, U2, U3, U4—collectively—the natural frame
field on IR4.

Definition 6. The dot product of points p = (p1, p2, p3, p4) and q =
(q1, q2, q3, q4) in IR4 is the number

p • q = p1q1 + p2q2 + p3q3 + p4q4 .
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Definition 7. The norm of a point p = (p1, p2, p3, p4) is the number

‖p‖ = (p • p)1/2 .

The norm is thus a real-valued function on IR4; it has fundamental properties
‖p + q‖ � ‖p‖ + ‖q‖ and ‖ap‖ = |a| ‖p‖, where |a| is the absolute value of the
number a.

Definition 8. The dot product of v,w ∈ Tp

(
IR4

)
is the number

vp • wp = v • w .

A fundamental result of linear algebra is the Schwartz inequality |v • w| �
‖v‖‖w‖. This permits us to define the cosine of the angle ϑ between v and w
by the equation

v • w = ‖v‖ ‖w‖ cos ϑ ,

where 0 � ϑ � π.
In particular, if ϑ = π/2, then v • w = 0. Thus we shall define two vectors

to be orthogonal provided their dot product is zero. A vector of length (norm)
1 is called a unit vector.

Definition 9. A set e1, e2, e3, e4 of four orthogonal unit vectors tangent to IR4

at p es called a frame at the point p.

For example, at each point p of IR4, the vectors U1(p), U2(p), U3(p), U4(p)
of Definition 5 constitute a frame at p.

3 The Cross Product

Definition 10. If v, w and x are tangent vectors to IR4 at the same point p,
then the cross product of v, w and x is the tangent vector

v × w × x = −

∣
∣
∣
∣
∣
∣
∣
∣

U1(p) U2(p) U3(p) U4(p)
v1 v2 v3 v4
w1 w2 w3 w4

x1 x2 x3 x4

∣
∣
∣
∣
∣
∣
∣
∣

.

Lemma 1. If v, w, x, y and z are tangent vectors to IR4 at the same point p,
then

1. The cross product v × w × x is linear in v, in w and in x, and satisfies the
alternation rules

v×w×x = w×x×v = x×v×w = −x×w×v = −w×v×x = −v×x×w .

2. v × w × x �= 0 if and only if v, w and x are linearly independent,
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3. v × w × (x × y × z) =

∣
∣
∣
∣
∣
∣

x y z
x • w y • w z • w
x • v y • v z • v

∣
∣
∣
∣
∣
∣
,

4. v × w × (x × y × z) �= v × (w × x × y) × z �= (v × w × x) × y × z,

5. v • w × x × y =

∣
∣
∣
∣
∣
∣
∣
∣

v1 v2 v3 v4
w1 w2 w3 w4

x1 x2 x3 x4

y1 y2 y3 y4

∣
∣
∣
∣
∣
∣
∣
∣

,

6. v • w × x × y �= 0 if and only if v, w, x and y are linearly independent,
7. If any two vectors in v • w × x × y are reversed, the product changes sign.

Explicitly

v • w × x × y = v • x × y × w = v • y × w × x = w • v × y × x = w • x × v × y =

w • y × x × v = x • v × w × y = x • w × y × v = x • y × v × w = y • v × x × w =

y • w × v × x = y • x × w × v =

− v • w × y × x = −v • x × w × y = −v • y × x × w = −w • v × x × y = −w • x × y × v =

− w • y × v × x = −x • v × y × w = −x • w × v × y = −x • y × w × v = −y • v × w × x =

− y • w × x × v = −y • x × v × w ,

8. v • w × x × y = −v × w × x • y.

Proof. The first and second properties follow immediately from Definition 10.
The third property is deduced with the assistance of Mathematica. To do
this, both terms are calculated and subtracted from the equality. Then the
rule-based programming paradigm is used to substitute v̄ for Array[v, 4] =
{v[1], v[2], v[3], v[4]}, ..., z̄ for Array[z, 4] = {z[1], z[2], z[3], z[4]} and the result is
the null vector, this validates equality.

v̄ × w̄ × (x̄ × ȳ × z̄) −

Det

⎡

⎣

⎛

⎝
x̄ ȳ z̄

x̄.w̄ ȳ.w̄ z̄.w̄
x̄.v̄ ȳ.v̄ z̄.v̄

⎞

⎠

⎤

⎦ /. OverBar[a ] → Array[a, 4]//Simplify

{0, 0, 0, 0}

The fourth property is deduced from the third property. The sixth and sev-
enth properties are deduced from the fifth property. The last property is deduced
from the seventh property and the commutativity of the dot product.

Theorem 1. The cross product v×w×x is orthogonal to v, w and x, and has
length such that

‖v × w × x‖2 =

∣
∣
∣
∣
∣
∣

v • v v • w v • x
w • v w • w w • x
x • v x • w x • x

∣
∣
∣
∣
∣
∣

.
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Proof. The sixth property of the Lemma 1 shows the perpendicularity of v×w×x
with v, w and x. On the other hand, by the definition of norm and the eighth
and third properties of Lemma 1, we have to

‖v × w × x‖2 = (v × w × x) • (v × w × x) = −(v × w × x) × v × w • x

= −v × w × (v × w × x) • x = −
∣
∣
∣
∣
∣
∣

v w x
v • w w • w x • w
v • v w • v x • v

∣
∣
∣
∣
∣
∣
• x

=

∣
∣
∣
∣
∣
∣

v • v v • w v • x
w • v w • w w • x
x • v x • w x • x

∣
∣
∣
∣
∣
∣

Theorem 2. Let v, w, x, y and z be tangent vectors to IR4 at the same point
p, then

v × w × (x × y × z) + v × x × (w × y × z) + v × y × (z × x × w) +
v × z × (w × x × y) + w × x × (v × y × z) + w × y × (z × x × v) +
w × z × (v × x × y) + x × y × (z × w × v) + x × z × (v × w × y) +

y × z × (x × w × v) = 0 .

Proof. Taking into account that the Jacobi identity exists for three vectors tan-
gent to IR3, we proceeded to develop a Mathematica program in which the
possible combinations of the cross product of five vectors tangent to IR4 are con-
sidered; in such a way that, an extension of the Jacobi identity was obtained for
five vectors tangent to IR4. The program returned twelve possible combinations,
of which the third was chosen for representativeness reasons. Obviously, from
this choice the other possibilities can be deduced.

vecs = {x̄, ȳ, z̄, v̄, w̄} ;

perms = Select[Permutations[vecs, {3}],OrderedQ];

Tu = Tuples[{Identity,Reverse}, {Length[perms]}];

permsTu = MapThread[#1@@{#2}&, {#,perms}]&@Tu;

Table[

permsk = permsTu[[k]];

g = Complement[vecs,#]&@permsk;

f = MapThread[Cross[Sequence@@#1,Cross@@#2]&, {g,permsk}];

s = Plus@@ (f/. OverBar[a ] → Array[a, 4]) ;

If[s===Table[0, 4],Plus@@f == 0,Nothing],

{k,Length[Tu]}][[3]]
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v̄×w̄×(x̄ × ȳ × z̄)+v̄×x̄×(w̄ × ȳ × z̄)+v̄×ȳ×(z̄ × x̄ × w̄)+v̄×z̄×(w̄ × x̄ × ȳ) +
w̄×x̄×(v̄ × ȳ × z̄)+w̄×ȳ×(z̄ × x̄ × v̄)+w̄×z̄×(v̄ × x̄ × ȳ)+x̄×ȳ×(z̄ × w̄ × v̄) +

x̄ × z̄ × (v̄ × w̄ × ȳ) + ȳ × z̄ × (x̄ × w̄ × v̄) == 0

Theorem 3. If v and w are tangent vectors to IR4 at the same point p, then
the area, S, of the parallelogram with sides v and w is

S =

√∣
∣
∣
∣
v • v v • w
w • v w • w

∣
∣
∣
∣ .

Proof. Figure 1 shows the parallelogram. If h is the distance from w to the
segment from p to v and L is the length of this segment, then the area will be
A = Lh. The L length can be expressed as

L =
√
v • v .

The point Q (Fig. 2) is on the segment generated by v, i.e.

Q = tv; t ∈ IR .

According to Fig. 2 it is true that

(w − Q) • v = 0 .

After solving this equation we obtain

t =
v • w
v • v

.

So that
h =

√
(w − Q) • (w − Q)

=
√
w • w + t2 v • v − 2tv • w .

Finally, after making the respective substitutions and simplifications with the
Mathematica assistance, we obtain

S = Lh

=

√∣
∣
∣
∣
v • v v • w
w • v w • w

∣
∣
∣
∣ .

A more intuitive description of S is

S =

√∣
∣
∣
∣

‖v‖2 ‖v‖ ‖w‖ cos ϑ
‖w‖ ‖v‖ cos ϑ ‖w‖2

∣
∣
∣
∣

= ‖v‖ ‖w‖
√∣

∣
∣
∣

1 cos ϑ
cos ϑ 1

∣
∣
∣
∣

= ‖w‖ ‖v‖ sin ϑ ,

where 0 � ϑ � π is the smaller of the two angles from v to w (Fig. 1).



258 J. K. Jiménez-Vilcherrez et al.

Fig. 1. Parallelogram with edges v and w.

Theorem 4. If v, w and x are tangent vectors to IR4 at the same point p, then
‖v × w × x‖ is the volume, V , of the parallelepiped with edges v, w and x.

Proof. Figure 2 shows the parallelepiped. If h is the distance from x to the par-
allelogram with sides v and w and S is the area of this parallelogram, then the
volume will be V = Sh. The S area can be expressed as

S =

√∣
∣
∣
∣
v • v v • w
w • v w • w

∣
∣
∣
∣ .

The point Q (Fig. 2) is on the plane generated by v and w, i.e.

Q = tv + sw; s, t ∈ IR .

According to Fig. 2 it is true that
{

(x − Q) • v = 0 ,

(x − Q) • w = 0 .

After solving this system we obtain

t =

∣
∣
∣
∣
v • x v • w
w • x w • w

∣
∣
∣
∣

∣
∣
∣
∣
v • v v • w
w • v w • w

∣
∣
∣
∣

, s =

∣
∣
∣
∣
v • v v • x
w • v w • x

∣
∣
∣
∣

∣
∣
∣
∣
v • v v • w
w • v w • w

∣
∣
∣
∣

.

So that

h =
√

(x − Q) • (x − Q)

=
√
x • x + t2 v • v + s2 w • w − 2tv • x − 2sw • x + 2stv • w .

Finally, after making the respective substitutions and simplifications with the
Mathematica assistance, we obtain

V = Sh

=

√√
√
√
√

∣
∣
∣
∣
∣
∣

v • v v • w v • x
w • v w • w w • x
x • v x • w x • x

∣
∣
∣
∣
∣
∣

= ‖v × w × x‖ .
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A more intuitive description of the length of a cross product is

‖v × w × x‖ =

√√
√
√
√

∣
∣
∣
∣
∣
∣

‖v‖2 ‖v‖ ‖w‖ cos ϑ ‖v‖ ‖x‖ cos ϕ
‖w‖ ‖v‖ cos ϑ ‖w‖2 ‖w‖ ‖x‖ cos γ
‖x‖ ‖v‖ cos ϕ ‖x‖ ‖w‖ cos γ ‖x‖2

∣
∣
∣
∣
∣
∣

= ‖v‖ ‖w‖ ‖x‖

√√
√
√
√

∣
∣
∣
∣
∣
∣

1 cos ϑ cos ϕ
cos ϑ 1 cos γ
cos ϕ cos γ 1

∣
∣
∣
∣
∣
∣

where 0 � ϑ, ϕ, γ � π is the smaller of the two angles from v to w,w to x and
v to x, respectively (Fig. 2).

Fig. 2. Parallelepiped with edges v, w and x.

Corollary 1. If v1, v2 and v3 are tangent vectors to IR4 at the same point p
and Si,j is the area of the parallelogram with sides vi and vj, then

‖v1 × v2 × v3‖2 = S2
23‖v1‖2 + S2

13‖v2‖2 + S2
12‖v3‖2+

+ 2v1 • v2 v1 • v3 v2 • v3 − 2‖v1‖2 ‖v2‖2 ‖v3‖2 .

Proof. The proof is immediate from the Theorem 1 and the Theorem 3.

Corollary 2. If v, w, x and y are tangent vectors to IR4 at the same point p,
then |v • w × x × y| is the hypervolume of the hyperparallelepiped with edges v,
w, x and y.

Proof. Figure 3 shows the hyperparallelepiped. By Theorem 4 the volume of the
parallelepiped with edges w, x and y is V = ‖w×x×y‖. If h is the height, then
h = ‖v‖ | cos θ|, 0 � θ � π is the smaller of the two angles from v to w × x× y.
Therefore, the hypervolume of the hyperparalelepiped is

W = hV = ‖v‖ ‖w × x × y‖ | cos θ| = |v • w × x × y| .
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Fig. 3. Hyperparallelepiped with edges v, w, x and y.

4 Conclusions

In this paper, the definition of the cross product of three vectors tangent to IR4

at the same point has been stated, based on this definition a lemma has been
enunciated in which eight properties of said product have been proposed and
demonstrated. Furthermore, four theorems and two corollaries have been stated
and proved. One of the theorems constitutes an extension of the Jacobi identity.
In some of the proofs, programs based on the paradigms: functional, rule-based
and list-based have been used; all of these supported by the Wolfram language,
incorporated in Mathematica.

Acknowledgements. The authors would like to thank to the authorities of the Uni-
versidad Nacional de Piura for the acquisition of the Mathematica 11.0 license and the
reviewers for their valuable comments and suggestions.
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Abstract. The Klein bottle plays a crucial role in the main modern
sciences. This surface was first described in 1882 by the German math-
ematician Felix Klein. In this paper we describe a technique to obtain
the parameterization of the Klein bottle. This technique uses isometric
transformations (translations and rotations) and the moving frame asso-
ciated with the unit circumference lying on the xy-plane. The process
we follow is to start with the parametrization of the Euclidean cylin-
der, then continue with the parameterization of the Möbius strip, after
that with the parameterization of the torus of revolution and finally,
in a natural way, we describe the aforementioned technique. With the
parameterization of the Klien bottle obtained, it is easy to show that it
can be obtained by gluing two Möbius strips. Additionally, the parame-
terizations of the n-twisted and n-turns Klein bottles are obtained. All
geometric calculations and geometric interpretations are performed with
the Mathematica symbolic calculus system.

Keywords: Parameterization · Klein Bottle · Isometric
transformations in IR4 · Moving frame

1 Introduction

The Klein bottle plays a crucial role in the main modern sciences [3,4,12,13,15].
This surface was first described in 1882 by the German mathematician Felix
Klein. It may have been originally named the Kleinsche Fläche (“Klein surface”)
and then misinterpreted as Kleinsche Flasche (“Klein bottle”), which ultimately
may have led to the adoption of this term in the German language as well [2].
There are parameterizations in R4 of this surface, the two most popular are: non-
intersecting 4D parametrization (modeled from the flat torus) and the so-called
4D Möbius tube [17,18].

c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12949, pp. 261–272, 2021.
https://doi.org/10.1007/978-3-030-86653-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86653-2_19&domain=pdf
http://orcid.org/0000-0002-2582-8264
http://orcid.org/0000-0002-5010-767X
http://orcid.org/0000-0002-3873-6780
http://orcid.org/0000-0001-7260-1022
http://orcid.org/0000-0002-7823-1533
https://doi.org/10.1007/978-3-030-86653-2_19


262 R. Velezmoro-León et al.

In this paper we describe a technique to obtain the parameterization of the
Klein bottle. This technique uses isometric transformations such as translations
and rotations [11]. In addition, it makes use of the moving frame associated with
the unit circumference that lies in the xy-plane [7,11]. We have chosen to follow
a process that begins with the description of a technique to parameterize the
Euclidean cylinder in IR3, continues with the description of the same technique to
parameterize the Möbius strip in IR3, continues with the description of another
technique to parameterize the torus of revolution in IR4 and ends, inductively,
with the description of the technique to parameterize the Klein bottle in IR4.
After obtaining the parameterization of the Klein bottle, it became easy to
separate it into two parts, both parts being a separate Möbius strip. In addition,
the technique was useful to find the parameterization of the n-twisted and n-
turns Klein bottles are obtained [5,9]. All geometric calculations and geometric
interpretations are performed with the Mathematica v.11.0 symbolic calculus
system [19].

The structure of this paper is as follows: Sect. 2 introduces the basic con-
cepts related to surfaces and quotient spaces, as well as the parametrization
of the immersion of the Klein bottle in three-dimensional space. Then, Sect. 3
introduces the technique to parameterize the Klein bottle by means of isomet-
ric transformations. Here also the parameterizations of the n-twisted and n-fold
Klein bottles are obtained. Finally, Sect. 4 closes with the main conclusions of
this paper.

2 Basic Concepts

2.1 Surfaces and Quotient Spaces

Definition 1. A surface or 2-dimensional manifold is a topological space with
the same local properties as the familiar plane of Euclidean geometry [10].

Definition 2. Let X be a topological space and ρ be an equivalence relation on
X. If p : X → X/ρ, x �→ [x] is the natural surjective map, then the collection Ω
of all subsets U ⊂ X/ρ such that p−1(U) is an open set of X, forms the largest
topology on X/ρ such that p is continuous. The set X/ρ is called a quotient space
of X, with the quotient topology Ω and p is called an identification map [1].

Example 1. Let I × I be the unit square.

a. The Euclidean cylinder is the quotient space obtained from unit square I × I
by identifying (0, t) with (1, t), for all t ∈ I (see Fig. 1).

b. The torus of revolution is the quotient space obtained from unit square I × I
by identifying (t, 0) with (t, 1) and also (0, t) with (1, t), for all t ∈ I (see
Fig. 1).

c. The Möbius strip is the quotient space obtained from unit square I × I by
identifying (0, t) with (1, 1 − t), for all t ∈ I (see Fig. 1).
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d. The Klein bottle is the quotient space obtained from unit square I × I by
identifying (0, t) with (1, t) and also (t, 0) with (1, 1 − t), for all t ∈ I. Since
this identification can only be properly represented in IR4, a representation
of it is usually made in IR3, which is called immersion of the Klein bottle in
IR3 (see Fig. 2).

Fig. 1. Cylinder (top), Torus (middle) and Möbius strip (bottom) as the quotient space
of unit square.

Fig. 2. Klein bottle, immersed in IR3, as the quotient space of unit square.
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2.2 Parameterizations of the Immersion of the Klein Bottle in IR3

as a Tubular Surface

Let α(t) = (α1(t), α2(t)), t ∈ [a, b], be a curve lying on the xy-plane satisfying
‖α′(t)‖ �= 0. Let k = (0, 0, 1) be the z-axis unit vector and T = α′

‖α′‖ be the unit
tangent vector field of α(t). Let N = k × T. Then the couple of unit vectors
(N,k) is a moving frame orthogonal to α′(t) and can be used to construct a tube
around α(t) as follows:

tube(u, v) = α(u) + r(u) (cos vN+ sin vk) , (u, v) ∈ [a, b] × [0, 2π] ,

where the scalar continuous function r(t) gives the radius of the tube [8].
M. Trott’s [14] proposal is to define:

α(t) =
(

1
t4 + 1

,
t2 + t + 1

t4 + 1

)
, t ∈ (−∞,+∞) ,

r(t) =
84t4 + 56t3 + 21t2 + 21t + 24

672(1 + t4)

and the resulting image is shown in Fig. 3.

Fig. 3. Central curve α (left) and Klein bottle according to M. Trott’s definition (right).

Whereas, G. Franzoni [8] proposes the following definition:

α(t) = (a(1 − cos t), b sin t(1 − cos t)) , t ∈ [0, 2π] ,

r(t) = c − d(t − π)
√

t(2π − t) .

and the resulting image, with (a, b, c, d) =
(
20, 8, 11

2 , 2
5

)
, is shown in Fig. 4.
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Fig. 4. Central curve α (left) and Klein bottle according to G. Franzoni’s definition
(right).

3 Parameterizations of Some Surfaces by Isometric
Transformations

In this section, two isometric transformations are used: translations and rota-
tions, as well as a moving frame to parameterize the Euclidean cylinder, the
Möbius strip, the torus of revolution, and the Klein bottle. The first two in IR3

and the last two in IR4. Although the first three parameterizations are widely
known, they are mentioned as a preamble to the fourth parameterization that
we propose in this paper. To trace the surfaces construction process in IR4 a
trimetric-trimetric model according to [16] is used. This is,

O = {0, 0, 0}, B̂ =
{

3
5
√
3
(−1,−1,−1) , (1, 0, 0), (0, 1, 0), (0, 0, 1)

}
and

ϕ(p) =
(

p2 − 3p1
5
√
3
, p3 − 3p1

5
√
3
, p4 − 3p1

5
√
3

)
.

3.1 Parameterization of the Euclidian Cylinder in IR3

Let β(t) = (cos t, sin t, 0), t ∈ [0, 2π], be the unit circumference lying on the xy-
plane. Let k = (0, 0, 1) be the z-axis unit vector and T = β′(t) = (− sin t, cos t, 0)
be the unit tangent vector field of β(t). Let N = k × T. Let δ(s) =

(
0, s

2

)
,

s ∈ [−1, 1], be a segment lying on the normal plane associated with β; that
is, the plane generated by N and k. Then the couple of unit vectors (N,k) is
a moving frame orthogonal to β′(t) and can be used to construct a Euclidean
cylinder around β(t) as follows:

cyl(u, v) = β(u) + 0 · N(u) +
v

2
k , (u, v) ∈ [0, 2π] × [−1, 1] .

This is

cyl(u, v) =
(
cos(u), sin(u),

v

2

)
, (u, v) ∈ [0, 2π] × [−1, 1] (1)

and some resulting images are shown in Fig. 5.
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Fig. 5. Circumference β and the moving frame (N,k) (top-left) and Euclidean cylinder
construction process according to Eq. 1 definition (top-right,bottom-left,bottom-right).

3.2 Parameterization of the Möbius strip in IR3

Let R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
be the rotation matrix around a point in plane. Let

β(t) = (cos t, sin t, 0), t ∈ [0, 2π], be the unit circumference lying on the xy-plane.
Let k = (0, 0, 1) be the z-axis unit vector and T = β′(t) = (− sin t, cos t, 0) be the
unit tangent vector field of β(t). Let N = k × T. Let δ(s) =

(
s
2 , 0

)
, s ∈ [−1, 1],

be a segment lying on the normal plane associated with β; that is, the plane
generated by N and k. Then the couple of unit vectors (N,k) is a moving frame
orthogonal to β′(t) and can be used to construct a Möbius strip around β(t) as
follows:

mob(u, v) = β(u) + φ1(u, v)N(u) + φ2(u, v)k , (u, v) ∈ [0, 2π] × [−1, 1] ,

where φ(u, v) = R
(

u
2

) • (δ(v))�. This is

mob(u, v) =
(
cos(u) − 1

2
v cos

(u

2

)
cos(u), sin(u) − 1

2
v cos

(u

2

)
sin(u),

1
2
v sin

(u

2

))
, (u, v) ∈ [0, 2π] × [−1, 1] (2)

and some resulting images are shown in Fig. 6.
Also, if we do:

φ(u, v) = R
(nu

2

)
• (δ(v))� , n = 1, 2, . . .
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Fig. 6. Circumference β and the moving frame (N,k) (top-left) and Möbius strip
construction process according to Eq. 2 definition (top-right,bottom-left,bottom-right).

and we consider (u, v) ∈ [0, 2π] × [0, 2π], we will obtain n-twisted Möbius strips
(see Fig. 7).

Fig. 7. 2-twisted Möbius strip (left) and 3-twisted Möbius strip (right).

Similarly, if we do:

φ(u, v) = R
( u

2n

)
• (δ(v))� , n = 1, 2, . . .

and we consider (u, v) ∈ [0, 2π] × [0, 2nπ], we will obtain n-fold Möbius strips
(see Fig. 8).
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Fig. 8. 2-fold Möbius strip (left) and 3-fold Möbius strip (right).

3.3 Parameterization of the Torus of Revolution in IR4

Let β(t) = (cos t, sin t, 0, 0), t ∈ [0, 2π], be the unit circumference lying on the xy-
plane. Let k1 = (0, 0, 1, 0) and k2 = (0, 0, 0, 1) be the unit vectors in the z-axis
and w-axis directions, respectively, and T = β′(t) = (− sin t, cos t, 0, 0) be the
unit tangent vector field of β(t). LetN = k1×k2×T. Let δ(s) = 1

2 (cos s, sin s, 0),
s ∈ [0, 2π], be a segment lying on the normal plane associated with β; that is, the
3D-space generated by N, k1 and k2. Then the triad of unit vectors (N,k1,k2)
is a moving frame orthogonal to β′(t) and can be used to construct a torus of
revolution around β(t) as follows:

tor(u, v) = β(u) +
1
2
cos vN(u) +

1
2
sinuk1 + 0 · k2 , (u, v) ∈ [0, 2π] × [0, 2π] .

This is

tor(u, v) =
(
1
2
cos(u) cos(v) + cos(u),

1
2
sin(u) cos(v) + sin(u),

1
2
sin(v), 0

)
, (u, v) ∈ [0, 2π] × [−1, 1] (3)

and some resulting image are shown in Fig. 9.

3.4 Parameterization of the Klein Bottle in IR4

Let R(θ) =

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ be the rotation matrix around the y-axis. Let

β(t) = (cos t, sin t, 0, 0), t ∈ [0, 2π], be the unit circumference lying on the xy-
plane. Let k1 = (0, 0, 1, 0) and k2 = (0, 0, 0, 1) be the unit vectors in the z-axis
and w-axis directions, respectively, and T = β′(t) = (− sin t, cos t, 0, 0) be the
unit tangent vector field of β(t). LetN = k1×k2×T. Let δ(s) = 1

2 (cos s, sin s, 0),
s ∈ [0, 2π], be a segment lying on the normal plane associated with β; that is, the
3D-space generated by N, k1 and k2. Then the triad of unit vectors (N,k1,k2)
is a moving frame orthogonal to β′(t) and can be used to construct a Klein bottle
around β(t) as follows:

kle(u, v) = β(u)+φ1(u, v)N(u)+φ2(u, v)k1+φ3(u, v)k2 , (u, v) ∈ [0, 2π]×[0, 2π] ,
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Fig. 9. Circumference β and the moving frame (N,k1,k2) (top-left) and torus of revolu-
tion construction process according to Eq. 3 definition (top-right, bottom-left, bottom-
right). Note that the δ circumference does not leave the plane generated by N and k1.

where φ(u, v) = R
(

u
2

) • (δ(v))�. This is

kle(u, v) =
(
1
2
cos

(u

2

)
cos(u) cos(v) + cos(u),

1
2
cos

(u

2

)
sin(u) cos(v) + sin(u),

1
2
sin(v),−1

2
sin

(u

2

)
cos(v)

)
, (u, v) ∈ [0, 2π] × [0, 2π] (4)

and some resulting image are shown in Fig. 10.
It is known that the Klein bottle is the result of gluing two Möbius strips

together along their boundary circles [6]. If we plot

1 + kle(u, v) , (u, v) ∈ [0, 2π] × [0, π]

and
kle(u, v) , (u, v) ∈ [0, 2π] × [π, 2π]

we will obtain two appropriately separated Möbius strips to visualize this result
(see Fig. 11).

Also, if we do:

φ(u, v) = R
(nu

2

)
• (δ(v))� , n = 1, 2, . . .

and we consider (u, v) ∈ [0, 2π] × [0, 2π], we will obtain n-twisted Klein bottles
(see Fig. 12).
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Fig. 10. Circumference β and the moving frame (N,k1,k2) (top-left) and torus of revo-
lution construction process according to Eq. 4 definition (top-right,bottom-left,bottom-
right). Note that the δ circumference leaves the plane generated by N and k1 to effect
the rotational motion around the axis generated by k1.

Fig. 11. The Klein bottle as the result of gluing two Möbius strips together along their
boundary circles.
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Fig. 12. 2-twisted Klein bottle (left) and 3-twisted Klein bottle (right).

Similarly, if we do:

φ(u, v) = R
( u

2n

)
• (δ(v))� , n = 1, 2, . . .

and we consider (u, v) ∈ [0, 2π]× [0, 2nπ], we will obtain n-fold Klein bottles (see
Fig. 13).

Fig. 13. 2-fold Klein bottle (left) and 3-fold Klein bottle (right).

4 Conclusions

In this paper a technique to obtain the parameterization of the Klein bottle
has been described. This technique has used isometric transformations and the
moving frame associated with the unit circle lying on the xy-plane. The process
followed was to start with the parameterization of the Euclidean cylinder, then
continued with the parameterization of the Möbius band, then with the param-
eterization of the torus of revolution and finally, in a natural way, the aforemen-
tioned technique was described. With the parameterization of the Klien bottle
obtained, it was easy to show that it can be obtained by gluing two Möbius
strips. Additionally, the parameterizations of the n-twisted and n-fold Klein
bottles were obtained. All geometric calculations and geometric interpretations
were made with the Mathematica symbolic calculation system.

Acknowledgements. The authors would like to thank to the authorities of the Uni-
versidad Nacional de Piura for the acquisition of the Mathematica 11.0 license and the
reviewers for their valuable comments and suggestions.
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16. Velezmoro, R., Ipanaqué, R., Mechato, J.A.: A mathematica package for visual-

izing objects inmersed in R
4. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol.

11624, pp. 479–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24311-1 35

17. Wikipedia Homepage. https://en.wikipedia.org/wiki/Klein bottle. Accessed 24
June 2021

18. Wolfram Demonstrations Project Homepage. https://demonstrations.wolfram.
com/4DRotationsOfAKleinBottle/. Accessed 24 June 2021

19. Wolfram, S.: The Mathematica Book, 4th edn. Wolfram Media, Champaign; Cam-
bridge University Press, Cambridge (1999)

https://doi.org/10.1007/978-81-322-2843-1
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.14258/izvasu(2016)1-32
https://doi.org/10.1088/1742-6596/437/1/012024
https://doi.org/10.1007/978-3-030-24311-1_35
https://doi.org/10.1007/978-3-030-24311-1_35
https://en.wikipedia.org/wiki/Klein_bottle
https://demonstrations.wolfram.com/4DRotationsOfAKleinBottle/
https://demonstrations.wolfram.com/4DRotationsOfAKleinBottle/


On the Shooting Method Applied
to Richards’ Equation with a Forcing

Term

Fabio Vito Difonzo1(B) and Giovanni Girardi2

1 Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro,
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Abstract. The problem of modeling water flow in the root zone with
plant root absorption is of crucial importance in many environmental
and agricultural issues, and is still of interest in the applied mathematics
community. In this work we propose a formal justification and a theo-
retical background of a recently introduced numerical approach, based
on the shooting method, for integrating the unsaturated flow equation
with a sink term accounting for the root water uptake model. Moreover,
we provide various numerical simulations for this method, comparing the
results with the numerical solutions obtained by MATLAB pdepe.

Keywords: Numerical simulations · Richards’ equation · Shooting
method

1 Introduction

The problem of water movement in the root zone needs attention in different
scientific areas, and with different tools. For instance, this problem is interesting
for applied mathematicians, hydrogeologists, agronomists, and numerical analy-
sis scientists. As a matter of fact, mainly when considering the unsaturated con-
dition (which is exactly the case of subsurface and vadose zone applications) the
problem becomes challenging from different areas of mathematical research. On
the other hand, it is still open the interest in characterizing soils from hydraulic
point of view, with laboratory experiments, coupled sometimes with data driven
models for approximating hydraulic functions (see for instance [1]).

In the wide range of applications for this physical process, agronomical applica-
tions play a primary role, since the understanding of water dynamics into the soil
is necessary for efficiently managing any irrigation process (see for instance [2–4]).

The usual tool for modeling the water flow throughout an unsaturated porous
medium is the Richards’ equation, a parabolic PDE which still deserves a sig-
nificant research attention (see, for instance, [5–7]). Such a standard infiltration
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problem is further complicated by possible fractures in the porous media (see
[8,9]); or by soil heterogeneities, which can be treated by well-established discon-
tinuous numerical approaches (see for instance [10–12]), giving rise to successful
techniques in 1D and 2D spatial domains ([13,14]).

This model could be even endowed with a sink term representing (for
instance) the root water uptake (e.g. [15–20]). In this work we provide a theo-
retical background for a new approach, first proposed in [15]. Such an approach
can manage the choice of Gardner’s constitutive relations in solving Richards’
equation, differently from [21]; can take into account possibly any selection of
root uptake functions; and finally, no variable rescaling is necessary, as in [22].

We consider the θ-form of Richards’ equation in a one-dimensional spatial
domain:

∂θ

∂t
=

∂

∂z

[
D(θ)

∂θ

∂z

]
− dK(θ)

dθ

∂θ

∂z
− R(θ, t, z), t ∈ [0, T ], z ∈ [0, Z], (1)

where θ represents the volumetric water content, R is the root-water uptake
term, D is the soil water diffusivity and K is the hydraulic conductivity (see
[22]); [0, T ] is the time domain and [0, Z] is the spatial domain. The soil-water
diffusivity is

D(θ) := K(θ)
dh(θ)

dθ
; (2)

as usual h is the suction head in the unsaturated zone, and the plant-root
extraction function −R ∈ (−Rs, 0], with Rs ≥ 0, depends on θ ∈ [θr, θS ], where
θr is the residual water content and θs is the water content at saturation, assum-
ing that z is positive downward. As in [22], it is assumed that R has no explicit
dependence on time t (differently from [23]), “despite root-water uptake is, in
many cases, driven by daily cycles”. It is also assumed that R′(θ) > 0 and
R′′(θ) < 0.

The function R has generally a sigmoid shape, common to many other bio-
logical context (see for instance [24]): a classical piecewise linear model for root
water uptake function was proposed in [25] and, more recently, a stepwise app-
roach has been introduced in [26], where stationary solutions are studied for
Richards’ equation with discontinuous root water uptake models. In [27], differ-
ent piecewise Feddes uptake functions are considered, according to the depth;
in [28] different uptake functions are reviewed, whereas in [29] the use of root
uptake functions is discussed when in presence of water with high salinity.

2 The Shooting Method Approach and Its Theoretical
Background

We now endow (1) with initial and Dirichlet boundary conditions, which char-
acterize water contents at the top and bottom of the domain. In particular,
let θ0 : [0, Z] → [0,+∞) be the initial state profile, θ0 : [0, T ] → [0,+∞] and
θZ : [0, T ] → [0,+∞] be sufficiently smooth boundary functions, and let us
assume that
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θ(0, z) = θ0(z), z ∈ [0, Z], (3a)
θ(t, 0) = θ0(t), t ∈ [0, T ], (3b)
θ(t, Z) = θZ(t), t ∈ [0, T ]. (3c)

In order to face this model, we will first resort to a classical TMoL app-
roach and then we will integrate (1) and approximate its solution by means of
the shooting method, which in light of boundary conditions (3) seems a natural
strategy in this context.

2.1 Kirchhoff Transformation on Richards’ Equation with
Root-Water Uptake

Since, in practice, numerical methods for directly solving (1)–(3) with respect to
θ could be highly unstable because of the nonlinear nature of Richards’ equation
(see [30]), it is reasonable to transform the θ-based form by a suitable change
of variable, to obtain a new equation easier to handle using classical numerical
schemes (see also the recent papers [31,32]). Resorting to matric flux potential
allows to express (1) in a handier way, which comes from the classical Kirchhoff
transformation used in heat equation; more precisely, we introduce the variable

μ(θ(t, z)) :=
∫ θ(t,z)

θr

D(τ) dτ, (4)

which we plug into the boundary value problem (1)-(3).
Considering that

dμ

dθ
= D(θ)

and replacing this in (1) it follows that

F (μ)
∂μ

∂t
= Lμ − R(μ), (5)

where

L :=
∂2

∂z2
− G(·) ∂

∂z
(6)

is the Kirchhoff operator,

F (μ) :=
1

D(θ)
, G(μ) :=

1
D(θ)

dK

dθ
,

and R(μ) is identified with R(θ(μ)). Finally, we also get

μ(0, z) = μ0(z), z ∈ [0, Z], (7a)
μ(t, 0) = μ0(t), t ∈ [0, T ], (7b)
μ(t, Z) = μZ(t), t ∈ [0, T ]. (7c)
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Remark 1. If Gardner soil model is considered, then

K(h) = Kse
αh,

where α ∈ R, α �= 0. Let us stress that dK
dh = αK(h). Now, from (2), it follows

that D(θ) = 1
α

dK
dθ , and so

G(μ) = α.

Thus, within the Gardner model, the Kirchhoff operator L := ∂2

∂z2 − α ∂
∂z is a

linear elliptic differential operator.

2.2 Solving Richards’ Equation Applying Shooting Method

For applying TMoL to (5)–(7), the time derivative operator in the left-hand side
in (1) is approximated through a first order finite difference, choosing a time-step
Δt and a time mesh tn = nΔT , n = 0, . . . , N , for [0, T ] such that T = NΔt. Let
μ0(z) z ∈ [0, Z] be a known guess of the solution to (5) at time t = 0, we focus
on the following second order ordinary differential equation in space

F (μn)
μn − μn−1

Δt
= Lμn − R(μn), n = 1, . . . , N (8)

for z ∈ [0, Z], with boundary conditions

μn(0) = μ0(tn), μn(Z) = μZ(tn), n = 1, . . . , N. (9)

Rearranging (8) and exploiting (6), we obtain

d2μn(z)
dz2

=
F (μn(z))(μn(z) − μn−1(z))

Δt
+ Rn + ανn, (10)

where μn(0) and μn(Z) are given.
Next we will prove that, under the given assumptions on the functions R and

F , solution to the above problem (8) and (9) exists and is unique.
For sake of clarity, we state the argument in a more general setting. Let us

assume we have a nonlinear second-order boundary value problem

y′′(x) = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y(b) = β. (11)

It is just an observation that (10) is of the form described by (11).
We have the following result.

Theorem 1 ([33]). Assume that f(x, y, z) is continuous on the region R =
{(x, y, z) : a ≤ x ≤ b, y, z ∈ R} and that ∂f

∂y = fy(x, y, z) and ∂f
∂z = fz(x, y, z)

are continuous on R; further, let α, β ∈ R. If there exists a constant M > 0 for
which fy and fz satisfy

fy(x, y, z) > 0, for all (x, y, z) ∈ R, (12a)
|fz(x, y, z)| ≤ M, for all (x, y, z) ∈ R, (12b)
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then the boundary value problem

y′′ = f(x, y, y′), y(a) = α, y(b) = β

has a unique solution y = y(x) for a ≤ x ≤ b.

In order to numerically solve (11) we consider, for each k ∈ N, the following
initial value problem

y′′(x) = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y′(a) = α′
k, (13)

where α′
k ∈ R. The idea is to select the sequence of initial value problems,

depending on {α′
k}k∈N, such that

lim
k→∞

y(b, α′
k) = y(b) = β, (14)

where y(x, α′
k) denotes the solution to (13), for a given k ∈ N, and y(x) is the

solution to (11). We select α′
0 for starting the limit process (14) solving

y′′(x) = f(x, y, y′), a ≤ x ≤ b, y(a) = α, y′(a) = α′
0.

Then, if y(b, α′
0) is not sufficiently close to β, we keep solving (13) with different

values α′
1, α′

2 and so on until y(b, α′
k) is sufficiently close to β. Determining the

sought parameter α′
k requires solving a zero-finding problem of the form

y(b, α′) − β = 0

with respect to α′. Under the assumptions of Theorem 1, last problem could be
solved by using Newton’s method, considering the sequence

α′
k = α′

k−1 − y(b, α′
k−1) − β

η(b, α′
k−1)

, (15)

where η(x, α′) solves the following initial value problem

η′′(x, α′) =
∂f

∂y
(x, y, y′)η(x, α′) +

∂f

∂y′ (x, y, y′)η′(x, α′), η(a, α′) = 0, η′(a, α′) = 1,

for a ≤ x ≤ b.
In order to leverage (15) for solving (8)–(9), we need that

f(z, μn, νn) :=
F (μn(z))(μn(z) − μn−1(z))

Δt
+ Rn + ανn

fulfills assumptions of Theorem 1. Easy computations provide

∂f

∂μn
=

F ′(μn)(μn − μn−1) + F (μn)
Δt

+ R′(μn), (16)

∂f

∂νn
= α. (17)

From Eqs. (16) and (17) it follows that (12b) is always satisfied; whereas, in order
for (12a) to hold, it suffices to prove that μF (μ) is increasing, since in common
scenarios root-water uptake term R is usually increasing as a function of μ, so
that R′(μ) > 0. This is a consequence of the following.
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Proposition 1. Let I ⊆ R, f : I → R be differentiable over I and let us assume
that, for all x ∈ I, f(x) > 0, f ′(x) < 0 and f ′′(x) > 0. Then the function
x 	→ xf(x) is strictly increasing for all x ∈ I.

Proof. Let x0, x1 ∈ I and x0 < x1. By contradiction, assume x0f(x0) ≥ x1f(x1).
Thus

x0f(x0) ≥ (x1 − x0)f(x1) + x0f(x1).

Rearranging term yields

−x0(f(x1) − f(x0)) ≥ (x1 − x0)f(x1),

and using the fact that

f(x1) − f(x0) ≥ f ′(x0)(x1 − x0)

it follows that
−x0f

′(x0) ≥ f(x1),

since x1 − x0 > 0. But f(x1) > 0, giving a contradiction.

We observe now that, in Gardner model, F satisfies conditions of Proposi-
tion 1; moreover, since μn−1(z) is always positive – on the account of (4), then
F (μn)(μn − μn−1) is increasing as a function of μn, since so is F (μn)μn. Hence,
Theorem 1 guarantees existence and uniqueness of solution to (10).

The idea now is to express the boundary value problem (8) and (9) as a first
order differential equation endowed with suitable initial conditions, so that this
new differential problem yields the same solution as the first one: this is the core
idea of shooting method for solving boundary value problems.

Similarly to [15], we notice that Eq. (8) can be written as a first order system
of differential equations of the form

dμn

dz
= νn, (18a)

dνn

dz
= F (μn)

μn − μn−1

Δt
+ G(μn)νn + R(μn), (18b)

which we endow with the following initial conditions

μn(0) = μ0(tn), νn(0) = ν̂, (19)

ν̂ being computed by standard numerical methods (see, for instance, [34]) in
such a way that second condition in (9) is met, that is

μn(Z) = μZ(tn). (20)
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3 Numerical Simulations

Example 1. From [35] a loamy sand is considered with the following hydraulic
parameters:

θr = 0.057, θS = 0.41, KS = 350.2 cm/d. (21)

For this example, we consider a simulation time of T = 3 h and a spatial
domain of Z = 20 cm.

In order to apply our numerical methods to (8) for this specific soil, it is
advisable to first scale quantities and operators so to simplify the equations, as
in [22]; in particular, we set

Θ :=
θ − θr

θS − θr
. (22)

For exemplification purposes, Dirichlet boundary conditions will only be con-
sidered in the numerical computations displayed in Fig. 1.

Moreover, we will restrict ourselves to the setting of non-classical symmetry
classification: that is, soil-water diffusivity and root-water uptake satisfy the
condition

− R(μ) = A
μ

D(μ)
+ κμ. (23)

Fig. 1. Numerical simulations for the loamy sand with parameters (21), obtained by
shooting method, compared with the solution arising from MATLAB pdepe tool.
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Specifically, as in [22], we will consider the functions1:

D(μ) := ceμ,

R(μ) := μ(1 − e−μ),

with c = 1 − e−1 and k = −1.
Further, dealing with such re-scaled parameters, for all t ≥ 0 we consider a

time-varying top boundary condition at z = 0 given by

Θ(t, 0) =
2T − t

2T
0.6, (24)

meaning that θ(0, 0) = 0.2688; and a constant bottom condition at z = Z given
by

Θ(t, Z) = 0.1, (25)

implying that θ(0, Z) = 0.0923.
Let us point out that, after determining the normalized solution Θ(t, z)

(either by shooting or pdepe method) we go back to original water content
by computing

θ(t, z) = (1 − Θ(t, z))θr + Θ(t, z)θS .

Within this specific setting, we use as step-sizes Δt = 8.8974 min, and Δz ≈
1.3 cm when comparing pdepe and the shooting method: we point out that the
shooting method runs using a temporal step-size of one order less than pdepe,
while retaining similar performances (see Figs. 1 and 2).

In Fig. 1 we build numerical solutions of (18) with parameters as in (21)
and initial condition as suggested in [22] and according to the aforementioned
hydraulic functions and parameters, for comparing shooting solution to pdepe
solution. The initial condition at time t = 0 is a linear combination of exponential
functions of the form

Θ0(z) := c1e
λ1z + c2e

λ2z, (26)

such that Θ0(0) = 0.6, Θ0(Z) = 0.1. Thus, after straightforward computations,
we get

c1 =
0.1e−λ2Z − 0.6
eλ2Z − eλ1Z

,

c2 =
0.1 − 0.6e−λ1Z

eλ2Z − eλ1Z
,

with λ1,2 chosen arbitrarily but with different sign, so to make (26) retain a
physical meaning.

Figure 2 summarizes the behavior of different methods in this example.

1 We highlight that the uptake function R should be used as reported here, instead
as the one originally proposed in [22], in order for (23) to hold; the function D stays
the same.
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Fig. 2. Dynamics of water content over time for the aforementioned problem, referring
to a loamy sand in 1, with an uptake function as in [22]. The figures refer, respectively,
to the MATLAB pdepe solution and the shooting method, described in Sect. 2.

Example 2. Here, we consider a silty loam Swift current wheat site. We fix Z =
70 cm and T = 3 days, while the following hydraulic parameters are as follows:

θr = 0, θS = 0.48, KS = 100.1 cm/d

We select boundary conditions as

θ(t, 0) = 0.3610, θ(t, Z) = 0.2051, t ∈ [0, T ],

while initial condition is chosen to be

θ(0, z) = θ(0, 0) +
θ(0, Z) − θ(0, 0)

Z
z.

In this case example, we consider a different root uptake model that in Example
1, which would not require any re-scaling in order to be fruitfully handled. More
specifically, we adopt a Feddes-type stress function with the following form:

R = Rmaxα (h) , (27)

where Rmax is the so-called maximum uptake, representing the potential root
water uptake (see [21]), and the function α(h) is defined, for h4 < h3 < h2 <
h1 < 0, as

α(h) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if h1 ≤ h ≤ 0 or h ≤ h4,
h−h1
h2−h1

, if h2 < h < h1,

1, if h3 ≤ h ≤ h2,
h−h4
h3−h4

, if h4 < h < h3,

(28)

and represents the stress response function.
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Such a function is piecewise linear on the interval [h4, 0], so that α(h) is
just continuous with finitely many jumps in its derivative. Let us stress that
results in Sect. 2 still applies, and that - from a numerical point of view - a
wise selection of the discretized grid allows to overlook such points, where the
numerical integration may become stiff: this example shows, actually, that the
shooting method is also robust with respect to possibly mildly nonsmooth uptake
models.

Figure 3 depicts the solutions computed through MATLAB pdepe and the
Shooting method (18) for this specific soil setting, showing their similar behav-
iors.

Fig. 3. Dynamics of water content over time for the Example in 2. The soil is a silty
loam, and the uptake function is of Feddes type, cropped with wheat. The figures refer,
respectively, to the MATLAB pdepe solution and the shooting method, described in
Sect. 2.

Example 3. Let us consider the same soil parameters as in Example 2, with again
T = 3 days and Z = 70 cm. Same initial and boundary conditions as in Example
2 are selected.

For this example a Li uptake function (see [36]) is now modeling α(h) in (27).
More specifically, we select

α(h) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1+e
12.25

(
0.504− θ(h0)−θ(h)

θ(h0)−θ(hfc)

) , hfc < h < 0,

min
(
1, (H(h)τ(h))0.5

Tp/Tm

)
, hpwp ≤ h ≤ hfc,

0, h < hpwp,

being

H(h) :=
h − hpwp

hfc − hpwp
, τ(h) :=

θ(h) − θ(hpwp)
θ(hfc) − θ(hpwp)

, hpwp < hfc < 0.
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Again, such an uptake model α(h) is only continuous over the interval [hpwp, 0],
but nonetheless shooting method performs well and provides convergence, as
expected from Sect. 2.

Here, as in [36], the values of field capacity and permanent wilting point are,
respectively, hfc = −3 m, hpwp = −160 m, the maximum potential transpiration
rate Tm = 7.06 · 10−8 m/s and the potential transpiration rate Tp = 7.407 ·
10−8 m/s; finally, θ(h) is defined, as in [32],

θ(h) =

{
θr + (θS − θr)eλh, for h ≤ 0,

0, for h > 0.
(29)

A comparison between pdepe and the shooting method is depicted in Fig. 4.
As it can be seen, the shooting method keeps retaining a solution shape similar
to pdepe but, as shown in [15], it can manage more general and specific uptake
models and boundary conditions than pdepe.

Fig. 4. Water movement over time for the problem in Example 3, still regarding a silty
loam soil. The figures depict, respectively, MATLAB pdepe and the shooting method
solutions.

4 Conclusions and Future Works

In this paper we propose the theoretical background for the shooting method
applied to Richards’ equation with a sink term as proposed in [15]. We show
convergence results and exemplify on several soils with different uptake models.
A new approach, recently proposed in [37], rewrites (1) as an integral equation
and solves it by standard quadrature schemes. We anticipate to tackle such an
integral equation in presence of layered soils, and integrate it using a peridynam-
ics formulation, leveraging techniques developed in [38–40]). Modeling memory
terms of root water uptake (e.g. [41–43]) can also be faced in future mathematical
works, maybe also considering variations due to heat transfer [44].
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Abstract. Some pseudorandom sequences with good crytographic fea-
tures can be obtained from the interleaving of other families of sequences
with unsuitable properties. PN-sequences obtained from maximum-
length Linear Feedback Shift Registers exhibit good statistical aspects,
such as balancedness, large period, adequate distribution of 0s and 1s and
excellent autocorrelation, although their linearity makes them vulnera-
ble against cryptographic attacks. In this work, we present a preliminary
analysis on the random features of the interleaving of shifted versions of
a PN-sequence. The application of statistical and graphic tests and their
corresponding results complete the work.

Keywords: PN-sequence · t-interleaved sequence · Statistical tests ·
Randomness

1 Introduction

The interleaving of sequences has been a topic quite studied in the literature
[12,25,26]. Interesting algebraic and geometric results can be obtained by inter-
leaving term by term integer sequences [17]. In [36], the authors obtained new
families of almost balanced binary sequences with an optimal auto-correlation
value. As an extension of this work, in [19] the author investigated at what
extent interleaved binary sequences with period 4p obtained with the technique
given in [36] from Legendre and Hall sequences have high linear complexity.
Furthermore, in [27] the authors explored the linear complexity of three fami-
lies of binary sequences built from interleaving Legendre sequences, generalized
GMW sequences and twin-prime sequences (see also [38]). The interleaving of
pseudorandom sequences has been also used for signal synchronization (see [6]).
Here, the author constructed a binary timing sequence produced by interleaving
shorter pseudorandom sequences and discovered the parameter values giving the
minimum acquisition time. This paper also shows that there exists an optimum
number of component sequences for a proper interleaving.
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The output sequences of a maximum-length LFSR (Linear Feedback Shift
Register) are called PN-sequences (or m-sequences) [24]. Some keystream gener-
ators combine these PN-sequences using nonlinear functions in order to increase
their linear complexity and destroy their linearity producing keystream sequences
for cryptographic purposes. A very popular group of keystream generators is the
family of decimation-based sequence generators. Inside this class, the shrink-
ing generator was the first one to be introduced [16]. This generator is very
easy to implement and its formation rule is based on the irregular decimation
of one PN-sequence using the position of the ones of another PN-sequence. In
[8], the authors proved that the sequence produced by the shrinking generator
(the shrunken sequence) can be also generated interleaving shifted versions of
a PN-sequence. The vulnerability of this generator consists in the fact that the
shifts are known (see [8]), i.e., a shrunken sequence cannot be generated from
random shifted versions of a given PN-sequence. Some authors used this fact to
perform cryptanalytic attacks in order to break this generator (see for instance
[7–11]). A natural way to get over this weakness is to modify the shifts or to
interleave PN-sequences produced by different primitive polynomials.

In [12], the authors introduced the concept of t-interleaved sequence defined
as the sequence resultant of interleaving t sequences. They focused on the study
of the characteristics of the sequences obtained interleaving shifted versions of
a single PN-sequence with different shifts. In this work, we present a prelimi-
nary study on the randomness of these sequences. Furthermore, we perform an
important battery of tests such as FIPS 140 − 2, created by the National Insti-
tute of Standard and Technology [37], Maurer’s Universal Statistical Test [31],
and Lempel-Ziv Complexity Test [18] as well as some graphic tests effective to
investigate the behaviour of these sequences. The sequences that pass all the
tests above and have pseudorandom behaviour are potential candidates to be
used as keystream sequences in stream cipher applications [4,33]. Recall that in
stream ciphers the encryption is made XOR-ing the plaintext and the keystream.
The decryption is also made XOR-ing the ciphertext and the keystream. This
keystream must satisfy certain randomness characteristics, since the security of
the cipher depends completely on such a sequence. For example, the shrink-
ing generator is part of the internal structure of different stream ciphers as the
EP0619659A2 [15], an European patent application; or the Decimv2 , a hard-
ware oriented stream cipher submitted to the ECRYPT Stream CipherProject
(eSTREAM) [1], among other applications [5,14]. In addition, the shrunken
sequence has been considered as a particular solution of a kind of linear differ-
ence equations. In [13,22] the authors analyzed cryptographic parameters of this
decimated sequence in terms of solutions to linear equations. This sequence has
been also studied as the output sequence of linear elementary cellular automata
(CA) [8]. In [8] the authors used these CA and their properties to recover the
complete shrunken sequence. Therefore, it would be interesting to study these
applications using the t-interleaving sequences instead of the shrunken sequence
and compare the results.
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· · ·

· · ·

ui ui+1 ui+2 ui+n−2 ui+n−1

d0 d1 d2 dn−2 dn−1

Fig. 1. An LFSR of length n

This paper is organized as follows: In Sect. 2, we introduce some basic notions
and generalities about PN-sequences and the interleaving of such sequences. In
Sect. 3, we perform a randomness analysis of the interleaving of shifted versions
of a PN-sequence. Tables, figures and numerical results of the applied tests are
also provided. At last, in Sect. 4, we conclude our research with some finale
statements and some directions for the future.

2 Fundamentals and Basic Concepts

Let F2 = {0, 1} be the binary field, also known as the Galois field of two elements.
Let {ui} = {u0, u1, u2, u3, . . .} be a binary sequence, that is, each term of the
sequence satisfies ui ∈ F2, i ≥ 0. We say that {ui} is a periodic sequence if there
exists a positive integer τ such that ui+τ = ui, for all i ≥ 0. This number τ is
known as the period of the sequence.

Let n be a positive integer and d0, d1, . . . , dn−1 some elements of F2. A
sequence {ui} is called a binary n-th order linear recurring sequence if it satisfies

ui+n = dn−1ui+n−1 + dn−2ui+n−2 + . . . + d1ui+1 + d0ui, i ≥ 0 (1)

The relation in (1) is known as an n-th order linear recurrence relationship (l.r.r).
The polynomial of degree n given by

p(x) = xn + dn−1x
n−1 + dn−2x

n−2 + . . . + d1x + d0 ∈ F2[x],

is called the characteristic polynomial of the l.r.r. (and the characteristic poly-
nomial of {ui}).

The generation of linear recurring sequences can be carried out through Lin-
ear Feedback Shift Registers (LFSRs) [24]. An LFSR of length n is a device com-
posed of n interconnected stages. The initial state (stage contents at round zero)
is the seed, and since the register operates in a deterministic form, the resultant
sequence is completely determined by the initial state. The input of each round
is a bit resultant from applying a linear transformation function to a previous
state (see Fig. 1). If the characteristic polynomial p(x) of the corresponding l.r.r.
is primitive, then the LFSR is said to be a maximum-length. Furthermore, the
resultant sequence {ui} obtained from a maximum-length LFSR of n stages is
called PN-sequence (or m-sequence) and its period is τ = 2n − 1 (2n−1 ones and
2n−1 − 1 zeros) [24].
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The linear complexity of a sequence, denoted by LC, can be defined as the
lowest order l.r.r. that produces the sequence (in other words, the length of the
shortest LFSR that produces it). The Berlekamp-Massey algorithm can deter-
mine the characteristic polynomial and the LC of the sequence given 2 ·LC bits
of the sequence [29]. Therefore, it is obvious that the LC must be as large as
possible and that LFSRs should never operate as keystream generators (since
their LC is quite low). Their linearity has to disappear; that is, their LC has to
grow in order to consider their output sequences for cryptographic goals.

The following definition introduces the concept of t-interleaved sequence, the
main notion of this paper.

Definition 1. The sequence {vj} is a t-interleaved sequence if it is obtained
interleaving t sequences {a

(1)
i }, {a

(2)
i }, . . ., {a

(t)
i }, all of them with the same

period τ . As a consequence, the sequence {vj} has the following form:

{vj} =
{

a
(1)
0 , a

(2)
0 , . . . , a

(t)
0 , a

(1)
1 , a

(2)
1 , . . . , a

(t)
1 , . . . , a

(1)
τ−1, a

(2)
τ−1, . . . , a

(t)
τ−1

}
.

In this work, we consider that each one of the sequences {a
(k)
i }, k = 1, . . . , t, is

a shifted version a PN-sequence {ai}. It is worth noticing that if the characteristic
polynomial of {ai} is primitive with degree n, then the resultant t-interleaved
sequence is nearly balanced with t · 2n−1 ones.

In [12], the authors studied the period and LC of the interleaving of PN-
sequences. They mostly focused on the interleaving of 2r (a power of two) PN-
sequences produced by the same primitive polynomial, that is, shifted versions of
one single PN-sequence. In Sect. 3, we perform a deeper analysis on the random
characteristics of these new interleaving sequences, maintaining the focus on the
interleaving of shifted versions of a PN-sequence.

3 Randomness of the t-interleaved Sequences

Currently, an important and widely studied topic is to design non-linear light-
weight cryptography generators that produce sequences with good distribution
and statistical properties [8,20]. The study of randomness and unpredictability
of the sequences obtained by random number generators is essential to assess the
quality of them and their use in many applications as cryptography, numerical
analysis, information transmission, or game theory, among others [1,21,23]. For
that, we need some tools to evaluate whether a generator is random or not.

There are different statistical batteries and graphic techniques to carry out
this purpose. In this work, we present some results obtained through some of the
main statistical tests, as FIPS 140-2, Maurer’s Universal Statistical Test, and
Lempel-Ziv Complexity Test.

Moreover, we show some graphic tests, as chaos game or return map, which
help us to visualize the sequences generated and determine if they can be consid-
ered random. It is worth highlighting that although the sequences pass all these
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tests, it does not mean we have a perfect random number generator, but the con-
fidence in the generator increases. Moreover, we should expect some sequences to
appear nonrandom and fail at least some of the tests. However, if many sequences
fail the tests, we should be suspicious that our generator is not good.

In our study, we have analyzed hundreds of t-interleaved sequences for dif-
ferent values of t and generated from characteristic polynomials of degree L,
with 15 ≤ L ≤ 21. In this section, we show the media of the values obtained
for t-interleaved sequences obtained with various characteristic polynomials of
degree 21.

Firstly, we expose results obtained for our t-interleaved sequences using the
statistical tests mentioned above.

FIPS 140-2
The FIPS 140 − 2 is composed of four statistical tests which evaluate whether
a given sequence of numbers is random. For this goal, we need to assess binary
streams of 20000 bits. Any failure in some of these tests means that the sequence
must be rejected. Next, we give a little introduction about these tests and the
criteria used to determine whether a sequence pass each of the tests.

1. Monobit test : Count the number of 0 and 1 in the bitstream. If we denote
by X the number of 1s, then the test is passed if X ∈ (9725, 10275).

2. Poker test : Divide the sequence into blocks of 4 bits. Count and save the
number of coincidences of the 16 possible decimal values for the 4 bit blocks.
Let f(i) be the number of times that each one of these values appear, with
i ∈ [0, 15]. Compute

X =
16

5000

16∑
i=1

f(i)2 − 5000.

If X ∈ (1.03, 57.4), then the test is passed.
3. Runs test : A run is a maximal succession of consecutive identical bits (all

ones or all zeros) within the bitstream. Count and store the frequencies of
runs of all lengths (of lengths 1 through 6) in the sequence. For the intentions
of this test, runs with length >6 are considered in the range of length 6.
If the runs occurred are each within the corresponding interval specified in
Table 1, then the test is passed.

4. Long runs test : Long runs are runs of length ≥26 (either zeros or ones).

We show the results of the Runs test by a graphic representation. In Fig. 2,
we determine that the test is passed if the runs (runs of zeros, represented by a
red line, and runs of ones, represented by a blue line) that occur are each within
the green lines which represent the specific intervals determined in Table 1.
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Table 1. Required intervals for the different lengths of runs in the Runs Test

Length of the run Required interval

1 2,315–2,685

2 1,114–1,386

3 527–723

4 240–384

5 103–209

6+ 103–209

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Runs length

102

103

R
un

s 
fre

qu
en

cy

FIPS 1402 Runs Test

Fig. 2. Runs test for a 4-interleaved sequence of degree L = 16. (Color figure online)

Maurer’s Universal Test
This test is one of the 15 tests from the NIST statistical suite [3] for cryptographic
use. It locates the most general class of statistical faults. The randomness of a
binary sequence is checked by the entropy of the sequence, which is calculated
from the repetition intervals of blocks of length l in the sequence. The sequence
can be considered random, if the p-valued obtained is ≥0.01.

Lempel-Ziv Compression Test
This is a compression algorithm which replace strings that repeat in the sequence
with references to locations where they appeared first or with the length of
repeated pattern. The aim of this test is to determine how far the sequence
evaluated can be compressed. For this, the number of distinct patterns in the
sample stream will be analyzed. It is considered to be random if it can not be
compressed. If the p-value is greater or equal to 0.01, then Lempel-Ziv Test is
passed.
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All the analyzed t-interleaved sequences have successfully passed each one
of the previous tests. Table 2 presents a small sample of the results obtained in
Monobit test, Poker test, Maurer’s Universal test, and Lempel-Ziv test, given
different t-interleaved sequences obtained by characteristic polynomials of degree
21. All these values are the average of the results obtained for any sample of t-
interleaved sequences studied.

Table 2. Statistical test results for t-interleaved sequences obtained by characteristic
polynomials of degree 21.

t-interleaved Monobit test Poker test Maurer’s test Lempel-Ziv test

3 10008 20.6272 0.5778 0.9719

4 10001 16.2688 0.5715 0.6703

5 10018 16.9600 0.0594 0.0931

6 9838 10.7584 0.2842 0.5584

7 9945 17.4656 0.1482 0.6703

8 9934 15.4048 0.1422 0.6703

Next, we present two powerful graphic tools, the return application and chaos
game, which allow us to analyze the behaviour of our t-interleaved sequences
from a visual representation.

Return map
The return map visually measures the entropy of the sequence. This method is
an important cryptanalysis tool for chaotic cryptosystems introduced in [35] to
destroy diverse schemes based on the Lorenz system.

A interesting way to explore a random number generator is to create a visu-
alisation of the numbers that it produces. This type of methods should not be
considered as a formal analysis of the study of pseudorandom sequences, but it
can get a rough impression of the functioning of these. Obtaining a cloud with
patterns or fractals means that the sequence is non-random.

Figure 3 exhibits the return application of the 5-interleaved sequence gener-
ated by p(x) = x16 + x14 + x12 + x + 1. We observe that the graph is a messy
cloud without patterns which means that our sequences are random.

However, Figs. 4a and 4b are return applications of two 8-interleaved
sequences generated with a characteristic polynomial of degree 16 and 17, respec-
tively; we can observe the lack of randomness of these sequences since that
present clear patterns. At first glance, it seems that these imperfect sequences
only appear in some particular cases where t is a power of 2.

Chaos game
The chaos game is a most popular algorithm for approximating IFS fractals
[2,28,34]. This algorithm allows to carry out the conversion of a given sequence
into a 2D representation of that. As return application, this method is used
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Fig. 3. Return map of a 5-interleaved sequence of degree 16.
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(a) Return map of a 8-interleaved sequence
of degree 17.
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(b) Return map of a 8-interleaved sequence
of degree 16.

Fig. 4. Return maps of imperfect 8-interleaved sequences.

to analyze random number generators using visual representations of the data
generated [30,32].

In Fig. 5a, we show the chaos game representation of the 5-interleaved
sequence given previously. In this case, there is no any shape or figure, it is a
disordered cloud of points which implies good randomness. However, in Fig. 5b,
we obtain the chaos game for an 8-interleaved sequence generated with the char-
acteristic polynomial of degree 16, q(x) = x16 + x13 + x11 + x10 + x9 + x6 +
x3 + x2 + 1. In fact, we can observe a fractal structure repeated in this represen-
tation. It means that our sequence cannot been considered random. These chaos
game representations with such a well-defined patterns have only occurred on
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rare occasions, in a very insignificant percentage of t-interleaved sequences. How-
ever, as in the return map case, these imperfect sequences have the peculiarity
that the value of t is a power of 2.

(a) Chaos game of a 5-interleaved sequence(b) Chaos game of a 8-interleaved sequence
o
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Chaos game with all bits/sample.

of degree 16.
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f degree 16.

Fig. 5. Chaos game of t-interleaved sequences.

4 Conclusions

In this paper, we perform a preliminary analysis on the randomness of the t-
interleaved sequences. We use statistical and graphic tools to analyze the ran-
dom behaviour of these sequences. All our sequences have passed the statistical
tests successfully. Therefore, these sequences are suitable as keystream sequences
in stream cipher applications. Using two important graphic representations in
the analysis of pseudorandom number generators, we have observed that for
some particular cases, as for instance when t is a power of 2, we can obtain
sequences that cannot be considered random. As a future work, we would like to
analyze with more detail these cases where our sequences fail in order to deter-
mine the best values of t for which we can generate t-interleaved sequences with
good cryptographic properties. We would also like to study the interleaving of
PN-sequences generated from different primitive polynomials since that it could
contribute to obtain better cryptographic results.
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14. Dı́az Cardell, S., Fúster-Sabater, A.: Cryptography with Shrinking Generators.
SM, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12850-0

15. Coppersmith, D., Herzberg, A., Krawczyk, H.M., Kutten, S., Mansour, Y.: A
shrinking generator for cryptosystems (1987). https://patents.google.com/patent/
EP0619659A2/en

16. Coppersmith, D., Krawczyk, H., Mansour, Y.: The shrinking generator. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 3

17. Crilly, T.: Interleaving integer sequences. Math. Gaz. 91(520), 27–33 (2007)
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35. Pérez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett.
74, 1970–1973 (1995). https://link.aps.org/doi/10.1103/PhysRevLett.74.1970

36. Tang, X., Ding, C.: New classes of balanced quaternary and almost balanced binary
sequences with optimal autocorrelation value. IEEE Trans. Inf. Theory 56(12),
6398–6405 (2010)

37. U.S. Department of Commerce: FIPS 186, Digital signature standard. Federal
Information Processing Standards Publication 186, N.I.S.T., National Technical
Information Service, Springfield, Virginia (1994)

38. Xiong, H., Qu, L., Li, C., Fu, S.: Linear complexity of binary sequences with
interleaved structure. IET Commun. 7(15), 1688–1696 (2013)

https://doi.org/10.1007/3-540-44706-7_2
https://doi.org/10.1007/3-540-44706-7_2
https://www.sciencedirect.com/science/article/pii/S0893965911003922
https://www.sciencedirect.com/science/article/pii/S0893965911003922
https://www.sciencedirect.com/science/article/pii/S0164121296001586
https://www.sciencedirect.com/science/article/pii/S0164121296001586
https://doi.org/10.1007/BF00193563
https://doi.org/10.1007/b97624
https://link.aps.org/doi/10.1103/PhysRevLett.74.1970


Numerical Prediction Model
of Runway-Taxiway Junctions for Optimizing

the Runway Evacuation Time

Misagh Ketabdari1(B) , Ignacio Puebla Millán2 , Maurizio Crispino1 ,
Emanuele Toraldo1 , and Mariano Pernetti3

1 Transportation Infrastructures and Geosciences Section, Department of Civil and
Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy

{misagh.ketabdari,Maurizio.crispino,emanuele.toraldo}@polimi.it
2 Department of Bioengineering and Aerospace Engineering, University Carlos III de Madrid

UC3M, Madrid, Spain
3 Department of Engineering, Università della Campania “Luigi Vanvitelli”, 81031 Aversa, Italy

mariano.pernetti@unicampania.it

Abstract. It is vital to ensure efficient and fast connection networks that guarantee
the development of society in the global atmosphere. Air transport and airport
operations play fundamental roles that help to achieve the needs of globalized
society, constituting a pillar for providing essential services to a great number
of passengers and goods around the world. In the coming years, air industry is
expected to expand due to the imminent increase of passengers. This growth
in air passenger journeys demands several measures to be applied in airports
worldwide. Air traffic must comply with great levels of safety and efficiency
according to existing standards to guarantee optimal airport operations. Moreover,
airport infrastructures, such as runways and taxiways, should be continuously
improved to minimize the possible costs and probability of associated risks, and to
maximize their capacities by re-evaluating their designs to cope with the demands
derived from the growth in traffic forecasted for the future.

In this regard, a prediction model to simulate the behavior of aircraft in land-
ing was developed, allowing to predict the optimum locations of runway-taxiway
junctions, enhancing the efficiency of the runway, and minimizing the runway
evacuation time. This model is based on tire-fluid-pavement interactions that gov-
ern the dynamic behavior of the aircraft during landing in wet and dry pavement
conditions. The results provide the accurate landing distance required for oper-
ating aircraft inside the airport, which can be used to design enhanced capacity
runways, while guaranteeing the safety of operations by minimizing the related
accidents probabilities.
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1 Introduction

Due to the continuous international growth of society, air traffic is expected to experience
a significant increase by the end of the next twenty years, in terms of passengers and
goods [1]. However, this growth needs to be followed by the improvements in airport
infrastructures and enhancement of their related services, in order to satisfy the expected
market demands. Thus, it is necessary to continuously monitor the current needs of the
airports and to predict the possible future requirements.

Safety and efficiency are main objectives in air transport operations that are required
to be guaranteed by airport infrastructures such as runways and taxiways. These infras-
tructures should be continuously improved in order to minimize the related operations
costs and the risks derived from their use. Different scientific studies and standards
have been published worldwide trying to investigate possible solutions to these issues
[2], evaluating the safe operations on runways and the different possibilities to manage
the volume of passengers at airports worldwide. As a result, the efficiency of airports
infrastructures can be maximized by re-evaluating their designs and characteristics and
providing alternative design solutions in order to cope with the demands derived from
the growth in traffic forecasted for the future.

In this context, runway and taxiway designs and their junctions are playing a vital role
in determining the runway capacity, evacuation time, fuel consumption, and associated
costs of related operations. Therefore, it is essential to develop a prediction model that
offers optimized solutions of the taxiway junctions’ locations according to the operating
fleet.

Furthermore, landings are complex operations that nowadays contribute to one of
the major phases of flights in which accidents occur with higher probabilities [3, 4].
Therefore, this study focused on the aircraft behavior during landings in order to provide
a deeper understanding of the underlying physical principles which set the basis for the
runway and taxiway designs.

2 Background Review and Scope

The available methods to predict the behavior of aircraft in landing are mainly based on
empirical methods [5–7] and [8], which were trying to predict pavement friction based
on models derived from experimental data [9, 10] and [11]. These approaches generally
include the effects of pavement contamination (e.g. presence of water-film on pavement)
in their computations. The main issue in the development of these methods is the lack
of reference data regarding operating aircraft to be adopted in the simulations of these
models. The results obtained in these experimental studies are tightly bounded to a strict
range of values in final approach speeds, tire pressures andwater-film thicknesses, which
lead to major difficulties when the same approaches are required to be extrapolated
to other areas of interest with values that fall out of range of those adopted by the
original studies. Thus, the aim of this study is to extend those limitations, allowing to
reach a deeper understanding and evaluating the influences of a wider range of involved
parameters [12, 13].

Among analytical models available in literature, the one developed by Ong and Fwa
[5, 6] was selected as a reference for this study. This model proposes a three-dimensional
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approach based on Finite Element Analysis (FEA) using computational simulation,
which integrate three sub-models of fluid, tire and pavement in order to analyze the
relative influencingparameters that govern thedynamics of the operations.Consequently,
it is possible to determine precisely the optimal distances of runway-taxiway junctions
from the runway’s threshold, according to numerous impact parameters such as airport
climate pattern, operating aircraft categories, infrastructure type and capacity, route
connections, and operating costs.

3 Methodology

Determining the most accurate model among the existing ones in the literature, which
can portray the dynamic behavior of aircraft in landing, was one of the main challenges
for this study. Most of the current available studies focused on experimentally derived
empirical models due to simpler parameters to be considered in their methodologies.
However, in this study a computational finite element model centered on a theoretical
basis was developed, in order to simulate the interactions between aircraft tire, fluid, and
different types of pavements.

The selected theoretical approach is based on the research conducted by Horne et al.,
published by NASA [9, 10]. In this context, the dynamic influences of the fluid forces
acting on the main gear tire throughout the whole landing process can be evaluated.

In this regard, the crucial forces, which should be implemented in fluid equations, are
the fluid drag and uplift forces,whose values varywith the change in aircraft velocity. The
fluid drag force acting on the main gear tire in presence of various water-film thicknesses
on the runway surface can be expressed for a single aircraft wheel as:

Fdrag = 1

2
CDhρwtwf (w)V 2 (1)

Where, Fdrag stands for the fluid drag/retardation force;CDh represents the hydrody-
namic drag coefficient; ρw is the water density; tw is the water-film thickness; V stands
for the aircraft speed; and f(w) is a function which stands for the chord length of the tire
cross section at the water surface, which has been presented by Horne et al. [9] as:

f (w) = 2w

[
δ + tw
w

−
(

δ + tw
w

)2
] 1

2

(2)

Where,w stands for the tirewidth; and δ represents the vertical tire deflection. As a result,
it can be deduced that the fluid drag force varies linearly respect to the fluid density and
thickness, the tire width, and the landing velocity squared. It must be highlighted that in
order to avoid higher complexity, this study considered the evaluation of the drag force
for a single wheel or front mounted tandem wheel ignoring the effects of other possible
landing gear components in the surroundings. Additionally, the possible effects induced
by hydroplaning in the drag force are not considered for simplification purposes.

The fluid uplift force also generates a significant effect over the main gear tire, which
can be the cause of the phenomena called hydroplaning in its higher values. This force,



Numerical Prediction Model of Runway-Taxiway Junctions 301

which also needs to be modeled accurately, can be expressed for a single aircraft wheel
as:

Fuplift = 1

2
CLhρwAV

2 (3)

Where,Fuplift stands for the fluid uplift force;CLh represents the hydrodynamic uplift
coefficient; ρw is the water density; A is the tire-ground gross contact area; and V is the
aircraft landing velocity. However, Eq. 3 only portrays the effect of the hydrodynamic
pressure on the tire footprint area. According to [11], the front region of the water-
film layer impacting the tire, known as the water wedge, needs to be considered as the
hydrodynamic pressure in this region contributes also to the total vertical force. This
way, this region is defined by the water wedge length l until the water reaches the tire
footprint. If the effects of water spray are neglected, the effect of the hydrodynamic
pressure in this region can be expressed through the Eq. 4.

Fwedge = wlρwV
2 (4)

Where Fwedge stands for the fluid uplift force in the wedge region; w represents the tire
width, l is the length of the wedge; and V is the aircraft velocity. The length of wedge
can be calculated by modeling the tire profile, as presented in Fig. 1.

Fig. 1. Tire contact simplified model [14]

Finally, the overall vertical force acting on main gear tire can be computed by com-
bining both contributions represented by Eqs. 3 and 4. This way, when the Fuplift equals
the aircraft wheel load, it causes a complete loss of braking potential and consequently
aircraft sliding with the wheel locked up on the existing water-film on the runway sur-
face (i.e. hydroplaning phenomenon). Therefore, fluid uplift force has a great impact
on the friction between tire and pavement in presence of water-film on the surface, and
consequently on the final landing required distance. Both drag and uplift fluid forces
have been used inside the developed model in order to predict the optimal locations of
runway-taxiway junctions, as illustrated in Fig. 2.

After determining accurate models to evaluate the related fluid forces acting on the
tire and pavement surface, a MATLAB®-based numerical model has been developed in
order to simulate the dynamic behavior of aircraft in landing based on the aerodynamics
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Fig. 2. A part of developed numerical script to compute the fluid drag and uplift forces

of the aircraft components, their structural mechanics, and the fluid dynamics based
on the guidelines established previously by Ong et al. [5, 6], Pasindu et al. [15] and
Ketabdari et al. [16, 17], as illustrated in Fig. 3.

Fig. 3. A part of developed numerical script to compute the aircraft braking distance in landing

4 Validation

In order to evaluate the accuracy of the developed model results for computing the
dynamic skid resistance in wet pavement, and to evaluate the model’s reliability for
aircraft tires, a preliminary validation study has been performed. In this procedure, the
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skid resistance values obtained by the developed computation model were compared to
the experimental data extracted from Horne et al. study [18] to check the applicability
of the selected approaches. The conditions set for this validation process are gathered in
Table 1.

Table 1. Boundary conditions set for validation process of skid resistance model

Tire dimensions Tire type Wheel load Water-film thickness Inflation pressure

32 × 8.8 inches VII 9979 kg 3.8 mm 1999.5 kPa

Two types of pavements were considered in the computations of this study; rigid
pavement runway (i.e. concrete) with tested sliding speed range from 10 to 40 m/s;
and flexible pavement runway (i.e. asphalt) with tested sliding speeds range from 10 to
50 m/s. The extracted experimental Skid Number values (SNv) and those obtained by
the developed model of this study are presented in Table 2.

Table 2. Skid number values computed versus those collected from literature

V (m/s) SNv (literature) SNv computed
(model)

Percentage error
(%)

Concrete Asphalt Concrete Asphalt Concrete Asphalt

10 23 39 21 36.5 −8.7 −6.4

20 20 34 19.5 33.5 −2.5 −1.4

30 16.5 29 17 30 +3.0 +3.4

40 13 24 14 24.5 +7.7 +2.1

50 – 19 – 17.5 – −7.9

As it can be interpreted from Table 2, the SN values obtained for asphalt and con-
crete pavements from the developed computation models present sufficient similarity
to those extracted from the literature [18], which can guarantee a significant accuracy
of the developed fluid-tire-pavement interaction model. The absolute percentage errors
obtained for the predictions were resulted below ±9% with low numerical differences.
Therefore, it can be stated that the chosen methodology constitutes a suitable approach
for the simulation of the behavior of aircraft tires over the wet runway pavement.

5 Traffic Data and Aircraft Classification

Once the applicability of the methodology has been validated, it is possible to find a
solution for the taxiway design. Nevertheless, in order to provide an efficient solution,
a database of operating aircraft should be provided to be adopted by the model.
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These data can consist of commercial airplanes and general aviation. The character-
istics of the aircraft belonging to these two categories generally differ from each other
in term of dimension, weight, fuel consumption, and operation costs, however, both cat-
egories are assumed to operate on the same runway. Therefore, same simulation steps
and circumstances should be applied on both aircraft categories.

According to the simulation model described in previous sections, the main tech-
nical specifications of aircraft that are required in the proposed prediction model are
Maximum Landing Weight (MLW), landing gear arrangement, tire inflation pressure,
tire dimensions, aerodynamic lift and drag coefficients, final approach speed (V), and
wing area (S). These data are generally available through the Airport Planning Manu-
als (APMs) or reliable aircraft database sources such as BADA-Eurocontrol [19], and
Aircraft Performance Database (APD) [20].

The database used for the simulations is composed by 95 aircraft, classified into
different groups based on their final approach speeds, according to the criteria established
by ICAO [21]. In Table 3 a partial list of these aircraft is presented.

Table 3. A partial preview of provided aircraft database to be adopted by the proposed model

Operating aircraft Aircraft category MLW (kg) V (m/s) S (m2)

Airbus A319 C 62500 64,82 122,60

Airbus A320 C 66000 69,96 122,60

Embraer 175 C 34000 63,79 72,72

Embraer 190 C 43000 63,79 92,53

Boeing 737-800 Winglets D 65317 73,05 124,65

Airbus A320 Sharklets C 66000 69,96 122,60

Airbus A321 D 75500 72,02 122,60

Boeing 737-700 Winglets C 58060 66,88 124,65

McDonnell Douglas MD-82 C 58967 68,93 112,32

Airbus A318 C 57500 62,25 122,60

Boeing 737-400 C 56245 71,51 91,09

Boeing 737-300 C 51710 68,42 91,09

Boeing 737-800 D 65317 73,05 124,65

McDonnell Douglas MD-83 D 63276 74,08 112,32

De Havilland DHC-8 (8-400) B 28009 62,63 63,10

ATR 72 B 22350 58,65 61,00

Embraer Brasilia E120 A 11700 58,13 39,40

According to ICAO [21], aircraft should be classified respect to their final app-
roach/threshold speeds. This way, four official groups can be formed: groupA comprises
those aircraft with final approach speeds lower than 91 kts (46 m/s); group B comprises
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those whose speeds are higher than 91 kts and lower or equal to 121 kts (61 m/s); group
C comprises the models with speeds ranging from 122 kts to 140 kts (72 m/s); and group
D includes those models with final approach speeds higher than 141 kts up to 165 kts
(85 m/s). As a result, four groups are established, as presented in Fig. 4.

Fig. 4. Aircraft categorisation based on final approach speeds

6 Results and Discussion

The inputs required to be adopted in the simulation process as the boundary conditions
of this study are air density (ρ: 1.225 kg/m3), water density at 25 ºC (ρw: 997.1 kg/m3),
landing speed reduction (ks: 2 m/s), water-film thickness (tw: 3 mm), dry friction coef-
ficient (μ: 0.5), flap induced drag variation (Δf : 0.12), and runway exit speed (Vexit : 30
kts).

Based on the selected boundary conditions and aircraft categorization approach, the
proposed model can simulate the aircraft behavior in landing operations for wet and dry
pavement scenarios. The results will be used in numerical prediction of the locations of
taxiway exits with optimal operations capacity for the airport design.

The behavior of aircraft in landing can be predicted by calculating the aircraft Land-
ingDistanceRequired (LDR).Once theLDRsof selected operating aircraft are computed
based on the finite element model explained in methodology chapter, an individual Opti-
mal Turn-off Point (OTP) for each of these aircraft will be determined, which are needed
in order to determine the closest location of runway exit junction.

As a result of simulations of landing aircraft behavior for selected operating aircraft
(Table 3) through proposed model, the predicted locations of runway-taxiway junctions
for wet and dry pavement scenarios are presented in Figs. 5 and 6. It is assumed that the
landing direction is to be only from left toward right designation. According to ICAO
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[21], a minimum separation of 450 m should be guaranteed between parallel runway
exits.

Fig. 5. Predicted optimal locations of three runway-taxiway junctions for designing a runway in
wet pavement scenario (not to scale)

Fig. 6. Predicted optimal locations of four runway-taxiway junctions for designing a runway in
dry pavement scenario (not to scale)

In dry pavement scenario, shorter landing distances resulted in an accumulation of
OTPs over areas closer to the runway landing threshold respect to the wet pavement
scenario.

Aircraft mean rolling distances can be calculated in order to evaluate the effectivity
of both proposed solutions. These distances are defined as the travelled distance from
each individual OTP to the actual runway exit. Lower rolling distances will logically
lead to lower evacuation times. Therefore, thanks to OTP calculations, it is possible
to maximize the runway capacity and performance level, which would increase the
number of operations. These mean rolling distances related to the predicted locations of
proposed model (proposed configurations) should be compared with common runway
taxiway configurations for selected operating aircraft, in order to evaluate the solutions
efficiency. Therefore, current runway-taxiway configuration of an Italian international
airport was selected for comparative purposes, and the results are presented in Table 4.

As it can be interpreted from the obtained results, new runway-taxiway configura-
tions for both wet and dry surfaces offer improvements respect to the common runway
configurations in term of reduction inmean rolling distances and consequently reduction
in total runway evacuation time. A reduction of 27% (95 m) for wet pavement condition
and a reduction of 42% (149 m) for dry pavement condition have been registered in
mean rolling distances for landing operations.



Numerical Prediction Model of Runway-Taxiway Junctions 307

Table 4. Calculated mean rolling distances for wet and dry pavement scenarios

Results Mean rolling
distance

Distance variation Percentage
variation

Wet Dry Wet Dry Wet Dry

Proposed configurations 275 m 207 m −95 m −149 m −27% −42%

Existing
configurations

370 m 356 m

7 Conclusion

The accurate estimation of the aircraft landing distances constitutes a complex process in
which diverse parameters of different nature play significant roles. Themain scope of this
study was to develop a precise numerical prediction model to simulate the interactions
between tire-fluid-pavement during landing phase of flight and finally offers a possibility
to extrapolate this methodology and apply it on different airports with various boundary
conditions.

This study is a complementary work to the previous attempts by the authors [15,
16], which had to face different criticalities encountered during the model development
stages, such as lack of precise referencemodels and complete experimental databases. In
this study, the prediction model, which is based on the analysis of pavement friction and
fluid properties, has been developed by adopting the equations offered by Horne et al.
[9, 10] and Sinnamon et al. [11], providing an alternative way to the existing models
proposed by Ong et al. [5, 6], Pasindu et al. [15], and finally validated according to
existing experimental data from available literature [18].

The developed model can simulate the aircraft dynamic behavior in landing opera-
tions for wet and dry pavement conditions. As a result of the simulation, LDR for aircraft
in dry pavement condition demonstrate noticeable shorter values respect to the values for
wet pavement, which clarify the conspicuous impact of contaminants over the runway
surface.

Eventually, the proposed methodology successfully proved to be a valid approach
in order to calculate the accurate aircraft braking distance in landing phase of flight,
which can be adopted for commercial airports with various types of operating aircraft to
perform similar studies, trying to optimize the operation capacity of their infrastructures
(e.g. runways and taxiways). Therefore, it will constitute one of the possible ways to
improve the safety and efficiency of the operations, and to achieve noticeable reductions
in terms of overall airport operations costs and infrastructures evacuation times, while
ensuring and matching the needs of growth in air passenger journeys and goods freight
demands.
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Abstract. In this paper we derive new explicit two-stage peer meth-
ods for the numerical solution of ordinary differential equations by using
the technique introduced in [2] for Runge-Kutta methods. This technique
allows to re-determine the order conditions of classical methods, obtain-
ing new coefficients values. The coefficients of new methods are no longer
constant, but depend on the Jacobian function of the ordinary differen-
tial equation. The new methods preserve the order of classical peer meth-
ods, and are more accurate and with better stability properties. Numerical
tests highlight the advantage of new methods especially for stiff problems.

Keywords: Peer methods · Jacobian-dependent coefficients

1 Introduction

Peer methods are two-step s-stage methods for the numerical solution of Ordi-
nary Differential Equations (ODEs)

y′(t) = f
(
t, y(t)

)
. (1)

After the work of R. Weiner et al. [1], much more research has been conducted
on peer methods, since based on the choice of their coefficients you can obtain
explicit parallelizable methods [7–10], simply explicit methods [11–16] or implicit
methods [17–21]. It is also possible to use particular techniques, such as the
Exponential Fitting (EF) [6], obtaining peer methods adapted to the problem
[22–24], as they follow the apriori known trend of the real solution.

In this paper we focus on solving the problem (1), and we derive the coeffi-
cients of the peer methods in a different way, using the approach that was applied
on explicit two- and three-stage Runge-Kutta methods in [2]. Subsequently, the
same technique was also applied by other authors on explicit four-stage Runge-
Kutta methods [4]. In all these cases, for particular choices of the coefficients,
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A-stable versions of the methods are obtained, with accuracy order that increases
by one compared to the standard case. In the paper [3], specific numerical tests
have been carried out in order to confirm these theoretical observations.

We consider explicit peer methods of the form

Yn,i =
s∑

j=1

bij Yn−1,j + h

s∑

j=1

aij f(tn−1,j , Yn−1,j) + h

i−1∑

j=1

rij f(tn,j , Yn,j),

i = 1, ..., s,

(2)

where the stages are Yn,i ≈ y(tn,i), with tn,i = tn + h ci, and the coefficients
matrices are

A = (aij)si,j=1, B = (bij)si,j=1, R = (rij)si,j=1, (3)

with R lower triangular matrix.
The coefficients are obtained by modifying the classical order conditions for

peer methods, according to the approach proposed in [2], and, as a consequence,
they depend on the Jacobian of the function f . This new Jacobian-dependent
methods have better stability properties than the classical ones.

The organization of this work is the following: in Sect. 2 we show the classic
form of the explicit two-stage peer methods; in Sect. 3 we derive the Jacobian-
dependent coefficients of the new two-stage peer methods by imposing different
order conditions than the standard case; in Sect. 4 we analyze the linear stability
properties of the classic and Jacobian-dependent methods, obtaining for the
latter a particular version characterized by a bigger absolute stability region; in
Sect. 5 we show numerical tests in order to confirm our theoretical observations;
in Sect. 6 we discuss the results and the future research.

2 Classic Peer Methods

Given a discretization {tn, n = 1, ..., N} of the time interval [t0, T ] associated
to the problem (1), classic explicit two-stage (s = 2) peer methods assume the
form

Yn,1 = b11 Yn−1,1 + b12 Yn−1,2 + h a11 f(tn−1,1, Yn−1,1) + h a12 f(tn−1,2, Yn−1,2),
Yn,2 = b21 Yn−1,1 + b22 Yn−1,2 + h a21 f(tn−1,1, Yn−1,1) + h a22 f(tn−1,2, Yn−1,2)

+ h r21 f(tn,1, Yn,1),
(4)

where c1 ∈ [0, 1) and c2 = 1 (it is convention to use cs = 1 for s-stage peer
methods). Remembering that Yn,i ≈ y(tn,i), tn,i = tn + h ci, the solution at the
generic grid point tn + h is determined by Yn,2, in each time step from tn to
tn+1 = tn + h.
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The classical order conditions of explicit peer methods are obtained by anni-
hilating the necessary number of residuals, defined as

hΔi := y(tn,i) −
s∑

j=1

bij y(tn−1,j) − h

s∑

j=1

aij y′(tn−1,j) +
i−1∑

j=1

rijy
′(tn,j),

i = 1, ..., s.

(5)

In fact, the following definition applies:

Definition 1. The peer method

Yn,i =
s∑

j=1

bij Yn−1,j + h

s∑

j=1

aij f(tn−1,j , Yn−1,j) + h

i−1∑

j=1

rij f(tn,j , Yn,j),

i = 1, ..., s,

(6)

is consistent of order p if

Δi = O(hp), i = 1, ..., s. (7)

To familiarize with the technique we will apply in the next section, in the cur-
rent section we collect the coefficients of classic explicit two-stage peer methods
using it already.

2.1 Two-Stage Classic Version

In this paragraph we impose differently the same order conditions as obtained
in [1] in the general case of s stages. In order to derive them, we define the Local
Truncation Errors (LTEs) related to the stages as in (9), replacing Y1(t) and
Y2(t) with the continuous functions defined in (10).

The method we analyze in this work is (4), and to have visibility of its free
coefficients, we consider them in the following matrices:

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12
b21 b22

)
, R =

(
0 0

r21 0

)
, c =

(
c1 1

)
. (8)

There are ten free coefficients, and we’re going to determine some of them by
requiring that the accuracy order of the method be equal to two. After that, in
Sect. 4, we’ll assign the coefficients left free with the aim of achieving optimal
linear stability properties.

Remembering that the stages Yn,1 and Yn,2 determine the numerical solution
at the mesh points tn + h c1 and tn + h (= tn+1), respectively, we define the
linear operators

L1

(
y(t)

)
= y(t + h c1) − Y1(t), L2

(
y(t)

)
= y(t + h) − Y2(t), (9)
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that are functions by which you can measure the error of (4). In fact, with Y1(t)
and Y2(t) we indicate the continuous expressions of the discrete stages Yn,1 and
Yn,2, respectively:

Y1(t) = b11 y
(
t + h(c1 − 1)

)
+ b12 y(t) + h a11 y′(t + h(c1 − 1)

)
+ h a12 y′(t),

Y2(t) = b21 y
(
t + h(c1 − 1)

)
+ b22 y(t) + h a21 y′(t + h(c1 − 1)

)
+ h a22 y′(t)

+ h r21y
′(t + h c1).

(10)
We evaluate L1

(
y(t)

)
and L2

(
y(t)

)
for y(t) = tk, k = 0, 1, 2, ..., but, as

explained in [2,5,6], for linear operators only the moments (i.e. the expressions
of Li(tk) corresponding to t = 0) are of concern. The notation we use to indicate
the moments of order k associated with operator Li is Li,k := Li(tk). Linear
operators can be written in a form similar to Taylor series expansion, the terms
of which are their respective moments, so the following property holds:

Li

(
y(t)

)
=

∞∑

k=0

1
k!

Li,k y(k)(t). (11)

These operators represent the LTEs committed, i.e. a measure to determine how
much the solution of the differential Eq. (1) fails to solve the difference Eq. (4).

The complete expression of L1(tk) is, combining (9) and (10),

L1(tk) = (t + h c1)k − b11
(
t + h(c1 − 1)

)k − b12 tk − h k a11

(
t + h(c1 − 1)

)k−1

− h k a12t
k−1,

(12)
and the moments L1,0, L1,1, L1,2 and L1,3 are

L1,0 = 1 − b11 − b12,

L1,1 = h c1 − h b11(c1 − 1) − h a11 − h a12,

L1,2 = (h c1)2 − b11
(
h(c1 − 1)

)2 − 2h a11

(
h(c1 − 1)

)
,

L1,3 = (h c1)3 − b11
(
h(c1 − 1)

)3 − 3h a11

(
h(c1 − 1)

)2
.

(13)

Cancelling the first three moments leads to the following three equations system,
which the coefficients of (4) must satisfy so that the accuracy order of the first
stage Yn,1 is equal to two:

⎧
⎪⎨

⎪⎩

1 − b11 − b12 = 0,

c1 − b11(c1 − 1) − a11 − a12 = 0,

c21 − b11(c1 − 1)2 − 2 a11(c1 − 1) = 0.
(14)

In fact, from (9) and applying (11) to L1(tk), leads to

y(t + h c1) = Y1(t) +
h3

3!
(
c31 − b11(c1 − 1)3 − 3 a11(c1 − 1)2

)
y′′′(t) + O(h4). (15)
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We indicate the LTE on Yn,1 with err1(t), and the Principal term of the Local
Truncation Error (PLTE) on Yn,1 with terr1(t):

err1(t) = terr1(t) + O(h4), with

terr1(t) =
h3

3!
(
c31 − b11(c1 − 1)3 − 3 a11(c1 − 1)2

)
y′′′(t).

(16)

By doing the same on the second stage Yn,2 which, like the first stage Yn,1,
we calculate with order of accuracy equal to two, we obtain:

L2(tk) = (t + h)k − b21
(
t + h(c1 − 1)

)k − b22t
k − h k a21

(
t + h(c1 − 1)

)k−1

− h k a22 tk−1 − h k r21
(
t + c1 h

)k−1
,

(17)
L2,0 = 1 − b21 − b22,

L2,1 = h − h b21(c1 − 1) − h a21 − h a22 − h r21,

L2,2 = h2 − b21(h(c1 − 1))2 − 2h a21(h(c1 − 1)) − 2h2r21 c1,

L2,3 = h3 − b21(h(c1 − 1))3 − 3h a21(h(c1 − 1))2 − 3h r21 (h c1)2,

(18)

⎧
⎪⎨

⎪⎩

1 − b21 − b22 = 0,

1 − b21(c1 − 1) − a21 − a22 − r21 = 0,

1 − b21(c1 − 1)2 − 2 a21(c1 − 1) − 2 r21 c1 = 0,

(19)

y(t + h) = Y2(t) +
h3

3!
(
1 − b21(c1 − 1)3 − 3 a21(c1 − 1)2 − 3 r21 c21

)
y′′′(t) + O(h4).

(20)
In conclusion, requiring that the global accuracy order of the peer method (4)

be equal to two, means deriving the coefficients by solving the systems (14) and
(19). Invoking (8), we observe that four free coefficients remain to be assigned
later.

The extension of this procedure in the case of s stages is possible and allows
to get the coefficients of classical s-stage peer methods with accuracy order p = s.
It is customary to assign fixed values to the coefficients of B (respecting B1 = 1 ,
with 1 = (1, ..., 1)T ), R and c, obtaining (aij)si,j=1 as a function of them [1]:

A = (C V0 D−1 − R V0)V −1
1 − B(C − I)V1 D−1 V −1

1 ,

V0 = (cj−1
i )si,j=1, V1 =

(
(ci − 1)j−1

)s
i,j=1

, I = Is (Identity matrix of order s),

D = diag(1, ..., s), C = diag(ci).
(21)

3 New Jacobian-Dependent Peer Methods

The new Jacobian-dependent methods are obtained by defining differently the
functions Y1(t) and Y2(t) in (10), and therefore the operators (9) with whom we
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calculate the LTEs from which the stages are affected. In doing so, it will change
the definition of L2

(
y(t)

)
, but not that of L1

(
y(t)

)
.

In fact, we are assuming that the following localizing assumption applies only
at the previous grid points {t0, ..., tn−1}, but not at tn:

Yn−1,j = y(tn−1 + h cj), ∀j = 1, ..., s. (22)

Therefore, we’re going to consider the LTEs committed in the calculation of
the previous stages Yn,j , j = 1, ..., i − 1 in determining Yn,j , j = i, ..., s. This
change leads to the dependence of the coefficients on the Jacobian function of
the problem f .

3.1 Two-Stage Jacobian-Dependent Version

As mentioned before, the application of the new hypothesis (22) on peer methods
(4) doesn’t produce any changes in Yn,1, as it depends exclusively on Yn−1,j ,
j = 1, 2. The only variation concerns Yn,2, because it depends on Yn,1, that is
affected by the LTE (16). Therefore, the expression of L1(tk) remains the same
(12) as in the classic case, as well as the moments (13), the order conditions
(14), and the LTE (16).

However, now we need to recalculate the order conditions of the second stage
Yn,2, bearing in mind, this time, the error made in the calculation of the first
stage Yn,1 (16). The new definition of Y2(t) is

Y2(t) = b21 y
(
t + h(c1 − 1)

)
+ b22 y(t) + h a21 y′(t + h(c1 − 1)

)
+ h a22 y′(t)

+ h r21f
(
t + h c1, Y1(t)

)
,

(23)
where, unlike the definition of Y2(t) in (10), there is f

(
t + h c1, Y1(t)

)
instead of

y′(t + h c1).
In fact, it now applies that

y′(t + h c1) = f
(
t + h c1, y(t + h c1)

)
= f

(
t + h c1, Y1(t) + err1(t)

)
. (24)

Remembering that the Taylor series expansion of a generic function g(x) at x0

is

g(x) = g(x0) + g′(x0) (x − x0) + ... +
gn(x0)

n!
(x − x0)n + O

(
(x − x0)n

)
, (25)

we get the Taylor series expansion of f in (24) at Y1(t) as follows:

f
(
t + h c1, Y1(t) + err1(t)

)
= f

(
t + h c1, Y1(t)

)
+ j1(t) err1(t) + O

(
err1(t)2

)

= f
(
t + h c1, Y1(t)

)
+ j1(t) terr1(t) + O(h4),

with j1(t) = fy(t + h c1, y)|y=Y1(t) (Jacobian function).
(26)
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By combining (24) and (26), we finally get

f(t + h c1, Y1(t)) = y′(t + h c1) − j1(t) terr1(t) + O(h4). (27)

The replacement of the expression just found (27) in Y2(t) (23) leads to the new
shape of L2(tk):

L2(tk) = (t + h)k − b21
(
t + h(c1 − 1)

)k − b22t
k − h k a21

(
t + h(c1 − 1)

)k−1

− h k a22t
k−1 − h r21

(
k(t + h c1)k−1 − j1(t)

(h3

3!
(
c31 − b11(c1 − 1)3

− 3 a11(c1 − 1)2k(k − 1)(k − 2)tk−3
)))

.

(28)
The new moments L2,0, L2,1, L2,2 and L2,3 are

L2,0 = 1 − b21 − b22,

L2,1 = h − h b21(c1 − 1) − h a21 − h a22 − h r21,

L2,2 = h2 − b21
(
h(c1 − 1)

)2 − 2h a21

(
h(c1 − 1)

) − 2h2r21 c1,

L2,3 = h3 − b21
(
h(c1 − 1)

)3 − 3h a21

(
h(c1 − 1)

)2 − 3h r21 (h c1)2

+ m1(t) r21
(
h3

(
c31 − b11(c1 − 1)3 − 3 a11(c1 − 1)2

))
,

(29)

where m1(t) = hj1(t). This time we cancel all the four moments, thus obtaining
the second stage Yn,2 with accuracy order equal to three. Numerical experiments
will show that, despite this, the global accuracy order of the new peer methods
remains two:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − b21 − b22 = 0,

1 − b21(c1 − 1) − a21 − a22 − r21 = 0,

1 − b21(c1 − 1)2 − 2a21(c1 − 1) − 2r21c1 = 0,

1 − b21(c1 − 1)3 − 3a21(c1 − 1)2 − 3r21c
2
1 + m1(t)r21

(
c31

−b11(c1 − 1)3 − 3a11(c1 − 1)2
)

= 0.

(30)

The resolution of the first three equations in (30) with (14) leads exactly
to the same order conditions as the standard methods. Calculating instead the
coefficients by solving the systems (30) and (14) in full, we get the new Jacobian-
dependent peer methods. Jacobian dependency is evidenced by the presence of
m1(t) = h j1(t) in the last equation of (30).

Always keeping in mind (8), as there are seven independent equations to be
solved now, the number of free coefficients for new peer methods is three and no
longer four. By fixing b11, b21 and c1, the coefficients of new peer methods are
shown in (31). We observe that the coefficients a21, a22 and r21 of new methods
depend on m1(t), i.e. the Jacobian function of the problem at time t. This leads
to two important considerations:

– a21, a22 and r21 must be updated at each time-step;
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– in the multi-dimensional case, a21, a22 and r21 become matrices with the same
size as m1(t).

a11 =
(

− (
b11(−1 + c1)2

)
+ c21

)
/
(
2(−1 + c1)

)
,

a12 =
(

− (
b11(−1 + c1)2

)
+ (−2 + c1)c1

)
/
(
2(−1 + c1)

)
,

a21 =
(
b11(−1 + b21)m1(t) + (−1 + b11 + 7b21 − 10b11b21)c31m1(t)

− (−1 + b11)b21c51m1(t) + b21c
4
1

(
2 + 5(−1 + b11)m1(t)

)

+ c1
(
4 + 3b11m1(t) + b21(4 − 5b11m1(t))

)
+ c21

( − 6

+ 3m1(t) − 3b11m1(t) + b21(−6 − 3m1(t) + 10b11m1(t))
))

/
(
2(−1 + c1)(−(b11m1(t)) − 3(−1 + b11)c21m1(t) + (−1

+ b11)c31m1(t) + 3c1(−2 + b11m1(t))
))

,

a22 =
(

− 10 + 3b11m1(t) − 9(−1 + b11)c31m1(t) + 2(−1 + b11)c41m1(t)

+ c1(24 − 11b11m1(t)) + 3c21(−4 − 3m1(t) + 5b11m1(t))

− b21(−1 + c1)2
( − 2 − b11m1(t) − 3(−1 + b11)c21m1(t)

+ (−1 + b11)c31m1(t) + c1(−4 + 3b11m1(t))
))

/
(
2(−1

+ c1)
( − (b11m1(t)) − 3(−1 + b11)c21m1(t) + (−1

+ b11)c31m1(t) + 3c1(−2 + b11m1(t))
))

,

r21 =
(

− 5 − b21(−1 + c1)3 + 3c1

)
/
(

− (b11m1(t)) − 3(−1 + b11)c21m1(t)

+ (−1 + b11)c31m1(t) + 3c1(−2 + b11m1(t))
)
.

(31)

4 Linear Stability Analysis

The family of explicit s-stage peer methods can be written in the compact form

Yn = B Yn−1 + hAF (Yn−1) + hR F (Yn),

where Yn = (Yn,i)si=1, F (Yn) =
(
f(Yn,i)

)s
i=1

.
(32)

In order to perform linear stability analysis of classic peer methods and new
Jacobian-dependent peer methods, applying (32) to the test equation y′ = λy,
Re(λ) < 0, results in

Yn = (I − zR)−1(B + zA)Yn−1 =: M(z)Yn−1, with z = hλ. (33)

Therefore, M(z) is the stability matrix of the method, i.e. the numerical method
(32) is absolutely stable if ρ(M(z)) < 1, where ρ is the spectral radius of M(z).
The short analysis just shown is detailed in [1].
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4.1 Absolute Stability Regions of the New Two-Stage Methods

We have used Mathematica to fix the coefficients left free after the imposition
of the order conditions, with the aim of maximizing the size of the absolute
stability region of classic and new two-stage peer methods.

Referring to new two-stage Jacobian-dependent peer methods, we need to fix
b11, b21 and c1, then finding the other coefficients of the method by exploiting
(31). The exploration range for these parameters is:

– c1 ∈ [0, 1), because the intermediate stages determine the numerical solution
within the subinterval [tn, tn+1],

– b11 and b21 ∈ [−2, 2], that is usually the range of values in which the coeffi-
cients of the matrix B are considered for peer methods.

In doing so, we get the best result with

b11 = −0.59, b21 = −1, c1 = 0.3. (34)

Trying to do the same thing for classic peer methods as well, using the same
intervals for parameter exploration (this time obviously including r21 as well,
which is a free parameter for the classic methods), we get the largest real axis
of the corresponding absolute stability region by using

b11 = −0.52, b21 = −1.3, c1 = 0.3, r21 = 0.8. (35)

Finally, in order to compare the new peer methods with the classical ones,
we consider two-stage classic peer method with the same coefficients as the peer
Jacobian-dependent (34), fixing the best possible value for r21:

b11 = −0.59, b21 = −1, c1 = 0.3, r21 = 1.17. (36)

Figure (1) shows the absolute stability regions of Jacobian-dependent and
classic methods, using as parameters those just reported.

We note that, although we have fixed the coefficients of the classic peer
method (35) in such a way as to maximize the amplitude of the real axis in its
stability region, the stability region of the new Jacobian-dependent peer method
contains it. In addition, the absolute stability region of the classic method has a
rather strange shape, narrowing in some places to just the real axis. The stability
region of the classic version with non-optimal coefficients (36) is smaller than
that of the other two methods.

5 Numerical Tests

In this section, we conduct numerical tests on two scalar ODEs, by solving them
with Jacobian-dependent and classic peer methods, using as coefficient values
(34) (for Jacobian-dependent version), (35), and (36) (for classic versions), in
order to verify the theoretical properties we derived in the previous sections.
Since the exact solution of the following problems is known, we evaluate the
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Fig. 1. Absolute stability regions of the Jacobian-dependent peer method with optimal
coefficients (34), the classic peer method with optimal coefficients (35) and the classic
peer method set the coefficients of the Jacobian-dependent method (36), respectively.

absolute error at the last grid point, and the order estimate of the methods
using the formula

p(h) =
cd(h) − cd(2h)

log102
, (37)

where cd(h) is the achieved number of correct digits at the endpoint T of the
integration interval [t0, T ] with step-size equal to h. For more information on the
quantities taken into account for numerical tests consult [3].

5.1 Prothero-Robinson Equation

Let’s solve the Prothero–Robinson scalar equation
{

y′(t) = λ
(
y(t) − sin(t)

)
+ cos(t),

y(0) = 0,
(38)

in the interval [0, π/2], for different values of λ. The exact solution of the problem
(38) is y(t) = sin(t). This equation is widely used to test numerical methods as
it becomes more and more stiff as |λ| increases.

The results shown in Tables (1), (2), (3), (4), (5) and (6) allow for the fol-
lowing important observations. The Jacobian-dependent method is much more
accurate than the classic method with optimal coefficients (35) (there is a dif-
ference of two orders of magnitude between their respective absolute errors) and
slightly more accurate than the classic method with the same coefficients (36).
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As the stiffness of the problem increases, it is necessary to use the Jacobian-
dependent method, which has better stability properties than the other two,
especially the classic peer with the same coefficients. Finally, the global accu-
racy order estimation of the three methods tends to two, so the classic methods
and the new method don’t suffer from order reduction on stiff problems.

Figure (2) confirms the greater accuracy of the Jacobian-dependent method
than the other two, for λ = −50 and λ = −100. In Fig. (3), we represent the
trend of the three numerical solutions and the exact one, fixing the problem
(i.e. λ = −103) and choosing two different values for h. For the first value of h,
numerical solutions calculated with the two classical methods explode, and only
the Jacobian-dependent method provides a good result. For a smaller value of
h, even the classic method with coefficients (35) provides an acceptable solution.
Finally, looking at Fig. (4), we can appreciate the fact that when the problem
is very stiff (i.e. λ = −104), the Jacobian-dependent method becomes more
convenient than the others.

Table 1. Absolute errors at the endpoint T on Prothero-Robinson problem (38), in
correspondence of several values of the number N + 1 of mesh-points, with λ = −50.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

28 1.3525e−09 5.3149e−08 8.8738e−09

29 3.0154e−10 9.6927e−09 2.0059e−09

210 6.8472e−11 1.9597e−09 4.6980e−10

211 1.6040e−11 4.3112e−10 1.1317e−10

212 3.8507e−12 1.0031e−10 2.7743e−11

Table 2. Estimated order p(h) on Prothero-Robinson problem, with λ = −50.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

29 2.1653 2.4551 2.1453

210 2.1387 2.3063 2.0942

211 2.0939 2.1845 2.0536

212 2.0585 2.1037 2.0282

5.2 Non-linear Scalar Equation

Let’s solve the non-linear scalar equation
{

y′(t) = −y(y + 1),
y(0) = 2,

(39)

in the interval [0, 5]. The exact solution of the problem (39) is y(t) =
(2/3)e−t

1 − (2/3)e−t
.
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Table 3. Absolute errors at the endpoint T on Prothero-Robinson problem (38), in
correspondence of several values of the number N+ 1 of mesh-points, with λ = −102.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

28 3.7746e−10 2.0039e−08 2.4883e−09

29 8.4564e−11 3.3246e−09 5.5482e−10

210 1.8851e−11 6.0605e−10 1.2541e−10

211 4.2772e−12 1.2251e−10 2.9374e−11

212 9.9920e−13 2.6911e−11 7.0786e−12

Table 4. Estimated order p(h) on Prothero-Robinson problem, with λ = −102.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

29 2.1582 2.5915 2.1651

210 2.1654 2.4557 2.1453

211 2.1399 2.3066 2.0941

212 2.0978 2.1866 2.0530

Table 5. Absolute errors at the endpoint T on Prothero-Robinson problem (38), in
correspondence of several values of the number N+ 1 of mesh-points, with λ = −103.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

28 1.3301e−10 6.6674e−10 –

29 3.4133e−12 1.1099e−10 1.5820e−12

210 3.2963e−13 2.2591e−11 1.3811e−12

211 6.0840e−14 3.6213e−12 3.9857e−13

212 1.2546e−14 5.8420e−13 9.0372e−14

Table 6. Estimated order p(h) on Prothero-Robinson problem, with λ = −103.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

29 5.2843 2.5867 –

210 3.3723 2.2966 0.1959

211 2.4377 2.6412 1.7929

212 2.2779 2.6320 2.1409

The results (Tables (7) and (8)) related to the non-linear problem (39) con-
firm the observations and comments made previously, although in this case the
stability advantage of Jacobian-dependent methods is not observed as the equa-
tion is non-stiff. The greater accuracy of new methods is confirmed.
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Fig. 2. Absolute errors as a function of h, for different values of λ.
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Fig. 3. Solution of the problem (38) for different values of h, with λ = −103.
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Table 7. Absolute errors at the endpoint T on non-linear scalar problem (39), in
correspondence of several values of the step-size h.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

1/2 1.3608e−02 1.7557e−01 1.2034e−02

1/4 1.1327e−03 4.4501e−02 2.7823e−03

1/8 1.7397e−04 5.6674e−03 6.3510e−04

1/16 3.0933e−05 8.3379e−04 1.4977e−04

1/32 6.2091e−06 1.5820e−04 3.6144e−05

1/64 1.3654e−06 3.4293e−05 8.8605e−06

1/128 3.1827e−07 7.9767e−06 2.1923e−06

1/256 7.6699e−08 1.9235e−06 5.4518e−07

1/512 1.8817e−08 4.7231e−07 1.3593e−07

Table 8. Estimated order p(h) on non-linear scalar problem.

N Jacobian-dependent (34) Classic (optimal coefficients) (35) Classic (36)

1/2 – – –

1/4 3.5866 1.9802 2.1128

1/8 2.7029 2.9731 2.1312

1/16 2.4916 2.7649 2.0842

1/32 2.3167 2.3980 2.0509

1/64 2.1850 2.2057 2.0283

1/128 2.1010 2.1041 2.0149

1/256 2.0530 2.0520 2.0077

1/512 2.0271 2.0260 2.0039

6 Conclusions and Future Research

In this paper, we have derived new Jacobian-dependent peer methods with better
stability properties than the classic ones. In addition, although we have focused
on this new methods, we would like to stress the fact that we have also deter-
mined the coefficients of classic explicit peer methods (35) in order to maximize
the relative absolute stability region.

Updating the coefficients that depend on the Jacobian function at each step
comes at a higher cost. However, this additional cost is acceptable, given the
benefits obtained both in terms of stability and accuracy.

The next research will focus on further improving the stability properties
of Jacobian-dependent peer methods by investigating the possibility of deriving
A-stable methods. Finally, we’ll adapt the methods obtained in this paper to
the multi-dimensional case, transforming the coefficients that depend on the
Jacobian function into matrices.
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afr@ufpa.br

4 Federal University of Rio Grande do Sul, Porto Alegre, Brazil
jcnobre@inf.ufrgs.br

Abstract. Communication networks operating in challenging environ-
ments can be grouped by the concept of Delay/Disruption-Tolerant Net-
working (DTN). Different protocols can be used in DTN, such as the
Bundle Protocol (BP) and the HyperText Transfer Protocol - DTN
(HTTP-DTN). In this context, security properties are of fundamental
importance in DTN like in regular networks. However, the challenges in
DTN hamper the use of traditional security mechanisms. Although BP
has been extended to include such mechanisms, there is still no analo-
gous extension for HTTP-DTN. In this paper, we propose the HTTP-
DTNSec, a security extension for HTTP-DTN. This extension improves
the confidentiality and integrity of HTTP-DTN as well as updates the
base protocol for HTTP/2. The proposed extension was implemented as
a proof of concept and it was used to perform experiments in a simu-
lated environment. These experiments show that HTTP-DTNSec per-
formed the transfer of packages (i.e., a group of related objects) in a safe
manner and with an increase in performance concerning HTTP-DTN.
Finally, we provide some concluding remarks and future directions.

Keywords: DTN · HTTP-DTN · Network security

1 Introduction

It is important for many applications to support communication in challenging
environments such as InterPlanetary Networking, Battlefield Networking, Rural
communications, and Underwater Communications. The Delay/Disruption-
Tolerant Networking (DTN) emerged to covers all these environments [8,20],
since they present difficulties for the operation of a traditional network, such
c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12949, pp. 325–340, 2021.
https://doi.org/10.1007/978-3-030-86653-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86653-2_24&domain=pdf
http://orcid.org/0000-0002-6996-7602
http://orcid.org/0000-0002-6275-6503
https://doi.org/10.1007/978-3-030-86653-2_24


326 L. W. P. Pinto et al.

as the Internet. The conditions found in DTN environments cause some prob-
lems in computer networks, such as long periods of disconnections that hinder
end-to-end communication.

In the context of the IETF, the Bundle Protocol (BP) [5,17] has been developed
in order to enable the transmission of messages between DTN nodes, through a
logic of storage and sending of packets. This allows the nodes to store all the packets
they receive locally, and send them when a connection is available with another
node. However, some authors point out problems in the BP, for example, problems
of synchronization and complexity [22]. Thus, alternative approaches to BP were
created in order to avoid such difficulties. One of these alternatives is Hyper Text
Transfer Protocol - Delay-Tolerant Networking (HTTP-DTN) [23].

Security properties are critical in DTN as in traditional networks [7]. However,
there are additional difficulties in implementing delay or disconnected-tolerant
security mechanisms [13,16]. In this context, an extension of BP has been devel-
oped, named Bundle Protocol Security Specification (BPSec) [4], to support end-
to-end integrity and confidentiality. However, this extension only applies to BP,
which means that other DTN protocols, such as HTTP-DTN, do not support these
important security aspects.

The present paper proposes HTTP-DTNSec, a security extension proposal
for HTTP-DTN. Such a proposal incorporates the security properties found
in BPSec, maintaining the desirable characteristics of HTTP-DTN. In addi-
tion, HTTP-DTNSec updates the HTTP version used in HTTP-DTN (i.e., from
HTTP/1.1 to HTTP/2). Such an update allows a performance increase in the
exchange of messages. The results show that the extension is feasible, incorpo-
rating new features as well as maintaining adequate performance.

This article is structured as follows. Section 2 presents the theoretical back-
ground on DTN and security challenges that exist in this type of network. Section 3
describes the HTTP-DTNSec specification. Section 4 contains the experiments
carried out as well as an analysis of the obtained results. Section 5 presents the
related work. Finally, Sect. 6 presents the conclusions and future work.

2 Background

The DTN architecture proposed by the IETF [20] describes the Bundle Layer,
which interfaces with the lower layers using Convergence Layer Adapters (CLAs)
to carry out the transport of information. The end-to-end transport semantics
are redefined and are now confined within each DTN hop. Thus, CLA protocols
for different transport protocols have been developed, (e.g., UDP [18] and TCP
[19]). This makes it possible to use the most suitable transport protocol for each
hop.

BP defines the concept of blocks, which are a set of information referring
to data and metadata that make up a bundle. The IETF defines three blocks
[17]: the Primary Block, the first block in a bundle which contains information
regarding source and destination addressing; thePayload Block, which carries the
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data that the application wants to send via the BP; and the Extension Block,
which has a variety of data that can provide additional information needed to
process a bundle along the network.

This section is organized as follows. Initially, aspects related to security in
DTN will be presented. Next, HTTP-DTN will be described in more detail.

2.1 DTN Security

There are several challenges in implementing security mechanisms in DTN. Some
of these challenges occur due to the computational processing of such mecha-
nisms [12,21]. For example, the use of digital certificates is difficult since a trusted
third party for verifying the authenticity of certificates may not be available at
the time of processing such verification.

Managing cryptographic keys presents challenges in DTN [3]. This is due to
the fact that the acceptance of a session key, or even the exchange of public keys
between the origin and the end of an end-to-end communication may not be pos-
sible, due, for example, to the lack of connection when sending the message [6].
Thus, a mechanism for the distribution of keys must be defined considering
the communication problems in DTN. However, some insecure strategies can be
adopted due to these problems. An example of such strategies is the use of keys
shared with the nodes, which would reduce the complexity of managing them.
This sharing is not adequate, since if the compromise occurs on any node, the
entire DTN would be compromised and the key assignment process would need
to be carried out again [14].

In the context of the IETF, security policies are applied through additional
blocks to the bundle, which add end-to-end integrity and confidentiality services
to BP [4]. Additional BPSec Blocks are: Block Integrity Block (BIB), used to
guarantee the authenticity and integrity of the package block that the BIB sender
wishes to ensure, and the Block Confidentiality Block (BCB), used to indicate
that a part of the packet has been encrypted at the node originating from the
BCB. BPSec is applied by definition only to nodes that accept its implementa-
tion, these nodes are known as Security Aware Nodes. There may be nodes in
a DTN that do not implement BSP and that can communicate with all DTN
nodes.

The authentication of the information in the BIB can be verified by any node
that is in the path of the BIB sender and the recipient of the bundle. When a
node other than the one originating from the bundle adds a safety block, it will
be called the Security Origin Node of that block. The Security Origin Node can
define a destination for the block you just added, which will not necessarily be the
final destination of the bundle. This feature allows security policies to be applied
on specific parts of the network, preventing unnecessary security processing at
nodes that are not at risk.
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2.2 HTTP-DTN

HTTP-DTN is a protocol developed as an alternative to BP in DTN. After sev-
eral failures were pointed out in BP [22,23] proposed the use of HTTP as a pro-
tocol for exchanging messages in DTN. Such proposal is accomplished through
some small changes of headings and addition of a store and forward logic. HTTP
in this case is not used as on the Internet where it works end-to-end, instead
the HTTP-DTN architecture is hop-by-hop (i.e., HTTP transfers between neigh-
bouring nodes). HTTP requires only a reliable form of delivery, regardless of how
the transport protocol does it, thus allowing it to operate over a wide variety of
transport protocols [24].

HTTP-DTN is used as a Peer-to-Peer (P2P) protocol in the sense that multi-
ple files can be transferred in two directions simultaneously between two commu-
nicating nodes. Thus, the DTN nodes do not have a client and server relationship
as there is in the use of HTTP on the conventional Internet. For example, if a
package sent from one node to another needs to pass through 4 other nodes on
the way, there will be 5 separate HTTP transactions, one between each pair of
nodes. Thus, the control of the delivery of the message passes from the source
node to the destination node, for each hop between nodes. When two nodes
contact each other, a request for files to be copied, saved, or sent can be made
between nodes using the HTTP PUT and HTTP GET commands. A node also
always has the option to reject a package by checking for error codes.

The addition of headers to HTTP is necessary for the operation of HTTP-
DTN, they are:

– Content-Destination: specifies the final destination of the package being sent.
This header can be used for routing applications that use HTTP-DTN, so
that those applications decide which network paths to use.

– Content-Source: contains information about the origin identifier of the pack-
age. The existence of this header is also mandatory on packets, as well as the
ability to process it on each node.

– Content-Length: loads the size in bytes of the information being carried in
the package.

– Content-ID : allows files to be identified only within the context of the Source
Information Header.

– (Content-MD5 : adds the ability to verify end-to-end integrity. This header
must be generated at the origin node that first sent the packet, and can be
checked at any node before the destination to identify errors or corrupted
data in the packet. If there is a problem with the package, the node can then
either discard it or request the shipment of the damaged parts in the package.

– Content-Host : enables the identification of the node that sent the information
and how to find it in the DTN. This header can be left blank in the package
if you only need to request files available from a neighboring node. When a
node sends a packet on the network, the information contained in the Source
Information Header must be the same as that existing in the Host Header
field.
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Many other HTTP headers are directly useful for HTTP-DTN. For example,
ETag which provides an ID for unique copies of files on the network, and can be
used to provide global identifiers (GUID) for each version of a file.

2.3 HTTP/2

The specifications described by [2], define that HTTP/2 requests are made in
frame format. There are several types of framework defined in the protocol, each
with a different function. However, they all share a series of headers that are: size
(Length) of the payload frame (24 bits) represented in bytes; type (Type) (8 bits)
that determines the format and semantics of the frame; flags (8 bits) is reserved
for Boolean flags specific to the frame type; R (1 bit) is not changed at any time
and must exist when sending a request and be ignored when handling the frame;
Stream identifier (Stream Identifier) (31 bits) represents an identification for the
stream to which the frame in question belongs; the structure and content of the
payload of the frame is entirely dependent on the value defined in the Type field.
In Fig. 1 you can see the structure of the headers.

Fig. 1. Headers shared between all frames. Adapted from [2]

2.4 Headers-Type Frames in Requests

During an encounter with another security-aware node, there are a number of
predefined requests that will occur. Such requests are intended to ensure that
packages in transit on the network reach their final destinations.

A GET-type request is a HEADERS-type frame. It has the objective of
obtaining from the paired node, any package whose recipient is the node that
made the request. The headers sent in the Header Block Fragment field of the
frame are:

– method : GET string.
– Content-Destination: identification of the destination node.
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A PUT request is used to inform the paired node that a packet is being sent.
Unlike a GET, this request consists of two frames, one of the HEADERS type
and the other of the DATA type. In the HEADERS table, a series of headers is
informed, containing values referring to the packet being sent. The DATA table
contains the content to be sent. The headers sent in the Header Block Fragment
field of the frame are:

– method : PUT string.
– Date: date of the package generation.
– Host : identification of the custody node of the package.
– Content-Source: identification of the source node.
– Content-Destination: identification the destination node.
– Content-Integrity : hash of the package content.
– Content-Length: size of the package content.

For each request made in a meeting, there are 3 types of possible responses.
All are HEADERS type frames, followed by 0 or more DATA frames. Only
one header of status type is sent in each HEADERS frame. The answers are:
confirmation of the existence of packages (status header with a value of 200),
used to answer a GET request, indicating the presence of packages for the node
that made the request; denial response (status header with a value of 404), used
as a response to a GET request, responding to the requesting node that there are
no packages for it; and receipt confirmation (status header with value 202), used
to respond to PUT requests and signalling that the package was successfully
received and processed.

All frames are transported through a stream. A stream is by definition a
sequence of frames, independent and bidirectional, exchanged between a client
and a server during an HTTP/2 connection. The characteristics of a stream
are: a single HTTP/2 connection can contain multiple open streams; streams
can be established unilaterally by one of the points, or shared by the client and
server; streams can be terminated by both the client and the server; streams are
processed in the order they are received; streams are identified by an integer.
This value is assigned to the stream by the point that started the request. Client-
initiated streams will have odd values, and even streams when they are initiated
by the server.

3 HTTP-DTNSec: Security and Performance
Enhancements for the HTTP-DTN

This section aims to present the proposed solution in the context of the present
work. Such solution is the extension of HTTP-DTN to provide support for secu-
rity properties. HTTP-DTNSec is a protocol that allows packets to be exchanged
securely on HTTP-based DTN, both hop-by-hop and end-to-end.

To ensure integrity and security in the transport of packets, HTTP-DTNSec
implements an encryption solution in its solution when sending messages. Such a
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solution enables authentication, confidentiality and integrity of messages through
its structure. Each package sent from one node to another goes through the
encryption process, ensuring a level of security hop-by-hop. Besides, with the
addition of extra headers in HTTP-DTNSec, it is also possible to guarantee
encryption in end-to-end messages.

HTTP-DTNSec is based on HTTP/2 because it allows some performance
improvements, since it support multiple requests and responses on the same
connection. With HTTP/1.1, it is possible to have a client send more than one
request, it is necessary that for each of them there is a different connection [2].
With HTTP/1, there are the occurrence of repeated and verbose requests, which
cause unnecessary network traffic and also excessive use of the TCP congestion
window.

Another important aspect for HTTP-DTNSec is that it can use an efficient
coding of the HTTP header fields. So, it is possible for HTTP-DTNSec to add
priority to some requests, leaving more important packages to be processed first.

The rest of this section is organized as follows. Firstly, it presents the hop-
by-hop and end-to-end encryption aspects. Next, it describes how two nodes
negotiate to establish a communication.

3.1 Hop-by-Hop and End-to-End Encryption

HTTP-DTNSec was developed to ensure hop-by-hop and end-to-end security in
DTN. In order to achieve this goal, all packets sent from one node to another
are encrypted and processed. In addition to ensuring confidentiality, HTTP-
DTNSec also ensures the integrity and authenticity of a message. The message
in this way also has its integrity checked at the destination, and in the event of
an inconsistency a new request to obtain the package again is made.

The encryption process is performed when the message is first sent and the
decryption occurs when it reaches its destination. This process is addressed in
the HTTP-DTNSec protocol using the Content-Destination header from the
HEADERS table. The session key is then also encrypted, but using the public
key of the destination. The destination uses its private key to decrypt the session
key. With the session key, the destination can decrypt the message and the
signature. The destination generates a hash of the message, and with the public
key of sender verifies in the signature that the hash matches the sent one.

Figure 2 demonstrates a process of sending a package with end-to-end secu-
rity. First, Node A encrypts the message using public key C shared between all
nodes. Then, it sends the message to Node B and it verifies that its identifier
does not correspond to the final destination of the package. Node B stores the
package with the encrypted message and waits for an opportunity to send it
to Node C. When a connection is established with Node C, Node B sends the
package. Finally, Node C verifies the final destination of the package and with
the private key C obtains the decrypted message.

HTTP-DTNSec does not perform cryptographic key management. However,
for the use of an asymmetric encryption process, it is essential that the source
and destination nodes have their respective public keys. The way in which this
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Fig. 2. End-to-end secure flow in HTTP-DTN

exchange will take place is outside the scope of HTTP-DTNSec (some alterna-
tives are presented in [14]). Using end-to-end encryption, it is not possible to
verify the integrity of a hop-by-hop package, as the hash of the message because
it is encrypted can only be verified at the destination. In this way, if there was
any corruption of the package during the end-to-end shipment, it would only be
detected at the final destination.

The procedure to obtain the value to guarantee the integrity, occurs after
the encryption of the package. In order to be able to verify the hop-by-hop
integrity, an extra field is used in the PUT request HEADER frame, called
Content-Integrity. First, a hash of the encrypted content is generated and the
result is inserted in the Content-Integrity field. The node that receives the PUT
request, must then generate a hash of the encrypted content of the received
DATA frame. Finally, compare the value you obtained with the value sent in the
Content-Integrity field. In case of inconsistent values, the node will respond with
a Negative Response. In Fig. 3, it is possible to observe the sequence diagram of
the message exchange.

HTTP-DTNSec, by definition, must be executed by all nodes that are part
of the DTN. If there is a node that does not support it, it cannot be considered
as a source or destination of packets. Besides, HTTP-DTNSec does not define
a particular solution for encryption, so different solutions can be implemented
according to the limitations found in a specific DTN.

3.2 Negotiation for Communication

A meeting between two nodes using HTTP-DTNSec can be divided into two
distinct moments, the negotiation and the exchange of messages. The negotia-
tion moment uses the HTTP/2 connection opening to initiate communication
between nodes. HTTP-DTNSec does not change the way messages are exchanged
at this time, it only defines default configuration values for the connection.
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Fig. 3. Sequence diagram of message exchange

The node that initiates the negotiation will be considered as an HTTP/2
client, while the other paired node will be the server. The client node opens
the connection by sending a PREAMBLE frame together with 2 SETTINGS
frames. The first SETTINGS frame contains the configuration values for the
connection, while the second is an empty SETTINGS frame that signals the end
of the message. At this moment the communication is made through a single
stream, this value is 0. The server node when receiving the message, using the
same stream confirms the settings defined by the client and responds with 2
SETTINGS frames. The first frame can be used to modify some value of the
connection configuration, while the second is an empty frame SETTINGS to
signal the end of the message. Finally, the client node responds with an empty
SETTINGS frame, signalling that the connection is now defined and is ready to
send HTTP-DTNSec requests.

After the negotiation, when the client node has a package to be sent ahead, it
will open a new stream with a value equals 1 and execute the logic of Fig. 4 (a).
First, the node obtains all packages saved locally and for each one, it performs the
encryption process and creation of the HTTP/2 frames used by HTTP-DTNSec.
When all frames are created, the node then sends all packages to another paired
node. The node waits for a receipt response for each sent package, deleting those
that were successfully received locally, and keeping those that received problems.

The server node, upon receiving the PUT request, will check for integrity of
each package received, in the case of a corrupted package, the server will return
an error message. Then, the node will then check if it is the final destination of
the message, if not, it will just store the package, in the other case it will decrypt
the contents of the packages. Finally, it returns a receipt message to the paired
node. At the end of the request, the client node will close the stream of value 1.
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a) Execution flow diagram for PUT on b) Execution flow diagram for GET on
HTTP-DTN for sending packages HTTP for sending packages

Fig. 4. Execution flow diagrams

At the same time the PUT request is made, the client node will also carry
out the GET request. So, the node opens a new stream of value 3 and executes
the logic of Fig. 4. First the node sends a request to the paired node, asking if
there are packages that it is the destination. When there is no response or there
are no packages for the node, the stream is closed. In case of packages, the node
decrypts the package’s content and sends a response confirming receipt to the
paired node.
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The server node when receiving the GET request will later check for the
existence of packages whose destination is from the requesting node, otherwise,
it sends a denial message. When packages exist, the node encrypts the content
of the package and creates the HTTP/2 frames to perform the upload. Finally,
the server waits for a receipt response and in case of confirmation it will delete
the packages received correctly. At the end of the request, the server node will
close the stream of value 3.

4 Evaluation

This section presents the implementation and gives further details on the evalu-
ation settings used to evaluate HTTP-DTNSec. In addition, we present the pre-
formed experiments and the obtained results. Finally, we discuss the obtained
results.

4.1 Implementation and Environment Settings

HTTP-DTNSec was based on an existing implementation of HTTP-DTN [15].
Our codes were developed in Python due to the main libraries and the frame-
work used to produce itself were elaborated on in this language. The following
resources were used for its development:

– Twisted1: development framework for networking applications.
– Hyper-H22: library for the development of HTTP/2 applications.
– GnuPG3: library that implements the OpenPGP format (encryption and

integrity).
– SQLite4: simple database employed for package storage.

The proposed scenario simulates an environment where two nodes meet and
exchange messages by sending and receiving packages. These received the iden-
tification of Node A and Node B, in both the Windows operating system was
used and the HTTP-DTNSec protocol was installed. Node B is a virtual machine,
whose host is Node A. Both were configured with fixed IPs in an isolated net-
work, where only the two machines exist. Two text files of different sizes were
created in node B, so that they could be sent to node A. The file sizes are respec-
tively File1 with 24 bytes, File2 with 1216 bytes. Finally, to verify the packets
exchanged between nodes, Wireshark packet capture software was used. Figure 5
represents the environment defined for the execution of experiments.

1 Twisted - https://twistedmatrix.com.
2 Hyper-H2 - https://python-hyper.org/projects/hyper-h2/.
3 GnuPG - https://www.gnupg.org/.
4 SQLite https://www.sqlite.org.

https://twistedmatrix.com
https://python-hyper.org/projects/hyper-h2/
https://www.gnupg.org/
https://www.sqlite.org
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Fig. 5. Environment Settings for the HTTP-DTNSec evaluation

Fig. 6. HTTP-DTNSec send process

4.2 Experiments

Three meetings between the nodes were simulated in the proposed environment.
At each meeting, one of the existing files in Node B was sent to Node A. In order
to verify the changes to the HTTP-DTN protocol suggested in the 3 section, each
meeting was also executed using it. The following captures made by Wireshark,
correspond to the sending of the two files of different sizes. In the captures, only
the DATA frames are shown using HTTP-DTNSec and beside the content of the
Data field. Figure 6 represents the sending of File 2.

Finally, the following captures represent the number of messages exchanged
by the nodes during a meeting, using HTTP-DTNSec and HTTP-DTN. Figure 7
shows the sending of a package using HTTP-DTN, while Fig. 8 shows the
exchange of HTTP-DTNSec messages.

4.3 Discussion

When observing the packet captures of the meetings that used HTTP-DTNSec, it
was possible to verify that the protocol is applying the encryption proposed in the
3 section when sending the frames that contains the packages. In addition, when
analyzing the size of the packages, it was noticed that the OpenPGP encryption
is actually using the compression described by [11]. This compression is causing
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small files, when going through the encryption process, to have the size of their
package increased, but large files are reduced in size. In Fig. 9, a comparison on
the content sent size considering HTTP-DTNSec and HTTP-DTN.

Through the captures that demonstrate the amount of messages exchanged
between nodes using HTTP-DTNSec and HTTP-DTN, it can be seen that the
HTTP-DTN protocol during a meeting, only sends one message while HTTP-
DTNSec sends four. However, it is important to understand that HTTP-DTNSec
performs PUT and GET requests during a single connection, while HTTP-DTN
would need to establish different connections for each of the requests.

5 Related Work

Several feasibility studies about using security properties in DTN point out the
network communication overheads as a significant barrier. In light of this, this
section presents the most prominent research initiatives related to DTN security.

Duarte et al. [9] present a solution for the autonomous management of com-
puter networks. The authors also propose applying the solution in DTN environ-
ments using a proof of concept of HTTP-DTN to carry out the storage and send-
ing messages between the network nodes. The results achieved by the authors
show the operation of the HTTP-DTN protocol and that its use on the network
did not increase significantly the traffic data flow. In addition, the open-source
implementation of HTTP-DTN made by the authors served as a basis for the
practical development of the present work.

Asokan et al. [1] discuss the application of integrity assurance in DTN bun-
dles. This paper presents the problem of verifying integrity in fragmented bundles
(e.g., a large bundle is divided into several smaller bundles). However, the hash
function that is applied to guarantee integrity is used over the entire bundle,
thus, in the case of a fragment loss, the receiving node is unable to obtain the
same hash value. The authors suggest that the hash function be applied to each
bundle fragment individually. Therefore, the integrity check can be performed
even in the case of lost bundles and the receiving node can request selective
retransmission. The authors state that their proposal has the disadvantage of
increasing the network traffic and the cpu load of nodes.

Fig. 7. Message exchange using HTTP-DTN

Fig. 8. Message exchange using HTTP-DTNSec
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Fig. 9. Comparison on the content sent size considering HTTP-DTNSec and HTTP-
DTN

Farrell and Cahill [10] analyze several issues related to DTN security. More
specifically, they discuss some security decisions regarding the BP and BPSec.
Also, the authors point out the reason for not using widespread security mech-
anisms, such as TLS, is often due to network limitations. Such limitations also
hamper managing DTN keys, in which several messages are necessary to carry
out the exchange of keys among nodes. The use of digital certificates may also
not be feasible in many places, as there may be unavailability of connections
when checking the validity with a trusted third party.

6 Final Remarks

Several security challenges can be highlighted in DTNs. Although security mech-
anisms are important in all communication networks, vulnerabilities are even
more critical in some DTN environments, such as InterPlanetary Networking and
Battlefield Networking. In the context of the IETF, the Bundle Protocol (BP)
has been extended to enable safe messages exchange in challenging environments
through the BPSec. In order to deal with the complexity of BP, alternatives with
HTTP-DTN were developed. However, the security properties found at BPSec
have not been extended to such alternatives.

In this paper, we propose the HTTP-DTNSec, a security extension for HTTP-
DTN. Our extension aims to improve the confidentiality and integrity of HTTP-
DTN, allowing it to have a security level comparable to BP. Besides, HTTP-
DTNSec updates the version of HTTP used in HTTP-DTN. The performed
evaluation shows that HTTP-DTNSec performed the transfer of packages in a
safe manner and with an increase in performance concerning HTTP-DTN. The
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main reason behind such increase is due to HTTP-DTNSec being able to send
more than one request per connection through the use of HTTP/2.

Besides the encouraging results found in the experiments carried out, some
future works can also be proposed. First, it is necessary to deploy and analyze
HTTP-DTNSec on an operational DTN scenario. Secondly, key management
mechanisms should be considered in HTTP-DTNSec, similarly to what occurs
in BPSec. Finally, it would be interesting to investigate the use of HTTP/3 as
a transport for HTTP semantics since the use of QUIC as a transport protocol
can lead to different impacts on HTTP-DTNSec.
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1 Introduction

The thyroid gland is a small gland located in front of the neck, that performs
a vitally important function: the control of the metabolism. This is fulfilled
by taking the iodine found in many foods and converting it into two thyroid
hormones: triiodothyronine (T3), and thyroxine (T4). The normal thyroid gland
produces about 20% T3, and about 80% T4 and every cell in the body depends
upon thyroid hormones for regulation of their metabolism. Only a small fraction
of the thyroid hormones is free to enter tissues and has a biologic effect.

The thyroid gland is under the control of the pituitary gland. This small
gland located at the base of the brain, produces Thyroid Stimulating Hormone
(TSH) when the T3 and T4 levels drop too low, in order to stimulate the thyroid
to produce more hormones (see Fig. 1).

Fig. 1. Diagram of the functioning of thyroid hormones (Source: [13]).

But this mechanism does not always work well, and when that happens, it can
lead to profound adverse effects if undiagnosed or untreated. Thyroid dysfunction
is a common disease. For instance, the estimated prevalence of hyperthyroidism
ranges from 0.2% to 1.3% in parts of the world with enough iodine [12], being
larger in those places with a lack of iodine.

Primary thyroid failure brings with it a number of different symptoms, raging
from fatigue, sensitivity to cold or poor memory and concentration, to dyspnea,
weight gain or even depression. As this gland is in charge of the regularization
of the metabolism, its malfunction is harmful to the whole body.

The relationship between TSH and T4 was broadly studied since it seems
that this tandem has the greatest diagnostic value for primary thyroid failure [9].
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Many studies suggested an inverse, linear relationship between log-TSH and T4,
being this taken as a generally accepted principle of thyroid physiology thanks
to Spencer et al. (1990) [11]. It was not until 2010 that studies began to emerge
refuting the linearity of the relationship [4,5].

It is obvious that the simultaneous study of the thyroid-related hormone may
improve the diagnosis of primary thyroid failure. In addition, it is also possible
that the relationship between these hormones varies with age and should be
included as a covariate. To this aim, Multivariate Conditional Transformation
Models (MCTM, [8]) were considered in this paper. These models characterize
the covariates effects not only on the correlations (relationship) between the
outcomes, but also on the Cumulative Distribution Functions (CDF) of each
response. It is also possible to obtain percentile curves from these models for
each biomarker, facilitating interpretability.

The remainder of the paper is structured as follows: in Sect. 2, the structure of
MCTM is briefly explained; a simulation study is described in Sect. 3, comparing
MCTM performance in the bivariate case with conditional Copula Generalized
Additive Models, for Location, Scale, and Shape (CGAMLSS, [10]); Sect. 4 presents
the results of the clinical study; and, finally, the paper ends with some conclusions
(Sect. 5).

2 Multivariate Conditional Transformation Models

Multivariate Transformation Models were developed for a J-dimensional, abso-
lutely continuous response vector Y = (Y1, . . . , YJ )� ∈ R

J . In these models,
an unknown, bijective, strictly monotonically increasing transformation func-
tion h : RJ → R

J maps the outcome Y to a set of J independent and identically
distributed, absolutely continuous random variables Zj ∼ PZ , j ∈ {1, . . . , J},
where PZ is a pre-defined distribution (usually, Zj ∼ N(0, 1)). That is:

h(Y) = (h1(Y), . . . , hJ (Y))� = (Z1, . . . , ZJ )� = Z ∈ R
J . (1)

MCTM are obtained by extending the transformation function (1) to include a
vector of potential covariates X, resulting in:

h(y|x) = (h1(y|x), . . . , hJ (y|x))�. (2)

A triangular structure is imposed on the transformation function h in order to
simplify calculations, without imposing any limitation on the estimation of the
responses. This means that the jth component of the transformation function
depends only on the first j elements of y. Therefore, for each j ∈ {1, . . . , J}, the
components of (2) can be written as:

hj(y|x) = hj((y1, . . . , yJ )|x) = hj((y1, . . . , yj)|x). (3)

Finally, the hj transformation functions in (3) are set to be linear combinations
of marginal transformation functions h̃j : R → R:

hj(y|x) =
j−1∑

j=1

λjj(x)h̃j(yj|x) + h̃j(yj |x), (4)
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where λjj(x) and h̃j(yj |x) are expressed in terms of basis function expansions.
Thus:

h̃j(yj |x) = aj(yj)�ϑj,1 − b(x)�ϑj,2, (5)

and:
λjj(x) = x�γjj, 1 ≤ j < j ≤ J. (6)

Here, aj and b are polynomial Bernstein basis functions for the response and the
covariates respectively, and (ϑj,1,ϑj,2,γjj) are the parametric coefficients of the
model. Their estimation and inference are based on the model log-likelihood. In
Fig. 2, a representation of the Bernstein basis of four different orders is shown.
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Fig. 2. Representation of Bernstein basis of order 2, 3, 5, and 7.

Summing up the model’s specifications, the MCTM are characterised by a set
of marginal conditional transformations h̃j(yj |x), j ∈ {1, . . . , J} (computed as
in (5)), each of which applying to only one component of Y and the covariates
(X), and by a lower triangular (J × J) matrix of transformation coefficients
Λ(x):

Λ(x) =

⎛

⎜⎜⎜⎜⎜⎝

1 0
λ21(x) 1
λ31(x) λ32(x) 1

...
...

. . .
λJ1(x) λJ2(x) . . . λJ,J−1(x) 1

⎞

⎟⎟⎟⎟⎟⎠
,
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with λjj(x), 1 ≤ j < j ≤ J , defined as in (6). Under the standard normal refer-
ence distribution PZ = N(0, 1), the coefficients of Λ(x) characterise the depen-
dence structure of the responses. This is so because Z̃(x) = (Z̃1(x), . . . , Z̃J (x))�,
defined by the random variables Z̃j(x) = h̃j(Yj |x), follows a multivariate Gaus-
sian distribution Z̃(x) ∼ N(0J ,Σ(x)), with Σ(x) = Λ(x)−1(Λ(x)−1)�. Infer-
ence on the responses correlations is done by using parametric bootstrap (see [8]
for more details).

In MCTM, the conditional Cumulative Distribution Function (CDF) for each
outcome, FY(Yj |x), is given by:

P(Yj ≤ yj |X = x) = Φ0,σ2
j

(
h̃j(yj |x)

)
= FZ

(
aj(yj)�ϑj,1 − bj(x)�ϑj,2

)
.

3 Simulation Study for the Bivariate Case

In Sect. 5 of their paper, Klein et al. (2019) [8] evaluated the performance of MCTM
with a simulation of a bivariate response depending on one covariate, compar-
ing the results of MCTM models with two other approaches: Bayesian structured
additive distributional regression models, and vector generalised additive models
(VGAM). In this Section, we are going to replicate that simulation study, consid-
ering now as a competitor the conditional Copula Generalized Additive Models,
for Location, Scale, and Shape (CGAMLSS, [10]).

CGAMLSS are bivariate copula models with parametric marginal distributions,
one-parameter copulas, and semi-parametric specification for the predictors of
all parameters of both the marginal and the copula jointly, using a penalised
likelihood framework. Unlike MCTM, this approach is only limited to the bivariate
case for continuous responses. Even so, we do not see that this is a good enough
reason not to compare them when we have two possibly related responses.

3.1 Simulation Design

In the simulation set-up, R = 100 data sets of size n = 1000 were simulated and
one single covariate x ∼ U[−0.9, 0.9] was considered. The two continuous out-
comes were considered following a Dagum distribution. The bivariate response
dependence structure depends on x, being λ(x) = x2 (to see all of the details,
go to [8], Subsect. 5.1). With this construction, the first margin is independent
of the covariate x, but the scale parameter of the second margin is not (not so
the shape parameters a and p, which remain constant).

For the MCTM, we applied Bernstein polynomials of order 8 and 3 in the
responses and the covariate respectively.

For the CGAMLSS, we used the true specification of the model, i.e. a Gaussian
Copula and Dagum marginals, with the correlation parameter and the b2 param-
eter of the Dagum distribution for y2 dependent on x, while all of the parameters
of the first marginal, as well as the shape parameters a2 and p2 of the second one
did not depend on any covariate. For this purpose, both the predictor for b2 and
the correlation parameter ρ of the copula were specified using cubic B-splines
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with 20 inner knots, as it was done for the other approaches compared in the
original paper. Likewise, the other parameters of the model were estimated as
constants.

3.2 Evaluation of the Performance

The performance of the methods was evaluated by estimating the lower ele-
ment of Λ(r), λ̂(r)(x), from every data replicate r ∈ {1, . . . , R}, on a grid
of length G = 100 within the range of x, and comparing it to the real one,
λ(x). On the one hand, we considered the estimated curves as they were; on
the other hand, we computed the root mean squared error RMSE

(
λ, λ̂(r)

)
=

√
1
G

∑G
g=1

(
λ(xg) − λ̂(xg)

)2

and the standard deviation SD
(
λ̂(r)

)
of each sam-

ple as a numeric measure of discordance.

3.3 Results of the Simulation Study

Fig. 3. Function estimates λ̂(x) for the effect λ(x) = x2 on the correlation parameter
for CGAMLSS (left) and MCTM (right). The black line represents the true function and the
grey lines are the estimations of the R = 100 simulation samples.

Figure 3 shows the estimations for λ(x) = x2 of the 100 simulated data sets for
CGAMLSS (left panel) and MCTM (right panel). Even though both models seemed to
capture the general form properly, MCTM led to better smoothed curves. Although
CGAMLSS was fitted using the actual model specification, in terms of RMSE and
SD both approaches were very similar (Fig. 4). This is highly remarkable because
MCTM was fitted without specifying parametric marginal distributions, a require-
ment that is restrictive, and an obstacle in practice. Besides this, we have found
a big difference in the execution times, since, on average, the adjustment of MCTM
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Fig. 4. Left: RMSE
(
λ, λ̂(r)

)
for CGAMLSS and MCTM. Right: SD

(
λ, λ̂(r)

)
for CGAMLSS

and MCTM.

was less than a second (0.480 s), while a CGAMLSS model took almost 5 s (4.807 s).
Therefore, a MCTM approach seemed to be more advisable than a CGAMLSS app-
roach.

4 Joint Modelling for Thyroid-Related Hormones

As we stated in Sect. 1, a good control of the activity of the thyroid gland is
vital for the overall functioning of our bodies. In order to do so in the best way,
it is really important to know the relationship between the hormones involved
(TSH, T3 and T4)as thoroughly as possible, adjusting for age. In this Section,
we used the statistical methodology of MCTM for that purpose.

The data we have available comes from A-Estrada Glycation and Inflam-
mation Study (AEGIS), which is a cross-sectional population-based study being
performed in the municipality of A Estrada (NW, Spain). Its aim is to investigate
the association between glycation, inflammation, lifestyles, and their association
with common diseases and to study discordances between markers for glycaemia.
In this database, we have a total of 1516 subjects who agreed to participate in
the study, and the data collection and recruiting phase were completed in March
2015. After excluding extreme values and the treated ones due to high variability
of the values, a total of 1282 healthy subjects remains.

We studied the relationship between TSH (mIU/L), free T3 (pmol/L), and
free T4 (ng/dL). We considered the logarithm of the TSH (log-TSH) because of
previous studies [4,5,11]. In Fig. 5, the two-by-two scatter plots of the variables
are shown.
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Fig. 5. Two-by-two scatter plot of the thyroid-related hormones. Left: log-TSH vs. Free
T3. Centre: log-TSH vs. Free T4. Right: Free T4 vs. Free T3.

4.1 Trivariate Conditional Transformation Models for Log-TSH,
Free T3, and Free T4 Hormones

We applied MCTM to study the relationship between log-TSH, free T3, and free
T4, adjusting for the age of the patient to take into account a possible variation
of these hormones and their relationship with age.

Model Specification. Based on a PZ = N(0, 1) distribution, our marginal
conditional distribution is parametrised as:

h̃j(yj |Age) = aj(yj)�ϑj,1 − b(Age)ϑj,2, j ∈ {log-TSH, Free T3, Free T4}, (7)

where basis functions a are Bernstein polynomials of order eight and b is a
Bernstein polynomial of order three. The coefficients of Λ were parametrised as:

λjj(Age) = b(Age)γjj, j < j ∈ {log-TSH, Free T3, Free T4}, (8)

Results for Marginal Distributions. The estimated marginal conditional
CDFs Fj(yj |age), and densities fj(yj |age), are shown in Fig. 6. The different
colours represent the ages of the individuals. We can see that the shapes differ
for the three hormones, and that hormone levels decrease as age increases for
log-TSH and Free T3, specially for the latter. For Free T4, we can see that higher
values are obtained in middle-aged individuals. Another way of seeing this is as
depicted in Fig. 7, with the scatter plot of the hormones as a function of age,
and the percentile lines shown in red. Here it can be clearly seen that, although
log-TSH levels appear to decrease with age, this change is very small, and the
log-TSH level be considered invariant with respect to age.
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Fig. 6. Estimated marginal conditional CDFs Fj(yj |age), and conditional densitiy func-
tions fj(yj |age), for j = log-TSH (left), j = Free T3 (centre), and j = Free T4 (right),
from age = 20 (brown) to age = 90 (purple). (Color figure online)
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Fig. 7. Scatter plot of thyroid-related hormones vs. age. In red, percentile curves are
shown. Left: log-TSH levels. Centre: Free T3 levels. Right: Free T4 levels. (Color figure
online)

Results for Dependence Structure. In Fig. 8 it is shown that the two-by-
two conditional Spearman’s rho ρS(Age) for the three hormones, is statistically
significant in all three cases. The grey area represents the confidence interval
estimates at 95% from 1000 parametrically drawn bootstrap as explained in
Subsect. 3.4 in [8]. We can see that the relationship between log-TSH and Free T3
is negative, and statistically significant for individuals between 30 and 50 years
old. Correlation between log-TSH and Free T4 is negative (as expected). Finally,
correlation between Free T3 and Free T4 is positive and decreases with age.
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Fig. 8. Two-by-two conditional Spearman’s rho ρS(age) for the thyroid-related hor-
mones (left: log-TSH and Free T3; centre: log-TSH and Free T4; right: Free T3 and
Free T4). Grey area represents the 95% bootstrap confidence interval, while black line
represents the bootstrapped point estimate. Red line indicates the 0. (Color figure
online)

5 Conclusions

In this work we demonstrate the usefulness of MCTMs in the biomedical setting.
MCTMs allow for a joint estimation of the covariates effects on the distribution of
each response, and on their correlations. MCTMs performance was evaluated in
comparison with the frequentist conditional copula regression models. Finally,
MCTMs allowed us to model jointly, for the first time, the age effect on the
concentrations of the three thyroid hormones, offering a better understanding of
these endocrinological measurements.

Thyroid dysfunction diagnosis have been the object of research in several
works. However, given the state of art of regression analysis, these studies have
been conducted considering thyroid hormone concentrations as mutually inde-
pendent variables. For instance, Jonklaas et al. (2019) [7] focused on the clinical
variables effect over the thyroid hormones distribution, with independence of
any pathological status. Hoermann et al. (2016) [6] discussed the convenience of
estimating a trivariate reference region for TSH, T3, and T4. Indeed, they proved
that univariate reference curves for each hormone cause thyroid dysfunction over-
diagnosis. Therefore, trivariate regression modelling might be advantageous for
thyroid dysfunction diagnosis. In this context, the proposal of trivariate reference
regions – i.e., regions characterizing the 95% of healthy patients’ results - are
desirable in the clinical setting. In future work, we will investigate the MCTMs
extension for conditional trivariate reference region estimation.

MCTMs represent a leap forward in the multivariate regression analysis
application to real clinical problems. To date, multivariate regression usage in
the clinical setting is anecdotal [1–3]. Indeed, currently, when several correlated
measurements are available for the same patient, they are treated as mutu-
ally independent variables, or a pre-specified transformation is applied to them
resulting in a univariate problem. This common strategy may depreciate useful
information arising from the continuous measurements joint distribution. Hence,
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MCTMs may enhance the application of multivariate regression for diseases
whose diagnosis is based on several continuous biomarkers, or clinical assess-
ments that are based on correlated measurements.
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Abstract. This work presents an iterative method for obtaining a dig-
ital terrain model (DTM) from a digital surface model (DSM) given as
input. The novel approach is compared to a state-of-the-art method from
the literature using three case studies that represent diverse situations
and landscapes including a coastal region composed of dunes, a mountain
region, and also an urban area. The proposed method was revealed to
be a promising alternative in terms of a better root-mean-square error.
Input surface artifacts are successfully removed with the adoption of the
proposed method.

Keywords: Digital terrain model · Digital surface model ·
Interpolation

1 Introduction

Topographic data are widely adopted as supporting information for research and
civil applications, both in the context of environmental management, as well as
in landscape and urban planning. Advances in remote sensing techniques and
computational methods in the recent decades led to the widespread adoption of
elevation data in several domains such as hydrological modeling, forest modeling,
among others [11].

A Digital Elevation Model (DEM) is a digital representation of the Earth’s
surface, usually as a digital image that represents elevation values. The type of
sensor used to collect elevation data determines the quality of the final result [12].
Data collected with surveying equipment, such as GPS, theodolites, and total
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stations, collect topographic elevations of the terrain precisely. However, the cost
of the final product and time spent to obtain the information might be higher,
therefore the number of data points collected might be smaller. Those factors
usually restraint the adoption of this type of equipment for large-scale data
collection [12]. In that sense, remote sensing techniques such as LiDAR (Light
Detection and Ranging), orbital sensors, UAVs (Unmanned Aerial Vehicles),
and radar type sensors such as SAR (Synthetic Aperture Radar) and InSAR
(Interferometric Synthetic Aperture Radar) are some of the alternatives available
for the collection of topographic data. Those approaches, however, collect land
surface information instead of terrain information purely [12].

A grid DEM represents a continuous regular surface interpolated through
the elevation points (discrete points). Generally, this grid is a set of data that
builds up an image, where each pixel value corresponds to an elevation. A trian-
gular irregular network (TIN) represents an irregular surface composed of non-
overlapping triangles that connect at irregularly spaced measurement points,
these triangles are represented as vector data structures.

When a DEM includes structures above the ground, such as trees, houses,
and other buildings, it should be referred to as a Digital Surface Model (DSM)
which represents the “first” measured surface. A DSM, therefore, models the
reflective response of the terrain and also all objects and surfaces above it.

Digital Terrain Models (DTMs), on the other side, digitally represent the
terrain’s ground surface without any objects or constructions. This differentia-
tion between ground and non-ground elevation data is of wide interest due to
the high applicability of terrain data for environmental and civil construction
purposes. DTMs are often adopted in topographic analysis, flood models, urban
planning, among other applications [9]. A DSM, on the other hand, is useful
when the aim is to represent and analyze surfaces above the ground, such as a
3D map of a city, for instance [2].

A DTM can be obtained as a refined version of a DSM, resulting from specific
processing and/or filtering which aim to represent more accurately bare earth
without the artifacts or objects on the surface [14]. Several DTM-from-DSM
filtering algorithms have been proposed, which are built upon diverse numerical
and analytical approaches. The choice of a method depends, among other factors,
on the type of data structure considered. Typically, for point cloud data, filtering
is used to make this separation between terrain and surface [10].

Under existing DTM-from-DSM methods the user must set a small to moder-
ate number of parameters, which are at least three, typically. This work proposes
a simple DTM-from-DSM filtering algorithm that relies on the iterative inter-
polation of the elevation values in the DTM. The number of parameters of the
novel method is smaller when compared to other approaches, which might place
the novel method as an easier-to-use alternative for practitioners from diverse
areas. We show the applicability of the novel approach by comparing it to a
state-of-the method from the literature for three test sites.

The paper is organized as follows. Related works are briefly reviewed
in Sect. 2. The proposed approach is presented in Sect. 3. The evaluation
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methodology is proposed in Sect. 4. The resulting model is evaluated and com-
pared to a state-of-the art method in Sect. 5. Section 6 concludes the paper.

2 Related Work

Several filtering methods for obtaining the DTM from grid-type DSMs. In [6]
a DTM-from-DSM method is proposed, which is especially applicable in steep,
forested areas where other filtering algorithms typically have problems when
distinguishing between ground and off-ground elements. Some methods rely on
the extraction of morphological characteristics of the terrain [5,8,13]. In [7] a
method is proposed which relies on extracting the most contrasted connected
components from LiDAR data to remove non-ground objects. Recently in [1] a
method based on the interpolation matrix of the weighted thin-plate spline is
proposed.

The Terra (Terrain Extraction from elevation Rasters through Repetitive
Anisotropic filtering) filtering method [9] adopts the terrain aspect to guide
the direction of anisotropic filtering, maximizing the preservation of the terrain
edges. A smoothing operation is locally directed along the terrain slope. Initially,
the slope direction (aspect) at a node Zi,j is computed from a set of nodes inside
a squared window centered at (i, j), which contains η ×η nearby nodes. Later at
each step of the iterative process, the smoothing itself occurs considering only
the upstream grid nodes within a smaller λ × λ filter window centered at (i, j).
The process is repeated M times, where M is a parameter. Higher values for M
lead to smoother surfaces. The iterative update for each node at each step m is
performed as:

Zm
i,j = min(Zm−1

i,j ,mean({u|u ∈ U((i, j), η, λ)})) (1)

where the window U contains the upstream grid nodes as mentioned above,
determined for the neighborhood of each (i, j), iteratively at step. Other kernel
averaging functions could be used, as mentioned in the paper1.

3 Proposed Self-interpolation Method

A simple iterative interpolation approach is proposed for the generation of a
DTM from a DSM given (denoted as S). Elevation values at coordinates (i, j) in
S are successively replaced by the result of the interpolation computed from the
elevation values nearby. The iterative process starts at step m = 0 with the initial
version of the DTM set as Tm=0 = S, which corresponds to the DSM given.
Successive refined versions of the DTM are represented as T 0, T 1, · · · TM , where
M represents the number of iterative steps. Theoretically, all the remaining nodes
apart from (i, j) itself could be adopted for the computation of the interpolation

1 The R source code of Terra is available at: https://www.umr-lisah.fr/?q=fr/scriptsr/
terra-script-r.

https://www.umr-lisah.fr/?q=fr/scriptsr/terra-script-r
https://www.umr-lisah.fr/?q=fr/scriptsr/terra-script-r
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at (i, j). Therefore, the updated elevation value for each node tmi,j ∈ Tm at each
step m could be computed as the minimum between the previous value tm−1

i,j

and its interpolated value as:

tmi,j = min(tm−1
i,j ,M((i, j), Tm−1 − {tm−1

i,j })) (2)

where M(p, V ) represents the interpolation computed from input nodes in V =
Tm−1 −{tm−1

i,j } for the output coordinates given by p = (i, j). However, majorly
for the purpose of computational efficiency, only a subset of the nearby nodes
will be adopted for the computation of the interpolation M at each node (i, j).
A squared filter window W ((i, j), λ), centered at (i, j), containing (λ × λ) − 1
nodes, is defined as the neighborhood of a node at coordinates (i, j). The filter
window W is therefore defined as:

W ((i, j), λ,m) =
{

tm−1
a,b for a ∈

[
i −

⌊
λ

2

⌋
, i +

⌊
λ

2

⌋]
, b ∈

[
j −

⌊
λ

2

⌋
, j +

⌊
λ

2

⌋]}

−{tm−1
i,j }

which leads to expression for the iterative process of the proposed method as:

tmi,j = min(Tm−1
i,j ,M((i, j),W ((i, j), λ,m))) (3)

Algorithm 1 illustrates the novel approach2.

Algorithm 1: Self-Interpolation Method (SIM)
Input: A DSM matrix S
Input: The number of iterations M
Input: The window size λ
Output: The DTM Z

1 T 0 ← S;
2 for m = 1, 2, · · · , M do
3 for all tmi,j ∈ Tm, (i, j) = the coordinates of all nodes in S do
4 W ′ ← {all tm−1

a,b in a (λ × λ) filter window centered at (i, j)}
5 W ′′ ← W ′ − {tm−1

i,j }
6 tmi,j ← min(tm−1

i,j , M((i, j), W ′′);

7 Z ← TM

return Z

The method M adopted in the step 4 of Algorithm 1 could be any point
interpolation of choice. Here in this study the Inverse Distance Weighting (IDW)
method was used, which is widely adopted in the spatial context and provides

2 The R source code of SIM is available at https://github.com/emmendorfer/sim.

https://github.com/emmendorfer/sim
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a computationally efficient approach [4]. The IDW method computes the inter-
polation ŷnew for a given location new from a set of n given values yl1 , yl2 , · · · ,
yln at locations l1, l2, · · · , ln as:

ŷnew =
n∑

k=1

wk,new × ylk (4)

where the weights wk,new for input data point at lk are given as:

wk,new =
D−α

lk,new∑n
k=1 D−α

lk,new

(5)

where Dlk,new is the Euclidean distance between nodes at locations lk and new.
In this work, α = 2 is assumed, which is the most commonly adopted value.

4 Methodology

Two test sites were considered for the evaluation of the method, which provided
three distinct application scenarios due to multiple topographic situations cov-
ered. The first corresponds to a low-altitude UAV photogrammetric survey using
a DJI Phantom 4 PRO drone3. The aerial survey, which occurred during the
years 2018 and 2019, covers a 424ha urbanized coastal area in southern Brazil
with an overlap of 80/60, frontal and side percentage respectively. The pho-
togrammetric bundle consisted of 3096 photos properly calibrated and adjusted
through 68 control points acquired by GNSS-RTK [7]. The 1 m Dunes DSM cor-
responds to a 100 × 100 m squared region centered at 32◦ 11’10”S 52◦09’13”W,
which is composed by sand dunes covered with very low vegetation.

Also from the same site, an urban area was considered. It corresponds to a
100 × 100m squared region centered at 32◦11’20”S 52◦09’49”W which is denoted
here as the UrbanRG DSM, also with 1 m resolution.

Finally, a 5 m resolution DSM derived from interferometric synthetic aperture
radar (IFSAR)4 was also included. This 2017 data corresponds to an area in
Alaska, USA. A 500 × 500 m area centered at 61◦15’00”N 157◦16’39”W was
denoted here as Alaska. Elevations in this area vary from 115 m to 130 m.

A quantitative evaluation was performed for the Dunes and Alaska DSMs,
as follows. Since both cases correspond to low vegetation areas, we will consider
both original DSMs as being the reference DTMs for the evaluation of the DSM-
to DTM methods considered. From each DTM two noisy DSMs are obtained by
performing the increment in the elevation values for a portion of the nodes. Two
alternative percentages were adopted: 25% and 50%. This allows one to verify

3 All ellipsoidal height coordinates obtained by the survey were adjusted to orthome-
tric heights using the geoid heights provided by the MAPGEO2015 software, which
were made available by the Instituto Brasileiro de Geografia e Estat́ıstica (IBGE).

4 Available at: https://www.sciencebase.gov/catalog/item/5cc3ccd0e4b09b8c0b760
969.

https://www.sciencebase.gov/catalog/item/5cc3ccd0e4b09b8c0b760969
https://www.sciencebase.gov/catalog/item/5cc3ccd0e4b09b8c0b760969
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the robustness of the filter on varying levels of artifacts inserted. For each node
that is randomly selected to be altered, a random increment uniformly sampled
from the interval [0m, 5m] is added to the corresponding elevation value.

Two DTMs are computed for each noisy DSM, from both Terra and SIM
methods. Finally, the Root Mean Squared Error (RMSE) between the recon-
structed DTM and the original reference DTM is computed using all the ele-
vation values available. This type of evaluation differs from what is adopted in
other works where the evaluation is based on “reference DTMs” which are DSMs
that were processed using some reference method.

5 Results

Initially, we evaluate the effect of the parameters of the algorithms on the quality
of the resulting DTMs. Figure 1 shows the RMSE computed from the resulting
DTMs from both Terra and SIM as a function of the parameters M and λ, for
varying proportions of nodes altered (25% and 50%), considering both Dunes
and Alaska areas. The Terra algorithm, besides M and λ has also the parameter
η to be set. Since η should be greater than λ, we adopted an ad-hoc rule where
η = λ + 2, in this first set of quantitative evaluations. Odd values were adopted
for both window sizes, which guarantees that the center of the windows is exactly
at (i, j).

In general, the RMSE response surfaces obtained from SIM attained lower
values when compared to the corresponding RMSE surfaces obtained from Terra.
Table 1 shows the optimal RMSE computed for all cases, along with the corre-
sponding parameter values.

Table 1. Optimal RMSE values from Terra and SIM applied to Dunes and Alaska
areas. The best result for each case is shown in bold.

Area % of randomized
elevations

Method Best parameter
values

Optimal RMSE

λ M

Dunes 25% Terra 5 3 0.5897

SIM 3 3 0.1097

Dunes 50% Terra 5 3 0.9537

SIM 3 6 0.1451

Alaska 25% Terra 3 3 0.6533

SIM 3 2 0.1994

Alaska 50% Terra 3 7 0.9652

SIM 3 5 0.2684



358 L. R. Emmendorfer et al.

(a) Terra DTM RMSE Dunes (25%) (b) SIM DTM RMSE Dunes (25%)

(c) Terra DTM RMSE Dunes (50%) (d) SIM DTM RMSE Dunes (50%)

(e) Terra DTM RMSE Alaska (25%) (f) SIM DTM RMSE Alaska (25%)

(g) Terra DTM RMSE Alaska (50%) (h) SIM DTM RMSE Alaska (50%)

Fig. 1. RMSE computed from the result of Terra and SIM algorithms, as a function
of the parameters M and λ, for varying proportions of nodes altered (25% and 50%),
considering both the Dunes and Alaska areas.
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(b) + random elevations (25%) (c) Terra DTM (25%) (d) SIM DTM (25%)
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(e) + random elevations (50%) (f) Terra DTM (50%) (g) SIM DTM (50%)
RMSE=0.9537 RMSE=0.1451
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Fig. 2. Optimal results from Terra and SIM when applied to the Dunes area.

Figures 2 and 3 show the results obtained from both methods Terra and SIM
using the optimal parameters shown in Fig. 1, applied to noisy DSMs. Figure 2
shows the results obtained for the Dunes region. The RMSE obtained from SIM
was smaller than RMSE from TERRA. One can notice that the smoothing effect
performed by the SIM method (Figs. 2d and 2g) preserves some dune features,
while the TERRA method was not as conservative, resulting in a roughly “spot-
ted” aspect, which makes certain dune features less evident in the reconstructed
maps (Figs. 2c and 2f).



360 L. R. Emmendorfer et al.

(a) Alaska (reference)
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(b) + random elevations (25%) (c) Terra DTM (25%) (d) SIM DTM (25%)
RMSE=0.6533 RMSE=0.1994
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(e) + random elevations (50%) (f) Terra DTM (50%) (g) SIM DTM (50%)
RMSE=0.9652 RMSE=0.2684
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Fig. 3. Optimal results from Terra and SIM when applied to the Alaska area.

Figure 3 shows the reconstruction results obtained for the Alaska region.
The RMSE values obtained from SIM were lower when compared to Terra, as in
the previous case. The reconstructions obtained using the SIM filtering method
(Fig. 3d and 3g) better preserve morphological characteristics of the original data
when compared to the reconstructions obtained from Terra (Fig. 3c and 3f). The
borders of an image are not affected by the Terra method, therefore border pixels
were excluded from all images shown in the figures.
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Fig. 4. Results from Terra and SIM when applied to the UrbanRG area.
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Fig. 5. A transect for UrbanRG area, considering the original DSM and resulting DTMs
shown in Fig. 4.

To illustrate the adoption of the novel method in another context, Fig. 4
shows the DTM resulting from both Terra and SIM when applied to the
UrbanRG area, which corresponds to an urban area. Parameters adopted for
Terra in this case were λ = 7, η = 10. SIM was executed using λ = 5. For
both methods, M = 70 was used. Other parameter settings for both methods
led to worse results. Figure 5 shows transects for the same area, considering the
original DSM and resulting DTMs. One can notice that SIM was able to achieve
a further realistic result in this case when compared to Terra.

6 Conclusion

The choice of an appropriate method for generating a DTM given a DSM depends
on the type of terrain, the type of objects to be removed, the amount of com-
putational resources to be afforded, among other factors. Each method has its
advantages and drawbacks: a method that fits well with some type of situation
can be unsuited for another. This also motivates the improvement of existing
methods and the search for alternatives. This paper described a novel DTM-
from-DSM method which is very simple but rather effective when compared to a
state-of-the-art reference approach. The method is evaluated on three scenarios
that represent diverse situations that can be found in real applications. Opti-
mal RMSE from the novel method was better when compared to the reference
Terra method for all test cases considered, after performing an exhaustive search
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on the parameter space for both methods. Results from Terra, however, could
be improved since the number of parameters of the method is higher and the
search was restricted to the two parameters that are common to both methods
SIM and Terra. The method proposed here was revealed as an attractive initial
alternative for practitioners since its parameter setting is easier to accomplish
when compared to other methods from the literature.

Further work should explore other types of applications. Also, other DTM-
from-DSM methods should be considered in further evaluations. Besides that,
other alternatives could be considered for the interpolation method adopted in
SIM besides just the IDW approach used here. For instance, variations of IDW
itself such as the IDWR method recently proposed [3,4] could be used.
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Abstract. The amount of energy consumed by a building can be estimated by
performing dynamic simulations. In this study, two building simulation energy
software, EnergyPlus, and TRACE700 were used to assess the energy perfor-
mance of an existing service building. The building, placed in a specific zone
of Portugal, has thirty people and a floor area of 2,000 m2. It consumes mainly
electricity, natural gas, and solar energy. The dynamic simulation started with the
weather file upload, and then the construction, illumination, interior equipment,
and HVAC systems were defined. The results were compared with the actual
energy consumption values, and the deviation was 2% in the case of EnergyPlus
and 0.5% in the case of TRACE700.

Keywords: Energy performance · Services building · Simulation

1 Introduction

Nowadays, the energy analysismarket is hugedue to theEuropeanUnion (EU) legislation
to improve energy efficiency. The energy efficiency in buildings will be, for sure, a
significant step forward in the next few years. Estimating the energy consumption in
existing buildings will be part of the process [1].

The future EU plans predict that the existing buildings must be transformed into
nearly zero-energy buildings. In other words, the EU, with the directives implemented,
intend to turn these buildings into energy efficient infrastructures that consume a reduced
amount of energy [2].

The application of accurate simulationmethods [3]will be crucial in achieving highly
energy-efficient buildings and the EU goals. The dynamic simulation of buildings con-
sists of predictions based on computer programs of the amount of energy that a building
consumes during a period [4]. Computer simulation software allows the analysis of the
energy efficiency of buildings and the estimation of energy consumption necessary to
provide the comfort needs of its occupants [5]. Usually, all the available tools work by the
same principles and require the same information sequentially. Firstly, the user inserts
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the structural construction parameters, which allows the software to calculate the ther-
mal transmittance coefficient, obtaining, this way, the heating flow exchanged between
the inside and outside of the building [6]. Once this flow is calculated, the programs
calculate the amount of energy consumed to maintain a comfortable temperature inside
of the building [7–10]. In this way, the software computes the energy consumption by
all active systems [8–14]. In order to perform the calculations, the user must provide
specific data such as the climatic file that contains information about the air temperature,
humidity, radiation of the region, construction, occupation, illumination, equipment, and
HVAC (Heat Ventilation and Air Conditioning) systems [10, 11]. Then, the software will
use a simulation management tool that works as an interface of data exchange, aggregat-
ing two modules responsible for the simulation: the heat and mass balance simulation
module and the building’s system simulation module [15]. The first one performs the
thermal balance simulation based on the phenomenon of heat transfer. The second one
is responsible for the building’s systems simulation; in other words, it does the simu-
lation of HVAC and DHW (Domestic Hot Water) systems. Finally, the output data are
analyzed [12, 13]. This process plays an essential role in determining the optimal design
variables since the building’s response is highly sensitive to the input data provided for
the computer simulations. In the building energy sector, whole-building energy simula-
tion programs that mainly consider key performance indicators such as energy demand
and costs are the significant tools [17]. De Boeck et al. [18] provided a literature review
on improving the energy performance of residential buildings. The author identified the
most widely used tools in the literature, and EnergyPlus is one of them. More recently,
Hashempour et al. [19] presented a complete, precise, up-to-date literature review on
energy performance optimization of existing buildings. The author analyzed the differ-
ent existing building simulation energy tools such as DOE-2, EnergyPlus, TRNSYS,
eQUEST, and IDA ICE. EnergyPlus is the software that presents the highest percentage
of the use amongst the different energy dynamic simulation tools and building model-
ing and/or visualization platforms, respectively. Crawley reported the same conclusion
et al. [20] and Sousa [21]. The former compared the top20 simulation tools for building
energy performance simulation. The last author reviewed five different simulation tools
and concluded that although TRNSYS is the most complete tool, EnergyPlus, and IDA
ICE are more adequate to import or export files from AutoCAD Software tools.

There are some research papers in the literature using building energy simulation
tools for the analysis of different problems. Shrivastava et al. [22] presented a comparative
study of popular simulation tools and their architecture from the perspective of TRNSYS.
The author found that this software provided a good agreement within error between 5
and 10%. Furthermore, the author recommended the simultaneous analysis of the same
system on different programs to avoid bias results. Sadeghifam et al. [23] examined the
energy saving in building elements and how its coupling with effective air quality factors
can contribute towards an ultimate energy efficient design. These works were based on a
typical house in Malaysia, and the building was modeled using Revit software and then
imported to EnergyPlus software to evaluate the best option in terms of energy savings.

Overall, despite different building energy simulation tools, choosing the appropriate
tool depends on the final user’s objective and perspective. In this way, this paper aims
to study the energy performance in an existing building in Portugal and perform the
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same analysis using two different programs to avoid biased results as suggested by
Srivastava et al. [22]. This is an important work to provide answers to particular questions
regarding the energy performance of an existing building. Further, the influence of some
key variables can be analyzed quickly and effectively. This is an added value since the
owners of the service building will see the building energy demand and what are its cost
and energy performance rating.

2 Case Study

This chapter describes the building selected as a test case, its location, construction char-
acteristics, occupation, illumination, equipment, and HVAC systems. Then, the energy
modeling methodology used in EnergyPlus and TRACE700 is presented, highlighting,
and explaining the details of the two models.

2.1 Building Description

The building is a nursing home for seniors located in Penafiel, Oporto district, Portugal.
The building, made up of floors, is an old construction, which was never retrofitted with
any improvement. The first floor, referred to as Floor -1, includes bedrooms, bathrooms,
corridors, kitchen, canteen, church, fridge room, and laundry.

The second floor, referred to as Floor 0, comprises bedrooms, a corridor, bath-
room, waiting room, and an administrative office. The third floor, Floor 1, also includes
bedrooms, hall, bathroom, meeting room, gym, and infirmary.

Each floor has an average height of 3 m. Regarding the building’s orientation, the
main facade is oriented to the southeast, as shown in Fig. 1. The arrow points to the
north.

Main front

Fig. 1. Illustration of the building orientation plan.

HVAC and DHW Systems. The building has only one heating system and no cooling
systems. It consists of one natural gas boiler that heats the water up to 70 °C. Two
electrical pumps pump the hot water to the radiators and fan coils. As far as the domestic
hot water system is concerned, this consists of one boiler (the same as the heating
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system) that heats the water up to 50 °C, subsequently pumped by two electrical pumps
to 2 storage tanks, with a capacity is 300 L each. Besides, there is a supplementary
system to the boiler system previously described, consisting of 14 solar collectors that
heat water at 50 °C, subsequently pumped by one electrical pump to a 600 L storage
(Table 1).

Table 1. Characteristics of the building’s HVAC and DHW system.

Equipment Power (kW)

Boiler 203.6

Pump HVAC 0.33

Pump HVAC 0.65

Pump DHW 0.093

Pump DHW 0.093

Pump DHW 0.165

2.2 Software Implementation

EnergyPlus and TRACE700 are energy simulation software that allows the user to sim-
ulate the building energy consumption under different thermomechanical conditions.
By introducing the constructive building characteristics, they can calculate the building
thermal transmission coefficient and, in this way, calculate the heat losses and gains of
the building with the environment. Knowing the occupation thermal comfort needs and
the thermal load, the software calculates the energy required for operation.

There are a few differences between these two tools. EnergyPlus allows the user to
know the thermal load generated by illumination, occupation, and equipment in non-
thermal zones. On the other hand, TRACE700 does not calculate the solar contribution
on domestic hot water simulation and does not allow a 3D modeling of the buildings.

The next subsections will present the construction of each energy model on this
different software.

3D Model. In the EnergyPlus software, the 3D building modeling was developed with
the Sketchup graphical interface. Sketchup has an OpenStudio Plug-in, which allows the
user to draw the building and, at the same time, to build the energy model. OpenStudio is
a data insertion interface that enables the data to insertion to construct the energy model.

The 3D drawing on Sketchup started with the design of the floor, followed by the
spaces boundary conditions, the existing solar collectors, and, finally, the building orien-
tation was defined. Figure 2 a) shows the final building 3D modeling, where the cover is
brown, the external walls are yellow, and the windows are represented in blue. Figure 2
b) shows the compartment’s boundary conditions, wherein green represents the inner
walls and floors, grey is used for the floor adjacent to the ground, and blue is for the
outer walls and roof.

The TRACE700 software does not allow direct 3D modeling.
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Fig. 2. 3Dexternal viewof the building: a) EnergyPlus finalmodel and b) compartments boundary
conditions. (Color figure online)

Input Data. Climatic Zone. In terms of data insertion, the climatic file is the first step
of data insertion into the software when the user wants to build energy models. In
the EnergyPlus, the climatic file upload is carried out on OpenStudio, which is the
EnergyPlus input data interface. In the TRACE700, the upload is made directly on
TRACE700. In these two tools, the climatic file insertion is very similar.

Firstly, the climatic EPW file is downloaded from an app called CLIMAS-SCE. This
app allows the user to obtain the EPWfile by inserting the city, its region, and its altitude.
From the EnergyPlus website, it is downloaded the DDY. In the specific case of the DDY
file, the Oporto DDY was selected as the nearest location to the actual site because it is
the only city from the north of Portugal that had a DDY file.

The main difference between the EPW and DDY files is that the first contains infor-
mation concerning the outer temperature, relative humidity, solar radiation, opaque
cloudiness. This information is used by the software to simulate the building’s ther-
mal behavior for 8670 h, but this file does not possess any information about the critical
days of the year in terms of external air temperature. For this reason, the software needs
the DDY file, which provides this information. Figure 3 shows the EPW file down-load
on CLIMAS-SCE.

Thermal Zones. In this subchapter, the variables that characterize the use of the different
thermal zones were defined: the occupation, its metabolic rate, the use of equipment,
and lighting. In both softwares, the definition of these variables is very similar. It starts
with the introduction of the values related to occupation, lighting, and equipment. This
introduction is made for every thermal zone, but in the case of EnergyPlus, it is possible
to introduce the values of these variables in non-thermal zones. This introduction is
followed by the definition of the lighting, occupation, and electrical equipment working
schedules. The service building management provided these data.

Construction Details. In both tools, the materials present in the construction were cre-
ated because these software are much more adapted to the American specifics than
European. For the EnergyPlus, firstly, the material layers were formed. In this stage, the
variables required for each material from EnergyPlus are the thickness of each material
layer, its conductivity, and its thermal resistance. Then the layers are grouped into walls,
here identified as the external walls, floors, cover, internal walls, etc. Finally, on the
Sketchup platform, using the OpenStudio Plug-in, these constructions were associated
with the 3D model, previously created.
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Fig. 3. Climas-SCE Software.

On Trace700, the creation of the material layers is not needed. The wall creation is
immediately done, and only its thermal transmittance coefficient and its area is required
from the software to create the walls. Then the constructions were associated with each
thermal zone. Figure 4 shows the construction definition on TRACE700.

Fig. 4. Construction definition on TRACE700.
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Loads. The loads correspond to the internal gains existing in the thermal zones of the
building. These gains are associated with the number of occupants, their expected activ-
ity, the power of the equipment, and lighting. The selected building possesses both
natural gas and electric powered devices. In both tools, the definition of these variables
that contribute to the internal gains is identical. This definition is made for every thermal
zone. Table 2 shows the load definition in the energy simulation software.

HVAC and DHW Systems. Regarding the HVAC and DHW definition, this task is quite
different in both software. On EnergyPlus, this definition starts with the building of an
HVAC circuit. Here, firstly, the boiler is added to the circuit, then a pump (the HVAC
circuit possesses 2 pumps, but on EnergyPlus has selected only an equivalent pump that
corresponds to these two pumps), and finally the radiators and fan coils. When the pump
is selected, the option “Auto sized” concerning the pumped water flow and the electric
power of the pump must be determined. In this way, the EnergyPlus will calculate the
electric power andwater flow needed to satisfy the building heating needs. The definition

Table 2. Loads defined in the energy simulation software.

Zone Number of persons Light (W) Electric equipment (W) Natural gas equipment
(W)

Bathroom 0 406 – –

Hall 6 545 – –

Bedrooms 12 774 – –

Canteen 20 384 – –

Kitchen 4 144 3,600 43,000

Fridge room 0 72 37,200 21,000

Laundry 2 72 1,470 –

Church 8 406 – –

Hall 0 168 – –

Secretary 2 108 – –

Manager’s office 1 72 – –

Waiting room 2 60 – –

Bathroom (Floor 0) 0 46 – –

Hall (Floor 0) 0 112 – –

Bedrooms (Floor 0) 9 1,129 – –

Hall (Floor 1) 0 316 – –

Nursery 2 60 – –

Gym 3 108 – –

Meeting room 4 60 – –

Doctor’s office 2 78 – –

Bedrooms (Floor 1) 9 1,129 – –

Bathroom (Floor 1) 0 23 – –
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of an HVAC system on TRACE700 is similar to the EnergyPlus, but here all the HVAC
equipment is defined and its characteristics. In the end, the setup temperatures for each
month are defined too in each software.

Regarding the DHW system definition, on EnergyPlus is quite similar to the HVAC
system definition. Here the circuit is created and then added all the equivalent collec-
tors, pumps, storages (taken as an equivalent of all collectors, pumps, and storages).
TRACE700 does not simulate the solar contribution on the DHW system. Having the
system of solar collectors, a great contribution to the DHW system, another software
(SCE.ER) was used to simulate the DHW system instead of TRACE700. The results of
SCE.ER was added to the TRACE700 results.

3 Results and Discussion

In this section, the simulation results on EnergyPlus and TRACE700 are presented, dis-
cussed, and compared also with real energy consumption results. Regarding the results
of the simulations on both software, the EnergyPlus presented a total energy consump-
tion in a year of 1,435.84 GJ and TRACE700, 1,457.72 GJ. The deviation to the real
consumption values is respectively 2 and 0.5% for these softwares. The results of both
tools were very identical which shows that either software can be used to simulate this
type of buildings.

An analysis was made to compare both energy models in terms of natural gas and
electricity consumption in the building. Figure 5 shows the monthly variation of the
natural gas consumption in both models and the real natural gas consumption. Figure 6
shows the consumption of electricity in each month, comparing both models and the
real values recorded.

Fig. 5. Comparison of natural gas consumption in each month for TRACE700 and EnergyPlus.

The analysis of Fig. 5 shows that either simulation provided identical values, which
demonstrates that the use of each tool is reliable. Looking at the values and the curve’s
path, it is perceptive that the natural gas consumption is higher during the months when
the heating needs are higher, so then the boiler has a far higher load during these months.
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Observing the data in Fig. 6, the results of each software in terms of electricity
consumption are also very similar.

Fig. 6. Comparison of electricity consumption in each month between TRACE700 and Energy-
Plus.

The differences observed are explained by the “Auto-sized” option for the pump’s
power, on EnergyPlus. During the heating months, TRACE700 electricity consumption
results are higher than with the EnergyPlus. During these months, the pumps present on
the TRACE700 model have higher power than those present on the EnergyPlus model.

When the heating system is not working at its highest power, the electricity con-
sumption on EnergyPlus is higher or equal to those with the TRACE700 because the
TRACE700 model did not simulate the DHW system.

Figure 7 shows the results of the natural gas consumption and compares these in
both models. Analyzing this figure indicates that the kitchen and laundry equipment
consumption is constant during the year in both models.

Fig. 7. Results of the natural gas consumption in EnergyPlus and TRACE700 for different
components.
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Figures 8 and 9 show the results of electricity consumption, respectively, in Ener-
gyPlus and TRACE700. In both models, analyzing these two graphics shows that the
interior equipment is the major source of electricity consumption. The Fan coils and
illumination consumption is constant all the year, and the pumps consume low power
during the months when the heating system is off. In the TRACE700 this consumption
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Fig. 8. Results of electricity consumption on EnergyPlus.
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Fig. 9. Results of electricity consumption on TRACE700 for different equipment.
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is zero in August and September because the heating system is off and, in this model,
the DHW system was not simulated.

4 Conclusions

After analyzing the results, it is concluded that each software has similar results when
simulating the energy consumption in this kind of buildings. The EnergyPlus and
TRACE700 models obtained, respectively, 1,435.84 GJ and 1,457.72 GJ. Compared
with the real energy consumption values, TRACE700 and EnergyPlus models results
had a deviation of 0.5% and 2%, which supports the conclusion of being reliable and
suitable to reality.

However, the most significant differences during the model construction are related
to the 3D modeling, the use of different interfaces in EnergyPlus, the simulation of the
DHW system.

Regarding the negative aspects of these tools, they are much more adapted to the
American market than to the European. It can be observed in the libraries where most
of the materials and equipment needed are not available. Another negative aspect is the
fact that these tools do not calculate thermal bridges.

In conclusion, a brief overview is that both software is a great tool to predict the
energy consumption of a services building.
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Abstract. Computational fluid dynamics (CFD) analysis is carried out
to evaluate the early stages of the aerobreakup of a cylindrical water
column due to the impact of a travelling plane shock wave. The mean
flow in a shock tube is simulated by adopting the compressible unsteady
Reynolds-averaged Navier-Stokes modelling approach, where the gov-
erning equations are solved by means of a finite volume-based numerical
technique. The volume of fluid method is employed to track the tran-
sient interface between air and water on the fixed numerical mesh. The
present computational modelling approach for industrial gas dynamics
applications is verified to have significant practical potential by making
a comparison with reference experiments and numerical simulations.

Keywords: Aerobreakup · Computational fluid dynamics · Industrial
gas dynamics · Shock tube

1 Introduction

The aerodynamic breakup of liquid droplets impacted by shock waves has a num-
ber of important industrial applications including, for instance, supersonic com-
bustion airbreathing jet engines (scramjets), where the behavior of fuel droplets
in supersonic airflow plays a crucial role [1,2]. Experimentally, this physical phe-
nomenon can be studied by using a shock tube device, wherein a planar shock
wave is produced that travels towards the downstream test section, with uni-
form gaseous flow conditions being established, e.g. [3,4]. Computationally, the
droplet breakup can be approximated in two spatial dimensions by considering
a water cylinder with circular section in the high-speed flow behind a travelling
shock wave. The latter can be obtained by numerically reproducing the shock
tube flow conditions that are given and known.

The main goal of the present work is the computational evaluation of the
aerodynamic breakup of a cylindrical water column. The study is focused on the
initial stages in the interaction process between the travelling plane shock wave
and the water cylinder at relatively high Mach number. In fact, the gas flow Mach
number that is Ma = 1.73 corresponds to one of the cases recently studied in [5].
The numerical experiments are conducted by employing one of the CFD solvers
c© Springer Nature Switzerland AG 2021
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that are commonly and successfully used for building virtual wind tunnels in the
industrial gas dynamics research, e.g. [6,7]. The compressible unsteady Reynolds-
averaged Navier-Stokes (URANS) equations [8], supplied with a suitable closure
model, are solved by means of a finite volume-based numerical technique. The
transient interface between air and water is approximated on the fixed numerical
mesh by using the volume of fluid (VOF) method [9]. The overall computational
modelling procedure is validated against reference experimental and numerical
data corresponding to the same flow configuration.

In the following, after introducing the main aspects of the present CFD mod-
elling procedure, the results of the numerical simulation are presented and dis-
cussed. Finally, some concluding remarks are provided.

2 CFD Model

2.1 Flow Geometry

The simplified two-dimensional geometry of the shock tube device is reproduced
by means of a rectangular domain. The coordinates system (x, y), with the x-
axis coinciding with the shock tube axis, is chosen so that −8 < x/D0 < 15 and
−10 < y/D0 < 10, where D0 represents the initial diameter of the cylindrical
water column. The origin of the system corresponds to the initial position of the
leading edge of the column, which is immersed in supersonic air crossflow. The
flow configuration is sketched in Fig. 1, where V1 represents the constant velocity
of the travelling planar shock wave.

Fig. 1. Sketch of physical domain, with travelling air shock wave.
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The shock tube flow conditions are simulated by initially imposing two very
different pressure levels into the two different tube sections, separated by a vir-
tual cross diaphragm, which is located upstream of the column at x/D0 = −2.
Initially, both tube sections contain still air, which is treated as ideal gas, at the
same temperature and very different densities. Given and known the pressure
level, say p1, in the driven section (right side), as well as the compression ratio
across the shock, p2/p1 (associated to the prescribed Mach number), the pressure
level p4 to be imposed in the driver section (left side), is analytically determined
by exploiting the theoretical shock tube relations [10]. As is demonstrated in the
next section, the present CFD model is able to reproduce a plane shock wave
travelling at the prescribed velocity that is V1 = 594 m/s. For brevity, the flow
parameters corresponding to the simulated shock tube device are reported in
Table 1.

Table 1. Shock tube parameters.

Parameter Value

Driven section pressure p1 = 101.3 kPa

Driven section density ρ1 = 1.204 kg/m3

Shock compression ratio p2/p1 = 3.32

Driver section pressure p4 = 1.50 MPa

Driver section density ρ4 = 17.8 kg/m3

Temperature T1 = T4 = 293.15 K

Travelling shock velocity V1 = 594 m/s

It is worth noting that the actual computational domain corresponds to half
the physical domain sketched in Fig. 1, with a symmetry condition at the center-
line (y = 0) being imposed. In fact, previous experiments conducted at compara-
ble characteristic flow numbers demonstrated that flow symmetry is maintained
in the early stages of the aerobreakup process [11]. Also, wall boundary condi-
tions are set at the other three edges of the computational domain.

For the current flow configuration, the Reynolds and Weber numbers are
defined based on the reference length D0 and the air conditions behind the
shock, specifically,

Re =
ρ2V2D0

μ2
, We =

ρ2V
2
2 D0

σ
.

Given the values for the flow parameters that are reported in Table 2, where the
surface tension σ at the interface between air and water is assumed constant, the
above characteristic numbers result in being Re = 2.38×105 and We = 1.93×104.
Therefore, based on the present high Weber number, in the early stages of the
aerobreakup, capillary effects can be neglected with respect to inertial ones.
In fact, according to the recent reclassification of the droplet breakup regimes
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Table 2. Water column and post-shock air flow parameters.

Parameter Value

Initial column diameter D0 = 4.80 × 10−3 m

Liquid water density ρw = 1000 kg/m3

Surface tension σ = 7.286 × 10−2 N/m

Air density ρ2 = 2.706 kg/m3

Air pressure p2 = 0.336 M Pa

Air viscosity μ2 = 1.80 × 10−5 Pa s

Air velocity V2 = 329 m/s

Mach number Ma2 = 0.789

proposed in [12], the current flow configuration belongs to the shear-induced
entrainment regime, where the gas goes around the liquid mass producing a
surface layer peeling-and-ejection action [13]. Finally, differently from what done
in [5], the viscous effects are not ignored in the present study.

2.2 VOF Method

To approximate the transient interface between the gas (air) and the liquid
(water), while tracking it on the fixed numerical mesh, a classical methodology
that is based on the concept of fractional volume of fluid is used. This technique
was shown to be more flexible and efficient for treating the complex interface
between two immiscible fluids, when compared to other methods [9]. Following
the VOF approach, the same governing equations are solved for the two different
fluid phases, while assuming that they share the velocity, pressure and temper-
ature fields. Practically, the balance equations are solved for an effective fluid,
whose averaged properties are evaluated according to the two volume fractions.
For instance, the averaged density is defined as

ρ = αρw + (1 − α)ρa,

where ρa stands for the air density, and α represents the volume fraction of
water. The latter variable is calculated throughout the computational domain
by solving the associated continuity equation.

2.3 CFD Solver

The shock tube flow, along with the aerodynamic breakup of the water col-
umn, is numerically predicted by solving the URANS equations, which describe
the unsteady mean turbulent compressible flow. The governing equations are
supplied with the k–ω SST two-equation turbulence model [14]. The resolved
compressible URANS equations, which are not reported here for brevity, can be
found, for instance, in [8].
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The current numerical simulations are performed by means of the industrial
solver ANSYS Fluent 19, which has been successfully employed by the authors
in previous industrial CFD studies using Reynolds-averaging based models,
e.g. [15–17]. The pressure-based solver utilizes the Finite Volume (FV) method
to approximate the mean flow solution, with the conservation principles being
applied over each control volume, e.g. [18]. The results presented in the following
have been obtained using a mesh consisting of about 2.8×105 FV cells. The mesh
has been suitably refined in the space region close to the position of the water
column, including the near wake, where the numerical resolution corresponds to
about 50 cells per cylinder diameter. The constant time-step size Δt = 1 µs has
been used for the explicit transient calculation.

3 Results

The shock tube flow is simulated starting from the initial conditions discussed
in the previous section. Specifically, a planar shock wave develops and travels
towards the driven section, where the water column is located, while a set of
expansion waves propagate in the opposite direction, towards the driver section.
The robustness of the CFD model and the accuracy of the time-dependent solu-
tion have been assessed through comparison with the analytical ideal shock-tube
theory [10]. For instance, the instantaneous pressure profile along the tube at the
moment when the incident shock impacts on the column, say t = t0, is reported
in Fig. 2. Note that, at the contact surface, which travels in the same direction
of the shock, though at lower velocity, it holds p3 = p2, whereas ρ3 > ρ2.
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Fig. 2. Pressure profile along the shock tube at the impact time instant: present CFD
solution (dashed line) compared to theoretical profile (solid line).

As a consequence of the impact of the air shock wave, the deformation and
the breakup of the water column are observed. In the following, as is usually
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done in droplet aerobreakup studies, the independent time variable is non-
dimensionalized as follows

t∗ =
V2

D0

√
ρ2
ρw

(t − t0),

where ρ2 and V2 represent post-shock air flow conditions, corresponding to the
Mach number Ma2 = 0.789 in the shock-moving reference frame.

In the early stages of the interaction process, the water cylinder is flattened
in the streamwise direction, which corresponds to a decreasing centerline width,
together with an increasing cross-stream length. The initial deformation of the
water column is illustrated in Fig. 3, where the contour maps of density (left
side) and pressure (right side) are reported at different time instants between
t∗ = 0.008 (top) and 0.72 (bottom). By inspection of this figure, in the very
early stage, the air flow field resembles the flow past a circular cylinder. Then,
the streamwise flattening of the liquid column is observed, with the successive
formation of peripheral tips. Note that, due to the finite numerical resolution,
the interface between the two different fluids appears to be diffuse. In Fig. 4, the
density and pressure contours are shown at later time instants, namely, between
t∗ = 0.96 (top) and 1.4 (bottom). Apparently, the liquid sheet becomes thinner
and thinner until, finally, the rupture indicates the breakup initiation. Then,
the water body is continuously eroded at the periphery, with the appearance
of microdroplets stripped from the parent column. During the successive stage,
the water column would disintegrate into fragments distributed widely in the
flow field. These pictures confirm the qualitative features of the so-called shear
stripping breakup mechanism, as is expected at current high Weber number [13].

From a quantitative point of view, the present CFD solution is validated
against the corresponding numerical solution of Meng and Colonius [5], as well
as the experimental findings of Igra and Takayama [11]. Here, the deformed
column shape is evaluated as that corresponding to the isoline α = 0.5 for the
volume fraction of water. The time-dependent centerline width of the deforming
water column, say w, is shown in Fig. 5 (left side). Apparently, a good agreement
is observed with respect to both numerical and experimental reference data.
Note that the two different lines that are reported for the reference numerical
solution correspond to α = 0.25 (dashed line) and 0.99 (dashed-dotted line).
When examining the time-dependent cross-stream length of the column, say
d, which is drawn in the same Fig. 5 (right side), the current CFD result, while
matching the reference numerical data, appears to be overestimated with respect
to experiments. Similarly, a good agreement with reference data is found for the
time-dependent section area of the coherent water body, which is shown in Fig. 6
(left side), where A0 stands for the initial circular section area. When examining
the time-dependent position of the water column leading-edge, say Δx, which
is reported in the same Fig. 6 (right side), again, the CFD result appears to be
overestimated with respect to the experimental findings, while agreeing with the
reference numerical data. For a more detailed discussion of the performance of
the proposed computational model, the reader is referred to [19], where a more
comprehensive study has been completed.
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Fig. 3. Contour maps of density (left) and pressure (right) at different time instants
corresponding to t∗ = 0.008, 0.09, 0.24, 0.48, and 0.72 (from top to bottom).
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Fig. 4. Contour maps of density (left) and pressure (right) at different time instants
corresponding to t∗ = 0.96, 1.2, 1.32, 1.35, and 1.4 (from top to bottom).
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Fig. 5. Time-dependent centerline width (left) and cross-stream length (right) of the
water column: present solution (solid line), reference numerical solution [5] (dashed
and dashed-dotted lines), and experimental data [11] (symbols).
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Fig. 6. Time-dependent section area (left) and leading-edge drift (right) of the water
column: present solution (solid line), reference numerical solution [5] (dashed and
dashed-dotted lines), and experimental data [11] (symbols).

4 Concluding Remarks

The present study has to be intended as the proof-of-concept, namely, the pre-
liminary development of a CFD based prediction tool for the study of the aero-
dynamic breakup of water droplets in supersonic gas flows. CFD analysis of the
early stages of the plane shock wave interaction with a cylindrical water column
has been performed. The observed characteristics are in good agreement, both
qualitatively and quantitatively, with the reference experimental and numerical
results.

There remains the possibility of developing more sophisticated computational
models for this particular industrial gas dynamics application, depending on the
level of accuracy that is required and the available computational resources. Fol-
lowing [20,21], for example, one possibility could be the use of adaptive methods
that make use of the wavelet transform to adjust the numerical grid resolution
to the local flow conditions [22–24]. Wavelet-based adaptive URANS modelling
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procedures that have been recently developed [25–27] could be explored in this
context. Moreover, in order to simulate the appearance of microdroplets, the use
of VOF-Lagrangian hybrid methods [28] could be considered, in the framework
of either the present industrial CFD solver or the wavelet-based approach [29].
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Abstract. The present paper illustrates a MATLAB program for the
solution of fractional differential equations. It is based on a spline col-
location method on a graded mesh, introduced by Pedas and Tamme
in [J. Comput. Appl. Math. 255, 216–230 (2014)]. This is the first pro-
gram proposed to implement spline collocation methods for fractional
differential equations, and it is one of the few algorithms available in the
literature for these functional equations. An explicit formulation of the
method is derived, and the computational kernel is a nonlinear system to
be solved at each time step. Such system involves some fractional inte-
grals, whose analytical expression is given; their computation requires
the knowledge of the coefficients of some polynomials and the evaluation
of some special functions. The method is written in a compact matrix
form, to improve the efficiency of the MATLAB implementation. The
overall algorithm is outlined and then the attention is focused on some
routines, which are given. In particular, some MATLAB native routines
are used to evaluate special functions and to compute the coefficients of
some polynomials. The complete list of the input and output parameters
is available. Finally, an example of usage of the MATLAB program on a
test problem is provided and some numerical experiments are shown.

Keywords: Fractional differential equations · Spline collocation ·
Algorithm · Implementation · MATLAB

1 Introduction

The aim of the present paper is to describe a MATLAB implementation of a
spline collocation method for the solution of a nonlinear fractional differential
equation (FDE):

{
Dαy(t) = f(t, y(t)), 0 ≤ t ≤ b,
y(i)(0) = γi, i = 0, . . . , n − 1,
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where n − 1 < α < n, n ∈ N; b, γi ∈ R; b > 0. We assume that f is a continuous
real-valued function defined in [0, b] and that the fractional derivative is meant
in the Caputo sense: [16,21,32]:

Dαy(t) =
1

Γ (n − α)

∫ t

0

y(n)(s)
(t − s)α+1−n

ds.

Under suitable hypotheses, there exists a unique continuous solution of the initial
value problem (IVP) (1). However the solution is generally not smooth around
the initial point 0 [16,21,29,32].

In the last twenty years an increasing number of fractional differential mod-
els have been proposed in various fields, e.g. anomalous diffusion [24], anoma-
lous transport models [3], viscoelastic materials [36], option pricing models [34].
Therefore, great attention was paid also to the numerical solution of FDEs and
many methods have been proposed so far, e.g. Adomian decomposition methods
[14], Petrov-Galerkin methods [25], product integration methods [20], fractional
linear multistep methods [23], time-splitting schemes [6], collocation methods
[1,11,22,29,30], spectral methods [4,37]. In particular, here we focus our atten-
tion on spline collocation methods, which is a very popular class of methods
for ODEs and Volterra integral equations [2,7,8,13,15,26]. In the application
to FDEs, spline collocation methods are highly accurate and have also good
stability properties, as proved in [9–12,27–30].

On the other side, the development of mathematical software for FDEs is at
an initial stage. An updated overview is given in [18] and some other references
are [19,31,33,35]. In this scenario, our aim is to offer a new software tool based
on a spline collocation method proposed in [29] and also studied in [9]. This
software was applied in [9,11,12] for numerical experiments, but was nowhere
illustrated so far.

The paper is organized as follows. Section 2 illustrates the spline collocation
method introduced in [29] and gives a compact matrix form of it, suitable for
implementation. We illustrate the mathematical implementation in Sect. 3, i.e.
the main program, the auxiliary routines, the special MATLAB functions used
in the codes. Input and output parameters are described is in Sect. 4. Section 5
contains an example of use of the MATLAB program and some numerical exper-
iments. Some conclusion are drawn in Sect. 6.

2 The Spline Collocation Method

The solution of (1) can be written as

y = Jαz + Q, (2)

where z = Dαy is the solution of the nonlinear equation

z = f(t, Jαz + Q). (3)
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In the previous relations:

(Jαz)(t) =
1

Γ (α)

∫ t

0

(t − s)α−1z(s) ds, t > 0, (4)

Q(t) =
�α�−1∑

i=0

γi

i!
ti, (5)

with �α� equal to the smallest integer not less than α.
In [29], authors solve problem (3) by a one-step collocation method and then

compute the solution of (1) by (2). In particular, the approximate collocation
solution v(t) ∈ S

(−1)
k (IN ), with

S
(−1)
k (IN ) =

{
v : v|σj

∈ πk, j = 1, . . . , N
}

, (6)

where πk is the space of algebraic polynomials of degree not exceeding k.
Given a mesh of points 0 = t0 < t1 < · · · < tN = b with hj = tj − tj−1 and a

set of collocation abscissae 0 ≤ η1 < . . . < ηm ≤ 1, the collocation solution v(t)
is represented as follows:

v(t) =
N∑

l=1

m∑
k=1

zlkLlk(t), t ∈ [0, b], (7)

where zjk = v(tjk) and

Llk(t) =

{
k − th Lagrange fund. pol. wrt to {tli}m

i=1, t ∈ [tl−1, tl]

0 otherwise

v(t) verifies equation (3) at the collocation points tjk = tj−1 + hjηk, j =
1, . . . , N, k = 1, . . . ,m, i.e.:

zjk = f (tjk, (Jαv)(tjk) + Q(tjk)) , k = 1, . . . ,m, (8)

j = 1, . . . , N . By definition of Llk(t), the system (8) may be recast as:

zjk = f

(
tjk,

m∑
μ=1

(JαLjμ)(tjk)zjμ +
j−1∑
l=1

m∑
μ=1

(JαLlμ)(tjk)zlμ + Q(tjk)

)
, (9)

k = 1, . . . ,m.
To ensure the fastest error decay, a suitable graded mesh must be adopted,

i.e.

tj = b

(
j

N

)r

, j = 0, . . . , N. (10)

The best value of the grading exponent r ≥ 1 depends on the smoothness of the
problem data (compare [12,29]).
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In [9] it is provided an explicit expression for the fractional integrals appear-
ing in (9). Namely:

(JαLjμ)(tjk) = hα
j

m−1∑
ν=0

a(μ)
ν ην+α

k

Γ (1 + ν)
Γ (1 + ν + α)

, (11)

(JαLlμ)(tjk) =
1

Γ (α)
hα

l

m−1∑
ν=0

a(μ)
ν

(
tj−1 + ηkhj − tl−1

hl

)ν+α

B
(

hl

tj−1 + ηkhj − tl−1
; 1 + ν, α

)
. (12)

Function B(x; b, c) is the incomplete beta function:

B(x; a, b) :=
∫ x

0

σa−1 (1 − σ)b−1 dσ,

while {a
(μ)
ν }m−1

ν=0 are the coefficients of the following Lagrange polynomial:

m∏
i=1
i�=μ

τ − ηi

ημ − ηi
=

m−1∑
ν=0

a(μ)
ν τν , μ = 1, . . . , m. (13)

We observe that the coefficients of a polynomial p(x) = q(x)r(x) are found
by convolving the vectors q and r of the coefficients of polynomials q(x) and
r(x), respectively. Therefore, coefficients a

(μ)
ν can be computed by iteratively

computing the convolution products of vectors
[

1
ημ − ηi

,
−ηi

ημ − ηi

]
, i = 1, . . . , m,

i �= μ (cfr. (13)). This technique is applied in the routine matrix Lagrange.m
(see Fig. 2).

The matrix form of system (9) is the following

zj = f

(
tj , h

α
j Azj +

j−1∑
l=1

hα
l E

[l,j]zl + qj

)
, (14)

where

zj = [zj1, . . . , zjm]T , tj = [tj1, . . . , tjm]T , qj = [Q(tj1), . . . , Q(tjm)]T , (15)

(f (tj ,x))k = f(tjk, xk), k = 1, . . . , m,x ∈ R
m,

Akμ =

m−1∑

ν=0

a
(μ)
ν ην+α

k

Γ (1 + ν)

Γ (1 + ν + α)
, (16)

E
[l,j]
kμ =

1

Γ (α)

m−1∑

ν=0

a
(μ)
ν

(
tj−1 + ηkhj − tl−1

hl

)ν+α

B

(
hl

tj−1 + ηkhj − tl−1
; 1 + ν, α

)
, (17)

k, μ = 1, . . . , m.
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Once the approximate solution v(t) of problem (3) has been computed, the
numerical solution yN ≈ y of problem (1) is found via (2), i.e.:

yN = Jαv + Q.

Therefore

yN (t) =
m∑

μ=1

(JαLjμ)(t)zjμ +
j−1∑
l=1

m∑
μ=1

(JαLlμ)(t)zlμ + Q(t), t ∈ [tj−1, tj ]. (18)

By setting σ = (t − tj)/hj , the fractional integrals in (18) may be computed
similarly as (11) and (12). Then, we obtain:

yN (t) = hα
j b

T zj +
j−1∑
l=1

hα
l (b[l,j])T zl, t ∈ [tj−1, tj ], (19)

where m-dimensional vectors b and g[l,j] are defined as follows:

bμ =

m−1∑

ν=0

a
(μ)
ν σν+α Γ (1 + ν)

Γ (1 + ν + α)
, (20)

g
[l,j]
μ =

1

Γ (α)

m−1∑

ν=0

a
(μ)
ν

(
tj−1 + σhj − tl−1

hl

)ν+α

B

(
hl

tj−1 + σhj − tl−1
; 1 + ν, α

)
, (21)

μ = 1, . . . , m.

3 The MATLAB Implementation

The main program fcoll.m is written in Fig. 1, auxiliary functions are shown
in Figs. 2, 3, 4, 5, 6 and 7, auxiliary MATLAB built in functions are listed in
Table 1. Input and output arguments are described in Sect. 4.

Lines 2 and 3 of the main program fcoll.m construct the vector t contain-
ing the points of the graded mesh (10) and the vector h of the stepsizes, by
using the MATLAB function diff. The line 4 makes use of the auxiliary func-
tion matrix Lagrange.m which computes the matrix Alagr, whose components
contain the coefficients of Lagrange polynomial (13).

Alagr(μ, ν) = a
(μ)
ν−1.

At line 5, function matrix A.m constructs matrix A (defined in (16)). Vector b
defined in (20), is computed in correspondence of σ = 1, by function vector b.m,
at line 6.

The for loop at lines 11–20 constructs and solves the nonlinear system (14);
evaluates the approximate solution at the mesh points yN (t0) = γ0, yN (t1),
. . ., yN (tN ), by formula (19). The nonlinear system is computed by function
F.m (see Fig. 7), whose input argument Bj (equal to the summation in (14) is
constructed by function lag.m at line 13, and input argument Qj (array equal
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1 function [t,y]=fcoll(f,b,gam,alpha,eta,r,N)

2 t=b*([0:N]’/N).^r;

3 h=diff(t);

4 Alagr=matrix_Lagrange(eta);

5 A=matrix_A(alpha,eta,Alagr);

6 bvect=vector_b(alpha,Alagr);

7 options=optimset(’TolFun’,1e-14,’TolX’,1e-14,’Display’,’off’);

8 m=length(eta);

9 Z=zeros(m,N); y=zeros(N+1,1); y(1)=gam(1);

10 iniz=feval(f,t(1)+eta*h(1),gam(1)*ones(m,1))

11 for j=1:N

12 tj=t(j)+eta*h(j);

13 Bj=lag(Z,Alagr,t,h,eta,alpha,j);

14 Qj=Q(tj,alpha,gam);

15 Z(:,j)=fsolve(@system_F,iniz,options,f,tj,A,Bj,Qj,h,j,alpha);

16 Wj=lag_y(Z,Alagr,t,h,alpha,j);

17 Qjp1=Q(t(j+1),alpha,gam);

18 y(j+1)=h(j)^(alpha)*(bvect’)*Z(:,j)+Wj+Qjp1;

19 iniz=Z(:,j);

20 end

21 end

Fig. 1. Main program fcoll.m

to the vector qj defined in (15)) is constructed at line 14 by function Q.m. The
nonlinear system (14) is solved by MATLAB inbuilt function fsolve, with high
accuracy requested (10−14) and initial value equal to the approximate solution
in the previous time step. Finally, the approximate solution is derived by (19),
where the summation is computed by function lag y.m.

In all the functions, the formulation of the method in terms of products of
vectors and matrices was adopted, to obtain a gain in efficiency of the overall
algorithm.

4 Input and Output Parameters

The MATLAB code fcoll.m has the input arguments f,b,gam,alpha,eta,r,N
and the output arguments t,y. The type and the meaning of each of them are
illustrated in Subsects. 4.1 and 4.2.

4.1 Input Parameters

1. f - function handle or string containing name of m-file
f must return the value of the function f(t, y) at a given point (t, y).
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1 function [Alagr]=matrix_Lagrange(eta)

2 m=length(eta);

3 mu=1;

4 a=[1/(eta(mu)-eta(2)),-eta(2)/(eta(mu)-eta(2))];

5 for i=3:m

6 b=[1/(eta(mu)-eta(i)),-eta(i)/(eta(mu)-eta(i))];

7 a=conv(a,b);

8 end

9 Alagr(mu,:)=a;

10 for mu=2:m

11 a=[1/(eta(mu)-eta(1)),-eta(1)/(eta(mu)-eta(1))];

12 for i=[2:mu-1,mu+1:m]

13 b=[1/(eta(mu)-eta(i)),-eta(i)/(eta(mu)-eta(i))];

14 a=conv(a,b);

15 end

16 Alagr(mu,:)=a;

17 end

18 Alagr=fliplr(Alagr);

19 end

Fig. 2. Function matrix Lagrange.m

1 function[A]=matrix_A(alpha,eta,Alagr)

2 m=length(eta);

3 interv=[0:m-1];

4 w=gamma(interv+1)./gamma(interv+1+alpha);

5 A=((eta.^((alpha+interv))).*w)*Alagr’;

6 end

Fig. 3. Function matrix A.m

1 function[b]=vector_b(alpha,Alagr)

2 m=size(Alagr,1);

3 interv=[0:m-1]’;

4 w=gamma(interv+1)./gamma(interv+1+alpha);

5 b=Alagr*((1.^((alpha+interv))).*w);

6 end

Fig. 4. Function vector b.m
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1 function Bj=lag(Z,Alagr,t,h,eta,alpha,j)

2 m=length(eta);

3 Bj=zeros(m,1);

4 interv=[0:m-1];

5 w=gamma(interv+1)./gamma(interv+1+alpha);

6 for lambda=1:j-1

7 d=(t(j)-t(lambda)+eta*h(j))/h(lambda);

8 for k=1:m

9 W(k,:)=betainc(1/d(k),1+interv,alpha);

10 end

11 E=(((d.^((alpha+interv))).*w).*W)*Alagr’;

12 Bj=Bj+(h(lambda)^alpha)*E*Z(:,lambda);

13 end

14 end

Fig. 5. Function lag.m

1 function z=Q(t,alpha,gam)

2 interv=0:ceil(alpha)-1;

3 z=sum(((t.^interv)./factorial(interv)).*(gam(interv+1).’),2);

4 end

Fig. 6. Function Q.m

1 function F=system_F(x,f,tj,A,Bj,Qj,h,j,alpha)

2 F=x-feval(f,tj,h(j)^(alpha)*A*x+Bj+Qj);

3 end

Fig. 7. Function system F.m

1 function Wj=lag_y(Z,Alagr,t,h,alpha,j)

2 Wj=0;

3 m=size(Alagr,1);

4 interv=[0:m-1]’;

5 w=gamma(interv+1)./gamma(interv+1+alpha);

6 for lambda=1:j-1

7 d=(t(j+1)-t(lambda))/h(lambda);

8 W=betainc(1/d,1+interv,alpha);

9 g=Alagr*(((d.^((alpha+interv))).*w).*W);

19 Wj=Wj+(h(lambda)^alpha)*g’*Z(:,lambda);

11 end

12 end

Fig. 8. Function lag y.m
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Table 1. Auxiliary MATLAB functions adopted in the algorithm in alphabetical order

Function Task

betainc The incomplete beta function

ceil Function �·�
conv Convolution of two vectors

diff Differences between adjacent elements of array

gamma The gamma function

factorial The factorial

fliplr Flips array left to right

fsolve Solves a nonlinear system

[result] = f(t,y)

Input Parameters

– t - double scalar
The current value of the independent variable t.

– y - double scalar
The current value of the independent variable y.

Output Parameters

– result - double scalar
The value of f(t, y).

2. b - double scalar
b, the end point of the integration interval [0, b].

3. gam - double array
The vector of the initial values [γ0, . . . , γn−1]T of the IVP (1).
Constraint: The length n of the array gam should be equal to �α�.

4. alpha - double scalar
α, the fractional index.

5. eta(m) - double array
eta is equal to the vector [η1, . . . , ηm]T of the collocation parameters.
Constraint: 0 ≤ eta(1) ≤ · · · ≤eta(m).

6. r - double scalar
r, the grading exponent.

7. N - double scalar
N , the number of mesh points.

4.2 Output Parameters

1. t(N+1) - double array
t is equal to the graded mesh [t0, . . . , tN ]T , defined in (10).
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2. Y(N+1) - double array
Y (j) is the approximate value of the solution y(tj).

5 Numerical Examples

For the users’ convenience, we report an example of usage of our program, on
the Test problem 1 (see Figs. 9 and 10). Then, we compare the exact and the
numerical solution, compute the absolute error for Test problems 1, 2 and 3 (see
Figs. 11, 12 and 13). In all cases, we applied the spline collocation method (14)
(19) with m = 2, collocation parameters η =

[
3±√

3
6

]
, the grading exponent r

suitably chosen in order to obtain superconvergence (compare [9,12,29]). The
number of the mesh points is set to N = b · 25.

Test Problem 1 [29]

D1/2y(t) = y2(t) +
1

Γ (1.5)
t0.5 − t2, t ∈ [0, 1] y(0) = 0,

The exact solution is y(t) = t. The value of the grading exponent is r = 2.5.
Test Problem 2 [17]

Dαy(t) =
40320

Γ (9 − α)
t8−α − 3

Γ (5 + α
2 )

Γ (5 − α
2 )

t4− α
2 +

(
3
2
t

α
2 − t4

)3

+
9
4
Γ (α + 1) − (y(t))

3
2 ,

t ∈ [0, 1],

y(0) = 0,

1 f=@(t,y) y.^2+1/gamma(1.5)*t.^0.5-t.^2;

2 b=10;

3 gam=[0];

4 alpha=1/2;

5 eta=[(3-sqrt(3))/6; 1-((3-sqrt(3))/6)];

6 r=2.6;

7 N=b/2^-5;

8 [t,y]=fcoll(f,b,gam,alpha,eta,r,N);

9 err=abs(y(end)-b)

Fig. 9. Script: test example.m

>> test example

err =

1.2416e-05

Fig. 10. Output: test example.m
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α = 1/2. Exact solution y = t8 − 3t4+α/2 + 9
4 tα. The method is applied with

r = 1.8
Test Problem 3 [5]

Dαy(t) = λy + ρy(1 − y2) + g(t), t ∈ (0, 8], y(0) = 2,

with α = 0.15, λ = −3, ρ = 0.8. g(t) is set in such a way that the solution is

y(t) = y0 +
6∑

k=1

tσk , with σk = kα, k = 1, . . . , 5, and σ6 = 2 + α. The chosen

value of the grading exponent is r = 7.17.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Exact solution
Numerical solution

0 0.2 0.4 0.6 0.8 1
10-6

10-5

10-4

Absolute error

Fig. 11. Test example 1. Numerical and exact solution (on the top), absolute error (at
the bottom).

6 Conclusions

We proposed a MATLAB algorithm to solve FDEs by spline collocation meth-
ods. We obtained an explicit formulation of the method, and explained how to
compute some fractional integrals with high accuracy. To exploit MATLAB effi-
ciency with matrix manipulation, we derived a matrix formulation of the method.
We listed all the codes of the program, the input and output parameters. An
example of use was included and some numerical examples were provided.

A further development of this work may regard the implementation of two-
step collocation methods [10,11], which will require a suitable starting procedure,
too.
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Exact solution
Numerical solution

0 0.2 0.4 0.6 0.8 1

10-10

100

Absolute error

Fig. 12. Test example 2. Numerical and exact solution (on the top), absolute error (at
the bottom).

0 1 2 3 4 5 6 7 8
0

50

100

Exact solution
Numerical solution

0 1 2 3 4 5 6 7 8
10-10

10-5

100

Absolute error

Fig. 13. Test example 3. Numerical and exact solution (on the top), absolute error (at
the bottom).
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Abstract. We consider the k-Colorable Discrete Unit Disk Cover (k-
CDUDC) problem as follows. Given a parameter k, a set P of n points,
and a set D of m unit disks, both sets lying in the plane, the objective
is to compute a set D′ ⊆ D such that every point in P is covered by at
least one disk in D′ and there exists a function χ : D′ → C that assigns
colors to disks in D′ such that for any d and d′ in D′ if d ∩ d′ �= ∅, then
χ(d) �= χ(d′), where C denotes a set containing k distinct colors.

For the k-CDUDC problem, our proposed algorithms approximate
the number of colors used in the coloring if there exists a k-colorable
cover. We first propose a 4-approximation algorithm in O(m7kn log k)
time for this problem, where k is a positive integer. The previous best
known result for the problem when k = 3 is due to the recent work
of Biedl et al. [Computational Geometry: Theory & Applications, 2021],
who proposed a 2-approximation algorithm in O(m25n) time. For k = 3,
our algorithm runs in O(m21n) time, faster than the previous best
algorithm, but gives a 4-approximate result. We then generalize the
above approach to yield a family of ρ-approximation algorithms in
O(mαkn log k) time, where (ρ, α) ∈ {(4, 7), (6, 5), (7, 5), (9, 4)}. We also
extend our algorithm to solve the k-Colorable Line Segment Disk Cover
(k-CLSDC) and k-Colorable Rectangular Region Cover (k-CRRC) prob-
lems, in which instead of the set P of n points, we are given a set S of n
line segments, and a rectangular region R, respectively.

Keywords: Colorable unit disk cover · Approximation algorithm ·
Grid-partitioning

1 Introduction

Our motivation for studying the problem arises from practical applications in the
frequency/channel assignment problem in wireless/cellular networks. In ad-hoc
mobile networks, each host(station/tower) is equipped with a Radio-Frequency
(RF) transceiver to provide reliable transmission inside a circular range, rep-
resented by a disk, within some distance. Each wireless client is equipped with
corresponding receivers. The clients themselves are represented by a set of points
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P in a plane. The disks representing the range (which is presumably the same
for all stations) of each potential host is represented by the set D. In the spirit of
reducing interference in broadcast and other energy-saving measures, we aim to
limit or reduce the number of different frequencies(channels) assigned to each,
represented by coloring. Typically, (Wi-Fi) networks are built with 3 indepen-
dent channels [4], hence the motivation for a study on the 3-CDUDC problem. In
the same spirit, we generalize the 3-CDUDC to the k-CDUDC problem, where
k > 0 is an integer. We further generalize the problem by considering line seg-
ments and a continuous rectangular region as representing potential wireless
clients (resp. the k-CLSDC and k-CRRC problems), instead of points.

1.1 Related Work

The 3-CDUDC problem, to the best of our knowledge, was first studied by Biedl
et al., [3]. They gave a 2-approximation algorithm in O(nm25) time for the 3-
CDUDC problem. Their approach first partitions the plane into horizontal strips,
solves the problem for every strip optimally, then returns the union of solutions
of all strips. To solve the problem for any strip they show that at most a constant
number of disks of an optimal solution intersect any vertical line. Based on this,
they define a directed acyclic graph such that there exists a path from source to a
destination corresponding to this optimal solution. In this paper, we attempt to
improve upon this impractical O(nm25) running time. Our approach, however,
focuses on the specific geometric properties that arise from the dual conditionals
of the problem statement. Although both of the approaches, initially, begin by
dividing the plane, we recognize a unique bound that exists in our need to bound
the colorability and provide a novel solution in the same regard.

A notion of conflict-free coloring (CF-coloring) was introduced by Even et al.
[8]. and Smorodinsky [13]. In the CF-coloring problem we are given a set of points
(representing client locations) and a set of base stations, the objective is to assign
colors (representing frequencies) to the base stations such that any client lying
within the range of at least one base station is covered by the base station whose
color is different from the colors of the other base stations covering the client,
and the number of colors used should be as minimum as possible. Here, the range
of base stations is modeled as regions e.g., disks or other geometric objects. Even
et al., [8] proved that O(log n) colors are always sufficient to CF-color a set of
disks in the plane, and in the worst case, Ω(log n) colors are required. Note that
this CF-coloring of disks is different from our notion of k-colorable disk cover of
points. In the former overlapping disks may be given the same color if they don’t
share a client, whereas in the k-CDUDC overlapping disks must be colored with
distinct colors. A generalization of CF-coloring is called a k-fault-tolerant CF-
coloring. Cheilaris et al. [7] presented a polynomial-time (5 − 2

k )-approximation
algorithm for the k-fault-tolerant CF-coloring in 1-dimensional space. Horev et
al. [11] proved that O(k log n) colors are sufficient for any set of n disks in the
plane. For dynamic CF-coloring and results on CF-coloring of other geometric
objects, we refer to [5] and references therein.
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A related problem [2] to the k-CDUDC problem in the literature is the Dis-
crete Unit Disk Cover (DUDC) problem. In the DUDC problem, we are given a
set P of n points and a set D of m unit disks, our goal is to select as the smallest
number of disks from D as possible such that the union of these selected disks
covers all points in P . As in the k-CDUDC, here also, the sets P and D can be
considered as representing a set of wireless clients and a set of base stations or
towers, respectively. The DUDC problem is NP-hard and is a very well studied
one. There is a polynomial time approximation scheme (PTAS) with impractical
running time for this problem [12]. The current best approximation algorithm
with reasonable running time is (9 + ε) for any ε > 0 [2]. However, a series
of approximation algorithms have been proposed for this problem by various
authors over the past two decades, and a complete survey on this can be found
in [10]. When a line segment is used to represent a potential wireless client, the
DUDC problem becomes a Line Segment Disk Cover (LSDC) problem. In a sim-
ilar line, there is another variant of the DUDC problem, a Rectangular Region
Cover (RRC) problem, in which all the continuous set of points lying in a rect-
angular region represent wireless clients. All the available results for the DUDC
problem also extend to the LSDC and RRC problems [1], with slightly different
running time. We also extend our results for the k-CDUDC problem to solve the
colorable variants of the LSDC and RRC problems, namely, the k-CLSDC and
k-CRRC problems.

2 The k-CDUDC Problem

In this section we consider the following problem.

– k-Colorable Discrete Unit Disk Cover (k-CDUDC): Given a set P of n points,
and a set D of m unit disks (of radius=1), both lying in the plane, and a
parameter k, the objective is to compute a set D′ ⊆ D that covers all points
in P such that the set D′ can be partitioned into {D′

1,D
′
2, . . . , D

′
k}, where

for each a ∈ {1, 2, . . . , k} the disks in D′
a are pairwise disjoint, i.e., the disks

in D′ can be colored with at most k colors such that the overlapping disks
receive distinct colors and every point in P is covered by a disk in D′.

As it was pointed out in [3] that there is a related problem, namely, Unit
Disk Chromatic Number (UDCN) problem, that aims to color all nodes in a
given unit disk graph with at most k colors. The UDCN problem is NP-hard for
any k ≥ 3 [6]. Similar to Biedl et al. [3], we can center a set D of m unit disks in
the plane such that there are at least k +1 pairwise non-disjoint disks that have
a common intersection region and a unit disk graph GD = (VD, ED) induced by
D is connected. Let us then place a set P of n points in this intersection region.
Now observe that the set P has a cover which is at most k-colorable, whereas the
graph GD is at least (k+1)-colorable. Hence, the k-CDUDC problem is different
from the UDCN problem. Biedl et al. [3] showed that the 3-CDUDC problem is
NP-hard by carefully incorporating a set P of n points in the NP-hard proof of
the UDCN problem with k = 3 in [6]. This directly implies that the k-CDUDC
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is NP-hard since the k-CDUDC is a generalization of 3-CDUDC. It is also easy
to see that the k-CDUDC problem belongs to the class NP, as follows: Here, the
certificate for any Yes instance of k-CDUDC is a set of k distinct colors identified
by non-negative integers 1, 2, . . . , k, and a mapping χ : D′ → {1, 2, . . . , k}, where
D′ ⊆ D. A polynomial time verifier checks if every point in P is covered by a
disk in D′ and for every pair of disks d, d′ ∈ D′ if d ∩ d′ �= ∅, whether it is the
case that χ(d) �= χ(d′).

2.1 A 4-Approximate Algorithm

Here, our algorithm is based on partitioning the plane containing points into a
grid and then determining bound on the number of unit disks that can participate
in any k-colorable covering of points lying within any square of the grid. We first
define a grid of width two units that partitions the plane into squared regions.
Each of these squared regions is a grid cell with a size 2×2. For simplicity assume
no point of P lies on the boundary of these grid cells. Let us associate a unique
ID idC to each grid cell C as follows; let p = (xp, yp) be a point in C and τ be
the grid width, then idC = (	xp

τ 
, 	yp

τ 
), (see Fig. 1). Note that each grid cell has
a unique ID associated with it but multiple points can be associated with the
same ID (if they lie within the corresponding grid cell). Let idC1 and idC2 be any
two arbitrary grid cells with base points (x1, y1) and (x2, y2) respectively. We
define the greater than operator for an ID as follows: (idC1 > idC2) ⇐⇒ ((x1 >
x2) ∧ (y1 > y2)) ∨ ((x1 = x2) ∧ (y1 > y2)) ∨ ((x1 > x2) ∧ (y1 = y2)). Note that
our definition of idC implies that the grid cells are indexed from bottom-left to
top-right, this operator simply indicates the order of iteration that is followed by
our algorithm. We move left to right row-wise. A pre-defined order is essential
to our handing-over logic.

Fig. 1. Assignment of unique ID’s idC and color sets for a grid G with τ = 2
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Given a grid cell C′, the following lemma provides a bound on the cardinality
of the k-colorable unit disks covering all points lying within the grid cell C′.
Let DC′ ⊆ D be the set of k-colorable unit disks covering all points of P lying
within the grid cell C′. The proof of the lemma is based on the observation
that determining this bound is the same as determining a maximum number of
disjoint unit disks that could potentially intersect C′.

Observation 1. If C′ is a grid cell of size τ × τ , then the maximum number of
pairwise disjoint unit disks that could potentially intersect C′ is at most 2τ +2+
( τ
2 )2 if τ is even, and is atmost 4 × � τ

2 � + 4 + ( τ
2 )2 if τ is odd.

Proof. We will provide an upper bound to the number of pairwise disjoint unit
disks that can cover a square C′ of side length τ . Let us prove this by considering
the two cases: τ being even and odd.

Since we aim at bringing an upper bound to the number of disks that have a
common intersection point with C′, we divide the region of C′ into two parts; the
inner part of the square and the outer edge on which these common intersection
points can lie. To maximize the number of disks, it is intuitive to keep them
as far as possible to increase the spacing between disks and thereby trying to
increase the number of disks.

C′ with Even Side Length: When τ is a multiple of 2, it is quite intutive that
a symmetric pattern is likely to give the best results. So we attempt two types
of symmetric pattern.

Case 1: Considering the square C′ to be symmetric along the vertical axis, we
arrange the disks in two possible cases: either a disk is arranged with edge of
C′ as tangent such that the center of C′ lies vertically above/below the disk (see
Fig. 2a), or the vertical partition is tangent to some of the disks (see Fig. 2b).
In the first case the maximum number of disks along horizontal part of outer
edge would be 2 × τ

2 , since the diameter of disk is 2. In the second case it can
be shown that the maximum number of disks along the horizontal part would
be 2 × ( τ

2 + 1).
However, as we see for the case τ = 2 (shown in Fig. 2a and Fig. 2b), both

the cases break down to the same case since if for a given pair of parallel edges
of C′ if one of the above case is true, then for the other pair the other case stands
true. By induction we can prove that this stands true for all the even values of
τ > 2. Through this we get an upper limit in the number of disks along the
edges. For the inner area of C′ the maximum number of disjoint disks are ( τ

2 )2.
So the maximum number of disjoint disks are (τ/2)2 + 2 × τ/2 + 2 × (τ/2 +
1), which is 2τ + 2 + (τ/2)2.

Case 2: Considering C′ to be diagonally symmetric, here we consider one of its
diagonals as the symmetry line and place the disk such that their center is on
the diagonal and intersects the square at its corner. As the disk covers a part of
the edge of the square, say δ where δ < 1 (i.e., radius of disk) and δ > 0, apart
from the case where the disks are arranged at the diagonals again (see Fig. 3a),
the maximum number of disks on an edge is still equivalent to τ

2 . The number of
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(a) Center of disk along the vertical axis(b) Vertical line dividing the square as
tangent

Fig. 2. Possible symmetric arrangement along vertical axis for even values of τ .

(a) Disks arranged along one of the di-
agonal

(b) Disks arranged are along both the
diagonals

Fig. 3. Possible symmetric arrangement along diagonal for even values of τ .

disks within the interiors of C′ as stated above in the previous case will remain
same. Therefore, the total number of maximum possible pairwise disjoint disks
are 2 + 4×( τ

2 ) + ( τ
2 )2, which is again equivalent to 2τ + 2 + ( τ

2 )2 (see Fig. 3a,
Fig. 3b, Fig. 4a, Fig. 4b, and Fig. 4c for illustration of the case τ = 2).

C′ with Odd Side Length: When τ is not a multiple of 2, again it is quite
intuitive that a symmetric pattern is likely to give the best results. So we attempt
two types of symmetric pattern.
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(a) Complete coverage as much closely
as possible

(b) Symmetric coverage

(c) Asymmetric coverage

Fig. 4. Various possibilities by trial and error for even values of τ .

Case 1: Like the case for even values of τ we consider the symmetric distribution
along the horizontal and vertical axes. Again we have two possibilities either the
center of disk lying along the axes or symmetric about the axes for both the
pairs of edges. It can be shown that for both the pair of edges we would have
only one amongst the two configurations at a time for getting the minimum
number of disks. In the first case, � τ

2 � disks can completely be accommodated
on one edge and one disk as a common disk between two adjacent edges. So,
there will be 4 × � τ

2 � + 4 disks in the exterior part for this case. The number of
disks in the interior part as in the even case would be ( τ

2 )2. So, the total becomes
4 × � τ

2 � + 4 + ( τ
2 )2 (see Fig. 5a and Fig. 5b).
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Case 2: When diagonally symmetric, the case is quite similar to the previous
case with 4 disks at the corners and � τ

2 � among the four edges of C′. The total
again is calculating to 4 × � τ

2 � + 4 + ( τ
2 )2. ��

(a) Center of disks along the axes (b) Axes as tangent to the disks

Fig. 5. Possible symmetric arrangement for odd values of τ .

Lemma 1. If C′ is a grid cell of size 2×2 and DC′ ⊆ D is a k-colorable solution
for P ∩ C′, then |DC′ | ≤ 7k.

Proof. From Observation 1 the cardinality of any set SC′ of pairwise disjoint unit
disks intersecting with a grid cell C′ is at most 7 as τ = 2. Therefore, |SC′ | ≤ 7.
Now consider another k − 1 sets S1

C′ , S2
C′ , . . ., Sk−1

C′ , each of which can either be
a replica of the same collection of disks in SC′ or a rotation or transformation
of SC′ such that disks within each set remain pairwise disjoint and intersect C′.
Hence, any k-colorable solution DC′ ⊆ SC′ ∪ S1

C′ ∪ S2
C′ ∪ . . . ∪ Sk−1

C′ . Thus, the
lemma follows. ��

The outline of our algorithm (Algorithm 1) for computing a cover D′ ⊆ D of
the points P is as follows. We first partition the rectangular region containing
the objects in D and P into individual grid cells of size τ × τ . By utilizing
the bound obtained in Observation 1 (for e.g., for τ = 2 the actual bound is
in Lemma 1) we compute a k-colorable cover of the points lying in each grid
cell, in an exhaustive manner. To ensure that there is no conflict in the overall
aggregate solution, we use a handing-over logic. Only disks of any particular grid
cell cover centered within the same grid cell are colored with the associated color
set. If a disk is required to be a part of this grid cell cover, but is centered in
another grid cell, it is handed-over to that grid cell. Based on the grid width τ
and the diameter of the disk, we then define a coloring scheme χ that assigns a
color to each disk in the union D′ of all the individual grid cell covers computed.
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Finally, we return the pair (D′, χ). Since the diameter of the disks is fixed to
be two units, the approximation factor of the algorithm is implied by the choice
of the value τ . If the value of τ is 2, then a unit disk can participate in the
k-colorable covers of points lying in four adjacent grid cells. Hence, we prove
that Algorithm 1 is a 4-approximate algorithm (see Theorem 1). Later, we show
that by varying the grid width τ , which results in a unit disk participating in
more than four individual grid cell covers, we can obtain a family of algorithms
with approximation factors corresponding to the choice of the value of τ (see
Subsect. 2.2).

We now define any coloring function that assigns colors to disks to be conflict-
free if for any pair of non-disjoint disks (i.e., overlapping disks) the colors assigned
to them are different.

Lemma 2. The coloring χ defined by Algorithm 1 is conflict-free.

Proof. For the sake of contradiction, let us assume that there are two disks
d, d′ ∈ D′ such that d ∩ d′ �= ∅, and χ(d) = χ(d′), where D′ along with χ is the
output of Algorithm 1. Since d ∩ d′ �= ∅, the distance between the centers of d
and d′ is at most 2. Let the centers of d and d′ be lying in the grid cells C and
C′, respectively. Observe that C and C′ are either linearly or diagonally adjacent.
If d and d′ are chosen to cover points lying only in the respective grid cells,
then d and d′ are assigned colors from different color sets because the row and
column numbers mod 2 in their ID’s are not the same for both (see for-loop
at Line 17) (contradicting that χ(d) = χ(d′)). Therefore, the only possibility for
color-conflict to arise between d and d′ is that when both d and d′ are centered
in the same grid cell C, where d covers a point lying in the cell above C and
d′ covers a point lying in the cell below C and each disk is initially chosen by
the respective grid cell by means of the algorithm (Note that a similar case can
be studied for horizontally and diagonally opposite grid cells). As per our color
scheme (Line 16–28), these grid cells are the nearest to have the same color set
(say C1) associated with them (see Fig. 1). Step 11 in the algorithm solves the
conflict that arises in this case as follows. By means of the grid cell ID condition,
disk d′ is handed over to grid cell C as its ID is greater and will receive the color
set associated with that cell (C3 in this case, see Fig. 1). Disk d however will not
be handed over, but retains a color from the color set C1 (contradicting that
χ(d) = χ(d′)). Thus, the lemma follows. ��

Theorem 1. Algorithm 1 is a 4-approximation algorithm that runs in
O(m7kn log k) time for the k-CDUDC problem.

Proof. In line 2 of Algorithm 1, the rectangular region R is partitioned into O(n)
grid cells. For each grid cell C, let nC denote the number of points of P lying in C,
i.e., nC = |P ∩C|. For each grid cell C we then enumerate all O(m7) subsets of D
such that each such subset contains at most 7 pairwise disjoint disks intersecting
with the cell C. In each iteration of the for-loop at line 3, among

(
cm7

k

)
subsets

of at most 7k disks for some constant c, we compute a set DC that covers all nC
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Algorithm 1. K Colorable Cover(P,D, k)
Input: A set P of n points, a set D of m unit disks in the plane, and an integer

k(> 0) such that P ⊂ ∪d∈Dd and D can provide a k-colorable cover of the points in P .
Output: A k-colorable set D′ ⊆ D that covers all the points in P and a color

mapping χ : D′ → κ, where κ denotes the color set of distinct colors, and |κ| ≤ 4k

1: Let the points in P and disks in D be lying entirely within the first quadrant of the
coordinate system, and R be an axis-aligned rectangular region containing P and D,
whose left and bottom boundary lines coincide with the y- and x-axes of the coordinate
system, respectively.

2: Define a grid G that partitions R such that each grid cell is of size 2×2 and for each point
p = (xp, yp) lying in such a cell C, let the unique id associated with C be idC = [� xp

2
�, � yp

2
�].

For each such cell C, we also define a handover set HC ← ∅.
/* the grid cells in the following loop are considered in row-wise order from bottom-left to
top-right, as defined in Subsection 2.1 */

3: for each grid cell C if P ∩ C �= ∅ do
4: if HC = ∅ then
5: Let D′′ = {d ∈ D | d ∩ C �= ∅}
6: Generate all subsets D1, D2, . . . , DO(m7) ⊆ D′′, each containing at most 7 pairwise

disjoint disks, and among these, choose k subsets S1
C , S2

C , . . . , Sk
C , whose union covers all

the points in P ∩ C.
7: else

8: Let D′′ = {d ∈ D | d ∩ C �= ∅, d /∈ HC}.
9: Generate all subsets D1, D2, . . . , DO(m7) ⊆ D′′, each containing at most 7 pairwise

disjoint disks, and among these, choose k subsets S1
C , S2

C , . . . , Sk
C , whose union covers all

the points in P ∩ C but also contains all disks d ∈ HC .
/* |S1

C ∪ S2
C ∪ . . . Sk

C ∪ HC | ≤ 7k due to Lemma 1 */
10: end if
11: If any disk d in any subset Si

C (for i = 1, . . . , k) is centered in another grid cell C′
whose ID idC′ > idC , we remove that disk from Si

C and add it to the handover set of that
cell HC′ .

12: DC ← S1
C ∪ S2

C ∪ . . . ∪ Sk
C

13: For every point p ∈ P that is covered by a disk d ∈ DC we remove it from P .
14: end for

15: D′ ← ⋃

C,P∩C�=∅
DC

16: Let C1, C2, C3, C4 be four disjoint color sets, each containing k distinct colours.
17: for every grid cell C with idc = [i, j] do
18: if ((i mod 2 = 0) ∧ (j mod 2 = 0)) then
19: Assign C1 to C.
20: else if ((i mod 2 = 0) ∧ (j mod 2 �= 0)) then
21: Assign C2 to C.
22: else if ((i mod 2 �= 0) ∧ (j mod 2 = 0)) then
23: Assign C3 to C.
24: else if ((i mod 2 �= 0) ∧ (j mod 2 �= 0)) then
25: Assign C4 to C.
26: end if

27: end for
28: For every grid cell C and its assigned color set Ci we allot one color each to the sub-

sets S1
C , S2

C , . . . Sk
C . Every disk centered within that subset will now be colored with the

corresponding color from the color set.

29: For any disk d ∈ D′ let χ(d) represents the color assigned to the disk d in the above
coloring assignment process.

30: return (D′, χ)
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points lying in C. In order to do this, we first compute the voronoi diagram V ODC
on the center points of these 7k disks. We then do point location queries for each
of these nC points on V ODC to determine the closest center point. We will then
test whether the corresponding disk centered at the closest center point covers
this point. This step will take O(k log k + nC log k) time. Therefore, we invest
O(m7k(k log k + nC log k)) time to compute k-colorable cover of the points lying
in the cell C. The total time the for-loop takes over all the nonempty grid cells is
O(m7kk log k) +

∑

C
O(m7knC log k) = O(m7k(n + k) log k). The remaining steps

of the algorithm (including the preprocessing in steps 1 and 2) will take no more
than O(mn) time. Under the assumption that n is much larger than the number
k of colors, the time complexity of the algorithm in total is O(m7kn log k). In
order to assign the colors at a later step of the algorithm, with each grid cell C
we also associate and store the corresponding cover DC computed in the for-loop
at line 3. Thus, the additional space the algorithm requires is O(nk).

The handover behaviour at line 11 of the algorithm and Lemma 2 ensure
that any color-conflict is resolved in an elegant way. Since we use four disjoint
sets of k distinct colors and for each grid cell we compute k-colorable unit disk
cover (from Lemma 1), the approximation factor of the algorithm is 4. Thus, the
theorem follows. ��

The following corollary says that Theorem 1 yields a faster algorithm for 3-
CDUDC than that of Biedl et al. [3], but at the cost of increase in approximation
factor.

Corollary 1. There exists a 4-approximate algorithm that runs in O(m21n)
time for the 3-CDUDC problem.

Proof. Follows from Theorem 1 by applying k = 3. ��

2.2 Generalization

In this subsection, we generalize the results from the preceding subsection to a
general case observations for possible values of the width τ of each cell in the
grid partitioning approach. We begin by attempting to generalize the potential
coloring schemes for each grid cell τ × τ similar to the observations presented
in Lemma 1. We first define a parameter ρ that represents the factor indicating
the number of additional color sets needed to satisfy a union of independent
solution sets. As a result, we obtain a family of approximation algorithms for
the k-CDUDC problem, depending upon a different possible values for ρ and τ .

Lemma 3. The union of all independently optimal k-colorable solution sets for
points lying in each grid cell C of size τ × τ is ρk colourable, where

ρ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4 if τ ≥ 2

6 if 8
5 ≤ τ < 2

7 if
√

2 ≤ τ < 8
5

9 if 1 ≤ τ <
√

2
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Proof. We prove this by verifying the number of grid cells a unit disk can maxi-
mally intersect while considering each case. This determines the number of dis-
joint color sets, each consisting of at most k distinct colors. Clearly, this number
is the same as ρ. Note that we are interested in finding the upper bound of such
intersections.

(c) (d)

(a)

(b)

Fig. 6. Proof of Lemma 3

τ ≥ 2: Since the diameter of each disk is 2 and the width of grid cell is also (≥)2,
certainly, no disk can span more than 2 linearly adjacent disks (see Fig. 6(a)).
Thus, maximal intersection count is achieved by placing the disk in any of the
grid intersection corners. Here the disk will certainly intersect 4 grid cells regard-
less of the width.
8
5 ≤ τ < 2: If the width of the grid cell is less than 2, surely, a unit disk can
span 3 linearly adjacent grid cells. However, if the width is 8

5 , the disk cannot
span more than 2 diagonally adjacent grid cells (see Fig. 6(d)). Hence, if the
width is greater than or equal to 8

5 , then no matter where the disk is centered
(in Fig. 6(d)), it can not intersect more than 6 grid cells simultaneously.
√

2 ≤ τ < 8
5 : If the width of the grid cell is

√
2, surely, a unit disk can span 3

linearly adjacent grid cells and the middle cell from the next adjacent column or
row of the linearly adjacent grid cells (see Fig. 6(c)). Thus, we use the position
shown in Fig. 6(c) to indicate maximal count possible.
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1 ≤ τ <
√

2: For width ≥ 1, a unit disk could potentially intersect 3 linearly and
diagonally adjacent grid cells (see Fig. 6(b)).

We do not consider the grid partitioning with grid cells of width τ < 1 as
it is inconsequential to our study and provides no substantial results (as the
colorability increases substantially with no real improvement to the number of
intersecting disks). ��

In the same spirit, we provide a generalization of the observation presented
in Lemma 3 for the maximum number of pairwise disjoint unit disks that can
intersect a square of size τ × τ . We define a parameter α that is the count of
mutually non-intersecting unit disks that can intersect a grid cell of width τ .

Lemma 4. The bound on the cardinality of a set Si
C of pairwise disjoint unit

disks that can intersect a grid cell C of size τ × τ is α, for an integer 1 ≤ i ≤ k,
where

α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if τ = 1

5 if 8
5 ≥ τ ≥ √

2
7 if τ = 2
10 if τ = 3
14 if τ = 4
17 if τ = 5

Proof. Consider a grid cell C of size 1 × 1. Imagine placing four unit disks, each
centered farthest apart from one another, but outside the cell C, and touching
one of the four corners of the cell C. Since the cell size is 1 × 1, we can not place
any more disk that intersects the cell, but at the same time disjoint from each
of these four disks. Hence, the bound α = 4 for the case of width τ = 1. Proof
for each of the other cases can be done similar to the proofs provided for the
cases τ = 1 given above, and τ = 2 given in Lemma 1 (see, for example, the
cases τ = 1 and τ = 8/5 being illustrated in Fig. 7). We do not consider grid
cells of width τ > 5 as it provides no improvement to the running time while
the approximation factor stays the same after τ = 2 (as seen in Lemma 3). On
the other hand, τ < 1 is also not considered because the approximation factor
ρ becomes arbitrarily very high for τ < 1. One can observe here that the upper
bound for |Si

C | obtained in Observation 1 is tight in case of τ being even, whereas
in case of odd, it is a loosely bound. ��

Theorem 2. There exists a ρ-approximation algorithm to solve the k-CDUDC
problem, that has a running time of O(mαkn log k) for a given grid width 1 ≤
τ ≤ 5, where
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(a) τ = 1 (b) τ = 8
5

Fig. 7. Proof of Lemma 4

ρ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4 if τ ≥ 2

6 if 8
5 ≤ τ < 2

7 if
√

2 ≤ τ < 8
5

9 if 1 ≤ τ <
√

2

, α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if τ = 1

5 if 8
5 ≥ τ ≥ √

2
7 if τ = 2
10 if τ = 3
14 if τ = 4
17 if τ = 5

Proof. The input of Algorithm 1, in addition to a set P of n points, a set D of m
unit disks, and an integer k(> 0), also consists of a grid partitioning parameter
τ . From Lemmata 3 and 4, it is clear that any reasonable value for the parameter
τ will imply the values of ρ and α. Hence, we have a ρ-approximation algorithm
in O(mαkn log k) time. ��

3 Line Segment and Rectangular Region Cover

In the same spirit as the k-CDUDC problem is considered due to its practi-
cal application in frequency/channel assignment in wireless networks, we also
define two problems, that generalize the locations of potential wireless clients
from discrete set of points to line segments and from discrete set of points to
a continuous rectangular region, namely, the k-Colorable Line Segment Disk
Cover (k-CLSDC) and k-Colorable Rectangular Region Cover (k-CRRC) prob-
lems, respectively.

We begin our approach using a fundamental combinatorial result involving
unit disks that helps us to transform the above problems into our original k-
CDUDC problem. Given a set D of m unit disks in the plane, a sector is the
smallest region bordered by the boundary lines of disks and is covered by the
same set of disks in D. Thus, the arrangement of all disks of D subdivides the
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plane into many sectors. It is not hard to show that the worst-case complexity
of the arrangement of any set of m unit disks is quadratic, as stated below.

Observation 2. (Funke et al. [9]). The number of sectors created by inter-
section of m unit disks in D is O(m2).

To develop approximation algorithms for the k-CLSDC problem, we trans-
form every instance of k-CLSDC problem into an instance of k-CDUDC problem
as follows. In an instance of k-CLSDC problem, we have a set D of m unit disks
covering a finite union of n line segments of arbitrary length with arbitrary ori-
entation, and an integer k, The objective, here, is to compute a k-colorable cover
of all the line segments. We split each of these line segments into slices such that
each such slice lies within some sector. Now, for each subset of slices lying within
a single sector, we add one point into the same sector and remove all the slices.
This collection of points is referred to as P ′. Hence, from Observation 2 we have
that |P ′| = O(m2). This can be taken as an instance of the k-CDUDC problem,
where P ′ is taken as the input set of points P .

Similarly, we can do a similar transformation for the k-CRRC problem. Here,
we have a set D of m unit disks covering a continuous rectangular region R. Our
objective is to compute a k-colorable set of units disks such that R is covered
by the union of these disks. As above, we split R into O(m2) sectors, as induced
by the union of disks in D, and add one point into each sector.

For the k-CLSDC problem, the construction of the set P ′ of points can be
done as follows. We first preprocess the given set D of m unit disks into any
reasonable data structure, e.g., a doubly connected edge list (DCEL), in O(m2)
time [14]. We can build the Voronoi diagram V ORD on the center points of
disks in D in O(m log m) time. We store cross pointers between Voronoi cells
(or disks) in V ORD and the faces (or sectors) of DCEL that are contributed
by the corresponding disks. For each of the given n line segments, we do point
location query on V ORD for the left endpoint of the line segment to determine
the disk in which it lies. We then follow the cross pointer to access the sector
that contains it. Subsequently, we traverse the adjacent sectors of this sector in
DCEL. As we do, we add points into those sectors (also, into P ′) that covers
a portion of the line segment and mark the corresponding faces (or sectors) as
processed in DCEL. This step will take O(n log m+m2) time. In the case of the
k-CRRC problem, the construction of P ′ takes O(m2) time as we have to test
whether each sector is intersected by R.

Therefore, we have the following results for the k-CLSDC and k-CRRC prob-
lems.

Theorem 3. We have a ρ-approximation algorithm to solve the k-CLSDC prob-
lem, that has a runing time of O(n log m+mαk+2 log k +mαkk log k) for a given
grid width 1 ≤ τ ≤ 5, where ρ and α are defined as in Theorem 2.

Proof. Follows from Theorem 2 by applying |P | = |P ′| = O(m2), where
O(n log m) is due to the preprocessing of the input before we run the algorithm
of Theorem 2. ��
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Theorem 4. We have a ρ-approximation algorithm to solve the k-CRRC prob-
lem, that has a runing time of O(mαk+2 log k+mαkk log k) for a given grid width
1 ≤ τ ≤ 5, where ρ and α are defined as in Theorem 2.

Proof. Follows from Theorem 2 by applying |P | = |P ′| = O(m2). ��

4 Conclusion

In this paper, we have proposed constant-factor approximation algorithms for
computing k-colorable unit disk covering of points, line segments, and a rectan-
gular region. In the future work, we wish to improve the running time of the local
algorithm for a grid cell instead of brute-forcing for optimal cover of points lying
in the grid cell. This will improve the overall running time of the approximation
algorithms.
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Radio-Wave Propagation
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14-th Linia, V.I., No. 39, Saint Petersburg 199178, Russia

Abstract. This paper is devoted to modeling the tropospheric electro-
magnetic waves propagation over irregular terrain by the higher-order
finite-difference methods for the parabolic equation (PE). The proposed
approach is based on the Padé rational approximations of the propaga-
tion operator, which is applied simultaneously along with longitudinal and
transversal coordinates. At the same time, it is still possible to model the
inhomogeneous tropospheric refractive index. Discrete dispersion analysis
of the proposed scheme is carried out. A comparison with the other finite-
difference methods for solving the parabolic equation and the split-step
Fourier (SSF)method is given. It is shown that the proposedmethod allows
using a more sparse computational grid than the existing finite-difference
methods. This in turn results in more fast computations.

Keywords: Parabolic wave equation · Finite difference methods ·
Tropospheric propagation · Electromagnetic propagation · Numerical
dispersion

1 Introduction

When solving several problems of wireless communications, navigation and radar,
it is essential to predict the characteristics of radio-wave propagation in the
constantly varying troposphere. The propagation of radio-waves is significantly
affected by spatial variations in the tropospheric refractive index, irregular ter-
rain and its dielectric properties, rough sea surface [9], vegetation [4,24], and urban
development [16]. Often, the solution to this problem is an integral part of com-
plex real-time software systems [3]. Given the above challenges, developing both
appropriate mathematical models and efficient numerical methods remains actual.

The most widely used deterministic approach to solving this class of prob-
lems is the parabolic equation (PE) method [13,14]. Modern formulation of the
PE method in terms of the one-way Helmholtz equation is directly derived from
Maxwell’s equations, which makes it rather reliable and verified. The PE method
can take into account all the above-mentioned features of tropospheric propaga-
tion [9,10,23,28,29], but its effective usage requires fast and reliable numerical
methods.
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The fastest and most widely used numerical method for solving the PE in
tropospheric radio-wave propagation problems is the split-step Fourier (SSF)
method [14,22]. Its main drawbacks include instability and errors when modeling
the upper and lower boundary conditions [11,19]. Finite-difference methods for
solving PE [1,5,19], in contrast, provide efficient boundary conditions modeling.
However, the existing finite-difference methods for PE are more time-consuming.
When performing numerical radio coverage predictions over rugged terrain or in
urban canyons, it is necessary to account for large propagation angles, which
requires a dense computational grid and a large approximation order [17]. This,
in turn, leads to an increase in computational costs. A number of important
results concerning the numerical solution of PE by the finite-difference methods
were obtained in computational hydroacoustics studies [6]. The use of the prin-
ciple of universality of mathematical models [25] makes it possible to partially
reuse the corresponding numerical methods in the problem under consideration.

This article continues a series of works [17–19] devoted to improving the
performance of finite-difference schemes for the PE. Previously, a higher-order
approximation was applied along the longitudinal coordinate, while the diffrac-
tion part of the propagation operator was approximated by the 2nd or 4th order
scheme. In this paper, it is shown that under certain conditions it is possible
to simultaneously apply the higher-order Padé approximation to the exponen-
tial propagation operator and its diffraction part. At the same time, the new
scheme differs only in coefficients, which means that it inherits all the properties
of existing finite-difference schemes.

The paper is organized as follows. The next section presents a solution to
the one-way Helmholtz equation using the split-step Padé method. In Sect. 3, we
introduce a joint Padé approximation along with the longitudinal and transversal
coordinates. Section 4 provides a comparative analysis of the numerical schemes
under various propagation conditions.

2 Split-Step Padé PE

Following the generally accepted methodology of splitting the wave field into
forward and backward propagating waves [8], the equation for waves propagating
along the positive x direction can be written as follows

∂u

∂x
= ik(

√
1 + L − 1)u, (1)

where

Lu =
1
k2

∂2u

∂z2
+ hu,

h(x, z) = m2(x, z) − 1,

k = 2π/λ is the wavenumber, λ is the wavelength, m(x, z) is the modified refrac-
tivity of the troposphere [14].
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Function u(x, z) is subject to the impedance boundary condition at the lower
boundary

(q1u + q2
∂u

∂z
)
∣
∣
∣
∣
z=h(x)

= 0,

where h(x) is the terrain profile, complex coefficients q1 and q2 are determined
from the dielectric properties of the ground [14].

The wave propagation process is generated by the Dirichlet initial condition
of the form

u(0, z) = u0(z), (2)

with known function ψ0(z), which corresponds to the antenna pattern.
Step-by-step solution of Eq. (1) can be formally written using the pseudo-

differential [26] propagation operator as follows

u(x + Δx, z) = P (L) u(x, z), (3)

P (L) = exp
(

ikΔx
(√

1 + L − 1
))

.

The following notation is further used for discrete versions of functions

un
j = u(nΔx, jΔz),

where Δx and Δz are the longitudinal and transversal grid steps respectively.
Considering propagation operator (3) as a function of operator L, we can

apply a rational Padé approximation of the order [m/n] [2,5] as follows

P (L) u =
1 +

∑m
l=1 ãlL

l

1 +
∑n

l=1 b̃lLl
u + O(Ln+m)u. (4)

Next, we will represent the rational approximation in the form of a product

1 +
∑m

l=1 ãlL
l

1 +
∑n

l=1

∏
b̃lLl

=
p

∏

l=1

1 + alL

1 + blL
,

where p = max(m,n). The pseudo-differential square root operator, which is
responsible for the diffraction, and the operator exponent, which is responsible
for integration along the longitudinal coordinate x, are simultaneously approxi-
mated. Any desired propagation angle can be achieved by selecting a sufficient
Padé approximation order [17].

The action of propagation operator (3) is approximately reduced to the
sequential application of the rational operator of the form

v =
1 + alL

1 + blL
u,

which in turn is equivalent to solving the following one-dimensional differential
equation

(1 + bL) v = (1 + aL) u, (5)
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where u(z) is known field, obtained on a previous step, v(z) is the desired field.
Replace operator L is Eq. (5) with its finite-difference analog [18]

L̂uj =
1

k2Δz2
δ2

1 + αδ2
+ hjuj ,

where α = 0 for the 2nd order approximation and α = 1/12 for the 4th order
approximation, second difference operator δ2 is defined as follows

δ2u = u(z − Δz) − 2u(z) + u(z + Δz) = uj−1 − 2uj + uj+1.

Then we obtain the following finite-difference equation
(

τ
(

1 + αδ2
)

+ blδ
2 + blτhj

)

vj + blταδ2 (hjvj)

=
(

τ
(

1 + αδ2
)

+ alδ
2 + alτhj

)

uj + alταδ2 (hjuj) ,

where τ = (kΔz)2.
The above equation, along with discrete boundary conditions [18,19], is a

tridiagonal system of linear algebraic equations and is solved in linear time.
The result is a numerical scheme that has an arbitrary order of accuracy when
integrated along the longitudinal coordinate x and up to 4th order accuracy in z.

Note that case p = 1 in approximation (4) is equivalent to the well known
Crank-Nikolson scheme for PE [10]. At the same time, the Padé approximation
scheme is significantly superior to the Crank-Nikolson method both in terms of
computational speed and smoothness of the obtained solutions [14,19].

3 Modified Padé Approximation

A certain disadvantage of the previously obtained scheme is the approximation
of transversal differentiation operator L. While an arbitrary order of accuracy
is achievable for the approximation of the exponential operator, the order of
approximation does not exceed 4 for operator L. It is reasonable to assume
that increasing the approximation order of operator L can further improve the
performance of the scheme. The obvious solution to this problem is the use of
multi-point schemes for the approximation of the differential operator. However,
it will also increase the complexity of the scheme, since Eq. (5) will no longer be
reduced to a tridiagonal matrix. Instead, in this paper, we propose to use Padé
approximation (4) simultaneously by the longitudinal and transversal coordi-
nates.

Following [7,12], the differentiation operator can be expressed in terms of the
second difference operator as follows

∂2u

∂z2
= g(δ2)u,
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g(ξ) = − 1
Δz2

ln2

⎛

⎝1 +
ξ

2
+

√
(

1 +
ξ

2

)2

− 1

⎞

⎠ .

For the case of a homogeneous medium (m(x, z) ≡ 1) we can write down the
following approximation of the propagation operator with respect to operator δ2

P

(
1
k2

∂2

∂z2

)

u = P

(
1
k2

g
(

δ2
)
)

u ≈
p

∏

l=1

1 + a′
lδ

2

1 + b′
lδ

2
u. (6)

There is no explicit approximation of operator L in this expression. Thus, the
longitudinal and transversal coordinate discretization is performed using single
high-order Padé approximation. The disadvantage of this approach, which was
previously considered for solving the computational hydroacoustics problems [5],
is its limitation to the case of a homogeneous medium.

Let us now return to the case of an inhomogeneous troposphere. Function g
is presented according to the Taylor series as follows

g(ξ) =
1

Δz2

[

ξ − 1
12

ξ2 +
1
90

ξ3 − . . .

]

.

Put δ2 + τh as an argument of function g to the above decomposition

1
k2

g(δ2 + τh)u =
1
τ

[

δ2 + τh − 1
12

(

δ2 + τh
)2

+
1
90

(

δ2 + τh
)3 − . . .

]

u

=
1
τ

[

δ2u + τhu − 1
12

(

δ4u + . . .
)

+
1
90

(

δ6u + . . .
) − . . .

]

.

In tropospheric propagation problems, h(x, z) is a slowly varying function both in
range and height, and its value rarely exceeds 0.0005 [14]. This makes it possible
to neglect the terms containing h (denoted as . . . in the above expansion) and
obtain the following approximate relation

1
k2

g(δ2 + τh)u ≈ 1
k2

g(δ2)u + hu =
1
k2

∂2u

∂z2
+ hu.

Substituting this approximation into the propagation operator, we obtain

P (L) = P

(
1
k2

∂2

∂z2
+ h

)

u ≈ P

(
1
k2

g(δ2 + τh)
)

u.

Next, using Padé approximation (6) with new coefficients a′
l and b′

l, we can
write the following approximation of the propagation operator, that takes into
account the inhomogeneous refractive index

P

(
1
k2

g(ξ)
)∣

∣
∣
∣
ξ=δ2+τh

u ≈
p

∏

l=1

1 + a′
lξ

1 + b′
lξ

∣
∣
∣
∣
∣
ξ=δ2+τh

u. (7)
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As a result, we come to a numerical scheme that is equivalent to the 2nd order
one (α = 0) except for coefficients a′

l and b′
l.

Note that the computational complexity of the proposed scheme is equal
to the complexity of the 2nd order scheme. The difference is only in the Padé
approximation coefficients. Approximation (7) simultaneously includes the dif-
ferentiation operator, the square root operator, and the exponential operator.
Thus, single approximation is responsible simultaneously for three parameters of
the numerical scheme: grid steps Δx, Δz and the maximum propagation angle.

The idea of joint use of the Padé approximation for sampling along the lon-
gitudinal and transversal coordinates was expressed in the works [5,7]. However,
previously it was limited to the case of a homogeneous medium. In this paper,
we show that when the refractive index is sufficiently small, it is possible to
generalize this idea to the case of an inhomogeneous medium without additional
computational costs. A small refractive index just arises in the problems of tro-
pospheric propagation. Of course, such a scheme is not applicable in the case
of strong spatial variations of the refractive index. Latter occurs, for example,
when modeling the water-ground boundary in hydroacoustics.

It should be noted the smallness of the refractive index is also significantly
used in the derivation of the widely used SSF method, so this assumption is not
a shortcoming compared to the SSF method. At the same time, the proposed
scheme, as well as other finite-difference schemes, makes it possible to effec-
tively model both the upper transparent boundary [19] and the lower impedance
boundary [14].

It is recommended to use Padé approximations of the order [p − 1/p] or
[p − 2/p] [14,19].

Fig. 1. Dependence of discrete dispersion relation error R on propagation angle θ.
Δz → 0.
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Table 1. Optimal values of Δz for various PE numerical methods (larger is better).
Δx = 1λ, rational approximation order is [7/8], acceptable error tol = 10−3.

θmax,◦ Δz, λ (2nd order) Δz, λ (4th order) Δz, λ (joined) Δz, λ (SSF)

10 0.8 1.5 2.8 2.88

20 0.2 0.5 1.3 1.46

30 0.09 0.2 0.9 1.0

45 0.01 0.1 0.6 0.70

60 0.01 0.1 0.4 0.58

70 0.01 0.01 0.3 0.53

4 Numerical Results and Discussion

The first two subsections demonstrate the advantage of the proposed approach
in terms of the maximum propagation angle and density of the computational
grid. Then we demonstrate on a concrete example the consistency of the made
assumption about the sufficient smallness of the refractive index. In the last
example, we show the application of the proposed method in a realistic propa-
gation scenario.

4.1 Error Analysis

In this section, we provide a discrete dispersion analysis [17,28] of the proposed
scheme. The discrete horizontal wavenumber for the class of numerical schemes
under consideration is written as follows [17]

kd
x(Δx,Δz, a1 . . . ap, b1 . . . bp, θ) = k +

ln
∏p

l=1 tl
iΔx

,

tl =
1 − 4al

τ

(

sin2
(

kΔz sin θ
2

)

+ 4α sin4
(

kΔz sin θ
2

))

1 − 4bl
τ

(

sin2
(

kΔz sin θ
2

)

+ 4α sin4
(

kΔz sin θ
2

)) ,

where θ is the angle between the direction of the wave and the positive x direc-
tion.

The horizontal wavenumber for original one-way Helmholtz equation (1) is
written as follows

kx =

{√

k2 − k2
z , |kz| ≤ k,

i
√

k2
z − k2, |kz| > k,

where kz = k sin θ is the vertical wavenumber.
Comparing the discrete and original dispersion relation

R (Δx,Δz, a1 . . . ap, b1 . . . bp, θ)
= |kd

x (Δx,Δz, a1 . . . ap, b1 . . . bp, θ) − kx (kz = k sin θ) |
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Fig. 2. Dependence of discrete dispersion relation error R on propagation angle θ.
Δx = 1λ, Rational approximation order is equal to [7/8].

makes it possible to estimate the accuracy of a numerical scheme depending on
its parameters [17]. Figure 1 demonstrates the dependence of discrete dispersion
relation error R on propagation angle θ for the following three approximation
orders: [1/1], [3/4], [7/8] and two values of longitudinal grid step Δx: 1.0λ and
10.0λ. In this example we set Δz → 0, so the discretization by z is not consid-
ered. It is clearly seen that the accuracy monotonically decreases with increasing
propagation angle. Increasing the order of rational approximation and decreasing
grid step Δx gives a more accurate scheme. Thus, there is a direct dependency
between the accuracy of the numerical scheme and the propagation angle.

Next, we consider the effect of the approximation of operator L on the accu-
racy of the numerical scheme. Figure 2 demonstrates the dependence of R on the
propagation angle for the four different values of transversal grid step Δz: 0.25λ,
0.5λ, 1.0λ, 2.0λ and three variants of approximation by z: 2nd order, 4th order
and the proposed joined approximation. Longitudinal grid step Δx = 1.0λ, Padé
approximation order is [7/8]. It can be seen that, as before, the accuracy mono-
tonically decreases with increasing propagation angle. It is also clearly observable
how increasing the order of approximation by z increases the accuracy of the
numerical scheme. At the same time, it should be noted that all three considered
variants of approximation by z are computationally equivalent since they differ
only in the coefficients of the scheme.
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Fig. 3. Knife-edge diffraction. Two-dimensional distribution of the electromagnetic
field (20 log |u(x, z)|), obtained by the integral equation method [27]. Operational fre-
quency is equal to 600MHz.

Next, we will consider in more detail how the accuracy of the approximation
by z affects the required density of the computational grid and, accordingly,
the computational time. To determine the optimal density of the computational
grid, we will solve the following maximization problem [17]

Δz → max

under condition

max
θ∈[0,θmax]

R (Δx,Δz, a1 . . . ap, b1 . . . bp, θ) < tol,

where θmax is the maximum required propagation angle, tol is the acceptable
error at each step.

For the SSF method, it is somewhat easier to determine the optimal Δz by
using the Nyquist-Shannon sampling theorem

Δz ≤ λ

2 sin θmax
.

Table 1 demonstrates the optimal values of Δz for several propagation angles
and numerical methods. The acceptable error tol was taken equal to 10−3. It
can be seen that the proposed scheme allows the use of a much more sparse
computational grid than other finite difference methods, and is almost equal to
the SSF method by this criterion. The advantages of the proposed method are
particularly visible on large propagation angles.

4.2 Knife-Edge Diffraction

In this subsection, we consider the classical knife-edge diffraction problem
[21,27]. Here we also consider the backscattering from the obstacle. Modeling of
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Fig. 4. Knife-edge diffraction. Two-dimensional distribution of the error between refer-
ence solution ue and finite-difference solution ufd (|20 log |ue(x, z)|−20 log |ufd(x, z)||).
In all examples, the order of the Padé approximation is equal to [7/8], longitudinal grid
step Δx = λ.



428 M. S. Lytaev

diffraction on such obstacles at large propagation angles is essential when cal-
culating the field in dense urban area. As a reference, we will use the solution
obtained using the integral equation for the knife-edge diffraction [27]. The hor-
izontally polarized monochromatic source is located at the height of 100 m over
the perfectly conducted surface. The operation frequency is 600 MHz (λ = 0.5
m). Knife-edge with a height of 100 m is located at a distance of 1.5 km from the
source of radiation. The reference solution is depicted in Fig. 3.

Figure 4 shows the spatial distribution of the error between the reference
solution and the various configurations of the finite difference method. Padé
approximation of order [7/8] with three various approximations by z and various
values of Δz are considered. The backscattering from the knife-edge is modeled
using the two-way PE approach [20]. It is clearly seen how the maximum propa-
gation angle increases with increasing accuracy of the approximation. The need
to handle large propagation angles when calculating the field in the diffraction
zone behind the obstacle is clearly visible.

4.3 Propagation in a Duct

Fig. 5. M-profile of the evaporation duct (left) and elevated duct (right).

In this example, we model the radio-wave propagation in a tropospheric waveg-
uide. The aim of this example is to demonstrate that the assumptions made in
the previous section about the sufficient smallness of the tropospheric refractive
index do not really affect the accuracy of the proposed method.

Modified refractivity m is determined by the refractive index of the tropo-
sphere n and the radius of the Earth R as follows

m = n + 1/R.
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Function m makes it possible to take into account the over-the-horizon
diffraction along with tropospheric refraction [14]. We further express the tropo-
spheric refraction profile by the M-profile M = 106(m − 1). Figure 5 shows the
tropospheric refractive index profiles for the two widely occurring waveguides:
evaporated duct and elevated duct [14]. Figure 6 demonstrates the results of mod-
eling in the mentioned profiles by the proposed method. The radiation frequency
in this example is equal to 10 GHz (λ = 0.03 m). We will compare the results
obtained in this example with the SSF method implemented in the PETOOL
program [22]. Figure 7 shows the spatial distribution of the error between the
proposed method and the SSF method. It can be seen that the results of both
methods actually coincide. Thus, the proposed method can properly handle the
inhomogeneities of the troposphere. It is also clear that the proposed method
can properly handle the discrete transparent boundary condition [19], posed on
the upper boundary of the computational domain.

Fig. 6. Propagation in the evaporation duct (left) and elevated duct (right). Two-
dimensional distribution of the electromagnetic field (20 log |u(x, z)|), obtained by the
proposed method. In both examples, Padé approximation order is [7/8], Δx = 1000λ,
Δz = 0.5λ. Operational frequency is equal to 10 GHz.

4.4 Propagation over Irregular Terrain

In the last example, we consider the propagation of radio-waves over irregu-
lar terrain in the elevated duct from the previous example. The radiation fre-
quency in this example is equal to 1.5 GHz (λ = 0.2 m). Figure 8 shows the
two-dimensional distribution of the electromagnetic field obtained by the pro-
posed method with the following parameters: Padé approximation order in equal
to [7/8], Δx = 100λ, Δz = 3λ. The inhomogeneities of the landscape are approx-
imated by a piecewise constant function. Figure 9 and 10 show a comparison with
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Fig. 7. Propagation in the evaporation duct (left) and elevated duct (right). Two-
dimensional distribution of the error between reference solution ussf , obtained by the
SSF method, and solution ufd, obtained by the proposed method (|20 log |ussf (x, z)|−
20 log |ufd(x, z)||).

Fig. 8. Propagation in the elevated duct over irregular terrain. Two-dimensional distri-
bution of the electromagnetic field (20 log |u(x, z)|), obtained by the proposed method.
Operational frequency is equal to 1.5 GHz.

the 2nd order approximation. It is clearly seen that for the same computational
parameters, the 2nd order scheme yields a significant underestimation of the field
in the diffraction zone, as well as a noisy solution in several areas. To obtain a
correct solution by the 2nd order scheme, it is necessary to use six times more
dense grid by z.
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Fig. 9. Propagation in the elevated duct over irregular terrain. Distribution of the
electromagnetic field (20 log |u(x, z)|) at the height of 5 m over the surface. The results
are shifted by 50 dB for convenience.

Fig. 10. Propagation in the elevated duct over irregular terrain. Distribution of the
electromagnetic field (20 log |u(x, z)|) at the height of 5 m over the surface. The results
are shifted by 50 dB for convenience.

5 Conclusion

The proposed method gives an opportunity to significantly improve the perfor-
mance of finite-difference methods for solving PE in the inhomogeneous tropo-
sphere. At the same time, no significant changes to the existing software imple-
mentations are required, since the new scheme differs only in coefficients of the
rational approximation. The new scheme retains all the advantages of the finite-
difference schemes, in particular, the correct boundary conditions modeling. At
the same time, the joint Padé approximation along the longitudinal and transver-
sal coordinates made it possible to reduce the density of the computational grid
and, accordingly, the computational time.

The proposed method is implemented as a Python 3 library and is freely
available [15].
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Abstract. We present a numerical algorithm of seismic wave propaga-
tion in anisotropic fractured fluid-saturated porous media and estimation
of seismic attenuation. The algorithm is based on numerical solution
of anisotropic Biot equations of poroelasticity. We use finite-difference
approximation of Biot equations on the staggered grid. We perform a set
of numerical experiments of wave propagation in fractured media. Frac-
tures in the media are connected and filled with anisotropic material
providing wave induced fluid flow within connected fractures. Numerical
estimations of inverse quality factor demonstrate the effect of fracture-
filling material anisotropy on seismic wave attenuation.

Keywords: Biot model · Poroelasticity · Anisotropy · Wave
propagation · Seismic attenuation · Inverse quality factor · Finite
differences

1 Introduction

On of the most popular research topics in modern geophysics is estimation of
reservoir transport properties and fluid mobility. Accurate information about
these properties is essential for fractured reservoirs exploration, in particular,
CO2 sequestration [6,15], geothermal energy exploration [12,20]. One of the
attributes that can potentially be used as an indicator of transport properties
in fractured formations is seismic attenuation. Seismic attenuation in fractured
fluid-saturated rock is provided by many essentially different mechanisms. In par-
ticular, when a seismic wave propagates through such media, it generates pres-
sure gradients and so cause so-called wave-induced fluid flow (WIFF). Usually
these fluid flows are divided in two types. First type is fracture-to-background
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WIFF (FB-WIFF). FB-WIFF is defined mostly by high physical properties con-
trast between background and fracture-filling material [8,17,19]. Most intense
FB-WIFF develops at low frequencies. Conversely, in presence of connected frac-
tures second type of WIFF, fluid flow between fractures (fracture-to-fracture
WIFF, FF-WIFF) occurs. In contrast to FB-WIFF, flow of the second type has
its intensity maximum at high frequencies. Most important factors affecting FF-
WIFF are physical properties of fracture-filling material [5,8,19]. Both types of
WIFF result in frequency-dependent seismic wave attenuation. So adequate seis-
mic attenuation estimation can become the base for suggestions about transport
properties of the reservoir.

Unfortunately, theoretical studies of WIFF involve relatively simple fracture
systems. In particular, studied fracture connectivity is often limited by pairwise
intersections of fractures of two orientations [8]. Even if fracture systems are more
complex [7] long-distance percolation is not guaranteed. Transport properties of
reservoirs depend significantly on the presence of long length chains formed by
connected fractures, and it is necessary to study dependencies between fracture
connectivity and seismic attenuation. So proper modeling of wave propagation
in fractured models with given percolation length is needed to study FF-WIFF
and resulting attenuation. Another aspect that must also be taken into con-
sideration is anisotropy. Fracture-filling material should correspond to fracture
orientation to provide more realistic fractured media model and obtain more
precise correlations between fracture system structure and attenuation.

In this paper, we present a numerical algorithm of seismic wave propagation
in anisotropic fractured fluid-saturated porous media and estimation of seismic
attenuation. We use presented algorithm to study fracture connectivity effect on
seismic attenuation.

2 Anisotropic Biot Equations

Biot theory of poroelasticity is still the most common approach to model seismic
waves propagation in porous fluid-saturated media up to the present day in rock
physics [2,3,13]. This theory involve two-phase continuous media, where both
solid and fluid introduced. Moreover, it involves physical parameters defining the
microstructure of the rock and so its transport properties (porosity, tortuosity,
permeability) and these parameters can adequately estimated with laboratory
experiments for real rocks. In particular, we apply dynamic Biot equations for
2D orthotropic media (in Oxz plane) [4]:
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Biot model describes solid particles velocity (vx vz) and relative fluid velocity
(qx qz), as well as stress tensor components σxx, σzz, σxz, and fluid pressure
p. Here ρf is the fluid density, η is fluid viscosity, ρ is the density of saturated
material. Parameters Tx, Tz and kx, kz represent anisotropic tortuosity and per-
meability components for x-axis and z-axis directions, respectively. Equations
also include undrained material modulus tensor components cij , fluid-solid cou-
pling modulus M (also known as fluid storage coefficient) and Biot effective
stress components αx, αz (Biot-Willis constants).

3 Numerical Scheme

To perform numerical experiments we present explicit second order finite-
difference scheme approximating equations (1–8) on the staggered grid [23],
where different fields components are defined in different nodes (Fig. 1). Let
i, j, n be integer and correspond to grid node indices in x- and z-direction
and number of time step, respectively. Then normal stresses σxx and σzz, are
stored in nodes (iΔx, jΔz, (n + 1/2)Δt). Fluid and solid velocities x-components
vx, qx are stored in nodes ((i + 1/2)Δx, jΔz, nΔt), and z-components are
defined in nodes (iΔx, (j + 1/2)Δz, nΔt). Shear stress σzz is stored in nodes
((i + 1/2)Δx, (j + 1/2)jΔz, (n + 1/2)Δt). Note that physical parameters of the
media are stored in nodes (iΔx, jΔz) and need to be properly averaged in fol-
lowing equations.

Therefore we approximate equations (1–8) by the system of finite-difference
equations

Dt[qx]n− 1
2

i+ 1
2 j

= (C1)i+1/2j

(
Dx[σxx]n− 1

2
i+ 1

2 j
+ Dz[σxz]

n− 1
2

i+ 1
2 j

)

+ (C2)i+1/2jDx[p]n− 1
2

i+ 1
2 j

+ Ax

[
η

kx

]n−1/2

i+1/2j

C2At[qx]n−1/2
i+1/2j ,

(9)

Dt[qz]
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2
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2
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ij+ 1
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2
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2

)
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2

ij+ 1
2

+ Az

[
η
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]n− 1
2

ij+ 1
2
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n− 1

2
ij+ 1

2
,

(10)
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Fig. 1. Schematic illustration of staggered grid.
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(12)

Dt[σxx]nij = (cu
11)ijDx[vx]nij + (cu

13)ijDz[vz]nij
+ (α1)ijMij(Dx[qx]nij + Dz[qz]nij),

(13)

Dt[σzz]nij = (cu
13)ijDx[vx]nij + (Cu

33)ijDz[vz]nij
+ (α3)ijMij(Dx[qx]nij + Dz[qz]nij),

(14)

Dt[σxz]ni+ 1
2 j+ 1

2
= (c̃u

55)i+1/2j+1/2(Dz[vx]n
i+ 1

2 j+ 1
2

+ Dx[vz]ni+ 1
2 j+ 1

2
), (15)

Dt[p]nij = −αijMij(Dx[vx]nij + Dz[vz]nij) + Mij(Dx[qx]nij + Dz[qz]nij), (16)

where Dx, Dz and Dt - second order central difference operators, and operators
Ax and Az represent spatial averaging in x- and z-axis, respectively. Operator
At is time averaging. For discontinuous coefficients we apply the volume balance
technique [21] to obtain the second order of convergence of numerical solution
in models with sharp interfaces aligned to the grid lines [9,16]. So use following
notations for coefficients:
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(C−1
1 )i+1/2j = Ax[ρf ]i+1/2j − Ax[ρ]i+1/2jAx[Tx]i+1/2j
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(17)

Finally, to average undrained stiffness tensor component c55 in nodes
((i + 1/2)Δx, (j + 1/2)Δz) we apply the formula of the harmonic mean:

(c̃u
55)

−1
i+1/2j+1/2 =

1
4

(
1

(cu
55)ij

+
1

(cu
55)i+1j

+
1

(cu
55)ij+1

+
1

(cu
55)i+1j+1

)
.

4 Problem Set Up

We apply numerical modeling of plane P-wave propagation within fractured
porous fluid-saturated media. As a computational domain we consider rectangu-
lar area of poroelastic medium (Fig. 2). This medium consists of homogeneous
background containing inhomogeneous layer, where heterogeneities are presented
by the fractures filled with more permeable highly porous material to provide
the flow of fluid. The signal is propagated in z-direction through fractured layer
of interest and also through two receiver lines located at both sides of it. Thus,
we record the wave before and after its interaction with the fractured layer.

PML PML

x

z

Fig. 2. A sketch of the computational domain and the acquisition system. Red line
correspond to the source positions and wave propagation direction, two green lines
represent the receiver positions (Color figure online).
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The size of computational domain in x-direction is 1 m, and z-direction size
Lz vary depending on the signal wavelength. At the boundaries x = 0 m and
x = 1 m we impose periodic conditions, and perfectly matched layers [1,10,11]
are set at two other boundaries z = 0 m and z = Lz m. Grid step in both
directions is Δx = Δz = 2 mm.

5 Numerical Estimation of Seismic Attenuation

As we want to observe correlation between fracture connectivity and seismic
attenuation, proper estimation should be calculated for parameter character-
izing this attenuation. Standard parameter demonstrating wave attenuation is
inversed quality factor, and it can be calculated by many techniques [14]. One
approach to calculate the inverse quality factor is using complex frequency-
dependent phase velocity of seismic wave c(ω):

Q−1 =
�(c(ω))
�(c(ω))

. (18)

Having recorded signals from numerical modeling of wave propagation in media
of interest, it is convenient to apply spectral ratio method to estimate total
attenuation.

To estimate inverse quality factor we consider a plane wave propagating in
z-direction through the fractured domain

v(t, z) = v0e
iω(t−z/c(ω)) = v0e

iω(t−zs(ω)), (19)

where c(ω) is the complex frequency-dependent effective phase velocity of the
medium, and s(ω) = 1/c(ω) is the slowness. During wave propagation, wave
amplitude v0 is changing due to attenuation within the fractured media. Assume
that first receiver line is located in z = z1. Then the average (in x-direction) of
the recorded signal in first receiver line is given by

〈v(t, x, z1)〉x = v1 = v0e
iω(t−z1s(ω)). (20)

In our numerical experiments, domain between two receiver lines contains three
layers - two homogeneous layers on either side of third, fractured layer. So, first, it
is necessary to take into account transmission losses in two homogeneous layers.
Let us denote size in z-direction for left homogeneous layer, fractured layer,
and right homogeneous layer by l1, Lf and l2, respectively, and also denote the
slowness within background media by sb(ω). Then we can represent averaged
signal recorded in second receiver line

〈v(t, x, z2)〉x = v2 = v0e
iω(t−z1s(ω))e−iω(l1+l2)sb(ω)e−iωLfsf (ω), (21)

where sf (ω) is effective slowness in fractured layer.
Let us denote factor representing wave propagation in homogeneous background
by vb, so
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〈v(t, x, z2)〉x = v2 = v1vbe
−iωLf�(sf (ω))eωLf�(sf (ω)). (22)

Hence we obtain the imaginary part of effective slowness in the layer of interest
as follows:

�(sf (ω)) =
1

ωLf
ln

∣∣∣∣ v2

v1vb

∣∣∣∣. (23)

However, the real part of s(ω) is many-valued, and to determine the phase
uniquely, we use the approximation of phase velocity in fractured layer. We
pick the travel times t1 and t2 at the maximum amplitude of the two signals for
the two receiver positions, and, since we know the background velocity, we can
approximate phase velocity within the fractured layer by

V 0
P =

Lf

t2 − t1 − tb
, (24)

where tb = (l1 + l2)/�(vb) is the time of wave propagation in two homogeneous
layers between the receiver lines. Therefore, the phase �(sf ) is chosen to satisfy
the condition

∣∣∣∣�(sf )
ωLf

− ωLf

V 0
P

∣∣∣∣ < π. (25)

However, some error in attenuation estimation can be also associated with the
fact that the fractured layer is finite. Moreover, the set up of experiment causes
reflections on interfaces between homogeneous and fractured layer. To avoid
these effects, consider two numerical experiments, where fractured layer lengths
Lf and L′

f are different. Also assume that considered error is presented by the
factor e−iφ(ω) (regardless of layer length) in the signal expression, so we have

v2 = v1vbe
−iω(Lf�(sf (ω))+�(φ)/ω)eω(Lf�(sf (ω))+�(φ)/ω), (26)

v′
2 = v1vbe

−iω(L′
f�(sf (ω))+�(φ)/ω)eω(L′

f�(sf (ω))+�(φ)/ω)

for the averaged signals recorded in second receiver line for first and second
experiment, correspondingly. Set these new signal representations equal to ones
analogous to (21)

v2 = v0e
iω(t−z1s(ω))e−iω(l1+l2)sb(ω)e−iωLf ŝf (ω), (27)

v′
2 = v0e

iω(t−z1s(ω))e−iω(l1+l2)sb(ω)e−iωL′
f ŝ′

f (ω), (28)

where ŝf and ŝ′
f are two known different slowness estimations for two experi-

ments. As a result, we obtain a system of two equations for our new estimation
for imaginary part of the slowness

�(sf (ω)) +
�(φ(ω))

ωLf
= �(ŝf ), (29)
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�(sf (ω)) +
�(φ(ω))

ωL′
f

= �(ŝf
′), (30)

and its real part

�(sf (ω)) +
�(φ(ω))

ωLf
= �(ŝf ), (31)

�(sf (ω)) +
�(φ(ω))

ωL′
f

= �(ŝf
′). (32)

Obviously, in such case we can obtain exact solution for sf (ω), and then estimate
inverse quality factor using formula (18). However, in case of three and more
signals propagated in fractured layers of different length, one may apply, for
example, least squares method to retrieve complex slowness.

6 Numerical Experiments

First we perform numerical experiments to verify the proposed attenuation esti-
mation method. We model the propagation of seismic wave through homoge-
neous anisotropic layer located in more stiff and less porous and permeable
background. For the fluid we set density ρf = 1090 kg/m3, and fluid viscosity
η = 0.001 Pa·s. Other physical properties of both materials are given in Table 1.
We perform two sets experiments for two different lengths of anisotropic layer of
interest L = d and L = 0.5d, where d is approximately four wavelengths in the
background.

Resulting numerical estimations of inverse quality factor and phase velocity
are presented in Fig. 3. We can clearly observe that lesser length of the layer
provide bigger error in comparison with both bigger length and analytical solu-
tion, which is obtained from dispersion relation of Biot model (1–8). However,
applying our method described in Subsect. 5 results in more precise estimations,
what is observed in better agreement with analytical estimations, especially for
inverse quality factor. Note that although our numerical Q−1 estimation relative
error (in comparison with analytical one) for worst case (L = d) at some fre-
quencies almost reach 1, we observe good agreement of all velocity estimations
with relative error less than 10−3.

Next we perform a set of numerical experiments to study the anisotropy
effect on seismic attenuation. We apply discrete fracture networks formed by
two sets of microscale fractures parallel to x-axis and z-axis. Fractures are repre-
sented by rectangulars with length 30 mm and width 4 mm. Moreover, fracture
systems are generated by simulated annealing approach [22,24] to provide given
distance, that can be traveled within continuous chain of fractures throughout
the fractured model. In other words, we consider models with different connec-
tivity degree. Fracture network generation process is described in detail in [18],
and examples of models of different connectivity degrees are demonstrated in
Fig. 4. We consider homogeneous isotropic extremely low permeable media as
the background (physical properties are provided in the first column in Table 2),
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Table 1. Material properties.

Parameter Background Homogeneous layer

Drained rock

Porosity φ 0.1 0.3

x-axis Permeability kx, m2 10−13 5−10

z-axis Permeability kz, m2 10−13 2 · 10−13

x-axis Tortuosity Tx 1.83 2.2

z-axis Tortuosity Tz 1.83 3.29

x-axis Biot and Willis constant α1 0.2962 0.6759

z-axis Biot and Willis constant α3 0.2962 0.9991

Undrained rock

Density ρ, kg/m3 2494 2182

Undrained modulus c11, GPa 69.1 36.59

Undrained modulus c33, GPa 69.1 6.885

Undrained modulus c13, GPa 7.159 4.629

Undrained modulus c55, GPa 31 0.02

Fluid storage coefficient M, GPa 20.102 6.8304

103 1040

0.002

0.004

0.006

0.008

0.01

0.012

Frequency, Hz

Q
−1

analytic
numerical, L=0.5d
numerical, L=d
numerical, corrected

103 1041775

1775.5

1776

1776.5

1777

1777.5

1778

Frequency, Hz

Ve
lo

ci
ty

, m
/s

analytic
numerical, L=0.5d
numerical, L=d
numerical, corrected

Fig. 3. Inverse quality factor (left) and phase velocity (right) for homogeneous
anisotropic layer.

and fractures are filled with anisotropic material. Moreover, to intensify fluid
flow within fractures along fractures of both orientation, we set proper physical
parameters for x-axis oriented fractures, z-axis oriented fractures and its inter-
sections. In particular, we set bigger permeability, smaller tortuosity and reduce
stiffness of the material in fracture direction. Physical properties of fracture-
filling materials for x-axis oriented fractures, z-axis oriented fractures and inter-
sections of fractures of two different orientations are given in second, third, and
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fourth columns in Table 2, respectively. Fluid density is 1000 kg/m3, and fluid
viscosity is 0.001 Pa·s. Numerical experiments of wave propagation are performed
for fractured models of six different degrees of connectivity (10 realizations for
each case) and for 1–10 kHz initial signal central frequency range.

Table 2. Fractured media materials

Parameter BG FX FZ FXZ ISO1 ISO2

Drained rock

Porosity φ 0.1 0.225 0.225 0.225 0.2250 0.1425

x-axis Permeability

kx, m2
10−15 1.414 · 10−10 5.3 · 10−13 1.414 · 10−10 1.414 · 10−10 5.3 · 10−13

z-axis Permeability

kz , m2
10−15 5.3 · 10−13 1.414 · 10−10 1.414 · 10−10 1.414 · 10−10 5.3 · 10−13

x-axis Tortuosity Tx 1.83 1.17 1.83 1.17 1.17 1.83

z-axis Tortuosity Tz 1.83 1.83 1.17 1.17 1.17 1.83

x-axis Biot and

Willis constant α1

0.2962 0.6896 0.6418 0.6915 0.7346 0.7346

z-axis Biot and

Willis constant α3

0.2962 0.6418 0.6896 0.6915 0.7346 0.7346

Undrained rock

Density ρ, kg/m3 2494 1870 2458 2318 2318 2318

Undrained modulus

c11, GPa

69.097 38.958 46.432 38.958 38.958 46.432

Undrained modulus

c33, GPa

69.097 46.432 38.958 38.958 38.958 46.432

Undrained modulus

c13, GPa

7.159 19.811 19.811 19.811 16.337 23.81

Undrained modulus

c55, GPa

30.969 11.311 11.311 11.311 11.311 11.311

Fluid storage

coefficient M, GPa

20.1 9.4287 9.4287 9.4026 9.33 9.488

Resulting fluid pressure field snapshots for six fractured media models with
different connectivity degree are demonstrated in Fig. 5. As background perme-
ability is very low, fluid flow in fractures is induced by pressure contrasts at
the background/fracture interfaces. So, we observe intensive pressure gradients
behind propagated wave only within the connected fractures. Moreover, pressure
gradients increase more intensively when fracture connectivity is relatively low
(snapshots A, B and C in Fig. 5). Difference in pressure gradients in fracture
systems with high connectivity are almost unobservable.
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Fig. 4. Models of fractured media with different percolation length (increasing from
top to bottom).
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Fig. 5. Fluid pressure in fractured media with different percolation (percolation length
increases from A to F). Signal central frequency is 3 kHz.

To study anisotropy effect on seismic attenuation we also perform a set of
numerical experiments considering isotropic fracture-filling material. All frac-
tured media models are the same as described above except physical properties
for material in fractures. We consider two models of material. First model is soft
and have high permeability (similar to properties along the fractures in previous
experiments) in both axis directions (fifth column in Table 2). In contrast, second
model represent stiff and low permeable isotropic material with lower porosity
(sixth column in Table 2).
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To compare two isotropic fracture-filling materials we demonstrate fluid pres-
sure field snapshots in Fig. 6 for almost not connected fractures and higher con-
nectivity considered. In soft material case pressure gradients within fractures
can be easily observed. However, stiff material provide almost no pressure gradi-
ents. Additionally, we again observe higher pressure gradients for high fracture
connectivity, at least for soft material in fractures.
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Fig. 6. Fluid pressure in isotropic fractured media. Top images correspond to the
lowest fracture connectivity, bottom images represent results for the highest fracture
connectivity; row correspond to fracture-filling material: left - soft, right - stiff. Signal
central frequency is 3 kHz.

Finally, we estimate wave attenuation for all three fracture-filling materials
and all six degrees of connectivity. Obtained frequency-dependent inverse quality
factor estimates are presented in Fig. 7. First, we observe the increase of attenu-
ation with fracture connectivity increase. Also attenuation predictably increases
with frequency increase in general, and attenuation peak for all cases at the
frequency near to 5 kHz can be caused by fractured model periodicity. Addi-
tionally, we see that most significant increase of attenuation occurs from almost
non-intersecting fractures to first two considered connectivity stages. Further-
more, the highest values of Q−1 are obtained in case of isotropic soft material
for almost all frequencies and connectivity degrees. Estimations for isotropic stiff
fracture-filling material are generally smaller than other estimations, except the
case of non-intersecting fractures. Such effect is probably observed because with
negligible wave induced fluid flow (both between fractures and background and
within fractures) scattering is the only significant attenuation mechanism, which
is independent of permeability. As expected, attenuation in the case of anisotropy
almost always stays in range limited by attenuation for isotropic stiff material
from below and by attenuation for isotropic soft material from above. However,
attenuation observably differs between anisotropic and isotropic fracture filler.
Thus it is important to take into account the anisotropy of material providing
fluid transport in fractured porous fluid-saturated media.
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Fig. 7. Inverse quality factor for fractured media. Line style corresponds to fracture-
filling material: thick solid lines - anisotropic, dashed lines with circles - isotropic soft,
dash-and-dot lines with triangles - isotropic stiff. Colors correspond to fracture con-
nectivity degrees in increasing order: pink, yellow, red, green, blue, black (Color figure
online)

7 Conclusion

In our work we present a numerical algorithm of seismic wave propagation in
anisotropic fractured porous fluid-saturated media and estimate wave atten-
uation in such media. The algorithm is based on numerical solution of Biot
equations of poroelasticity using staggered-grid finite-difference scheme. Seismic
attenuation estimation is provided by inverse quality factor calculation based
on spectral ratio approach. Presented algorithm is used to study the effect of
fracture-filling material anisotropy and fracture connectivity on seismic wave
attenuation. We numerically model wave propagation through fractured media
with complex two-scale structure in frequency range from 1 to 10 kHz. Numerical
experiments include different degrees of fracture connectivity as well as fracture-
filling material properties. We consider anisotropic material in fractures provid-
ing better transport properties along the fractures than transversely to fractures.
Results show that both fracture connectivity and anisotropy significantly affects
seismic wave attenuation.
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Abstract. The biomolecules structure prediction problem (BSP) - espe-
cially the protein structure prediction (PSP) and the nucleic acids struc-
ture prediction - was introduced in the computational biology field
approximately 45–50 years ago. The PSP on hydrophobic-polar lattice
model (HP model) is a combinatorial optimisation problem, and consists
in aims to minimize an arbitrary energy function associated with every
native structure.

To solve the PSP problem, many metaheuristic methods were applied.
Although the record-to-record travel algorithm (RRT) has proven useful
in solving combinatorial optimisation problems, it has not been applied
so far to solve the PSP problem.

In this paper, a mathematical modeling for PSP on the 2D HP rect-
angular lattice is developed and an adapted record-to-record travel algo-
rithm (aRRT) is applied to address the combinatorial optimisation prob-
lem. For candidate solutions perturbation, a rotation and a diagonal
move mutation operators were used.

A benchmark data set is used to test the RRT algorithm. The results
obtained show that the algorithm is competitive when compared to the
best published results. The main advantage of the RRT algorithm is that
it is time-efficient, and requires small computational resources to obtain
the same results as swarm intelligence algorithms.

Keywords: Record-to-record travel algorithm · Local search ·
Metaheuristic · Biomolecules · Protein structure prediction · HP lattice
model

1 Introduction

Biomolecules are small or large molecules, being essential to biological processes
present in living organisms. In chemical language, the large molecules are called
macromolecules. All macromolecules are composed of tens to hundreds of thou-
sands, even millions, of smaller subunits called monomers [8].

Macromolecules have several levels of structural organization. Biomacro-
molecular compounds such as proteins or nucleic acids (DNA and RNA) have
four structure levels: primary, secondary, tertiary and quaternary structure,
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respectively. In particular, all proteins reach the tertiary structure, but not all
get to the quaternary structure. In the last two structure levels (tertiary or qua-
ternary) the proteins and nucleic acids fold up to the functional state, called
native structure (or folded conformation) [5].

Biomolecules structure prediction (BSP) consists in predicting the native
structure based on the information stored in the primary structure. Myriads of
tertiary conformations can be generated from only one primary structure. Only
one conformation from this huge set of conformations is native conformation
(i.e. it has the correct biological function). Even with today’s most powerful
computers, it is unfeasible in terms of time consumption to go through and
check all the tertiary structures, even for very short macromolecules of dozens
of monomers.

To address this problem by computational methods, a multitude of models
have been proposed over time. One of the simplest models is hydrophobic-polar
(HP), suitable for protein structure prediction problem (PSP), was presented in
1985 by Dill and developed in the next years [4,11]. It uses discretized spaces
to represent monomers positions on the lattice. PSP on lattice model is a prob-
lem where a set of beans corresponding to the monomers of a protein must be
arranged on a certain type of lattice. Even if this model is very simple, the
exhaustive search in the combinatorial space is not feasible because PSP on HP
model is proved to be NP-complete [2,3].

Consequently, a series of non-deterministic search techniques and metaheuris-
tics have been applied to solving PSP so far. There were applied several classes
of such techniques: evolutionary, metaheuristics, machine and deep learning,
Monte-Carlo simulation and so on.

Among the first authors to address this problem were Unger and Moult,
who applied genetic algorithm (GA) to the HP model [24]. GA-based researches
continue to this day in a variety of variants. A combination of GA with Particle
Swarm Optimization (PSO) was presented by Zhou [26], and Huang applied
GA based on Optimal Secondary Structures (GAOSS) [10]. Recently, another
combination of GA with Great Deluge Algorithm (GDA) proposed by Turabieh
[23], and Evolutionary Monte Carlo (EMC) was applied on 2D HP by Liang
and Wong [12]. Metaheuristic techniques used include Ant Colony Optimization
Algorithm (ACO) [20], (PSO) [16], Ions Motion Optimization (IMO) algorithm
combined with the Greedy Algorithm (IMOG) [25], etc.

Record-to-Record Travel algorithm (RRT) was introduced by Dueck in 1993
[6] as a variant of threshold accepting (TA) local search (LS) method [7]. It was
applied with good results to many non-polynomial problems such as traveling
salesman, knapsack, linear programming, quadratic programming, minimization
of spin-glass Hamiltonian’s, rough set theory [13,14], vehicle routing problem
[19], etc.

This work applies an RRT algorithm to solve the PSP problem on the HP
model. To our knowledge, although RRT is a fairly old algorithm, it has not yet
been applied to this problem.
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This paper is organized as follows. After the introduction, the optimisation
problem formulation is given in Sect. 2. The third section explains the adapted
Record-to-Record Travel algorithm. Section 4 contains the computational results
and discussion, and the final section summarizes conclusions and further work.

2 Optimisation Problem

2.1 Biochemical Background

Biomolecules (or biological molecules) are molecules present in living organ-
isms, frequently produced by them; they are essential to biological processes.
Famous biomolecules include small molecules like amino acids (AA’s), lipids,
carbohydrates, nucleotides, antioxidants, polyols, vitamins, etc. and large macro-
molecules such as polynucleotides (DNA, RNA), proteins or polysaccharides [8].

All macromolecules are composed of tens to hundreds of thousands, even mil-
lions, of smaller subunits called monomers. For proteins, the monomers are the
amino acids (20 types), for carbohydrates, the monomers are the monosaccha-
rides, and nucleic acids (DNA, RNA) are build of the nucleotides. The proteins
are organized in the form of complex structures that can be layered on four levels,
called: primary, secondary, tertiary and quaternary structure. Protein primary
structure is represented by the linear sequence (protein chain) of twenty types of
amino acids. Secondary structures are represented by small local folding motifs,
and tertiary structures of macromolecules are the three-dimensional shape of
polymers [5]. This structure level is very important because proteins have bio-
logical function only in this form. The quaternary structure is a less common
level, in which interactions between multiple 3D tertiary units occur.

The role of nucleic acids is to store genetic information, while proteins have
multiple biological functions. Proteins are the molecules that provide life (the
living). All other biomolecules participate in the proper functioning of the pro-
teins. In conclusion, proteins are the most important constituents of biological
life, hence the importance of knowing the native structure (folded) and the pos-
sibility of predicting it from the sequence of AA’s (primary structure).

Biomolecules structure prediction consists of predicting the native structure
based on the information stored in the primary structure, i.e. folded protein
structure predicted from its linear sequence of amino acids.

For proteins, to one amino acids sequence (primary structure) there are many
corresponding tertiary (or quaternary) structures. The problem is that the num-
ber of possible tertiary structures increases exponentially related to the length
of the AA’s sequence. Only one structure (called the native conformation) of
this set of tertiary structures is physiological, aka is a “good” conformation. All
other tertiary structures are pathological forms (“bad” conformations), causing
various diseases [9]. The study of the protein folding phenomenon began in the
’60s. Protein folding is the physical process by which a protein acquires its native
conformation. As a result, researches on protein structure prediction are emerg-
ing in the next decade. The energy landscape theory of protein folding assumes
that a protein’s native state corresponds to its free energy minimum [1]. Figure 1
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Fig. 1. An artistic representation of the funnel folding. The image was created by
Thomas Splettstoesser [22]

shows the artistic image of the folding funnel, where many conformations fall
down in local energy minimums. “Good” native conformation is found in global
energy minimum.

Over time, starting with the ’70s, to simplify and solve the PSP problem,
various types of models have been proposed: all-atoms models, bean models, full
energy models, statistical backbone potential models, lattice models, etc. [17].

2.2 The Hydrophobic-Polar Model

One of the simplest and well-known models for protein structure prediction is
hydrophobic polar lattice model [11]. PSP on HP lattice is a discrete combina-
torial optimisation problem. This model is a standard in testing the efficiency of
the folding algorithms.

It introduces two main simplifications: i) the continuous Euclidean space is
discretized, and every AA occupies one node of a specific regular lattice; ii) the
20 types of amino acids residues are reduced to two types of letters, based on
their hydrophobicity:

1) “H”: (Gly - G, Ala - A, Pro - P, Val - V, Leu - L, Ile - I, Met - M, Phe - F,
Tyr - Y, Trp - W) and

2) “P”: (Ser - S, Thr - T, Cys - C, Asn - N, Gln - Q, Lys - K, His - H, Arg - R,
Asp - D, Glu - E) [18].

Note that, AA’s can be denoted with 1-letter or 3-letter symbols. The “H”
letter represents hydrophobic AA, and the “P” letter represents polar AA.

A lattice, Λ, in R
n, is a set of n-dimensional vectors that form an additive

group for any two points u,v ∈ Λ, i.e. it holds (u ± v) ∈ Λ [15].
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A typical lattice Λ in R
n has the form:

Λ =

⎧
⎪⎨

⎪⎩

n∑

i=1

bivi

∣
∣
∣
∣
∣
∣

bi ∈ Z

⎫
⎪⎬

⎪⎭
(1)

where {v1,v2, ...,vn} is a basis for vector space R
n.

Common lattices that have been studied in the context of lattice protein
models are: 2D rectangular (in particular, 2D square), 2D triangular, 3D cubic
and 3D face-centered-cubic (FCC) lattice.

At the primary structure level, a protein is represented by the ordered
sequence Pr, of length n, where Pr = (a1, ..., an), and ai is the ith AA in the
sequence with ai ∈ {A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V }.

In the HP model, the lattice coordinates define possible placements for AA’s,
and the primary structure of the protein will be represented by a string called
HP, where HP = (h1, h2, ..., hn), and hi ∈ {H,P}. The HP string is a constant
because the order of the AA’s in the primary structure of the protein sequence
remains unchanged throughout the algorithm run. It can be put on the lattice,
forming self-avoided walks (SAWs). A SAW is a sequence of moves on a lattice
that does not visit the same point more than once. There are many ways to
arrange an HP string to the lattice. Every path is encoded by a sequence of
directions on a lattice, which is a string of length n or n − 1. This string, which
corresponds to a protein tertiary structure (rarely, to the quaternary structure),
can be encoded in many ways: relative directions (SRL string ; Straight, Right
and Left), absolute directions (RULD string ; Right, Up, Left and Down), binary
representations, etc. All paths on the lattice must comply with the SAW rule.

Two adjacent letters of HP string are sequence neighbours (or connected
neighbours). Two non-adjacent letters of HP string, but which are neighbours
after arranging on the lattice, are called topological neighbours.

In biological proteins, the folding process is strongly influenced by the
hydrophobicity, i.e. they fold in the form of almost spherical globules with the
hydrophobic amino acid residues in the protein kernel, and the polar ones, on
the protein surface. To simulate this phenomenon, a distance-based arbitrary
energy function is introduced. There are two types of letters in the HP string,
thus, there are 22 types of contacts between topological neighbours. For every
kind of contact, a value of free energy is introduced, as follows: e(H,H) = −1;
e(H,P) = 0; e(H,P) = 0; e(P,P) = 0. Thus, H-H contacts are encouraged, and
the others are neither encouraged nor penalized. A H-H contact (hi, hj) between
the i-th and j-th AA from the original sequence can be formed iff |i − j| > 2.

The total free-energy, E(c), of a walk (or conformation) c is computed as the
number of H-H contacts, taken with the minus sign:

E(c) = −
n∑

i,j=1,|i−j|>2

e(ai, aj) (2)
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Fig. 2. Optimal conformation with the hydrophobic kernel (red) and polar surface
(blue). Legend: Hp string (Input): HPHPPHHPHPPHPHHPPHPH. RULD string
(Output): CRDDLULDLLURURULURRD. E(c) = −9 (number of dot lines). H -
hydrophobic amino acid. P - polar amino acid. E(c) - energy of conformation (Color
figure online)

In the optimisation approach, the conformation with the smallest energy has
the greatest chance of forming a hydrophobic kernel (see Fig. 2); the search of
native conformation from tertiary structures set is transformed into a search for
the optimal walk on lattice (the SAW with the minimum total free-energy). In
the HP model, the finding of native conformation in both 2D and 3D is NP-
complete [2,3].

Table 1 summarizes the simplifications brought by the HP model and the
correspondences to biological proteins.

Table 1. HP model summary

Biological proteins Protein HP data structures

Primary structure HP string

Tertiary structure
(conformation)

RULD string - for absolute directions
encoding

SLR string - for relative directions
encoding

Physical free-energy Conventional free-energy

n - number of AA’s n - number of letter in HP string

Number of biological
conformations ≥ 9n−1

Number of walks on 2D HP lattice:
4n−1 - absolute encoding
3n−1 - relative encoding

Number of SAW: unknown
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2.3 Mathematical Model for Protein Structure Prediction

In this work, the 2D HP square lattice, absolute encoding of directions and space
coordinates of lattice positions have been used to denote the protein conforma-
tions (viz. SAWs).

The 2D square lattice is:

Λ = {b1v1 + b2v2} (3)

where b1, b2 ∈ Z, {v1,v2} is a basis for vector space R
2, and the vectors v1

and v2 meet the conditions: 1) v1 ⊥v2, and 2) ‖v1‖ = ‖v2‖. Thus, the primitive
cell of a 2D HP lattice is a square whose sides, by convention, have length 1 (see
Fig. 3).

Fig. 3. The 2D square lattice

The main role of the lattice is to divide the continuous space in a discrete
space. Thereby, amino acids spatial position is restricted to precise points in
space.

For an HP sequence with n AA’s, the RULD is a string of length n, where
RULD = (d1, d2, ..., dk, ..., dn) ∈ Λ, and dk ∈ {C,R,U, L,D}. It represents a
path on the 2D square lattice which must comply with the SAW restriction:
in space coordinates, each RULD letter is associated with a distinct 2D vector
(∀k �= l : vk �= vl). In 2D HP lattice, each node (point or vector) from a given
position (i, j) has four neighbours, as you can see in Fig. 3. Hence, it follows
that each AA can have a maximum of 4 AA’s neighbours (extreme AA’s in
the HP sequence have one sequence neighbour and can have maximum three
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topological neighbours, and the others have two sequence neighbours and can
have maximum two topological neighbours).

Based on the minimum energy principle and the abstraction presented above,
the following optimisation model (OM) for PSP problem on 2D square lattice
can be established:

min E(c) (4)

subject to:

x1
n,n = 1 (5)

x2
n,n+1 = 1 (6)

n∑

k=1

2n−1∑

i=1

2n−1∑

j=1

xk
i,j = n (7)

0 ≤
n∑

k=1

xk
i,j ≤ 1, ∀i, j ∈ {1, 2, ..., 2n − 1} (8)

xk+1
i,j ≤ xk

i,j−1 + xk
i,j+1 + xk

i−1,j + xk
i+1,j (9)

where:
E(c) is the free energy of RULD string c (protein conformation), xk

i,j is a
three-dimensional variable where i and j are 2D vector coordinates of the lattice,
and k is an kth AA in the HP sequence, such that:

xk
i,j =

{
1, if xk = (i, j)
0, else

(10)

Here, “0” means that at position (i, j ) there is no AA, and “1” means that
at position (i, j ) there is only one AA. Equation (5) fixes the first AA in the
HP string at the position (n, n) on the lattice, and (6) fixes the second AA at
the position (n, n+1) on the lattice (right direction). This second constraint
reduces the combinatorial space four times. Equations (7), (8) and (9) constrain
that a walk in the grid occupies exactly n nodes, each lattice node cannot contain
more than one AA and the two sequence neighbours AA’s occupy the adjacent
nodes in the lattice, respectively.

3 Record-to-Record Travel Algorithm

3.1 The Basic Algorithm

Record-to-Record Travel algorithm (RRT) as well as Great Deluge Algorithm
(GDA), introduced by Dueck in 1993 [6], belong to the Threshold Accepting
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algorithm (TA) [7]. All these methods (RRT, TA, GDA) are variants of Local
Search (LS) metaheuristics. They are suitable for discrete optimisation; they are
essentially one-parameter algorithms, meaning that it is necessary to tune only
a single parameter, called Deviation.

The RRT and GDA algorithms are different from their predecessors, like Hill-
Climbing or Simulated Annealing, in the acceptance way of a candidate solution
from a neighbourhood. The RRT algorithm is very similar to the GDA algorithm,
which is described by his author, Dueck, as follows: “Imagine, the GDA is to
find the maximum point on a certain surface, for instance, the highest point in
a fictitious empty country. Then, we let it rain without end in this country. The
algorithm walks around in this country, but it never makes a step beyond the
ever-increasing water level. And it rains and rains.... Our idea is that in the end
the GDA gets wet feet when it has reached one of the very highest points in the
country, so that is has found a point close to the optimum.”

RRT differs from GDA by two points: i) RRT water level increase is given by
the quality of the best solution found until that iteration; ii) a variable Record
is updated only if the quality of the best solution is greater than its value.

To avoid the local minimum, RRT algorithm allows a poorer solution than
the current solution (“submerged” solutions up to the value of the Deviation
variable are accepted).

3.2 The Adapted Record-to-Record Travel Algorithm

In this paper, the RRT algorithm was adapted for PSP problem-solving. The
description of adapted RRT includes three stages: representation and genera-
tion of the random initial conformation, evaluation of the conformations, and
mutation.

Representing and Generating of the Random Initial Conformation. In
this work, absolute directions encoding was used. The important data structures
are: “HP” string, “RULD” string and “Chromosome” class, which encapsulates
the two types of strings - a borrowed notion from the GA language. The HP
string is the RRT input parameter, and the RULD string is the output one;
both have the same length.

The generation of the first random solution (RULD string) starting from the
HP string, is done through a stochastic backtracking variant in the same way as
in our previous work [21]. For HP string (e.g. a chain of 6 AA’s is: HHPHHP)
it is built one RULD string (it can be CRRUUR). The first AA, “C”, is placed
in the center of the lattice, and the other AA’s follow the next directions: right,
right, up, up, and right. The first and the second letter (“CR”) are always fixed.
The next letter is chosen randomly from the {R, U, L, D} alphabet. Then the
SAW condition is checked. If the point on the lattice is unoccupied, the next
direction is generated and so on. Otherwise, the other letters of the alphabet
{R, U, L, D} are chosen. If no direction passes the SAW rule, then it returns to
the previous letter and the algorithm is resumed.
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Evaluation of the Conformations. The energy of newly generated confor-
mation is computed by:

E(c) = f(HPstring,RLUDstring) (11)

Function f doesn’t have an analytical formula. The algorithm counts the
number of H-H contacts (topological neighbours) of the walk on the lattice.
It depends on all the arguments shown in Eq. (11). In Fig. 2 is an example
of optimum conformation well-arranged on the 2D HP lattice of an input HP
strings with n = 20 AA’s, the output RULD string, and the minimum energy.

Mutation. In the adapted RTT algorithm is implemented a k-point rotation
and a diagonal move mutation operator. A conformation (or chromosome), C =
{d1, d2, ..., dn}, where di ∈ {C,R,U, L,D} is mutated to a new chromosome C’.
The position g (3 ≤ g ≤ n), called mutation point, is random chosen in every
iteration, and the letter at position g is replaced by one letter sampled uniformly
from the {R, U, L, D} set. The number of mutation points in an iteration is
equal with the value of k (1 ≤ k ≤ n − 2). The letters at positions 1 and 2 (d1
and d2) remain unaltered by mutation because the first AA, C, is fixed in the
lattice center, and the second AA is always R (positioned to the right relative to
the first) because at the second position the other three directions (Up, Left or
Down) give the same conformations, rotated by 90◦, 180◦ and 270◦, respectively.
When k = d, the mutation produces a completely new random conformation,
this way helping to explore the combinatorial space.

If the new letter, from position g, produces a feasible conformation, then the
second part of the chain is rotated with 90◦, 180◦ or 270◦, respectively. The
rotation occurs for k positions in each iteration.

The mutation operation (which is a small disturbance) can produce a con-
formation of quality close to the original conformation or one of very different
quality, either extremely weak or optimal one. This is a way to see the chaotic
behavior of the energy function on the HP model (Eq. 2). I.e., for sequence 1
from the data set, a mutation that substitutes U → R at the 12th position of
a weak conformation (E = −4), CRDDLULDLLUULULDLUUR, produces an
optimum conformation (E = −9), CRDDLULDLLURURULURRD (see Fig. 4).

In the second phase, the RRT algorithm searches the existence of one of the
16 RULD substrings that designate the square corner: UUR; UUL; DDR; DDL;
RRU; RRD; LLU; LLD; URU; ULU; DRD; DLD; RUR; RDR; LUL; LDL. For
the last substring found a diagonal move is executed, as shown in Fig. 5. If the
new conformation is feasible, it is kept.

Finally, the mutation operation is:

C (t + 1) = Mutation(C(t), g) (12)

If the mutation operation fails (i.e. the resulting conformation is not feasible),
a new letter is chosen from the directions not yet explored for the rotation
mutation. If no variant is feasible, it proceeds to the next iteration and the old
conformation is kept.
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Fig. 4. The rotation mutation

Fig. 5. The diagonal mutation

The Algorithm. After generating the first solution, its energy is computed,
which is a negative value. The Record parameter gets this value. The Deviation
parameter is set to a negative value close to zero. Afterward, for each iteration,
a stochastic small perturbation is applied to the old configuration. If the energy
of the new solution is better than the energy of the old solution, then the Record
parameter is updated to the new energy. If the new energy is better than old
energy or fall between old Deviation and Record parameters, then the new solu-
tion is accepted, even if it is worse solution. This step ensures the exploration of
the solution space.

Because PSP on HP lattice is a minimization problem, the adapted RRT
algorithm is mirrored, unlike the basic algorithm. Pseudo-code of the adapted
RRT algorithm can be seen in Algorithm 1.

RRT algorithm works as follows: let C be the current solution with a Record
equal to its free-energy and C’ as an alternative solution derived from the first
one through a small variation, like a mutation. The Deviation is set to a nega-
tive value close to zero. If the new free energy of C’ is smaller than (Record -
Deviation), then C’ is the new solution in the iteration.

The main advantages of this algorithm are: it is time-efficient, requires small
computational resources to obtain the same results as the other algorithms,
and it has only two tuning parameters: Deviation and MaxIter (the number of
iteration). Besides that, the RRT algorithm is easy to implement.
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Algorithm 1: RRT algorithm
Input : MaxIter, HP sequence
Output: C* (optimum RULD string)

1 t ←− 0;
2 Generate a random initial conformation, C (t) (a RULD string);
3 Update C* ←− C (t);
4 Compute Record ←− free-energy of the C (t);
5 Set an allowed Deviation ≤ 0;
6 while (t < MaxIter) do

/* Mutation by eq (12) */

7 if Exist(C ← Mutation(C(t))) then
8 Compute E ←− free-energy of new C;
9 if (E < (Record − Deviation)) then

10 Update C (t + 1) ←− C;

11 if (E < Record) then
12 Record ←− E;
13 Update C* ←− C;

14 t ←− t + 1;

15 return C*;

4 Computational Results and Discussion

So far, to our knowledge, the RRT algorithm was not applied to the PSP problem.
We implemented the RRT algorithm in Python 3.7. and we ran the experiments
on the next hardware configuration: Intel Core i5, 1.8 GHz CPU, 8 GB RAM
under macOS Mojave (version 10.14) operating system.

The experiments were repeated 50 times independently for each HP sequence
from the benchmark data set, and, for every experiment, were run 100,000 iter-
ations. The Deviation parameter value is Round(0.4 ∗ MinEnergy) for every
conformation. The MinEnergy is taken from literature.

The algorithm implementation will be publicly available at the https://
github.com/simaioan/RRT PSP

4.1 Benchmark Proteins Used in RRT Evaluation

The current RRT algorithm was applied for nine benchmark sequences taken
from Unger [24] and Huang [10]. These benchmarks, shown in Table 2, are used
to test RRT algorithm. The table contains information about sequence number,
protein length (denotes the number of amino acids residues), the sequence of
amino acids (H and P) and the best known free-energy (minimum or optimum).

4.2 Comparison to Other Methods

The RRT results are compared with the other four best optimal solutions
obtained by other authors. Table 3 contains GA results taken from Unger and

https://github.com/simaioan/RRT_PSP
https://github.com/simaioan/RRT_PSP
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Table 2. Benchmark data set

No No of Sequence Optimal

seq AA energy

1 20 HPHP PHHP HPPH PHHP PHPH −9

2 24 HHPP HPPH PPHP PHPP HPPH PPHH −9

3 25 PPHP PHHP PPPH HPPP PHHP PPPHH −8

4 36 PPPH HPPH HPPP PPHH HHHH −14

HPPH HPPP PHHP PHPP

5 48 PPHP PHHP PHHP PPPP HHHH HHHH −23

HHPP PPPP HHPP HHPP HPPH HHHH

6 50 HHPH PHPH PHHH HPHP PPHP PPHP −21

PPPH PPPH PPPH PHHH HPHP HPHPHH

PPHH HPHH HHHH HHPP PHHH

7 60 HHHH HHHP HPPP HHHH HHHH −36

HHHH PPPP HHHH HHPH HPHP

HHHH HHHH HHHH PHPH PPHH

8 64 PPHH PPHP PHHP PHHP PHPP −42

HHPP HHPP HPHP HHHH HHHH HHHH

HHHH PPPP HHHH HHHH HHHH PPPP

9 85 PPHH HHHH HHHH HHPP PHHH HHHH −52

HHHH HPPP HHHH HHHH HHHH PPPH

PPHH PPHH PPHPH

Note: The 9th sequence (85 AA’s) is taken from Huang [10].
The other sequences and optimal energy are taken from Unger [24].

Moult [24]; Genetic Algorithm based on Optimal Secondary Structures (GAOSS)
taken from Huang C. et al. [10]; Evolutionary Monte Carlo (EMC) taken from
Liang and Wong [12]; and Genetic Algorithm hybridized with Great Deluge
Algorithm (GAGDA) which was taken from [23].

For relative short sequences (n ≤ 50), RRT produces the best results (finds
the conformation with the minimum free-energy known). For n > 50, RRT did
not reach the optimal solution in the performed experiments. These results show
that RRT requires improvements to achieve better results.
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Table 3. Comparison of aRRT with other algorithms

No seq Length GA GAOSS EMC GAGDA aRRT

1 20 −9 −9 −9 −9 −9

2 24 −9 −9 −9 −9 −9

3 25 −8 −8 −8 −8 −8

4 36 −14 −14 −14 −14 −14

5 48 −22 −23 −23 −23 −23

6 50 −21 −21 −21 −21 −21

7 60 −34 −36 −35 −33 −31

8 64 −37 −42 −39 −42 −35

9 84 – −52 −52 −52 −43

5 Conclusion and Further Work

The BSP is a combinatorial search problem. The PSP on HP lattice is a type of
BSP that focuses on finding the most packaged protein conformations with the
hydrophobic kernel.

A mathematical model was developed for PSP on the 2D HP lattice and a
variant of local search, called Record-to-Record Travel algorithm was proposed
and applied to predict the optimum protein conformations for nine benchmark
sequences on a 2D HP square lattice, a well-known ab-initio model. The stochas-
tic small perturbation of the old conformation was performed using rotation and
diagonal move mutation operators.

Experimental results show that RRT algorithm finds the best solutions for
relatively short sequences. For longer sequences, the results are promising. The
interest is in the building of a more efficient mutation operator like crankshaft,
rigid rotations, bead flip and so on. Further, experiments with other Deviation
parameter values can be conducted to find better-energy.

Future researches will focus on the development of a population-based RRT
algorithm (or GA hybridized with RRT) that can be applied to other lattice
types: 2D triangular, 3D cubic, FCC, etc. The application of classic RRT and
population-based RRT to other classes of biomolecules, like nucleic acids (DNA
and RNA) is another proposed desideratum.
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Abstract. In this paper we analyzed recent works on inverting Vandermonde
matrix, both classical and generalized,whichwere unknownduring the publication
of Moler’s and Van Loan’s paper ‘Nineteen Dubious Ways to Compute the Expo-
nential of a Matrix’. Upon that analysis we proposed the Vandermonde method
as the fourth candidate for calculating exponent of generic matrices. On this basis
we also proposed the Vandermonde based method to compute the exponential of
certain class of special matrices, i.e. the companion matrices.

Keywords: Matrix exponential · Confluent Vandermonde matrix · Vandermonde
matrix · Structured matrix · Special matrix · Companion matrix

1 Introduction

In the paper [1] Moler and Van Loan have concluded that the exponential of a matrix
could be computed in many ways, but none are completely satisfactory; though they
noticed that some of the methods are preferable to others. In this comments in general
we agree with this opinion, but give arguments that the set of the preferable methods
should be extended.

Particularly, we proposed the algorithms for inverting the generalized Vandermonde
matrix as a main tool to find the exponent for the companion matrices, a kind of special
(also called structured) form matrices.

The paper is organized as follows: in Sect. 2 we presented the range of applications
of the Vandermonde matrices, in Sect. 3 we gave its definition followed by the efficient
algorithm to find the inversion, in Sect. 4 we proposed a method for computing the
exponential of a companion matrix, in Sect. 5 we illustrated the proposed method by
the example of a decent, 10 × 10 dimensionality, in Sect. 6 we discussed the known
Vandermonde method for generic matrices, with special focus to a degree, in which
the new algorithms for the Vandermonde matrices directly improved the quality of that

This work was supported by Statutory Research funds of Department of Applied Informatics,
Silesian University of Technology, Gliwice, Poland (02/100/BK_21/0008).

© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12949, pp. 465–478, 2021.
https://doi.org/10.1007/978-3-030-86653-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86653-2_34&domain=pdf
http://orcid.org/0000-0001-5621-3783
https://doi.org/10.1007/978-3-030-86653-2_34


466 J. Respondek

exponent algorithm. In Sect. 7 we discussed some other methods for generic matrices.
In Sect. 8 by the example we showed how to apply the algorithms for inverting the
Vandermonde matrices to obtain speed up the matrix multiplications, and in Sect. 9 we
gave some final conclusions and proposed a potential ways of further progress in the
area.

2 Importance of the Vandermonde Matrices

The confluent Vandermonde matrix is a generalization of classical Vandermonde matrix,
allowing multiple nodes, thus the formulas and algorithms designed for them also works
in the classical case. We formally defined it in Sect. 3. They arise in a broad range of
both theoretical and practical problems. Below we surveyed the problems which make
it necessary to inverse the confluent Vandermonde matrices.

• Control problems: investigating of the so-called controllability [2] of the higher order
systems leads to the problem of inverting the classic Vandermonde matrix [3] (in
case of distinct zeros of the system characteristic polynomial) and the confluent Van-
dermonde matrix [4] (for systems with multiply characteristic polynomial zeros). As
the examples of the higher order models of the physical objects may be mentioned
the Timoshenko’s elastic beam equation [5] (4th order) and the Korteweg-de Vries
equation of waves on shallow water surfaces [6] (3rd, 5th and 7th order).

• Interpolation: apart from the ordinary polynomial interpolation with single nodes
(which leads to classical, well-known Newton interpolation) we consider the Hermite
interpolation, allowing the multiple interpolation nodes. That problem leads to the
system of linear equations, with the confluent Vandermonde matrix ([7] pp. 363–373,
[8]).

• Information coding: the confluentVandermondematrix is used in coding and decoding
the information in the Hermitian’s code [9].

• Cryptography: decoding the Reed-Solomon codes [10].
• Optimization of the non-homogeneous differential equations [11].
• So-called fast matrix multiplication: transformation of so-called arbitrary precision
approximating-algorithms to exactly-computing algorithms is presented in [12]. An
example of approximating algorithms is given in [13] and [14]. More on this we gave
in Sect. 8.

• The classic Vandermonde matrix still remains a subject of research e.g. [15, 16].
• Other branches of Vandermonde generalization also are investigated e.g. [17].

3 Theoretical Background

First let us explain what the confluent Vandermonde matrix V is. Let λ1, λ2, . . . , λr
be given pair wise distinct zeros of the characteristic polynomial p(s) =
(s − λ1)

n1 . . . (s − λr)
nr with n1 + . . . + nr = n. The confluent Vandermonde matrix V
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related to the zeros of p(s) is defined to be the n× nmatrix V = [V1 V2 . . . Vr ], where
the block matrix Vk = V (λk , nk) is of order n × nk having elements [18]:

[V (λk , nk)]i j =
⎧
⎨

⎩

(
i − 1
j − 1

)

λ
i−j
k , for i ≥ j

0, otherwise

for k = 1, 2, . . . , r; i = 1, 2, . . . , n and j = 1, 2, . . . , nk . For n1 = . . . = nr = 1 we
get the classical Vandermonde matrix.

The articles [4, 18] present the following theorem for inverting the confluent
Vandermonde matrices:

3.1 Theorem – Inverting Confluent Vandermonde Matrices

The inverse of the confluent Vandermonde matrix V has the form V−1 =
[
WT

1 WT
2 · · · WT

r

]T
. The column vectors hkiof the block matrix Wk = [hkn, . . . , hk1]

in the inverse confluent Vandermonde matrix V−1 may be recursively computed by the
following scheme:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hk1 = [
Kk,1 · · ·Kk,nk

]T

hk2 = Jk(λk , nk)hk1 + a1hk1
...

hkn = Jk(λk , nk)hk(n−1) + an−1hk1

, k = 1, 2, ..., r (1)

where λk is the eigenvalue, ak are the coefficients of the characteristic polynomial p(s),
Jk(λk , nk) is the elementary Jordan block (2):

Jk(λk , nk) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λk 1 · · · 0

λk 1
...

. . .
. . .

λk 1
0 λk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

nk×nk

, k = 1, 2, ..., r (2)

and Kk,j are the auxiliary coefficients that can be calculated recursively in a numerical
way by the following algorithm [19]:

3.2 Algorithm – Fast Inversion of Confluent Vandermonde Matrices

TheKk,j, j = nk−1, . . . , 1 (4) coefficientsmay be recursively computed by the following
recursive scheme (3):
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⎧
⎪⎨

⎪⎩

L(q+1)
ki (λk) = q!(λk − λi)

q · Kk,nk−q − q · L(q)
ki (λk), i = 1, .., k − 1, k + 1, .., r

Kk,nk−q−1 = − 1
(q+1)!

r∑

i=1, i �=k
ni

L(q+1)
ki (λk )

(λk−λi)
q+1

(3)

for q = 0, 1, .., nk − 2 and k = 1, 2, . . . , r. The Kk,nk coefficients may be computed
directly from the formula (4):

Kk,nk (s)
∣
∣
s=λk

=
[

1

p(s)

(
s − λk

)nk
]

s=λk

, k = 1, 2, . . . , r (4)

4 Computing the Exponential of a Companion Matrix

The proposed method bases on the rule, that the Jordan canonical form similarity
matrix of the companion1 matrix is a confluent Vandermonde matrix ([20] pp. 86–
95). Let the companion matrix is defined by the characteristic polynomial p(s) =
(s − λ1)

n1 . . . (s − λr)
nr . Then its matrix form is as follows (5):

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0
0 · · · 0 0 1

−a0 · · · −an−3 −an−2 −an−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

To calculate the coefficients a0, . . . , an−1 at first we need to rewrite the characteristic
polynomial p(s) in a “flattened” form. That step can be formalized in the way proposed
in [21] p. 278. Namely, we define the series of n numbers s1, .., sn as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s1 = . . . = sn1 := λ1

sn1+1 = . . . = sn1+n2 := λ2
...

sn1+...+nr−1+1 = . . . = sn := λr

(6)

Thus for the characteristic polynomial the following equality (7) holds the true:

p(s) = (s − λ1)
n1 (s − λ2)

n2 . . . (s − λr)
nr = (s − s1)(s − s2) · . . . · (s − sn), n1 + . . . + nr = n (7)

1 In mathematical literature in some languages instead is used the term ‘Frobenius’. But in the
English Literature the class of Frobenius matrices is more general, encompassing the companion
matrices as its special case.
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After the expansion of the polynomial p(s) and sorting it with respect to decreasing
powers of the s variable, we can receive (8):

p(s) = 1 · sn − w(n)
1 (s1, . . . , sn)s

n−1 + w(n)
2 (s1, . . . , sn)s

n−2 + . . . + (−1)nw(n)
n (s1, . . . , sn) (8)

where w(n)
j (s1, . . . , sn) are the so-called elementary symmetric2 functions, defined by

the formula (9) ([22] pp. 25):
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w(n)
1 (s1, . . . , sn) = s1 + s2 + . . . + sn

w(n)
2 (s1, . . . , sn) = s1s2 + s1s3 + . . . + s1sn + . . . + sn−1sn

w(n)
3 (s1, . . . , sn) = s1s2s3 + s1s2s4 + . . . + sn−2sn−1sn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
w(n)
n (s1, . . . , sn) = s1s2 · . . . · sn

(9)

And the searched coefficients a0, . . . , an−1 in the companion matrix (5) we can
express by choosing the sign of the proper elementary symmetric function. Observe (8)
and (9):

ai = (−1)n−iw(n)
n−i(s1, ..., sn), i = 0, 1, ..., n − 1 (10)

Algorithm for calculating the elementary symmetric functions (9) can be found e.g. in
[17]. Now the companion matrix can be rewritten in the – convenient - Jordan canonical
form (11):

C = T · J · T−1 (11)

The core of the proposed method is fact, that the similarity matrix T after the Jor-
dan decomposition of the companion matrix is just the Vandermonde matrix (T = V ,
classical Vandermonde for single nodes and confluent, for multiple nodes, respectively),
combined with the latest algorithms for their inverting. We perform the inversion of the
Vandermonde matrix V by the algorithm 3.2.

Exponent of a matrix in a Jordan canonical form is easy to compute. A general
function f of the matrix in a Jordan canonical form is expressed by the Eq. (12):

f (C) = V · f (J ) · V−1 (12)

Thus the searched exponent expresses the formula (13):

eC = V · eJ · V−1 (13)

Considering that the differential of the exponential function is equal to itself, matrix
equality for the function f (ψ) = eψ (here ψ stands for both a scalar or a matrix) is:

f (Jk(λk , nk)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f (λk )
0!

f ′(λk )
1! · · · f (nk )(λk )

nk !
0 f (λk )

0! · · · f (nk−1)(λk )
(nk−1)!

...
...

. . .
...

0 0 · · · f (λk )
0!

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

eλk eλk · · · eλk

nk !
0 eλk · · · eλk

(nk−1)!
...

...
. . .

...

0 0 · · · eλk

⎤

⎥
⎥
⎥
⎥
⎦

(14)

2 Any function we call symmetric, if and only if after any arbitrary permutation of its independent
variables we receive the same polynomial ([23] pp. 77–84).
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where Jk(λk , nk) is the elementary Jordan block of the form (2).
To sum up, finding the exponent of a companionmatrix by the proposed in this article

method requires the following steps, with their corresponding time complexities:

• Building the confluent Vandermonde matrix V and the Jordan block matrix J - time
complexity of those both operations are O(n2).

• Inverting the confluent Vandermonde matrix V - algorithm 3.2 assures, that this step
is of an O(n2) time class, regardless of the matrix parameters and particularly their
multiplicities.

• Calculating the exponent of the Jordan block – also quadratic time (formula (14)).
• Applying the formula eC = V · eJ · V−1 (13) requires two matrix multiplications,

which by standard algorithm can be performed in O(n3) time. We also have faster
algorithms, and in Sect. 8 we discussed in details that one of them, which just involves
Vandermonde matrices.

• Additionally, if we want to have the companion matrix in the explicit form, we need
to calculate the elementary symmetric functions (9). The time complexity of this step
is – at worse - O(n2) (17).

Thus the overall time complexity of the proposed method to calculate the exponent
of a companion matrix is determined by the applied matrix multiplication algorithm,
being - at worst – of the cubic time.

5 Example – Calculating the Exponent of a Companion Matrix

Let us consider companion matrix defined by the following characteristic polynomial:

p(s) = (s + 0.5)1(s + 3.0)2(s + 2.0)3(s + 1.0)4 (15)

Its eigenvalues are summarized in the Table 1:

Table 1. Eigenvalues of the companion matrix with their respective multiplicity.

i 1 2 3 4

λi −0.5 −3.0 −2.0 −1.0

ni 1 2 3 4

To obtain the explicit form of the companion matrix, defined by the characteristic
polynomial (15), we have to obtain the s1, .., sn roots, in compliance with the scheme
(6). Observe:

⎧
⎪⎪⎨

⎪⎪⎩

s1 := λ1 = −0.5
s2 = s3 := λ2 = −3.0
s4 = s4 = s6 := λ3 = −2.0
s7 = s8 = s9 = s10 := λ4 = −1.0

(16)
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Execution of the algorithm for calculating the elementary symmetric functions (17)
for the si nodes with values (16), together with formula (10), leads to the following form
of the companion matrix, the exponent to be calculated of (17):

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

36.0 294.0 1039.0 2098.5 26807.0 22801.5 13002.0 493.5 119.0 16.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)

The generalized, confluent Vandermonde matrix, corresponding to the eigenvalues
given in Table 1, have the form (18):

(18)

and the Jordan matrix built by the eigenvalues given in Table 1, have the form of a block
diagonal matrix (19):

J = diag[J1(λ1, n1), J2(λ2, n2), J3(λ3, n3), J4(λ4, n4)] (19)

To invert the Vandermonde matrix (18) we apply the algorithm 3.2, and directly we
obtain (20):

V−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

54.61 336.78 902.63 1378.23 1319.82 821.47 332.23 84.195 12.136 0.758

1.72 13.440 44.90 84.42 98.58 74.20 36.005 10.860 1.8475 0.135

0.300 2.3500 7.87 14.86 17.43 13.20 6.4500 1.9625 0.3375 0.025

−100.3 −758.22 −2433.04 −4362.15 −4820.22 −3405.55 −1539.11 −429.55 −67.29 −4.518

−38.00 −288.33 −929.55 −1675.22 −1861.33 −1322.33 −600.66 −168.33 −26.44 −1.77

−12.00 −92.00 −300.33 −549.33 −621.00 −450.0 −209.00 −60.00 −9.66 −0.66

45.00 408.00 1485.50 2899.50 3401.81 2509.87 1170.86 334.50 53.312 3.625

−85.50 −612.75 −1872.88 −3222.06 −3439.06 −2358.75 −1039.00 −283.56 −43.56 −2.875

18.00 147.00 501.5 938.25 1064.00 761.50 345.50 96.25 15.00 1.00

−18.00 −129.00 −390.5 −658.75 −684.75 −456.00 −195.00 −51.75 −7.75 −0.50

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)
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Finally, the searched exponent for the companion matrix (17) have the following
form, by the matrix formulas (13) and (14):

eC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

116.33 712.2 1906.64 2910.64 2787.18 1734.76 701.59 177.8 25.62 1.60

−57.66 −354.6 −952.07 −1454.74 −1393.4 −867.33 −350.78 −88.89 −12.8143 −0.80

28.83 177.79 477.53 728.61 697.27 433.84 175.43 44.45 6.40 0.40

−14.41 −88.90 −238.29 −362.86 −347.46 −216.41 −87.57 −22.20 −3.20 −0.20

7.20 44.41 118.99 181.61 174.80 109.06 44.11 11.17 1.60 0.10

−3.61 −22.35 −60.05 −91.99 −88.54 −54.58 −21.84 −5.4996 −0.79 −0.04

1.77 10.88 28.88 43.44 40.53 23.98 9.63 2.49 0.36 0.02

−0.85 −5.17 −13.68 −20.72 −20.07 −13.40 −6.79 −2.035 −0.31 −0.02

0.73 5.17 16.10 29.30 34.31 26.65 13.26 3.30 0.40 0.02

−0.69 −4.96 −14.99 −24.61 −22.83 −9.95 1.39 3.68 1.00 0.08

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6 Discussion of the Vandermonde Method for Generic Matrices

As themain drawback of theVandermondemethod 11Moler andVanLoan [1] points out
weak time complexity, claimed to be O(n4), resulting from the necessity of calculating
the matrix series Ak−1.

With available now algorithms enabling fast matrix multiplication that statement is
not precise enough to compare the matrix exponential calculation ways. Nowadays the
Strassen’s algorithm is well known since decades with n · O(n2.807) = O(n3.807). Thus
we can decrease the time complexity toO(n3.807) effectiveness. In general, with the help
of O(nk) matrix multiplication we can improve the method 11 from [1] to the O(nk+1)

time efficiency algorithm. Since 1978 that exponential has been decreased a number of
times, from 2.78041 in 1978 (Pan [24]), 2.7799 in 1979 (Bini et al. [13]), 2.376 in 1990
(Coppersmith, Winograd [25]) to 2.373 in 2014 (Vassilevska [26]).

Thus, for this time, involving the fastest matrix multiplication algorithm to the
method 11 gives the O(n3.373) algorithm, being much closer to O(n3) than to – the
considered in [1] - O(n4).

Here one can complain that those algorithms are useful only in case of largematrices,
but that is just the case indicated by 1, i.e. the efficiency gains importance for large n.

Another issue related to the time complexity of the method 11 which is analyzed
by the Moler’s and Van Loan’s work [1], is the necessity to invert the Vandermonde
matrix. The efficiency of the used algorithm to invert the Vandermonde matrices is no
less important than the efficiency of involved matrix multiplication algorithms, because
in case of applying the generic matrix inversion algorithms we have, besides calculating
the Ak−1 series, the O(n3) operation to be performed by the method 11, which is a not
negligible time.

Moler andVanLoanas the example of implementingmethod11proposes expressions
developed by Vidyasagar [27]. The selected work of a matrix exponential copes with
distinct eigenvalues. The topic in the article [28] allowed multiple eigenvalues. At the
time theMoler andVan Loanwork [1] appeared, there were available, now a bit obsolete,
references [29] and [30] for inverting the Vandermonde matrix. They contain a generic
symbolic methodology, which cannot be assessed in the view of numerical computing.



Another Dubious Way to Compute the Exponential of a Matrix 473

Another fast but dubious way to invert a Vandermonde matrix is to apply the theorem
given by Cormen et al. [31], showing how to invert a matrix in a time no worse than the
applied matrix multiplication algorithm. Thus applying e.g. the matrix multiplication
way proposed in [26] we directly gain the method to obtain the vjk entries in O(n2.373)
time.

In practice, such a way of proceeding is worthless, because Vandermonde matrices
are known for their ill-conditioning, caused by their very structure. That is one of the
reasons why there is a necessity to develop specialized algorithms for the structured
matrices, besides usually also with better efficiency3.

In the opposite to - though indirectly - referenced works [29] and [30], nowadays
we dispose by fast and reliable algorithms designed specially to invert Vandermonde
matrices, both in the single eigenvalues case as well as the multiple ones. In the next
paragraphs we selected, to our best knowledge, the fastest together with a decent stability
- importantly - applicable to a general form of Vandermonde matrix, with allowed single
or multiple each of the eigenvalues, with independent, different multiplicity for each of
the eigenvalues4.

For the single eigenvalues case the O(n2) algorithms can be found in [15] and [16].
Like one could expect, a more delicate is the problem for the multiple eigenvalues case.
Articles [4, 18, 19] together give the universal O(n2) algorithm, covering every input
parameters allowed by themathematical definition of the confluentVandermondematrix.

Another approach is used in the work Zhong, Zhaoyong [32] which achieves O(n2)
time only in a special case of small eigenvalues multiplicities, but in return copes with
more general form of the type of structured Vandermonde matrix in question.

When it goes to the space requirements, storage of the method 11 is indeed n3 even if
the spanning matrices A0, . . . ,An−1 are not saved, because to avoid it still it’s necessary
to save the consecutive Ak−1 powers. But a short lookout on operating memory market
shows that n3 space complexity is not an issue now.

7 Discussion Other Methods for Generic Matrices

7.1 The Langrange Interpolation by the Eigenvectors Method

Moler and Van Loan [1] in section 14 propose another approach to utilize the Langrange
interpolation by the eigenvectors. They conclude that the O(n4) work involved in the
computations of the consecutive Ak−1 powers is unnecessary.

3 The problem is neatly defined in the very title of the classical in the structured matrices field
monograph [35].

4 The trait of generality is - surprisingly - not a standard for the algorithms available in the literature.
For example the classical in the associated problem of solving the Vandermonde linear systems
article [33] only sketches algorithm for a very peculiar version of the confluence, i.e. with allowed
multiplicity equal to only of the first eigenvalue, with all the rest single. The same work [33]
suggests that the general case cannot be easily treated, stating in the second paragraph of the
page 900: “(can be treated easily)… with only the two endpoints of confluency greater than one,
or that with all points of the same order of confluency.”. Significantly, all of the four Pascal-like
codes in the appendix of [33] copes only with a classical Vandermonde linear systems, with
single eigenvalues (pp. 901–902).Obviously algorithms with such an artificial restrictions are
worthless in the view of computing the exponential of a matrix.
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In general that observation is proper, but it says nothing about the numerical price
of that gain. The numerical stability of inverting a matrix consisting of eigenvectors,
which has no special structure, in fact is a lottery, since we cannot apply any specialized
algorithm. Also due to lack of structure of the matrix to the inverted, its O(n3) cost
is inevitable, unless we use even more dubious theorem on inverting the matrix by
multiplication from Cormen et al. [31].

Thus the eigenvectors method in our opinion is more dubious than the Vandermonde
approach, also in the viewof the newworks on inverting that kind ofmatrix, that appeared
after first publishing of [1].

7.2 The Schur Decomposition Method

Beside scaling and squaring and ODE-based methods, Moler and Van Loan [1] as the
one of the best method sees the Schur decomposition with eigenvalue clustering.

Unfortunately also the Schur decomposition suffers from numerical stability. It can
be only partially mitigated by the block clustering, merging into a separate blocks nearly
confluent eigenvalues. Higham in [34] pp. 228–229 proposes to set the blocking param-
eter δ = 0.1 and notices, that the optimal choice of δ is problem-dependent. What’s
worse instability can be present for all choices of δ and all orders of blocking.

Moreover, the blocking operation itself is costly. When computing the separation on
m × m blocks by exact methods it costs O(m4) (!), whereas by approximate methods it
is still O(m3) [34] p. 226.

In the Vandermonde method the numerical stability lets know only during inverting
this kind of matrix. But this matrix is known for its very ill-conditioning and thanks
to it each algorithm must be followed by the numerical stability analysis, or at least
by thorough experimental tests in this matter. That is necessary since for any choice of
points its grow rate is at least exponential, and for the harmonic points it grows faster
than factorial. That is worse than Pascal and Hilbert matrices, also known for their
ill-conditioning ([35] p. 428).

Moreover, for the Vandermonde matrix with single nodes the well-known algorithm
by Bjorck And Pereyra [33] achieves (very) high accuracy, despite ‘embedded’ into
this matrix ill-conditioning ([35] pp. 434–436, [36]). The fair price we pay for it is to
calculate the Ak−1 series.

In the view of the above analysis in our opinion the Vandermonde method is worthy
to be consider method to calculate the exponent of a generic matrix.

8 Vandermonde Matrices in Fast Matrix Multiplication

Both the groups ofmethods to compute the exponential of amatrix, i.e. for the generic and
structured matrices, requires to multiply matrices. An the effectiveness of that operation
decides on the overall efficiency of finding the exponential. The topic of fast matrix
multiplication have already a broad literature; survey of most known algorithms we
gave in the beginning of Sect. 6.

In certain class of the fast matrix multiplication (FMM) algorithms a Vandermonde
matrix plays important role, namely to transform so-called arbitrary precision FMM
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algorithm (abbreviated as APA) to its exact-precision equivalent (abbreviated as EC) we
need to invert the Vandermonde matrix. The first APA algorithm in the literature was
given in [13], for the base size matrices 12 × 12. In this section as the example of APA
algorithm we present an algorithm for 3 × 3 base dimension, discovered in work [14]
p. 438.

To calculate the matrix product D = AB of two matrices, at first we calculate the
following 21 auxiliary – so-called – aggregated products, for i, j ∈ {1, 2, 3}:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui,i = (ai,1 + ε2ai,2)(ε2b1,i + b2,i)
vi,i = (ai,1 + ε2ai,3)b3,i
wi = ai,1(b2,i + b3,i)
ui,j = (ai,1 + ε2aj,2)(b2,i − εb1,j), (i �= j)
vi,j = (ai,1 + ε2aj,3)(b3,i + εb1,j), (i �= j)

(21)

The product is called aggregated, because in a single multiplications the APA algo-
rithm groups a series of the A, B matrix factors entries. The crucial issue in the APA
algorithm is to select small ε, but simultaneously the ε must not be equal to zero.

We the use of the products (21), and only with that products, we can express the
desired product D = AB as follows:

{
d

′
i,i = 1

ε2
(ui,i + vi,i − wi)

d
′
j,i = 1

ε2
(ui,j + vi,j − wi) + 1

ε
(vj,i − vj,j), (i �= j)

(22)

Poking (21) into (22), in matrix notation, gives:

(23)

Thus if ε → 0 and ε �= 0, then D converges to exact value AB but never is exactly
equal. There is a question whether it is possible to obtain the exact value. The general,
method how to transform any APA matrix multiplication algorithm to its exact version
is presented in [12] p. 92.

The highest degree of the ε parameter in (23) is equal to d = 2. By the method
presented in [12] to construct an exact algorithm we select d + 1 = 3 pairwise distinct
parameters ε, named ε1, ε2, ε3, and make a linear combination of (23) with coefficients
α1, α2, α3:

D = α1(AB + R1ε1 + R2ε
2
1) + α2(AB + R1ε2 + R2ε

2
2) + α3(AB + R1ε3 + R2ε

2
3)

= (α1 + α2 + α3)AB + (α1ε1 + α2ε2 + α3ε3)R1 + (α1ε
2
1 + α2ε

2
2 + α3ε

2
3)R2

(24)
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We can now observe, that if α1 + α2 + α3 = 1 and α1ε
k
1 + α2ε

k
2 + α3ε

k
3 = 0 for

1 ≤ k ≤ d + 1, we obtain an exact result for the desired product.
That condition can be rewritten in the following matrix form:

⎡

⎣
1 1 1
ε1 ε2 ε3

ε21 ε22 ε23

⎤

⎦

⎡

⎣
α1

α2

α3

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ (25)

We can notice, that the system matrix in (25) is just the classical Vandermonde
matrix. Article [37] proved, that if an APA algorithm is efficient on the level O(nk),
the corresponding EC algorithm, constructed by the method proposed by [12], have
efficiency O(nk log n). That means that the cost of that is an additional logarithmic
factor, what is not a big price.

Particularly, for the proposed in current section APA algorithm, requiring 21
multiplications to find the product of 3×3 dimension5 matrices, we have the efficiency:

O(nlog3 21 · log n) ≈ O(n2.77 · log n) (26)

instead of “standard” O(n3). And in the same level the algorithms to compute the
exponential of amatrix are accelerated, both for the generic aswell as structuredmatrices.

9 Summary

In this article we showed how to apply the Vandermonde matrices to the aim of finding
an exponent of a matrix, both generic as well as certain class of special matrices, i.e. the
companion matrices. We use the algorithms for inverting two classes of Vandermonde
matrices:

• The classical Vandermonde, in the case that all of the eigenvalues are distinct
• The so-called confluent Vandermonde, in the case of multiple eigenvalues.

The new algorithms to invert both types of matrices assures to return the result
after quadratic time in every case. Thus the meaning of the methods to find the matrix
exponents, which bases on Vandermonde special matrices, raised. To this fact is devoted
this article.

Interestingly, we can use the Vandermonde matrices in two different stages of the
algorithm:

• To calculate the sole exponent.
• To speed up matrix multiplication, necessary in the main exponent algorithm.

As the further directions of research we can see:

• Involving the vector hardware units, which are embedded into contemporary CPUs.
• Designing algorithms for the GPU units to find the exponent.

5 Higher dimensions ‘can be multiplied by the 3 × 3 algorithm by recursion.
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Abstract. In this research work, a two-tank system in series was developed. In
this system, water flows from the first tank to the second. Opening variations were
present in the inlet valve, while the opening flow was fixed in the outlet valve.
Using differential equations, the Jacobian matrix and eigenvalues, it was possible
to analyze the stability of the system and obtain the equilibrium points. To estimate
the adequate water levels, a linear and nonlinear model were implemented. Both
models were able to estimate in real time the tanks water levels, identifying the
system equilibrium points, this ensured the service demand. A simulation process
was applied to evaluate the model’s behavior over time. This simulation was
performed using the Simulink tool of Matlab. Both linear and nonlinear models
obtained similar results. Results analysis suggested the use of the linear model to
implement the control system, since its transfer functions compositions are less
complex and more efficient to deploy.

Keywords: Couple tank system · Equilibrium points · Stability · Control systems

1 Introduction

An interconnected tank system is composed by various inlets and outlets, where a
required liquid level must be controlled at all time. These systems are used in a wide
range of industries such as: food and beverage processing, power plants, pharmaceu-
ticals, water treatment, cement and concrete processing, petrochemical, paper mills,
among others.
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Tank systems are also used to experiment with: new controllers used to determine
the tank levels [1–3], tank shape design [4–6]; systems robustness against failures or
parameter alterations [7–9]; fuzzy controllers which simulate tanks handling by humans
or under unknow models [10–12]; teaching tools for control systems [13, 14].

During modelling the physical system through differential equations, it is necessary
to perform a stability analysis, which is plotted on the phase plane, where regions or
stability points in the system are shown alongside with the direction fromwhich stability
is achieved. In the case of a tanks system, it is very important to determine the moment in
which the system is stabilized by changes in the opening valves, which can be triggered
by system request or failures present in the supply liquid.

In this research work, a two tanks system in series is studied.Water levels in the tanks
are controlled by two valves (inlet and outlet), where the flow opening constitutes the
system input variables. Openings states are represented accordingly with zero and one
when totally close or open. Water levels in tanks represent the system output variables,
meaning a solution must be obtained for a real problem represented by multiple inputs
and outputs (MIMO).

Regarding the two-tank system, the Lyapunov method is used in [15] to perform
the system stability analysis, however model simulation was not implemented. In [16]
authors shown in an interactive fashion the water level control in two tanks. Model
linearization and simulation were performed using the Taylor series and LabVIEW
software respectively. Results were only shown for liquid control for a single variation
in the inlet valve. In [17] a system of two nonlinear differential equations, which were
solved through a numeric method were obtained. However, equilibrium points in the
system nor the detailed data results were found.

In this research work, the system is composed by two tanks in series. These tanks are
operated by valves, where water flows from the first tank to second. Opening variations
are perform in the inlet valve, while maintaining a fix opening in the outlet one. A pair of
twomathematical models are applied to estimate the water level. These are nonlinear and
linear models, where the former is represented by ordinal differential equations, whereas
the second by transfer functions. In order to ensure the demand of service, a stability
analysis is performed over the hyperbolic points of the system. Finally, a simulation using
the Simulink tool of Matlab is performed to observe the model’s behaviors according
with time.

2 Preliminaries

2.1 Single Tank Model

Using the Bernoulli equation [18], the outlet fluid velocity value of a tank is given by:

v = 2gh (1)

Where h: water level height, g: gravity acceleration.
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Considering that the inlet flow Qe is proportional to the inlet valve opening Ve, the
following is obtained:

Qe = k1a1 (2)

Where k1 is constant, a1 represents the opening in the inlet valve Ve.
To compute the outlet flow Qs a linear approximation between Qs and the opening

in the outlet valve Vs is perform, obtaining:

Qs = k2a2
√
2gh = k2

√
2ga2

√
h = ka2

√
h (3)

Where k is constant, a2 represents the opening in the outlet valve Vs.
The outlet flow is given by the product between the fluid velocity and transversal

area through for which circulates, such that:

Q = Av = A
√
2gh = A

√
2g

√
h = k

√
h (4)

The accumulated liquid inside is the result of the difference between the inlet and
outlet flow of the tank. Then, the following equation must be satisfied:

A
dh

dt
= Qe − Qs (5)

This implies that water level variations in the tank base area over time are defined as
the difference between inlet and outlet flow Qe and Qs respectively.

3 Problem Formulation

The introduction section described a wide range of problems involving tank systems.
As observed, for such systems, in order to achieve stability and maintain the liquid
service demand, it is necessary to perform opening variations in the inlet valve, while
maintaining a fix opening in the outlet valve.

Figure 1, describes a two-tank system in series which are operated by valves. The
opening percentages in the inlet and outlet valves Ve and Vs are controlled by α and
β respectively. Liquid levels in tanks 1 and 2 are represented by H and h respectively.
Also, tanks 1 and 2 base areas are defined by A1 and A2.

In the setting described before, a stable equilibrium point must be obtained. This
must be achieved with opening variations in the inlet valve Ve while a fix opening is
maintained in the outlet valve Vs. Finding the stable equilibrium points will allow us to
stabilize the system. Then the adequate liquid levels H and h of tanks 1 and 2 will be
known.
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Fig. 1. A two-tank series system operated by valves.

4 Nonlinear Model

Applying Eqs. (2), (3), (4) y (5) in the system described in Fig. 1, a differential equation
for the nonlinear model of tank 1 is obtained.

A1
dH

dt
= Qe − Q = k ′α − k

√
H (6)

For tank 2, a differential equation for the nonlinear model is also found

A2
dh

dt
= Q − Qs = k

√
H − k ′′β

√
h (7)

Then, the proposed nonlinear model for the system is:

dH

dt
= 1

A1
[k

′
α − k

√
H ] (8)

dh

dt
= 1

A2
[k√H − k ′′β

√
h]

Where k, k ′ y k ′′ are constants.
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5 Linear Model

Modelling is applied to the case of a variable (α) opening flow in the inlet valve while a
constant (β) opening flow is maintained in the outlet valve.

5.1 Linear Model for Tank 1

Using the three first terms from the Taylor series expansion [19], the nonlinear model
of tank 1 is linearized, then:

f (α,H ) = A1
dH

dt
= k ′α − k

√
H (9)

f (α,H ) ≈ f
(
α,H

) + df

dα

(
α,H

)
(α − α) + df

dH

(
α,H

)(
H − H

)
(10)

The derivative and substitution in Eqs. (9) and (10) allow us to obtain:

f (α,H ) ≈ f
(
α,H

) + k ′(α − α) − k

2
√
H

(
H − H

)
(11)

f (α,H ) − f
(
α,H

) ≈ k ′(α − α) − k

2
√
H

(
H − H

)
(12)

f (Δα,ΔH ) ≈ k ′Δα − k

2
√
H̄

ΔH (13)

A1
dΔH

dt
≈ k ′Δα − k

2
√
H̄

ΔH (14)

Then, applying the Laplace transformation over Eq. (14) the transfer function, which
represents the linear model of tank 1 is obtained:

H (s)

α(s)
= k ′

A1s + k
2
√
H

= F(s) (15)

5.2 Linear Model for Tank 2

Analogously, we use the Taylor series to linearize the nonlinear model from tank 2.

f (H , h) = A2
dh

dt
= k

√
H − k ′′β

√
h (16)

f (H , h) ≈ f
(
H , h

)
+ df

dH

(
H , h

)(
H − H

) + df

dh

(
H , h

)(
h − h

)
(17)
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Applying the derivative and substitution in Eqs. (16) and (17) allow us to obtain:

f (H , h) ≈ f
(
H , h

)
+ k

2
√
H

(
H − H

) − k ′′β
2
√
h

(
h − h

)
(18)

f (H , h) − f
(
H , h

)
≈ k

2
√
H

(
H − H

) − k ′′β
2
√
h

(
h − h

)
(19)

f (ΔH ,Δh) ≈ k

2
√
H̄

ΔH − k ′′β
2
√
h̄
Δh (20)

A2
dΔh

dt
≈ k

2
√
H̄

ΔH − k ′′β
2
√
h̄
Δh (21)

Applying the Laplace transformation over Eq. (21), the transfer function, which
represents the linear model of tank 2 is obtained:

h(s)

H (s)
=

k
2
√
H

A2s + k ′′β
2
√

h

(22)

h(s) =
k

2
√
H

A2s + k ′′β
2
√

h

H (s) (23)

h(s) =
⎡

⎢
⎣

k
2
√
H

A2s + k ′′β
2
√

h

⎤

⎥
⎦

⎡

⎣ k ′

A1s + k
2
√
H

α(s)

⎤

⎦ (24)

h(s)

α(s)
=

⎡

⎢
⎣

k
2
√
H

A2s + k ′′β
2
√

h

⎤

⎥
⎦

⎡

⎣ k ′

A1s + k
2
√
H

⎤

⎦ =
k ′k
2
√
H

(
A1s + k

2
√
H

)(
A2s + k ′′β

2
√

h

) = G(s)

(25)

Then, the transfer functions of the linear model in the system are defined by:

H (s)

α(s)
= k ′

A1s + k
2
√
H

= F(s) (26)

h(s)

α(s)
=

k ′k
2
√
H

(
A1s + k

2
√
H

)(
A2s + k ′′β

2
√

h

) = G(s)
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6 Stability Analysis of the Two-Tanks System

6.1 Equilibrium Points Estimation

Estimation of the equilibrium points is performed from the vectorial fields of the equa-
tions which govern the flow dynamics in tanks. These equations ensures that the inlet
and outlet flow be the same for any tank. In this way, equilibrium is achieved in the tank
height level.

For tank 1, the equality Qe = Q in Eq. (6) indicates the equilibrium point, such that:

dH

dt
= 1

A1
[k

′
α − k

√
H ] = 0 (27)

Obtained H as:

H =
(
k ′α
k

)2

(28)

Then, the equilibrium state of the water level in tank 1 is given by H .
Analogously, in Eq. (7), Q = Qs indicates the equilibrium point for tank 2, such

that:

dh

dt
= 1

A2

[
k
√
H − k ′′β

√
h
]

= 0 (29)

From Eqs. (28) and (29) the following is obtained:

h =
(
k ′α
k ′′β

)2

(30)

Where h represents the equilibrium state of the water level in tank 2.
Then, the system equilibrium point is defined by:

P(H , h) =
((

k ′α
k

)2

,

(
k ′α
k ′′β

)2
)

(31)

6.2 Jacobian Matrix and Eigenvalues Estimation

From the differential equations system in (8), the Jacobian Matrix evaluated on the
correspondent equilibrium point is defined as:

J (H , h) =
[

∂F
∂H

∂F
∂h

∂G
∂H

∂G
∂h

]
=

[− k
2A1

√
H

0
k

2A2
√
H

− k ′′β
2A2

√
h

]

(32)
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To estimate the eigenvalues, the following is applied:

∣∣∣J
(
H , h

)
− λI

∣∣∣ =
∣∣∣∣∣∣

− k
2A1

√
H

− λ 0
k

2A2
√
H

− k ′′β
2A2

√
h

− λ

∣∣∣∣∣∣
= 0 (33)

From Eq. (33) the following is obtained:

4A1A2

√
Hhλ2 + 2

(
kA2

√
h + k ′′βA1

√
H

)
λ + kk ′′β = 0 (34)

Let:

n1 = 4A1A2

√
Hh (35)

n2 = 2
(
kA2

√
h + k ′′βA1

√
H

)
(36)

n3 = kk ′′β (37)

Replacing Eqs. (35), (36) and (37) in Eq. (34) allow us to define:

n1λ
2 + n2λ + n3 = 0 (38)

The roots from Eq. (38) are used to build the eigenvalues:

λ1,2 =
−n2 ±

√
n22 − 4n1n3

2n1
(39)

6.3 Stability in Equilibrium Points

The system stability for a certain equilibrium point is defined with the following
conditions:

• If λ1 < 0 and λ2 < 0, then the equilibrium point is stable
• If λ1 < 0 ∧ λ2 < 0,, then the equilibrium point is unstable (saddle point)
• If λ1 > 0 ∧ λ2 > 0, then the equilibrium point is unstable

7 Equilibrium Points Estimation for a Study Case

For the study case the following parameters are considered:
k ′ = 0.04 m3/s (Ve constant), k = 0.03m3/s, k ′′= 0.055 m3 (Vs constant), α = 0.9

(Ve opening), β = 0.6 (Vs opening), A1 = 1m2 (tank 1 base area), A2 = 1.5m2 (tank
2 base area).

During experiments, opening variations in the inlet valve Ve are made accordingly
with three values:

α = {90%, 85%, 89%}
While the opening percentage in the outlet valve Vs is set constant with β = 60%.
From Eq. (31) the equilibrium state for the tanks water levels is defined as:
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a) For α = 90%, β = 60%, the system equilibrium point P1

(
H , h

)
=

(1.44m, 1.1901m) is obtained. The eigenvalues λ1 = −0.0101, λ2 = −0.0125
are negatives, indicating stability in the equilibrium point.

b) For α = 85%, β = 60%, the system equilibrium point P2

(
H , h

)
=

(1.284m, 1.062m) is obtained. The eigenvalues λ1 = −0.0107, λ2 = −0.0132
are negatives, indicating stability in the equilibrium point.

c) For α = 89%, β = 60%, the system equilibrium point P3

(
H , h

)
=

(1.408m, 1.164m) is obtained. The eigenvalues λ1 = −0.0102, λ2 = −0.0126
are also negatives, confirming stability in the equilibrium point.

Fig. 2. Tanks water level variation with a fix β = 60% and α = {90%, 85%, 89%}.

In Fig. 2, it is observed that for an opening Vs of β = 60% with a fix opening Ve

between 0 ≤ α ≤ 1, the water level of tank 1 is ascendent with H = 1, 44m when
α = 90%. This also holds true for tank 2, where water level is also ascendent with
h = 1, 1901m when α = 90%.

8 Mathematical Model Simulations for the Study Case

The models were implemented in the scientific software MATLAB R2017a. Execution
was performed on a personal computer with an Intel (R) Core (TM) i5–8250U CPU @
1.60 GHz 1.80 GHz processor with 6.00 GB of RAM.

Simulation and solution of themodelwere performed using the available components
of Simulink in Matlab. The Runge-Kutta method was applied to the nonlinear model,
whereas FCN transfer block was applied to the transfer functions of the linear model.
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Fig. 3. Block diagram of the nonlinear and linear models of the control system in the two-tanks
operated by valves.

Using the parameters of the study case (see Sect. 7), a simulation of the control
system of the two-tanks in series operated by valves was performed. This allowed us to
observed the behavior of the nonlinear and linearmodels over time (t). During simulation
the outlet valve was fixed, while the inlet valve was regulated, generating variations in
the tanks water levels. Figure 3, shows the simulation schematics in more detail.

Table 1, shows results of simulating the two-tank system. Variations were applied
accordingly with Sect. 7. Variations were present over time in the inlet and outlet valves.
At t = 0 s opening flows were set constant with β = 60% for the outlet valve, while
α = 90% was used in the inlet valve. At t = 2000 s, the opening flow was decreased by
5% with α = 85% for the inlet valve. Then at t = 3500 s the opening flow is increased
by 4% with α = 89% for the inlet valve.

Figure 4, shows the dynamics of thewater level in the tanks considering the nonlinear
and linear models, water level changes are generated by opening variations in the inlet
valve system. For an initial opening α = 90% in the inlet valve both models achieved
a stationary level with H = 1,44m and h = 1,19m for tanks 1 and 2 respectively.
Simulation results of the system over time (t) are shown in Table 1. At t = 2000 s
the opening flow is decreased a 5% (α = 85%) in the valve, lowering the water levels
in both tanks. At t = 2730, 04461042856 s, for the water level in tank 1, the linear
and nonlinear models obtained stationary values of H = 1, 284m and H = 1, 28m
respectively. Then, at t = 2930, 04421042856 s, the water level in tank 2 achieved
stationary values of h = 1, 062m and h = 1, 062m obtained by the linear and nonlinear
models respectively (Figs. 3 and 4 illustrate this behavior). When the valve opening flow
is increment in 4% (α = 89%) at t = 3500 s, both tanks began increase their water levels.
Stationary water levels were reported for tanks 1 and 2 at t = 4086, 68774412396 s and
t = 4286, 68734412396 s respectively. Reported values from the linear and nonlinear
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Table 1. Simulation results of the two tanks system in series operated by valves.

Time MNL Tank 1 ML Tank 1 MNL Tank 2 ML Tank 2

1755,76752188620
1855,76732188620
1955,76712188620
1999,99999999999
2000
2000,00000000001
2006,62022753665
2013,24045507329
2019,86068260992
2026,48091014656
2043,45579383099
2060,43067751541
2077,40556119984
2094,38044488427
2132,44192319865
2170,50340151303
2208,56487982741
2246,62635814179
2284,68783645618
2346,02712994927
2407,36642344237
2468,70571693546
2530,04501042856
2630,04481042856
2730,04461042856
2830,04441042856
2930,04421042856
3030,04401042856
3130,04381042856
3230,04361042856
3330,04341042856
3430,04321042856
3499,99999999997
3500
3500,00000000003
3507,40162983638
3514,80325967274
3522,20488950909
3529,60651934544
3548,11096637982
3566,61541341421
3585,11986044859
3603,62430748297
3643,13973962725
3682,65517177153
3722,17060391581
3761,68603606009
3801,20146820437
3872,57303718427
3943,94460616417
4015,31617514407
4086,68774412396
4186,68754412396
4286,68734412396
4386,68714412396
4486,68694412396
4586,68674412396
4686,68654412396
4786,68634412396
4886,68614412396
4986,68594412396
5000

1,43999961546213
1,43999981673949
1,43999994148428
1,43999996527065
1,43999996527065
1,43999996527062
1,42762552922792
1,41618994802250
1,40564560644850
1,39592856102461
1,37397699845610
1,35612519934906
1,34175096045615
1,33022817334516
1,31229179506012
1,30152646758370
1,29493841089593
1,29085477636207
1,28833600146111
1,28603600960128
1,28504416451864
1,28465614164376
1,28451657848358
1,28450199138253
1,28449232833391
1,28446315307823
1,28444421994232
1,28444099288541
1,28444268343003
1,28444398337189
1,28444444448303
1,28444451145156
1,28444450102677
1,28444450102677
1,28444450102681
1,29538462686145
1,30536394543354
1,31444648322706
1,32271488885472
1,34067507038483
1,35497619184466
1,36626036454524
1,37513864792860
1,38808534217281
1,39582445181210
1,40058634427921
1,40355320734452
1,40537978786821
1,40719276114826
1,40786363852514
1,40807667932767
1,40813897465150
1,40816836759755
1,40817377735125
1,40817546660590
1,40817665153445
1,40817732235707
1,40817760586934
1,40817771501418
1,40817775525846
1,40817776977401
1,40817777103356

1,43999994814581
1,43999997161470
1,43999998796925
1,43999999125067
1,43999999125067
1,43999999125064
1,42762381045521
1,41618160884516
1,40562259269335
1,39588169967422
1,37382742064916
1,35581044026832
1,34121411000183
1,32942523570303
1,31080678023652
1,29934376859632
1,29214035736583
1,28757119085586
1,28469764599414
1,28202144602056
1,28084244274790
1,28035653778811
1,28015854695064
1,28009611723224
1,28004774018748
1,27999947694808
1,27998435868292
1,27999230656735
1,27999873847668
1,28000066265365
1,28000056088689
1,28000018147776
1,28000003438405
1,28000003438405
1,28000003438409
1,29098497575729
1,30105016775772
1,31025322951338
1,31866494200947
1,33702579284543
1,35176003303644
1,36347095781765
1,37274570539385
1,38640770450646
1,39465920081437
1,39976465438605
1,40295692903304
1,40493117821422
1,40690239902678
1,40763703817426
1,40787444408647
1,40794768607821
1,40798569094109
1,40799418184987
1,40799692960766
1,40799854536771
1,40799941485621
1,40799978129751
1,40799992140821
1,40799997239800
1,40799999044136
1,40799999194735

1,19006322338354
1,19007010100707
1,19007661192565
1,19007857220228
1,19007857220228
1,19007857220228
1,18953227583623
1,18842716377639
1,18682848113206
1,18480798025361
1,17833656474925
1,17034600463791
1,16147069724134
1,15225034850163
1,13197291070193
1,11441257402178
1,10042875114882
1,08974991279288
1,08176200124191
1,07285656667335
1,06761650879413
1,06469503698353
1,06313497393943
1,06218529936912
1,06188545125269
1,06170862723026
1,06158863361176
1,06153403157967
1,06152035439243
1,06152042510593
1,06152256135333
1,06152385083300
1,06152425902254
1,06152425902254
1,06152425902255
1,06208829554494
1,06321209453906
1,06481604827958
1,06681125129609
1,07286636118232
1,08008946373849
1,08787749150307
1,09575366352641
1,11169264046708
1,12501621757830
1,13538263785846
1,14320326210664
1,14902973472101
1,15615166019125
1,16004135200329
1,16201439900700
1,16296055066582
1,16354541048426
1,16371810203930
1,16376053032475
1,16377166975117
1,16377780373586
1,16378077435649
1,16378215450641
1,16378278211249
1,16378306375500
1,16378309142460

1,18961038075501
1,18961041827557
1,18961051856290
1,18961054610584
1,18961054610584
1,18961054610584
1,18906508741603
1,18796379296354
1,18637369079115
1,18436680799015
1,17794968132097
1,17003641926653
1,16124926280197
1,15211247289125
1,13194399954401
1,11432661488807
1,10009968841506
1,08902443294862
1,08055230675180
1,07087189379413
1,06497258324618
1,06155760741119
1,05965336619567
1,05836715762164
1,05788602796148
1,05760877399812
1,05744735580074
1,05739229930755
1,05738977241296
1,05739853697128
1,05740420947107
1,05740595761033
1,05740614290177
1,05740614290177
1,05740614290177
1,05794400387021
1,05902187647848
1,06056586350748
1,06249874795962
1,06842573572175
1,07558362256909
1,08338481008098
1,09135089196980
1,10767563635328
1,12153186360282
1,13245469802926
1,14078310672272
1,14703920686170
1,15473872909948
1,15898647420825
1,16116313231556
1,16221906700010
1,16288322641594
1,16308452358951
1,16313698514357
1,16315263635772
1,16316153865892
1,16316591598358
1,16316795136678
1,16316887230825
1,16316928245172
1,16316932208532
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Fig. 4. System simulation of two series tanks operated by valves.

models were H = 1, 408m and H = 1, 408m for tank 1 and h = 1, 163m and
h = 1, 164m for tank 2. Figures 3 and 4, show these results.

9 Conclusions and Recommendations

Using mathematical foundations such as differential equations theory, Jacobian matrix
and eigenvalues allowed us to analyze the system stability of two series tanks. The stable
equilibrium points were found analytically for the study case, where the opening flow
was fix in the outlet valve, while opening variations occurred in the inlet valve. Thus,
stable water levels were found in each tank, stabilizing the system.

The nonlinear and linear models applied to the study case were able to estimate in
real time the stable water levels of the two-tank system. This ensured the demand of
service, which coincided with the obtained analytical equilibrium points.

The nonlinear and linear models obtained similar results during the simulation pro-
cess. However, to implement the control system, it is recommended to use the linear
model, since it is composed by transfer functions which are less complex and more
efficient to deploy.

It is advisable to implement the obtained results into a pilot plant. This will allow to
apply the experimental phase, obtaining a utility design in the industry.

Finally, it is recommended to analyze the stability of the system with more than two
tanks, especially considering flow opening variations in the inlet and outlet valves, such
that: a) the inlet opening is constant while outlet flow is variable, and b) the inlet and
outlet opening flows are variable.
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Abstract. Currently, the energy consumption study in buildings is critical in ful-
filling the EU objectives to achieve carbon neutrality. There are several building
energy simulation tools and other spreadsheets available on the market. One of
the main software tools, the EnergyPlus software, and two Excel spreadsheets
developed in Portugal to assess the thermal loads and annual energy consumption
in commercial and service buildings are used and compared in this work. A simple
3D building was modeled using SketchUp2017, and the schedules, materials, and
thermal loads were defined for a typical residential and service building to perform
this analysis.

Concerning the thermal loads, the simulation of a building without insulation
using EnergyPlus showed results for heating and cooling, respectively 10% lower
and 6% higher when compared with those predicted by RECS with the transient
spreadsheet. Comparing with the simplified spreadsheet for the REH, the dis-
crepancy is more significant. These discrepancies occur because RECS and REH
use a simple methodology compared with EnergyPlus. The results for heating
and cooling in EnergyPlus when a building has insulation show that the heating
and cooling demand is 46% lower and 25% higher compared with the results
with RECS, respectively. These results show that insulation reduces the heating
demand although it impairs the cooling demand when compared with the building
without insulation.

Keywords: Building · Energy performance · Simulation

1 Introduction

According to the EuropeanDirective 2018/844, almost 50%of the EuropeanUnion (EU)
final energy consumption is used for heating and cooling, 80% are used in buildings. To
meet the energy and climatic objectives proposed by the EU, it is necessary to prioritize
energy efficiency and the implementation of renewable energies [1, 2]. All new buildings
must be nearly zero-energy buildings (NZEB) fromDecember 31st, 2020 [3]. The need to
design buildings with energy balance near zero and improve their thermal performances
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requires suitable energy simulation software to estimate energy consumptions better and
optimize the design and operational strategies [4].

Most thermal modeling of buildings’ energy consumption in Portugal is made in
three ways depending on the type of building and increasing complexity: using spread-
sheets with a permanent regimemodel, using simplified time-dynamic software, or using
detailed dynamic simulation programs.

Spreadsheets in a permanent regime model are applied to estimate the heating and
cooling needs for a residential building (REH). They are built following the Regulation
of Energy Performance for Residential Buildings. This regulation was approved by the
Decree-Law nº118/2013, which transposed the Energy Performance of Buildings Direc-
tive (EPBD) Nº 2010/31/EU of the European Parliament and the Council to the national
legal system, thus establishing minimum requirements for new or subject to interven-
tions buildings, as well as parameters and methodologies to characterize the energy
performance, for all residential buildings, as a strategy to improve their thermal behav-
ior. The envelope’s thermal and energy requirements are expressed in opaque thermal
transmission coefficients, glazed elements, solar factors, and ventilation requirements
by imposing a minimum value for the air renovation rate. Also, maximum limits were
established for heating and cooling energy needs. The Excel spreadsheet uses an almost
stationary method (albeit with a thermal inertia term), which means the heat transmis-
sion takes place in a steady state featuring the building as a single zone with constant
reference internal temperature. Also, it is a seasonal method, estimating heating needs
for the heating season (winter) and cooling needs for the cooling season (summer).

The simplified time-dynamic software is applied to estimate the heating and cooling
loads for commercial and service buildings (RECS). This software estimate heating and
cooling needs by defining the building as a single zone and calculating energy balances
on an hourly basis as described in EN ISO 13790 standard. The estimation of the total
energy consumption is made through a simple annual calculation, based on rules and
orientations presented inRegulation of Energy Performance inCommercial and Services
Buildings approved by the Decree-Law nº118/2013.

In Portugal, several Excel spreadsheets have been developed by two institutes,
ITeCons and PTnZEB, to facilitate various methodologies. ITeCons made one Excel
spreadsheet for residential buildings and a simplified dynamic software (converted to
an Excel spreadsheet) for Commercial and Services Buildings. PTnZEB developed a
single spreadsheet that suits both buildings. They allow the automatic fulfillment of all
information necessary for the emission of energy building certificates.

The determination of the energy consumption for a multizone building is made by
computational simulations using programs accredited by the ASHRAE 140 standard.
Many software tools are available, e.g., TRNSYS, TRACE 700, Energy Plus, Design
Builder, et cetera [5, 6]. There are limitations or less information regarding the calculation
methodologies used and detailed access to results in some situations. Hence, the specific
objective is to evaluate the constraints and compare the results with the various software
for the same building. The building will be commercial or residential but straightforward
enough for easy implementation of different commercial software.

Regarding software tools, De Boeck et al. [6] provided a literature review about
improving the energy performance of residential buildings. They highlighted that the
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EnergyPlus is one of the most applied tools. In the literature, there are some research
works reporting the analysis of the certification process [7], energy performance of
buildings based on the national directives [8–11], and the utilization of building energy
simulation tools in the analysis of different problems [12–16]. However, it is essential
to understand the differences between the Excel spreadsheets developed based on the
European Directives and the more sophisticated building energy simulation tools, and
up to date, to the authors’ knowledge, there is no information about this matter. In this
way, this study intends to overcome this need by acquiring more knowledge on building
thermal simulation through understanding and comparing the different methodologies
used to assess the building thermal energy requirements. Furthermore, the influence of
the building thermal insulation on the heat and cooling demands was analyzed.

2 Case Study

2.1 Building Description

The first step for studying thermal behavior and estimating heating and cooling needs
is creating the building. The base building, presented in Fig. 1, consists of a rectangular
prism, with a floor area of 6 × 10 m2 and a ceiling height of 3 m. The south-oriented
surface includes 12 m2 of glazed area. Table 2 describes the wall, roof, and floor area of
the exterior envelope. For construction solutions used in the building envelope, two cases
were considered: case A without thermal insulation and case B with external thermal
insulation (EPS) on walls and roof with a thickness of XX mm, both expressed in Table
2 by the U- Factor (global thermal transmission coefficient). The floor was defined as an
exterior surface to reduce potential differences between the Excel spreadsheets and the
EnergyPlus since they calculate the ground U-factor differently. The ventilation takes
place naturally by infiltration with one renovation per hour. No air conditioning has been
sized as well as renewable energy systems (Table 1). The walls and roof have light color.
The simple glass constitutes the glazed elements without permanent or mobile devices,
and they have a solar factor of 0.85, and the glazed fraction is 1.

Fig. 1. The geometry of the case study.

Identification of the Climatic Zone. The building’s geographic location influences the
heat exchanges between the interior of the building and the outside environment due to
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Table 1. Material properties of the envelope surface.

Orientation Area (m2) Case A-U
(W/m2. K)

Case B-U
(W/m2. K)

Solar absorption
(-)

Exterior wall North 30.00 2.00 0,38 0.40

South 18.00 2.00 0,38 0.40

East 18.00 2.00 0,38 0.40

West 18.00 2.00 0,38 0.40

Window 1 South 6.00 6.00 6.00 -

Window 2 South 6.00 6.00 6.00 -

Roof - 60.00 Upward–1.85
Downward–1.61

Upward-0,32
Downward-0.31

0.40

Floor - 60.00 Downward–2.06 Downward-2.06 -

factors such as the temperature and humidity of the outside air, altitude, and prevailing
winds at the location [17]. The building was assumed to be located in Viana do Castelo
County at an altitude of 268 m at a distance from the coast greater than 5 km.

CLIMA-SCE software version 1.05 was used to create the climate file that will later
be used in the simplified and detailed dynamic simulations. The climate file used in
simplified dynamic simulation has the following extension “.dat” while in EnergyPlus,
it has “epw”. Both climate data are written on an hourly basis and represent a Typical
Meteorological Year (TMY) (Fig. 2).

Fig. 2. Weather file: CLIMA-SCE 1.05.
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Utilization Profile. In residential buildings, internal gains are considered constant for
all seasons [18]. However, in the spreadsheet for simplified dynamic simulation and
energy plus, internal gains vary according to the utilization profile. Internal gains are
divided into internal gains by occupants, lighting, and electric equipment. For each one,
three utilization profiles must be defined that depended on room type. In this study, it
was defined as office space with a maximum of four persons (Fig. 3).
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Fig. 3. Weekly occupation profile.

Thermal Loads. In residential buildings, internal heat gains assume a constant value of
4W/m2.[18].still, in commercial and service buildings, they are different for each parcel
and depend on the number of persons and their activity, expressed as metabolism rate.
The illumination and electric equipment load depend on space type. For that case, regu-
lation of energy performance in commercial and services buildings presented, according
to space type, reference values for illumination and electric equipment. Present the
occupation, illumination, and electric equipment loads used for simulations.

Table 2. Parameters defined to characterize the occupation inside the building.

Activity Metabolism Occupants Thermal load (W) Total sensible
load (W)

Total
latent load (W)

Sedentary 69.78 4 505.20 282.32 222.89
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Table 3. Parameters defined to create the illumination and electric equipment profiles.

Thermal load (W) Released thermal load(%)

Space (office) 720 100

Equipment (default) 300 100

2.2 Building Energy Simulation Tools

Spreadsheet for Residential Buildings (REH)–Seasonal Method. With climate data
and the characteristics of the buildings, now is it possible to estimate the heating and
cooling needs for different simulation tools for residential buildings. It uses a spreadsheet
in a permanent regime, which uses a seasonal method, assessing heating needs for the
heating season (winter) and cooling needs for the cooling season (summer). Fromclimate
data, heating degree days and the heating season duration as well medium solar energy
received in a south vertical envelope, is necessary for calculating heating energy needs,
while the medium exterior temperature and the solar energy accumulated during the
cooling season received on horizontal and vertical surfaces [18].

The value of the annual nominal needs of useful heating energy in heating season
for building, Nic, is calculated by the following expression [19]:

Nic =
(
Qtr,i + Qve,i − Qgu,i

)
/Ap (1)

where Qtr,i, Qve,i, and Qgu,i are the transmission heat transfer through the building
envelope and by ventilation and thermal increase from internal gains plus solar gains,
respectively (kWh). Ap is the useful interior area of the building (m2).

The value of the annual nominal needs of cooling useful energy in heating season
for building, Nvc, is calculated by the following expression [19]:

Nvc = (1− ηv)Qg,v/Ap (2)

where ηv is the utilization factor in cooling station, Qg,v, gross thermal gains in
cooling season (kWh) Ap is the useful interior area of the building (m2).

The utilization factor is the function of transmission heat transfer through cooling
season and air renovation and thermal gains in the cooling season.

Spreadsheet for Commerce and Services Buildings (RECS)–Simplified Dynamic
Simulation. The heating and cooling demand estimation is done through an energy
balance on an hourly basis according to the norm EN ISO 13790:2008. This method
approximates a zone thermal to an electrical circuit establishing equivalences between
electrical current and heat flows and represents in the form of an electrical scheme
consisting of 5 resistors and 1 capacitance. The values of each temperature node are
determined using the Crank-Nicholson iterative method, allowing the heating and cool-
ing energy to be calculated every hour and per unit area of the thermal zone [20]. For
calculation of heating and cooling energy needs is essential to choose the set-points
temperature. In this case, the minimum setpoint temperature is equal to 20 °C, and the
maximum temperature is 25 °C. If air indoor temperature is less than minimum setpoint
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temperature, then heating need is required. If air indoor temperature is higher than maxi-
mum setpoint temperature, the cooling demand is required. All equations and procedures
are described in EN ISO 13790:2008 [20].

The spreadsheet given by PTnZeb and ITeCons brings a calculation motor integrated
that quickly calculates the energyneeds.All it needs is the climatefile, created inCLIMA-
SCE 1.05 software, and the introduction of all building characteristics in the spreadsheet
and then run the simulation.

EnergyPlus-Detailed Dynamic Simulation. The EnergyPlus program is a collection
of many program modules that work together to calculate the energy required for heat-
ing and cooling a building using various systems and energy sources. This tool was
approved by ASHRAE 2004 standard, and it is based on two tools developed during the
70s after the oil crisis: BLAST and DOE-2 [21]. The software can model with excellent
precision radiant and convection heat fluxes between indoor and outdoor, HVAC systems
performance, heat exchanges with the ground, thermal comfort, natural, artificial, and
hybrid systems. Additionally, it can simulate ventilation and airflows and allow dynamic
transient simulations with a time interval between 1 h and 1 min, using an hourly rep-
resentative year [21]. The simulation process started with defining the points presented
in the previous subsection (Geometry, Weather zone, Schedules, Materials, Thermal
loads, and setpoint temperature) [22]. After this process, the simulations are performed
to obtain the heating and cooling demands. The simulation is based on the solution of
the heat balance equation through the surfaces of the building [23]. It is essential to
point out that the 3D model was made in SketchUp2017 and associated with the plugin
OpenStudio. All building’s surfaces were defined as well as their boundaries conditions.
Compared with other simulations done before, it is used in the same building with the
same characteristics. All building envelopes have outdoor conditions, and it was defined
in only one thermal zone. After defining the 3D Model, the model was extracted to the
OpenStudio plugin connected to the EnergyPlus.

3 Results and Discussion

In this section, the simulation results for the building with insulation are presented and
discussed. Figure 4 shows the air temperature variation inside the building for a winter
day and a summer day inRECS (simplified dynamic spreadsheet) and EnergyPlus. These
days were selected because they are the warmer and cooler days of the year.

With the EnergyPlus software, air temperature reaches setpoint temperature earlier in
the winter day since the setpoint should be obtained at the open time. Then, it decreases
before the building closes at 20h00. On a summer day, the results are very similar.

The results of the heating and cooling demands for a building with insulation are
presented in Fig. 5. It is possible to observe that EnergyPlus spend more heating and
cooling time than RECS on winter and summer days.

This fact can be explainedby the differentmethodologies used to compute the thermal
losses by the building surface.With EnergyPlus, the calculationmethod is more detailed,
and more accurate results are obtained. While in RECS, the exterior outside resistance
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a) b) 

Fig. 4. Variation of the air temperature inside the buildingwith insulation: a)winter and b) summer
day.

a) b) 

Fig. 5. Variation of the building with insulation energy demand: a) heating and b) cooling in two
specific days of winter and summer season.

is constant, EnergyPlus has a comprehensive model for exterior convection by blending
correlations from ASHRAE.

Furthermore, the methodology to compute the thermal inertial is different. These
facts are the reasons why the results are significantly different. However, if the annual
results are compared, the heating demand obtainedwith RECS is higher than EnergyPlus
but lower in the cooling season. Regarding the REH methodology, lower results were
obtained due to the simplification of the calculation of this tool where the heating and
cooling demands are only computed for the summer and winter months while, with
EnergyPlus and RECS tools, the heating and cooling demands are computed for all days
of the year that are above or below the setpoint temperature.

Figures 6 and 7 present the air temperature and heating and cooling demand variation
in the extreme conditions of the winter and summer seasons for a building without
isolation. The tendency of the results is the same but, however, in the summer season,
the results are not too different. Regarding the annual heating and cooling demand, the
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Table 4. Comparison of the building annual heating and cooling demands between the different
software tools (building with insulation).

EnergyPlus RECS REH

Heating demand (kWh) 744 1,391 1,084

Cooling demand (kWh) 5,450 4,037 1,996

difference between the two tools is the same as the previous case. Since there is no
insulation, the energy required in the different seasons is higher (see Table 4) (Table 5).

a) b)

Fig. 6. Variation of the air temperature inside the building without insulation: a) winter and b)
summer day.

a) b) 

Fig. 7. Variation of the building without insulation energy demand: a) heating and b) cooling in
two specific days of winter and summer season.
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Table 5. Comparison of the building annual heating and cooling demands between the different
software tools (building without insulation).

EnergyPlus RECS REH

Heating demand (kWh) 7,750 8,580 16,494

Cooling demand (kWh) 2,639 2,481 947

4 Conclusions

There are several building energy simulation tools and other spreadsheets available on
the market. One of the main software tools, the EnergyPlus software, and two Excel
spreadsheets developed in Portugal to assess the thermal loads and annual energy con-
sumption in commercial and service buildings are used and compared in this work. To
perform this analysis, a simples building was modeled using Sketchup.

Concerning the thermal loads, the simulation of a building without insulation using
EnergyPlus showed that heating and cooling results are 10% higher and 6% lower when
compared with the values predicted by RECS. Comparing with REH, the discrepancy is
more significant. This discrepancy is because RECS and REH use a simple methodology
compared with Energy Plus.

The results for heating and cooling in EnergyPlus when a building has insulation
show that the heating and cooling demand is lower 46% and higher 25% compared with
the results from RECS, respectively. The results show that insulation reduces the heating
demand but, on another side, impairs the cooling demandwhen compared to the building
without insulation. So, it is essential to choose well the type and thickness of insulation.
Another reason for high cooling demand is duo to the large size of windows are big and
the non-existence of shading devices.

Despite the significant results, the model needs some improvements concerning
the complexity of the building, including heating and ventilation systems and different
renewable energy sources to meet the energy needs. The integration of all these aspects
makes the model more realistic in determining the effective heating and cooling needs.
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Abstract. Seismic surveys in the vast territory of Eastern Siberia are
carried out in seismic and geological conditions of varying complexity.
Obtaining a high-quality dynamic seismic image for the area of work is a
priority task in the conditions of contrasting heterogeneities of the near-
surface. For this, it is necessary to restore an effective depth-velocity
model that provides compensation for velocity anomalies and calculates
static corrections. However, for the most complex near-surface structure,
for example, the presence of trap intrusions and tuffaceous formations,
the information content of the velocity models of the near-surface area
obtained on the basis of tomographic refinement turns out to be insuf-
ficient, and a search for another solution is required. The paper con-
siders an approach based on the full waveform inversion (FWI). As the
authors showed earlier, the use of multiples associated with the free sur-
face reduces the resolution of this approach but increases the stability of
the solution in the presence of uncorrelated noise. Therefore, at the first
stage of FWI, the entire wavefield is used, including free surface-related
multiples. The data after the suppression of multiples is then used. The
obtained results demonstrate the ability of the FWI to restore complex
geological structures of the near-surface area, even in the presence of
high-velocity anomalies (trap intrusions).

Keywords: Near-surface · Full waveform inversion · Free surface
topography

1 Introduction

This work, to some extent, acts as a development of our previous studies devoted
to the consideration of full-waveform inversion for the reconstruction of deep
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horizons (see [4,6]). Previously, we focused our attention on geological media
with an effortless top of the section, typical for marine seismic observations.
However, when conducting seismic observations on land, the assumption about
the simplicity of the upper part of the section’s structure is no longer valid, espe-
cially for Eastern Siberia. Here we are presenting our approach to the reconstruc-
tion of geological media with a complicated upper section. Really, the correct
near-surface contribution is necessary when determining the structural features
of the reconstruction of the geological media (shape and the location of the inter-
faces) and searching for its seismic parameters, like wave propagation velocities
(inverse dynamic problem). Distortion of results obtained using an imprecise
model of near-surface will introduce significant errors both in the depth and
the shape of the target horizons, not to mention the correct restoration of their
lateral variability [3].

In this regard, near-surface structure reconstruction is one of the most
demanded among a wide range of seismic studies [1,2,8]. It can be argued that it
is a fairly developed seismic exploration area that uses a diverse set of methods
and techniques. We list only the main approaches to solve it, which we know:

– solution of the inverse kinematic problem with the subsequent introduction
of the obtained static corrections. The solution here is built for near-surface
layers in order to calculate the required time shifts to the original seismo-
grams, which avoids artificial curvature of the target horizons and ensures
the correct focusing of wave seismic images [9];

– application of seismic tomography methods on refracted rays for the recon-
struction of the velocity structure of the near-surface and its subsequent use in
calculating static corrections and constructing wave seismic images of target
horizons [9,10];

– determination of the velocity structure of the near-surface using surface waves
[11,12];

– full-waveform inversion methods oriented on the near-surface area [13,14].

To better understand the possibility of reconstructing the near-surface area’s
velocity model, it is necessary to carry out special work on seismic geological
modelling. The work authors built a detailed seismogeological model based on all
available geological and geophysical information for performing finite-difference
modelling. As a result of modelling, high-quality synthetic data were obtained
that are close to real seismic materials, which were subsequently used for full-
waveform inversion.

The thickness of the sedimentary cover in the study area reaches 1600–2000
m. The upper and basal parts of the section are represented by terrigenous rocks,
in the middle and lower parts - by alternating halogen and carbonate layers.
The section is complicated by several levels of intrusion of magmatic intrusions.
Trap intrusions and tuffaceous formations complicate the near-surface. The tar-
get horizons (terrigenous and carbonate strata) lie at the base of the section.
The reservoir thickness is 10–15 m. The section’s complex structure is deter-
mined by seismic and geological heterogeneities, leading to the formation of
sharp and significant vertical and lateral variations in the elastic characteristics
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of the medium. The sizes of submerged velocity anomalies, such as intrusions,
can vary from the first tens to thousands of meters, and the depth of occurrence
may reach 3

4 or more of the depth of the sedimentary cover. Differences in the
terrain up to 200–400 m with sharp slopes of ravines and indented river valleys,
exposing various types of rocks on the surface, lead not only to the complexity
of restoration and taking into account the velocity characteristics of the section
but also to significant variations in amplitude-frequency characteristics of the
seismic signal over the area of work.

All inhomogeneities in the near-surface lead to the formation of a huge num-
ber of interference waves, which nature is not always possible to reliably identify,
and which reduce the efficiency or make it useless and even impossible to use
“standard” seismic processing procedures, including reconstruction of the near-
surface velocity model. To improve the quality and reliability of the processing
and interpretation results, it becomes necessary to carry out an in-depth analysis
of the influence of changes in seismic-geological conditions on the characteristics
of the seismic record and its possibility recovering a high-quality dynamic image.
To assess the feasibility of algorithms and methods for reconstructing the near-
surface, one needs to use synthetic seismic data modelled based on a detailed
thin-layered model containing characteristic seismogeological features as close as
possible to the real studied section. Based on the testing results on synthesized
data based on a well-known model, one should adapt the algorithms to work on
real seismic data.

2 Seismogeological Model Building

Seismic surveys in the vast territory of Eastern Siberia are carried out in seismic
and geological conditions of varying complexity. The selected area to build a
seismogeological model is Irkutsk region, Russia (Fig. 1). It contains anomalous
and target geological objects. The original thick-layered model was built based on
information about the topography and stratigraphic information from well data
(Fig. 2). For detailing the near-surface model, anomalies were specified based on
information about tuffs and traps’ location according to a geological map. The
geometry of intrusions, trap and tuff formations, as well as supply channels for
the first 500m, was set according to the interpretation of non-seismic methods
- electrical prospecting and gravity magnetic prospecting based on conceptual
forms of volcano structures of diamondiferous regions in adjacent territories,
studied in detail by drilling wells [7]. Velocity characteristics were included in
the model according to well logging data. Schematically, the evolution of model
building is shown in Fig. 2.

3 Method

The inverse dynamic problem is considered as a solution of a nonlinear operator
equation

F (m) = d, (1)
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Fig. 1. The location map of the studied area. The borders of the Irkutsk region are
marked in red. (Color figure online)

Fig. 2. The evolution of the depth model building for pressure velocities. The original
thick-layered model constructed using topography and well log data (a), detailing of
the model using geological maps and well information (b) and the final P-velocity
model (c).
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where F : M → D is a nonlinear forward operator which maps model space
M into data space D. To simplify mathematical calculations, we deal with the
scalar wave equation in the time domain, that is, the Helmholtz equation:

�u(x, z) +
ω2

c2(x, z)
u = f(ω)δ(x − xs)δ(z − zs), (2)

with absorbing boundary conditions on the base of perfectly matched layers
(PML). Here (xs, zs) determine the coordinates of the source with the pulse
shape f(ω). Calculation of the solution of the formulated problem at the location
of the receivers determines the forward modelling operator F . We solve this
equation using the fourth order finite difference scheme, which leads to a sparse
system of linear algebraic equations (SLAE). This SLAE is solved using direct
LU-based method.

The common full-waveform inversion formulation is to find the minimum
point of the misfit functional, characterizing the mean square deviation of the
registered data from the calculated for the current speed model:

m∗ = argminm∈M (‖F (m) − d‖2D), (3)

where m(x, z) = c−2(x, z) - squared slowness.
Typically, the local optimization techniques, such as conjugate gradient

method, are applied to minimize the misfit function:

mk+1 = mk + μkSk, S0 = ∇0, (4)

Sk = −∇k − < ∇k,∇k − ∇k−1 >M

< ∇k,∇k−1 >M
Sk−1, (5)

where mk – model on k-th iteration. The gradient ∇k is calculated as follows:

∇k = �{DF ∗δdk} (6)

here δdk = F (mk)−d is data residual on current iteration, DF – first derivative
of forward map calculated at point mk.

For efficient gradient calculation, we use a master/slave communication Mes-
sage Passing Interface (MPI) scheme (see Fig. 3). Considering that we use Nf
time-frequencies for FWI, the algorithm requires one master MPI-process and
Nf slave processes. Slave MPI-process with index i calculate partial gradient for
a particular time-frequency fi and associated with the corresponding Helmholtz
equation (Fig. 3). Within a single slave MPI-process, the Helmholtz equation
solver is parallelized via OpenMP. On the next step, the master process gathers
all partial gradients, performs the model update and send the updated model
back to the slave processes. This process repeats iteratively until the convergence
conditions are not satisfied.
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Fig. 3. The schematic master/slave communication of the FWI algorithm. Each slave
MPI-process is related to the Helmholtz equation for a fixed time frequency.

4 Numerical Experiments

4.1 Model and Acquisition Geometry

We used a realistic P-velocity profile in our numerical experiments, which build-
ing process described in Sect. 2. For FWI, we choose a part of the model, desig-
nated by a red rectangle in Fig. 4. The horizontal size of the model is 24 km, while
the depth reaches 2.8 km. The main difficulty in reconstructing the near-surface
area caused by the presence of trap intrusions, the velocity of propagation of
P-waves in which reaches 6500 m/s, thus the velocity difference when crossing
the intrusion boundary reaches 4500 m/s, which significantly complicates the
use of standard approaches to recover the depth velocity model. The presence
of varying topography also complicates the velocity model building. It is neces-
sary to perform full-waveform modelling on a fine mesh to mitigate numerical
dispersion caused by staircase topography approximation on a rectangular grid.
An example of a synthetic seismogram calculated in acoustic mode, taking into
account the multiples caused by the presence of a free surface, is shown in Fig. 5.
The acquisition system has 241 seismic sources and 961 receivers located at the
free surface with a lateral spacing of 100 m and 25 m. The maximum source-
receiver offset is 5 km. The source impulse is a Ricker wavelet with a dominant
frequency 30 Hz. As an initial guess for FWI, we used a vertically heterogeneous
model (see Fig. 6), which was built using the well information (x = 20 km in the
true model) by Gaussian smoothing and adding a free surface topography. Thus,
the starting depth velocity model contains no information about the presence of
high-velocity near-surface anomalies.
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Fig. 4. The full P-velocity profile obtained after seismogeological model building (a)
and the area used for performing FWI experiments (b).

Fig. 5. The example of observed seismogram used for near-surface FWI.

Fig. 6. The starting depth velocity model for near-surface FWI.
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4.2 Inversion of Complex Near-Surface Using Data with Free
Surface-Related Multiples

As shown by the authors earlier [15], taking the surface-related (SR) multiples
into account during the inversion reduces the resolution and the information
content of the FWI results. However, it increases their stability in the presence
of uncorrelated noise. Therefore, at the first stage of FWI, we use the entire
wavefield, including SR multiples. The results of the near-surface inversion are
shown in Fig. 7. The inversion was performed using the temporal frequencies
range from 3 10 Hz, and the target area was limited up to the depths of 1 km.
As one can see, with such an acquisition system and frequency range of the
source signal (presence of low frequencies), we successfully identified high-speed
anomalies. However, areas directly under the traps were restored with significant
distortion. Therefore, in subsequent stages of FWI (see Sect. 4.3), to improve the
restored model’s quality, it is proposed to use the data without SR multiples.

Fig. 7. The inversion of complex near surface results: starting model (a), FWI results
(b), and the true model (c).
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The Influence of Maximum Offset in the Data on the Near-Surface
Inversion
To analyze the maximum source-receiver offsets’ influence on the inversion
results, we consider three different FWI scenarios. We used the same source
geometry and the same receiver steps but varied the maximum offset. In the
first case, we used 3 km maximum offset, in the second - 5 km (previous results),
and in the last - 7 km. Typically for the real acquisition in Eastern Siberia,
5 km is the maximum available offset, and the most common maximum source-
receiver offset is 3 km. The near-surface FWI results for a different scenarios are
presented in Fig. 8. As one may observe, for the reasonable offset ranges (from
3 km to 7 km), there are no significant differences in the inversion results, which
means that the maximum offset in the data does not affect the near-surface FWI
results in our case.

Fig. 8. The influence of the maximum offset on the inversion results: FWI using offsets
up to the 3 km (a), 5 km (b), and 7 km (c).
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The Influence of the Lower Available Time Frequency in the Data on
the Near-Surface Inversion
As we have seen, the influence of the maximum offset on inversion results is
negligible within a reasonable range. Now we are interested in the influence
of the lower available temporal frequency in the observed data. We performed
three FWI tests with a lower frequency 3 Hz, 5 Hz 7 Hz. The inversion results
are shown in Fig. 9. We see that lower frequency affects the near-surface FWI
results substantially. The bigger the lower frequency, the worse trap intrusions
reconstruction we observe. The comparative analysis of relative error between
the reconstructed near-surface model and true model is presented in Fig. 10.
Furthermore, as we increase the lower temporal frequency, we decrease the data
fitting. The corresponding misfit functional behaviour during FWI iterations for
different scenarios plotted in logarithmic scale is shown in Fig. 11.

Fig. 9. The influence of the lower available time frequency in the data on the inversion
results: FWI using lower 3Hz (a), 5Hz (b), 7 Hz (c).
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Fig. 10. The relative error between true near-surface model and the FWI model using
lower 3 Hz (a), 5 Hz (b), 7 Hz (c).

Fig. 11. The L2 mistfits between observed and modelled data during inversion for FWI
scenario using lower 3 Hz (red plot), 5 Hz (blue plot), 7 Hz (black plot). (Color figure
online)

4.3 Inversion of Deep Target Horizons Using Data Without Free
Surface-Related Multiples

For reconstruction of the deep target horizons to improve the restored model’s
quality, it is proposed to use the data without multiples associated with the
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Fig. 12. The inversion results using the data without free surface related multiples for
different frequencies ranges: starting model (a), FWI 3–10 Hz (b), FWI 8–20 Hz (c),
FWI 15–30 Hz (d), FWI 20–40 Hz (e), and FWI 35–70 Hz (f).
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Fig. 13. The data comparison for shot located at x = 8 km on a different inversion
stages: data in starting model before the near-surface FWI (a), the data modelled in
a true model (b), the data after near-surface FWI (c), and the data in the final FWI
model (d).
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presence of a free surface. While performing FWI in the time-frequency domain,
it is common practice to use overlapping frequency groups. In our case, after the
near-surface reconstruction in the frequency range [3, 10] Hz with SR multiples,
we used the following set of frequency groups to be used in FWI without SR mul-
tiples: [3, 10] Hz, [8, 20] Hz, [15, 30] Hz, [20, 40] Hz and [35, 70] Hz. The starting
velocity model for each frequency group is the velocities from the previous FWI
run (e.g. the output of FWI for a frequency range [3, 10] Hz is an input for [8,
20] Hz FWI, and so on). The evolution of depth velocity model reconstruction
for a different frequency group is shown in Fig. 12. As one can see, we managed
to get a detailed depth velocity model restoration in almost the entire region.
To demonstrate the data fitting, we calculate the seismogram for a shot located
at x = 8 km (see Fig. 13). As one may observe, the starting model’s synthetics
does not explain the observed data, while the final FWI model interprets most
of the observed data.

5 Conclusions

The paper considers an approach to the near-surface P-velocity distribution
inversion based on the FWI. As the authors showed earlier, the attraction of
multiples associated with a free surface reduces the resolution of this approach.
However, it increases the stability of the solution in the presence of uncorrelated
noise. Therefore, at the first stage of FWI, one uses the entire wavefield, including
free surface-related multiples. Further, the data after multiples suppression is
used. The results obtained demonstrate the FWI method’s ability to reconstruct
complex geological structures of the near-surface area, even in the presence of
high-velocity anomalies (trap intrusions).

Acknowledgements. K. Gadylshin is supported by RSF grant 21-71-20002, he per-
formed all numerical FWI experiments. The numerical results of the work were obtained
using computational resources of Peter the Great Saint-Petersburg Polytechnic Uni-
versity Supercomputing Center (scc.spbstu.ru).
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Abstract. This paper presents a numerical algorithm to simulate low-
frequency loading of fluid-filled poroelastic materials and estimate the
effective frequency-dependent strain-stress relations for such media. The
algorithm solves Biot equation in quasi-static state in the frequency
domain. Thus, a large-scale system of linear algebraic equations have
to be solved for each temporal frequency. We use the direct solver,
based on the LU decomposition to resolve the system of the linear equa-
tions. According to the presented numerical examples suggested algo-
rithm allows reconstructing the stiffness tensor within a wide range of
frequencies for the realistic large-scale samples within several minutes.
Thus, the estimation of the frequency-dependent stiffness tensors can be
done in a routine manner and statistical data may be accumulated.

Keywords: Biot equation · Poroelasticity · Finite differences

1 Introduction

Developments in CO2 sequestration [8,14], geothermal energy exploration [12,21]
technologies raises a challenging tasks to seismic monitoring methods (4D seis-
mic). One needs to estimate the fluid mobility and reservoir hydraulic permeabil-
ity based on seismic data. Standard seismic attributes, especially the kinematic
ones, are almost incentive to the changes in the reservoir structure due to the
fluid substitution or partial chemical dissolution of carbonate rock matrix. How-
ever, the frequency-dependent dynamic effects can be recorded and potentially
interpreted. In particular, changes in the fluid content or the pore-space geom-
etry significantly affects the wave-induced fluid flows (WIFF). These flows are
caused by the local pressure gradients within the wavefront if a seismic wave
propagates in fractured-porous media [16,19]. Typically, fracture-to-background
WIFF (FB-WIFF) and fracture-fracture WIFF (FF-WIFF) are considered. The
FB-WIFFs appear if a low-frequency (long wavelength) wave propagates. In
this case, the wave period is high enough for flow to form, even in the media
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with quite low permeability. The intensity of FB-WIFF is governed by a com-
pressibility contrast between the host rock and fracture-filling material [10,19].
High-frequency signals propagation causes FF-WIFF, defined by fracture-filling
material properties and also local fracture connectivity [7,10,19]. Unfortunately,
theoretical studies of this effect include consideration of relatively simple models
of the media. Moreover, the fracture connectivity is considered only for the pairs
of differently oriented fractures [10]. Numerical investigation of the phenomena
is also restricted by such fracture connectivity criteria [10,19], except the study
[9], where authors apply statistical modeling of fracture network and estimate
resulting connectivity of the fractures. One of the reasons for that is the lack of
efficient numerical algorithm to simulate seismic wave propagation in poroelastic
media, or to solve Biot equation in quasi-static state to simulate low-frequency
creeping test. Numerical upscaling experiments should satisfy two requirements.
First, each considered sample should be representative [1,18], or, at least, should
be much greater that the typical homogeneity size. In the case of the fractured-
porous media, the characteristic size in the fracture length, typical percolation
length, or connectivity index [17,25]. However, the grid step for either finite dif-
ference or finite element method is governed by the fracture width. Thus, the
typical size of the discretized problem exceeds 1000 grid points in each spatial
direction. Second, numerical upscaling requires a series of experiments for each
statistically equivalent models of the fracture systems. Thus, an efficient numer-
ical upscaling algorithm should be able to solve series on large-scale problems.

In this paper, we present an algorithm for numerical upscaling elastic proper-
ties of fractured-porous media in low-frequency range. To do so, we develop the
algorithm to solve Biot equation in quasi-static state. The paper has the follow-
ing structure. In Sect. 2, we state the problem of the poroelastic media upscal-
ing to obtain frequency-dependent stiffness tensor, corresponding to the visco-
elastic media. The finite-difference approximation of the considered boundary-
value problem in considered in Sect. 3. Next, we provide the peculiarities of the
numerical solution of the SLAE is provided in Sect. 4. Numerical experiments
and performance analysis is presented in Sect. 5.

2 Statement of the Problem

2.1 Biot Equations in Quasistatic State

Consider the quasi-static Biot equations governing the diffusion processes in
fluid-filled poroelastic media in a low-frequency regimes [2,3]. We deal with the
Cartesian coordinates and restrict our considerations with 2D case, thus the
equations can be written as follows:
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(1)
where �u = (ux, uz)T is the solid matrix velocity vector, �w = (wx, wz)T is the
vector of the relative fluid velocity with respect to the matrix, λu is the Lame
parameter of undrained rock, μ is the shear modulus, α is Biot-Willis parameter,
M is the fluid storage coefficient, η is the fluid dynamic viscosity, κ is the absolute
permeability of the rock, and ω is the temporal frequency. Specific parameters
λu, M , and α are usually estimated from the bulk moduli of drained Kd, fluid
Ku, and the solid matrix Ks [13]:

α = 1 − Kd

Ks
, λu = Ku − 2

3μ, M = BKu/α,

B = 1/Kd−1/Ks

1/Kd−1/Ks+φ(1/Kf−1/Ks)
, Ku = Kd

1−Bα .

2.2 Effective Visco-Elastic Media

We aim to construct the effective frequency-dependent linear elastic media
(visco-elastic media) [5], so that for any stresses applied to a unit volume the
average strains in the reconstructed viscoelstic and the original fluid-saturated
poroelastic media should coincide. The quasi-static state of the viscoelastic wave
equation is

∂
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[
C11(ω)∂vx
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+ ∂
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∂
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∂z

]
= 0,

(2)

where �v = (vx, vz)2 is the displacement vector, and tensor C is the frequency-
dependent stiffness tensor. Consider a rectangular domain D = [Lx

1 , Lx
2 ]×[Lz

1, L
z
2]

with the following boundary conditions applied σ ·�n = σ0 at ∂D, where �n is the
outer normal.

Consider three basis loads:

– x-direction compression:

σxx = C11(ω)∂vx

∂x + C13(ω)∂vz

∂z |x=Lx
1

= φx,
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1

= 0,
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= 0,
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∂x )|∂D = 0,

(3)
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Solution of the problem (2), (3) can be constructed analytically, in case of
constant coefficients: σxx(x, z) = φx, σzz(x, z) = 0, and σxz(x, z) = 0. Thus
the components of the strain tensor can be represented as

εxx = ∂vx

∂x = S11φx,

εzz = ∂vz

∂z = S13φx,

εxz = 1
2 (∂vz

∂x + ∂vx

∂z ) = S15φx,

(4)

where Sij are the components of the compliance tensor (invert to stiffness
tensor). If the initial loads are known and strains are computed, one may
resolve the equations with respect to the components of the compliance tensor.

– z-direction compression:
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∂x + C13(ω)∂vz

∂z |x=Lx
1

= 0,

σxx = C11(ω)∂vx

∂x + C13(ω)∂vz

∂z |x=Lx
2

= 0,

σzz = C13(ω)∂vx

∂x + C11(ω)∂vz

∂z |z=Lz
1

= φz,

σzz = C13(ω)∂vx

∂x + C11(ω)∂vz

∂z |z=Lz
2

= φz,

σxz = C55(ω)(∂vx

∂z + ∂vz

∂x )|∂D = 0,

(5)

Solving problem (2), (5) one gets:

εxx = S13φz,
εzz = S33φz,
εxz = S35φz,

(6)

Thus, the second column of the compliance tensor can be recovered.
– z-direction compression:
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(7)

Solving problem (2), (7) one gets:

εxx = S15ψ,
εzz = S35ψ,
εxz = S55ψ,

(8)

Thus, the third column of the compliance tensor can be recovered.

To construct the effective anisotropic viscoelastic media one needs to solve
three boundary value problems for system (1) with with boundary conditions
(3), (5), and (7) respectively. After that the strains should be averaged within
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the domain D and systems (4), (6), and (8) should be resolved with respect to
the components of the compliance tensor. However, to get a unique solution of
system (1) we need to add extra no-flow boundary conditions at all boundaries:

�w · �n|∂D = 0.

To simplify the interpretation of the results it is convenient to consider the
seismic wave velocity and attenuation in the effective viscoelastic media [5,23,
26]. To do so, one needs to resolve the dispersion relation for the viscoelastic
wave equation. However, the resulting model is anisotropic where the velocity
and attenuation depend on the direction of propagation. Thus, we restrict our
further considerations with the particular cases; i.e., velocity and attenuation
of the quasi-longitudinal or qP-wave propagating along x and z directions and
quasi-share or qS-wave propagating along x direction. In 2D orthothropic media
qS-wave velocity along x and z directions coincide. We follow [4,23] to estimate
the velocities and quality factors:

Vpx = �
√

C11
ρ , Vpz = �

√
C33
ρ , Vs = �

√
C55
ρ ,

Qpx = �C11
�C11

, Qpz = �C33
�C33

, Qs = �C55
�C55

.
(9)

Note that the higher the quality factor the lower the attenuation.
The most time consuming part of the suggested averaging is the numerical

solution of equation (1), which is described below.

3 Finite-Difference Approximation

To approximate equation (1) inside the domain D = [Lx
1 , Lx

2 ] × [Lz
1, L

z
2] we

suggest using a regular rectangular grid with steps hx and hz. Assume that
the domain boundaries have the half-integer coordinates; moreover Lx

1 = x1/2,
Lx
2 = xNx−1/2, Lz

1 = z1/2, Lz
2 = zNz−1/2, where Nx and Nz are the numbers of

the grid points in corresponding spatial direction. A sketch of the computational
domain and the grid is presented in Fig. 3.

We define the grid-functions on a staggered grids so that, ux and wx are
placed at integer points in x direction, but half-integer points in z direc-
tion; whereas uz and wz are placed at integer points in z direction, but half-
integer points in x direction. That is (ux)i,j+1/2 = ux(xi, zj+1/2), (wx)i,j+1/2 =
wx(xi, zj+1/2), (uz)i+1/2,j = ux(xi+1/2, zj) and (wz)i+1/2,j = wx(xi+1/2, zj).
Thus, the first and the third equations from (1) are approximated in the points
(xi, zj+1/2) while the second and the fourth ones are approximated in points
(xi+1/2, zj). All coefficients are stored in half-integer points, assuming that
they are constant within the grid cell. To preserve the second order of con-
vergence the share modulus need to be computed at the integer points by the
rule [11,15,22,24] (Fig. 1):

1
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Fig. 1. A sketch of the computational domain and the mesh.

The grid cell and the positions of the solution components are provided in
Fig. 2.

Fig. 2. The grid cell and the positions of the solution components

To approximate equation (1) we use the second order accurate finite differ-
ences using the following operators:

Dx[f ]IJ =
fI+1/2,J − fI−1/2,J

hx
=

∂f

∂x

∣∣∣∣
xI ,zJ

+ O(h2
x) (10)

Dz[f ]IJ =
fI,J+1/2 − fI,J−1/2

hz
=

∂f

∂z
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xI ,zJ

+ O(h2
z) (11)

where f is any smooth enough function, and indices I and J can be either integer
or half-integer.
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Finite-difference approximation of the Eq. (1) produces a system of linear
algebraic equations (SLAE) A0x = b of the size of N = 2(Nx−1)Nz+2(Nz−1)Nx

whose properties are the subject of investigation.

4 Solution of the SLAE

The properties of the constructed system of linear equations should be studied
for two different cases. First is nonzero frequency, and the second one is ω = 0;
i.e., the static loading.

If the frequency in greater than zero; i.e., ω > 0, the matrix is complex,
non-symmetric. Moreover, due to the use of Neumann boundary conditions (3),
or (5), or (7) the matrix is singular. The null-space of the differential operator
(1), (3) is composed of three vectors:

(ux, uz, wx, wz) = (C1, 0, 0, 0),
(ux, uz, wx, wz) = (0, C2, 0, 0),
(ux, uz, wx, wz) = (C3,−C3, 0, 0),

thus the finite-difference operator has the null-space approximating the presented
one.

If the frequency is equal to zero, the right-hand sides of the third and the
fourth equations in (1) become trivial. Thus, one may introduce a new variable
V = ∇ · �w = ∂wx

∂x + ∂wz

∂z and reduces system (1) to
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where only three independent variables present. Thus, the approximation of the
derived system will also lead to singular matrix of the rank of 3/4N .

Therefore matrix A is ill-conditioned for either zero or non-zero frequency ω.
We computed the singular value decomposition of matrix A, for small size of the
problem (N ≈ 104) and accounted the number of zero singular values to check
the null-space dimension.

Solving system of linear equations with singular non-symmetric complex-
valued matrix is a challenging task for the iterative methods [20]. Convergence
of the iterative solvers is strongly affected by the choice of a preconditioner,
which is not the main topic of this research. Moreover, we are dealing with the
2D problems, thus direct methods can be efficiently applied to solve SLAE. In
particular, we use the sparse direct solver Intel MKL PARDISO which is very
efficiently optimized for Intel architectures.
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5 Numerical Experiments

5.1 Homogeneous Media

First we verified the algorithm using a homogeneous model poroelastic model
with the following parameters: μ = 5.7 · 109 Pa, α = 0.87, η = 3 · 10−3 Pa·s,
κ = 10−12 m2, λ0 = 6.09 · 109 Pa, M = 6.72 · 109 Pa, ρ = 2650 kg/m3, ρ =
1040 kg/m3, T = 1.5, and ϕ = 0.3. The last four parameters are rock density,
fluid density, tortuosity, and porosity respectively. They are not used in quasi-
static model, but we need them to estimate the wave propagation velocity and
attenuation in the dynamic state.

To simulate the quasi-static loading of the fluid-filled porous material we
considered a square domain of the size 1 m, and discretized it by the grid with
steps hx = hz = 0.002 m. Thus the size of the problem was Nx = Nz = 500
points. We chose five frequencies 0, 0.1, 1, 10, 100, 1000 Hz, compute the stiffness
tensors and then estimate the velocity and attenuation of the fast P-wave, as
presented in Fig. 3. The model was originally homogeneous and isotropic, thus
the velocity is independent of the direction of propagation. The only physical
factor that causes the attenuation in homogeneous poroelastic media is the Biot
flow at high frequencies. However, it can not be resolved in the quasi-static state.
Thus, the attenuation of the numerical solution is zero for the entire frequency
range. The velocity of the numerical solution is underestimated, but the differ-
ence us about 0.1 m/s; i.e. the relative error is 3.5 · 10−5 which is an acceptable
level.

10-1 100 101 102 103

Frequency, Hz

2840

2840.5

2841

2841.5

2842

Ve
lo

ci
ty

, m
/s

Fast P-wave velocity

Analytical
Numerical

10-1 100 101 102 103

Frequency, Hz

0

0.2

0.4

0.6

0.8

1

1.2 10-3 Fast P-wave attenuation

Analytical
Numerical

Fig. 3. Comparison of the numerical estimates (red solid line) with analytical solution
(blue dashed line). Left picture presents the phase velocity, right picture illustrates the
attenuation Q−1. (Color figure online)

5.2 Fractured Media

To illustrate the applicability of the presented approach to estimate the disper-
sion and dissipation of seismic waves propagating in inhomogeneous poroelastic
media, we considered fluid-filled fractured poroelastic model. We used the same
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models as those described in [17]. We considered two orthogonal sets of fractures.
The fracture length in both sets was fixed to 50 mm and the thickness 2 mm. We
generated several types of fractured models, depending on the average percola-
tion length using the simulating annealing technique. Examples of the models are
provided in Fig. 4. After that we filled in the model with the material properties.
The background was unpermeable, whereas the fracture filling material was rel-
atively hydraulically soft to support the fluid flow. The description of the model
is provided in the Table 1. Due to the fracture-to-background wave-induced fluid
flows [6,16] local increase of the attenuation, thus velocity dispersion takes place.

Table 1. Material properties.

Parameter Background Fracture-filling material

Fluid dynamic viscosity η, Pa·s 0.001 0.001

Permeability k0, m2 10−15 5.5 · 10−13

Density ρ, kg/m3 2485 2458

Lame constant λu, Pa 7.159 · 109 2.40 · 1010

Shear modulus μ, Pa 3.0969 · 1010 1.14 · 1010

Biot and Willis constant α 0.2962 0.6078

Fluid storage coefficient M, Pa 2.01 · 1010 9.48 · 1010

We used the suggested algorithm to estimate the frequency-dependent stiff-
ness tensors for all six model types within the frequency range of ν ∈ [0, ..., 1000]
Hz. Additionally, we directly simulated wave propagation in fluid-filled fractured-
porous media using the approach, described in [17]. Wave propagation was sim-
ulated for the Ricker impulse with central frequency 1000 Hz. We provide the
velocity and attenuation estimates obtained by the two methods in Figs. 5 and
6 respectively. Note, that the velocities are slightly underestimated by the sug-
gested algorithm, whereas the attenuation matches well. In general, the obtained
results show that the increase in the percolation length of the fractured system
causes increase in the attenuation due to the FB-WIFF.

5.3 Performance Estimation

In all described examples we used a grid with 500 nodes in both spatial directions.
We computed the effective stiffness tensors for the set of 22 frequencies from 0
1000 Hz. A single launch of the algorithm (one model, one frequency) includes
the following steps:

1. Approximate problem to get matrix A and right the hand sides b;
2. PARDISO Reordering step. It’s a preliminary step to decrease memory con-

sumption and time of the next factorization step.
3. PARDISO Factorization step. It perform LU decomposition of the matrix A.
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Fig. 4. Models of fractured media with different percolation length (increasing from
the top to the bottom).
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Fig. 5. Velocities of the qP wave for models with different percolation. Lines repre-
sent the quasi-static estimates, markers are used for estimates by wave propagation
simulation.
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Fig. 6. Attenuation of the qP wave for models with different percolation. Lines rep-
resent the quasi-static estimates, markers are used for estimates by wave propagation
simulation.

4. PARDISO Solve step. Solve the system to get solution x.
5. Postprocessing: Check the relative residual (|b − Ax|/|b| ≤ 10−12) and then

construct the stiffness tensor C.

Note that if the frequency is changed only the main diagonal of matrix A
should be corrected. Thus, step (1) can be done for zero-frequency but only the
diagonal entries are changed at further loops of the algorithm. The reordering
step (2) depends just on position non-zero elements A and can be done only once
but applied for all ω. As a result, the entire algorithm (steps 1–5) is applied only
to the first frequency in the raw, whereas the reduced version of the algorithm
(steps 3–5) can be applied to all other frequencies.

We used Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00 GHz with 20 cores in
our simulations. The computational time for one model and all 22 frequencies is
≈ 140 s. The timing profiling of the 22 runs is:

1. Approximate problem: ≈ 3 s.
2. PARDISO Reordering step: ≈ 4 s.
3. PARDISO Factorization step. 22 × (≈ 3 − 4 s.)
4. PARDISO Solve step. 22 × (≈ 0.8 s.)
5. Postprocessing: 22 × (≈ 0.4 s.)
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Execution of the algorithm for the problem size of 5002 required about 8 Gb
RAM, thus it can be done on any desktop machine, or ported to a standard
GP-GPU to improve performance.

6 Conclusions

We presented a numerical algorithm to simulate low-frequency loading of fluid-
filled poroelastic materials and estimate the effective frequency-dependent strain-
stress relations for such media. The algorithm solves Biot equation in quasi-static
state. The problem is parabolic, thus, it is convenient to solve it in the frequency
domain. As a result a system of linear algebraic equations have to be solved for
each temporal frequency. We use the direct solver, based on the LU decom-
position to resolve the SLAE. According to the presented numerical examples
the suggested algorithm allows reconstructing the stiffness tensor within a wide
range of frequencies [0, ..., 1000] Hz, for the realistic sample size within 2–3 min.
Thus, it allows to perform series of numerical experiments using simulations as
the part of topological optimization techniques. Note, that our implementation
is oriented on the use of CPU, whereas porting the algorithm to GPU would
further improve the performance.
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Abstract. In this paper, we present an iterative solver for Poisson
equation. The approach is essentially oriented on upscaling the physi-
cal parameters of porous materials, such as electrical resistivity, thermal
conductivity, pressure field computation. The algorithm allows solving
Poisson equation for strongly heterogeneous media with small-scale high-
contrast heterogeneities. The solver is based on the Krylov-type iterative
method with a pseudo-spectral preconditionner, thus the convergence
rate is independent on the sample size, but sensitive to the contrast
of physical properties in the model. GPU-based implementation of the
algorithm allows performing simulations for the samples of the size 4003

using a single GPU.

Keywords: Pore scale · Poisson equation · GP-GPU · Numerical
upscaling

1 Introduction

Numerical upscaling the physical properties of porous materials is a rapidly
developing area of research, due to availability of micro-tomographic images of
porous materials and computational resources. In particular, digital rock physics
is getting a common tool in petrophysical analysis of rocks [4] to estimate abso-
lute permeability [5,11], relative permeability for two- and three-phase flows
[3], diffusion of chemicals for reactive transport [20,21], thermal conductivity
[10], electrical resistivity [5,28]. To evaluate the effective properties of porous
material one needs to simulate a specific physical process at the pore scale and
then use averaging of the solution over the entire sample. The first step is the
most computationally intensive and requires the numerical solution of partial
differential equations. In particular, fluid flow simulation is based on the solu-
tion of Navier-Stokes or steady-state Stokes equations, where solving the Poisson
equation is the principal step especially if the projection-type methods are used
[8]. Numerical estimation of electrical resistivity and thermal conductivity is
essentially based on the solution of Poisson equation [10,28]. Nowadays, digital
rock physics laboratories are well equipped with micro-tomographic scanners but
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have limited access to high performance computing facilities. Thus, an appro-
priate option is to use GP-GPU servers for numerical simulations in digital rock
physics applications.

We present the numerical algorithm for solving Poisson equation in strongly
heterogeneous media oriented on the use of graphic processor units. Strongly
inhomogeneous media includes small-scale heterogeneities [6] and high ampli-
tudes of the inhomogeneities. There are several approaches to solve the Pois-
son equation, but the most commonly used are the Krylov-type methods with
appropriate preconditioners. Incomplete LU factorization [14], including low-
rank approximations [9,17] and multi-grid [16,25] are commonly used to precon-
dition a discretized Poisson equation. First class approaches require storing the
matrix and its factors. Approaches from a different class require problems solving
in a series of nested grids and solutions storage. However, if we consider strongly
heterogeneous geomaterials models, a scale coarsening changes the topology and
geometry of pore space, that is the main conductive model part. Thus, the prob-
lem on a coarse grid will not be closer to the true one than the problem for
homogeneous media. At the same time, the spectral method [7] using GPUs can
be effectively applied to solve the Poisson equation with constant conductivity.

The paper is structured as follows. We formulate the problem in Sect. 2.
Finite-difference approximation is provided in Sect. 3. Description of the solver
and the preconditioner are presented in Sect. 4. Numerical experiments are intro-
duced in Sect. 5.

2 Numerical Estimation of Electrical Resistivity

The goal of this research is to simulate the electric current in rock samples using
the 3D microtomographic images. Thus, two problems should be solved. First,
we need to calculate the electric current in the inhomogeneous model for a given
potentials difference applied to the opposite sample sides. Second, it’s necessary
to restore the scalar (tensor) electrical resistivity at which the resulting electric
current was equal to that in the original model for a given potentials difference.

Consider the domain Ω = [0,X1]×[0,X2]×[0,X3] with inhomogeneous media
and the Poisson equation:

∇ · (σ(x)∇ϕ(x)) = 0, (1)

where σ = σ(x) is the electrical conductivity, ϕ = ϕ(x) is the scalar electric
potential. We assume that there are no charges inside the computational domain,
so the right-hand sides are equal to zero. The Dirichlet boundary conditions are
used at two opposite sides x1 = 0 and x1 = X1, that is

ϕ(x)|x1=0 = Φ0, ϕ(x)|x1=X1 = Φ1, (2)

where Φ0 and Φ1 are the potentials. On the other sides of the domain, we apply
Neumann boundary conditions

∇ϕ · n|x2=0 = 0, ∇ϕ · n|x2=X2 = 0,
∇ϕ · n|x3=0 = 0, ∇ϕ · n|x3=X3 = 0.

(3)
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Neumann boundary conditions are used to simulate laboratory experiments in
which a sample is placed in insulator ports.

The spatial distribution of the electric potential ϕ(x) is the solution of Eq.
(1), after that the electric current can be defined as

J1 =
∫ X2

0

∫ X3

0

σ(x)
∂ϕ

∂x1
dx2dx3. (4)

Note, that the current should be independent of spatial coordinates.
On the contrast, if homogeneous media with unknown conductivity σ̂ is con-

sidered, Eq. (1) turns into

∇ · (σ̂∇ϕ̂(x)) = 0, (5)

with boundary conditions (2) and (3). Solution of the this equation can be
constructed analytically:

ϕ(x) = Φ0 +
Φ1 − Φ0

X1
x1. (6)

In addition, electric current in the direction x1 satisfies the Ohm’s law:

Ĵx =
∫ X2

0

∫ X3

0

σ(x)
∂ϕ

∂x1
dx2dx3 = σ̂

Φ1 − Φ0

X1
S1, (7)

where S1 is the surface area of the sample cross-section normal to the direction
x1.

Assuming that a given potentials difference at two opposite sides of the sam-
ple causes the same electric current either in an inhomogeneous or in a homoge-
neous media, that is Ĵx = Jx, the electrical conductivity of the effective material
can be reconstructed:

σ̂ = Jx
X1

S1

1
Φ1 − Φ0

. (8)

The most laborious computational problem in the numerical estimation of
electrical resistivity or conductivity is the solution of the Poisson equation in
strongly heterogeneous media, where the characteristic size of inhomogeneities
is form one to ten voxels, and the conductivity amplitude varies by several orders
of magnitude.

3 Finite-Difference Approximation

We propose to use a finite volume of conservative finite-difference method to
approximate the Eq. (1) in an inhomogeneous domain. Let’s introduce a grid
with steps h1, h2, and h3 in the directions x1, x2, and x3 respectively, so that
(xj)mj

= hjmj . Also, we introduce grid cells

Cm1,m2,m3 =
3∏

j=1

[hj(mj − 1/2), hj(mj + 1/2)],
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where
∏

denotes the direct product of sets. Let’s define that the potential and
conductivity are constant within the grid cell, while they can be discontinuous
across the cell faces. After that, the finite-difference approximation of the Poisson
equation (1) can be introduced as:

1

h1

(
σ̃m1+1/2,m2,m3

D1[ϕ]m1+1/2,m2,m3
− σ̃m1−1/2,m2,m3

D1[ϕ]m1−1/2,m2,m3

)

+
1

h2

(
σ̃m1,m2+1/2,m3

D2[ϕ]m1,m2+1/2,m3
− σ̃m1,m2−1/2,m3

D2[ϕ]m1,m2−1/2,m3

)

+
1

h3

(
σ̃m1,m2,m3+1/2D3[ϕ]m1,m2,m3+1/2 − σ̃m1,m2,m3−1/2D3[ϕ]m1,m2,m3+1/2

)
= 0,

(9)
where the finite-difference operators are defined as

D1[ϕ]m1+1/2,m2,m3 =
ϕm1+1,m2,m3 − ϕm1,m2,m3

h1
,

D2[ϕ]m1,m2+1/2,m3 =
ϕm1,m2+1,m3 − ϕm1,m2,m3

h2
,

D3[ϕ]m1,m2,m3+1/2 =
ϕm1,m2,m3+1 − ϕm1,m2,m3

h3
,

(10)

and the electrical conductivity at the faces of grid cells is calculated as an har-
monic averaging of those from the joint cells:

1
σ̃m1+1/2,m2,m3

= 2
(

1
σm1+1,m2,m3

+
1

σm1,m2,m3

)
,

1
σ̃m1,m2+1/2,m3

= 2
(

1
σm1,m2+1,m3

+
1

σm1,m2,m3

)
,

1
σ̃m1,m2,m3+1/2

= 2
(

1
σm1,m2,m3+1

+
1

σm1,m2,m3

)
.

(11)

A detailed description of constructing the approximation can be found, for
example, in [10,13,14,27]. This modification of the coefficients, preserving the
second order of convergence of the finite-difference solution, is represented in
[10,19,24,26].

4 Iterative Solver

The Krylov-type methods are usually used to solve a system of linear algebraic
equations. However, the condition number of the system is high because the
spectrum of the matrix tends to expand to the entire real axis with increasing
matrix size to approximate the differential operator. In addition, in geomaterials,
electrical conductivity (resistivity) can vary by several orders, while increasing
the condition number. To improve convergence several possible preconditioners
are used. Among them, the incomplete LU factorization [14,18], including low-
rank approximations [9,17] and the multi-grid [16,25] are commonly used. The
first class approaches require storing the matrix and its factors; thus, at least
4N of additional variables must be stored in memory, where N is the size of the
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problem (the number of grid points in the computational domain). Approaches
from another class require to solve a set of problems (1) at a series of nested grids
storing the solutions. However, if we consider strongly heterogeneous models
changing the scale or a grid size changes the topology and geometry of the pore
space, that is the main conductive model part. Thus, the problem on a coarse
grid will not be closer to the true one than that for the homogeneous media.
At the same time, the system of equations (9) with constant conductivity is
efficiently solved by spectral method [7,22] using GPUs.

Let’s consider system of equations (9) written in a short form:

Lϕ = f.

After preconditioning, we can get a system

(L−1
0 L)ϕ = Aϕ = L−1

0 f,

where L and L0 are approximations of the Laplace operator for inhomogeneous
and homogeneous media, respectively. The most time consuming part of the
algorithm is the calculating the matrix-vector multiplication. The action of the
matrix L is described by the formulas (9), while the action of L−1

0 requires to
solve a system of equations (9) with constant conductivity for different right-
hand sides. To calculate L−1

0 ψ for an arbitrary ψ we propose to use spectral
methods. Applying the Fourier transform with respect to x2 and x3 to the Eq.
(1), we get a series of one-dimensional problems:

d2Φ

dx2
1

− (k2
2 + k2

3)Φ = ĝ(x1, k2, k3)/σ0, (12)

where Φ is the Fourier image of the unknown function, and ĝ(x1, k2, k3) is the
image of the right-hand side. It’s necessary to note, that the problem can be
solved independently for each frequency. To solve one-dimensional equations,
the same approximation is used as in Eq. (9), after that the Thomas algorithm
for three-diagonal matrices is applied. And then we apply the inverse Fourier
transform to the solution. So, the solution of the problem can be represented as:

ϕ0(x) =
1
σ0

F−1
2,3

[
L̂(k2, k3)−1F2,3[f(x)]

]
,

where F2,3 is the Fourier transform operator, L̂(k2, k3) is the 1D operator, that
depends on the spatial frequencies k2 and k3. Parameter σ0 is equal to fluid
conductivity.

4.1 GPU-Based Implementation

The algorithm is implemented using GP-GPU computations, so that all main
steps of the algorithm are executed using GPU with minimal data flows between
the device and the host. At the preliminary step we read the model, prepro-
cess it, allocate the memory to store solution and the auxiliary variables to
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BCGStab and for the preconditionner. After that, all the actual computations
are performed by GPU only. It includes, application of qFFT along x2 and x3

directions, solution of the series of 1D problems, and updating BCGStab vectors.
Only after the convergence of the algorithm, the solution is transferred to the
RAM.

We estimate the amount of memory needed for computations. In the RAM,
we need to store the model and the solution, which have the size of N1N2N3,
where Nj is the number of grid points in corresponding direction xj . For this
algorithm no more RAM is allocated. Implementation of the BCGStab on the
GPU requires memory to store a model, a solution, and right-hand sides, i.e.,
three main arrays of the same size. Moreover, the standard implementation of
BICGStab still requires an additional five arrays of the specified size N1N2N3

[23]. Next, we additionally store the FFT image of vector ĝ(x1, k2, k3), that
is complex array of the size N1N2N3, to implement the FFT-based precon-
ditioner. Finally, the implementation of Thomas algorithm requires additional
storage of the same size array. Indeed, the solution of one-dimensional prob-
lems is implemented independently for each spatial frequency k2

2 + k2
3, so that

one GPU thread solves a problem only for one frequency. Please note that we
solve one-dimensional problems for homogeneous media. Thus, the matrix can
be described by only one parameter - the square of the spatial frequency divided
by the square of the spatial step. Thomas algorithm requires a storage of matrix
factors. Therefore, we need to store an array of size N1. Moreover, such an array
is required by every GPU thread, so we decided to pre-allocate memory for it;
i.e., we store N2N3 arrays of N1 size just for the parallel Thomas algorithm
implementation.

Finally, we need 11N1N2N3 ∗ 8 bytes to store all the variables on GPU in
case of double-precision computations. A simple estimate shows that for numer-
ical experiments, a 4003 sample requires 5 Gb of memory, while a 5003 sample
requires almost 11 Gb of GPU memory.

5 Numerical Experiments

5.1 Verification of the Algorithm

Parallel Resistors. To verify the developed algorithm, we calculated the elec-
tric current for sets of simple models. First of all, a sample was considered with
one conducting channel, the cross-section of which is square with a side equal
to one-fifth of the sample side. At that, the sample was cubical. The electrical
conductivities were for the background σb = 0.5S and for the channel σc = 5S,
the grid step was equal to 1 µm. The size of samples was varied as 5 · 2n points,
where n = 0, ..., 6, i.e. from 5 to 320 points. We calculated the electric potential
inside the sample and estimated the effective electrical conductivity using the
formula (8). On the other hand, the model under consideration is equivalent to
an electrical contour with parallel resistors, therefore, according to Ohm’s law,
the effective conductivity is

σ|| = σbSb/S + σcSc/S,
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where Sb and Sc are the background and channel areas, while S is the cross-
section area of the sample. For described experiments σ|| was 0.68 S and for all
considered computational domain sizes the estimated conductivity was 0, 68 S
up to machine precision. Note, that one BiCGStab iteration was required for the
algorithm to converge.

Serial Resistors. The second series of experiments was carried out for layered
media with layers normal to the primary direction of the potential change. This
type of models is a serial resistors, and the effective conductivity can be estimated
as

1
σ⊥

=
lb
L

1
σb

+
lc
L

1
σc

,

where lb is the total background thickness, and lc is the total layers’ thickness,
and L is the length of the sample. We considered σc = 5 S, and σb = 0.5 S/m to
provide the electric current. We changed the size of the models in the same way
as before. In addition to the size of the model, we changed the model itself in
two ways. First, we kept one conductive layer and increased its thickness propor-
tional to the domain size. Second, we kept the layer thickness but increased the
number of layers proportional to the size of the domain. Regardless of the size
of the models, BiCGStab converged in 3 iterations with a relative residual not
exceeding 10−13. The numerical estimates of electrical conductivity converged
to a theoretical estimate with the first order.

5.2 Performance Analysis

Dependence on the Model Size. In this section, we present experiments
measuring the performance of the algorithm, depending on the samples size,
contrast in the conductivity and the typical size of the heterogeneities.

We varied the domain size as Nj ∈ [20, 40, 80, 160, 320] points. Note, that
the algorithm works differently in the direction x1 and in the directions x2 and
x3. Thus, it is necessary to consider cases, where N1 is fixed, while N2 and N3

are changed, but N2 = N3, and the opposite case, when N1 is changed, but
N2 = N3 are fixed. Thus, 25 model size combinations were considered. To create
the model, a random sample was generated with the size of one homogeneous
cell, equals to 43 voxels. A random number generator was used to fill the cells
with conductivities σ = 10R([−3,1]), where R([−3, 1]) is the homogeneous distri-
bution within the interval [−3, 1]. To obtain stable estimates of the iterations
number and the computation time, it were performed a series of 10 simulations
for various statistical model realizations. We measured the number of iterations,
required for convergence (Fig. 1) and time per iteration (Fig. 2). The number of
iterations needed for the convergence depends on the number of grid points along
x1 direction (along the main current), but does not depend on the other two sizes
of the sample. As for the time per a single iteration, it increases linearly with
the size of the model in x1 direction, since the Thomas algorithm has a linear
computational complexity with respect to the size of the problem. Further, the
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iteration time increases quadratically with simultaneous increasing sizes along
x2 and x3 direction, which is also reconfirmed by theoretical estimates of the
FFT computational complexity.
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Fig. 1. Dependence of the number of iterations for convergence on the grid points
number in the x1 direction (left) and on different sizes of the model along the FFT
directions (right). The thick lines correspond to the means for the statistical realizations
of models, and the thin lines correspond to the separate realizations.

20 40 80 160 320
Nx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e 
pe

r i
te

ra
tio

n 
(s

)

Ny=Nz=20

Ny=Nz=40

Ny=Nz=80

Ny=Nz=160

Ny=Nz=320

20 40 80 160 320
Ny=Nz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e 
pe

r i
te

ra
tio

n 
(s

)

Nx=20

Nx=40

Nx=80

Nx=160

Nx=320

Fig. 2. Dependence of the time per iteration on the grid points number in x1 direction
(left) and on the model size along the FFT directions (right). The thick lines correspond
to the means for the statistical realizations of models.

Dependence on the Resistivity Contrast. We applied the algorithm to the
Bentheimer sandstone samples described in [6]. It were considered the images
with a resolution of 5.58 µm and 3.44 µm per voxel, which are images B and C
from [6], respectively. The size of the samples was 4003 voxels. These two models
were used to investigate the effect of the conductivity contrast on the number of
iterations required for convergence. The conductivity of the fluid was equal to
5 S/m, while the conductivity of the matrix was changed σM ∈ [10−7, 104]. We
used the stopping criteria that the residual reaches 10−8 and ploted the number
of iterations for two samples with different contrasts between the fluid and solid
conductivity (Fig. 3). According to the presented results, the number of iteration
is minimal if the contrast is low and increases with growing contrast.
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In the Table (1) we represent the number of iterations, the time per iteration
in seconds, and the wall-clock time for simulations with changed values of the
matrix conductivity. Please note, that for the models with the size of 4003, the
average iteration time is about 1.22 s and the wall-clock time is proportional to
the total number of iterations. However, it does not exceed 500 s for a wide range
of conductivity values (Table 1).
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Fig. 3. The number of iterations to achieve residual 10−8 for changing conductivity
contrasts of Bertheimer sandstone.

5.3 Statistical Models

We applied the algorithm to study the relation between the geometrical charac-
teristics of the pore space and the formation factor. Moreover, we applied matrix
reduction algorithm to study the evolution of the parameters. To simulate the
interface movement, we use the level-set method [12], assuming that the dissolu-
tion rate is 0.1h per time step. We considered 100 steps of the matrix reduction
process. The synthetic images were generated using truncated Gaussian field
method [15] so that a statistical model is defined by two parameters: the mean
porosity and the correlation length. We constructed 16 statistical models, with
100 realizations each, with porosity φ = {0.05, 0.1, 0.15, 0.2} and correlation
length λ = {5, 10, 15, 20} voxels. Thus, in total, we generated 1600 images of
2503 voxels each. We measured the Minkowski functionals corresponding to the
total porosity and specific surface area and also estimated formation factors at
each step of matrix reduction process. So, 160000 simulations were done in total.
Minkowski functionals for different statistical models averaged over the realiza-
tions are presented in Fig. 4. Formation factors are provided in Fig. 5. Note,
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Table 1. The number of iterations, the time per iteration and the wall-clock time for
the Bentheimer sandstone experiments.

Sample B Sample C

σM N it Time(s) T/it.(s) N it Time(s) T/it.(s)

10−7 367 454.44 1.23 363 472.43 1.3

10−6 359 438.78 1.22 367 459.41 1.25

10−5 357 435.28 1.22 362 439.76 1.21

10−4 352 426.87 1.22 356 430.81 1.21

10−3 284 346.05 1.22 300 367.0 1.24

10−2 157 191.32 1.22 234 291.23 1.25

10−1 77 94.58 1.32 88 110.35 1.28

100 19 25.37 1.33 18 23.08 1.33

101 15 20.07 1.24 15 20.32 1.23

102 67 83.41 1.22 74 91.57 1.23

103 254 310.2 1.21 323 396.26 1.21

104 361 438.55 1.23 367 457.5 1.24

that formation factor is well-correlated with the sample porosity. Indeed, the
initial correlation length of the Gaussian random field affects the rate of the
matrix reduction and changes in the specific surface. However, similar porosity
values correspond to similar formation factors of the samples, regardless to the
correlation length.
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Fig. 4. Porosity and the Minkowski functional 1 for different models. Blue lines cor-
respond to φ = 0.05, red lines correspond to φ = 0.1, black - φ = 0.15, and green
- φ = 0.2, solid lines correspond to λ = 5, dashed - λ = 10, dotted - λ = 15, and
dasher-dotted - λ = 20.
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Fig. 5. Formation factors for different models. Blue lines correspond to φ = 0.05, red
lines correspond to φ = 0.1, black - φ = 0.15, and green - φ = 0.2, solid lines correspond
to λ = 5, dashed - λ = 10, dotted - λ = 15, and dasher-dotted - λ = 20. (Color figure
online)

5.4 Application to Carbonate Rocks

We applied the developed algorithm to estimate the formation factor of the
carbonate rock. The model is described in details in [2] and the CT-scans are
provided in [1]. In total, four carbonate samples are available.CO2 was injected
into these samples, which resulted in partial dissolution of calcite and erosion
of the pore space. On [1], ten micro-CT scans are available for each sample at
different time points. The samples were grouped in two pairs depending on the
flow rate used in laboratory experiments. Typically, the higher the flow rate,
the faster the matrix dissolves and wormholes form. A detailed description of
samples and lab experiments are provided in [2]. We use the same designations
for the samples: AH and BH correspond to high flow rates, while AL and BL
correspond to low flow rate. We performed simulations using subsamples of the
size of 4003 from each sample (the same for all images at different time points).
After chemical dissolution of the matrix, it was formed the wide wormholes for
the samples where the fluid flow rate was high, which significantly reduces the
formation factors. A wormhole was formed in sample AL, where a low fluid
flow rate was used due to the preexisting preferred path in the sample, which
also resulted in the form-factor decrease. On the contrary, it was observed a
weak dissolution in sample BL. Thus there were no changes in form-factor. We
provide plots of form-factors for all four experiments as a functions of time,
which clearly demonstrate the significant reduction in the rate of changes in
pore space during the formation of wormholes (Fig. 6). Please note, that in all
cases the iterations number before the convergence of the algorithm varies within
400–1100 iterations and depends on the geometry of the pore space and the
complexity of the topology and may require additional study. In contrast, the
time per iteration is stable for all experiments.
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Fig. 6. Pore space of BL carbonate image at the fist (left) and last (right) instant of
dissolution.

6 Conclusions

We developed the algorithm for numerical simulation of the potential electric
field in porous media. The base of the algorithm is the Krylov-type solver for
the discretized Poisson equation. The inverted Laplace operator for homoge-
neous media is used as a preconditioner, calculated using FFT in the directions,
which are normal to the potential change direction. Then we solve a series of
one-dimensional problems with using the Thomas algorithm. The solver is imple-
mented on GPU, which allows solving the problems of voxel sizes up to 4003 with
a single GPU. The iterations number is practically independent of the size of the
model. However, this depends on the conductivity contrast between the fluid and
the rock matrix and the geometrical complexity of the pore space. We applied
the algorithm to investigate the evolution of the carbonate samples form-factor
during CO2 sequestration. We have shown that due to the chemical dissolution
of the carbonate matrix, the form-factor of the samples increases. However, the
rate changes are slowed down when wormholes are formed.

Simulation were performed using computational resources of Peter the Great
Saint-Petersburg Polytechnic University Supercomputing Center (www.spbstu.
ru).
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Abstract. The finite element method is based on the division of the
physical domains into a large number of small polytopes with sim-
ple geometry. Basically, the most useful finite elements can be divided
into two large groups: simplicial elements and hypercubic elements. To
keep conformity, triangulating of curved domains with complex geome-
try requires the usage of various kinds of transitional elements, which
are specific for any fixed Euclidean space. The paper deals with a basic
problem of the finite element method in the multidimensional spaces -
conforming coupling between hypercubic and simplicial meshes. Here we
focus on the bipyramidal elements. Some properties of such kind ele-
ments are discussed in an arbitrary Euclidean space with a dimension
greater than two.

Keywords: Transitional finite elements · Conforming coupling ·
Pyramidal elements · Bipyramids · Bihexatera
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1 Introduction

Most of the papers on the finite element method deal with numerical analysis
and error estimate in numerical approximations of the eigenvalue and bound-
ary value problem solutions. But the successful application of the finite element
method depends on the quality of the finite element meshes. The quality of
meshes is of significant importance especially when the isoparametric multigrid
method is applied to solve elliptic problems in domains with complex geometry.
The multigrid methods require successive refinements of the initial triangula-
tion. That is why the stability of the sequences of successive triangulations is
a crucial point for convergence of the multigrid approximations. The theory of
the finite element meshes and advanced discretization methods can be consid-
ered as a separate scientific area closely related to the finite element method.
We emphasize that the finite element meshes have been applied for computer
graphic simulations without solving any boundary or eigenvalue problems. Here,
we present some papers that deal with advanced discretization methods.

The efforts of various authors have been devoted to different refinement
strategies. Hannukainen et al. [10], Bedregal and Rivara [3], and Perdomo and
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Plaza [20] focus their research on longest-edge bisection methods. The bisec-
tion methods have been generalized to arbitrary section methods by Korotov
et al. [12]. Other refinement strategies have been demonstrated by Luo et al.
[13], Petrov and Todorov [17], and Verstraaten and J. Kosinka [22]. Hermosillo-
Arteaga et al. [11] present recent advances in the theory of the finite element
meshes. Subdivision techniques in multidimensional Euclidean space have been
studied by Brandts et al. [6], Pascucci [19], and Petrov and Todorov [16].

The pyramidal elements are relatively new finite elements. In the three-
dimensional case, they have been created by Bedrosian [2] in the early nineties.
The pyramids play the role of transitional elements between structured and
unstructured finite element meshes. The pyramidal elements have made possi-
ble the development of the hex-dominant meshes considered by several authors
[14,21,24,25]. The application of the pyramidal elements for constructing hybrid
meshes has been described in [4,7–9]. Mathematical models based on composite
hybrid meshes have been developed in [14,15]. In the three-dimensional domains,
the conforming coupling between hexahedral and tetrahedral meshes does not
require complicated transitional elements. The pyramidal elements assure con-
formity in a natural way, see Fig. 1. This construction has been applied by var-
ious authors, see for instance the paper by Yamakawa and Shimada [23]. The
situation is completely different in the higher-dimensional spaces. A tesseract
pyramid cannot be coupled directly with an arbitrary hexateron since all facets
of the hexateron are pentatopes but the pyramid has not got any simplicial
four-dimensional facet. Therefore, the hybrid meshes construction in higher-
dimensional spaces needs a different approach. New transitional finite elements
should be developed.

x2x1

x3

Fig. 1. A conforming coupling between hexahedron and tetrahedron finite elements.

This paper is devoted to the geometrical foundations of the finite element
method and in particular the theory of meshes. One of the fundamental problems
of the finite element method in an arbitrary n-dimensional Euclidean space is
solved in this paper. New k-pyramidal elements are obtained and their properties
are discussed. Specifically, in the five-dimensional space new cubic bipyramids
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and bihexateron elements are developed. A conforming coupling between pen-
teracts and hexatera is demonstrated. Bipyramidal elements in arbitrary higher-
dimensional space are uniformly refined. A plenty of new notions like k-pyramidal
elements, conforming chains etc. are introduced.

Further, the paper is organized as follows. New k-pyramidal elements are
defined and investigated in Sect. 2. A conforming ensemble of penteract and
hexateron meshes are described in Sect. 3. Concluding remarks are presented in
Sect. 4.

2 Subdivision Properties of the Bipyramidal
Elements

Throughout the whole paper, the upper index stands for the dimension of the
polytope.

Definition 1. Two polytopes W1 and W2 are called elements from the same
congruence class if one of them is obtained from the other by a rigid motion.

In the early forties, Freudenthal has divided the n-dimensional hypercube [5] into
n! simplicial elements all of them from the same class. We call these simplices
Freudenthal elements.

Definition 2. We define the class [Ên] [16] of all simplices that are congruent
to the quadruple Freudenthal element

Ên = [ê1(2, 0, . . . , 0), ê2(2, 2, 0 . . . , 0, 0),

ê3(1, 1, 1 . . . , 0, 0), . . . , ên−1(1, 1, . . . , 1, 0),

ên(1, 1, . . . , 1, 1), ên+1(0, 0, . . . , 0)].

Example 1. In the five-dimensional case the class [Ê5] is defined by the hex-
ateron

Ê5 = [ê1(2, 0, 0, 0, 0), ê2(2, 2, 0, 0, 0), ê3(1, 1, 1, 0, 0),

ê4(1, 1, 1, 1, 0), ê5(1, 1, 1, 1, 1), ê6(0, 0, 0, 0, 0)].

The elements of the class [Ên] can be obtained by coupling four Freudenthal
elements. We denote the gravity center and the set of all vertices of the polytope
W by G(W ) and V (W ) correspondingly.

Definition 3. The polytope W−i is obtained from W [w1, w2, . . . , wn+1], n ∈ N,
by removing the node with the number i.
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Definition 4. Let Cn−1 be a (n−1)-dimensional facet of the hypercube Cn. The
(n−1)-dimensional hypercubic pyramid Pn[V (Cn−1), G(Cn)] is called canonical.

The sequence {νn} is defined by νn = 2n−2 + 2.

Definition 5. The bipyramid Bn is a n-dimensional polytope with νn, n ≥ 3
vertices bi that satisfy:

• bi i = 1, 2, . . . , n − 2 are vertices of (n − 2)-dimensional hypercube Cn−2;
• the line segment b = [bνn−1, bνn

] is not collinear to the (n − 2)-dimensional
subspace of Rn determined by the hypercube Cn−2;

• b ∩ Cn−2 = ∅.
We consider some cases that clarify the role of the bipyramids in the lower-
dimensional Euclidean spaces.

x2
x1

x3

Fig. 2. The reference three-dimensional bipyramid.

The two-dimensional pyramid is the well-known triangle but a two-
dimensional bipyramid does not make sense. Therefore, we begin with the three-
dimensional case. The reference three-dimensional bipyramid is presented in
Fig. 2. From Definition 5 with n = 3, we see that the three-dimensional bipyramid
is actually a simplex but this is valid only in the three-dimensional case. The
square pyramid is a transitional element in the interface subdomain between
structured and unstructured meshes. Multigrid methods require stable refine-
ment of all elements in the coarse triangulation. The optimal refinement strategy,
see Fig. 3 for the square pyramidal elements have been described by Ainsworth
and Fu [1]. All elements

[b6, b10, b11, b12], [b7, b10, b12, b13], [b8, b10, b13, b14], [b9, b10, b11, b14]

are three-dimensional bipyramidal elements (tetrahedra). The chain

cube � pyramid � tetrahedron
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Fig. 3. The optimal partition of the square pyramid.

assure conforming coupling between structured and unstructured three-
dimensional meshes, see Fig. 1.

x2

x1

x3 x4

1

2 3

65

4

Fig. 4. The reference bipyramid.

The cubic pyramidal elements cannot guarantee conforming coupling between
tesseract and pentatope meshes in the four-dimensional case. For this purpose,
Petrov et al. [18] have created an additional bipyramidal finite element, Fig. 4.
The four-dimensional bipyramid B[bi, i = 1, 2, . . . , 6] can be divided into two
pentatopes

B = S1[b1, b2, b3, b5, b6] ∪ S2[b1, b3, b4, b5, b6],

that is why it could also be called bipentatope. The transitional four-dimensional
bipyramid is related to tesseract partitions in the interface subdomains. Let us
consider a tesseract element C from the interface subdomain. The transitional
bipyramid is constructed as follows: the sixth and the fifth vertices are the tesser-
act center and the center of a three-dimensional facet C3 of the element C; the
other four nodes form a two-dimensional facet of C3. The cubic bipyramid has
also been applied to refine an arbitrary canonical cubic pyramid. Petrov et al.
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Fig. 5. Couplings between a cubic pyramid and a bipentatope.

have defined a partition operator that divides a canonical cubic pyramid into
cubic pyramids and cubic bipyramids, Fig. 5. They have proved that all bipyra-
mids from this partition are invariant and from the same congruence class. Each
nondegenerated four-dimensional bipyramid B4 (see Fig. 4) has two square pyra-
mid facets B4

−5 and B4
−6, and four tetrahedron facets

[b1, b2, b5, b6], [b1, b4, b5, b6], [b2, b3, b5, b6], [b3, b4, b5, b6].

The conformity in the four-dimensional space is assured by the chain

tesseract � cubic pyramid � square bipyramid �
pentatope .

The bipyramids has a significant advantages since the reference bipyramid
can be easily divided into a set of congruent elements. To this end let us consider
the five-dimensional reference element

B̂5 = [b̂1(−1,−1,−1, 0, 0), b̂2(1,−1,−1, 0, 0), b̂3(1, 1,−1, 0, 0),

b̂4(−1, 1,−1, 0, 0), b̂5(−1,−1, 1, 0, 0), b̂6(1,−1, 1, 0, 0),

b̂7(1, 1, 1, 0, 0), b̂8(−1, 1, 1, 0, 0), b̂9(0, 0, 0, 1, 0), b̂10(0, 0, 0, 0, 1)],

see Fig. 6. The base of B̂5 can be divided into six Freudenthal elements F̂ 3
i . Then

B̂5 = [Ĥi, i = 1, 2, . . . 6, b9, b10],

Ĥi = [V (F̂ 3
i ), b9, b10].

On the other hand, the pyramidal elements cannot be divided only into pyrami-
dal elements. Dividing a pyramidal element so that each edge to be partitioned
into two segments we obtain gaps that are bipyramids. For a three-dimensional
example we refer the reader to the paper written by Ainsworth and Fu [1], see
also Fig. 3, and for the four-dimensional one to the paper by Petrov et al. [18].
Each penteract can be divided into 80 bipyramids.
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Fig. 6. The five-dimensional reference bipyramid.

Let us continue with the n-dimensional case. We introduce the νn-node ref-
erence element

B̂n
k :

⎧
⎪⎨

⎪⎩

−(1 − x̂n−1 − x̂n) ≤ x̂i ≤ 1 − x̂n−1 − x̂n, i = 1, 2, . . . , n − 2
0 ≤ x̂n−1 ≤ 1 − x̂n,

0 ≤ x̂n ≤ 1
.

The largest index in the local numbering of each pyramidal element is reserved
for the apex. Analogously, both apexes of the bipyramid are locally numbered
by the largest indices.

Definition 6. The set of n-dimensional hypercube, n-dimensional simplex, and
all transitional elements that assure a conforming coupling between them is said
to be a conforming chain.

The whole spectre of the reference transitional elements in the n-dimensional
Euclidean space with a integer n ≥ 3 looks as follows

B̂n
k :

⎧
⎪⎪⎨

⎪⎪⎩

−
(
1 − ∑n

j=k+1 x̂j

)
≤ x̂i ≤ 1 − ∑n

j=k+1 x̂j , i = 1, 2, . . . , k

0 ≤ x̂i ≤ 1 − ∑n
j=i+1 x̂j , i = k + 1, k + 2, . . . , n − 1

0 ≤ x̂n ≤ 1

.

Definition 7. All affine equivalent elements to the element B̂n
k are called tran-

sitional elements.

The particular cases when k = 1, n − 2, n − 1 are of significant importance.
The element Bn

1 is a simplex, Bn
n−2 is a bipyramid, and Bn

n−1 is a hypercubic
pyramid. Following these denotations we can say that the polytope Bn

n−k is a
n-dimensional k-pyramid.
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Further, we concentrate on the properties of the bipyramids. Describing the
properties of the bipyramids we omit the index n − 2 and write Bn instead of
Bn

n−2 for notational simplicity. We consider two canonical pyramids Pn
1 and Pn

2

that share a common (n − 2)-hypercubic pyramid Pn−1
1,2 . (Note that each five-

dimensional canonical pyramid is a tesseract pyramid.) We suppose that the
pyramid Pn

1 shares a common facet with a hypercubic element C
n
. The latter

means that Pn
1 should not be refined. Additionally, the transitional elements are

only located in the interface subdomain, which is canonical. Moreover, the facet
Pn−1
1,2 should not be divided. Therefore, the transitional bipyramid Bn, in this

case, should be defined by

Bn = [V (Pn−1
1,2 ), G(Pn

2,−(2n−1+1))]. (1)

Let

μn =

{
1, if n = 3;
2n−4(n − 2)!, n ≥ 4.

Theorem 1. The n-dimensional transitional bipyramid Bn n ≥ 3 can be parti-
tioned uniformly into μn quadruple Freudenthal elements.

Proof. Let Bn be a transitional bipyramid defined by (1). Both pyramids Pn
1

and Pn
2 determine a hypercube Cn with a center the common apex of both

pyramids. The bases of Pn
2 and Pn−1

1,2 are denoted by Cn−1 and Cn−2.

(i) The three-dimensional case is trivial since the bipyramid B3 is a single inde-
composable quadruple Freudenthal element.

(ii) We consider the four-dimensional case as an exception of the general case
when n ≥ 5. The transitional bipyramid B4 has six nodes. We define a pen-
tatope S[s1, s2, . . . , s5] by:

• the vertex s5 is chosen to be the center of the tesseract determined by the
cubic pyramids P 4

1 and P 4
2 ;

• the vertex s4 is the center of P 4
2,−9;

• the vertices si i = 1, 2, 3 form a square corner of P 3
1,2,−5.

Obviously, we can create only two pentatopes following this construction. Both
of them belong to [Ê].

Further, we suppose that n ≥ 5. We define a simplex Sn[s1, s2, . . . , sn+1]
as follows. For the last three vertices we have sn+1 = G(Cn), sn = G(Cn−1)
and sn−1 = G(Cn−2). The next n − 5 vertices are defined in a similar way
si = G(Ci−1), i = 4, 5, . . . , n − 2. Here, Ck is a k-dimensional facet of the
hypercube Cn−2. The first three vertices si i = 1, 2, 3 form a square corner in a
two-dimensional facet of Cn−2. The element Sn ∈ [Ên] by construction [16] (see
the definition of the class [P̂n] in [16] and [16, Theorem 9]).

The hypercube Cn−1 can be partitioned into 2n−2(n − 1)! elements of class
[Ên] but only μn are inside the pyramid Bn

−νn
. Adding the vertex bνn

of Bn to
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each of these (n− 1)-dimensional simplices we obtain μn quadruple Freudenthal
elements. Thus the bipyramid Bn is divided by

Bn =
μn⋃

i=1

Sn
i , voln(Sn

i ∩ Sn
j ) = 0, i �= j, Sn

i ∈ [Sn].

The main idea of the finite element method is to calculate all integrals in the
finite element of reference. Theorem 1 guarantees that integrals in an arbitrary
transitional element

∫

Bn

f(x)dx =
μn∑

i=1

∫

Sn
i

f(x)dx, Sn
i ∈ [Ên] ∀i = 1, 2, . . . , μn

can be replaced by integrals in simplicial elements all of them from the same class.
This is a significant advantage with respect to the application of the bipyramidal
elements. Similar results can be obtained for the other n-dimensional k-pyramids.

Having in mind that the polytopes Bn
k and Bn

k+1 can share Bn−1
k facet the

conforming chain in Rn looks as follows

Cn � Bn
n−1 � Bn

n−2 � . . . � Bn
2 � Bn

1 = Sn,

where Cn is a n-dimensional hypercube and Sn is a n-dimensional simplex.

3 Transitional Elements in the Five-Dimensional
Case

In this section, we restrict ourselves to the five-dimensional space. Let Ω be
a bounded simply connected five-dimensional domain with a curved Lipschitz-
continuous boundary Γ = ∂Ω. To obtain an efficient triangulation of the domain
Ω we divide it into several subdomains. We separate as large as possible canonical
subdomain Ω̂ ⊂ Ω. The boundary layer ΩB is connected to Ω̂ by an interface
subdomain ΩI , which is also a canonical domain. The domain Ω̂ is triangulated
by penteract elements and the boundary layer by curved simplicial elements.
The transitional elements are located in the interface subdomain ΩI .

Let Π̂ ⊂ Ω̂ and ΠI ⊂ ΩI be two adjacent penteract elements that share a
common facet

T2[π1, π2, π4, π7, π9, π10, π12, π15, π17, π18, π20, π23, π25, π26, π28, π31],

see Fig. 7. Our goal is to decompose the penteract ΠI into transitional and
simplicial elements. First, we divide the element ΠI into ten tesseract pyramids
Pi. The tesseract pyramid P2[V (T2), π33], should not be refined since P2 and
Π̂ share the common facet P2,−17. All neighbors of P2 are refined by the same
way. The opposite pyramid P8 of the element P2 is refined only by simplicial
elements. That is why we show how one of the neighbors

P1 = [T1[πi, i = 1, 2, . . . , 16] , π33]
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Fig. 7. The penteract ΠI .

should be refined, see Fig. 8. The pyramids P1 and P2 share a common cubic
pyramid

P1,2[π1, π2, π4, π7, π9, π10, π12, π15, π33].

The pyramid P1,2, see Fig. 7 and its facets should not be divided. Additionally,
we denote the penteract center and the center of the facet T1 by π33 and π34,
correspondingly. The point π35 is the center of P1,2,−9.

We introduce a partition operator L that refine the bipyramid

B5
3 = [bi = πi, i = 1, 2, . . . , 10]

into twelve hexatera, see Fig. 8 and 9, as follows:

LB =
{

[b1, b2, b4, b9, b10, b11], [b1, b2, b5, b9, b10, b11],

[b1, b4, b5, b9, b10, b11], [b2, b3, b4, b9, b10, b11], [b2, b3, b6, b9, b10, b11],

[b2, b5, b6, b9, b10, b11], [b3, b4, b7, b9, b10, b11], [b3, b6, b7, b9, b10, b11],

[b4, b5, b8, b9, b10, b11], [b4, b7, b8, b9, b10, b11], [b5, b6, b8, b9, b10, b11],

[b6, b7, b8, b9, b10, b11]
}

.

Let H[hi, i = 1, 2, . . . , 6] be an arbitrary hexateron belonging to LB. Then
h6 is the center of the penteract ΠI , h5 is the center of the tesseract T1, and h4

is the center of a three-dimensional facet P1,2,−9 of T1. The other three vertices
hi i = 1, 2, 3 form a square corner in a two-dimensional facet of P1,2,−9. This
construction is valid for all elements of LB and guarantees that H belongs to
[Ê5].
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Fig. 8. The global and the local numbering of the tesseract pyramid P1.
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Fig. 9. The global and the local numbering of the cubic bipyramid B5.

Any nondegenerated five-dimensional bipyramid (see Fig. 6) has two facets
B−10 and B−9 that are cubic pyramids and six facets

[b1, b2, b3, b4, b9, b10], [b1, b2, b5, b6, b9, b10], [b1, b4, b5, b8, b9, b10],

[b2, b3, b6, b7, b9, b10], [b3, b4, b7, b8, b9, b10], [b5, b6, b7, b8, b9, b10]

that are four-dimensional bipyramids (see Fig. 4). The latter means that a five-
dimensional bipyramid cannot be coupled conformingly with an arbitrary hex-
ateron. To enable conforming coupling between penteract and simplicial elements
in the five-dimensional space, we need another seven-node transitional element
B5

2 . The new element is called bihexateron, see Fig. 10, and the reference element
is defined as follows

B̂5
2 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
(
1 − ∑5

j=3 x̂j

)
≤ x̂i ≤ 1 − ∑5

j=3 x̂j , i = 1, 2

0 ≤ x̂3 ≤ 1 − x̂4 − x̂5,

0 ≤ x̂4 ≤ 1 − x̂5,

0 ≤ x̂5 ≤ 1

.
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Fig. 10. The reference bihexateron B̂5
2 .

An arbitrary nondegenerated bihexateron has seven facets, three of them

[b̂1, b̂2, b̂3, b̂4, b̂5, b̂6], [b̂1, b̂2, b̂3, b̂4, b̂5, b̂7], [b̂1, b̂2, b̂3, b̂4, b̂6, b̂7]

are four-dimensional bipyramids and other four are

[b̂1, b̂2, b̂5, b̂6, b̂7], [b̂1, b̂4, b̂5, b̂6, b̂7], [b̂2, b̂3, b̂5, b̂6, b̂7], [b̂3, b̂4, b̂5, b̂6, b̂7]

are pentatopes. Therefore B5
3 and B5

2 can share B4
2 . Obviously, a bihexateron and

a hexateron can be connected conformingly since the nondegenerated hexateron
has six pentatopial facets. Thus, we can assure a conforming coupling between
penteracts and hexatera by applying the following chain

penteract � tesseract pyramid � bipyramid �
bihexateron � hexateron .

4 Conclusion

Two kinds of new transitional finite elements are defined in the five-dimensional
Euclidean space. The new seven-node bihexateron element and the new ten-node
cubic bipyramid can share a common facet. A conforming coupling between struc-
tured and unstructured five-dimensional finite element meshes is obtained based
on the chain penteract-tesseract pyramid-bipyramid-bihexateron-hexateron. All
kinds of transitional elements are defined in the n-dimensional case, n ≥ 3.
The pyramidal elements are presented as a special kind of k-pyramidal elements.
Similar presentation is found for the simplicial elements. The conforming chain
is obtained in the n-dimensional case. A uniform refinement of the transitional



558 M. S. Petrov and T. D. Todorov

bipyramids by quadruple Freudenthal elements is obtained. The uniform refine-
ment essentially reduces the computational complexity of the integral computa-
tions in such elements. Additionally, the new reference elements are also triangu-
lated uniformly.
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10. Hannukainen, A., Korotov, S., Kř́ıžek, M.: On numerical regularity of the face-
to-face longest-edge bisection algorithm for tetrahedral partitions. Sci. Comput.
Programm. 90(Part A) (2014) Pages 34–41

11. Hermosillo-Arteaga, A., Romo-Organista, M., Magaña del Toro, R., Carrera-
Bolaños, J.: Development of a refinement algorithm for tetrahedral finite elements.
Rev. Int. métodos numér. cálc. diseño ing. 37(1), 1–21 (2021)
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Abstract. Multiple sequence alignment is an important tool to rep-
resent similarities among biological sequences and it allows obtaining
relevant information such as evolutionary history, among others. Due
to its importance, several methods have been proposed to the prob-
lem. However, the inherent complexity of the problem allows only non-
exact solutions and further for small length sequences or few sequences.
Hence, the scenario of rapid increment of the sequence databases leads
to prohibitive runtimes for large-scale sequence datasets. In this work
we describe a Multi-GPU approach for the three stages of the Progres-
sive Alignment method which allow to address a large number of lengthy
sequence alignments in reasonable time. We compare our results with two
popular aligners ClustalW-MPI and ClustalΩ and with CUDA NWmod-
ule of the Rodinia Suite. Our proposal with 8 GPUs achieved speedups
ranging from 28.5 to 282.6 with regard to ClustalW-MPI with 32 CPUs
considering NCBI and synthetic datasets. When compared to ClustalΩ
with 32 CPUs for NCBI and synthetic datasets we had speedups between
3.3 and 32. In comparison with CUDA NW Rodinia the speedups range
from 155 to 830 considering all scenarios.

Keywords: Multiple sequence alignment · MSA · Hybrid Parallel
Algorithms · Multi-GPU Algorithms · Large sequence alignment

1 Introduction

A very relevant task in bioinformatics is sequence alignment, which is rou-
tinely employed in many situations, such as comparing a query sequence with
databases, comparative genome and sequence similarity searching. There are
many important real world objectives which can be pursued by applying sequence
alignment, such as paternity test, criminal forensics, drug discovery, personal-
ized medicine, species evolution studies (phylogeny), just to mention a few. In
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fact, there is a myriad of techniques and tools proposed with this aim, includ-
ing BLAST [1], S-W [2] and N-W [3] as the most popular ones. In particular,
multiple sequence alignment (MSA) is one of the important formulations of the
problem whose objective is to align multiple sequences at once. It is usually
involved in phylogeny, molecular (2D and 3D) structure predictions such as pro-
teins and RNAs, among other applications. Due to the COVID-19 pandemic,
researchers are keen to reveal SARS-CoV-2 strains phylogeny hoping to under-
stand the implications of the emerging strains in public health. Currently there
are about a million strain sequences deposited (https://www.gisaid.org).

Several methods have been proposed for MSA, such as MAFFT [4],
ClustalW [5], Kalign [6] and DeepMSA [7]. Yet, the assembly of optimal MSAs
is highly computationally demanding considering both processing and memory
requisites, since the problem is considered NP-Hard [8]. Dynamic programming
based approaches retrieve an MSA with k sequences of length n in O(2kk2nk).
These techniques usually present important limitations regarding both length
and number of input sequences to be computationally feasible [9].

Due to the aforementioned limitations and the fact that both the number
of biological sequences and sequence lengths are continuously growing, finding
fast solutions have led to employment of high performance computing techniques
to achieve MSA as the popular aligners ClustalW MPI [10] and ClustalΩ [11].
Hybrid parallel implementations of MSA have been recently proposed [12,13].
The former addresses only the first stage and the latter implements the three
stages of the progressive alignment method, namely: i) pairwise alignment on
Multi-GPUs with MPI-based communication among processes; ii) Neighbor
Joining [14] implementation in a single GPU to build the guide tree; and iii)
CUDA-GPU cluster implementation of the parallel progressive alignment algo-
rithm similar to the implementation done by Truong et al. [15].

In this work we improved the three stages of the method proposed in [13]
by addressing lengthy sequences during stage i), developing a scalable Neighbor
Joining using Multi-GPU and paralleling Myers-Miller [16] algorithm. To the
best of our knowledge this is the first Multi-GPU Neighbor Joining method in
the literature. In fact, when comparing the results obtained by our method with
the ClustalW-MPI and with the CUDA NW module of the Rodinia Suite [17],
our proposal with 8 GPUs achieved speedups ranging from 28.5 to 282.6 with
regard to ClustalW-MPI with 32 CPUs considering three NCBI datasets and
three synthetic datasets. In comparison with CUDA NW Rodinia the speedups
range from 155 to 830. When compared to ClustalΩ with 32 CPUs in NCBI and
synthetic datasets, we had speedups between 3.3 and 32. Regarding accuracy and
quality of solution, the proposed method had a performance similar to Clustal-W
and ClustalΩ, considering the benchmark BAliBASE [18].

This text is structured as follows: Sect. 2 introduces some basic concepts;
Sect. 3 describes the computational model and some details about the parallel
algorithms; Sect. 4 shows experimental results, including a comparative analysis.
Finally, Sect. 5 presents the final remarks and future work.

https://www.gisaid.org
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2 Preliminaries

A sequence over a finite alphabet Σ is a finite enumerated collection of elements
in Σ. The length of a sequence s, denoted by |s|, is the number of symbols of
s and the j-th element of s is denoted by s(j). Thus, s = s(1) . . . s(|s|). The
set of all sequences over Σ is denoted by Σ∗. Let S = {s0, s1, . . . , sk−1} ⊆ Σ∗.
An alignment of S is a set A = {s′

0, . . . , s
′
k−1} ⊆ Σ∗

(
= (Σ ∪ { })∗

)
, where:

(i) �∈ Σ is a new symbol called space; (ii) |s′
h| = |s′

i|; (iii) s′
i is obtained by

inserting spaces in si; (iv) there is no j such that s′
i(j) = for every i, 0 ≤ i < k.

Note that a sequence can be seen as an alignment for k = 1, i.e., {s} is the single
alignment of s and, hence, we sometimes refer to a sequence as an alignment.
The length of alignment A is |s′

i| and it is denoted by |A|. We denote by AS the
set of all alignments of S.

An alignment is an important tool for comparison of sequences obtained from
organisms that have the same kind of relationship. It shows which part of each
sequence should be compared to the other, thus suggesting how to transform
one sequence into another by substitution, insertion or deletion of symbols. An
alignment can be visualized placing each sequence above another as showed in
the following figure with two different alignments of (abacb, bacb, aacc). The left
part represents the alignment (abacb, bacb, a acc) and the right one represents
the alignment (aba cb , b acb , a a c c). Notice that the first suggests that the
last c in the third sequence comes from substitution operation and the second
alignment suggests that it comes from insertion operation.

a b a c b
b a c b

a a c c

a b a c b
b a c b

a a c c

An optimal alignment in AS is one which maximizes a given objective func-
tion whose value is also called similarity of S. The problem of finding an optimal
alignment or even only its similarity is NP-hard for many objective functions.

This work deals with a polynomial method known as progressive align-
ment [19], which is described in 3 stages. This organization is extremely con-
venient because the algorithms for each stage are studied and improved inde-
pendently in this work. The first stage corresponds to the PairWise alignment
(PW) of all pairs of sequences, which builds a similarity matrix D. Using D
as input, the next stage Neighbor Joining (NJ) consists in generate of a rooted
binary tree T according to the similarity of each pair of sequences, which means
that the more similar two nodes are, the closer they are. Each node represents
an operational taxonomic unit (OTU): the leaves represent the sequences given
in the PW step and the internal nodes represent hypothetical ancestor of theiR
descendant nodes. We can refer a vertex set of a subtree of T as a set of OTUs.
This tree T is known as a guide tree and each subtree of T corresponds to a group
of closest related OTUs. The third stage, known as Progressive Alignment (PA),
receives T as input, builds a profile for each node u of T and returns a profile of
the root of T . The profile of the root of any subtree T ′ is a multiple alignment
of the sequences that are leaves of T ′ and it is according to T ′ topology.
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Pairwise Alignment (PW). A scoring matrix γ for Σ is a function γ : Σ ×
Σ → R, such that γ( , ) = 0, γ(a, ) = g for some constant g ∈ R and
γ(a, b) = γ(b, a) for each pair a, b ∈ Σ . Function γ is used to attribute value for
each pair of aligned sequences.

Given sequences s and t, we define a matrix H:

H[i, j] = max
{

H[i − 1, j − 1] + γ(s(i), t(j)),
H[i − 1, j] + g,H[i, j − 1] + g

(1)

where H[0, 0] = 0. The value of the optimal alignment of s, t is H[|s|, |t|]. If |s| and
|t| are O(n), then H can be computed in O(n2) time and, once H is calculated,
an optimum alignment (s′, t′) such that

∑
i γ(s′(i), t′(i)) is maximum can be

found in O(n) time. Matrix H is called alignment matrix.
A matrix D indexed by sequences and called similarity matrix is generated,

where D[si, sh] is the value of the optimum alignment of si and sh. As a con-
sequence of γ definition, D is a symmetric matrix, which implies that we can
represent D as a lower triangular matrix. Since there are O(k2) entries of D and
each entry spends O(n2) time to be computed, the overall time spent in this step
is O(k2n2). Matrix D is the input to the next step as follows.

Neighbor Joining (NJ). This stage creates guide phylogenetic tree T that is a
binary phylogenetic tree from the similarity matrix D computed in the previous
stage and it is the input of the next stage. This stage is implemented using the
NJ algorithm [14]. The building begins with a star tree initially given by the
set S of k sequences representing the k leaves that are the indices of D and a
virtual node c in the center. In each iteration, if |S| = 2, it deletes the node c
and connect directly the two vertices in S. Otherwise, pick u, v for which

(k − 2)D[u, v] −
∑

w∈S−{u,v}

(
D[u,w] + D[w, v]

)
(2)

is the largest. Then it deletes edges (u, c) and (c, v), creates a new vertex w (new
OTU) and edges (u,w), (v, w), (w, c), updates S = (S − {u, v}) ∪ {w} and sets

D[w, z] =
1
2

(
D[u, z] + D[v, z] − D[u, v]

)
(3)

for each vertex z �= w in S. It is performed in k−2 iterations. The expression (2)
runs in time O(k3) in the first iteration and, if the computed values are stored,
it spends O(k2) time in each of the next iterations. Expression (3) spends O(1)
time in each iteration. Thus, the total running time spent in stage 2 is O(k3) +
(k − 3) · O(k2) + (k − 2) · O(1) = O(k3).

Progressive Alignment (PA). This stage buids an MSA by combining pair-
wise profiles and the guide tree described in the previous sections. For conve-
nience, let us assume that the guide tree obtained is rooted. This assumption is
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not a special constraint. A rooted binary tree can be obtained from a rootless
binary tree with the same set of leaves by subdividing some edge of the tree. By
doing this, each internal node has exactly two children.

Given two sets S and S′ of sequences, S′ ⊆ S, and two alignments C ∈ AS

and A ∈ AS′ , C is compatible with A if the elements of S′ are aligned in C in
the same way as in A. Feng and Doolittle [20] describe, from the alignments A
and B, how to build a new alignment C that is compatible with A and B. Next,
we show an example of two alignments A and B, and the respective compatible
alignment C.

A =
a c a b
b b b a
a c a a a

B =
c a b b a a
c a c a

C =

a c a b
b b b a
a c a a a
c a b b a a
c a c a

The algorithm traverses the set of internal nodes of the rooted guide tree in
post-order and it defines an profile for each visited OTU such that it is compat-
ible with its children’s profiles (and by transitivity, compatible with each of its
descendants, including leaves). The root profile is the final MSA of the method.

Given an alignment A = {s′
0, . . . , s

′
k−1}, a column j of A is denoted by A(j)

and define Γ (A(j)) =
∑

i<h γ(s′
i(j), s

′
h(j)).

Now, we describe how to get the rooted profile A of a set S. First of all,
consider the corresponding profiles A1 and A2 of (two) root children. Suppose
that |A1| = n1 and |A2| = n2, A1 and A2 with k1, k2 rows and i, j be indexes.
Denote by A1(i) · A2(j) the concatenation of columns A1(i) and A2(j), i.e., the
sequence with k1 + k2 elements

A1[0][i], . . . , A1[k1 − 1][i], A2[0][j], . . . , A2[k2 − 1][j].

Also, denote by � the sequence of � symbols equals to and suppose that
n1, n2 = O(N) for some N .

We compute the matrix also called alignment matrix

M [i, j] = max
{

M [i − 1, j − 1] + Γ (A1(i) · A2(j)),
M [i − 1, j] + Γ (A1(i) · k2),M [i, j − 1] + Γ ( k1 · A2(j))

(4)

for each 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 with M [0, 0] = 0. Considering n = n1 + n2

and that each entry of M can be computed in constant time, we spend O(n2)
time for compute all entries of M and since the guide tree has O(k) nodes,
the entire procedure spends O(kn2) time. Once M is calculated, using a similar
strategy to the trace back method by Needleman-Wunsch [3], we spend O(n) to
obtain each profile (compatible alignment) and O(kn) to obtain all profiles.
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3 Parallel Algorithms

3.1 Homogeneous Hybrid Parallel Platform

In this paper, we developed an MSA algorithm based on progressive alignment
strategy to execute on a hybrid parallel computing platform. That platform is
based on the joint use of CPUs and GPUs in order to obtain high performance
systems. Hybrid parallel platform is a two-level parallel computing model. Below
we provide some features of the target hardware related to this architecture.

Suppose we have p compute nodes (CN for short) and each of them contains
a GPU: At the upper level, we use a coarse-grained model based on Beowulf
cluster, which is scalable and based on an inexpensive hardware infrastruc-
ture composed by private and dedicated interconnection network coordinated
by MPI [21]. See Fig. 1. At this level a special process called master node runs
in CN 0, managing the tasks of the computing nodes. On the other hand, at the
lower level, we use a fine-grained model through the CUDA-enabled GPUs [22].
CUDA (Compute Unified Device Architecture) is a parallel architecture based on
many-core paradigm for NVIDIA GPUs. CUDA enables programmers to write
a source code and execute it on the GPU. Each GPU can have several streaming
multiprocessors (SM) and each SM contains dozens or even hundreds of Single
Processors (SP). All SMs access a same device global memory.

The code runs on CPU or GPU and the tasks of the computing nodes are
managed by MPI. CPU creates multi-thread kernels for the GPU. GPU has its
own scheduler that assigns a thread block to any SM dynamically during the
execution, and the SPs within SM run the threads.

Fig. 1. Homogeneous hybrid parallel model

On CUDA programming environment we need define size of thread blocks and
size of the grid, which is an abstraction for a group of thread blocks. Each thread
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block is assigned to an SM, and threads in a same block access a same shared
memory. Moreover, the hierarchical memory consists in global memory, texture
memory, shared memory and registers, where global memory is the slowest and
registers are the fastest.

3.2 Parallel Algorithm

Our implementation of the MSA problem explores the two level of parallelization
along the three stages of the progressive alignment. During the processing the
job coordination on a CN is done by CPU which can execute local operations
using CPU and GPU accordingly.

At the upper level, we use coarse-grained parallelism which manages whole
process and control the distribution of the jobs to the CNs. In this level, initially
the master node reads the input sequences from the disk and replicates them
into the CPU memory of all CNs. Our algorithm uses a simple and efficient task
allocation strategy that performs uniform load balancing between the CNs.

Let k be the number of sequences. In order to save space since we are primar-
ily interested in computing large amount of lengthy sequences, we represent the
similarity matrix D (lower triangular) by an array V of size N = k(k−1)/2. Each
position in V represents a sequence pair to be aligned, considering the positions
of the triangular matrix in lexicographic order (see Fig. 2). Assume that N is
divisible by p. The array V is partitioned into p segments of size N/p, which we
denote by v0, v1, . . . , vp−1. The CN i, 0 ≤ i ≤ p − 1, will process the elements of
the segment vi, whose positions in V are in the range [(i)N

p . . (i+1)N
p −1]. Each

CN i identifies the sequence pairs that will be sent to its GPU by computing (in
CPU) the mapping of the elements from vi to D, as follows:

l =
⌊√

2(iN/p + 1) + 1
2

⌋
and c = iN/p − l(l − 1)/2, (5)

where l and c correspond, respectively, to the row and column of the element
in D which is represented by the first element of vi. Clearly, the Eq. 5 can be
calculated in O(1) time.

As all sequence characters belong to a small and well-defined alphabet, they
can be mapped into numerical identifiers, allowing the representation of each
character symbol with only 5 bits of memory (which allows to represent up to
25 = 32 symbols). Hence, we can store 3 distinct sequence elements in a single
16-bit integer type using simple bit-wise operations. Effectively, this reduces
by up to a third the total amount of memory required to store each sequence.
Nevertheless, each sequence character can still be randomly accessed in constant
time complexity with negligible overhead.

At the lower level, we use fine-grained parallelism whose jobs are computed on
the CUDA-enabled GPUs. In the subsection below we detail the used approaches
to perform the three stages using hybrid parallel computing.

Matrix Similarity on Multi-GPU Platform. In this stage we calculate the
similarity matrix aligning pairwise sequences using a GPU version of the N-W
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Fig. 2. Load balancing: the array V is evenly partitioned into p segments of size N/p
among p computer nodes.

algorithm [3]. We align each pair of sequences in parallel on the GPU of each
CN using an approach based on intra-task parallelization [23].

Each CN i receives from the master node the whole set of sequences, together
with the scoring matrix γ, and identifies (through Eq. 5) the pairs vi whose
similarity value it will calculate. These data are sent to the GPU. The matrix γ
is stored only once in the shared memory since it is the same for all the pairs.
However, the segment vi is sent to the GPU global memory in waves. Each
element of the matrix D is computed using dynamic programming based on the
Eq. 1. After aligned a set of pairs another wave of data is sent to GPU.

In this stage we save memory and gain performance by concurrently calcu-
lating (in GPUs) the similarity values using a combination of the techniques of
the algorithms DScan-mNW and LazyRScan-mNW [15], as follows (see Fig. 3):

Fig. 3. Flow for calculating similarity values
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Each SM stores in its shared memory its respective sequence slice and per-
forms a diagonal scan. Each alignment matrix is iterated over the sequence in
vertical slices which are computed by a thread block. Each thread acts over a
row at a time. The vertical slice size is calculated so that it fits into shared
memory and according to available SPs. When the thread reaches the end of
the slice its value is transferred to global memory (dark green column). Then,
for the next slice to resume the processing, the value of this cell is sent again
to shared memory. Since our approach each thread needs only three cells at a
time, instead of maintaining two contiguous rows in the shared memory we use
sliding window strategy where old cells are removed from the shared memory.
The similarity value is sent to the global memory as soon as they is computed.

For long sequences, we can split vertical slices in horizontal slices by forming
a square mesh. As CUDA limits the number of threads per block, this improve-
ment allows shared memory is used by more threads and hence to speedup
the processing. Both combined techniques allows us to hide the access latency to
global memory. However the last optimization limits the use of threads per block.
On the other hand, it reduces the amount of necessary shared memory to store
the similarity values being calculated. In our implementation a good equilibrium
was 480 threads by block. After to compute all similarity values on GPUs these
values are sent to master node where the whole matrix D is assembled.

Guide Phylogenetic Tree. Taking matrix D (previous stage) as input, we
perform this stage according to the NJ algorithm [14], whose goal is to build
the guide tree. Basically the NJ algorithm starts with a star tree where each
leaf vertex corresponds to an OTU and iterates over the following three steps in
order to joining the most similar pair of OTUs until reaches all leafs of the tree:

1. From the matrix D we have to compute each OTU pair in D by using the
Formula 2. This processing generates a derived matrix in order to maintain
the evolution relationship among all the OTUs.

2. By current derived matrix we choose the maximum value representing the
most similar pair of OTUs. These pairs are joined to a newly created ver-
tex which is joined the rest tree such that they form a new branch in the
phylogenetic tree.

3. After joining the pair of OTUs we have to update the similarity matrix D
according to Eq. 3. New row and column are created to store the similarity
between the joined OTU and the remaining OTUs. Then, row and column
correspondent to chosen OTUs in Step 2 are removed from the matrix D.

From parallel point of view this is a difficult task due to the data dependency
among the 3 steps above, in addition there is dependency among each iteration.
Despite of the large data dependency required by the method, we face the chal-
lenge to implement this stage of the alignment on Multi-GPU platform. Figure 4
illustrates the overall flow of an iteration.

Initially, the master node broadcasts the matrix D to all CNs which is copied
to the GPU global memory. As soon as the CNs receive D they compute their
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Fig. 4. MPI-CPU-GPU flow in stage two (construction of the guide tree)

respective chunks in the same scheme that of the first stage and send to GPU.
So, each GPU have to compute the range [(i)N

p . . . (i + 1)N
p − 1].

For the Step 1, computing Eq. 2 can be done independently within each GPU.
We avoid wasting time with redundant operations by calculating the sum of the
rows and columns attributed to GPU in advance since this values are used for
all pairs. This values are kept in the shared memory and updated at the end of
each iteration. Due to memory limit and the large amount of pairs to process we
have to launch multiple kernels to compute the derived matrix, where the exact
number of kernels depends on the number of sequences k, device global memory
and the number of SMs available. The number of pairs are evenly distributed
among the blocks.

In Step 2, choosing the largest value in D is accomplished as follows. Each
thread computes its largest value and keeps it locally. After, each thread block
applies a reduction and obtains the largest value of the block. Then, each block
sends its values to CPU and each CPU computes its largest value. Finally MPI
applies a reduction to obtain the global largest value. This value and its respec-
tive pair (i, j) are then known by all CNs. The pair (i, j) is used in each CPU
to create the new node and the tree is updated on CPU.

In Step 3, we perform the computation of the branch sizes for the new node,
the similarity value from the new node to the other sequences and update D. For
this, each GPU receives the largest value and the pair (i, j) and has to remove
row i and column j from D. In fact, these row and column are only marked as
removed. We also have to calculate the similarity of newly create OTU with the
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remaining OTUs according to Eq. 3. Again, the Eq. 5 allows threads to access
each OTU quickly. Hence we update matrix D and recalculate the sum for each of
rest row/column to be used in next iteration. Note that a sum and a subtraction
is enough to recalculate row/column sums instead of applying reduction.

An important improvement we implement is that of a threshold. At the end
of each iteration every GPU calculates whether its workload is less a threshold.
If so, we choose the last GPU to become idle and its task is redistributed.

Progressive Alignment. In this stage, we perform the alignment of the
sequences according to the order provided by the guide tree. Starting from the
leaves, the method works in a bottom-up way operating in parallel level by level
and aligning ever larger groups of sequences until reaching the root (see Fig. 5).

Our approach keeps the guide tree in the master node’s memory, which coor-
dinates the alignments among its CNs. Each CN receives from the master node
a node of the guide tree and sends its sequences to GPU. Thereafter, the GPU
accomplishes a profile or sequence alignment and transfer it to its CPU which
send it to the master node which stores it into CPU memory.

Fig. 5. Parallel progressive alignment algorithm. The guide tree lead the order of the
pairwise alignments.

For all of the guide tree’s nodes with height 1, several CNs run concurrently
in its GPU our parallel version of the algorithm Myers and Miller [16]. Since
we have to compute the alignment, not only the score, this method enables to
address long sequences. In this case, we use only horizontal slices.

For the remaining nodes, note that the computation of M [i, j] is based on
the sum of all evolutionary distances between all possible combinations of amino
acids. Hence, as we move up the tree, memory will be a bottleneck. To overcome
this bottleneck we transfer only a profile and the other is sent as the slicing
window technique in horizontal slices. Each GPU trhead calculates a score con-
currently, for each column of the profile. These scores are projected as initializa-
tion values for the matrix M , enabling us to align the profile pair. After we join
together all of their sequences into a single alignment profile.
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4 Experimental Results and Discussion

We have compared our implementation, called Museqa (acronym for Multi-
ple Sequence Aligner), with the popular aligners ClustalW-MPI and ClustalΩ.
Besides, we compared the Museqa PW stage with PW R, a CUDA N-W imple-
mentation included in the Rodinia Suite [17]. In our experiments we consid-
ered sequence datasets from NCBI and OrthoDB [24]. We have also considered
three randomly generated synthetic sequence datasets called Syn20k, Syn30k and
Syn40k. Table 1 presents the number of sequences and the sequence length of each
dataset.

Table 1. Datasets considered in the experiments.

Datasets Zika Dengue SARS-CoV2 OrthoDB Syn20k Syn30k Syn40k

# of sequences 700 6,123 7,631 10,000 20,000 30,000 40,000

Average length 3,423 3,392 7,096 3,150 200 200 200

We run our experiments in two different platforms: Server A with Intel(R)
Xeon(R) CPU E5-1620 3.50 GHz, 4 cores(8 threads), 64 GB RAM, 4x GeForce
GTX 1080-11 GB and Server B with 2 x Intel(R) Xeon(R) CPU E5-2683
2.10 GHz, 16 cores (32 threads), 512 GB RAM, 8 x Tesla V100-16 GB.

Table 2. Comparison of Museqa run in GPUs with ClustalW-MPI run in CPUs and
comparison of the stage PW of the Museqa with PW R of the Suite Rodinia.

a) ClustalW-MPI b) ClustalΩ c) R S d) Museqa Speedups

#CPUs #CPUs #CPUs #CPUs #GPUs #GPUs a/d b/d c/d

Dataset Stage 8 32 8 32 1 4 8 1

Zika PW 2h 10 52m 03 31 s 15 s 30m 58 14 s 3 s 1041 5 619

NJ 15 s 2 s 14 s 9 s – 0.11 s 0.3 s 6.67 30 –

PA 2m 53 2m 20 16m 34 27m 27 – 1m 15 58 s 2.41 17.1 –

Dengue PW 196 h 07 64 h 17 8m 43 3m 40 14 h 28 18m 5m 37 687 0.65 155

NJ 37m 18 36m 56 2m 21 1m 23 – 11 s 11 s 201 7.55 –

PA 28m 59 20m 01 2 h 27 3 h 57 – 12m 54 10m 11 1.97 14,5 –

Sars-Cov2 PW 597 h 16 179 h 54 1 h 27 35m 42 92 h 57 1 h 53 35m 45 302 1 156

NJ 1 h 08 1 h 05 40m 41 22m 19 – 18 s 16 s 244 84 –

PA 28m 58 26m 09 14 h 24 19 h 59 – 15m 34 14m 18 1.83 60.8 –

OrthoDB PW 489 h 163 h 01 44m 45 22m 22 108 h 24m 27 7m 48 1253 2.86 830

NJ 2 h 45 2 h 33 10m 30 7m 30 – 29 s 7 s 1031 64.3 –

PA 129 h 20 46 h 11 47 h 15 94 h 30 – 5m 22 2m 36 1065 1090 –

Syn20k PW 2h 51 1 h 18 32 s 14 s 3 h 20 1m 55 32 s 146 0.44 375

NJ 35 h 10 32 h 24 7 s 5 s – 3m 44 50 s 2333 0.1 –

PA 8h 55 3 h 11 8 h 5 9 h 4 – 2 h 17 1 h 06 2.89 7.35 –

Syn30k PW 6h 24 2 h 03m 51 s 21 s 5 h 22 4m 36 1m 17 96 0.27 251

NJ 165 h 35 163 h 46 11 s 7 s – 11m 35 2m 38 3731 0.04 –

PA 30 h 01 9 h 45 10 h 45 20 h 23 – 8 h 11 3 h 37 2.69 5.63 –

Syn40k PW 11h 28 4 h 34 1m 12 21 s 7 h 25 8m 54 2m 23 115 0.15 187

NJ 385 h 356 h 15 s 7 s – 25m 33 3m 08 6817 0.04 –

PA 90 h 27 h 12 16 h 29 h 30 – 15 h 29 10 h 56 2.49 2.70 –
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Table 2 shows the runtimes of the three stages (PW, NJ and PA) using Server
A and Server B by ClustalW-MPI, ClustalΩ and our Museqa. In addition, it
shows the runtimes obtained by NW R using Server A. For those tests we use
as input Zika Virus, Dengue Virus, SARS-CoV2, OrthoDB, Syn20k, Syn30k and
Syn40k datasets. We observe that ClustalΩ implements different strategies for
each step when compared to Museqa and ClustalW-MPI. We calculated the
average time over 3 executions for each test. Comparing with ClustalW-MPI,
the first relevant fact is that the stage PW dominates at least 95% of the time
in all NCBI dataset scenarios, while for synthetic datasets the opposite occurs:
the time spent by NJ becomes significant, surpassing the PW runtime.

The scalability of Museqa for all stages combined in terms of number of
GPUs were almost linear for all datasets considered. Note that, even though
NJ stage did not achieve linear speedups it still performed better with multi-
ple GPUs, even for synthetic datasets where the time spent in NJ stage was
larger than in PW stage according to Table 2. Figure 6 illustrates the speedups
between ClustalW-MPI and Museqa and between ClustalΩ and Museqa regard-
ing NJ stage only for 4 and 8 GPUs (32 CPUs for ClustalW-MPI and ClustalΩ),
highlighting the remarkable performance of Museqa compared to ClustalW-MPI
for all seven datasets, and specially for the synthetic datasets for which the time
consumption of NJ is much more significant than for NCBI datasets. Considering
the comparison between ClustalΩ NJ and Museqa NJ, Museqa NJ performed
better for real datasets (NCBI and OrthoDB), but ClustalΩ NJ had superior
performance for synthetic datasets (only marginally for Museqa with 8 GPUs).

(a) ClustalW-MPI NJ / Museqa NJ (b) ClustalΩ NJ / Museqa NJ

Fig. 6. Speedups between: a) ClustalW-MPI NJ and Museqa NJ; b) ClustalΩ NJ and
Museqa NJ; according to Table 2. Each negative value (−X) in (b) means that ClustalΩ
NJ was X times faster than Museqa NJ.

Considering the total time spent of all three stages combined, as shown in
Fig. 7, Museqa with 8 GPUs was between 28.5 to 283 times faster than ClustalW-
MPI with 32 CPUs, while Museqa with 8 GPUs had speedups ranging from 2.3
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(a) ClustalW-MPI / Museqa (b) ClustalΩ / Museqa

Fig. 7. Overall speedups (log-log scale) between ClustalW-MPI vs Museqa and
ClustalΩ vs Museqa, considering 32 CPUs for ClustalW-MPI and ClustalΩ.

to 32 when compared to ClustalΩ with 32 CPUs. In addition, Fig. 7 highlights
that all speedups increased almost linearly with the number of GPUs. Finally,
the comparison between PW R, which is also implemented in GPU, and Museqa
PW stage performed with 8 GPUs revealed that Museqa was about two orders
of magnitude faster than PW R (speedups between 155 and 830).

Alignment Accuracy: In order to measure the accuracy of the alignments
produced by Museqa, we use BAliBASE [18], which is the most widely used
benchmark test sets of reference alignments. We compute BAli scores (SP and
TC, which measure the alignment accuracy, ranging from 0 to 1, where 1 indi-
cates the best possible accuracy) for Museqa, ClustalΩ and ClustalW, consider-
ing 386 alignments, which are organized in 6 BAli families covering six different
situations (RV11, RV12, RV20, RV30, RV40, and RV50).

Table 3. SP and TC score average results for ClustalΩ, our proposed method
(Museqa), and ClustalW, for the six considered BAli families.

RV11 RV12 RV20 RV30 RV40 RV50

SP TC SP TC SP TC SP TC SP TC SP TC

ClustalΩ 0.48 0.27 0.83 0.68 0.82 0.34 0.69 0.38 0.76 0.43 0.70 0.35

Museqa 0.41 0.21 0.79 0.61 0.78 0.24 0.57 0.16 0.61 0.28 0.56 0.19

ClustalW 0.48 0.24 0.80 0.64 0,79 0.26 0.62 0.25 0.65 0.30 0.62 0.27

As can be seen in Table 3, the obtained accuracy is very similar, proving the
reliability of the alignments obtained by Museqa when compared to ClustalΩ and
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CrustalW. However, mean values can suppress nuances regarding the differences
found in each alignment. In this sense, we comparison of the measurements
of scores between the three algorithms in each of the 386 alignments, and we
clustered into three groups: group1 - when Museqa obtained a better score;
group2 - when there was a tie between the scores; group3 - when the score
obtained by Museqa was significantly lower. The group2 formed by comparisons
in which the fold change between the scores is less than or equal to 1.3. And the
group3 by fold change in scores greater than 1.3.

Comparing Museqa and ClaustralΩ, we notice that the SP-score possesses
18.6%, 73.8%, and 7.5% of the comparisons in group1, group2, and group3,
respectively. And the TC-score holds 16.3%, 68.9%, and 14.7% of the com-
parisons in group1, group2, and group3, respectively. Comparing Museqa and
ClustalW, the SP-score holds 36.5%, 60.3%, and 3.1% in group1, group2, and
group3, respectively. And the TC-score keeps 25.3%, 70.4%, and 4.1% of the
comparisons in group1, group2, and group3, respectively. These results demon-
strate a high degree of congruity between the three programs.

5 Final Remarks

In this paper we described a Multi-GPU solution for the Multiple Sequence
Alignment problem which implements the three stages of the progressive align-
ment method. All stages of the method achieved significant speedup when com-
pared to some popular tools that are currently available for the same task.

As future work, we intend to look into three directions: i) to use a modified
NJ which produces a complete binary tree, reducing the interdependence of the
computations in stages 2 and 3; ii) to implement the aligments of the method
using new biological information iii) to make improvements in the proposed
method so that it can operate in heterogeneous hybrid parallel platforms.
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Abstract. We use a queuing model to study the spread of an infec-
tion due to interaction among individuals in a public facility. We provide
tractable results for the probability that a susceptible individual leaves
the facility infected. This model is then applied to study infection spread
in a closed system like a large campus, community, and model the inter-
action among individuals in the multiple public facilities found in such
systems. These public facilities could be restaurants, shopping malls,
public transportation, etc. We study the impact of relative timescales of
the Close Contact Time (CCT) and the individuals’ stay time in a facil-
ity on the spread of the virus. The key contribution is on using queuing
theory to model time-spread of an infection in a closed population.

Keywords: M/M/∞ Queue · SEIR Model

1 Introduction

With the significant economic impact of the spread of COVID-19 in the recent
times, there is a great emphasis on opening up of the various economic activities.
We find an imperative need for study of dynamics of spread of such viruses in a
closed facility where several individuals interact.

Several models to understand the dynamics of virus spread mechanisms exist
in the literature, most of them having been derived from the SEIR models [3].
These models assume a transmission probability or a transmission rate of the
infection. The determination of these transmission probabilities are usually based
on empirical data available. The details of the models vary with the dominant
mechanism underlying the transmission of the virus. For example, in the case of
dengue fever, the models consider the mosquito bite rate [1].

In the case of COVID-19, the virus is known to spread by human-to-human
contact, facilitated by droplet or aerosol transmission, leading to recommen-
dation of social distancing norms along with mandates for wearing face masks.
Models for the spread of the virus based on the dynamics of the droplets’ motion
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in air exist [4,5]. A recent work [15] provides an interesting view of the probability
of virus spread when individuals share a common physical queue, while incorpo-
rating the mechanical dynamics of aerosol (droplet) movement. The paper also
provides insights into the impact of the waiting time of an individual in the
queue on the transmission of the virus.

A generic abstraction of the above-mentioned key factors influencing the
probability of transmission of the COVID-19 virus is the Close Contact Time
(CCT) between an infected and a susceptible individual [2]. A representative
figure used for the CCT for the COVID-19 virus spread is roughly 15 min. Such
close contacts are achieved in several public facilities that one uses in daily life,
for example, restaurants, shopping malls, public transportation systems, sports
arena etc.

The CCT itself depends on the manner in which the individuals interact in
the facility. For example, at the point of sale queues in a supermarket, the time
that individuals spend in the queue depends on the extent of shopping done
by the others ahead in the queue. Such systems lead to use of the single server
models for the spread of the virus. Several studies exist in the literature that
propose the use of such single server models to understand virus spread, not
in the context of COVID-19 virus. However, for facilities such as restaurants,
public transportation systems, sports arena etc., such dependency is not there,
hence multi-server queuing models are also used in the literature.

Mathematical models using the queuing theory approach to capture the
interaction among individuals have been considered in the case of other dis-
eases as well. [9] uses the M/G/1 model to get the total cost of the epidemic.
[10] uses the M/G/1 processor sharing queues to model an SIR (Susceptible
infected Removed) epidemic with detection over time. [11] proposes an app-
roach for SIS (Susceptible infected Susceptible) model extends to an SEIS (Sus-
ceptible Exposed infected Susceptible) model while using the M/G/N queue
(multi-server) to model the system. [12] focused on Markovian queueing model
as a birth-death process with emphasis on epidemiological analysis. [13] uses an
M/M/1 model to study the dynamics of the Ebola virus disease. [14] provides a
mix of Markovian (stochastic) and a deterministic dynamical system model for
the evolution of Hepatitis C.

We use an infinite server queue to model the interaction among individuals
in a public facility and provide tractable results assuming that the virus spread
depends on the duration of contact between a susceptible individual and other
infected individuals, thus incorporating the COVID-19-specific CCT consider-
ations. This queuing model is then applied to study the infection spread in a
closed system such as a large campus, community, to model the multiple public
facilities found in such systems. We study the impact of relative timescales of
the CCT and the individuals’ stay time in a facility on the spread of the virus.

The paper is organized as follows: Sect. 2 describes the system model and pro-
vides the analytical expressions for probabilities of an individual getting infected
in a public facility. Section 3 provides observation where an equivalent reduced
load system can be identified to study the original system. Section 4 provides
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an approach to apply the results of Sect. 2 to a finite-population closed system.
Section 5 provides simulation-based validation of the models developed in the
paper.

2 Queuing Model and Analysis

Consider a facility, like a common room for a Doctor’s waiting room/Beauty
Salon/Restaurant/Shopping Mall/Public Transportation/sports arena, etc. Indi-
viduals arrive to such a facility, obtain service (stay in the facility for some
random amount of time), and depart. Individuals can be either Susceptible or
Infected.

Arrival Dynamics: Individuals arrive to the facility according to a Poisson
process of rate λ + ω.
Infected Population Arrival: The infected population arrives to the facil-
ity at a rate λ.
Susceptible Population Arrival: The susceptible population arrives to the
facility at a rate ω.
Service Requirements: Each individual, susceptible or infected, requires a
service worth a random time that is distributed as Exp(μ).
Service Mechanism: The service imparted to the individuals by this facility,
which controls the time that an individual stays in the facility, is assumed to
be that of an infinite server queue. This means that an individual’s stay time
in the facility is equal to its service requirement, irrespective of the number
of other individuals in the facility.
Infection Spread Dynamics: A susceptible individual, while in contact
with at least one infected person, gets infected depending on an independent
point process of rate ρ, without depending on the number of infected individ-
uals in the facility (as long as there is at least one infected individual). Also,
a susceptible individual that gets infected while in the facility cannot start
spreading the infection immediately.

Consider the scenario depicted in Fig. 1 that shows a susceptible individual
(lowest rectangular block) that sees two infected (red) and two susceptible indi-
viduals (green) in the facility on its arrival. This individual is shown to become
infected after some time. Another susceptible individual also makes a similar
transition to infected, but these transitions are independent across the suscepti-
ble individuals, i.e., one susceptible individual becoming infected has no impact
on that of other susceptible individuals.

Now, since we have assumed that the infection rate is independent of the
exact number of infected individuals as long as at least one such individual is
present in the facility, we can define the following:

p0 The probability that a susceptible individual arriving to the facility without
any infected individuals leaves uninfected.
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Fig. 1. The dynamics of evolution in the single facility system considered in the paper.
(Color figure online)

p1 The probability that a susceptible individual arriving to a system with
exactly one infected individual leaves uninfected.
pg1 The probability that a susceptible individual arriving to a system with
more than one infected individuals leaves uninfected.

We can observe that the dynamics of the infected individuals in the facility
corresponds to the customers in an M/M/∞ queuing system, [8], with customer
arrival rate λ and average service requirement of 1

μ . Let B(·) be the distribution
of busy period length of such an M/M/∞ system. Recall that λ denotes the
arrival rate of the infected individuals only, and does not include the susceptible
individuals. Let B̃(·) denote the distribution of the remaining busy period length
associated with B(·).

We can write the following equations:

Lemma 1.

pg1 =
∫ ∞

u=0

e−ρup0e
−μudB̃(u) +

∫ ∞

u=0

e−ρuB̃c(u)μe−μudu. (1)

p0 =
∫ ∞

u=0

μe−μue−λudu +
∫ ∞

u=0

p1e
−μuλe−λudu. (2)

p1 =
∫ ∞

u=0

e−ρup0e
−μudB(u) +

∫ ∞

u=0

e−ρuBc(u)μe−μudu. (3)



580 A. A. Kherani et al.

Proof: For a susceptible individual that arrives to the facility and sees more
than 1 infected individuals, the remaining time till which at least one infected
individual will continue to be in the facility has a distribution of B̃(·). Note that
this is not the probability of all the existing infected individuals (that this sus-
ceptible individual saw on its arrival) leaving the system, but is the distribution
of the first time instant, after the arrival of the susceptible individual, that the
facility has no infected individuals left. Now, the expression follows by condi-
tioning on the events where a) the susceptible customer is in the facility till the
first time there is no infected individual in the facility, and b) the susceptible
individual departs the facility before such the first time there is no infected indi-
vidual in the facility. In case of event a), the susceptible person will see an empty
system and due to the assumptions of Poisson arrivals for infected individuals
and exponential stay time for the susceptible individual, the probability that
this susceptible individual leaves the system uninfected is p0. Similar reasoning
leads to the other two expressions. ��

Let B̂(s) be the Laplace-Stieltjes transform (LST) of the random variable

corresponding to the distribution B(·). Then, the LST of B̃(·) is ˆ̃B(s) = 1−B̂(s)
sE[B] .

We thus get the following system of linear equations for pg1, p1, and p0.

pg1 = p0
ˆ̃B(ρ + μ) +

μ(1 − ˆ̃B(ρ + μ))
ρ + μ

. (4)

p0 =
μ

λ + μ
+

p1λ

μ + λ
. (5)

p1 = p0B̂(ρ + μ) +
μ(1 − B̂(ρ + μ))

ρ + μ
. (6)

The LST of the busy period length is [8]

B̂(s) = 1 +
1
λ

[
s − 1∫ ∞

0
e−st−λ

∫ t
0 e−μududt

]
,

and

E[B] =
e

λ
μ − 1
λ

.

Note the use of B̃c(u) in Eq. 3. The above set of linear equations can be
solved and we get p0 and pg1 in closed form. The probability that a randomly
arriving susceptible individual then leaves the system uninfected is

ps(λ, μ, ρ) = π0p0 + πg1pg1 (7)

where π0 is the probability that the corresponding M/M/∞ system is empty,
and πg1 = 1−π0. A randomly arriving susceptible individual will see the facility
having no infected individuals with probability π0.
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It is known that [6,8] the distribution of number of ongoing customers in the
above M/M/∞ queue is Poisson with parameter λ

μ . Thus,

π0 = e− λ
μ ,

while noting that this probability is never 0, irrespective of how large (but finite)
the value of λ or 1

μ are.
It is also known that the departure process of the individuals from an M/G/∞

facility is Poisson [7]. The susceptible individuals also see the facility as an
independent M/M/∞ queue. This property will help us in the upcoming sections
where we consider multiple such interconnected queues.

3 A Reduced Load Approximation

Assume that the arrival rate of the susceptible individuals is ω, so that the
overall arrival rate of individuals into the facility is λ + ω. The facility can then
be broken down into two independent M/M/∞ queues where the arrivals into
one facility is only of susceptible individuals, while that into another facility
is only of infected individuals. The effective arrival rates and average service
requirements in these two facilities are provided in the below.

The independent facility that sees only infected individuals is M/M/∞ with
an arrival rate of λ + ω(1 − ps(λ, μ, ρ)) and average service requirement of 1

μ .
The independent facility that sees only susceptible individuals is M/G/∞

with arrival rate of ω and average service requirement as determined in the
following.

The susceptible individuals see an alternating renewal process corresponding
to the busy-idle periods of the M/M/∞ queue of the infected individuals. Define
the following:

Ψ(x, u) The probability that the total time spent in busy period is less than u
units in the total interval of length x, conditioned on the event that the
system was in idle period at time 0.

Γ (x, u) The probability that the total time spent in busy period is less than u
units in the total interval of length x, conditioned on the event that the
system was in busy period at time 0.

Q(x) The probability that a susceptible individual got a service of at least x
without getting infected while getting this service.

We can then write the following equation

Q(x) = e−μx

[
π0

∫ x

u=0

e−ρudΨ(x, u) + (1 − π0)
∫ x

u=0

e−ρudΓ (x, u)
]

. (8)

The distributions Γ (x, u) and Ψ(x, u) are provided in the Appendix using the
results of [16].
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Let E[Q] =
∫

Q(x)dx, the average service requirement of the customers in the
independent queue for susceptible individuals. Then we must have the following
work conservation equation satisfied

λ + ω(1 − ps(λ, μ, ρ))
μ

+ E[Q]ω =
λ + ω

μ
,

i.e., the total average work arrival rate in the original system is preserved in the
new decoupled system.

4 Application to a Finite Population Model

Let there be N individuals in a system and let there be K such facilities in the
system. Let the number of infected individuals at any point in time be NI(t)
and the number of susceptible individuals is Ns(t). Note that NI(t)+Ns(t) ≤ N
as there would be recovered or under-quarantine individuals at time t.

Let λi(t) denote the arrival rate of infected individuals into facility i at time
t, and let ωi(t) be the rate of arrival of susceptible individuals into facility i at
time t. Then, the rate of departure of susceptible individuals out of facility i is
given by ωips(λi, μi, ρi). We can see that

ωi =
∑
j �=i

θj,iωjps(λj , μj , ρj).

λi =
∑
j �=i

θj,i [(1 − δj)λj + ωj(1 − ps(λj , μj , ρj))] .

where δj is the probability with which an infected individual is detected, hence
quarantined, or recovered. Here θj,i is the probability that an individual coming
out of facility j joins facility i.

It can be seen that
δj =

ζ

μj + ζ
,

where ζ is the rate of the independent Poisson process that counts the event
corresponding to detection or recovery of infection of an infected individual.
Note that ζ is assumed to be independent of the facility number.

Figure 2 shows the system considered in this section. The location of a tagged
individuals in the system is depicted as it moves across different facilities. The
individual is initially susceptible and enters different facilities according to the
routing probability θi,j . While being in these facilities, the tagged individual may
have come in contact with other infected individuals. The tagged individual turns
infected at some point in time, but continues to visit facilities until it is detected
to be infected. On detection, the tagged individual is moved to quarantine facility
and comes out as a removed individual from such facility as it then no longer
contributes to or is affected by virus spread.

Note the presence of Private facilities. These are the facilities where the
individuals spend most of their time.
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Fig. 2. Time evolution of the movement of the tagged individual across the different
facilities in the multi-facility setup considered in the paper.

The rate balance proposed in this section is pictorially depicted in Fig. 3
using the pictorial representation of Fig. 2.

In the limit, λi = 0, ∀i, while the behavior of ωi is to converge to some value,
positive or zero. Note that either all ωi = 0 in the limit, or all ωi > 0.

Theorem 1. We can show the following:

1.
∑

i λi > 0 ⇒ Πiλi > 0
2. In the limit, when λi = 0, ∀i, ωi are given by the unique solution to the fixed

point equation
ωi =

∑
j �=i

θj,iωj ,

irrespective of the value of ρj.

The second result in the above theorem is very important as it shows that
the limiting value of ωi does not depend on the values of ρj . This indicates that
in a real closed system, the steady state rates will be a constant multiple of the
solution of the system of linear equations above. The constant multiple will be
dependent on the total number of individuals in the system.
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Fig. 3. The rate balance of flows into and out of various facilities.

We thus propose a discrete-time dynamical system model for the evolution
of the arrival rates in the system as

ωi(n + 1) =
∑
j �=i

θj,iωj(n)ps(λj(n), μj , ρj),

λi(n + 1) =
∑
j �=i

θj,i [(1 − δj)λj(n) + ωj(n)(1 − ps(λj(n), μj , ρj))] .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

In this dynamical system model, the time difference between the successive
updates is left unspecified.

5 Numerical Validation

5.1 Single Queue

To validate the results of the M/M/∞ queue, namely, Eq. 7, we have developed a
slotted-time simulator for the M/M/∞ queue. A numerical computation of Eq. 7
is also implemented. Figure 4 provides the results for the value of pS(λ, μ, ρ) as
ρ is varied. It is seen from the figure that the mathematical model is accurate.

5.2 A Campus Scenario

Consider the scenario of a small closed campus or gated community. We have
developed a simulator which follows the SIQR approach in order to validate the
numerical results obtained from the dynamical system model of Eq. 9. It is a slot
based time iterative model. In order to approximate this model to a continuous
time based model and hence to a Poisson process, the slot length is set such that
it is minuscule compared to the length of the smallest event in the system. The
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Fig. 4. Comparison of pS(λ, μ, ρ) from simulation and analysis for different values of
ρ.

purpose of this simulator is to simulate closed systems in which there is no inflow
or outflow of individuals, rather, there is movement within the system among
the various facilities. This system can be approximated to a college campus with
facilities being lecture halls, stationery shops, health facilities etc. The simulator
allows us to determine the scale of the simulation by allowing us to choose
the population of the system. It then returns a graph which describes the time
variation of the rates of arrival of susceptible and infected individuals into the
public and private facilities.

We first describe the mechanism of movement. The simulator itself divides
the facilities into three sets, namely Public Facilities set (φ), Private Facilities
set (χ) and a Quarantine Facility set(ψ). Initially, φ and χ have a uniform
distribution of people and a random array of individuals are infected. Movement
of individuals between φ and χ is determined by a routing probability matrix
and a service probability characteristic of each facility representing the average
time spent by individuals in the facility. Once the service time for an individual is
over, they are moved to another facility. It is assumed that the facility visited by
an individual at any given time is independent of the previous facilities they have
been in however the absolute probability of going to a facility may be different
from that of another facility. In order to reach a steady state, we first run the
simulator for 20% of the total time. During this period, there is no infected
individual.

Now, we define the mechanism of transmission. Infection can only spread in
φ. It is assumed that a susceptible individual, if there is at least one infected
individual in that facility, is infected according to the next event happening in an
independent Poisson process. The rate of Poisson process is the same across all
facilities and isn’t dependent on the number of infected individuals in a facility as
long as there is at least one infected individual in that facility. Once an individual
is infected, they can either recover without being detected or be detected and
be sent to ψ where they spend a fixed amount of time after which it is assumed
that they have recovered. Once recovered, a person can no longer contract the
disease.
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At the end of the simulation, a graph is returned which gives us the arrival
rates of susceptible and infected individuals into φ and χ. As all facilities in φ
have the same properties, it is sufficient to plot the arrival rates for any one of
these facilities. By default, the simulation plots the arrival rates into the first
element of φ. The graph so obtained is then compared with the graph obtained
by the dynamical system.

Table 1. The parameters used in simulation.

Parameter Value

Simulation time 30 days

Number of Public Facilities 20

Number of Private Facilities 1

Spread Close Contact time 15 min

Average recovery time 14 days

Average detection time 50 days

Quarantine period 14 days

Average time spent in a public facility varied

Average time spent in a private facility 5 h

Routing matrix Θ is applicable to all the individuals, and its (i, j)-th element
is given by

Θi,j =

⎧⎨
⎩

θ i ∈ φ, j ∈ χ,
1−θ

|φ|−1 i, j ∈ φ, j 	= i,
1

|φ| i ∈ χ, j ∈ φ.

The slotted simulation has two phases

Settling Phase. In this phase, the system is initialized randomly, i.e., no
particular consideration is given to the location of the individuals. Further,
all the individuals are marked as susceptible in this phase so that there is
no virus spread. The simulator is then allowed to freely run for some time so
that the steady state of the arrival rates in the system is achieved.
Infection Phase. Soon after the settling phase is over, the susceptible indi-
viduals are marked as infected according to the probability set for the initial
infection penetration.

The dynamical system is initialized in the following manner: starting with
the number of individuals (Ninit) in the corresponding slotted simulator, it is
assumed that all the individuals are in the private facility. This then indicates
that the rate of departure of individuals from the private facility is Ninit times
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the service completion rate in this facility. This value is then distributed among
the other facilities as per the routing matrix. The dynamical system is then
allowed to freely run for some iterations so that these rates ωi converge. Now
the required percentage infection is introduced by reducing ωi by the desired
fraction (say, pinf ), i.e., ωi → (1 − pinf )ωi and letting λi = pinfωi.

Given the many parameters involved in the system, we have provided results
that capture the impact of average service requirement of individuals in the
system when compared with the CCT. All the numerical apparatus developed
for the presented work are available online at https://github.com/Arzad-iitbh-
projects/COVID-19-ICCSA.

Fig. 5. The arrival rates of susceptible and infected individuals over time from the
simulations for an average service time of 15 min.

Figures 5, 6, 7 and 8 show the results from our simulator and the numerical
evaluation of the dynamical system. The results are for different values of average
time spent in public facilities, 15 min and 30 min. Other parameters are provided
in Table 1. It is seen from these figures that the dynamical system models the
behaviour of the original system to a satisfactory level, and that the infection
spread reduces if the average service time in a facility reduces.

Figure 9 provides the average time to extinction of susceptible population
as the average service requirement increases. The results are obtained from the
dynamical system model, as well as the slotted time simulator. The vertical time
axis has been normalized to provide a unified view for comparison. As noted
earlier, the notion of time in the dynamical system model is not accurately
mapped to the real system. Note the knee-shaped behavior of this dependency,
with the knee point around 15 min, which is the configured CCT in this model.

https://github.com/Arzad-iitbh-projects/COVID-19-ICCSA
https://github.com/Arzad-iitbh-projects/COVID-19-ICCSA
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Fig. 6. The arrival rates of susceptible and infected individuals over time as per the
dynamical model for an average service time of 15min.

Fig. 7. The arrival rates of susceptible and infected individuals over time from the
simulations for an average service time of 30 min.

The rapid decrease in the extinction time in the left-of-knee region is indicative of
the very high sensitivity of ps(λ, μ, ρ) when μ > ρ. This indicates that keeping
1
μ < 1

ρ = CCT is not enough to contain the spread of a virus that spreads
according to the dynamics studied in this paper. This figure also indicates that
the dynamical system model is accurate in providing the qualitative analysis of
the evolution of the system.
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Fig. 8. The arrival rates of susceptible and infected individuals over time as per the
dynamical model for an average service time of 30 min.

Fig. 9. Dependency of average time-to-extinction of susceptible individuals as a func-
tion of average service requirement.

6 Conclusion

This paper uses an M/M/∞ queue to model the interaction of infected and
susceptible individuals at a public facility, and provides analytical derivation of
the probability that a susceptible individual leaves the facility without infection.
This analytical expression is validated against a slotted time M/M/∞ simulator
built in-house.

We then use this model to approximate the interaction in a finite population
system where the individuals interact at some of the public facilities. The inter-
action at these public facilities can lead to spread of the virus - this is modeled
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as an independent Poisson process of a constant rate. A discrete time determin-
istic model for such a system is provided by assume fast averaging in the related
individual queues. A slotted-time simulator is developed for this system.

There are several important directions that we plan to extend the current
work to:

1. When moving from the stochastic model to the deterministic one, we currently
do not have a direct way of mapping the time. We think that a approach like
that of [14] would help us.

2. Extending the model to incorporate M/M/1-like facilities.
3. Extending the model to incorporate an infection spread rate that increases

with the number of infected individuals in the facility.

Acknowledgements. The work is supported by the grant under the SERB MATRICS
Special COVID-19 Call, India.

A Expressions for Ψ(x, u) and Γ (x, u) of Sect. 4

We will first find Ψ(x, u). Since we are given that the system is Idle at time 0
and using the memoryless property of the exponential distribution, we can claim
that the susceptible individual sees an alternating renewal process I1, B1, I2, B2,
I3, B3, . . . where Ii (resp. Bi is the random variable corresponding to the ith

Idle period (resp. Busy period). Ii are independent and distributed as Exp(λ),
while Bi have distribution of busy period of M/M/∞ queue with arrival rate λ
and service requirement Exp(μ). Let Ψ0(x, u) = P (Total Idle Period length >
u|Starting with idle period) so that Ψ(x, u) = 1 − Ψ0(x, x − u). Using [16, The-
orem 2.1], we can show that

Ψ0(x, u) =
∞∑

n=0

(E(n)(x − u) − E(n+1)(x − u))B(n)(u),

where E(n)(·) (resp. B(n)(·) is n−fold convolution of Exp(λ) (resp., B(·)).
The distribution Γ (x, u) is obtained again using [16, Theorem 2.1]

1 − Γ (x, u) =
∞∑

n=0

(Cn(u) − Cn+1(u))E(n)(x − u),

where Cn(·) = B̃ ∗ B(n−1)(·) for n ≥ 1, i.e., convolution of B̃(·) and B(n−1)(·),
with C0(u) = 1, ∀u.
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Abstract. Different research problems (optimization, classification, ordering)
have shown that some problem instances are better solved by a certain solution
algorithm in comparison to any other. A literature review indicated implicitly that
this phenomenon has been identified, formulated, and analyzed in understand-
ing levels descriptive and predictive without obtaining a deep understanding. In
this paper a formulation of phenomenon as problem in the explanatory under-
standing level and a composite function to solve it are proposed. Case studies for
Tabu Search and One Dimension Bin Packing were conducted over set P. Fea-
tures that describe problem instance (structure, space) and algorithm behavior
(searching, operative) were proposed. Three algorithm logical areas were ana-
lyzed. Knowledge acquired by the composite function allowed designing of self-
adaptive algorithms, which adapt the algorithm logic according to the problem
instance description in execution time. The new, self-adaptive algorithms have a
statistically significant advantage to the original algorithm in an average 91% of
problem instances; other results (set P’) indicate that when they obtain a best solu-
tion quality, it is significant and when they obtain the same or less solution quality,
they finish significantly faster than original algorithm. The composite function can
be a viable methodology toward the search of theories that permit the design of
self-adaptive algorithms, solving real problems optimally.

1 Introduction

It has been seen for sorting problems, depending on the length and order of the sequence,
there are algorithms that perform better than the rest [1]. Also, for NP-hard combinatorial
optimization problems, the deterministic algorithms are considered adequate for smaller
instances of such problems [2]. Intuition says that the difficulty of a problem instance
varies with its size: large instances are usually more difficult to solve than smaller ones.
However, in practice, recognizing the measuring difficulty only in terms of the instance
size implies overlooking any structural property or feature of the instance, which could
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affect the problem complexity [3] and the algorithm performance. For example, clas-
sification problems show that some learning algorithms perform very well on certain
problem instances depending on a set of specific features [4]. The scientific community
of different disciplines, such as combinatorial optimization, machine learning, artificial
intelligence and other fields of knowledge has worked for describing and analyzing the
experimental relation between problem-algorithm, with the objective of solving a real
problem optimally. However, its analysis has been conducted, in most cases, in descrip-
tive and predictive understanding levels (for amajor compression of this concept [5]) and
it is necessary deepening more in this objective, in the explanatory understanding level,
answering why the relation of certain problem instances and an algorithm produces best
solutions (algorithm is very good) and why it is not good with other problem instances.
Under the scope of this research (combinatorial optimization area and search algorithms),
this paper contains: previous questions and formulations of reviewed literature, so too,
the phenomenon is formulated as a question and a formal problem statement in the
explanatory level, using and supplementing the Rice’s formal nomenclature (Sect. 2); a
proposed composite function to solve the stated problem (Sect. 3); a framework for the
performance of the proposed composite function over the One Dimension Bin-Packing
problem and Tabu Search algorithm (Sect. 4); Development of the proposed composite
function, using a instances set P (Sect. 5), the discovered knowledge is used for answer-
ing how and why certain problem instances (describing structure and problem solutions
space), algorithms features (describing operative and searching behavior); and the algo-
rithm logical design contribute toward a better relation between problem-algorithm (in
majority cases of reviewed literature, not all information are taken into account at the
same time, problem, algorithm, logical area). A new self-adaptive search algorithm is
designed for each case of study. Section 6 describes the results of self-adaptive search
algorithms over instances sets P and P’ (P’ �= P)). Conclusions and future works are
drawn in Sect. 7.

2 Reviewing State of Art and Setting the Problem Statement

Using and supplementing the Rice’s formal Nomenclature,
P= {x1, x2,…, xm} a set of problem instances or space for analysis.
F= the problem features space generated by a description process applied to P.
A= {a1, a2,…, an} a set of algorithms.
Y= the performance space, it represents the mapping of each algorithm to a set to a

set of performance metrics.
C= {C1, C2,…,Cn} a partition of P, where |A|=|C|.
W = { (aq ∈ A,Cq ∈ C)

∣
∣Yaq,x > Yα,x · ∀ · α ∈ (A − {aq}),∀ · x ∈ Cq} is a set of

ordered pairs (aq, Cq), where each dominant algorithm aq ∈ A is associated with one
elementCq of partitionC, because this gives the best solution to partitionCq, considering
a set of performance metrics mapped in set Y.

L= the algorithm features space.
In descriptive traditional level, the next first research question arises from experi-

mental relation between problem-algorithm:

1. What is the performance of algorithm aq ∈ A to solve the problem P?
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For this, a set of algorithms A is run over a set of instances P. The general perfor-
mance of each algorithm is measured by some performance metric y ∈ Y in order to
obtain a quantifiable value that could be used for performing a comparison of algorithms
by means statistical analysis (statistical tests The Sign, Wilcoxon and Friedman tests,
among others) or tabular analysis or graphical analysis; after that performing a results
interpretation. One classic example of related work in this understanding level is [6].
Nevertheless, the results of the solution algorithms on an instance set of a problem could
be incorrectly interpreted, this is, one might expect that there are pairs of search algo-
rithms aq and α such that aq performs better than α on average, even if outperforms aq at
times. Such expectation could be incorrect.Wolpert describes twoNo Free Lunch (NFL)
theorems in [7]. In general terms, it establishes that for any algorithm, a high perfor-
mance over a set of problems is paid in performance over another set. The existence of
instances subsets for specific problem and an algorithm for each subset is suggested by
NFL theorems. For the purpose of exemplification in the reviewed literature, other classic
examples of related works identified different performances of algorithms on different
problem instance sets, based on the construction of an association table, where each set
had one or several similar features in the context of the problem structure description
[8, 9]. A few of other related works are [1, 2, 4, 10, 11]. The above indicates that one
algorithm can be associated to a problem instances subset, where it is the one that solves
these instances in the best way possible, for a specific problem domain. The phenomenon
observed could be described by means of some setW that includes pairs in the form (aq,
Cq), where instances subset Cq better correspond to aq for instances set P for a specific
problem (see nomenclature for a major description).

In predictive level, a general research question arises:

2. What is the best way to learnW (pairs (aq, Cq)) in order to predict algorithm aq that
will give the best solution for a new instance from a problem?

The above question needs to consider information from the experimental relation
between problem-algorithm, which is significant and has a predictive value. If this ques-
tion is answered, the solution to the algorithm selection problem can be found. The
algorithm selection problem (ASP) is originally formulated in [12], which is stated as:

For a given problem instance x ∈ P, with features f (x) ∈ F, find the selec-
tion mapping S(f (x)) into algorithm space A, such that the selected algorithm

Amaximizes the performance mapping y( (x)) Y .

It can be said that the phenomenon mentioned in this paper, can be analyzed and
learned in the predictive understanding level of an implicitly manner when problemASP
is being solved.ASPwasgeneralized throughdifferent researchdisciplines in [13],where
its solution is important. Two known approaches that are utilized by related works in
solving problem ASP are algorithm portfolio and supervised learning. In the case of
algorithm portfolio, the algorithm performance is characterized and adjusted to a model
(model-based portfolio) either by a regression model [14] or a probability distribution
model [15, 16]; other related works have also shown that some problem features are
considered in the building of a model (feature-based portfolio), for example, applying
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supervised learning [17, 18]. In this case, many related works exhibit learning patterns
(corresponding to setW in the context of this paper) from data by means of a supervised
algorithm and use them for predicting the best algorithm for an unseen problem instance.
Examples: Case-base reasoning [19, 20], decision trees [21, 22], Neural Networks [23]
and Random Forest [24–26]. A discussion of machine learning methods applied to
ASP problem can be found in [27]. Nevertheless, the principal disadvantage is that the
phenomenon identified in the predictive understanding level is analyzed and studied
without being fully understood. Two principal reasons: the information considered in
analyses is only derived from a problem, or an algorithm, or a logical design (initializing
parameter); and the built models are found to be difficult in interpreting the acquired
knowledge by nature of its own structure; these are used for predictions.

In the explanatory understanding level, there are different guidelines. For example,
some relatedworks focused their analysis on problem difficulty, considering the problem
structure, significant features or parameters, identifying important values from them
to determine when problem is difficult and when is easy (known as Transition Phase
Analysis) through the use of graphical or statistical analysis or unsupervised learning
[23–25, 28, 29]. Other related works focused on algorithm performance, some deeply
on the searching behavior, considering metrics that measures the trajectory, identifying
when it is flat or rugged (there are fluctuations), determining whether the problem is
difficult or easy for algorithm (Known as Landscape Analysis) [30–32]; others deeply
focused on algorithm logical design [33, 34]; some focused on both [30, 35], for example,
obtain important explanations which permit to configure the algorithm in a way that it
can produce the better results. However, these explanations are not very clear, in the
regard which kind of problem instances will produce better results. What are the specific
features of the problem structure that help the configured algorithm better adjust to these
problem instances? In [36], this information is considered important in order to adapt
the algorithm logical design to the problem structure. A few related works focused on
problem and algorithm [37–40], developing some visual tool or performing a graphical,
or statistical, or data exploratory, or causal analysis. The reviewing of this literature
indicatesmuch effort has been taken to characterize and analyze the experimental relation
of problem-algorithm under different understanding levels. However, we believe that it is
necessary to pave the way in the comprehension of explanatory understanding level with
a starting point, something very essential, simple, and important. Therefore, considering
past efforts of the reviewed literature, the experience for previous works [41, 42], and
continuing with observed in descriptive and predictive understanding levels, a simple
research question arises for a domain specific:

3. Why does a problem instance subset Cq correspond better to an algorithm aq than
other instances in a specific problem domain?

In order to formulate this question as a formal problem, should be considered: as
first instance, all significant information from problem (structure, solutions space) and
algorithm (operative and searching behaviour), during and after execution, limitations
of explanatory and predictive levels; as second instance, a methodology as guide to help
obtain a formalmodel that can discover latent knowledge and explain the phenomenon in
question for a specific problem. Following a step beyond to algorithm selection problem
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(ASP), considering the above, and continuing in the improving of previous works, the
phenomenon could be formulated as the next statement.

For a set of algorithmsA applied to a set of problem instances P, with problem fea-
tures F, algorithm features L, the algorithms performance space Y, the algorithms
performance partitionsW, according to Y and an ordered pair (aq, Cq) ∈ W; find
the composite function E(aq, P, A, F, L, Y) that discovers an explanation formal
model M, such that M, represents the latent knowledge from relations between
features that describe: the problem features F; interest algorithm L; and provides
solid foundations to explain, why certain problem instances, being the partition
Cq correspond better to interest algorithm aq, according to performance space Y,
and why other partitions (Cq)c do not correspond to algorithm aq.

3 Proposed Solution

The solution to the above problem statement, is to discover a formal model that can
acquire latent knowledge, structured in someway as cause-effect relations fromproblem,
algorithm features, which can help explain such formulation. The process is known as
the discovery of causal structure of data [43] (causal model). A causal model can be
defined as a causal Bayesian network [43]. It is described by expression 1.

M = (V ,G,Z) (1)

Specifically,

– V = {v1, v2,..,vn} is a set of observed features.
– G is a directed acyclic graph with nodes corresponding to the elements of V that

represents a causal structure (V, EC); i.e.,
EC = {EC1, EC2,…, ECn}, where each ECi ∈ EC is a set of ordered pairs,
ECi = {(vi, y1), (vi, y2), …, (vi, yn)},it is
ECi = {(vi ∈ V, yk ∈ V )|vi �= yk , yk is a direct cause of vi relative to V and there is a
directed edge from yk to vi in G}
Pa(vi) = {yk ∈ V | (vi, yk) ∈ ECi} is a set of all direct causes of vi.

– Z = P(vi = j | y1 = α, y2 = β, ..., yp = γ), is a function of conditional probability of
vi in the range of values j given the direct causes of vi {y1, y2,…,yp} ∈ Pa(vi), which
are in the ranges of values y1 = α, y2 = β,…, yp = γ.

3.1 Composite Function E

In general terms, the composite function E (see Fig. 1) consists of analyzing the exper-
imental relation between the problem (instances set P) – algorithm (interest algorithm
aq, aq ∈ A) considering the space of features from problem F, the space of features L
and performance Y from algorithms during execution, for discovering latent knowledge
about this relation (represented by explanation model M).

The domain of proposed composite function E (Expression 2), are parameters: the
interest algorithm aq, a set of algorithms A, applied to a set of problem instances P, the
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Fig. 1. General diagram of the composite function

set F obtained by f (P), the set L obtained by l(A), the performance space Y, obtained by
y(A). The functions f and l perform a description process, before and during execution
of algorithms, to obtain features that represent information about set P and A.

(E · fz · fg · fv · fd · fc)(aq,P,A,F,L,Y
) ≡ E

(

fz
(

fg
(

fv
(

fd
(

fc
(

aq,P,A,F,L,Y
))))))

(2)

The function y evaluates the algorithmsA, bymeans a set of performancemetrics. The
acquisition of latent knowledge from experimental relation between problem-algorithm
is formalized by means of the proposed composite function E, which, evaluated in each
iteration, obtains the values of a set of significant features, causal relations between
these, and estimations, represented by the sets V, G, Z (codomain-causal model M).

4 Framework for Proposed Composite Function E

The instance sets P and P’ (P �= P’) were randomly selected (324) from Beasley’s OR-
Library [44], the Operational Research Library [45]. The objective of each case of study
is to explain the description process and the composite function of the latent relation
between problem (One Dimension Bin-Packing - BPP) and algorithm (Tabu Search); an
insight into the problem structure, problem solution space, the algorithm logical design,
its operative behaviour, and behaviour during its searching and performance. Due to the
above, four versions of Tabu Search algorithm were implemented, where each one had
a specific logical design (Table 1). The methodology for initializing control parameter
(PM) is applied to size of Tabu list (nLTabu). The static procedure is to set it as 7
[46]. The dynamic procedure is to set it as

√
n, where n represents the number of the

objects or items of the problem instance. The methodology for the generation of an
initial solution (IM) can be conducted by a random or deterministic procedure. The
methodology for building the neighbourhood of a solution (NM) can achieved through
one or several methods, which were proposed in [47]. The candidate list (LCANDI) size
was fixed to 4*(nLTabu * 0.25) for all the study cases. As well as, the methodology to
stop the algorithm execution (SM) was the same; after 4000 iterations or there was no
improvement in the solution. Table 2 shows the study cases.
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Table 1. Set of algorithms A

Variants PM IM NM
Static Dynamic Random Deterministic One Several

Table 2. Cases of study

Case of study Algorithms Methodology

1 a1, a2 Building Neighborhood (NM)

2 a1, a3 Initializing Control Parameter (IM)

3 a1, a4 Generating Initial Solution (PM)

5 Performing Composite Function E

The function f (P) performs description process for the instances set P, where the set
F is obtained. After that, the set of algorithms A(a1, a2, a3, a4) is applied to solve the
problem instances set P. During the search and solution process, the functions l(A) and
y(A) perform description process to obtain the algorithm features space, set L and set
performance space Y. This process (f (P), l(A), y(A)), for all cases of study, is described
in greater detail only for those features that were significant in next sections.

5.1 Problem Instances Structure Description: Function f (P)

There are three features, (b, d) [21] and cu proposed in this paper; b describes the
proportion of the total weights of the objects that can be assigned to one container; d
describes the dispersion of the quotient between the object weight and the container
capacity; cu is the kurtosis of object weights (w weights and de standard deviation).

cu =
∑n

i=1 (wi − w)2

de4
(3)

The problem solution space for each instance, os, is described in past works [38, 41,
42]. It is the variability of ms randomly generated solutions (ms = 100 produced better
results). The codomain of function f is the set F (expression 4), where rows represent
the problem instances and columns are the values of these features.

F = {{b1, d1, cu1, os1}, {b2, d2, cu2, os2}, . . . , {bm, dm, cum, osm}} (4)
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5.2 Algorithm Behavior Description: Function l(A)

The algorithm operative behaviour is described by features (nn, fn, vf ), proposed in
past works [38, 41, 42]. The number of neighbours built by algorithm during its search
process per instance is given by nn. The number and variability of feasible solutions
are given by fn, vf . The algorithm searching behaviour is described by features pn
(number of inflection points), vn (number of valleys), vs (size of valleys) proposed in
past works [38, 41, 42] and vd proposed in this paper. These features are obtained from
the algorithm searching path. The searching inflections are the changes in the direction
of fitness function from two consecutive solutions during one algorithm run; pn is the
average of these for all algorithm runs (16); vn is concerned if there exists a searching
pattern that refers to our concept, Valley. It is considered when there is a sequence major
to sm solutions, where their fitness function values keep on decreasing (sm= 6 indicated
be significant in past works). Then, the feature vn is the average of Valleys identified
from algorithm runs. The inflection point located in an identified Valley is considered
as the location point, for example one run has location points p1, p2, p3 and p4; the
distance between each point is calculated, dd1, dd2 and dd3. The standard deviation of
these is calculated (expression 5). The average of Valleys dispersion for all algorithm
runs is calculated, vd. The set L is built with the specific order as Expression, 6. Here,
L1,1 means algorithm a1 for problem instance x1 has the elements, nn11, fn11, vf 11, pn11,
vn11, vs11, vd11 (algorithm behaviour features) and so on.

vdrun =

√
√
√
√

∑pn−1
i=1

(

ddi − dd
)2

pn − 2
(5)

L =
⎧

⎨

⎩

{

nn11, vf 11, pn11, vn11, vs11, vd11
}

, . . . , {nn1m, . . . , vd1m}
{

nn21, vf 21, pn21, vn21, vs21, vd21
}

, . . . , {nn2m, . . . , vd2m}
{

nnn1, vf n1, pnn1, vnn1, vsn1, vdn1
}

, . . . , {nnnm, . . . , vdnm}

⎫

⎬

⎭
(6)

5.3 Performance Space Description: Function Y(A)

The function, y, evaluates the algorithm performance according tometrics time and qual-
ity. The metric time is the total of feasible and infeasible solutions built during algorithm
execution. Themetric quality is the ratio between found solution and theoretical solution
[41, 42]. The codomain of the function, y, is the set, Y (performance space) which is
built with the specific order as Expression 7. Here, Y1,1 means algorithm a1 for problem
instance x1 has the elements, quality11 and time11, Y1,m means algorithm a1 for problem
instance xm has the elements quality; time, and so on.

Y =
⎧

⎨

⎩

{

quality11, time11
}

, . . . ,
{

quality1m, time1m
}

{

quality21, time21
}

, . . . ,
{

quality2m, time2m
}

{

qualityn1, timen1
}

, . . . ,
{

qualitynm, timenm
}

⎫

⎬

⎭
(7)
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5.4 Discovering Knowledge: Functions fc, fd (TC), fv(D), fz(G)

The proposed composite function, E, is applied to one algorithm of interest aq for
each case of study (1, 2, 3). The algorithms, a2, a3, a1 were randomly selected. The
function, fc identifies the set W, considering performance space Y (based on time and
quality metrics). After that, the performance scope of interest algorithm aq is obtained,
considering setW. The codomain of function fc is described by set S. Each value indicates
the scope of interest algorithm for each problem instance (set P), 1 was the best, 0
otherwise. For example, S = {0, 1,…,1} means that interest algorithm had scope: 0 for
instance 1, 1 for instance 2, 1 for instance m and so on. A sets family SF = {F, L, Y, S}
is built for interest algorithm aq and is represented by dataset TC, where TC = ∪ SF; the
tuples are instances and columns are features that describe: the structure and problem
solutions space F = f (P); the operative and searching behaviours of interest algorithm,
obtained from set L; performance space of the interest algorithm, obtained from set Y
(time and quality); performance scope from set W, value from set S. The function, fd,
first normalizes the values of each by means of method min-max; values that lie within
the closed interval, [0, 1]. After that, the method, MDL [48], is performed to discretize
the values. The codomain of function fd is the discretized dataset, D. The function,
fv, performs general, graphical and variance analyses of the features from dataset D
for selecting the most significant. The general analysis creates bar plots, where the
frequencies of the values of the features are analysed with respect to the scope (value
s) of aq. The metric quality from dataset TC did not assume a normal distribution;
therefore, for the graphical and variance analyses, it was transformed using methods of
logarithm or Box-Cox, using values 2 or −2 for λ. The graphical analysis creates box
plots for each feature (identified in general analysis) with respect to metric quality, in
order to identify features that in influence it in terms of variation and locality. Finally,
the function, fv, performs an analysis one variance (ANOVA), with a confidence level of
95% for each feature (identified in graphical analysis) with respect to the qualitymetric.
The function, fv, did not find significant features in the study case 3; for other cases of
study, 1 and 2, the codomain of function fv is the significant dataset V1 with proposed
features. For example, in case study 1, the dataset,V1, is formed by features b, os, nn, vf ,
pn, vn, vs, and scope of interest algorithm a2 (S). So too, with the objective of considering
metrics known and used by the scientific community (describing the algorithm searching
behaviour), the auto-correlation coefficient, (ca), the auto-correlation length, (al) ([49]),
and highlight the utility of our proposed features (pn, vn and vs), another dataset, V2,
is built with features b, os, nn, vf , metrics ac, al, and scope of interest algorithm a2 (S).
The datasets V1 (by means function fv) and V2 are built in case of studies 1 and 2. The
function fg performs the process of learning a causal structure (algorithm PC [43]) with
a confidence level of 95% for datasets V1 and V2 in case studies; the causal inference
software, HUGIN (Hugin Expert, www.hugin.com) was used.

Figure 2 shows the causal structures: a) fg → G1 and b) fg → G2 from datasets V1
and V2 for these cases of study. It is important to emphasize that the causal structure,
G1, in these cases represents clearly the direct causes (problem and algorithm significant
features) of performance scope for interest algorithm aq in performance spaceY, in terms
of setW. For case study 1, it is evident that the causal structure,G2, did not yield relevant
information about direct causes. In case study 2, G2 did not yield relevant information

http://www.hugin.com
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about direct causes for algorithm performance scope with respect to algorithm behavior
during its searching. These structures (G1) were considered for the next analyses. Also,
Fig. 2 shows the intervals of direct causes, obtained previously by function fd. Continuing
with the composite function,E, the function, fz, referring to parameter learning algorithm
Counting [43], estimates the intensity of causal relations (identified in structuresG1), see
Table 3, the codomain is setZ. The codomain of composite functionE for each study case
are the sets V1, G1 and Z (causal model M). The problem instance set, P’, was used as
an input for each causal structureG1 to obtain the prediction accuracy percentage, using
another causal inference software NETICA (Norsys Corporation), where the obtained
percentages were %78.04 and %70.37, respectively.

Fig. 2. Discovering knowledge

Table 3. Significant features, casual relations and estimations

Functions
fv V1

1    fg G1

fz Z

V1={b, os, nn, vf, vn, vs, pn, S}

P(S = 1 os = 2, nn = 2, vf = 2, vn = 2, vs = 2) = 92%
P(S = 0 os = 1, nn = 1, vf = 1, vn = 1, vs = 1) = 99%

fv V1

2 fg G1

fz Z

V1={d, cu, pn, vn, S}

P(S = 1 d = 2, cu = 1, pn = 2) = 99%
P(S = 0 d = 1, cu = 2, pn = 1) = 76%
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5.5 Analyzing Acquired Knowledge and Self-adapting Algorithms

The results from case studies 1 and 2 are reviewed deeply in Fig. 3 (Analysis 1 and 2).
So too, the logical design of the new Tabu Search Self-Adapting Algorithms is shown.
On the other hand, another interesting result was obtained in case study 3, where the
Tabu Search algorithm was distinguished by methodology in order to generate the initial
solution. Though the function, fv, of composite function E could not discover significant
features to build a causal explanation model, it is important to highlight the fact that a
knowledgewas obtained aswell. One possible interpretation of this result may be that the
method used to generate the initial solution does not impact the algorithm performance,
according to set Y, in solving problem instances. One similar result was observed in [31]
for another optimization problem and Tabu Search algorithm.

Fig. 3. Analysis of case studies 1, 2 and Tabu Search Self-Adaptive Algorithms
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6 Results Analysis

In the reviewed literature, there was no related work with the same circumstances for
comparing performance of individual results. An example of this can be an improved
Tabu Search algorithm for BPP. Therefore, the performance for the self-adaptive algo-
rithms (aa1, aa2) was compared against that of the original analyzed algorithms (a2, a3),
it is to say aa1−a2, aa2−a3. The comparative analysis of performance results from the
algorithms was performed in two consecutive phases of analysis. The first analysis phase
consisted on determining the total scope of new self-adaptive algorithms aa1 (287) aa2
(301); thereafter determining their total scope percentage, example 287/324 = 89% for
aa1, aa2 (93%). Analysing the partitions Caa1 and Caa2 in more detail, aa1 wins 159 and
aa2 wins 163 instances in quality, 128 and 138 in time, where the quality is the same for
both algorithms (see Fig. 4).

Fig. 4. Times of analyzed algorithm and self-adaptive algorithm (same quality)

The time differences are too big, it is not necessary to apply a statistical test. The self-
adaptive algorithms finishing faster than the interest algorithm (aq) analyzed in study
cases. Due the above, the objective of second analysis phase is to verify the values of
quality metric, specifically when self-adaptive algorithm has the best quality (159-case
1, 163-case 2). In this sense, for study cases 1 and 2, aa1 had best time in 80 out of 159
problem instances and aa2 had best time in 95 out of 163 problem instances.

Fig. 5. Times of analyzed algorithm and self-adaptive algorithm (best quality)

Figure 5 shows these times. The metric values time for each one of algorithms do
not assume a normal distribution. Thus, a nonparametric statistical test of two dependent
samples is applied (the two sample two-side wilcoxon signed rank test) for significance
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levels 95% and 99%. The Dataplot statistical software (www.itl.nist.gov) was used for
this test. The test statistic was 7.67 and 8.46 for study cases. The null hypothesis (equal
means) is rejected (critical values 1.96, 2.57) and it means that there is a significant
difference between times. The self-adaptive algorithms (μ2) finishing faster than the
original algorithm (μ1) analyzed in study cases. Continuing with the analysis, it is
necessary to verify if there is a statistically significant difference between the means of
metric quality. The values of this metric do not assume a normal distribution. Thus, the
same statistical test for significance levels was applied (test statistic 10.15 and 9.92).
The null hypothesis is rejected, there is a significant difference in terms quality.

6.1 Other Results

The analysed original algorithm and self-adaptive algorithm from cases of study 1 and
2, were executed over set P’ (P’ �= P). The self-adaptive algorithms had better quality
or time in 166 and 156 problem instances of set P’ than analysed interest algorithm,
respectively. Figure 6 shows the time of algorithms when they have the same quality.
The same wilcoxon statistical test was applied to time differences. The test statistic was
9.27 and 8.37 for both cases. The null hypothesis is rejected for significance levels 95%
and 99% (critical values 1.96, 2.57). The self-adaptive algorithmsfinishing faster than the
analysed interest algorithm. Also, Fig. 7 shows the times when self-adaptive algorithm
has less quality than analysed interest algorithm. The quality difference average was
0.025 (very small) for 158 problem instances out of 324 and the self-adaptive algorithms
finishing faster than the interest algorithm in most cases over set P’.

Fig. 6. Same quality of both algorithms and best times of self-adaptive algorithm

Fig. 7. Less quality and best times of self-adaptive algorithm

http://www.itl.nist.gov
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7 Conclusions

Most of the literature consulted from combinatorial optimization area has been focus-
ing only on problem information or algorithm information or, rarely, on both in order
to describe the experimental relation between problem-algorithm. Furthermore, in the
analysis of this relation, has been identified in the descriptive understanding level that
certain problem instances correspond better to a certain algorithm than other. This phe-
nomenon has been analyzed and learned implicitly in the predictive understanding level
(algorithm selection problem). However, it has not been understood at all for a specific
problem. This paper goes beyond the predictive level, covering limitations identified.
The phenomenon is formally formulated as question and problem at the explanatory
understanding level. The composite function, E, is proposed to solve such formulation
and performed for a specific domain (One Dimension Bin-Packing problem and Tabu
Search algorithm) over an instance set P. A description process for problem structure
and space, for algorithm performance and the operative and searching behaviors of the
algorithm during execution (significant features) was proposed to build the domain of
the composite function. Also, the metrics known by scientific community were used,
but these were not significant in the analyses. Three important logical areas were con-
templated. The knowledge acquired by the proposed composite function allowed the
solving of the stated problem, understanding the phenomenon, answering the “how”
and “why” for certain problem instances, algorithm significant features and the algo-
rithm logical design contribute toward a better relation between problem-algorithm. It
was applied to design self-adaptive algorithms and improve the performance considering
the causal relations according to problem structure or space. On average, a 91% signif-
icant advantage of Tabu Search self-adaptive algorithms was obtained over analyzed
original algorithms. Other results over set P’ showed that when they obtain the same or
less quality of solution, they finish significantly faster than analyzed interest algorithm
and the quality difference is very small. As future work is to explore generalized features.
The proposed composite function E could act as a guideline to find latent knowledge
from relation problem-algorithm of other problem domains and search algorithms; this
permits the adapting of logical design as well as operative and searching behaviors of an
algorithm (self-adaptive algorithm) to problem structure, solutions space and behavior
of algorithms (operative and searching) during execution for providing the best solution
to problems.
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Abstract. The paper presents the parallel implementation of prestack beam
migration of 3D seismic data. The objective is to develop the parallel imaging
algorithm for processing large enough volumes of 3D data in production mode,
suitable for anisotropic media, and handling 3D irregular seismic data without
any preliminary regularization. The paper provides a comparative analysis of the
developed migration results with the industrial version of the Kirchhoff migration
on synthetic and real data.

Keywords: 3D seismic imaging · Gaussian beams · Anisotropy · Parallelization

1 Introduction

At present, in seismic data processing, prestack depth migration is one of the most
computationally expensive procedures. So the migration algorithm should be optimized
as much as possible and effectively parallelized. The presented algorithm for three-
dimensional anisotropic depthmigration in true amplitudes originates from the approach
realized in a two-dimensional version [1]. But when implementing the migration of
3D seismic data, the algorithm has undergone significant changes and become closer
to the method of three-dimensional Gaussian beam migration, which has become the
industry standard [2]. However, this migration option is implemented for regular data in
the midpoint domain for each offset [2]. The approach considered in the paper does not
require a regularization, and it provides handling irregular data both in the source-receiver
and in the midpoint-offset domains.

Similarly, to the two-dimensional predecessor, the algorithm is implemented by
extrapolating wavefields from the observation system to a certain fixed image point
along anisotropic Gaussian beams [3–5], using individual Gaussian beams instead of
decomposing the wavefield into Gaussian beams. The leading algorithmic optimization
consists of constructing identical Gaussian beams on the observation surface. It leads to
the possibility of dividing migration into two parts: the process of summing data with
weights (or decomposing data into beams) and the process of mapping the decomposed
data into depth (the migration process itself). Moreover, each of these two parts uses
OpenMP technology [6], providing its implementation and optimization. And, the entire
migration process is effectively implemented using MPI technology [6]. In general, this
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approach made it possible to create a technological version of migration, which, in terms
of computational costs, is comparable to the industrial implementation of Kirchhoff
migration and superior in quality. The parallel implementation of the algorithm is verified
on a representative set of synthetic and real data.

2 Seismic Migration as Asymptotic Inversion

The technique presented here provides an asymptotically correct true-amplitude image
of multicomponent seismic data. In this section, the developed migration is described as
an asymptotic inversion of seismic data.

2.1 Statement of the Problem

3D heterogeneous anisotropic elastic medium is considered with Lamé’s parameters and
density decomposing as follows:

cijkl(x, y, z) = c0ijkl(x, y, z) + c1ijkl(x, y, z), ρ(x, y, z) = ρ0(x, y, z) + ρ1(x, y, z). (1)

The parameters c0ijkl(x, y, z) and ρ0(x, y, z) describe a priori known smooth macro-

velocity model/background/propagator while c1ijkl(x, y, z) and ρ1(x, y, z) are responsible
for its unknown rough/rapid perturbations or reflectors.

Born integral [7] describes the reflected/scattered wavefield on the surfaces:

�uobs(xr, yr; xs, ys;ω)

= ∫G(xr, yr, zr(xr, yr); x, y, z) · L1〈�u0(x, y, z; xs, ys, zs(xs, ys);ω)〉dxdydz. (2)

Here (xr, yr, zr(xr, yr)) is the receiver coordinate, (xs, ys, zs(xs, ys)) is the source coordi-
nate, ω is the frequency and −→u 0

is the incident wavefield propagating in a smooth back-
ground from a volumetric point source, G – Green’s matrix for the smooth background
and operator L1 introducing by the rough perturbations c1ijkl(x, y, z) and ρ1(x, y, z):

(L1〈�u0〉)j = −
∑3

i,l,l=1

∂

∂xi

(
c1ijkl

∂u0l
∂xk

)
− ρ1ω

2u0l ; (x1, x2, x3) ≡ (x, y, z). (3)

The problem is to reconstruct rough perturbations of elastic parameters c1ijkl(x, y, z) and
density ρ1(x, y, z) or some of their combinations by resolving integral Eq. (2) with the

data −→u obs
(xr, yr; xs, ys;ω).

2.2 Asymptotic Inversion: Generalized Coordinates

On the acquisition surface, the beam center coordinates are introduced, i.e., pr0 =
(xr0, yr0) – receiver beam center and ps0 = (xs0, ys0) – source beam center. Quasi-
pressure (QP) rays are traced fromevery beamcenter to every image pointpi = (xi, yi, zi)
within the model. QP Gaussian beams are constructed along with these rays [3, 4], and
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they are denoted by −→u gbr
qp (xr, yr; pr0; pi;ω) and −→u gbs

qp (xs, ys; ps0; pi;ω). Then on the
acquisition surface, integration beamweights are computed: one is the normal derivative
of the Gaussian beam at the receivers, another one is the normal derivative of the scalar
part of the corresponding beam in the sources:

−→
T

gbr

qp

(
xr, yr; pr0; pi;ω

)
,Tgbs

qp
(
xs, ys; ps0; pi;ω

)
. (4)

Both parts of the Born integral (2) are multiplied by the constructed weights (4) and
integrated with respect to the source and receiver coordinates. Using saddle point tech-
nique for every beam weight (it is the 3D analog of the result described in the paper [1]),
one can come to the following identity:

∫
Tgbs
qp

(
xs, ys; ps0; pi;ω

)�Tgbr
qp

(
xr, yr; pr0; pi;ω

)�uobs(xr, yr; xs, ys;ω)dxrdyrdxsdys

=
∫

�ugbrqp
(
p; pr0; pi;ω

) · L1〈�ugbsqp
(
p; ps0; pi; ;ω

)〉dp
(5)

Here is p ≡ (x, y, z). The representation of qP beams: −→u gbr(s)
qp = −→e gbr(s)

qp ϕ
gbr(s)
qp .

And computations of beam derivatives (operator L1) retaining terms up to the first
order only, togetherwith themicrolocal analysis (it is analogous to the research described
in the paper [1]) of the right-hand side of (5) gives the following:

∫
Tgbs
qp

(
xs, ys; ps0; pi;ω

)�Tgbr
qp

(
xr, yr; pr0; pi;ω

)�uobs(xr, yr; xs, ys;ω)dxrdyrdxsdys

= ω2
∫

exp
{
iω

(∇τs
(
pi; ps0

) + ∇τr
(
pi; pr0

)) · (
pi − p

)}
f
(
p;pr0; ps0

)
dp.

(6)

Here τs, τr are travel times from the image point pi to the corresponding acquisition
point ps0, pr0, f is a linearized reflection coefficient. Introducing generalized coordinates
p01 = (x01, y01), p02 = (x02, y02) that depends on beam center coordinates ps0, pr0, the
change of variables (x01, y01, ω) → (kx, ky, kz) in the right-hand side of (6) is used:

k = (
kx, ky, kz

) = ω
(∇τs

(
pi; p01; p02

) + ∇τr
(
pi; p01; p02

))
. (7)

Multiplication by generalized Beylkin’s determinant [8]:

BelDet
(
pi; p01; p02

) =

∣∣∣∣∣∣∣

∇x(τs+τ r) ∇y(τs+τ r) ∇z(τs+τ r)
∂∇x(τs+τ r)

∂x01
∂∇y(τs+τ r)

∂x01
∂∇z(τs+τ r)

∂x01
∂∇x(τs+τ r)

∂y01
∂∇y(τs+τ r)

∂y01
∂∇z(τs+τ r)

∂y01

∣∣∣∣∣∣∣
, (8)

and integration of both parts of the identity (6) with respect to x01, y01, ω gives the final
asymptotic inversion result:

f
(
pi; p02

) = ∫BelDet
(
pi; p01; p02

) · Tgbs
qp

(
xs, ys; p01; p02; pi;ω

)

· �Tgbr
qp

(
xr, yr; p01; p02; pi;ω

) · �uobs(xr, yr; xs, ys;ω)dxrdyrdxsdysdp01dω.
(9)
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The formula (9) is called imaging condition and provides true amplitude seismic image
in generalized acquisition coordinates p01, p02. The last means the imaging condition
provides handling any acquisition coordinates. Particularly, asymptotic inversion can
utilize beam center receiver coordinates pr0 = (xr0, yr0) while the final result provides
averaged linearized reflection coefficient with respect to beam center source coordinates
ps0 = (xs0, ys0). Another helpful option uses structural dip and azimuth angle coor-
dinates pr0 ≡ (γ, θ) [9] in the inversion process and the final image depends on the
opening angle and the azimuth of the opening angle ps0 ≡ (β, az) [9].

In the standard industrial technology of seismic processing, the data is usually pro-
cessed in common midpoint and offset domains. To get the image in these terms, one
should use the following representation of generalized acquisition coordinates:

p01 ≡ (xm, ym) = ((xs0 + xr0)/2, (ys0 + yr0)/2),

p02 ≡ (
hx, hy

) = (xr0 − xs0, yr0 − ys0)
(10)

In this case, the inversion is done with respect to midpoints, while the final image is got
with respect to offsets.

3 Implementation of Migration Operator

The software implementation utilizes the division of the whole imaging procedures
by two blocks (Fig. 1). The first one computes beam attributes and stores them to the
disk, and the second one provides seismic data mapping via beam attributes usage. The
division into two partsmakes it possible to implement offset-midpoint imaging condition
(9) effectively. This way provides an opportunity to perform beam data decomposition
before their mapping into the image domain. Therefore, computational cost decreases
significantly because the summation of data occurs once for all image points, in contrast
to the straightforward realization without beam data decomposition when there is a
separate summation for each image point. Taken together, this approach provides an
opportunity to implement a technological version handling industrial volumes of 3D
seismic data within a reasonable computation time.

Fig. 1. General upper-level diagram for the realization of the offset-midpoint imaging procedure.
In all the diagrams and schemes (Fig. 1, 2, 3, 4, and 5), dark blue color means data, and brown
color implies a process (Color figure online).
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3.1 Parallelization Scheme

Since the attribute computation block works separately from the migration itself, then
the parallelization is performed independently for each such block also. Scheme for
the attributes computation utilizes two-level parallelism. The first level uses MPI paral-
lelization done by beam centers. Every node extracts and loads the corresponding part
of the model and computes beam attributes for the beam centers portion (Fig. 2). The
second level on every node provides OpenMP parallelization by the number of rays, i.e.,
on beams, where every CPU core provides a corresponding bunch of rays (Fig. 2).

Fig. 2. Parallelization scheme of beam attributes computation procedure.

After the beam attributes computation procedure finishes, the seismic data mapping
block starts processing. Its realization also utilizes MPI and OpenMP technologies. MPI
realization is done for every offset with respect to the beam center midpoints (Fig. 3).

Fig. 3. Parallelization scheme of data mapping procedure.
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Then the algorithm contains two steps on every MPI node. The first step provides
OpenMP realization of beam decomposition with respect to directions. Every node accu-
mulates OpenMP results, and then the second step again utilizes OpenMP technology
for beam data mapping into the image domain with respect to portions of image points
(Fig. 3). Every MPI process works independently, so there are no connections between
MPI nodes. But the optimization implementation requires uniform data distribution
between nodes which is realized based on data coordinates analysis.

3.2 The Functionality of the Algorithm

The straightforward implementation of the imaging condition (9) requires high compu-
tational costs for the migration of modern production volumes of data. Simultaneously,
the realization of such a migration in structural angles automatically calculates Common
Image Gathers (CIGs) depending on the opening angle and opening azimuth. Of course,
this is a useful functionality required for amplitude analysis and amplitude inversion
depending on the medium’s parameters (for example, impedances). On the other hand,
the effective implementation of the imaging condition (9) makes it possible to calculate
the common image point’s seismograms depending on the offsets. Such seismograms are
certainly necessary, for example, for velocity analysis, but angle domain seismograms
are also needed, for instance, for amplitude analysis. Therefore, within the framework
of the migration algorithm based on the imaging condition (9), calculating angle domain
gathers is implemented. In short, inside the migration process for each image point,
a specific function provides the correspondence between the angle and the offset by
searching for a stationary point. After migration, resorting and interpolation to a regular
grid specified by the user takes place (Fig. 4). In this case, the additional computational
time for sorting and interpolation occurs already after the migration stage.

Fig. 4. Scheme for functionality realization of angle domain common image gathers computation.

Implementing the imaging condition in the structural angles (9) makes it possible to
calculate selective images or common image point seismogramsdepending on the angles,
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which are essential for the diffraction image construction. It was also required to have
this option when implementing the imaging condition (9) in midpoint offset coordinates.
There were two calculation options. The first option is carried out by splitting the image
into angular seismograms during migration. Of course, in this case, selective images
will not be as focused as in the implementation of the imaging condition (9) in structural
angles. However, in many cases, they can still be quite helpful. This option requires
significantly more memory (RAM) but has a very weak effect on computations’ cost.
On the other hand, such images are calculated by processing the total image in the Fourier
domain, where the component corresponding to the calculated angles is selected (Fig. 5).
A reasonable combination of these methods makes it possible to construct diffraction
images of sufficiently good quality.

Fig. 5. Scheme for functionality realization of angle domain selective images computation.

The imaging condition (9) in terms of midpoint-offset coordinates makes it possible
to implement a technological version of migration. In contrast, the migration algorithm
based on the imaging condition (9) in structural angles requires much more computa-
tional resources. Conducted specific calculations for these implementations on identical
data and equipment show that the computational time difference reaches two orders of
magnitude (Table 1). This difference leads to the fact that structural angle realization
is acceptable only for small amounts of data in a relatively small image area. On the
other hand, midpoint-offset realization provides similar functionality as the structural
angle version. Simultaneously, it allows handling large enough data set within reasonable
computational resources, and therefore it is suitable for industrial processing.

Table 1. Computational time comparison for midpoint-offset realization and structural angle
realization.

Data type Data size Computational time (1 CPU)
structural angle realization

Computational time (1 CPU)
midpoint-offset realization

2D data set 2 GB 40 h 1 h

3D data set 26 GB 4000 h 37 h
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4 Numerical Examples

This section provides numerical results and a comparative analysis of the developed
migration results with the industrial version of the Kirchhoff migration on 3D synthetic
data and 3D marine seismic data.

4.1 Synthetic Data Set

Today, the need to test any developed algorithm on synthetics before using it on real
data has become the standard. Amount of synthetic data are created for realistic models.
One of the well-known 3D datasets is the free SEG-salt model data [10]. The model
is 3D and contains a salt body (Fig. 6a, 7a). The dataset simulates an offshore seismic
survey. For this model and data, twomigration tests are performed. One of them provides
Kirchhoff industrial migration test for the SEG-salt smoothed model. In this case, the
model is smoothed to obtain the horizontal interface’s best quality image at a depth of
about 3500 m. Comparison of two-dimensional slices of the SEG-salt model (Fig. 6a,
7a) and similar slices of a three-dimensional image obtained by Kirchhoff migration
(Fig. 6c, 7c) show that the position of this boundary is restored quite well in many
places. The same results demonstrate a rather good restoration of the lower interface of
the salt body. However, at the same time, the upper boundary is blurred and defocused.
Another test provides Gaussian beam migration, using a special algorithm for a more
accurate description of the ray-tracing through a salt body.Comparison of 2D slices of the
SEG-salt model (Fig. 6a, 7a), similar slices of a 3D Kirchhoff migration image (Fig. 6c,
7c), and the corresponding Gaussian beam migration results (Fig. 6b, 7b) are presented.
They show that the lower horizontal interface at a depth of 3500 m is reconstructed
much better using Gaussian beams than with Kirchhoff migration with “optimal” model
smoothing. Obviously, in the subsalt zone at a depth of between 2000 and 3000 m, the
Gaussian beam imaging procedure reconstructs inclined boundary, while on the result
of Kirchhoff migration, it is practically absent. Moreover, the salt boundary is more
reliably determined by the Gaussian beam imaging algorithm (Fig. 6b, 7b) than by the
Kirchhoff migration procedure (Fig. 6c, 7c), where migration artifacts complicate the
image.

Fig. 6. 2D sections of 3D volumes for the coordinate y = 7800 m: a) SEG-salt model; b) beam
imaging result; c) Kirchhoff migration image.
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Fig. 7. 2D sections of 3D volumes at a depth of 2000 m: a) SEG-salt model; b) beam imaging
result; c) Kirchhoff migration image.

4.2 Real Data Set

The developed anisotropic Gaussian beam migration is applied to the real data. For the
data at the velocity model building stage, the anisotropic depthmodel is constructed. The
industrial anisotropic Kirchhoff migration is used for the model and the data also. Gaus-
sian beam migration results (Fig. 8a, 9a) show sufficiently focused reflected events,
which indicates that the anisotropy during migration is taken into account correctly.
Comparing the images obtained by beam migration (Fig. 8a, 9a) and Kirchhoff migra-
tion (Fig. 8b, 9b) provides the resolution of the Gaussian beam imaging exceeds the
Kirchhoff migration resolution. The seismic horizons in the image obtained from the
beam migration are traced better than those obtained by the Kirchhoff migration. The
discussed images were obtained for the area 300 km2 and the data size almost 600
Gigabytes. The computational resources contain ten nodes with 20 CPU cores on each
computation node. Such data and resources provide approximately 23 h for running the
beam imaging procedure (Table 2). The computation time of Kirchhoff migration is
about 20 h in the same environment (Table 2). So computational times are similar, but
the image quality of the beam migration is better.

Fig. 8. 2D sections of 3D images for the coordinate y = 8.5 km: a) beam migration result; b)
Kirchhoff migration result.
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Fig. 9. 2D sections of 3D images at a depth of 6 km: a) beam migration result; b) Kirchhoff
migration result.

Table 2. Computational time comparison for beam and Kirchhoff migrations computed on the
real marine data set.

Migration Data size Computational resources Computational time

Beam 592 GB 10 Nodes × 20 CPU cores ≈23 h

Kirchhoff 592 GB 10 Nodes × 20 CPU cores ≈20 h

5 Conclusions

The paper presents the parallel implementation of the 3D seismic beam imaging algo-
rithm for anisotropic media. The algorithm can be applied to irregular data either in
source-receiver or midpoint-offset domains. Acquisition domain realization provides
similar functionality as the structural angle version, but it allows handling large enough
data sets and is suitable for industrial processing. The implementation of beam imaging
utilizes MPI and OpenMP technologies, effectively providing two-level parallelization
with division into beam attribute and data mapping blocks with intrinsic separate data
decomposition. The computational time comparison of the developed beam imaging
and industrial Kirchhoff migration shows similar behavior. However, the migration of
freely distributed synthetic data SEG-Salt and real data proves the developed algorithm’s
advantages. The obtained stacked images are cleaner and more coherent in comparison
with the results of Kirchhoff migration.

Acknowledgments. The reported study was funded by RFBR and GACR, project number 20-
55-26003.
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Abstract. LocalizationofWirelessSensorNetworks (WSN) is an important prob-
lem that has gained a lot of attention as can be seen in the survey papers [8, 9].
Among the many techniques that have been employed to obtain accurate local-
ization under various underlying assumptions, Multi-Dimensional Scaling (MDS)
provides a centralized solution given range measurements between nodes. How-
ever, dissimilarity matrix provided to MDS is incomplete due to missing range
measurements between significant numbers of nodes.Researchers have used short-
est distance computations on the basis of existing range measurements to provide
an estimate of the actual range measurements. This leads to significant error in
localization using MDS. In this work, we introduce an improved estimate of the
shortest distances between nodes based on estimated angle between nodes. We do
not assume AoA (Angle of Arrival) is available, however we estimate inter-node
angle to help improve distance measures. Our results show significant improve-
ment in the performance of MDS for localization of wireless sensor networks
for both range-based and range-free noisy range network models. Our simulation
verifies the result on both sparse and dense networks.

Keywords: Wireless sensor networks · Localization · MDS

1 Introduction

Most everyday electronic devices currently used are equipped with sensors. Due to
availability of low cost sensors that can sense various aspects of the environment such as
radiation, motion, pressure, temperature etc., numerous applications have been created
that rely on processing the sensor data. However sensors have limited capability in
computation, energy and storage. Once deployed, sensors transmit sensed data to a
centralized server or nearest sink node. Often, sensors are deployed in environments that
are subject to mobility such as automotive, underwater missions, vehicles involved in
combat etc., and, therefore their locations change with time. Since equipping sensors
with GPS consumes tremendous energy, the locations of sensors becomes unknown over
time. Localization of Wireless Sensor Networks (WSN) is the problem of finding geo-
location of sensor nodes under different models of sensor communication and sensor
deployment. Anchor nodes are small subset of sensor nodes in a wireless sensor network
that are aware of their locations due to being equipped with GPS or stay fixed throughout
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the mission. Various deployment environments have led to numerous techniques for
localization.

Techniques for localization of wireless sensor networks can be categorized using
various assumptions: whether sensor nodes remain stationary ormobile during execution
of the localization algorithm; whether there are anchor nodes (anchor based) or no
anchor nodes (anchor free); whether distance information between the nodes is available
(range-based) or not (range-free).

The range-based approaches assume that sensors canfind the distance to neighboring
sensors within their sensing radius using RSSI signal strength, or time difference of
arrival (TDoA) between radio signals or time of arrival of signal (ToA). In addition,
angle of arrival (AOA) of a signal [11], has be used to assist in localization of the
sensors. In range-free approach, nodes are aware of the presence of neighboring nodes,
but do not have the range information to them.

The node based localization based algorithm called Sweeps was developed in [12]
and is related to the iterative method called trilateration. A range based localization
model that considers a Bayesian approach has been proposed in [13]. Wang et al. in [14]
have proposed a range free localization algorithm as an improvement to regular DV-Hop
algorithm.

Among the techniques used for localization MDS (Multi-Dimensional Scaling) is
powerful andworks in low time complexity.MDScanbe centralized or distributed.Given
hybrid distance and angle of arrival measurements, [1] provide the graphical properties
that guarantee unique localizability in cooperative networks. Iterative multidimensional
scaling (IT-MDS) and simulated annealing multidimensional scaling (SA-MDS), which
are variations classical MDS was proposed in [2]. The authors demonstrate that these
perform more reliably and accurately for distributed localization. The authors in [3]
present a system of tracking mobile robots and mapping an unstructured environment,
using up to 25 wireless sensor nodes in an indoor setting. In [4] that authors to propose
a technique relevant to networks that may not be fully localizable. The authors design
a framework for two dimensional network localization with an efficient component to
correctly determine which nodes are 1ocaIizahle and which are not.

To obtain the distance matrix, the authors in [5] estimate the inter-tag distances using
a triangular method. Then, classical MDS algorithms has been applied to determine the
estimated locations of the tags. The authors in [6] propose an MDS based approach
that can take advantage of additional information, such as estimated distances between
neighbors or known positions for anchor nodes. The authors in [7] prove that for a
network consisting of n sensors positioned randomly on a unit square and a given radio
range r = o(1), the resulting error is bounded, decreasing at a rate that is inversely
proportional to r, when only connectivity information given. In [10], the authors address
flip, rotation and translation ambiguities by exploiting the node velocities to correlate
the relative maps at two consecutive instants. The authors introduce a new version of
MDS, called enhancedMultidimensional Scaling (eMDS), which is able to handle these
ambiguities.
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In this paper we present a new way to estimate distances between those nodes for
which direct range measurements are not available. We combine shortest path between
nodes along with estimate of inter-node angle. Section 2 presents background of the
MDS techniques, Sect. 3 describes the contribution of inter-angle estimation technique,
Sect. 4 contains simulation results and Sect. 5 provides conclusion.

2 Background

We view the underlying graph of the network as a graph G = (V, E), where V represent
the set the nodes in the WSN, and the weight of an edge e in E between nodes u and v is
the range measurement between nodes. In range-based deployment, each node is aware
of the nodes within the radio range of the network. It is assumed that all nodes have the
same radio range, called the radius of the network. In noise-free range measurement,
each node knows the exact Euclidean distance between itself and its neighbors within
the radius. In a noisy range measurement, we assume a Gaussian noise to the range
measurement. In range-free deployment, each node is aware of the presence of nodes
within the network radius, however, the range measurement is not known. In this case,
we assume that range measurement between neighbors is the radius of the network.

The goal in all of the scenarios described above including range-based with noise-
free range measurements, range-based with noisy range measurements and range-free
deployments, is to find the location of the nodes each node v in V, with a mapping
denoted by m(v) = (xv, yv) such that Euclidean distance between m(u) and m(v) is equal
to the range measurement between u and v for all nodes where range information is
given.

Multidimensional Scaling (MDS)was originally created for visualizing dissimilarity
of data. MDS takes as input a set of distance information between nodes assumed to be
high dimensions and the distance is assumed to Euclidean distance in the dimension. In
order to visualize the data, it is desirable that there be points created in lower dimensions
such 2 or 3 dimensions, so that one can visualize the dissimilarity between data points.
For 2 dimensional points, given O(n2) distances, i.e., distances between each pair of
points is sufficient to solve n positions, however, the set of points would be subject to
rotation, flip and translation and preserving the relativemap. In application to localization
however, we do not have all of the O (n2) distance measurements.

The dissimilarity matrix is referred to as proximity matrix P for our discussion. The
goal to find the location vector, L,= ( li)where li represents the location of node i. Let pij
represent the proximity between nodes i and j, and, Euclidean distance between location
li= (xi, yi) and lj= (xj, yj) as

dij =
√(

xi − xj
)2 + (

yi − yj
)2 (1)

Class MDS solves for L such that dij= f(pij), where f is a linear transformation, given
by dij= a + b* pij.
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A common approach to classical MDS is find D, the distance matrix between coor-
dinates, as close to given proximity matrix P as possible, such that I(P) = D + E, where
I(P) is a linear transformation of P subject to minimizing the sum of squares of the error
matrix E.

This is done by singular value decomposition (SVD) of the double centered matrix
of square of P, which includes the following steps

a) Square the matrix P. Double center the squared matrix and call it the matrix K.
Double centering a matrix is simply subtracting the row mean and column mean
from each element of the matrix and adding the grand mean of the entire matrix to
each element of the matrix and then multiplying the result by −1/2. That is

kij = −1

2

(
pij

2 − 1

n

∑n

j=1
pij

2 − 1

n

∑n

i=1
pij

2 + 1

n2
∑n

i=1

∑n

j=1
pij

2
)

(2)

b) It is proved that an element in the double centered matrix is equal to

kij = xi ∗ xj + yi ∗ yj (3)

c) Singular value decomposition is used on the double centered matrix K to obtain

K = UVU ′ (4)

d) Now

L = UV
1
2 (5)

Applying classical MDS to localization involves providing the dissimilarity matrix
which is equal to the distance information between nodes and using MDS to determine
the location of sensor nodes. However, since range information between majority of
nodes is not available, several “fillers” have been used to estimate distance between
nodes that are not within the radio range, such as hop distance between nodes, or shortest
distance between nodes. More accurate dissimilarity matrices, produce more accurate
localization. In this paper, we present a new way to estimate distances between nodes
when direct range measurements are not available. We combine shortest path between
nodes along with estimate of angle as described in the next section.

3 Estimation of Euclidean Distances

While using classical MDS, given a dissimilarity matrix M of size n × n that contains
the exact Euclidean distances between every pair of n nodes, MDS produces a set of n
coordinate points in 2D as described in Sect. 2, where the distance between each pair of
points is the corresponding weight in the dissimilarity matrix. Therefore, in order to use
classical MDS for localization, one needs the distances between every pair of points that
need to be localized. If ground truth is available, the result of MDS would be relative
map that when rotated, reflected and translated using three anchors would result in the
ground truth. In our application, in order to obtain the distance between nodes that are not
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adjacent in the WSN, researchers have used shortest distance using Floyd’s algorithm
and Dijkstra’s algorithm etc. While these provide shortest distances assuming that one
travels along the edges of the graph, they do not translate well for determining Eucledean
distances in network graphs. However, here explore how an intermediate node can help
determine the direct Eucledean distance between nodes using the fact that the nodes are
uniformly distributed in a given deployment area.

Given a networkG= (V, E)where each edge has a weight of network radius r (range-
free case), or range measured between two nodes (range-based), we consider the number
of nodes that possible neighbors of a node, i.e. the nodes that are within the network
radius. Since each node knows the number of nodes within its radio range, even if it
does not know the exact distance between itself and its neighbor(in range-free case), we
estimate that the angle between two neighbors incident at a node v is 360/|N(v)| where
N(v) is the set of neighbors of the node v. This angle information is then used at each
node to estimate the Euclidean distance two nodes. Given the angle � ABC, (see Fig. 1),
the distance between A andC can be found using distance between A and B, B andC and
the angle � BAC. The distance is then carried over to compute the length of the shortest
path between two nodes.

The algorithm used for computing shortest distances is modified using

D(A,C) = D(A,B) + D(B,C) + D(A,B) ∗ D(B,C) ∗ cos( � ABC) (6)

If nodes A and C have several nodes, then the min value of all of distances is used
as an estimate of shortest between A and C.

We modify the shortest distance computation used in Floyd’s algorithm using the
distance computation above. It is important to note that distance between A and C is
computed, it has impact on all shortest distances that use the edge (A,C) in the shortest
path, thus propagating the enhance distance estimation throughout the network. See
Fig. 1.

Fig. 1. Angle Estimation to computer the distance between A and C
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4 Simulation Results

Simulation was performed on Matlab by creating a node layout of the Wireless Sensor
Networks. The nodes were generated using a uniform distribution in a 100 by 100 unit
square. For each simulation, the average of the performanceof 50networks are computed.
The node density was varied between 200 and 400. The radii for sparse networks was
between 10 and 14 and dense networks it was 15 to 20. Figure 2 shows sample network
graphs of radius 12 (sparse) and radius 18 (dense).

Figure 3 shows that when the proposed technique of inter-angle estimation is used
to compute shortest distances, the average error of the distance computed by MDS
versus the ground truth is much smaller than using MDS with traditional shortest path
computations. This is also true for all dense graphs with radii between 15 and 20 as
shown in the same Fig. 3. It is also notable, as expected, as the network radius is higher
the error is lower due to more distance being available due to larger number of node
adjacencies.

Figures 4 demonstrates the results for connected networks for sparse and dense
range-free graphs. In case of range free graphs, nodes can are aware of their neighbors
but they are not aware of the exact distance between the node and its neighbors. We
use radio range (radius) of the networks as the distance information to compute the
dissimilarity matrix for MDS based localization. This leads to larger error by MDS in
both traditional shortest distance computation andwhen inter-angle estimate is available.
The error computed is error against the ground truth of the layout of the network where
range measurements are available.

Figure 5 demonstrates the same performance on range based and range-free graphs
with 400 nodes.

Next, we examine the effect of noise on the computation of angle estimation. The
range measurements of perturbed with Gaussian noise with standard deviation of 0.1 to
0.7. Since we use 200 nodes and radius of 14, the noise in the range is from 0.7% to
5%. We compute the difference in the distance between localized nodes Figs. 5 and 6
are Note that the noise in the MDS data is much less when AoA estimation is used for
computing shortest distances (Fig. 7).

Fig. 2. Sample networks with 200 nodes and sensor radius of 12 and 18
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Fig. 3. Radius vs mean error in localization for range based networks

Fig. 4. Radius versus mean error in localization for range free network

Fig. 5. Radius versus mean error in localization for 400 node networks
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Fig. 6. Radius versus mean error in localization for 400 node networks

Fig. 7. Noise versus error in localization

5 Conclusion

In this paper, we present an effective technique to enhance the distancematrix provided to
classicalMDS localization. The enhancement is the technique inwhich shortest distances
are computed between non-adjacent nodes. Using traditional techniques for finding
shortest distances would use either Floyd’s algorithm or Dijkstra’s algorithm. The new
technique use estimated angle between nodes assuming uniform distribution of nodes
on the network. We have demonstrated that this significantly reduces localization error
when using classical MDS for range free, range based computations even when there is
noise in the range measurement.
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Abstract. Let G be a graph with vertex set V (G) and edge set E(G).
A subset D of V (G) is a dominating set of G if every vertex not in D is
adjacent to one vertex of D. A dominating set is called independent if it
is an independent set. The domination number (resp., independent dom-
ination number) of G, denoted by γ(G) (resp., γind(G)), is the minimum
cardinality of a dominating set (resp., independent dominating set) of G.
The domination (resp., independent domination) problem is to compute a
dominating set (resp., an independent dominating set) of G with size γ(G)
(resp., γind(G)). Supergrid graphs are a natural extension for grid graphs.
The domination and independent domination problems for grid graphs
were known to be NP-complete. However, their complexities on supergrid
graphs are still unknown. In this paper, we will prove these two problems
for supergrid graphs to be NP-complete. Then, we compute γ(Rm×n) and
γind(Rm×n) for rectangular supergrid graphs Rm×n in linear time.

Keywords: Domination · Independent domination · Supergrid graph ·
Rectangular supergrid graph · Grid graph

1 Introduction

Let G be a graph. We will denote by V (G) and E(G) the vertex set and edge set
of G, respectively. Let v ∈ V (G), and let S ⊆ V (G). We use G[S] to represent the
subgraph induced by S. Denote by NG(v) = {u ∈ V (G)|(u, v) ∈ E(G)} the open
neighborhood of vertex v, while its closed neighborhood is represented as NG[v] =
NG(v) ∪ {v}. Generally, let NG(S) = ∪v∈SNG(v) and NG[S] = NG(S) ∪ S. The
degree of vertex v in G is the number of edges incident to v, and is denoted
by degG(v). Let D be a subset of V (G). If v ∈ D or NG(v) ∩ D �= ∅, then we
say that D dominates v. If D dominates every vertex of S ⊆ V (G), then we
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call that D dominates S. When D dominates V (G), D is called a dominating
set of G. The domination number of a graph G is the minimum cardinality of
a dominating set of G, and it is denoted by γ(G). A minimum dominating set
of G is a dominating set with size γ(G). The domination problem is to compute
a minimum dominating set of G, and it is a well-known NP-complete problem
for general graphs [16]. This problem is still NP-complete for some special graph
classes, including 4-regular planar graphs [16], grid graphs [10], cubic bipartite
graphs [29], etc.

Many variants of the domination problem do exist and they are to compute
a minimum dominating set with some additional properties, e.g., to be indepen-
dent or to induce a connected graph. These problems arise in a lots of distributed
network applications in which they are requested to locate the smallest number
of centers in networks so that every vertex is nearby at least one center, where the
set of centers forms a minimum dominating set, and some restricted conditions
are satisfied if it is the domination variant. The concept of these domination
related problems have many applications and have been widely studied in litera-
ture (see [21,22]); a rough estimate says that it occurs in more than 6000 papers
to date [20]. In this paper, we will study the domination problem and its one
variant, namely independent domination problem.

A set of vertices is said to be independent if its any two vertices are not
adjacent. An independent dominating set of a graph G is a dominating set I
such that I is independent. The independent domination number of a graph G
is the minimum size of an independent dominating set in G, and it is denoted by
γind(G). Since an independent dominating set of G is also a dominating set of
G, γ(G) � γind(G) for any graph G. The independent domination problem is to
compute an independent dominating set of G with size γind(G). This problem is
NP-complete for general graphs [16]. It is still NP-complete for bipartite graphs,
comparability graphs [11], planar graphs [5], chordal bipartite graphs [14], cubic
bipartite graphs [29], grid graphs [10], etc. However, it is polynomial solvable
when the input is restricted to some special graphs, including interval graphs [6],
circular-arc graphs [7], bounded clique-width graphs [12], etc. For more related
works and applications on independent domination, we refer the reader to the
survey on independent domination in graphs given in [17], and more results
regarding this problem in [1,2,4,13].

The two-dimensional integer grid G∞ is an infinite graph in which its vertex
set consists of all points of the Euclidean plane with integer coordinates, and two
vertices are adjacent if and only if their (Euclidean) distance is 1. A grid graph
is a finite and vertex-induced subgraph of G∞. The two-dimensional supergrid
graph S∞ is the infinite graph whose vertex set consists of all points of the plane
with integer coordinates and in which two vertices are adjacent if the difference
of their x or y coordinates is not larger than 1. A supergrid graph Gs is a
finite and undirected graph such that V (Gs) ⊂ V (S∞) and E(Gs) ⊂ E(S∞).
For a vertex v ∈ V (Gs), it is represented as (vx, vy), where vx and vy are the
x and y coordinates of v respectively. Then, 1 � degGs

(v) � 8. Grid graphs
are not subclasses of supergrid graphs, and the converse is also true: these two
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(a) (b) (c)

Fig. 1. (a) A set of lattices, (b) the neighbors of one lattice in a grid graph, and (c)
the neighbors of one lattice in a supergrid graph, where each lattice is denoted by a
vertex in a graph and arrow lines indicate the adjacent neighbors of one lattice.

graph classes contain common elements (vertices), but they are distinct since
their edge sets are distinct. Clearly, grid graphs are bipartite [26], but supergrid
graphs are not bipartite. A rectangular grid (or called complete grid) graph
Gm×n has mn nodes with node u = (ux, uy) adjacent to v = (vx, vy) if and only
if |ux − vx| + |uy − vy| = 1. A rectangular supergrid graph Rm×n is a supergrid
graph with vertex set {(vx, vy)|1 � vx � n and 1 � vy � m} and edge set
{(u, v)|0 � |ux − vx| � 1 and 0 � |uy − vy| � 1}. Then, for u ∈ V (Gm×n)
and v ∈ V (Rm×n), 2 � degGm×n

(u) � 4 and 3 � degRm×n
(v) � 8 if m,n � 2.

Throughout this paper, we will denote by (1, 1) the coordinates of the top-left
vertex of a grid or supergrid graph.

An intuitive motivation of proposing supergrid graphs is as follows. Consider
a set of lattices, depicted in Fig. 1(a), where each lattice is denoted as a vertex in
a graph. For a grid graph, the neighbors of a lattice include its upper, down, left,
and right lattices, see Fig. 1(b). However, in the real word and other applications,
the neighbors of a lattice may also contain its upper-right, upper-left, down-right,
and down-left adjacent lattices, see Fig. 1(c). For example, the sewing trace of a
computerized sewing machine is such an application [23]. Thus, supergrid graphs
can be used in these applications.

A brief summary of related works is given below. The domination prob-
lem on grid graphs was known to be NP-complete [10]. Many researchers have
studied the domination numbers of rectangular grid graphs [8,9,19]. In [18],
Gonçalves et al. computed γ(Gm×n) = 	 (m+2)(n+2)

5 
 − 4 for n � m � 16. This
result verified the conjecture in [8]. In [13], Crevals and Österg̊ard computed
γind(Gm×n) = 	 (m+2)(n+2)

5 
−4 for n � m � 16. In fact, γ(Gm×n) = γind(Gm×n)
for rectangular grid graph Gm×n by the result in [30]. In [28], the author com-
puted γind(Rm×n) = �m

3 ��n
3 �. In this paper, we provide another way to compute

γind(Rm×n). In [15], Gagnon et al. stated that γ(Rm×n) = �m
3 ��n

3 � is trivially
known. Unfortunately, they do not provide any proof. In this paper, we will give
a tight proof to verify γ(Rm×n) = �m

3 ��n
3 �. In [23], we first introduced super-

grid graphs and proved the Hamiltonian problems on supergrid graphs to be
NP-complete. In [24,25,27], the Hamiltonian related properties on some special
supergrid graphs have been studied. In this paper, we will prove that the domi-
nation and independent domination problems on (general) supergrid graphs are
NP-complete. Then, we compute γ(Rm×n) = γind(Rm×n) = �m

3 ��n
3 � by a tight

proof.
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The rest of this paper is structured as follows. Section 2 introduces some
notations and one related result in the literature. In Sect. 3, we prove that the
domination and independent domination problems for (general) supergrid graphs
are NP-complete. Section 4 computes γ(Rm×n) = �m

3 ��n
3 � by a formally proof.

In Sect. 5, we use a known result to verify γind(Rm×n) = γ(Rm×n). Finally, some
conclusions are given in Sect. 6.

2 Preliminaries

In this section, we will introduce some notations and one result in the literature.
For two sets X and Y , let X − Y denote the set of elements in X that are not
in Y . A path P in a graph G is a sequence of adjacent vertices starting from
v1 and ending at vk, represented as v1 → v2 → · · · → vk−1 → vk, where all
the vertices v1, v2, · · · , vk are distinct except that possibly the path is a cycle
when v1 = vk. A path starting from vertex v1 and ending at vertex vk is denoted
by (v1, vk)-path, and a path with n vertices is denoted by Pn if no ambiguous
appears.

Let Gs be a supergrid graph, and let v ∈ V (Gs). Then, v = (vx, vy), where
vx and vy are the x and y coordinates of v respectively, and 1 � degGs

(v) �
8. Rectangular supergrid graphs form a special class of supergrid graph and
they first appeared in [23], in which the Hamiltonian cycle problem is linear
solvable. A rectangular supergrid graph Rm×n is a supergrid graph with vertex
set V (Rm×n) = {v = (vx, vy)|1 � vx � n and 1 � vy � m} and edge set
E(Rm×n) = {(u, v)|0 � |ux − vx| � 1 and 0 � |uy − vy| � 1}. Then, Rm×n

contains m rows and n columns of vertices. In this paper, w.l.o.g. we will assume
that m � n. Let v be a vertex in Rm×n with m � 2. The vertex v is called a corner
of Rm×n if degRm×n

(v) = 3. There are four corners of R(m,n) including upper-
left, upper-right, down-left, and down-right corners coordinated as (1, 1), (n, 1),
(1,m), and (n,m), respectively (see Fig. 2). The edge (u, v) is called horizontal
(resp., vertical) if uy = vy (resp., ux = vx), and is said to be crossed if it is neither
a horizontal nor a vertical edge. For example, Fig. 2 shows a rectangular supergrid
graph R8×10 and it also depicts the types of corners and edges. Note that a grid
graph contains horizontal and vertical edges, but it contains no crossed edge. A
sequence of consecutive horizontal (resp., vertical) edges, e1, e2, · · · , ek, is called
a horizontal (resp., vertical) edge-line, denoted by Lk, where ei and ei+1 contains
a common vertex for 1 � i � k −1. Let μ, ν be two vertices in Lk such that they
are only incident to one edge. Then, a horizontal or vertical edge-line is denoted
by (μ, ν)-edge-line. For instance, the bold consecutive horizontal edges in Fig. 2
indicate a horizontal edge-line L6.

In our method, we need to partition a rectangular supergrid graph into two
disjoint parts. The partition is defined as follows:

Definition 1. Let S be a rectangular supergrid graph Rm×n. A separation oper-
ation on S is a partition of S into two vertex-disjoint supergrid subgraphs S1 and
S2, and is called vertical (resp., horizontal) if it consists of a set of horizontal
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Fig. 2. A rectangular supergrid graph R8×10, where bold dashed lines indicate vertical
and horizontal separations, and a set of 6 bold edges indicates a horizontal edge-line
L6.

(resp., vertical) edges. For instance, the bold dashed vertical (resp., horizontal)
line in Fig. 2 depicts a vertical (resp., horizontal) separation of R8×10 which is
partitioned into R8×3 and R8×7 (resp., R3×10 and R5×10).

In [9], Chang et al. computed the domination number γ(Pn) of path Pn as
follows:

Lemma 1. (see [9].) γ(Pn) = γ(R1×n) = 	n+2
3 
 = �n

3 �.

3 NP-completeness Results

In this section, the domination and independent domination problems for (gen-
eral) supergrid graphs will be proved to be NP-complete. In 1990, Clark et al. [10]
showed that the domination problem for (general) grid graphs is NP-complete.
We will reduce it to the domination and independent domination problems on
supergrid graphs.

Theorem 1. (See [10].) The domination problem on (general) grid graphs is
NP-complete.

We will reduce the domination problem on grid graphs to the domination
problem on supergrid graphs. Given a grid graph Gg, we will construct a super-
grid graph Gs to satisfy that Gg contains a dominating set D with size |D| � k

if and only if Gs contains a dominating set D̂ with size |D̂| � k +2|E(Gg)|. The
construction steps are sketched as follows. First, we enlarge the input grid graph
Gg such that each edge of Gg is transformed into a horizontal or vertical edge-line
L7 with 7 edges; i.e., enlarge each edge of Gg by 7 times. Let the enlarged grid
graph be G′

g. For an example, Fig. 3(b) depicts grid graph G′
g enlarged from grid

graph Gg in Fig. 3(a). In the second step, each horizontal or vertical (u, v)-edge-
line of graph G′

g is replaced by a (u, v)-path which is a small supergrid graph
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Algorithm 1: The supergrid graph construction algorithm
Input: A grid graph Gg. (see Fig. 3(a))
Output: A supergrid graph Gs. (see Fig. 3(d))
Method: // an algorithm constructing a supergrid graph from a grid graph

1. enlarge Gg to a grid graph G′
g such that each edge of Gg is transformed into a

horizontal or vertical edge-line L7 with 7 edges; (see Fig. 3(b))
2. for each horizontal or vertical (u, v)-path in G′

g, where u, v ∈ V (Gg), replace it
by a snake path to connect u and v;

// this replaced path is a small supergrid graph and is called snake (u, v)-path,
denoted by S(u, v) (see Fig. 3(c)), where u, v ∈ V (Gg) are called connectors
of S(u, v)

3. the constructed graph is a supergrid graph Gs (see Fig. 3(d)), and output Gs.

and is an undirected path P8, where u, v ∈ V (Gg). The path connecting u and
v is called a snake (u, v)-path, denoted by S(u, v). Figure 3(c) depicts a snake
(u, v)-path. Note that there exists no directionality for edges on S(u, v). Finally,
the constructed graph is a supergrid graph Gs. For instance, Fig. 3(d) shows the
supergrid graph Gs constructed from grid graph Gg in Fig. 3(a). Note that each
snake path is an undirected path P8 with 8 vertices. Algorithm 1 presents the
details of our construction.

Next, we will show that there exists an arrangement of snake paths in Gs such
that they are disjoint except their connectors. The arrangement rule is sketched
as follows: Consider a grid graph Gg. Since every grid graph is a subgraph of a
rectangular grid graph (or called complete grid graph) with maximum number
of edges, we can only consider the arrangement of snake paths for a rectangular
grid graph Gm×n, where Gg = Gm×n. Let u and v be two adjacent vertices
of Gm×n such that ux � vx and uy � vy. Let Pu

v be the enlarged horizontal
or vertical edge-line of edge (u, v) in Gg. We arrange snake paths of Gs by the
following rule:

Case 1: vx = ux + 1. In this case, Pu
v is a horizontal edge-line. There are two

subcases:
Case 1.1: uy is odd. If ux is odd, then the snake path S(u, v) is placed above

the edge-line Pu
v ; otherwise, it is placed below Pu

v .
Case 1.2: uy is even. If ux is odd, then the snake path S(u, v) is placed below

the edge-line Pu
v ; otherwise, it is placed above Pu

v .

Case 2: vy = uy + 1. In this case, Pu
v is a vertical edge-line. There are two

subcases:
Case 2.1: ux is odd. If uy is odd, then the snake path S(u, v) is placed to be

the right of edge-line Pu
v ; otherwise, it is placed to the left of Pu

v .
Case 2.2: ux is even. If uy is odd, then the snake path S(u, v) is placed to be

the left of edge-line Pu
v ; otherwise, it is placed to the right of Pu

v .
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(a)

(b)

(c)

(d)

u v

u v

Fig. 3. (a) A grid graph Gg, (b) a grid graph G′
g by enlarging each edge of Gg 7

times, (c) a snake (u, v)-path S(u, v) to replace the enlarged edge-line of G′
g, and (d) a

constructed supergrid graph Gs obtained from G′
g by replacing each enlarged edge-line

with a snake path in (c), where solid lines indicate the edges of Gg and Gs, double circles
represent the vertices of Gg, and solid circles indicate the vertices in a dominating set
of Gg or Gs.

For example, Fig. 4 depicts the arrangement of snake paths in Gs for Gg =
G16×16. The above arrangement rule is called Rule AS (Arrange Snake paths)
and it holds the following property:

Lemma 2. Rule AS arranges the snake paths of Gs such that these paths are
disjoint except their connectors.

Proof. Consider a square with vertices (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) in
a grid graph Gg. There are four cases:

Case 1: i, j are even or odd. By Rule AS, the snake paths with four connectors
(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) are arranged disjoint.
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Fig. 4. An arrangement of snake paths in Gs from Gg = G16×16, where bold triangle
lines indicate the snake paths of Gs.

Case 2: i is even and j is odd, or i is odd and j is even. By Rule AC, the snake
paths with the four connectors (i, j), (i+1, j), (i, j+1), (i+1, j+1) are arranged
disjoint.

We have considered any case to locate snake paths. In a square of a grid
graph Gg, there are at most two snake paths to be placed inside the square of
paths in Gs and they are located inside the paths square across from each other.
By the construction of snake paths, any two vertices of two adjacent snake paths
are not adjacent except their connectors which are in Gg, and the height of each
snake path equals to two. Thus, the lemma holds true.

Clearly, Algorithm 1, together with Rule AS, can be done in polynomial time.
Thus, the following lemma holds true.

Lemma 3. Given a grid graph Gg, Algorithm 1, together with Rule AS, con-
structs a supergrid graph Gs in polynomial time.

To prove our NP-completeness result, we need to observe some domination
properties of snake paths. Note that a snake path is a simple undirected path
P8. By Lemma 1, the following properties of snake (u, v)-path S(u, v) can be
easily verified:

Proposition 1. Let D̂ be a dominating set of Gs constructed by Algorithm 1,
and let S(u, v) be a snake path with connectors u and v. By Lemma 1, the
following statements hold true:
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(a) (b) (c)
u v

w1 w2

w3

w4

w5

w6
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up vp

(d)
u v

up vp

Fig. 5. The minimum dominating set of snake path S(u, v) in Gs for (a) u, v ∈ D̂, (b)
u ∈ D̂ and v �∈ D̂, (c) u, v �∈ D̂ and, (NGs(u)−S(u, v))∩D̂ �= ∅ and (NGs(v)−S(u, v))∩
D̂ �= ∅, and (d) u, v �∈ D̂ and, (NGs(u)−S(u, v))∩D̂ = ∅ or (NGs(v)−S(u, v))∩D̂ = ∅,
where D̂ is a dominating set of Gs and solid circles indicate the vertices in D̂.

(1) If u, v ∈ D̂, then γ(S(u, v) − (NGs
[u] ∪ NGs

[v])) = 2 (See Fig. 5(a)).
(2) If u ∈ D̂ and v �∈ D̂, then γ(S(u, v)−NGs

[u]) = γ(S(u, v)−(NGs
[u]∪{v})) =

2, and there exists a vertex vd in D̂ ∩ S(u, v) such that vd dominates v if
D̂ − S(u, v) does not dominate v (See Fig. 5(b)).

(3) If u, v �∈ D̂, then
(3-1) if (NGs

(u) − S(u, v)) ∩ D̂ �= ∅ and (NGs
(v) − S(u, v)) ∩ D̂ �= ∅, then

γ(S(u, v) − {u, v}) = 2 (See Fig. 5(c));
(3-2) if (NGs

(u) − S(u, v)) ∩ D̂ = ∅ or (NGs
(v) − S(u, v)) ∩ D̂ = ∅, then

γ(S(u, v) − {u, v}) = 3 (See Fig. 5(d)).

Let D̂ be a dominating set of Gs, and let H be a subgraph of Gs. We will
denote the restriction of D̂ to H by D̂|H . In the above proposition, we can
see that for any dominating set D̂ of supergrid graph Gs and snake (u, v)-path
S(u, v), |D̂|S(u,v)−{u,v}| � 2. In the following, we will prove that grid graph Gg

has a dominating set D with size |D| � k if and only if supergrid graph Gs

contains a dominating set D̂ with size |D̂| � k + 2|E(Gg)|. We first prove the
only if part as follows.

Lemma 4. Assume that grid graph Gg contains a dominating set D with size
|D| � k. Then, supergrid graph Gs contains a dominating set D̂ with size |D̂| �
k + 2|E(Gg)|
Proof. Consider an edge (u, v) of Gg. Let S(u, v) = u → w1 → w2 → w3 →
w4 → w5 → w6 → v be the snake (u, v)-path in Gs constructed from edge
(u, v) of Gg, as shown in Fig. 5(a). Initially, let D̂ = D. We then consider three
cases depending on whether u, v ∈ D. These cases include (1) u, v ∈ D, (2)
u ∈ D and v �∈ D, and (3) u, v �∈ D. For each snake (u, v)-path S(u, v) in any
case, we compute two vertices wı, wj, 6 � ı, j � 1, of S(u, v) − {u, v}, together
with u and v, to dominate S(u, v), and then let D̂ = D̂ ∪ {wı, wj}. These two
vertices are depicted in Figs. 5(a)–(c). We can prove the constructed set D̂ to be
a dominating set of Gs after computing all snake paths of Gs. Because of the
space limitation, we omit the details of proof.

During our construction of D̂, |D̂| = |D̂| + 2 after computing one snake path
of Gs. Since there exist |E(Gg)| snake paths of Gs, we construct a dominating set
D̂ of Gs with size |D̂| = |D| + 2|E(Gg)| � k + 2|E(Gg)|. For example, Fig. 3(a)
shows a dominating set D of Gg with |D| = 4, and the dominating set D̂ of
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Gs constructed from D is shown in Fig. 3(d), where |D̂| = |D| + 2|E(Gg)| =
4 + 2 × 11 = 26.

Next, we will prove the if part as follows.

Lemma 5. Assume that supergrid graph Gs contains a dominating set D̂ with
size |D̂| � k + 2|E(Gg)|. Then, grid graph Gg has a dominating set D with size
|D| � k.

Proof. We will show there exists a dominating set D of Gg with size k or less.
The construction steps are described as follows. First, we compute a dominating
set D′ of Gs from D̂ such that |D′| � |D̂|. Second, we remove all vertices not in
Gg from D′ and obtain a set D. Then, we can prove D to be a dominating set
of grid graph Gg.

First, we compute D′ from D̂ as follows. Initially, let D′ = D̂. Consider
a snake path S(u, v) of Gs constructed from edge (u, v) of Gg, as depicted in
Fig. 5(a). By Proposition 1, |D̂|S(u,v)−{u,v}| � 2. We will construct a set D′ of
Gs obtained from D̂ such that |D′| � |D̂|, |D′

|S(u,v)−{u,v}| � 2, and removing all
vertices not in Gg from D′ results in a dominating set D of G. We consider three
cases of (1) u, v �∈ D′, (2) u ∈ D′ and v �∈ D′, and (3) u, v ∈ D′. First consider
the case of u, v �∈ D′. In case of Fig. 5(d), |D′

|S(u,v)−{u,v}| � 3 by Statement (3-2)
of Proposition 1, and we then set u to be in D′, i.e., D′ = D′ ∪{u}. Then, snake
(u, v)-path S(u, v) satisfies that u ∈ D′ and v �∈ D′. It is then computed in case
of u ∈ D′ and v �∈ D′. For the other cases, we compute D′ on S(u, v) to satisfy
|D′

|S(u,v)−{u,v}| = 2. We can verify that D′ is a dominating set of Gs and satisfies
the following properties: (due to space limitation, we omit the details of proof)

(p1) |D′| � |D̂|,
(p2) every snake path contains exactly two vertices not in Gg, and
(p3) for each snake (u, v)-path S(u, v) with u, v �∈ D′, there exist z1 ∈ NGg

(u)
and z2 ∈ NGg

(v) such that z1, z2 ∈ D′.

We finally compute a dominating set D of Gg from D′ by the following steps:

(1) initially, let D = D′;
(2) remove all vertices of D not in Dg from D;
(3) the resultant set D will be a dominating set of Gg.

Assume by contradiction that |D| > k. Let |D| = k + x, x > 0. Since
D′ ∩ S(u, v) contains exactly two vertices not in Gg for each snake path S(u, v),
we get that |D| = |D′| − 2|E(Gg)|. Then,
|D′| � |D̂| = k + 2|E(Gg)| = (k + x) + 2|E(Gg)| − x = |D| + 2|E(Gg)| − x, and
hence
|D| = |D′|−2|E(Gg)| � (|D|+2|E(Gg)|−x)−2|E(Gg)| = |D|−x = (k+x)−x =
k, a contradiction. Thus, |D| � k.

By Lemmas 4 and 5, we summarize the following lemma:
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Lemma 6. Let Gg be a grid graph and let Gs be the supergrid graph constructed
from Gg by Algorithm 1 and Rule AS. Then, Gg contains a dominating set D

with size |D| � k if and only if Gs contains a dominating set D̂ with |D̂| �
k + 2|E(Gg)|.

Obviously, the domination problem for supergrid graphs is in NP. By Theo-
rem 1, Lemmas 2–3, and Lemma 6, we conclude the following theorem:

Theorem 2. The domination problem on supergrid graphs is NP-complete.

A dominating set of the supergrid graphs constructed in Lemmas 4 and 5 can
be easily modified as an independent dominating set (see Figs. 5(a)–(c)). Thus,
the independent domination problem on supergrid graphs is also NP-complete,
and, hence, the following theorem holds true.

Theorem 3. The independent domination problem on supergrid graphs is NP-
complete.

4 The Domination Number of Rectangular Supergrid
Graphs

In this section, we will compute γ(Rm×n) for rectangular supergrid graph Rm×n

with n � m. To simplify notation, we will use % to denote the modulo opera-
tion. In addition, we use Rı to denote the set of vertices of row ı in Rm×n. By
Lemma 1, γ(R1×n) = �n

3 �. Next, we consider R2×n as follows:

Lemma 7. γ(R2×n) = �n
3 �.

Proof. By the structure of R2×n, a vertex of R2×n dominates at most 6 vertices
including its 5 neighbors and itself. Let D be any dominating set of R2×n. Then,
6 · |D| � |V (R2×n)| = 2n, and, hence, |D| � �n

3 �. That is, γ(R2×n) � �n
3 �. Let

D1 be the minimum dominating set of R1. By Lemma 1, |D1| = �n
3 �. For each

v ∈ D1, v dominates (vx − 1, 2), (vx, 2), and (vx + 1, 2) in R2. In addition, v
dominates at most three vertices (vx − 1, 1), (vx, 1), and (vx + 1, 1) in R1. Since
D1 dominates all vertices of R1 in R2×n, it also dominates all vertices of R2.
Thus, D1 is a dominating set of R2×n. Then, γ(R2×n) � |D1| = �n

3 �. Therefore,
γ(R2×n) = �n

3 �. For example, Fig. 6 shows the minimum dominating set of R2×n

for 2 � n � 10.

By similar arguments in proving Lemma 7, we compute γ(R3×n) as follows:

Lemma 8. γ(R3×n) = �n
3 �.

Proof. By the structure of R3×n, a vertex of R3×n dominates at most 9 vertices
including its 8 neighbors and itself. Let D be any dominating set of R3×n. Then,
9 · |D| � |V (R3×n)| = 3n, and, hence, |D| � �n

3 �. That is, γ(R3×n) � �n
3 �.

Let D2 be the minimum dominating set of R2 in R3×n. By Lemma 1, |D2| =
�n
3 �. By the same arguments in proving Lemma 7, D2 is a dominating set of

R3×n. Thus, γ(R3×n) � �n
3 �. It follows from the above upper bound and lower

bound of γ(R3×n) that γ(R3×n) = �n
3 �. For example, Fig. 7 shows the minimum

dominating set of R3×n for 3 � n � 9.
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Fig. 6. γ(R2×n) = �n
3
� for 2 � n � 10, where solid circles indicate the vertices in the

minimum dominating set of R2×n.
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Fig. 7. γ(R3×n) = �n
3
� for 3 � n � 9, where solid circles indicate the vertices in the

minimum dominating set of R3×n.

Now, we consider Rm×n with n � m � 3. We will prove the following lemma
by induction.

Lemma 9. Let Rm×n be a rectangular supergrid graph with n � m � 3. Then,
γ(Rm×n) = �m

3 ��n
3 �.

Proof. Let Dı be the minimum dominating set of Rı, the set of vertices of row ı
in Rm×n. By the construction in [9], Dı = {(2+3j, ı)|0 � j � 	n

3 
−1}, and Dı =
Dı ∪ {(n, ı)} if n%3 �= 0. We claim that Rm×n contains a minimum dominating
set D such that D = ∪0�ı��m

3 �−1D2+3ı, and D = D ∪ Dm if m%3 �= 0.
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w

v

Ra

Rb

k

Fig. 8. The minimum dominating set of R(k+1)×n when k%3 = 0, where solid circles
indicate the vertices in the minimum dominating set.

We will prove this claim by induction on m. Initially, let m = 3. By Lemma 8,
the claim holds true. Assume that the claim is true when m = k � 3. Then,
Rk×n has a minimum dominating set D̂ such that D̂ = ∪0�ı�� k

3 �−1D2+3ı, and

D̂ = D̂∪Dk if k%3 �= 0. Let m = k +1. Consider that k%3 = 0. We first make a
horizontal separation on R(k+1)×n to obtain two disjoint subgraphs R̂a = Rk×n

and R̂b = R1×n, where R̂b = Rk+1 is the set of vertices of row k+1 in R(k+1)×n,
as depicted in Fig. 8. Let D be a minimum dominating set of R(k+1)×n. Suppose
that D ∩ Rk �= ∅, where Rk is the set of vertices of row k as shown in Fig. 8.
Then, |D|R̂a

| > |D̂|. Let w ∈ D ∩Rk and v ∈ R̂b with wx = vx, see Fig. 8. Then,

NR(k+1)×n
[w]∩(Rk∪R̂b) = NR(k+1)×n

[v]∩(Rk∪R̂b). Let D = D−{w}∪{v}. Then,
D is still a minimum dominating set of R(k+1)×n. Thus, there exists a minimum
dominating set D of R(k+1)×n such that D ∩ Rk = ∅, and hence D̂ = D|R̂a

.

Then, NR(k+1)×n
[D̂] ∩ R̂b = ∅. So, no vertex of D|R̂a

= D̂ dominates vertex of

R̂b. To dominate R̂b, it needs at least �n
3 � vertices by Lemma 1. Let D̂b be a such

minimum dominating set of R̂b. Then, D = D̂ ∪ D̂b is a minimum dominating
set of R(k+1)×n. By the same arguments above and Lemmas 1 and 7, the claim
holds when k%3 = 1 or k%3 = 2. Thus, the claim holds true when n = k + 1.
By induction, the claim holds true for m � 3. By the claim, Rm×n contains a
minimum dominating set D with |D| = �m

3 ��n
3 �. Thus, γ(Rm×n) = �m

3 ��n
3 � for

n � m � 3.

It immediately follows from Lemmas 1 and 7–9 that the following theorem
holds.

Theorem 4. γ(Rm×n) = �m
3 ��n

3 � for m,n � 1.
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Fig. 9. A set of forbidden induced subgraphs in a graph G with γ(G) = γind(G) [30].

5 The Independent Domination Number of Rectangular
Supergrid Graphs

In [28], Klobuc̆ar computed the independent domination number γind(Rm×n) of
Rm×n. In this section, we will use a different method to compute it. Since an inde-
pendent dominating set of a graph G is also a dominating set, γ(G) � γind(G)
for any graph G. In [3], Allan and Laskar proved that K1,3-free graphs are graphs
with equal domination and independent domination numbers. By the structure
of Rm×n, we can see that rectangular supergrid graphs are not K1,3-free graphs,
i.e., they contain induced subgraph K1,3. However, Topp and Volkmann [30]
showed that if a graph G contains no induced subgraph isomorphic to one of the
graphs H1, H2, · · · , H16 in Fig. 9, then γ(G) = γind(G). The following theorem
shows their result:

Theorem 5. (see [30]). If a graph G contains no induced subgraph isomorphic
to one of graphs H1, H2, · · · , H16 as shown in Fig. 9, then γ(G) = γind(G).

By inspecting the structure of rectangular supergrid graphs, they contain H1

and H2 as induced subgraphs. However, rectangular supergrid graphs Rm×n are
H3-free graphs, i.e., they contain no induced subgraph isomorphic to H3. Thus,
γind(Rm×n) = γ(Rm×n). In fact, we construct a minimum dominating set of
Rm×n that is also an independent dominating set. It follows from Theorems 4
and 5 that the following theorem holds true.

Theorem 6. γind(Rm×n) = γ(Rm×n) = �m
3 ��n

3 � for m,n � 1.
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6 Concluding Remarks

In this paper, we prove that the domination and independent domination prob-
lems on general supergrid graphs are NP-complete. Then, we provide a formally
proof to compute the minimum dominating set of a rectangular supergrid graph.
In addition, we use a simple method to verify the minimum dominating set of a
rectangular supergrid graph is also a minimum independent dominating set.
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13. Crevals, S., Österg̊ard, P.R.J.: Independent domination of grids. Discrete Math.
338, 1379–1384 (2015)

14. Damaschke, P., Muller, H., Kratsch, D.: Domination in convex and chordal bipar-
tite graphs. Inform. Process. Lett. 36, 231–236 (1990)

15. Gagnon, A., et al.: A method for eternally dominating strong grids. Discrete Math.
Theoret. Comput. Sci. 22(1), #8 (2020)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

17. Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and
recent results. Discrete Math. 313, 839–854 (2013)
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Abstract. The Internet of Things currently is one of the most interesting
technology trends. Devices in the IoT network towards mobility and com-
pact in size, so these have a rather weak hardware configuration. One of
the essential concern is energy consumption. There are many lightweights,
tailor-made protocols for limited processing power and low energy con-
sumption, of which MQTT is the typical protocol. A light and simple pro-
tocol like MQTT, however, has many problems such as security risks, reli-
ability in transmission and reception. The current MQTT protocol sup-
ports three types of quality-of-service (QoS). The user has to trade-off
between the security/privacy of the packet and the system-wide perfor-
mance (e.g., transmission rate, transmission bandwidth, and energy con-
sumption). In this paper, we present an IoT Platform Proposal to improve
the security issues of the MQTT protocol and optimise the communica-
tion speed, power consumption, and transmission bandwidth, but this still
responds to reliability when transmitting. We also present the effectiveness
of our approach by building a prototype system. Besides, we compare our
proposal with other related work as well as provide the complete code solu-
tion is publicized to engage further reproducibility and improvement.

Keywords: Internet of Things · MQTT · Quality-of-Service (QoS) ·
Single Sign On · Kafka

1 Introduction

In recent years, the Internet of Thing (IoT) applications have grown and applied
in most fields of our life such as smart city, healthcare, supply chains, industry,
agriculture. According to estimates, by 2025, the whole world will have approx-
imately 75.44 billion IoT connected devices [1]. Timothy Chou et al. [2] claimed
that the IoT system architecture consists of five layers in order from low to high:
Things, Connect, Collect, Learn, and Do.

The Things layer contains actuators that control physical devices or sensors
to collect environmental parameters. The Connect layer connects devices with
c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12949, pp. 647–662, 2021.
https://doi.org/10.1007/978-3-030-86653-2_47
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applications and users. The Collect layer is responsible for aggregating the data
returned by the Things layer devices. Finally, Learn layer is used to analyze data
to give suggestions to the Do layer in response to received data. The Things and
Connect layers can be considered as the two most important since they provide
input data for the upper layers.

The Things layer usually consists of devices in the IoT which have limitations
in network connectivity, power, and processing capabilities [3]. Therefore, how
can we optimize the processing capacity and energy consumption of the devices
while still having to meet some basic requirements on communication speed and
the confidentiality of information for the whole system? This issue is determined
by the protocols themselves within the Collect layer.

There are 5 popular protocols used for IoT platform, namely Hypertext
Transfer Protocol (HTTP), Constrained Application Protocol (CoAP), Exten-
sible Messaging and Presence Protocol (XMPP), Advanced Message Queuing
Protocol (AMQP), and Message Queuing Telemetry Protocol (MQTT) [4]. For
communications in limited networks (constrained networks), MQTT and CoAP
are proposed to use [5]. Corak et al. found that the MQTT protocol has faster
Packet creation time and Packet transmission time is twice as fast as with the
CoAP protocol [6]. For developers of low bandwidth and memory devices, MQTT
is also the most preferred protocol [7]. In addition, a comparison of the energy
consumption level shows that the MQTT protocol consumes less energy than
CoAP [8]. Therefore, we assess the energy consumption as well as the existing
security risks of the MQTT protocol.

The MQTT protocol has three levels of QoS, ranging from 0 to 21 and these
QoS levels are related to the level of confidence in the transmission of the packet
(i.e., QoS has the lowest confidence level and QoS-2 has the confidence level
highest reliability). Shinho et al. [9] demonstrate that the packet loss rate and the
packet transmission rate of the QoS-0 level are the highest. Besides, Jevgenijus
et al. [10] found that the energy consumption of the QoS-0 level is only about
50% of the QoS-2 level and the communication bandwidth of QoS-0 is also lower
than that of QoS-2. Therefore, in this paper, we present a system design that
takes advantage of the fast speed, low energy consumption and bandwidth while
still meeting the reliability of the QoS-2 level.

The current MQTT protocol only provides identity, authentication and
authorization for the security mechanism [11]. L. Lundgren et al. [12] indicate
that data can be obtained by subscribing to any topic of the MQTT broker that
is public on the internet. This is a serious limitation in terms of security. If the
attacker subscribes to MQTT topics with the client ID, the victim will experi-
ence a denial of service (DOS) state and all information sent to the victim will
be forwarded to the attacker [13].

MQTT supports authentication by username and password pair for autho-
rization mechanism, but this authentication mechanism is not encrypted [11].
According to a survey by Zaidi et al. [14] about Shodan, the world’s first IoT
search engine for Internet-connected devices, points out that there are 67,000

1 https://mqtt.org/.

https://mqtt.org/
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MQTT servers on the public Internet with most of them without authentica-
tion. For authorization, access to a specific topic based on the access list (ACL).
This mechanism must be defined in advance in the MQTT broker configuration
file and must restart the MQTT broker service if the users want to apply the new
access-list configuration. This is inconvenient and difficult to expand especially
for systems with billions of devices [15].

Besides MQTT’s security flaws, IoT systems are vulnerable to user behavior.
Users often tend to ignore security issues especially privacy until the loss of
critical data [16]. Subahi et al. [17] found that a significant proportion of IoT
users were not fully aware of their behavior. Therefore, with IoT systems having
billions of users and devices, it is difficult to manage the behavior of all users.

In this paper, we propose the model of IoT Platform using message queue,
which is able to take advantage of the reliable transmission capability of MQTT
QoS-2 but still satisfies the fast message transmission rate. Besides, this paper
shows how to combine the MQTT and Oauth protocols to improve the Authen-
tication and Authorization mechanism of the current MQTT protocol. We also
offer a management model of users, things and channels information to prevent
DOS attacks and attack the availability of systems using MQTT protocol. In
addition, we offer a method of strict management of the communication pro-
cess to ensure that users control their information-sharing channels to limit the
user’s careless behavior. To engage further reproducibility or improvement in
this topic, finally, we share the completely code solution which is publicized on
the our Github2.

The remainder of the paper is organized as follows. The next two sections
present the background and related work. In Sects. 4 and 5, we introduce the IoT
Platform to build a prototype system and its implementation, respectively. In the
evaluation section, we discuss our results. Finally, we summarize the main idea
of this work and discuss potential directions for future work in the conclusion.

2 Background

2.1 MQTT Protocol

MQTT (Message Queue Telemetry Transport) is a messaging protocol in a pub-
lish/subscribe model, using low bandwidth and high reliability. MQTT archi-
tecture consists of two main components: Broker and Clients. In which, MQTT
Broker is the central server, it is the intersection point of all the connections
coming from the client. The main task of the broker is to receive messages from
all clients, and then forward them to a specific address. Clients are divided into
two groups: publisher and subscriber. The former is the user that publishes mes-
sages on a specific topic. Whereas, the latter is the user that subscribe to one or
more topics to receive messages going to these topics. In the MQTT protocol,
there are 3 levels of QoS as follows:

2 https://github.com/thanhlam2110/mqtt-sso-kafka.

https://github.com/thanhlam2110/mqtt-sso-kafka
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– QoS-0 (at-most-once): each packet is transmitted to the destination up to
once.

– Qos-1 (at-least-once): each packet is passed to the destination at least once,
meaning packet iteration can occur.

– QoS-2 (exactly-once): each packet is sent to its destination only once.

2.2 Oauth Protocol and Single Sign-On

Oauth is an authentication mechanism that helps a third party applications to be
authorized by the user. The main purpose of the Oauth protocol is to access user
resources located on another application. Oauth version 2 is an upgrade version
of Oauth version 1, an authentication protocol that allows applications to share
a portion of resources with each other without authentication via username and
password the traditional way. Thereby, it helps to limit the hassle of having to
enter username, password in many places for many applications that are difficult
for users to manage.

In Oauth, there are four basic concepts3:

– Resource owners: are the users who have the ability to grant access, the owner
of the resource that the application wants to get.

– Resource servers: are the places which store resources, capable of handling
access requests to protected resources

– Clients: are third-party applications that want to access the shared resource
of the owner (i.e., prior to access, the application needs to receive the user’s
Authorization).

– Authorization servers: are the authentications that check the information the
user sent from there, grants access to the application by generating access
tokens. Sometimes the same Authorization server is the resource server.

Token is a random code generated by the Authorization server when a request
comes from the client. There are two types of tokens, namely the access token
and the refresh token. The former is a piece of code used to authenticate access,
allowing third-party applications to access user data. This token is sent by the
client as a parameter in the request when it is necessary to access the resource in
the Resource server. The access token has a valid time (e.g., 30 min, 1 h), when
it expired, the client had to send a request to the Authorization server to get
the new access token. Whereas, the latter is also generated by Authorization
server at the same time with accessed token but with different function. Refresh
token is used to get the new access token when it expires, so the validity period
is longer than the access token.

Single Sign-On (SSO) is a mechanism that allows users to access multiple
applications with just one authentication. SSO simplifies administration by man-
aging user information on a single system instead of multiple separate authen-
tication systems. It makes it easier to manage users when they join or leave an
organization [18]. SSO supports many authentication methods such as Oauth,
OpenID, SAML, and so on.
3 https://oauth.net/2/.

https://oauth.net/2/
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2.3 Kafka

Kafka4 is a distributed messaging system. Kafka is capable of transmitting a
large amount of messages in real-time, in case the receiver has not received the
message, the message is still stored on the message queue and on the disk to
ensure safety. The Kafka architecture includes the main components: producer,
consumer, topic, and partition. Kafka producer is a client to publish messages
to topics. Data is sent to the partition of the topic stored on the broker. Kafka
consumers are clients that subscribe and receive messages from topic, consumers
are identified by group names. Many consumers can subscribe to the same topic.
Data is transmitted in Kafka by topic, when it is necessary to transmit data for
different applications, it is possible to create many different topics. Partition is
where to store data of a topic. Each topic can have one or more partitions. On
each partition, the data is stored permanently and assigned an ID called offset.
In addition, a set of Kafka server is also called a broker and the zookeeper is a
service to manage the brokers.

3 Related Work

3.1 Oauth and MQTT

Paul Fremantle et al. [15] used Oauth to enable access control in the MQTT
protocol. The paper results show that IoT clients can fully use OAuth token to
authenticate with an MQTT broker. The paper demonstrates how to deploy the
Web Authorization Tool to create the access token and then embed it in the
MQTT client. However, the paper does not cover the control of communication
channels, so when the properly authenticated MQTT client is able to subscribe
to any topic on the MQTT broker, this creates the risk of data disclosure. The
paper presents the combined implementation of Oauth and MQTT for internal
communication between MQTT broker and MQTT client in the same organiza-
tion, but not the possibility of applying for inter-organization communication.
Therefore, in our paper, we implement a strict management mechanism for users,
devices, and communication channels.

Benjamin Aziz et al. [19] invested Oauth to manage the registration of users
and IoT devices. These papers also introduce the concept of Personal Cloud
Middleware (PCM) to perform internal communication between the device and
a third-party application on behalf of the user. PCM is an MQTT broker that
isolates and operates on a Docker or operating system. Each user has their PCM,
and this can help limit data loss. However, Benjamin Aziz et al. also said that
they do not have a mechanism for revoking PCM when users are no longer using
IoT services.

Lam et al. [20] tested the ability to combine MQTT and Oauth through
Single Sign On to enhance security. The author proposes a users and things

4 https://Kafka.apache.org/.

https://Kafka.apache.org/
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management model - tree model. This architecture has a single user representa-
tive for the organization, thus allowing to quickly isolate all users and devices of
an organization when the organization is attacked.

3.2 Kafka and MQTT

A.S. Rozik et al. [21] found that the MQTT broker does not provide any buffering
mechanism and cannot be extended. When large amounts of data come from
a variety of sources, both of these features are essential. In the Sense Egypt
IoT platform, A.S. Rozik et al. have used Kafka as an intermediary system to
transport messages between the MQTT broker and the rest of the IoT system,
which improves the overall performance of the system as well as provides easy
scalability.

Moreover, [22] presented Kafka Message Queue and MQTT broker’s com-
bined possibilities in Intelligent Transportation System. The deployment model
demonstrates the ability to apply to bridge MQTT with Kafka for low latency
and handle messages generated by millions of vehicles. They used MQTT Source
Connector to move messages from MQTT topic to Kafka Topic and MQTT Sink
connector to move messages from Kafka topic to MQTT topic.

In the implementation of the IoT Platform, we also adopt and extend this
technique by building APIs that allow users to map their topics.

3.3 Reducing MQTT Energy Consumption

A new approach to the MQTT-SN protocol [23], publishes sensor data (a.k.a
the smart gateway selection method) that estimates end-to-end content delay
and message loss, during the transmission of content in all levels of QoS. Al-Ali
et al. [24] argued that MQTT QoS-2 excluded from test cases due to its large
overhead the smart energy management for smart homes and cities. Similarly,
Toldinas et al. [10] estimated the energy consumption in transferring data using
lightweight MQTT protocol over it different QoS levels (i.e., QoS = 0, QoS =
1, and QoS = 2). However, these works ignore the security and privacy aspects,
that is highlighted in [25]. The author investigated the side effects of reliability
on IoT communication protocols but they considered MQTT as reliable protocol.

Lam et al. [26] demonstrated an architecture that combines MQTT broker,
Single Sign On, and kafka message queue. This combination allows no need to
trade-off speed and reliability when communicating with power consumption
(this is related to QoS-0 and QoS-2 levels) while still ensuring security. of the
system.

4 IoT Platform Proposal

The IoT Platform is a set of APIs combined with system architecture such as
Single Sign-On system, Kafka Message Queue, and MQTT broker that provide
as following:
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– Authenticate information believes the user, thereby granting Oauth access
token and refresh token for the user.

– Create and manage user information in the tree model and the unlimited
number of user levels created.

– Allowing users to participate in an IoT system capable of creating logical
information management of physical devices/ applications and communica-
tion channels.

– Allows sending and receiving messages locally when correctly defining a user,
a thing, and a specific communication channel.

– Allow users to send and receive messages between two various organizations
through the Kafka message queue.

4.1 System Architecture

Figure 1 presents an architectural proposal model of the IoT framework.

– MQTT Broker Cluster is a set of MQTT brokers connected together to dis-
tribute the system. MQTT Broker Cluster plays the role of collecting data
from IoT devices and transporting control commands from the user to the
device according to the MQTT protocol.

– Server Single Sign-On authenticates the user, creates access and refreshes the
token according to the Oauth protocol.

– SSO database: contains management information of users, channels and
things.

– The Kafka Message Queue stores messages in partitions. This prevents the
message from being lost when the receiver has problems.

– MQTT Proxy API provides an interface for users - things to communicate
with the MQTT broker.

– API SSO Proxy: provides an interface for users and authenticated parties to
communicate with SSO server.

4.2 Software Architecture

To meet the goals set out by the IoT Framework, we provide a number of def-
initions of the components involved in the system, the design of the database,
and the interactions among these components.

4.2.1 Users
Who use IoT services. By constructing the user hierarchy in the model tree with
the child’s user parent id value equal to the parent user’s username. Our model
allows the creation and management of multiple levels of users and undepending
on the organisation’s characteristics. This tree-modelled user hierarchy makes
suitable for companies, especially when it comes to decentralizing a specific user
or changing the state of operation for a series of child users at the same time w.r.t
crashes (only the ACTIVE user can request the access token). User information
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Fig. 1. IoT platform proposal

is generated when registering/using an IoT service or is created by the parent
user and provided to their child users.

Each user has a unique user id value, which conforms to the UUID standard5

and is managed by the IoT Platform (user is not aware of this value). When
publishing or subscribing, the user must pass the access token obtained from
the Single Sign-On server, which contains the user id information and is used as
the clientID value in the MQTT protocol. In this way, we have enhanced the
authentication and authorization mechanisms for the user as well as minimize
the risk of a denial-of-service attack when hackers subscribe to a topic with the
clientID of the user affecting the accessibility use of the system-wide.

4.2.2 Things
The information about physical devices or applications owned by the user. To
create things, the user needs to call the API provided by the IoT Platform, pass-
ing in his valid Oauth token. Things information includes two values thing id and
thing key, conform to the UUID standard and use the equivalent of a username
and password values. Only things possess a valid pair of thing id and thing key
provided by the IoT Platform, that can communicate with the MQTT broker.
Since things are not allowed to publish or subscribe directly to the MQTT bro-
ker. This layer API validates thing id and thing key submitted by things. Similar
to the user, this way to create device management information, helps increase
security and reduce the risk of denial-of-service attacks.

4.2.3 Channels and Map Things to Channels
In our proposed IoT Platform, channels are the logical concept of managing
topics (Kafka and MQTT) that publishes and subscribe to messages by users
and things. Users who want to create a channel must call the IoT Platform’s API
5 https://tools.ietf.org/html/rfc4122.

https://tools.ietf.org/html/rfc4122
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and pass in their valid token Oauth. The channels information has a channel id
value that is unique and follows the standard UUID.

To communicate through the IoT Platform Proposal, the user has to assign
things to the channel by calling the API and passing in the existing access token,
thing id, thing key and channel id information. The purpose of this process is to
allow only one thing with a valid thing id and thing key to publish and subscribe
to messages on a predefined channel (mapped). From there, avoid the client can
subscribe to any topic. This strongly increases the authorization mechanism,
which is a flexible way that the original MQTT protocol did not support. The
mechanism of assigning things to a channel also enhances security since only
things mapped to the channel is able to publish and subscribe to messages on
this channel. By implementing this process, users are also able to master their
own communication channels.

4.2.4 Publish and Subscribe Message
The process of publishing and subscribing messages via IoT Platform Proposal
is described as follows: To perform communication in the IoT Platform, users
create two channels with the following roles:

– The channel used to send messages is called “send-channel”. The “send-
channel” is an MQTT topic and the device will publish the message to this
channel through the MQTT Proxy API. Actually, the API uses channel id
but for brevity, we show it by the name of the channel.

– The channel used to receive messages is called a “receive-channel”. The
“receive-channel” acts as both the Kafka topic and the MQTT Topic.

After creating two channels, we call the API that creates the MQTT source
connector, to map the MQTT Topic and the Kafka topic. In this case, we
map the “send-channel” and the “receive” channel. This process allows mes-
sages from Thing to be sent to “send-channel” to be automatically forwarded
to “receive-channel”. Right now, the message is being stored in the Kafka mes-
sage queue, namely, the topic “receive-channel” partition. In order for users to
receive messages on this “receive-channel” topic over the MQTT protocol, we
implement an MQTT sink connector. This process allows, messages to Kafka
topic “receive-channel” are received by users who subscribe to the MQTT topic
“receive-channel”.

During Publish and Subscribe message, the MQTT Proxy API also calls the
authentication service from the SSO Proxy API to validate the token, check for
thing id, thing key, and assign things to the channel. The process of publishing
and subscribing to the message is shown in Fig. 2.

5 Implement

5.1 Database

As explained in Sect. 4.2, the IoT Platform allows to manage users, things, chan-
nels information and implement map things to channel. In practical implemen-
tation, we use MongoDB as a NoSQL database management system, and to
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Fig. 2. Process publish a message to the public

implement the model tree (select, update, delete) outlined in Sect. 4.2.1, we
used Aggregation techniques are provided by MongoDB6.

5.2 Single Sign-On

In the prototype system, we use the open-source CAS Apereo7 to provide the
Single Sign-On service. CAS Apereo supports many protocols for implementing
single sign-on services such as Oauth, SAML, OpenID, and so on. The IoT
Platform protocol used to communicate with the Single Sign-On server is Oauth.
In our implementation, the clients do not interact directly with the CAS server
but instead, we provide the set of APIs through the SSO Proxy layer (API SSO
Proxy layer).

5.3 Mosquitto MQTT Broker

Mosquitto is an open-source to implement an MQTT broker that allows to trans-
mit and receive data according to MQTT protocol. Mosquitto is also part of the
Eclipse Foundation8. Mosquitto is very light and has the advantages of fast data
transfer and processing speed, high stability.

5.4 Prototype Model

The Prototype system we deployed on Amazon EC29 infrastructure consists of
three servers as shown in Table 1.

According to the MQTT protocol, the first server deploys the Mosquitto
MQTT Broker service in the Prototype model to collect and forward messages.
The second server, deploying MQTT Broker 1b service for public communication.
6 https://docs.mongodb.com/manual/reference/operator/aggregation/

graphLookup/.
7 https://apereo.github.io/cas/6.3.x/index.html.
8 The project iot.eclipse.org (https://iot.eclipse.org/).
9 https://aws.amazon.com/ec2/pricing/.

https://docs.mongodb.com/manual/reference/operator/aggregation/graphLookup/
https://docs.mongodb.com/manual/reference/operator/aggregation/graphLookup/
https://apereo.github.io/cas/6.3.x/index.html
https://iot.eclipse.org/
https://aws.amazon.com/ec2/pricing/
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Table 1. The list of servers in the prototype

Server Role Server configuration

MQTT Broker Deploy service MQTT broker
Deploy API MQTT Proxy

CPU 1
RAM 1GB

Kafka server Deploy the Kafka service CPU 1
RAM 1GB

SSO server Deploy Single Sign-On service
Deploy the SSO database service
Deploy the service API SSO Proxy

CPU 2
RAM 1GB

Also, on the first server, we deploy the MQTT Proxy API service to provide
interfaces for users and things that communicate with MQTT brokers through
the API. Whereas, the second server implements the Single Sign-On service,
which creates access to tokens and refreshes tokens for users according to the
Oauth protocol. Besides, the SSO Proxy API service provides interfaces for users,
things, and the MQTT Proxy API performs SSO server communication through
the API. In addition, the second server also has MongoDB installed to store user
information, thing, and channel, presented in Sect. 4.2.

The Kafka service, deployed on a third server, acts as a message queue to
store messages exchanged through the MQTT broker. This ensures that when
things or users experience interruptions, notifications are not lost as well as limit
infinite timeouts or packet repetitions.

6 Evaluation

Our proposed model has two goals. The first is to strengthen the security mech-
anism for MQTT Protocol. The second is to build a mechanism to take advan-
tage of the advantages of MQTT QoS-0 rather than QoS-2, such as transmission
speed, bandwidth and low energy consumption while ensuring reliability when
transmitting packets. To test these goals, we execute the following scenarios.

Fig. 3. The first scenario test model
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The first scenario uses Wireshark software10 to capture packets when things
send messages to the MQTT broker in two cases. In the first case, things do
connect and publish the message directly to the MQTT broker. In the second
case, things do connect and publish the message through the MQTT Proxy API
class provided by the IoT Platform Proposal. The first scenario model is shown in
Fig. 3. The outcomes captured of the first scenario from the Wireshark software
are shown in Fig. 4

Fig. 4. Capture message of the two cases (with and without IoT Platform)

The resulting snapshot shows that publish the message directly to the MQTT
broker, it takes two steps: “Connect” and “Publish” in the case of things. Per-
forming packet capture can obtain all ClientID, username, and password in the
“Connect” packet and MQTT topic along with the message content in the “Pub-
lish” packet. When things publish a message via IoT Platform Proposal, it only
takes one step of “Publish”. The content of the message is encrypted because the
IoT Platform supports TLS. After the IoT Platform receives the message, it will
use the information in the message such as access token, channel id, things id
and things key to authenticate the request, make a connection to the MQTT
broker, and transport the packet according to the received topic. From here, the
use of the IoT Platform Proposal significantly improves the security risks of the
MQTT protocol.

Whereas, the second scenario examines the packet transfer rate, throughput,
and the number of things that can publish messages simultaneously in three
test-cases:

– Test 1: things connect directly to the MQTT broker and do publishing mes-
sages according to QoS-2.

– Test 2: things connect to the MQTT broker through the IoT Platform Pro-
posal and do publish the message according to QoS-0. In this case, do not
apply security checks such as: validity of access token, check assigning things
to channel.

– Test 3: things connect to MQTT broker via IoT Platform Proposal, publish
messages according to QoS-0 and apply security check function.

10 Wireshark (https://www.wireshark.org/) is a network packet analyzer software (a
network packet analyzer) capable of monitoring and monitoring packets in real-time.

https://www.wireshark.org/
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The test we use is Apache Jmeter11 that is fully written in Java language,
and usable for performance testing on static resources, dynamic resources and
Web applications. This is used to simulate a large number of virtual users, large
requests on a server, a group of server/network, an object to test tolerance,
load test or analyze the response time. Jmeter firstly makes the requests and
sends them to the server according to the predefined method. Then, it receives
responses from the server, collects them and displays information in the report
(report). Jmeter has many report parameters, but we consider in two parame-
ters: throughput and error, with throughput (request/s), which is the number
of requests processed by the server per second and error (%) is the percentage
of requests that fail to total requests. Test results are shown in Table 2.

Table 2. Test results of the second scenario

Result 100 CCU 200 CCU 300 CCU 400 CCU 500 CCU

Test 1 Throughput 48.8 97.4 139.1 193.4 –

Error 0 0 0 47% –

Test 2 Throughput 95.3 189.6 312.5 226.6 208.7

Error 0 0 0 0 0

Test 3 Throughput 48.8 50.1 51.4 50 38.8

Error 0 0 0 0 0

Table 2 shown that the use of QoS-2 helps ensure the packet is transmitted to
the destination and not duplicated in Test 1. However, to achieve this, we have to
trade system performance such as lower throughput and higher error rate since
the server has to handle more when sending messages in QoS-2. We noted the
effectiveness of MQTT and Kafka Message Queue’s combination w.r.t in Test 2.
Using QoS-0 for faster processing speed and throughput was much higher than
using QoS-2, the packets, in this case, have still send the guaranteed and did not
duplication thanks to Kafka’s capabilities. The third test is completely accept-
able as our IoT Platform proposal has added the test and validation mechanisms
as outlined in Sect. 4.2.

To develop a larger scenario and increase the number of devices/users autho-
rized quickly, other security issues such as security, privacy, availability for
objects are still the challenges. For the security aspect, further works will be
deployed in different scenarios like healthcare environment [27–29], cash on deliv-
ery [30,31]. For the privacy aspect, we will exploit attribute-based access control
(ABAC) [32,33] to manage the authorization process of the IoT Platform via
the dynamic policy approach [34–36]. Besides, we will apply the blockchain ben-
efit to improve the availability issues [37–39]. Finally, we eliminate reliance on
MQTT Broker for the data collection process and routing and building a more
proactive method of data collection for the low-energy devices.
11 Apache Jmeter https://jmeter.apache.org/.

https://jmeter.apache.org/


660 L. N. T. Thanh et al.

7 Conclusion

In this paper, we propose a combination method of Oauth protocol, Single
Sign-On, user management model, thing and channel to improve the security of
MQTT protocol. The method of assigning things to the channel helps the system
strictly manage the communication channels to minimize the careless behavior
of users when sharing data. Besides, MQTT and Kafka Message Queue’s combi-
nation allows our approach to accepting low-resource devices such as low com-
munication speeds, low energy consumption, and low transmission bandwidths
while still providing reliability in transmitting. The evaluation section also shows
the effectiveness of the proposal IoT Platform.
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Abstract. Driven by long traffic jams and numerous road accidents,
vehicle networks (Vehicular Ad hoc NETwork, VANET) have emerged
to make the journey more pleasant, the road safer and the transport
system more efficient. Today’s vehicle network architectures suffer from
scalability issues as it is challenging to deploy services on a large scale.
These architectures are rigid, difficult to manage and suffer from a lack of
flexibility and adaptability due to vehicular technologies’ heterogeneity.

Over the past few years, the emerging paradigm of Software-
Defined Networking (SDN) network architecture has become one of the
most important technologies for managing large-scale networks such
as vehicle networks. By the first vision and under the SDN paradigm
umbrella, we propose a new VANET network architecture based on the
SDN paradigm named “SDN-based vehicular ad hoc networks” (SDN-
VANET). Through our simulation, we show that in addition to the flexi-
bility and fine programmability brought by the SDN paradigm, the latter
opens the way to the development of efficient network control functions.

Keywords: VANET · Software Defined Networking · SDN ·
openFlow · Distributed controller

1 Introduction

Nowadays, we spend more and more time in transport, whether in personal vehi-
cles or public transport. In addition, our uses of the means of communication
have become more and more nomadic, especially with the significant advances
in information and communication technologies (ICT). Therefore, the concept of
ad hoc vehicle networks emerged as a result of this development to offer a wide
variety of services, ranging from improving road safety to optimizing traffic,
including entertainment. Driver and passengers. Indeed, this type of network is
mainly characterized by the nodes’ high mobility, the incredibly dynamic topol-
ogy, and the network’s enormous scale. Vehicle networks represent a projection
of Intelligent Transportation Systems (ITS), in which vehicles can communicate
with each other and with infrastructure along roads. In this chapter, we intro-
duce the basic concepts of vehicle networks before describing the state of the art
of the software-defined networking paradigm applied to vehicle networks.
c© Springer Nature Switzerland AG 2021
O. Gervasi et al. (Eds.): ICCSA 2021, LNCS 12949, pp. 663–675, 2021.
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Despite the development and rapid emergence of vehicle networks with futur-
istic capabilities, their architectures suffer from several shortcomings. In addition
to the problem of the heterogeneity of network equipment, which causes great
difficulties in management and integration [1], we can cite, for example, (i) the
lack of scalability in the deployment of services on a large scale in such a dense
and dynamic topology such as that of vehicle networks [1,2], (ii) lack of intelli-
gence, mainly due to the closed aspect of vehicular equipment and their inherent
characteristics such as the absence of programmability and their development
dependence on suppliers. This implies severe and challenging to manage architec-
tures, (iii) the lack of flexibility and adaptability, induced by the great diversity
of deployment environments and the vast heterogeneity of wireless communica-
tion technologies (4G/5G, WiFi, etc.).

Vehicular Ad-hoc Networks (VANETs) [1,3,4] architectures today suffer from
scalability issues as it is tough to deploy solutions on a large scale. These archi-
tectures are rigid, difficult to manage, and suffer from a lack of flexibility and
adaptability in control [1]. Therefore, it isn’t easy to choose the right solution,
given the current context, due to the diversity of deployment environments and
the wide variety of solutions. These constraints limit the functionality of the
system and often lead to the under-exploitation of network resources. Thus,
the need for new, more flexible, and scalable architectures becomes an absolute
requirement to face the new needs of the next generations of vehicle networks.

In recent years, the Software-Defined Networking (SDN) paradigm [5] has
been proposed as an innovative solution to manage large-scale networks such as
VANET. Indeed, several works [1] have shown that by separating the control
plane from that of the data and that by adopting a centralized control mode,
SDN can provide flexibility, scalability, and programmability to the architec-
tures of VANET. SDN also makes more efficient use of network resources and
introduces new services.

In line with the first vision and under the SDN paradigm umbrella, we pro-
vide a new network architecture that allows joint control of different vehicle
access network technologies. We also explore the possibilities offered by such
an architecture combining both the advantages of hybridization of various tech-
nologies and the SDN paradigm properties. We show through a few use cases
that in addition to the flexibility and fine programmability brought by the SDN
paradigm, the latter paves the way for efficient network control functions.

This article will combine the VANET paradigm and the SDN architecture
and propose a VANET architecture based on the SDN paradigm. Our proposal
called SDN-based vehicular ad hoc networks strategy (SDN-VANET), relies on
SDN controllers. The experimental results show that SDN-VANET significantly
reduces the network load while improving the VANET network’s performance.

This article is organized as follows. Section 2 presents some preliminary con-
cepts such as Software-defined networking and vehicle networks. We present a
synthesis of existing work in the scientific literature in Sect. 3. Section 4 details
the proposed approach. Section 5 describes the simulation results of a use case.
Finally, the last Sect. 6 concludes this article.
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2 Software-Defined Networking

Initially designed for wired networks and, in particular, data centers, SDN has
had tremendous success in industry and academia. In 2012, Google engineers
announced that they had switched to using SDN to connect their WANs (Wide
Area Networks) to data centers [6]. There are currently even network devices
compatible with SDN and available on the market, such as the OpenStack [7]
or OpenDaylight [6] controller. Since then, researchers have explored all the
possibilities to take advantage of SDN’s advantages to improve performance and
facilitate the management of today’s vehicle network architectures.

2.1 Principle and Characteristic of SDN

The concept of software-defined network, widely known as Software-Defined Net-
working (SDN) [6], is an emerging new paradigm of network architecture primar-
ily based on (i) a physical separation between the control plane (i.e., the func-
tionalities which ensure the management of the network) and the data plane (i.e.,
the functionalities which assure the transfer of the data), and (ii) control and
a logically centralized intelligence in one or more software controllers. In SDN,
controllers have a holistic view of the entire network state and manage other
network data plane equipment. These become simple transmitters/receivers of
data with minimal intelligence. SDN promises to bring flexibility, scalability,
and programmability to vehicle network architectures today. They also facilitate
network management and introduce new services [6].

Architecture. SDN is based on a hierarchical three-layer architecture, see
Fig. 1:

– Data plane layer: The data plane represents all of the equipment on the
network, often called broadcast equipment, which only sends and receives
data with minimal intelligence. The broadcast equipment also performs the
actions of the controller.

– Control plane layer: The control plane represents all network equipment, often
called SDN controllers, which centralize network intelligence and manage
other data plane broadcast equipment.

– Application layer: it groups all the services and applications of the systems
installed on the SDN controller.

2.2 Interface de Communication

To allow communication between the three planes, SDN defines several unified
communication interfaces [6], see Fig. 1:

– North-bound API: it allows communication and data exchange between the
SDN controller on the control plane and network applications. The type of
information exchanged and its forms and frequencies, depending on each net-
work application. There is no standardization for this interface.
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Fig. 1. Software-defined network (SDN) architecture

– South-bound API: it refers to the different APIs that allows communication
between control plane equipment and data plane equipment. OpenFlow [6] is
the most widely used standard for this interface.

2.3 OpenFlow

OpenFlow is a communication standard for SDN managed by the ONF (Open
Networking Foundation) [6], a foundation of industrialists whose primary mis-
sion is to design and promote network equipment compatible with to facilitate its
marketing. OpenFlow defines two types of network equipment: OpenFlow con-
trollers, software that centralizes all network control functions, and OpenFlow
vStwichs, which are virtual switches that only perform packet data transfer func-
tions. Each vSwitch has a flow table containing controller flow entries. Indeed,
the controller manages the vStwichs by installing flow rules in the flow table.

3 Related Work

We mainly focus on work involving the adoption of SDN as an architecture for
vehicular networks. This paradigm mainly aims to separate the data plane from
the control plane.

Based on the architecture proposed in [8,9] take advantage of the global
view provided by the SDN Controller to calculate routing paths in a centralized
manner. The simulation compares these approaches to traditional VANET rout-
ing protocols. The performance results show that these approaches outperform
traditional approaches in terms of reliability and latency. This further demon-
strates the value of integrating the SDN paradigm into VANET networks and
seeing vehicles as nodes programmable via SDN.

To respond to scaling issues, especially in very dense environments, the
authors [10] propose a decentralized SD-VANET architecture in which the con-
trol plane is distributed. As expected, the results show that the distribution
of the control plane improves the scalability of the network (measured in the
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number of requests of the data plane processed according to the density of the
vehicles) while ensuring an acceptable delay of data delivery.

We cite the architecture proposed by Xiaohu Ge et al. [11] in which they
consider a heterogeneous data plane following a hierarchical control plane. They
propose using a fog cell based on multi-hop links where a vehicle functions as a
gateway to minimize the frequent changes of RSU (handover) attachment points.

Jianqi Liu et al. [12] propose a heterogeneous vehicular network architec-
ture based on control via SDN assisted by MEC (Mobile Edge Computing) to
support the most demanding services in terms of latency. Two safety and non-
safety use cases are simulated and the performance shows that the proposed
architecture supports the expected prerequisites in terms of latency, reliability,
and throughput.

Data to guide the control of the vehicular network has also been mentioned
recently in the literature. We cite the positioning work [13] listing all the oppor-
tunities offered by the use of data for network control. They notably advocate the
use of machine learning-based approaches to learn the dynamics of the vehicular
network and perform effective network control.

In the same vein and the context of a vehicular network controlled via SDN,
the authors focus on developing a specific network control function [14]. It is
about the allocation of resources. They propose an approach that takes advan-
tage of the global vision of the network. Their mechanism is based on machine
learning techniques.

4 SDN-VANET: SDN-Based Vehicular Ad Hoc Networks

In line with the vision conveyed by our work, namely the proposal for an archi-
tecture of vehicular networks, we propose the adoption of the SDN paradigm as
the main base of our architecture. We are taking advantage of the contributions
of the SDN paradigm to facilitate management and improve VANET control.
This paves the way for the development of new network control algorithms that
take advantage of 1) insight into the state of various communication networks;
2) the ability to jointly control these networks dynamically and with scaling up
(Hierarchical control); and 3) knowledge of the environment in which vehicles
operate from the data that orbit this ITS system. This data can come from the
various players in the system, for example, ITS operators, road authorities, etc.
(Data-driven control).

Figure 2 illustrates the overall view of the proposed architecture. Indeed,
integrating the SDN paradigm into the architecture consists of separating the
control plane and the data plane. As shown in Fig. 2, SDN controllers hold the
network’s intelligence and enforce various network policies via specific protocols
(e.g. an extension of the OpenFlow standard). The data plane nodes ensure the
routing of data according to the instructions provided by the controllers.
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We present in what follows the three fundamental design principles of our
architecture, namely: 1) Heterogeneous data plane (vehicle, BS, sensor, Object
IoT); 2) Hierarchical control plane and 3) data-driven plane.

SDN Controller SDN Controller

SDN Controller

API

OpenFlow

Cloud services

Control plane

Data plane

Vanet

weather service

API

Application plane

Fig. 2. SDN-VANET architecture

4.1 Key Principles of the Proposed Architecture

Heterogeneous Data Plane. As shown in Fig. 2, the data plane is made up
of vehicles, RSUs, base stations (BS), temperature sensors, and IoT objects, all
of which can be programmed via SDN.

However, we have chosen to consider the vehicles as programmable nodes
via SDN. This choice is initially motivated by the first studies applying the
SDN paradigm to VANET networks [2,3]. These studies show that routing is
more efficient when calculated centrally in SDN controllers, compared to be
distributed computing using conventional routing protocols (OLSR, AODV). We
are also convinced that the global vision of the network offered by SDN reduces
the interference and risk of collisions through topology control (e.g. transmission
parameters, etc.). Therefore, we assume that the interface implemented by the
nodes allows controllers to perform control beyond routing, for example, power
control, choice of wireless channels, etc.
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The data plane nodes are controlled in a transparent manner following a
unified model such as OpenFlow (or a southern interface specific to the mobile
wireless context), regardless of the technology or the manufacturer of the equip-
ment. In fact, from an SDN controller point of view, the difference between
the nodes of the data plane lies in their characteristics and the functionalities
supported by each node.

The Data Plane Layer comprises all the network equipment that is solely
responsible for collecting and transmitting information, RSUs, and all network
equipment located between the cellular base station (BS) and the SDN controller.
In our architecture, the data plane layer is divided according to the mobility of
its components into two sublayers:

– Fixed data plane: it is said to be fixed because it is made up of static RSUs and
all the fixed components of the network (sensors and IoT objects), ensuring
the transmission of data between the base station and the SDN controller.

– Mobile data plan: it is said to be mobile because it comprises mobile vehicles,
mobile sensors, mobile IoTs objects and Drones.

4.2 Hierarchical Control Plan

SDN controllers are the central part of the architecture. They host all the net-
work control functions to define the various rules to be communicated to the
data plane’s nodes. They are connected to the various nodes via wired or wire-
less links, depending on their placement and the type of nodes (Vehicle, RSU,
BS).

We consider two main types of controllers:

– Global SDN Controller: The Global SDN Controller has compelling storage
and compute capacity and has a holistic view of the entire network topology.
It only intervenes to process requests that require a global view of the entire
network and/or very significant resources in terms of computation and stor-
age. The global SDN controller is considered the master of all network SDN
controllers.

– Core SDN Controllers: They have robust storage and compute capabilities.
Central SDN Controllers handle specific requests requiring a central view of
the network’s state; large compute and storage resources, operations that are
not time-sensitive, or local, lower level SDN controllers cannot serve that.
A central SDN controller acts in terms of control as a slave to the overall
SDN controller. The choice of organizing the control plane hierarchically is
motivated by the vision conveyed by our work, namely joint control of these
networks. In effect, the central controller builds a global view of the commu-
nication infrastructure using each network’s information controller. It defines
and sends to each controller the global rules that describe the network’s gen-
eral behavior and define the specific rules to be implemented by each node of
the network.
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4.3 External Data-Driven Control

SDN controllers can call on external data to perform more efficient network con-
trol. This data can come from external actors (e.g. weather service, road man-
ager, etc.) and can be used to enrich the overall view of the network and derive a
potential view of the state of the network. This allows for proactive/anticipatory
network control. Figure 3 shows an example of data exchange between a few
actors in the system and their use for network control and the design of ITS
services.

The data plane nodes regularly send information to the control plane con-
cerning their states and the characteristics of the links that connect them. This
information can be coupled with external data to enrich the vision built by SDN
controllers. We refer to the example of predicting potential network quality to
perform anticipatory network monitoring.

Data Plane
(véhicule, 

capteur, drone ...)

Control Plane
SDN Controller

External data source
(Weather service, police 

service, emergency 
service)

Send data to the 
control plane

Send data to the 
control plane

Data processing
and  DecisionSend Decision

to the data plane (alert …)

Execution of the 
Decisions

Send new data to the 
control plane

Fig. 3. External data-driven control

5 Simulation

The experiment aims to show how the global view of the network established at
the controller level, combined and enriched with the external actors’ data, allows
a more informed and efficient network control to support ITS services effectively.

We show through evaluations how the SDN Controller can take advantage
of its holistic view of current and potential network loads to guide the node in
selecting the point of network attachment with the best expected performance.

We first present the simulation tools supporting the SDN-VANET architec-
ture simulation prerequisites. We describe the tools chosen as part of our studies.
Finally, we present the simulation results obtained.
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5.1 Simulation Tools

To study, evaluate, compare our approach with the VANET without SDN, the
simulation environment must combine both:

– Support for SDN programmable networks (e.g. via OpenFlow),
– A wireless communication medium (e.g. 802.11p/LTE vehicular communica-

tion standard),
– A vehicle mobility support.

To perform simulations requiring the use of a real SDN controller and/or the
OpenFlow protocol, we opt for the choice of MiniNet-WiFi [15,16]. This tool
supports the main prerequisite for simulating a vehicle network programmable
via SDN. This is the implementation of the OpenFlow protocol and its inte-
gration with various nodes (RSU, vehicles, etc.), as well as the possibility of
including real SDN controllers.

5.2 Description de la Simulation

The simulation is based on a simple scenario of a Vanet network. Indeed, we are
simulating an SDN-VANET network with a topology deployed over an area of
12,000× 12,000 m, which contains an area of the road not covered by the fixed
infrastructure. A cellular base station (BS) is placed at the side of the road
1000 m from vehicles. The route is divided into virtual segments of size equal
to 200 m each. The node density is 220 vehicles. Each vehicle has two wireless
communication interfaces: a DSRC (IEEE 802.11p) interface with a transmission
range of up to 300 m and a 4G cellular interface. The vehicles travel at speeds
between 15 and 25 m/s. The simulation time is 300 s and the packet generation
rate is 10 packets/s.

The performance metrics we used are:

– Flow rule installation delay: represents the time elapsed since a vehicle
requests a new flow rule from the SDN controller and the moment when
the flow rule is installed in the vehicle flow table.

– Average central processing unit (CPU) usage: Measured at the level of each
vehicle.

5.3 Flow Rule Installation Delay

In this experiment, we study the impact of the distance to the SDN controller,
which represents the physical distance between the SDN controller and vehicles,
on the installation time of flow rules. So, we simulate a scenario where a set of
vehicles send 120 packets to request new flow rules from an SDN controller, and
we vary the distance between the vehicle and the SDN controller. We repeat this
experiment for different package sizes and different numbers of vehicles.
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The results in Fig. 4 and Fig. 5 clearly show that the average installation time
of flow rules increases with the number of vehicles. This, perhaps justified by
the fact that as the number of vehicles increases, the interference increases, and
consequently, the waiting time increases. Also, as the distance and the packets’
size increase, it is clear that the time required to transmit the end-to-end packets
increases. The simulation clearly shows that our solution’s application makes it
possible to reduce the flow rule installation delay, unlike VANET without SDN.
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Fig. 5. Flow rule installation delay 120 vehicles

5.4 Average CPU Usage

Figure 6 shows the CPU usage, depending on the number of vehicles. We can
see that CPU usage increases in proportion to the number of vehicles. The
comparison shows that our method made it possible to considerably reduce CPU
resource consumption compared to the VANET without SDN.
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5.5 SDN-VANET Contributions for Vehicle Networks

The main advantages of our SDN-VANET solution in-vehicle networks are:

– Facilitate efficient network management: thanks to the separation of control
and data dissemination functionalities and the logically centralized control
mode, the integration of SDN in-vehicle networks makes it possible to sim-
plify the network architecture and offer more flexible management and faster
configuration of the network. Indeed, instead of configuring and managing
each vehicle individually, all network management is centralized in the SDN
controller.

– More efficient use of network resources: With the real-time global view of the
SDN controller over the entire network topology and the centralized control
mode, it becomes easy to identify the current traffic state, which allocates all
types of network resources more efficient (i.e., bandwidth, spectrum, trans-
mission power, etc.).

– Facilitate scaling and reduce costs: SDN’s logically centralized control mode
makes it easy to deploy services and offer new features at scale with minimal
cost. This, by only intervening at the SDN controller level instead of acting
at each vehicle’s level separately. For example, the SDN controller can easily
handle a large-scale software update by simply installing entries in remote
vehicle flow tables.

6 Conclusion

In this article, we have proposed a new VANET architecture based on SDN to
benefit from the SDN approach and improve the VANET network’s performance.

The simulations’ results clearly showed the positive effect of using the SDN
paradigm on the VANET network. This integration considerably reduces CPU
consumption and Flow rule installation delay in the VANET network. Our solu-
tion represents an important step for the deployment of the VANET architecture
in real Internet networks.

In future work, we will use the controller’s controllability to enhance other
features of VANET, such as intelligent control of network resources.
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Abstract. In this article we look at the potential of cloud containers
and we provide some guidelines for companies and organisations that are
starting to look at how to migrate their legacy infrastructure to some-
thing modern, reliable and scalable. We propose an architecture that has
an excellent relationship between the cost of implementation and the ben-
efits it can bring, based on the “Pilot Light” topology. The services are
reconfigured inside small docker containers and the workload is balanced
using load balancers that allow horizontal autoscaling techniques to be
exploited in the future. By generating additional containers and utiliz-
ing the possibilities given by load balancers, companies and network sys-
tems experts may model and calibrate infrastructures based on the pro-
jected number of users. Containers offer the opportunity to expand the
infrastructure and increase processing capacity in a very short time. The
proposed approach results in an easily maintainable and fault-tolerant
system that could help and simplify the work in particular of small and
medium-sized organisations.

Keywords: High availability · Docker · Load balancing · Elastic
computing · Disaster recovery · High performance computing · Public
cloud · Private cloud · Hybrid cloud

1 Introduction

The cloud is one of the biggest technological innovations of recent years [1,2].
In fact, it enables the creation of complex, reliable and available technological
infrastructures that provide services of various kinds: from calculation services
to storage ones, to servers for the contents’ distribution via web pages. There
are various forms of cloud: for example we can use a public cloud or set up a
private cloud [3–5]. In the case of a public cloud, hardware provided by third-
party companies is used, such as Amazon AWS, Microsoft Azure, Google Cloud,
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and so on. Through small initial investments, only what is actually used is paid
for, and the hardware which is made available to the users, will be maintained
by the companies.

In contrast to the public cloud, there is the private cloud. This term refers to
infrastructures that are typically corporate, providing virtualised and reduntant
hardware and highly reliable services for employees, associated staff, or a exter-
nal users who consume the content produced by the company. In this case, the
company will have the responsibility of maintaining and configuring the hard-
ware needed to set up and build the infrastructure. This initial disadvantage,
however, is counterbalanced by a huge strategic advantage: the data (either sen-
sitive either ultra-sensitive data) is completely entrusted to the management of
the company itself and does not have to transit to third-party servers, so this
solution may be preferable for certain applications [6]. The private cloud is a type
of development architecture in which the computational resources are reserved
and dedicated for the organisation managing the system.

In the public cloud, on the other hand, the services offered by a provider use
pools of machines that also accommodate other users. There is a third alterna-
tive, called hybrid cloud, which represents a combination of the two architectural
strategies [7]. In the hybrid cloud, part of the services are given by a third-party
provider, and some subsystems are allocated within the corporate platform. For
example, it is reasonable to imagine a situation where the provider is demanded
to maintain a certain number of virtual machines and a certain number of disks
for data storage while a second pool of hard disks containing encrypted sensi-
tive data or databases for permanent information storage, is located inside the
private organisation.

The Covid-19 pandemic has highlighted a feature common to many countries
around the world: many organisations and companies have inadequate infrastruc-
ture to meet the pressing needs arising as a result of the digitisation processes
that have become extremely urgent. Our intent is to provide a model that can
speed up the technological evolution of companies and organisations or improve
their current computing infrastructure. The solution we propose, supported by
practical experimentation, allows a transition from an obsolete infrastructure of
an SME (small and medium-sized enterprise), representing a typical case, to a
system based on a cluster whose services are deployed by docker containers, and
delivered through a cluster of nodes configured according to the best practices of
an High Availability (HA) approach. The idea sprang from a report of the Ital-
ian National Institute of Statistics (STAT), which examined active companies
with at least 10 employees, finding out that the Information Technology (IT)
infrastructure are still inadequate in many cases to their needs.1

2 Related Works

The cloud is being studied and analysed by many researchers around the world
because of its strong capabilities. In the course of this decade, it is expected that
1 http://dati.istat.it/Index.aspx?DataSetCode=DCSP ICT.

http://dati.istat.it/Index.aspx?DataSetCode=DCSP_ICT
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the cost-benefit ratio will continue to increase and there will be new patterns of
developments focused on the Internet of Things (IOT) [8], and other emerging
technologies. The impacts that this type of architecture have on the environment
are also studied. The data centres which are required by the Cloud, consume
large amounts of energy and it is necessary to make accurate estimates of the
pollution that will be produced in the next few years [9]. The cloud can also
be used to make sites and content available for use in the world of education
[10,11]. A number of researchers are tackling extremely topical and interesting
subjects, e.g. techniques for implementing and exploiting Function as a Service
(FaaS) [12]. FaaS are serverless systems, where programmers can insert their
own snippets of code (Python, PHP, etc.) and call them up via APIs. The result
is that virtual machines automatically execute the code, without the necessity
of setting up a server. The cloud can also be used to do complex computational
calculations that require expensive GPUs and CPUs to perform machine learning
calculations [13–16].

Docker containers are lightweight cloud technologies that are dominating
among IT solutions because they allow applications to be released faster and
more efficiently than in the case of virtual machines. The adoption of Docker
containers in dynamic, heterogenous environments and the ability to deploy and
effectively manage containers across multiple clouds and data centers has made
these technologies dominant and fundamental [17]. The improvements in terms
of increased performance and reduced overhead have made the cloud container
approach indispensable for building cloud environments that keep pace with the
demands emerging from various application domains [18,19].

3 Towards Scalable and Reliable Services

Legacy service delivery architectures are based on a single, centralised server.
The main disadvantage of this solution is its low maintainability and the lack
of fault tolerance. If a hardware problem or a hacker attack occurred, service
delivery might be compromised. Monolithic architectures also suffer from another
disadvantage: they cannot effectively scale in case of peak demands.

Other types of architectures support scaling. Scaling can be of two types:
vertical or horizontal [20–22]. Vertical scaling is defined as an operation that
increases the machine hardware resources, for example, rising the number of
vCPUs or the amount of GiB of RAM. Horizontal scaling is defined as the
operation that creates replicas of the server (node) that provides the service.
The new node is identical to the original one and will help it to respond to
client requests. In the case of monolithic architectures, horizontal scaling is not
possible.

Vertical scaling, on the other hand, involves shutting down the machine and
upgrading the hardware. This is unsuitable and not acceptable by modern stan-
dards. The problem of fault tolerance must also be taken into account.
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3.1 Disaster Recovery

Legacy architectures often do not have particularly complex plans for fault man-
agement or data loss [23,24]. Disaster recovery (DR) is the procedure imple-
mented to restore the functionality of a system, suffering a disaster, a damage:
for example, the loss of system data, the loss of user data, the compromise of
security following a hacker attack or hardware damage due to a natural dis-
aster. When planning internal disaster recovery policies, three objectives must
be defined: the Service Level Agreement (SLA), the Recovery Time Objective
(RTO) and the Recovery Point Objective (RPO) [25,26].

The SLA is a percentage value that indicates the minimum uptime that the
system guarantees during the year: for example, if a system has an SLA value
of 99%, it means that in one year it could be unavailable for 3 d 15 h 39 m 29 s.
An SLA of 99.99% instead could accept an annual downtime of 8 h 45 m 56 s.
The higher the desired SLA value, the higher the costs to build an architecture
to meet our demand.

The RTO is the maximum acceptable time between the interruption of the
service and the moment when it is restored. In the case of legacy architectures the
RTO is generally about 48 h; for example, in case of hardware problems, spare
parts must be found, repairs or replacements must be made, and the system
must be restored.

The RPO indicates the maximum acceptable time between the last data
backup and time data loss because of a disaster. This indicates how much data
time, in terms of hours, we can accept to lose. Legacy architectures often rely only
on RAID 1 storage systems (mirroring) and do not perform daily incremental
and offsite backups. Unlike the SLA, we have that the lesser RTO and RPO time
is required by the system, the higher the cost to achieve this requirement is. The
types of disaster recovery plans [27] that can be implemented are summarised in
Fig. 1.

Fig. 1. Disaster recovery plans

Generally, legacy architectures implement a “Backup and Restore” type of
architecture. This means that in case of critical problems, the only thing that can
be done is to shut down the machine (if it is still working), restore the backup
on the repaired machine or on a new machine, and restart the system with the
data updated to the last backup. The “backup and restore” mode has an RPO
in hours and an RTO in the 24 to 48 h range.
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“Pilot Light” mode creates hourly or daily backups and maintains a complete
copy of the architecture in a separate place, away from the system. In the event
of a disaster, IT technicians will initiate backup and services will be restored.
The “pilot light” mode guarantees an RPO in minutes and an RTO in hours.

Alternatively, there is the “Warm Standby” mode. In this mode, a backup
system is replicated on a different location with respect to the main system and
is synchronised in near real-time. This mode provides for a synchronisation in
seconds (RPO) and an RTO time in minutes.

On the other hand, the “Active/Active” mode is the last possible architec-
ture according to the diagram shown, and it is the safest and the most expensive
from the point of view of service availability. It requires that two or more ser-
vice delivery systems are always synchronised and active at the same time. A
load balancing service is required to sort requests between the two systems. For
example, an active/active system of the type 70/30 could be configured. A 70%
of the requests will go to the main system and a 30% of the requests will go to
the secondary backup system.

If the main system experiences a problem, the secondary backup system will
be active and the user will not experience any particular problem. This type of
architecture provides for an RPO around milliseconds’ time, or even 0, and an
RTO potentially equal to 0. It should be noted that, as we move towards the
right-hand side of the Fig. 1, the protection and ability of the system to resist
faults increases, so too the costs of implementing the architecture.

There are several problems with Legacy architectures: first, we can be
exposed to ransomware hacking attacks that can irretrievably destroy our data
store; second, there could be a software problem or a badly crafted query by a
software developer that would irrevocably wipe out the database; therefore, other
kinds of software problems can exist: minor portability issues among operating
systems.

An example of legacy architecture with no virtual machines is shown in the
Fig. 2A.

In past years, it was in fact common practice to install a Linux distribution
and directly configure the application servers at the operating system level. A
further problem is related to system updates. If, for example, it is necessary to
update the PHP server in order to be able to use the new version and the latest
security improvements, this might be difficult and problematic in the legacy case.
Furthermore, it would be necessary to assess how much downtime we can accept
in order to carry out the update; but there would be no guarantee that a rollback
could be carried out quickly in the event of incompatibility problems.

3.2 Legacy with Virtual Machines

A slightly better solution, falling however under legacy configurations, is to use
several Virtual Machines (VMs), one for each service-providing application. An
example is shown in the Fig. 2B. In the second scenario, using Virtual Machines,
programs may be moved from one system to another, because virtual machines
are kept in one or more files readily transferred across devices. The side effect
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is that they have a significant hardware impact. Since a complete system needs
to be executed, a lot of hardware (especially RAM) resources are used even
when not required by the applications. In addition, further clock cycles are used
to perform and maintain the secondary operating system activities, which also
waste energy. The installation of the operating system also requires that virtual
machines occupy a considerable amount of disk space, each time that a new one
is generated. There are consequently two benefits of this architecture: the ability
to make backups quickly, for example by duplicating the Virtual Machine-related
files and the independence from the hardware subsystem and operating system.

Fig. 2. Legacy architecture

4 The Proposed Architecture

In this section we describe the main techniques we used to implement a modern,
reliable and highly available system (HA). The technology behind the proposed
architecture is based on the use of Docker containers, which have the enormous
advantage of being much leaner and more efficient than a virtual machine. Con-
tainers also make it possible to isolate an application at the highest level, making
it a completely separate entity.

The first step is to design and configure the services and applications using
Docker containers, as described in Subsect. 4.1 [28,29]. Docker also guarantees
high security thanks to its container architecture with separate storage spaces
and access permissions [30]. In the Subsect. 4.3 we explain the way we can set
up the databases in a Master/Slave configuration.

Once the services are up and running inside the containers, a distributed,
redundant network environment must be prepared using load balancers, as
described in Sect. 4.2. A networked, redundant and available file system must then
be set up as described in Sect. 4.4. The proposed architecture is shown in the Fig. 4.
As it is shown, two availability zones are configured according to the Pilot Light
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Fig. 3. Docker architecture

scheme. The two zones are connected to each other via a VPN connection. The
primary zone allows horizontal scaling thanks to the use of the load balancer and
small servers inside docker containers. The secondary zone is on IDLE state and
is kept at minimum power and CPU consumption; services are configured but not
active. Data is copied between the two zones in an automated way. In case there is
a problem and zone A fails, the backup zone will take its place.

4.1 Docker

Docker allows to build an architecture as shown in the Fig. 3. Each service, such
as the Web Server or the Mail Server, is encapsulated within its own container.
Containers are defined by “yml” files, and an example of them is given in the code
shown in Listing 1.1, where a Web Server Apache container is defined, exposing
the HTTP and HTTPS ports. Each “yml” file may contain the definition of one
or more containers. Containers are extremely light from a computational point
of view and do not instantiate a real operating system; the applications that
run inside them only need to allocate the libraries and binaries necessary for the
application to work. Containers are stateless by definition, which means they
have no true running state. To ensure data consistency, we should mount the
folders of the filesystems where we want to execute input/output operations in
a permanent way within them.

4.2 The Load Balancing Service

Load balancers are fundamental to the implementation of an HA architecture.
They are customizable and can be adapted to a wide range of applications.
The standard task of a load balancer is to distribute incoming requests to a
pool of worker nodes. The nodes will process the requested information and if
necessary provide the output to the users. The requests load can be managed in
two different ways: balanced and unbalanced.
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Fig. 4. Pilot light architecture

In the balanced mode each node receives a quantity of requests equal to 1/N,
with N equal to the number of nodes. This type of balancing can be implemented
in the case of an Active/Active architecture.

In unbalanced mode, percentage values can be defined to indicate the amount
of requests each node will receive. For example, a 60/40 configuration allows 60%
of requests to be sent to Node1 and 40% of requests to Node2.

Moreover, there are various request scheduling algorithms [31,32]. The first
algorithm is called round-robin. Requests are sorted cyclically across nodes using
the round-robin algorithm. This method ensures that nodes receive an equal
amount of requests regardless of their CPU use or complexity. A second algo-
rithm is Least Outstanding Requests (LOR) which sorts requests across nodes
trying to balance the number of “unprocessed requests”. In our architecture, two
load balancers are configured. The first is HAproxy placed in a docker container.
HAproxy only exposes ports 80 HTTP and 443 HTTPS [31]. Its role is to obtain
requests from clients and sort them within the primary zone, evenly distributing
the workload across nodes. So, The file haporxy.cfg must be configured. The
Listing 1.2 defines a new docker container with the image haproxy. The container
will expose the correct ports and the custom configuration file “myHaproxy.cfg”
will be mounted into the file system.
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1 ver s i on : ’3 ’

2 s e r v i c e s :
3 web:
4 image : a p a c h e
5 container name : a p a c h e w e b
6 r e s t a r t : a l w a y s
7 port s :
8 - " 80:80 "

9 - " 4 4 3 : 4 4 3 "

10 volumes :
11 - " / home / user / m y W e b s i t e :/ var / www / html / "

12 deploy :
13 r e sour ce s :
14 l im i t s :
15 cpus : ’ 4.0 ’

16 memory: 2 0 4 8M
17 r e s e r v a t i o n s :
18 memory: 1 7 6 8M

Listing 1.1. Web Server without Load Balancer

4.3 The Database Service

A MariaDB RDBMS cluster is configured by defining ‘yml’ files in the Mas-
ter/Slave configuration [33,34]. In a “yml” file it is in fact possible to define
more containers by adding more elements in the “services” branch.

We have provided a single master database whose data is directly saved to
the system disk. As this is a master slave mode, it is important to enable logging
on the file system so that debugging can be carried out and configuration errors
can be analysed. The Slave database containers have a “yml” definition simi-
lar to that of the Master: differences only concern the names and IP addresses.
We will now describe how the load balancer for Databases is configured. The
docker image used is mariadb/maxscale [35]. First we need to publish the Mari-
aDB MaxScale REST API, an HTTP interface, which generates data in JSON
format, offering visual management tools. MariaDB MaxScale splits requests in

Fig. 5. Database: master and slave
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1 ver s i on : ’3 ’

2 s e r v i c e s :
3 haproxy :
4 image : h a p r o x y : 2 . 3 . 5
5 hostname : h a p r o x y
6 port s :
7 - 80: 80
8 - 443 : 4 4 3
9 volumes :

10 - /myHaproxy . c f g :/ u s r / l o c a l / e t c / h a p r o x y / h ap r o x y .
c f g

11 deploy :
12 placement :
13 c on s t r a i n t s : [ n ode . r o l e == w o r k e r ]

Listing 1.2. ”Definition of the haproxy”

such a way that write instructions are sent to the Master container and read
instructions are balanced among the Master and Slave containers. A specific
user for maxscale, with GRANT ALL privileges, must then be defined, acting in
the Master database. MariaDB MaxScale is distributed with a BSL (Business
Source License) and is capable of doing much more than just load balancing: it
also has the ability to perform failover and switchover. The failover mode allows
to monitor and operate even if one of the nodes in the database is in an unhelpful
state. If, for example, the Master database were to crash, the Max Scale load
balancer would be able to promote the Slave database to the role of new Master.
The configuration involves a few steps: definition of the servers, creation of the
monitoring service, definition of the traffic routing using readwritesplit mode
and finally the configuration of the listner using the mariadbclient protocol and
its TCP port. The resulting configuration is shown in Fig. 5.

4.4 Network File System

The file system must be highly available, reliable and distributed. Nodes must
be able to access the file system where they will safely store data, regardless
of where it is located within the infrastructure. To do this, we have chosen to
implement the GlusterFS network file system [36,37]. GlusterFS is distributed,
open source and highly scalable.

The file system of the individual nodes has been configured to use XFS [38].
GlusterFS includes commands for defining the list of trustworthy servers that
comprise the trusted pool for sharing disk space for replication. They are defined
by executing the command gluster peer probe <hostname> command, spec-
ifying the various nodes. In order to create the gluster volume, it is necessary
to specify in sequence: the volume name, the type (e.g. Replica), and the nodes
involved with their brick paths.
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You need to authorise the four nodes running GlusterFS to connect to the cre-
ated volumes. To do this, we need to specify the IP addresses for each node that
we want to connect to the gluster volume. The parameter to use is auth.allow
and then start the volume. Finally, the common folder where the data will be
stored must be created, for example /var/gvolume. This folder must be cre-
ated in each node that will use it. To mount it, simply use the specific script
mount.glusterfs. In order to speed up the start-up time of the glusterd daemon
and ensure that the reboot process is automated, we recommend automount.
GlusterFS is one of the easiest persistent storage solutions to implement, com-
bined with the use of SSD disks, which are now widely used.

4.5 Scaling

Scaling is simple to implement adopting our recommended design. Our architec-
ture enables to expand the computational power available in the system without
requiring substantial structural modifications or shutting it down. Assume, for
example, that we expect to have five times as many users in November as we
do the rest of the year. In this situation, we might install more nodes, for exam-
ple, by adding containers containing a Web Server instance. The HAproxy load
balancer will take care of sorting requests across nodes as described in Sect. 4.2.
Because our design involves operating in a private cloud environment, it is pos-
sible that we may need to employ more hardware and processors. The docker
setup, on the other hand, comes to our rescue. Since all services are described
by “yml” files, it will not be necessary to reconfigure the machines from scratch.
All is needed is to launch new containers within the Linux distribution and
tell HAproxy which new IPs are to be used in the pool of web servers. These
procedures may be carried out without ever shutting down or disrupting the
infrastructure.

5 Conclusion and Future Developments

Until recently, the term “cluster” was associated with huge corporations and
data centres. Thanks to the Open Source software available, everyone has the
opportunity to deploy a Docker Cluster. Containers allow for the expansion of
infrastructure and the increase of computing capability that may be provided
in a relatively short period of time. Companies and network system engineers
may model and calibrate infrastructures based on the estimated number of users
by introducing additional containers and utilising the capabilities of load bal-
ancers. Autoscaling refers to more sophisticated approaches that can generate
or delete containers based on the number of users currently present. We have
achieved long-term dependability and a low RPO and RTO time using the Pilot
Light model, which will ensure that we do not lose data and keep our services
available to consumers in the case of various problems occur (such as hacker
attacks or natural catastrophes). In the future, we want to offer pre-configured
Docker images that consumers may freely utilise. Furthermore, we want to estab-
lish a pre-configured architecture utilising the Infrastructure as a Code (IAAC)



Implementing a Scalable and Elastic Computing Environment 687

paradigm, which allows the entire virtual structure to be described in a text
file and then automated reproduced in the many organisations where it may be
required.
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